
OOP Class Lab

Converter

Purpose: In this lab you will design a simple calculator to convert kilograms to pounds. It is a simple application
showing how to design a custom object in Interface Builder.

1. Start up Project Builder . Begin a new application by selecting Project/New... on the main menu.
A panel titled New Project will pop up asking for the project name. Leave the popuplist labelled "Project Type:"

in the Application position. Select the directory where you want the project to be, then type Converter and click
OK. A project directory is created and the project file window pops up.

2. Design an interface as described below. Choose Interfaces/Converter.nib from the PB browser and double-

click the icon. Interface Builder is launched, and it creates a main nib file with a window named My

Window.

Note: You can test the interface after each step below. Test by choosing Document/Test Interface on the IB

main menu. Choose Quit in test mode to return to IB, or double-click on the IB icon which will change in test

mode to look like: .

a. Click on your main window; its title bar should be black. Call up the Window Inspector by selecting

Tools/Inspector... on the IB main menu. In the Window Inspector (Attributes), set the window so that it does not

have a resize bar or a close control. Also change its title to Converter and press return.

b. From the third palette , drag two Text fields , two Title labels (actually,

they are both instances of TextField), and a button into the window. Arrange them and set their
attributes as shown below. Also click the temporary resize button in the upper left corner of the window, and
then resize the window to the size shown.

3. Make Connections.

a. Control-drag and connect the TextField under the Kgs label to the Convert button. In the inspector,

connect to the performClick: action method of the button.

b. Click on the Sounds suitcase in the File Window to open it. Drag a desired sound out and
drop it on the button.

4. Create the custom converter object.

a. Subclass Object. Click the Classes suitcase in the File Window. In the Classes browser

that appears, move to the left and select the Object class. In the Operations pull down menu

 select Subclass. The Inspector should now become a Class Inspector, inspecting the new

MyObject class. Double-click the MyObject text in the Class Inspector, rename it to Converter, then press

Return. You are designing a custom class named Converter which is a subclass of Object.

b. Instantiate the Custom Object. Go back to the Operations pull down menu and select Instantiate.

An icon representing an instance of Converter should appear in the File Window. The
CustomObject Inspector on the right should show that it is a member of the Converter class.

c. Add Outlets and Actions. Now click on the Classes button again and select the Converter class in
the browser. This should bring up the Class Inspector on the right. Select Attributes in the popuplist at the top.

Choose the Outlets radio button. In the textfield provided at the bottom, enter an outlet named input and press

return. Do also for another outlet named output. Now click the Actions radio button. In the same manner as for

Outlet, enter a new action method named convert:.

d. Make Connections to Custom Object. Click on the Objects suitcase to display the
Converter instance icon. Control-drag from the Converter Instance icon in the File Window to the textfield under

the Kgs label in the main window. Make the connection for the input outlet. Do likewise for the output outlet to
the field under the Lbs label. Now control-drag from the button in the main window to the Converter Instance.

Make the connection to the convert: action method.

5. Save the IB Files. Select Document/Save in the main IB menu.

6. Unparse the Custom Object. Click on the Classes button in the File window, then select Converter in the
class browser. Go to the Operations pull down menu and choose Unparse. When prompted, answer Yes to
both Create and Insert files. IB will create the skeleton class files Converter.m and Converter.h, and insert them
under the Classes and Headers sections of the browser in Project Builder.

7. Add Instance Variables to the .h file. In the PB window, choose Headers/Converter.h and open it (double-
click it). There are no new instance variables to be added to the .h file, so you can close it again.

8. Add Code and #import’s to the .m file. In the PB file window, choose Classes/Converter.m and open it. Add

the code to the convert: method as follows:

float weight; //declare local float variable
weight=[input floatValue]; //message input field to get value
weight=weight*2.2; //convert
[output setFloatValue:weight]; //message output field to set value

Place this just above "return self;" inside the braces. (Do you know how to combine the these into one line?)
There are no new #import’s to be added.

9. Save the .m and .h files. Do it!

10. Select Builder in the PB window and then select button to build the project. The

PB gives a message like when it finishes properly. The

Converter.app now is in the project directory. Double-click it to run it, or just click the Run button

 in PB. Test the program. Conversion should take place either when you hit return in the input field
or when you click the button. You should hear your sound at each conversion.

Extension: Try modifying this program such that it can also do Celsius-to-Fahrenheit conversion. It will be
easiest if you directly modify your solution to the version above as follows:

1. In Edit, open Converter.h and add two outlets, inputLabel and outputLabel, one per line, and one BOOL

flag, convertingTemp, as new instance variables.

2. Add two new action methods, selectWt: and selectTemp:, to both Converter.h and Converter.m.

3. Write the code in Converter.m for the two new methods: when one of the two new methods is called, it
should:

- change inputLabel and outputLabel (use setStringValue:) above the textfields to reflect the correct
conversion.

- set convertingTemp appropriately so that the convert: method will know which kind of conversion to do.

4. Now also modify the convert: method to do either conversion, depending on the state of convertingTemp.

5. Go back to IB and add a submenu named Conversion to the main menu. Put two items in the submenu:

Kgs-to-Lbs and C-to-F (copy and paste in the submenu to get the second item).

6. Now IB must be told of the changes to the Converter class interface. To do this, select Parse in the
Operations pull down menu in the File window. In the Open panel that appears, select Converter.h to parse. In
the Class Inspector you should see all of the new outlets and methods for the Converter class. (You will not see

the convertingTemp instance variable since it is not an outlet to another object.

7. Control-drag from the Converter instance in the File Window to labels above the input and output textfields to

connect the inputLabel and outputLabel outlets. Also control-drag from the two new menu items to the

Converter instance to connect to the selectWt: and selectTemp: methods.

8. Now save the nib file (Document/Save), return to PB and save the project (Project/Save), and build and run
the program.

