
Version 1.0 Copyright ã1995 by Don Yacktman, All Rights Reserved.

MiscMergeDriver 

Inherits From: Object
Declared In: misckit/MiscMergeDriver.h

Class Description

A MiscMergeDriver is used to merge an ASCII template with several dictionaries filled with key/value pairs.    
Each dictionary will be used in turn to generate a new output ªdocumentº.

If you only need to generate a single merge, you may wish to simply use a MiscMergeEngine object.    If you 
have several merges to perform, then a MiscMergeDriver implements the required loop to generate the required 
merges, as well as supporting a protocol that allows the merge engine some control over the loop.    If you create 
your own loop, instead of using a MiscMergeDriver instance, some of the merge commands such as ªnextº will 
be ignored rather than performing the desired function.

To use a MiscMergeDriver you must provide it with a template, dictionaries to merge into the template, and, 
optionally, a MiscMergeEngine instance.    If a MiscMergeEngine is not provided, one will be created to perform 
the merge.    To set up a merge template, use the -setTemplate: method.    It expects an instance of the 
MiscMergeTemplate class, which comes from an ASCII file or from a MiscString object.

The data to be merged into the template is set up using the -setMergeData: method.    The data should be 



stored as key/value pairs in a MiscDictionary object for each merge to be performed.    Place all the dictionaries 
into a List object and use the List object as the argument to -setMergeData:.

Finally, use the -doMerge: method to perform the desired merge operation.    The results will be returned as a 
List object with a MiscString corresponding to each MiscDictionary in the List provided to the MiscMergeDriver by 
the most recent -setData: message.    For example, the third MiscString will contain the results from the merge 
with the third MiscDictionary.    If the Merge returned no result (due to an error or an ªomitº command, for 
example) then the MiscString will be empty.

If you wish to use a specific subclass of MiscMergeEngine to perform the merge, then use the -setEngine: 
method to set up the engine before calling -doMerge:.    This engine will be used for all subsequent merges 
unless -setEngine: is sent again.

For more information, please see the IntroMiscMerge.rtfd document.    It describes the syntax of the merge 
language and built-in commands available.    The MiscMergeArchitecture.rtfd document describes the 
architecutre of the various classes used to perform merging operations and how to add custom commands to the 
framework.

Instance Variables

MiscMergeTemplate *template;
List *dictionaries;
List *output;
MiscMergeEngine *engine;
BOOL merging;
int _mergeLoopIndex;

template MiscMergeTemplate for merging



dictionaries List of MiscDictionaries used for merges

output The output list that will be returned by -doMerge:

engine The merge engine to be used for merges

merging YES if merging, NO if not

_mergeLoopIndex Index to dictionaries when merge is in progress

Method Types

 Accessing the template - template
- setTemplate:

Accessing the data - mergeData
- setMergeData:

Performing a merge - doMerge:

Accessing the engine - engine
- setEngine:

Instance Methods

doMerge:
- (List *)doMerge:sender

Sets up a merge engine, if necessary, and performs a merge of the template with the MiscDictionaries in the data 
List.    Any engines created will be destroyed after the merge; engines set using -setEngine will persist, however. 



A List object populated with MiscStrings will be returned.    There is a one-to-one correspondence between the 
index of the return MiscStrings in the List and the MiscDictionaries' indices in the List that was provided via the 
most recent -setMergeData.    Thus, if there were six dictionaries used for merging, six MiscStrings will be 
returned, as the result of six merges.    Note that the ªnextº command will cause a MiscMergeEngine to attempt to 
skip forward to the next MiscDictionary, while still performing a single merge.    In this case, an empty MiscString 
will be inserted in the output List as a placeholder and the final merge result will be put in the slot corresponding 
to the last dictionary used.    Merges that fail or are halted due to an ªomitº command will also be represented by 
an empty MiscString in the output. 

engine
- (MiscMergeEngine *)engine

Returns the merge engine, an instance of MiscMergeEngine, that will be used to perform a merge.    If no engine 
has been set up, then nil is returned. 

mergeData
- (List *)mergeData

Returns the List of MiscDictionaries that will be used for the next merge. 

setEngine:
- setEngine:(MiscMergeEngine *)anEngine

Sets up an engine to be used for merging.    If no engine is set, a temporary engine will be created before and 
used during a merge.    It will be destroyed after it is used.    Engines set using -setEngine: will not be destroyed 
at the end of a merge and will be used for subsequent merges as well.    Setting a new engine will not free the old 
engine; the MiscMergeDriver does not ªownº the engine; it only makes use of it.    This way, the same engine 



could be used by several MiscMergeDriver instances.    Setting the engine to nil will revert to the default 
create/use/destroy pattern.    The engine cannot be changed while a merge loop is in progress.    Returns self if 
successful or nil if failure occurs. 

setMergeData:
- setMergeData:(List *)aList

Sets the List of MiscDictionaries that will be used for the next merge.    Returns self upon success and nil upon 
failure.    This method fails if a merge is in progress. 

setTemplate:
- setTemplate:(MiscMergeTemplate *)aTemplate

Sets the MiscMergeTemplate that will be used for the next merge.    Returns self upon success and nil upon 
failure.    This method fails if a merge is in progress. 

template
- (MiscMergeTemplate *)template

Returns the MiscMergeTemplate that will be used for the next merge. 


