
Copyright Ó 1995 by original authors (see below).    All rights reserved.

«This document contains excerpts from a discussion between Monty (IBMole 
author) and Art Isbell.    It contains information that might help you a bit when 
using the IBMole.    Unquoted text is Art's, quoted text (lighter gray) is 
Monty's.Ðdon»

I had about given up on making changes to outlets and 
actions because everything I tried failed.    I then discovered that the 
string arguments for many IB methods aren't NXStrings, but are 
instances of a NXString subclass defined only in the IB executable, 
IPCConcreteCollectedStrings (!).    NXString appears to be an 



abstract superclass providing no storage of its own (early shades of 
the new class cluster concept, I guess).

But instantiating IPCConcreteCollectedStrings in IBMole 
clients was problematic because no implementation is available.    
Several other private IB classes would be nice to use as well.    So I 
decided to ask for the class object through the IBMole by adding 
the -getClass: method.

Voila!!    It works!    So now I can instantiate any IB class in 
my IBMole client.    For example, to change the name of the File's 
Owner's outlet "foo" to "bar":



id foo = [[[server
getClass:"IPCConcreteCollectedString"]
alloc]
initFromCString:"foo"];

id bar = [[[server
getClass:"IPCConcreteCollectedString"]
alloc]
initFromCString:"bar"];

id className = [[activeDocument rootObject] className];

[activeDocument renameOutlet:foo of:className to:bar];

Connections can be changed or added using 
IPCConcreteCollectedString arguments as well.    So this has been 



a really powerful addition to your IBMole capability.
Another problem I had difficulty solving was programmatically 

setting window options (Hide On Deactivate, Deferred, etc.).    
Apparently, IB methods access the WindowTemplate directly with 
no methods available to set the _windowFlags struct members.    
So I defined WindowTemplate category methods in IBMole.m that 
can be used to set the various window options.

My IBMole.m (try this stuff in C++ :-):

«Art's changes have already been folded into the IBMole you have on your 
palette.Ðdon»



My guess is that you are asking for the current document too soon 
after asking the workspace to open it.    I would put in a delay or 
something.    Ever notice how IB seems to wait a few seconds to 
change the filename on a nib you just renamed?    It seems to do 
some stuff with delayed events, and that might be tricking things up 
because your request for the current document is the first event in 
line, heck you might even be beating the workspace there! 

This is indeed a problem.    I have inserted at loop that tests for 
the existence of an active document in IB and doesn't move on until 
there is.



The best thing might be to modify the IBMole to do something with 
the event loop to synchronize things.    I don't know exactly what, 
but it could register a callback to you and put a really low priority 
event in the queue and when it gets called with the event call you 
back to let you know it's time to go.    Eek, that sounds ugly. 

Ugly and unnecessary.    I sheepishly report that my problem 
was in assuming that getObjects: emptied its List argument before 
filling it, but it apparently prepends new objects to any already in 
the list :-(    So the crash occurred when the first object from the 
previous (closed) document was sent a message.    Leaving 
previous documents open worked fine, although each was 



processed repeatedly :-)
Here's my IBMole client template that opens each nib 

argument, allows modifications to the active document itself, allows 
modifications to each object in the active document, saves the 
changes, and closes the document.    It even attempts to recover 
gracefully should IB die or be terminated by a user :-)

template.m ¬template.m

I've been trying to figure out a way to rename outlets and 
delete actions using IBMole.    So far, I've been unsuccessful.    I've 



been able to open a nib and open the Class Inspector to the 
desired class, but I then have to make the changes manually.    This 
is pretty powerful as is, but I would like to be able to do all of this 
programmatically to minimize the chance for errors.    Do you have 
any ideas?

The magic incantation to open the File's Owner Class 
Inspector is:

[activeDocument editClass:
[[activeDocument rootObject] className]];


