Libraries

Libraries

] COLLABORATORS
TITLE :
Libraries
ACTION NAME DATE SIGNATURE
WRITTEN BY July 23, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Libraries

Contents

1 Libraries 1
1.1 Amiga® RKM Libraries: 10 Intuition Mouse and Keyboard 1
1.2 10 Intuition Mouse and Keyboard / The Mouse 1
1.3 10/ The Mouse / Intuition’s Use of Mouse Events 2
1.4 10//Intuition’s Use of Mouse Events / Select Button 3
1.5 10//Intuition’s Use of Mouse Events / Menu Button 4
1.6 10/ The Mouse /Mouse MeSSAZES« v v v v v i it b et e e e e e e 4
1.7 10/ The Mouse / Mouse Usage Example ittt 6
1.8 10 Intuition Mouse and Keyboard / The Pointer 6
1.9 10/ The Pointer / Pointer Position 6
1.10 10/ The Pointer / Custom Pointer e 7
1.11 10//Custom Pointer / The Sprite Data Structure e 8
1.12 10 Intuition Mouse and Keyboard / The Keyboard 9
1.13 10/ The Keyboard / Keyboard Control of the Pointer 10
1.14 10/ The Keyboard / Intuition Keyboard Shortcuts 11
1.15 10/ The Keyboard / Menu Shortcuts 0 e e e e e e 12
1.16 10/ The Keyboard / Amiga Qualifiers e 12
1.17 10 Intuition Mouse and Keyboard / Function Reference 13

Libraries

1/13

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 10 Intuition Mouse and Keyboard

In the Intuition system, the mouse is the normal method of making
selections and the keyboard is used for entering character data. This
section describes how users employ the mouse to interact with the system
and how to arrange for a program to use the mouse. It also describes the
use of the keyboard, both as a character input device and as an alternate
method of controlling the mouse pointer.

The Mouse The Pointer The Keyboard Function Reference

1.2 10 Intuition Mouse and Keyboard / The Mouse

The Amiga mouse 1s a small, hand-held input device connected to the Amiga
by a flexible cable. The user can input horizontal and vertical
coordinates with the mouse by sliding it around on a smooth surface. This
movement causes the repositioning of a pointer on the display; whenever
the mouse is moved the pointer moves, and in the same direction.

The mouse also provides two or three input keys, called mouse buttons,
that allow the user to input information to the computer. The basic
activities the user can perform with the mouse are shown below.

Action Explanation
Moving the Mouse Sliding the body of the mouse over a
surface, such as a desk top.

Pressing a button Pushing down a mouse button (which is
released at some later time).

Clicking a button Quickly pressing and releasing a mouse
button.

Double clicking a button Clicking a button twice in a short
period of time.

Libraries

2/13

Dragging Pressing a button and moving the mouse
while the button is held down. The
drag operation is completed by
releasing the button.

Table 10-1: Mouse Activities

The action associated with mouse button presses can occur when the button
is first pressed, or while the button is held down, or when the button is
released. As an example of this, consider the drag gadget of a window.
When the select button of the mouse is first pressed an outline
representing the window frame is drawn. While the button is held down the
outline remains, and it moves with the pointer as the mouse is moved.

When the button is released, the outline is erased and the window takes
its new position.

Intuition’s Use of Mouse Events Mouse Usage Example
Mouse Messages

1.3 10/ The Mouse / Intuition’s Use of Mouse Events

When the mouse is moved or its buttons are pressed, the system generates
input events that represent the actions. The input events are taken from
the input chain by Intuition when the active window requires the events.
Note that only input for a specific window will be affected by changes in
that window’s IDCMP flags.

Most events generated by the user with the mouse are used by Intuition.

As the user moves the mouse, Intuition changes the position of its
pointer. The Intuition pointer moves around the entire video display,
mimicking the user’s movement of the mouse. The user points at an object
by positioning the hot spot of the pointer over the object. The hot spot
is the active part of the pointer image; the hot spot for Intuition’s
default pointer is the pixel at the tip of the arrow.

After pointing to an object, the user can perform some action on that
object by selecting it with one of the mouse buttons. These can include
any of the actions specified above, such as dragging or double clicking.

The left mouse button is generally used for selection, while the right
mouse button is most often used for information transfer. The terms
selection and information are intentionally left open to some
interpretation, as it is impossible to imagine all the possible uses for
the mouse buttons.

The selection/information paradigm can be crafted to cover most
interaction between the user and an application. When using the mouse,
the application should emphasize this model. It will help the user to
understand and remember the mouse control of the application.

Applications that handle mouse button events directly, bypassing the menu

Libraries

3/13

and gadget systems, should use the same selection/information model used
by Intuition.

Select Button Menu Button

1.4 10// Intuition’s Use of Mouse Events / Select Button

When the user presses the left, or select button, Intuition examines the
state of the system and the position of the pointer. This information is
used to decide whether or not the user is trying to select some object,
operation, or option. For example, the user positions the pointer over a
gadget and then presses the left button to select that gadget.
Alternatively, the user can position the pointer over a window and press
the select button to activate the window. The pointer is said to be over
an object when the pointer’s hot spot is positioned within the selection
region of the object.

A number of other common techniques involving the select button are
available. They include:

Drag Select
Multiple objects or an extended area may be selected by dragging the
mouse over a range with the select button held down. For instance,
in Release 2, multiple icons can be selected in a Workbench window by
pressing the select button while the pointer is over the background
of the window (not an icon or a system gadget) and then moving the
mouse with the select button held down. A selection rectangle will
be displayed and all icons within the rectangle will be selected.
Similarly, the user may highlight blocks of text in a console window
by pressing the select button over the first desired character and
dragging the mouse to the last desired character while holding the
button down.

Multi-Select or Shift Select
Another way to select multiple objects or an extended area is through
the shift select technique. First, select the first member of the
group of objects in the normal way. Additional objects can be added
to the group by holding down the Shift key while the select button is
pressed. This technique works with Workbench icons, where icons may
be added one—-at-a-time to the list of selected icons; and with text
in a console window, where the selected text is extended to include
the new position. Note that text need not operate this way, and the
application may allow multiple discrete blocks to be selected at any
given time.

Cancel Drag Operation
Both drag select and the dragging of individual objects may often be
canceled by pressing the right mouse button before completing the
drag operation (before releasing the select button). Examples of
this include window dragging and sizing, and positioning of Workbench
icons.

Libraries

4/13

1.5 10//Intuition’s Use of Mouse Events / Menu Button

The right mouse button is used to initiate and control information
gathering processes. Intuition uses this button most often for menu
operations.

For most active windows, pressing the menu button will display the
window’ s menu bar at the top of the screen. Dragging the mouse with the
menu button depressed allows the user to browse through the available
menus. Releasing the right mouse button over a menu item will select that
item, if it is a wvalid choice. Additionally, the user can select multiple
items by repeatedly pressing the select button while the menu button is
held down.

Drag selection is also available in menu operations. When the menu system
is activated, and the user has the menu button pressed, the select button
may be pressed and the mouse dragged over all items to be selected. This
only works if the select button is pressed after the menu button, and all
items that the pointer travels over will be selected.

Double clicking the right mouse button can bring up a special requester
for extended exchange of information. This requester is called the
double-menu requester, because a double click of the menu button is
required to reveal it, and because this requester acts like a super menu
through which a complex exchange of information can take place. Because
the requester is used for the transfer of information, it is appropriate
that this mechanism is called up by using the right button.

The programmer should consult the Amiga User Interface Style Guide for
more information on the standard uses of the mouse and its buttons.

Button activation and mouse movements can be combined to create compound
instructions. For example, Intuition combines multiple mouse events when
displaying the menu system. While the right button is pressed to reveal
the menu items of the active window, the user can move the mouse to
position the pointer and display different menu items and sub-items.
Additionally, multiple presses of the left button can be used to select
more than one option from the menus.

Dragging can have different effects, depending on the object being
dragged. Dragging a window by the drag gadget will change the position of
the window. Dragging a window by the sizing gadget will change the size
of the window. Dragging a range in a Workbench window will select all of
the icons in the rectangular range.

1.6 10/ The Mouse / Mouse Messages

Mouse events are broadcast to the application via the IDCMP or the console
device. See the "Intuition Input and Output Methods" chapter in this book
for information on the IDCMP. See the "Console Device" chapter in the
Amiga ROM Kernel Reference Manual: Devices for more about the console
device.

Simple mouse button activity not associated with any Intuition function

Libraries

5/13

will be reported to the window as an IntuiMessage with a Class of
IDCMP_MOUSEBUTTONS. The IntuiMessage Code field will be set to
SELECTDOWN, SELECTUP, MIDDLEDOWN, MIDDLEUP, MENUDOWN or MENUUP to specify
changes in the state of the left, middle and right buttons, respectively.

Direct select button events will not be received by the program if the
select button is pressed while the pointer is positioned over a gadget or
other object which uses the button event. For example, select button
activity over a gadget is reported with a Class of IDCMP_GADGETDOWN or
IDCMP_GADGETUP. The gadget is said to have consumed the mouse events and
produced gadget events.

If the menu system is enabled, menu selections appear with a Class of
IDCMP_MENUPICK. To directly receive menu button events, the application
must set the flag WFLG_RMBTRAP for the window either when the window is
opened or by changing the flag in a single, atomic operation. See the
chapter "Intuition Windows" for more information on the flag WFLG_RMBTRAP.

The program receives mouse position changes in the event Class
IDCMP_MOUSEMOVE. The MouseX and MouseY position coordinates describe the
position of the mouse relative to the upper left corner of the reference
window. These coordinates are always in the resolution of the screen
being used, and may represent any pixel position on the screen, even
though the hardware sprites can be positioned only on the even numbered
pixels of a high resolution screen and on the even numbered rows of an
interlaced screen. Enabling IDCMP_MOUSEMOVE messages is discussed below
in the section on "The Pointer".

To get mouse movement reported as deltas (amount of change from the last
position) instead of as absolute positions, set the IDCMP flag
IDCMP_DELTAMOVE. When IDCMP_DELTAMOVE is set, the IDCMP_MOUSEMOVE
messages received by the program will have delta values rather than
absolute values. Note that IDCMP_DELTAMOVE is simply a flag used to
modify the behavior of IDCMP_MOUSEMOVE, and that no messages of class
IDCMP_DELTAMOVE are ever sent.

Each window has a queue limit for the number of IDCMP_MOUSEMOVE messages
waiting on its IDCMP at any given time. If the number of mouse move
messages waiting at the IDCMP is equal to the queue limit, then Intuition
will discard additional IDCMP_MOUSEMOVE messages until the application
replies to one of the gqueued mouse move messages. The default queue limit
for mouse move messages is five.

Be aware that this may cause some data loss, especially when the
application is using IDCMP_DELTAMOVE, as the information contained in the
discarded messages is not repeated. When using IDCMP_DELTAMOVE, this
could cause the application to lose track of the actual pointer position.
The application may wish to change the default mouse queue size if it is
unable to reply to messages queued at the IDCMP for an extended period.
The mouse gqueue can be set when the window is opened by using the
WA_MouseQueue tag, and may later be modified using the SetMouseQueue ()
call. Note that the actual mouse position is always available to the
application through the Window structure MouseX and MouseY.

Libraries 6/13

1.7 10/ The Mouse / Mouse Usage Example

The example program below shows the use of IDCMP_MOUSEBUTTONS,
IDCMP_MOUSEMOVE and DoubleClick (). DoubleClick() is used to test the
interval between two times and determine if the interval is within the
user specified time for double clicking as set in the Preferences Input
editor.

BOOL DoubleClick (unsigned long sSeconds, unsigned long sMicros,
unsigned long cSeconds, unsigned long cMicros);

The sSeconds and sMicros arguments specify a timestamp value describing
the start of the double click time interval to be tested. The cSeconds
and cMicros arguments specify a timestamp value describing the end of the
double click time interval to be tested.

DoubleClick () returns TRUE if the time interval was short enough to
qualify as a double-click. A FALSE return indicates that the time
interval between presses took too long. The button presses should be
treated as separate events in that case.

mousetest.c

1.8 10 Intuition Mouse and Keyboard / The Pointer

The system provides a pointer to allow the user to make selections from
menus, choose gadgets, and so on. The user may control the pointer with a
mouse, the keyboard cursor keys or some other type of controller. The
specific type of controller is not important, as long as the proper types
of input events can be generated.

The pointer is associated with the active window and the input focus. The
active window controls the pointer imagery and receives the input stream
from the mouse. The pointer and mouse may be used to change the input
focus by selecting another window.

Pointer Position Custom Pointer Pointer Example

1.9 10/ The Pointer / Pointer Position

There are two ways to determine the position of the pointer: by direct
examination of variables in the window structure at any time, and by
examining messages sent by Intuition which inform the application of
pointer movement. The pointer coordinates are relative to the upper left
corner of the window and are reported in the resolution of the screen,
even though the pointer’s visible resolution is always in low-resolution
pixels (note that the pointer is actually a sprite).

The MouseX and MouseY fields of the Window structure always contain the
current pointer x and y coordinates, whether or not the window is the
active one. If the window is a GimmeZeroZero window, the variables
GZZMouseX and GZZMouseY in the Window structure contain the position of

Libraries 7/13

the mouse relative to the upper left corner of the inner window.

If the window is receiving mouse move messages, it will get a set of x,y
coordinates each time the pointer moves. To receive messages about
pointer movements, the WEFLG_REPORTMOUSE flag must be set in the Window
structure. This flag can be set when the window is opened. The flag can
also be modified after the window is open by calling ReportMouse (),
however C programmers should avoid this function. ReportMouse () has
problems due to historic confusion about the ordering of its C language
arguments. Do not use ReportMouse () unless you are programming in
assembler. C programmers should set the flag directly in the Window
structure using an atomic operation.

Most compilers generate atomic code for operations such as mywindow->flags
|= WFLG_REPORTMOUSE or mywindow->flags &= ~WFLG_REPORTMOUSE. If you are
unsure of getting an atomic operation from your compiler, you may wish to
do this operation in assembler, or bracket the code with a
Forbid () /Permit () pair.

After the WFLG_REPORTMOUSE flag is set, whenever the window is active it
will be sent an IDCMP_MOUSEMOVE messages each time the pointer position
changes. The window must have the IDCMP flag IDCMP_MOUSEMOVE set to
receive these messages.

Mouse movements can cause a very large number of messages to be sent to
the IDCMP, the application should be prepared to handle them efficiently.

Messages about pointer movements may also be activated by setting the flag
GACT_FOLLOWMOUSE in an application Gadget structure. When this flag is set
in a gadget, changes in the pointer position are reported as long as the
gadget 1is selected by the user. These messages are also sent as
IDCMP_MOUSEMOVE messages.

1.10 10/ The Pointer / Custom Pointer

An application can set a custom pointer for a window to replace the
default pointer. This custom pointer will be displayed whenever the window
is the active one.

To place a custom pointer in a window, call SetPointer ().

void SetPointer (struct Window xwindow, UWORD xpointer, long height,
long width, long xOffset, long yOffset);

Set the window argument to the address of the window that is to receive
this custom pointer definition. The pointer argument is the address of
the data that defines the custom pointer image. The format of this data is
discussed in the next section, "The Sprite Data Structure".

The height and width specify the dimensions of the pointer sprite. There
is no height restriction but the width of the sprite must be less than or
equal to 16.

The xOffset and yOffset are used to offset the top left corner of the
hardware sprite imagery from what Intuition regards as the current

Libraries 8/13

position of the pointer. Another way of describing this is the offset of
the default Intuition pointer hot spot from the top left corner of the
sprite.

For instance, by specifying offsets of (0,0), the top left corner of the
sprite image will be placed at the pointer position. On the other hand,
specifying an xOffset of -7 (remember, sprites are 16 pixels wide) will
center the sprite over the pointer position. Specifying an xOffset of -15
will place the right edge of the sprite will be over the pointer position.

Specifying the Hot Spot.

For compatibility, the application must specify that the "hot
spot" of the pointer is one pixel to the left of the desired
position. Changes to the pointer done by a program must compensate
for this. The Preferences Pointer editor correctly handles this
situation.

To remove the custom pointer from the window, call ClearPointer ().
void ClearPointer(struct Window xwindow) ;

Set the window argument to the address of the window that is to have its
custom pointer definition cleared. The pointer will be restored to the
default Intuition pointer imagery

SetPointer () and ClearPointer () take effect immediately if the window is
active, otherwise, the change will only be displayed when the window is
made active.

The Sprite Data Structure

1.11 10// Custom Pointer / The Sprite Data Structure

To define the pointer, set up a sprite data structure (sprites are one of
the general purpose Amiga graphics structures). The sprite image data must
be located in Chip memory, which is memory that can be accessed by the
special Amiga hardware chips. Expansion, or Fast memory cannot be
addressed by the custom chips. Ensure that data is in Chip memory by using
the AllocMem () function with the MEMF_CHIP flag, and copying the data to
the allocated space. Alternately, use the tools or flags provided by each
compiler for this purpose. See the "Exec Memory Allocation" chapter for
more information.

A sprite data structure is made up of words of data. In a pointer sprite,
the first two words and the last two words are reserved for the system and
should be set to zero. All other words contain the sprite image data.

The pointer in the example, a standard busy pointer, is sixteen lines high
and sixteen pixels wide. Currently, all sprites are two bit planes deep,
with one word of data for each line of each plane. The example sprite
image consists of 36 words (2 planes x 18 lines = 36 words). Add to this
the four reserved words of control information for a total of 40 words of
data. See the example below for the complete data definition.

Libraries 9/13

The sprite data words are combined to determine which color will appear at
each pixel position of each row of the sprite. The first two words of
image data, 0x0400 and 0x07C0, represent the top line of the sprite. The
numbers must be viewed as binary numbers and combined in a bit-wise
fashion. The highest bit from each word are combined to form a two bit
number representing the color register for the leftmost pixel. The next
two bits represent the next pixel in the row, and so on, until the low
order bits from each word represent the rightmost pixel in the row.

For example:

Hex Binary

Second word 0x07CO
First word 0x0400

o O
o O
o O
o O
o O
=

o
o
o
o
o O
o O
o O
o O
o O
o O

The first word in a line gives the least significant bit of the
color register and the second word gives the most significant bit.

Sprites get their color information from the color registers much like
screens do. See the Amiga Hardware Reference Manual for more information
on the assignment of color registers to sprites. Note that the color
number given above is added to a base number to determine the actual
hardware color register.

The colors of the Intuition pointer may be changed. The Intuition pointer
is always sprite 0. To change the colors of sprite 0, call the graphics
library routine SetRGB4 () .

1.12 10 Intuition Mouse and Keyboard / The Keyboard

A program can receive keyboard data through an IDCMP port by setting the
IDCMP_RAWKEY flag, the IDCMP_VANILLAKEY flag or both. IDCMP_VANILLAKEY
events provide for simple ASCII text and standard control keys like space,
return and backspace. IDCMP_RAWKEY events provide a more complex input
stream, which the program must process to generate ASCII data.
IDCMP_RAWKEY returns all keycodes, both key-up and key-down, including
function keys.

Keystrokes Are Not Always Paired.

Libraries 10/13

Keystrokes do not always come in key-down/key-up pairs. For
example, repeating keys appear as a sequence of key-down messages.

IDCMP_RAWKEY and IDCMP_VANILLAKEY may be set together. When both flags
are set in the IDCMP, IDCMP_VANILLAKEY messages will be sent for
keystrokes that directly map to a single ASCII value. IDCMP_RAWKEY
messages will be sent for key sequences that do not map to simple values,
i.e. if a key sequence does not map to an IDCMP_VANILLAKEY message, it
will be sent as an IDCMP_RAWKEY message. This allows easy access to
mapped characters through IDCMP_VANILLAKEY with control characters
returned as IDCMP_RAWKEY. ©Note that the IDCMP_RAWKEY events will only
return the key down events when used with IDCMP_VANILLAKEY.

When Intuition responds to an input event or sequence of events, the
application will not receive those events. This happens for system
shortcuts (left Amiga + key) if the system shortcut is defined, and for
menu shortcuts (right Amiga + key) if the menu shortcut is defined for the
active window. TIf the shortcut is not defined, then the appropriate key
event will be sent with the proper Amiga qualifier set.

Key repeat characters have a queue limit which may be set for each window,
much like the mouse queue described above. The key repeat queue limit may
only be set when the window is opened using the WA_RptQueue tag, there is
no function call for modifying the value after the window is open. The
default queue limit for key repeat characters is three. This limit causes
any IDCMP_RAWKEY, IDCMP_VANILLAKEY or IDCMP_UPDATE message with the
IEQUALIFIER_REPEAT bit set to be discarded if the queue is full
(IDCMP_UPDATE is discussed in the "BOOPSI" chapter). The queue is said to
be full when the number of waiting repeat key messages is equal to the
queue limit. Note that the limit is not per character, it is on the total

number of key messages with the repeat bit set. Once the limit is
reached, no other repeat characters will be posted to the IDCMP until the
application replies to one of the outstanding repeat key messages. The

repeat queue limit is not as dangerous as the mouse queue limit as only
duplicate keystroke information is discarded, where the mouse queue limit
discards information that cannot be easily reproduced.

Rawkey Keymapping Example Menu Shortcuts
Keyboard Control of the Pointer Amiga Qualifiers
Intuition Keyboard Shortcuts

1.13 10/ The Keyboard / Keyboard Control of the Pointer

All Intuition mouse activities can be emulated using the keyboard, by
combining the Amiga command keys with other keystrokes.

The pointer can be moved by holding down either Amiga key along with one
of the four cursor keys. The mouse pointer accelerates the longer these
keys are held down. Additionally, holding down either Shift key will make
the pointer jump in larger increments. The pointer position may also be
adjusted in very fine increments through this technique. By holding down
either Amiga key and briefly pressing one of the cursor keys, the pointer
may be moved one pixel in any direction.

Libraries 11/13

Press the left Alt key and either one of the Amiga keys simultaneously
emulates the left button of the mouse. Similarly, pressing the right Alt
key and either one of the Amiga keys simultaneously emulates the right
button of the mouse. These key combinations permit users to make gadget
selections and perform menu operations using the keyboard alone.

1.14 10/ The Keyboard / Intuition Keyboard Shortcuts

If Intuition sees a command key sequence that means nothing to it, the key
sequence is sent to the active window as usual. See the chapter on
"Intuition Input and Output Methods" for how this works. This section and
the next section describe what Intuition does when it recognizes certain
special command key sequences.

It is recommended that programs abide by certain command key standards to
provide a consistent interface for Amiga users. The Amiga User Interface
Style Guide contains a complete list of the recommended standards.

There are a number of special keyboard shortcuts supported by Intuition.
These involve holding down the left Amiga key and simultaneously pressing
a another key. These functions allow the user to do such things as move
the Workbench screen to the front using the keyboard.

Table 10-2: Intuition Keyboard Shortcuts

Keyboard Shortcut Function Performed
left Amiga M Move frontmost screen to back.
left Amiga N Move Workbench screen to front.
left Amiga B System requester cancel, or select the

rightmost button in the system requester.

left Amiga V System requester OK, or select the leftmost
button in the system requester.

left Amiga + mouse Screen drag from any point. By holding down
select button the left Amiga key, the user may drag the
screen with the mouse from any part of the
screen or window on the screen.

About System Keyboard Shortcuts
Many of these keyboard commands may be remapped through the IControl
Preferences editor. Do not rely on the values reported here.

Intuition consumes these command key sequences for its own use. That is,
it always detects these events and removes them from the input stream.
The application will not see the events.

Libraries 12/13

1.15 10/ The Keyboard / Menu Shortcuts

Menu items and sub-items may be paired with command key sequences to
associate certain characters with specific menu item selections. This
gives the user a shortcut method to select frequently used menu
operations, such as Undo, Cut, and Paste. Whenever the user presses the
right Amiga key with an alphanumeric key, the menu strip of the active
window is scanned to see if there are any command key sequences in the
list that match the sequence entered by the user. If there is a match,
Intuition translates the key combination into the appropriate menu item
number and transmits the menu number to the application program.

Menu Shortcuts Look Like the Real Thing.

To the application it looks as if the user had selected a given
menu item with the mouse. The program will receive a menu event, not
a key event. For more information on menu item selection, see the
"Intuition Menus" chapter.

1.16 10/ The Keyboard / Amiga Qualifiers

The Amiga keyboard has several special qualifiers which are listed in the

next table. Most of these qualifiers are associated with special keys on
the keyboard such as the Shift or Ctrl key. These keys are used to modify
the meaning of other keys. Other qualifiers are associated with mouse

button status. For a complete list of all the qualifiers, see the include
file <devices/inputevent.h>.

The Qualifier field of each IntuiMessage contains the status of all the
qualifiers. An individual application should never attempt to track the
state of any of the qualifier keys or mouse buttons even though key-down
and key-up information may be available. 1Instead use the information
available in the Qualifier field of the IntuiMessage structure.

Table 10-3: Keyboard Qualifiers

Qualifier
Type Key Label Explanation

Control Ctrl The IEQUALIFIER_CONTROL bit indicates
that the Control key is depressed.

Amiga Fancy A There are two Amiga keys, one on each
side of the space bar. The left Amiga
key is recognized by the Qualifier bit
IEQUALIFIER_LCOMMAND, and the right
Amiga key by IEQUALIFIER RCOMMAND.

Alternate Alt There are two separate Alt keys, one on
each side of the space bar, next to the
Amiga keys. These can be treated

separately, 1f desired. The left Alt
key sets the IEQUALIFIER_LALT bit and

Libraries

13/13

Shift Up Arrow

Caps Lock Caps Lock

Numeric Pad

Repeat

Mouse Buttons

the right Alt key sets the
IEQUALIFIER_RALT bit.

There are two separate Shift keys, one
above each Alt key. These can be
treated distinctly, if desired. The
left Shift key sets the
IEQUALIFIER_LSHIFT bit and the right
Shift key sets the IEQUALIFIER_RSHIFT
bit.

The IEQUALIFIER_CAPSLOCK bit is set as
long as the Caps Lock light is
illuminated.

The IEQUALIFIER_NUMERICPAD bit is set
for keys on the numeric keypad.

Repeat key events are sent with the
IEQUALIFIER_REPEAT bit set.

If mouse buttons are down when the
event occurs, one or more of the three
bits IEQUALIFIER_LEFTBUTTON,
IEQUALIFIER_MIDBUTTON or
IEQUALIFIER_RBUTTON will be set.

1.17 10 Intuition Mouse and Keyboard / Function Reference

The following are brief descriptions of the Intuition functions that

relate to the use of the mouse

function call.

Table 10-4: Functions

and keyboard under Intuition. See the Amiga
ROM Kernel Reference Manual: Includes and Autodocs for details on each

for Intuition Mouse and Keyboard

\

| Function Description

‘ === === == === === ===

\ DoubleClick () Test two time values for double click status.

‘ __

\ SetPointer () Change the Intuition pointer imagery for an open

\ window.

| ClearPointer () Restore the default Intuition pointer imagery.

‘ __
SetMouseQueue () Change the mouse queue for an open window.

\
| ReportMouse () A function C programmers should not use.
\

	Libraries
	Amiga® RKM Libraries: 10 Intuition Mouse and Keyboard
	10 Intuition Mouse and Keyboard / The Mouse
	10 / The Mouse / Intuition's Use of Mouse Events
	10 / / Intuition's Use of Mouse Events / Select Button
	10 / / Intuition's Use of Mouse Events / Menu Button
	10 / The Mouse / Mouse Messages
	10 / The Mouse / Mouse Usage Example
	10 Intuition Mouse and Keyboard / The Pointer
	10 / The Pointer / Pointer Position
	10 / The Pointer / Custom Pointer
	10 / / Custom Pointer / The Sprite Data Structure
	10 Intuition Mouse and Keyboard / The Keyboard
	10 / The Keyboard / Keyboard Control of the Pointer
	10 / The Keyboard / Intuition Keyboard Shortcuts
	10 / The Keyboard / Menu Shortcuts
	10 / The Keyboard / Amiga Qualifiers
	10 Intuition Mouse and Keyboard / Function Reference

