
Copyright ã 1994 by Sean Luke

COWS Interpreter

Tour
COWS Version 1.3
Sean Luke
March 20, 1994

The COWS interpreter is not one of the smallest or easiest-to-understand 
objects around.    This guided tour introduces you to all of the interpreter's 
functions, and should give you an idea of how the interpreter works, where it 
fits in the scheme of things, and generally how to connect it to your 
application.



Step One:    Creating an Interpreter

Create an interpreter in the standard way:    Þ [[COWSInterpreter alloc] 
init];

Step Two:    Loading Libraries

After initializing an interpreter, an application needs to plug function libraries 
into it.    In particular, it would be wise (but not mandatory) to plug the 
Standard Library into the interpreter.    All this plugging-in is accomplished 
through the addLibrary: method, which instructs the interpreter to send load 
a compliant library.



You can also load a single library function by calling addLibraryFunction:::, 
passing it the selector and target of the method to call, and the name the 
function is to be referred to in COWS programs.    Of course, this library 
function must adhere to standard library and library function protocols.

Note that if two library functions have the same name, the last one to load will 
wipe out the earlier one as far as the interpreter is concerned.

If you want the interpreter to communicate with and control your application, 
you need to give it a function library of your own making.    Currently this must 
be done programmatically, building your own library.    It's not too tough:    take 
a look at the Jungle Gym library as an example (COWSExampleLibrary.h and 
.m) All libraries, including your own, are expected to adhere to the 
InterpreterToLibrary protocol declared in COWSProtocols.h. 



Step Three:    Setting Options

The COWS interpreter informs its delegate that it has finished some COWS 
program, or that it experienced an error while interpreting the program.    You 
can set the interpreter's delegate through setDelegate:.    To give the 
interpreter no delegate, you can set the delegate to NULL (the interpreter 
starts this way).    You can find the current delegate through delegate.    
Delegates are expected to adhere to the InterpreterToAppDelegate protocol 
declared in COWSProtocols.h.

The interpreter can run in two modes:    foreground or background mode.    
These modes are set using setForeground:, and you can find the 
interpreter's current mode through foreground.

In foreground mode, the interpreter takes control of the application.    While 
the interpreter is running, you cannot do anything to the application.    This is 



fast and safe for interpreter programs (you can't do anything to the 
application that would mess up assumptions your program is making), but it 
denies you control.    The only way to stop an interpreter in foreground mode 
is by pressing Command-period.    And if some library function takes its time, 
you may not be able to cancel the interpreter at all.

In background mode, the interpreter competes with you for control of your 
application.    This way you retain control over the interpreter (you can even 
cancel it by pressing the stop button), but all bets are off if you move around 
windows or open documents, etc., while the interpreter is running.    COWS 
programs make a lot of assumptions about the current state of an application, 
and since you share control, you can change that state.    Be careful!

So it's your pick:    safe for you (background) or safe for your interpreted 
program (foreground). 

The interpreter works by calling a special method repeatedly, pulsing the 



interpreter onward to its eventual goal.    This method then performs repeats 
number of interpreter "interpretations".    You can set repeats with the 
setRepeats: method (query it using repeats).    If you set repeats low (1 is 
the lowest), the interpreter will work very very slowly but be very easy to 
cancel.    If you set repeats high, the interpreter will work quickly but be tough 
to cancel.    You decide.

If the interpreter is working in foreground mode, it calls this special method 
constantly.    But if it's running in background mode, the method is called 
periodically from a timed entry.    You can set the speed of this pulsing 
through the setTimedEntrySpeed: method (query it using 
timedEntrySpeed).    NeXT claims timed entry speeds are in seconds per 
timed entry, but they're really notÐI've found 'em to be about 1/3 of what 
you'd expect.    A typical timed entry speed would be 0.1.    Don't set the 
speed to 0 or a negative numbr.

Lastly, the interpreter can be locked to keep outside agents from accessing it. 



For example, the IPC library allows one application's interpreter to control 
another app's interpreter from afar, even from another machine.    But if your 
interpreter is locked, it ignores any outside requests for control.    You query 
locked status through locked and set it through setLocked.

Step Four:    Loading a Program

Your app now feeds an interpreter a program, written by the user or pre-
provided by the app.    This is done with the setProgram: method.    Upon 
receiving this program, the interpreter parses through the program, cutting it 
into global variables (which it hashes into the global dictionary) and functions 
(which it hashes in the function dictionary).    Functions are further parsed for 
arguments and local variables, placed in subdictionaries, and removed from 
the function text.



All this makes COWS faster when actually interpreting a function, since it 
doesn't have to search through the program to find any function or variable 
definition.

Step Five:    Interpreting a Function

An application starts a COWS function running by calling the 
interpretFunction: arguments: method.    The app should then just sit back 
and wait until the interpreter's delegate receives the message that the 
interpreter is finished.    At any time, the interpreter can be stopped with the 
stopInterpreting method.

The interpretFunction: arguments: returns the interpreter itself.    So how 
do you get a return value from an interpreted program?    Through the 
delegate.    The interpreter calls your delegate's finishedInterpreting::: 



method when it has an answer for you.    Currently thisMessage is unused.    
If there is an error, the interpreter calls the ErrorInterpreting::::: method.    
thisError is one of the errors defined in CowsInterpreter.h.    thisString is 
usually the token in error, unless the error is 
COWSLIBRARYFUNCTIONERROR, in which case thisString is an error 
message from the library function in question.

Step Six:    Freeing or Clearing an Interpreter

You can clear an interpreter's functions through the clearLibraryFunctions 
method.    You can clear out a program by loading a new one with 
setCOWSProgram:.    You free an interpreter with free.

Debugging an Interpreter



Since they're hash tables, it's ordinarily not easy to debug the interpreter's 
dictionaries at any given time using gdb.    You can print out the interpreter's 
dictionaries and program through the printDictionaries and printProgram 
methods.

Pausing an Interpreter through a Library Function

The interpreter can not be paused by the user or the application, but it can be 
paused by function libraries that need a lot of time to return an answer or do 
work, if and only if the interpreter is running in asynchronous mode.    
Libraries pause an interpreter through the pauseInterpreting: method, and 
resume interpreting with the resumeInterpretingWithValue: method, 
returning the library function's return value.



Again, do not use these methods to allow the user or application to pause the 
interpreter!

Querying Interpreter Status

When the interpreter is working on a function, it's working flag is set, which 
can be queried through working.    When the interpreter is currently running 
(it's not paused as described above, and it's working), it's running flag is set, 
which can be queried through running.

Private Methods (A Peek)

There are a zillion private methods in the interpreter.    All start with "_".    All 
are declared in COWSInterpreter.h.    Call none of them, on pain of death!    



It's dangerous to do so.    But to give you an idea of how the interpreter 
works:

The Tokenizer for the interpreter is _tokenize:::.    It eats through a program 
given in string, starting at postion pos, and places the next token in token, 
returning the position in the string just after the token. 

Recursive Descent Parser Functions and Terminal Functions are entered 
using _program::.    The job of these functions is to parse through your 
COWS program and break it into functions, global variables, etc., putting 
each in a dictionary.    These functions constitute a formal recursive descent 
parser (for those who care).

Interpreter Functions are entered using _executeProgram::, and begin 
pulsing through the interpreted program using _go.    The job of these 
functions is to do the actual work of interpreting your program once it has 
been parsed into dictionaries.



Interpreter Keyword functions interpret the keywords set, if, for, and while.

Interpreter Assistance Functions are assorted helper functions that skip 
through tokens, mold badly-formed truths and numbers and strings into 
proper ones, and report errors.

For more secrets on how the interpreter does its work, see COWS Interpreter 
Driving System.rtf.    The recursive descent grammar (slightly different from 
the grammar given in COWS Language Formal Specification.rtf) is given in 
COWS Interpreter Parsing Grammar.rtf.


