
Copyright ã 1994 by Sean Luke

COWS

Protocols
COWS Version 1.3
Sean Luke
March 20, 1994

One of the key parts to the COWS interpreter is the COWS protocols
package, which is still in a state of flux, but I think fairly robust.    These
protocols describe how interpreters communicate with libraries, with
applications, and even with interpreters in other applications.

Controlling an Interpreter from an Application

The protocol LibraryControl describes the standard suite of methods a
COWS-compliant interpreter should have to be controllable by an application
when the application wants to load libraries, or when a library wants to
temporarily stop the interpreter:

- addLibrary:this_library; Adds a compliant library.
This tells the interperter to call
the library's loadLibrary:sender
method, which in turn repeatedly
calls...

- addLibraryFunction:(const char*) this_name
selector: (SEL) this_selector
target: this_target; Adds a compliant library method

to be registered as the function name

this_name.    See the next section
about

requirements of what these methods
must look like.

- clearLibraryFunctions; Clears all library functions.

- pauseInterpreting:calling_library;
Pauses the interpreter.    This is used

only by libraries that need to release
control to the user, or whatnot, before
returning an answer, must only be

used
in background-mode interpreters,

and
when the interpreter is ready to

return

an answer, this method must be
followed with....

- resumeInterpretingWithValue:(COWSStringNode*)this_value;
 Starts up the interpreter again,

returning a value to be pushed on the
interpreter's stack.    This is only to

be
used in conjunction with
pauseInterpreting: above.

Communicating with Libraries

The protocol InterpreterToLibrary describes the methods interpreters may call
on libraries:

- loadLibrary:sender; Instructs a library to start loading
functions into the interpreter using

addLibraryFunction:selector:target
as described above.

- pauseCancelled:sender; Tells a library that it's requested
pause, as described above, was
cancelled by the user by stopping
the interpeter.    After receiving this
method, a library shouldn't call
resumeInterpretingWithValue:.

In addition, each library function registered by the library is expected to
comply with the following format:

- functionName: arg_list;

Where arg_list is always a COWSArgumentList of arguments the user's
passing to the function.    The method is free to rip into the argument list (any
nodes it pops it must free), but must not free the argument list object itself.   
The method then should return a fresh COWSStringNode containing the
function's return value.    The interpreter will free this node.    If the function
needs to report an error, it can do so by placing an error message in this
node, and setting the node to error using setError: (see
COWSStringNode.h).

Informing a Delegate

When an interpreter has finished interpreting, it returns its answer to the
application (or to a remote calling interpreter) through an assigned delegate.
InterpreterToAppDelegate describes the methods this delegate must have:

- finishedInterpreting:
(const char*)returnValue:(int)thisMessage:sender;

Tells the delegate that the interpreter
finished interpreting, and that its
return value is returnValue.
thisMessage is currently unused.

- errorInterpreting:(int) thisError:(const char*)thisFunction:
(int)thisPosition:(const char*)thisString:sender;

Tells the delegate that an error
occured interpreting.    thisError is the
error (error codes are in
COWSInterpreter.h).    thisFunction
is the function body in which the error
occured.    thisPosition is the position

in
the function where the error occured.

thisString is usually the token in error,
unless the error was a library error, in
which case thisString is an error
message from the library.

General Interpreter Control

The protocol InterpreterControl describes methods an application can use to
control an interpreter in general.

- (int) setProgram:(const char*) this_string;
Loads a user-specified program into
the interpreter and breaks it up.    The
interpreter returns an error code
(see COWSInterpreter.h) if there's
an error in parsing through the

program initially.    Even if the
program

loads properly, it may still have
syntax errors reported later.

- setDelegate:this_delegate;
- delegate; Sets and queries for the delegate.

- interpretFunction:(const char*) this_name
arguments:(COWSArgumentList*)these_arguments;

Interprets a function, passing it
arguments.    This function must

actually
exist in the program or in some

library,
and the program must already have
 been loaded with setProgram:

above.
 This is how users start COWS

macros.

- stopInterpreting; Cancels the interpreter's current
work.

This could be connected to a big red
CANCEL button in the application
which the user can press...

Inter-Process Communication

The protocol InterpreterIPC is used by the COWS IPC Library to
communicate to other COWS IPC libraries and ultimately to other interpreters
in other applications.    It is not actually used by interpreters themselves.

- sendFunction:(const char*) this_name:reply;
Called from a remote application

which
wants your interpreter to interpret
the function this_name

synchronously,
placing the return value in reply.
This method should return NULL.

- (oneway void) sendOutFunction:(const char*) this_name;
Called from a remote application

which
wants your interpreter to interpret
the function this_name
asynchronously, ignoring any return
value.

- addArgument:(const char*)this_argument;
Called from a remote application to

begin loading arguments for an up-
and-

coming request (one of the two
above).

Arguments are added first-to-last.
This method should return NULL.

- (BOOL) isForeground; This should return whether or not
your

interpreter is running in a foreground
(work-to-the-end) or background
(event-driven) mode.

