
Copyright ã 1994 by Sean Luke

COWS Language

Formal Specification
COWS Version 1.3
Sean Luke
March 20, 1994

COWS is not a big language.    It is, in fact, a tiny language.    This formal
specification describes practically all of it.        The COWS language is not
intended to become the ultimate macro language for NeXTSTEP (though I

suppose it's possible).    Instead, it's a simple, easy-to-parse language that
still supports full recursion and functional style, and is good to provide at least
the lowest common denominator (I feel) for macro languages in NeXTSTEP.

COWS is not object-oriented.    It is procedural.    This is intentional:

¨ OOP would add greatly to the size of the language.    COWS needs to be
small.

¨ COWS has only one data type.    OOP demands multiple types.
¨ OOP has a relatively steep learning curve compared to functional style,

and COWS is intended for users to be able to program easily.
¨ I've found that integration into NeXTSTEP mostly means making method

calls into an app's API, or executing events.    These functions don't map
as
well into an OOP macro language as one might think.

Data Format

COWS supports a single data type allocatable on the stack (the string).   
Numbers are automatically converted into strings, stored as floats printed
with sprintf.    The symbols t and f have special significance as truths (the
return value of functions like = or >, for example), but are likewise converted
into strings.    Strings, other than truths or numbers, are placed in "quotes".

Comments are placed in [brackets], and are always recognized as comments
except when inside quotes.    Comments are considered white space, so
hello[there]you is interpreted as hello you and not helloyou.    General flow
syntax is LISP-like, so you will see functions like (print (+ 1 2 (- 4 a))).    Unlike

LISP, COWS does not use lists as its data type and therefore makes no use
of the quote ' or LISP macros.

Functions

Like HyperTalk, COWS is event-driven.    There is no main loop in COWS,
just functions and global variables.    Any function may be called by any other
function, or by an outside entity (which starts COWS programs).

COWS functions can be either defined in COWS code (like you'd expect), or
library functions called by the interpreter.    In general, you can determine
beforehand the number of arguments for a defined function, but not for a
library functionÐit must determine if the number of arguments is wrong and

return an error code.    This also means that library functions may have
variable numbers of arguments but user-defined functions must have a
predefined number...this is pretty much the only syntactically difference
between library and user functions.

Delimeters

"    " string delimeters
[   ] comment delimeters
(   ) standard delimeters
Whitespace (tabs, returns, spaces)

Keywords these words are reserved and may not be used for

symbols

function defines functions
variable defines local and global variables
do starts a function.    Also a function name (an exception)
set sets variables
if performs if-then-else constructs
for performs for-loops
while performs while-loops

Special Symbols these words are also reserved

t ªtrueº

f ªfalseº
numbers in any format, though stored as floats

BNF Grammar (non-terminals)

<program> :- <program-list>
<program-list> :- <function-form> <program-list> |

<global-form> <program-list> | NULL
<global-form> :- (variable <variable-list>)

Note:    This means you may have several global
variables in a single variable
declaration.    This does not
preclude having multiple

declarations, of course!
<function-form> :- (function <function-name> <argument-list>

variable <local-variable-list> do <value-list>)
| (function <function-name> <argument-list>
do <value-list>)

Note:    This means you can't declare a variable the
same as an argument.    If you
define a function twice, COWS
will happily redefine the global.

Note that the function form may change soon to a
more

Lisp-like but less verbose syntax:
(function <function-name>
<argument-list> variable
<variable-list> <value>) or

something like that. This would
eliminate the begin keyword
entirely.

<special-form> :- <set-form> | <if-form> | <for-form> | <while-form>
<set-form> :- (set <variable-name> <value>)
<if-form> :- (if <value> <then-value> <else-value>) |

      (if <value> <then-value>)
Note:    then, else values are just values with the

special purposes of then and else
functions

<for-form> :- (for <variable-name> <start-value> <stop-value>
      <step-value> <value>)

Note:    start, stop, step values are just values with
the special purposes of start,
stop, and step in for

<while-form> :- (while <value> <do-value>) | (while <value>)
Note:    while evaluates <value>.    If this evaluates

to t, then while evaluates <do-
value> if one exists, then repeats.

<function-name> :- <symbol>
<argument-list> :- <argument> <argument-list> | NULL
<variable-list> :- <variable-name> <variable-list> | NULL
<local-variable-list> :- <variable-name> <local-variable-list> | NULL
<value-list>        :- <value> <value-list> | NULL
<argument> :- <symbol>
<variable-name> :- <symbol>
<value> :- (<special-form>) | (<function-call>) |

<variable-name> | <number> | <truth> |
<string>

<function-call> :- (<function-name> <value-list>)

      Note:    value-list is the argument list to the function.
Note that this means functions
should be able to handle (or
ignore) variable-sized argument
lists from 0 up.

Terminals

SYMBOLS: non-numeric,    strings without quotes, like george, <,    a34,
heck!

    symbols also must not be      t      or      f
NUMBERS:    numeric strings without quotes, like 1.234e5, 6,    -100
STRINGS:    strings in quotes, like "hello", "<", "12.34", "no way!"

TRUTHS:      the letters    t    and    f    without quotes (though "t" and "f" are
also

generally considered truths).
NULL:     Nothing.

Symbol Lookup

Function Names:    Searched in the text function dictionary.    If the name is
not there, then searched in the library function dictionary.

Variable Names:    Searched in the topmost variable dictionary in the stack.
If the name is not there, then the global dictionary is
searched.

Startup Procedure

To start up a program, the program is read and its global variables and
function text are broken up and stuck in respective dictionaries.    Then
an application is free to call any function or set/read any global variable.
If the program is changed, it must be reset and re-read.

