
This is not an ªofficialº release because you cannot 
actually use it safely.    To conserve space, it does not 
include everything in the regular release¼so don't 
delete your last version!    The previous release is still 
on the ftp site and you should use it in any projects 
since it is tested and functional.    What I've added 
shouldn't break anything (yet) since I'm using new 
names for the objects¼if you are using the old ones 
they are still here.    This release revamps the animation 
section and adds several new objects.    Everything 
compiles, but the objects are 100% untested and some 
are slightly incomplete (about 80% of the work is done 
not counting debugging) and will get a bit more 
tweaking.    Some of the NX_Invaders code is included 
to show you how the new animation stuff is used, but it 
is only about 50% complete.    At least it gives an idea 



of what is to come.    That is why this release exists; it 
will give you a chance to see where I'm headed since 
the next tested and ªrealº release will be at least a 
month away yet, since I'm going on vacation amongst 
other things.

Here's some late night ramblings¼basically the new stuff works/will 
work like this (look at the code for details; the comments are pretty good): 
The GameView is being split into a GKGameControl (the main state 
machine) and multiple GKStage objects, each with an associated 
GKGameView.    A stage is a stack of buffers with a GKGameView on top 
of it and DirtPiles between the buffers.    You add GKActors (your basic 
sprite) to a stage at the desired buffering level and then turn them loose.    
Each actor can move itself based upon how you subclass it to move.    It 
has basic rendering built in and in many cases you won't even need to 
override it at allÐjust set a few parameters and it all just works.    Between 
the included GKTextActor (which will do what the text messages in 
PacMan doÐappear momentarily without moving and then go away) and 
the subclasses in NX_Invaders, you ought to get the idea of how easy this 
can be.    The GKActorManager acts as a broker for ªout of workº actors, 
so that you don't have to free and alloc actors so much.    Avoiding 



malloc() like this ought to allow a game to create and destroy sprites 
arbitrarily without much of a performance hit.    The part that missing in all 
this is the GKGameControl object, which is unwritten at the moment.    It 
will basically encapsulate the animation and timed/entry handling that 
used to be in the GameView.

In the case of actors colliding, you register a GKCollisionGroup with 
the GKStage.    Notification of collisions are then automatically sent to the 
GKActors which collided as well as a delegate at the right times.    The 
GKCollisionGroup describes which actors need to be checked against 
which other actors.    This is done rather than checking all actors against 
each other because that would be an O(n2) algorithm and in most cases, 
only a few specific collisions are ever of interest.    So it's up to you to tell 
the GameKit which collisions you want checked.    Each actor can tell the 
collision machinery it's collision shape so that it can be checked 
dynamically against the other actors in the GKCollisionGroup.    Supported 
shapes are rectangle, triangle (arbitrary type/rotation), circle, and 
composite (ªorº operation) of any supported shapes.    Not all possible 
types of intersection tests are implemented yet, and some are still a bit 
inefficient, but most (except the composites) are there.    You can add new 
types of shapes in a subclass of GKCollider if these shapes are 
insufficient.    I chose to implement these instead of generic polygons or 
arbitrary PostScript paths since they can be optimized via assumptions 
that can be made about each shape.    Look at the mess of code in 



GKCollider and you'll see what I mean.    (It would be nice in the future to 
allow arbitrary shapes, as drawn by PostScript paths, to be intersected.    I 
don't think that would be too difficult to implement.    This would be awfully 
slow, but with the upcoming PA-RISC port, at least some machines will 
want something to keep them busy¼)

Most of the above changes affect the ±autoUpdate method that is in 
the GameView.    Look at PacManView's ±autoUpdate method and you'll 
see why I'd want to do something about this¼    now that method splits 
into 1) generic logic (GKGameControl) and 2) collision detection (spread 
throughout the various GKActor subclasses and the 
GKCollider/GKCollisionGroup objects) with the GKGameView only 
handling user events (forwarded on to the forthcoming GKPlayer).    You 
may also notice that the ±updateSelf:: of GameView is being replaced by 
the GKStage in such a way that in the majority of cases you won't have to 
write any rendering code at all!

One question:    since this new architecture will easily support multiple 
GameViews (thinking ahead to things like xpilot where you have the play 
field and a thumbnail map view of everything; both would be GameViews) 
and each GameView needs a GKStage to manage it, there is a minor 
problem.    This is as follows:    Currently, each actor can only be on one 
stage at any given time.    This means that in the above situation you 
either need ªshadowº actors or you need to hack them so that they can be 
two places at once.    This problem happens becase right now a GKActor 



is (1) an agent in the game and (2) a sprite/rendering object.    As a 
solution, I'm leaning toward splitting the object so that you have a 
GKActor which only does the agent stuff and is in ªagent spaceº, which 
each GameView is a window onto and then create a new object called 
GKSprite which an actor can have many ofÐand then the actor uses the 
sprite which is associated with a given GKGameView when asked to 
render itself.    This way an actor can change it's rendering based upon 
where it is drawing.    The only problem I have with this is that it adds yet 
another level of indirection to the kit, making things a bit slower.    On the 
other hand, it adds a lot more flexibility and it also will make it easier to 
write your own GKActor subclasses.    It also seems to make better sense 
conceptually, since some actors are invisible agents which only serve to 
impose control over multiple actors on the stage.    (ie. choreograph the 
motion of multiple actors simultaneously¼)    What are your thoughts on 
this?    Think about how you'd use the GameKit and intersect that with 
some of these design choices; which sort of an architecture do you think 
would better suit your application?    (Feedback in any of the other kit 
areas is welcome as well.    I mention this example explicitly because now 
is definitely the time to raise your voice if you want to be heard; once I 
commit to something, changes will be more difficult!)

Well, that's very brief, and I plan to document this fully and give 
examples, etc. to be placed in the next release.    As well as test things.    
NX_Invaders is my test bench, so once they work, you'll have a new 



game to play, too!    :-)    Well, I'm headed home¼if you absolutely need to 
reach me between Aug. 14th and Aug. 28th, I'll be in the Chicago area at 
(708)392-7672 and without net access¼

Later,
_______________________

DONALD
 Y        A        C        K          T          M        A        N

_______________________

Here's the stuff from the regular README file:



First, here's how to install the stuff:    (see notes in gamekit-1 for more 

info on installation and available options)

Put the gamekit-1/built-fat/libgamekit.a file into /usr/local/lib.

Copy the directory Headers/gamekit to /LocalDeveloper/Headers.

You will also need the CCRMA music kit installed on your system.    I am currently using 

the Makefile supplied with the CCRMA Music Kit source distribution as the makefile for 

the gamekit, since that was the path of least resistance.    I haven't set up the install target 

properly, though.    To simplify things, I have compiled everything already so it should "just 

work" as is.

Well, this could be considered release 0.00.    That's as low as I can 



go without going negative.    Most of what's here works pretty well, but is 

nowhere near complete nor is it perfect.    Much of what is described in the 

Concepts.rtf documentation is still missing, as you can easily see.    I will 

be adding everything that's there over time, however, and making frequent 

releases as the functionality improves and the bugs leave.

What's here will be useful to some, and very lacking for others.    The 

best thing to do is to bug me about features that you need fixed or 

implemented.    The areas most frequently requested will, of course, 

receive more (and/or faster) attention.    If there's something you'd like 

added, let me know.    If you find a bug, let me know.    If you think anything 



at all about this, let me know.

If you want examples of how to use this stuff, right now there are two 

ways to go.    (1)    Look at PacMan.    It now uses gamekit objects and 

serves as a jumping off point.    It's as good as the next option which is (2) 

become a registered user of Columns and then ask me for the source.    

Columns and PacMan are right now using these exact objects!    They 

have a few subclasses of key gamekit objects and everything else is 

made up of stock gamekit objects, so they ought to be excellent 

examples!    (If you're already a registered user of Columns, just ask me to 

NeXTmail you the current source files...)    One big problem right now is 



that I haven't had time to include all the template .nibs and update the 

ones that are here.    Without those, you'll probably have a hard time 

figuring out how this all hooks together.    The latest Columns or PacMan, 

in this case, can be very helpful.    In fact, once I get them debugged to my 

satisfaction, their .nibs will be trimmed back to provide the templates¼    

you can get the Columns (or PacMan) .nibs right from the beta binaries 

and munge them up, registered user or not¼and the PacMan source is in 

the GameKit release now.

Again, bug me about any questions and/or problems you have!    

Answers that would be interesting to anyone on the gamekit list will be 



posted there.

Share and enjoy!

1

±Don_Yacktman@byu.edu

1
Douglas Adams, The Hitchhiker's Guide to the Galaxy.    :-)


