
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

AttachingtoanAlreadyRunningProcess;¬Attaching to an Already Running
Process
Sometimes, a problem occurs only when you launch an application outside the debugger. When you launch it
inside gdb, the problem disappears. If this happens , launch the application using the launch button and use
the gdb command attach to hook up to it:

(gdb) attach pid

pid is the process ID of the process you want to debug.

attach immediately stops the application.    When you use attach, you can debug the process just like you
normally would: by setting breakpoints, modifying storage, and so on.

When you're finished debugging, use detach (which takes no arguments) to detach the debugger from the
process. The process resumes executing. You'll kill the process if you try to quit gdb or if you try to start the
program from the beginning. (gdb asks for confirmation before it allows you to do these things.)

If you're having trouble attaching to a process before the errant code is executed, send your program a stop
signal as one of the first messages:

[NSThread sleepUntilDate:[NSDate distantFuture]];

This indefinitely suspends execution of the application. Once you attach in gdb, click the continue button to
go on from there.

370776_TableRule.eps ¬

Settingbreakpointsondata;¬Setting breakpoints on data
Sometimes you want to stop the program whenever the value of a variable changes, no matter which part of
your code is doing the changing. To do this, use a watchpoint . To set a watchpoint:

(gdb) watch expr

where expr is any expression or variable.

gdb treats watchpoints and breakpoints the same. Anything you can do to a breakpoint, you can also do to a
watchpoint (see ªCool Breakpoint Stuffº in this chapter    ;DebuggingConcepts.rtfd;CoolBreakpointStuff;¬). The
Breakpoints display of the Task Inspector provides information on both breakpoints and watchpoints.

When a watchpoint is set, your program runs much more slowly that if you had set a normal breakpoint, so
use watchpoints sparingly. (One alternative is to set a conditional breakpoint, described in ªCool Breakpoint
Stuff.º) However, watchpoints are sometimes the only way to catch an error when you don't know where the
error occurs.

370776_TableRule.eps ¬

CoolBreakpointStuff;¬Cool Breakpoint Stuff
Using gdb commands, you can add more power to your breakpoints and make debugging a breeze. For
complete information on gdb breakpoints, see the OPENSTEP Development Tools Reference manual.     
;/NextLibrary/Documentation/NextDev/Reference/DevTools/Debugger/Debugger.rtf;;¬    Here are some
highlights.

Setting Breakpoints in Dynamically Loaded Code

gdb doesn't know about symbols in dynamically loaded code (such as code inside frameworks or loadable
bundles) because it's not laoded until run time. This means you can't set a breakpoint in a framework until
after you start the program that uses it. This is pretty frustrating when the framework is what you want to
debug. However, you can set a future breakpoint when the framework isn't loaded yet. To do this, use the
future-break command:

(gdb) future-break address

(address can be a method name, a function name, a file name and line number, and so on.) When you enter

this command, gdb checks the loaded symbols for a symbol matching address. If one is found, it resolves the
breakpoint. If not, it holds on to it. Then, whenever a dynamic shared library is loaded, gdb checks the
breakpoint against the newly loaded symbols until it can resolve the symbol in the breakpoint. (If the symbol
can never be resolved, the future-break just sits around doing nothing.)

When you quit the program, gdb unloads all of the breakpoints set in dynamic shared libraries. These
breakpoints are converted into future breakpointsÐwhen the library is loaded again, the breakpoints are
resolved again.

Future breakpoints are just like normal breakpoints in every other respect; you can add commands to them,
disable them, enable them, and so on. In the Breakpoints display of the Task Inspector, they are listed as
ªunloaded.º

Conditional Breakpoints

If you only want a breakpoint to stop when a certain condition is true, use the condition command:

(gdb) condition bnum expression

expression is any Boolean expression and it's associated with breakpoint number bnum. (The Breakpoints
view of the Task Inspector tells you the breakpoint number.) From now on, this breakpoint will stop the
program only if the value of expression is true.    To remove a condition from a breakpoint, enter condition
with no expression.

Ignoring Breakpoints

You can disable a breakpoint for a specific length of time with gdb command ignore:

(gdb) ignore bnum count

This command ignores the breakpoint the next count times it is reached. (0 means the program stops the next
time it's reached.) If the breakpoint is a conditional breakpoint, the condition isn't checked unless the ignore
count is 0.

Executing Commands at a Breakpoint

You can give any breakpoint a series of commands to execute when the program stops at it. For example, if
you want to know what the value of the variable x is whenever breakpoint 5 is hit, enter the following. (You
must type end when you're through to make the gdb prompt return.)

(gdb) commands 5
> print x
> end

This brings up a handy trick for ignoring breakpoints. Often, you don't know how many times you want to
ignore a breakpoint (making the ignore command useless), but you know that you want to ignore it until a
specific point in a program is reached. For example, say you want to stop at a method named setCurrent:
but only if the message is sent by the processParagraph method. In this case, you can do the following:

(gdb) break setCurrent:
Breakpoint #1 set
(gdb) break processParagraph
Breakpoint #2 set
(gdb) disable 1
(gdb) commands 2
> silent
> enable 1
> continue
> end
(gdb) continue

This example sets two breakpoints, one at the beginning of each method. Then, it disables the breakpoint at
setCurrent:. When the breakpoint at processParagraph is reached, it enables the breakpoint at setCurrent:
and continues executing. (silent is just a convenience. It means that gdb won't print the usual stopped at
breakpoint message.)

370776_TableRule.eps ¬

GettingUsefulInformationFromPrint-object;¬Getting Useful Information From
Print-object
The Print-object button (which invokes the gdb command print-object) sends the message description to
the selected object. NSObject defines the description method, so all objects respond to it. By default, this
method prints the object's class name and hexidecimal address:

<NSApplication: 0xbb5e4>

However, you can override this method in your classes to provide more useful data. Compared to dumping
the contents of the underlying struct, an implementation of description can print out just the information that
is helpful and use a more readable format. Your description method should return an NSString.

Many Foundation classes override description. For example, NSArrays, NSDictionaries, and NSStrings print
their contents instead of their addresses.

370776_TableRule.eps ¬

FortheExperts:MoreonExaminingVariables;¬For the Experts: More on
Examining Variables
Making Sure Variables Stick Around

When you build the program using the default build target (for example, app for Application projects), an
optimized, debuggable executable results. This executable is helpful if a bug surfaces only in the optimized
version; however, debugging optimized code sometimes gives surprising results. Control flow may change
and variables may disappear without a trace. You ask gdb to print such a variable and even though the
source clearly shows it is in scope, gdb replies:

(gdb) print num
No symbol "num" in current context

To ensure that a variable be available in the debugger even after optiumization, declare the variable volatile.

Value History

gdb maintains a value history for your session. This means that every expression you evaluate using the
print command (or the Print, Print *, and PO buttons) is assigned a value number in the history, like this:

(gdb) print self
$7 = (struct NSApplication *) 0xbb5e4

You can refer to this value as $7 and use it in future expressions:

(gdb) print (char *) [$7 appName]
$8 = 0xb80cc "FunWithGDB"

Once a value is entered into the history, it doesn't change. The value is stored as $7, not the expression that
generated it. This means that $7 doesn't change to hold the new value of self when your program enters a
different scope.

Also, at any time, $ refers to the last value in the history and $$ to the next-to-last value.

The output command has the same semantics as the print command, but doesn't add the result to the value
history. You can use this difference to avoid cluttering the value history with unimportant results. For more
sophisticated printing needs, gdb provides a printf command similar to the C version that provides for
formatted output. Like output, the results from printf are not entered into the value history.

Any name that begins with a $ can be used as the name of a gdb convenience variable. These variables are
implicitly typed and created at first reference. Use print to get the value of a convenience variable and the set
command to set or change the value. You can set the value to any valid C or Objective-C expression,
including methods or functions:

(gdb) p $array = [NSArray array]
$24 = 793052
(gdb) p $num = 1230 % 4
$25 = 2

All registers have convenience variables associated with them. The info registers command dumps the
contents of all registers so you can see the names associated with each register. The register convenience
variables most often used are $fp, which holds the frame pointer, $sp for the stack pointer, and $pc for the
program counter.

Locating Your Variables

To find out how a variable is stored, use this command:

(gdb) info address self
Symbol "self" is a variable in register a2.

info address tells you if the variable is stored on the stack or in a register. This command is useful to
determine if optimizations are causing problems, particularly on RISC machines.

Examining Raw Memory

Use the command x (for ªexamineº) to examine memory without referencing the program's data types.

x is followed by a slash and an output format specification, followed by an expression for an address:

x/fmt addr

These fmt letters specify the size of unit to examine:

b Examine individual bytes.
h Examine halfwords (two bytes each).
w Examine words (four bytes each).
g Examine giant words (eight bytes).

These fmt letters specify how to print the contents:

x Print as integers in unsigned hexadecimal.

d Print as integers in signed decimal.
u Print as integers in unsigned decimal.
o Print as integers in unsigned octal.
a Print as an address, both absolute and relative
c Print as character constants (this implies size b).
f Print as floating-point.    This works only with sizes w and g.
s Print a null-terminated string of characters.
i Print a machine instruction in assembler syntax (or nearly).

Once you've entered x to see the value at an address, hit return to see the value at the next address.

370776_TableRule.eps ¬

IgnoringAutoreleaseErrors;¬Ignoring Autorelease Errors
You may want to debug the rest of your program first, saving the release problems until later. The
enableRelease: convenience method defined in Foundation's NSAutoreleasePool class helps you ignore
autorelease errors. NSAutoreleasePool defines the application's autorelease pool. When an object is
autoreleased, it is added to the autorelease pool. At the top of the event loop, all objects in the pool are sent a
release message, which decrements the reference count and potentially deallocates the object.
NSAutoreleasePool allows you to control that pool.

If you receive messages from the debugger indicating that you are sending messages to deallocated objects,
enter this command:

(gdb) call [NSAutoreleasePool enableRelease:NO]

This message disables the deallocation of all objects in your program, ignoring autorelease errors.

Your program must be started when you send this message. It's often useful to break on main() and send this
message after the first line or two of the program.

370776_TableRule.eps ¬

CommonAutoreleaseMistakes;¬Common Autorelease Mistakes
Once you find the object with the autorelease error, look for the following:

· For every autorelease and release message in your application, make sure there is a corresponding alloc,
copy, mutableCopy, or retain message sent to the same object. autorelease and release decrement an
object's reference count. alloc, copy, mutableCopy, and retain increment the reference count. The
number of increments and decrements for an object must be equal. Another way of thinking about this is: If
you don't allocate, copy, or retain an object, you're not responsible for releasing it.

· When an NSArray, NSDictionary, or NSSet (known as the collection objects) is deallocated, the objects
stored in the collection are released as well. If you need to access an object you stored in a collection after
the collection is released, you must retain that object before you release the collection.

· Superviews retain subviews as you add them to the hierarchy and release subviews as you remove them
from the hierarchy. If you swap views in and out of the hierarchy, you should retain the views that are not in
the hierarchy.

· When you change a window's content view, the window releases the old content view and retains the new
content view.

· Objects do not retain their delegates (to avoid retain cycles).

· decodeValuesOfObjCTypes: returns a retained object. decodeObject returns an autoreleased object. If
you unarchive an instance variable with decodeObject, send it the retain or copy message.

