
Figures xv

Figure 1.1 The layers of NeXTSTEP 1

Figure 2.1 In procedural programming, the functions are kept separate from the data they operate on 8

Figure 2.2 An object is a collection of data (instance variables) along with the functions (methods) that 

can access the data 9

Figure 2.3 Accessing an instance variable through one of the methods 9

Figure 2.4 Once a class is defined, it can be used to create instances 11

Figure 2.5 A subclass inherits the methods and instance variables defined in the superclass 14

Figure 2.6 A message expression has two parts 18

Figure 2.7 Polymorphism allows identically named methods in more than one class 19

Figure 2.8 The higher classes are more generalized than the lower classes 21

Figure 2.9 The interface file declares the instance variables and methods which the class contains 31

Figure 2.10 The implementation file contains the code for the methods defined in the class’ interface 

file 34

Figure 2.11 The class object has two message dispatch tables that contain the addresses of the instance 

and class methods 37

Figure 2.12 Objective-C searches for the appropriate method in the dispatch table 39

Figure 2.13 Dynamic binding defers associating the receiver to the method until runtime 40

Figure 2.14 self is the current object and super is the superclass 43

Figure 2.15 Objective-C starts at the Object class to allocate the memory for a newly created 

instance 45

Figure 2.16 The contents of theWindow and name are completely external to theDocument 48

Figure 2.17 An object should free the memory block an instance variable is pointing to before freeing the 

instance variable 50

Figure 3.1 Object-oriented design is composed of activities rather than steps 55

Figure 3.2 AbstractShape has no collaborators 64

Figure 3.3 The Rectangle class has no collaborators 65

Figure 3.4 The Square class has no collaborators 65

Figure 3.5 The List class has no collaborators 66

Figure 3.6 In a message diagram, the classes are depicted as boxes, and the lines and their directions 

depict the messages 69

Figure 3.7 The Object class is always the root class of an Objective-C application 70

Figure 4.1 The major classes in the Application Kit 100

Figure 4.2 The Common Classes hierarchy 102

Figure 4.3 The CRC card for the Menu class 106

Figure 4.4 The CRC card for the Window class 107

Figure 4.5 The CRC card for the Application class 107



xvi Figures

Figure 4.6 The message diagram for AppKitDemo 111

Figure 4.7 AppKitDemo in execution 114

Figure 4.8 AppKitDemo with a Quit option 119

Figure 5.1 The NeXTSTEP development cycle 125

Figure 5.2 Creating a new project with ProjectBuilder 127

Figure 5.3 The Files accessory view of ProjectBuilder 127

Figure 5.4 The Attributes accessory view of ProjectBuilder 129

Figure 5.5 The Build accessory view 129

Figure 5.6 The initial screen in InterfaceBuilder 130

Figure 5.7 The File Window contains the resources 131

Figure 5.8 The Palettes Window contains more than one palette 132

Figure 5.9 InterfaceBuilder automatically creates menu options for the Main Menu 132

Figure 5.10 Adding a menu option to the Main Menu 133

Figure 5.11 Adding a panel to the application 134

Figure 5.12 Placing a textfield in the Info panel 134

Figure 5.13 Displaying the Attributes Inspector for the Info panel 135

Figure 5.14 Editing the title of a panel 136

Figure 5.15 Editing the text of a textfield 137

Figure 5.16 Editing the text of a menu option 137

Figure 5.17 Making a connection to the Main Window 139

Figure 5.18 Displaying an already existing connection. 140

Figure 5.19 Switching to Test Mode in InterfaceBuilder 141

Figure 5.20 Building an application in ProjectBuilder 144

Figure 5.21 The components of an application 147

Figure 6.1 The framework for a NeXTSTEP application 151

Figure 6.2 Clicking on the Hide menu option sends a hide: message to NXApp (the target) 153

Figure 6.3 Some sample buttons 155

Figure 6.4 ControlDemo during execution 158

Figure 6.5 The components of ControlDemo 159

Figure 6.6 Some sample sliders 161

Figure 6.7 The granularity of a slider 162

Figure 6.8 ControlDemo with a slider and a button 164

Figure 6.9 Some sample textfields 165

Figure 6.10 A converter application with two textfields 166



Figures xvii

Figure 6.11 ControlDemo with a button, a slider, and a textfield 167

Figure 6.12 The slider is the textfield’s target and the textfield is the slider’s target 168

Figure 6.13 A sample form 169

Figure 6.14 ControlDemo with all the controls 171

Figure 6.15 ControlDemo with the button as the form’s target 172

Figure 6.16 The windowWillClose: method in action 180

Figure 6.17 Money with six textfields and a button 182

Figure 6.18 The CRC card for the MoneyConverter class 184

Figure 6.19 The message diagram for Money 185

Figure 6.20 The hierarchy graph for Money 185

Figure 6.21 Adding fields to a form 186

Figure 6.22 Labeling the form with the appropriate fields 187

Figure 6.23 Subclassing Object to create MoneyConverter 188

Figure 6.24 Adding the moneyForm outlet to the Converter class 189

Figure 6.25 Adding the convert: method 190

Figure 6.26 Instantiating the MoneyConverter class 191

Figure 6.27 Connecting the objects in Money.nib 191

Figure 6.28 Connecting to the form instead of to the formcell 192

Figure 6.29 Adding an arrow icon to the button 194

Figure 6.30 Generating the template files with the Unparse command 194

Figure 6.31 Setting the moneyconverter as the delegate of the Main Window 198

Figure 6.32 Determining the size of a window with the Size Inspector 199

Figure 6.33 Parsing in a class updates the outlets and actions for the class in InterfaceBuilder 200

Figure 6.34 Setting the moneyconverter as the delegate of the application object 201

Figure 6.35 Using the autosizing features in the Size Inspector 204

Figure 6.36 Setting the autosizing characteristics of the button and the form 205

Figure 7.1. Coordinates in the base system and screen system 210

Figure 7.2. A view’s location inside its window 213

Figure 7.3. Drawing order of views in a window 215

Figure 7.4. A view’s frame rectangle can be outside of its superview’s 216

Figure 7.5. Drawing a shape with PostScript 224

Figure 7.6. Execution of a typical PostScript command 225

Figure 7.7. Execution of square_outline.ps 226

Figure 7.8. Execution of black_square.ps 227



xviii Figures

Figure 7.9. Execution of circle.ps 228

Figure 7.10. Rotating the axes 230

Figure 7.11. Producing a shadow effect in PostScript 231

Figure 7.12. How pswraps fits in the program structure 235

Figure 7.13. A sample wraps function 236

Figure 7.14. An example of instance drawing 238

Figure 7.15. Correct and incorrect use of instance drawing 241

Figure 7.16. Updating a view in response to the user’s actions 244

Figure 7.17. A preliminary interface for Shapes 245

Figure 7.18. A more refined interface for Shapes 246

Figure 7.19. The CRC card for the ShapeView class 247

Figure 7.20. The CRC card for the SquareView class 247

Figure 7.21. The CRC card for the CircleView class 248

Figure 7.22. The message diagram for Shapes 251

Figure 7.23. The hierarchy graph for Shapes 252

Figure 7.24. Instantiating the SquareView class 254

Figure 7.25. Creating a matrix of two sliders 255

Figure 7.26. The user interface with the sliders labeled 256

Figure 7.27. Grouping objects with a box 257

Figure 7.28. The user interface with the controls defined 259

Figure 7.29. Making the connections in Shapes.nib 260

Figure 8.1 The precedence order for building the registration table 285

Figure 8.2 Using NXUpdateDefault() to update a default’s value in the registration table 288

Figure 8.3 The views in a Preferences panel is controlled by a popuplist 289

Figure 8.4 InterfaceBuilder doesn’t allow connections between .nib files since this would violate 

encapsulation 291

Figure 8.5 An object can appear as an instance in one .nib file and as the File’s Owner in another .nib 

file 291

Figure 8.6 A switchbutton is more appropriate than a textfield for options that only have two possible 

values 298

Figure 8.7 The CRC card for the PrefsController class 304

Figure 8.8 The CRC card for the SwitchView class 304

Figure 8.9 The updated CRC card for the MoneyConverter class 305

Figure 8.10 The message diagram for Money 308

Figure 8.11 The updated class hierarchy graph for Money 309



Figures xix

Figure 8.12 Adding header files to a project by dragging them from the Workspace 311

Figure 8.13 Setting the class of the File’s Owner 311

Figure 8.14 Editing the entries in a popuplist 312

Figure 8.15 The Preferences panel with the switchview 313

Figure 8.16 Connecting all the objects in Prefs.nib 313

Figure 8.17 Enabling the Preferences menu option 315

Figure 8.18 Connecting the objects in Money.nib 316

Figure 8.19 Centering a view in its superview’s coordinate system 329

Figure 8.20 Drawing a bezeled line 330

Figure 9.1 A regular coordinate system vs. a flipped coordinate system 338

Figure 9.2 The key window and the main window may or may not be the same window 343

Figure 9.3 The search order when a target is not explicitly set 345

Figure 9.4 A text object can grow beyond the boundaries of its superview 346

Figure 9.5 The components of a scrollview 347

Figure 9.6 A typical savepanel 351

Figure 9.7 A typical openpanel 357

Figure 9.8 Retrieving the selected filename(s) 360

Figure 9.9 A preliminary interface for Words 368

Figure 9.10 The CRC card for the Document class 369

Figure 9.11 The CRC card for the TextController class 370

Figure 9.12 The CRC card for the SavePanel class 370

Figure 9.13 The CRC card for the OpenPanel class 371

Figure 9.14 The CRC card for the Window class 371

Figure 9.15 The message diagram for Words 374

Figure 9.16 The hierarchy graph for the custom classes in Words 374

Figure 9.17 Adding a Command-w keyboard alternative to the Close menu option 375

Figure 9.18 Making the connections in Words.nib 379

Figure 9.19 Adding a scrollview to Document.nib 381

Figure 9.20 Connecting the objects in Document.nib 382

Figure 9.21 Double-clicking on a file from the Workspace sets off a complex series of events 403

Figure 9.22 Adding an icon and changing the extension for an application’s documents 405

Figure 9.23 Changing the application’s icon 406

Figure 9.24 Setting Words as the default application for .word documents 407

Figure 10.1 The on-line help for the keyboard in the Preferences application 412



xx Figures

Figure 10.2 Enabling Developer Mode in Edit 413

Figure 10.3 Inserting a link in a document 414

Figure 10.4 Displaying and editing a link 415

Figure 10.5 Inserting a marker in a file 416

Figure 10.6 The New.rtf file after it has been modified 420

Figure 10.7 The New.rtf file with the links and marker 421

Figure 10.8 The Open.rtf file with the links and marker 422

Figure 10.9 The Save.rtf file with the links and marker 423

Figure 10.10 Attaching help to the New menu option 424

Figure A.1 The NeXTSTEP login window 431

Figure A.2 The initial screen after logging in 432

Figure A.3 NeXTSTEP windows and icons 433

Figure A.4 Displaying a submenu 434

Figure A.5 Miniaturizing a window 435

Figure A.6 Display the contents of a folder and selecting a file 436

Figure A.7 Scrolling through the README.rtf file 437

Figure A.8 The title bar contains the filename and the path 438

Figure A.9 To close a window, click on the close button, located in the upper right hand of the title 

bar 439

Figure A.10 Double-click a word to select it 440

Figure A.11 Copying and pasting the text 440

Figure A.12 To get our attention, NeXTSTEP places the alert panel above the other windows 441

Figure A.13 Edit displays a savepanel to ask us where to save the file 442

Figure A.14 To recycle a folder, drag the folder to the Recycler icon 443

Figure A.15 Displaying the contents of the Recycler 443

Figure A.16 Renaming the folder from NewFolder to JunkContainer 444

Figure A.17 Recovering the junk folder from the Recycler 445

Figure B.1 Using the implicit Expansion Dictionary 448

Figure B.2 Adding an entry to the Expansion Dictionary 450

Figure B.3 Using an entry from the Expansion Dictionary 450

Figure B.4 Edit displays only the name of the method when the method is contracted 453

Figure B.5 Indexing an unindexed target in Librarian 455

Figure B.6 The initial screen of HeaderViewer (the Browser view) 458

Figure B.7 The Find Control Options panel of HeaderViewer 461



Figures xxi

Figure B.8 The List view of HeaderViewer 462

Figure B.9 Appending the current directory in Terminal by dragging from the Workspace 469

Figure D.1 Searching an entire folder for a given string 503

Figure D.2 Including debugging information in ProjectBuilder 505

Figure D.3 Clicking on the Debug button in ProjectBuilder produces a gdb shell window 506

Figure D.4 The Gdb panel in Edit 507

Figure D.5 Click on self to display its contents 515

Figure D.6 The value of popUpButton’s and switchView’s window outlets should be identical since 

they refer to the same window 516

Figure D.7 Comparing the value of switchView’s accessoryView outlet against truncateSwitch 517

Figure D.8 Checking the values of the rate array in the moneyconverter 520



xxii Figures


