
DMA Release 0.8    Copyright ã1995 by Genesis Project, Ltd.    All Rights Reserved.

MiscCoord

Inherits From: Object

Declared In: misckit/miscgiskit/MiscCoord.h

Class Description

MiscCoord is an abstract superclass, but it can be used on it's own if necessary.    MiscCoord objects are
containers for an arbitrary number of    points. A point is a vector of double precision floating point numbers
which represent a ªlocationº, usually spatial,    in an arbitrary coordinate system.    Coordinate systems come in
many flavors, and the MiscCoord class does not specify any particular one:    that is the purpose of subclasses.   
There are currently subclasses for mathematical coordinate systems such as cartesian, cylindrical, and spherical
and geographic coordinate systems such as world and Universal Transverse Mercator (in numerous guises).   
More generally (and technically), a coordinate system for a MiscCoord subclass may be any one to one point
mapping relation between two domains.

Most operations on MiscCoords are independant of the coordinate system in use.    The primary need for specific
information about the system in use is for conversion to another coordinate system. For this purpose,    each

MiscCoord has the id of a conversion agent and a constants object.    Constants objects contain unchanging
information that defines the relationship of the coordinate system of the particular MiscCoord object to some
base reference frame in that coordinate system.    The conversion agent is an object that handles requests for
conversion of points to a different coordinate system.    A conversion agent is an object that satisfies the
MiscCoordConversionServer protocol.    The particular one used should be one that can    handle most common
conversion requests directly, ie the agent for a cartesian MiscCoord handles conversions to cylindrical and
spherical coordinates itself.    Conversions to other systems may also exist, and the conversion agent is of class
MiscCoordConverter the conversion will be subcontracted to another agent if necessary and possible.    This
allows the coord class into a profusion of subclasses while avoiding a complexity explosion inside the conversion
agent.

A MiscCoord is accessed using the concept of current point and current block.    Block operations use the
current point as the start of the current block and a block size to specify the end of the block.    Single point read
and write operation use only the current point.

There are no special methods for controlling the storage allocation.    Storage is expanded or contracted
automatically to fullfil requests that set the current block.

As mentioned earlier, MiscCoord will usually be subclassed.    However an example of general usage will
illuminate the actual simplicity of the object, something which may not have been made clear by the admittedly
technical discussion above.

The following example creates two MiscCoords. Note that this is very similar to what would happen inside a
subclass initialization method; in typical usage there would only be a single message required for the creation of
each coord:

myConverter      = [MyConverterClass new];
myConstants1 = [[MyConstantsClass1 alloc] initWithSomeArgs:];
myConstants2 = [[MyConstantsClass2 alloc] initWithSomeArgs:];

aCoord = [[MyFirstCoordClass alloc]
 initDescription: "Upper Stranmillis Road"    converter: myConverter constants: myConstants1];

anotherCoord = [[MySecondCoordClass alloc]
 initDescription: "Lower Stranmillis Road" converter: myConverter constants: myConstants2];

The initialization creates storage for only one point, so if we need more we need to specify the storage
requirements:

[aCoord                              selectAndSetNumPoints: 0 blockSize: 10];
[anortherCoord selectAndSetNumPoints: 0 blockSize:      5];

Now select a point, write values to it and read them back:

double first, second, third;

if (! [aCoord selectExistingPoints: 3 blockSize: 1])    exit (-1);

[aCoord setCoord: 1.23456789 : 2.345678901 : 3.145196];
[aCoord coord:                &first                      : &second                : &third       ];

Convert and append the contents of the first object to the second object:

[aCoord                              selectExistingPoints:                0 
blockSize:[aCoord numPoints]];
[anortherCoord selectAndSetMinPoints: [anotherCoord numPoints] blockSize:[aCoord numPoints]];

if (! [aCoord convert: anotherCoord])    printf ("Could not convert between coordinates systems");

Convert the first object and overwrite the contents second object. Second object will have the same size and
descriptive text as the first if the operations succeeds:

if (! [aCoord convertCoord: anotherCoord])    printf ("Could not convert between coordinates systems");

Instance Variables

char *description;
unsigned int curIndex;
unsigned int curBlockSize;
id constants;
id    <MiscCoordConverterServer> converter;
Storage    pntStorage;

description A text description of    the MiscCoord object. ie "Hillside Crescent"
curIndex Index of the first point in the currently selected block.
curBlockSize Size of the currently selected block.
constants Id of the constants object .
converter Id of a primary conversion agent.
pntStorage Storage object containing the points.    Storage is organized as a set of vectors

of double precision floating point numbers.

Adopted Protocols

CoordConverterClient + radiansToDegrees:
+ degreesToRadians:
+ toDegreesOnlyDegrees:minutes:seconds:

+ fromDegreesOnly:degrees:minutes:seconds:
+ dimensions
- constants;
- curPtr
- curBlockSize

Method Types

Initialization - initDescription:converter:constants:
- init
- free

Selecting blocks of points - selectExistingPoints:blockSize:
- selectAndSetNumPoints:blockSize:
- selectAndSetMinPoints:blockSize:
- numPoints
- curIndex

Coordinate    System Conversion - convertCoord:
- convert:
- converter

Accessing current point - setCoord: : :

- coord: : :
- coord1
- coord2
- coord3

Text description - description
- setDescription:

Archiving - write:
- read:

Instance Methods

convert:
- (BOOL) convert:<CoordConverterClient>aCoord

Convert the selected block of points in self    into the coordinate system of aCoord and store the result into the
selected block of points in aCoord. Returns YES if a conversion occured, NO if it did not. Conversions can be
refused for a number of reasons:

There is no method available that can go directly from the coordinate system of self to that of aCoord.
The two objects have different numbers of dimensions.
aCoord does not conform to the MiscCoordConverterClient protocol.
The selected block sizes of self and aCoord are different.

See also:    - converter,    - convertCoord:

convertCoord:
- (BOOL) convertCoord:<CoordConverterClient>aCoord

Convert the entire contents of self into the coordinate system of aCoord. Result is stored in aCoord. The
description text is copied as well. aCoord is resized to hold the same number of points as self. Returns YES if a
conversion occured, NO if it did not. Conversions can be refused for a number of reasons:

There is no method available that can go directly from the coordinate system of self to that of aCoord.
The two objects have different numbers of dimensions.
aCoord does not conform to the MiscCoordConverterClient protocol.

See also:    - converter,    - convert:

converter
- <MiscCoordConverterServer>converter

Return the converter id.

See also:    - convert:, - convertCoord

coord:::
- coord:(double*)coord1 :(double*)coord2 :(double*)coord3

Get the x,y and z values of the point at the current index.    Returns self.

See also:    - setCoord:::

coord1
- (double)coord1

Returns the first coordinate value of the point at the current index.

See also:    - coord2, - coord3

coord2
- (double)coord2

Returns the second coordinate value of the point at the current index.

See also:    - coord1, - coord3

coord3
- (double)coord3

Returns the third coordinate value of the point at the current index.

See also:    - coord1, - coord2

curIndex
- (unsigned int)curIndex

Return the index of the beginning of the selected block of points.

See also:    - selectExistingPoints:blockSize:,    - selectAndSetNumPoints:blockSize:,
- selectAndSetMinPoints:blockSize:,    - numPoints

free
- free

Free the coord,    its storage and description text. Also attempts to free the constants and converter objects. If
they are
shared by other MiscCoords, they should be of classes that protect against freeing.

See also:    - init, initDescription:converter:constants:

init
- init

Create a coord object with no converter and no constants.

See also:    - free, initDescription:converter:constants:

initDescription:converter:constants:
- initDescription:(char *)text converter:<MiscCoordConverterServer>converter constants:anObject

Initialize a coord. It makes a private copy of text. Storage is initialized to hold one object. To expand the storage
do the following:

        [myCoord selectAndSetNumPoints:0 blockSize: size];

See also:    - init, - free

numPoints
- (unsigned int)numPoints

Return the number of points.

See also:    - selectExistingPoints:blockSize:,    - selectAndSetNumPoints:blockSize:,
 - selectAndSetMinPoints:blockSize:,      - curIndex

read:
- read:(NXTypedStream *)stream

Reads the object from the typed stream stream.    Returns self.

See also:    - write:

selectExistingPoints:blockSize:
- (BOOL) selectExistingPoints:(unsigned int)startIndex blockSize:(unsigned int)blockSize

Select a block of points starting at startIndex of length blockSize. I f the block does not fit inside the existing
capacity of the coord, returns NO.    Often used to mark a block of points for conversion. Otherwise the block is
selected and it returns YES.

See also:    - selectAndSetNumPoints:blockSize:,    - selectAndSetMinPoints:blockSize:,    - numPoints,
      - curIndex

selectAndSetNumPoints:blockSize:
- (BOOL) selectAndSetNumPoints:(unsigned int)startIndex blockSize:(unsigned int)blockSize

Select a block of points starting at startIndex of length blockSize.    The number of points is set to exactly fit the
request.    Storage is truncated or expanded as necessary to make the requested block end and the end of the
coord be the same. It always returns YES.

See also:    - selectExistingPoints:blockSize:,    - selectAndSetMinPoints:blockSize:,    - numPoints

selectAndSetMinPoints:blockSize:
- (BOOL) selectAndSetNumPoints:(unsigned int)startIndex blockSize:(unsigned int)blockSize

Select a block of points starting at startIndex of length blockSize.    The number of points is set to exactly fit the
request.    Storage is expanded if necessary to make the requested block end fit within the coord. It always
returns YES.

See also:    - selectExistingPoints:blockSize:,    - selectAndSetNumPoints:blockSize:,    - numPoints,      -
curIndex

setCoord:::
- setCoord:(double)coord1 :(double)coord2 :(double)coord3

Sets the x,y and z values of the point at the current index.    Returns self.

See also:    - coord:::

setDescription:
- setDescription: (char *) text

Load the description field with a private copy of    text.    Frees the old text, if any.    Returns self.

See also:    - setDescription:

write:

- write:(NXTypedStream *)stream

Writes the object to the typed stream stream.    Returns self.

See also:    - read:

