
Version 1.0    Copyright ã1993, 1994 by Mike Ferris.    All Rights Reserved.
Mike Ferris    -    February 18th, 1994

MODocManager

Inherits From: Object

Declared In: MOKit/MODocManager.h

Class Description

MODocManager manages a bunch of instances of one or more MODocController subclass.    It provides support 
for managing the Document menu, numbering untitled documents, staggering window positions, and giving the 
user a chance to save things before quitting.



An application will generally have one MODocManager.    The Document menu's items will have their actions 
connected to the various appropriate MODocManager methods.    The MODocManager should be the 
application delegate or you should make sure that ±appWillTerminate: messages at least get passed on to it.    
MODocManagers menu outlets should be connected to the appropriate Document menu items.

To configure a MODocManager you must also give it the set of document classes it will manage.    Most 
document based applications will have a single document type.    MODocManager also supports applications 
which require multiple document types.    Use the ±addDocumentClass: method to inform the manager about 
each MODocController subclass you intend to use documents from.    If there is one document class, the 
Document menu is left alone and will be standard.    If there is more than one, the New item is replaced by a 
New submenu which has items for each class.    The text used for the items is taken from MODocController's 
+controllerName method.    Also, in addition to the normal Open item, an Open submenu is added with items 
for each class just like the New submenu.    The Open item allows opening documents of any type supported by 
any of the document classes.    The submenu lets you be specific.

MODocManager, with the cooperation of MODocController, keeps a list of all the currently open documents and 
keeps track of the current document.    Document menu actions which act on a specific document, act on the 
current document, which is the document to which the main window belongs.

MODocController also uses MODocManager to number its untitled documents, and to stagger its windows so 



they don't stack up.    Also, when the user quits, if there are any unsaved documents, the user is given a chance 
to save first.

See the DocArchitecture example to see how MODocManager and MODocController are used.

Instance Variables

List *docList;
MODocController *currentDoc;
List *docClassList;
int untitledCount;
int frameCycle;
NXPoint windowStartingLocation;
id quitPanel;
id buttonMatrix;
id docMenu;
id openCell;
id newCell;



id saveCell;
id saveAsCell;
id saveToCell;
id saveAllCell;
id revertCell;
id closeCell;
Menu *newMenu;
MenuCell *newSubmenuCell;
Menu *openMenu;
MenuCell *openSubmenuCell;

docList A List object containing all the document controller instances currently being 
managed.

currentDoc The document controller instance to which the current main window of the app 
belongs.

docClassList A List object containing all the document controller classes that we are 
managing instances for.



untitledCount Counter to number untitled windows.

frameCycle Counter to stagger window locations.

windowStartingLocation The base location to start the first opened document window at.    Subsequent 
windows are staggered from there.

quitPanel IB outlet for the quit panel which gives the user a chance to save things before 
quitting.

buttonMatrix IB outlet.    Some buttons from the quit panel

docMenu IB outlet which should point to the Document submenu.

openCell IB outlet which should point to the Open item in the Document Submenu.

newCell IB outlet which should point to the New item in the Document Submenu.

saveCell IB outlet which should point to the Save item in the Document Submenu.

saveAsCell IB outlet which should point to the Save As item in the Document Submenu.

saveToCell IB outlet which should point to the Save To item in the Document Submenu.



saveAllCell IB outlet which should point to the Save All item in the Document Submenu.

revertCell IB outlet which should point to the Revert item in the Document Submenu.

closeCell IB outlet which should point to the Close item in the Document Submenu.

newMenu This points to the New submenu which is used if there is more than one 
document controller class being managed.

newSubmenuCell This points to the New submenu item which is inserted into the Document 
menu if there is more than one document controller class being managed.

openMenu This points to the Open submenu which is used if there is more than one 
document controller class being managed.

openSubmenuCell This points to the Open submenu item which is inserted into the Document 
menu if there is more than one document controller class being managed.

Method Types



Initializing the class + initialize

Initializing instances ± init
± initDocumentClass:
± free
± awakeFromNib

Loading the nib ± nibDidLoad

Document menu support ± new:
± newFromDocumentClass:
± open:
± openFromDocumentClass:
± openDocument:withClass:

± save:
± saveAs:
± saveTo:
± revert:
± close:
± print:



± saveAll:

MODocController support ± getNextWindowLocation:
± nextUntitledNum
± setStartingWindowLocation:

Document controller classes ± addDocumentClass:
± removeDocumentClass:
± documentClassList
± docClassCount

Document controller instances ± addDocument:
± removeDocument:
± findDocumentForWindow:
± documentList
± makeDocumentsPerform:with:
± areDocumentsDirty:
± setCurrentDocument:
± currentDocument

Save on quit support ± appWillTerminate:



± quitPanelStopModalAction:

± windowDidBecomeKey:
± windowDidResignKey:

Menu management ± menuUpdate:

Archiving ± awake
± read:
± write:

Class Methods

initialize
+ initialize

Sets the class' version.    Loads all necessary classes.



Instance Methods

addDocument:
-    addDocument:(MODocController *)aDocument

Adds a document controller instance to the list of documents being managed.    This is called automatically 
when a MODocController subclass instance's ±setManager: method is called or when it is initialized.

See also:    ± removeDocument:, ± findDocumentForWindow:, ± documentList, ± 
makeDocumentsPerform:with:, ± areDocumentsDirty, ± setCurrentDocument:, ± 
currentDocument

addDocumentClass:
-    addDocumentClass:(Class)docControllerClass

This method can be used to add to the list of MODocController subclasses that the manager knows about.    The 
MODocManager needs to know about the various classes that are used for documents to properly manage the 
Document menu and run the open panel.    When you call this method, the Document menu is rebuilt.    If there 



is only one document class, the Document menu looks like normal (it has one Open item and a New item).    If 
the manager is managing documents from more than one class, the menu changes.    Instead of New being an 
item, it becomes a submenu with one entry for each class.    The text used for the submenu is retrieved from the 
document class with the +controllerName method.    Also, in addition to the normal Open menu item, an Open 
submenu is added beneath with an item for each controller class.    The Open item will open files of any type 
handled by any document class.    If more than one class supports reading the same file extension, the one first 
in the list is used to open the file.    The Open and New submenus let you specify what type of document to 
create.

See also:    ± removeDocumentClass:, ± documentClassList, ± docClassCount

appWillTerminate:
-    appWillTerminate:sender

If there are unsaved documents, this method gives the user a chance to save them.    It asks via an alert panel 
whether to Quit qithout saving, save all before quitting, review each unsaved document individually, or cancel 
the quit.

See also:    ± quitPanelStopModalAction:, ± windowDidBecomeKey:, ± windowDidResignKey:



areDocumentsDirty
-    (BOOL)areDocumentsDirty

Returns YES if any of the documents being managed need saving.    NO otherwise.

See also:    ± addDocument:, ± removeDocument:, ± findDocumentForWindow:, ± documentList, ± 
makeDocumentsPerform:with:, ± setCurrentDocument:, ± currentDocument

awake
-    awake

Initializes stuff after a ±read: that doesn't get stored in the typed stream.

See also:    ± read:, ± write:

awakeFromNib
-    awakeFromNib



This sets the update action for all the document menu items if the IB outlets are set.    Then it rebuilds the menu 
to be in line with the document classes which have been registered through either ±initDocumentClass: or 
±addDocumentClass:.

See also:    ± init, ± initDocumentClass:, ± free

close:
-    close:sender

Closes the current document.    This should be the action for the Close item in the Document menu.

See also:    ± save:, ± saveAs:, ± saveTo:, ± saveAll:, ± revert:, ± print:

currentDocument
-    currentDocument

Returns the current document (that is, the document to which the current main window belongs, or nil if there is 
no current document).



See also:    ± addDocument:, ± removeDocument:, ± findDocumentForWindow:, ± documentList, ± 
makeDocumentsPerform:with:, ± areDocumentsDirty, ± setCurrentDocument:

docClassCount
-    (int)docClassCount

Returns the number of MODocController subclasses that the manager knows about.

See also:    ± addDocumentClass:, ± removeDocumentClass, ± documentClassList

documentClassList
-    (List *)documentClassList

Returns the List object used to store all MODocController subclasses which this manager knows about.    Don't 
change this list directly.    Use ±addDocumentClass: and ±removeDocumentClass: to modify the list. 

See also:    ± addDocumentClass:, ± removeDocumentClass, ± docClassCount



documentList
-    (List *)documentList

Returns the List object used to sotre all open documents.    The items in the list are MODocController subclass 
instances.    Do not modify this list.

See also:    ± addDocument:, ± removeDocument:, ± findDocumentForWindow:, ± 
makeDocumentsPerform:with:, ± areDocumentsDirty, ± setCurrentDocument:, ± 
currentDocument

findDocumentForWindow:
-    (MODocController *)findDocumentForWindow:aWindow

Returns the MODocController which owns the given window.    Returns nil if the window is not owned by a 
MODocController which is being managed by this MODocManager.

See also:    ± addDocument:, ± removeDocument:, ± documentList, ± makeDocumentsPerform:with:, ± 
areDocumentsDirty, ± setCurrentDocument:, ± currentDocument



free
-    free

Frees all the managed documents and the document list and the doc class list.    Also restores the document 
menu to its original state and frees the New and Open submenus if they were ever created.

See also:    ± init, ± initDocumentClass:, ± awakeFromNib

getNextWindowLocation:
-    getNextWindowLocation:(NXPoint *)pt

Returns the location for the top-left corner of the next document window to open.    MODocControllers which 
have managers use this method to position their windows.    The location starts at a given point and then, for 
each document that opens it is staggered down and right.    Once a certain number of windows have been 
opened, the location wraps back to the beginning.    Basically this behaves like Edit, the windows march down 
the screen for a while, then, before they fall off the bottom, the cycle of locations starts to repeat.

See also:    ± nextUntitledWindowNum, ± setStartingWindowLocation:



init
-    init

Calls ±initDocumentClass:nil.

See also:    ± initDocumentClass:, ± free, ± awakeFromNib

initDocumentClass:
-    initDocumentClass:(Class)docControllerClass

This is the designated initializer for this class.    It sets up the instance with the given class as the only type of 
document managed.    Without at least one document class, the New and Open menu items in the Document 
menu will never be enabled.    More than one document class can be used.    Add further ones with the 
±addDocumentClass: method.

See also:    ± init, ± free, ± awakeFromNib



makeDocumentsPerform:with:
-    makeDocumentsPerform:(SEL)aMethod

with:anArg

Sends the given message to each open doicuemnt which is managed by this manager.

See also:    ± addDocument:, ± removeDocument:, ± findDocumentForWindow:, ± documentList, ± 
areDocumentsDirty, ± setCurrentDocument:, ± currentDocument

menuUpdate:
-    (BOOL)menuUpdate:menuCelldBecomeKey:sender

This is the update action for all the Document menu items.    Each item is enabled or disabled as appropriate for 
the current state of the App.

See also:    ± awakeFromNib

new:



-    new:sender

This method is only used for managers which manage a single document class.    It instantiates a new 
document of that class.    This is the action of the New item in the Document menu.    The New item is removed 
from the menu and replaced by a New submenu when the manager is managing more than one document 
class.

See also:    ± newFromDocumentClass:, ± open:, ± openFromDocumentClass:, ± 
openDocument:withClass:

newFromDocumentClass:
-    newFromDocumentClass:sender

This method is used only when there is more than one document class.    It instantiates an object of the class 
which appears at the same offset in the document class list as the selected row of the sender.    Each item in the 
New submenu is connected to this action.

See also:    ± new:, ± open:, ± openFromDocumentClass:, ± openDocument:withClass:



nextUntitledNum
-    (int)nextUntitledNum

Returns the next unused untitled document number.    MODocControllers which are managed call this to number 
untitled docs.

See also:    ± getNextWindowLocation, ± setStartingWindowLocation:

open:
-    open:sender

This is the action of the Open item in the Document menu.    It runs the open panel allowing selection of any file 
type supported for reading by any of the document classes this manager manages.    If more than one document 
class can read the same file type, the one which appears first in the document class list is used to open files of 
that type.    If there is more than one document class, files can be opened with a specific class by using the 
Open submenu and the ±openFromDocumentClass: method.

See also:    ± new:, ± newFromDocumentClass:, ± openFromDocumentClass:, ± 
openDocument:withClass:



openDocument:withClass:
-    openDocument:(const char *)path

withClass:(Class)docClass

Opens the named file with the given document class.    Both ±open: and ±openFromDocumentClass: call this 
method after they have a filename from the open panel.    Only call this method with combinations of path and 
docClass that can work together.

See also:    ± new:, ± newFromDocumentClass:, ± open:, ± openFromDocumentClass:

openFromDocumentClass:
-    openFromDocumentClass:sender

This is the action of all the items in the Open submenu.    It is only used when there is more than one document 
class being managed.    It runs the Open panel allowing selection of all types supported for reading by the 
document class at the same offset in the document class list as the selected row of the sender.



See also:    ± new:, ± newFromDocumentClass:, ± open:, ± openDocument:withClass:

print:
-    print:sender

This is the action of the Print item in the Document menu.    It prints the current document.

See also:    ± save:, ± saveAs:, ± saveTo:, ± saveAll:, ± revert:, ± close:

quitPanelStopModalAction:
-    quitPanelStopModalAction:sender

This action is used while running the quit panel.    It is the target of all the buttons.    It just stops the modal 
session and sends the sender's tag back through the ±stopModal: mechanism.

See also:    ± appWillTerminate:, ± windowDidBecomeKey:, ± windowDidResignKey:



read:
-    read:(NXTypedStream *)strm

Reads the object from a typed stream.    I don't know why I included this method since you probably won't be 
archiving these.
See also:    ± awake, ± write:

removeDocument:
-    removeDocument:(MODocController *)aDocument

Removes the given document from the document list.

See also:    ± addDocument:, ± findDocumentForWindow:, ± documentList, ± 
makeDocumentsPerform:with:, ± areDocumentsDirty, ± setCurrentDocument:, ± 
currentDocument

removeDocumentClass:
-    removeDocumentClass:(Class)docControllerClass



Removes the given document class from the document class list.    Then redoes the Document menu to reflect 
the new set of classes we're managing.

See also:    ± addDocumentClass:, ± documentClassList, ± docClassCount

revert:
-    revert:sender

Action of the Revert item in the Document menu.    Reverts the current document.

See also:    ± save:, ± saveAs:, ± saveTo:, ± saveAll:, ± close:, ± print:

save:
-    save:sender

Action of the Save item in the Document menu.    Saves the current document.

See also:    ± saveAs:, ± saveTo:, ± saveAll:, ± revert:, ± close:, ± print:



saveAll:
-    saveAll:sender

Action of the Save All item in the Document menu.    Saves all dirty open documents.

See also:    ± save:, ± saveAs:, ± saveTo:, ± revert:, ± close:, ± print:

saveAs:
-    saveAs:sender

Action of the Save As item in the Document menu.    Does a Save As in the current document.

See also:    ± save:, ± saveTo:, ± saveAll:, ± revert:, ± close:, ± print:

saveTo:
-    saveTo:sender



Action of the Save To item in the Document menu.    Does a Save To in the current document.

See also:    ± save:, ± saveAs:, ± saveAll:, ± revert:, ± close:, ± print:

setCurrentDocument:
-    setCurrentDocument:(MODocController *)aDocument

Sets the manager's current document.    Thgis is generally called from the ±windowDidBecomeMain: and 
±windowDidResignMain: methods of MODocController.

See also:    ± addDocument:, ± removeDocument:, ± findDocumentForWindow:, ± documentList, ± 
makeDocumentsPerform:with:, ± areDocumentsDirty, ± currentDocument

setWindowStartingLocation:
-    setWindowStartingLocation:(const NXPoint *)pt

This method sets the location that the first window to open will appear at.    This is also the location used to 
compute the subsequent positions of other windows as they are opened.



See also:    ± getNextWindowLocation, ± nextUntitledNum

windowDidBecomeKey:
-    windowDidBecomeKey:sender

This is for support of the quit panel.    It puts the Return sign icon in the default button in the quit panel.

See also:    ± appWillTerminate:, ± quitPanelStopModalAction:, ± windowDidResignKey:

windowDidResignKey:
-    windowDidResignKey:sender

This is for support of the quit panel.    It removes the Return sign icon from the default button in the quit panel.

See also:    ± appWillTerminate:, ± quitPanelStopModalAction:, ± windowDidBecomeKey:

write:



-    write:(NXTypedStream *)strm

Writes the manager to a typed stream.    I don't know why I even provide this method as it makes little sense.

See also:    ± awake, ± read:


