
(id)initWithFrame:(NSRect)frameRect Initializes a new NSMatrix object in frameRect.

(id)initWithFrame:(NSRect)frameRect Initializes a new NSMatrix object in frameRect, with
mode:(int)aMode aMode as the selection mode, classId as the class used
cellClass:(Class)classId to make new cells, and having rowsHigh rows and
numberOfRows:(int)rowsHigh colsWide columns.
numberOfColumns:(int)colsWide

(id)initWithFrame:(NSRect)frameRect Initializes a new NSMatrix object with the given values
mode:(int)aMode with aMode as the selection mode, aCell as the
prototype:(NSCell *)aCell prototype copied to make new cells, and having
numberOfRows:(int)rowsHigh rowsHigh rows and colsWide columns.
numberOfColumns:(int)colsWide

(NSMatrixMode)mode Returns the selection mode of the matrix.

(void)setMode:(NSMatrixMode)aMode Sets the selection mode of the matrix.

(BOOL)allowsEmptySelection Returns whether it's possible to have no cells selected.

(BOOL)isSelectionByRect Returns whether a user can drag a rectangular selection.

(void)setAllowsEmptySelection:(BOOL)flag Sets whether it's possible to have no cells selected.

(void)setSelectionByRect:(BOOL)flag Sets whether a user can drag a rectangular selection (the default is YES). If flag is
NO, selection is on a row-by-row basis.

(Class)cellClass Returns the subclass of NSCell used to make new cells.



(id)prototype Returns the prototype cell copied to make new cells.

(void)setCellClass:(Class)classId Sets the subclass of NSCell used to make new cells.

(void)setPrototype:(NSCell *)aCell Sets the prototype cell copied to make new cells.

(void)addColumn Adds a new column of cells to the right of the last column.

(void)addColumnWithCells:(NSArray *)cellArray Adds a new column of cells, using those contained in cellArray.

(void)addRow Adds a new row of cells below the last row.

(void)addRowWithCells:(NSArray *)cellArray Adds a new row of cells, using those contained in cellArray.

(NSRect)cellFrameAtRow:(int)row Returns the frame rectangle of the cell at row and column.
column:(int)column

(NSSize)cellSize Returns the width and height of cells in the matrix.

(void)getNumberOfRows:(int *)rowCount Gets the number of rows and columns in the matrix.
columns:(int *)columnCount

(void)insertColumn:(int)column Inserts a new column of cells at column, creating as many as needed to make the
matrix column columns wide.

(void)insertColumn:(int)column withCells:(NSArray *)cellArray
Inserts a new row of cells at column, using those contained in cellArray.

(void)insertRow:(int)row Inserts a new row of cells at row, creating as many as needed to make the matrix
row rows wide.

(void)insertRow:(int)row withCells:(NSArray *)cellArray
Inserts a new row of cells at row, using those contained in cellArray.

(NSSize)intercellSpacing Returns the vertical and horizontal spacing between cells

(NSCell *)makeCellAtRow:(int)row Creates a new cell at row, column in the matrix and returns
column:(int)column it.

(void)putCell:(NSCell *)newCell Replaces the cell at row and column with newCell.
atRow:(int)row
column:(int)column

(void)removeColumn:(int)column Removes the column at column, releasing the cells.

(void)removeRow:(int)row Removes the row at row, releasing the cells.

(void)renewRows:(int)newRows Changes the number of rows and columns in the receiver
columns:(int)newColumns without freeing any cells.

(void)setCellSize:(NSSize)aSize Sets the width and height of all cells in the matrix.

(void)setIntercellSpacing:(NSSize)aSize Sets the vertical and horizontal spacing between cells.

(void)sortUsingFunction:(int (*)(id element1, id element2, void *userData))comparator
context:(void *)context Sorts the receiver's cells in ascending order as defined by the comparison

function comparator. context is passed as the function's third argument.

(void)sortUsingSelector:(SEL)comparator Sorts the receiver's cells in ascending order as defined by the comparison method
comparator.

(BOOL)getRow:(int *)row Gets the row and column position corresponding to aPoint.
column:(int *)column Returns YES if aPoint is within the matrix
forPoint:(NSPoint)aPoint NO otherwise.

(BOOL)getRow:(int *)row Gets the row and column position of aCell.
column:(int *)column Returns YES if aCell is in the matrix NO otherwise.
ofCell:(NSCell *)aCell



(void)setState:(int)value Sets the state of the cell at row and column to value.
atRow:(int)row
column:(int)column

(void)deselectAllCells Clears the receiver's selection, assuming that the NSMatrix allows an empty
selection.

(void)deselectSelectedCell Deselects the selected cell.

(void)selectAll:(id)sender Selects all the cells in the matrix.

(void)selectCellAtRow:(int)row Selects the cell at row and col.
column:(int)column

(BOOL)selectCellWithTag:(int)anInt Selects the cell with the tag anInt.

(id)selectedCell Returns the most recently selected cell or nil if no cell has been selected.

(NSArray *)selectedCells Returns an array containing the selected cells.

(int)selectedColumn Returns the column of the selected cell or 1 if no column has been selected.

(int)selectedRow Returns the row of the selected cell or 1 if no row has been selected.

(void)setSelectionFrom:(int)startPos Selects the cells in the matrix from startPos to endPos,
to:(int)endPos counting in row order from the upper left, as though
anchor:(int)anchorPos anchorPos were the number of the last cell selected, and
highlight:(BOOL)flag highlighting the cells according to flag.

(id)cellAtRow:(int)row Returns the cell at row row and column col.
column:(int)column

(id)cellWithTag:(int)anInt Returns the cell having anInt as its tag.

(NSArray *)cells Returns the matrix's array of cells.

(NSColor *)backgroundColor Returns the color of the background between cells.

(NSColor *)cellBackgroundColor Returns the color of the background within cells.

(BOOL)drawsBackground Returns whether the receiver draws the background between cells.

(BOOL)drawsCellBackground Returns whether the receiver draws the background within cells.

(void)setBackgroundColor:(NSColor *)aColor Sets the color of the background between cells to aColor.

(void)setCellBackgroundColor:(NSColor *)aColor
Sets the color of the background within cells to aColor.

(void)setDrawsBackground:(BOOL)flag Sets whether the receiver draws the background between cells.

(void)setDrawsCellBackground:(BOOL)flag Sets whether the receiver draws the background within cells.

(void)selectText:(id)sender Selects the text in the first or last editable cell.

(id)selectTextAtRow:(int)row Selects the text of the cell at row, column in the matrix.
column:(int)column

(void)textDidBeginEditing:(NSNotification *)notification
Invoked when there's a change in the text after the receiver gains first responder

status. Default behavior is pass to this message on to the text delegate. This
method posts the NSControlTextDidBeginEditingNotification notification



with the receiving object and, in the notification's dictionary, the text object
(with the key NSFieldEditor) to the default notification center.

(void)textDidChange:(NSNotification *)notification
Invoked upon a key-down event or paste operation that changes the receiver's

contents. Default behavior is to pass this message on to the text delegate. This
method posts the NSControlTextDidChangeNotification notification with the
receiving object and, in the notification's dictionary, the text object (key
NSFieldEditor) to the default notification center.

(void)textDidEndEditing:(NSNotification *)notification
Invoked when text editing ends and then forwarded to the text delegate. This

method posts the notification NSControlTextDidEndEditingNotification with
the receiving object and, in the notification's dictionary, the text object (with
the key NSFieldEditor) to the default notification center.

(BOOL)textShouldBeginEditing:(NSText *)textObject
Invoked to let the NSTextField respond to impending changes to its text and then

forwarded to the text delegate.

(BOOL)textShouldEndEditing:(NSText *)textObject
Invoked to let the NSTextField respond to impending loss of first responder

status and then forwarded to the text delegate.

(id)nextText Returns the object to be selected when the user presses Tab while editing the last
text cell.

(id)previousText Returns the object to be selected when the user presses Shift-Tab while editing
the first text cell.

(void)setNextText:(id)anObject Sets the object to be selected when the user presses Tab while editing the last text
cell.

(void)setPreviousText:(id)anObject Sets the object to be selected when user presses Shift-Tab while editing the first
text cell.

(void)setDelegate:(id)anObject Sets the delegate for messages from the field editor.

(id)delegate Returns the delegate for messages from the field editor.

(BOOL)autosizesCells Returns whether the matrix resizes its cells automatically.

(void)setAutosizesCells:(BOOL)flag Sets whether the matrix resizes its cells automatically.

(void)setValidateSize:(BOOL)flag Sets whether the cell size needs to be recalculated.

(void)sizeToCells Resizes the matrix to fit its cells exactly.

(BOOL)isAutoscroll Returns whether the matrix automatically scrolls when dragged in.

(void)scrollCellToVisibleAtRow:(int)row Scrolls the matrix so that the cell at row and column is
column:(int)column visible.

(void)setAutoscroll:(BOOL)flag Sets whether the matrix automatically scrolls when dragged in.

(void)setScrollable:(BOOL)flag If flag is YES, makes all the cells scrollable.

(void)drawCellAtRow:(int)row Displays the cell at row and col.
column:(int)column



(void)highlightCell:(BOOL)flag Highlights (or unhighlights) the cell at row, col.
atRow:(int)row
column:(int)column

(SEL)doubleAction Returns the action method for double clicks.

(void)setDoubleAction:(SEL)aSelector Sets the action method used on double-clicks to aSelector.

(SEL)errorAction Returns the action method for editing errors.

(BOOL)sendAction Sends the selected cell's action, or the NSMatrix's action if the cell doesn't have
one.

(void)sendAction:(SEL)aSelector Sends aSelector to anObject, for all cells if flag is YES.
to:(id)anObject
forAllCells:(BOOL)flag

(void)sendDoubleAction Sends the action corresponding to a double-click.

(void)setErrorAction:(SEL)aSelector Sets the action method for editing errors to aSelector.

(BOOL)acceptsFirstMouse:(NSEvent *)theEvent Returns NO only if receiver's mode is NSListModeMatrix.

(void)mouseDown:(NSEvent *)theEvent Responds to a mouse-down event. A mouse-down event in a text cell initials
editing mode. A double-click in any cell type except a text cell sends the
double-click action of the NSMatrix (if there is one) in addition to the single-
click action.

(int)mouseDownFlags Returns the event flags in effect at start of tracking.

(BOOL)performKeyEquivalent:(NSEvent *)theEvent
Simulates a mouse click in the appropriate cell.

(void)resetCursorRects Resets cursor rectangles so that the cursor becomes an I-beam over text cells.


