
XText: An Extensible Text Object

This package defines a subclass of the Appkit's Text object that 
is designed to allow the easy addition of new key bindings, 
both by application programmers and end users.    It also 
provides a reasonably comprehensive set of initial key 
bindings, based largely on those of emacs.

What it looks like to the end user
Here's a scenario of the functionality XText could provide to the 
user of a hypothetical mail-reading program.

First, the user can specify custom key bindings that will be 
available in all programs based on XText.    For example, if you 
wanted ctrl-shift-K to delete to the beginning of the current line, 
and alt-: to add a `:' and new line after the next word, you could 
say

dwrite -g KeyBindings "c'K=lineBegin:1; 
a':={moveWord:1 mode:0;

Of course, if you want key bindings that are specific to a 
particular application you can replace the `-g' with the name of 
the application.    (Read the man page for dwrite if you're 
unfamiliar with it.)

If    you would rather define all your own key bindings from 
scratch, rather than starting with the emacs base set, you can 
say

dwrite -g KeyBase none

Second, the mail program might define its own subclasses of 
XText with methods on them specialized to the particular 
requirements of a mail program, and use XText to assign 
appropriate bindings to each.    For example, it might define 



one subclass for the message display window, and bind `n' and 
`p' to move to the next and previous messages.    (Since this 
XText object is read-only, it will already have space and delete 
bound to forward and backward page scrolling.)

Finally, the user can specify additional bindings specific to each 
of these window types, that invoke their specialized methods.    
For example, to bind ctrl-c to the sendMessage method, you 
could just say

dwrite Mail SendWindowBindings 
"c'c=sendMessage"

What it looks like to the application programmer
There are a few steps required by the application programmer 
to use XText in this scenario.

First, occurrences of [Text alloc] must be replaced with [XText 
alloc].    If you're using IB to construct your Text objects it 
currently provides no clean way to make a ScrollView 
containing something other than a Text, so there is a support 
class XTScroller that provides just that Ð simply replace your 
ScrollViews with XTScroller custom views and the XTexts will 
be constructed automatically.    (This could probably also have 
been handled by a custom palette, but I haven't tried to figure 
those out yet).    These newly-created XText objects will behave 
just like Text objects; in particular, they will have no key 
bindings yet.

Second, you need to construct a ªdispatch actionº to store the 
key bindings in; the code will look something like this:

id action = [[XTDispatchAction alloc]

initBase:NXGetDefaultValue("myApp","KeyBase")
estream:nil];



The second argument to initBase:estream: is an object of class 
ErrorStream; this allows you to control the reporting of errors, 
but the default error stream (which just pops up an alert panel 
with the message) is usually adequate.

Third, you want to add in the user's custom key bindings:
[action 

addBindings:NXGetDefaultValue("myApp","KeyBindings")
estream:nil];

To have special bindings for some XTexts (like the message 
window), copy this action and add them in:

id msgAction = [[action copy]
addBindings:"n=changeMsg:1; 

p=changeMsg:-1"
estream:nil];

(This assumes you've defined a subclass of XText with a 
changeMsg: method.)    Then add in any custom user bindings 
for message windows:

[msgaction 
addBindings:NXGetDefaultValue("myApp","MsgWindowBinding
s")

      estream:nil];

Finally, attach these actions to the appropriate XText objects 
(each action can be shared by many XTexts):

[simple_XText setInitialAction:action];
[msg_XText setInitialAction:msgAction];

¼ and you're done.

One more thing: if you've got windows with TextFields, you 
probably want the key bindings to work in them too.    To 
arrange this you'll have to provide a delegate for your window, 



with a windowWillReturnFieldEditor:toObject: method that looks 
like this:

- windowWillReturnFieldEditor:sender 
toObject:client

{
return [XText newFieldEditorFor:sender

            initialAction:action
            estream:nil];

}

The Format of Binding Specifications
The format used to specify bindings is:

A binding spec is a sequence of zero or more 
bindings, separated by `;'s

A binding is a key spec, followed by an `=', followed 
by an action

A key spec is a sequence of one or more key 
combinations, separated by `,'s

A key combination is a sequence of zero or more 
modifiers, followed by a key

A modifier is `c' (control), `s' (shift), `a' (alt), or `m' 
(command)

A key is a `'' followed by any character (designates 
the key that generates that character),

or a 2-digit hex key code, as documented 
in

/NextLibrary/Documentation/NextDev/Summaries/06_KeyInfo
An action is a message, or a sequence of actions 

separated by `;'s and enclosed in `{}'s
A message is something like `moveWord:-1 mode:1' 

or `replaceSel: "hi there\n"'
(at most two arguments, which must be 

either integers or strings)



Some examples:
c'w, a'h = moveWord:-1 mode:1
c'b=moveChar:-1 mode:0; c'B=moveChar:-1 mode:3

(c'B could also have been written as cs'b, or as cs35).
csam49={docBegin:0; moveWord:5 mode:2; 

docEnd:0; paste:0}
(makes ctrl-shift-alt-command-escape move the first five words 
to the end of the document!)

A Simple Testbed
This distribution also includes a very simple demonstration 
program, called XTDemo.    XTDemo puts up a single window 
with an XText to play with, and an XText-backed text field in 
which you can enter new key bindings.

In addition, XTDemo adds a custom key binding so that ctrl-
shift-Q inserts the key code for the next key you hit; for 
example, ctrl-shift-Q ctrl-alt-escape inserts the string `ca49'.

The Emacs base set
The key bindings provided in the default base set are:

Movement
ctrl-f, ctrl-b
move one character forward / back

alt-f, alt-b
move one word forward / back

ctrl-n, ctrl-p
move one line down / up

ctrl-a, ctrl-e
move to beginning / end of line



alt-<, alt->
move to beginning / end of document

Deletion
ctrl-d, del (or ctrl-h)
delete next / previous character

alt-d, alt-del (or alt-h)
delete next / previous word

ctrl-k
delete to end of line

Selection
ctrl-shift-F, ctrl-shift-B
extend selection one character forward / 
back

alt-shift-F, alt-shift-B
extend selection one word forward / back

ctrl-shift-N, ctrl-shift-P
extend selection one line down / up

ctrl-shift-A, ctrl-shift-E
extend selection to beginning / end of line

Scrolling
ctrl-v, alt-shift-downarrow
scroll one page forward

alt-v, alt-shift-uparrow



scroll one page back
ctrl-shift-V, alt-shift-V
scroll four lines forward / back

ctrl-alt-uparrow
scroll to beginning of document

ctrl-alt-downarrow
scroll to end of document

ctrl-l
scroll to selection

Additional scrolling when editing disabled
space, del
scroll one page forward / back

shift-space, shift-del
scroll four lines forward / back

Miscellaneous
ctrl-t
transpose characters

ctrl-o
insert new line after caret

ctrl-space
collapse selection

ctrl-q
quote next key



ctrl-alt-q
really quote next key

(Ctrl-q causes the next character to be handled directly by the 
underlying Text object, with no XText-supplied rebinding; for 
example,    ctrl-q alt-b inserts a sigma.    Ctrl-alt-q goes one step
    urther and avoids any special handling that Text normally 
 supplies for that key; for example, ctrl-alt-q downarrow causes 
a 
 downarrow character to be inserted (you'll probably want to be 
in 
 the symbol font), and ctrl-alt-q return allows you to insert a
    newline in a text field.)

XText Status and Future
This should be thought of as a beta-test version of XText; 
although
 it has no known bugs, it has not been very heavily exercised.    
In
particular, I have not yet built it into any non-trivial programs.    I 
plan to maintain & use XText, but I also have a job and this isn't 
it.

XText is freeware; you are welcome to use it, modify it, and 
distribute it without restriction (although I would appreciate 
having 
my name kept on it).    It is copyrighted by my employer 
(Xerox), 
but only to prevent someone from claiming that it belongs to 
them.

Please do send me bug reports and suggestions, and let me 
know if 
you find it useful.    This is my first experience with objective-C 
and 



Interface Builder, so there is certainly room for improvement.

Anyone want to build a replacement for Edit using XText?

Mike Dixon
Xerox PARC
3333 Coyote Hill Rd.
Palo Alto, CA 94304
mdixon@parc.xerox.com


