;SPMlt;!DOCTYPE HTML PUBLIC ;SPMquot;-//W3C//DTD HTML 3.2 Final//en;SPMquot;;SPMgt;

;SPMlt;!--Converted with LaTeX2HTML 2022 (Released January 1, 2022) --;SPMgt; ;SPMlt;HTML lang=;SPMquot;en;SPMquot;;SPMgt; ;SPMlt;HEAD;SPMgt; ;SPMlt;TITLE;SPMgt;Contents of ans2;SPMlt;/TITLE;SPMgt;

;SPMlt;META HTTP-EQUIV=;SPMquot;Content-Type;SPMquot; CONTENT=;SPMquot;text/html; charset=utf-8;SPMquot;;SPMgt; ;SPMlt;META NAME=;SPMquot;viewport;SPMquot; CONTENT=;SPMquot;width=device-width, initial-scale=1.0;SPMquot;;SPMgt; ;SPMlt;META NAME=;SPMquot;Generator;SPMquot; CONTENT=;SPMquot;LaTeX2HTML v2022;SPMquot;;SPMgt;

;SPMlt;LINK REL=;SPMquot;STYLESHEET;SPMquot; HREF=;SPMquot;ans2.css;SPMquot;;SPMgt;

;SPMlt;/HEAD;SPMgt;

;SPMlt;BODY bgcolor=;SPMquot;#ffffff;SPMquot; text=;SPMquot;#000000;SPMquot; link=;SPMquot;#9944EE;SPMquot; vlink=;SPMquot;#0000ff;SPMquot; alink=;SPMquot;#00ff00;SPMquot;;SPMgt;

;SPMlt;P;SPMgt; Chapter 2: Answers 2 Jack K. Cohen Colorado School of Mines

;SPMlt;OL;SPMgt; ;SPMlt;LI;SPMgt;;SPMlt;PRE;SPMgt; f[x_] := x^3 + 3x^2 f[2] 20

f[x] /. x -;SPMamp;gt; 2 20

f[t] 2 3 3 t + t

f[cat] 2 3 3 cat + cat

Table[f[n], <#1#>n, 1, 5<#1#>] <#2#>4, 20, 54, 112, 200<#2#>

Plot[f[x], <#3#>x, -2, 2<#3#>] See Figure 1. ;SPMlt;/PRE;SPMgt;

;SPMlt;P;SPMgt;

;SPMlt;DIV class=;SPMquot;CENTER;SPMquot;;SPMgt;;SPMlt;A ID=;SPMquot;10;SPMquot;;SPMgt;;SPMlt;/A;SPMgt; ;SPMlt;TABLE;SPMgt; ;SPMlt;CAPTION class=;SPMquot;BOTTOM;SPMquot;;SPMgt;;SPMlt;STRONG;SPMgt;Figure:;SPMlt;/STRONG;SPMgt; Plot of ;SPMlt;!-- MATH #math1#x3 +3x2 --;SPMgt; ;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;3;SPMlt;/SUP;SPMgt; +3;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt;.;SPMlt;/CAPTION;SPMgt; ;SPMlt;TR;SPMgt;;SPMlt;TD;SPMgt;;SPMlt;IMG STYLE=;SPMquot;height: 286.76ex; ;SPMquot; SRC=;SPMquot;img1.png;SPMquot; ALT=;SPMquot;

#figure4#
;SPMquot;;SPMgt;;SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;/TABLE;SPMgt; ;SPMlt;/DIV;SPMgt;

;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;;SPMlt;!-- MATH #math2##tex2html_wrap_inline281# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 179.22ex; vertical-align: -0.68ex; ;SPMquot; SRC=;SPMquot;img2.png;SPMquot; ALT=;SPMquot;#math3##tex2html_wrap_inline283#;SPMquot;;SPMgt; ;SPMlt;FONT SIZE=;SPMquot;+2;SPMquot;;SPMgt;;SPMlt;!-- MATH #math4##tex2html_wrap_inline285# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 2.30ex; vertical-align: 160.64ex; ;SPMquot; SRC=;SPMquot;img3.png;SPMquot; ALT=;SPMquot;#math5##tex2html_wrap_inline287#;SPMquot;;SPMgt;;SPMlt;/FONT;SPMgt; is 1/10.

;SPMlt;OL;SPMgt; ;SPMlt;LI;SPMgt;Figure 3 shows the output from

;SPMlt;P;SPMgt; Plot[(Sqrt[x + 25] - 5)/x, <#14#>x, -2, 2<#14#>, PlotRange -;SPMamp;gt; <#15#>0, .5<#15#>]

;SPMlt;P;SPMgt;

;SPMlt;DIV class=;SPMquot;CENTER;SPMquot;;SPMgt;;SPMlt;A ID=;SPMquot;19;SPMquot;;SPMgt;;SPMlt;/A;SPMgt; ;SPMlt;TABLE;SPMgt; ;SPMlt;CAPTION class=;SPMquot;BOTTOM;SPMquot;;SPMgt;;SPMlt;STRONG;SPMgt;Figure:;SPMlt;/STRONG;SPMgt; Plot for problem 2.;SPMlt;/CAPTION;SPMgt; ;SPMlt;TR;SPMgt;;SPMlt;TD;SPMgt;;SPMlt;IMG STYLE=;SPMquot;height: 286.76ex; ;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;

#figure16#
;SPMquot;;SPMgt;;SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;/TABLE;SPMgt; ;SPMlt;/DIV;SPMgt;

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;Here is the output from

;SPMlt;P;SPMgt; Table[<#19#>x, (Sqrt[x + 25] - 5)/x<#19#>, <#20#>x, -1/5, 1/5, 1/20<#20#>] //N //TableForm ;SPMlt;PRE;SPMgt; -0.2 0.100201 -0.15 0.10015 -0.1 0.1001 -0.05 0.10005 0 Indeterminate 0.05 0.09995 0.1 0.0999002 0.15 0.0998504 0.2 0.0998008 ;SPMlt;/PRE;SPMgt; It may seem more natural to ``force'' to use decimal arithmetic during the calculation instead of evoking N afterwards, perhaps like this:

;SPMlt;P;SPMgt; Table[<#21#>x, (Sqrt[x + 25] - 5)/x<#21#>, <#22#>x, -.2, .2, .05<#22#>] //TableForm.

;SPMlt;P;SPMgt; However, with in-exact arithmetic, the user has to be alert enough to reject output that is too close to the singular point: ;SPMlt;PRE;SPMgt; -0.2 0.100201 -0.15 0.10015 -0.1 0.1001 -0.05 0.10005 -17 -1.38778 10 0. 0.05 0.09995 0.1 0.0999002 0.15 0.0998504 0.2 0.0998008 ;SPMlt;/PRE;SPMgt;

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;If Example 12 seems obscure, ask your instructor for help. ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;As indicated, ;SPMlt;!-- MATH #math6##tex2html_wrap_inline289# #tex2html_wrap_inline290# 5 + x/10 --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 179.22ex; vertical-align: -0.52ex; ;SPMquot; SRC=;SPMquot;img5.png;SPMquot; ALT=;SPMquot;#math7##tex2html_wrap_inline292#;SPMquot;;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 2.36ex; vertical-align: 161.25ex; ;SPMquot; SRC=;SPMquot;img6.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline294#;SPMquot;;SPMgt; 5 + ;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;/10, so we can replace the given limit by ;SPMlt;!-- MATH #math8##tex2html_wrap_inline296# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 179.22ex; vertical-align: -0.68ex; ;SPMquot; SRC=;SPMquot;img2.png;SPMquot; ALT=;SPMquot;#math9##tex2html_wrap_inline298#;SPMquot;;SPMgt; ;SPMlt;FONT SIZE=;SPMquot;+2;SPMquot;;SPMgt;;SPMlt;!-- MATH #math10##tex2html_wrap_inline300# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 1.02ex; vertical-align: 161.92ex; ;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math11##tex2html_wrap_inline302#;SPMquot;;SPMgt;;SPMlt;/FONT;SPMgt; = 1/10. ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;Running the indicated code gives: ;SPMlt;PRE;SPMgt; 0.1 0.0999002 0.01 0.09999 0.001 0.099999 0.0001 0.0999999 0.00001 0.1 ;SPMlt;/PRE;SPMgt; With x -;SPMamp;gt; a - 1/10;SPMamp;#710;k, we get: ;SPMlt;PRE;SPMgt; -0.1 0.1001 -0.01 0.10001 -0.001 0.100001 -0.0001 0.1 -0.00001 0.1 ;SPMlt;/PRE;SPMgt;

;SPMlt;P;SPMgt; Note: We have supplied a function called LimitTable that uses this code as its core.

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;Your opinion is more important than mine.

;SPMlt;/LI;SPMgt; ;SPMlt;/OL;SPMgt;

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(2.2.8) ;SPMlt;!-- MATH #math12##tex2html_wrap_inline304# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 3.26ex; vertical-align: 159.85ex; ;SPMquot; SRC=;SPMquot;img8.png;SPMquot; ALT=;SPMquot;#math13##tex2html_wrap_inline306#;SPMquot;;SPMgt; ;SPMlt;FONT SIZE=;SPMquot;+2;SPMquot;;SPMgt;;SPMlt;!-- MATH #math14##tex2html_wrap_inline308# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 2.30ex; vertical-align: 160.42ex; ;SPMquot; SRC=;SPMquot;img9.png;SPMquot; ALT=;SPMquot;#math15##tex2html_wrap_inline310#;SPMquot;;SPMgt;;SPMlt;/FONT;SPMgt; = 3/4.

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(2.2.22) ;SPMlt;!-- MATH #math16##tex2html_wrap_inline312# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 3.32ex; vertical-align: 159.85ex; ;SPMquot; SRC=;SPMquot;img10.png;SPMquot; ALT=;SPMquot;#math17##tex2html_wrap_inline314#;SPMquot;;SPMgt; ;SPMlt;FONT SIZE=;SPMquot;+2;SPMquot;;SPMgt;;SPMlt;!-- MATH #math18##tex2html_wrap_inline316# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 2.30ex; vertical-align: 160.47ex; ;SPMquot; SRC=;SPMquot;img11.png;SPMquot; ALT=;SPMquot;#math19##tex2html_wrap_inline318#;SPMquot;;SPMgt;;SPMlt;/FONT;SPMgt; = 1/6.

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(2.2.32) ;SPMlt;!-- MATH #math20##tex2html_wrap_inline320# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 3.32ex; vertical-align: 159.79ex; ;SPMquot; SRC=;SPMquot;img12.png;SPMquot; ALT=;SPMquot;#math21##tex2html_wrap_inline322#;SPMquot;;SPMgt; ;SPMlt;FONT SIZE=;SPMquot;+2;SPMquot;;SPMgt;;SPMlt;!-- MATH #math22##tex2html_wrap_inline324# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 2.30ex; vertical-align: 160.47ex; ;SPMquot; SRC=;SPMquot;img13.png;SPMquot; ALT=;SPMquot;#math23##tex2html_wrap_inline326#;SPMquot;;SPMgt;;SPMlt;/FONT;SPMgt; = 4.

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(2.2.35) ;SPMlt;!-- MATH #math24##tex2html_wrap_inline328# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 179.22ex; vertical-align: -0.68ex; ;SPMquot; SRC=;SPMquot;img2.png;SPMquot; ALT=;SPMquot;#math25##tex2html_wrap_inline330#;SPMquot;;SPMgt; ;SPMlt;FONT SIZE=;SPMquot;+2;SPMquot;;SPMgt;;SPMlt;!-- MATH #math26##tex2html_wrap_inline332##tex2html_wrap_inline333##tex2html_wrap_inline334# - #tex2html_wrap_inline335##tex2html_wrap_inline336# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 3.26ex; vertical-align: 159.69ex; ;SPMquot; SRC=;SPMquot;img14.png;SPMquot; ALT=;SPMquot;#math27##tex2html_wrap_inline338#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;height: 2.94ex; vertical-align: 159.48ex; ;SPMquot; SRC=;SPMquot;img15.png;SPMquot; ALT=;SPMquot;#math28##tex2html_wrap_inline340##tex2html_wrap_inline341##tex2html_wrap_inline342#-#tex2html_wrap_inline343#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;height: 3.90ex; vertical-align: 158.87ex; ;SPMquot; SRC=;SPMquot;img16.png;SPMquot; ALT=;SPMquot;#math29##tex2html_wrap_inline345#;SPMquot;;SPMgt; - ;SPMlt;IMG STYLE=;SPMquot;height: 3.07ex; vertical-align: 159.88ex; ;SPMquot; SRC=;SPMquot;img17.png;SPMquot; ALT=;SPMquot;#math30##tex2html_wrap_inline347#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;height: 2.94ex; vertical-align: 159.48ex; ;SPMquot; SRC=;SPMquot;img18.png;SPMquot; ALT=;SPMquot;#math31##tex2html_wrap_inline349##tex2html_wrap_inline350##tex2html_wrap_inline351#-#tex2html_wrap_inline352##tex2html_wrap_inline353#;SPMquot;;SPMgt;;SPMlt;/FONT;SPMgt; = - 1/10.

;SPMlt;P;SPMgt; ;SPMlt;/LI;SPMgt; ;SPMlt;LI;SPMgt;(2.2.36) ;SPMlt;!-- MATH #math32##tex2html_wrap_inline355# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 3.90ex; vertical-align: 159.27ex; ;SPMquot; SRC=;SPMquot;img19.png;SPMquot; ALT=;SPMquot;#math33##tex2html_wrap_inline357#;SPMquot;;SPMgt; ;SPMlt;FONT SIZE=;SPMquot;+2;SPMquot;;SPMgt;;SPMlt;!-- MATH #math34##tex2html_wrap_inline359# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;height: 2.30ex; vertical-align: 160.47ex; ;SPMquot; SRC=;SPMquot;img20.png;SPMquot; ALT=;SPMquot;#math35##tex2html_wrap_inline361#;SPMquot;;SPMgt;;SPMlt;/FONT;SPMgt; = 1/3. To do this algebraically is a bit trickey. Factor the numerator: ;SPMlt;!-- MATH #math36#(x1/3 -2)(x1/3 + 2) --;SPMgt; (;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;1/3;SPMlt;/SUP;SPMgt; -2)(;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;1/3;SPMlt;/SUP;SPMgt; + 2) and the denominator: ;SPMlt;!-- MATH #math37#(x1/3 -2)(x2/3 +2x1/3 + 4) --;SPMgt; (;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;1/3;SPMlt;/SUP;SPMgt; -2)(;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2/3;SPMlt;/SUP;SPMgt; +2;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;1/3;SPMlt;/SUP;SPMgt; + 4). Then cancel the common term and substitute ;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt; = 8. ;SPMlt;/LI;SPMgt; ;SPMlt;/OL;SPMgt; ;SPMlt;HR;SPMgt;

;SPMlt;/BODY;SPMgt; ;SPMlt;/HTML;SPMgt;