Version 1.0 Copyright ©1995 by Don Yacktman, All Rights Reserved.

MiscMergeDriver
Inherits From: Object
Declared In: misckit/MiscMergeDriver.h

Class Description

A MiscMergeDriver is used to merge an ASCII template with several dictionaries filled with key/value pairs.
Each dictionary will be used in turn to generate a new output @document®.

If you only need to generate a single merge, you may wish to simply use a MiscMergeEngine object. If you
have several merges to perform, then a MiscMergeDriver implements the required loop to generate the required
merges, as well as supporting a protocol that allows the merge engine some control over the loop. If you create
your own loop, instead of using a MiscMergeDriver instance, some of the merge commands such as 2next® will
be ignored rather than performing the desired function.

To use a MiscMergeDriver you must provide it with a template, dictionaries to merge into the template, and,
optionally, a MiscMergeEngine instance. If a MiscMergeEngine is not provided, one will be created to perform
the merge. To set up a merge template, use the -setTemplate: method. It expects an instance of the
MiscMergeTemplate class, which comes from an ASCII file or from a MiscString object.

The data to be merged into the template is set up using the -setMergeData: method. The data should be



stored as key/value pairs in a MiscDictionary object for each merge to be performed. Place all the dictionaries
into a List object and use the List object as the argument to -setMergeData:.

Finally, use the -doMerge: method to perform the desired merge operation. The results will be returned as a
List object with a MiscString corresponding to each MiscDictionary in the List provided to the MiscMergeDriver by
the most recent -setData: message. For example, the third MiscString will contain the results from the merge
with the third MiscDictionary. If the Merge returned no result (due to an error or an 2omit® command, for
example) then the MiscString will be empty.

If you wish to use a specific subclass of MiscMergeEngine to perform the merge, then use the -setEngine:
method to set up the engine before calling -doMerge:. This engine will be used for all subsequent merges
unless -setEngine: is sent again.

For more information, please see the IntroMiscMerge.rtfd document. It describes the syntax of the merge
language and built-in commands available. The MiscMergeArchitecture.rtfd document describes the
architecutre of the various classes used to perform merging operations and how to add custom commands to the
framework.

Instance Variables

MiscMergeTemplate *template;
List *dictionaries;

List *output;

MiscMergeEngine *engine;
BOOL merging;

int _mergeLooplndex;

template MiscMergeTemplate for merging



dictionaries List of MiscDictionaries used for merges

output The output list that will be returned by -doMerge:
engine The merge engine to be used for merges
merging YES if merging, NO if not

__mergelLoopindex Index to dictionaries when merge is in progress

Method Types

Accessing the template - template
- setTemplate:

Accessing the data - mergeData

- setMergeData:
Performing a merge - doMerge:
Accessing the engine - engine

- setEngine:

Instance Methods

doMerge:
- (List *)doMerge:sender

Sets up a merge engine, if necessary, and performs a merge of the template with the MiscDictionaries in the data
List. Any engines created will be destroyed after the merge; engines set using -setEngine will persist, however.



A List object populated with MiscStrings will be returned. There is a one-to-one correspondence between the
index of the return MiscStrings in the List and the MiscDictionaries' indices in the List that was provided via the
most recent -setMergeData. Thus, if there were six dictionaries used for merging, six MiscStrings will be
returned, as the result of six merges. Note that the 2next® command will cause a MiscMergeEngine to attempt to
skip forward to the next MiscDictionary, while still performing a single merge. In this case, an empty MiscString
will be inserted in the output List as a placeholder and the final merge result will be put in the slot corresponding
to the last dictionary used. Merges that fail or are halted due to an 2omit® command will also be represented by
an empty MiscString in the output.

engine
- (MiscMergeEngine *)engine

Returns the merge engine, an instance of MiscMergeEngine, that will be used to perform a merge. If no engine
has been set up, then nil is returned.

mergeData
- (List *)mergeData

Returns the List of MiscDictionaries that will be used for the next merge.

setEngine:
- setEngine:(MiscMergeEngine *)anEngine

Sets up an engine to be used for merging. If no engine is set, a temporary engine will be created before and
used during a merge. It will be destroyed after it is used. Engines set using -setEngine: will not be destroyed
at the end of a merge and will be used for subsequent merges as well. Setting a new engine will not free the old
engine; the MiscMergeDriver does not 20wn° the engine; it only makes use of it. This way, the same engine



could be used by several MiscMergeDriver instances. Setting the engine to nil will revert to the default
create/use/destroy pattern. The engine cannot be changed while a merge loop is in progress. Returns self if
successful or nil if failure occurs.

setMergeData:
- setMergeData:(List *)aList

Sets the List of MiscDictionaries that will be used for the next merge. Returns self upon success and nil upon
failure. This method fails if a merge is in progress.

setTemplate:
- setTemplate:(MiscMergeTemplate *)aTemplate

Sets the MiscMergeTemplate that will be used for the next merge. Returns self upon success and nil upon
failure. This method fails if a merge is in progress.

template
- (MiscMergeTemplate *)template

Returns the MiscMergeTemplate that will be used for the next merge.



