
Release 1.0    Copyright ã1993 by Don Yacktman.    All Rights Reserved.

String

Inherits From: Object

Declared In: String.h

Class Description

A String object contains a simple text string and provides methods for it's manipulation, encompassing all the 
functions available in <strings.h>.    The String object automatically handles the freeing and copying of character 
strings.    Although it simplifies string operations, it does not yet incorporate the benefits of the NXAtom type, 
which you may wish to use instead.

A String is created through the normal process of ±alloc and ±init.    It may be set to a specific string by means of 
the ±setString: and ±setStringValue: methods.    To copy an existing String, use the ±copy and 
±copyFromZone: methods.    To copy a portion of a string, use the ±left:, ±midFrom:, and ±right: methods.    
Use the ±concatenate: and ±cat: methods to concatenate another string onto the end of the string in the buffer. 
If the current buffer is too small, it is enlarged.    Use ±free to free a String and it's buffer or ±freeString to free 
just the buffer.

The ±length method returns the length of the string currently in the buffer and ±stringValue returns a pointer to 
the string itself.    The ±index: method returns a pointer to the first occurence in the buffer of a specific character 
and ±rindex returns a pointer to the last occurence.



You may compare strings to each other by means of the various ±isEqual:, ±cmp:, ± casecmp:, and 
±compareTo: methods.    The ±isEqual: and ±compareTo: methods are preferred, since they use 
NXStringOrderTables to make the comparison and are therefore more accurate with respect to international, 
accented, and ligature characters.    If you need to use a table different from the default, use the 
±setStringOrderTable: method.

A String my be archived by means of the ±read: and ±write: methods.

Instance Variables

int length;
int _length;
char *buffer;

length Length of string currently in storage

_length Length in bytes of allocated buffer

buffer Stored character string

Method Types

Initializing and freeing a String ± init
± allocateBuffer:
± allocateBuffer:fromZone:

± free
± freeString

Copying a String ± copyFromZone:
± left:



± left:fromZone:
± right:
± right:fromZone:
± midFrom:to:
± midFrom:to:fromZone:
± midFrom:length:
± midFrom:length:fromZone:

Manipulating a String ± cat:
± cat:n:
± cat:fromZone:
± cat:n:fromZone:
± concatenate:
± concatenate:n:
± concatenate:fromZone:
± concatenate:n:fromZone:
± setString:
± setString:fromZone:
± setStringValue:
± setStringValue:fromZone:

Querying attributes ± cmp:
± cmp:n:
± casecmp:
± casecmp:n:
± compareTo:
± compareTo:n:
± compareTo:caseSensitive:
± compareTo:n:caseSensitive:
± index:
± isEqual:

± length
± rindex:



± setStringOrderTable:
± stringOrderTable
± stringValue

Archiving ± read:
± write:

Instance Methods

± allocateBuffer:
± allocateBuffer:fromZone:

allocateBuffer:
- allocateBuffer:(int)size

If the current buffer is less than size bytes, then it is freed and a new buffer is allocated from the receiver's zone 
to be size bytes in length.    Returns self.

See also:    -allocateBuffer:fromZone:

allocateBuffer:fromZone:
- allocateBuffer:(int)count fromZone:(NXZone *)zone

If the current buffer is less than size bytes, then it is freed and a new buffer is allocated from zone to be size 
bytes in length.    Returns self.    You do not need to directly call this method, since the ±copyFromZone: and 
other methods do this automatically.    However, you may wish to call this method after calling ±init for String 
objects which will dynamically change in size often.    By allocating a buffer which is as least as large as you 
expect the String to grow to during it's lifetime, your application may run faster.    This is because the String object 
won't have to dynamically grow as often, an operation which can slow things down.

See also:    -allocateBuffer:, -copyFromZone:, and    -setString:fromZone:



casecmp:
- (int)cmp:(const char *)aString

Calls strcasecmp() to perform a case insensitive comparison of buffer and aString.    Return values follow the 
same rules as strcasecmp().    This method is provided for those cases in which String objects are not in use, 
and therefore only a char pointer is available.    It is also useful with constant strings.    The ±compareTo: 
methods are preferred for use whenever possible, since they work with objects and use the current string 
ordering table.

See also:    - casecmp:n:, - cmp:, - cmp:n:, - compareTo:, - compareTo:caseSensitive:, - compareTo:n:, and 
- compareTo:n:caseSensitive:

casecmp:n:
- (int)cmp:(const char *)aString n:(int)n

Calls strncasecmp() to perform a case insensitive comparison of at most the first n characters buffer and 
aString.    Return values follow the same rules as strncasecmp().    This method is provided for those cases in 
which String objects are not in use, and therefore only a char pointer is available.    It is also useful with constant 
strings.    The ±compareTo: methods should be used whenever possible, since they work with objects and use 
the current string ordering table.

See also:    -casecmp:, -casecmp:n:, -cmp:n:, -compareTo:, -compareTo:caseSensitive:, -compareTo:n: 
and    -compareTo:n:caseSensitive:

cat:
- cat:(const char *)aString

Calls strcat() to concatenate buffer and aString.    If the current size of buffer is not large enough to fit the 
concatenation of the two strings, then a new, larger buffer is allocated from the String's zone.    Returns self.    
This method is provided for those cases in which String objects are not in use, and therefore only a char pointer 



is available.    It is also useful with constant strings.    The ±concatenate: methods are preferred for use 
whenever possible, mainly because they work with objects.

See also:    -cat:fromZone:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, 
-concatenate:n: and    -concatenate:n:fromZone:

cat:fromZone:
- cat:(const char *)aString fromZone:(NXZone *)zone

Calls strcat() to concatenate buffer and aString.    If the current size of buffer is not large enough to fit the 
concatenation of the two strings, then a new, larger buffer is allocated from zone.    Returns self.    This method is 
provided for those cases in which String objects are not in use, and therefore only a char pointer is available.    It 
is also useful with constant strings.    The ±concatenate: methods are preferred for use whenever possible, 
mainly because they work with objects.

See also:    -cat:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and    
-concatenate:n:fromZone:

cat:n:
- cat:(const char *)aString n:(int)n

Calls strncat() to concatenate buffer and up to the first n bytes of aString.    If the current size of buffer is not 
large enough to fit the concatenation of the two strings, then a new, larger buffer is allocated from the String's 
zone.    Returns self.    This method is provided for those cases in which String objects are not in use, and 
therefore only a char pointer is available.    It is also useful with constant strings.    The ±concatenate: methods 
are preferred for use whenever possible, mainly because they work with objects.

See also:    -cat:, -cat:fromZone:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, 
-concatenate:n: and    -concatenate:n:fromZone:

cat:n:fromZone:



- cat:(const char *)aString n:(int)n fromZone:(NXZone *)zone

Calls strncat() to concatenate buffer and up to the first n bytes of aString.    If the current size of buffer is not 
large enough to fit the concatenation of the two strings, then a new, larger buffer is allocated zone.    Returns self. 
This method is provided for those cases in which String objects are not in use, and therefore only a char pointer 
is available.    It is also useful with constant strings.    The ±concatenate: methods are preferred for use 
whenever possible, mainly because they work with objects.

See also:    -cat:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and    
-concatenate:n:fromZone:

cmp:
- (int)cmp:(const char *)aString

Calls strcmp() to compare buffer and aString.    Return values follow the same rules as strcmp().    This method 
is provided for those cases in which String objects are not in use, and therefore only a char pointer is available.    
It is also useful with constant strings.    The ±compareTo: methods are preferred for use whenever possible, 
mainly because they work with objects and use the current string ordering table.

See also:    -casecmp:, -casecmp:n:, -cmp:n:, -compareTo:, -compareTo:caseSensitive:, -compareTo:n: 
and    -compareTo:n:caseSensitive:

cmp:n:
- (int)cmp:(const char *)aString n:(int)n

Calls strncmp() to compare at most the first n characters buffer and aString.    Return values follow the same 
rules as strncmp().    This method is provided for those cases in which String objects are not in use, and 
therefore only a char pointer is available.    It is also useful with constant strings.    The ±compareTo: methods 
are preferred for use whenever possible, since they work with objects and use the current string ordering table.

See also:    - casecmp:, - casecmp:n:, - cmp:, - compareTo:, - compareTo:caseSensitive:, - compareTo:n:,  
and    - compareTo:n:caseSensitive:



compareTo:
- (int)compareTo:(id)sender

Identical to calling the ±compareTo:caseSensitive: method with a YES as the value of sense.

See also:    - compareTo:caseSensitive:, - compareTo:n: and    - compareTo:n:caseSensitive:

compareTo:caseSensitive:
- (int)compareTo:(id)sender caseSensitive:(BOOL)sense

Identical to the ±compareTo:n:caseSensitive: method, but the entire length of the shortest string is used to 
make the comparison.    This is like calling ±compareTo:n:caseSensitive: with n set to -1.

See also:    - compareTo:, - compareTo:n: and    - compareTo:n:caseSensitive:

compareTo:n:
- (int)compareTo:(id)sender n:(int)n

Identical to calling the ±compareTo:n:caseSensitive: method with a YES as the value of sense.

See also:    - compareTo:, - compareTo:caseSensitive: and    - compareTo:n:caseSensitive:

compareTo:n:caseSensitive:
- (int)compareTo:(id)sender n:(int)n caseSensitive:(BOOL)sense

Compares the string in buffer to the ±stringValue of sender.    No more than the first n characters are used to 
make the comparison.    If n is -1, it is as if the method were called with n set to the length of the shorter of the 
two strings.    If sense is YES, then the comparison is case sensitive.    If sense is NO, then the comparison 
ignores case.    The value returned is zero if the strings are equal, -1 if the receiver is less than sender, and 1 
otherwise.    The current string ordering table is used to make the comparison.    This method is basically a cover 



for NXOrderStrings().

See also:    - compareTo:, - compareTo:caseSensitive:, and - compareTo:n:

concatenate:
- concatenate:(id)sender

Adds the String sender to the end of the string in buffer.    If the current size of buffer is not large enough to fit the 
concatenation of the two strings, then a new, larger buffer is allocated from the String's zone.    Returns self.

See also:    -cat:fromZone:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, 
-concatenate:n: and    -concatenate:n:fromZone:

concatenate:fromZone:
- concatenate:(id)sender fromZone:(NXZone *)zone

Adds the String sender to the end of the string in buffer.    If the current size of buffer is not large enough to fit the 
concatenation of the two strings, then a new, larger buffer is allocated from zone.    Returns self.

See also:    -cat:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and    
-concatenate:n:fromZone:

concatenate:n:
- concatenate:(id)sender n:(int)n

Adds up to the first n bytes of the String sender to the end of the string in buffer.    If the current size of buffer is 
not large enough to fit the concatenation of the two strings, then a new, larger buffer is allocated from the String's 
zone.    Returns self.

See also:    -cat:, -cat:fromZone:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, 
-concatenate:n: and    -concatenate:n:fromZone:



concatenate:n:fromZone:
- concatenate:(id)sender n:(int)n fromZone:(NXZone *)zone

Adds up to the first n bytes of the String sender to the end of the string in buffer.    If the current size of buffer is 
not large enough to fit the concatenation of the two strings, then a new, larger buffer is allocated zone.    Returns 
self.

See also:    -cat:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and    
-concatenate:n:fromZone:

copyFromZone:
- copyFromZone:(NXZone *)zone

Returns a new String.    Memory for the new String is allocated from zone.    The string stored in buffer is copied.

free
- free

Deallocates the String and the contents of buffer.

freeString
- freeString

Frees the contents of buffer and sets the length of the String to zero.

index:
- (const char *)index:(char)aChar

Returns a pointer to the first occurence of aChar in the buffer.



See also:    -rindex:

init
- init

Initializes a new String.    Returns self.

isEqual:
- (BOOL)isEqual:(id)anObject

Returns YES is the string value of anObject is the same as the string value of the receiver.

left:
- left:(int)count

Returns a new String object which is composed of the first count characters of buffer.    The new object is 
allocated from the receiver's zone.

See also:    -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, 
-midFrom:to:fromZone:, -right: and    -right:fromZone:

left:fromZone:
- left:(int)count fromZone:(NXZone *)zone

Returns a new String object which is composed of the first count characters of buffer.    The new object is 
allocated from zone.

See also:    -left:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, -midFrom:to:fromZone:, 
-right:, and    -right:fromZone:



length
- (int)length

Returns the length of the string in buffer.

midFrom:length:
- midFrom:(int)start length:(int)len

Returns a new String object which is composed of len characters of buffer starting with the startth character.    
The new object is allocated from the receiver's zone.

See also:    -left:, -left:fromZone:, -midFrom:length:fromZone:, -midFrom:to:, -midFrom:to:fromZone:, 
-right:, and -right:fromZone:

midFrom:length:fromZone:
- midFrom:(int)start length:(int)len fromZone:(NXZone *)zone

Returns a new String object which is composed of len characters of buffer starting with the startth character.    
The new object is allocated from zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:to:, -midFrom:to:fromZone:, -right:, and 
-right:fromZone:

midFrom:to:
- midFrom:(int)start to:(int)end

Returns a new String object which is composed of the characters of buffer from the startth character to the endth 
character inclusive.    The new object is allocated from the receiver's zone.



See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:fromZone:, 
-right:, and -right:fromZone:

midFrom:to:fromZone:
- midFrom:(int)start to:(int)end fromZone:(NXZone *)zone

Returns a new String object which is composed of the characters of buffer from the startth character to the endth 
character inclusive.    The new object is allocated from zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, -right:, and 
-right:fromZone:

read:
- read:(NXTypedStream *)stream

Reads the String from the typed stream stream.    Returns self.

See also:    - write:

right:
- right:(int)count

Returns a new String object which is composed of the last count characters of buffer.    The new object is 
allocated from the receiver's zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, 
-midFrom:to:fromZone:, and    -right:fromZone:

right:fromZone:
- right:(int)count fromZone:(NXZone *)zone



Returns a new String object which is composed of the last count characters of buffer.    The new object is 
allocated from zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, 
-midFrom:to:fromZone:, and -right:

rindex:
- (const char *)rindex:(char)aChar

Returns a pointer to the last occurence of aChar in the buffer.

See also:    -index:

setString:
- setString:(const char *)aString

Copies aString into buffer.    If buffer is not large enough, the old buffer is freed and a new buffer is allocated from 
the receiver's zone.    Returns self.

See also:    -setString:fromZone:, -setStringValue:, and ±setStringValue:fromZone:

setString:fromZone:
- setString:(const char *)aString fromZone:(NXZone *)zone

Copies aString into buffer.    If buffer is not large enough, the old buffer is freed and a new buffer is allocated from 
zone.    Returns self.

See also:    -setString:, -setStringValue:, and -setStringValue:fromZone: 

setStringOrderTable:



- setStringOrderTable:(NXStringOrderTable *)table

Sets the NXStringOrderTable used by the ±compareTo: methods.    Returns self.    If not programmatically set 
using this method, an instance of String will use the default system string table.

See also:    -stringOrderTable: and -compareTo:n:caseSensitive: 

setStringValue:
- setStringValue:(id)sender

Copies the string value of sender into buffer.    If buffer is not large enough, the old buffer is freed and a new 
buffer is allocated from the receiver's zone.    Returns self.

See also:    -setString:, ±setString:fromZone:, and -setStringValue:fromZone:

setStringValue:fromZone:
- setStringValue:(id)sender fromZone:(NXZone *)zone

Copies the string value of sender into buffer.    If buffer is not large enough, the old buffer is freed and a new 
buffer is allocated from zone.    Returns self.

See also:    -setString:, ±setString:fromZone:, and -setStringValue:

stringOrderTable
- (NXStringOrderTable *)stringOrderTable

Returns the NXStringOrderTable used to make comparisons between strings.

See also:    -compareTo:n:caseSensitive: and ±setStringOrderTable:

stringValue



- (const char *)stringValue

Returns buffer, a pointer to the string value.

write:
- write:(NXTypedStream *)stream

Writes the String to the typed stream stream.    Returns self.

See also:    - read:


