
Compiling and Debugging a
WebObjects Application

2

Compiling and Debugging

This chapter describes how to use compiled code in WebObjects application. It
includes the following topics:

• When do you use compiled code?
• Creating and building a project
• Accessing compiled code from scripts
• Accessing scripts from compiled code
• Using C and C++ in WebObjects applications
• Debugging a WebObjects application

This chapter uses a small sample application, “Registration,” to illustrate how to
integrate compiled code into a WebObjects application.

When Do You Use Compiled Code?

There are two primary reasons you use compiled code in WebObjects: to boost
performance and to provide your own custom classes (remember, WebScript
doesn’t allow you to create new classes).

Providing your own custom business classes is one common use of compiled
Objective-C. Another is to subclass the WebObjects classes that are the building
blocks of a WebObjects application:

• Component

Instead of using a component script to provide behavior in your application’s
components, you can instead provide a compiled component by subclassing
WOComponentController. Just like component scripts, compiled
components have associated declarations and HTML templates. For
examples of applications that subclass WOComponentController, see
HelloWorldObjC and TimeOffObjC in the WebObjects Examples directory.

• Application

You effectively extend the behavior of WOWebScriptApplication when you
implement methods in an application script. However, there may be times
you need to override WOApplication methods to change the fundamental
behavior of the application object. For example, you might want to provide a
custom state storage solution. For an example of subclassing
WOWebScriptApplication, see the chapter “Managing State.”

3

Compiling and Debugging Creating Compiled Code

• Dynamic element

You can provide your own dynamic elements by subclassing
WODynamicElement.

Many applications use some combination of compiled code and scripts. For
example, it’s common to write your business logic as compiled Objective-C code
and to then use WebScript to provide your interface logic. “Interface logic”
refers to activities such as page navigation, capturing the data entered in forms,
and managing the appearance of the user interface. Business logic, on the other
hand, refers to the behavior associated with custom objects. For example, you
could have an OrderProcessing object that validates orders to ensure that their
data is correct and then checks them against available inventory.

Creating Compiled Code

To create the compiled code that will eventually be integrated into your
application, you need to follow these basic steps:

1. Use your development environment to create a project.

2. Implement a main() function.

3. Add to your project the libraries to which your application needs to link.

4. Create your classes and add them to your project.

5. Compile and link your code.

Once you’ve created and built your project, you can write your application’s
scripts, HTML templates, and declarations files. While you can choose to
provide all of your application’s behavior in compiled code, it’s common to use
some combination of compiled code and WebScript.

These steps are described in more detail in the following sections.

Creating a Project
The first step in writing compiled code that can be integrated into a WebObjects
application is to use your development environment to create a project.

Compiling and Debugging Creating Compiled Code

4 PRELIMINARY

If you’re using ProjectBuilder on NEXTSTEP, you must set the project’s type
to be “Tool” in the New Project Panel.

Figure 1. Creating a Project

Setting a project’s type to “Tool” means that it won’t include a nib file or an
application object.

Implementing a main() Function
When you use compiled code in a WebObjects application, you have to
implement your own main() function. This function creates the autorelease pool,
adaptor, and application objects used in your application.

To implement a main() function:

1. Using any text editor, open a new text file and give it a name that has the
extension .m.

For the Registration project, for example, create a file called Registration.m.

2. Add the following text to the file:

#import <WebObjects/WOWebScriptApplication.h>
#import <WebObjects/WOApplicationAdaptor.h>
#import <foundation/NSAutoreleasePool.h>

void main(int argc, char *argv[]) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 WOApplicationAdaptor *adaptor =

[[[WOApplicationAdaptor alloc] init] autorelease];
 WOWebScriptApplication *application = [WOWebScriptApplication

 sharedInstance];
 [adaptor runWithApplication:application];
 [pool release];
 exit(0);

}

The function begins by creating an autorelease pool that’s used for the
automatic deallocation of objects that receive the autorelease message. Next,

5

Compiling and Debugging Creating Compiled Code

it creates an adaptor object that will be used to exchange data between the
HTTP server and the WebObjects application object, which is created in the
next statement. It then runs the adaptor and associates it with the newly
created application. “Running” means that the adaptor will forward
incoming requests from the server to the application and outgoing responses
from the application to the server. The last statement releases the
autorelease pool, which sends a release message to any object that has been
added to the pool since the application began.

3. Add the file to your project.

If you’re using Project Builder, drag the file into the Other Sources suitcase
in your project.

Adding Libraries
The next step is to add to your project the libraries to which your application
needs to link: libWebObjects.a and libFoundation_s.a. You must add the libraries to
your project in such a way that libWebObjects.a is linked first.

If you’re using Project Builder on NEXTSTEP, you include the libraries in your
project by double-clicking the Libraries suitcase in Project Builder’s File
Viewer, and then double-clicking the files libFoundation_s.a and libWebObjects.a to
add them.

Once you add the libraries to ProjectBuilder, you need to reorder them so that
libWebObjects.a is linked first.To reorder the libraries, select the Libraries category
and control-drag libWebObjects.a to the top of the list, as shown in Figure 2:

Figure 2. Reordering the Libraries

Compiling and Debugging The Registration Application

6 PRELIMINARY

Creating Your Classes and Adding Them to Your Project
Once you set up your project, you’re ready to create the classes you’ll compile
and use in your WebObjects application. A project and its classes can go
anywhere in your application directory. You may want to create a subdirectory
within your application directory to contain your project and all of its related
files.

Building Your Code
Once you’ve created your .h and .m files and added them to your project, you’re
ready to build and link your code. There’s no special magic required for this
step—just use the process you normally would in your development
environment.

If you’re creating your application on NT, you need to make a copy of your
application after you build it that doesn’t have the extension .exe. This is
required so that your application can be autostarted. You should also maintain a
copy of your application that has the extension .exe, though, since this is the
version you need to use to run the application from a command prompt.

The Registration Application

This section uses the Registration application to describe how you integrate
compiled Objective-C code into a WebObjects application.

The Registration application takes information about a user as input, validates
it, and writes it out to a file. The first page of the application is shown in Figure 1.

7

Compiling and Debugging The Registration Application

Figure 1. The Registration Application

The following table lists the files in the Registration application:

File Description

Registration.m Defines the main() function, which creates autorelease pool,
adaptor, and application objects.

Person.[hm] A custom Objective-C class whose primary function is to validate
data entered by users.

RegistrationManager.[hm] A custom Objective-C class whose primary functions are to register
new users by writing their data to the People.array file and to return an
array of all registrants.

People.array A file that contains data about registrants in a property list format.

Application.wos The application script. It creates and maintains a RegistrationManager
object as a global variable.

Main.wos The script for the application’s first page. Main.wos has an associated
declarations file (Main.wod) and HTML template (Main.html).

Registrants.wos The script for the application’s Registrants page, which lists all of the
registered people. Registrants.wos has an associated
declarations file (Registrants.wod) and HTML template
(Registrants.html).

Compiling and Debugging The Registration Application

8 PRELIMINARY

The scripted components Main and Registrants contain the application’s
interface logic. Main.wos includes methods for capturing user input and clearing
the forms on the first page. Registrants.wos has just an awake method in which it
retrieves data for display. The Person and RegistrationManager classes, on the
other hand, contain the application’s business logic. They validate user input
and manage the application’s data.

Objective-C Classes in the Registration Application
The Registration application includes the Person and RegistrationManager
classes.

Person Class
When users enter data in the Main page of the Registration application, the data
is stored in an NSDictionary that’s used to initialize an instance of the Person
class. The Person class includes a validate method that’s used to check whether
the data entered by the user includes values for a name and address. The validate
method returns an NSDictionary. This dictionary contains a status message and
a validation flag that indicates whether the registration should be allowed to
proceed. If the user failed to enter a name or address, the validation flag value is
“No,” which disallows the registration. The status message then prompts the
user to supply the missing information.

The Person class also includes the name and personAsDictionary methods. The name
method is simply used to return the Person’s name, while the method
personAsDictionary returns a dictionary representation of the Person. The
dictionary representation is used when the Person’s data is written out to a file
in a property list format (this is described in more detail in the section on the
RegistrationManager class).

The header (.h) and implementation (.m) files for the Person class are listed
below.

Person.h
// Person.h
#import <foundation/NSObject.h>

@class NSDictionary, NSString;

@interface Person:NSObject {
 NSDictionary *personRecord;
}
+ personWithDictionary:(NSDictionary *)personDict;
- initWithDictionary:(NSDictionary *)personDict;
- (NSDictionary *)validate;
- (NSString *)name;

9

Compiling and Debugging The Registration Application

- (NSDictionary *)personAsDictionary;

@end

Person.m
// Person.m
#import "Person.h"
#import <WebObjects/WebObjects.h>

@implementation Person

+ personWithDictionary:(NSDictionary *)personDict
{

return [[[[self class] alloc]
 initWithDictionary:personDict]
 autorelease];

}

- initWithDictionary:(NSDictionary *)personDict
{

[super init];
personRecord = [personDict copy];
return self;

}

- (void)dealloc
{

[personRecord release];
[super dealloc];

}

- (NSDictionary *)validate
{

NSMutableDictionary *isValid = [NSMutableDictionary dictionary];

 if(![[personRecord objectForKey:@"address"] length] &&

 ![[personRecord objectForKey:@"name"] length]){
[isValid setObject:@"You must supply a name and address."

forKey:@"failureReason"];
 [isValid setObject:@"No" forKey:@"isValid"];
 }
 else if (![[personRecord objectForKey:@"name"] length]){
 [isValid setObject:@"You must supply a name."

forKey:@"failureReason"];
 [isValid setObject:@"No" forKey:@"isValid"];
 }
 else if(![[personRecord objectForKey:@"address"] length]){
 [isValid setObject:@"You must supply an address."

forKey:@"failureReason"];
 [isValid setObject:@"No" forKey:@"isValid"];
 }

Compiling and Debugging The Registration Application

10 PRELIMINARY

 else {
 [isValid setObject:@"Yes" forKey:@"isValid"];
 }
 return isValid;
}

- (NSString *) name
{

return [personRecord objectForKey:@"name"];
}

- (NSDictionary *) personAsDictionary
{

return personRecord;
}

@end

RegistrationManager Class
The RegistrationManager class has two primary functions: it registers a new
Person (which entails writing the Person’s data out to the People.array file), and it
returns an array containing all of the registrants.

The header (.h) and implementation (.m) files for the RegistrationManager class
are listed below.

RegistrationManager.h
// RegistrationManager.h
#import <foundation/NSObject.h>

@class Person, NSMutableArray, NSArray;

@interface RegistrationManager:NSObject {
 NSMutableArray *registrants;
}

+ manager;
- init;
- (NSDictionary *)registerPerson:(Person *)newPerson;
- (NSArray *)registrants;

@end

RegistrationManager.m
// RegistrationManager.h
#import <WebObjects/WebObjects.h>
#import "RegistrationManager.h"
#import "Person.h"

@implementation RegistrationManager

11

Compiling and Debugging The Registration Application

+ manager
{
 return [[[[self class] alloc] init] autorelease];
}

- init
{

NSString *path = [WOApp pathForResource:@"People" ofType:@"array"];
[super init];
registrants = [[NSMutableArray arrayWithContentsOfFile:path] retain];
if (!registrants)

registrants = [[NSMutableArray alloc] init];

return self;
}

- (void)dealloc {
[registrants release];
[super dealloc];

}

- (NSDictionary *)registerPerson:(Person *)newPerson
{

int i;
NSDictionary *results;
NSString *currentName, *newPersonName = [newPerson name];
NSString *path = [WOApp pathForResource:@"People" ofType:@"array"];

results = [newPerson validate];
if ([[results objectForKey:@"isValid"] isEqual:@"No"])

return results;

for (i = [registrants count]-1; i >= 0; i--) {
currentName = [[registrants objectAtIndex:i] objectForKey:@"name"];

if ([currentName isEqual:newPersonName]) {
 [registrants removeObjectAtIndex:i];
 break;

}
}
[registrants addObject:[newPerson personAsDictionary]];
[registrants writeToFile:path atomically:YES];
return results;

}

// Return an array of all registrants
- (NSArray *)registrants
{

return registrants;
}

@end

Compiling and Debugging The Registration Application

12 PRELIMINARY

RegistrationManager’s init and registerPerson: methods use the WOApplication
method pathForResource:ofType: to load the file People.array into the application.
This method takes a path and the file’s extension as arguments:

NSString *path = [WOApp pathForResource:@"People" ofType:@"array"];

You can use this method to load different kinds of resources into your
application—for example, images, sound files, data files, and so on.

Another noteworthy feature of RegistrationManager is its use of an NSArray
data source. The reason that the instance variable registrants object can be
initialized from the file People.array is because the file contains data in an property
list format. A property list is a compound data type that consists of NSStrings,
NSArrays, NSDictionaries, and NSDatas. Property lists can be represented in
an ASCII format, and property list objects such as NSDictionaries and NSArrays
can consequently be initialized from ASCII files that use this format. The file
People.array contains an NSArray of NSDictionaries.

Scripts in the Registration Application
The Registration application includes the scripts Application.wos, Main.wos, and
Registrants.wos. The contents of these scripts are listed below.

Application.wos

The application script Application.wos creates a RegistrationManager object
manager that’s used by the Main.wos and Registrants.wos component scripts to
register new users and return a list of all registrants.

id manager;

- awake
{
 manager = [RegistrationManager manager];
}

13

Compiling and Debugging The Registration Application

Main.wos

The Main.wos script includes methods for registering a new user, clearing the
forms on the page, and returning a page that lists all of the people who have
registered.

id newPerson;
id message;

- awake
{

if (!newPerson) {
newPerson = [NSMutableDictionary dictionary];

 }
message = @"";

}

/*
 * Ask the RegistrationManager manager object to write the user's data
 * to a file. Set the value of the message string based on the results
 * of the attempted registration.
 */
- register
{

// Set message from the validation dictionary.
id aPerson, results;
aPerson = [Person personWithDictionary:newPerson];
results = [[WOApp manager] registerPerson:aPerson];

if ([[results objectForKey:@"isValid"] isEqual:@"No"])
message = [results objectForKey:@"failureReason"];

else
message = @"You have been successfully registered.";

}

/*
 * Clear all of the forms on the page.
 */
- clear
{

[newPerson setObject:@"" forKey:@"name"];
[newPerson setObject:@"" forKey:@"email"];
[newPerson setObject:@"" forKey:@"address"];
message = @"";

}
/*
 * Return a page listing all of the people who have registered.
 */
- showRegistrants
{

id registrants = [WOApp pageWithName:@"Registrants"];
return registrants;

}

Compiling and Debugging The Registration Application

14 PRELIMINARY

Registrants.wos

The Registrants.wos script accesses the list of all registered people through the
application’s manager object. The Registrants component uses a
WORepetitionElement (declared in Registrants.wod, not shown) to iterate over all
of the names in the list. The anItem variable maps to a declaration in
Registrants.wod that defines a single element in the WORepetition.

id anItem;
id myNamesArray;

- awake
{
 myNamesArray = [[WOApp manager] registrants];
}

Accessing Compiled Code From a Script
Application.wos, Main.wos, and Recipients.wos all send messages to compiled code.
Accessing compiled code from a script is simply a matter of getting an object of
the compiled class and sending it a message. For example, the Main.wos script
includes these statements:

// Return a Person object by invoking Person’s personWithDictionary: method
aPerson = [Person personWithDictionary:newPerson];

// Register aPerson by invoking RegistrationManager’s registerPerson: method
results = [[WOApp manager] registerPerson:aPerson];

Accessing Script Methods from Compiled Code
To access a scripted object’s methods from compiled code, you simply get the
object that implements the method and send it a message:

// Get the object
id mainPage = [WOApp pageWithName:@"Main"];

// Send it a message
[mainPage setMessage:@"You have won a trip to Hawaii!!"];

To avoid compiler warnings, you should declare the scripted method you want
to invoke in your code. This is because scripted objects don’t declare methods—
their methods are parsed from the script at run time. If you don’t declare their
methods in your code, the compiler issues a warning that the methods aren’t part
of the receiver’s interface.

Note: This step isn’t strictly required—your code will still build, you’ll just get
warnings.

15

Compiling and Debugging Using C and C++ in WebObjects Applications

For example, suppose you have a component called Main that includes the
method setMessage: (this could be an implicit variable accessor method or an
explicitly implemented method in your script). To access this method from your
compiled code, you’d have to include a declaration such as the following in your
code’s implementation file:

@interface Dummy:WOComponentController
- (void)setMessage:(NSString *)aMessage;
@end

While it’s certainly straightforward to access a scripted object’s methods from
compiled code, you may not want to have that degree of interdependence
between your scripts and your compiled code. In the Registration application,
Person’s validate method could have directly set the value of the message variable
in Main.wos. Instead, validate puts its results into an NSDictionary that it then
returns. Likewise, you may want to minimize the interdependencies between
your scripts and your compiled code to facilitate reusability.

Using C and C++ in WebObjects Applications

In addition to using compiled Objective-C in WebObjects applications, you can
also use compiled C or C++. The interface you provide to WebObjects must be
in Objective-C since WebObjects can’t invoke C or C++ functions. However,
you can directly invoke C and C++ functions from Objective-C.

Some of the options for integrating C or C++ code into your application are as
follows:

• Putting the C or C++ functions into the same file as your Objective-C code

• Putting the C or C++ functions in separate files and importing their headers
into your Objective-C code

• Adding a third-party library to your project and importing its headers into your
Objective-C code

Compiling and Debugging Debugging

16 PRELIMINARY

Debugging

You use the debugging facilities provided in your development environment to
debug your compiled code. However, debugging the scripted portions of your
application requires a different approach.

WebScript provides methods that are useful for debugging: logWithFormat:, and
several trace methods. Using these methods in conjunction with launching your
application from a command shell provides you with a fairly complete picture of
your running application.

logWithFormat:
The WebScript method logWithFormat: writes a formatted string to stderr. Like the
printf() function in C, this method takes a format string and optionally, a variable
number of additional arguments. For example, the following code excerpt prints
the string: “The value of myString is Elvis”:

myString = @”Elvis”;
[self logWithFormat:@”The value of myString is %@”, myString];

When this code is parsed, the value of myString is substituted for the conversion
specification %@. The conversion character @ indicates that the data type of the
variable being substituted is an object (that is, of the id data type).

Because WebScript only supports the data type id, the conversion specification
you use must always be %@. Unlike printf(), you can’t supply conversion
specifications for primitive C data types such as %d, %s, %f, and so on.

Perhaps the most effective debugging technique you can use in WebScript is to
use logWithFormat: to print the contents of self. This causes WebScript to output
the values of all of your variables. For example, putting the statement:

[self logWithFormat:@"The contents of self in register are %@", self];

at the end of the register method in the Registration application’s Main.wos script
produces output that resembles the following:

The contents of self in register are <WOWebScriptComponentController 0xafe04
 message = You have been successfully registered.
 newPerson = {

 address = "Graceland\015\nNashville, TN";
 email = "elvis@graceland.com";
 name = Elvis;
}>

17

Compiling and Debugging Debugging

To see the output from logWithFormat: statements, you have to run your
application from a command shell, as follows:

1. Locate the application executable.

If you don’t have compiled code and haven’t built a custom executable, use
the DefaultApp program located in NextLibrary/WebObjects/Executables.

2. Change directories to the directory in which the application executable is
located.

3. Start the application by invoking the executable as follows:

ApplicationExecutable RelativeApplicationDirectory

You must provide a minimum of one argument to the executable: the
application directory relative to <DocumentRoot>/WebObjects. For example, the
resources for HelloWorld are located in
<DocumentRoot>/WebObjects/Examples/HelloWorld, so HelloWorld’s relative
application directory is Examples/HelloWorld. You’d use the following command
to start HelloWorld:

DefaultApp Examples/HelloWorld

To start a compiled application such as Registration, you’d use the
command:

Registration MyApplications/Registration

assuming you’ve placed Registration in a directory called MyApplications.

4. In your browser, open the URL you’d normally use to launch your
application:

http://myHost/cgi-bin/WebObjects/MyApplications/Registration

As your application runs, the output from logWithFormat: and other information
about your application is displayed in the command shell window.

Trace Methods
WebScript provides trace methods that log different kinds of information about
your running application. The trace methods are described in the following
table:

Compiling and Debugging Summary

18 PRELIMINARY

Method Description

trace: Enables all tracing.

traceAssignments: Logs information about all assignment statements.

traceStatements: Logs information about all statements.

traceScriptedMessages: Logs information when an application enters and exits a scripted
method.

traceObjectiveCMessages: Logs information about all Objective-C method invocations.

To use any of the trace methods, you must run your application from a command
shell.

You use the trace methods in either the awake or the willPrepareForRequest:inContext:
method:

- awake {
[self traceAssignments:YES];
[self traceScriptedMessages:YES];

}

Summary

When Do I Use Compiled Code?
The two primary reasons for using compiled code are boosting performance and
being able to use your own custom classes.

You use compiled code when you want to subclass WOComponentController,
WOWebScriptApplication, or WODynamicElement. You also use compiled
code to provide your own custom business classes.

How Should I Partition My Application?
There are no hard and fast rules about how you organize a WebObjects
application. However, it’s common to implement your interface logic in
WebScript and your business logic in compiled code.

19

Compiling and Debugging Summary

What Do I Need to Do to Produce Compiled Code
that Can Be Used in a WebObjects Application?
To create compiled code that can be integrated into a WebObjects application,
you need to follow these basic steps:

1. Use your development environment to create a project.

2. Implement a main() function.

3. Add to your project the libraries to which your application needs to link.

4. Create your classes and add them to your project.

5. Compile and link your code.

How Do I Access Compiled Code from Scripts?
You access compiled code from a script by getting an object of the class and
sending it a message. For example:

// Return a Person object by invoking Person’s personWithDictionary: method
aPerson = [Person personWithDictionary:newPerson];

// Send the object a message
[Person validate];

How Do I Access Scripts from Compiled Code?
To access a scripted object’s methods from compiled code, you get the object
that implements the method and then send it a message:

// Get the page object
id mainPage = [WOApp pageWithName:@"Main"];

// Send it a message
[mainPage setMessage:@"You have won a trip to Hawaii!!"];

To avoid compiler warnings, you can declare the scripted methods you invoke
in your compiled code.

Compiling and Debugging Summary

20 PRELIMINARY

Can I Use C and C++ In a WebObjects Application?
Yes, but the interface you present to WebObjects must be Objective-C. You can
integrate compiled C and C++ into your application in any of the following ways:

• Put the C or C++ functions into the same file as your Objective-C code

• Put the C or C++ functions in separate files and importing their headers into
your Objective-C code

• Add a third-party library to your project and importing its headers into your
Objective-C code

What Is the Most Efficient Way to Debug the WebScript Portion
of My Application?
You debug your compiled code using the tools provided in your development
environment. To debug the scripted portion of your application, the best
technique is to use the logWithFormat: method. It’s especially effective to use
logWithFormat: to print the contents of self—this outputs all of the variables’
values.

To see the output from logWithFormat:, you must run your application from the
command line.

