
Pre-alpha release 0.0    Copyright ã1993 by Don Yacktman.    All Rights Reserved.

1.    Basic Architecture

The purpose of this document is to provide an overview of the GameKit.    It introduces the major parts of the
GameKit along with their respective functionality.    It does not attempt to provide any intimate details, however.   
That is left to the class specifications and other documentation supplied with the GameKit.    There are still many
features that are not completely fleshed out or complete; most of these ideas are italicized to set them apart.   
(Italics often also represent interesting parenthetical remarks which will probably be removed from the final
version of the document, so enjoy them now while you can.)

The GameKit itself mostly resides in the /LocalDeveloper directory.    Various parts of it are to be found in the
following directories:

·    /LocalDeveloper/Headers/gamekit
·    /LocalDeveloper/Examples/GameKit
·    /LocalDeveloper/Apps
·    /LocalDeveloper/Makefiles
·    /LocalDeveloper/Palettes
·    /LocalLibrary/Documentation/GameKit
·    /LocalLibrary/Source/gamekit_proj
·    /usr/local/lib
·    /usr/local/lib/GameKit

What is the GameKit?

The GameKit is a collection of tools intended to simplify the process of creating entertainment software which
runs under NeXTSTEP.    It makes extensive use of the software kits provided by NeXT.    The GameKit is not
exactly a game engine, since it requires additional programming.    What it does provide is a flexible structure
within which a game may be rapidly built.    Many games can be built by simply subclassing a few GameKit
objects and dropping them into the existing framework.

Provided with the GameKit are several components.    First, and perhaps most useful, are several Objective-C
classes.    Many of these classes may be used directly to implement a game.    In fact, many of these classes can
be useful in other settings besides games!    Some of the classes are abstract superclasses, intended to be
subclassed in order to provide actual functionality.    In these cases, usually several useful subclasses are
provided to serve both as examples and as a way to further reduce the amount of programming that might
otherwise be necessary.

The GameKit also includes several ªstandardº .nib files which may be used to reduce development time.   
The .nib files are used by several controlling objects in the GameKit.    The developer is free to replace
these .nibs with other .nib files of the same name, however, if they wish.    There are also some Interface Builder
palettes which provide an easy way to incorporate the objects from the GameKit into an application.

In addition, the GameKit includes several demo applications which show how to use the GameKit to create an
actual game.    Also included is a generic application project which may be copied an used as a starting point for
a new game.
This generic project already contains several .nib files and many of the connections that would be required to
build a working game.

Finally, the GameKit includes a few simple applications which may be used as tools to speed the development
process.

As a kind of ªauxiliaryº inclusion, there is also full documentation and source code provided.    This ensures that
the GameKit may be easily customized to fit an individual developer's needs.

The following sections attempt to provide a deeper look into the classes and other tools provided in the GameKit.

GameKit classes

The GameKit's Objective-C classes can be divided into several sub-systems.    In theory, one sub-system may be
successfully used without involving the other sub-systems.    In many cases, however, this goal is difficult to
achieve.    There are cases where interactions between the various objects provide extra, worthwhile,
functionality.    In these cases, a developer may still use a GameKit object without the objects it depends upon,
but may lose some of the desired functionality, too.    The documentation for the various classes explains these
cases and how to use the class by itself without losing the functionality.    As a rule, these cases are kept to a
minimum wherever possible.

Scoring system
The scoring system allows for very complex scorekeeping within a game.    The ScoreKeeper object is the center
of activity, but uses several auxiliary objects to do much of the work.    Messages may be sent directly to a
ScoreKeeper to add or subtract from the score (namely ±addToScore: and ±subtractFromScore:).    A
ScoreKeeper also keeps an internal list of BonusTracker objects.    A BonusTracker simply keeps track of an
arbitrary sequence of scores.    This provides a way that a message may be sent to the ScoreKeeper requesting
it to add the value of a particular bonus ± obtained from a BonusTracker ± to the score.    An example of this sort
of thing is the way PacMan gives bonus points for fruit that the Pac eats.    By setting up the sequence of point
values in a BonusTracker, all the developer has to do is tell the ScoreKeeper to add a fruit bonus to the score
when the player eats a fruit.

The BonusTracker is basically an abstract superclass.    The only type of sequence it can generate is a sequence
which counts, in equal-sized steps, from some base value up to some maximum value.    Also provided in the
GameKit are two subclasses which generate a series of bonus values in different ways.    These subclasses are
ArrayBonusTracker, which uses an array to generate any arbitrary sequence, and RandomBonusTracker, which
generates a random number between minimum and maximum values.    The RandomBonusTracker is
sophisticated enough that it can generate the numbers in steps.    (For example, in NX_Invaders, flying saucers
can be worth 50, 100, 150, 200, 250, or 300 points.    By setting the minimum value to 50, the maximum to 300,
and the step size to 50, only these numbers are generated.)

The ScoreKeeper also maintains a list of delegates which are informed of any change to the score.    This way,
for example, it is possible for an object (the delegate) to award the player when the score crosses certain point

values.    The most obvious use is to award extra one-ups every so often.    (Note that the delegate may want to
make use of a BonusTracker itself in order to determine which scores are the critical points¼)

The final function of the ScoreKeeper is to maintain the contents of two TextFields, one of which displays the
current score and the other which displays the current high score.    In PacMan, these fields are on the statistics
panel.    (***** In the future, the HighScoreController will probably update the current high score field, since that
makes more sense.    Since both the score system and high score system were originally part of the GameBrain
object, the splitting up has been a rocky process, and it's not yet completely to my satisfaction.    *****)

In a multiple-player game, several ScoreKeepers would exist, one for each player.

High score system
The high score system is composed of several objects which maintain a database of high scores.    Inside a
game, most messages are sent to a HighScoreController object.    The HighScoreController owns one or more
instances of the HighScoreTable class, which contain the actual data, in the form of HighScoreSlot objects.    The
information may be stored locally, in a file, by the HighScoreController's local servers, or sent across a network to
a server which is capable of tracking high scores for several different games.    The server makes use of
HighScoreDistributor and HighScoreServer objects to perform it's functions.    The basic server, although very
flexible, may be extended through subclassing of    the HighScoreSlot class.    (The HighScoreServer and
HighScoreDistributor objects use HighScoreTable and HighScoreSlot objects just like the client does.    Since the
HighScoreSlot stores all the relevant information, the other objects will rarely need to be subclassed.)

Note that a different style of server could be used by simply creating a subclass of the HighScoreController class
that knows how to talk to the new server.    The provided server uses NeXT distributed objects, but that doesn't
mean that you couldn't create your own server using RPC, NetInfo, or something even more strange.

HighScoreSlot objects store the information about a single play of a game.    They hold the player's name, score,
starting level, ending level, time the game began, time it finished, amount to time actually spent playing, name of
the machine the player ran the game on, and the player's login name.    Other information could be stored as well
by simply subclassing HighScoreSlot, with no other changes to the high score system being necessary.

HighScoreTable objects are a simple subclass of List which know how to keep their list of HighScoreSlots sorted.
Adding a HighScoreSlot to a HighScoreTable adds it in at the appropriate place in the table, keying off the value
of the score stored in the slot.    The HighScoreSlot object actually provides the precedence through the

±isAbove: method, however, so to change the sort order, the HighScoreSlot class should be subclassed, and
not the HighScoreTable object!

Animation system
Since the animation system is far from complete at this point in time, much of this is subject to change.    Classes
may be added, their names changed, and so on.    Contact Don_Yacktman@byu.edu if you have any requests,
suggestions, gripes, or whatever concerning this subsystem.

Animation is done through coperation of the GameView, GameActor, Animator, and DirtPile classes.    Both the
GameView and the GameActor classes are abstract superclasses which provide a framework for animation.

The Animator class is technically not a GameKit class, per se, but rather a very useful class for managing
Display Postscript timed entries, taken from NeXT's developer examples.    It is compiled into the GameKit library,
however, since the GameKit relies upon it.    Because of this, the Animator class falls under licensing restrictions
as given in the source code which are different from the license provided for the rest of the GameKit.

The DirtPile class is a class which manages flushing of image buffers to the screen in an efficient manner.    A
buffered window in NeXTSTEP will flush the smallest rectangle which contains all changes in the window to the
screen.    When animating many small objects, this is often very inefficient.    For example, in PacMan, when there
are ghosts at opposite corners of the screen, the entire screen will be flushed!    Since only about 5% of the
flushed rectangle was actually changes, this is very inefficient.    On the other hand, if a game draws directly in a
retained window, there is a lot of flicker.    As a solution to this, the DirtPile is used to track changes within a
window and flush them to the screen in as efficient a manner as possible.    It allows a retained window to look
like a buffered window as far as the user is concerned, while keeping much of the speed of the retained window.
It simply flushes the dirty area of the window to the screen one at a time.    If two objects on the screen slightly
overlap, their dirty areas are coalesced to form a single, larger, rectangle.    This reduces the number of
messages to the window server, further improving efficiency.    A developer can tailor the coalescing of dirty
rectangle for efficiency so that rectangles are not coalesced if the action would increase the area flushed by
more than a threshold percentage.    (So a 0% threshold disables coalescing and 100% always coalesces.)    This
is useful, for example, if two skinny objects, one horizontally oriented and the other vertically oriented overlap.   
In this case, coalescing may actually be less efficient than two separate flushes.    For a better understanding of
how this works, try running PacMan with the -NXShowAllWindows option.

The GameView object is the workhorse of the GameKit.    It's subclasses define the basic behavior of a game.   

The GameView itself provides a mechanism for having a static background image, complete with drag and drop
facilities of .tiff, .eps, and colors.    It also traps `n' and `p' keypresses and uses them to start a new game or
pause/unpase the current game, respectively.    It also uses an Animator object to run a state machine which
controls the game itself.    The framework for the state machine is also provided.    Several enhancements will
appear in future releases which will include dynamic backgrounds (i.e. scrolling scenery, etc.) and other thins, as
requested by GameKit users.    Also, I am working on a generic state machine object which will be used by the
GameView for control purposes.    It will be able to send messages in a periodic manner when in certain states or
whenever states change, allowing you to write methods which deal with certain key events in the game.

Finally, the GameActor object is an abstract superclass which describes a sprite.    In the future, the name will
probably change to Sprite to reflect this.    A GameActor knows how to draw itself and steps through several
frames of an animated sequence.    The individual frames are stored in a single .tiff or .eps image; the GameActor
simply draws itself on the screen by compositing from it's associated NXImage.    It is capable of displaying one
of several possible animation sequences at any given time.    It also keeps track of it's position inside of the
GameView.    A GameActor is capable of limiting itself to be only on certain parts of the GameView, as well, when
used with an instance of the Maze class.    Without a Maze instance, it can still restrict itself to fall on a particular
grid, if desired .    Some subclasses of GameActor are supplied with the GameKit to help simplify things.

·    The Player class is used to represent the player, and controls it's motion according to the keypresses
that the user types into the GameView.    (GameView objects forward keypresses to associated Player
objects.)    Subclasses of the Player classes can also generate their own actions intelligently when the
GameView is in demo mode so that an intelligent demo may be presented to a user.

·    TrackFollower objects follow a pre-programmed course, defined by an array of coordinates.    They use
extrapolation to determine their exact location between the pre-defined points on the track.    (A utility to
draw tracks with the mouse is provided with the GameKit.)

·    Newtonian objects attempt to follow physical laws of motion such as momentum and gravity, and have a
mass associated with themselves.    They are controlled by use of acceleration, for example, which is
partially determined by gravity as calculated towards a list of other Newtonian objects.    Since some
feautres may cause performance to vary dramatically, Newtonian objects can turn off some or all of their
simulation capabilities.

·    Chaser objects, a subclass of the Newtonian class, will chase another GameActor subclass around the
screen.    Their intelligence may be adjusted, and they can be set to attempt to guess where an object may
move to next and accelerate appropriately.    As with Newtonian objects, the amount of realism may be
adjusted.

The astute reader will notice that as of yet, a collision detection system is lacking.    The final version of the
GameKit will obviously need to have this rectified.    One approach is to simply compare the rectangles occupied
by various Sprite objects.    I am not satisfied with this, since most objects will contain alpha and thus the pure
insersection of rectangles is really only a poor approximation.    As an example, in Xox, near misses with planets,
etc., are possible¼if anyone has any recommendations with regard to a collision detection system, I'd be happy
to hear them; they could help augment some of the ideas that I have been thinking about already.    The
GameView will probably act as a cental controller which initiates collision detection, but I expect the code to be
located in the GameActor subclasses.    Currently, the system I'm planning on is to check for overlapping rects; if
they do overlap, then check for intersections of custom Postscript paths, which you would have to provide for a
given object.    Another possibility is to use an extra image as a "mask" and check for masks which collide¼but I'd
rather not have to do that.

Sound system
Two important objects allow games to make noise.    The SoundPlayer plays back digitized sounds and the
ScorePlayer uses the MusicKit to play back .score, .playscore, and .midi files.    Both objects are quite
independent of each other and the GameKit, and may therefore be used in a variety of settings.

The SoundPlayer object keeps a list of lists of sounds.    At first this seems a bit odd.    Each list of sounds is a list
of the sounds for an entire game.    By switching the list, the game can instantly play different sounds for each
noisy event.    An example of this is the game Columns, which has two different sets of sounds from which the
user may select, one for the falling blocks and the other for the falling gems.    In a SoundPlayer object, the
sounds are played back using the NeXT SoundKit and do not use the Sound object's ±play method because it is
incompatible with the MusicKit.    A SoundPlayer may be set up such that more than one sound will play back at
any given moment in time or such that all sounds are queued up so that a sound doesn't start playing until the
previous sound finishes.

The ScorePlayer object allows for playing back musical scores via the MusicKit.    Currently, in order to use this
object, you must have the 3.1 CCRMA MusicKit installed.    Using the music kit will cause a game's binary to
nearly double in size because it is no longer a shared library.    (Thanks a lot, NeXT¼NOT!)    On the bright side, it
works with the SoundPlayer object allowing creation of games which have music and sound simultaneously,
which is pretty cool.

Miscellaneous objects
The GameKit also includes several classes that simplify other parts of the user interface and so on.    These
objects include the InfoController, GameBrain, GameInfo, PreferencesBrain, ExtendedApp, WinDel,
PlayerUpView, Maze, and RandomNumber.    In the future, other objects may be added, or the functionality of
these objects may be split into new objects, depending upon feedback that is received from users.

The InfoController controls the Info¼ menu.    It provides methods for animating an Info panel, loads .nibs for
various panels such as the Info panel, Registration panel, and Order Form panel.    It acts as the intelligence
behind the Registration panel and the Order Form panel.    (It also provides hooks to allow use of the Simson
Garfinkel and Associates, Inc., registration objects.)    Finally, an InfoController can bring up a "README" file in
the NeXTSTEP Help Panel.

The GameBrain handles such things as popping up alert panels at various times and providing a repository for
various "global" variables that other GameKit objects might want to know about.    It is expected to be the
Application class' delegate, so it may be accessed via [NXApp delegate] from anywhere in the program.    This
allows it to trap important things like the user wanting to quit the game and initiate initialization of various objects.
For example, all subclasses of GameView are sent a ±loadPix message to initialize them while the Loading¼
panel is up (put up by the GameBrain, in fact).    This allows all the offscreen buffers to be created while the user
waits.    This is useful, since NXImages don't create the buffers until required for drawing; for example, in the
current version of Xox, the first time an explosion occurs, there is a pause while the offscreen image buffer for
the explosions is created.    The GameView and GameActors create all these buffers at the start so that the
animation is always as smooth as possible±at the expense of lengthening launch time.    Many of the subtleties of
user interface that are in games like Columns, PillBottle, and PacMan are provided by the GameBrain.    (Like
most of the alert panels, auto pause/unpause, and so on.)

The GameBrain also knows the ids of most of the important GameKit classes, so objects that need to find the
GameView subclass, PreferencesBrain, ScoreKeeper, or whatever, can ask the GameBrain where they are.     
The GameBrain can also start and end a game and well as control pausing and unpausing, along with requisite
interface details such as enabling/disabling menu items or changing names of menu items.

GameInfo objects allow you to adjust many of the GameKit parameters without the need for recompiling or
subclassing.    Many GameKit behaviors may be altered by changing these parameters, such as size and number
of high score tables, the number of sound effect6s used by your game, and so on.

PreferencesBrain subclasses allow the user to alter the various parameters of the game that the developer is
willing to let them change.    It provides hooks to turn sound and music on and off, alter game speed, adjust
starting level, change keys used to play the game, and change the method of storing high scores.    Other
features may easily be added by a subclass.    The PreferencesBrain class also handles switching views on a
multi-pane Preferences panel, if necessary.

The ExtendedApp class adds a few functions to the NXApp class that can be handy to the developer.    It
provides wrappers around several UNIX functions and returns values for the group and user id's of the process,
as well as the user's login name and full name as supplied by netinfo.    It also returns the path to the app
wrapper, which is needed by the HighScoreController class, for example, to store local high scores.    (Note that
the main NXBundle now can supply this as of 3.0, so this method isn't as useful as it used to be.)    This object is
actually a part of the daymisckit library of miscellaneous useful objects, but the GameKit relies upon it.

The WinDel class has been used to keep track of auxiliary panels for the GameBrain class.    In most cases,
these aren't very useful; they are typically used only in cases like PacMan where windows have to be kept in
certain orders.

The PlayerUpView displays how many lives the player has left.    It is given an NXImage of what the player looks
like on the screen and uses it to draw remaining lives.    It also can be used as a delegate to the ScoreKeeper,
with an appropriate BonusTracker, to award extra lives.    When the player dies, the Player and GameView
objects can query this object to see if it is allowed a new life, and if so take one of the lives.

An instance of the Maze class is capable of limiting where a GameActor is allow to move to on the GameView.   
It also know the initial position of a given GameActor at the start of any level.    It controls reading the appropriate
levels from the app wrapper and also renders the maze on the GameScreen.    GameActors query it to find out
what restrictions, if any, should be placed on their movement.    The mazes themselves can be specified by a
simple text file, and several behaviors such a walls are one-way doors are predefined; a subclass could add
more "special" types of maze locations.

The RandomNumber class simply provides random numbers to the GameKit.    It wraps around the random() C
function but is really provided only as a way to interface the GameKit to other random number generators
provided either through public domain or commercially.    By creating a subclass of RandomNumber, the
developer will be able to change the way the GameKit gets it's random numbers internally.    Thus, the low budget
project just uses the standard C functions whereas the high powered software companies can use whatever
SuperAmazingMostExcellentTM random number generator they prefer to use.    (I intend to at least provide
interfaces for the CDS RandomSystemTM as well as the public domain Random class available from the Internet
archives, for those who may care use either of these systems.    My supporting them has nothing to do with

product endoresement, etc.    I'm just trying to be helpful.    ***** This hasn't yet been implemented. *****)

Interfaces provided with the GameKit (.nib files)

Several .nib files are provided with the GameKit to simplify the building of games using the GameKit.   
Currently, .nibs are provided for the following (they all have internal StringTable objects, as well):

·    Registration panel

·    Order Form

·    Info panel (displays version number, etc.)

·    High Scores panel

·    Preferences panel

·    Skeleton main .nib with menu, etc.

As of this moment, it has not yet been decided what is worth putting on palettes.    Any input as to this might be
helpful.    Probably most of the controlling objects and the GameView will be available for this, as well as a few
menu items for starting games and pausing games.

Demos provided with the GameKit

There are currently two games which demonstrate how to use the GameKit to build a game:

·    NX_Invaders ±€the classic game of Space Invaders, which no computer is complete without.

·    PacMan ± another arcade classic we can't live without

A generic game framework is also provided which has the PB.project set up to link in the GameKit and also use
the appropriate headers files when compiling.    It also has the "standard" .nibs mentioned above as well as a

head start on the Help files.

These are, of course, not the only times the GameKit has been used.    An even more extensive use of the
GameKit is made by Columns and PillBottle, shareware applications currently available.    (Source code for these
applications is available to registered users upon request.)    There are also several other up and coming games
from Don Yacktman which will use the GameKit, some of which might be available in source code form
eventually.

Development tools

Currently, there are two tools available.    The first is TrackDraw which allows you to create tracks for
TrackFollower instances.    It creates both line segments(fast animation), line segments approximations to cubic
splines (still fast), or actual cubic splines (slow) to define the path to be followed by the TrackFollower.    The
second is a simple utility that uses a GameView and a Player instance to test out various animation sequences
to see how they look.    This allows a developer or artist to see what a character looks like without having to
actually compile a game.    It's interface allows control of most GameActor parameters and keyboard control to
move the GameActor around.

Source code, documentation, and support

The full source code is distributed with the GameKit.    If it wasn't in the distribution you got, then you didn't get
the real GameKit!    The source code attempts to provide liberal comments so that it is obvious what is going on
inside.    Of course, the class spec sheets and other documentation should make poking around the source code
rather unnecessary.    Providing source does allow users to enhance the GameKit, however.    If you do make any
enhancements, you are required by license to share them with the original author so that other folks can take
advantage of them as well.    Note that this applies only to actual changes in the GameKit objects and associated
files themselves, and not to subclasses that you create.    The object is to not keep commercial developers from
using the GameKit, but rather provide a central source for support and enhancements to the GameKit and

prevent things from dipping into utter chaos as everyone tears up the code!

If you find bugs in the GameKit, or errors in the documentation, please notify Don_Yacktman@byu.edu so that
things can be fixed quickly.    This is obviously to everyone's benefit.    Also, for discussion regarding the GameKit
as well as a source of infromation about it, you may wish to subscribe to the GameKit mailing list.    Simply send
mail to Don Yacktman at the above address, or send a message to gamekit-request@byu.edu (use the
request address to get off the list, too).    To send a message to the list, send mail to gamekit@byu.edu.    If you
have a specific problem, it should probably be sent directly to Don Yacktman.    If you have a question, remark, or
suggestion that would be of public interest and might spark discussion, it's probably better to send it to the
gamekit mailing list.    (Don Yacktman does get the mailing list, too, by the way, so he'll see what you post there
just like everybody else.)

Since this GameKit project is largely a for-fun thing and does generate any real cash, don't expect the
world's best support.    On the other hand, if you want to pay me as a consultant, I'll give you the best
support I can.    As awful as it sounds, I listen when money talks.    If you don't pay me, well, you'll still get
a great deal (as if the GameKit itself isn't wonderful :-)   ) since I try to courteously reply to e-mail
inquiries within 24 hours whenever possible.    Obviously, though, things that put food on my table take
precedence.    Since many of the projects that I expect will generate revenue for me in the future rely
upon the GameKit, though, bug fixes and updates will certainly happen!    If you have any suggestions for
things which should be added to the GameKit, please do let me know.    I want the GameKit to be as
flexible and powerful as possible.    Nothing's set in stone yet, so don't hesitate to harass me.

± Don Yacktman

Philosophy and licensing (a personal note)

This is my space to ramble on, and it gives the curious reader a feel for where I'm coming from.    Hopefully I
won't bore anybody too badly.    :-)

The GameKit came about because of all the games I've put together.    I've placed two shareware and one
freeware game on the Internet archives, and have several other games at various stages of development.    In
the process of building these games, I've built and refined a framework which I feel is useful for building games
under NeXTSTEP.    It seems silly to me to keep this all to myself.    There are thousands of lines of code that are

pretty much common to any game; why make everyone else re-invent the wheel?    Not to mention the hours
spent in deep thought trying to come up with useful abstract classes and object hierarchies¼    I don't claim to
have come up with necessarily the best way to do things, but what I have here works.

The GameKit is intended to spark development of games under NeXTSTEP.    It's object is to make the process
as easy as possible.    I'm sure several other creative uses for the GameKit and it's objects will show up.    That's
great, and I hope it happens!    Not only should the GameKit be easy to use, it should be as flexible as possible,
and provide as many re-useable objects as might be necessary.    An attempt has been made to provide a
framework which is comfortable, unrestrictive, and yet useful.    Obviously, much is missing; users requesting
enhancements will help accelerate addition of more useful features.

Now the question arises.    I've put a lot of time into this, as the expense of health, social life, and opportunities to
make mounds of money doing other things.    So why do I bother?    I like NeXTSTEP, and want to promote it.    If I
end up programming the rest of my life, I want it to be on NeXTSTEP, or a system which is superior.    Since I
don't believe a superior environment exists, here I am.    (By the way, Solaris, Windows NT, and X-Windows are
quite definitely inferior, and if someday NeXTSTEP dies, well, I might as well find another profession.   
NeXTSTEP is the only environment that I've really had fun programming, and since my baser nature is
hedonistic¼ :-)   )    On the other hand, though, by making a public release of the GameKit I stand to get screwed
over by certain people who would take all my work and use it in a commercial product with paying me for my
time.    If that happened, I'd be irked.

This brings me to the part I hate to have to write about, but I feel this is a necessary evil.    Therefore, I have
decided that the GameKit is freely available, but¼    if you plan to charge money for a product which makes use
of anything in the GameKit, you owe me a license fee.    Talk to me and we'll come to some sort of agreement as
to what is fair.    This includes both shareware and commercial products.    If you distribute your project for free,
then you don't owe me anything.    This will probably spark a lot of free games.    I hope so.    But, I'm not trying to
discourage shareware or commercial authors from making use of the GameKit:    I'm really quite a reasonable
person when you talk to me, so get in touch!    (Actually, though, if you're considering doing shareware, don't
bother.    You'll be lucky to make even $1/hr for the time invested, if your experience is anything like mine.)    The
license fee I'd prefer would be a small percentage of the gross on your application, since that way, if your app
doesn't sell well, you're not out lots of money, but if it does sell well, then I can pay my grocery bill¼

By the way, I don't feel that it's fair for someone to pore over the source and then use all my ideas to write their
own stuff and then sell it, either.    I've spent a lot of time organizing and designing the GameKit, and having
others effectively steal my ideas just seems obnoxious.    The object hierarchies and much of the animation stuff
took a lot of thinking.    In fact, back in my days of assembly on the Apple][, I actually put together the beginnings
of much of this, including several nifty tools, so it's not like I just came up with this stuff last night.    :-)    Of course,

there's probably not much I can do if somebody does use all my ideas, and it's a risk I take by releasing source
code.    (Also, I feel that software patents are evil things, so I'm not trying to be all that hard nosed about this.    A
developer knows when they've stolen someone else's ideas, and so I think that in many cases, the conscience
will have to decide.    And I certainly don't claim that all the ideas in the GameKit are completely original; in the
comments in my code I try to give credit where it's due.)    Anyway, I leave this up to you; if you plan to make your
own GameKit that duplicates my stuff just so you can avoid a license fee, you're probably out of bounds and
you're wasting your time, since I don't plan to ask for a large fee at all.    Anyway, I think the it is worth taking the
risk to distribute source for the benefit of those who are honest, and besides, if someone does play the scumbag,
well, they have to live with themself, which would be bad enough punishment in most cases!

Now, one other question remains, about which I have not yet made any decisions.    (That's an invitation for you
to add your own $0.02¼)    Should I allow others to help me out with the GameKit and if I do, how should the
licensing be handled?    I'm currently of the mind to allow others to pitch in if they want to, and they'd get a
percentage of whatever license fees come in.    (And I don't actually expect to make much money off this, so
beware to those who think jumping into this project will be lucrative.    I really suspect that it won't be.)    However,
I don't expect any help with this; if you feel you really could offer something useful to the project, however, please
do contact me.

Finally, I have been apprised of at least two other GameKit types of projects.    Even so, I am planning on
continuing with this one, because I feel that it has it's merits.    From what I gathered about these two projects,
one is more in the intellectual stage, and does not include as much of a framework as the GameKit, but rather
emphasizes animation ± which could provide good input as to how to improve the GameKit±and the other is
more of an engine, sort of like BackSpace, which uses loadable modules to create games.    It seems like a good
idea, and Xox makes a great proof of concept:    it works.    However, I feel that the GameKit is a more flexible
and "industrial strength" solution.    It requires the developer to do a little bit more work, but also has the potential
to be faster and more flexible.    Both approaches seem valid and worth pursuing, from what I've seen to this
point.

If you have any comments, questions, suggestions, worries, or gripes, please feel free to contact me.    My e-mail
address is Don_Yacktman@byu.edu and if it's something really important I'll even give you my phone number.
If all else fails, you can write to me at the address below.

± Don Yacktman
4279 N. Ivy Lane
Provo, UT, 84604

