
DynaDoodle

An example project to accompany the NXApp article
Branching Out With Dynamic Loading

Andrew Vyrros
Codeworks

av@codeworks.com

Overview
This project is meant to give you a concrete introduction to the concepts of dynamic 
loading. It implements a simple graphical display app. The app presents a selection of 
silly doodle drawings. These doodles are dynamically loaded at launch time from 
external modules. The default modules are contained in the app package. Additional 
doodles can be placed in a directory named DynaDoodle inside ~/Library, 
/LocalLibrary, or /NextLibrary.

DynaDoodle shows you how to set up a project for dynamic loading. It demonstrates 
the way to create an abstract superclass for loaded classes, and the technique of 
distributing subclasses among individual bundle projects. It also explains how to search 
for module packages, and how to defer loading and instantiating until needed.

Technical details
The central object is an instance of the class Manager. It acts as NXApp's delegate, 
and handles basic application control duties. At launch time, it searches for doodle 
modules. For each doodle module it finds, it creates an instance of the class 
DoodleBundle.

DoodleBundle is a subclass of NXBundle geared specifically for managing doodle 
modules. Each DoodleBundle is responsible for a one module with a single loadable 
code file. DoodleBundle loads the class definitions in its code file into the Objective C 
class hierarchy. It defers this until requested, so that modules are not loaded until 
needed. Once loaded, DoodleBundle creates an instance of the module's principal 
class, the Doodle itself.



A Doodle is just a subclass of View for drawing silly images. It has foreground and 
background colors, and its own custom control View (sort of like a mini-inspector 
panel). Every module contains a single subclass of Doodle to do the actual drawing. 
The example supplies several different variations. Each of these has its own bundle 
project as a subproject of the main project. When the app is made, these are built as 
individual module packages and placed in the main app package.

The bundle projects are Checkerboard, Face, Smile, Spiral, and Star. They aren't 
meant to demonstrate any concepts, they just provide the Doodle subclasses for 
Manager to load. Most of the content is just silly non-optimized drawing code.

Points of interest
· Searching for modules: Manager.m, -createBundlesAndLoadModules: and    

-createBundlesForDirectory:loadModules:.
· Loading modules and instantiating Doodles: Manager.m, 

-takeCurrentDoodleFrom:; DoodleBundle.m, -doodle.
· Deferred loading of modules: Manager.m, -appDidInit: and    

-createBundlesForDirectory:loadModules:; DoodleBundle.m, -doodle.
· Getting localized names and descriptions of dynamic modules: 

DoodleBundle.m, -doodleName and -doodleDescription.
· Using custom nibs with dynamic modules: Doodle.m, -customControlView, 

-loadNib and -didLoadNib.
· Putting additional classes in a module: Face.bproj, Face.m, EyePair.m, and 

Mouth.m.

Suggested modifications
· Change Manager so that, rather than deferring the loading of modules until they 

are needed, it loads all modules at launch time.
· Modify Manager so that it lets the user choose the default doodle that first 

appears at launch time.
· Add your own new Doodles. To create a new Doodle module, first add a new 

bundle project in Project Builder. The project should contain at least one class, a 
custom subclass of Doodle. This subclass needs to override the drawSelf:: method to 
perform its special drawing. It will also probably override initFrame: and didLoadNib, 
and may add some action methods for custom controls.

The bundle project should have a nib file named ClassName.nib, where 



ClassName is the name of the Doodle subclass. The nib will have the custom Doodle 
as owner, with at least the customControlView outlet connected to a Box or similar 
view. The project will also need a Doodle.strings file, which contains the strings for the 
Doodle name and description. You can generate this with genstrings and #define 
statements similar to those at the beginning of the other custom Doodle sources, or 
just copy one of the files and substitute your own values.


