
Customizing Pencil ±
writing your own path-, draw-, fill- and stroke- procedures

The code for all postscript procedures used in PENCIL is located in two files: "pencilDefinitions.ps" and 
"pencilControlProcDefinitions.ps". They must be in the same directory as Pencil.app. There is a third file, 
"pencilMethodDescriptions", which lists the method-names as they appear in the pop-up-list and the 
corresponding postscript-procedures (The syntax is obvious. Open the file in Edit and add new entries 
once you have added some new postscript-procedures). To try out a new path/draw/fill/stroke- method 
without changing the files, you can choose the "Info>Custom PS..." menu item and type the postscript 
code in the appearing panel. The new postscript-procedure will be available once you have clicked on 
"Send to PS Server". It will not appear in any of the pop-up lists, but you can type its name directly in the 
corresponding text-field. Your code will be saved along with the current document. NOTE: You must click 
on "Send to PS Server" to save the PS code in the current view's corresponding instance variable. Don't 
select another document until you have done this because otherwise you will lose your changes to the 
code.

APPLICATION-DEFINED PS-VARIABLES

In general, when one of your procedures is called, the following postscript-variables are defined by the 
application:



ctrl array of control-point-coordinates in the
form [x1 y1 x2 y2 x3 y3...], e.g. [0 .5 8 .3]

nctrl number of controlpoints
udt a procedure that, when executed,

sets the user-defined-variables
(actually, this is the postscript-code the
user types in the "user variable definitions"
text-field)

cl a procedure that, when executed, will
place r1 g1 b1 r2 g2 b2 on the stack, i. e.
the rgb-values of user-defined colors 1 and 2.

PATH-METHODS

The purpose of a path-procedure is to construct a path taking into account the information given in ctrl 
(and perhaps udt). To loop over all controlpoints, use this code:

0 1 nctrl 1 sub { /i exch 2 mul def
ctrl i get % push x(i) on stack
ctrl i 1 add get % push y(i) on stack

% do something
} for

Example



This is the code for the "Open Polygon" path-method:
/polygonO {

nctrl 2 ge {
ctrl 0 get ctrl 1 get moveto
1 1 nctrl 1 sub { /i exch 2 mul def
ctrl i get ctrl i 1 add get lineto } for

} { 0 0 moveto } ifelse
} def
/polygonOcontrol { gencontrol } def

It tests whether there are at least two controlpoints. If yes, it constructs an open polygon by using a 
moveto on the first controlpoint and linetos to all other points. If no, it constructs an empty path by only 
calling moveto. NOTE: Always construct a path, at least an empty one (0 0 moveto). Other procedures 
rely on the existence of a current path.

For every path procedure "NAME" there has to be a procedure named "NAMEcontrol" that draws the 
controlpoints and additional lines etc. when the user has selected the path. Normally, it is enough to call 
"gencontrol" which will draw the controlpoints in black. These control procedures are defined in 
"pencilControlProcDefinitions.ps". They are not defined when printing. See "hermitecontrol" for an 
example of a special control-procedure.

FILL-METHODS



They are called by the draw-procedure with a current path already constructed. The simplest fill-
procedure is the standard postscript "fill". 

Example
This is the code for the "Grid" fill-method:
/gridsize 5 def
/grid {
udt
doClip
0 gridsize height
{ 0 exch moveto width 0 rlineto stroke } for
0 gridsize width
{ 0 moveto 0 height rlineto stroke } for
endClip
/gridsize 5 def
} def

At first, udt is called (this may change the value of gridsize). "doClip" clips to the current path, translates 
to the lower left corner of the path's bounding box and defines width and height. You should use 
doClip/endClip in the following way:

/myfill {
doClip
... % fill rectangle (0,0)-(width,height)



endClip
} def

USER-DEFINED VARIABLES

In the "grid"-example, "gridsize" is reset to its default value after it has been used. When you want to use 
a user-defined variable, do it like this:

/myVar 10 def % default value
/myProc {
udt % user-defined
... % use myVar
/myVar 10 def % reset to default value
} def

STROKE-METHODS

They are called by the draw-procedure with a currentpath already constructed. The simplest stroke-
procedure is the standard postscript "stroke". 

Example
This is the code for the "Doubleline" stroke-method:
/doubleline {



gsave currentlinewidth 2 mul setlinewidth stroke grestore
1 setgray stroke

} def

It strokes the current path in the current color with double the current linewidth and then strokes it again 
in white using the current linewidth. The gsave/grestore-pair around the first stroke is necessary to avoid 
destroying the current path.

DRAW-METHODS

When a draw-method is called, the following variables are defined in addition to cl, udt, ctrl and nctrl:

cp Current path-procedure
cfl Current fill-procedure
cst Current stroke-procedure

A draw-procedure uses cp, cfl and cst to draw the current path.

Example
This is the code for the "Filled&Stroked" draw-method:
/drawFS {

cl setrgbcolor
cp



gsave
cfl
grestore
setrgbcolor
cst

} def
/drawFSBB { fsbb } def

It executes cl (r1 g1 b1    r2 g2 b2 are pushed on the stack), sets color 2 by calling setrgbcolor, constructs 
the current path by calling cp, fills it by calling cfl, sets the current color to color 1 and strokes the current 
path by calling cst.

Every draw-procedure "name" must have a "nameBB"-procedure that pushes the bounding box of the 
current path on the stack. There are three generally useful procedures for this purpose:

fbb pushes the bounding box of the cp on the
stack

fsbb does the same but takes into account the
current linewidth

enlbb (dlx dly drx dry enlbb) takes the bounding box
on the stack and enlarges it by changing
its lower left and upper right corners by
the specified amounts



(e. g. "fbb -5 -5 5 5 enlbb" enlarges the BB
5 pixels in every direction)

±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±

A final example

± Start Pencil.app (If you have already done so, save and close your current document)
± Open a new document (Command-n)
± Open the CustomPS-panel (Command-2)
± Copy the following code into it:

/myfill {
doClip
0 20 width { /x exch def
0 20 height { /y exch def
x y 8 0 360 arc stroke
} for
} for
endClip
} def

± Click on "Send to PS Server"



± Draw a path
± Change the draw-method to "Filled"
± Click on "Expert settings" and enter "myfill" into the "Fill-method" textfield. Now you should see your fill-
pattern.

±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
In the SampleImages-directory, there are some examples of custom-defined methods. Bring up the 
CustomPS-Panel (Command-2) and open these documents.

±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±
If you have created stable methods that you believe to be generally useful and would like to have them 
included in the next version of Pencil, mail me your changes to pencilDefinitions.ps, 
pencilControlProcDefinitions.ps and pencilMethodDescriptions. (a0047@freenet.uni-bayreuth.de)
If you have created nice effects, consider submitting them to some ftp-server in the form of a Pencil-
document (as "CustomPS"-methods). Perhaps someone will find them useful.

Pencil. (C) 1994, 95 by Florian Marquardt. V1.0 . This text was last changed: March 95


