
Building Applications

Building Applications

Building Applications

Two important application builder programs:

Interface Builder (IB) - for building the screen interface for
the application.

Project Builder (PB) - for managing the files needed to build
the application.

This section provides an overview of these two programs. It
is not intended to be a tutorial on how to use them.

4 - 1

Building Applications

Interface Builder

Interface Builder (IB) lets the user:

Use Application Kit objects to design user interfaces.

Inspect/change initial values of objects.

Make connections between objects.

Test the interface.

Design custom objects (subclasses of AppKit objects).

4 - 2

Building Applications

The Application Kit

A library of user-interface objects that you can
select from to be placed into your application’s
window.

AppKit objects include such items as buttons,
sliders, panels, switches, views, etc.

In general, your application will include a number of
AppKit objects and one or more subclasses of
Object (containing the logic of your application) and
View (drawing code unique to your application).

4 - 3

Building Applications

4 - 4

Building Applications

Changing instance variable
values

Once an object is added to your application, IB
allows you to change the values of many instance
variables directly.

For example, changing the size of a button on the
screen changes the values of some of the Button
object’s instance variables.

Instance variables for objects not easily changed
graphically can be changed using the Inspector
Window.

4 - 5

Building Applications

4 - 6

Building Applications

Making connections

Interface Builder lets you interconnect objects so
they can send messages to one another.

Simply control-drag from the source object to the
destination object, then specify the connection.

Connections are made through an object’s outlets.

An outlet is an instance variable of type id that is a

pointer to the intended receiver of a message.

When your application begins execution, outlet
variables are automatically initialized to the ids of

the objects you connect to in Interface Builder.

4 - 7

Building Applications

Two types of connections:

1. Simple Outlet: Outlet of a non-control object to
some other object.

Example: a Window object has an instance variable
delegate which needs to be initialized to the id of
the object that is going to be the delegate (so the
window can send messages to it).

In IB the user can control-drag from the window to
the chosen object, and then specify a "connection"
for the delegate outlet.

4 - 8

Building Applications

Window’s delegate outlet is connected to an instance of MyObject:

4 - 9

Building Applications

2. Target-Action: Outlet of a control object to the
action method of some other object.

Controls have a special outlet called target which can

only connect to action methods. The paradigm is:

Control sends action message to target:

[target actionMethodName:self];

Action method is defined in target object:

-actionMethodName:sender {
<code to take action>
return self;
}

4 - 10

Building Applications

MenuCell’s target outlet connects to Window’s orderFront: action method.

4 - 11

Building Applications

Testing the interface

Interface Builder has a test interface mode which
allows testing of the newly-connected interface
objects.

Only the objects obtained from Interface Builder
palettes are fully functioning in the test interface
mode. New custom objects are not.

4 - 12

Building Applications

Designing custom objects

Interface Builder allows you to specify new custom
objects as subclasses of AppKit objects or of the
root Object class.

4 - 13

Building Applications

Here we define a displayOut outlet and a start: action method for

the new MyObject class.

4 - 14

Building Applications

IB will unparse the new class definitions to generate
skeleton files of these new classes. The remainder
of the class definition must be typed in by the user
(using Edit, for example).

4 - 15

Building Applications

The skeleton interface file (MyObject.h) created by
the unparse operation in IB for the MyObject
custom object above is:

#import <appkit/appkit.h>

@interface MyObject:Object
{
 id displayOut;
}

- start:sender;

@end

4 - 16

Building Applications

The skeleton implementation file (MyObject.m)
created by IB for the same custom object is:

#import "MyObject.h"

@implementation MyObject

- start:sender
{
 return self;
}

@end

4 - 17

Building Applications

The "nib" File

The interface you develop is saved in an Interface
Builder file which has a ".nib" extension.

The nib file contains all of the class information and all
specifications for the AppKit objects in the interface.

The nib file contains information about how outlets
should be initialized, about action messages and their
targets, sound and icon data, and a reference to an
owner object ("File’s Owner").

4 - 18

Building Applications

The "nib" File
(continued)

When your application is compiled and built (see
Project Builder later), the nib file is included in the
application’s file package.

When your application is run, your Application Object
creates objects and initializes outlets using information
from the nib file.

An application can have more than one nib file, but
only one can be the main nib file (which includes the
main menu).

4 - 19

Building Applications

The objects stored in the nib file are those in the main
window, plus those represented by icons in the File Window:

File’s Owner is the only object outside of the nib file that a
connection can be made to. By default, the owner of the
main nib file is the Application Object.

4 - 20

Building Applications

Project Builder

Project Builder (PB):

Manages in one project directory all of the files and
resources used to build the application. These files
include the nib files built in Interface Builder.

Maintains a project file called PB.project to organize the
files.

4 - 21

Building Applications

4 - 22

Building Applications

Project Builder:

Creates and updates several other files, including:

- the Makefile for compiling and linking.

- the default main file containing the main() function.
This function messages the Application object to load
the nib file(s).

- the icon header file (.iconheader extension)
containing information about the icons associated with
the application and its documents.

4 - 23

Building Applications

All of these files are kept in the project directory and its
subdirectories:

4 - 24

Building Applications

Project Builder: Builds and runs the application,
optionally using the debugger.

4 - 25

Building Applications

Steps for Building Applications

If no custom objects, one main nib:

1) In PB, create a new project and main nib file.

2) Open the nib file in IB and draw the user interface.

2) Make connections in IB.

3) Save IB file.

5) In PB, build and run.

4 - 26

Building Applications

If custom objects, one main nib:

1) In PB, create a new project and main nib file.

2) Open the nib file in IB and draw the user interface.

3) Make connections in IB (between interface objects).

4) Create custom object(s) in IB
Subclass Object or View (or some other)
Instantiate custom object
Edit object using Inspector
Add actions and outlets
Make connections to custom object

4 - 27

Building Applications

If custom objects, one main nib (cont’d):

5) Unparse custom object

6) Add instance variables to .h file

7) Add code and #import’s to .m file

8) Save Files

9) In PB, build and run.

4 - 28

Building Applications

References

NeXT documentation manuals.

NeXTSTEP Applications Programming: A Hands-On Approach, by

Simson Garfinkel and Michael K. Mahoney, Spring-Verlag, 1992.

The best book anywhere on developing applications under

NeXTSTEP.

4 - 29

