
Copyright ã1994 Don Yacktman. Version 1.0.

Notes on the MiscParseTable routines

Module Description

The MiscParseTable functions are four functions which are useful for dealing with the ASCII
table files used extensively throughout NEXTSTEP.    Examples of these files are the table
files inside the WorkSpace .addresses file packages, the data.classes file inside .nib file
packages, and the PB.project file.    The MiscParseTable functions provide a simple
mechanism for reading and writing these files by translating between the ASCII file and a very
specific structure (described below) built up of MiscString, MiscList, and MiscDictionary
objects.

To read a table file, use MiscParseTableFile() or MiscParseTableStream(), depending upon
whether you have the data available in a UNIX file or in a NXStream.    To write a file from the
appropriate data structure, use either MiscWriteTableFile() or MiscWriteTableStream().

The ASCII files used by NeXT can contain three types of items.    First are strings.    These are
usually enclosed by quotes (ª"º) unless they are a single word and/or number.    There are
also lists of items which are enclosed by parenthesis, with commas separating each item.   
Finally are tables filled with key/value pairs.    These are enclosed by braces (ª{}º) and on
each successive line use a string for a key, followed by an equal sign (ª=º), followed by any of
the three item types listed here as a value, and ending with a semicolon (ª;º).    The mapping
used by the MiscParseTable functions is simple; a string becomes a MiscString, a list
becomes a MiscList, and a table become a MiscDictionary.    (Note that the MiscDictionary
object is simply a HashTable that maps string keys to object (id) values.)    Thus, the tables

and lists can be made up of strings, tables, or lists.    Included below is an attempt at the BNF
grammar used by this file format.

By way of example, here is a sample file and a diagram showing what it maps to when
parsed:    (This file happens to be part of the PB.project file for the TreeView MiscKit example.)

INSTALLDIR = /LocalApps;
APPICON = Tree.tiff;
GENERATEMAIN = YES;
DOCICONFILES = (Tree2.tiff);
FILESTABLE = {
 OTHER_LIBS = (Media_s, MiscKit, NeXT_s);
 OTHER_SOURCES = (Makefile);
 OTHER_LINKED = ();
};
LOCALIZABLE_FILES = {
 InfoPanel.nib;
 TreeView.nib;
 DocWindow.nib;
};
PROJECTNAME = TreeView;

paste.eps ¬
Fig 1.    Example file's parsed data structure.

More complex files are possible, however, since you may nest objects in lists and
tablesÐmaking it possible to build lists of tables and tables within tables, for example.

Exported Functions

MiscParseTableFile
id MiscParseTableFile(MiscString *fileName);

Opens a stream on fileName and calls MiscParseTableStream to parse the file.    Returns the
id of the root MiscDictionary making up the file.    Errors are printed to the console, but are not
currently reported to the calling routine.    The ASCII read from the file should conform to the
BNF grammar given below.

MiscParseTableStream
id MiscParseTableStream(NXStream *aStream)

Uses a recursive descent parser to parse an ASCII table file from off the stream aStream.    A
MiscDictionary object, the root object in the file, is returned.    Errors are printed to the
console, but are not currently reported to the calling routine.    The ASCII read from the stream
should conform to the BNF grammar given below.

MiscWriteTableFile
int MiscWriteTableFile(MiscString *fileName, MiscDictionary *tableRoot)

Opens a stream on fileName and calls MiscWriteTableStream to create an ASCII table file.   
The root of the file, a MiscDictionary, should be provided in tableRoot.    Returns zero.    (In
the future, an error code may be returned.)    The ASCII placed in the file will conform to the
BNF grammar given below.

MiscWriteTableStream
int MiscWriteTableFile(NXStream *aStream, MiscDictionary *tableRoot)

Uses a recursive routine to write an ASCII table file to the stream aStream.    The root of the
file, a MiscDictionary, should be provided in tableRoot.    Returns zero.    (In the future, an
error code may be returned.)    The ASCII placed on the stream will conform to the BNF
grammar given below.

Exported Methods

These routines add categories to MiscDictionary, MiscList, and MiscString which are used to
parse and write the table files.    Each object is responsible to write itself as an ASCII
representation or read itself from an ASCII representation.    The following methods are the
ones used for this purpose.    They should be considered private, but may be used by your
programs for other purposes and may be overridden to change functionality.    Be careful
subclassing these methods since some use other private methods and functions in their
implementations.

± parseFromASCIIStream:(NXStream *)aStream

Parses an object from an ASCII stream, passed in as aStream.    Returns self.    The table
and list versions assume that the leading ª{º or ª(º have already been read from the stream
and leave the trailing ª}º or ª)º on the stream, but the string will expect the leading ª"º to still be
on the stream and will remove the trailing ª"º.

± writeASCIIToStream:(NXStream *)aStream

Writes an object to an ASCII stream, passed in as aStream.    Returns self.    The ASCII
written will include the appropriate delimiter characters ({}, (), and "") around the object.   
Since tables need to be written without the brackets in some cases, there is a
±writeInnerASCIIToStream: method for the MiscDictionary object which will write the object
without the ª{}º characters.

Known Bug

Some of the NeXT files have string arrays in them stored as a single string constant with \000
(NULL) as a separator withing the string constant.    The current implementation of the
MiscTableParse routines strips the NULLs out of the string.    This means that if you read a file
in and then write it back out, there are possible problems.    The ªAddress Book Shelfº key in
address books is a good example (and only known case) of this problem.    The most likely fix
is to have a future implementation detect these NULLs and return a MiscStringArray instead
of a MiscString.    Since the fix is rather involved, it could not be made ready in time for the
current release.

BNF grammar for table files

Here is the BNF implemented by this code, which is more or less accurate.    Start parsing
with the File non-terminal.    ":=" to define non-terminals and nil is used to denote when a non-
terminal can reduce to nothing (ie, it is not required).

Literals (terminals) are given in unitalicized bold and use the following:
[]      "any one of what is inside"
*        "zero or more of what preceeds"
()      used for grouping
-        "anything in between"    (0-9 means "0123456789", etc.)

Nonterminals are italicized.    Each line below a non-terminal is a possible reduction, so, for
example, an ªAssociationº could be parsed as either a string, a dictionary in braces, or a list in
parenthesis.    Comments are to the righ in parenthesis and italicized.

Starting non-terminal is File:

File:
Dictionary

Dictionary:

Dictionary Line (Dictionaries
Line

Line:
String = Association ; (string is hash key, uniqued by parser)
String ; (string and association are identical)
nil

Association:
{ Dictionary } (Keyed groups of objects)
(List) (Groups of unkeyed objects)
String

List:
List , Association (Lists are comma separated groups)
Association
nil

String: (some don't have to be quoted)
" Eliteral " (quoted string)
Literal (non-quoted string)

Literal: (non-quoted string)
Literal [Any char except `;' , `"', and whitespace]
[Any char except `;' , `"', and whitespace]

Eliteral: (quoted string)
Eliteral ELchar
ELchar

ELchar:

[Any char except `\' and `"']
\\ (backslash character)
\" (quote character)
\t (tab)
\n (newline)
\r (return)
\0x ([0-9A-Fa-f])* (hex constant)
\0 [0-7]* (octal constant)
\ [1-9][0-9]* (decimal constant)

