
Stone Age n
(1864) :the first known period of prehistoric human culture characterized by the use of
stone tools

Welcome to the Stone Age!    This column shall be dedicated to a recursive descent into appkit
programming: stone tools aka Acme Gizmos, new objects, tricks, and tales from the dark night of
the programmer's soul. In the spirit of FSF and my conviction that this really is a revolution, here's
a tool from my chest. Like all good object libraries, this column should be written collectively. I
invite all of you to "Step right up" in this space and show off your neat objects, even if unpolished,
because its the concepts that count.    Next month: Kris Jensen describes a new Gizmo.

Composite Objects: A Slider/TextField Hybrid
SliderDualActing and its cell class, SliderCellFine, combine a special ªdual-actingº slider,
a text field, and two arrow buttons into one composite object.    This allows the end-user
multiple input techniques while abstracting the client or application user of the object
away from the details of coordinating the various Appkit components. The special slider
solves some of the problems of providing fine control over a large range of values in a
small space. This project illustrates the power gained both by subclassing Appkit objects
and combining objects.

First, a picture:

Features

Component objects make programming easier:

· The end-user gets multiple input methods: a slider, a textfield, and a pair of buttons
which decrement or increment the slider, while the program only deals with one object.
All of the validation and synchronization methods are in one place instead of distributed
throughout source files. Programs often have lines like these in read: and other resetting
methods:

[numberField setIntValue:number];
if (number>[numberSlider maxValue]&&okToExceedMaximum)
 [numberSlider setMaxValue:number];
[numberSlider setIntValue:number];

All of the coordinating code can be replaced by the last line.    The SliderDualActing
handles the rest.

·€We want to continually update the textfield as we drag the slider (and SliderDualActing
handles this without any programmer intervention), but we also want to notify another
target either continually or on mouseUp. The second case is more usual, as continual
notification may take too much processing time. Therefore, our composite object has an
UpTarget and an UpAction.

1

· Users should not be stopped from entering values higher than maxValue or lower than
minValue, if it makes sense to the application. For example, in TextArt, the fontSizeSlider
has a default value of 140 points. However, if users want a higher value, they simply
type in a value into the textPal, and if the SliderDualActing BOOL instance variable
allowHigher is YES, the slider resets its maximum value. A further enhancement to this
class would be methods to write the user's maximum and minimum values to the
NX_Defaults mechanism to restore on the next launch.

· Sometimes, the user justs wants to ªcrawlº along the slider's values. I have added a
matrix of two buttons which increment or decrement the slider by altStep. They connect
to the sliders' action method incrementDecrement:.

· Component objects can provide a convenient method for implementing Undo. The
SliderDualActing knows its last value and can respond to an undo method. Alternatively,
you can specify an undo target and a tag telling the target what needs to be undone. The
default is for the slider to handle undo itself. One simple strategy for a single-level undo
is to have a global undo object, which stores the id of the last control set. Undo from the
menu tells this undo object to send the undo method to the control that last set it. My
undo object is accessable via NXApp, and looks like this:

@interface Undo:Object
{
 BOOL hasUndo;
 id lastClass;
}
- setLastClass:anID;
- undo:sender;
@end

Special sliders provide several additional user interface features:

· Sliders with a large range can cause problems: If the slider isn't very long, the
resolution (how much the value changes when the slider is dragged one pixel) can
become unacceptably large. On the other hand, screen space is often in short supply,
making it hard to use the long sliders needed    to obtain a fine resolution.
SliderDualActing and SliderCellFine provide methods to change the slider's value by
specifiable small amounts by checking if the Alternate or other meta keys are down while
the slider is being dragged. Currently, pressing the Alternate key causes the slider to
change by the altStep instance variable and adding the Shift key halves this amount.

· Looking at float values that have insignificant digits is ªnoisyº and very unSteveLikeä.
Sometimes, however, a user wants to specify a value to a high degree of accuracy. Our
composite object provides a mechanism to dynamically change the TextField textPal's
floating point format.    Normally the user will not be bothered with the floating point
values, but dragging the slider while pressing the Alternate and Shift keys puts the
SliderDualActing into decimal state (as well as changing the value by a prespecified
small amount). This allows precision while preserving aesthetics.

· The user can reset the slider to its various defaults (maximum, minimum, number of
decimal places displayed) while using the program by clicking the slider while pressing
the Command key.

2

Using SliderDualActing, a step by step guide in Interface
Builder:

The first time the object is used, perform steps 1 thru 13; thereafter only step 13 is necessary:

0] Assume that you have a class with an instance variable named ªsliderDAº
1] Copy SliderDualActing.[hm] and SliderCellFine.[hm] to your project directory.
2] Bring up the Class Window (Command-5) and the Class Attributes Inspector
(Command-1)
3] Make a subclass of slider:

a] Traverse the Class hierarchy to Object->Responder->View->Control->Slider
b] Select SubClass from the Operations pull-down menu in the Class Window
c] Rename the subclass to SliderDualActing
d] Select Parse from the Operations pull-down menu and answer ªOKº to the ªAdd
        SliderDualActing to Projectº dialogue box

4] Create a new custom view by dragging one from the Palette Window
5] Make it a SliderDualActing by bringing up Inspector Attributes Window (Command-1)
and    clicking on the SliderDualActing class name
6] Size the new slider: Bring up Inspector Size Window (Command-4) and type in a
width of 16. if it's to be a vertical slider, or a height of 16 if it's a horizontal slider.
7] Drag a textField from the Palette Window
8] Drag a button from the Palette Window. Make a matrix of two buttons by dragging
while pressing the Alt key. In the Inspector Attributes window, be sure to check ªCells Tag
= Positionº. Add arrow icons to these buttons.
9] Select the three objects and ªboxº them by typing Command-g. This allows you to
copy and
paste the control while retaining the connections among the three objects.
10] Connect the textPal outlet of sliderDualActing to the textfield.
11] Connect the action of the textfield to the SliderDualActing method: ªsendTextAction:º
12] Connect the matrix' target to the SliderDualActing method ªincrementDecrement:º

13] Connect your control object's sliderDA outlet to the sliderDualActing view. Now, for
other instances of SliderDualActing, you can copy and paste this box, and only need to
set your application's control object to the    slider itself.

In your code, in the ªappDidInitº method sent to the App add some    initialization
code:

You need to set the slider's UpTarget and UpAction and its various default values. An
excellent place for this is after the Application receieves an AppDidInit: message. For
example:

/* The app has an outlet named "sliderDA" in this example */
- appDidInit:sender
 {
 [[[[sliderDA setUpTarget:self action:@selector(setAngle:)]
 setMax:360. allowHigher:NO min:-360. allowLower:NO]
 setAltStep:1. whole:YES default:0]

setFormat:NO left:1 right:3]; // formats text pal

3

/* other initialization code here */
return self;

}

Caveats:

Problem: IB has no inspector for subclasses of known objects in V1.0. This means you
lose the ability to specify various defaults in IB.
Fix: Call the initialization routines illustrated above and documented in
SliderDualActing.m.

Problem: If the value of altStep is large compared to the range of the slider, drawing
update anomalies occur. Instead of adding resolution, you subtract it. SliderDualActing
should have more error checking for bad parameters.

The archiving methods have not been tested since I read mine in from a nib file.

Documentation and Files:

 The documentation includes Class    Specifications for SliderDualActing and
SliderCellFine. I really enjoyed "cloning" the superclasses in WriteNow and just cutting
and pasting my methods into the preformatted pages. It looks ªjust like the book.º I have
a deep appreciation now for the great insight and hard work that went into producing the
Appkit and its extraordinary documentation, definitely a winning aspect of the NeXT
programming environment.

· SliderDualActingDistribution (available in NeXT archives everywhere):
SliderDualActing.doc.wn
SliderDualActing.h
SliderDualActing.m
SliderCellFine.h
SliderCellFine.m
SliderCellFine.doc.wn

SliderDualActing.nib
SliderDualActingDemo.m
SliderDualActingDemo.h
Assorted:README,Makefile,IB.proj,snds,tiffs.

copyright    ã 1990 Andrew C. Stone. All Rights Reserved.

4

