
XText 0.9
;;introduction;¬Introduction

I was unhappy to discover after switching from my
NeXTStation to an Intel P5 running NeXTStep that    XText 0.8
broke.    This is because version 0.8 uses keyboard specific   
"key
codes".

XText 0.9 is a hardware independent version of XText,
with a few extra goodies thrown in for fun.    It uses "character
codes", which are NeXT/Adobe's generalization of ASCII
codes.
XText reads character codes from keyboard events and
allows the user considerable flexability in redefining keystrokes.
This is achieved by Mike Dixon's remarkable "action parsing"
code, where text strings are convered into    XText method
calls.

XText 0.8 was written by Mike Dixon:

Mike Dixon
Xerox PARC
3333 Coyote Hill Rd.
Palo Alto, CA 94304
mdixon@parc.xerox.com

Much of the discussion below is based on the original XText0.8
;XText0.8.rtf;;¬README file.    Major changes to XText are:

a. An expanded version of XTDemo saves keybinding files,
and XText reads keybinding files.

b. Hardware independent modifiers:

l = NX_ALPHASHIFTMASK
Alpha Lock is set and Shift key is NOT* down

s = NX_SHIFTMASK
a shift key is down

c = NX_CONTROLMASK
 Control key is down
a = NX_ALTERNATEMASK

Alternate key is down
m = NX_COMMANDMASK

Command key is down
n = NX_NUMERICPADMASK

Key is on numeric keypad
h = NX_HELPMASK

Help Key

c. Keycodes can be entered by Capitalized HEX
numbers.

;;basic;¬Basic Concepts

XText lets users execute complex text editing and formating
commands by redefining keystrokes.    It does this by    letting
the
user associate, for every key,    text object    methods .    For

example,    to associate the "control a" key with the    method

[xtext replaceSel:"Hello World\n"];

The user or application programmer constructs a keybinding
format

c'a = replaceSel: "Hello World\n"'

XText can parse, in this way,    methods with at most two
arguments, which must be either integers or strings.    XText
 has an expanded set of useful methods, that give users   
"emacs
 like" control over their keystrokes.    The expanded list is given
 below.

XText enables programmers to easily incorporate this
keyboard functionality into their applications.      Keybindings
can be loaded at run time,    using an XText method which
parses strings of keybindings, or (new to version 0.9) a method
which reads a file of keybinding strings.    The file reader
method
was added to work with the concept of a application wrapper.
(Programmers can put save keybindings as a file    in their 
  .app
directory.)

   
;;methods;¬XText 0.9 methods for keybindings

The following methods were written for easy keybinding

construction.      All of the cursor-movement methods
take a

`mode' argument,    which may be

0 just move the point to new location
1 delete to new location
2 cut to new location
3 extend selection to new location

The methods for cursor-movement are:

goto:end:mode: implements all movement;
second argument specifies

the other end of the selection when mode != 0

moveWord:mode: move n words forward from
point (back if n<0)

moveChar:mode: move n chars forward from
point (back if n<0)

moveLine:mode: move n lines down from point
(up if n<0)

lineBegin: move to beginning of current line

lineEnd:
move to end of current line

docBegin: move to beginning of document

docEnd: move to end of document

collapseSel: move to beginning of selection
(dir<0), end of selection (dir>0), or active end of sel
(dir=0)

transChars transpose characters around point

openLine insert new line after point

scroll:: scroll window n pages + m lines

scrollIfRO:: scroll window n pages + m lines if doc is
read-only; returns nil if doc is editable

insertChar: inserts the character associated with a key
event

insertNextChar sets nextAction so that the next
key event will be interpreted as a character

Methods for c program formatting:

autoIndent
creates a new line with space and tab indentation
equal to the current line

match:"LR";
Finds previous correctly nested matched character L

and
briefly displays it; then prints R.    Useful for "()" "{}"
and "[]".

;;codes;¬Character Codes

Keyboard independent character codes which XText 0.9
uses

are constructed using simple rules.    They can be found
in the

insertKeyCombination: method of XText.

a. Type the following characters to denote modifier keys:
c control key down,
s shift key down,
a alt key down,
m command key down,
n a numeric keypad character, on my `101' keyboard,

the
 arrow keys and the keypad,
l caps-lock    key down,    and shift key NOT pressed,
h help key down

            Note: Use "l" if you want a charater code to
    be active only if the caps-lock key is down.    Other
    character codes work with the caps-lock key
    on or off.

 
b. Add the '    (right quote) key to denote the beginning of

the
actual key.

c.    If the key will print,    type it.

Note:    Alt characters are generally mapped to the
upper 127 chacters of the Adobe/NeXT extended character
set.    Being non-ASCII characters, they look unusual.

d.    If it a non-printing character like space, tab, or return,
type

its hexadecimal character code.    Character codes are
found

in Appendix C of the AppKit Documentation (Figure C1).

e. Hexadecimal    codes are denoted by the characters 1-9,
A-F.

        (The uppercase in the hex numbering is important.)

f.    If it is a control character, type the key of the character;
i.e.

"control a" = c'a, "control shift A" = cs'A etc.

;;bindings;¬Binding Specifications (Putting it all
together)

A binding spec is a comma separated list of key codes,
followed by an equal sign,    followed by an action (a

method

above with input data). For example,

c'w, a'ã = moveWord:-1 mode:1
(control w and alt h = delete last word)

c'b=moveChar:-1 mode:0; c'B=moveChar:-1 mode:3

Comment lines in the example files below begin with `#'

;arrow.keys.rtf;arrow.keys;¬arrow.keys
;emacs.keys.rtf;emacs.keys;¬emacs.keys
;keypad.keys.rtf;keypad.keys;¬keypad.keys
;programmer.keys.rtf;programmer.keys;¬programmer.ke

ys
;readonly.keys.rtf;readonly.keys;¬readonly.keys

;;;¬Program Implimentation

1.    Copy the XText subproject into your application.
Include the line

#import "XText.subproj/XText.h"

In files that create XText and XTScroller    objects.

2. Occurrences of [Text alloc] must be replaced with

[XText alloc].

If you're using IB to construct your Text
objects it currently provides no clean way to make a
ScrollView containing something other than a Text, so
there is a support class XTScroller that provides just

that --
simply replace your ScrollViews with XTScroller custom
views and the XTexts will be constructed automatically.
These newly-created XText objects will behave just like
Text objects; in particular, they will have no key

bindings..
 

3a. Initialize an "action", which stores and parses
(interprets strings into method calls) keybindings:

demoAction =
[[XTDispatchAction alloc] init];

3b. Or initialize using a default keybinding table:

action = [[XTDispatchAction alloc]
initBase:NXGetDefaultValue("myApp",

"KeyBase") estream:nil];

(NOTE: in XText0.9, the emacs table
has been removed.    The advent of

".app" wrappers in NS 3.0 makes
storage of keybindings as files
in application directories a much
more elegant approach.    See 4b below.)

4a. Add any dwrite type user-defined bindings

[action addBindings:
NXGetDefaultValue("myApp",

"KeyString")
estream:nil];

4b. Or add any file of user-defined bindings.

[action loadFromFile:
NXGetDefaultValue("myApp", "KeyFile")

loads bindings from a file.    Comments are lines
in the file beginning with `#'.    This method enables
developers

to load keybinding files from their .app wrapper
directories, via

[[NXBundle mainBundle]
getPath:path
forResource:"KeyBindingFiles"
ofType:""];

5.    Attach the action to the text object.

[myXText setInitalAction:action];

6. See XTDemo.app    for more example code.

;XText.rtfd;format;¬The Format of Binding
Specifications

The format used to specify bindings is:

A binding spec is a sequence of zero or more bindings,
separated by `;'s

A binding is a key spec, followed by an `=', followed by an
 action

A key spec is a sequence of one or more key combinations,
 separated by `,'s

A key combination is a sequence of zero or more modifiers,
 followed by a key

A modifier is
c (control),
s (shift),
a (alt),
m (command),
n (numeric keypad),
l (caps-lock),

h (help key)

A key is a `'' followed by any character (designates the key
 that generates that character), or a 2-digit hex key code, as
 documented    in

NextLibrary/Documentation/NextDev/GeneralRef/
_ApC_KeyboardEvents/KeyInfo.rtfd

An action is a message, or a sequence of actions separated
by

 `;'s and enclosed in `{}'s

A message is something like
`moveWord:-1 mode:1'      or
`replaceSel: "hi there\n"'
(at most two arguments, which must be either integers or
 strings)

Paul Griffin, 7/95

