
Version 1.0    Copyright ã1991 by Gregor N. Purdy.    Rights as per GNU Public License, Version 1 or later.

Random 

INHERITS FROM Object

CLASS DESCRIPTION

The Random class provides services for random number generation and die rolling. It implements its own 
random number generator with a cycle length of 8.8 trillion. The algorithm used by the Random class is that 
given in the article:

ªA Higly Random Random±Number Generatorº by T.A. Elkins
Computer Language, Volume 6, Number 12 (December 1989), Pages 59-65
Published by:

Miller Freeman Publications
500 Howard Street
San Francisco, CA    94105
(415) 397-1881

This is Version 1.0 of Random, distributed 1991 May 30.

Written by Gregor Purdy, Contemporary Design Studios

Real Job Contact Information (NOT Contemporary Design Studios):
gregor@oit.itd.umich.edu
University of Michigan / 1600 SEB / 610 E. University / Ann Arbor / MI / 48109

THIS WORK IS DISTRIBUTED AS IS, WITH NO WARANTEE OR GUARANTEE EXPRESSED OR IMPLIED 
IN ANY RESPECT. THE AUTHOR IS NOT LIABLE FOR ANY DAMAGES WHATSOEVER DIRECTLY OR 
INDIRECTLY RELATED TO THE USAGE OF THIS WORK.



That said, I do welcome comments, suggestions, and bug reports. I want to use this in some of my own 
projects, so I'm very interested in making sure it works correctly. Feel free to drop me an email or letter with 
your comments.

This work is distributed as FreeWare. Its usage and distribution, however, are governed by the GNU 
ªCopyleftº (version 1) described in the file ªCOPYINGº which should be in the same directory as this file, if 
everything went well with downloading, uncompressing, and untarring this distribution. At your option, you 
may consider this work governed by a later release of the GNU ªCopyleftº.

This README and the file COPYING must remain with any derivative works.

See the COPYING file included for distribution and usage rights.

INSTANCE VARIABLES

Declared in Random int h1, h2, h3;

h1, h2, h3 The current seed values

METHOD TYPES

Creating and freeing instances + alloc
- free

Initializing a new instance - init
- initSeeds:::

Seed operations - newSeeds
- setSeeds:::
- getSeeds:::

Getting random numbers - rand
- randMax:
- randMin:max:
- percent

Rolling dice - rollDie:
- roll:die:
- rollBest:of:die:



Archiving - read:
- write:

CLASS METHODS

alloc
+ alloc

Returns a new instance.

INSTANCE METHODS

free
- free

Frees the memory occupied by the Random and returns nil.

getSeeds:::
- getSeeds:(int *)s1 :(int *)s2 :(int *)s3

Puts the values of the seeds into the integer variables pointed to.

See also:    ± setSeeds:::

init
- init

Initializes the Random with seeds from the milliseconds count of the system clock (uses newSeeds).

See also:    ± initSeeds:::, ± newSeeds

initSeeds:::
- initSeeds:(int)s1 :(int)s2 :(int)s3

Initializes the Random with the seeds given (uses setSeeds).

See also:    ± init, ± newSeeds, ± setSeeds:::



newSeeds
- newSeeds

Sets the seeds from the milliseconds count of the system clock.

See also:    ± init

percent
- (float)percent

Returns a float in the range [0.0, 1.0].

rand
- (int)rand

Returns an int in the range [0, 32767].

randMax:
- (int)randMax:(int)max

Returns an int in the range [0, max].

randMin: max:
- (int)randMin:(int)min max:(int)max

Returns an int in the range [min, max].

read:
- read:(NXTypedStream *)stream

Reads a Random from stream.

See also:    - write:

rollDie:
- (int)rollDie:(int)numSides

Returns an int in the range [1, numSides].

roll: die:



- (int)roll:(int)numRolls die:(int)numSides

Returns an int in the range [numRolls, numRolls * numSides].

rollBest: of: die:
- (int)rollBest:(int)numWanted of:(int)numRolls die:(int)numSides

Returns the sum of the best numWanted rolls..

setSeeds:::
- setSeeds:(int)s1 :(int)s2 :(int)s3

Sets the seeds to the values given.

See also:    ± getSeeds:::

write:
- write:(NXTypedStream *)stream

Writes a Random to stream.

See also:    - read:


