
Using Dynamic Elements

Dynamic elements are the heart of WebObjects. They transform a static HTML page into one whose
contents can be derived from calculation, database search, or some other dynamic means.

Introduction

Simple Dynamic Elements

WOString Simple character string.

WOImage Passive image.

WOActiveImage Active image with hot zones.

WOHyperlink Hypertext links.

WOConditional Container element that conditionally displays its contents.

WORepetition Container element that repeats its contents.

Form-Based Controls

WOForm Form input element.

WOBrowser Selection list allowing multiple selection.

WOCheckBox Check box.

WOHiddenField Hidden text field.

WOPasswordField Password text field.

WOPopUpButton Selection list allowing a single selection.

WORadioButton Radio button.

WOSubmitButton Standard submit button.

WOResetButton Standard reset button.

WOText Multiline text input area.

WOTextField Single-line text input area.

WOStateStorage Element used to store application state data in the HTML page.

Other Dynamic Elements

WOGenericElement Support for unknown HTML elements

WOGenericContainer Support for unknown HTML container elements

WOFrame Support for Netscape frames

WOApplet Support for Java applets.

WOEmbeddedObject Plug-ins: support for the <EMBED> element from Netscape.

Other Dynamic Elements

WOGenericElement Support for unknown HTML elements

WOGenericContainer Support for unknown HTML container elements

WOFrame Support for Netscape frames

WOApplet Support for Java applets.

WOEmbeddedObject Plug-ins: support for the <EMBED> element from Netscape.

Introduction: Dynamic Elements

A WebObjects dynamic element acts as a bridge between scripted behavior (or behavior defined in
compiled code) and an HTML page. A dynamic element can serve as a bridge by being able to:

• Set its attributes to values derived from a method defined in a script or in a custom object.
• Represent itself as HTML when called upon to do so.

Consider the WORepetition dynamic element. A WORepetition can take its values from the results of
a database query or some other source and then generate the HTML tags (, , etc.) to
display the data in a list:

The HTML for this page comes in part from statically declared elements (the heading, for example)
and in part from dynamically generated ones (such as each item in the list). The HTML template file
for this page shows how the dynamic elements (identified by the tag WEBOBJECT) and the static
elements are intermixed:

 <HTML>
<H3>Top Selling Items as of 5PM</H3>

 <WEBOBJECT NAME = "ITEMS">
 <WEBOBJECT NAME = "ITEMNAME"></WEBOBJECT>
 </WEBOBJECT>

 </HTML>

The corresponding declarations file associates each WEBOBJECT tag in the HTML template with a
particular dynamic element and indicates how the element’s attributes will be initialized:

 ITEMS: WORepetition {list=findTopSellers; item=anItem};
 ITEMNAME: WOString {value=anItem};

Finally, a script file specifies how values used to initialize a dynamic object’s attributes (such as the
repetition’s list) are derived. For example,

 id topSellers;

 - findTopSellers {
 topSellers = /* message to fetch names of top sellers */;

 }

How Dynamic Elements are Initialized

A dynamic element requires information from the HTML template file, declarations file, and script file
to be fully functional, as discussed above. The HTML template file establishes the location of the
dynamic element and may provide a template representation for it in the HTML page. If the template
file doesn’t specify the representation of a dynamic element, the element can create one of its own.
For example, in this HTML template the HTML tags in bold are optional:

 <HTML>
 <WEBOBJECT NAME="MYFORM">

<FORM>
 Your Name:
 <WEBOBJECT NAME="TEXTFIELD">

<INPUT TYPE="text"> </WEBOBJECT>
 <INPUT TYPE="submit">

</FORM>
 </WEBOBJECT>
 </HTML>

MYFORM is a WOForm object and TEXTFIELD is a WOTextField object, as specified in the
declarations file:

 MYFORM: WOForm {action = someAction};
 INPUTFIELD: WOTextField {value = textFieldValue};

Although the HTML tags are optional, it’s best to include them in the template file so that, when the
template is viewed in a web browser or other HTML rendering tool, it looks as much as possible like
the dynamic page that will be generated at runtime.

The declarations file specifies how a dynamic element’s attributes will be initialized. For example,
this declaration indicates that the dynamic element named TEXTFIELD is a WOTextField object
whose input will be returned in the variable "textFieldValue".

 INPUTFIELD: WOTextField {value=textFieldValue};

Each dynamic element declares a set of attributes for you to initialize. However, you can also
specify additional attributes and their values within a dynamic element’s declaration:

 TEXTFIELD: WOTextField {value = textFieldValue; size = 4};

In this case, only the value attribute is required by the WOTextField object. When a dynamic
element is asked to produce its HTML representation, these additional attributes and values are
simply copied into the HTML stream. The values for these additional attributes can be derived
dynamically, just as with the built-in attributes.

1

WOString

Synopsis

WOString { value=aString; };

Description

A WOString represents itself in the HTML page as a dynamically generated
string.

value
The text to display in the HTML page. value is typically assigned an
NSString object, an object that responds to a description message by
returning an NSString, or a method that returns an NSString.
The NSString’s contents are substituted into the HTML in the place
occupied by this dynamic element.

2

WOImage

Synopsis

WOImage { src=aPath | value=imageData;... };

Description

A WOImage displays an image in the HTML. It corresponds to the HTML
element .

src
The path to the file containing the image data. The source can be
statically specified in the declaration file or it can be an NSString, and
object that responds to a description message by returning an
NSString, or a method that returns an NSString.

value
The the image data in the form of a WOElement object. This data can
come from a database, a file, or memory.

3

WOActiveImage

Synopsis

WOActiveImage { src=aPath | value=aMethod; action=aMethod | href=
aURL; [imageMapFile=aString;] [name=aString;] [x=aNumber; y=
aNumber;] [target=frameName;] [disabled=YES|NO;] ... };

Description

A WOActiveImage displays an image within the HTML page. If the
WOActiveImage is disabled, it simply displays its image as a passive
element in the page. If enabled, the image is active, that is, clicking the
image generates a request.

If located outside an HTML form, a WOActiveImage functions as a mapped,
active image. When the user clicks such a WOActiveImage, the coordinates
of the click are sent back to the server. Depending on where the user click,
different actions can be invoked. An image map file associates actions with
each of the defined areas of the image.

Within an HTML form, a WOActiveImage functions as a graphical submit
button. You typically use WOActiveImages when you need more than one
submit button within a form.

src
The path to the file containing the image data. src can be statically
specified in the declarations file, an object that responds to a
description message by returning an NSString, or a method that
returns an NSString.

value
The the image data in the form of a WOElement object. This data can
come from a database, a file, or memory.

action
The method to invoke when this element is clicked. If imageMapFile
is specified, action is only invoked if the click is outside any mapped
area. In other words, action defines the default action of the active
image.

href
The URL to direct the browser to as a default when the image is
clicked and no hotzones are hit.

imageMapFile
The name of the image map file.

name
If name is specified then the hit point is specified as name.x=value;

4

name.y=value; in the form. This is useful for people who want to use
imagemap to submit a form to an external URL which expects the hit
point to be a certain format.

x, y
If specified, returns the coordinates of the user’s click within the
image.

target
Specifies the frame in a frameset that will receive the page returned as
a result of the user’s click.

disabled
If YES, a regular image element "" is generated,rather than an
active image.

The Image Map File

If imageMapFile is specified, WebObjects searches for the file within the
component bundle (Component.wo/). If it isn’t found there, WebObjects
searches the application directory (MyApplication/).

Each line in the image map file has this format:

shape action coordinateÿlist

shape
Either ’rect’ or ’circle’ (polygon not yet supported). For ’rect’ shape,
the coordinates x1,y1 specify the upperÿleft corner of the hot zone,
and x2,y2 specify lower right corner. For ’circle’ shape, the x1,y1 is
the origin, and x2,y2 is a point on the circle.

action
The name of the method to invoke.

coordinateÿlist
x1,y1 x2,y2 ...

Here’s an example of an image map file:

 rect home 0,0 135,56
 rect buy 135,0 270,56

5

WOHyperlink

Synopsis

WOHyperlink { action=aMethod | href=aURL | pageName=aString; [
string=aString;] [target=frameName;] [disabled=YES|NO;] ... };

Description

WOHyperlink generates a hypertext link in an HTML document.

action
The action method to invoke when this element is activated.

href
The URL to direct the browser to when the image is clicked.

pageName
Specifies the WebObjects page name to return when the link is
clicked.

string
Specifies the text displayed to the user as the link&emdash;the text
between <A> and .

target
Specifies the frame in a frameset that will receive the page returned
as a result of the user’s click.

disabled
If evaluates to YES, the content string is displayed, but the
hyperlink is not active.

6

WOConditional

Synopsis

WOConditional { condition = YES|NO; };

Description

A WOConditional object controls whether a portion of the HTML page will
be generated, based on the evaluation of its assigned condition.

condition
The expression to evaluate. If the expression evaluates to YES, the
HTML code controlled by the WOConditional object is emitted;
otherwise it is not.

7

WORepetition

Synopsis

WORepetition { list = anObjectList; item = anIteratedObject; [identifier =
aString;] };

WORepetition { count = aNumber; [index = aNumber;]; };

Description

A WORepetition is a container element that repeats its contents (that is,
everything between the <WEBOBJECT...> and </WEBOBJECT...> tags in
the template file) a given number of times. You can use a WORepetition to
create dynamically generated ordered and unordered lists or banks of check
boxes or radio buttons.

list
The array of objects through which the WORepetition will iterate.

item
The current item in the list array.

identifier
The value used to uniquely identify this item in the list array.
Typically it is the primary key of an enterprise object.

count
The number of times this element will repeat its contents.

index
The index of the current iteration of the WORepetition.

8

WOForm

Synopsis

WOForm { [action = aMethod; | href = aURL;] ... };

Description

A WOForm is a container element that generates a fillÿ in form. It gathers the
input from the input elements it contains and sends it to the server for
processing. WOForm corresponds to the HTML element <FORM> ...
</FORM>.

href
The URL specifying where the form will be submitted.

action
The action method that’s invoked when the form is submitted. If the
form contains an WebObject that has its own action (such as a
WOSubmitButton or a WOActiveImage), that action is invoked
instead of the WOForm’s.

9

WOBrowser

Synopsis

WOBrowser { list=anArray; [item = anItem; value = displayedValue;] [
selections = objectArray;] [name = fieldName;] [disabled = YES|NO;] ... };

Description

WOBrowser displays itself as a selection list that allows the user to select
multiple items at a time. The related element WOPopUpButton is similar to
WOBrowser except that it restricts the user to selecting only one item at a
time.

list
An array of objects from which the browser derives its values. For
example, colleges could name the list containing objects that represent
individual schools.

item
The identifier for the elements of the list. For example, aCollege
could represent an object in the colleges array.

value
The value to display in the selection list; for example, aCollege.name
for each college object in the list.

selections
An array of objects that the user chose from list. For the college
example, selections would hold college objects.

name
A name that uniquely identifies this element within the form. You can
specify a name or let WebObjects automatically assign one at runtime.

disabled
If disabled evaluates to YES, this element appears in the page but is
not active.

10

WOCheckBox

Synopsis

WOCheckBox { [name = fieldName;] [value = defaultValue; [selection =
selectedValue;]] [disabled = YES|NO;] ... };

WOCheckBox { [name = fieldName;] [checked = YES|NO;] [disabled =
YES|NO;] ... };

Description

A WOCheckBox object displays itself in the HTML page as its namesake, a
check box user interface control. It corresponds to the HTML element
<INPUT TYPE="CHECKBOX"...>.

name
A name that uniquely identifies this element within the form. You
may specify a name or let WebObjects automatically assign one at
runtime.

value
Sets the value of this input element. If not specified, WebObjects
provides a default value.

selection
If selection and value are equal when the page is generated, the check
box is checked. When the page is submitted, selection is assigned the
value of the check box.

checked
During page generation, if checked evaluates to YES, the check box
appears in the checked state. During request handling, checked
reflects the state the user left the check box in: YES if checked; NO if
not.

disabled
If disabled evaluates to YES, this element appears in the page but is
not active.

11

WOHiddenField

Synopsis

WOHiddenField { [name = fieldName;] value = defaultValue; [disabled
=YES|NO;] ... };

Description

A WOHiddenField adds hidden text to the HTML page. It corresponds to the
HTML element <INPUT TYPE="HIDDEN"...>. Hidden fields are
sometimes used to store application state data in the HTML page. In
WebObjects, the WOStateStorage element is designed expressly for this
purpose.

name
A name that uniquely identifies this element within the form. You
may specify a name or let WebObjects automatically assign one at
runtime.

value
Sets the value for the hidden text field.

disabled
If disabled evaluates to YES, the element appears in the page but is
not active.

12

WOPasswordField

Synopsis

WOPasswordField { [name = fieldName;] value = defaultValue; [disabled
=YES|NO;] ... };

Description

A WOPasswordField represents itself as a text field that doesn’t echo the
characters that a user enters. It corresponds to the HTML element <INPUT
TYPE="PASSWORD"...>.

name
A name that uniquely identifies this element within the form. You
may specify a name or let WebObjects automatically assign one at
runtime.

value
During page generation, value sets the default value of the text field.
This value is not displayed to the user. During request handling, value
holds the value the user entered into the field, or the default value if
the user left the field untouched.

disabled
If disabled evaluates to YES, the element appears in the page but is
not active.

13

WOPopUpButton

Synopsis

WOPopUpButton { list=anArray; [item = anItem; value = displayedValue
;] [selection = objectArray;] [name = fieldName;] [disabled = YES|NO;] ...
};

Description

WOPopUpButton displays itself as a selection list that allows the user to
select only one item at a time. The related element WOBrowser is similar to
WOPopUpButton except that it allows the user to select more than one item
at a time.

list
An array of objects from which the WOPopUpButton derives its
values. For example, colleges could name the array containing objects
that represent individual schools.

item
The identifier for the elements of the list. For example, aCollege
could represent an object in the colleges array.

value
The value to display in the selection list; for example, aCollege.name
for each college object in the list.

selection
An array of objects that the user chose from the selection list. For the
college example, selection would hold college objects. Since a
WOPopUpButton lets the user select only one item at a time, this
array holds no more than one item.

name
A name that uniquely identifies this element within the form. You can
specify a name or let WebObjects automatically assign one at runtime.

disabled
If disabled evaluates to YES, this element appears in the page but is
not active.

14

WORadioButton

Synopsis

WORadioButton { [name = fieldName;] [value = defaultValue; [selection =
selectedValue]]; [disabled = YES|NO;] ... };

WORadioButton { [name = fieldName;] [checked = YES|NO;] [disabled =
YES|NO;] ... };

Description

WORadioButton represents itself as an onÿoff switch. Radio buttons are
normally grouped, since the most important aspect of their behavior is that
they allow the user to select no more than one of several choices. If the user
selects one button, the previously selected button (if any) becomes
deselected.

Since radio buttons normally appear as a group, WORadioButton is
commonly found within a WORepetition.

name
A name that identifies the radio button’s group. Only one radio button
at a time can be selected within a group.

checked
During page generation, if checked evaluates to YES, the radio button
appears in the selected state. During request handling, checked
reflects the state the user left the radio button in: YES if checked; NO
if not.

value
Sets the value of this input element. If not specified, WebObjects
provides a default value.

selection
If selection and value are equal when the page is generated, the radio
button is selected. When the page is submitted, selection is assigned
the value of the radio button.

disabled
If disabled evaluates to YES, this element appears in the page but is
not active.

Note that either checked or value is required in a WORadioButton
declaration, but that they are mutually exclusive.

15

WOSubmitButton

Synopsis

WOSubmitButton { action = submitForm; value = aString; [disabled =
YES|NO;] [name = aName;] };

Description

A WOSubmitButton element generates a submit button in an HTML page.
This element is used within HTML forms.

action
The action method to invoke when the form is submitted.

value
The title of the button.

Some browsers permit multiple submit buttons in a single form. For multiple
submit buttons in a form, each WOSubmitButton must have a unique value
attribute and action attribute. In general, however, it’s better to implement
multiple submit buttons using WOActiveImage elements.

16

WOResetButton

Synopsis

WOResetButton{value = aString;};

Description

A WOResetButton element generates a reset button in an HTML page. This
element is used within HTML forms.

value
The title of the button.

17

WOText

Synopsis

WOText{ value = defaultValue; [disabled = YES|NO;] [name = fieldName
;] ... };

Description

WOText generates a multiline field for text input and display. It corresponds
to the HTML element <TEXTAREA>.

value
During page generation, value specifies the text that is displayed in
the text field. During request handling, value contains the text as the
user left it.

disabled
If disabled evaluates to YES, the text area appears in the page but no
input is allowed.

name
A name that uniquely identifies this element within the form. You
may specify a name or let WebObjects automatically assigns one at
runtime.

18

WOTextField

Synopsis

WOTextField { [name = fieldName;] value = defaultValue; [disabled
=YES|NO;] ... };

Description

A WOTextField represents itself as a text input field. It corresponds to the
HTML element <INPUT TYPE="TEXT"...>.

name
A name that uniquely identifies this element within the form. You
may specify a name or let WebObjects automatically assign one at
runtime.

value
During page generation, value sets the default value displayed in the
singleÿline text field. During request handling, it holds the value the
user entered into the field, or the default value if the user left the field
untouched.

disabled
If disabled evaluates to YES, the element appears in the page but is
not active.

19

WOStateStorage

Synopsis

WOStateStorage { [size=numBytes;] };

Description

A WOStateStorage element provides a simple mechanism for storing
application state in an HTML page. If you include a WOStateStorage
element in a form, any session and persistent data will be stored in the page
rather than on the server.

WOStateStorage uses HTML hidden fields (<INPUT
TYPE="HIDDEN"...>) to store state data. It will use as many hidden field as
needed to store the data, but no field will be larger than the size specified by
the size attribute. The default size setting is designed to work with most
browsers.

size
The maximum size for each of the hidden fields used to store the state
data. This attribute is optional; if size is not specified, the maximum
size for hidden fields will be 1000 bytes.

Since WOStateStorage elements are implemented using hidden fields-which
in HTML must be located within a form-they too must be located within a
form. If a page has more than one form, you must declare a WOStateStorage
element within each form.

20

WOGenericElement

Synopsis

WOGenericElement { elementName = aConstantString; ... };

Description

WOGenericElement provides a way for WebObjects to accommodate
custom HTML elements that are empty. Since the HTML language is
evolving rapidly, it’s convenient to have a way to dynamically generate
elements which are not explicitly supported by WebObjects.

In HTML, an empty element (for example <HR> or
) is represented by
a single tag and so can’t enclose any text or graphics. In contrast, a container
element (for example, <A ... > ...) has opening and closing tags that
delimit the text or graphic affected by the element. (See the related element
WOGenericContainer for information about the support of container
elements.)

elementName
Name of the HTML element to generate. elementName must be
statically defined, that is, it must be a constant. It can’t be something
returned by a script method, for example. Please note that for
elements with URL attributes, the URLs specified will appear as is in
the HTML document.

This approach works for many elements, but has one limitation. Some
HTML elements have an href attribute that associates the element with a
URL. In WebObjects, the corresponding dynamic element generally has two
mutually exclusive attributes, href and action, which make use of the HTML
element’s href attribute. (See WOHyperlink for an element that can have
either an href or an action attribute.) The dynamic element’s href attribute
simply returns a URL, but action invokes a WebObjects method, which
returns a URL. This overloading of the HTML href attribute is not supported
by WOGenericElement. If your custom element requires this functionality,
you will have to create your own subclass of WODynamicElement.

21

WOGenericContainer

Synopsis

WOGenericContainer { elementName = aConstantString; ... };

Description

WOGenericContainer provides a way for WebObjects to accommodate
custom HTML container elements. Since the HTML language is evolving
rapidly, it’s convenient to have a way to dynamically generate elements
which are not explicitly supported by WebObjects.

In HTML, a container element (for example, <A ... > ...) has opening
and closing tags that delimit the text or graphic affected by the element. In
contrast, an empty element (for example <HR> or
) is represented by a
single tag and so can’t enclose any text or graphics. (See the related element
WOGenericElement for information about the support of empty elements.)

elementName
Name of the HTML element to generate.

This approach works for many elements, but has one limitation. Some
HTML elements have an href attribute that associates the element with a
URL. In WebObjects, the corresponding dynamic element generally has two
mutually exclusive attributes, href and action, which make use of the HTML
element’s href attribute. (See WOHyperlink for an element that can have
either an href or an action attribute.) The dynamic element’s href attribute
simply returns a URL, but action invokes a WebObjects method, which
returns a URL. This overloading of the HTML href attribute is not supported
by WOGenericContainer. If your custom element requires this functionality,
you will have to create your own subclass of WODynamicElement.

22

WOFrame

Synopsis

WOFrame { value = aMethod; | src = aURL; ... };

Description

WOFrame represents itself as a dynamically generated Netscape Frame
element.

value
Specifies the method that will supply the content for this frame.

src
Specifies the external source that will supply the content for this
frame.

The value and src attributes are mutually exclusive.

23

Java Support: WOApplet and WOParam

Synopsis

WOApplet { code = javaClassName; ... };

WOParam { name = aString; value = aString | action = aMethod; };

Description

WOApplet is a dynamic element that generates HTML to specify a java
applet. The applet’s parameters are passed by one or more WOParam
elements.

code
The name of the java class.

name
The name of a parameter.

value
The value of this parameter.

action
The method that the applet will invoke.

24

WOEmbeddedObject

Synopsis

WOEmbeddedObject { value = aMethod; | src = aURL; ... };

Description

A WOEmbeddedObject provides support for Netscape plugÿins. It
corresponds to the HTML element <EMBED SRC = >. If the embedded
object’s content comes from outside the WebObjects application, use the src
attribute. If the embedded object’s content is returned by a method within the
WebObjects application, use the value attribute.

value
Specifies the method that will supply the content for this embedded
object.

src
Specifies the external source that will supply the content for this
embedded object.

The value and src attributes are mutually exclusive.

