
Copyright ã 1994 by Sean Luke

COWS Language

Concepts
COWS Version 1.3
Sean Luke
March 20, 1994

This document provides a general overview of the COWS language.    For a 
more formal description of the COWS language, see COWS Language 
Formal Specification.

Basic Format

COWS looks like LISP.    It uses the exact same overall syntax and 
parenthesis mess.    But to the the more awake programmer, COWS works 
more like HyperTalk in that it has no main loop, is event driven, and uses 
strings for its sole data structure (at least for the while).

Like LISP, COWS refers to symbols for its function and variable names.    To 
look up or store those symbols, COWS uses several dictionaries stored as 
hash tables.    The function dictionary stores your user-defined functions.    
The library dictionary stores the standard library functions and any library 
functions defined by the application to which the COWS interpreter is 
attached.    The global dictionary stores global variables.    The current 
dictionaries of local variables within a function are stored on a stack along 



with evaluated values and unfinished symbols.

When COWS is in a function, it pushes a current dictionary onto the stack 
and stores function arguments and local variables there.    When it exits the 
function, COWS pops the dictionary off the stack.    Hence, COWS can 
handle recursion quite nicely.

Communicating with The Outside World

COWS functions are called by sending a method to the interpreter, along with 
a bunch of strings for the arguments to the method.    COWS functions return 
a single string.

But COWS can also call Objective-C methods as it runs.    These are stored 
in the function dictionary along with their selectors.    This enables COWS 
programs to act as macro facilities for NeXT programs.

COWS Data Types

COWS has only one data type:    The string.    All numbers are stored as 
floating-point numbers encoded in a string.    All truth values are stored in a 
string.

Strings When referenced, strings must be written with quotes: "hello".
Numbers Numbers are stored with precision as such:    "1.231e43"

When referenced in COWS, they can just be written 1.231e43.
Truths Truth values are either "t" or "f", and can just be written t or f.



COWS Values

In COWS, a value is anything that returns a value, be it a special form, a 
function, a string constant, a number, a truth, or a variable.    All values are 
stored internally as strings.

COWS thrives on valuesÐthey are the embodiment of the COWS data type. 
Values are passed as arguments to other functions or special forms.    Each 
function or special form returns a single value.

COWS Functions

Functions are declared globally, and can be declared in any order.    Function 
arguments follow the function-name, and are optional.    Local variables are 
declared using the optional variable keyword, and are initialized to an empty 
string.    You define a COWS function in the format:

(function function-name
argument-name argument-name ...                      [optional]
variable variable-name variable-name ... [optional]
do function-body)

An example:

Þ (function print-x-to-y x y
 variable z 

do (if (< x y) (for z x y 1 (print z)))) prints the numbers from x to y,
given that x < y.



During the course of action, COWS functions may call any other COWS 
function, be it a user-supplied function or a library function.    This includes a 
function calling itself (recursion).    There is no specified limit to recusion 
depth.

COWS Global Variables

Global variables are declared globally just like functions, and can be declared 
in any order.    Variables are initialized to an empty string.    Be careful not to 
declare a global variable twice!    You define a global variable in the format:

(variable variable-name variable-name ... )

An example:

Þ (variable a hello junk) allocates globals a, hello, and 
junk.

COWS Special Forms

COWS has four special forms.    Special forms look like functions, but they're 
not quite, in that they may take other functions or variables as arguments, not 
just values.    Special forms are complex to write interpreters for and add 
considerably to the syntax of a language, so COWS has just four of them:

set Sets variables. 
Returns: value



Format:    (set variable value)

Examples:
Þ (set a 100)

sets a to 100
Þ (set b "hello")

sets b to hello

if Provides if-then-else control.    test-value must return a t or f.
Returns:    result of either then-function or else-function.

Format: (if test-value then-function)
Format: (if test-value then-function else-function)

Examples:
Þ (if (> 100 a) (print "okay"))

if 100 > a, print okay, otherwise do nothing.
Þ (if (= 1 a) (print "yes!") (+ a 100))

if a is 1, then print yes!, otherwise add 100 to a.

while Provides while-do control.    test-value must return a t or f. 
Repeatedly 

calls test-value and optionally function until test-value returns f.
Returns:    result of test-value.

Format: (while test-value)
Format: (while test-value function)

Examples



Þ (while (< 100 (set a (+ a 1))))
adds 1 to a until it equals or is higher than 100
Þ (while (> 100 (set a (- a 10))) (print a))
subtracts 10 from a and prints a until a is less than or equal to 

100

for Provides for-next looping. 
Returns:    variable's value

Format:    (for variable start-value stop-value step-value loop-
function)

Examples
Þ (for a 1 100 1 (print a))
prints numbers 1 to 100.
Þ (for a 100 0 -2 (print a))
prints even numbers from 100 down to 0

COWS Standard Function Library

COWS comes with a very small Standard Function Library intended to 
provide the minimal tools a user might need to communicate with an 
application.    Other libraries will follow to add power to the language, but are 
not mandatory.    These libraries might include array-manipulation, inter-
process communication, string manipulation, and better math control. 

In the Standard Function Library hese definitions are sometimes given with 
items like value+, which means one or more values, or value*, which means 
zero or more values.



Control
do Performs each value, then returns the last.

(do value* value)

do-first Performs each value, then returns the first.
(do-first value value*)

Response
print Prints values out to stdout, with a newline after each. 

Returns the first value.
(print value*)

error Flags as an error message value.
(error value)

General Predicates
is Determines if several string values are the same.    Returns t or f.

(is value+)

Truth Tables
and ANDs several values, which should be truths (else they're taken as 
f). 

(and value+)

or ORs several values, which should be truths (else they're taken as f).
(and value+)

not NOTs a value, which should be a truth (else it's taken as f).
(not value)



Strings
concatenate Concatenates several string values, returning the result.

(concatenate value*)

quote Returns a double-quote ".    Because quotes are delimeters, a quote 
can't,

well, be quoted (put in a string constant).    Quote would be used as 
in 

Þ (concatenate "Call me " (quote) "John" (quote) ".") 
which would return:    Call me "John".

(quote)

Math
= Determines if several numerical values are the same.    Returns t or 
f.

(= value+)

< Does what you'd expect.    Non-numbers are 0.    Returns t or f.
(< value value)

> Does what you'd expect.    Non-numbers are 0.    Returns t or f.
(> value value)

+ Adds several values.    Non-numbers are 0.    Returns the result.
(+ value+)

* Multiplies several values.    Non-numbers are 0.    Returns the result.
(* value+)

- Subtracts several values from a first value.    Non-numbers are 0. 
Returns the result.



(- value value*)

/ Divides several values into a value.    Mathematically: 
(((v1/v2)/v3)/v4)... 

Non-numbers are 0.    Returns the result.    Flags an error if divide-
by-zero.

(/ value value*)


