
Release 0.1    Copyright ã1994 by Steve Hayman & Associates    All Rights Reserved.

MiscShell

Inherits From: Object

Declared In: misckit/MiscShell.h

Class Description

A MiscShell object combines a MiscSubprocess object (which executes a Unix process) with a MiscStringArray
object (which holds the individual lines of output), and features a target/action paradigm so that messages can
be sent to other objects for each line of process output.

NOTE: If you want to load the MiscShell palette, you must load the MiscString palette first.    The MiscShell object
needs to use the MiscString class, and expects to find it already loaded by Interface Builder.

You can use a MiscShell on its own to capture the output of a Unix command into a MiscStringArray.    In
addition, MiscShell includes a variety of convenience methods to facilitate hooking up MiscShell objects from

within Interface Builder.    The MiscShell palette provides a MiscShell object with an inspector that can be used to
type up a shell script for the MiscShell to execute, and allows you to prepare a script, hook up target/action
methods, indicate where the shell's standard output should go and so on, all totally inside of Interface Builder.   
You can build some interesting
programs that do Unix-y file manipulation type things in this way, without writing any Objective-C code at all.

MiscShell operates more or less like this when told to execute a particular Unix command or shell script.

· Collect the values of various UI objects it knows about, and add their values to the subprocess's environment;
· Create a MiscSubprocess to execute the script;
·    for each line of output from the script

send a target/action message
display that line of output on a UI object
add that line of output to a list

Running a command and examining its output

The idea is that you allocate and initialize a MiscShell object, tell it what script to execute, and tell it to execute
that script.    The MiscShell collects the output generated by the script into individual lines and keeps these lines
in a MiscStringArray.

A convenience method initWithCommand: is available to simplify the execution of some commands.    You give
this method a command you would like to have executed, and it executes it and returns when the command has
completed.    For instance, suppose you want to run the who command to count the number of users logged into

your machine. You might use it like this:

id myShell = [[MiscShell alloc] initWithCommand:"who"];
printf("There are %d users\n", [myShell lineCount];

and you could loop through the individual lines of output with the line: method, which returns a MiscString object
containing the contents of line i:

for (i = 0; i < [myShell lineCount]; i++) {
 printf("Line %d: %s\n", i, [[myShell line:i] stringValueAndFree]);

(You must free the object returned by the line: method yourself.)    You can also use the line:field: method to
extract a particular field of a particular line:

/* Username is the first field of the "who" output */
printf("First User: %s\n", [[myShell line:0 field:0] stringValueAndFree];

MiscShell is using a MiscStringArray internally to store the individual lines of script output; you can get access
to this array directly with the lines method.

Displaying Standard Output on User Interface objects

With Interface Builder, you can drag a MiscShell off of its palette and set some of its instance variables to other
objects in your user interface.      You can use MiscShell's inspector to type up a simple Unix script, or you can
arrange for the script itself to be taken from the title, altTitle or stringValue of other objects in the interface This
gives you an easy way, without writing any Objective-C,    to run a Unix command and display its output.

A MiscShell object can be connected to display its standard output on a variety of different user interface objects

· Text Fields
· Scrolling Text objects
· One-column NXBrowsers
· DBTableView or NXTableView, with the output separated into columns
· Anything else that understands setStringValue

by connecting the object's standardOutput outlet to a suitable user interface object.    MiscShell knows how to
write data to various different UI objects.

If standardOutput is a ... each line of output is ...

TextField Written to the text field, replacing the previous contents
Scrolling Text Written to the text, appended after the previous contents
NXBrowser Appended as another row to the (single-column) browser.

(The MiscShell automatically sets itself to
 be the delegate of the browser.)

DBTableView / NXTableView Split into fields and appended to the table view.
(The MiscShell automatically sets itself to
    be the data source of the table view.)

Another MiscShell Written to the shell's standard input.
(Untested.)

Each line of data written to a Table View is split into fields according to the separator instance variable, and
individual fields will appear in individual columns of the table view.

In addition, the MiscShell supports the standard target/action paradigm.    Each time the MiscShell reads a

complete line of output from the MiscSubprocess, it will execute the desired target/action message.

By default, MiscShell's executeScript: method will execute a command asynchronously, meaning that the
executeScript: method will return right away, and the MiscShell will keep an eye on data being written by the
subprocess and will wake up and handle it whenever necessary.      This is OK for a long-running command, but
sometimes you would like the shell just to read all the data and return from the executeScript: method when the
script has completed.    You can do this by setting the runToCompletion variable.

Taking Values from user interface objects.

You can also connect four instance variables v1, v2, v3, v4 to other UI objects in your program.    Before the
script executes, MiscShell checks the stringValue of each of these objects and adds "varname=stringValue"
statements to the script's Unix environment.    For instance, if you have connected v1 to a slider, and then
execute the script, the script will be able to check the $v1 environment variable to find the current value of the
slider.

If the variable is connected to a DBTableView, MiscShell will figure out the value of the currently selected rows of
the table view and use that as the value of the variable (with columns separated by tabs, and rows by newlines.)

The MiscShell also adds a few other special convenience environment variables that your script can consult.

$sender The string value of the object that sent the execute* method.
$senderTag The tag of the object that sent the execute* method.
$mainBundle The pathname of the application's mainBundle.

Magic Output Strings

Certain magic strings in the subprocess's output will cause MiscShell to take special actions.    If your subprocess
outputs the string    ALERT;a message here;Yes;No MiscShell will split up the line on the semicolons (which
must be included) and pass the arguments to NXRunAlertPanel() , and write the (integer) result of the Alert
panel back to the shell's input.    So your shell could read that line of input and react accordingly.

echo 'ALERT;Are you sure you want to reformat the disk?;Yes;No'
MiscShell now runs an alert panel and writes the result
of NXRunAlertPanel to this process. We'll read 1 for Yes,
0 for No.
read ans
case $ans in
1) # yes

reformat-disk ;;
*) # no

;;
esac

The string OPEN causes MiscShell to pop up an Open panel to prompt for a filename.    The file chosen will then
be written back to the subprocess.

The string var=value, where var is one of v1, v2, ... v9, will cause the message [var setStringValue:value]    to be
sent.    This gives the shell script a way to write specific values to specific user interface objects.    For instance,
you could connect v2 to some text field, and during execution your script could do

echo v2=`date`

which would display the current date on that text field.

If MiscShell recognizes one of these special lines, it performs the appropriate action but does NOT do the normal
target/action and standard output handling that would otherwise happen.

DBTableView and NXTableView

This section isn't written yet.    It will describe how you can make a MiscShell a delegate of a DBTableView (which
it sets up automatically if you make the table view the MiscShell's standard output), and have the MiscShell
resort its output in response to column moves in the table view.    Go try it.

Instance Variables

id standardOutput;
id standardError;
id standardInput;
id v1;
id v2;
id v3;
id v4;
SEL action;
MiscString *script;
MyMiscSubprocess *process;
MiscString *currentLine;
MiscString *fullOutput;
BOOL currentLineIsComplete;

BOOL executionInProgress;
BOOL runToCompletion;
MiscString *execArg0;
MiscString *execArg1;
MiscString *execArg2;
MiscStringArray *lines;
char delimiter;

standardOutput An object to which the script's standard output should be sent

standardError An object to which the script's standard error should be sent.

standardInput Not currently implemented.

v1, v2, v3, v4 Objects whose string values can be interpolated into the script as it executes.

action The message sent to the shell's target.

script A MiscString containing the actual shell script to be executed.

process The MiscSubprocess that's created to execute the script.

currentLine The current output line from the script.

fullOutput A MiscString containing all the output generated by the script.

currentLineIsComplete Indicates whether the currentLine string is complete - i.e. includes output up to a
newline.

executionInProgress If true, the subprocess is currently executing.

runToCompletion If true, the executeScript: method should run the script and wait for it to
complete, rather than launching it and returning.

execArg0 No description.

execArg1 No description.

execArg2 No description.

lines A MiscStringArray containing the individual output lines generated by the script.

delimiter A field separator character, used to split individual output lines into fields.    If 0,
lines will be split on word boundaries (whitespace).

Method Types

- action
- delimiter
- doubleValue
- executeFromAltTitle:
- executeFromStringValue:
- executeFromTitle:
- executeScript:
- fieldsInLine:
- floatValue
- free
- init

- initWithCommand:
- intValue
- lines
- line:
- line:field:
- pause:
- read:
- resume:
- runToCompletion
- script
- setAction:
- setDelimiter:
- setExecArgs:::
- setRunToCompletion:
- setScript:
- setTarget:
- stringValue
- target
- takeStdinFrom:
- terminate:
- write:

Instance Methods

action

-    (SEL)action

Returns the action message sent to the script's target whenever a complete line has been read.

See also:

delimiter
-    (char)delimiter

Returns the character used to split output lines into fields.    If it's 0, output lines will be split on word (whitespace)
boundaries.

See also:

doubleValue
-    (double)doubleValue

Equivalent to atof([self stringValue]).

See also:

executeFromAltTitle:
-    executeFromAltTitle:sender

Asks the sender for its altTitle, sets its script to that string, and executes the script.    You might set up a button to
send this message to the MiscShell, and give the button a Unix command as its alternate title (which can be set

in the Button inspector in Interface Builder).

See also:

executeFromStringValue:
-    executeFromStringValue:sender

Sets the script to be the sender's stringValue, and executes the script.

See also:

executeFromTitle:
-    executeFromTitle:sender

Sets the script to be the sender's title, and executes the script.

See also:

executeScript:
-    executeScript:sender

Executes the script, which should have been set by one of the other methods..

See also:

fieldsInLine:
-    (int)fieldsInLine:(int)lineNum

Returns the number of fields in output line lineNum

See also:

floatValue
-    (float)floatValue

Equivalent to atof([self stringValue]) .

See also:

free
-    free

Terminates the subprocess, frees its allocated instance variables and itself.

See also:

init
-    init

Initializes a newly allocated MiscShell.    Sets the script to an empty MiscString, sets delimiter to '\0', sets
runToCompletion to NO, and returns.    You'll need to set the script somehow after using init.

See also:

initWithCommand:
-    initWithCommand:(const char *)command

A convenience method that initializes a newly allocated MiscShell,    sets the script to the indicated command,
sets runToCompletion to YES, executes the script, and waits for it to complete before returning.

See also:

intValue
-    (int)intValue

Equivalent to atoi([self stringValue]).

See also:

lines
- (MiscStringArray *) lines

Returns the MiscStringArray object that the MiscShell is using to store individual lines of the process's output.   
You're on your honour not to muck around with it.

See also:

line:
- (MiscString *) line:(int)lineNum

Returns a newly allocated MiscString object containing the contents of output line lineNum.    You should free this
string yourself when you're done with it.    The first line is line 0.

See also:

line:field:
- (MiscString *) line:(int)lineNum field:(int)fieldNumber

Returns a newly allocated MiscString object containing the contents of field number fieldNumber of output line
lineNum.    The appropriate output line is split into fields according to the delimiter variable.    If it's 0, fields are
split into whitespace-delimited words.    The first field is field 0.

See also:

lines
- (MiscStringArray *) lines

Returns the MiscStringArray object that the MiscShell is using to store individual lines of the process's output.   
You're on your honour not to muck around with it.

See also:

lineCount
- (int) lineCount

Returns the number of output lines received so far.

See also:

pause:
-    pause:sender

Sends pause: to the MiscSubprocess object.

See also:

read:
-    read:(NXTypedStream *)stream

Your basic archiving method.

See also:

resume:
-    resume:sender

Sends resume: to the MiscSubprocess object.

See also:

runToCompletion
-    (BOOL)runToCompletion

If true, the executeScript: method will launch the subprocess, read all of its output into the lines array, and wait
for the script to execute before completing.    If false, the executeScript: method merely launches the
subprocess and returns without waiting for it to complete.

See also:

script
-    (MiscString *)script

Returns the shell script to be executed.

See also:

setAction:
-    setAction:(SEL)anAction

Set the action message to be sent whenever the script produces a complete line of output.

See also:

setDelimiter:
-    setDelimiter:(char)c

Sets the delimiter character to be used when splitting individual output lines into fields.

See also:

setExecArgs:::
-    setExecArgs:(const char *) a1: (const char *)a2 :(const char *)a3

Sets the strings to be used by the custom subclass of MiscSubprocess when executing the child script.    By
default, these are "/bin/sh", "sh", "-c".

See also:

setRunToCompletion:
-    setRunToCompletion:(BOOL)c

Sets the runToCompletion flag.

See also:

setScript:
-    setScript:(MiscString *)script

Set the script to be executed to the indicated MiscString.

See also:

setTarget:
-    setTarget:aTarget

Set the target object to which messages should be sent after each line read.

See also:

stringValue
-    (const char *)stringValue

Returns the last complete line of output read.

See also:

takeStdinFrom:
-    takeStdinFrom:sender

Asks sender for its stringValue, and writes that string to the standard input of the script.      Presumably the script
will then read this value.

See also:

target
-    target

The target object to which target/action messages should be sent.

See also:

terminate:
-    terminate:sender

Sends the terminate: message to the MiscSubprocess.

See also:

write:
-    write:(NXTypedStream *)stream

Your basic archiving method.

See also:

- writeToStdin:(const char *)str

Writes some data to the process's standard input.

