
Release 1.0    Copyright ã1994 by Don Yacktman.    All Rights Reserved.

MiscRegistration

Inherits From: Object

Declared In: <misckit/MiscRegistration.h>

Class Description

This object handles the user interface for a simple registration scheme.    It brings up a modal panel to handle 
registrations and handles keeping track of the license key entered by the user.    Any object in the application may 
query the MiscRegistration object to see if the application is correctly registered by sending a ±registered message.    
The programmer should override the ±keyOK method to insert a license key checking algorithm into the object; the 
default implementation is to accept any registration key given to the MiscRegistration object.

The license keys entered by users are stored in two places.    First, an attempt is made to store the key in the file 
ªkeyº inside the app wrapper.    This will probably only work for the user installing the application, possibly only for 
root on a network installation.    Second, the key is stored in the user's defaults database.    This allows the key to 
be remembered even if the key file cannot be written.    Also, if the user updates the application and in the 
process deletes an old key file, this allows a new key file to be automatically generated for the application the 
next time the user runs the application.    (They have to run the application after installation for this to happen, 



though.)

To create a proper interface for this object, you should create a panel with two TextFields in it, one for the user to 
type in the registration key (the regNumText instance variable) and the other an uneditable field where the serial 
number of the application may be displayed (connected to the regText instance variable).    The registerPanel 
instance variable should be connected to the panel itself.    The panel should have two buttons, one to abort the 
registration process (tied to the ± cancelRegistration: method) and another, with a return arrow, to complete the 
registration (tied to the ±registerApp: method).    That is all you need to do, and the MiscKit comples complete 
with a pre-connected panel in the Register.nib sample interface.

The logic behind this object is to provide a simple framework for a rudimentary registration scheme, but to allow 
the developer to implement the actual encoding in their own unique way.    This saves the time required to 
implement the interface, but does not compromise the security of the registration keys or the exportability of this 
object from the USA.

Several of the strings used in the Registration... Panel user interface are stored in an NXStringTable.    If an 
NXStringTable is not connected up in the ªRegister.nibº file, then the controller's string table is used instead.    
(The controller is a MiscInfoController which is using this MiscRegistration instance.)    The table is expected to 
contain the following keys:

NotRegisteredÐ ªNot registered.º    This is the license key written to the key file of a non-registered app.
Unreg Ð ªThis Copy Is Unregisteredº to be placed in the serial number text fields of an 

unregistered application, in white letters.
Reg Ð ªCopy #%s is registeredº to be placed in the serial number text fields; the serial number 

is inserted wherever you place the ª%sº.    This text appears in dark gray.
OK Ð ªOKº for alert panel buttons.
CantReg Ð Text for an alert panel saying that the registration key entered could not be saved to a 

file inside the app wrapper.    (You may wish to note that the key is still saved in the 
user's default database, so this is only a problem for multi-user installations.)

BadRegNum Ð Text for an alert panel saying that the registration key entered was invalid.

An appropriate .nib file will be named Register.nib and have a MiscRegister object as the file's owner.    Look at 



the example .nib file in the MiscKit examples for a sample .nib file.

Instance Variables

id strings;
id controller;
id registerPanel;
id regText;
id regNumText;

strings NXStringTable with the strings used in the Registration... panel interface.

controller The MiscInfoController which is using this object for handling registrations.

registerPanel The Register... panel where the user types in a registration number/key.

regText The TextField in the Register... panel showing the current registered serial 
number, if applicable.

regNumText The TextField in the Register... panel where the user types the actual 
registration number/key.

Method Types

Initialization - init
+ initialize
- setController:



Target/Action Methods - cancelRegistration:
- registerApp:
- registration:

Obtaining and Displaying Serial Numbers - fillRegistrationText:
- serialNumber

Handling Registration Keys - keyOK
- readKey
- readKeyFromFile
- registerPanel
- registered
- registrationKey
- writeKey
- writeKeyToFile

Class Methods

initialize
+ initialize

Initialize the MiscRegistration class.    This sets up a defaults vector for the default registration key, in case a 
registration key doesn't actually exist yet for the application.    Returns self.

Instance Methods

cancelRegistration:



-    cancelRegistration:sender

Cancels the modal session for the Registration... panel and removes it from the screen.    Returns self.

See also:    ±registerApp: and ±registration:

fillRegistrationText:
-    fillRegistrationText:textField

Fills in the text in textField with the serial number of the application.    If the application is registered, the text's 
color will be dark gray.    If the application is not registered yet, the text will be white.    Returns self.

init
-    init

Initializes this instance of the MiscRegistration class and reads in the registration key, checking both the ªkeyº file 
and the user's defaults database.    Returns self.

keyOK
-    (BOOL)keyOK

This method should be overridden to analyze the registration key and return either a YES (if the key is valid) or a 
NO (if the key is not valid).    If the key contains a serial number encoded in it (and it should), you should then set 
the recognized serial number by setting the string value of the _serialNum instance variable (a MiscString 
instance).    The license key entered by the user should be obtained with the ± registrationKey method.    If you 
wish to determine if the application is properly registered, you should call the ±registered method and not 
±keyOK.    The ±keyOK method is meant only to be overridden by the programmer, not called.



See also:    ±registered and ±registrationKey

readKey
-    readKey

Reads in the current registration key.    If reading the key in from the file ªkeyº inside the app wrapper fails, then 
the key is loaded from the user's defaults database, if it exists.    Returns self.

See also:    ±readKeyFromFile

readKeyFromFile
-    readKeyFromFile

Reads the registration key in from the file ªkeyº inside the app wrapper.    Returns self if successful or nil 
otherwise.

See also:    ±readKey

registerApp:
-    registerApp:sender

Called to terminate the modal session for the Register... panel and register the application with the newly entered 
key, if any.    Returns self.

See also:    ±cancelRegistration:, ±registration: and ±writeKey

registerPanel



-    registerPanel

Returns the Register... panel, loading it first if necessary.    The panel should be in the file ªRegister.nibº in the 
app wrapper inside an appropriate .lproj directory.

See also:    ±registration:

registered
-    (BOOL)registered

Returns YES is the application has been successfully registered and NO if not.    This method can be overridden 
if the ±keyOK mechanism is not enough.    For example, although ±keyOK checks for validity of a key, this 
method might check to see if there are already too many copies of the application running on the network using 
the same key.

See also:    ±keyOK and ±registrationKey

registration:
-    registration:sender

Loads, if necessary, the Register... panel and begins a modal session for it.    Returns self.

See also:    ±registerPanel

registrationKey
-    (const char *)registrationKey

Returns a pointer to the string entered by the user as a registration key.



See also:    ±keyOK, ±registered, and ±serialNumber

serialNumber
-    (const char *)serialNumber

Returns a pointer to the string entered by the user as a registration key.

See also:    ±keyOK and ± registrationKey

setController:
-    setController:sender

Sets the controller, a MiscInfoController instance.    This is usually done when the object is created by the 
MiscInfoController.

writeKey
-    writeKey

Writes the current license key to the user's defaults database, in the app's name, and also to the file ªkeyº inside 
the app wrapper.    The copy in the defaults database will allow the license key to be preserved if the user 
updates the application to a new version and blows away the ªkeyº file indavertently in the upgrade.    This 
method is called automatically when the Register... panel is given a new license key.    Returns self.

See also:    ±writeKeyToFile

writeKeyToFile
-    writeKeyToFile



Writes the license key to the file ªkeyº inside the application's app wrapper.    Returns self.    If unable to write the 
key file, an alert panel warning the user of this situation is presented and nil is returned.

See also:    ±writeKey


