
Release 1.0    Copyright ã1993 by Primitive Software Ltd.    All Rights Reserved.

Puppeteer

Inherits From: Object

Declared In: include/Puppeteer.h

Class Description

Puppeteer objects are used to remotely control other applications. They allow events to be posted
to the target application just as if the events were performed by a human using the mouse and
keyboard. In this way, programs can be easily written to provide, for example, command line
access to NeXTSTEP applications. Puppeteer is similar to the journaling facility described in
NXJournaler except that the events are not recorded; instead they are specified programatically.

A Puppeteer object is typically used as follows:

/*
 * Allocate a puppeteer object to control the Terminal application.
 */
puppet = [Puppeteer connectToApp:"Terminal" launch:YES];
if (!puppet) {
 fprintf(stderr, "Could not connect to Terminal\n");
 exit(1);

}

/*
 * Attach the strings. The app will then be ready to accept events from us.
 * It will be unable to respond to real events until a releaseStrings is
 * performed.

 */
[puppet attachStrings];

/*
 * Create a new window by posting command-n.
 */
[puppet postKeyCode:'n' window:NX_KEYWINDOW flags:NX_COMMANDMASK];

/*
 * Output a string to the new terminal window.
 */
[puppet postKeyboardString:"echo hello world\n" window:NX_KEYWINDOW flags:0];

/*
* Release strings. This is necessary for the app to continue to respond to
* real user events.
*/

[puppet releaseStrings];

[puppet free];

The attach/release strings combination may be repeated many times before the object is freed, but
there must always be a final releaseStrings, otherwise the application will no longer respond to real
user events.

Instance Variables

char *appName;
id appSpeaker;
id journalSpeaker;
port_t appPort;
BOOL enabled;
int pid;
int context;

appName The application name.

appSpeaker The main puppet speaker.

journalSpeaker The puppet's journal speaker.

appPort Port used by appSpeaker.

enabled YES if strings are attached.

pid The application's pid.

context The application's postscript context.

Method Types

Allocating and initializing a new Puppeteer instance
+ connectToApp:launch:

Initializing a new Puppeteer instance
- connect:launch:

Taking control - attachStrings
- releaseStrings

Posting events - postEvent:
- postKeyboardString:flags:
- postKeyboardEvent:window:flags:charCode:
- postKeyCode:window:flags:
- postMouseEvent:window:flags:x:y:click:
- postSingleClick:window:flags:x:y:
- postDoubleClick:window:flags:x:y:

- postTripleClick:window:flags:x:y:
- postActivate:
- dragWindow:deltaX:deltaY:
- ping

Obtaining window information - windowList
- windowCount
- windowForPseudoNumber:
- keyWindow
- mainWindow
- mainMenu

Obtaining other information - getPid
- getContext
- appSpeaker

Class Methods

connectToApp:launch:
+ connectToApp:(const char *)theName

launch:(BOOL)launch

Return an instance of puppeteer connected to the given app, or nil on failure. This is the normal
way to allocate a Puppeteer instance. If launch is YES the application will be launched if it is not
already running.

See also:    - connect:launch:

Instance Methods

appSpeaker

- appSpeaker

Returns the speaker that communicates with the main application Listener.    This may be used to
send standard speaker/listener messages such as unhide.

attachStrings
- attachStrings

Prepares the Puppeteer object for sending events. This must be called prior to posting events and
a matching releaseStrings must be given when the user has finished sending events. Any number
of attachStrings/releaseStrings combinations may be used before the object is freed.

connect:launch:
- (BOOL)connect:(const char *)theName

launch:(BOOL)launch

Return an instance of puppeteer connected to the given app, or nil on failure. This is used by   
+connectToApp:launch: to initialize a Puppeteer instance. If launch is YES the application will be
launched if it is not already running. Returns YES if connection is successful.

See also:    + connectToApp:launch:

dragWindow:deltaX:deltaY:
- dragWindow:(int)winNumber

deltaX:(double)x
deltaY:(double)y

Drags the window winNumber by the specified offset. winNumber may be either a local postscript
window number or a pseudo window number such as NX_KEYWINDOW.

getContext
- (int)getContext

Returns the remote application's postscript context.

getPid
- (int)getPid

Returns the remote application's process id.

keyWindow
- keyWindow

Returns a WindowInfo object corresponding to the remote application's key window
(NX_KEYWINDOW).

mainMenu
- mainMenu

Returns a WindowInfo object corresponding to the remote application's main menu window
(NX_MAINMENU).

mainWindow
- mainWindow

Returns a WindowInfo object corresponding to the remote application's main window
(NX_MAINWINDOW).

ping
- ping

Sometimes it is necessary to be sure that the application has processed all the events that have
been sent to it. This method provides that mechanism. It sends a standard speaker message to the
remote application to which a reply must be given. Thus this method will only return when the
target app has processed all outstanding requests.

postActivate:
- postActivate:(BOOL)activate

If activate is YES, posts an event to the remote application making it the active application, else
posts an event to deactivate the application. It is sometimes necessary for certain mouse clicks to
work for the application to be the active application. One example of this is where clicking on a
button in a window of a non-active application merely results in that application becoming active
and the window becoming the key window. A further click is required to activate the button.

postDoubleClick:flags:x:y:
- postDoubleClick:(int)window

flags:(int)flags
x:(double)x
y:(double)y

Posts the events representing a double mouse click to the remote application. This method is just a
shorthand for four separate mouse events: a mouse down/up pair with click set to one, followed by
another mouse down/up pair with click set to two. window specifies which window the mouse click
occurs in and may be either a local postscript window number or a pseudo window number such as
NX_KEYWINDOW. flags may be used to set event flags (see dpclient/event.h). x and y specify the
coordinates of the mouse position relative to the bottom left corner of the window.

postEvent:
- postEvent:(NXEvent *)event

This is the main method through which events are posted to the remote application. See the
description of the NXEvent structure for more details.

postKeyboardEvent:window:flags:charCode:
- postKeyboardEvent:(int)eventType

window:(int)window
flags:(int)flags
charCode:(char)charCode

Posts a keyboard event. eventType is the keyboard event type, either NX_KEYDOWN or
NX_KEYUP, window is the window number where the event is posted, flags are the event flags (eg
NX_COMMANDMASK) and charCode is the character code.

See also:    - postKeyCode:window:flags:

postKeyboardString:flags:
- postKeyboardString:(const char *)keyString

flags:(int)flags

Posts the given string to the key window of the remote application. This method simply calls
postKeyboardEvent:window:flags:charCode twice (key down and key up) for every character in
the string.

postKeyCode:window:flags:
- postKeyCode:(char)charCode

window:(int)window
flags:(int)flags

Posts a pair of keyboard events (NX_KEYDOWN followed by NX_KEYUP) to represent the typing
of a single character given by charCode. window is the window number where the event is posted
and flags are the event flags (eg NX_COMMANDMASK).

postMouseEvent:window:flags:x:y:click:
- postMouseEvent:(int)eventType

window:(int)window
flags:(int)flags
x:(double)x
y:(double)y

                    click:(int)click

Posts a mouse event to the remote application. eventType is the type of event (eg
NX_MOUSEDOWN), window is the window number in which the event occurs (see descriptions
above).    flags may be used to specify any further event flags. x and y are the coordinates of the
mouse event relative to the bottom left corner of the window. For a single mouse click, click should
be set to one for the mouse down/up pair. A double mouse click consists of a two pairs, the first
with click set to one, and the second with click set to two. Similarly, a triple mouse click has three
down/up pairs with the last pair having a click value of three.

postSingleClick:flags:x:y:
- postSingleClick:(int)window

flags:(int)flags
x:(double)x
y:(double)y

Posts the events representing a single mouse click to the remote application. This method is just a
shorthand for a mouse down/up pair with click set to one. See the description of the parameters in
postDoubleClick:flags:x:y:.

postTripleClick:flags:x:y:
- postTripleClick:(int)window

flags:(int)flags
x:(double)x
y:(double)y

Posts the events representing a triple mouse click to the remote application. This method is just a
shorthand for six separate mouse events: a mouse down/up pair with click set to one, followed by
another mouse down/up pair with click set to two, followed by another pair with click set to three.
See the description of the parameters in postDoubleClick:flags:x:y:.

releaseStrings
- releaseStrings

Frees the remote application so that it can continue to respond to real user events. This method
must be called when the controlling application has completed a session of posting events.

windowCount
- (int)windowCount

Returns the number of windows belonging to the remote application. One use of this is to
determine if a particular mouse click has resulted in a new window appearing.

windowForPseudoNumber
- windowForPseudoNumber:(int)pseudoNumber

Returns a WindowInfo object for the given pseudo window number (eg NX_KEYWINDOW), or nil
if it can't be determined.

windowList
- windowList

Returns a list of the remote application's windows. A new list is created each time this method is
called, and it is the caller's responsibility to free it and it's contents. Each object is of the
WindowInfo class.

