
The Scale Filter for IconBuilder:

IconBuilder tools and filters are just special bundles.    The bundles
contain executable code for the tool, the interface for the tool's inspector, and
any accessory resources that that the tool needs to function (icons, sounds,
language specific strings, etc.).    Making a new tool is surprisingly easy, and
is accomplished through the magic of Objective-C and NXBundle objects.    If
you want to know more about the design IconBuilder, take a look at "An
introduction to extensible programming" by Jeff Martin and Joshua Doenias
from the Fall 1991 Next On Campus.    In that article, the authors describe an
extensible painting program called "DynaPaint" which bears a striking
resemblance to IconBuilder!

The IconBuilderScaleFilter directory should contain the following items:
· README.rtf    (this file)
· Scale.pfilter (a compiled and ready-to-go filter for scaling images)

· Scale (a ProjectBuilder directory with the filter's source code)

Using the Scale filter:

Start up IconBuilder and load Scale.pfilter by selecting Tools ->
LoadTool... from the menu.    Alternately, Scale.pfilter will be automatically
loaded when IconBuilder is launched if it is placed in IconBuilder's app
wrapper.    To scale an image, drag out a rectangle with the selection tool,
bring up the tool inspector, drag the pull-down menu to Scale, change any
parameters if necessary, and click Apply.

The scaling algorithm parameters are:

· Scale Factor -- The scale factor controls how much bigger or smaller to
make the image.    A scale factor of 2 will make the image twice as big,
while a scale factor of .5 will shrink the image to half its original size .

· Focus -- The focus determines how sharp the output image will be.    A
focus of 0 will create an image with very sharp boundaries, a focus of 1
smooths out the boundaries of the image by about the width of a pixel
or so, and a focus of 10 will create very blurry images.    The optimal
value for the focus parameter varies from image to image, but values in
the range of .7 to 2 usually produce good results.

· Samples -- The samples parameter controls how many samples of the
input image will be taken and averaged when producing each output
pixel.    Instead of using the normal convolution method for scaling
images, Scale.pfilter uses a stochastic sampling method to achieve the
same result.    As the number of samples increase, the output image will
become smoother.    The useful upper limit on the number samples is
256.

The time it takes to scale an image depends on the number of pixels in
the output image and the number of samples to take per pixel.    Since scaling

can be quite slow for large images or a large number of samples, a progress
monitor is displayed in the inspector panel during the scaling operation.

Warning #1:    The scaling algorithm is non-deterministic.    This means
that it is very unlikely you will get exactly the same result twice (unless the
samples parameter is set very high).    There is almost never any perceptible
difference, but many people will need something that is totally predictable.
Those people should not use this filter.

Warning #2:    The scaling algorithm is very slow.    Speed is not a
problem when producing output images that are icon-size, but creating large
output images can be interminably slow.

The Progress View:

The ProgressView class is an example of how the scale filter can be
used to create anti-aliased images.    If you are starved for memory , just

remove ProgressDials.tiff from Scale.pfilter and the dial will be rendered from
normal postscript operators.    The anit-aliased dials will also not be used on
machines with only a two bit framebuffer.

Compiling The Scale Filter:

It appears that ProjectBuilder does not let you get at the CFLAGS macro
in the standard makefiles, so you are stuck with the default -g -O -Wall.    In
addition, strip doesn't work on bundles, so if you want to reduce the size of
the filter executable, make the project with ProjectBuilder (to copy the nib,
etc.), and then go into a shell and make the bundle by hand with the following
commands:

cc -O2 -Wall -c ProgressView.m -o obj/ProgressView.o
cc -O2 -Wall -c Scale.m -o obj/Scale.o
ld -r -o Scale.bundle/Scale obj/ProgressView.o obj/Scale.o

Be sure to rename Scale.bundle to Scale.pfilter so IconBuilder can find it.

Bugs in IconBuilder:

· Filters can only be loaded before the selection tool inspector is
displayed for the first time.

· By default, IconBuilder will not correctly manipulate images that are
deeper than the framebuffer (despite what the page layout panel
claims).    To fix this, go into a shell and type:

dwrite IconBuilder NXWindowDepthLimit TestTwenyFourBitRGB

This allows IconBuilder to create windows and manipulate images that
are twenty four bits deep, even on a mono slab.    See

/NextLibrary/Documentation/NextDev/GeneralRef/ApB_Defaults

for more information on limiting (and increasing) window depths.

· If the Apply or Revert buttons in the selection tool inspector are clicked
while there is no open document, IconBuilder will scribble in the
Button's cell.

· The selection tool will not draw properly if a document is converted
from one with alpha to one without alpha and the background color well
is not kicked.

Wish List for NXBitmapImageRep:

Most of the code in the Scale object is devoted to converting the four
principal bitmap formats (two bits per sample planar, eight bits per sample
planar four bits per sample meshed, and eight bits per sample meshed) into
a common format (eight bits per sample meshed) that the scale method can
work with.    It would be tremendously useful if NXBitmapImageRep had four
additional methods:

- (NXColor)readPixelAt:(int)i :(int)j
- writePixel:(NXColor)color at:(int)i :(int)j
- initData:(unsigned *)data

fromBitmap:(NXBitmapImageRep *)bitmap
pixelsWide:(int)width
pixelsHigh:(int)height
bitsPerSample:(int)bps
samplesPerPixel:(int)spp
hasAlpha:(BOOL)alpha
isPlanar:(BOOL)config
colorSpace:(NXColorSpace)space
bytesPerRow:(int)rowBytes
bitsPerPixel:(int)pixelBits

- initDataPlanes:(unsigned char **)planes
fromBitmap:(NXBitmapImageRep *)bitmap
pixels...

These methods would provide a nice object-oriented way to manipulate
bitmaps and convert    them from one format to another.

Copyright (c) 1992 The Geometry Center
University of Minnesota
1300 South Second Street
Minneapolis, MN    55454
USA

Please send all bug reports to:
Linus Upson
lupson@geom.umn.edu

