Copyright ©1994 by NeXT Computer, Inc. All Rights Reserved.

NSObject

Inherits From: none (NSObject is the root class)
Conforms To: NSObject

Declared In: Foundation/NSObject.h

Foundation/NSRunLoop.h

Class Description

NSObject is the root class of all ordinary Objective C inheritance hierarchies; it has no superclass. Its interface derives from two sources:
the methods it declares directly and those declared in the NSObject protocol. Its interface is divided in this way so that objects inheriting
from other root classes (notably NSProxy) can stand in for ordinary objects without having to inherit from NSObject. The following
discussion makes no distinction between the methods declared in this class and those declared in the NSObject protocol.

From NSObject, other classes inherit a basic interface to the run-time system for the Objective C language. It's through NSObject that
instances of all classes obtain their ability to behave as objects. Among other things, the NSObject class provides inheriting classes with a
framework for creating, initializing, deallocating, comparing, and archiving objects, for performing methods selected at run-time, for
querying an object about its methods and its position in the inheritance hierarchy, and for forwarding messages to other objects. For
example, to ask an object what class it belongs to, you'd send it a class message. To find out whether it implements a particular method,
you'd send it a respondsToSelector: message

The NSObject class is an abstract class; programs use instances of classes that inherit from NSObject, but never of NSObject itself.
Initializing an Object to Its Class

Every object is connected to the run-time system through its isa instance variable, inherited from the NSObject class. isa identifies the
object's class; it points to a structure that's compiled from the class definition. Through isa, an object can find whatever information it

needs at run timeDsuch as its place in the inheritance hierarchy, the size and structure of its instance variables, and the location of the
method implementations it can perform in response to messages.

Because all ordinary objects inherit directly or indirectly from the NSObject class, they all have this variable. The defining characteristic of
an “object’ is that its first instance variable is an isa pointer to a class structure.

The installation of the class structureDthe initialization of isaDis one of the responsibilities of the alloc and allocWithZone: methods, the
same methods that create (allocate memory for) new instances of a class. In other words, class initialization is part of the process of
creating an object; it's not left to the methods, such as init, that initialize individual objects with their particular characteristics.

Instance and Class Methods

Every object requires an interface to the run-time system, whether it's an instance object or a class object. For example, it should be
possible to ask either an instance or a class whether it can respond to a particular message. So that this won't mean implementing every
NSObject method twice, once as an instance method and again as a class method, the run-time system treats methods defined in the root
class in a special way:

Instance methods defined in the root class can be performed both by instances
and by class objects.

A class object has access to class methodsPthose defined in the class and those inherited from the classes above it in the inheritance
hierarchybbut generally not to instance methods. However, the run-time system gives all class objects access to the instance methods
defined in the root class. Any class object can perform any root instance method, provided it doesn't have a class method with the same
name.

For example, a class object could be sent messages to perform NSObject's respondsToSelector: and perform:withObject: instance
methods:

SEL method = @selector(riskAll:);

if ([MyClass respondsToSelector:method])
[MyClass perform:method withObject:self];

When a class object receives a message, the run-time system looks first at the receiver's set of class methods. If it fails to find a class
method that can respond to the message, it looks at the set of instance methods defined in the root class. If the root class has an instance
method that can respond (as NSObject does for respondsToSelector: and perform:withObject:), the run-time system uses that
implementation and the message succeeds.

Note that the only instance methods available to a class object are those defined in the root class. If MyClass in the example above had
reimplemented either respondsToSelector: or perform:withObject:, those new versions of the methods would be available only to
instances. The class object for MyClass could perform only the versions defined in the NSObject class. (Of course, if MyClass had
implemented respondsToSelector: or perform:withObject: as class methods rather than instance methods, the class would perform those

new versions.)

Initializing the Class

+ (void)initialize

Creating and Destroying Instances
+ (id)alloc
+ (id)allocWithZone:(NSZone *)zone

+ (id)new

- (id)copy

- (void)dealloc
- (id)init

- (id)mutableCopy

Initializes the class before it's used (before it receives its first message).

Returns a new, uninitialized instance of the receiving class.
Returns a new, uninitialized instance of the receiving class in zone.

Allocates a new instance of the receiving class, sends it an init message, and returns
the initialized object returned by init. This method is simply a convenient cover
for the alloc and init methods.

Invokes copyWithZone:. This method is implemented in NSObject as a
convenience to subclasses. A subclass need override only copyWithZone: for
both copy and copyWithZone: to operate correctly.

Deallocates the memory occupied by the receiver.

Implemented by subclasses to initialize a new object (the receiver) immediately
after memory for it has been allocated.

Invokes mutableCopyWithZone:. This method is implemented in NSObject as a
convenience to subclasses. A subclass need override only
mutableCopyWithZone: for both mutableCopy and mutableCopyWithZone:
to operate correctly.

Identifying Classes
+ (Class)class Returns self. Since this is a class method, it returns the class object.

+ (Class)superclass Returns the class object for the receiver's superclass.

Testing Class Functionality

+ (BOOL)instancesRespondToSelector:(SEL)aSelector
Returns YES if instances of the class are capable of responding to aSelector

messages, and NO if they're not.

Testing Protocol Conformance

+ (BOOL)conformsToProtocol:(Protocol *)aProtocol
Returns YES if the receiving class conforms to aProtocol, and NO if it doesn't.

Obtaining Method Information

+ (IMP)instanceMethodForSelector:(SEL)aSelector
Locates and returns the address of the implementation of the aSelector instance

method.

- (IMP)methodForSelector:(SEL)aSelector Locates and returns the address of the receiver's implementation of the aSelector
method, so that it can be called as a function.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
Returns an object that contains a description of the aSelector method, or nil if the

aSelector method can't be found.

Describing Objects

+ (NSString *)description Subclasses override this method to return a human-readable string representation of

the contents of the receiver. NSObject's implementation simply prints the name
of the receiver's class.

Posing

+ (void)poseAsClass:(Class)aClass Causes the receiving class to *pose as® its superclass.

Error Handling

- (void)doesNotRecognizeSelector:(SEL)aSelector
Handles aSelector messages that the receiver doesn't recognize.

Sending Deferred Messages

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget

selector:(SEL)aSelector Cancels previous perform requests having the same target
object:(id)anObject and argument (as determined by isEqual:), and the same selector. This method
removes timers only in the current run loop, not all run loops.
- (void)performSelector:(SEL)aSelector Sends an aSelector message to anObject after delay. self
object:(id)anObject and anObject are retained until after the action is
afterDelay:(NSTimelnterval)delay executed.

Forwarding Messages

- (void)forwardInvocation:(NSInvocation *)aninvocation
Implemented by subclasses to forward messages to other objects.

Archiving

- (id)awakeAfterUsingCoder:(NSCoder *)aDecoder
Implemented by subclasses to reinitialize the receiver. The NSObject

implementation of this method simply returns self.

- (Class)classForArchiver Identifies the class to be used during archiving. NSObject's implementation returns
the object returned by classForCoder:.

- (Class)classForCoder Identifies the class to be used during serialization. An NSObject returns its own
class by default.

- (id)replacementObjectForArchiver:(NSArchiver *)anArchiver
Allows an object to substitute another object for itself during archiving. NSObject's
implementation returns the object returned by replacementObjectForCoder:.

- (id)replacementObjectForCoder:(NSCoder *)anEncoder
Allows an object to substitute another object for itself during serialization.
NSObject's implementation returns self.

+ (void)setVersion:(int)version Sets the class version number to version.

+ (int)version Returns the version of the class definition.

