Release 1.4 Copyright ©1993 by Todd Thomas. All Wrongs Reversed.

MiscDragView
Inherits From: View : Responder : Object
Declared In: misckit/MiscDragView.h

Class Description

MiscDragView is an abstract class that implements the methods needed for both source and destination dragging. It
supports both a delegate and the target/action paradigm. When a drag view is the successful recipient of a drag session,
the target is sent the action message (if there is a target and action). Alternately, the delegate (if it responds) will be sent
messages such as didInitiateSourceDrag:, didFinishSourceDrag:, didInitiateDestinationDrag: and
didFinishDestinationDrag:, which should be pretty self explanatory. One word of caution though. Since most of the
delegate messages are sent from methods that are part of the NXDragging protocols, and are usually overridden in
subclasses, make sure you call the superclass's implementation too. The documentation usually warns you when this

could be a problem.

The minimum needed to create a subclass that allows simple drag and drop (source and destination) is as follows:
+Override initDragTypes and register the pasteboard types you will accept (needed for destination dragging only).
+Override setupSourceForDragging in order to set the draglmage and put the relevant data on the pasteboard

(needed for source dragging only).
+Override performDragOperation: to take the data from the pasteboard, when a successful dragging session

has occurred (needed for destination dragging only).

Unless you would like the most simple of drag views, you will find it necessary to override other methods, mostly the ones
that are in the two NXDragging protocols. For more information refer to /NextLibrary/Documentation/
NextDev/GeneralRef/02_ApplicationKit/Protocols/NXDraggingDestination.rtf and NXDraggingSource.rtf.

Instance Variables

id thelmage;

NXSize imageSize;

int border;

BOOL allowSourceDragging;
BOOL allowDestinationDragging;

BOOL freeWhenDragDone;

id delegate;

id target;

SEL action;

thelmage Image currently displayed in the view.

imageSize The original size of thelmage just in case we need it for scaling.
border Defines the border type that will surround the view.
allowSourceDragging Determines if we are allowed to be the source of a drag.
allowDestinationDragging Determines if we are allowed to be the destination of a drag.
freeWhenDragDone Determine if we are responsible for freeing the dragilmage after a drag session.
delegate The object that receives notification messages.

target The object that will receive the action message when view is dragged into.

action The message sent to the target when the view is dragged into.

Method Types

Initializing a MiscDragView + initialize
* initFrame:
* initDragTypes
* free

Setting view and drag images *image
+ setlmage:
+ setimageByFilename:
+ draglmage
+ setDraglmage:
+ setDraglmage:freeWhenDone:

Dragging options + setAllowSourceDragging:
+ allowSourceDragging
+ setAllowDestinationDragging:
+ allowDestinationDragging
+ acceptForeignDrag
* acceptLocalDrag
+ acceptSelfDrag
* retainData
+ shadowlncoming
+ shadowColor

Source dragging methods + mouseDown:
* cleanupAfterSourceDrag
+ setupForSourceDrag

Destination dragging methods

Delegate methods

Target/Action methods

Displaying the border

Archiving

+ slideback

+ draggingPasteboard

+ calculateDragPoint::

+ draggingSourceOperationMaskForLocal:
+ draggedimage: endedAt: deposited:

+ draggingEntered:

+ draggingUpdated:

+ draggingExited:

+ prepareForDragOperation:

+ performDragOperation:

+ concludeDragOperation:

+ cleanupAfterDestinationDrag

+ delegate

* setDelegate:

+ sourceDraglnitiated:

+ sourceDragFinished:

+ destinationDraglnitiated:
+ destinationDragFinished

* target

* setTarget:

* action:

+ setAction:

* stringValue

* setStringValue:

+ takeStringValueFrom:

* borderType
+ setBorderType:

+ read:

+ write:
+ awake

Class Methods
initialize
+ initialize

Sets the archive version of this class. Returns self.

Instance Methods

acceptForeignDrag
- (BOOL)acceptForeignDrag

If the view will accept a drag that did not initiate from within the same application, YES is returned (this is the default).
Override to return NO in your subclass if this is not the behavior you would like.

See also: - acceptLocalDrag

acceptlLocalDrag
-(BOOL)acceptLocalDrag

Returns YES if the view will accept a drag that initiated from within the same application. This is the default. Override in a
subclass if you would like different behavior.

See also: - acceptForeignDrag

acceptSelfDrag
- (BOOL)acceptLocalDrag

By default this method returns YES, which means the view will accept a drag that initiated from itself. Override this
method in a subclass and return NO if you do not want the default behavior.

action
-(SEL)action

Returns the action that will be sent to the target when the receiver is the destination to a successful drag.

See also: - setAction:

allowDestinationDragging
- (BOOL)allowDestinationDragging

Returns YES if the view is allowed to be the destination of a dragging session.

See also: - setAllowDestinationDragging:

allowSourceDragging
- (BOOL)allowSourceDragging

Returns YES if the view is allowed to initiate a dragging session.

See also: - setAllowSourceDragging:

awake
- awake

Calls initDragTypes to register dragging types. Returns self.

borderType
- (int)borderType

Returns the type of border that will be displayed around the view. It will be one of NX BEZEL, NX _GROOVE, NX_LINE,
or NX_NOBORDER. These are the same styles as the Box class.

See also: - setBorderType:

calculateDragPoint: andOffset:
- calculateDragPoint:(NXPoint *)dragPoint andOffset: (NXPoint *)offset

This method does nothing in MiscDragView, but is there for subclasses that would like more control of where the drag
image first appears in relation to the mouse. The dragPointis the NXImage's location given in the view's
coordinate system. The offset is the current mouse location relative to the mouse down location that started the
drag. So far | have just found that adjusting the dragPoint can be useful to center the dragged image relative to
the cursor. Returns self.

cleanupAfterDestinationDrag
- cleanupAfterDestinationDrag

Frees the copy we made of the dragged image (if we are the destination view). If you purposely end a drag by returning
NO from either prepareForDragOperation: or performDragOperation:, make sure you call this method to
clean up. If your subclass creates an extra resources because of a destination drag, this is probably the place to
free them. Returns self.

cleanupAfterSourceDrag
- cleanupAfterSourceDrag

This method is called after a source drag has completed. It frees the image in the view if the data is non-retained, and also
frees the draglmage if it was instructed to. Returns self.

concludeDragOperation:
- concludeDragOperation: sender

This method is part of the NXDraggingSource protocol. If you subclass this method, make sure to call [super
concludeDragOperation: sender] because this method sends the didFinishSourceDrag: message to the delegate as
well as sending it's action message to the target (if there is one). Returns self.

See also: -prepareForDragOperation:, -performDragOperation:

delegate
- delegate

Returns the current delegate, or nil if no delegate is currently set.

See also: - setDelegate

draggingPasteboad
- draggingPasteboard

By default this method returns NXDragPboard. Override if your subclass uses a different pasteboard.

draglmage
- (NXImage *)dragimage

Returns the current image used for dragging. You should not free the returned image.

See also: - setDraglmage:

draggedimage: endedAt:deposited:
- draggedimage: (NXImage *)image endedAt: (NXPoint *)screenPoint deposited: (BOOL)flag

This method is part of the NXDraggingSource protocol. If you override this method in a subclass, make sure to call this
class's method so the didFinishSourceDrag: message is sent to the delegate (if it reponds to it). Returns self.

draggingEntered:
-(NXDragOperation)draggingEntered: sender

This method is part of the NXDraggingDestination protocol. Since this method contains most all the testing for types of
destination dragging that are allowed, if you plan to override it, do so in the following way:

(NXDragOperation)draggingEntered: sender
{

(your code here)
return [super draggingEntered: sender];

}
See also: - draggingUpdated:, - draggingExited:

draggingExited:
-draggingExited: sender

This method is part of the NXDraggingDestination protocol. This method passes the message
didFinishDestinationDrag: NO to the delegate, since the dragging image exited the view, and the dragging did end (as
far as the destination view is concerned). If you override this method later on, make to include a call to this class's method
so the delegate method will be sent. Returns self.

See also: - draggingUpdated:, - draggingEntered:

draggingSourceOperationMaskForLocal:
- (NXDragOperation)draggingSourceOperationMaskForLocal: (BOOL)flag

This method is part of the NXDraggingSource protocol. The default value returned by this view is NXDragOperationAll.

draggingUpdated:
-(NXDragOperation)draggingUpdated: sender

This method is part of the NXDraggingDestination protocol. By default it returns the same value that draggingEntered:
first returned when the view was entered by the dragged image.

See also: - draggingExited:, - draggingEntered:

free
- free

Frees the image if needed.

image
-(NXImage *)image

Returns the image that is currently displayed in the view. If there is no image displayed, nil is returned.

See also: - setlmage:

initDragTypes
-initDragTypes

The default implementation does nothing, but subclasses are expected to override it. You should register the types of data
you will accept in a dragging session. Returns self. Below is the initDragTypes method from MisclconWell:

- initDragTypes
{
const char *const types[] = {NXFilenamePboardType};

[self registerForDraggedTypes: (const char *const *)&types count: 1];
return self;

initFrame:
-initFrame: (const NXRect *)frameRect

This class's designated initializer. Sets the receiver's defaults and calls initDragTypes. Returns self.

mouseDown:
- mouseDown: (NXEvent *)theEvent

Overridden in order to begin a drag session. First, if source dragging is allowed and the mouse is moved far enough to
begin a drag, setupForSourceDrag is called to put the data on the pasteboard and choose an image for dragging. If
setupForSourceDrag returns YES, calculateDragPoint: andOffset: is called to allow each subclass some finer
control on where the image appears when a drag begins. As long as the drag image is not nil, didInitiateSourceDrag:
is sent to the delegate, and the source dragging begins. Be careful when subclassing this method (I suppose you do
have the source code though).

performDragOperation:
- (BOOL)performDragOperation: sender

This method is part of the NXDraggingDestination protocol. The default (for this class) is to return YES. If you override this
method and are going to return NO for some reason (to stop the drag) make sure to call cleanupAfterDestinationDrag.

See also: - prepareForDragOperation:, - concludeDragOperation:

prepareForDragOperation:
- (BOOL)prepareForDragOperation: sender

This method is part of the NXDraggingDestination protocol. The default (for this class) is to return YES. If you override
this method and are going to return NO for some reason (to stop the drag) make sure to call
cleanupAfterDestinationDrag.

See also: - performDragOperation:, - concludeDragOperation

read:
- read: (NXTypedStream *)stream

Unarchives a MiscDragView object. Returns self.

See also: - write:

retainData
- (BOOL)retainData

Returns YES if the view keeps the data after a source drag has been completed.

setAction:
- setAction: (SEL)anAction

Sets the action message that is sent to target when an image is dragged successfully into our drag view. Returns self.

See also: - action

setAllowDestinationDragging:

- setAllowDestinationDragging: (BOOL)aBool

Sets whether the view is allowed to be the destination of a dragging session. If set to NO, the view will not accept any
dragged images. Returns self.

See also: - allowDestinationDragging

setAllowSourceDragging:
- setAllowSourceDragging: (BOOL)aBool/

Sets whether the view is allowed to initiate a dragging session. Returns self.

See also: - allowSourceDragging

setBorderType:
- setBorderType: (int)borderType

Sets the border type that surrounds the view. The types of borders are the same as the types for the Box class, which can
be one of NX _BEZEL, NX _GROOVE, NX_LINE, or NX_NOBORDER. Returns self.

See also: - borderType

setDelegate:
- setDelegate: theDelegate

Sets theDelegate to be the object to receive the dragging notification messages. The messages that are sent are pretty
self explanatory. They are one of didInitiateSourceDrag:, didFinishSourceDrag:, didlnitiateDestinationDrag: and
didFinishDestinationDrag:. Returns self.

See also: - delegate

setDraglmage:
- setDragimage: (NXImage *)an/image

Sets animage to be the image used for a source drag. You are responsible for freeing the dragimage (unless it is the
same as the image displayed in the view) when you no longer need it. This mehod calls
[self setDraglmage:freeWhenDone: NOJ.

See also: - draglmage, * setDragimage:freeWhenDone:

setDraglmage:
- setDraglmage: (NXImage *)animage freeWhenDone: (BOOL)freelt

Sets anlmage to be the image used for a source drag. If freelt is YES, then the view will free the dragimage when the drag
session has been completed, otherwise you are responsible for freeing it (unless it is the same as the image displayed in
the view) when you no longer need it.

See also: - draglmage, * setDragimage:

setlmage
- setimage: (NXImage *)animage

Sets anlmage to be the image displayed in the view, while freeing the previous image. animage can be nil if you would
like the view to be blank. Returns self.

See also: - image

setimageByFilename:
- setimageByFilename: (const char *)aFilename

Loads the image specified by aFilename and passes the result to setimage:. If aFilename is NULL, any image in the view
will be cleared. Return self.

See also: - setlmage:, *image

setTarget:
- setTarget: aTarget

Sets the object that will be the target of the action message when our view has successfully been dragged into. Returns
self.

See also: - target

setupForSourceDrag
- (BOOL)setupForSourceDrag

This method does nothing by default, and is meant to be overridden in subclasses. The overridden method should take
care of putting the data on the pasteboard and choosing the image to be dragged. You should return YES if the data was
put on the pasteboard successfully. If you return a NO, the drag session will not begin. Returns sellf.

See also;: - mouseDown:

setStringValue:
- setStringValue: (const char *)aValue

By default this method does nothing. It is up to subclasses to override to set something meaningful with this method. It is
also necessary to override this method if you wish to use takeStringValueFrom: Returns self.

See also: - stringValue

shadowColor
- (NXColor)shadowColor

Returns the color that will be used to shadow the image if [self shadowIncoming] returns YES. To "dim" the image, make
sure to use alpha. By default we return NX_COLORLTGRAY with 0.5 alpha.

See also: - shadowlncoming

shadowlncoming
- (BOOL)shadowlincoming

Returns YES if a "dimmed" image should appear when we are the destination drag view. This is the default. If your
subclass would doesn't want the shadowed images then subclass to return NO.

See also: - shadowColor

slideback
- (BOOL)slideback

Used to determine if an image that was unsuccessfully dragged will slideback to us, if we are the destination view. By
default it returns [self retainData] because if we are not retaining data we do not want a slideback, otherwise why not.

stringValue
- (const char *)stringValue

The default is to return NULL. This method is here for subclasses to override and return something meaningful if they
wish.

See also: - setStringValue:

takeStringValueFrom:
- takeStringValueFrom: sender

This method will only work correctly if your subclass has overridden the method setStringValue: to do something
meaningful. Returns self if sender responds to stringValue, otherwise nil is returned.

See also: - stringValue, =* setStringValue:

target
- target

Returns the object that will receive the action message when an image has successfully been dragged into our view.

See also: -setTarget:

write:
-write: (NXTypedStream *)stream

Write a MiscDragView object and it's current state to an archive.

See also: -read

