
(void)finishLaunching Activates the application, opens any files specified by the ªNSOpenº user default,
and unhighlights the application's icon in the Workspace Manager. This
method is invoked by run before it starts the event loop. When this method
begins, it posts the notification
NSApplicationWillFinishLaunchingNotification with the receiving object to
the default notification center. When it successfully completes, it posts the
notification NSApplicationDidFinishLaunchingNotification. If you override
finishLaunching, the subclass method should invoke the superclass method.

(void)activateIgnoringOtherApps:(BOOL)flag Makes this the active application. If flag is NO, the application is activated only
if no other application is currently active.

(void)deactivate Deactivates the application.

(BOOL)isActive Returns whether this is the active application.

(void)abortModal Aborts the event loop started by runModalForWindow:.

(NSModalSession)beginModalSessionForWindow:(NSWindow *)theWindow
Sets up a modal session with theWindow.

(void)endModalSession:(NSModalSession)session



Finishes a modal session.

(BOOL)isRunning Returns whether the main event loop is running.

(void)run Starts the main event loop.

(int)runModalForWindow:(NSWindow *)theWindow
Starts a modal event loop for theWindow.

(int)runModalSession:(NSModalSession)session
Runs a modal session.

(void)sendEvent:(NSEvent *)theEvent Dispatches events to other objects. When sending the activate application event,
this method posts the notifications NSApplicationWillBecomeActive and
NSApplicationDidBecomeActive with the receiving object to the default
notification center. When sending the deactivate application event, it posts the
NSApplicationWillResignActiveNotification and
NSApplicationDidResignActiveNotification notifications with the receiving
object to the default notification center.

(void)stop:(id)sender Stops the main event loop.

(void)stopModal Stops the modal event loop.

(void)stopModalWithCode:(int)returnCode Stops the event loop started by runModalForWindow: and sets the code that
runModalForWindow: will return.

(NSEvent *)currentEvent Returns the current event.

(void)discardEventsMatchingMask:(unsigned int)mask
beforeEvent:(NSEvent *)lastEvent Removes from the event queue all events matching mask that were generated

before lastEvent.

(NSEvent *)nextEventMatchingMask:(unsigned int)mask
untilDate:(NSDate *)expiration Returns the next event matching mask, or nil if
inMode:(NSString *)mode no such event is found before the expiration date. If flag
dequeue:(BOOL)flag is YES, the event is removed from the queue. The mode argument names an

NSRunLoop mode that determines what other ports are listened to and what
timers may fire while the NSApplication is waiting for the event.

(void)postEvent:(NSEvent *)event atStart:(BOOL)flag
Adds event to the beginning of the application's event queue if flag is YES, and

to the end otherwise.

(BOOL)sendAction:(SEL)aSelector Sends an action message to aTarget or up the responder
to:(id)aTarget chain.
from:(id)sender

(id)targetForAction:(SEL)aSelector Returns the object that receives the action message aSelector.

(BOOL)tryToPerform:(SEL)aSelector Attempts to send a message to the application or the
with:(id)anObject delegate.

(void)setApplicationIconImage:(NSImage *)anImage
Sets the application's icon to anImage.

(NSImage *)applicationIconImage Returns the NSImage used for the application's icon.

(void)hide:(id)sender Hides all the application's windows. When this method begins, it posts the
notification NSApplicationWillHideNotification with the receiving object to
the default notification center. When it completes successfully, it posts the
notification NSApplicationDidHideNotification.



(BOOL)isHidden Returns YES if windows are hidden.

(void)unhide:(id)sender Restores hidden windows to the screen.

(void)unhideWithoutActivation Restores hidden windows without activating their owner. When this method
begins, it posts the notification NSApplicationWillUnhideNotification with
the receiving object to the default notification center. When it completes
successfully, it posts the notification NSApplicationDidUnhideNotification.

(NSWindow *)keyWindow Returns the key window.

(NSWindow *)mainWindow Returns the main window.

(NSWindow *)makeWindowsPerform:(SEL)aSelector
inOrder:(BOOL)flag Sends the aSelector message to the application's NSWindowsÐin front-to-back

order if flag is YES, otherwise in the order of the array that the windows
method returns.

(void)miniaturizeAll:(id)sender Miniaturizes all the receiver's application windows.

(void)preventWindowOrdering Suppresses the usual window ordering in handling the most recent mouse-down
event.

(void)setWindowsNeedUpdate:(BOOL)flag Sets whether the application's windows need updating when the application has
finished processing the current event. This method is especially useful for
making sure menus are updated to reflect changes not initiated by user
actions.

(void)updateWindows Sends an update message to on-screen NSWindows. When this method begins, it
sends the notification NSApplicationWillUpdateNotification with the
receiving object to the default notification center. When it successfully
completes, it sends the notification NSApplicationDidUpdateNotification.

(NSArray *)windows Returns an array of the application's NSWindows.

(NSWindow *)windowWithWindowNumber:(int)windowNum
Returns the NSWindow object corresponding to windowNum.

(void)orderFrontColorPanel:(id)sender Brings up the color panel.

(void)orderFrontDataLinkPanel:(id)sender Shows the shared instance of the data link panel, creating it first if necessary.

(void)orderFrontHelpPanel:(id)sender Shows the application's help panel or the default one.

(void)runPageLayout:(id)sender Runs the application's page layout panel.

(NSMenu *)mainMenu Returns the id of the application's main menu.

(void)setMainMenu:(NSMenu *)aMenu Makes aMenu the application's main menu.

(void)addWindowsItem:(id)aWindow Adds a Windows menu item for aWindow.
title:(NSString *)aString
filename:(BOOL)isFilename

(void)arrangeInFront:(id)sender Orders all registered NSWindows to the front.

(void)changeWindowsItem:(id)aWindow Changes the Windows menu item for aWindow.
title:(NSString *)aString
filename:(BOOL)isFilename

(void)removeWindowsItem:(id)aWindow Removes the Windows menu item for aWindow.

(void)setWindowsMenu:(id)aMenu Sets the Windows menu.



(void)updateWindowsItem:(id)aWindow Updates the Windows menu item for aWindow.

(NSMenu *)windowsMenu Returns the Windows menu.

(void)registerServicesMenuSendTypes:(NSArray *)sendTypes
returnTypes:(NSArray *)returnTypes Registers pasteboard types the application can send and receive.

(NSMenu *)servicesMenu Returns the Services menu.

(void)setServicesMenu:(NSMenu *)aMenu Sets the Services menu.

(id)validRequestorForSendType:(NSString *)sendType
returnType:(NSString *)returnType Indicates whether the NSApplication can send and receive the specified types.

(NSDPSContext *)context Returns the NSApplication's Display PostScript context.

(void)reportException:(NSException *)anException
Logs the given exception by calling NSLog().

(void)terminate:(id)sender Frees the NSApplication object and exits the application.

(id)delegate Returns the NSApplication's delegate.

(void)setDelegate:(id)anObject Makes anObject the NSApplication's delegate.

(BOOL)application:(id)sender Sent directly by sender to the delegate. Opens the specified
openFileWithoutUI:(NSString *)filename file to run without a user interface.Work with the file will be under

programmatic control of sender, rather than under keyboard control of the
user. Returns YES or NO to indicate whether the file was successfully opened

(BOOL)application:(NSApplication *)application Sent directly by application to the delegate. Like
openFile:(NSString *)filename application:openFileWithoutUI:, but brings up the user interface of the file's

application.

(BOOL)application:(NSApplication *)application Sent directly by application to the delegate. Like
openTempFile:(NSString *)filename application:openFile:, but a file opened through this method is assumed to be

temporary it's the
application's responsibility to remove the file at the appropriate time.

(void)applicationDidBecomeActive:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationDidBecomeActiveNotification. If the delegate implements this
method, it's automatically registered to receive the notification.

(void)applicationDidFinishLaunching:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationDidFinishLaunchingNotification. If the delegate implements
this method, it's automatically registered to receive the notification.

(void)applicationDidHide:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationDidHideNotification. If the delegate implements this method,
it's automatically registered to receive the notification.

(void)applicationDidResignActive:(NSNotification *)aNotification



Sent by the default notification center to the delegate aNotification is always
NSApplicationDidResignActiveNotification. If the delegate implements this
method, it's automatically registered to receive the notification.

(void)applicationDidUnhide:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationDidUnhideNotification. If the delegate implements this
method, it's automatically registered to receive the notification.

(void)applicationDidUpdate:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationDidUpdateNotification. If the delegate implements this
method, it's automatically registered to receive the notification.

(BOOL)applicationOpenUntitledFile:(NSApplication *)application
Sent directly by application to the delegate. Like application:openFile:, but opens

a new, untitled document.

(BOOL)applicationShouldTerminate:(id)sender Sent directly by sender to the delegate. Returns YES if the application should
terminate.

(void)applicationWillBecomeActive:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationWillBecomeActiveNotification. If the delegate implements this
method, it's automatically registered to receive this notification.

(void)applicationWillFinishLaunching:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationWillFinishLaunchingNotification. If the delegate implements
this method, it's automatically registered to receive this notification.

(void)applicationWillHide:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationWillHideNotification. If the delegate implements this method,
it's automatically registered to receive this notification.

(void)applicationWillResignActive:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationWillResignActiveNotification. If the delegate implements this
method, it's automatically registered to receive this notification.

(void)applicationWillUnhide:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationWillUnhideNotification. If the delegate implements this
method, it's automatically registered to receive the notification.

(void)applicationWillUpdate:(NSNotification *)aNotification
Sent by the default notification center to the delegate aNotification is always

NSApplicationWillUpdateNotification. If the delegate implements this
method, it's automatically registered to receive this notification.


