
Copyright ã1993 Christopher J. Kane.    All Rights Reserved.    Version 1.1.

SearchableText

Protocol Description

The SearchableText protocol defines a set of methods for an object to implement if it wants to 
provide searching functionality.    This need not apply to only Text or TextField objects±an 
NXBrowser, for example, could provide the text of its cells.    There are no set requirements to be 
able to provide text searching via the SearchableText protocol, but if an object has a user interface 
representation, it should have some form of selection and be able to interpret its text in a linear 
way (what this means for a non-Text object, a Matrix for instance, will hopefully be made clear in 
the following discussion).



The SearchableText models

Searchable text, that is, text that can be operated on by an object conforming to the 
SearchableText protocol, is modeled in two ways: as in C, a linear sequence of characters; and, 
particular to the SearchableText protocol, as a circular sequence of characters.

figure.eps ¬

In the linear model, a sequence of text has one beginning and one ending point; it has two edges. 
Moving from the beginning to the end is moving in a forward direction; similarly, moving from the 
end to the beginning is moving in a reverse direction.    There is no text before the beginning, in 
this model, and no text after the end.    Two other important points, the start of selection and the 
end of selection lie between the beginning and end points (if they exist at all±see the section 
Selection states).    The start of selection is defined to be between the beginning of the text and 
the end of selection, and the end of selection is between the start of selection and the end of the 
text; they may also be coincident with each other, and/or coincident with the beginning or end 
points.



Under the circular model, on the other hand, text has only one edge.    One edge, you say.    Why 
is there an edge at all if the text is circular?    Well, a similar situation exists with polar 
coordinates±there is an arbitrary ray which acts as a reference point from which angles are 
measured.    The edge in the circular text model acts as a reference point for searches of the text. 
It is also, most commonly, the beginning and ending point of the text; that is, it is a point just 
before the beginning of the text and just after the end.    This means that under this model there is 
text before the beginning of the text±namely, the text at the end (as it were)±and text after the 
end.    (The concept of a beginning and end of the text are borrowed from the linear model, and 
only make sense in the presence of a text edge, which itself is an artificial construct introduced to 
ease the mapping from the linear model, and provide a fixed point of reference in the model to 
make some other things easier.    However, for most of this document I will assume that the reader 
desires to use the circular model with linear text, and ignore these issues.)

But what does it mean to move in a forward direction in the circular text model?    We adopt the 
convention that it should mean the same thing it means in the linear model; namely, that in a 
forward direction, the start of the selection is between the text edge and the end of the selection, 
and as one moves from the text edge to the text edge, the start of the selection is passed through 



before the end of the selection is passed through (unless the points are coincident).    The 
beginning of the text is taken to be just before the first character closest to the text edge, moving 
in a forward direction (coincident with the text edge, note).    In the reverse direction, the end of the 
selection is reached before the start of the selection, again moving from text edge to text edge, 
and the end of text is just before the first character closest to the text edge (in a reverse direction). 
If the circular text model is to be applied to the text of an object that has no concept of a selection, 
then some other definitions of forward and reverse must be constructed.

Searching under the circular text model

So, under this strange, yet wonderful, circular model, there are three points of reference on which 
searches can be based±nine permutations of starting and ending positions (see Constants and 
Defined Types for the names of constants that define each of these).    Notice that the three 
points also define three regions in the text.    Searching from the start of selection to the end of 
selection in a forward direction, for instance, seems to be a straight-forward operation (no pun 
intended).    But searching from the end of selection to the start of selection?    The figure above 
makes this clear: a forward search will cross the edge of the text, searching two of three regions; 



a reverse search will search one region, the region not searched by the same forward search.    
This illustrates another property of searching under the circular text model: reversed text 
searching not only reverses the direction of a search, but also complements the set of text to 
search (except for the three permutations that search the entire text).

Now, interpretation of the circular text model is somewhat implementation dependant, with respect 
to the "boundaries" formed by the text edge, start of selection, and end of selection points.    In 
theory, there are no seams in circular text, and the three special points each exist between a pair 
of characters.    The character "on one side" of the start of selection is adjacent to the character 
"on the other side".    However, in practice users will find that an implementation that includes part 
of the previous match in a "next-found" match, or which finds a match that crosses the text edge, 
to be unintuitive.    Therefore, it is suggested that implementations use the following two 
guidelines:

· When mapping from a linear text model (say, that of the AppKit Text class) to the circular 
model, always treat the text edge as a hard boundary, i.e., successful searches will never 
result in a match that crosses the text edge.

· Treat the start of selection and end of selection points as hard boundaries only when they 



(either or both) are an end point of a search.    For instance, in a TextEdgeToSelEnd search, 
the end of selection should be a hard boundary, but the start of selection point should not (in 
other words, a successful match could cross the start of selection point that existed before the 
search began).

There may also be other implemenation considerations.    For instance, in a matrix of cells, it may 
not be appropriate to select only part of the text of a specific cell, but all the text of the cell should 
be selected.    Also, using the same example, it may not be appropriate to begin a text match in 
the text of one cell, and complete the match in another cell.    Implementors must consider these 
issues carefully, and compensate for them in their actions and the return values from the methods.

Selection states

There are three "abstract" states that a selection can be in:
· Non-existent.    There is no selection at all; the start of selection and end of selection are 

undefined.    This is the only state possible for objects providing searchable text, but have no 
concept of a "selection".    Methods or search modes which operate on a selection do nothing 



(or return an error indication) when the selection is in this state.
· Existent, but empty.    A selection exists, but the length of the selection is zero (the start and 

end of selection points are coincident, for example).
· Existent, and non-empty.    A selection exists, and has length greater than zero.

The state of the selection also encompasses exactly which set of characters is selected.    Objects 
that can have selections must be able to map to and from the circular text model used by this 
protocol and their own text representation.    For instance, a Matrix of TextFieldCells must be able 
to return appropriate values from the searchFor:mode:reverse:regexpr:cases:position:size: 
method and translate the parameters of selectTextFrom:to: into a selection of the appropriate 
cell(s).

These states are described only for completeness.    No concrete reference to them is required by 
the protocol.

Instance Methods



makeSelectionVisible
- (oneway void)makeSelectionVisible

Adjusts the view that contains the text to make the selection visible.    The state of the selection is 
not changed.    If there is no selection, or this action is otherwise inappropriate, this method does 
nothing.

replaceAll:with:mode:regexpr:cases:
- (int)replaceAll:(const char *)pattern

with:(const char *)replacement
mode:(SearchMode)mode
regexpr:(BOOL)regexpr
cases:(BOOL)cases

Replaces all instances of matches of the null-terminated string pattern in the searchable text with 
the null-terminated string replacement, and returns the number of replacements made.    



replacement is a literal string that should be substituted for each instance of text matching pattern. 
If regexpr is NO, pattern is treated as a literal string, otherwise pattern is interpreted as a regular 
expression (the regular expression syntax is not defined, and is chosen by an implementation).    If 
cases is YES, the search is case sensitive, otherwise it is not.    See the section Constants and 
Defined Types for the values of the mode parameter.    Upon error (for instance, if the state of the 
text or selection does not support the operation requested), a number less than 0 (a value of type 
SearchErr) is returned.    The state of the selection after this operation is not defined (an 
implementation may choose any behavior).

replaceSelection:
- (oneway void)replaceSelection:(const char *)replacement

Replaces the current selection in the text with the null-terminated string replacement.    If the 
selection is empty, the string replacement is inserted in the text at that point.    If there is no 
selection, or this action is otherwise not appropriate, this method does nothing.    The state of the 
selection after the operation is not defined (an implementation may choose any behavior).



searchFor:mode:reverse:regexpr:cases:position:size:
- (int)searchFor:(const char *)pattern

mode:(SearchMode)mode
reverse:(BOOL)rev
regexpr:(BOOL)regexpr
cases:(BOOL)cases
position:(out int *)pos
size:(out int *)size

Searches for matches to the null-terminated string pattern in the searchable text.    The text to be 
searched is indicated by the mode and rev parameters.    See the section Constants and Defined 
Types for the values of the mode parameter.    If rev is YES, a "backwards" search is performed.    
If regexpr is NO, pattern is treated as a literal string, otherwise pattern is interpreted as a regular 
expression (the regular expression syntax is not defined, and is chosen by an implementation).    If 
cases is YES, the search is case sensitive, otherwise it is not. If text matching pattern is found in 
the text, the position in the text from the text edge in a forward direction to the match (indexed 



from zero) is returned by reference in pos, the length of the matched text in size, and 1 is returned 
by the method.    If text matching pattern is not found, this method returns 0.    Upon error (for 
instance, if the state of the text or selection does not support the operation requested), a number 
less than 0 (a value of type SearchErr) is returned.    The state of the selection after the operation 
is not defined (an implementation may choose any behavior).

selectTextFrom:to:
- (oneway void)selectTextFrom:(int)start to:(int)end

Sets the selected characters to be those from position start to position end-1 inclusive, relative to 
the text edge and indexed from zero.    The previous selection state is discarded.    Both values 
must be non-negative, and start<=end.    If start and end are equal, the selection is set to be 
empty, at the position "between" positions start-1 and start.    start must be less than or equal to 
end; otherwise, the behavior of this method is not defined.    After this operation, the selection 
need not be visible to the user, but an implementation may choose to make it so.    If this action is 
not appropriate, this method does nothing.



writeSelectionToPasteboard:asType:
- (void)writeSelectionToPasteboard:(in Pasteboard *)pboard asType:(in NXAtom)type

Writes the characters currently in the selection to the pasteboard pboard as the type type.    If 
there is no selection, or the selection is empty, this method does nothing.    The state of the 
selection is not changed.

Constants and Defined Types

SearchMode
SYNOPSIS

typedef enum {
TextEdgeToSelStart,
TextEdgeToSelEnd,



TextEdgeToTextEdge,
SelStartToSelEnd,
SelStartToTextEdge,
SelStartToSelStart,
SelEndToTextEdge,
SelEndToSelStart,
SelEndToSelEnd

} SearchMode;

DESCRIPTION

These values are used as an argument to the replaceAll:with:mode:regexpr:cases: and 
searchFor:mode:reverse:regexpr:cases:position:size: methods, to specify the extent of 
the search and replace operations.    See the Protocol Description for more information.

Search from the first through to the last
Value Direction character after the... character before the...

TextEdgeToSelStart Forward beginning of text start of selection



Reverse end of text start of selection

TextEdgeToSelEnd Forward beginning of text end of selection
Reverse end of text end of selection

TextEdgeToTextEdge Forward beginning of text end of text
Reverse end of text beginning of text

SelStartToSelEnd Forward start of selection end of selection Reverse start of 
selection end of selection

SelStartToTextEdge Forward start of selection end of text Reverse start of 
selection beginning of text

SelStartToSelStart Forward start of selection start of selection Reverse start of 
selection start of selection

SelEndToTextEdge Forward end of selection end of text Reverse end of selection
beginning of text



SelEndToSelStart Forward end of selection start of selection Reverse end of selection
start of selection

SelEndToSelEnd Forward end of selection end of selection Reverse end of selection
end of selection

SearchErr
SYNOPSIS

typedef enum {
        SEARCH_INVALID_OPERATION = -1,
        SEARCH_INVALID_ARGUMENT = -2,
        SEARCH_INVALID_REGEXPR = -3,
        SEARCH_NO_SELECTION = -4,
        SEARCH_CANNOT_WRITE = -5,
        SEARCH_UNIMPLEMENTED = -6,



        SEARCH_ABORTED = -7,
        SEARCH_INTERNAL_ERROR = -8
} SearchErr;

DESCRIPTION

These values are returned from the replaceAll:with:mode:regexpr:cases: and 
searchFor:mode:reverse:regexpr:cases:position:size: methods in the event of an error. 
An implementation of the SearchableText protocol need not use any value other than 
SEARCH_INVALID_OPERATION, but it is recommended that an implementation be as 
specific as possible.

SEARCH_INVALID_OPERATION A generic, unspecified failure.
SEARCH_INVALID_ARGUMENT An invalid argument was passed to the method.    

For example, pattern was NULL.
SEARCH_INVALID_REGEXPR The pattern was not a valid regular expression, 

when regular expression matching was requested.
SEARCH_NO_SELECTION There is no selection (not even an empty one) and 



the mode of the search or replace operation 
requested was relative to the selection.

SEARCH_CANNOT_WRITE The text of the object is read-only.
SEARCH_UNIMPLEMENTED A feature or combination of parameters has not 

been implemented.
SEARCH_ABORTED The operation was aborted by the user before it 

could be completed.
SEARCH_INTERNAL_ERROR An unspecified internal error occured.    For 
example, memory allocation failure.


