
Version:0.9    Copyright ã1991 by Kevin Brain.    Permission is granted to use as desired.

Ruler

INHERITS FROM View

CLASS DESCRIPTION

The Ruler class is a general ruler designed to be used with the RuledScrollView class.      Various
instance variables (and the methods to set them and retrieve their values) are predefined in this
class.    These variables determine how the    the ruler is drawn.    By subclassing and overriding the
drawSelf:: method,    custom ruler styles can easily be designed.

It is recommended that subclasses of ruler use the instance variables defined in the Ruler class
wherever possible to represent the various parameters used by a particular ruler class's
drawSelf::    method.    For example, if you design a ruler that draws a checkerboard pattern, use
the scaleSpacing instanceVariable to define the size of the checkerboard squares rather than
defining a new 'checkerSize' variable.    This will make it easy to change to another ruler style that

you or someone else designs in the future.    The standard ruler attributes are described below.

scaleSpacingsets the distance between major marks, measured in points (1/72 of an inch).      For
example, an ruler displaying inches should set scaleSpacing to 72.0.    (Note that the
actual spacing on-screen will be dependent on the screen's dpi.).      The default
scaleSpacing is 72*0.39, which gives centimeters.

scale sets the measure (numbering) increment.    The default is 1.0.
scaleOffset the value of the measure at the origin of the ruler.    The default is 0.
border the distance between the origin of the ruler and the first mark or measure.    This

border is in addition to a margin that is automatically added for the width or height of
an adjacent ruler.    For example, a margin the width of the left ruler is automatically
added to the beginning of the top ruler (in the absence of a 'stub' view [which aren't
implemented]).

orientation sets the angle of the ruler, measured counter-clockwise from the positive X-axis.   
For horozontal or vertical rulers, the manifests "HORIZONTAL" or "VERTICAL" are
defined to be 0.0 and 90.0, respectively.      The default is HORIZONTAL.

inverted is a flag which is basically used to determine which edge of the main view the ruler is
along, so that the ruler's graphics can be oriented to 'point' to the view that it is
'rulering'.    For example, if we designed a ruler consisting of tick-marks with
measures (numbers) over them, we would like the ticks to appear along the top edge
of the ruler if the ruler was located at the bottom of a view, and along the bottom
edge of the ruler if the ruler was located at the top of a view.    Implement a Ruler's
drawSelf:: method such that it draws the ruler as it should appear on the top or right

side of the main view when inverted == YES.    When inverted == NO, draw the ruler
as it should appear on the bottom or left side of the main view. The default setting for
inverted is NO.

mirrored a flag that is used to indicate the direction of numbering the ruler.    By default
(mirrored == NO) the 'origin' of a ruler is at the left end of a horizontal ruler and the
bottom of a vertical ruler, and measures (numbers) increase in value towards the
right or top or the ruler.    Note that this flag is not used by the default drawSelf::
method (due to programmer laziness).    The default is NO.

alignment sets the alignment of text.    The value should be one of the manifests
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED (defined in
appkit/Text.h).    The default is NX_CENTERED.

font a font object which describes the font used to draw the text.    The default is Helvetica
size 12.

backgroundColor The color    used to fill the ruler rectangle.    The default is white.
backgroundGray The gray used to fill the ruler rectangle.    The default is NX_WHITE.
image an image object for rulers that tile an image to the background.    The default

drawSelf:: method does not do this, and therefore does not use this variable.

The default Ruler drawSelf:: method displays measures (numbers), an optional string printed after
each number (units), and a single black line adjacent to the mainView.    The background is filled
with the gray level specified by backgroundGray if backgroundColor is white (red, green, and blue
components are all 1.0), otherwise the color given by backgroundColor is used.    The default is
NX_WHITE.

 
USAGE

Instructions explaining how Rulers are used with the RuledScrollView class are given in the
RuledScrollView class documentation.

LIMITATIONS/BUGS

Let me know if you discover any!

This is Version 1.0 of Ruler, released August, 1992.

Author:
Kevin Brain (ksbrain@zeus.uwaterloo.ca)
University of Waterloo / Department of Systems Design / Waterloo, Ontario/N2L 3G1

Based on classes and examples by Jayson Adams, NeXT Developer Support Team

THIS OBJECT CLASS IS DISTRIBUTED AS IS, WITH NO WARANTEE OR GUARANTEE
EXPRESSED OR IMPLIED IN ANY RESPECT.    THE AUTHORS ARE NOT LIABLE FOR ANY
DAMAGES WHATSOEVER DIRECTLY OR INDIRECTLY RELATED TO THE USAGE OF THIS
WORK.

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Responder id nextResponder;

Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct __vFlags vFlags;

Declared in Ruler NXCoord scaleSpacing;
float scale;
float scaleOffset;
int orientation;
BOOL inverted;
BOOL mirrored;
int alignment;
(Font *) font;
NXColor backgroundColor;
float backgroundGray;
id image;
int unitsLength;

char *units;
BOOL draggableRuler;

NXCoord ascender;
NXCoord descender;
NXCoord lineHeight;
NXCoord leftOrBottomMargin;
NXCoord rightOrTopMargin;

scaleSpacing the distance between major marks, measured in points
scale the measure (numbering) increment
scaleOffset value of the measure at the origin of the ruler
orientation angle of the ruler, measured counter-clockwise from the

positive X-axis
inverted sets the 'measuring' edge of the ruler
mirrored indicates the direction of numbering for the ruler
alignment sets the alignment of text
font Font used for text
backgroundColor The color    used to fill the ruler rectangle
backgroundGray The color    used to fill the ruler rectangle;
image an image object for rulers that tile an image to the background
unitsLength length of units string
units string printed after numbers (eg. "yrs")

draggableRuler whether ruler is draggable
ascender font info retrieved when font is set
descender font info retrieved when font is set
lineHeight font info retrieved when font is set
leftOrBottomMargin Margin at edge of view as a result of other ruler
rightOrTopMargin; Margin at edge of view as a result of other ruler

METHOD TYPES

Initializing and freeing an instance - initFrame:(NXRect *)frameRect;
- free;
// - awake;

IB Custom Palette Support //- (const char*)inspectorName;
//- read:(NXTypedStream *) s;
//- write:(NXTypedStream *) s;

Drawing the view - drawSelf:(NXRect *)rects :(int)rectCount;

Event handling - (BOOL)acceptsFirstMouse;
- mouseDown:(NXEvent *)theEvent;

Sizing the rulers - setSize;

Setting/returning Ruler attributes - setScaleSpacing:(NXCoord)points
- (NXCoord)scaleSpacing;
- setScale:(float)scaleIncrement;
- (float)scale;
- setScaleOffset:(float)origin;
- (float)scaleOffset;
- setBorder:(NXCoord)theBorder;
- (NXCoord)border;
- setOrientation:(float)angle;
- (float)orientation;
- setInverted:(BOOL)invertFlag;
- (BOOL)inverted;
- setMirrored:(BOOL)mirrorFlag;
- (BOOL)mirrored;
- setAlignment:(int)alignType;
- (int)alignment;
- setUnits:(char *)name;
- (const char *)units;
- setFont:aFont;
- (Font *)font;
- setBackgroundColor:(NXColor)bColor;
- (NXColor)backgroundColor;

- setBackgroundGray:(float)value;
- (float)backgroundGray;
- setImage:anImage;
- image;
- setDraggableRuler:(BOOL)yesOrNo;
- (BOOL)draggableRuler;

INSTANCE METHODS
[NOTE: Methods that simply set or return the value of a ruler attribute instance variable are not
included in this section (since these methods are trivial).    Explanations of what the variables
themselves refer to is included above.]

acceptsFirstMouse
- (BOOL)acceptsFirstMouse

Returns YES.

drawSelf::
- drawSelf:(NXRect *)rects :(int)count

Draws the Ruler according to the values of its attributes.    Use the display method rather than
sending this method directly.

free
- free

Frees all disposable storage used by the Ruler.    Returns nil.

initFrame:
- initFrame:(NXRect *)frameRect

Initializes and returns the receiver, a new Ruler instance.    See the variable descriptions above for
default values.

mouseDown:
- mouseDown:(NXEvent *)theEvent

This method is invoked when the user presses the left mouse button within the bounds of a Ruler.
If draggableRuler == YES, a window the size of the visible portion of the ruler is created, the ruler
is drawn into the window, and a drag loop that allows the ruler to be dragged around the screen is
implemented.

setSize
- setSize

Sets the size of the view.    This method is invoked by the setSize method of RuledScrollView,
which must be invoked whenever the size of the mainView is changed.    The size of the Ruler is

lengthened to the size of the mainView.    In addition, this method invokes the primaryRulers
method of the RuledScrollView (by sending to [superview superview], the Ruler's ClipView's
superview) to find out which Rulers, top and bottom or left and right, extend to the edges of the
RuledScrollView.    If the top and bottom Rulers extend to the edges (they are 'primary'), then the
width of the left vertical Ruler (if present) is obtained so that the origin of the horizontal rulers can
be adjusted accordingly.    (The width is obtained, essentially, by sending [[[superview superview]   
leftRuler] getFrame:&rulerFrame].)    Corresponding sizing and adjusting of margins is done for
VERTICAL rulers.    Returns self.
NOTE: Expect this method to disappear in the next version.    (I plan to do all the resizing in
the RuledScrollView's setSize method.

