
Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSNotificationCenter

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSNotification.h

Class Description

An NSNotificationCenter object (or simply, notification center) is essentially a notification dispatch table. It notifies all observers of events
meeting specific criteria of notification and sender. This event information is encapsulated in NSNotification objects, also known as
notification objects, or simply, notifications. Client objects register themselves as observers of a specific notification originating in another
object. When the condition occurs to signal a notification, some object (which may or may not be the object observed) posts an appropriate
notification object to the notification center. (See the class specification of NSNotification for more on notification objects.)      The
notification center dispatches a message to each observer (using the selector provided by the observer), with the notification as the sole
argument.

An object registers itself to observe notifications by the addObserver:selector:name:object: method, specifying the object and associated
notification it wants to see. However, the observer need not specify both of these parameters. If it specifies only the object, it will see all
notifications associated with that object. If the object specifies only a notification name to observe, it will see that notification for any
object whenever it's posted.

The methods postNotificationName:object: and postNotificationName:object:userInfo: are provided as convenience methods, which
both create and post notifications.

Each task has a default notification center.

As an example of using the notification center, suppose your program can perform a number of conversions on text (for instance, MIF to
RTF or RTF to ASCII). You have defined a class of objects that perform those conversions, Convertor. Convertor objects might be added or
removed during program execution. Your program has a client object that wants to be notified when convertors are added or removed,
allowing the application to reflect the available options in a pop-up list. The client object would register itself as an observer by sending the
following messages to the notification center:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(objectAddedToConvertorList:)

 name:@"NSConverterAdded" object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(objectRemovedFromConvertorList:
 name:@"NSConverterRemoved" object:nil];

When a user installs or removes a converter, the Convertor sends one of the following messages to the notification center:

[[NSNotificationCenter defaultCenter]
 postNotificationName:@"NSConverterAdded" object:self];

or

[[NSNotificationCenter defaultCenter]
 postNotificationName:@"NSConverterRemoved" object:self];

The notification center identifies all observers who are interested in the ªNSConverterAddedº or ªNSConverterRemovedº notifications by
invoking the method they specified in the selector argument of addObserver:selector:name:object:. In the case of our example observer,
the selectors are objectAddedToConvertorList: and objectRemovedFromConvertorList:. Assume the Convertor class has an instance
method convertorName that returns the name of the Convertor object. Then the objectAddedToConvertorList: method might have the
following implementation:

- (void)objectAddedToConvertorList:(NSNotification *)notification
{
 Convertor *addedConvertor = [notification object];

 // Add this to our popup (it will only be added if not there)...
 [myPopUpButton addItem:[addedConvertor convertorName]];
}

The convertors don't need to know anything about the pop-up list or any other aspect of the user interface to your program.

Accessing the Default Notification Center

+ (NSNotificationCenter *)defaultCenter Returns the default notification center object; used for generic notifications.

Adding and Removing Observers

- (void)addObserver:(id)anObserver Registers anObserver and aSelector with the receiver so
selector:(SEL)aSelector that anObserver receives an aSelector message when a
name:(NSString *)aName notification of name aName is posted to the notification
object:(id)anObject center by anObject. If anObject is nil, observer will get posted whatever the

object is. If aName is nil, observer will get posted for all notifications that match
anObject.

- (void)removeObserver:(id)anObserver Removes anObserver as the observer of any notifications from any objects.

- (void)removeObserver:(id)anObserver Removes anObserver as the observer of aName
name:(NSString *)aName notifications from anObject.
object:anObject

Posting Notifications

- (void)postNotification:(NSNotification *)aNotification
Posts aNotification to the notification center. Raises NSInvalidArgumentException

if the name associated with aNotification is nil.

- (void)postNotificationName:(NSString *)aName Creates a notification object that associates aName and
object:(id)anObject anObject and posts it to the notification center.

- (void)postNotificationName:(NSString *)aName Creates a notification object that associates aName and
object:(id)anObject anObject and posts it to the notification center. userInfo
userInfo:(NSDictionary *)userInfo is a dictionary of arbitrary data that will be passed with the notification. userInfo

may be nil.

