
Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSCStringText

Inherits From: NSText : NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling, NSIgnoreMisspelledWords (NSText)
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSCStringText.h

Class Description

The NSCStringText class declares the programmatic interface to objects that manage text using eight-bit character encodings. The
encoding is the same as the default C string encoding provided by defaultCStringEncoding in the NSString class. NSCStringText can be
used in situations where backwards compatibility with the detailed interfaces of the NEXTSTEP Text object is important. Applications that
can use the interface of NSText should do so.

The NSCStringText class is unlike most other classes in the Application Kit in its complexity and range of features. One of its design goals
is to provide a comprehensive set of text-handling features so that you'll rarely need to create a subclass. An NSCStringText object can
(among other things):

· Control the color of its text and background.

· Control the font and layout characteristics of its text.

· Control whether text is editable.

· Wrap text on a word or character basis.

· Write text to, or read it from, a file, as either RTF or plain ASCII data.

· Display graphic images within its text.

· Communicate with other applications through the Services menu.

· Let another object, the delegate, dynamically control its properties.

· Let the user copy and paste text within and between applications.

· Let the user copy and paste font and format information between NSCStringText objects.

· Let the user check the spelling of words in its text.

· Let the user control the format of paragraphs by manipulating a ruler.

NSCStringText can deal only with eight-bit characters. Therefore, it is not able to deal with Unicode character sets, and NSCStringText
can't be fully internationalized.

Plain and Rich NSCStringText Objects

When you create an NSCStringText object directly, by default it allows only one font, line height, text color, and paragraph format for the
entire text. You can set the default font used by new NSCStringText instances by sending the NSCStringText class object a
setDefaultFont: message. Once an NSCStringText object is created, you can alter its global settings using methods such as setFont:,
setLineHeight:, setTextGray:, and setAlignment:. For convenience, such an NSCStringText object will be called a plain NSCStringText
object.

To allow multiple values for these attributes, you must send the NSCStringText object a setRichText:YES message. An NSCStringText
object that allows multiple fonts also allows multiple paragraph formats, line heights, and so on. For convenience, such an NSCStringText
object will be called a rich NSCStringText object.

A rich NSCStringText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words are supported: On
input, an NSCStringText object ignores any control word it doesn't recognize; some of those it can read and interpret it doesn't write out.
Refer to the class description of NSText for a list of the RTF control words that an NSCStringText object recognizes.

Note: An NSCStringText object writes eight-bit characters in the default C string encoding, which differs somewhat from the ANSI
character set.

In an NSCStringText object, each sequence of characters having the same attributes is called a run. A plain NSCStringText object has only
one run for the entire text. A rich NSCStringText object can have multiple runs. Methods such as setSelFont: and setSelColor: let you
programmatically modify the attributes of the selected sequence of characters in a rich NSCStringText object. As discussed below, the user
can set these attributes using the Font panel and the ruler.

NSCStringText objects are designed to work closely with various objects and services. Some of theseÐsuch as the delegate or an
embedded graphic objectÐrequire a degree of programming on your part. OthersÐsuch as the Font panel, spelling checker, ruler, and
Services menuÐtake no effort other than deciding whether the service should be enabled or disabled. The following sections discuss these
interrelationships.

Notifying the NSCStringText Object's Delegate

Many of an NSCStringText object's actions can be controlled through an associated object, the NSCStringText object's delegate. If it
implements any of the following methods, the delegate receives the corresponding message at the appropriate time:

textWillResize:
textDidResize:oldBounds:
textWillSetSel:toFont:
textWillConvert:fromFont:toFont:
textWillStartReadingRichText:
textWillFinishReadingRichText:
textWillWrite:
textDidRead:paperSize:

So, for example, if the delegate implements the textWillConvert:fromFont:toFont: method, it will receive notification upon the user's
first attempt to change the font of the text. Moreover, depending on the method's return value, the delegate can either allow or prohibit
changes to the text. See ªMethods Implemented by the Delegateº. The delegate can be any object you choose, and one delegate can control
multiple NSCStringText objects.

Adding Graphics to the Text

A rich NSCStringText object allows graphics to be embedded in the text. Each graphic is treated as a single (possibly large) ªcharacterº:
The text's line height and character placement are adjusted to accommodate the graphic ªcharacter.º Graphics are embedded in the text in
either of two ways: programmatically or directly through user actions. The programmatic approach is discussed first.

In the programmatic approach, you add an objectÐgenerally a subclass of NSCellÐto the text. This object manages the graphic image by
drawing it when appropriate. Although NSCell subclasses are commonly used, the only requirement is that the embedded object responds
to these messagesÐsee ªMethods Implemented by an Embedded Graphic Objectº for more information:

highlight:withFrame:inView:
drawWithFrame:inView:
trackMouse:inRect:ofView:untilMouseUp:
cellSize:
readRichText:forView:
richTextforView:

You place the graphic object in the text by sending the NSCStringText object a replaceSelWithCell: message.

An NSCStringText object displays a graphic in its text by sending the managing object a drawWithFrame:inView: message. To record

the graphic to a file or to the pasteboard, the NSCStringText object sends the managing object a richTextforView: message. The object
must then write an RTF control word along with any data (such as the path of a TIFF file containing its image data) it might need to
recreate its image. To reestablish the text containing the graphic image from RTF data, an NSCStringText object must know which class to
associate with particular RTF control words. You associate a control word with a class object by sending the NSCStringText class object a
registerDirective:forClass: message. Thereafter, whenever an NSCStringText object finds the registered control word in the RTF data
being read from a file or the pasteboard, it will create a new instance of the class and send the object a readRichText:forView: message.

An alternate means of adding an image to the text is for the user to drag an EPS or TIFF file icon directly into an NSCStringText object.
The NSCStringText object automatically creates a graphic object to manage the display of the image. This feature requires a rich
NSCStringText object that has been configured to receive dragged imagesÐsee the setImportsGraphics: method of the NSText class.

Images that have been imported in this way can be written as RTFD documents. Programmatic creation of RTFD documents is not
supported in this version of OpenStep. RTFD documents use a file package, or directory, to store the components of the document (the ªDº
stands for ªdirectoryº). The file package has the name of the document plus a ª.rtfdº extension. The file package always contains a file
called TXT.rtf for the text of the document, and one or more TIFF or EPS files for the images. An NSCStringText object can transfer
information in an RTFD document to a file and read it from a fileÐsee the writeRTFDToFile:atomically: and readRTFDFromFile:
methods in the NSText methods.

Cooperating with Other Objects and Services

NSCStringText objects are designed to work with the Application Kit's font conversion system. By default, an NSCStringText object keeps
the Font panel updated with the font of the current selection. It also changes the font of the selection (for a rich NSCStringText object) or
of the entire text (for a default NSCStringText object) to reflect the user's choices in the Font panel or menu. To disconnect an
NSCStringText object from this service, send it a setUsesFontPanel:NO message (this method is actually implemented by NSTextÐthe
superclass).

If an NSCStringText object is a subview of an NSScrollView, it can cooperate with the NSScrollView to display and update a ruler that
displays formatting information. The NSScrollView retiles its subviews to make room for the ruler, and the NSCStringText object updates
the ruler with the format information of the paragraph containing the selection. The toggleRuler: method controls the display of this ruler.
Users can modify paragraph formats by manipulating the components of the ruler.

By means of the Services menu, an NSCStringText object can make use of facilities outside the scope of its own application. By default, an
NSCStringText object registers with the services system that it can send and receive RTF and plain ASCII data. If the application
containing the NSCStringText object has a Services menu, a menu item is added for each service provider that can accept or return these
formats. To prevent NSCStringText objects from registering for services, send the NSCStringText class object an
excludeFromServicesMenu:YES message before any NSCStringText objects are created.

Coordinates and sizes mentioned in the method descriptions below are in PostScript unitsÐ1/72 of an inch.

Initializing a New NSCStringText Object

- (id)initWithFrame:(NSRect)frameRect Returns a new NSCStringText object at frameRect
text:(NSString *)theText initialized with the contents of theText and with mode
alignment:(NSTextAlignment)mode alignment.

Modifying the Frame Rectangle

- (void)resizeTextWithOldBounds:(NSRect)oldBounds
maxRect:(NSRect)maxRect Used by the NSCStringText object to resize and redisplay itself.

Laying Out the Text

- (int)calcLine Calculates line breaks.

- (BOOL)changeTabStopAt:(float)oldX Resets the position of the specified tab stop.
to:(float)newX

- (BOOL)charWrap Returns whether extra long words are wrapped.

- (void *)defaultParagraphStyle Returns the default paragraph style.

- (float)descentLine Returns distance from base line to bottom of line.

- (void)getMarginLeft:(float *)leftMargin Gets by reference the dimensions of margins around the
right:(float *)rightMargin text.
top:(float *)topMargin
bottom:(float *)bottomMargin

- (void)getMinWidth:(float *)width Given the widthMax and heightMax, calculates the
minHeight:(float *)height minimum area needed to display the text and returns
maxWidth:(float)widthMax width and height by reference.
maxHeight:(float)heightMax

- (float)lineHeight Returns height of a line of text.

- (void *)paragraphStyleForFont:(NSFont *)fontId Recalculates the paragraph style based on new font fontId
alignment:(int)alignment and alignment.

- (void)setCharWrap:(BOOL)flag Sets whether extra long words are wrapped.

- (void)setDescentLine:(float)value Sets the distance from the base line to the bottom of line to value.

- (void)setLineHeight:(float)value Sets the height of a line of text to value.

- (void)setMarginLeft:(float)leftMargin Adjusts the margins around the text.
right:(float)rightMargin
top:(float)topMargin
bottom:(float)bottomMargin

- (void)setNoWrap Disables word wrap.

- (void)setParagraphStyle:(void *)paraStyle Sets the default paragraph style for the entire text.

- (BOOL)setSelProp:(NSParagraphProperty)property
to:(float)value Sets a paragraph property for one or more selected

paragraphs to value.

Reporting Line and Position

- (int)lineFromPosition:(int)position Converts character position to line number.

- (int)positionFromLine:(int)line Converts line number to character position.

Reading and Writing Text

- (void)finishReadingRichText Sent after the NSCStringText object reads RTF data.

- (NSTextBlock *)firstTextBlock Returns a pointer to the first text block in the NSCStringText object.

- (NSRect)paragraphRect:(int)paraNumber Returns the location and size of a paragraph identified by
start:(int *)startPos paraNumber; also returns the starting and ending
end:(int *)endPos character positions by reference.

- (void)startReadingRichText Sent before the NSCStringText object begins reading RTF data.

Editing Text

- (void)clear:(id)sender Deletes the selected text.

- (void)hideCaret Removes the caret from the text display.

- (void)showCaret Displays the previously hidden caret in the text display.

Managing the Selection

- (void)getSelectionStart:(NSSelPt *)start Gets information (by reference) relating to the starting and
end:(NSSelPt *)end ending character positions of the selection.

- (void)replaceSel:(NSString *)aString Replaces the selection with aString.

- (void)replaceSel:(NSString *)aString Replaces the selection with length bytes of aString.
length:(int)length

- (void)replaceSel:(NSString *)aString Replaces the selection with length bytes of aString.
length:(int)length insertRuns is a pointer to the current run in the run
runs:(NSRunArray *)insertRuns array.

- (void)scrollSelToVisible Brings the selection within the frame rectangle.

- (void)selectError Selects all the text.

- (void)selectNull Deselects the current selection.

- (void)setSelectionStart:(int)start Selects text from characters start through end.
end:(int)end

- (void)selectText:(id)sender Makes the receiver the first responder and selects all text.

Setting the Font

+ (NSFont *)defaultFont Returns the default NSFont object for NSCStringText objects.

+ (void)setDefaultFont:(NSFont *)anObject Makes anObject the default NSFont object for NSCStringText objects.

- (void)setFont:(NSFont *)fontObj Sets the NSFont object and paragraph style for all text.
paragraphStyle:(void *)paragraphStyle

- (void)setSelFont:(NSFont *)fontObj Sets the NSFont object for the selection.

- (void)setSelFont:(NSFont *)fontObj Sets the NSFont object and paragraph style for the
paragraphStyle:(void *)paragraphStyle selection.

- (void)setSelFontFamily:(NSString *)fontName Sets the font family for the selection.

- (void)setSelFontSize:(float)size Sets the font size for the selection.

- (void)setSelFontStyle:(NSFontTraitMask)traits Sets the font style for the selection.

Finding Text

- (BOOL)findText:(NSString *)textPattern Searches for textPattern in the text, starting at the insertion
ignoreCase:(BOOL)ignoreCase point. ignoreCase instructs the search to disregard case;
backwards:(BOOL)backwards backwards means search backwards; wrap means that
wrap:(BOOL)wrap when the search reaches the beginning or end of the text (depending on the

direction), it should continue by wrapping to the end or beginning of the text.

Modifying Graphic Attributes

- (NSColor *)runColor:(NSRun *)run Returns the color of the specified text run.

- (NSColor *)selColor Returns the color of the selected text.

- (void)setSelColor:(NSColor *)color Sets the color of the selected text.

Reusing an NSCStringText Object

- (void)renewFont:(NSFont *)newFontObj Resets the NSCStringText object to draw different text
text:(NSString *)newText newText in font newFontId within frame newFrame.
frame:(NSRect)newFrame
tag:(int)newTag

- (void)renewFont:(NSString *)newFontName Resets the NSCStringText object to draw different text
size:(float)newFontSize newText in the font identified by newFontName,
style:(int)newFontStyle newFontSize, and newFontStyle. Drawing occurs within
text:(NSString *)newText frame newFrame.
frame:(NSRect)newFrame
tag:(int)newTag

- (void)renewRuns:(NSRunArray *)newRuns Resets the NSCStringText object to draw different text
text:(NSString *)newText newText in newFrame.
frame:(NSRect)newFrame
tag:(int)newTag

Setting Window Attributes

- (BOOL)isRetainedWhileDrawing Returns whether a retained window is used for drawing.

- (void)setRetainedWhileDrawing:(BOOL)flag Allows use of a retained window when drawing.

Assigning a Tag

- (void)setTag:(int)anInt Makes anInt the NSCStringText object's tag.

- (int)tag Returns the NSCStringText object's tag.

Handling Event Messages

- (void)becomeKeyWindow Activates the caret if selection has width of 0.

- (void)moveCaret:(unsigned short)theKey Moves the caret in response to arrow keys.

- (void)resignKeyWindow Deactivates the caret.

Displaying Graphics within the Text

+ registerDirective:(NSString *)directive Associates an RTF control word (directive) with class
forClass:class (usually NSCell and subclasses); objects of this class are encoded through RTF

control words in NSCStringText objects.

- (NSPoint)locationOfCell:(NSCell *)cell Returns the location of cell.

- (void)replaceSelWithCell:(NSCell *)cell Replaces the selection with cell object cell.

- (void)setLocation:(NSPoint)origin Sets the origin point of cell.
ofCell:(NSCell *)cell

Using the Services Menu and the Pasteboard

+ excludeFromServicesMenu:(BOOL)flag Controls whether NSCStringText objects can register for services.

- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard

Replaces the selection with data from pasteboard pboard.

- (id)validRequestorForSendType:(NSString *)sendType
returnType:(NSString *)returnType Determines which Service menu items are enabled.

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
types:(NSArray *)types Copies the selection to pasteboard pboard.

Setting Tables and Functions

- (const NSFSM *)breakTable Returns the table defining word boundaries.

- (const unsigned char *)charCategoryTable Returns the table defining character categories.

- (NSCharFilterFunc)charFilter Returns the current character filter function.

- (const NSFSM *)clickTable Returns the table defining double-click selection.

- (NSTextFunc)drawFunc Returns the current draw function.

- (const unsigned char *)postSelSmartTable Returns cut and paste table for right word boundary.

- (const unsigned char *)preSelSmartTable Returns cut and paste table for left word boundary.

- (NSTextFunc)scanFunc Returns the current scan function.

- (void)setBreakTable:(const NSFSM *)aTable Sets the table defining word boundaries.

- (void)setCharCategoryTable:(const unsigned char *)aTable
Sets the table defining character categories used in the word wrap or click tables.

- (void)setCharFilter:(NSCharFilterFunc)aFunction
Makes aFunction the character filter function.

- (void)setClickTable:(const NSFSM *)aTable Sets the table defining double-click selection.

- (void)setDrawFunc:(NSTextFunc)aFunction Makes aFunction the function that draws the text.

- (void)setPostSelSmartTable:(const unsigned char *)aTable
Sets the cut and paste table for right word boundary.

- (void)setPreSelSmartTable:(const unsigned char *)aTable
Sets the cut and paste table for left word boundary.

- (void)setScanFunc:(NSTextFunc)aFunction Makes aFunction the scan function.

- (void)setTextFilter:(NSTextFilterFunc)aFunction Makes aFunction the text filter function.

- (NSTextFilterFunc)textFilter Returns the current text filter function.

Printing

- (void)adjustPageHeightNew:(float *)newBottom Assists with automatic pagination of text.
top:(float)oldTop
bottom:(float)oldBottom
limit:(float)bottomLimit

Implemented by an Embedded Graphic Object

- (NSSize)cellSize Embedded cell returns its size.

- (void)drawWithFrame:(NSRect)cellFrame Embedded object draws itself, including frame, within
inView:(NSView *)controlView cellFrame in controlView.

- (void)highlight:(BOOL)flag Embedded object highlights or unhighlights itself with
withFrame:(NSRect)cellFrame cellFrame of controlView, depending on the value of
inView:(NSView *)controlView flag.

- (void)readRichText:(NSString *)stringObject Embedded object reads its RTF representation from
forView:(NSView *)view stringObject and initializes itself.

- (NSString *)richTextForView:(NSView *)view Embedded object stores its RTF representation within view as a string object and
returns it.

- (BOOL)trackMouse:(NSEvent *)theEvent Embedded object implements this method to track mouse
inRect:(NSRect)cellFrame movement within tracking rectangle (cellFrame) and to
ofView:(NSView *)controlView detect mouse-up event (untilMouseUp).
untilMouseUp:(BOOL)untilMouseUp

Implemented by the Delegate

- (void)textDidRead:(NSCStringText *)textObject Lets the delegate review paper size.
paperSize:(NSSize)paperSize

- (NSRect)textDidResize:(NSCStringText *)textObject
oldBounds:(NSRect)oldBounds Reports size change to delegate.

- (NSFont *)textWillConvert:(NSCStringText *)textObject
fromFont:(NSFont *)font Lets delegate intercede in selection's font change.
toFont:(NSFont *)font

- (void)textWillFinishReadingRichText:(NSCStringText *)textObject
Informs delegate that the NSCStringText object finished reading RTF data.

- (void)textWillResize:(NSCStringText *)textObject
Informs delegate of impending size change.

- (void)textWillSetSel:(NSCStringText *)textObject
toFont:(NSFont *)font Lets delegate intercede in the updating of the Font panel.

- (void)textWillStartReadingRichText:(NSCStringText *)textObject
Informs delegate that NSCStringText object will read RTF data.

- (NSSize)textWillWrite:(NSCStringText *)textObject
Lets the delegate specify paper size.

Compatibility Methods

- (NSCStringTextInternalState *)cStringTextInternalState
Returns a structure that represents the instance variables of the NSCStringText

object. The structure is defined in appkit/NSCStringText.h, and in the ªTypes
and Constantsº section of the Application Kit documentation. Note that this
method is provided for applications that really must depend on changing the
values of an NSCStringText object's instance variables.

