
Copyright 1992 by Nik A Gervae.    This is part of the documentation for the socket classes, 
which are licensed under the terms of the GNU General Public License as published by the 
Free Software Foundation.

The documented program and this documentation are distributed in the hope that it will be 
useful, but are provided "AS IS" AND WITHOUT ANY WARRANTY;    without any express or 
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 
the GNU General Public License for more details.    Any use or distribution of the program and 
documentation must include appropriate copyrights to acknowledge Nik A. Gervae and the 
Free Software Foundation, Inc.

You should have received a copy of the GNU General Public License
along with this documentation; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

===============

SktSocket

INHERITS FROM Object

DECLARED IN SktSocket.h

CLASS DESCRIPTION

The SktSocket class, alone, provides an application with a clean object 
interface to Berkeley UNIX stream socket connections, or together with 
the SktSocketManager and SktSocketUser classes, provides an 
application with the ability to act as a server for stream socket 
connections.    The SktSocket class implements the actual input and 
output on the socket (the distinction between SktSocket and socket 
parallels that between Window and window).    The class specifications 
for SktSocketManager and SktSocketUser provide more information on 
using these three classes together.

An SktSocket object is automatically created and maintained by an 



application's SktSocketManager object.    If you use an 
SktSocketManager, you need never directly access the SktSockets.

These classes are intended to make sockets easy to use.    However, 
several methods provide ways to access fairly low-level details of 
sockets which may be useful in some situations.    For more information 
on sockets, see: the related UNIX man pages; ªAn Introductory 4.3BSD 
Interprocess Communication Tutorialº (reprinted in UNIX Programmer's 
Supplementary Documents Volume 1, PS1:7); or, ªAn Advanced 
4.3BSD Interprocess Communication Tutorialº (reprinted in UNIX 
Programmer's Supplementary Documents Volume 1, PS1:8).

See also: SktSocketManager, SktSocketUser

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in SktSocket int socketFd;
SktSocketManager *manager;
SktSocketUser *user;
char *hostaddress;
char *hostname
char *outputQueue;
long int queueLength;
NXZone *zone;

SktSocketFd The file descriptor of the SktSocket.

manager The SktSocket object's SktSocketManager.

user The SktSocket object's SktSocketUser.

hostaddress The Internet address of the SktSocket's 
connected host (peer) in dot notation.



hostname The hostname of the SktSocket's connected 
host.

outputQueue Strings waiting to be sent to the connected 
host.

queueLength The length, in bytes, of the output queue.

zone The zone that the SktSocket was allocated 
from.

METHOD TYPES

Initializing and freeing SktSocket objects
-€initOnFd:WithManager:
-€initOnHostname:andPort:
-€initOnAddress:andPort:
-€setSocketOptions:
-€close
-€free

Retrieving SktSocket attributes -€setUser:
-€user
-€manager
-€socketFd
-€hostaddress
-€hostname

Managing input and output -€readInput
-€queueOutput:ofLength:
-€queueOutputString:
-€flushOutput
-€purgeOutput

INSTANCE METHODS



close
- close

If the SktSocket has a manager, sends the SktSocketManager a 
closeSocket: message to properly close the socket and remove all 
references to the Socket object. This will result in free being sent to the 
Socket, so you should not send a  free message after a close.    If the 
SktSocket does not have a manager, this method simply sends self a 
free message.    Returns nil.

See also:    - free

flushOutput
-€flushOutput

Writes all data in the output queue to the socket, thereby emptying the 
queue.    Returns self, or nil if a memory reallocation fails.    If the return 
value is nil, the SktSocket has become corrupt, and will crash the 
process the next time it attempts to alter its output queue.    You should 
either free the SktSocket or terminate the process.

See also: -€queueOutput:, -€purgeOutput

free
-€free

Purges all pending output, closes the socket, and deallocates the 
SktSocket's memory.    You should not send this message yourself; use 
close to correctly remove all references to the Socket in the associated 
SktSocketManager.

See also: -€close, -€purgeOutput



hostaddress
-€(const char *)hostaddress

Returns the Internet address of the SktSocket's connected host in dot 
notation.

See also: -€hostname

hostname
-€(const char *)hostname

Returns the hostname of the SktSocket's connect host.

See also: -€hostaddress

initOnAddress:andPort:
-€initOnAddress:(const char *)hostAddress andPort:(int)port

Attempts to connect to a server on the host at address hostAddress (a 
string in Internet dot notation), port port.    The SktSocket's host address 
and name are recorded.    If all goes well, returns self; otherwise it 
returns nil.    Error messages are printed to stderr detailing the reason 
for failure.

This method also invokes setSocketOptions:, so that you may set file 
descriptor flags in subclasses.    If setSocketOptions: returns nil, the 
initialization is cancelled and returns nil.    SktSockets set the FNDELAY 
file descriptor flag for themselves (see fcntl(2) in the UNIX manual 
pages), so you needn't set that option.

This method, along with initOnHostname:andPort: and 
initOnFd:withManager:, are the designated initializers for SktSocket 



object.    Be sure to send one of these messages to super in any 
subclass init... methods based on your needs.

See also: -€initOnHostname:andPort:, -€initOnFd:withManager:, -
€setSocketOptions:, -€setUser:

initOnFd:withManager:
-€init OnFd:(int)serviceSocketFd withManager:

(SktSocketManager€*)aManager

Attempts to accept a connection to the sender's service socket with file 
descriptor serviceSocketFd.    aManager must be of class 
SktSocketManager or a subclass.    The SktSocket's host address and 
name are recorded.    If all goes well, returns self; otherwise it returns 
nil.    If a SktSocketManager is specified, it will log any error messages.

This method also invokes setSocketOptions:, so that you may set file 
descriptor flags in subclasses.    If setSocketOptions: returns nil, the 
initialization is cancelled and returns nil.    SktSockets set the FNDELAY 
file descriptor flag for themselves (see fcntl(2) in the UNIX manual 
pages), so you needn't set that option.

This method, along with initOnAddress:andPort: and 
initOnHostname:andPort:, are the designated initializers for SktSocket 
object.    Be sure to send one of these messages to super in any 
subclass init... methods based on your needs.

See also:    -€initOnAddress:andPort:, -€initOnHostname:andPort:, 
-€setSocketOptions:, -€setUser:

initOnHostname:andPort:
-€initOnHostname:(const char *)hostName andPort:(int)port

Attempts to connect to a server on host hostName at port port.    The 



SktSocket's host address and name are recorded.    If all goes well, 
returns self; otherwise it returns nil.    Error messages are printed to 
stderr detailing the reason for failure.

This method also invokes setSockeOptions:, so that you may set file 
descriptor flags in subclasses.    If setSocketOptions: returns nil, the 
initialization is cancelled and returns nil.    SktSockets set the FNDELAY 
file descriptor flag for themselves (see fcntl(2) in the UNIX manual 
pages), so you needn't set that option.

This method, along with initOnAddress:andPort: and 
initOnFd:withManager:, are the designated initializers for SktSocket 
object.    Be sure to send one of these messages to super in any 
subclass init... methods based on your needs.

See also:      -€initOnAddress:andPort:, -€initOnFd:withManager:, -
€setSocketOptions:, -€setUser:

manager
-€(SktSocketManager *)manager

Returns the SktSocketManager object coordinating this SktSocket with 
others.    This is a handy test to find out if an SktSocket is running as a 
server or a client.

See also: -€initOnFd:withManager:

purgeOutput
-€purgeOutput

Empties the output queue without writing it to the socket.    Returns self, 
or nil if a memory reallocation fails.    If the return value is nil, the 
SktSocket has become corrupt, and will crash the process the next time 
it attempts to alter its output queue.    You should either free the 



SktSocket or terminate the process.

See also: -€flushOutput, -€free

queueOutput:ofLength:
-€queueOutput:(const char *)output ofLength:(long int)length

This method, usually invoked by the SktSocketUser, adds length bytes 
of output to the end of the output queue, and updates the queue length. 
Returns self, or nil if a memory reallocation fails.    If the return value is 
nil, the SktSocket has become corrupt, and will crash the process the 
next time it attempts to alter its output queue.    You should either free 
the SktSocket or terminate the process.

See also: -€flushOutput, -€purgeOutput

queueOutputString:
-€queueOutputString:(const char *)aString

This method, usually invoked by the SktSocketUser, adds aString to the 
end of the output queue, and updates the queue length.    It is provided 
as a convenience, and is equivalent to sending

[myUser queueOutput:aString ofLength:strlen(aString)];

It is therefore not useful for having the null character at the end of the 
string queued.    To do that, add 1 to aString's length and send 
queueOutput:ofLength:.

Returns self, or nil if a memory reallocation fails.    If the return value is 
nil, the SktSocket has become corrupt, and will crash the process the 
next time it attempts to alter its output queue.    You should either free 
the SktSocket or terminate the process.

See also: -€flushOutput, -€purgeOutput



readInput
-€readInput

This method, usually invoked by the SktSocket's manager, reads data 
from the socket and has the SktSocket's user queue the input, sending 
it a queueInput:ofLength: message.    Returns self.

See also: -€queueInput:ofLength: (SktSocketUser)

setSocketOptions:
-€setSocketOptions:(int)fd

Does nothing and returns self.    You can override this method in 
subclasses to set any options that you like on the socket's file 
descriptor.    Be sure to send setSocketOptions: to super in your own 
method.    If an operation fails so that you don't want the SktSocket to be 
initialized, this method should return nil.    An SktSocket sets the 
FNDELAY flag for itself (see fcntl(2) in the UNIX manual pages), so you 
don't need to set that one.

See also: -€initOnFd:withManager:, -€initOnAddress:andPort:, -
€initOnHostname:andPort:, fcntl(2), setsockopt(2)

setUser:
-€setUser:aUser

Sets the SktSocket's user (which must be a subclass of SktSockerUser) 
to aUser and returns the old user.    Also has the user set its socket to 
the SktSocket.

See also: -€initOn:manager:



socketFd
-€(int)socketFd

Returns the file descriptor of the SktSocket's socket.

See also: -€initOn:manager:

user
-€user

Returns the the SktSocket's SktSocketUser object.

See also: -€setUser:

CONSTANTS AND DEFINED TYPES

/*
 * Minimum size of the output queue.  It gets shrunk
 * to this if the content of the queue gets
 * significantly smaller than this.
 */
#define OUTQSIZE  1024


