
Release 0.3    Copyright ã1994, 1995 by Todd Thomas    All Rights Reserved.

MiscFile (Info)

Inherits From: MiscGraphNode

Declared In: <misckit/MiscFile.h>

Category Description

This category allows you to extract some useful information about a MiscFile instance. Most methods here are
just more human readable names and invoke methods in the MiscFile+Unix category. If the file the instance of
MiscFile represents is a symbolic link, some of the methods (the ones that get their information from either
stat(2) or lstat(2)) will return either information about the file they represent, or information about the link itself.
See +useLinkInfo (MiscFile+Unix category). The default is to return information about the file the MiscFile
instance represents. If any of the methods that return a short or long int returns MISCFILE_ERROR, you can use
the method ±errorCode (MiscFile+Unix) to find out what went wrong. For methods that don't return an integer
(like -stat, -lstat, and -whichStat), they will return NULL if there was an error. You can still use the ±errorCode
method to find out what went wrong.

Also, by default, stat caching is enabled (see enableCaching/setEnableCaching:), so the methods that get their
information via stat or lstat may not get the most up to date information from the filesystem. If you need to make
sure you get the most up to date information (though giving up speed), make sure to turn off caching. Here are
some snippets of code illustrating enabling/disabling caching:

- addPermissions: (int)perms for: (int) who
{

BOOL caching = [self enableCaching];

....
// Turn off stat caching so we get the most up to date permissions.
[self setEnableCaching: NO];
realPerms = [self permissions];
if (caching == YES)

// Only reenable caching if it was set to YES before we set it to NO.
[self setEnableCaching: YES];

....
}

- showAttributes: sender
{

// If you are going to using many methods that get their information
// from stat and you want the most up to date information, disable caching,
// make one call, and reenable caching again so every call will not stat
// the file again.
BOOL caching = [self enableCaching];

[self setEnableCaching: NO];
size = [aFile size];
if (caching == YES)

[self setEnableCaching: YES];

permissions = [aFile permissions];
owner = [aFile owner];
group = [aFile group];
...

}

Method Types

Stat information - blocksAllocated
- device
- deviceType
- group
- hardLinks
- inode
- isDirectory
- isSymbolicLink
- lastAccessTime
- lastModifyTime
- lastStatusChangeTime
± optimalBlockSize
- owner
- permissions
- size

Checking permissions - hasPermissions:for:
- doesExist
- readAccess
- executeAccess

- writeAccess

Instance Methods

blocksAllocated
-    (long)blocksAllocated

Returns the actual blocks allocated for the file. This is the st_blocks member of the stat structure.

device
-    (dev_t)device

Returns the device the inode resides on. This is the st_dev member of the stat structure.

See also:    ± deviceType

deviceType
-    (dev_t)deviceType

Returns the device type that the inode resides on. This is the st_rdev member of the stat structure.

See also:    ± device

doesExist
-    (BOOL)doesExist

Returns whether the receiver really still exists on the filesystem. It had to have existed when initially creating the
instance, but something may have happened to it since then. You can use this method to make sure it is still
there.

executeAccess
-    (BOOL)executeAccess

Returns YES if you have execute access to the file the receiver represents.

See also:    ± readAccess,    ± writeAccess

group
-    (MiscUserGroup *)group

Returns an instance of MiscUserGroup that represents the group-id of the file's owner. You are responsible for
freeing the instance returned. This information comes from the st_gid member of the stat structure If something
went wrong when stating the file, nil is returned.

See also:    ± owner

hardLinks
-    (short)hardLinks

Returns the number of hard links to the file the receiver represents. This is the st_nlink member of the stat
structure.

hasPermissions:for:
-    (BOOL)hasPermissions:(int)perms

for:(int)who

Returns YES if who has the given perms on the file the receiver represents. Who can be either
MISCFILE_OWNER, MISCFILE_GROUP, MISCFILE_OTHER or any ORed combination. The parameter perms
can be either MISCFILE_READ, MISCFILE_WRITE, MISCFILE_EXECUTE or any ORed combination.    For
example, using the given file as an example:

-rw-r--r-- 1 todd 90571 Jan 13 19:09 .newsrc

[newsrc hasPermissions: MISCFILE_READ for: MISCFILE_OWNER | MISCFILE_OTHER]
// would return YES since both the owner and others can read the file.

[newsrc hasPermissions: MISCFILE_WRITE for: MISCFILE_OWNER | MISCFILE_GROUP]
// would return NO since the file is not group writable.

See also:    ± setPermissions:for: (MiscFile+Modification)

inode
-    (ino_t)inode

Returns the receiver's inode. This is the st_ino member of the stat structure.

isDirectory
-    (BOOL)isDirectory

Returns YES if the file the receiver represents is a directory.

See also:    ± isSymbolicLink

isSymbolicLink
-    (BOOL)isSymbolicLink

Returns YES if the file the receiver represents is a symbolic link.

See also:    ± isDirectory

lastAccessTime
-    (MiscTime *)lastAccessTime

Returns an instance of MiscTime that represents the time the file was last accessed. The time is determined from
the st_atime member of the stat structure. You are responsible for freeing the instance returned. If something
went wrong when stating the file, nil is returned.

See also:    ± lastModifyTime,    ± lastStatusChangeTime

lastModifyTime
-    (MiscTime *)lastModifyTime

Returns an instance of MiscTime that represents the time the file was last modified. The time is determined from
the st_mtime member of the stat structure. You are responsible for freeing the instance returned. If something
went wrong when stating the file, nil is returned.

See also:    ± lastAccessTime,    ± lastStatusChangeTime

lastStatusChangeTime
-    (MiscTime *)lastStatusChangeTime

Returns an instance of MiscTime that represents the time the file's status was last changed. The time is
determined from the st_ctime member of the stat structure. You are responsible for freeing the instance returned.
If something went wrong when stating the file, nil is returned.

See also:    ± lastAccessTime,    ± lastModifyTime

optimalBlockSize
-    (long)optimalBlockSize

Returns the optimal block size for file i/o operations. The information is derived from the st_blksize member of
the stat structure.

owner
-    (MiscUser *)owner

Returns an instance of MiscUser that represents the owner of the file. The owner information is derived from the
st_uid member of the stat structure. You are responsible for freeing the returned instance. If something goes
wrong when stating the file, nil will be returned.

permissions
-    (u_short)permissions

Returns an unsigned short integer describing the permissions the file has. The permissions are derived from the
st_mode member of the stat structure. Check the documentation for stat(2) to see what each individual bit
represents.

See also:    ± hasPermissions:for: (MiscFile+Info),    ± setPermissions:for (MiscFile+Modification)

readAccess
-    (BOOL)readAccess

Returns YES you have read access to the file the instance represents.

See also:    ± writeAccess,    ± executeAccess

size
-    (off_t)size

Returns the total size of the file in bytes. This information comes from the st_size member of the stat structure.

writeAccess
-    (BOOL)writeAccess

Returns YES if you have write access to the file the instance represents.

See also:    ± executeAccess,    ± readAccess

