
Release 1.0    Copyright ã1994 by Don Yacktman.    All Rights Reserved.

Object (MiscObjectRecycler)

Declared In: <misckit/MiscObjectRecycler.h>

Category Description

This category allows for more efficient management of objects which go in and out of scope quickly.    Because 
freeing and allocating memory dynamically can be rather slow, the object recycler's job is to keep track of ªfreedº 
objects until they are needed again.    Then, the object is re-initialized and put back into action.    Use of the 
recycler for classes such as MiscColor and MiscString could provide fairly large boosts in performance for 
applications which use those classes extensively.

To effectively use the object recycler, when you need a new object, send a 
;MiscObjectRecycler.rtf;newFromRecycler;¬+newFromRecycler message to the appropriate class.    For 
example, [MiscString newFromRecycler] will obtain a recycled MiscString and re-initialize it for you.    
When you are finished with an object, simply send it the ;MiscObjectRecycler.rtf;recycle;¬±recycle message 
instead of ±free and it will be sent to the recycler to wait until it is needed again.

If a particular class needs finer control over how it is re-initialized, simply override 
;MiscObjectRecycler.rtf;firstInitObject:;¬+firstInitObject: and 
;MiscObjectRecycler.rtf;reInitObject:;¬+reInitObject: to do things the right way.    Normally a simple ±init 
message is sent.    If you need access to the recycler for a particular class, it is obtained with either 
;MiscObjectRecycler.rtf;recycler;¬+recycler, ;MiscObjectRecycler.rtf;recyclerForClass:;¬+recyclerForCla



ss:, or ;MiscObjectRecycler.rtf;recyclerForClassName:;¬+recyclerForClassName:.

There is one very important caveat when using the object recycler:    do not recycle an object more than once!    If you 
do this, strange things will occur due to objects suddenly re-initializing themselves while in use.    The best way to avoid 
this is to make sure you set all pointers to an object to nil when you recycle it.    If you tend to be scatterbrained, and 
feel that the recycler should keep track of this for you, recompile the source with MISC_SLOW_BUT_SAFE defined.    (It 
is commented out in the source file; just uncomment it and recompile.)    If you never have very many objects in the 
recycler at any given time, you won't take much of a performance hit.    By defining this, however, you change the 
algorithm for recycling objects from O(1) to O(n) where n is the number of objects in the recycler.

Method Types

Controlling how objects are re-initialized: ;MiscObjectRecycler.rtf;firstInitObject:;¬+ 
firstInitObject:
;MiscObjectRecycler.rtf;reInitObject:;¬+ reInitObject:

Obtaining a Recycled Object: ;MiscObjectRecycler.rtf;newFromRecycler;¬+ newFromRecycler

Obtaining a Specific Recycler: ;MiscObjectRecycler.rtf;recycler;¬+ recycler
;MiscObjectRecycler.rtf;recyclerForClass:;¬+ recyclerForClass:
;MiscObjectRecycler.rtf;recyclerForClassName:;¬+ 
recyclerForClassName:

Recycling an Object: ;MiscObjectRecycler.rtf;recycle;¬- recycle

Class Methods

firstInitObject:;¬ firstInitObject:
+ firstInitObject:anObject

This method is used to initialize a newly created object which was created if the recycler was empty.    This 
method by default sends ±init to the object in question; if initialization should take place differently, then this 



method should be overridden to do the right thing.    Returns whatever sending ±init to anObject would return.

See also:    ;MiscObjectRecycler.rtf;reInitObject:;¬+reInitObject: and 
;MiscObjectRecycler.rtf;newFromRecycler;¬+newFromRecycler:

newFromRecycler;¬newFromRecycler
+ newFromRecycler

Removes an object from the receiving class' recycler and re-initializes it, returning the object.    If the recycler is 
empty, a new instance is allocated and initialized.    The +reInitObject and +firstInitObject methods are used to 
perform the respective initializations.    Whatever those methods return is returned by +newFromRecycler.    
Normally this is the id of the recycled (or new) object, but may occasionally be nil, depending upon the class.

See also:    ;MiscObjectRecycler.rtf;recycle;¬±recycle, 
;MiscObjectRecycler.rtf;reInitObject:;¬+reInitObject: and 
;MiscObjectRecycler.rtf;firstInitObject:;¬+firstInitObject:

reInitObject:;¬reInitObject:
+ reInitObject:anObject

This method is used to re-initialize an object after removing it from the recycler.    This method by default sends 
±init to the object in question; if re-initialization should take place differently, then this method should be 
overridden to do the right thing.    Returns whatever sending ±init to anObject would return.

See also:    ;MiscObjectRecycler.rtf;firstInitObject:;¬+firstInitObject: and 
;MiscObjectRecycler.rtf;newFromRecycler;¬+newFromRecycler:

recycler;¬recycler
+ recycler

Returns the recycler (a List object) for the receiving class object.



See also:    ;MiscObjectRecycler.rtf;recyclerForClass:;¬+recyclerForClass: and 
;MiscObjectRecycler.rtf;recyclerForClassName:;¬+recyclerForClassName:

recyclerForClass:;¬recyclerForClass:
+ recyclerForClass:aClass

Returns the recycler (a List object) for the class aClass.

See also:    ;MiscObjectRecycler.rtf;recycler;¬+recycler and 
;MiscObjectRecycler.rtf;recyclerForClassName:;¬+recyclerForClassName:

recyclerForClassName:;¬recyclerForClassName:
+ recyclerForClassName:(const char *)className

Returns the recycler (a List object) for the class named className.

See also:    ;MiscObjectRecycler.rtf;recycler;¬+recycler and 
;MiscObjectRecycler.rtf;recyclerForClass:;¬+recyclerForClass:

Instance Methods

recycle;¬recycle
-    recycle

Places the receiver into the recycler.    No messages should be sent to the receiver after this message until after 
the recycler has re-initialized and released it.    Returns nil.    The safest invocation of this method (and ±free as 
well) looks like this:

anObject = [anObject recycle];

See also:    ;MiscObjectRecycler.rtf;newFromRecycler;¬+newFromRecycler:




