
Copyright Ó 1993, 1994 Don Yacktman.    All Rights Reserved.    Version 1.7.1.

MiscKit Charter
The MiscKit is a kit of resources provided by members of the USENET and 

InterNet community for use by anyone who develops under NEXTSTEP and/or 
Objective-C.    Changes, bug fixes, and suggestions for improvement in the kit are 
all welcome and encouraged.    Programmers can submit code and tools, while 
users can suggest ways to improve what is here, to the benefit of all.

In an effort to keep all this in some semblance of order, a few ªrulesº are in 
place.    These rules aren't meant to make things difficult; they are intended to 
make things run smoothly and without confusion.    If this goal isn't being met, then 
the rules will need to be adjusted so that they are met; send your suggestions to 
the MiscKit mailing list for discussion there.    There is no reason why changes can't 
be made to improve things.

Altering;¬Altering the License and/or Charter is done by a vote of MiscKit 
authors and owners.    Each author has one vote; if your name is in the Authors.rtf 
file as an author, contributor, or owner, you have the right to cast a vote.    The 
author and owner of a resource are the same person unless some written 



agreement exists which transfers ownership.    When approval is requested for a 
particular change, failure to respond within two weeks of such a request constitutes 
a ªYESº vote.    Voting is initiated by the MiscKit Administrator; the administrator will 
prepare a new license or charter with the proposed modifications and then present 
the new version for voting.    Note that although changes are allowed in the charter 
and license, use and distribution of the MiscKit is free, and must remain so.    That 
means that no party may come in, acquire the MiscKit, and then turn around and 
charge for it, nor may they impose any new restrictions on the distribution of the 
MiscKit.    Changes to the license affect future releases of the MiscKit, but not 
earlier releases.

Donations;¬Donated code falls under the MiscKit license.    There are certain 
special cases where code is included in the MiscKit but retains its own license.    In 
these special cases, the code does not fall under the MiscKit license.    This 
situation is highly discouraged, and it is up to the MiscKit administrator's discretion 
to decide whether or not to include such ªindependentº code.    By contributing to 
the MiscKit, the resource owner agrees unconditionally to the terms detailed in the 
license and charter.    (If you don't like the license and/or charter, you shouldn't 
contribute.)    The owner cannot contribute under different terms without special 
permission from the MiscKit administrator.    An owner cannot remove a 
contribution once it has been contributed.    (See License.rtf and License_Notes.rtf 
for more information on this.)    By contributing a resource to the MiscKit, the owner 
agrees to follow this policy and is giving up the right to remove the contributed 



resource from the MiscKit.
;¬Accepted contributions include foundation objects, interface objects, 

programming tools, Interface Builder palettes, and Project Builder .bproj 
(subproject) directories.    All contributions should be accompanied by .rtf 
documentation if possible, but this is not required.    If no documentation is 
provided, some willing soul will be assigned the task of keeping the documentation 
up to date.    Typically, this is easiest to do if the code maintainer (see below) is the 
one who does documentation, and this is encouraged, even though it is not 
required.

Prefix;¬For consistency, all MiscKit objects, including functions, compiler 
defines in header files, Objective-C objects, protocols, and defined types will be 
prefixed with ªMiscº.      (Compiler defines should use ªMISCº.)    Exceptions to this 
rule will only be made in cases where a better solution is impossible, or the Misc 
prefix would cause a problem worse than the potential name conflicts.    The 
MiscKit administrator must give permission for any exceptions.    This prefix is 
intended to assure that the MiscKit's name space will conflict with no other 
Objective-C name space or kit.    Functions, variables, or preprocessor defines 
seen only in the source files and not in the header files are not required to use the 
ªMiscº or ªMISCº prefix.    Note that Objective-C categories are not required to use 
the ªMiscº prefix.

Resources;¬Some MiscKit objects require the use of external resources (tiff 
images, sounds, .nib files, string tables, etc.).    Currently, there are two ways to 



provide for this.    First, for an object in the MiscKit library (libmisckit.a), the 
resources needed should be added to a given project in ProjectBuilder.    Second, if 
the object is available as a ProjectBuilder .bproj file, the subproject should be 
added to the project; the subproject will contain all necessary resources, which will 
in turn be incorporated by ProjectBuilder into the project.    This is preferred 
because the resources are encapsulated along with the object that uses them.    If 
enough shareable resources become part of the MiscKit, a third alternative will 
also be implemented, which at this time is unimplemented, and will be known as 

the MiscKit runtime library²;Charter.rtf;DaggerFootnote;¬.    It is hoped by most that 

a pool of shareable resources never becomes necessary.

Administration;¬MiscKit maintenance and integration is overseen by the 

MiscKit administrator, Don Yacktman.    If changes are needed to comply with kit 

standards and requirements, such as the prefix, the administrator will work with the 

submitter to bring the resource into compliance.    The administrator will accept 

requests from third party distributors who wish to redistribute the MiscKit and 

provide them with the latest versions of the MiscKit as well as notification of new 

releases as they occur.    Notification of new releases, performed via an e-mail 

alias, is available to anyone upon request, and will also be sent to the MiscKit e-



mail alias.    The administrator may resign his/her post at any time, in which case a 

new administrator may be chosen and ratified by a simple majority of the MiscKit 

authors, and should be chosen based upon ability and resources to do a 

respectable (good) job keeping things up to date.

Maintenance of an individual MiscKit resource is to be handled through the 

resource's maintainer, as listed in the Authors.rtf file in the MiscKit distribution.    

That maintainer will forward tested and completed changes to the administrator for 

inclusion in the official release of the kit.    The administrator will also forward 

changes back to the maintainer rather than just putting them straight into the kit.    

(ie., just because the administrator makes the distributions does not mean he or 

she can break this rule and change what an author sends to him!)    The maintainer 

accepts bug reports, code additions and enhancements, and any other feedback 

pertaining to the resource in question, and is then expected to forward the final 

revisions, after testing, to the MiscKit administrator for inclusion in the MiscKit.    

The maintainer for a resource is typically the owner of a resource, which, by 

default, is the original author.    The owner is the person who owns the copyright for 



a resource; this is the original author, unless a signed agreement transferring the 

copyright to another individual exists.    The owner has the right to choose a 

maintainer for the resource.    In the event that the owner forfeits the right to choose 

a maintainer, a maintainer will be chosen from the MiscKit authors, or any other 

suitable volunteer, by the MiscKit administrator.    Although a resource included in 

the MiscKit cannot be removed by its owner, if the owner decides they do not wish 

to be a MiscKit maintainer, but does wish to retain ownership for any reason, they 

may do so and a maintainer will be chosen as delineated above.

New features to the kit and architectural decisions should be discussed in the 

MiscKit mailing alias so that things are designed right before any code is written.    

This is not a strict requirement; it is OK to simply submit a resource, but discussion 

is recommended because it will make for a better design in the long run, and this is 

the main purpose of the mailing alias anyway.    This alias is unmoderated; 

participants are expected to use their own good judgement.    Flame wars are 

highly unwelcome; only constructive discussion is desired.    (Of course, 

disagreement is expected; without opposing viewpoints it is impossible to consider 



all eventualities and thus all viewpoints are to be respected, especially when the 

topic is design of a particular resource.)    Currently, the MiscKit e-mail alias is 

misckit@byu.edu.    Send mail to misckit-request@byu.edu to get on or off the list.

Any pending projects for the MiscKit will be listed in a To_Do.rtf file in the 

MiscKit distribution.    This will include things such as ªobjects we'd like to seeº, 

ªknown bugsº, ªdevelopment tools we'd like to addº, and so on.    Anything that 

would be nice to have, but isn't a current work in progress would turn up in that file. 

An In_Progress.rtf file will list any bugs which are currently being chased, any 

deficiencies which are being dealt with, and any projects in progress.    The 

misckit_proj/Temp directory will hold any projects that are in progress, but are not 

yet integrated into the MiscKit, if the author wants to make code available for public 

comment.    It is not mandatory to provide the MiscKit administrator with code in 

progress; this directory is provided solely for those who wish to use it.    Nothing in 

the Temp directory is guaranteed to work.    It may work, it may not.    Note that 

items in the Temp directory are not reviewed by the MiscKit administrator, as they 

are still in the process of becoming an actual part of the MiscKit.



Versioning;¬Versions of the MiscKit follow a form of x.y.z where x is the major 

version number, y is the minor version number, and z is a sub-version number.    

The sub-version number is incremented for bug fixes and minor additions to 

existing resources.    The minor version number, y, is incremented when a new 

resource is added to the MiscKit, or a large enough number of changes to existing 

resources has been made.    The major revision number, x, is incremented for 

major architectural changes in the MiscKit which affect several resources, or when 

the group of MiscKit authors feel that it should be incremented.    Whenever y is 

incremented, z is reset to zero, and whenever x is incremented, both y and z are 

reset to zero.    Major and minor releases will be stored on the official MiscKit 

archive site (currently ftp.byu.edu) and will also be forwarded to the standard 

NEXTSTEP ftp archives, such as cs.orst.edu.    Bug fixes may or may not be 

forwarded to the major archive sites.

Backward;¬Backward compatibility between versions is not always 

guaranteed.    Minor revisions will be compatible with any previous version of the 

same major revision level.    Between major revision levels, however, nothing is 



guaranteed.    The programming interface will be kept as uniform as possible.    

Incompatibilities will occur when it is better to move on and use improved code 

than it is to keep crufty, old, poorly written code around.    In other words, unlike the 

DOS world, we refuse to keep dumb code around for compatibility's sake alone.    

The whole point of the MiscKit is to provide a useful kit of state of the art objects.    

It should be the best that it can be.    (To the users of the MiscKit:    Note that 

backward compatibility will be attempted, but it will only be achieved in cases 

where it is not a hindrance.    Most of the time, backwards compatibility will occur, 

so don't worry about us turning your world upside down.    We'll try not to do that.    

Really.)

__________

DaggerFootnote;¬²Although it does not currently exist, the basic shape of a 
runtime library is already partly fleshed out, in case of the event that it become 
needed.    Basically, it would work like this¼ first, it would be completely contained 
in a directory that a user would install on their system, installable in either 
/LocalLibrary (preferred) or in ~/Library.    (Another possibility, mimicking 



NEXTSTEP's shared resources, would be to install in /usr/local/lib or ~/lib.)    The 
folder would be provided in the MiscKit both expanded and as an Installer .pkg file. 
The .pkg file could then be distributed with any app the uses the MiscKit; if the user 
hasn't already installed the package, they would do so before installing the app.    
When installed, subdirectories would be used to specify a particular version of the 
MiscKit, so that newer resources won't overwrite old resources, since an older third 
party application might require an older resource.    When a MiscKit object requires 
a resource, it would then ask a manager object (which would be written and added 
to the MiscKit) to locate the resource.    The manager would search, in the following 
order, the .app wrapper, the user's local ~/lib and ~/Library directories, then 
/usr/local/lib and /LocalLibrary.    Within each of the listed directories, it would 
search from the newest back to the earliest version of the resource directory.    
Note that a version of the searcher compiled for a certain revision level of the 
misckit would start at it's revision level and work down, thus avoiding the problem 
of grabbing a newer, incompatible, resource.    Also, to avoid duplication of 
resources, only resources that change or are new to the MiscKit would appear in 
the higher directory levels (since the search will eventually find the old resources in 
the lower levels).    This system is a proposal, and it, or a similar scheme, will be 
implemented if deemed a worthwhile project by a simple majority of the MiscKit 
authors, but only if someone is willing to actually implement it.    Currently, there is 
no perceived need for a runtime library.


