
Release 1.0    Copyright ã1994 by James Romano    All Rights Reserved.

MiscTimedEntry

Inherits From: MiscThreadedObject

Declared In: MiscTimedEntry.h

Class Description

This class defines a thread-safe timer that will call back a target object with a selectable message.    The timer
may be set up to go off once, repeat a N times, or repeat indefinately. The timer may be run in another thread.

A timed entry blocks, waiting for a timer return, then sends the action message to the target. A timed entry may
be run in it's own    thread, providing an asyncronous interupt, or run, providing a thread safe blocking timer.    Of
course, when run in it's own thread, the call back will be run in the timer's thread.

 Time is measured in milliseconds.    Action methods *must* be of the form " - methodName:sender";    when sent,
'sender' will be the TimedEntry instance.

 An example:

 {
 BOOL async = (random() & 1);
 id te = [[MiscTimedEntry alloc] initWithTarget:self

action:@selector(someAction:)

interval:5*1000
data:somePtr];

if (async)
 [te runInNewThread]; /* returns immediately with async callbacks */
 else

[te run]; /* sender blocked until timer goes off */
}

Instance Variables

void *userdata;
id target;
SEL action;
int interval;
port_t port;
int repeatCount;

userdata A handle to data that may be set to provide a context for the target.

target The receipient of the action method.

action Message sent to target after the timer goes off.

interval The time in milliseconds to sleep before messaging target.

port Used to sleep.

repeatCount The number of times to sleep & wake up.

Method Types

- action
- free
- init
- initWithTarget:action:interval:data:
- interval
- port
- repeatCount
- run
- setAction:
- setInterval:
- setPort:
- setRepeatCount:
- setTarget:
- setUserData:
- stop
- target
- userData

Instance Methods

action
-    (SEL)action

Returns the timer's action.

See also:

free
-    free

Stops the timer if necessary and frees the instance. This message may be sent from any thread.

See also:    stop

init
-    init

Initializes a timer with the default values by sending [self initWithTarget:NULL action:(SEL)0 interval:500 data:NULL]

See also:    initWithTarget:action:interval:data:

initWithTarget:action:interval:data:
-    initWithTarget:aTarget

action:(SEL)anAction
interval:(int)ival
data:(void *)data

Initializes a timer instance with the given values.    RepeatCount is initialized to -1: repeat forever.

See also:    setAction:, setInterval, setData:, setTarget:, setRepeatCount:

interval
-    (int)interval

Returns the sleep interval.

See also:    setInterval:

port
-    (int)port

Returns the mach port that the instance waits on.

repeatCount
-    (int)repeatCount

Returns the repeat count, the number of times the timer will interupt target.    A repeat count of -1 indicates
forever.

See also:    setRepeatCount

run
-    run

Starts the timer waiting.

This method causes the caller to block until sleeping repeatCount times.    If a non blocking interupt is desired,
use runInNewThread.

The run method, coupled with a repeatCount of 1 provides a simple thread-safe alternative to sleep(3).

Returns nil if the target object is nil or does not respond to action.

See also:    runInNewThread, stop.

runInNewThread
-    runInNewThread

Causes the timer to be run in a separate thread and control returned immediately back to the caller.    The target's
action method will be dispatched in the timer's thread.

See also:    stop, run, runInNewThread (MiscThreadedObject)

setAction:
-    (void)setAction:(SEL)anAction

 Set the action message.    action is the message sent to the target object when the interval has elapsed.   
action has the form of an InterfaceBuildertm action method, i.e. - actionMethod:sender.
 
    If the timer is running in a different thread, the action method will be dispatched from that thread.

setInterval:
-    (void)setInterval:(int)anInterval

The interval, in milliseconds, between messaging target.

setRepeatCount:
-    (void)setRepeatCount:(int)count

The number of times to perform the wait/message cycle. A repeat count of -1 will cause the timer to repeat until a
stop message is received.

See also:    run, stop

setTarget:
-    (void)setTarget:sender

Sets the target object .

See also:    setAction:

setUserData:
-    (void)setUserData:(void *)userData

Allows the sender to place data in the timer.    Upon receipt of the action message, the target object may retrieve
this data using the userData method.

See also:    userData

stop
-    stop

Stops the timer but does not free it.

target
-    target

Returns the receipient object of the action message.

userData
-    (void *)userData

Returns the data given in the setUserData: method.

See also:    setUserData:

