
TIFFandEPS 
by Sharon Zakhour, NeXT Developer Support Team

Valid for 3.0

Overview

This example shows how to open EPS or TIFF images and save them back out as EPS or TIFF -- 
converting the image in the process.    The example was originally written to convert from EPS-format 
images to TIFF-format images.    The implementation used draws the image into an instance of 
ImageView.    This view is then inserted as the contentView of the window created by ImageReader to 
the exact size of the image.    The TIFF version is generated using the initData:fromRect: 
method of NXBitmapImageRect.    This method allows you to create bitmap data from anywhere on the 
screen quickly and easily but has some inherent drawbacks:    as the bits are being read from the 
windowserver backing store the resulting image is limited to the window resolution and will contain any 
dithering artifacts generated by the windowserver. 

Excerpted from the initData:fromRect: description in the NXBitmapImageRep spec sheet:

This method uses PostScript imaging operators to read the image data into 
the data buffer; the object is then created from that data.    The object is 
initialized with information about the image obtained from the Window 
Server.

The NXImage classes do not contain support for converting an image to EPS so the View method 
copyPScodeInside:to: is used to convert in this direction.

Disclaimer
This app is best suited to converting EPS to TIFF and TIFF to EPS.    When saving an EPS file which 
was read in as an EPS file [or likewise when saving a TIFF read in as a TIFF] no intelligent decisions 
are made in the code.    That, of course, is left to the reader.    The result [in both cases] would be to 



create an EPS or TIFF file that contains any dithering employed by the window server and would not 
be identical to the original.

Program Organization

How to build the nib files
There is one nib file in this example:

TIFFandEPS.nib The main nib file contains the main menu and the classes.    The file's owner 
for this nib file is ImageReader -- a subclass of Object and the application 
delegate.    The nib file also contains an instance of ImageReader and the 
window containing the accessory view for the SavePanel.

Classes in the Application

ImageReader Subclass of Object.      This class serves both as the application delegate and the 
delegate of all windows that it creates.    The openRequest: method is called 
when the user selects "Open Image..." from the menu.    Initially the "Save Image..." 
menu item is disabled.    When a window is opened with an EPS or TIFF image, the 
"Save Image..." menu item becomes enabled.    The object is able to detect this 
because it has implemented the window delegate methods windowWillClose:    
and windowDidBecomeMain:.    The saveRequest: method is called when the 
user selects "Save Image..." from the menu.    Each window is created to the exact 
size of the image -- ScrollViews are not used.

ImageView Subclass of View.    This class is pretty simple.    The initFromImage: method 
initializes an instance of this class and saves the NXImage instance into an internal 
instance variable.    The drawSelf:: method composites the entire NXImage 
instance.    One of the advantages of using NXImage over the representation 



classes (like NXBitmapImageRep) is that it maintains an offscreen cache that 
supports compositing -- much faster than drawing the representation each time.

PopAndForm A little object that uses a Popup and a FormCell together.      This object is hooked 
up to a FormCell and a PopUp so that the form can be used to add options to the 
Popup.    As far as actions go, the "Specify" item in the popup menu needs to be 
hooked to "enableForm:" in the object and the Form needs to be hooked to 
"newValue:" as well.

Topics Of Interest

How to implement an accessory panel
The accessory panel feature allows a quick and easy mechanism for customizing any of the standard 
panels.    In this example the accessory panel allows the user to select what format to use when saving 
the image:    EPS or TIFF.    And if a TIFF image the user may select the resolution and the 
compression type.    Because this view contained quite a number of controls I visually separated it 
from the rest of the save panel using a box that I placed underneath all of the controls.    I then 
increased its width to be wider than the view (cropping the vertical lines).    This gives the pleasing 
effect of two horizontal lines above and below the view.    The accessory panel is installed in the save 
panel with the setAccessoryView: method.

How to enable/disable menu items
Initially the "Save Image..." menu item is disabled in IB.    This menu item becomes enabled at run time 
when any EPS or TIFF images are opened.    This is done using the window delegate methods 
windowWillClose: and windowDidBecomeMain:.    The windowWillClose: method is called 
when a window is about to close.    Examining the current window count determines whether the user 
is about to close the last remaining window -- and if so, the "Save Image..." menu item is again 
disabled.    Likewise windowDidBecomeMain: is invoked when any window becomes the main 
window and the "Save Image..." menu item is then enabled.    This does cause the menu item to be 
redundantly enabled at times but is harmless and has no visual side effects.

How to enable/disable items in the accessory view of the Save Panel



The accessory view for the save panel contains three radio button matrices.    The TIFF vs. EPS matrix 
causes all other controls in the view to be invalid when the EPS item is selected.    This is backed up 
with the visual cue of enabling/disabling the other controls as appropriate.    The selectFormat: 
method in ImageReader is the target action of the TIFF/EPS matrix.    It determines whether it should 
enable or disable the other controls in the view.    It also sets the required file type on the SavePanel to 
the appropriate extension -- .eps or .tiff. 

Within the TIFF world, the user may select from the DPI matrix [one of the selections allows the user 
to specify a nonstandard DPI] and from the compression matrix -- LZW vs. JPEG.    When LZW is 
selected the JPEG compression factor field is invalid.    So a second level of control enabling/disabling 
is implemented to handle this.    The selectCompression: method in ImageReader is the target 
action of the LZW/JPEG matrix.    In fact, when the user selects TIFF in the first matrix the 
selectFormat: calls the selectCompression: method to determine what state it should re-set 
the JPEG controls to.

How to use an alert panel
Most of the error conditions in this example are handled using the perror(3) utility.    However the alert 
panel feature is used when the user attempts to save a TIFF file using JPEG compression on an 
image unsuitable for JPEG.    The NXRunAlertPanel() function throws the app into a modal loop.

Bugs
This app can tickle a bug in 2.0 when converting from EPS to TIFF      (This bug has been fixed for 
3.0.):
Bug #13606 has been described as an ugly line at the right end of images when printing and occurs if 
a TIFF file is 2-bit grayscale, has alpha, is not a multiple of 4 pixels wide, and has a "bad" alpha at the 
end of the scanline.    User workarounds:      Make sure your TIFF doesn't have alpha, or is a multiple of 
4 pixels wide, or doesn't have illegal alpha.    The last item is hard to do (once the image contains the 
bad alpha), but the others aren't so bad...


