
Copyright 1992 by Nik A Gervae.    This is part of the documentation for the socket classes,
which are licensed under the terms of the GNU General Public License as published by the
Free Software Foundation.

The documented program and this documentation are distributed in the hope that it will be
useful, but are provided "AS IS" AND WITHOUT ANY WARRANTY;    without any express or
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.    Any use or distribution of the program and
documentation must include appropriate copyrights to acknowledge Nik A. Gervae and the
Free Software Foundation, Inc.

You should have received a copy of the GNU General Public License
along with this documentation; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

===============

SktSocketUser

INHERITS FROM Object

DECLARED IN SktSocketUser.h

CLASS DESCRIPTION

The SktSocketUser class, together with the SktSocketManager and
SktSocket classes, provides an application with the ability to act as a
server for Berkeley UNIX stream socket connections.    It can also work
with an SktSocket alone in a client application.    SktSocketUser is an
abstract superclass providing retrieval of an associated SktSocket's
input and return of output to that SktSocket for queuing.    The actual
processing of input must be implemented in a subclass or category.

An SktSocketUser object is created by the application's

SktSocketManager after an SktSocket is created.    After that, however,
the SktSocketManager has nothing further to do with it.    You are
responsible for having your subclass process its input, either by sending
it update messages in the same style as the SktSocketManager's
update method, or by using a timed entry within your subclass.   
Leaving control for an SktSocketUser outside of the SktSocketManager
gives the definer of the subclass more control over its actions; you may
want to suspend processing on some SktSocketUsers, for example.    In
each update cycle, the SktSocketUser can simply get an input line (or
more), process it, and have its associated SktSocket queue the output.

An SktSocketUser provides several different ways to access its input
queue.    It can be treated as a simple buffer of characters, from which
you always draw a specified amount.    It can also be treated as a set of
ªlinesº delimited by a character you specify (the default, of course, is
linefeed).    And last, it can be told on demand to get all input characters
up to and including a specific character (byte value).    These last two
access methods also allow for stripping of the delimiter in the returned
data.

For more information on sockets, see: the related UNIX man pages; ªAn
Introductory 4.3BSD Interprocess Communication Tutorialº (reprinted in
UNIX Programmer's Supplementary Documents Volume 1, PS1:7); or,
ªAn Advanced 4.3BSD Interprocess Communication Tutorialº (reprinted
in UNIX Programmer's Supplementary Documents Volume 1, PS1:8).

See also: SktSocketManager, SktSocket

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in SktSocketUser SktSocket *socket;
BOOL doesStrip;
BOOL doesStripCRLF;
char delimiter;
char *inputQueue;
long int queueLength;
long int queueLimit;
NXZone *zone;

socket The SktSocketUser object's SktSocket.

doesStrip Whether to strip the delimiter/requested char
on retrieval by line/character.

doesStripCRLF YES if carriage returns and linefeeds are
stripped in addition to any delimiters.

delimiter The character used to determine what a line
is (defaults to linefeed).

inputQueue Strings waiting to be processed.

queueLength The length, in bytes, of the input queue.

queueLimit The maximum number of delimiters allowed in
the input queue at any one time.

zone The zone that the SktSocket was allocated
from.

METHOD TYPES

Initializing and freeing a SktSocketUser object
-€initWithSocket:

-€init
-€free

Modifying SktSocketUser attributes -€setDelimiter:
-€delimiter
-€setDoesStrip:
-€doesStrip
-€setDoesStripCRLF:
-€doesStripCRLF
-€setQueueLimit:
-€queueLimit
-€setSocket:
-€socket

Managing input and output -€queueInput:
-€purgeInput
-€queueOutput:ofLength:
-€queueOutputString:

Retrieving input -€getInput:ofLength:
-€ungetInput:ofLength:
-€getAllInput:
-€inputToChar:
-€inputToChar:inZone:
-€nextInputLine
-€nextInputLineinZone:

INSTANCE METHODS

delimiter:

-€(char)delimiter

Returns the character used to delimit lines in the nextInputLine and
nextInputLineInZone: methds.    The default is the linefeed character
(`\n').

See also: -€delimiter, -€nextInputLine,-€nextInputLineInZone:

doesStrip:
-€(BOOL)doesStrip

Returns YES if the SktSocketUser strips the ...ToChar: character from
input requested by inputToChar: and inputToChar:inZone:, or the
delimiter from input requested by nextInputLine and
nextInputLineInZone:.    If NO, stripping is not done in those methods.
However, if the ...ToChar: character or the delimiter is either a carriage
return or a linefeed, and doesStripCRLF is YES, then those will be
stripped.

See also: -€setDoesStrip:, -€setDoesStripCRLF: -€doesStripCRLF

doesStripCRLF
-€(BOOL)setDoesStripCRLF

Returns YES if the SktSocketUser strips all trailing carriage returns and
linefeeds from input retrieved by any of the inputToChar... or
nextInputLine... methods.    This stripping is performed after regular
stripping, so that if regular stripping is not done and the character used
to retrieve the text is not a carriage return or linefeed, CRLF stripping is
blocked from occurring.    Returns self.

See also: -€setDoesStripCRLF, -€setDoesStrip: -€doesStrip

free
-€free

Deallocates the storage occupied by the SktSocketUser.

getAllInput:
-€(long int)getInput:(char **)input

Places the entire contents of the input queue in *input.    Returns the
number of bytes in the queue.    If you want to be sure there is anything
in the queue before you try to get anything, send a queueLength
message.

If a memory reallocation fails, this method returns -1.    If the return value
is -1, the SktSocketUser has become corrupt, and will crash the process
the next time it attempts to alter its input queue.    You should either free
the SktSocket or terminate the process.

See also:    -€queueLength, -€getInput:ofLength:, -
€ungetInput:ofLength:, -€inputToChar:, -€inputToChar:inZone:, -
€nextInputLine, -€nextInputLineInZone:,

getInput:ofLength:
-€(long int)getInput:(char *)input ofLength:(long int)length

Removes up to length bytes from the input queue and places them in
the buffer specified by input.    Returns the number of bytes actually
retrieved (this may be less than the number requested).    If you want to
be sure there is enough in the queue before you try to get anything,
send a queueLength message.

If a memory reallocation fails, this method returns -1.    If the return value
is -1, the SktSocketUser has become corrupt, and will crash the process
the next time it attempts to alter its input queue.    You should either free
the SktSocket or terminate the process.

See also: -€queueLength, -€ungetInput:ofLength:, -€getAllInput:, -
€inputToChar:, -€inputToChar:inZone:, -€nextInputLine, -
€nextInputLineInZone:,

init
-€init

Initializes the socket user to have no SktSocket.    Returns self.

See also: -€initWithSocket:

initWithSocket:
-€initWithocket:(SktSocket *)aSocket

Initializes the socket user to use aSocket as its SktSocket.    The
SktSocket also has its user set to the SktSocketUser.    This method is
the designated initializer for SktSocketUser objects.    Returns self, or
nil if the output queue can't be allocated.

See also: -€init, -€setSocket:, -€socket

inputToChar:
-€(char *)inputToChar:(char)aChar

Removes characters from the input queue up to and including aChar,
and returns them as a null-terminated string.    If regular stripping is

enabled, aChar is removed from the string.    Further, if CRLF stripping
is enabled, any trailing carriage returns or linefeeds are removed.    If no
string is found, or if the string found is completely stripped, this method
returns an empty string.

If a memory reallocation fails, this method returns NULL.    If the return
value is NULL, the SktSocketUser has become corrupt, and will crash
the process the next time it attempts to alter its input queue.    You
should either free the SktSocket or terminate the process.

See also: -€getInput:ofLength:, -€inputToChar:inZone:, -
€nextInputLine, -€nextInputLineInZone:, -€setDoesStrip:, -
€doesStrip, -€setDoesStripCRLF:, -€doesStripCRLF

inputToChar:inZone:
-€(char *)inputToChar:(char)aChar inZone:(NXZone *)aZone

Removes characters from the input queue up to and including aChar,
and returns them as a null-terminated string allocated from aZone.    If
regular stripping is enabled, aChar is removed from the string.    Further,
if CRLF stripping is enabled, any trailing carriage returns or linefeeds
are removed.    If no string is found, or if the string found is completely
stripped, this method returns an empty string.

If a memory reallocation fails, this method returns NULL.    If the return
value is NULL, the SktSocketUser has become corrupt, and will crash
the process the next time it attempts to alter its input queue.    You
should either free the SktSocket or terminate the process.

See also: -€getInput:ofLength:, -€inputToChar:, -€nextInputLine, -
€nextInputLineInZone:, -€setDoesStrip:, -€doesStrip, -
€setDoesStripCRLF:, -€doesStripCRLF

nextInputLine
-€(char *) nextInputLine

Removes characters from the input queue up to and including the
delimiter, and returns them as a null-terminated string.    If regular
stripping is enabled, aChar is removed from the string.    Further, if
CRLF stripping is enabled, any trailing carriage returns or linefeeds are
removed.    If no string is found, or if the string found is completely
stripped, this method returns an empty string.

If a memory reallocation fails, this method returns NULL.    If the return
value is NULL, the SktSocketUser has become corrupt, and will crash
the process the next time it attempts to alter its input queue.    You
should either free the SktSocket or terminate the process.

See also: -€getInput:ofLength:, -€inputToChar:, -
€inputToChar:inZone:, -€nextInputLineInZone:, -€setDoesStrip:, -
€doesStrip, -€setDoesStripCRLF:, -€doesStripCRLF

nextInputLineInZone:
-€(char *) nextInputLineInZone:(NXZone *)aZone

Removes characters from the input queue up to and including the
delimiter, and returns them as a null-terminated string allocated from
aZone.    If regular stripping is enabled, aChar is removed from the
string.    Further, if CRLF stripping is enabled, any trailing carriage
returns or linefeeds are removed.    If no string is found, or if the string
found is completely stripped, this method returns an empty string.

If a memory reallocation fails, this method returns NULL.    If the return
value is NULL, the SktSocketUser has become corrupt, and will crash

the process the next time it attempts to alter its input queue.    You
should either free the SktSocket or terminate the process.

See also: -€getInput:ofLength:, -€inputToChar:, -
€inputToChar:inZone:, -€nextInputLine, -€setDoesStrip:, -
€doesStrip, -€setDoesStripCRLF:, -€doesStripCRLF

purgeInput
-€purgeInput

Empties the input queue.    Returns self, or nil if a memory reallocation
fails.    If the return value is nil, the SktSocketUser has become corrupt,
and will crash the process the next time it attempts to alter its input
queue.    You should either free the SktSocket or terminate the process.

See also: -€queueInput:ofLength:

queueInput:ofLength:
-€queueInput:(const char *)input ofLength:(long int)length

Appends input to the input queue.    If a queue limit is in effect, the
number of delimited sequences is counted, and it that number exceeds
the queue limit, all subsequent delimited sequences are deleted from
the queue, and any fragmentary portion is advanced to immediately
follow the delimited sequences.    Returns self, or nil if a memory
reallocation fails.    If the return value is nil, the SktSocketUser has
become corrupt, and will crash the process the next time it attempts to
alter its input queue.    You should either free the SktSocket or terminate
the process.

The SktSocketUser's SktSocket object sends this message in its
getInput method.

See also: -€setDelimiter:, -€delimiter, -€nextInputLine, -
€nextInputLineInZone:, -€setQueueLimit:, -€queueLimit

queueLength
-€(long int)queueLength

Returns the length, in bytes, of the input queue.    Use this method if you
want to be sure you'll get enough characters from an invocation of
getInput:ofLength:.

See also: -€getInput:ofLength:

queueLimit
-€(long int)queueLimit

Returns the maximum allowable ªlinesº in the queue to limit.    Whenever
new input is queued, the number of delimiters is counted, and if that
exceeds the queue limit, all subsequent delimited sequences are
deleted from the queue, and any fragmentary portion is advanced to
immediately follow the delimited sequences.    If the queue limit is 0 or
less, no limit checking is performed.

See also: -€setQueueLimit:, -€setDelimiter:, -€delimiter

queueOutput:ofLength:
-€queueOutput:(const char *)output ofLength:(long int)length

Forwards output to SktSocket's queueOutput:ofLength: method.    You
should always use this method in your application, rather than directly
accessing SktSocket's method, since some processing may need to be
performed by the SktSocketUser before the SktSocket gets the data.   
Returns self, or nil if a memory reallocation fails.    If the return value is

nil, the SktSocketUser has become corrupt, and will crash the process
the next time it attempts to alter its input queue.    You should either free
the SktSocket or terminate the process.

See also: -€queueOutput:ofLength (SktSocket)

queueOutputString:
-€queueOutputString:(const char *)aString

Forwards output to SktSocket's queueOutput:ofLength: method.    You
should always use this method in your application, rather than directly
accessing SktSocket's method, since some processing may need to be
performed by the SktSocketUser before the SktSocket gets the data.   
Returns self, or nil if a memory reallocation fails.    If the return value is
nil, the SktSocketUser has become corrupt, and will crash the process
the next time it attempts to alter its input queue.    You should either free
the SktSocket or terminate the process.

See also: -€queueOutput:ofLength: (SktSocket)

setDelimiter:
-€setDelimiter:(char)aChar

Sets the character used to delimit lines in the nextInputLine and
nextInputLineInZone: methds.    Returns self.

Changing the delimiter when there is data in the queue and a queue
limit is in effect is probably not a good idea.

See also: -€delimiter, -€nextInputLine,-€nextInputLineInZone:

setDoesStrip:
-€setDoesStrip:(BOOL)flag

If flag is YES, the SktSocketUser will strip the ...ToChar: character from
input requested by inputToChar: and inputToChar:inZone:, or the
delimiter from input requested by nextInputLine and
nextInputLineInZone:.    If NO, stripping is not done in those methods.
However, if the ...ToChar: character or the delimiter is either a carriage
return or a linefeed, and doesStripCRLF is YES, then those will be
stripped.

See also: -€doesStrip, -€setDoesStripCRLF: -€doesStripCRLF

setDoesStripCRLF:
-€setDoesStripCRLF:(BOOL)flag

If flag is YES, the SktSocketUser will strip all trailing carriage returns
and linefeeds from input retrieved by any of the inputToChar... or
nextInputLine... methods.    This stripping is performed after regular
stripping, so that if regular stripping is not done and the character used
to retrieve the text is not a carriage return or linefeed, CRLF stripping is
blocked from occurring.    Returns self.

See also: -€doesStripCRLF, -€setDoesStrip: -€doesStrip

setQueueLimit:
-€setQueueLimit:(long int)limit

Sets the maximum allowable ªlinesº in the queue to limit.    Whenever
new input is queued, the number of delimiters is counted, and if that
exceeds the queue limit, all subsequent delimited sequences are
deleted from the queue, and any fragmentary portion is advanced to

immediately follow the delimited sequences.    If the queue limit is set to
0 or less, no limit checking is performed.

Changing the delimiter when there is date in the queue and a queue
limit is in effect is probably not a good idea.

See also: -€queueLimit, -€setDelimiter:, -€delimiter

setSocket:
-€(SktSocket *)setSocket:(SktSocket *)aSocket

Sets the SktSocket to aSocket, and returns the previous SktSocket.   
Also has the SktSocket's user set to the SktSocketUser.

See also: -€initWithSktSocket:, -€socket:, -€setUser: (SktSocket)

socket
-€(SktSocket *)socket

Returns the SktSocketUser's SktSocket's object.

See also: -€initWithSktSocket:, -€setSocket:

ungetInput:ofLength:
-€(long int)ungetInput:(char *)input ofLength:(long int)length

Adds length bytes from input to the front of the input queue.    Use this
method to undo the effects of getInput:ofLength:.    Do not use this with
any other retrieval methodÐthey may strip characters from their
returned input, which will alter the content of the queue if that data is
pushed back.    Returns self, or nil if a memory reallocation fails.    If the
return value is nil, the SktSocketUser has become corrupt, and will
crash the process the next time it attempts to alter its input queue.    You

should either free the SktSocket or terminate the process.

See also: -€getInput:ofLength:

