
Programmers with too much time on their hands

I finally got around to reading the Sept. 14, 1993 PC
Magazine, and came across the article ªMultithreading
and Graphics Under Windows NTº by Charles Petzold.
It describes a simple multi-threaded app: four windows
are continually updated to display an increasing
sequence of numbers, an increasing sequence of
fibonacci numbers, an increasing series of primes, and
a series of circles of random size drawn in random
places.

As I'm pretty annoyed by all the hype surrounding NT, I
figured I'd do it under NeXTSTEP.    This is the result.    It
does nothing useful, really, just what's described above.

Using the Program

Start it up.    Select the Run menu item.    Look at the
pretty pictures and text.    When you've had enough,

select the Stop menu item. Repeat as needed.

Compare and Contrast

So, what's the difference between the NeXTSTEP
version and the NT version?    The NeXTSTEP version
is more functional, basically.    You can copy & paste the
text from the windows, print, fax, edit the text, and this
help file is around.    The NeXT version uses distributed
objects as a communication tool, so it would be
extremely easy to write a distributed app that wrote data
back to the display windows. (Basically, you'd just have
to cut & paste the code in the treads to a new app and
compile).    So, in theory, you could have some high-zoot
piece of iron calculating bond yields or whatever,and
updating your display on a humble Intel PC.

The NeXT version uses distributed objects to serialize
output to the window server.    The appkit is not thread-
safe (making it so would be a big performance hitÐyou'd

constantly be checking for mutex locks and the like), so
only one thread can access it at a time.    We do this by
creating a server object, and having the threads
message the server.    The server handles the client
requests in order, ensuring that only one thread is
writing to the screen at a time.    Petzold says that
ªexperimentation seems to show that Windows NT
properly serializes access to the graphics functions.º   
So it's unclear to me that NT is supposed to be able to
have simultaneous access to the window server from
multiple threads, or if this just happens to work by
happenstance and luck, like most PC software.

Output to the window continues during window dragging
and the like.    The server gets and dispatches remote
events by looking during the main event loop.

The line count is pretty close to being the same for both
programs.    Petzold's looks to be around 300 lines long,
eyeball estimate, while this runs around 600 according

to wc.    But I have a lot of comments and a coding style
that uses a lot of whitespace.    The number of lines with
semicolons is around 200.    I'll leave it to the reader to
determine which is more understandable.

Don't try to compare the two on speed.    I haven't
optimized this at all; it's pretty naive in a some places
that count.

Highlights

·Distributed Objects. Fun stuff: write four client apps,
and have them message the server object, each
updating one of the views in the window.    Five different
processes communicating seamlessly.    Tres qool.

·Threads.    Amusing.    Uses the cthreads package to
fork and detach functions.

·Drawing. Hack some postscript and get more

interesting pictures to display in window # 4.

Don McGregor
mcgredo@prism.cs.orst.edu

