;SPMlt;!DOCTYPE HTML PUBLIC ;SPMquot;-//W3C//DTD HTML 3.2 Final//en;SPMquot;;SPMgt;

;SPMlt;!--Converted with LaTeX2HTML 2022 (Released January 1, 2022) --;SPMgt; ;SPMlt;HTML lang=;SPMquot;en;SPMquot;;SPMgt; ;SPMlt;HEAD;SPMgt; ;SPMlt;TITLE;SPMgt;Contents of ws2;SPMlt;/TITLE;SPMgt;

;SPMlt;META HTTP-EQUIV=;SPMquot;Content-Type;SPMquot; CONTENT=;SPMquot;text/html; charset=utf-8;SPMquot;;SPMgt; ;SPMlt;META NAME=;SPMquot;viewport;SPMquot; CONTENT=;SPMquot;width=device-width, initial-scale=1.0;SPMquot;;SPMgt; ;SPMlt;META NAME=;SPMquot;Generator;SPMquot; CONTENT=;SPMquot;LaTeX2HTML v2022;SPMquot;;SPMgt;

;SPMlt;LINK REL=;SPMquot;STYLESHEET;SPMquot; HREF=;SPMquot;ws2.css;SPMquot;;SPMgt;

;SPMlt;/HEAD;SPMgt;

;SPMlt;BODY bgcolor=;SPMquot;#ffffff;SPMquot; text=;SPMquot;#000000;SPMquot; link=;SPMquot;#9944EE;SPMquot; vlink=;SPMquot;#0000ff;SPMquot; alink=;SPMquot;#00ff00;SPMquot;;SPMgt;

;SPMlt;P;SPMgt; Chapter 3: Worksheet 2 Jack K. Cohen Colorado School of Mines

;SPMlt;P;SPMgt; ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt; The Derivative as the Rate of Change Function ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt;

;SPMlt;P;SPMgt; Suggested Problems Section 3.1: 22, 24, 26

;SPMlt;P;SPMgt; ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt;

;SPMlt;P;SPMgt;

;SPMlt;OL;SPMgt; ;SPMlt;LI;SPMgt;Find the rate of change of the area of a circle with respect to its radius.

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;A stone dropped into a pond causes an expanding circular ripple. What is the rate of change of the area of a circle with respect to its radius when the radius is 3.5 meters? Give the answer correct to two decimal places.

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(3.1.31) Find the rate of change of the area of a circle with respect to its circumference.

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;A stone dropped into a pond makes an expanding circular ripple. What is the rate of change of the area of a circle with respect to its circumference when the circumference is 3.5 meters?

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(3.1.32) A stone dropped into a pond causes a circular ripple that travels out from the point of impact at 5 ft/sec. At what rate (in ft;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt;/sec) is the area within the circle increasing when ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 10. Hint: Find a formula for ;SPMlt;I;SPMgt;r;SPMlt;/I;SPMgt; in terms of ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt;.

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt; (Generalization of Example 6)

;SPMlt;OL;SPMgt; ;SPMlt;LI;SPMgt;Find the maximum height attained by a ball that is thrown straight up from the ground with initial velocity ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0;SPMlt;/SUB;SPMgt;. Assume a gravitational constant ;SPMlt;I;SPMgt;g;SPMlt;/I;SPMgt;. ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;Find the velocity with which it hits the ground upon its return. ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;One benefit of using parameters instead of specific numbers is the ability to deduce general laws. Illustrate this by stating a general connection between the initial and final velocities. ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;Another benefit of using parameters is the ability to check that answers have the correct dimensions. For example, if somehow, we got the answer ;SPMlt;!-- MATH #math1#stop = #tex2html_wrap_inline124# --;SPMgt; ;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;top;SPMlt;/SUB;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;height: 2.11ex; vertical-align: 160.51ex; ;SPMquot; SRC=;SPMquot;img1.png;SPMquot; ALT=;SPMquot;#math2##tex2html_wrap_inline126#;SPMquot;;SPMgt;, we could see that the dimensions of the purported answer were ;SPMlt;!-- MATH #math3##tex2html_wrap_inline128#÷#tex2html_wrap_inline129# = T --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 2.87ex; vertical-align: 160.07ex; ;SPMquot; SRC=;SPMquot;img2.png;SPMquot; ALT=;SPMquot;#math4##tex2html_wrap_inline131#;SPMquot;;SPMgt;;SPMamp;#247;;SPMlt;IMG STYLE=;SPMquot;height: 2.94ex; vertical-align: 159.96ex; ;SPMquot; SRC=;SPMquot;img3.png;SPMquot; ALT=;SPMquot;#math5##tex2html_wrap_inline133#;SPMquot;;SPMgt; = ;SPMlt;I;SPMgt;T;SPMlt;/I;SPMgt; when they should have been ;SPMlt;I;SPMgt;L;SPMlt;/I;SPMgt;. Dimensional checks can save a lot of embarrassment and every good scientist uses them to check calculations. So don't you be embarrassed;SPMamp;mdash;give a dimensional check for your answers to parts (a) and (b).

;SPMlt;/LI;SPMgt; ;SPMlt;/OL;SPMgt;

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;The treatment in the last problem assumed that the force of gravity was a constant. Actually it falls off like 1/;SPMlt;I;SPMgt;r;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt; where ;SPMlt;I;SPMgt;r;SPMlt;/I;SPMgt; is the distance of the body (ball) from the center of the Earth (this is called the ``inverse square law'') . Taking this variable force law into account gives the equation ;SPMlt;P;SPMgt;;SPMlt;!-- MATH

#math6#

s = #tex2html_wrap_indisplay135#,

--;SPMgt; ;SPMlt;/P;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;height: 2.94ex; vertical-align: 158.56ex; ;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#math7##tex2html_wrap_indisplay137#;SPMquot;;SPMgt;, ;SPMlt;/DIV;SPMgt;;SPMlt;P;SPMgt;;SPMlt;/P;SPMgt; where ;SPMlt;I;SPMgt;R;SPMlt;/I;SPMgt; is the mean radius of the Earth and ;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt; = ;SPMlt;I;SPMgt;r;SPMlt;/I;SPMgt; - ;SPMlt;I;SPMgt;R;SPMlt;/I;SPMgt; is the distance measured upward from the Earth's surface.

;SPMlt;OL;SPMgt; ;SPMlt;LI;SPMgt;Is the final velocity still the same as the initial velocity when the inverse square law is taken into account? ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;What is the maximum height attained when the inverse square law is taken into account? ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;Using the numbers: ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0;SPMlt;/SUB;SPMgt; = 96 ft/sec, ;SPMlt;I;SPMgt;g;SPMlt;/I;SPMgt; = 32 ft/sec;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt;, ;SPMlt;I;SPMgt;R;SPMlt;/I;SPMgt; = 3960 miles, discuss whether it is worthwhile to consider the more complicated inverse square law model for this problem. Remark: Air resistence is another effect we might consider. Mathematical modeling is always a question of making things ``as simple as possible, but no simpler.''

;SPMlt;/LI;SPMgt; ;SPMlt;/OL;SPMgt;

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(3.1.34) A water bucket containing 10 liters of water develops a leak at time ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 0, and the volume ;SPMlt;I;SPMgt;V;SPMlt;/I;SPMgt; of water in the bucket ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; seconds later is given by ;SPMlt;P;SPMgt;;SPMlt;!-- MATH

#math8#

V = 10#tex2html_wrap_indisplay139#1 - #tex2html_wrap_indisplay140##tex2html_wrap_indisplay141#

--;SPMgt; ;SPMlt;/P;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;I;SPMgt;V;SPMlt;/I;SPMgt; = 10;SPMlt;IMG STYLE=;SPMquot;height: 5.88ex; vertical-align: 155.90ex; ;SPMquot; SRC=;SPMquot;img5.png;SPMquot; ALT=;SPMquot;#math9##tex2html_wrap_indisplay143##tex2html_wrap_indisplay144#1-#tex2html_wrap_indisplay145#;SPMquot;;SPMgt;1 - ;SPMlt;IMG STYLE=;SPMquot;height: 5.17ex; vertical-align: 156.98ex; ;SPMquot; SRC=;SPMquot;img6.png;SPMquot; ALT=;SPMquot;#math10##tex2html_wrap_indisplay147#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;height: 4.73ex; vertical-align: 156.95ex; ;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math11##tex2html_wrap_indisplay149##tex2html_wrap_indisplay150#1-#tex2html_wrap_indisplay151##tex2html_wrap_indisplay152#;SPMquot;;SPMgt; ;SPMlt;/DIV;SPMgt;;SPMlt;P;SPMgt;;SPMlt;/P;SPMgt; until the bucket is empty at time ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 100.

;SPMlt;OL;SPMgt; ;SPMlt;LI;SPMgt;At what rate is water leaking from the bucket after exactly one minute has passed? ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;When is the instantaneous rate of change of ;SPMlt;I;SPMgt;V;SPMlt;/I;SPMgt; equal to the average change of ;SPMlt;I;SPMgt;V;SPMlt;/I;SPMgt; from ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 0 to ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 100? ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;Does the given formula for ;SPMlt;I;SPMgt;V;SPMlt;/I;SPMgt; make sense when ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 200?

;SPMlt;/LI;SPMgt; ;SPMlt;/OL;SPMgt;

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(3.1.36) The following data describe the growth of the population ;SPMlt;I;SPMgt;P;SPMlt;/I;SPMgt; (in thousands) of a certain city during the 1970s. Use the graphical method of Example 4 to estimates its rate of growth in 1975.

;SPMlt;P;SPMgt; ;SPMlt;TABLE CELLPADDING=3 BORDER=;SPMquot;1;SPMquot;;SPMgt; ;SPMlt;TR;SPMgt;;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;Year;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1970;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1972;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1974;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1976;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1978;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1980;SPMlt;/TD;SPMgt; ;SPMlt;/TR;SPMgt; ;SPMlt;TR;SPMgt;;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;;SPMlt;I;SPMgt;P;SPMlt;/I;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;265;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;293;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;324;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;358;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;395;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;437;SPMlt;/TD;SPMgt; ;SPMlt;/TR;SPMgt; ;SPMlt;/TABLE;SPMgt;

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;/OL;SPMgt; ;SPMlt;HR;SPMgt;

;SPMlt;/BODY;SPMgt; ;SPMlt;/HTML;SPMgt;