Libraries

Libraries

] COLLABORATORS
TITLE :
Libraries
ACTION NAME DATE SIGNATURE
WRITTEN BY July 23, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Libraries

Contents

1 Libraries

1.1 Amiga® RKM Libraries: 11 Intuition Special Functions

1.2 11 Intuition Special Functions / Locking IntuitionBase

1.3 11 Special Functions / Easy Memory Allocation and

Deallocation

1.4 11/Easy Memory Allocation and Deallocation / Helps You Remember

1.5 11/Easy Memory Allocation and Deallocation / How to Remember

1.6 11/Easy Memory Allocation and Deallocation / The Remember Structure

1.7 11 Intuition Special Functions / Current Time Values

1.8 11 Special Functions / Using Sprites in Intuition Windows and Screens

1.9 11 Intuition Special Functions / Intuition and Preferences

1.10 11 Intuition Special Functions / Function Reference

Libraries

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 11 Intuition Special Functions

There are several Intuition topics which, while not large enough to fill
chapters of their own, nontheless deserve to be discussed. The subjects
covered here include locking IntuitionBase, the Intuition memory functions
AllocRemember () and FreeRemember (), using sprites with Intuition, and
Intuition’s special internal functions.

Locking IntuitionBase

Easy Memory Allocation and Deallocation
Current Time Values

Using Sprites in Intuition Windows and Screens
Intuition and Preferences

Function Reference

1.2 11 Intuition Special Functions / Locking IntuitionBase

It is sometimes necessary to examine the IntuitionBase structure. Items
such as the address of the active screen and window, current mouse
coordinates and more can be found there. It is never a good idea to
simply read these fields, as they are prone to sudden change. The

IntuitionBase structure must always be locked before looking at its fields.

It is necessary to inform Intuition that an application is about to
examine IntuitionBase so that Intuition will not change any variables and
IntuitionBase will remain static during the access. The call LockIBase()
will lock the state of IntuitionBase so that it may be examined. During
the time that the application has IntuitionBase locked, all Intuition
input processing is frozen. Make every effort to examine IntuitionBase
and release the lock as quickly as possible. The values in IntuitionBase
are read-only. Applications should never write values to IntuitionBase.

ULONG LockIBase (unsigned long dontknow);
LockIBase () is passed a ULONG (dontknow in the prototype above) indicating

the Intuition lock desired. For all foreseeable uses of the call this
value should be 0. LockIBase() returns a ULONG, that must be passed to

Libraries

2/6

UnlockIBase () later to allow IntuitionBase to change once again.

Every call to LockIBase() must be matched by a subsequent call to
UnlockIBase() :

void UnlockIBase(unsigned long ibLock);

Set the ibLock argument to the value returned by the previous call to
LockIBase() .

About LockIBase() .

This function should not be called while holding any other system
locks such as Layer and Layer_Info locks. Between calls to
LockIBase () and UnlockIBase (), you may not call any Intuition

or other high-level system functions so it is best to copy the
information you need and release the lock as quickly as possible.

About IntuitionBase.

Never, ever, modify any of the fields in IntuitionBase directly.
Also, there are fields in IntuitionBase that are considered system
private that should not be accessed, even for reading. (Refer to the
<intuition/intuitionbase> include file.) Application programs

cannot depend on (and should not use) the contents of these fields;
their usage is subject to change in future revisions of Intuition.

1.3 11 Special Functions / Easy Memory Allocation and Deallocation

Intuition has a pair of routines that enable applications to make multiple

memory allocations which are easily deallocated with a single call. The
Intuition routines for memory management are AllocRemember () and
FreeRemember (). These routines rely upon the Remember structure to track
allocations.

Intuition Helps You Remember The Remember Structure

How to Remember An Example of Remembering

1.4 11/ Easy Memory Allocation and Deallocation / Helps You Remember

The AllocRemember () routine calls the Exec AllocMem() function to perform
the memory allocation. (Of course, the application may directly call Exec
memory functions, see the chapter "Exec Memory Allocation" for details.)

AllocRemember () performs two allocations each time it is called. The
first allocation is the actual memory requested by the application. This
memory is of the size and type specified in the call and is independent of
the second block of memory. The second allocation is memory for a
Remember structure which is used to save the specifics of the allocation
in a linked list. When FreeRemember () is called it uses the information
in this linked list to free all previous memory allocations at once. This
is convenient since normally you would have to free each memory block one

Libraries

3/6

at a time which requires knowing the size and base address of each one.
The AllocRemember () call takes three arguments:

APTR AllocRemember (struct Remember xxrememberKey, unsigned long size,
unsigned long flags);

The rememberKey is the address of a pointer to a Remember structure. Note
that this is a double indirection, not just a simple pointer. The size is
the size, in bytes, of the requested allocation. The flags argument is
the specification for the memory allocation. These are the same as the
specifications for the Exec AllocMem() function described in the chapter
on "Exec Memory Allocation".

If AllocRemember () succeeds, it returns the address of the allocated
memory block. It returns a NULL if the allocation fails.

The FreeRemember () function gives the option of freeing memory in either
of two ways. The first (and most useful) option is to free both the link
nodes that AllocRemember () created and the memory blocks to which they
correspond. The second option is to free only the link nodes, leaving the
memory blocks for further use (and later deallocation via Exec’s FreeMem()
function). But, as a general rule, the application should never free only
the link nodes as this can greatly fragment memory. If the link nodes are
not required, use the Exec memory allocation functions.

The FreeRemember () call is as follows:
void FreeRemember (struct Remember *xrememberKey, long reallyForget);

Set the rememberKey argument to the address of a pointer to a Remember
structure. This is the same value that was passed to previous calls to
AllocRemember (). The reallyForget argument is a boolean that should be
set to TRUE. 1If TRUE, then both the link nodes and the memory blocks are
freed. If FALSE, then only the link nodes are freed. Again, applications
should avoid using the FALSE value since it can lead to highly fragmented
memory .

1.5 11/ Easy Memory Allocation and Deallocation / How to Remember

To use Intuition’s memory functions, first create an anchor for the memory
to be allocated by declaring a variable that is a pointer to a Remember
structure and initializing that pointer to NULL. This variable is called
the remember key.

struct Remember xrememberKey = NULL;

Call AllocRemember () with the address of the remember key, along with the
memory requirements for the specific allocation. Multiple allocations may
be made before a call to FreeRemember().

memBlockA = AllocRemember (&rememberKey, SIZE_A,
MEMF_CLEAR | MEMF_PUBLIC) ;
if (memBlockA == NULL)
{

Libraries 4/6

/* error: allocation failed =*/
printf ("Memory allocation failed.\n");

}

else

{
/* use the memory here =*/
printf ("Memory allocation succeeded.\n");

}

AllocRemember () actually performs two memory allocations per call, one for
the memory requested and the other for a Remember structure. The Remember
structure is filled in with data describing the allocation, and is linked
into the list to which the remember key points.

To free memory that has been allocated, simply call FreeRemember () with
the correct remember key.

void FreeRemember (&rememberKey, TRUE) ;

This will free all the memory blocks previously allocated with
AllocRemember () in a single call.

1.6 11/ Easy Memory Allocation and Deallocation / The Remember Structure

The Remember structure is defined in <intuition/intuition> as follows:

struct Remember

{

struct Remember xNextRemember;
ULONG RememberSize;

UBYTE *Memory;

bi

Generally, the Remember structure is handled only by the system. Here are
its fields:

NextRemember - The link to the next Remember structure.
RememberSize - The size of the memory tracked by this node.
Memory — A pointer to the memory tracked by this node.

1.7 11 Intuition Special Functions / Current Time Values

The function CurrentTime () gets the current time values. To use this
function, first declare the variables Seconds and Micros. Then, when the
application call the function, the current time is copied into the
argument pointers.

void CurrentTime (ULONG =xseconds, ULONG *micros);
See the DOS library Autodocs in the AmigaDOS Manual (Bantam Books) for

more information on functions dealing with the date and time. The DOS
library includes such functions as DateToStr (), StrToDate (), SetFileDate()

Libraries

and CompareDates() .

1.8 11 Special Functions / Using Sprites in Intuition Windows and Screens

Sprite functionality has limitations under Intuition. The hardware and
graphics library sprite systems manage sprites independently of the
Intuition display. In particular:

* Sprites cannot be attached to any particular screen. Instead, they
always appear in front of every screen.

* When a screen is moved, the sprites do not automatically move with
it. The sprites move to their correct locations only when the
appropriate function is called (either DrawGList () or MoveSprite()).

Hardware sprites are of limited use under the Intuition paradigm. They
travel out of windows and out of screens, unlike all other Intuition

mechanisms (except the Intuition pointer, which is meant to be global).

Remember that sprite data must be in Chip memory to be accessible to the

custom chips. This may be done with a compiler specific feature, such as
the _ _chip keyword of SAS/C. Otherwise, Chip memory can be allocated with
the Exec AllocMem() function or the Intuition AllocRemember () function,
setting the memory requirement flag to MEMF_CHIP. The sprite data may
then be copied to Chip memory using a function like CopyMem() in the Exec
library. See the chapter "Graphics Sprites, Bobs and Animation" for more
information.

1.9 11 Intuition Special Functions / Intuition and Preferences

The SetPrefs () function is used to configure Intuition’s internal data
states according to a given Preferences structure. This call relies on
the Preferences system used in V34 and earlier versions of the 0S. The
old system has been largely superceded in Release 2. See the
"Preferences" chapter for details. This routine is called only by:

* The Preferences program itself after the user changes Preferences
settings (under V34 and earlier).

* AmigaDOS when the system is being booted up. AmigaDOS opens the
devs:system—-configuration file and passes the information found there
to the SetPrefs() routine. This way, the user can create an
environment and have that environment restored every time the system
is booted.

The function takes three arguments:

struct Preferences xSetPrefs(struct Preferences x*prefbuf,
long size, long realThing)

The prefbuf argument is a pointer to a Preferences structure that will be
used for Intuition’s internal settings. The size is the number of bytes

Libraries 6/6

contained in your Preferences structure. Typically, you will use

sizeof (struct Preferences) for this argument. The realThing argument is a
boolean TRUE or FALSE designating whether or not this is an intermediate
or final version of the Preferences. The difference is that final changes
to Intuition’s internal Preferences settings cause a global broadcast of
NEWPREFS events to every application that is listening for this event.
Intermediate changes may be used, for instance, to update the screen
colors while the user is playing with the color gadgets.

About SetPrefs().

The intended use for the SetPrefs() call is entirely to serve

the user. You should never use this routine to make your programming
or design Jjob easier at the cost of yanking the rug out from beneath
the user.

Refer to the chapter "Preferences" for information about the Preferences
structure and the new Preferences procedure calls used in Release 2.

1.10 11 Intuition Special Functions / Function Reference

The following are brief descriptions of the Intuition functions discussed
in this chapter. See the Amiga ROM Kernel Reference Manual: Includes and
Autodocs for details on each function call.

Table 11-1: Other Functions for Intuition

\ |

| Function Description

\ == = == == = ==

| AllocRemember () Allocate memory and track the allocation.

\ FreeRemember () Free memory allocated with AllocRemember () . |

| == e e e |

| LockIBase () Lock IntuitionBase for reading.

\ UnlockIBase () Unlock IntuitionBase when done reading.

|- o= |
CurrentTime () Get the system time in seconds and micro-seconds.

SetPrefs () An Intuition internal function you should try to

\
\
\ avoid.
\

	Libraries
	Amiga® RKM Libraries: 11 Intuition Special Functions
	11 Intuition Special Functions / Locking IntuitionBase
	11 Special Functions / Easy Memory Allocation and Deallocation
	11 / Easy Memory Allocation and Deallocation / Helps You Remember
	11 / Easy Memory Allocation and Deallocation / How to Remember
	11 / Easy Memory Allocation and Deallocation / The Remember Structure
	11 Intuition Special Functions / Current Time Values
	11 Special Functions / Using Sprites in Intuition Windows and Screens
	11 Intuition Special Functions / Intuition and Preferences
	11 Intuition Special Functions / Function Reference

