
3PixelRule_Gray.tiff ,

SilkScreen v1.0

An IconBuilder Filter
Toby Paterson
paterson@gdss.commerce.ubc.ca

v1.0 March, 1993

This code is released into the public domain.    You may use the code in any manner you see 
fit with the understanding that I am not responsible for anything that may happen to you, your 
employer or your next of kin as a result.    It is free; if you use any of this code in a commercial 
product, all I ask is that you mail me a sample of the best local beer your area has to offer 
(Pale Ale preferred).

131068_PixelRule_Gray.tiff ,

The SilkScreen filter
In IconBuilder, a filter is an operation which is invoked on the current 
selection.    The two default filters are Flip and Rotate, which do the 
obvious things to the selection, and IconBuilder provides the ability to 
dynamically load new filters (and new tools for that matter).    In the Fall 
1991 issue of Next On Campus, a copy of which can be found 
sonata.cc.purdue.edu in /pub/next/Newsletters/OnCampus/NOCFall91, 
the article An Introduction to Extensible Programming by Jeff Martin and 
Joshua Doenias describes the API for a program called DynaPaint; this is 
the same API that is used in IconBuilder.



SilkScreen is a filter which changes pixels of one colour to another: all 
pixels in the selection are scanned, and any pixels which are sufficiently 
close to the source colour are replaced by the destination colour.    I use it 
for those cases where the fill operation isn't sufficient (on dithered colours, 
for example) or when there are a few pixels whose colour I want to change 
and which are scattered throughout the image.

How to load the filter
Start up IconBuilder and load the SilkScreen filter using the Tools/Load 
Tool menu item.    Two things should be noted:

· double clicking on the filter from the Workspace browser, although it 
launches IconBuilder, fails to load the filter correctly (at all!).

· the filter must be loaded before the selection tool's inspector is 
displayed for the first time.

Alternatively, you can place the SilkScreen.pfilter bundle into the 
IconBuilder app wrapper and it will automatically be loaded when 
IconBuilder is launched.

The SilkScreen filter operates on the current selection.    Pick the selection 
tool, select the portion of the image you want to mung, and open the 
inspector window (from the Tools/Inspector... menu item or cmd-j).    
Drag the pop-up menu to SilkScreen, set the attributes as you want them 
(see below) and hit the Apply button.

Using the SilkScreen filter
The SilkScreen filter scans all pixels in the current selection and changes 



the colours of those pixels which match the source colour to the 
destination colour.    By default, the colour comparison between the source 
colour and the colour of the pixels is performed in the RGBA colour space.    
The Euclidean distance between the two colours is computed and if it is 
less than the specified tolerance, the pixel's colour is changed to the 
destination colour.

The tolerance is controlled by a slider in the inspector window and is given 
as a percentage figure.    A 0% tolerance means only those pixels which 
are exactly the same as the source colour are converted; 100% means all 
pixels in the selection will match the source colour and hence be 
converted.    (If you picture RGB space as a colour cube, then the tolerance 
specifies the radius of a sphere centred at the point representing the 
source colour.    All colours which fall within this sphere will match the 
source colour and be converted to the destination colour.)

foo.eps ,
Using the channel selector buttons, it is possible to limit which channels 
are used in the comparison.    Only those channels which are selected will 
be used when comparing the two colours for a match.    So it is possible, 
for instance, to compare only the red components or the red and blue 
components of two colours and ignore the rest.

If the interpolation button is selected, then the destination colour is 
modified proportionally to reflect the difference between the source colour 
and the pixel colour.    For example, if the pixel colour contains more red 
than the source colour (but still falls within the tolerance, of course), then 
the new pixel colour will be the destination colour with proportionally more 



red added to it.    This comparison and modification is performed in the 
HSB colour space, all components of the colour space are used and you 
have no choice in this matter.

Bugs/Things it would be nice to have
· it would be nice to have a choice in this matter
· comments in the code
· provide the ability to compare the source and pixel colours for a match in 

different colour spaces
· show a colour wheel graphically displaying the tolerance factor and which 

colours will match the source colour
· I haven't tested the bitmap ReadPixel()/WritePixel() routines on all types 

of images; if you come across a format which causes the code to barf, 
please let me know (and mail me the fixes too if you like :)


