
Copyright 1992 by Nik A Gervae.    This is part of the documentation for the socket classes,
which are licensed under the terms of the GNU General Public License as published by the
Free Software Foundation.

The documented program and this documentation are distributed in the hope that it will be
useful, but are provided "AS IS" AND WITHOUT ANY WARRANTY;    without any express or
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.    Any use or distribution of the program and
documentation must include appropriate copyrights to acknowledge Nik A. Gervae and the
Free Software Foundation, Inc.

You should have received a copy of the GNU General Public License
along with this documentation; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

===============

SktSocketManager

INHERITS FROM Object

DECLARED IN SktSocketManager.h

CLASS DESCRIPTION

The SktSocketManager class, together with the SktSocket and
SktSocketUser classes, provides an application with the ability to act as
a server for Berkeley UNIX stream socket connections.    An SktSocket
object handles input/output on the socket itself, while an instance of a
subclass of SktSocketUser processes the input and provides output to
the SktSocket.    The SktSocketManager class coordinates the efforts of
each SktSocket.

SktSocketManager requires an update message to act. The update
message is best sent as a regular interval message, from within a timed
entry, or within a loop.

During an update cycle, an SktSocketManager has all SktSocket
objects perform input and output, and handles requests for connections

by creating a new SktSocket/SktSocketUser pair.

The update method makes use of the select() UNIX system call to
determine if there's any data waiting to be read or written.    Several
methods have been provided to allow precise control over the behavior
of this function, but you don't need to know about select()    to get started
using the socket classes.

These classes are intended to make sockets easy to use.    However,
several methods have been provided to access fairly low-level details of
sockets which may be useful in some situations.    For more information
on sockets, see: the related UNIX man pages; ªAn Introductory 4.3BSD
Interprocess Communication Tutorialº (reprinted in UNIX Programmer's
Supplementary Documents Volume 1, PS1:7); or, ªAn Advanced
4.3BSD Interprocess Communication Tutorialº (reprinted in UNIX
Programmer's Supplementary Documents Volume 1, PS1:8).

See also: SktSocket, SktSocketUser

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in SktSocketManager
FILE *logfile;
id userClass;
char *hostaddress;
char *hostname;
int servicePort;
int numAvailFds;
int maxSocketFd;
int serviceSocketFd;
List *openSockets;
BOOL doesLog;
NXZone *zone;
struct timeval selectTimeout;
BOOL timeoutIndefinite;

int selectSignalMask;

logfile The file to which all diagnostic output is
printed.

userClass Factory for new SocketUsers.

hostaddr The primary Internet address of the machine
the SktSocketManager's application is
running on, in dot notation.

hostname The name of the machine the
SktSocketManager's application is running
on.

servicePort The Internet port used to connect to the
SktSocketManager's application (for example,
via TELNET).

numAvailFds The number of file descriptors available for
SktSocket assignment.

maxSocketFd The highest valued file descriptor currently
assigned.

serviceSocketFd The file descriptor of SktSocketManager's
socket.

openSockets A List of currently active SktSocket objects.

doesLog YES if non-error messages are written to the
log file.

zone The zone that the SktSocketManager was
allocated from.

selectTimeout The longest time that the SktSocketManager
will wait for input or output during an update.

timeoutIndefinite YES if selectTimeout is ignored, and update
will block indefinitely until there is input or

output, or until a signal occurs.

selectSignalMask A mask of signals that are blocked during the
select() system call in update.

METHOD TYPES

Initializing and freeing a SktSocketManager
-€initPort:logfile:fdCapacity:

userClass:
-€setSocketOptions:
-€free
-€setDoesLog:
-€doesLog

Advanced initialization (you should know about select())
-€setTimeoutSeconds:

microseconds:
-€getTimeoutSeconds:

microseconds:
-€setTimeoutIndefinite
-€isTimeoutIndefinite
-€setSignalMask:
-€signalMask

Accessing SktSocketManager attributes
-€setFdCapacity:
-€adjustFdCapacity:
-€fdCapacity
-€numAvailFds
-€logfile
-€hostaddress
-€hostname
-€servicePort
-€getInetAddresses

Synchronization and management -€update

-€closeSocket:
-€closeAllSockets

Utility methods -€announceString:
-€log:

INSTANCE METHODS

adjustFdCapacity:
-€(int)adjustFdCapacity:(int)byAmount

Adjusts the number of available file descriptors by byAmount.    If this
would result in the total number of descriptors reserved being greater
than the process's dtablesize (see getdtablesize(2) in the UNIX manual
pages), no change is made.    If it would result in less than zero
descriptors being reserved, the number of available descriptors is set to
zero.    Returns the new capacity of the SktSocketManager.

This method is useful for reserving file descriptors in your process for
things other than socket connections.

See also: -€initPort:logfile:capacity:userClass:, -€fdCapacity:, -
€numAvailFds, -€setFdCapacity:

announceString:
-€announceString:(const char *)announcement

Has every active SktSocket queue announcement as output.    Returns
self.

See also: -€queueOutput: (SktSocket)

fdCapacity
-€(int)capacity

Returns the number of file descriptors, both available and in use,
reserved by the SktSocketManager.

See also: -€adjustFdCapacity:, -
€initPort:logfile:capacity:userClass:, -€numAvailFds, -
€setFdCapacity:

closeAllSockets
-€closeAllSockets

Sends self a closeSocket: message for each open SktSocket.   
Returns self.

See also: -€closeSocket:

closeSocket:
-€closeSocket:socketObj

Removes socketObj from the list of open SktSockets and sends it a free
message.    Returns self.

See also: -€closeAllSockets

doesLog:
-€(BOOL)doesLog

Returns YES if non-error messages (notices of new connections,
closing of connections, etc.) as well as error messages will be written to
the log file.    The default is to write such messages.

See also: -€setDoesLog:

getInetAddresses
-€(char **)getInetAddresses

Returns a null-terminated array of character strings containing the

Internet addresses (in dot notation) of the machine the application is
running on.    This array is created on demand, and it and its contents
may be freed by the sender of the message when it is no longer needed
(you must free only the top-level pointer).    If the addresses can't be
retrieved, this method returns NULL.

See also: -€hostaddress, -€hostname

getTimeoutSeconds:microseconds:
-€getTimeoutSeconds:(long int *)secs microseconds:(long int
*)usecs

Returns by reference the components of the timeout value used by
select() in update.    update will not wait longer than this for input or
output to process.    The default values for these components are 0 and
0; that is, update will simply poll for input or output.    Returns self.

See also: -€setTimeoutSeconds:microseconds:, -
€setTimeoutIndefinite, -€isTimeoutIndefinite, -€update, select(2)

hostaddress
-€(const char *)hostaddress

Returns the Internet address of the machine the SktSocketManager's
application is running on, in dot notation.

See also: -€hostname, -€getInetAddresses

hostname
-€(const char *)hostname

Returns the hostname of the machine the SktSocketManager's
application is running on.

See also: -€hostaddr, -€inetAddresses

initPort:logfile:fdCapacity:userClass:
-€initPort:(int)portNum logfile:(FILE *)file fdCapacity:(int)cap

userClass:aClass

Attempts to create a socket bound to portNum.    This socket is used to
handle requests for new connections.    In addition, file is recorded as
the file for diagnostic output, cap file descriptors are assumed available
by the SktSocketManager for creation of new SktSocket objects and
aClass is recorded as the class object which will allocate SktSocketUser
objects for newly created Sockets.    A new SktSocketUser is created by
sending alloc and init messages to the SktSocketUser subclass
represented by aClass.

This method also invokes setSocketOptions:, so that you may set file
descriptor flags in subclasses.    If setSocketOptions: returns nil, the
initialization is cancelled and returns nil.    An SktSocketManager doesn't
set any options for itself.

Returns self if successful, or nil on any of these conditions:    portNum
is in use or reserved (ports equal to or below 1024 are reserved for use
by the super user), cap is negative or greater than the process's
dtablesize (see getdtablesize(2) in the UNIX manual pages), aClass
isn't SktSocketUser or a subclass thereof, setSocketOptions: returns
nil, the socket couldn't be bound, or the List of open SktSockets couldn't
be created.    An error message is logged detailing the particular error
condition.

This method is the designated initializer for SktSocketManager objects.

See also: -€setSocketOptions:, -€adjustFdCapacity:, -
€fdCapacity:, -€numAvailFds, -€servicePort, -€setFdCapacity:,
fcntl(2), setsockopt(2)

isTimeoutIndefinite
-€(BOOL)isTimeoutIndefinite

Returns YES if update waits indefinitely for input or output to process.   
The default behavior is to poll, and not wait at all.    Returns self.

See also: -€setTimeoutIndefinite, -
€setTimeoutSeconds:microseconds:, -
€getTimeoutSeconds:microseconds:, -€update, select(2)

log:
-€log:(const char *)format, ...

Prints message to the log file, in the same manner as fprintf().    Returns
self.

numAvailFds
-€(int)numAvailFds

Returns the number of file descriptors the SktSocketManager currently
has reserved and unassigned to sockets.

See also: -€adjustCapacity:, -€capacity:, -
€initPort:controller:capacity:userClass:, -€setCapacity:

servicePort
-€(int)servicePort

Returns the Internet port used to connect to the SktSocketManager (for
example, via TELNET).

See also: -€initPort:controller:capacity:userClass:

setDoesLog:
-€setDoesLog:(BOOL)flag

If flag is YES, then non-error messages (notices of new connections,
closing of connections, etc.) as well as error messages will be written to
the log file.    The default is to write such messages.    Returns self.

See also: -€doesLog

setFdCapacity:
-€setFdCapacity:(int)cap

Changes the number of file descriptors reserved by the
SktSocketManager (both currently allocated and free) to cap.    If cap is
greater than the process's dtablesize (see getdtablesize(2) in the UNIX
manual pages), no change is made.    If cap is less than zero, then zero
descriptors are reserved.    Returns self.

This method is useful for reserving file descriptors in your process for
things other than socket connections.

See also: -€fdCapacity:, -€adjustFdCapacity:, -
€initPort:logfile:fdCapacity:userClass:, -€numAvailFds

setSignalMask:
-€setSignalMask:(int)mask

Records mask as the signal mask to use before a call to select(), so that
select() isn't affected by the signals specified in mask.    Returns self.

To create a signal mask, use the marco signalMask(), defined in
<signal.h>.    For example, to get the signal mask for SIGHUP and
SIGINT, write

int mask = signalMask(SIGHUP) || signalMask(SIGINT);

You can build up a mask covering many signals by logically combining
these mask values.

See also: -€signalMask, -€update, sigsetmask(2)

setSocketOptions:
-€setSocketOptions:(int)fd

Does nothing and returns self.    You can override this method in
subclasses to set any options that you like on the service socket's file

descriptor.    Be sure to send setSocketOptions: to super in your own
method.    If an operation fails so that you don't want the
SktSocketManager to be initialized, this method should return nil.

See also: -€initPort:logfile:fdCapacity:userClass:, fcntl(2),
setsockopt(2)

setTimeoutIndefinite
-€setTimeoutIndefinite

Causes update to wait indefinitely for input or output to process.    The
default behavior is to poll, and not wait at all.    Returns self.

See also: -€isTimeoutIndefinite, -
€setTimeoutSeconds:microseconds:, -
€getTimeoutSeconds:microseconds:, -€update, select(2)

setTimeoutSeconds:microseconds:
-€setTimeoutSeconds:(long int)secs microseconds:(long int)usecs

Records secs and usecs as the components of the timeout value used
by select() in update.    update will not wait longer than this for input or
output to process.    The default values for these components are 0 and
0; that is, update will simply poll for input or output, not waiting at all.   
Returns self.

See also: -€getTimeoutSeconds:microseconds:, -
€setTimeoutIndefinite, -€isTimeoutIndefinite, -€update, select(2)

signalMask
-€(int)signalMask

Returns the signal mask used before a call to select(), so that select() is
not affected by the signals specified in mask.

See also: -€setSignalMask, -€update, sigsetmask(2)

update
-€update

Performs SktSocketManager's control cycle.    First, all Sockets with
exceptions pending are closed via closeSocket:.    All remaining
Sockets are then sent a flushOutput message.    Any Sockets with input
pending are sent a getInput message.    Last, if there is a new
connection pending, then for each new connection, a new SktSocket
object is created, an object of class userClass is allocated and
initialized with the new SktSocket, and the SktSocket is added to the list
of open SktSockets.    Returns self.

update makes use of the timeout specified by the last invocation of
setTimeoutSeconds:microseconds: or setTimeoutIndefinite, as well
as any mask set by setSignalMask:.    Before select() is called, the
signal mask is set, and after it returns, the previous mask is restored.   
select() uses the timeout specified by selectTimeout, or blocks
indefinitely is timeoutIndefinite is YES.

See also: -€closeSocket, -€flushOutput (SktSocket), -€getInput
(SktSocket), -€setTimeoutSeconds:microseconds:, -
€getTimeoutSeconds:microseconds:, -€setTimeoutIndefinite, -
€isTimeoutIndefinite, -€setSignalMask:, -€signalMask, select(2)

