
Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSWindow

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSWindow.h

Class Description

The NSWindow class defines objects that manage and coordinate the windows that an application displays on the screen. A single
NSWindow object corresponds to, at most, one window. The two principle functions of an NSWindow are to provide an area in which
views can be placed, and to accept and distribute, to the appropriate NSViews, events that the user instigates by manipulating the mouse
and keyboard.

Rectangles, Views, and the View Hierarchy

An NSWindow is defined by a frame rectangle that encloses the entire window, including its title bar, resize bar, and border, and by a
content rectangle that encloses just its content area. Both rectangles are specified in the screen coordinate system. The frame rectangle
establishes the NSWindow's base coordinate system. This coordinate system is always aligned with and is measured in the same
increments as the screen coordinate system (in other words, the base coordinate system can't be rotated or scaled). The origin of a base
coordinate system is the bottom left corner of the window's frame rectangle.

You create an NSWindow (through one of the init:... methods) by specifying, among other attributes, the size and location of its content
rectangle. The frame rectangle is derived from the dimensions of the content rectangle.

When it's created, an NSWindow automatically creates two NSViews: an opaque frame view and a transparent content view that fills the
content area. The frame view is a private object that your application can't access directly. The content view is the ªhighestº accessible view

in the window; you can replace the content view with an NSView of your own creation through NSWindow's setContentView: method.

You add other views to the window by declaring each to be a subview of the content view, or a subview of one of the content view's
subviews, and so on, through NSView's addSubview: method. This tree of views is called the window's view hierarchy. When an
NSWindow is told to display itself, it does so by sending view-displaying messages to each object in its view hierarchy. Because
displaying is carried out in a determined order, the content view (which is drawn first) may be wholly or partially obscured by its subviews,
and these subviews may be obscured by their subviews (and so on).

Event Handling

The window system and the NSApplication object forward mouse and keyboard events to the appropriate NSWindow object. The
NSWindow that's currently designated to receive keyboard events is known as the key window. If the mouse or keyboard event affects the
window directlyÐresizing or moving it, for exampleÐthe NSWindow performs the appropriate operation itself and sends messages to its
delegate informing it of its intentions, thus allowing your application to intercede. Events that are directed at specific views within the
window are forwarded by the NSWindow to the NSView.

The NSWindow keeps track of the object that was last selected to handle keyboard events as its first responder. The first responder is
typically the NSView that displays the current selection. In addition to keyboard events, the first responder is sent action messages that
have a user-selected target (a nil target in program code). The NSWindow continually updates the first responder in response to the user's
mouse actions.

Each NSWindow provides a field editor, an NSText object that handles small-scale text-editing chores. The field editor can be used by the
NSWindow's first responder to edit the text that it displays. The fieldEditor:forObject: method returns the NSWindow's field editor. (You
can make this method instead return an alternative NSText object, appropriate for the object specified the second argument, by
implementing the delegate method windowWillReturnFieldEditor:toObject:.)

Initializing and Getting a New NSWindow Object

- (id)initWithContentRect:(NSRect)contentRect Initializes the new window object with a location and
styleMask:(unsigned int)aStyle size for content of contentRect, a window style and
backing:(NSBackingStoreType)bufferingType buttons as indicated in the bitmap mask aStyle, drawing
defer:(BOOL)flag buffering as indicated by bufferingType. If flag is YES,

 the window system defers creating the window until it's needed.

- (id)initWithContentRect:(NSRect)contentRect Initializes the new window object for a screen as specified

styleMask:(unsigned int)aStyle by aScreen, with a location and size for content of
backing:(NSBackingStoreType)bufferingType contentRect, a window style and buttons as indicated in
defer:(BOOL)flag the bitmap mask aStyle, drawing buffering as indicated
screen:(NSScreen *)aScreen by bufferingType. If flag is YES,the window system defers creating the window

until it's needed.

Computing Frame and Content Rectangles

+ (NSRect)contentRectForFrameRect:(NSRect)aRect
styleMask:(unsigned int)aStyle Gets the content rectangle for frame rectangle aRect in a window of type aStyle.

+ (NSRect)frameRectForContentRect:(NSRect)aRect
styleMask:(unsigned int)aStyle Gets the frame rectangle for content rectangle aRect in a window of type aStyle.

+ (float)minFrameWidthWithTitle:(NSString *)aTitle
styleMask:(unsigned int)aStyle Returns the minimum frame width needed for aTitle in a window of type aStyle.

Accessing the Content View

- (id)contentView Returns the NSWindow's content view.

- (void)setContentView:(NSView *)aView Makes aView the NSWindow's content view.

Window Graphics

- (NSColor *)backgroundColor Returns the window's background color.

- (NSString *)representedFilename Returns the filename associated with this window (regardless of the title string).

- (void)setBackgroundColor:(NSColor *)color Sets the window's background color to color.

- (void)setRepresentedFilename:(NSString *)aString
 Alters aString by formatting it as a path and filename, then sets the filename

associated with this window to the result.    If filename doesn't include a path to

the file, the current working directory is used. This method doesn't affect the title
string.

- (void)setTitle:(NSString *)aString Makes aString the window's title.

- (void)setTitleWithRepresentedFilename:(NSString *)aString
Invokes setRepresentedFilename: and makes the resultant string the window's

title.

- (unsigned int)styleMask Returns the window's border and title-bar style.

- (NSString *)title Returns the window's title string.

Window Device Attributes

- (NSBackingStoreType)backingType Returns the type of the window device's backing store.

- (NSDictionary *)deviceDescription Returns the window device's attributes as key/value pairs.

- (int)gState Returns the graphics-state object for the window object.

- (BOOL)isOneShot Returns whether backing-store memory for the window is freed when the window is
ordered off-screen.

- (void)setBackingType:(NSBackingStoreType)type Sets the type of window-device backing store.

- (void)setOneShot:(BOOL)flag Sets whether backing-store memory for the window should be freed when the
window is ordered off-screen.

- (int)windowNumber Returns the window number.

The Miniwindow

- (NSImage *)miniwindowImage Returns the image that's displayed in the miniwindow.

- (NSString *)miniwindowTitle Returns the title that's displayed in the miniwindow.

- (void)setMiniwindowImage:(NSImage *)image Sets the image that's displayed in the miniwindow.

- (void)setMiniwindowTitle:(NSString *)title Sets the title that's displayed in the miniwindow.

The Field Editor

- (void)endEditingFor:(id)anObject Ends the field editor's editing assignment for anObject.

- (NSText *)fieldEditor:(BOOL)createFlag Returns the window object's field editor for anObject.
forObject:(id)anObject If the field editor does not exist and createFlag is YES, creates a field editor.

Window Status and Ordering

- (void)becomeKeyWindow Records the window's new status as the key window. This method posts the
notification NSWindowDidBecomeKeyNotification with the receiving object to
the default notification center.

- (void)becomeMainWindow Records the window's new status as the main window. This method posts the
notification NSWindowDidBecomeMainNotification with the receiving object
to the default notification center.

- (BOOL)canBecomeKeyWindow Returns whether the receiving window object can be the key window.

- (BOOL)canBecomeMainWindow Returns whether the receiving window object can be the main window.

- (BOOL)hidesOnDeactivate Returns whether deactivation hides the window.

- (BOOL)isKeyWindow Returns whether the receiving window object is the key window.

- (BOOL)isMainWindow Returns whether the receiving window object is the main window.

- (BOOL)isMiniaturized Returns whether the window is hidden (and the miniwindow displayed).

- (BOOL)isVisible Returns whether the window object is in the screen list (and thus visible).

- (int)level Returns the current window level.

- (void)makeKeyAndOrderFront:(id)sender Makes the receiving window object the key window and brings it forward.

- (void)makeKeyWindow Makes the receiving window object the key window.

- (void)makeMainWindow Makes the receiving window object the main window.

- (void)orderBack:(id)sender Puts the window object at the back of its tier.

- (void)orderFront:(id)sender Puts the window object at the front of its tier.

- (void)orderFrontRegardless Puts the window object at the front even if the application is inactive. If the window
is currently miniaturized, this method posts the notification
NSWindowDidDeminiaturizeNotification with the window object to the default
notification center.

- (void)orderOut:(id)sender Removes the window object from the screen list.

- (void)orderWindow:(NSWindowOrderingMode)place
relativeTo:(int)otherWin Repositions the window object in the screen list in position place relative to

another window. If the window is currently miniaturized, this method posts the
NSWindowDidDeminiaturizeNotification notification with that window object
to the default notification center.

- (void)resignKeyWindow Records that the window object is no longer the key window. This method posts the
notification NSWindowDidResignKeyNotification with the receiving object to
the default notification center.

- (void)resignMainWindow Records that the window object is no longer the main window. This method posts
the notification NSWindowDidResignMainNotification with the receiving object
to the default notification center.

- (void)setHidesOnDeactivate:(BOOL)flag Sets whether deactivation hides the window.

- (void)setLevel:(int)newLevel Resets the window level to newLevel.

Moving and Resizing the Window

- (NSPoint)cascadeTopLeftFromPoint:(NSPoint)topLeftPoint
When successively invoked, tiles windows by offsetting them slightly to the right

and down from the previous window. Returns the top left point of the placed
window, which is typically used for topLeftPoint in the next invocation. If you
specify (0,0), places the window as is, and returns its top left point.

- (void)center Centers the window on the screen.

- (NSRect)constrainFrameRect:(NSRect)frameRect
toScreen:(NSScreen *)screen Constrains the window's frame rectangle frameRect to screen. Returns the frame

rectangle.

- (NSRect)frame Returns the window's frame rectangle

- (NSSize)minSize Returns the window's minimum size.

- (NSSize)maxSize Returns the window's maximum size

- (void)setContentSize:(NSSize)aSize Resizes the window's content area to aSize.

- (void)setFrame:(NSRect)frameRect Moves and/or resizes the window frame to frameRect. flag
display:(BOOL)flag determines whether the window is displayed. This method posts the

NSWindowDidResizeNotification notification with the receiving object to the
default notification center.

- (void)setFrameOrigin:(NSPoint)aPoint Moves the window by changing its frame origin to aPoint.

- (void)setFrameTopLeftPoint:(NSPoint)aPoint Moves the window by changing its top-left corner to aPoint.

- (void)setMinSize:(NSSize)aSize Sets the window's minimum size.

- (void)setMaxSize:(NSSize)aSize Sets the window's maximum size.

Converting Coordinates

- (NSPoint)convertBaseToScreen:(NSPoint)aPoint
Converts aPoint from base to screen coordinates.

- (NSPoint)convertScreenToBase:(NSPoint)aPoint
Converts aPoint from screen to base coordinates.

Managing the Display

- (void)display Displays all the window's views.

- (void)disableFlushWindow Disables flushing for a buffered window.

- (void)displayIfNeeded Displays all the window's views that need to be redrawn.

- (void)enableFlushWindow Enables flushing for a buffered window.

- (void)flushWindow Flushes the window's buffer to the screen.

- (void)flushWindowIfNeeded Conditionally flushes the window's buffer to the screen.

- (BOOL)isAutodisplay Returns whether the window displays all views requiring redrawing when update is
invoked.

- (BOOL)isFlushWindowDisabled Returns whether flushing is disabled.

- (void)setAutodisplay:(BOOL)flag Sets whether the window displays all views requiring redrawing when update is
invoked.

- (void)setViewsNeedDisplay:(BOOL)flag Sets whether some views of the receiving window object should be redrawn.

- (void)update Update's the window's display and cursor rectangles. This method is invoked after
every event. When it successfully completes, it posts the
NSWindowDidUpdateNotification notification.

- (void)useOptimizedDrawing:(BOOL)flag Sets whether the window's views should optimize drawing.

- (BOOL)viewsNeedDisplay Returns whether some views of the receiving NSWindow object should be redrawn.

Screens and Window Depths

+ (NSWindowDepth)defaultDepthLimit Returns the default depth limit for all windows.

- (BOOL)canStoreColor Returns whether the window is deep enough to store colors.

- (NSScreen *)deepestScreen Returns the deepest screen that the window is on.

- (NSWindowDepth)depthLimit Returns the window's depth limit.

- (BOOL)hasDynamicDepthLimit Returns whether the depth limit depends on the screen.

- (NSScreen *)screen Returns the screen that (most of) the window is on.

- (void)setDepthLimit:(NSWindowDepth)limit Sets the window's depth limit to limit

- (void)setDynamicDepthLimit:(BOOL)flag Sets whether the depth limit will depend on the screen.

Cursor Management

- (BOOL)areCursorRectsEnabled Returns whether cursor rectangles are enabled.

- (void)disableCursorRects Disables all cursor rectangles in the window object.

- (void)discardCursorRects Removes all cursor rectangles in the window object.

- (void)enableCursorRects Enables cursor rectangles in the window object.

- (void)invalidateCursorRectsForView:(NSView *)aView
Marks cursor rectangles invalid for aView.

- (void)resetCursorRects Resets cursor rectangles for the window object.

Handling User Actions and Events

- (void)close Closes the window. When this method begins, it posts the notification
NSWindowWillCloseNotification with the receiving object to the default
notification center.

- (void)deminiaturize:(id)sender Hides the miniwindow and redisplays the window.

- (BOOL)isDocumentEdited Returns whether the window's document has been edited.

- (BOOL)isReleasedWhenClosed Returns whether the window object is released when it is closed.

- (void)miniaturize:(id)sender Hides the window and displays its miniwindow. When this method begins, it posts
the notification NSWindowWillMiniaturizeNotification with the receiving object
to the default notification center. When it completes successfully, it posts
NSWindowDidMiniaturizeNotification.

- (void)performClose:(id)sender Simulates user clicking the close button.

- (void)performMiniaturize:(id)sender Simulates user clicking the miniaturize button.

- (int)resizeFlags Returns the event modifier flags during resizing.

- (void)setDocumentEdited:(BOOL)flag Sets whether the window's document has been edited.

- (void)setReleasedWhenClosed:(BOOL)flag Sets whether closing the window object also releases it.

Aiding Event Handling

- (BOOL)acceptsMouseMovedEvents Returns whether the NSWindow accepts mouse-moved events.

- (NSEvent *)currentEvent Returns the current event object for the application.

- (void)discardEventsMatchingMask:(unsigned int)mask
beforeEvent:(NSEvent *)lastEvent Discards any events in the event queue that have a type indicated by bitmap mask

until the method encounters the event lastEvent.

- (NSResponder *)firstResponder Returns the first responder to user events.

- (void)keyDown:(NSEvent *)theEvent Handles key-down events.

- (BOOL)makeFirstResponder:(NSResponder *)aResponder
Makes aResponder the first responder to user events.

- (NSPoint)mouseLocationOutsideOfEventStream Provides current location of the cursor.

- (NSEvent *)nextEventMatchingMask:(unsigned int)mask
Returns the next event object for the application that matches the events indicated

by event mask mask.

- (NSEvent *)nextEventMatchingMask:(unsigned int)mask
untilDate:(NSDate *)expiration Returns the next event object for the application that
inMode:(NSString *)mode matches the events indicated by event mask mask, and
dequeue:(BOOL)deqFlag that occurs before time expiration; until expiration, the run loop runs in mode.

- (void)postEvent:(NSEvent *)event
atStart:(BOOL)flag Post an event for the application; if atStart is YES, the event goes to the beginning

of the event queue.

- (void)setAcceptsMouseMovedEvents:(BOOL)flag
Sets whether the NSWindow accepts mouse-moved events.

- (void)sendEvent:(NSEvent *)theEvent Dispatches mouse and keyboard events. If this method is dispatching a window
exposed event, it posts the NSWindowDidExposeNotification notification with
the receiving object and, in the notification's dictionary, a rectangle describing
the exposed area (with the key NSExposedRect) to the default notification
center. If it is dispatching a screen changed event, it posts
NSWindowDidChangeScreenNotification with the receiving object. If it is
dispatching a window moved event, it posts NSWindowDidMoveNotification.

- (BOOL)tryToPerform:(SEL)anAction Aids in dispatching action messages (anAction) to
with:(id)anObject anObject.

- (BOOL)worksWhenModal Override to return whether the window object accepts events when a modal panel is
being run. Default is NO.

Dragging

- (void)dragImage:(NSImage *)anImage Initiates an image-dragging session. NSView invokes this
at:(NSPoint)baseLocation method inside its implementation of mouseDown:.
offset:(NSSize)initialOffset

event:(NSEvent *)event
pasteboard:(NSPasteboard *)pboard
source:(id)sourceObject
slideBack:(BOOL)slideFlag

- (void)registerForDraggedTypes:(NSArray *)newTypes
Registers the NSPasteboard types (newTypes) that the window object accepts in an

image-dragging session.

- (void)unregisterDraggedTypes Unregisters the window object as a recipient of dragged images.

Services and Windows Menu Support

- (BOOL)isExcludedFromWindowsMenu Returns whether the receiving window object is omitted from the Windows menu.

- (void)setExcludedFromWindowsMenu:(BOOL)flag
Sets whether the receiving window object is omitted from the Windows menu.

- (id)validRequestorForSendType:(NSString *)sendType
returnType:(NSString *)returnType Returns whether the window can respond to a service with send and receive types

sendType and returnType.

Saving and Restoring the Frame

+ (void)removeFrameUsingName:(NSString *)name
Removes the named frame rectangle from the system defaults.

- (NSString *)frameAutosaveName Returns the name that's used to autosave the frame rectangle as a system default.

- (void)saveFrameUsingName:(NSString *)name Saves the frame rectangle as a system default.

- (BOOL)setFrameAutosaveName:(NSString *)name
Sets the name that's used to autosave the frame rectangle as a system default.

- (void)setFrameFromString:(NSString *)string Sets the frame rectangle from string, which encodes the position and dimensions of

the frame rectangle and the position and dimensions of the screen.

- (BOOL)setFrameUsingName:(NSString *)name Sets the frame rectangle from the named default.

- (NSString *)stringWithSavedFrame Returns a string encoding the position and dimensions of the frame rectangle and
the position and dimensions of the screen.

Printing and PostScript

- (NSData *)dataWithEPSInsideRect:(NSRect)rect
Returns the encapsulated PostScript inside rect as a data object.

- (void)fax:(id)sender Faxes all the window's views.

- (void)print:(id)sender Prints all the window's views.

Assigning a Delegate

- (id)delegate Returns the window object's delegate.

- (void)setDelegate:(id)anObject Makes anObject the window object's delegate.

Implemented by the Delegate

- (BOOL)windowShouldClose:(id)sender Notifies delegate that the window is about to close.

- (NSSize)windowWillResize:(NSWindow *)sender
toSize:(NSSize)frameSize Lets delegate constrain resizing to frameSize.

- (id)windowWillReturnFieldEditor:(NSWindow *)sender
toObject:(id)client Lets delegate provide another text object for field editor.

- (void)windowDidBecomeKey:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window is the

key window. aNotification is always NSWindowDidBecomeKeyNotification. If

the delegate implements this method, it's automatically registered to receive this
notification.

- (void)windowDidBecomeMain:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window is the

main window. aNotification is always NSWindowDidBecomeMainNotification.
If the delegate implements this method, it's automatically registered to receive
this notification.

- (void)windowDidChangeScreen:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window

changed screens. aNotification is always
NSWindowDidChangeScreenNotification. If the delegate implements this
method, it's automatically registered to receive this notification.

- (void)windowDidDeminiaturize:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window was

restored to screen. aNotification is always
NSWindowDidDeminiaturizeNotification. If the delegate implements this
method, it's automatically registered to receive this notification.

- (void)windowDidExpose:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window was

exposed. aNotification is always NSWindowDidExposeNotification. If the
delegate implements this method, it's automatically registered to receive this
notification.

- (void)windowDidMiniaturize:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window was

miniaturized. aNotification is always NSWindowDidMiniaturizeNotification. If
the delegate implements this method, it's automatically registered to receive this
notification.

- (void)windowDidMove:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window did

move. aNotification is always NSWindowDidMoveNotification. If the delegate
implements this method, it's automatically registered to receive this notification.

- (void)windowDidResignKey:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window isn't

the key window. aNotification is always NSWindowDidResignKeyNotification.
If the delegate implements this method, it's automatically registered to receive
this notification.

- (void)windowDidResignMain:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window isn't

the main window. aNotification is always
NSWindowDidResignMainNotification. If the delegate implements this method,
it's automatically registered to receive this notification.

- (void)windowDidResize:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window was

resized. aNotification is always NSWindowDidResizeNotification. If the
delegate implements this method, it's automatically registered to receive this
notification.

- (void)windowDidUpdate:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window was

updated. aNotification is always NSWindowDidUpdateNotification. If the
delegate implements this method, it's automatically registered to receive this
notification.

- (void)windowWillClose:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window will

close. aNotification is always NSWindowWillCloseNotification. If the delegate
implements this method, it's automatically registered to receive this notification.

- (void)windowWillMiniaturize:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window will be

miniaturized. aNotification is always NSWindowWillMiniaturizeNotification. If

the delegate implements this method, it's automatically registered to receive this
notification.

- (void)windowWillMove:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate that the window will

move. aNotification is always NSWindowWillMoveNotification. If the delegate
implements this method, it's automatically registered to receive this notification.

