
Copyright ã 1994 by Sean Luke

COWS Interpreter

Driving System
COWS Version 1.3
Sean Luke
March 20, 1994

This file describes, in English, what the various COWS Interpreter functions 
are doing in Objective-C.    It is not entirely accurate, but it should give you a 
general idea of what's going on. 

The interpreter works by starting up a pulsing function in GO, and letting the 



system run to completion.    The interpreter maintains its own internal stack 
(see COWSStack.h), onto which it places a number of different nodes, just 
like many things are stuck on a real machine's stack.    The stack is 
theoretically infinite in size.

You don't need to understand the internal workings of the interpreter to 
connect your application to it, or to write a COWS program!    It's just here for 
those daring few who might want to make their own interpreters or modify 
mine and want to understand how the heck this thing works.

Some Caveats

I assume that errors automatically return without finishing out a method.

This system is started up by calling EXECUTE PROGRAM, which executes 
some initial function in the program defined by Symbol Name, using the 



arguments in Argument List.

The main function in the COWS Interpreter Driving System is READEVAL, 
which is driven by a timed entry (clock) or by a pulsing function through GO. 
If    functions drop out, it's assumed that they just finish, return control to the 
timed entry or pulsing function, and READEVAL starts up again.    In some 
cases I've marked a function as "continuing to ReadEval".    This is the same 
thing...I just got sick of writing it...

Because this interpreter is pulsed, it is not reentrant!    Reentrance should be 
simulated through pausing the interpreter, initializing another, calling a 
function on that interpreter, destroying it, and resuming the interpeter with 
the return value.    Oh, and if that weren't all, this won't work if the interpreter 
is synchronous.



Interpreter Functions

EXECUTE PROGRAM: Argument List, Symbol Name
Set Interpreting format to Undefined
Push Symbol Name
Push Arguments from Argument List, so last argument is on top
PERFORM FUNCTION
it is the responsibility of the calling program to free its argument list and 

symbol name afterword

PERFORM FUNCTION
Pop Arguments into Argument List
Pop Symbol Name
If Symbol Name is in Function Dictionary 

PERFORM INTERNAL FUNCTION:Argument List, Symbol Name
Else if Symbol Name is in Library Dictionary



PERFORM LIBRARY FUNCTION:Argument List, Symbol Name
Else

Error:    No Such Function
Destroy Argument List

PERFORM INTERNAL FUNCTION: Argument List, Symbol Name
If Interpreting format is Undefined, set it to Internal-Function
Save current state (if there is none, ignore it...)
Push local state based on Symbol Name
<Set current position, etc. based on new local state...>
Grab argument names, associate with argument list values in local 

argument dictionary.
If not enough arguments,

Error:    Not enough arguments...
Grab variable names, add to local variable dictionary.
Move to beginning of function, and continue to READ EVAL



PERFORM LIBRARY FUNCTION: Argument List, Symbol Name
If Interpreting format is Undefined, set it to Library-Function
Look up target/selector by Symbol Name
Call target with selector and argument list
If Interpreter was paused by target

Continue to READ EVAL                          Though that won't do much...
If return value is an error,

Error:    (Some Library Function Error)
Else

Push return value
Continue to READ EVAL

DO KEYWORDS
Get top symbol
If top symbol is If

DO IF
If top symbol is Set



DO SET
If top symbol is For

DO FOR
If top symbol is While

DO WHILE
Else

Continue to READ EVAL

COMPLETE FUNCTION
If top item is a value

Pop it and set the Return Value to it
If not

Set the Return Value to ""
Pop off everything to and including the Local State (if there is oneÐthere 

might not be if the user just asked for a library function)
Get New Local State (above a Library Function Node)
If New Local State exists,



Set Current Function to New Local State's function string
Set Current Position to New Local State's position
Set Current Dictionary to New Local State's Dictionary
Push Return Value
DO KEYWORDS

If not (i.e., stack is empty)
program is finished...
Stop Interpreting

EVALUATE VARIABLE: Symbol Name
Get Local State
If Symbol Name is in Local State Dictionary

Push value
If Symbol Name is in Global Dictionary

Push value
If in neither dictionary

Error:    No such variable



GO main clock function.    Calls READ EVAL
While running

call READ EVAL <repeats> times
note that this could be done either through a timed entry or 
through multiple pulsing until it's done or someone pressed 
Command-period.

READ EVAL
Get next token
If there's no token

If Interpreting format is Library Function
COMPLETE FUNCTION (user just asked for a library function--

obviously, there'd be no tokens)
Else

Error:    Out of Tokens
If token is string or number or truth



Push it
DO KEYWORDS

If token is a symbol
EVALUATE VARIABLE:Symbol Name

If token is (
Get next token
If there's no token

Error:    Out of Tokens
If next token is not a symbol, 

Error:    No Function or Keyword
If next token is If

START IF
If next token is Set

START SET
If next token is For

START FOR
If next token is While



START WHILE
If next token is a symbol

Push it
If token is )

Get top symbol above the top dictionary
If there is no such top symbol

COMPLETE FUNCTION
If top symbol is If

FINISH IF
If top symbol is Set

FINISH SET
If top symbol is For

FINISH FOR
If top symbol is While

FINISH WHILE
If top symbol is some other symbol

PERFORM FUNCTION



START SET
Get next token
If next token is a symbol

Push Set Node
Set Set Node to Start_Set
Load Set Node with token

Else
Error:    Can't Set:    not a variable

DO SET
If Set Node is Start_Set

Set Set Node to Done_Set
Else

Error:    Can't Set:    too many values



FINISH SET
If Set Node is Done_Set

Pop Value
Pop Pops Set Node
Push Value
If Set Node's Variable is in Local State Dictionary

Set Variable in Dictionary to Value
If it's in the Global Dictionary

Set Variable in Dictionary to Value
If it's in no dictionary

Error:    Can't Set:    no such variable
Else

Error:    Can't Set:    No value

START IF
Push If Node
Set If Node to Start_If



DO IF
If If Node is Start_If

Pop Value
If Value is "t"

Set If Node to Start_Then
If Value is not "t"

Set If Node to Start_Else
Skip an Item skips an item, or nothing if just hits a )
If Pos is the same,

Error:    Can't complete If:    Not enough values
Note this is because if must have then but not necessarily else

If If Node is Start_Then
Set If Node to Done_If
Skip an Item

If If Node is Start_Else
Set If Node to Done_If



If If Node is Done_If
Error:    Can't complete If:    too many values

FINISH IF
If Node is Start_If or Start_Then

Error:    Can't complete If:    Not enough values
If Node is Start_Else or Done_If

Pop into Return Value
Pop to If Node
Pop Pops If Node
Push Return Value

START WHILE
Push While Node
Set While Node's Pos to Pos
Set While Node to Start_While



DO WHILE
If Node is Start_While

Pop Test
If Test is T

Set Node to True_While
If Test is F

Set Node to False_While
Skip

Push Test
If Node is True_While

Set Node to Done_While
If Node is Done_While or Node is False_While

Error:    Can't Complete While:    Too many values

FINISH WHILE
If Node is True_While or Node is Done_While



Pop to While Node
Reset Pos to While Node's Pos
Set Node to Start_While

If Node is False_While
Pop into Return Value
Pop to While Node
Pop Pop While Node
Push Return Value

If Node is Start_While
Error:    Can't Complete While:    Not Enough Values

START FOR
Get next token
If next token is a symbol

Push For Node
Set For Node to Start_For
Load For Node with token



Else
Error:    Can't For:    no variable

DO FOR
If Node is Start_For

Pop StartValue
If StartValue is a number

Load StartValue into For's Start
Set Node to End_For

Else 
Error:    Can't For:    Start Value isn't a number

If Node is End_For
Pop EndValue
If EndValue is a number

Load EndValue into For's End
Set Node to Step_For



Else
Error:    Can't For:    End Value isn't a number

If Node is Step_For
Pop StepValue
If StepValue is a number

Load StepValue into For's Step
Set Node to Do_For
Look up Variable
If Variable    is in Local or Global Dictionary

Set Variable to StartValue
Load Pos into For's Pos
If Variable beyond End limits

Set Node to False_For
Skip

Else
Error:    Can't For:    no such variable

Else



Error:    Can't For:    Step Value isn't a number
If Node is Do_For

Set Node to True_For
If Node is False_For or True_For or Test_For

Error:    Can't For:    Too many values

FINISH FOR
If Node is True_For

Pop into
Reset Pos to For's Pos
Set Node to Test_For

If Node is False_For
Pop into Return Value
Pop Pops For Node
Push Return Value

If Node is Test_For
Increment



If Test is finished
Pop into Return Value
Pop Pops For Node
Push Return Value

Else
Pop into
Reset Pos to For's Pos
Set Node to Test_For

If Node is Do_For or Step_For or Start_For or End_For 
Error:    Can't For:    Not enough values


