
Version 1.0 Copyright ã1995 by Don Yacktman, All Rights Reserved.

MiscMergeEngine 

Inherits From: Object
Declared In: misckit/MiscMergeEngine.h

Class Description

A MiscMergeEngine is the heart of the merging object suite.    It actually performs the merges.    To use it, simply 
give it a MiscMergeTemplate that has been properly set up with -setTemplate:.    Next, give it a MiscDictionary 
object (-setMergeDictionary:) that is filled with the contents of the merge fields.    The keys are field names and 
the values associated with the keys are the information that should be substituted for the fields in the merge 
template.    Finally, send a -merge: message to start things off.    A MiscString will be returned that contains the 
results of the merge.

The rest of the methods are an API to the internal stat of the engine which may be used to implement 
MiscMergeCommand subclasses.

To implement MiscMergeCommands, it is important to understand some of the internals of the MiscMergeEngine 
class.

The main thing to know is that there is an ªoutputº string that is kept throughout the merge and returned at the 
end.    MiscMergeCommands should append strings to it as necessary with the -appendToOutput: method.

The MiscMergeEngine resolves field names through a series of symbol tables.    Commands can request that 
arguments be ªresolvedº through these symbol tables with the -getField: method.    The process is to first look at 



the current merge dictionary.    If the field name is found as a key in that dictionary, then the value for the key is 
returned.    If not, then the ªlocalº symbol table is searched.    The local symbol table may be populated by various 
MiscMergeCommands and starts out empty for each merge.    If the local table doesn't have the value, then the 
ªparentº merge, if it exists, is consulted, followed by the global symbol table.    Somewhere along the way, if a key 
into the merge dictionary is found, then the resolution is complete and the value is returned.    If even the global 
symbol table doesn't have a desired key, then the key itself is returned, since it could not be resolved.

By doing this extensive resolution, it is possible to use MiscMergeCommands to create aliases for field names.    
It is also possible to use the global tables to conatin ªdefaultº values for any merge fields that might turn up 
empty on a particular merge.    Note that there are specific methods which may be used to manipulate both the 
local and global symbol tables, as well as set up the parent merge.

Another special feature of the MiscMergeEngine is that it can carry internal ªvariablesº.    A variable is some 
object that contains state and needs to be accessible throughout a merge.    This is useful for groups of 
MiscMergeCommands that need to pass information between each other, but do not specifically know about 
each other.    A prime example would be the if/else/endif structure supported by the kit.    In order to allow nested 
if statements, a stack is required.    The special -ifStack method returns this internal variable.    However, there is 
a more general interface, using -setVariableNamed: and -getVariableNamed: which allows arbitrary variables 
to be stored and retreived by the engine.    The ªif stackº, in fact, uses the above methods with a special internal 
name.    (The accessor method is used to create the stack automatically the first time it is required; the 
-getVariableNamed: method can't do that since it doesn't know the class of the requested variable.)    Variables 
are cleared at the start of a new merge, so only data pertaining to a merge should be stored there.    This is, of 
course, the preferred way for MiscMergeCommands to ªcommunicateº with each other.

One final note about the ªif stackº special variable: if it's state suggests that the engine is walking through an 
ªinactiveº if block, then all strings sent to be appended to the output will be thrown out until the engine has 
entered an ªactiveº block.    (See MiscIfStack's class description for a deeper understanding.)

The current API should be adequate to perform most things a MiscMergeCommand would want to do.    However, 
it is possible that function would be helpful or that some bit of information is still inaccessible.    If this is the case, 
complain to the author (Don Yacktman, yackd@xmission.com) and he will consider enhancing the API to this 
object as necessary.    Of course, subclasses and categories might also be workable approaches to such 
deficiencies.



Instance Variables

id template;
id dictionary;
MiscMergeEngine *parentMerge;
MiscDictionary *symbolTable;
MiscDictionary *variables;
BOOL mergeInProgress;
BOOL abort;
id outputString;
BOOL outputOK;
id driver;

template Current merge template.

dictionary Current merge dictionary.

parentMerge Parent merge, if any.

symbolTable Local symbol table.

variables Storage for merge variables.

mergeInProgress Set to true if a merge is in progress.

abort Set to true if a merge should be aborted.

outputString The output string for the current merge in progress.

outputOK NO if output to outputString should be discarded.

driver The object that started the current merge.



Method Types

 Creating and setting up an engine + newWithTemplate:
± init

Setting up a merge - setTemplate:
± setMergeDictionary:

Performing a merge - merge:
± mergeWithDictionary:sender:

Setting a parent MergeEngine for sub-merges
± setParentMerge:
± parentMerge

Primitives for MiscMergeCommands
± abortMerge
± advanceRecord
± appendToOutput:
± dictionary

Handling the local symbol table - resetSymbolTable
± symbolForKey:
± setSymbol:toValue:

± getField:

Handling merge ªvariablesº ± resetVariables
± getVariableNamed:
± setVariableNamed:to:
± ifStack

Handling the global symbol table
+ resetGlobalSymbolTable
+ setGlobalSymbol:toValue:
+ addDictionaryToGlobalSymbols:
+ addListToGlobalSymbols:



+ globalSymbolForKey:

Class Methods

addDictionaryToGlobalSymbols:
+ addDictionaryToGlobalSymbols:(MiscDictionary *)aDictionary

Adds the contents of aDictionary to the global symbol table.    Returns self.    Warning: This is currently 
unimplemented.

addListToGlobalSymbols:
+ addListToGlobalSymbols:(List *)aList

Adds the contents of aList to the global symbol table.    Returns self.    The keys for the List's contents are 
generated as ªf0º, ªf1º, and so on. 

globalSymbolForKey:
+ (MiscString *)globalSymbolForKey:(MiscString *)name

Returns the value for the global symbol name, if found.    Returns nil if not found. 

newWithTemplate:
+ newWithTemplate:(MiscMergeTemplate *)aTemplate

Creates and initializes a new MiscMergeEngine instance, setting the current template to aTemplate.    Returns 
the newly created object. 



resetGlobalSymbolTable
+ resetGlobalSymbolTable

Empties the global symbol table.    Returns self. 

setGlobalSymbol:toValue:
+ setGlobalSymbol:name toValue:val

Sets the global symbol name to have the value val.    Returns self. 

Instance Methods

abortMerge
- abortMerge

Aborts the current merge.    This means that the merge output will be nil, as well.    Returns self. 

advanceRecord
- advanceRecord

Attempts to advance to the next merge dictionary while still working with the current output string.    This might be 
used to allow two merges to appear on the same "page" or document, for example.    For it to work properly, the 
driver that started the merge must respond to the -advanceMergeLoop method.    Returns self. 

appendToOutput:
- appendToOutput:(MiscString *)newText

Appends the contents of newText to the merge output.    Returns self. 



dictionary
- (MiscDictionary *)dictionary

Returns the current merge dictionary. 

getField:
- (MiscString *)getField:(MiscString *)fieldName

Attempts to resolve a field name.    If found in the merge dictionary, then the value in the dictionary is returned.    If 
not found there, then a search through the symbol tables is conducted.    If there are no local or global symbols 
named fieldName then fieldName is returned.    If there are local or global symbols, however, then an attempt is 
made to resolve their values to a key in the merge dictionary.    If the local or global symbols exist, but cannot be 
resolved into values in the merge dictionary, then they local/global value is returned.

This complex search allows aliases to be created for various merge fields so that they may be accessed by 
different names.    It also allows redirection--if a field is missing in a particular merge, the global or local symbol 
tables can suggest another field to use in its place.    Finally, it allows setting of default values in the local or 
global symbol table.    If the field is missing from the merge dictionary, then a default stored in the symbol tables 
can be used. 

getVariableNamed:
- getVariableNamed:(MiscString *)name

Returns the merge variable named name.    Returns nil if not found. 

ifStack
- ifStack

Returns the special ªif stackº merge variable, creating it if necessary.    The ªif stackº is used by the if/else/endif 
commands and also used to control turning the output of the merge on and off. 



init
- init

Initializes a new MiscMergeEngine instance.    Returns self. 

merge:
- (MiscString *)merge:sender

Performs a merge using the current dictionary and template.    If successful, then a MiscString containing the 
results of the merge is returned.    If unsuccessful, nil is returned.    The argument sender should be the initiating 
driver.    If not, some commands, such as ªnextº will not work properly. 

mergeWithDictionary:sender:
- (MiscString *)mergeWithDictionary:(MiscDictionary *)aDictionary sender:sender

Initiates a merge with the current template and aDictionary.    Returns a MiscString containing the output of the 
merge if successful and nil otherwise.    The argument sender should be the initiating driver.    If not, some 
commands, such as ªnextº will not work properly. 

parentMerge
- (MiscMergeEngine *)parentMerge

Returns the ªparentº merge engine. 

resetSymbolTable
- resetSymbolTable



Clears the local symbol table.    Returns self. 

resetVariables
- resetVariables

Empties out the merge variables.    Returns self. 

setMergeDictionary:
- setMergeDictionary:(MiscDictionary *)aDictionary

Sets the current dictionary.    The next invocation of -merge: will use aDictionary as the merge dictionary.    
Returns self. 

setParentMerge:
- setParentMerge:(MiscMergeEngine *)aMergeEngine

Sets the ªparentº merge for this merge engine.    If a symbol is undefined in this instance's symbol table, then the 
parent will be consulted to see if it is defined there.    Returns self. 

setSymbol:toValue:
- setSymbol:(MiscString *)name toValue:(MiscString *)value

Adds the symbol name to the local symbol table with value as its value.    Returns self. 

setTemplate:
- setTemplate:(MiscMergeTemplate *)aTemplate

Sets the current merge template.    All future invocations of -merge: will use aTemplate as the merge template, 



until this method is called again.    Returns self. 

setVariableNamed:to:
- setVariableNamed:(MiscString *)name to:aValue

Sets the merge variable named name to aValue.    Returns self. 

symbolForKey:
- (MiscString *)symbolForKey:(MiscString *)name

Attempts to find a symbol in the symbol table that corresponds to name.    If found, the value for that symbol is 
returned, if not, then nil is returned.    The search is conducted through the local symbol table, through all parent 
merges' symbol tables, and then through the global symbol table. 


