
Version 1.0    Copyright ã1993, 1994 by Mike Ferris.    All Rights Reserved.
Mike Ferris    -    February 18th, 1994

MiscDocument

Inherits From: MiscNibController : Object

Declared In: MiscKit/MiscDocument.h

Class Description

MiscDocument is a subclass of MiscNibController.    Along with MiscDocManager it provides a complete 
framework for document based applications.    MiscDocument extends MiscNibController by providing file 
support.    The window which MiscDocument inherits from MiscNibController can be attached to a file.    
MiscDocument provides the framework for reading and writing document files.    All the standard Document 
menu items are supported.    Multiple file types are supported.    A MiscDocument subclass can support reading 



and writing of any number of file types with different extensions (or no extension).    Along with MiscDocManager 
many more features are supported including untitled document numbering, window staggering, and full 
document menu management.

MiscDocument is an abstract superclass.    You must subclass it to use it.    In your subclass' +initialize method, 
you must configure certain things.    The class nib file should be set with the MiscNibController method 
+setClassNib:.    The overall name for documents of this type should be set using +setControllerName:.    
Then, for each type of file that the class can read, write, or read and write, 
+addDocType:name:extension:openSelector:saveSelector:.    The first argument is a numerical tag which is 
purely for your use.    The name is the full name of this type of document file (ie "Rich Text").    The extension is 
the filename extension used for files of this type (ie "rtf").    openSelector is the method to call to read files of this 
type (or NULL if this type can't be read).    saveSelector is the method to call to save files of this type (or NULL if 
files of this type can't be saved).    Each type should have at least one of openSelector and saveSelector non-
NULL.    Otherwise it's a useless type.    Open and save selectors both take one argument, the MiscDocType 
object representing the file type to be opened or saved.    Note that it is possible to have separate methods to 
read and write each type you support, or you can have one to read all types and one to write all types.    In the 
latter case, the argument comes in handy.

Each subclass of MiscDocument must implement several methods.    Two have fixed identities: -doClear and 
-doPrint.    The first should initialize the document object to an empty state (as if the user just said "New").    This 
is used in two cases.    First, it is called to set up new documents when they are created.    Also, it is used if the 
user chooses "Revert" before the file has been saved.    Therefore this method must be able to completely 



recycle the document, even if it has contents already.    -doPrint is used to print the document.    It should run 
the print panel first.

The other methods that MiscDocument subclass' need to implement are those that were given as open or save 
selectors with +addDocType:name:extension:openSelector:saveSelector: calls.    You must implement each 
method you named as an open or save selector.    These methods take a single object (of class MiscDocType) 
as an argument.    The MiscDocType represents the file type meant to be read or saved.

The document type information is used in several ways.    It is used internally by the -saveAs: method to fill a 
popup menu that is put in the save panel if the MiscDocument supports multiple save types.    The menu allows 
users to choose what type they want the file to be.    Type information is also used by MiscDocManager when it 
runs the open panel to allow the user to open only those files that the MiscDocument supports.

One more thing your subclass should do is make sure that -setDirty: method is called whenever the document 
changes such that it will need to be saved.

To create MiscDocument instances, you normally use the -initFromFile: method.    A NULL filename means a 
new untitled document.    Usually, MiscDocManager will call this method, and most of the others in 
MiscDocument.    See the MiscDocManager class docs for details.

It is possible to use a MiscDocument without a manager.    It is also possible to have a MiscDocument without a 
window.    This might be particularly useful in implementing a MiscDocument that had no window, but managed a 
set of document view objects in an application that allowed multiple views on one document.    Having said that, 



I should say that the MiscDocument has not been well tested operating with a manager or window.

See the DocArchitecture example to see how MiscDocManager and MiscDocument are used.

Instance Variables

MiscDocManager *manager;
MiscString *docName;
MiscString *untitledString;
MiscDocType *docType;
BOOL isDirty;
id saveAccessoryPanel;
id saveAccessoryBox;
id saveAccessoryPopupButton;

manager The MiscDocManager for this controller.

docName This is always a valid MiscString object.    If the document has a file attached to 
it, this is the pathname.    If the doc is still untitled, it's empty



unititledString This is always a valid MiscString object.    If the doc is untitled, this string is 
used to hold the window title.

docType If the document is untitled, this is nil.    Otherwise it points at the MiscDocType 
object that represents the document type of the file attached to the document.

isDirty True if the document needs saving.

saveAccessoryPanel This is an IB outlet.    It points at the panel containing the default save panel 
accessory to use for this class.    The default save accessory is a box with a 
popup menu inside.    (See the next two instance variables.)

saveAccessoryBox This is an IB outlet.    This points at the actual default save accessory.

saveAccessoryPopupButton This is an IB outlet.    This points at the button fronting for the popup menu of 
save types.

Method Types

Initializing the class + initialize
+ startUnloading



Class controller name + setControllerName:
+ controllerName

Class document types + addDocType:name:extension:openSelector:saveSelector:
+ docTypes
+ docTypeForTag:
+ docTypeForName:
+ docTypeForExtension:
+ getOpenTypesList:
+ getSaveTypesList:

Initializing instances - initFromFile:manager:
- initWithFrameName:
- initWithFrameName:fromFile:manager:
- free

Loading the nib - nibDidLoad

Subclass responsibilities - doClear
- doPrint

Save accessory support - saveAccessoryPopupAction:
- getSaveAccessoryForSaveTypes:currentType:



Document menu support - save:
- saveAs:
- saveTo:
- revert:
- close:
- print:
- saveIfNeeded

The manager - setManager:
- manager

The file - setFile:
- isUntitled
- file
- docName

Window support - resetWindowTitle
- setDirty:
- isDirty

- windowDidBecomeMain:
- windowDidResignMain:
- windowWillClose:



Archiving - awake
- read:
- write:

Class Methods

addDocType:name:extension:openSelector:saveSelector:
+ addDocType:(int)tag

name:(const char *)name
extension:(const char *)ext
openSelector:(SEL)openSel
saveSelector:(SEL)saveSel

Adds a new doc type to the list of document types maintained by the class.    The list is kept in a 
MiscClassVariable, so separate lists are kept for any subclasses of MiscDocument.    Document types are 
storted in MiscDocType objects.    The tag is purely for the subclasser's use.    Name should be the full name of 
the document type (ie "Rich Text").    Extension should be the file name extension to use (ie "rtf").    A null 
extension means no extension (ala Edit text files).    The open ans save selectors should be the methods to use 
to open and save documents of this type.    Either can be NULL if reading or writing a particular type is not 



supported.    The methods should take one argument, the MiscDocType object which represents the type to 
open or save.

See also:    + docTypes, + docTypeForTag:, + docTypeForName:, + docTypeForExtension:, + 
getOpenTypesList:, + getSaveTypesList:

controllerName
+ (MiscString *)controllerName

Sets the general name for documents of this class.    MiscDocManager uses this name when constructing New 
and Open submenus if it is managing more than one document class.

See also:    + setControllerName:

docTypeForExtension:
+ (MiscDocType *)docTypeForExtension:(const char *)extension

Returns the first document type in this class' document type list with the given extension.    Document types 
should probably have unique extensions within a subclass of MiscDocument.

See also:    + addDocType:name:extension:openSelector:saveSelector:, + docTypes, + docTypeForTag:, 



+ docTypeForName:, + getOpenTypesList:, + getSaveTypesList:

docTypeForName:
+ (MiscDocType *)docTypeForName:(const char *)name

Returns the first document type in this class' document type list with the given name.    Document types should 
probably have unique names within a subclass of MiscDocument.

See also:    + addDocType:name:extension:openSelector:saveSelector:, + docTypes, + docTypeForTag:, 
+ docTypeForExtension:, + getOpenTypesList:, + getSaveTypesList:

docTypeForTag:
+ (MiscDocType *)docTypeForTag:(int)tag

Returns the first document type in this class' document type list with the given tag.    Document types should 
probably have unique tags within a subclass of MiscDocument.

See also:    + addDocType:name:extension:openSelector:saveSelector:, + docTypes, + 
docTypeForName:, + docTypeForExtension:, + getOpenTypesList:, + getSaveTypesList:



docTypes
+ (List *)docTypes

Returns the list of document types for this class.

See also:    + addDocType:name:extension:openSelector:saveSelector:, + docTypeForTag:, + 
docTypeForName:, + docTypeForExtension:, + getOpenTypesList:, + getSaveTypesList:

getOpenTypesList:
+ (List *)getOpenTypesList:(List *)list

Fills list with all the document types for this class which have a non-NULL openSelector.    If list is nil, a List 
object is allocated for it.    The list is returned.

See also:    + addDocType:name:extension:openSelector:saveSelector:, + docTypes, + docTypeForTag:, 
+ docTypeForName:, + docTypeForExtension:, + getSaveTypesList:

getSaveTypesList:
+ (List *)getSaveTypesList:(List *)list



Fills list with all the document types for this class which have a non-NULL saveSelector.    If list is nil, a List 
object is allocated for it.    The list is returned.

See also:    + addDocType:name:extension:openSelector:saveSelector:, + docTypes, + docTypeForTag:, 
+ docTypeForName:, + docTypeForExtension:, + getOpenTypesList:

initialize
+ initialize

Sets the class' version.    Loads all necessary classes.    Initializes the class' class variables.

See also:    + startUnloading

setControllerName:
+ setControllerName:(const char *)typeName

Sets the general name for documents of this class.    MiscDocManager uses this name when constructing New 
and Open submenus if it is managing more than one document class.

See also:    + controllerName



startUnloading
+ startUnloading

Frees the class variables.

See also:    + initialize

Instance Methods

awake
-    awake

Initializes instance variables that aren't written to typed stream.

See also:    ± read:, ± write:

close:
-    close:sender



Closes the document window.

See also:    ± save:, ± saveAs:, ± saveTo:, ± revert:, ± print:, ± saveIfNeeded, ± windowWillClose:

doClear
-    (BOOL)doClear

This method should be implemented by all subclasses.    It should be able to empty an existing document and 
leave it in the state of a brand new, ready to use document.    This is called to initialize new documents, and to 
revert untitled documents.

See also:    ± doPrint

doPrint
-    (BOOL)doPrint

This method should be implemented by all subclasses.    It should print the document, running the print panel 
first.

See also:    ± doClear



docName
-    docName

Returns the MiscString instance variable docName.    Usually the file method should be used to find out the 
document's name, but if you need access to the MiscString object (for instance to peel off a file extension, or 
something), this method can be used to access the MiscString itself.

See also:    ± setFile:, ± isUntitled, ± file

file
-    (const char *)file

Returns the name of the document.    If the doc is untitled, the untitledString's contents are returned, otherwise, 
the docName's contents are returned.

See also:    ± setFile:, ± isUntitled, ± docName

free
-    free



Frees the docName and untitledString.    Also removes us from our manager if we have one.

See also:    ± initFromFile:manager:, ± initWithFrameName:, ± initWithFrameName:fromFile:manager:

getSaveAccessoryForSaveTypes:currentType:
-    getSaveAccessoryForSaveTypes:(List *)saveTypes

currentType:(MiscDocType *)currentType

Loads the saveAccessory nib file, if necessary, then, if this document class supports mulitple save types, the 
saveAccessoryPopupButton's popup menu is filled with the types the document class can save and the 
saveAccessoryBox is returned.    If the document class supports only one save type, nil is returned, and no save 
accessory is used.    You may completely override this method if you need other things in your save accesory.    
If you do so, use new instance variables for your IB outlets, don't use the existing saveAccessory... outlets.    
Also, if you do override this, make sure that the popup menu in your new save accessory has it's action set to 
±saveAccessoryPopupAction:.

See also:    ± saveAccessoryPopupAction:

initFromFile:manager:
-    initFromFile:(const char *)path



manager:aManager

Initializes a new instance.    If path is non-NULL, the file is attached to the document and read.    If path is NULL, 
the document starts out untitled and empty.    This is the recommended way of initializing instances.    Most of 
the time this method will be called by a MiscDocManager.

See also:    ± initWithFrameName:, ± initWithFrameName:fromFile:manager:, ± free

initWithFrameName:
-    initWithFrameName:(const char *)theFrameName

Calls ±initWithFrameName:framename fromFile:NULL manager:nil.

See also:    ± initFromFile:manager:, ± initWithFrameName:fromFile:manager:, ± free

initWithFrameName:fromFile:manager:
-    initWithFrameName:(const char *)theFrameName

fromFile:(const char *)path
manager:aManager

This is the designated initializer for the class, but most of the time, the ±initFromFile:manager: method is 



preferrable.

See also:    ± initFromFile:manager:, ± initWithFrameName:, ± free

isDirty
-    (BOOL)isDirty

Returns YES if the document has changed since it was last saved.    NO otherwise.

See also:    ± setDirty:

isUntitled
-    (BOOL)isUntitled

Returns YES if this document is untitled (ie its [docName isEmpty]).

See also:    ± setFile:, ± file, ± docName

manager
-    manager



Returns the MiscDocManager which manages this document.

See also:    ± setManager:

nibDidLoad
-    nibDidLoad

This method makes sure the window's title is correct, and if the document has a manger, it uses it to stagger the 
window location.

print:
-    print:sender

This method is usually called by MiscDocManager, but it is set up as an action method so that you can connect 
the Print menu item directyl to an instance, or to the FirstResponder.    This prints the document, but note that all 
the work is shunted to the ±doPrint method which subclasses must provide.

See also:    ± save:, ± saveAs:, ± saveTo:, ± revert:, ± close:, ± saveIfNeeded



read:
-    read:(NXTypedStream *)strm

Reads the controller from typed stream.    DO NOT use read and write to save your documents.    In fact, I don't 
know why I even provide this method as it makes little sense.

See also:    ± awake, ± write:

resetWindowTitle
-    resetWindowTitle

Sets the window's title to something appropriate (ie the file's anme, or the untitled string).

revert:
-    revert:senderender

Revert's the document to its last saved state, or back to empty if it's untitled.    This is usually called by 
MiscDocManager.    The work is shunted to either ±doClear (for untitled docs) or the openSelector for the 
current document type if the doc has a file. 

See also:    ± save:, ± saveAs:, ± saveTo:, ± close:, ± print:, ± saveIfNeeded



save:
-    save:sender

Saves the docuemnt.    This is usually called by MiscDocManager.    The actual work is done by the current doc 
type's saveSelector.    If the doc is untitled, this calls ±saveAs: instead.

See also:    ± saveAs:, ± saveTo:, ± revert:, ± close:, ± print:, ± saveIfNeeded

saveAccessoryPopupAction:
-    saveAccessoryPopupAction:senderç„

The popup menu in the save accessory has this as its action.    It sets the save panel's "Required file type" to 
whatever type was chosen from the menu.

See also:    ± getSaveAccessoryForSaveTypes:currentType:

saveAs:
-    saveAs:sender



Runs the save panel to get a name (and doc type) for the doc, then calls ±save:.    This is usually called by 
MiscDocManager.

See also:    ± save:, ± saveTo:, ± revert:, ± close:, ± print:, ± saveIfNeeded

saveIfNeeded
-    saveIfNeeded

If the document is dirty, this calls ±save:.    Otherwise, it just returns.

See also:    ± save:, ± saveAs:, ± saveTo:, ± revert:, ± close:, ± print:

saveTo:
-    saveTo:sender

This runs the save panel to get a new file name (and doc type), saves the document into that file with ±save:, 
then sets the file anme back to the old name.

See also:    ± save:, ± saveAs:, ± revert:, ± close:, ± print:, ± saveIfNeeded



setDirty:
-    setDirty:(BOOL)flag

Sets the dirtiness of the document.    Subclasses should insure that ±setDirty:YES is called whenever a change 
is made in the document.

See also:    ± isDirty

setFile:
-    setFile:(const char *)fName

Generally you won't call this method.    It is used by several internal methods to set the file attached to a 
document.

See also:    ± isUntitled, ± file, ± docName

setManager:
-    setManager:aManager

You won't generally call this method.    Usually, the manager for a doc is set when it's initialized.    This can be 
used to reset the manager.



See also:    ± manager

windowDidBecomeMain:
-    windowDidBecomeMain:sender

This is used to inform our MiscDocManager that we are now the current document.

See also:    ± windowDidResignMain:

windowDidResignMain:
-    windowDidResignMain:sender

This is used to inform our MiscDocManager that should no longer be the current document.

See also:    ± windowDidBecomeMain:

windowWillClose:
-    windowWillClose:sender



This method gives the user a chance to save if the document needs saving.    Then, if the user doesn't cancel 
the close, the window is closed, and the MiscDocument is freed (through NXApp's ±delayedFree: method.

See also:    ± close:

write:
-    write:(NXTypedStream *)strm

Writes the controller to a typed stream.    DO NOT use read and write to save your documents.    In fact, I don't 
know why I even provide this method as it makes little sense.

See also:    ± awake, ± read:


