
Pre-alpha release 0.0    Copyright ã1993 by Don Yacktman.    All Rights Reserved.

3.    Scoring system

The GameKit provides a complex mechanism for handling the scoring of a game.    One major assumption is 
made:    that you are using a score-based system.    Note, however, that if this is not appropriate for your game 
(say, scoring is by elapsed time, for example) there is no requirement that you make use of the provided scoring 
system.    Since the ScoreKeeper object is the pathway through which GameKit objects affect a player's score, all 
you have to do is override the GameBrain's default ScoreKeeper object, set up during the ±appDidInit: method. 
Note that simply connecting your custom ScoreKeeper to the GameBrain in InterfaceBuilderTM is sufficient to do 
this. 

The flexibility comes in when you begin to use bonus tracking objects in conjunction with a ScoreKeeper.    This 
allows you to make complex changes in a player's score with little or no programming effort.    By using 
delegates, you can have the scoring system notify other sections of your game when certain special events 
occur.    An obvious example of this would be notification that a score has passed a certain value so that an 
ªextra guyº may be awarded.



Introduction to the Scoring System

The diagram below shows how a simple GameKit-based scoring subsystem might look:    (note that the layout of 
delegates and bonus trackers is completely dependent upon your game's requirements)

315848_paste.eps ¬

The score system revolves around a few simple ideas.    The center of action is the ScoreKeeper object.    The 
ScoreKeeper holds a score for a particular player in a game.    In order to change the score, you ask the 
ScoreKeeper to add or subtract points.    The ScoreKeeper also has several bonus ªtrackers.º    All a bonus 
tracker does is provide a point value, based upon some criteria, to the ScoreKeeper.    For example, the most 
common uses are to provide a random-valued bonus to a game or a series of bonus values.    (The saucer in 
NX_Invaders is a random-valued bonus while the fruit and eaten ghost bonuses are both an obvious series, one 
following a set mathematical formula and the other somewhat arbitrary.)    When you wish to add a bonus to a 
score, you simply ask the ScoreKeeper to do so.

Because the most common and obvious use of delegation is to award extra lives to a player who scores well, the 
GameKit will automatically set up most of the necessary connections for this function.    For a discussion of how 
to finish this initialization, see the discussion of the PlayerUpView found in Chapter 10 of this tutorial.    (Basically, 
all your need to do is provide an appropriate BonusTracker instance to the PlayerUpView.)

Bonus trackers have one function:    supply a series of numbers.    (Note:    I may move these to the daymisckit 
and call them DAYSeries, since really that's what they do¼provide an arbitrary series of numbers.)    Several 
types of bonus trackers are already supplied with the GameKit.    This means that it is very likely that one of the 
supplied objects will work fine to solve your needs.    If not, the BonusTracker is a very easy object to subclass.    
In fact, the objects supplied with the GameKit are in themselves excellent examples of how to accomplish this.

Delegates are used extensively to notify other objects, external to the score system, about what is happening.    
Whenever a score is about to change, all the ScoreKeeper's delegates are asked to approve the change.    
Delegates are notified after a change takes place, as well.    This system allows other objects to carry out specific 



functions when certain scores are achieved.

The final job of the ScoreKeeper is to keep the ªScoreº TextField in the ªStatisticsº panel up to date.    (Note:    
Currently, it also updates the ªHighScoresº field, but this functionality will most likely move to the High Score 
system since that would make a whole lot more sense.)    Whenever the score changes, this field is updated.

The ScoreKeeper object

The ScoreKeeper, as the core of the scoring system, is the object which does most of the work.    A GameKit 
application's GameBrain will automatically create a ScoreKeeper object if one is not already connected to it via 
InterfaceBuilder.    The only time you really need to set up a ScoreKeeper is when you need a custom version of 
the ScoreKeeper to be used.    The GameBrain will forward the ±appDidInit: message to the ScoreKeeper, which 
will cause the ScoreKeeper to connect itself to other GameKit objects as needed.    Again, you can override these 
default connections by connecting them up a priori in InterfaceBuilder.

It is very easy to use a ScoreKeeper object.    The simplest use is to simply send ±addToScore: and 
±subtractFrom Score: messages as necessary.    Each method takes an integer value as an argument.    The 
±resetScore method will clear the score.    This message is automatically sent by the GameKit when a new 
game begins, so usually you won't need to send it yourself.    If you need to know the current score for any 
reason, the ±currentScore method will return an integer:    the current score.

Delegation
If your objects need to know about changes to the score, then you should set them up as delegates of the 
ScoreKeeper.    Sending a delegate-to-be to the ScoreKeeper as the argument to ±addDelegate: will do this.    
The ScoreKeeper object on one of the GameKit palettes uses a custom connection inspector in InterfaceBuilder 
to allow you to connect multiple delegates to the ScoreKeeper from within InterfaceBuilder.    (This palette is not 
yet implemented -- sorry!)    See the class specification sheet for other methods which allow you to maipulate 
delegates to the ScoreKeeper.    Each delegate of a ScoreKeeper is sent two messages:    



±scoreWillChangeFrom:to: and ±scoreChangedFrom:to:.    The first method allows your delegate to keep the 
score from changing for whatever reason.    If any delegate returns a NO, then the score will not be changed.    
The first delegate to return NO will abort the notification process since it is known that the score in fact will not be 
changing any more (rendering such a message meaningless).    The second method lets you know whenever a 
score has actually changed.    This is the message that should cause events to occur when scores change (extra 
lives, etc.).    You do not have to implement either method in your delegate objects; you only need to implement 
the methods that you wish to receive.

Bonuses
In order to handle bonuses, you can use BonusTracker objects, or a subclass of BonusTracker.    The section 
below describes how to create and manage a BonusTracker and configure it to fit your needs.    In the case of the 
ScoreKeeper, all you need to do is create the BonusTrackers that you will need.    Once this is done, pass them 
to the ScoreKeeper by sending a ±addBonusTracker: message.    This message returns an ID for the bonus 
tracker which you will later use to identify it.    (It might be easier for you if I allow string-valued keys to access 
these objects¼if you would like this, let me know.)    Once you have installed the BonusTrackers, simply ask the 
ScoreKeeper to add, subtract, or reset a bonus whenever that would be appropriate.    When you add or subtract 
a bonus from a player's score, you also send a flag to the ScoreKeeper telling it whether or not it should move 
the bonus tracker to the next number in the series.    In most cases, you will want to do this, so that the series 
advances to the new value each time it is used.    The methods needed to add and subtract bonuses are 
±addBonusToScore:advance: and ± subtractBonusFromScore:retreat:.    The ±resetBonus: method will 
reset the requested bonus tracker.    Requesting a negative bonus tracker will cause all the bonus trackers to be 
reset.

As a concrete example of using a bonus tracker, take the ghosts in PacMan.    When a power-dot is eaten, the 
ghosts' bonus tracker is reset.    This starts us out at 200, which is the value of the first ghost.    Then, each time 
the player eats a ghost, a message is sent to the ScoreKeeper to add the ghosts' bonus and then advance it.    
That's all you have to do.    (Note that when the power pill runs out, we don't need to reset the bonus tracker 
since that will happen anyway when the next power pill is eaten.)    In a game with a complex scoring system, use 
of bonus trackers will simplify your code immensely.    Note that advanced programmers might want to consider 
each bonus tracker to be a simple state machine,
which is exactly what it is.



The BonusTracker objects
Here are some examples of where a bonus tracker would be used (taken from the GameKit examples):

· Points for eaten ghosts in PacMan, powers of two multiplied by 100 starting with 200:    200, 400, 800, 
1600

· Points for the fruits in PacMan (arbitrary array of values)
· Points for the saucer in NX_Invaders (random number from 1 to 10 multiplied by 100)

Each of the three methods above just happen to require the use of a different BonusTracker class.    Each of 
these classes is included as a part of the GameKit because each might be useful in any type of game.    The first 
type of BonusTracker is the BonusTracker class itself.    It has two subclasses, ArrayBonusTracker and 
RandomBonusTracker, which are also useful.    Below, each type of bonus tracker is discussed briefly.

Basic BonusTracker
The BonusTracker class keeps track of bonuses with the following paramters:

· Minimum value:    the value of the BonusTracker will never be below this number.
· Maximum value:    the value of the BonusTracker will never be above this number.
· Base value:    the first value in the BonusTracker's series is always this number.
· Increment:    to advance a BonusTracker's value, this number is added to the value.
· Multiplier:    to advance a BonusTracker's value, this number is multiplied by the value.

The above parameters allow for fairly flexible construction of series based upon fixed exponents and differences. 
For example, the PacMan series for the ghosts (200, 400, 800, 1600) is implemented by min=200, max=1600, 
base=200, increment=0, and multiplier=2.    The extra lives awarded in PacMan occur every 15,000 points, with 
the first at 10,000.    This is produced easily with min=10000, max=MAXINT, base=10000, increment=15000, 
multiplier=1.    Note that setting multiplier=0 will make the function non-invertible.    Rather than having the retreat 
attempt a divide by zero, only the subtraction of the increment is performed.



Note that it might be nice to create a subclass which can handle higher order differences and factors or floating 
point values and multipliers.    Currently such BonusTrackers are not supplied with the GameKit.    If there is 
enough demand, such objects will be included.    (That would be better than forcing everyone to write their own, 
regardless of how trivial the task actually is¼)

RandomBonusTracker
A RandomBonusTracker is sensitive to the above parameters, but does not advance or retreat.    Instead, each 
time its value is requested, a random number between min and max is returned.    The number returned will be 
equal to min plus some multiple of increment.    This allows the random number to be ªgranular.º    For example, 
flying saucers in NX_Invaders are worth a number of points which is a multiple of 100 and between (and 
including) 100 and 1000.    (That is, 100, 200, 300, ¼, 1000.)    Simply, min=100, max=1000, and increment=100. 
Note that interesting effects can be obtained by making increment and min different numbers.

ArrayBonusTracker
In some cases, the bonuses needed will follow no obvious mathematical model.    In such cases, the above 
bonus trackers are not very useful.    The ArrayBonusTracker is designed to handle such cases, where you just 
throw your hands in the air and compile a list of values into an array.    All you do is pass an array of values and 
its length to the ±initForBonuses:count: method and then let the ArrayBonusTracker do its thing.    Any arbitrary 
series can be represented this way quite easily.    In the case of the fruit bonuses in PacMan, this object becomes 
necessary.    Here is the array used to define the series:

static long fruitval[NUMFRUITVALS] = { 100, 200, 300, 300, 500, 700, 700,
1000, 1000, 2000, 2000, 3000, 3000, 3000, 3000, 5000 };

You'll note that there is no particular formula which would apply to this series.    Now, simply initialize the 
ArrayBonusTracker as so, and you're done:

id fruitTracker = [[ArrayBonusTracker alloc] initForBonuses:fruitval 
count:NUMFRUITVALS];

Two notes are important to remember:    (1) it is OK to free the array that you pass to the ArrayBonusTracker.    It 
creates a copy for its own internal use.    (2)    You can advance and retreat the tracker all you want.    Rather than 



go past the end of the array, it will ªstickº at the highest or lowest index, whichever is appropriate.    (A future 
version might allow the pointer to ªwrap aroundº as an alternate behavior, depending upon the setting of an 
appropriate flag.    Would this be useful to anyone?)

Subclassing
If none of the above BonusTracker classes will produce the series that you need, then you should create your 
own subclass which does.    The easiest way to create a new BonusTracker is to override the ±bonusValue 
method.    This is the approach taken by the RandomBonusTracker.    It uses the max, min, increment, and 
baseValue parameters of the BonusTracker to determine the constraints upon the random numbers that it 
generates.

You could alternatively override the ±advanceBonus and ±retreatBonus methods.    In this case, you exit the 
method of choice after setting the instance variable value to the new value of the BonusTracker.    This is the way 
the the ArrayBonusTracker works.        For most of the subclasses that you will create, the latter method will be 
more appropriate.    Note that the existence of the advancing and retreating methods assumes that the series can 
be generated by an invertible function.    If this is not the case, then the ±retreatBonus method should be 
overridden to do nothing.

No matter how you make your subclass, you will probably find that some of the standard BonusTracker 
parameters do not apply, whereas there will be a need for new parameters which are not provided by the 
BonusTracker superclass.    All you need to do is provide the new methods and instance variables as necessary 
and ignore the parameters that are not needed by your function.

It is highly recommended that you peruse the source code for the ArrayBonusTracker and RandomBonusTracker 
classes to see examples of how you might change the function implemented by a BonusTracker.    Note that 
currently BonusTrackers do not do any form of delegation.    If you feel that this might be useful, make a 
suggestion to the author.    Of course, it would help if you could describe a situation where this might be useful.




