
Copyright ã 1994 by Sean Luke

COWS

IPC Library
COWS Version 1.3
Sean Luke
March 20, 1994

The COWS IPC (Inter-Process Communication) Library provides some
elementary functions to allow a COWS interpreter in one application control
the interpreter of another application.    It is not designed to control
applications that don't have a COWS interpreter built-in.

The IPC Library is not finished, and it's still buggy, but I've decided to get
some of it out as fast as possible to give you a taste of what COWS can
really do.

Distributed Objects and the Library

The library uses NeXT's Distributed Objects system to communicate with
applications on your local machine or on remote machines.    When an
application starts up, its interpreter registers itself with the Network Name
Server under the name appname(COWS), where appname is the app's name

as found through [NXApp appName].    Currently, if two apps have the same
name, only one is seen by the library.

In a non-threaded application (i.e., most NeXTSTEP apps), the Distributed
Objects system must work through events.    This means that there are some
of things you can't do with an interpreter like COWS:

¨ You can't have your application call itself through this library.
¨ If app 1 calls app 2 synchronously, app 2 should not call app 1 until it

returns an answer.

Synchronous vs. Asynchronous Calls

You can use the library to make both synchronous and asynchronous calls to
a remote application.    A synchronous call is a call that waits for an answer
back from the remote application before continuing.    An asynchronous call
returns immediately without checking to see if the remote application has
completed the requested task.

In this version of the library, only foreground interpreters can accept
synchronous calls, though both foreground and background interpreters can
send synchronous calls.    Anyone can send or receive asynchronous calls
without problems.

Local vs. Remote Calls

This library can make either local calls to applications on your computer, or
remote calls to applications on other computers.    Remember that if you're
making remote calls, you must have an application running on the remote
machine that you are allowed to talk to.

Security

The library provides very minor security at the moment.    Currently, you can
set an application to be locked.    This prevents other interpreters from
accessing it.    However, if your interpreter is unlocked, any interpreter can
access it from any machine, given the owner of the interpreter knows the
name of your machine and the process running on it.    You've been warned!

What This Library Can't Do (Yet)

Currently this library can't:

¨ Check to see if an application exists.
¨ Control applications without interpreters (that's really the job of a later,

different library).
¨ Allow synchronous calls to non-foreground interpreters.
¨ Protect your interpreter from some remote interpreters while allowing

other interpreters to control it.    It's all-or-nothing.

IPC Function Names

The moment you've been waiting for...

launch Tries to launch app app-name, possibly on the remote
machine

machine-name.    Returns t if succeeded, f otherwise.
(launch app-name)
(launch app-name machine-name)

launched? Returns t if app-name is running locally, or running on the
remote machine machine-name if this is included as an
argument.    Returns f if app-name is not running.

(launched? app-name)
(launched? app-name machine-name)

send Synchronously calls a COWS function function-name with
arguments arguments in the interpreter in the application
app-name.    Waits for function-name to complete its task.
Returns what function-name returns. For example,
Þ (send "SomeApp" "doit" 13 4 "hello")
calls the function doit in the interpreter in the application
SomeApp.app, passing it the arguments 13, 4, and hello.
If doit returns a 5, send will return a 5.

(send app-name function-name arguments*)

send-remote Identical to send, except that it calls a function on an

application on the remote computer computer-name.
computer-name is a registered domain name.

(send-remote computer-name app-name function-name arguments*)

send-out Asynchronously calls a COWS function function-name with
arguments arguments in the interpreter in the application
app-name.    Returns nothing. For example,

Þ (send-out "SomeApp" "doit" 13 4 "hello")
calls the function doit in the interpreter in the application
SomeApp.app, passing it the arguments 13, 4, and hello.
Without waiting for doit to complete, send-out immediately
finishes and returns a blank string as its return-value,

assuming
that doit is still out there somewhere doing its work.

(send-out app-name function-name arguments*)

send-out-remote Identical to send-out, except that it calls a function on an
application on the remote computer computer-name.
computer-name is a registered domain name.

(send-out-remote computer-name app-name function-name
arguments*)

