
Version 1.0    Copyright ã1993, 1994 by Mike Ferris.    All Rights Reserved.
Mike Ferris    -    February 5th, 1994

MiscClassVariable

Inherits From: Object

Declared In: misckit/MiscClassVariable.h

Class Description

MiscClassVariable is used to implement class variables that keep separate values for each subclass.    Usually
to simulate class variables in Objective-C a static variable is declared at the top-level of the implementation
block of the class and class methods are provided to get and set this static variable.    The result is that all
subclasses share the same value unless they explicitly re-implement the class variable again.   
MiscClassVariable solves this problem.    Internally, it uses a hash table keyed on the class' name to store a
separate value for each subclass.

Instead of declaring a static variable of the type you want in your implementation, you will declare a static
MiscClassVariable pointer.    The +initialize method should allocate and initialize this object.    Then the get/set
methods should call the MiscClassVariable methods -getObjectForClass: and -setObject:forClass: to do their
work.    Finally, the +startUnloading method should free the object.    See the MiscNibController class for an
example of the use of this object.    Warning:    the current implementation of MiscClassVariable can only store
object values.

The MiscClassVariable can be configured at init time to free its values when it is freed.    The default is not to
free its values.

This class may be archived with the standard -read: and -write: methods.

You could also put the MiscClassVariable to some rather unusual uses.    For example, you could use a the
class to fudge extra instance variables for use by Objective-C categories of existing objects.    The trick to doing
this is to first name each instance of an object explicity and then use a cast to cast self as a Class when using
the get/set methods.    Overriding ±read: and ±write: in a category would be a problem, however, so this
solution is far from ideal.

Instance Variables

HashTable *ht;
Bool doesFreeValues;

ht The hash table used to store the values.

doesFreeValues Whether the values should be automatically freed when the object is..

Method Types

Initializing the class + initialize

Initializing instances - init
- initDoesFreeValues:
- free

Managing the values - setObject:forClass:
- getObjectForClass:

Class Methods

initialize
+ initialize

Sets the class version number.

Instance Methods

free
± free

This method frees the hash table used to contain the class variables.    It first frees all the object values if the
instance is supposed to free its values.

See also:    ± init, ± initDoesFreeValues:

getObjectForClass:
± getObjectForClass:(Class)class

Looks up the value (if any) for the given class and returns it.    Returns nil if no value has been set for the given
class.

See also:    ± setObject:forClass:

init:

± init

Calls ±initDoesFreeValues: with NO as its argument.

See also:    ± initDoesFreeValues:, ± free

initDoesFreeValues:
± initDoesFreeValues:(BOOL)flag

This is the designated initializer for the class.    It justs sets things up (the hash table in particular).

See also:    ± init, ± free

setObject:forClass:
± setObject:obj forClass:(Class)class

Sets the value for the given class to obj.    If the receiver is supposed to free its values, the old value (if any) is
freed and this method returns nil.    If the receiver doesn't free its values, the old value is returned if it existed;
otherwise nil is returned.

See also:    ± getObjectForClass:

