
Version «Version», Copyright ã«Year» by «Copyright holder».    All Rights Reserved.
«Author»    --    «Date»

ClassName

Inherits From: Superclass : Object

Conforms To: protocols... (remove this line if no protocols are supported)

Declared In: include directory

Class Description

The description of the class goes here.

Instance Variables

int tag;
id target;
SEL action;

tag An integer used to identify the ActionCell.

target The object that is sent the ActionCell's action.

action The message that the ActionCell sends to its target.

Adopted Protocols (remove if no protocols supported)

Protocol name ±€methods implemented
±€etc...

Method Types

Initializing the class +€initialize
+€alloc
+€allocFromZone:

Creating and freeing instances ±€init
±€free

Class Methods

alloc
+€alloc

This method cannot be used to create an Application object.    Use new instead. The method is implemented only
to prevent you from using it; if you do use it, it generates an error message.

See also:    +€new

Instance Methods

loadNibSection:owner:withNames:fromZone:
±€loadNibSection:(const char *)name

owner:anOwner
withNames:(BOOL)flag
fromZone:(NXZone *)zone

Loads interface objects and their names from the source identified by name. The source may be a section within
the executable file, or a file within the application bundle, as described above for ± loadNibSection:owner:.

The argument anOwner is the object that corresponds to the ªFile's Ownerº object in Interface Builder's File
window. When flag is YES, the objects' names are also loaded. Names must be loaded if you use
NXGetNamedObject() to get at the objects, but are not otherwise required.    Memory for the loaded objects is
allocated from the zone specified by zone.

Returns non-nil if the section or file is successfully opened and read, and nil otherwise.

See also:    ±€loadNibSection:owner:withNames:fromHeader:fromZone:

setAction:
-€setAction:(SEL)aSelector

Sets the ActionCell's action method to aSelector.    The argument of an action method sent by an ActionCell is its
associated Control (the object returned by controlView).    Returns self.

See also:    -€action, -€setTarget:, -€controlView, -€sendAction:to: (Control)

Methods Implemented by the Delegate

app:openFile:type:
±€(int)app:sender

openFile:(const char *)filename
type:(const char *)aType

Invoked from within openFile:ok: after it has been determined that the application can open another file.    The
method should attempt to open the file filename with the extension aType, returning YES if the file is successfully
opened, and NO otherwise.

This method is also invoked from within openTempFile:ok: if neither the delegate nor the Application subclass
responds to app:openTempFile:type:

See also:    ±€openFile:ok:, ±€openTempFile:ok:

Constants and Defined Types
/* KITDEFINED subtypes */
#define NX_WINEXPOSED 0
#define NX_APPACT 1
#define NX_APPDEACT 2
#define NX_WINMOVED 4
#define NX_SCREENCHANGED 8

/*
 * The NXModalSession structure contains information used by the
 * system between beginModalSession:for: and endModalSession:
 * messages. This structure can either be allocated on the stack
 * frame of the caller, or by beginModalSession:for:. The
 * application should not access any of the elements of this
 * structure.
 */

typedef struct _NXModalSession {
 id app;
 id window;
 struct _NXModalSession *prevSession;
 int oldRunningCount;
 BOOL oldDoesHide;
 BOOL freeMe;
 int winNum;
 NXHandler *errorData;
 int reserved1;
 int reserved2;
} NXModalSession;

