;SPMlt;!DOCTYPE HTML PUBLIC ;SPMquot;-//W3C//DTD HTML 3.2 Final//en;SPMquot;;SPMgt;
;SPMlt;!--Converted with LaTeX2HTML 2022 (Released January 1, 2022) --;SPMgt; ;SPMlt;HTML lang=;SPMquot;en;SPMquot;;SPMgt; ;SPMlt;HEAD;SPMgt; ;SPMlt;TITLE;SPMgt;Contents of ws2;SPMlt;/TITLE;SPMgt;
;SPMlt;META HTTP-EQUIV=;SPMquot;Content-Type;SPMquot; CONTENT=;SPMquot;text/html; charset=utf-8;SPMquot;;SPMgt; ;SPMlt;META NAME=;SPMquot;viewport;SPMquot; CONTENT=;SPMquot;width=device-width, initial-scale=1.0;SPMquot;;SPMgt; ;SPMlt;META NAME=;SPMquot;Generator;SPMquot; CONTENT=;SPMquot;LaTeX2HTML v2022;SPMquot;;SPMgt;
;SPMlt;LINK REL=;SPMquot;STYLESHEET;SPMquot; HREF=;SPMquot;ws2.css;SPMquot;;SPMgt;
;SPMlt;/HEAD;SPMgt;
;SPMlt;BODY bgcolor=;SPMquot;#ffffff;SPMquot; text=;SPMquot;#000000;SPMquot; link=;SPMquot;#9944EE;SPMquot; vlink=;SPMquot;#0000ff;SPMquot; alink=;SPMquot;#00ff00;SPMquot;;SPMgt;
;SPMlt;P;SPMgt; Chapter 3: Worksheet 2 Jack K. Cohen Colorado School of Mines
;SPMlt;P;SPMgt; ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt; The Derivative as the Rate of Change Function ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt;
;SPMlt;P;SPMgt; Suggested Problems Section 3.1: 22, 24, 26
;SPMlt;P;SPMgt; ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt; ;SPMlt;BR;SPMgt;
;SPMlt;P;SPMgt;
;SPMlt;OL;SPMgt; ;SPMlt;LI;SPMgt;Find the rate of change of the area of a circle with respect to its radius.
;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;A stone dropped into a pond causes an expanding circular ripple. What is the rate of change of the area of a circle with respect to its radius when the radius is 3.5 meters? Give the answer correct to two decimal places.
;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(3.1.31) Find the rate of change of the area of a circle with respect to its circumference.
;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;A stone dropped into a pond makes an expanding circular ripple. What is the rate of change of the area of a circle with respect to its circumference when the circumference is 3.5 meters?
;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(3.1.32) A stone dropped into a pond causes a circular ripple that travels out from the point of impact at 5 ft/sec. At what rate (in ft;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt;/sec) is the area within the circle increasing when ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 10. Hint: Find a formula for ;SPMlt;I;SPMgt;r;SPMlt;/I;SPMgt; in terms of ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt;.
;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt; (Generalization of Example 6)
;SPMlt;OL;SPMgt;
;SPMlt;LI;SPMgt;Find the maximum height attained by a ball that is thrown straight up from the ground with initial velocity ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0;SPMlt;/SUB;SPMgt;. Assume a gravitational constant ;SPMlt;I;SPMgt;g;SPMlt;/I;SPMgt;.
;SPMlt;/LI;SPMgt;
;SPMlt;LI;SPMgt;Find the velocity with which it hits the ground upon its return.
;SPMlt;/LI;SPMgt;
;SPMlt;LI;SPMgt;One benefit of using parameters instead of specific numbers is the ability to deduce general laws. Illustrate this by stating a general connection between the initial and final velocities.
;SPMlt;/LI;SPMgt;
;SPMlt;LI;SPMgt;Another benefit of using parameters is the ability to check that answers have the correct dimensions. For example, if somehow, we got the answer ;SPMlt;!-- MATH
;SPMlt;/LI;SPMgt;
;SPMlt;/OL;SPMgt;
;SPMlt;P;SPMgt;
;SPMlt;/LI;SPMgt;
;SPMlt;LI;SPMgt;The treatment in the last problem assumed that the force of gravity was a constant. Actually it falls off like 1/;SPMlt;I;SPMgt;r;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt; where ;SPMlt;I;SPMgt;r;SPMlt;/I;SPMgt; is the distance of the body (ball) from the center of the Earth (this is called the ``inverse square law'') . Taking this variable force law into account gives the equation ;SPMlt;P;SPMgt;;SPMlt;!-- MATH
;SPMlt;OL;SPMgt;
;SPMlt;LI;SPMgt;Is the final velocity still the same as the initial velocity when the inverse square law is taken into account?
;SPMlt;/LI;SPMgt;
;SPMlt;LI;SPMgt;What is the maximum height attained when the inverse square law is taken into account?
;SPMlt;/LI;SPMgt;
;SPMlt;LI;SPMgt;Using the numbers: ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0;SPMlt;/SUB;SPMgt; = 96 ft/sec, ;SPMlt;I;SPMgt;g;SPMlt;/I;SPMgt; = 32 ft/sec;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt;, ;SPMlt;I;SPMgt;R;SPMlt;/I;SPMgt; = 3960 miles, discuss whether it is worthwhile to consider the more complicated inverse square law model for this problem. Remark: Air resistence is another effect we might consider. Mathematical modeling is always a question of making things ``as simple as possible, but no simpler.''
;SPMlt;/LI;SPMgt;
;SPMlt;/OL;SPMgt;
;SPMlt;P;SPMgt;
;SPMlt;/LI;SPMgt;
;SPMlt;LI;SPMgt;(3.1.34) A water bucket containing 10 liters of water develops a leak at time ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 0, and the volume ;SPMlt;I;SPMgt;V;SPMlt;/I;SPMgt; of water in the bucket ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; seconds later is given by ;SPMlt;P;SPMgt;;SPMlt;!-- MATH
;SPMlt;OL;SPMgt;
;SPMlt;LI;SPMgt;At what rate is water leaking from the bucket after exactly one minute has passed?
;SPMlt;/LI;SPMgt;
;SPMlt;LI;SPMgt;When is the instantaneous rate of change of ;SPMlt;I;SPMgt;V;SPMlt;/I;SPMgt; equal to the average change of ;SPMlt;I;SPMgt;V;SPMlt;/I;SPMgt; from ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 0 to ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 100?
;SPMlt;/LI;SPMgt;
;SPMlt;LI;SPMgt;Does the given formula for ;SPMlt;I;SPMgt;V;SPMlt;/I;SPMgt; make sense when ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; = 200?
;SPMlt;/LI;SPMgt;
;SPMlt;/OL;SPMgt;
;SPMlt;P;SPMgt;
;SPMlt;/LI;SPMgt;
;SPMlt;LI;SPMgt;(3.1.36) The following data describe the growth of the population ;SPMlt;I;SPMgt;P;SPMlt;/I;SPMgt; (in thousands) of a certain city during the 1970s. Use the graphical method of Example 4 to estimates its rate of growth in 1975.
;SPMlt;P;SPMgt;
;SPMlt;TABLE CELLPADDING=3 BORDER=;SPMquot;1;SPMquot;;SPMgt;
;SPMlt;TR;SPMgt;;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;Year;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1970;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1972;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1974;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1976;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1978;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;1980;SPMlt;/TD;SPMgt;
;SPMlt;/TR;SPMgt;
;SPMlt;TR;SPMgt;;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;;SPMlt;I;SPMgt;P;SPMlt;/I;SPMgt;;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;265;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;293;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;324;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;358;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;395;SPMlt;/TD;SPMgt;
;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;437;SPMlt;/TD;SPMgt;
;SPMlt;/TR;SPMgt;
;SPMlt;/TABLE;SPMgt;
;SPMlt;P;SPMgt;
;SPMlt;/LI;SPMgt;
;SPMlt;/OL;SPMgt;
;SPMlt;HR;SPMgt;
;SPMlt;/BODY;SPMgt;
;SPMlt;/HTML;SPMgt;