
Release 0.4, 05.06.1995 by Thomas Engel (tomi@shinto.nbg.sub.org)

1 The ClassEditor

ClassEditorRunning.tiff ¬

This editor allows you to modify class definitions on a per-method basis. In additon to 
offering a method browser it will make it very simple to keep the documentation in 
sync with your code. Both elements are shown side by side.
The ideal situation would be to maintain a documentation file from the first moment 
since creating a new class or method. ClassEditor is able to create the docu tempates 
for you and helps maintaining them in a NeXT conform layout. 

In the worst case you should think about this project as a RFD (request for 
discussion). Maybe someone at NeXT might find new ideas for NeXTSTEP 4.0 in 
there.



What it does

ClassEditor opens a set of MyClass.m, MyClass.h and MyClass.rtf files and displays 
them. You can edit and view the class on a per-method basis or see all three files at 
once inside the "cheat window". 

Modifying existing classes that are not spread accross more then those three files is 
quite safe. Adding methods is possible from inside the "cheat window" but introduces 
some rough edges. See the bugs section for details.

264278_paste.eps ¬

Reliability Issues

Although the app has improved over the previous versions it still contains some bugs that might 
cause the app to crash or even corrupt your data.
I am aware of rare cases where the documentation got corrupted. Source files have not been 
damaged as far as I can tell. Drag operations might crash the app on a random basis due to a 
strange behavior of the Pasteboard class. 

If you use this application to modify important files be sure that you read the Release Notes and 
Warranty section first. Remember that there is no guaranty for nothing.

754626_paste.eps ¬

The Package



Version 0.4 comes in a package that includes:

· ClassEditor.app. A FAT binary for NeXT, Intel, HP and Sparc hardware.

· An Examples directory containing working test setups of interface, implementation 
and documentation files for some dummy classes.

· Online help¼minimal

· Full source code

· The documentation and an ASCII version (README) of this introduction

Attention: You need gnutar and gzip und unpack those files. Both programs come bundled with 
NeXTSTEP since version 3.2.

On where to find the latest releases please see the 'About this Project' section.

Features

Currently there are only very simple things this application will do for you. Now this is 
just an early alpha version¼don't expect it to do magical things anytime soon.

· Select methods and view or edit the description and implementation. 

· Create missing pieces of class and method documentation using automatic text 
generation and useful ready-to-copy templates. 

· Add "See also" references with a simple drag&drop. 



· Use the "Style" menu to get fast access to the right fonts for the nasty 
documentation work. 

· Undo the last changes inside a methods source or documentation. 

· Use Emacs keybindings to navigate inside the text areas.

· View ASCII sources in a colorized style which makes editing a lot easier.

· Select the "Plain C-Stuff" entry from the mode popup and view (or edit) all three 
files inside the "cheat window". Add defines, typedefs, instance variables or new 
methods here.

Some features will definitly be improved to help me get along with all those missing 
class docus (yes¼MiscSwapKit docus are already waiting for too long).

The Release Notes chapter can give you a complete overview of all the implemented 
features. In also includes a detailed description of the currently known bugs.

Bugs and Birds

It is not fair to speak about them in a little sub paragraph. There are so many of them 
that it would justify a whole chapter.

This app is a piece of brain stroming Ð a running ToDo list. It is not a product. Peter L. 
would call it another piece of German software: nice idea but bound to never get 
finished.

Well maybe he is kind of right. Now lets face the most serious problems of this app:

· When working inside the "cheat window" you should take care of all the changes 



you make. You should follow a very strict coding style. Otherwise ClassEditor won't 
be able to parse your code and might even corrupt your files. See the Examples for 
working layouts.

· RTF headers and sources will only work if the entire method names are typeset 
with a single font. Take a look at the RTFExampleClass to see how rich sources 
should look like to work with ClassEditor.
Since v0.4 you have ASCII code colorization which makes RTF source more 
useless because there is no easy way to provide smart colorization of RTF¼which 
should preserve your private colorization.

· Many user interface controls are just fakes, the split views might cause your 
window to turn into an ugly piece of GUI when used to their limits and the 
drag&drop stuff might crash the application.

What it should

Of course this should become the killer application of the nineties. But I am lazy and I 
do believe in code reuse. The guys at NeXT have already done all the nasty work. So 
I only want to build a minimal tool to fill the gap until NeXTSTEP 4.0 arrives. 

Perhaps this app will only lead to a simple font service application (btw. too many 
people use the wrong font for source code inside the docus..it is Courier 12pt¼not 
14pt) or it will migrate to a real destributed class editor (the buzzword here is: 
groupware).
Who knows.



Future plans

My plans are to enjoy NeXT's upcoming ProjectBuilder if it comes close to the 
ClassEditors idea. As far as I can tell from all the published material I'm not sure that it 
will really cover all the fruits of desire.

The aim is to build a combination of a class browser with the freedom to write ugly and 
nasty C-style code while providing all the help an editor should give. This includes 
concurrent editing and versioning.

ClassEditor should split into the real editor and a ResourceServer. This would free the 
editor from many low-level issues which might be implemented quite individually (e.g. 
taking sources from a database and not a filesystem).

So lets see what this application is still missing. I do consider to add some of these 
features:

· Online source sanity checks. Checking braces is only a primitive step into that 
direction.

· Creating new classes, methods, categories and protocols on the fly. Specifying 
dependancies and relations should be as simple as a drag&drop. Grouping 
methods and adding descriptions to instance variables.

· The editor should be able to dump templates for get/set'er methods and other ever 
returning tasks.

· The special categories called (private) and (protected) might be used in the 
headerfiles and other sections by default. Every category should follow the 
ClassName+categoryName.h (.m or even .rtf ) convention.



The editor should create those files for you if you don't want to organize it in your 
private style.
This would keep the code clean for fast and easy distribution.

· Prepare sources for public distribution by stripping protected methods from the 
headers and such.

· Support for concurrent editing over a network. This should not necessariy mean 
sharing the real source files. And DO approach would be much better.

· Maintaining a revision history. This could be done by including CVS support.

· Storing bug infos and idea notes together with the code and documentation.

· More support for "See also:" references and other logical links.

Some features can only be implemented if the whole development environment works 
together. This includes apps like InterfaceBuilder and therefore requires some open 
APIs provided by NeXT:

· Being sure that classes inside NIBs are always up to date with the code. I hate to 
have to remember all those dependancies.

· Speaking about IB; one of its nasty features is that it won't drop back to palettalized 
classes if it can't find the code for a certain subclass of them. In testmode this only 
works for subclasses of window¼why ??

It is true that many things can already be done right now¼but you have do them by 
hand. There often is no real support from the tools. It is time to change that.



About this Project

I don't see the need to rush for a much better version of this app until it is clear what 
NeXT will include with their NeXTSTEP 4.0 release. There are other projects I want to 
spend more time on.

The latest version of this editor will be available at the ftp.nmr.embl-heidelberg.de, 
ftp.informatik.uni-muenchen.de or ftp.cs.orst.edu anonymous ftp servers. There is a 
WWW page were you can find out more about the status of this¼and all the other 
projects I'm working on:

http://wwwcip.informatik.uni-erlangen.de/user/tsengel/Projects/Projects
.html

Compiling

This version includes all the source code necessary to recompile the program from 
scratch. It does not come with all the libraries! You will need to get the MiscKit project 
(Version 1.5.0 or higher) from the archives.

For more details on the MiscKit collection see the common NeXT ftp servers, get the 
Objective-C or NeXT FAQs or take a look at the EduSteps developer area: 

http://www.nmr.embl-heidelberg.de/eduStep/Developer/Kits/MiscKit/MiscKi
t.html

If you would like to submit something to this collection you should contact the current 
maintainer: Don Yacktman <don@darth.byu.edu>



In Case of Trouble

If you have any questions you can contact me.

Thomas Engel
Netpunstr. 9
D-90522 Oberasbach
Germany

E-mail: tsengel@cip.informatik.uni-erlangen.de
tomi@shinto.nbg.sub.org

(NeXTMail welcome)

Warranty and copyright

Copyleft

All source code is distributed under the GNU General Public License.
This does not apply to used ObjectWare which most likely comes with its own 
licensing rules (e.g. code that belongs to the MiscKit project).

You are free to extend and modify this application. But don't redistribute a modified 
version under the same name unless I gave you the permission.
I don't want to have different, confusingly incompatible versions running around the 



world.

Anyway¼comments are highly appreciated.

No Warranty

This software is provided 'as is' and the programmer is not responsible for any harm 
this program may cause.
You Ð the user Ð are responsible for everything that may happen to your business, 
hardware, software, car, CD collection or what ever may be worth your attention or 
money.
Using this product is at your own risk and your private fun.

There should be no serious bugs inside but remember that a carbon-based unit did 
the coding.

Travelware

Like all my projects this app is free and should be considered as travelware.

166998_12ptHevBlk.tiff ¬      Let it travel to as many people as you know. 

02_12ptHevBlk.tiff ¬ Send me an E-mail or postcard if you use it. I will try to keep 
you informed about new releases.

03_12ptHevBlk.tiff ¬ If you have a free bed or some free space on your floor¼give 
me a hint. I might come and visit you on my next trip to the US¼locations on 



Hawaii, near Seattle or WhistlerMnt. (Canada) preferred.

Enjoy it.

.Unterschrift.tiff ¬


