
Documentation copyright ã1995 Carl E. Lindberg. Version 1.1.
The regexpr package copyright ã1991 Tatu Ylonen.

Notes on the regexpr routines

Declared In: misckit/regexpr.h

Module Description

This is a second attempt at a description of the regexpr package.    The Emacs documentation (sort of forgot about
that the first time, oops) had information on most of the things that I missed in the first attempt, so I think that it is
now fairly complete.    Still, there well may be things I missed or got wrong, so PLEASE tell me if you come across
any.    Portions of the text were taken from UNIX man pages, the Emacs manual, and comments inside of the
regexpr code.

The regexpr package implements a set of regular expression handling routines.      It imitates the syntax of GNU
regular expressions, which are themselves an extension of standard Unix regular expressions (as defined by
ed(1), sed(1), grep(1), etc.).    A few extra syntax options are also provided.

From the ed(1) man page, a regular expression "specifies a set of strings of characters.    A member of this set of
strings is said to be matched by the regular expression."    For example, take the regular expression "a*".    This will
`match' any consecutive series of 'a' characters, since the '*' stands for `match zero or more occurrences of the
previous regular expression', which in this case is just the letter 'a'.    Matched strings would include "" (0 a's), "a",
"aa", "aaa", "aaaaaaaa", and so on.    So, in a sense, "a*" stands for the entire set of those matched strings.

In other words, regular expressions allow you to make generalized searches for strings instead of searching for
each possible string in turn.    In general, regular expressions have a syntax where a few characters have special
meaning and the rest are "ordinary".    An ordinary character simply matches itself; for example, "foo" can be
considered to be a simple regular expression matching only the string "foo".    In the syntax used by this package,
the special characters are `*', `+', `?',    `[',    `]',    `$',    `^',    `.', and `\'.

These are the basic rules for building regular expressions handled by this package.    In the following descriptions,
`character' excludes newline; that is, if it says "matches any character", it really means "matches any character
except for the newline character".

· Two regular expressions concatenated match a match of the first followed by a match of the second.

· A single character not otherwise endowed with special meaning matches that character.

· A . (period) matches any character (except for a newline).    So, the regular expression "a.b" matches
any three-character string that starts with `a' and ends with `b'.

· A regular expression followed by an * (asterisk) matches a sequence of    0 or more matches of the
regular expression.    A regular expression followed by a + (plus) matches a sequence of 1 or more
matches of the regular expression.    A regular expression followed by a ? (question mark) matches a
sequence of 0 or 1 matches of the regular expression.    Therefore, the expression "ca+r" matches the
strings "car", "caar", "caaaar", etc., while "ca*r" matches the same set of strings as well as "cr", since the
* allows for zero `a' characters between the `c' and `r'.    The expression "ca?r" matches only the strings
"cr" and "car".

If one of these three characters is placed in a position that does not make sense for a postfix operator, it
is matched as a literal character.    Thus, "*foo" actually matches the string "*foo", because there is no
previous regular expression for * to operate on.    This "feature" is only included for back compatibility with
Unix regular expressions.    It is considered bad form to use this construct, and it is not a good idea to
count on it.    If you want to turn this feature off, meaning that these cases will return errors instead of
matching the literal character, you can use the syntax option RE_CONTEXT_INDEP_OPS.

On a more technical note, the matcher processes a * (or +) construct by matching as many repetitions of
the previous expression as can be found.    Then, it continues with trying to match the rest of the pattern.   
If this fails, backtracking occurs, discarding some of the matches of the *'d construct if that makes it
possible to match the rest of the pattern.    For example, while matching "c[ad]*ar" against the string
"caddaar", the "[ad]*" first matches "addaa", but this does not allow the next "a" in the pattern to match.
Therefore, the last match of a [ad] character is undone and the following "a" tried again, this time
succeeding and matching the entirety of "caddaar".

· A string enclosed in brackets [...] is called a "character set", which in the simplest case matches any
single character that is in the set.    For example, "[ad]" matches either "a"or "d", and "c[ad]+r"
matches "car", "cdr", "cadr", "caddar", and so on.

The usual special characters have no special meaning inside of a character set.    Thus, "[ab*]" matches
either the character `a', the character `b', or the character `*'.    Instead, there is a different set of `special'
characters inside a character set: `-', `]', and `^'.

Ranges of ASCII character codes may be abbreviated, as in [a-z0-9], which would match any
lowercase letter or digit.    If you want the character `-' to be one of the characters matched it must be
placed where it can't be mistaken as a range indicator, such as the first or last character in the set or
between ranges.    For similar reasons, a `]' may occur only as the first character of the set.

If the first character of the set is ^, it is a "complemented character set".    In other words, it matches any
character not specified in the set.    Therefore, "[^0-9a-zA-Z]" matches any character that is not a letter
or a digit (the `^' is not part of the set).    Again, if you want `^' to actually be in the set, it can't be the first
character, to avoid confusion.

A complemented character set can match a newline character, unless newline is in the set of characters
not to match.    This is in contrast to the way some programs -- such as grep(1) -- handle regular
expressions.

· The character ^ matches the beginning of a line.    Thus, "^blah" matches the string "blah" only if it is at
the beginning of a line.

· The character $ is like ^, except it matches the end of a line.    "h+$" will match a string of `h' characters
at the end of a line.

· For the most part, \ followed by a single character other than newline matches that character.    There are
a few cases -- most of them the GNU extensions -- where a character quoted in this manner has special
meaning, and therefore does not match itself.    In all of these cases, the character is normally not special,
so it wouldn't be necessary to quote it in the first place.    Typically, this construct is used to quote a special
character to indicate that you want a literal match of that character.

NOTE:    Since the C compiler interprets \ in constant strings itself, it is actually a little difficult to use this

method.    Anytime you want a \ character in your regular expression, you need to put \\ in a constant
string to tell the compiler you really want the character \ there.    Eventually, this can get a bit confusing.   
For example, if you really want to match the literal character \ in your regular expression, the regexpr
routines need to be given \\ to follow the above rule.    To get that, you need to put \\\\ in your quoted
string, since the compiler will reduce that to \\ in the string the regexpr routine gets.    I've found that it is
easier to just enclose a special character in square brackets [] for a literal match of that character.    It
doesn't always look very pretty, but it's better than trying to keep track of lots of `\' characters through the
various reductions.

· \| is an OR construct.    In other words, two regular expressions with \| in between them matches either
what the first expression matches or what the second matches, but not both.    For example, "foo\|bar"
matches either the string "foo" or the string "bar", but no other string.

You might have noticed that unlike *, +, and ? (which only apply to the shortest possible preceding
subexpression),    \| applies to the largest possible surrounding expressions.    The only way to limit this
scope is to use the "\(... \)" construct as described below.    Full backtracking capability exists to handle
multiple uses of \|, so if your regular expression is "abc\|def\|ghi",    it can match the string "ghi".

· \(... \) is a grouping construct that can serve different purposes.    First, as noted above, it can be used
to limit the scope of the \| construct.    For example,    "restricti\(ve\|on\)" will match either the
string "restrictive" or the string "restriction".    Second, it can be used to specify the subexpression that the

postfix operators *, +, and ? apply to.    For example, "ba\(na\)*" will match "ba", "bana", "banana",
"bananana", and so on.

Lastly, \(... \) can be used to mark a portion of a matched string for future reference.    This "future
reference" is either by use of the \{digit} construct, as described below, or by using registers in the
searching and matching functions (After a search or match, these registers contain the indexes and
lengths of the portions of the matched string marked in this way).    This is actually a different functionality
altogether, since the first two purposes mark parts of the expression for use by other operators, while this
marks portions of the actually matched text.

· \{digit} matches the same text that the digit'th \(... \) grouping matched.    For example, "\([a-
z]+\)_\1" would match "find_find", "spoon_spoon", "buzz_buzz", etc.    Note, again, that this refers to
the actual text that was matched inside a \(... \) grouping, NOT the expression contained inside.    The
groupings are numbered in order of their beginnings, and start at 1.    Thus, you can use \1 through \9 to
refer to the text matched by the corresponding grouping.    If you need to match more than nine groupings,
see the RE_ANSI_HEX syntax option.

· The order of precedence of operators at the same parenthesis level is [] then *+? then concatenation
then | and newline.

That is the extent of the syntax for normal Unix regular expressions; the rest of the rules are GNU extensions.

· \` matches the beginning of the text buffer.

· \' matches the end of the text buffer.

· \b matches the beginning or end of a word.    For example, "\bplay\b" matches "play" if it is a separate
word, and "\bplays?\b" matches either "play" or "plays" as a separate word.

· \B matches the empty string, provided it is NOT at the beginning or end of a word.

Actually, I'm not sure this construct is being handled correctly.    Sometimes it seems to work, but other
times it matches the same way that \b does or it does not match when it seems it should.    If anyone can
confirm that this feature is in fact broken, or can point out that I'm misunderstanding it, I'd appreciate it...

· \< matches the beginning of a word.

· \> matches the end of a word.

· \w matches any character that is part of a word.    This seems to mean letters and digits, but not
punctuation characters.

· \W matches any character that is not part of a word; basically, anything that \w does not match.

These syntax rules can be modified by setting the syntax variable with re_set_syntax().    The syntax variable is

one of the following constants or a bitwise OR'ed (using `|') combination thereof:

RE_NO_BK_PARENS
With this option set, the meanings of (...) and \(... \) are switched; normal parentheses will be
treated as the grouping construct and quoted parentheses will match the literal characters.

RE_NO_BK_VBAR
The meanings of | and \| are switched; a normal | will mean the OR construct and \| will match the
literal character..

RE_BK_PLUS_QM
The meanings of    + ?    and \+ \? are switched; the normal characters will now match literally and the
quoted ones will be the postfix operators.

RE_TIGHT_VBAR
Changes the precedence rules slightly; now | binds tighter than ^ and $.

RE_NEWLINE_OR
A newline character will be treated as an OR, just like the \| construct.

RE_CONTEXT_INDEP_OPS
^$?*+ are special in all contexts.    Normally, if any of these operators are placed in a position that

doesn't make sense (such as the first character of the expression, where there is no previous
subexpression to operate on), it will match the literal character.    With this option set, these cases will
return errors instead.

RE_ANSI_HEX
Allows ANSI sequences, e.g. \n (newline), \t (tab), \r (carriage return), \xhh, etc.    Also means \vdd,
where dd is a number from 10 to 99, will refer to the dd'th \(... \)grouping in the same way that \1 ..
\9 refer to the first nine groupings.    You must #define RE_NREGS to be at least one more than the
number of groupings you intend to have in your regex to use this feature    The default is 10, so normally
you can only refer to the first nine groupings.

Note, again, that the C compiler intercepts the \ character in constant strings and will translate things like
\n normally for you, so you don't necessarily need this option set to get that behavior.    To get \n
translated by the regexpr routines, you need to put \\n in a constant string.    This will pass \n to the
regexpr routines, which will then translate to a newline.

RE_NO_GNU_EXTENSIONS
Disallows GNU extensions; specifically, takes out the special meaning of \`, \', \b, \B, \<, \>, \w,
and \W.

The following are predefined OR'ed combinations of the above constants for some common regular expression

styles that you may also use:

RE_SYNTAX_AWK
The syntax used by awk(1), I guess.    This is short for (RE_NO_BK_PARENS | RE_NO_BK_VBAR |
RE_CONTEXT_INDEP_OPS)

RE_SYNTAX_EGREP
The syntax used by egrep(1).    This is short for (RE_SYNTAX_AWK | RE_NEWLINE_OR)

RE_SYNTAX_GREP
The syntax used by grep(1).    This is short for (RE_BK_PLUS_QM | RE_NEWLINE_OR)

RE_SYNTAX_EMACS
The syntax used by emacs, i.e. the GNU syntax. This is basically the default, since it defines none of the
extra syntax options.

There are actually a couple of other options normally in Emacs that are supported in this package if you #define
emacs; these mostly have to do with matching character types you define in a syntax table.    I am not listing them
here because by default emacs is not defined.    Look in the Emacs documentation for more information (a good

idea anyways).

Examples

Some usage examples:

abc*
Matches an 'a', then a 'b', then any number of 'c's.
Ex: "ab", "abc", "abcc", "abccccc", etc.

(abc)*      [with RE_NO_BK_PARENS]
Matches any number of consecutive "abc" strings, including 0 of them.
Ex: "", "abc", "abcabc", "abcabcabc", etc.

(abc)*      [without RE_NO_BK_PARENS]
Matches the string "(abc", then any number of ')' characters.
Ex: "(abc", "(abc)", "(abc))", "(abc))))", etc.

[a-zA-Z]+
Matches any string of only alphabetic characters.    There has to be at least one character.

[0-9]+
Matches any string of only numeric characters.    Basically, this means an integer.

[0-9]+([.][0-9]*)?      [with RE_NO_BK_PARENS]
Matches a series of digits, then, optionally, a period (decimal point) followed by another string of digits.   
Basically, this matches some of the ways you can specify a floating point number.
Ex: "34", "34.2", "0.44"

[0-9]+[.][0-9]+([eE][+-]?[0-9]+)?      [with RE_NO_BK_PARENS]
Matches other types of    floating point numbers.    Matches a series of digits, decimal point, another series
of digits, then an optional exponent section, which contains an optional sign character.
Ex: "0.6", "2.37e-22", "9.1E23"

[(][^)]*[)]
Matches a pair of parentheses with whatever is inside of them.    Literally, matches a left-paren, then any
number of non-right-paren characters, then a right-paren.
Ex: "()", "(abc)", "(const char *)", "(aa((a(aa)"

.*
Matches a string of anything (except a newline character).    This is a way of matching an entire line no
matter what is there, or, when tacked on the end of a regular expression, matching the rest of the line.

(abc)|(def)    [with RE_NO_BK_VBAR and RE_NO_BK_PARENS]
Matches either "abc" or "def".

Types and Constants

regexp_t,      struct re_pattern_buffer

typedef struct re_pattern_buffer {
char *buffer; Compiled pattern
int allocated; Allocated size of compiled pattern
int used; Actual length of compiled pattern
char *fastmap; fastmap[ch] is true if ch can start pattern
char *translate; Translation to apply during compilation/matching
char fastmap_accurate; True if fastmap is valid
char can_be_null; True if can match empty string
char uses_registers; Registers are used and need to be initialized
char anchor; anchor: 0=none 1=begline 2=begbuf

} *regexp_t;

regexp_registers_t,    struct re_registers

typedef struct re_registers {
int start[RE_NREGS]; Start offset of region
int end[RE_NREGS]; End offset of region

} *regexp_registers_t;

RE_NREGS
#define RE_NREGS    10    Number of registers available

Functions

One thing to note is that these routines will return the longest possible match it can.    For example, if you match a
regular expression of "a*" in the string "aaaaaaaa", it will return a length of eight, since that is the longest possible
match, even though a shorter portion would have technically qualified as well.    When searching, the routines will
return a match at the first possible index.

If you want to make your searches case-insensitive, you can modify the translation table.    Simply map the
positions of the upper-case characters to their lower case equivalents, or vice versa.    You can actually map any
characters to any others this way (such as perhaps mapping all whitespace characters to space), but case-
insensitivity is probably the most common use.

struct re_pattern_buffer pat;
char tr[256]; int i;

for (i=0;i<256;i++) tr[i] = i; //sets up basic table
if (!case) for (i='A';i<='Z';i++) tr[i] = i- 'A' + 'a';
pat.translate = tr;

If you want to find out exactly where your \(... \) groupings matched, you can pass a regexp_registers_t (a
pointer to a registers struct) to the searching and matching functions.      Upon return, the fields of the struct contain
the indexes and lengths of all the \(... \) subgroupings.    If regs is your regexp_registers_t, then regs-
>start[0] and regs->end[0] are the index and length of the entire expression, and regs->start[1],
regs->end[1] through regs->start[9], regs->end[9] are the indexes and lengths of the first nine
groupings.    If you wish to allocate more registers, increase RE_NREGS.    You must allocate the space for regs
before use.    If you do not want to use this feature, just pass NULL for the registers argument in the functions.

re_compile_fastmap()
void re_compile_fastmap(regexp_t compiled)

This computes the fastmap for the regexp.    The fastmap is an array of 256 characters, where fastmap[ch] is
nonzero if the character ch can possibly start the regular expression.    The matching routines can then use this
to skip more quickly over implausible characters.    Use of the fastmap is recommended for searching large
blocks of text, though it may not be an advantage for searching smaller blocks.    To use the fastmap, first
compile the regular expression with re_compile_pattern(), then set the fastmap field to point to an allocated
and initialized (zeroed) block of 256 characters and call re_compile_fastmap().    If you do not want to use the
fastmap, make sure the fastmap field is NULL.

re_compile_pattern()
char *re_compile_pattern(char *regex, int regex_size, regexp_t compiled)

Compiles the regular expression (given in regex and length in regex_size).    Returns NULL if the regexp
compiled successfully, and an error message if an error was encountered. The buffer field must be initialized to
a memory area allocated by malloc (or to NULL) before use, and the allocated field must be set to its length (or
0 if buffer is NULL).    Also, the translate field must be set to point to a valid translation table, or NULL if it is not
used.    The compiled expression will be place in compiled, the space for which must be allocated ahead of time.

If you do not allocate the buffer field, it will be automatically allocated for you, but you must remember to free it
when you are finished with the regexp_t.

re_match_pattern(), re_match_pattern_2()
int re_match_pattern(regexp_t compiled, char *string, int size, int pos, regexp_registers_t regs)
int re_match_pattern2(regexp_t compiled, char *string1, int size1, char *string2, int size2, int pos,

regexp_registers_t regs)

re_match_pattern() tries to match the regexp against string, where pos is the index to try matching at.   
re_match_pattern_2() does the same thing, except it matches against the concatenation of string1 and string2.
Size, size1, and size2 are the lengths of their corresponding strings.    These functions return the length of the
matched portion, -1 if the pattern could not be matched, or -2 if an error (such as failure stack overflow) is
encountered.

re_search_pattern(), re_search_pattern_2()
int re_search_pattern(regexp_t compiled, char *string, int size, int startpos, int range, regexp_registers_t

regs)
int re_search_pattern2(regexp_t compiled, char *string1, int size1, char *string2, int size2, int startpos, int

range, regexp_registers_t regs)

The re_search_pattern() function searches for a substring matching the regexp.    range specifies at how many
positions to try matching; positive values indicate searching forwards, and negative values indicate searching
backwards.    startpos specifies the index to start searching at.    re_search_pattern_2() does the same thing,
except it searches the concatenation of string1 and string2.    These functions return the first index at which a
match is found, -1 if no match is found, or -2 if an error (such as failure stack overflow) is encountered.    Use
re_match_pattern() or re_match_pattern2() at the returned index to find the length of the matched portion.

re_set_syntax()
int re_set_syntax(int syntax)

re_set_syntax() sets the regular expression syntax to be used by all the routines in the regexpr package.    The
value of the previous syntax variable is returned. The syntax may be any of the following constants, or a bitwise
OR (using `|') combination thereof:

RE_NO_BK_PARENS No quoting for parentheses
RE_NO_BK_VBAR No quoting for vertical bar
RE_BK_PLUS_QM Quoting needed for + and ?

RE_TIGHT_VBAR | binds tighter than ^ and $
RE_NEWLINE_OR Treat newline as or
RE_CONTEXT_INDEP_OPS ^$?*+ are special in all contexts
RE_ANSI_HEX ANSI sequences (\n etc) and \xhh
RE_NO_GNU_EXTENSIONS No GNU extensions

See the overview section for a further description of these constants.

The following are predefined definitions for some common regexp styles that you may also use:

RE_SYNTAX_AWK RE_NO_BK_PARENS|RE_NO_BK_VBAR|RE_CONTEXT_INDEP_OPS
RE_SYNTAX_EGREP RE_SYNTAX_AWK|RE_NEWLINE_OR
RE_SYNTAX_GREP RE_BK_PLUS_QM|RE_NEWLINE_OR
RE_SYNTAX_EMACS <default>, none of above constants set

