
Serving WebObjects

2

Serving WebObjects

Before you can get your own WebObjects applications running, there are some
system administrative tasks you should perform. If you encounter problems, this
document will help you troubleshoot them. The following sections discuss the
details of WebObjects system administration

• Installing and Deploying WebObjects concerns getting WebObjects,
installing it on your Web server host, and installing WebObjects applications
on hosts across your network.

• Checking Platform Dependencies lists specific features of Windows NT,
Solaris, and NEXTSTEP that affect WebObjects installation and
performance.

• Understanding WebObjects Files presents the workhorse of WebObjects, the
WebObjects Adaptor, along with the WebObjects.conf configuration file, the
DefaultApp script driver, and a specialized WebObjects Adaptor that integrates
with the Netscape Commerce Server.

• Tuning, Testing, and Debugging shows you how to manually start a
WebObjects application, load-balance multiple WebObjects applications on
multiple host computers, inspect the CGIMessenger.log file, and follow a step-
by-step test plan.

Installing and Deploying WebObjects

It’s easy to get WebObjects, and it's easy to set up WebObjects applications
distributed across your network.

• Get WebObjects for free from NeXT Software, Inc.

• Set up WebObjects on your Web server host.

• Deploy WebObjects applications on your Web server host and across your
network.

Getting WebObjects

To get WebObjects
To get information, documentation, or the latest version of WebObjects for free,
go to http://www.next.com/WebObjects

3

Serving WebObjects Installing and Deploying WebObjects

To get WebObjectsPro and WebObjectsEnterprise
WebObjectsPro adds the ability to run compiled applications and customize the
WebObjects interface with your Web server.

WebObjectsEnterprise adds the ability to access a variety of relational
databases.

To learn more about these more powerful members of the WebObjects family,
go to http://www.next.com/WebObjects and choose Products.

You can telephone call 1-800-TRY-NEXT (outside the U.S. call 1-415-599-
5239).

You can also email trynext@next.com.

To get more information about WebObjects Products
To keep up to date with changes, check WebObjects Release Notes by going to
http://www.next.com/Pubs/Documents/WebObjects/ReleaseNotes.html

Setting up WebObjects
Once you have installed WebObjects on your system, you must set it up to work
with your Web server. To do this, you need to know where to find the various
WebObjects files and directories and what to do with them.

Note: If you have installed an upgrade version of WebObjects, see Installing a
WebObjects upgrade. .

The <NeXT_Root> directory
WebObjects resides under the <NeXT_Root>/NextLibrary directory.

• On NEXTSTEP, the <NeXT_Root> directory is the root directory of the
startup disk.

• On Solaris, the <NeXT_Root> directory is the /usr directory.

• On Windows NT, you use the WebObjects SETUP utility to specify a
<NeXT_Root> directory. By default, the SETUP utility creates the C:\NeXT
directory for <NeXT_Root>. See Windows NT platform dependencies for
more information.

Remember to check NeXT Software’s WebObjects Release Notes regularly for
updated information.

Serving WebObjects Installing and Deploying WebObjects

4

The WebObjects directory
The WebObjects directory resides under the <NeXT_Root>/NextLibrary directory.
It contains a ReadMe.html file with installation instructions as well as these
directories

• <NeXT_Root>/NextLibrary/WebObjects/cgi-bin contains the WebObject Adaptor

• <NeXT_Root>/NextLibrary/WebObjects/Examples contains a ReadMe file and
example WebObject programs

• <NeXT_Root>/NextLibrary/WebObjects/Executables contains the DefaultApp program

On NEXTSTEP or Solaris you may have an additional WebObjects directory to
which the live WebObjects directory links. For example

• <NeXT_Root>/NextLibrary/WebObjects-Beta

• <NeXT_Root>/NextLibrary/WebObjects-C

This scheme lets you store several versions of WebObjects. You link whichever
you choose to the live WebObjects directory. By default, the latest version of
WebObjects is linked to the WebObjects directory.

Server-specific directories
On UNIX-based systems, whether or not you received a Web server from
NeXT, WebObjects provides a WebServer directory which resides under the
<NeXT_Root>/NextLibrary directory. It contains two directories

• <NeXT_Root>/NextLibrary/WebServer/cgi-bin contains the WebObjects Adaptor.

• <NeXT_Root>/NextLibrary/WebServer/htdocs/WebObjects contains an Examples
directory that is a link to the examples provided under the
<NeXT_Root>/NextLibrary/WebObjects directory.

If you received a Web server from NeXT Software, Inc., then this Web server
resides under the <NeXT_Root>/NextLibrary/WebServer directory, and these links
have been made for you.

On Windows NT systems, WebObjects’ setup installation utility asks you to
enter information about the location of your <NeXT_Root> directory as well as
your Web server's cgi-bin and htdocs directories. The Setup program copies the
appropriate files to these locations. See the description of Windows NT platform
dependencies for more information.

On NEXTSTEP or Solaris systems, you must create links from the
corresponding directories of your Web server.

5

Serving WebObjects Installing and Deploying WebObjects

• Link the <NeXT_Root>/NextLibrary/WebServer/cgi-bin/WebObjects executable (the
WebObjects Adaptor) into your Web server’s cgi-bin directory.

• Link the <NeXT_Root>/NextLibrary/WebServer/htdocs/WebObjects folder into your
Web server’s DocumentRoot directory.

Note: Check the documentation for your Web server to confirm the locations of
its cgi-bin and DocumentRoot directories.

Installing a WebObjects upgrade
If you’re installing an upgraded version of WebObjects, be sure to clean up the
following

• Make sure that you do not have any old /tmp/WebObjects.* files left.

• On NEXTSTEP and Solaris systems, verify the time-stamp of the
WebObjects file in your Web server’s cgi-bin directory.

If you are using your own Web server and not the supplied one, do not forget
to remove any old WebObjects file from the HTTP server’s cgi-bin directory.

Add in the Web server’s cgi-bin directory a link to WebObjects
ln -s /NextLibrary/WebObjects/Executables/cgi-bin/WebObjects

WebObjects

• On Windows NT, you may need to rename your WebObjects, DefaultApp, and
any compiled WebObjects applications with a .exe extension, depending on
the Web server you are using.

WebObjects Application Deployment
A WebObjects application may reside on the same computer as the Web server
or on a remote computer.

To install a WebObjects application on the computer that hosts your Web server,
WebObjects applications must reside under the Web server’s
DocumentRoot/WebObjects directory.

To install a WebObjects application on a remote computer, be sure that
computer has the <NeXT_Root>/NextLibrary/WebObjects directory and its
subdirectories, then locate your WebObjects application anywhere under the
WebObjects directory.

Serving WebObjects Checking Platform Dependencies

6

WebObject applications may be scripted or compiled. To start up WebObjects
applications

• Start up a scripted application with the command
./DefaultApp WebObjectsAppName

• Start up a compiled application with the command
./WebObjectsAppName

The URL that requests a WebObject application is identical in either case.

The WebObjects Adaptor invokes DefaultApp to run a scripted WebObjects
Application.

The WebObjects Adaptor will autostart either a scripted or a compiled
application only on the computer that hosts the Web server.

The WebObjects Adaptor assumes that all instances of WebObjects applications
are running. You should create an rc script that activates WebObjects
applications at boot time. Also you should create a shell script that lets you start
up WebObjects applications from the command line.

If the WebObjects Adaptor receives a URL requesting a WebObjects
application that is not currently running, the WebObjects Adaptor will try to
autostart that WebObjects application.

Note: On Windows NT, determine whether your Web server requires the .exe
extension for your compiled WebObjects application name. If so, and if your
WebObjects applications are misnamed, then the WebObjects Adaptor may
skip your intended compiled WebObjects applications and continue its
autostarting routine with unpredictable results.

Checking Platform Dependencies

WebObjects works with any HTTP server on any of the following platforms.
Note administration differences

• Windows NT doesn’t allow links across a filesystem, has no ps command, and
uses the TEMP environment variable, among other characteristics.

• UNIX systems include Solaris and NEXTSTEP.

7

Serving WebObjects Checking Platform Dependencies

Windows NT platform notes
See WebObjects Release Notes for updated information on WebObjects
running on Windows NT systems.

Windows NT presents some important differences from UNIX-based operating
systems such as

• WebObjects’ Setup installation utility has no counterpart in UNIX.

• Windows NT uses a backslash path delimiter. Note that some Web servers
require the UNIX-style forward slash in building URLS.

• The DOS command shell requires that programs have the .EXE extension,
but some Web servers require no .EXE extension.

• You must continually reopen the log file, as Windows NT has no counterpart
to the tail -f command.

• Application resources must reside directly under the directory for the
application, rather than in subdirectories thereunder.

• A Windows NT-based Web server won’t access WebObjects applications on
UNIX platforms.

Using WebObjects’ Setup Installation utility
If you’re using Windows NT, you should use WebObjects’ setup installation
utility and enter information about the location of your <NeXT_Root> directory
as well as your Web server’s cgi-bin and DocumentRoot directories. The setup
program will copy the appropriate files rather than make links. By default, the
setup utility creates the C:\NeXT directory for <NeXT_Root>.

During installation, the WebObjects setup installation program asks you to
specify a name for the software group on NT. Don’t use parenthesis characters
in the name, or the setup installation program will crash. Either use the default
group suggested by the installer, or, if you need to specify another group name,
use alphanumeric characters only.

Creating URLs on Windows NT
In building URLs, use forward slashes as opposed to a backslashes.

The Web server uses the WebObjects.conf ApplicationDirectory argument to build
URLs, so use forward slashes there, too.

Serving WebObjects Checking Platform Dependencies

8

With or without the .EXE extension
NetScape HTTP servers on NT do not accept CGI programs with an .EXE
extension. For the CGI WebObjects Adaptor to work with a NetScape server,
the CGI WebObjects Adaptor can’t have any extension. (Other NT HTTP
servers may require the .EXE extension; if so, add the .EXE extension to the
WebObjects program).

DefaultApp can’t be run from the DOS shell. Windows NT expects executables to
have the .EXE extension when they are executed from the DOS shell. The
workaround is to copy DefaultApp to DefaultApp.exe before you execute it in a DOS
shell.

Inspecting the CGIMessenger file
In order to enable debugging you should create the logWebObjects file in the
directory specified by the TEMP environment variable. Use Notepad or a
similar text editor to view the resulting CGIMessenger.log file. Remember that the
file is changed during each request, so you’ll need to continually reopen it to
monitor adaptor activity.

Application resource location
Resources cannot be located in nested directories. Keep resources immediately
underneath the application directory. For instance, the DodgeLite example
keeps its database dictionary in
DocumentRoot/WebObjects/Examples/DodgeLite/DodgeData.dict
instead of in
DocumentRoot/WebObjects/Examples/DodgeLite/Database/DodgeData.dict
as it would on a UNIX-based system.

Mixed Platforms
Load balancing doesn't work with a Web server running on Windows NT and
the WebObject applications running on UNIX platforms. Avoid hybrid
configurations.

UNIX platforms
Webobjects runs on Solaris and NEXTSTEP UNIX systems.

Solaris platform notes:
• Under Solaris, the <NeXT_Root> directory is the /usr directory. After you’ve

downloaded WebObjects, you'll find WebObjects resides under the
/usr/NextLibrary directory.

9

Serving WebObjects Understanding WebObjects Files

• Using the ps command.

To check which scripted WebObjects applications are running on a Solaris
system use
ps -eaf | grep DefaultApp

To check which compiled WebObjects applications are running on a Solaris
system use
ps -eaf | grep <ApplicationName>

NEXTSTEP platform notes
• Under NEXTSTEP, the <NeXT_Root> directory is the root (/) directory. After

you’ve downloaded WebObjects, you'll find WebObjects resides under the
/NextLibrary directory.

• Using the ps command.

To check which scripted WebObjects applications are running on a
NEXTSTEP system use
ps -aux | grep DefaultApp

To check which compiled WebObjects applications are running on a
NEXTSTEP system use
ps -aux | grep <ApplicationName>

Understanding WebObjects Files

The behavior of your WebObjects application depends on its interaction with
your Web server and some WebObjects intermediary files, which include the
WebObjects Adaptor, the DefaultApp program, and the WebObjects.conf
configuration file.

• The WebObjects Adaptor is a CGI-based software interface between a Web
server and your WebObjects applications that allows WebObjects
applications to be Web server independent.

• DefaultApp provides an interface between the WebObjects Adaptor and
scripted WebObjects applications.

• The WebObjects.conf configuration file is a text file that you create in your Web
server’s cgi-bin directory that lets you institute load-balanced distribution of
WebObjects applications across your network.

Serving WebObjects Understanding WebObjects Files

10

• The Netscape Interface Adaptor, based on the Netscape API, can be
integrated with the Netscape Commerce Server. This is part of the
WebObjects Pro and WebObjects Enterprise products.

The WebObjects Adaptor
The WebObjects Adaptor provides a flexible interface between a variety of
HTTP servers and WebObjects applications. The WebObjects Adaptor consists
of two parts, a Web server-side part and a WebObjects application part.

The application part consists of special classes that are part of every WebObjects
application.

The server-side part is a stand-alone CGI program named WebObjects. It should
be installed under your Web server’s cgi-bin directory.

Note: The WebObjects Adaptor must reside on the NEXTSTEP, Solaris, or
Windows NT computer that hosts your Web server.

Note: On Windows NT, some Web servers (such as Microsoft’s IIS server) require
that you rename the WebObject Adaptor to WebObjects.exe.

The WebObjectsPro product provides additional WebObjects Adaptor
components:

• The NSAPI WebObjects Adaptor integrates with the Netscape Commerce
Server, giving better security and faster performance.

• C source code for both the CGI WebObjects Adaptor and the NSAPI
WebObjects Adaptor which lets you customize the WebObjects Adaptor to
work with a Web server that resides on a platform that is not NEXTSTEP,
Solaris, or Windows NT.

WebObjects Adaptor Behavior
The WebObjects Adaptor is started by each new request coming into the server
and exits as soon as it has transmitted the corresponding response back. Each
time the WebObjects Adaptor wakes, it makes attempts to contact a
WebObjects application.

The WebObjects Adaptor attempts to make a connection with a currently-
running WebObjects application. If the WebObjects application is not running,
the WebObjects Adaptor attempts to autostart the application. If the
WebObjects Adaptor does not connect with the WebObjects application, the
WebObjects Adaptor fails, returning an error message.

11

Serving WebObjects Understanding WebObjects Files

If the WebObjects Adaptor connects to the WebObjects application, it trades
information with the WebObjects application using the HTTP protocol, passes
HTTP responses containing HTML pages back to the Web server, then exits.

How the WebObjects Adaptor connects
Whenever the Web server receives a URL with /cgi-bin/WebObjects... in it,
it awakens the WebObjects Adaptor. (Note that you can change the name of the
cgi-bin directory; for example, with the Microsoft IIS Server on NT, the URL
contains /Scripts/WebObjects.exe in it.)

The Web server sends the WebObjects Adaptor information found in the URL
requests, according to CGI protocol, using environment variables and the stdin()
character string. The WebObjects Adaptor uses two configuration files as it
begins the process of locating a particular WebObjects application:

• A private WebObjects.conf file, on UNIX systems located in the /tmp directory,
on Windows NT systems located in whatever directory is specified by the
TEMP environment variable. WebObjects applications add their port number
information to the private WebObjects.conf file at the time they start up.

• A public WebObjects.conf file located in the cgi-bin directory, or in the ns-
home/httpd-80/config directory in the case of the NSAPI WebObjects Adaptor.
The public WebObjects.conf file is optional, but if it exists and if it lists
WebObjects applications, then it overrides the private WebObjects.conf file,
for a particular WebObjects application.

If the WebObjects Adaptor fails to connect with a requested WebObjects
application, it returns a single error message: “Did not received any response
from application.” The anonymity of this message helps protect the details of
your site from unwanted user inspection. To get details on the cause of failure,
you should inspect the WebObjects Adaptor’s CGIMessenger.log file. The
exceptions to this one-error-message rule are error messages related to URL
syntax.

The WebObjects Adaptor inspects the information it gets from the Web server
and attempts to connect with a WebObjects application in the following ways

• If the information specifies an instance number and host, the WebObjects
Adaptor looks for the public WebObjects.conf file to find a particular port and
instance number for the specified WebObjects application. If successful, the
WebObjects Adaptor then tries to connect. If the WebObjects Adaptor cannot
find the WebObjects.conf file, or if the requested WebObjects application is not
listed, or if the connection attempt fails, the WebObjects Adaptor fails,
returning its error message.

Serving WebObjects Understanding WebObjects Files

12

• If the information does not specify an instance number and a host, the
WebObjects Adaptor looks first for the public WebObjects.conf file, then for the
private WebObjects.conf file.

If there is a public WebObjects.conf file, the WebObjects Adaptor reads all the
instances of application under the name requested and picks one randomly.
Then it tries to connect. If the connection attempt fails, the WebObjects
Adaptor fails, returning the standard error message.

If there is no public WebObjects.conf file, or if there is one but the application
requested is not listed in it, the WebObjects Adaptor reads the private
WebObjects.conf file. If the application is listed there, it tries to connect. If the
application is not listed there, or if the connection failed, the WebObjects
Adaptor will attempt to autostart the WebObjects application requested.

Autostarting a WebObjects application
By design, when the connection process begins, the WebObjects Adaptor first
assumes all WebObjects applications are currently running. If, in the connection
process, the WebObjects Adaptor finds a particular WebObjects application is
not running, the WebObjects Adaptor may try to automatically start up that
application.

• The WebObjects Adaptor can only autostart a WebObjects application that
resides on the computer hosting the Web server.

• There is no way to use a URL to force autostarting. If the WebObjects
application requested is already runnning and accessible following the
scheme described above, the WebObjects Adaptor will connect to it and
won’t autostart a new one.

• The WebObjects Adaptor is intelligent enough to autostart only the
applications present on your system.

The WebObjects Adaptor responds to a URL in a sequence of steps, stopping
when it makes a connection. For example, given a request that includes the
string

.../cgi-bin/WebObjects/Examples/myApp

The WebObjects Adaptor performs the following sequence:

1. Look for the executable
<NeXT_Root>/NextLibrary/WebObjects/Executables/Examples/myApp.app/myApp

13

Serving WebObjects Understanding WebObjects Files

2. if not found, look for the executable
<NeXT_Root>/NextLibrary/WebObjects/Executables/Examples/myApp.debug/myApp

3. if not found, look for the executable
<NeXT_Root>/NextLibrary/WebObjects/Executables/Examples/myApp/myApp

4. if not found, look for the executable
<NeXT_Root>/NextLibrary/WebObjects/Executables/Examples/myApp

5. if not found, look for the executable
<Document_Root>/WebObjects/Examples/myApp.app/myApp

6. if not found, look for the executable
<Document_Root>/WebObjects/Examples/myApp.debug/myApp

7. if not found, look for the executable
<Document_Root>/WebObjects/Examples/myApp/myApp

8. if not found, look for the executable
<NeXT_Root>/NextLibrary/WebObjects/Executables/EOFDefaultApp

9. if not found, look for the executable
<NeXT_Root>/NextLibrary/WebObjects/Executables/DefaultApp

10.if not found, return the standard error message.

In the first eight cases, as soon as the executable is found, the application will be
started with

myApp -d <Document_Root> /Examples/myApp

The last argument represents the path to the applicatio..

In the last two cases, the WebObjects Adaptor also tries to find the following
directories:

• Look for the resources directory <Document_Root>/WebObjects/Examples/myApp

• if not found, look for resources directory
<NeXT_Root>/NextLibrary/WebObjects/Executables/myApp

• if not found, return the standard error message.

As soon as one of these directories is found, the application will be started with:

[EOF]DefaultApp -d <Document_Root> /Examples/myApp

The last argument represents the path to the application.

Serving WebObjects Understanding WebObjects Files

14

URLs for WebObjects
Generally, a WebObjects application responds to a URL placed in a Web page.
The format for a WebObjects application URL is

protocol://<ServerHost>/cgi-
bin/WebObjects/Application_subpath/AppName:33@<AppHost>

For example, the Web server may receive a URL requesting a WebObjects
application of the form

http://localhost/cgi-bin/WebObjects/Examples/HelloWorld:33@rhino

which reads as

• Use the http: protocol.

• Look on this (localhost) computer.

• Run the WebObjects Adaptor program in the cgi-bin directory.

• Pass the application subpath, port, and hostname
(Examples/HelloWorld:33@rhino) to the WebObjects Adaptor.

The WebObjects Adaptor prepends the application subpath with the path to the
Web server’s DocumentRoot, which in this example is

<NeXT_Root>/NextLibrary/WebServer/htdocs/WebObjects/Examples/HelloWorld

The /tmp/logWebObjects and /tmp/CGIMessenger.log files
The WebObjects Adaptor generates a /tmp/CGIMessenger.log file if you create
/tmp/logWebObjects file. Inspect the CGIMessenger.log file to see a record of the
WebObjects Adaptor’s activities as it attempts to connect to WebObjects
applications.

• Lines beginning with INFO record normal activity.

• Lines beginning with WARNING record problems.

The DefaultApp Program
The DefaultApp program is a binary executable located under your WebObjects
directory that interprets scripted WebObjects applications. It resides in the
<NeXT_Root>/NextLibrary/WebObjects/Executables directory.

A copy of DefaultApp must run for each instance of a scripted WebObjects
application.

15

Serving WebObjects Understanding WebObjects Files

Using DefaultApp

You can invoke the DefaultApp program on the command line. The WebObjectgs
Adaptor may call the DefaultApp program as part of its autostart routine. DefaultApp
will not start an application on a remote host.

The usage for DefaultApp is

DefaultApp [applicationName] [-c] [-d DocumentRoot] [-v
WebObjectsVersion] [-n InstanceNumber] [-p PortNumber] [-]
ApplicationDirectory

where

• [applicationName] is the generic name of the application

• [-c] is used for caching information about the session in the pages returned

• [-d DocumentRoot] need not be specified as long as your Web server
complies with CGI specifications and passes its DocumentRoot path to the
WebObjects Adaptor.

• [-v WebObjectsVersion] forces use of a particular WebObjects Adaptor and
corresponding DefaultApp or compiled WebObjects application; the string
WebObjectsVersion should match the suffix of the WebObjects Adaptor: the
string following (not including) the hyphen character (for example, “Beta” for
WebObjects-Beta or “C” for WebObjects-C).

• [-n InstanceNumber] is an integer that the WebObjects Adaptor creates
using random number generation. If your URL does not specify the instance
number, the application is presumed to run on the server machine as a single
instance application, as if it had been autostarted.

• [-p PortNumber] specifies the socket port (for socket use only).

• [-] escapes ApplicationDirectory names that begin with the hyphen character.
For example DefaultApp - -oddname/myApp uses the hyphen option to
allow the directory name -oddname , which would otherwise be treated as the
-o option followed by ddname, with failed results.

• [ApplicationDirectory] specifies the path to the application, but is not
necessary if the application wrapper is found directly under the document
root.

Serving WebObjects Understanding WebObjects Files

16

Note: Windows NT users should remember that the Web server uses the
ApplicationDirectory argument to build URLs, so use forward slashes as
opposed to a backslashes.

The WebObjects.conf File
The WebObjects.conf configuration file is a text file that you create in your Web
server’s cgi-bin directory.

Note: Note: If you want to use the WebObjects.conf file with WebObjects’ Netscape
Interface (NSAPI) Adaptor, then locate WebObjects.conf in your ns-home/http[d/s-
port]/config/ directory rather than in your Web server’s cgi-bin directory.

The WebObjects Adaptor inspects the WebObjects.conf file to resolve URL
information or to autostart a WebObjects application.

The way in which you specify WebObjects applications in the WebObjects.conf file
lets you institute load-balanced distribution of WebObjects applications across
your network.

The Structure of WebObjects.conf
The WebObjects.conf configuration file is a line-oriented ASCII file that on each
line names an application, host, and maximum number of instances to run on
the host, using space character separators.

The format of a line in the configuration file WebObjects.conf is always

[ApplicationDirectory]:[ApplicationNumber]@[hostname]
[ApplicationPort]

• [ApplicationDirectory] is the path below the WebObjects directory of
your Web server’s DocumentRoot which lets the adaptor find the application's
resources.

• [ApplicationNumber] lets you identify a particular instance of a
WebObjects application.

• @[hostname] lets you identify a particular host computer.

• [ApplicationPort] lets you specify a port for a particular instance of a
WebObjects application on a particular host.

Note the following additional rules for creating a WebObjects.conf file.

• The WebObjects Adaptor skips empty lines in the configuration file.

17

Serving WebObjects Understanding WebObjects Files

• You can add comment lines. The WebObjects Adaptor will attempt to parse
them, then skip them.

• You can specify up to 256 applications with the same name. The WebObjects
Adaptor will ignore any more.

• The WebObjects Adaptor will parse the first 256 characters of each line,
skipping subsequent characters.

Here are sample contents of a WebObjects.conf file:

Examples/HelloWorld:1@onemachine 3000

Examples/CyberWind:2@twomachine 2002

Examples/CyberWind:1@threemachine 4000

Examples/CyberWind:4@fourmachine 2004

Netscape API Interface Adaptor
The standard WebObjects Adaptor in your Web server’s cgi-bin directory is a
CGI executable that handles requests for WebObjects applications.

If you’re using WebObjects Pro, and if your system hosts Netscapes Commerce
Server, you can install WebObjects’ Netscape Interface (NSAPI) Adaptor in
place of the standard WebObjects Adaptor. The WebObjects NSAPI Adaptor is
designed to be integrated with the Netscape Commerce Server according to the
Netscape API, and thus eliminates the overhead of calling a separate CGI
process.

The advantages of WebObjects NSAPI Adaptor are that it has no extra CGI
processes between the server and the Web Application, and as a consequence,
improved robustness and security (if your server machine has been
misconfigured). (See the Netscape page with this claim at
http://www.netscape.com/newsref/std/nsapi_vs_cgi.html)

The disadvantage is that the WebObjects Netscape Interface Adaptor is harder
to put into place (especially on NT).

The WebObjects NSAPI Adaptor works with the Netscape Commerce Server
1.1 with WebObjects version Beta1 and greater on

• Windows NT 3.51 and greater

• Solaris 2.3 and greater

Serving WebObjects Understanding WebObjects Files

18

WebObjects NSAPI Adaptor is named WONetscapeServerAdaptor.so on Solaris
platforms.

Once installed, the WebObjects NSAPI Adaptor’s behaviour will be completely
transparent to you. URLs are not affected. Always use .../cgi-

bin/WebObjects... in your URL, even though the request is not going
through any CGI program. The string /cgi-bin/WebObjects is used as a key
by the Netscape Commerce Server to use the linked-in Netscape Interface
Adaptor.

Note: The Netscape Commerce Server will work with both kinds of Adaptors:
the standard CGI WebObjects Adaptor or the linked-in WebObjects NSAPI
Adaptor.

Note: If you want to use the WebObjects.conf file with the Netscape Interface
Adaptor, then locate WebObjects.conf in your ns-home/http[d/s-port]/config/ directory
rather than in your cgi-bin directory as for the standard WebObjects Adaptor.

Modifying configuration files
You need to modify the following files in the Netscape Commerce Server’s ns-
home/http[d/s-port]/config directory.

• In magnus.conf

Init fn=load-modules

shlib=/usr/NextLibrary/WebObjects/NSAPI-bin/WONetscapeServerAdaptor.so

funcs="WONetscapeInterface,WONetscapeInterfaceFindWebObjects"

Note: Enter the funcs argument exactly as shown here, with no spaces inside the
quotes.

• In obj.conf, just before the NameTrans

from="/cgi-bin" fn="pfx2dir"

dir="/usr/local/etc/ns-insecure/cgi-bin"

name="cgi"

NameTrans from="/cgi-bin/WebObjects" fn="WONetscapeInterfaceFindWebObjects"

name="webobjects"

and at the end of obj.conf

< Object name="webobjects">

Service fn="WONetscapeInterface"

< /Object>

19

Serving WebObjects Understanding WebObjects Files

NetscapeServerAdaptor.dll installation on Windows NT
In the NT Server Help application, read the chapter Using the NT Registry before
you begin setting up <NeXT_Root>/NextLibrary/WebObjects/NSAPI-
bin/NetscapeServerAdaptor.dll.

The Netscape Commerce Server on Windows NT doesn’t provide any utility
program to edit their developer configuration registry. It is not possible to
automate this procedure as some customizations are necessary to the
installation. Therefore, the following instructions should only be attempted by
a Netscape server administrator. Be sure to follow these instructions to the
letter, as any error could hang your Netscape server.

Getting started with the Registry Editor

1. To run the Registry Editor, choose File|Run and type REGEDT32.EXE (you
can also type start REGEDT32 from a command window).

2. The Registry contains information in a hierarchical structure similar to the
organization of files and directories on your hard disk. The Netscape Server
configuration information is in the HKEY_LOCAL_MACHINE folder under
Software | Netscape .

3. Choose httpd , https , or httpd-80 whichever you want to configure, then
choose CurrentVersion .

Adding a new object

4. At this stage, you should see two folders Objects and Startup. Select Objects to
add a new object to the list

5. Choose Edit|Add Key and type Object12 in the Key Name field. Select the
new object created, choose the Edit|Add value . Type name in the Value

Name field, validate it, and type webobjects in the string field. Your new
object Object12 should now look like name : REG_SZ : webobjects , similar
to the other objects listed, except it won't show a + sign in its folder, for the
moment.

6. Select your new object, Object12 , choose Edit|Add Key and type
Directive10 in the Key Name field. Select the new directive created and
choose Edit|Add Value . Type DirectiveName in the Value Name field,
validate it, and type Service in the string field.

7. Select your new directive, Directive10 , choose Edit|Add Key and type
Function10 in the Key Name field. Select the new function created and
choose Edit|Add Value . Type fn in the Value Name field, validate it, and

Serving WebObjects Understanding WebObjects Files

20

type WONetscapeInterface in the string field. This completely specifies
the webobjects object.

Modifying the default object

8. In Object10 , select Directive10 , and choose Edit|Add Key . Type
Function109 in the Key Name field. Select the new function created and
choose Edit|Add Value . Type fn in the Value Name field, validate it, and
type WONetscapeInterfaceFindWebObjects in the string field. Choose
Edit|Add Value and type from in the Value Name field, validate it, and type
/cgi-bin/WebObjects in the string field. Choose Edit|Add Value and
type name in the Value Name field, validate it and type webobjects in the
string field. You should now have a set of parameters like the following

fn : REG_SZ : WONetscapeInterfaceFindWebObjects

from : REG_SZ : /cgi-bin/WebObjects

name : REG_SZ : webobjects

Important: The registry name Function109 is not the important thing here:
your new function must be the one immediately before the function defined
by the following parameters

dir : REG_SZ : c:/NETSCAPE/cgi-bin

fn : REG_SZ : pfx2dir

from : REG_SZ : /cgi-bin

name : REG_SZ : cgi

This example assumed an uncustomized Netscape server, you had to insert your
new function between Function10 and Function11 , which meant you add to
pick the name Function109 . The instructions may not apply if you have a
different Netscape server configuration.

Modifying the startup config

9. Now select the StartUp registry which is at the same level as the Objects registry
you have been working on for the moment.

10.Choose Edit|Add Key and type InitFunction11 in the Key Name field.
Select the new function created, choose Edit|Add Value , and type fn in the
Value Name field, validate it, and type load-modules in the string field.
Choose Edit|Add Value and type shlib in the Value Name field, validate it,
and in the string field enter the path on your machine to the
NetscapeServerAdaptor.dll file (for example,
C:/<:NeXT_Root>/NextLibrary/WebObjects/NSAPI-bin/NetscapeServerAdaptor.dll.

21

Serving WebObjects Tuning, Testing, and Debugging

11.Choose Edit|Add Key and type InitFunction11 in the Key Name field.
Select the new function created, choose Edit|Add Value , and type funcs in
the Value Name field, validate it and type
WONetscapeInterface,WONetscapeInterfaceFindWebObjects in the
string field. You should now have a set of parameters like this:

fn : REG_SZ : load-modules

shlib : REG_SZ :

C:/NeXT/NextLibrary/WebObjects/NSAPI-bin/NetscapeServerAdaptor.dll funcs :
REG_SZ : WONetscapeInterface,WONetscapeInterfaceFindWebObjects

Important: The registry name InitFunction11 is not the important thing
here, but your new function must be located between the init function(s)
with (fn : REG_SZ : load-types) and the init function(s) with (fn :

REG_SZ : init-clf). The order among the init functions with fn :

REG_SZ : load-modules , if there are others than the one you just created, is
irrelevant.

This example assumes an uncustomized Netscape server, so you must insert
your new function between Function1 and Function2 , which means you
have to pick the name Function11 . The exact name may vary if your
Netscape server is differently configured.

12.Restart your server

Tuning, Testing, and Debugging

If you have problems connecting with your WebObjects applications

• Manually start WebObjects applications by using ./DefaultApp on the
command line.

• Load balance WebObjects applications through specifications in the
WebObjects.conf file.

• Check the behavior of the WebObjects Adaptor by inspecting the
WebObjects Adaptor’s CGIMessenger.log file.

• Use the WebObjects Adaptor Test Plan to follow a step-by-step procedure
that tests four important WebObjects Adaptor features.

Serving WebObjects Tuning, Testing, and Debugging

22

Manually starting a WebObjects application
For debugging or deployment reasons, you may want to start your WebObjects
application by hand.

There are two ways of doing this from Terminal.app’s command window. Both use
the DefaultApp executable that’s in the
<NeXT_Root>/NextLibrary/WebObjects/Executables directory.

Starting a single instance of a WebObjects application
This feature is only available on the computer that hosts your Web server, and
only if WebObjects has been installed on it. As an example, to manually start
HelloWorld

• Change directories to <NeXT_Root>/NextLibrary/WebObjects/Executables
and enter
./DefaultApp Examples/HelloWorld

This will start a single instance of the WebObjects application HelloWorld located
in your DocumentRoot/Examples/HelloWorld directory.

This is the simplest way to start an application by hand, with the limitation that
you can only have one application with this name running on the server host.

Starting multiple instances of a WebObjects application
This feature is available on any computer with WebObjects installed on it,
including possibly the computer that hosts the Web server. It is done in two
steps.

1. On a computer called <myHost>, change directories to
<NeXT_Root>/NextLibrary/WebObjects/Executables and start the application in
Terminal.app’s command window by entering
./DefaultApp -p 3000 -n 1 Examples/HelloWorld

This will start instance1 of HelloWorld on port 3000 of <myHost>.

2. Go to the computer hosting your Web server <myServerHost> and create or
edit the WebObjects.conf file in your Web server’s cgi-bin directory by entering
the following line in the file
Examples/HelloWorld:1@myHost 3000

Save the file. This lets the WebObjects adaptor know that an application

23

Serving WebObjects Tuning, Testing, and Debugging

HelloWorld is available on the computer named <myHost> at port 3000 for
serving requests.

Now try contacting your application with the same URL as before:
http://<myServerHost>/cgi-bin/WebObjects/Examples/HelloWorld

All requests for Examples/HelloWorld will be forwarded on <myHost> to this
WebObjects application.

You can also force the Web server to use one particular application running on a
host by typing in your browser
http://<myServerHost>/cgi-

bin/WebObjects/Examples/HelloWorld:1@myHost

Remember always to pick ports greater than 1024 as ports under 1024 are
reserved on UNIX platforms.

Load balancing WebObjects applications
The WebObjects Adaptor includes a load balancing feature to ensure that
WebObjects application requests are spread evenly across your network.

The example in this section assumes that WebObjects is installed on the
computer hosting your Web server and on two other computers.

• <WebServerHost> hosts the Web server and one instance of HelloWorld.

• <FirstHost> hosts two instances of HelloWorld.

• <SecondHost> hosts one instance of HelloWorld and one instance of CyberWind.

The following instructions show you how to use Terminal.app’s command window
to start up the WebObjects applications, modify the WebObjects.conf configuration
file, and test the results.

1. From <FirstHost>, in a command window, change directories to
<NeXT_Root>/NextLibrary/WebObjects/Executables and start the two HelloWorld
applications by entering
./DefaultApp -p 3000 -n 1 Examples/HelloWorld ./DefaultApp -p

4000 -n 2 Examples/HelloWorld

2. From <SecondHost>, in a command window, change directories to
<NeXT_Root>/NextLibrary/WebObjects/Executables and start HelloWorld and
CyberWind by entering
./DefaultApp -p 3000 -n 1 Examples/HelloWorld ./DefaultApp -p

4000 -n 1 CyberWind

Serving WebObjects Tuning, Testing, and Debugging

24

3. From <ServerHost>, in a command window, change directories to
<NeXT_Root>/NextLibrary/WebObjects/Executables and start HelloWorld by entering
./DefaultApp -p 5000 -n 33 Examples/HelloWorld

4. On <ServerHost>, edit the file WebObjects.conf in your Web server’s cgi-bin
directory to look like this

Examples/HelloWorld:1@<myHost> 3000 Examples/HelloWorld:2@<myHost> 4000
Examples/HelloWorld:1@<mySecondHost> 3000 CyberWind:1@<mySecondHost> 4000
Examples/HelloWorld:33@<myServerHost> 5000

5. Using the same URL as before, try contacting your application
http://<ServerHost>/cgi-bin/WebObjects/Examples/HelloWorld

The WebObjects Adaptor will pick one of the four HelloWorld applications it
knows about and try to contact it. If the application is busy serving someone
else, the WebObjects Adaptor will wait. If the application died or was not
started, the WebObjects Adaptor will fail the request and return its standard
error message.

If your WebObjects application carries state for the client between requests, the
generated HTML pages will contain the complete path to return to the exact
application that served the given client in his previous request, with links such
as
http://<myServerHost>/cgi-

bin/WebObjects/Examples/HelloWorld:33@<myServerHost>

and no load-balancing will be performed as long as the session lasts.

If your WebObjects application does not maintain state, the application will
automatically return HTML pages with links such as
http://<myServerHost>/cgi-bin/WebObjects/Examples/HelloWorld

so that the WebObjects Adaptor can perform load balancing on subsequent
requests, possibly contacting a different application.

As there is a single instance of the application CyberWind, all requests for
CyberWind will always go to this same application. If you experience too much
traffic for this single instance, you can deploy it on other hosts as you did with
HelloWorld.

The WebObjects Adaptor will contact both autostarted applications and load-
balanced applications (started by hand) at all times, as long as they don’t have
the same names. When names conflict, the WebObjects Adaptor will pick load-
balanced applications rather than any previously autostarted application.

25

Serving WebObjects Tuning, Testing, and Debugging

Inspecting CGIMessenger.log
Because something may go wrong as you install and deploy your WebObjects
applications, the WebObjects Adaptor includes a debugging feature. To trigger
the WebObjects Adaptor’s debugging mode, follow these instructions.

Using logWebObjects on UNIX systems
Log in as (or su to) root and open a Terminal.app command window.

1. create an empty /tmp/logWebObjects file
touch /tmp/logWebObjects

2. enter
tail -f /tmp/CGIMessenger.log

This will log any activity of the WebObjects adaptor, and you will be able to
trace the WebObjects Adaptor’s behavior as it tries to connect to the
WebObjects application. Do not forget to remove the /tmp/logWebObjects file to
stop the logs when you have successfully deployed your WebObjects
application.

Using logWebObjects on Windows NT systems
In order to enable debugging you should create the logWebObjects file in the
directory specified by the TEMP environment variable.

You can use Notepad to view the resulting CGIMessenger.log file. Keep in mind
that the WebObjects Adaptor changes the contents of the CGIMessenger.log file as
it responds to each request for a WebObjects application, so you may need to
close and reopen the file in order to monitor the WebObjects Adaptor’s activity.

WebObjects Adaptor Test Plan
Before you develop your own WebObjects applications, you might want to use
this test plan to be sure WebObjects is working properly. If you’ve modified the
C source code for the WebObjects Adaptor, be sure to run this test plan.

The WebObjects Adaptor attempts to contact a requested WebObjects
application by following four steps:

1. Choosing an application from the information in the URL and the
WebObjects.conf configuration file.

2. Load Balancing with an unresolved URL using the WebObjects.conf
configuration file.

Serving WebObjects Tuning, Testing, and Debugging

26

3. Choosing an application from the private configuration file.
(/tmp/WebObjects.conf).

4. Autostarting an application listed in the private configuration file.

If the WebObjects Adaptor fails to perform the first step, it jumps to the next.

This test plan tests the four main features of the WebObjects Adaptor. All tests
should succeed unless stated otherwise. Perform the four tests in order, as each
depends on the success of the previous test.

The test plan uses the HelloWorld and CyberWind example programs supplied with
WebObjects. You’ll use different URLs to access these applications with respect
to the contents of the WebObjects.conf configuration file. You can check the
WebObjects Adaptor’s behavior by inspecting the CGIMessenger.log file to see if
things are working as they should.

Setting up for testing
Be sure to have the WebObjects example programs HelloWorld and CyberWind in
your Web server’s DocumentRoot directory and start them up.

In a browser on a computer that does not host the Web server, type an URL to
access one of these WebObjects applications.

On the Web server host, login as root and create a dummy logWebObjects file in
the /tmp directory. This file will trigger the WebObjects Adaptor to log
information about its behavior in the /tmp/CGIMessenger.log file. .

For example, from Terminal.app’s command window issue the following
commands

your_host> cd /tmp

your_host> touch logWebObjects

your_host> tail -f CGIMessenger.log

The -f option for the tail command will generate continual updates to screen as
the log file changes. You should read and understand the log information before
marking a test as passed.

Use the ps command to verify that programs are running.

On NEXTSTEP
ps -aux | grep DefaultApp

On Solaris
ps -eaf | grep DefaultApp

27

Serving WebObjects Tuning, Testing, and Debugging

Now you should be ready for the first test.

Responding to a fully resolved URL
A URL that completely describes an application (fully resolved) looks like:

http://<host>/cgi-bin/WebObjects/CyberWind:1@<host>

or

http://<host>/cgi-bin/WebObjects/CyberWind:1

The WebObjects Adaptor first assumes the application is on the computer
hosting the Web server. When the adaptor receives such an URL, it looks in the
cgi-bin/WebObjects.conf file to find a port corresponding to this application. If the
WebObjects Adaptor finds one, it tries to connect to the application. If the
WebObjects Adaptor does not find a port number, it fails and returns an error
message.

Testing a fully resolved URL
This first set of instructions shows you how to test the way the WebObjects
Adaptor responds to URL requests for a WebObjects application.

1. From a command window start four applications

DefaultApp -p 3000 -n 1 HelloWorld DefaultApp -p 4000 -n 1 CyberWind

DefaultApp -p 5000 -n 2 HelloWorld DefaultApp -p 6000 -n 2 CyberWind

2. Create a cgi-bin/WebObjects.conf file with the following contents (try different
ordering)

HelloWorld:1@<host> 3000

CyberWind:1@<host> 4000

HelloWorld:2@<host> 5000

CyberWind:2@<host> 6000

3. Try to contact the applications by issuing URLs from a browser on a remote
computer.

http://<host>/cgi-bin/WebObjects/HelloWorld:1@<host>

http://<host>/cgi-bin/WebObjects/CyberWind:1@<host>

http://<host>/cgi-bin/WebObjects/HelloWorld:2@<host>

http://<host>/cgi-bin/WebObjects/CyberWind:2@<host>

http://<host>/cgi-bin/WebObjects/HelloWorld:1

http://<host>/cgi-bin/WebObjects/CyberWind:1

http://<host>/cgi-bin/WebObjects/HelloWorld:2

http://<host>/cgi-bin/WebObjects/CyberWind:2

Serving WebObjects Tuning, Testing, and Debugging

28

This should work with no error messages. If so, go on to the second test.

Load Balancing with an unresolved URL
The WebObjects Adaptor responds to an unresolved URL by randomly picking
a WebObjects application from the WebObjects.conf file. This random selection
tends to distribute activity evenly across WebObjects application hosts.

An unresolved application URL looks like

http://<host>/cgi-bin/WebObjects/CyberWind

When the adaptor receives such an URL, it reads the cgi-bin/WebObjects.conf file
to look for any application available under the name CyberWind and picks one
randomly. Then the Adaptor completes the URL into a form such as

http://<host>/cgi-bin/WebObjects/CyberWind:1@<host>

As the user successively clicks on links, the same application should always be
called back. There should be no more unresolved links in the page. All links in
the page should look like

http://<host>/cgi-bin/WebObjects/CyberWind:1@<host>

rather than

http://<host>/cgi-bin/WebObjects/CyberWind

Testing load balancing with an unresolved URL
This second sequence tests the WebObjects Adaptor's response to unresolved
URLs, with two additional WebObjects applications running.

1. Add two more WebObjects applications on the Web server host, while the
same four applications stay running.

DefaultApp -p 6010 -n 20 CyberWind DefaultApp -p 6020 -n 30 CyberWind

2. Complete the /cgi-bin/WebObjects.conf file by adding two new entries

CyberWind:20@<host> 6010 CyberWind:30@<host> 6020

3. Restart the browser on the remote computer and try to make contact with the
application

http://<host>/cgi-bin/WebObjects/CyberWind:20

http://<host>/cgi-bin/WebObjects/CyberWind:30

http://<host>/cgi-bin/WebObjects/HelloWorld

http://<host>/cgi-bin/WebObjects/CyberWind

29

Serving WebObjects Tuning, Testing, and Debugging

4. Type several reloads from the browser at this stage and check the
CGIMessenger.log to see that a different CyberWind application is picked each
time.

5. Go back through the application pages to the board page. Verify that your
state is preserved (that is, if you select something in the board page, then go
to another page and come back, your selection is still there.

6. Now kill the two last processes.

CyberWind:20@<host> 6010

CyberWind:30@<host> 6020

7. Try again requesting for

http://<:host>/cgi-bin/WebObjects/CyberWind

This should fail two times out of six, as two of the six CyberWind applications
listed in the configuration file are not running any more.

Now go on to the third test.

Choosing an application from the temporary configuration file
The WebObjects Adaptor may receive an unresolved URL for an application
such as

http:///cgi-bin/WebObjects/HelloWorld

The WebObjects Adaptor first parses the cgi-bin /WebObjects.conf file.

There are cases when WebObjects Adaptor fails to find or open the cgi-
bin/WebObjects.conf file, or when the application is not listed in the cgi-
bin/WebObjects.conf file. In these cases, the WebObjects Adaptor proceeds by
opening the /tmp/WebObjects.conf file, which is a non-public file, and should not be
touched by the user.

The /tmp/WebObjects.conf file can only have one instance of a given application. If
the WebObjects Adaptor finds the application it is looking for there, it will get
its port number and connect to it.

When you start up an application (for example in gdb) without a -n argument,
the port information will automatically be saved in the /tmp/WebObjects.conf file.
There is no need to list the app in the cgi-bin/WebObjects.conf file, as it will be
considered unique on the computer hosting the Web server and has no
application number.

Serving WebObjects Tuning, Testing, and Debugging

30

Testing application choice from the temporary configuration file
To begin this third test, restart your browser on the remote computer. On the
computer hosting the Web server, kill the HelloWorld processes and remove them
from the cgi-bin/WebObjects.conf file. Make sure you still have the four CyberWind
processes (use the ps command to check).

1. Start up HelloWorld

./DefaultApp HelloWorld

2. Try to connect to HelloWorld from the browser.

http:///cgi-bin/WebObjects/CyberWind

This should load-balance, based on the entries in the cgi-bin/WebObjects.conf
file.

3. Type several reloads from the browser and observe in the /tmp/CGIMessenger.log
window that a different CyberWind application is picked each time. Then go
through the application pages and go back to the board page. Verify that your
state is preserved (that is, if you select something in the board page go to
another page and come back, your selection is still there.

http:///cgi-bin/WebObjects/HelloWorld

This should use the /tmp/WebObjects.conf file. Try reloading to check that load-
balancing doesn’t work; you should always come back to the same application.

4. Now kill the HelloWorld process and start it up again

./DefaultApp -p 4000 HelloWorld

This should fail because port 4000 is already claimed by CyberWind:1 .

5. Try an unclaimed port number.

./DefaultApp -p 3000 HelloWorld

From the browser try to contact CyberWind.

http:///cgi-bin/WebObjects/CyberWind

This should load-balance using the cgi-bin/WebObjects.conf file.

6. Reload from the browser, check the CGIMessenger.log window for a different
CyberWind application picked each time, then return the board page to verify
that state is preserved.

http:///cgi-bin/WebObjects/HelloWorld

31

Serving WebObjects Tuning, Testing, and Debugging

This should use the /tmp/WebObjects.conf file. Try reloading to check that load-
balancing doesn’t work; you should always come back to the same
application.

7. Now kill all CyberWind processes and remove them from the cgi-
bin/WebObjects.conf file.

8. On the computer hosting the Web server start up CyberWind.

./DefaultApp CyberWind

From the browser try to connect to HelloWorld.

http:///cgi-bin/WebObjects/HelloWorld

This should use the /tmp/WebObjects.conf file. Try reloading to check that load-
balancing doesn't work; you should not always come back to the same
application.

9. Now try

http:///cgi-bin/WebObjects/CyberWind

This should use the /tmp/WebObjects.conf file. Try reloading to check that load-
balancing doesn't work; you should not always come back to the same
application.

Before you go on to the fourth and final test suite, kill the CyberWind and
HelloWorld processes started in this section.

Autostarting from the temporary configuration file
In addition to the cgi-bin/WebObjects.conf file, the WebObjects Adaptor maintains
a private version in the /tmp directory. This /tmp/WebObjects.conf file is created by
the first WebObjects application that starts up after boot time; as subsequent
WebObjects applications start up, they record their port and host information.
Be careful not to alter this file in any way. The following example illustrates its
use.

The WebObjects Adaptor may receive an application request with an
unresolved URL such as

http:///cgi-bin/WebObjects/CyberWind

The Adaptor first parses the cgi-bin/WebObjects.conf file. If the Adaptor fails to find
a match, it tries to parse the /tmp/WebObjects.conf file. There are cases when the
WebObjects Adaptor fails. There may be no valid /tmp/WebObjects.conf file, or the
application may not be listed in the /tmp/WebObjects.conf file, or the application

Serving WebObjects Tuning, Testing, and Debugging

32

listed in the /tmp/WebObjects.conf file may be a dead process. In these cases, the
WebObjects Adaptor then tries to autostart the application CyberWind on the
computer hosting the Web server.

Testing autostarting from the temporary configuration file
To test autostarting, restart your browser.

1. On the computer hosting the Web server, kill the HelloWorld processes and
remove them from the cgi-bin/WebObjects.conf file. Make sure you still have the
four CyberWind processes.

2. From the browser try to connect to CyberWind.

http:///cgi-bin/WebObjects/CyberWind

This should load-balance using the cgi-bin/WebObjects.conf file.

3. Reload from the browser, check the CGIMessenger.log to see that a different
CyberWind application picked each time, then return the board page to verify
that state is preserved.

4. Try to connect to HelloWorld.

http:///cgi-bin/WebObjects/HelloWorld

This should autostart HelloWorld and use the /tmp/WebObjects.conf file. Try
reloading to check that load-balancing doesn’t work; you should not always
come back to the same application.

5. Now kill all CyberWind processes and remove them from the cgi-
bin/WebObjects.conf file.

6. From the browser try to connect to HelloWorld.

http:///cgi-bin/WebObjects/HelloWorld

This should autostart HelloWorld using the /tmp/WebObjects.conf file. Try
reloading to check that load-balancing doesn’t work; you should not always
come back to the same application.

7. Now try to connect to CyberWind.

http:///cgi-bin/WebObjects/CyberWind

This should autostart CyberWind using the /tmp/WebObjects.conf file. Try reloading
to check that load-balancing doesn’t work; you shouldn’t always come back to
the same application.

33

Serving WebObjects Tuning, Testing, and Debugging

8. Now try to contact a non-existent application.

http:///cgi-bin/WebObjects/FooxXXXX

This should fail.

This completes the basic test plan for the WebObjects Adaptor. Of course, you
could explore a little further.

Extra Points
Install each WebObjects application on a different host, then repeat these tests.

Try this test plan for each different platform (Windows NT, Solaris, and
NEXTSTEP) running WebObjects. (Remember that a Web server on Windows
NT cannot access WebObjects applications on UNIX hosts.)

Repeat tests on each platform (Windows NT, Solaris, NEXTSTEP) not
running WebObjects.

Repeat also on Windows NT and Solaris by using WebObjects Netscape
Interface (NSAPI) Adaptor instead of the standard CGI WebObjects Adaptor.
The syntax of the URLs stays the same.

