
Libraries

Libraries ii

COLLABORATORS

TITLE :

Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1

1.1 Amiga® RKM Libraries: 18 Exec Libraries . 1

1.2 18 Exec Libraries / What is a Library? . 1

1.3 18 / What is a Library? / Using a Library to Reference Data . 2

1.4 18 / What is a Library? / Relationship of Libraries to Devices . 2

1.5 18 / What is a Library? / Minimum Subset of Library Vectors . 2

1.6 18 / What is a Library? / Changing the Contents of a Library . 3

1.7 18 Exec Libraries / Adding a Library . 4

1.8 18 / Adding a Library / Resident (Romtag) Structure . 5

Libraries 1 / 6

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 18 Exec Libraries

Exec maintains lists of libraries and devices. An Amiga library consists
of a collection of related functions which can be anywhere in system
memory (RAM or ROM). An Amiga device is very similar to an Amiga library,
except that a device normally controls some sort of I/O hardware, and
generally contains a limited set of standard functions which receive
commands for controlling I/O. For more information on how to use devices
for I/O, see the "Exec Device I/O" chapter of this book.

Not for Beginners.

This chapter concentrates on the internal workings of Exec
libraries (and devices). Most application programmers will not to
know the internals workings of libraries to program the Amiga. For
an introduction to libraries and how to use them, see chapter one,
"Introduction to Amiga System Libraries".

What is a Library? Adding a Library

1.2 18 Exec Libraries / What is a Library?

A library consists of a group of functions somewhere in memory (ROM or
RAM), a vector table, and a Library structure which can be followed by an
optional private data area for the library. The library’s base pointer
(as returned by OpenLibrary()) points to the library’s Library data
structure:

struct Library
{

struct Node lib_Node;
UBYTE lib_Flags;
UBYTE lib_pad;
UWORD lib_NegSize; /* number of bytes before library */
UWORD lib_PosSize; /* number of bytes after library */
UWORD lib_Version;

Libraries 2 / 6

UWORD lib_Revision;
APTR lib_IdString;
ULONG lib_Sum; /* the checksum itself */
UWORD lib_OpenCnt; /* number of current opens */

};
/* Meaning of the flag bits: */

/* A task is currently running a checksum */
#define LIBF_SUMMING (1 << 0) /* on this library (system maintains this */

/* flag) */
#define LIBF_CHANGED (1 << 1) /* One or more entries have been changed */

/* in the library code vectors used by */
/* SumLibrary (system maintains this flag)*/

#define LIBF_SUMUSED (1 << 2) /* A checksum fault should cause a system */
/* panic (library flag) */

#define LIBF_DELEXP (1 << 3) /* A user has requested expunge but */
/* another user still has the library */
/* open (this is maintained by library) */

Using a Library to Reference Data Relationship of Libraries to Devices
Minimum Subset of Library Vectors Changing the Contents of a Library

1.3 18 / What is a Library? / Using a Library to Reference Data

Most libraries (such as Intuition, graphics and Exec) have other data that
follows the Library data structure in memory. Although it is not normally
necessary, a program can use the library base pointer to access the
Library structure and any custom library data.

In general, the system’s library base data is read-only, and should be
directly accessed as little as possible, primarily because the format of
the data may change in future revisions of the library. If the library
provides functions to allow access to library data, use those instead.

1.4 18 / What is a Library? / Relationship of Libraries to Devices

A device is a software specification for hardware control based on the
Library structure. The structures of libraries and devices are so similar
that the routine MakeLibrary() is used to construct both.

Devices require the same initial four code vectors as a library, but must
have two additional code vectors for beginning and terminating special
device I/O commands. The I/O commands that devices are expected to
perform, at minimum, are shown in the "Exec Device I/O" chapter. An
example device is listed in the Amiga ROM Kernel Reference Manual: Devices.

1.5 18 / What is a Library? / Minimum Subset of Library Vectors

Libraries 3 / 6

The first four code vectors of a library must be the following entries:

OPEN
is the entry point called by the function OpenLibrary(). In most
libraries, OPEN increments the library variable lib_OpenCnt. This
variable is also used by CLOSE and EXPUNGE.

CLOSE
is the entry point called by the function CloseLibrary(). It
decrements the library variable lib_OpenCnt and may do a delayed
EXPUNGE.

EXPUNGE
prepares the library for removal from the system. This often includes
deallocating memory resources that were reserved during
initialization. EXPUNGE not only frees the memory allocated for data
structures, but also the areas reserved for the library node itself.

RESERVED
is a fourth function vector reserved for future use. It must always
return zero.

1.6 18 / What is a Library? / Changing the Contents of a Library

The way in which an Amiga library is organized allows a programmer to
change where the system looks for a library routine. Exec provides a
function to do this: SetFunction(). The SetFunction() routine redirects a
library function call to an application-supplied function. (Although it’s
not addressed here, SetFunction() can also be used on Exec devices.) For
instance, the AmigaDOS command SetPatch uses SetFunction() to replace some
OS routines with improved ones, primarily to fix bugs in ROM libraries.

The format of the SetFunction() routine is as follows:

SetFunction(struct Library *lib, LONG funcOffset, APTR funcEntry)
A1 A0 D0

The lib argument is a pointer to the library containing the function entry
to be changed. The funcOffset is the Library Vector Offset (negative) of
the function and funcEntry is the address of the new function you want to
replace it with. The SetFunction() routine replaces the entry in the
library’s vector table at the given Library Vector Offset with a new
address that points to the new routine and returns the old vector address.
The old address can be used in the new routine to call the original
library function.

Normally, programs should not attempt to "improve" library functions.
Because most programmers do not know exactly what system library functions
do internally, OS patches can do more harm than good. However, a
legitimate use for SetFunction() is in a debugger utility. Using
SetFunction(), a debugger could reroute system calls to a debugging
routine. The debugging routine can inspect the arguments to a library
function call before calling the original library function (if everything
is OK). Such a debugger doesn’t do any OS patching, it merely inspects.

Libraries 4 / 6

SetFunction() is for Advanced Users Only.

It is very difficult to cleanly exit after performing SetFunction()
because other tasks may be executing your code and also because
additional SetFunction()’s may have occurred on the same function.
Also note that certain libraries (for example the V33 version of DOS
library) and some individual library function vectors are of
non-standard format and cannot be replaced via SetFunction().

Although useful, performing SetFunction() on a library routines poses
several problems. If a second task performs SetFunction() on the same
library entry, SetFunction() returns the address of the new routine to the
second task, not the original system vector. In that case, the first task
can no longer exit cleanly since that would leave the second task with an
invalid pointer to a function which it could be relying on.

You also need to know when it is safe to unload your replacement function.
Removing it while another task is executing it will quickly lead to a
crashed system. Also, the replacement function will have to be
re-entrant, like all Exec library functions.

Don’t Do This!

For those of you who might be thinking about writing down the ROM
addresses returned by SetFunction() and using them in some other
programs: Forget It. The address returned by SetFunction() is
only good on the current system at the current time.

1.7 18 Exec Libraries / Adding a Library

Exec provides several ways to add your own libraries to the system library
list. One rarely used way is to call LoadSeg() (a DOS library function)
to load your library and then use the Exec MakeLibrary() and AddLibrary()
functions to initialize your library and add it to the system.

MakeLibrary() allocates space for the code vectors and data area,
initializes the library node, and initializes the data area according to
your specifications, returning to you a library base pointer. The base
pointer may then be passed to AddLibrary() to add your library to the
system.

Another way to initialize and add a library or device to the system is
through the use of a Resident structure or romtag (see <exec/resident.h>).
A romtag allows you to place your library or device in a directory
(default LIBS: for libraries, DEVS: for devices) and have the OS
automatically load and initialize it when an application tries to open it
with OpenLibrary() or OpenDevice().

Two additional initialization methods exist for a library or device which
is bound to a particular Amiga expansion board. The library or device
(containing a romtag) may be placed in the SYS:Expansion drawer, along
with an icon containing the Manufacturer and Product number of the board
it requires. If the startup-sequence BindDrivers command finds that board
in the system, it will load and initialize the matching Expansion drawer

Libraries 5 / 6

device or library. In addition, since 1.3, the Amiga system software
supports ROM drivers on expansion boards. See the "Expansion Library"
chapter for additional information on ROM drivers and Expansion drawer
drivers. The sample device code in the Amiga ROM Kernel Reference Manual:
Devices volume of this manual set may be conditionally assembled as an
Expansion drawer driver.

Resident (Romtag) Structure

1.8 18 / Adding a Library / Resident (Romtag) Structure

A library or device with a romtag should start with MOVEQ #-1,D0 (to
safely return an error if a user tries to execute the file), followed by a
Resident structure:

STRUCTURE RT,0
UWORD RT_MATCHWORD * romtag identifier (==$4AFC)
APTR RT_MATCHTAG * pointer to the above UWORD (RT_MATCHWORD)
APTR RT_ENDSKIP * usually ptr to end of your code
UBYTE RT_FLAGS * usually RTF_AUTOINIT
UBYTE RT_VERSION * release version number (for example: 37)
UBYTE RT_TYPE * type of module (NT_LIBRARY)
BYTE RT_PRI * initialization priority (for example: 0)
APTR RT_NAME * pointer to node name ("my.library")
APTR RT_IDSTRING * pointer to id string ("name ver.rev (date)")
APTR RT_INIT * pointer to init code or AUTOINIT tables
LABEL RT_SIZE * size of a Resident structure (romtag)

If you wish to perform MakeLibrary() and AddLibrary() yourself, then your
RT_FLAGS will not include RTF_AUTOINIT, and RT_INIT will be simply be a
pointer to your own initialization code. To have Exec automatically load
and initialize the library, set the RTF_AUTOINIT flag in the Resident
structure’s RT_FLAGS field, and point RT_INIT to a set four longwords
containing the following:

dataSize
This is the size of your library data area, i.e., the combined size
of the standard Library node structure plus your own library-specific
data.

vectors
This is a pointer to a table of pointers to your library’s functions,
terminated with a -1. If the first word of the table is -1, then the
table is interpreted as a table of words specifying the relative
displacement of each function entry point from the start of the
table. Otherwise it is treated as a table of longword address
pointers to the functions. vectors must specify a valid table
address.

structure
This parameter points to the base of an InitStruct() data region.
That is, it points to the first location within a table that the
InitStruct() routine can use to initialize your Library node
structure, library-specific data, and other memory areas.
InitStruct() will typically be used to initialize the data segment of

Libraries 6 / 6

the library, perhaps forming data tables, task control blocks, I/O
control blocks, etc. If this entry is a 0, then InitStruct() is not
called.

initFunction
This points to a routine that is to be executed after the library (or
device) node has been allocated and the code and data areas have been
initialized. When the routine is called, the base address of the
newly created library is passed in D0. If initFunction is zero, no
initialization routine is called.

Complete source code for an RT_AUTOINIT library may be found in the
appendix C of this book.

	Libraries
	Amiga® RKM Libraries: 18 Exec Libraries
	18 Exec Libraries / What is a Library?
	18 / What is a Library? / Using a Library to Reference Data
	18 / What is a Library? / Relationship of Libraries to Devices
	18 / What is a Library? / Minimum Subset of Library Vectors
	18 / What is a Library? / Changing the Contents of a Library
	18 Exec Libraries / Adding a Library
	18 / Adding a Library / Resident (Romtag) Structure

