
Animator

INHERITS FROM Object

REQUIRES HEADER FILES Animator.h

DEFINED IN Extended Tools, version 0.0

AUTHOR Scott Hess

CLASS DESCRIPTION

The Animator allows the programmer to create an object which will have 
animation properties, and then to cause it to animate, without explicitely using 
DPSTimedEntries.    This behaviour requires the object to either be a target of 
an Animator object, or to have an Animator object as an outlet.    This may be 
useful when the user would like two versions of a View subclass - one which 
animates, and one which does not.    The Animator allows the programmer to 
only create one version, and connect it to an Animator object when animation 
is required.

The current Animator class is not fully supported by the InterfaceBuilder.    
Eventually, I would like to have the Animator act similar to a Control, 
converting lower-level events (in this case DPSTimedEntries) into higher level 
events.    It should be fully configurable from within InterfaceBuilder via an 
Inspector panel, and the act of connecting an Animator to its target outlet 
should bring up a choice of actions to send.    I have attempted to implement 
a custom palette for this, and the Animator class appears, and instances may 
be instantiated, but the Inspector panels do not work correctly.    I believe that 
many of these problems are going to be fixed in the next release of the 
Interface Builder. 

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Animator id target;
BOOL running;
float timing
float threshold
SEL action
DPSTimedEntry te
double startTime
double elapsed

target The object the animator is to call

running The current status of the Animator

timing How long to pause between calls

threshold At what priority to run

action What message to send to target

te Our timed entry



startTime When the animator started running last

elapsed The elapsed time between the start time and the 
last time that the animator called its target with 
the action

METHOD TYPES

Creating and Freeing an Animator -
free + new

+ setDefaultAction:
+setDefaultRunning:
+ setDefaultThreshold:
+ setDefaultTiming:

Accessing the instance variables - action
- doubleValue
- floatValue
- intValue
- resetValue
- resetValue:
- running
- setAction:
- setRunning:
- setThreshold:
- setTiming:
- threshold
- timing

Acting on the target - sendAction
- sendAction:to:

Interface methods - start:
- stop:
- takeRunningFrom:
- takeTimingFrom:
- toggleRun:

Archiving - awake
- copy 
- read: 
- write:

IMPLEMENTED BY TARGET

Initialization - setAnimator:

CLASS METHODS

new

+ new

Creates a new Animator object, with a nil target, and in the quiescent state.

setDefaultAction:

+ setDefaultAction:(SEL)theAction



Sets the default action method Animators should use on creation.

setDefaultRunning:

+ setDefaultRunning:(BOOL)runningState

Sets the default running state Animators should use on creation.

setDefaultThreshold:

+ setDefaultThreshold:(float)theThreshold

Sets the default threshold Animators should use on creation.

setDefaultTiming:

+ setDefaultTiming:(float)theTiming

Sets the default timing Animators should use on creation.

INSTANCE METHODS

action

-(SEL)action

Returns the action the Animator is currently calling the target with.

 awake

- awake

Brings the Animator up animating, if it was animating when it went down, and 
if the target will respond .

copy

- copy

Makes a copy of the Animator object and returns it.

free

- free

Stops the current animation session (if it is animating), and frees up the 
Animator.

doubleValue

-(double)doubleValue

Returns the amount of time, in seconds, between the startup time of the 
Animator and the last time it called its target.    Returns -1.0 if not currently 
running.

floatValue

-(float)floatValue

Returns the amount of time, in seconds, between the startup time of the 
Animator and the last time it called its target.    Returns -1.0 if not currently 
running.

intValue

-(int) intValue



Returns the amount of time, in seconds, between the startup time of the 
Animator and the last time it called its target.    Returns -1 if not currently 
running.

read:

- read:(NXTypedStream *)stream

Reads in the Animator from the typed stream stream.

resetValue:

- resetValue:(double)value

Resets the starting time of the Animator to value.

resetValue

- resetValue

Resets the starting time of the Animator to the current time.

running

- (BOOL)running

Return running status of the Animator.

sendAction

- sendAction

Sends the Animator's action to its target.

sendAction:to:

- sendAction:(SEL)theAction to:theTarget

Sends the specified action to the specified target, with the receiving Animator 
as the only parameter.

 setAction:

- setAction:(SEL)theAction

Sets the action for the Animator to call its target with.

setRunning:

- setRunning:(BOOL)state

Sets the running state of the Animator.

 setTarget:

- setTarget:anObject

Sets the target to send to.    If the target is the same as the current one, it 
returns right away.    If not, it sets the target, and calls the target's 
setAnimator: method.    This is useful for making sure that the target gets a 
chance to initialize the Animator's speed, etc.    This should not be needed, as 
the setup should occur in the InterfaceBuilder.    A side effect of this method is 
that if the setAnimator: method of the target works the same way (return right 
away if the animator is the same), the Animator and target can be connected 
as outlets in either direction, and you will not get an infinite loop.

setThreshold:



- setThreshold:(float)threshold

Sets the threshold for the Animtor to run at.

setTiming:

- setTiming:(float)timing

Sets the number of seconds between calls.

start:

- start:sender
Begins animation, and resets the startTime.

stop:

- stop:sender

Ends animation.

 takeTimingFrom:

- takeTimingFrom:sender

Get the timing instance value from the sender.

takeRunningFrom:

- takerunningFrom:sender

Get the running instance value from the sender.

 target

- target

Returns the Animator's target.

timing

- timing

Returns the Animator's timing.

threshold

- threshold

Returns the Animator's threshold.

toggleRun:

- toggleRun:sender

Toggles the running status of the Animator from running to not, or vice versa.

write:

- write:(NXTypedStream *)stream

Writes the receiving Animator to the typed stream stream.

TARGET METHODS

setAnimator:

- setAnimator:anObject

Send to target to allow setup of the Animator.




