Libraries

Libraries

] COLLABORATORS
TITLE :
Libraries
ACTION NAME DATE SIGNATURE
WRITTEN BY July 23, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Libraries

Contents

1 Libraries
1.1 Amiga® RKM Libraries: 25 Exec Semaphores L
1.2 25 Exec Semaphores / Semaphore Functions
1.3 25/ Semaphore Functions / The Signal Semaphore
1.4 25//The Signal Semaphore / Creating a SignalSemaphore Structure
1.5 25///Making a SignalSemaphore Available to the Public 0.0 ...
1.6 25// The Signal Semaphore / Obtaining a SignalSemaphore Exclusively
1.7 25// The Signal Semaphore / Obtaining a Shared SignalSemaphore
1.8 25//The Signal Semaphore / Checking a SignalSemaphore
1.9 25//The Signal Semaphore / Releasing a SignalSemaphore
1.10 25// The Signal Semaphore / Removing a SignalSemaphore Structure
1.11 25/ Semaphore Functions / Multiple Semaphores

1.12 25 Exec Semaphores / Function Reference L oo

Libraries

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 25 Exec Semaphores

Semaphores are a feature of Exec which provide a general method for tasks
to arbitrate for the use of memory or other system resources they may be
sharing. This chapter describes the structure of Exec semaphores and the
various support functions provided for their use. Since the semaphore
system uses Exec lists and signals, some familiarity with these concepts
is helpful for understanding semaphores.

In any multitasking or multi-processing system there is a need to share
data among independently executing tasks. If the data is static (that is,
it never changes), then there is no problem. However, if the data is
variable, then there must be some way for a task that is about to make a
change to keep other tasks from looking at the data.

For example, to add a node to a linked list of data, a task would normally
just add the node. However, if the list is shared with other tasks, this
could be dangerous. Another task could be walking down the list while the
change is being made and pick up an incorrect pointer. The problem is
worse if two tasks attempt to add an item to the list at the same time.
Exec semaphores provide a way to prevent such problems.

A semaphore is much like getting a key to a locked data item. When you
have the key (semaphore), you can access the data item without worrying
about other tasks causing problems. Any other tasks that try to obtain
the semaphore will be put to sleep until the semaphore becomes available.
When you have completed your work with the data, you return the semaphore.

For semaphores to work correctly, there are two restrictions that must be
observed at all times:

1) All tasks using shared data that is protected by a semaphore must
always ask for the semaphore first before accessing the data. If some
task accesses the data directly without first going through the
semaphore, the data may be corrupted. No task will have safe access
to the data.

2) A deadlock will occur if a task that owns an exclusive semaphore on
some data inadvertently calls another task which tries to get an
exclusive semaphore on that same data in blocking mode. Deadlocks

Libraries

2/8

and other such issues are beyond the scope of this manual. For more
details on deadlocks and other problems of shared data in a
multitasking system and the methods used to prevent them, refer to a
textbook in computer science such as Operating Systems by Tannenbaum
(Prentice—-Hall) .

Semaphore Functions Function Reference

1.2 25 Exec Semaphores / Semaphore Functions

Exec provides a variety of useful functions for setting, checking and
freeing semaphores. The prototypes for these functions are as follows.

VOID AddSemaphore (struct SignalSemaphore *sigSem);
ULONG AttemptSemaphore(struct SignalSemaphore *sigSem);
struct SignalSemaphore xFindSemaphore(UBYTE xsigSem);
VOID InitSemaphore(struct SignalSemaphore *sigSem);

VOID ObtainSemaphore(struct SignalSemaphore *xsigSem) ;
VOID ObtainSemaphorelist (struct List =xsigSem);
void ObtainSemaphoreShared(struct SignalSemaphore *sigSem);

VOID ReleaseSemaphore(struct SignalSemaphore xsigSem);
VOID ReleaseSemaphorelist (struct List xsigSem);
VOID RemSemaphore(struct SignalSemaphore xsigSem);

The Signal Semaphore Multiple Semaphores Semaphore Example

1.3 25/ Semaphore Functions / The Signal Semaphore

Exec semaphores are signal based. Using signal semaphores is the easiest
way to protect shared, single-access resources in the Amiga. Your task
will sleep until the semaphore is available for use. The SignalSemaphore
structure is as follows:

struct SignalSemaphore {
struct Node ss_Link;
SHORT ss_NestCount;
struct MinList ss_WaitQueue;
struct SemaphoreRequest ss_MultipleLink;
struct Task =*ss_Owner;
SHORT ss_QueueCount;
}i

ss_Link
is the node structure used to link semaphores together. The 1n Pri
and 1ln_Name fields are used to set the priority of the semaphore in a
list and to name the semaphore for public access. If a semaphore is
not public the 1n_Name and 1ln_Pri fields may be left NULL.

ss_NestCount
is the count of number of locks the current owner has on the

Libraries

semaphore.

ss_WaitQueue
is the List header for the list of other tasks waiting for this
semaphore.

ss_MultipleLink
is the SemaphoreRequest used by ObtainSemaphoreList ().

ss_Owner
is the pointer to the current owning task.

ss_QueueCount
is the number of other tasks waiting for the semaphore.

A practical application of a SignalSemaphore would be to use it as the
base of a shared data structure. For example:

struct SharedList {
struct SignalSemaphore sl_Semaphore;
struct MinList sl_List;

bi

Creating a SignalSemaphore Structure

Making a SignalSemaphore Available to the Public
Obtaining a SignalSemaphore Exclusively
Obtaining a Shared SignalSemaphore

Checking a SignalSemaphore

Releasing a SignalSemaphore

Removing a SignalSemaphore Structure

1.4 25//The Signal Semaphore / Creating a SignalSemaphore Structure

To initialize a SignalSemaphore structure use the InitSemaphore ()

function. This function initializes the list structure and the nesting
and queue counters. It does not change the semaphore’s name or priority
fields.

This fragment creates and initializes a semaphore for a data item such as
the SharedList structure above.

struct SharedList =*slist;

if (slist=(struct SharedList =*)
AllocMem (sizeof (struct SharedList),MEMF_PUBLIC|MEMF_CLEAR))

NewList (&slist—->sl_List); /* Initialize the MinList */
InitSemaphore ((struct SignalSemaphore x)slist);
/* And initialize the semaphore =*/

/+* The semaphore can now be used. =*/

}

else printf ("Can’t allocate structure\n");

Libraries

4/8

1.5 25///Making a SignalSemaphore Available to the Public

A semaphore should be used internally in your program if it has more than
one task operating on shared data structures. There may also be cases
when you wish to make a data item public to other applications but still
need to restrict its access via semaphores. In that case, you would give
your semaphore a unique name and add it to the public SignalSemaphore list
maintained by Exec. The AddSemaphore() function does this for you. This
works in a manner similar to AddPort () for message ports.

To create and initialize a public semaphore for a data item and add it to
the public semaphore list maintained by Exec, the following function
should be used. (This will prevent the semaphore from being added or
removed more than once by separate programs that use the semaphore).

UBYTE *name; /+ name of semaphore to add x/
struct SignalSemaphore xsemaphore;

Forbid() ;
/* Make sure the semaphore name is unique =/
if (!FindSemaphore (name)) {
/+ Allocate memory for the structure =/
if (sema=(struct SignalSemaphore x)
AllocMem (sizeof (struct SignalSemaphore),MEMF_PUBLIC|MEMF_CLEAR))

sema—->ss_Link.1ln_Pri=0; /* Set the priority to zero =/
sema->ss_Link.1ln_Name=name;

/+ Note that the string ’"name’ is not copied. If that is */
/+ needed, allocate memory for it and copy the string. And =/
/+ add the semaphore the the system list */

AddSemaphore (semaphore) ;

}

Permit () ;

A value of NULL for semaphore means that the semaphore already exists or
that there was not enough free memory to create it.

Before using the data item or other resource which is protected by a
semaphore, you must first obtain the semaphore. Depending on your needs,
you can get either exclusive or shared access to the semaphore.

1.6 25// The Signal Semaphore / Obtaining a SignalSemaphore Exclusively

The ObtainSemaphore () function can be used to get an exclusive lock on a
semaphore. If another task currently has an exclusive or shared lock(s)
on the semaphore, your task will be put to sleep until all locks on the

the semaphore are released.

Semaphore Nesting.

SignalSemaphores have nesting. That is, if your task already

owns the semaphore, it will get a second ownership of that semaphore.
This simplifies the writing of routines that must own the semaphore

Libraries 5/8

but do not know if the caller has obtained it yet.
To obtain a semaphore use:

struct SignalSemaphore xsemaphore;
ObtainSemaphore (semaphore) ;

To get an exclusive lock on a public semaphore, the following code should
be used:

UBYTE xname;
struct SignalSemaphore xsemaphore;

Forbid () ; /+ Make sure the semaphore will not go away if found. =*/
if (semaphore=FindSemaphore (name))
ObtainSemaphore (semaphore) ;

Permit () ;
The value of semaphore is NULL if the semaphore does not exist. This is
only needed if the semaphore has a chance of going away at any time (i.e.,
the semaphore is public and might be removed by some other program). If

there is a guarantee that the semaphore will not disappear, the semaphore
address could be cached, and all that would be needed is a call to the
ObtainSemaphore () function.

1.7 25//The Signal Semaphore / Obtaining a Shared SignalSemaphore

For read-only purposes, multiple tasks may have a shared lock on a signal
semaphore. If a semaphore is already exclusively locked, all attempts to
obtain the semaphore shared will be blocked until the exclusive lock is
released. At that point, all shared locks will be obtained and the
calling tasks will wake up.

To obtain a shared semaphore, use:

struct SignalSemaphore =*semaphore;
ObtainSemaphoreShared (semaphore) ;

To obtain a public shared semaphore, the following code should be used:

UBYTE *name;
struct SignalSemaphore xsemaphore;

Forbid() ;

if (semaphore = FindSemaphore (name))
ObtainSemaphoreShared (semaphore) ;

Permit () ;

1.8 25//The Signal Semaphore / Checking a SignalSemaphore

When you attempt to obtain a semaphore with ObtainSemaphore (), your task
will be put to sleep if the semaphore is not currently available. If you

Libraries 6/8

do not want to wait, you can call AttemptSemaphore() instead. If the
semaphore is available for exclusive locking, AttemptSemaphore() obtains
it for you and returns TRUE. If it is not available, the function returns
FALSE immediately instead of waiting for the semaphore to be released.

To attempt to obtain a semaphore, use the following:

struct SignalSemaphore *semaphore;
AttemptSemaphore (semaphore) ;

To make an attempt to obtain a public semaphore, the following code should
be used:

UBYTE *name;
struct SignalSemaphore xsemaphore;

Forbid() ;
if (semaphore = FindSemaphore (name)) AttemptSemaphore (semaphore);
Permit () ;

1.9 25//The Signal Semaphore / Releasing a SignalSemaphore

Once you have obtained the semaphore and completed any operations on the
semaphore protected object, you should release the semaphore. The
ReleaseSemaphore () function does this. For each successful
ObtainSemaphore (), ObtainSemaphoreShared() and AttemptSemaphore() call you
make, you must have a matching ReleaseSemaphore () call.

1.10 25//The Signal Semaphore / Removing a SignalSemaphore Structure

Semaphore resources can only be freed if the semaphore is not locked. A
public semaphore should first be removed from the system semaphore list

with the RemSemaphore () function. This prevents other tasks from finding
the semaphore and trying to lock it. Once the semaphore is removed from

the system list, the semaphore should be locked exclusively so no other

task can lock it. Once the lock is obtained, it can be released again,

and the resources can be deallocated.

The following code should be used to remove a public semaphore:

UBYTE =*name;
struct SignalSemaphore xsemaphore;

Forbid();
if (semaphore=FindSemaphore (name))

{

RemSemaphore (semaphore) ; /* So no one else can find it... x/
ObtainSemaphore (semaphore) ; /* Wait for us to be last user...x/
ReleaseSemaphore (semaphore) ; /+ Ready for cleanup... x/

}
FreeMem (semaphore, sizeof (struct SignalSemaphore));
Permit () ;

Libraries

1.11 25/ Semaphore Functions / Multiple Semaphores

The semaphore system has the ability to ask for ownership of a complete
list of semaphores. This can help prevent deadlocks when there are two or
more tasks trying to get the same set of semaphores. If task A gets
semaphore 1 and tries to obtain semaphore 2 after task B has obtained
semaphore 2 but before task B tries to obtain semaphore 1 then both tasks
will hang. Exec provides ObtainSemaphorelList () and ReleaseSemaphorelist ()
to prevent this problem.

A semaphore list is a list header to a list that contains SignalSemaphore
structures. The semaphore list must not contain any public semaphores.
This is because the semaphore list functions use the standard node
structures in the semaphore.

To arbitrate access to a semaphore list use another semaphore. Create a
public semaphore and use it to arbitrate access to the list header of the
semaphore list. This also gives you a locking semaphore, protecting the
ObtainSemaphorelList () call. Once you have gained access to the list with
ObtainSemaphore (), you may obtain all the semaphores on the list via
ObtainSemaphorelList () (or get individual semaphores with
ObtainSemaphore()). When you are finished with the protected objects,
release the semaphores on the list with ReleaseSemaphorelList (), and then
release the list semaphore via ReleaseSemaphore ().

For example:

ObtainSemaphore ((struct SignalSemaphore =*)Semaphorelist);
ObtainSemaphorelist (SemaphoreList->sl_List);

/* At this point the objects are protected, and can be manipulated =/

ReleaseSemaphorelist (SemaphorelList—->sl_List);
ReleaseSemaphore ((struct SignalSemaphore =*)Semaphorelist);

See the SharedList structure above for an example of a semaphore structure
with a list header.

1.12 25 Exec Semaphores / Function Reference

The following charts give a brief description of the Exec semaphore
functions. See the Amiga ROM Kernel Reference Manual: Includes and
Autodocs for details about each call.

Table 25-1: Exec Semaphore Functions

\

| Exec Semaphore Function Description

\ === - === === === === ——==
| AddSemaphore () 1Initialize and add a signal semaphore to the
\ system.

\ AttemptSemaphore () Try to get an exclusive lock on a signal

\

semaphore without blocking.

Libraries

8/8

FindSemaphore ()
InitSemaphore ()
ObtainSemaphore ()
ObtainSemaphorelList ()

ObtainSemaphoreShared ()

ReleaseSemaphore ()
ReleaseSemaphorelist ()

RemSemaphore ()

Find a given system signal semaphore.
Initialize a signal semaphore.

Try to get exclusive access to a signal
semaphore.

Try to get exclusive access to a list of
signal semaphores.

Try to get shared access to a signal
semaphore (V36).

Release the lock on a signal semaphore.
Release the locks on a list of signal
semaphores.

Remove a signal semaphore from the system.

	Libraries
	Amiga® RKM Libraries: 25 Exec Semaphores
	25 Exec Semaphores / Semaphore Functions
	25 / Semaphore Functions / The Signal Semaphore
	25 / / The Signal Semaphore / Creating a SignalSemaphore Structure
	25 / / / Making a SignalSemaphore Available to the Public
	25 / / The Signal Semaphore / Obtaining a SignalSemaphore Exclusively
	25 / / The Signal Semaphore / Obtaining a Shared SignalSemaphore
	25 / / The Signal Semaphore / Checking a SignalSemaphore
	25 / / The Signal Semaphore / Releasing a SignalSemaphore
	25 / / The Signal Semaphore / Removing a SignalSemaphore Structure
	25 / Semaphore Functions / Multiple Semaphores
	25 Exec Semaphores / Function Reference

