
Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSImage 

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSImage.h 

Class Description

An NSImage object contains an image that can be composited anywhere without first being drawn in any particular view. It manages the 
image by:

· Reading image data from the application bundle, from an NSPasteboard, or from an NSData object.

· Keeping multiple representations of the same image.

· Choosing the representation that's appropriate for a particular data type.

· Choosing the representation that's appropriate for any given display device.

· Caching the representations it uses by rendering them in off-screen windows.

· Optionally retaining the data used to draw the representations, so that they can be reproduced when needed.

· Compositing the image from the off-screen cache to where it's needed on-screen.

· Reproducing the image for the printer so that it matches what's displayed on-screen, yet is the best representation possible for the 
printed page.

· Automatically using any filtering services installed by the user to convert image data from unsupported formats to supported 
formats. 



Defining an Image

An image can be created from various types of data:

· Encapsulated PostScript code (EPS)

· Bitmap data in Tag Image File Format (TIFF)

· Untagged (raw) bitmap data 

· Other image data supported by an NSImageRep subclass registered with the NSImage class

· Data that can be filtered to a supported type by a user-installed filter service

If data is placed in a file (for example, in an application bundle), the NSImage object can access the data whenever it's needed to create the 
image. If data is read from an NSData object, the NSImage object may need to store the data itself.

Images can also be defined by the program, in two ways:

· By drawing the image in an off-screen window maintained by the NSImage object. In this case, the NSImage maintains only the 
cached image.

· By defining a method that can be used to draw the image when needed. This allows the NSImage to delegate responsibility for 
producing the image to some other object.

Image Representations

An NSImage object can keep more than one representation of an image. Multiple representations permit the image to be customized for the 
display device. For example, different hand-tuned TIFF images can be provided for monochrome and color screens, and an EPS 
representation or a custom method might be used for printing. All representations are versions of the same image.

An NSImage returns an NSArray of its representations in response to a representations message. Each representation is a kind of 
NSImageRep object:

NSEPSImageRep An image that can be recreated from EPS data that's either stored by the object or at a known location 
in the file system.

NSBitmapImageRep An image that can be recreated from bitmap or TIFF data.

NSCustomImageRep An image that can be redrawn by a method defined in the application.

NSCachedImageRep An image that has been rendered in an off-screen cache from data or instructions that are no longer 
available. The image in the cache provides the only data from which the image can be reproduced.



You can define other NSImageRep subclasses for objects that render images from other types of source data. To make these new subclasses 
available to an NSImage object, they need to be added to the NSImageRep class registry by invoking the registerImageRepClass: class 
method. NSImage determines the data types that each subclass can support by invoking its imageUnfilteredFileTypes and 
imageUnfilteredPasteboardTypes methods.

Choosing Representations

The NSImage object will choose the representation that best matches the rendering device. By default, the choice is made according to the 
following set of ordered rules. Each rule is applied in turn until the choice of representation is narrowed to one.

1. Choose a color representation for a color device, and a gray-scale representation for a monochrome device.

2. Choose a representation with a resolution that matches the resolution of the device, or if no representation matches, choose the one 
with the highest resolution.

By default, any image representation with a resolution that's an integer multiple of the device resolution is considered to match. If 
more than one representation matches, the NSImage will choose the one that's closest to the device resolution. However, you can 
force resolution matches to be exact by passing NO to the setMatchesOnMultipleResolution: method.

Rule 2 prefers TIFF and bitmap representations, which have a defined resolution, over EPS representations, which don't. However, 
you can use the setUsesEPSOnResolutionMismatch: method to have the NSImage choose an EPS representation in case a 
resolution match isn't possible.

3. If all else fails, choose the representation with a specified bits per sample that matches the depth of the device. If no representation 
matches, choose the one with the highest bits per sample.

By passing NO to the setPrefersColorMatch: method, you can have the NSImage try for a resolution match before a color match. This 
essentially inverts the first and second rules above.

If these rules fail to narrow the choice to a single representationÐfor example, if the NSImage has two color TIFF representations with the 
same resolution and depthÐthe one that will be chosen is system dependent.

Caching Representations

When first asked to composite the image, the NSImage object chooses the representation that's best for the destination display device, as 
outlined above. It renders the representation in an off-screen window on the same device, then composites it from this cache to the desired 
location. Subsequent requests to composite the image use the same cache. Representations aren't cached until they're needed for 
compositing.

When printing, the NSImage tries not to use the cached image. Instead, it attempts to render on the printerÐusing the appropriate image 



data, or a delegated methodÐthe best version of the image that it can. Only as a last resort will it image the cached bitmap.

Image Size

Before an NSImage can be used, the size of the image must be set, in units of the base coordinate system. If a representation is smaller or 
larger than the specified size, it can be scaled to fit.

If the size of the image hasn't already been set when the NSImage is provided with a representation, the size will be set from the data. The 
bounding box is used to determine the size of an NSEPSImageRep. The TIFF fields ªImageLengthº and ªImageWidthº are used to 
determine the size of an NSBitmapImageRep.

Coordinate Systems

Images have the horizontal and vertical orientation of the base coordinate system; they can't be rotated or flipped. When composited, an 
image maintains this orientation, no matter what coordinate system it's composited to. (The destination coordinate system is used only to 
determine the location of a composited image, not its size or orientation.)

It's possible to refer to portions of an image when compositing by specifying a rectangle in the image's coordinate system, which is 
identical to the base coordinate system, except that the origin is at the lower left corner of the image.

Named Images

An NSImage object can be identified either by its id or by a name. Assigning an NSImage a name adds it to a table kept by the class object; 
each name in the database identifies one and only one instance of the class. When you ask for an NSImage object by name (with the 
imageNamed: method), the class object returns the one from its database, which also includes all the system bitmaps provided by the 
Application Kit.    If there's no object in the database for the specified name, the class object tries to create one by checking for a system 
bitmap of the same name, checking the name of the application's own image, and then checking for the image in the application's main 
bundle.

If a section or file matches the name, an NSImage is created from the data stored there. You can therefore create NSImage objects simply 
by including EPS or TIFF data for them within the executable file, or in files inside the application's file package.

Image Filtering Services

NSImage is designed to automatically take advantage of user-installed filter services for converting unsupported image file types to 
supported image file types. The class method imageFileTypes returns an array of all file types from which NSImage can create an instance 
of itself. This list includes all file types supported by registered subclasses of NSImageRep, and those types that can be converted to 
supported file types through a user-installed filter service.

Initializing a New NSImage Instance 



- (id)initByReferencingFile:(NSString *)filename Initializes the new NSImage from the data in filename. The file is assumed to persist 
and may be reread later if the NSImage is resized or otherwise modified.

- (id)initWithContentsOfFile:(NSString *)filename
Initializes the new NSImage from the data in filename. 

- (id)initWithData:(NSData *)data Initializes the new NSImage from data.

- (id)initWithPasteboard:(NSPasteboard *)pasteboard
Initializes the new NSImage with the data in pasteboard.

- (id)initWithSize:(NSSize)aSize Initializes the new NSImage to the specified size.

Setting the Size of the Image 

- (void)setSize:(NSSize)aSize Sets the size of the image to aSize in base coordinates.

- (NSSize)size Returns the size of the image.

Referring to Images by Name 

+ (id)imageNamed:(NSString *)name Returns the NSImage object having name. Searches the main bundle for the image 
if necessary.

- (BOOL)setName:(NSString *)name Assigns name to be the receiver's name. Returns NO if name is already in use; 
otherwise, returns YES.

- (NSString *)name Returns the receiver's name.

Specifying the Image 

- (void)addRepresentation:(NSImageRep *)imageRep
Adds imageRep to the receiver's list of representations.

- (void)addRepresentations:(NSArray *)imageRepArray
Adds the imageReps from imageRepArray to the receiver's list of representations.

- (void)lockFocus Prepares for drawing in the best representation.



- (void)lockFocusOnRepresentation:(NSImageRep *)imageRep
Prepares for drawing in imageRep.

- (void)unlockFocus Balances a previous lockFocus or lockFocusOnRepresentation:.

Using the Image 

- (void)compositeToPoint:(NSPoint)aPoint Composites the image to aPoint using the operation op.
operation:(NSCompositingOperation)op

- (void)compositeToPoint:(NSPoint)aPoint Composites the aRect portion of the image to aPoint using
fromRect:(NSRect)aRect the operation op.
operation:(NSCompositingOperation)op

- (void)dissolveToPoint:(NSPoint)aPoint Composites the image to aPoint using the dissolve
fraction:(float)aFloat operator. aFloat is a value from 0.0 to 1.0 that determines how much of the 

resulting composite comes from the receiver.

- (void)dissolveToPoint:(NSPoint)aPoint Composites the aRect portion of the image to aPoint using
fromRect:(NSRect)aRect the dissolve operator. aFloat is a value from 0.0 to 1.0
fraction:(float)aFloat that determines how much of the resulting composite comes from the receiver.

Choosing Which Image Representation to Use 

- (void)setPrefersColorMatch:(BOOL)flag Determines whether color matches are preferred.

- (BOOL)prefersColorMatch Returns whether color matches are preferred.

- (void)setUsesEPSOnResolutionMismatch:(BOOL)flag
Sets whether to use EPS representations on mismatch.

- (BOOL)usesEPSOnResolutionMismatch Returns whether to use EPS representations on mismatch.

- (void)setMatchesOnMultipleResolution:(BOOL)flag
Sets whether resolution multiples match.

- (BOOL)matchesOnMultipleResolution Returns whether resolution multiples match.



Getting the Representations 

- (NSImageRep *)bestRepresentationForDevice:(NSDictionary *)deviceDescription
Returns the best representation for the device described by deviceDescription. If 

deviceDescription is nil, the current device is assumed. See NSGraphics.h for 
appropriate dictionary keys and values.

- (NSArray *)representations Returns an array of all the representations.

- (void)removeRepresentation:(NSImageRep *)imageRep
Removes imageRep from the receiver's list of representations.

Determining How the Image is Stored 

- (void)setCachedSeparately:(BOOL)flag Sets whether representations are cached separately.

- (BOOL)isCachedSeparately Returns whether representations are cached separately.

- (void)setDataRetained:(BOOL)flag Sets whether image data is retained by the object after the image is cached.

- (BOOL)isDataRetained Returns whether image data is retained.

- (void)setCacheDepthMatchesImageDepth:(BOOL)flag
Sets whether the default depth limit applies to caches.

- (BOOL)cacheDepthMatchesImageDepth Returns whether the default depth limit applies to caches.

Determining How the Image is Drawn 

- (BOOL)isValid Returns YES to indicate that the receiver's image is valid.

- (void)setScalesWhenResized:(BOOL)flag If flag is YES, representations are scaled to fit. 

- (BOOL)scalesWhenResized Returns whether representations are scaled to fit.

- (void)setBackgroundColor:(NSColor *)aColor Sets the background color of the image to aColor.

- (NSColor *)backgroundColor Returns the background color of the image.

- (BOOL)drawRepresentation:(NSImageRep *)imageRep 
inRect:(NSRect)aRect Overridden to have imageRep draw the representation in aRect.



- (void)recache Invalidates caches of all representations, so they will be redrawn.

Assigning a Delegate 

- (void)setDelegate:(id)anObject Makes anObject the delegate of the NSImage.

- (id)delegate Returns the delegate of the NSImage.

Producing TIFF Data for the Image 

- (NSData *)TIFFRepresentation Returns a data object containing TIFF for all representations, using their default 
compressions.

- (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp
factor:(float)aFloat Returns a data object containing TIFF for all the representations.

Managing NSImageRep Subclasses 

+ (NSArray *)imageUnfilteredFileTypes Returns an array of file types recognized by the NSImage
without filtering. This list comes from all registered NSImageReps.

+ (NSArray *)imageUnfilteredPasteboardTypes
Returns an array of pasteboard types recognized by the NSImage.

Testing Image Data Sources 

+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard
Returns YES if the receiver can create a representation from pasteboard; otherwise, 

returns NO.

+ (NSArray *)imageFileTypes Returns an array of supported image data file types.

+ (NSArray *)imagePasteboardTypes Returns an array of supported pasteboard types.

Methods Implemented by the Delegate 



- (NSImage *)imageDidNotDraw:(id)sender Responds to message that image couldn't be composited
inRect:(NSRect)aRect into aRect.


