Libraries

Libraries

] COLLABORATORS
TITLE :
Libraries
ACTION NAME DATE SIGNATURE
WRITTEN BY July 23, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Libraries

Contents

1 Libraries 1
1.1 Amiga® RKM Libraries: 29 Graphics Libraryand Text, 1
1.2 29 Graphics Library and Text/ About AmigaFonts, 1
1.3 29/ About Amiga Fonts / System Fonts InRelease 2, 2
1.4 29 Graphics Library and Text / The Text Function 2
1.5 29/The Text Function / Choosing the Font, 3
1.6 29/ The Text Function / Setting the Text Drawing Attributes 5
1.7 29/ The Text Function / Rendering the Text ettt 6
1.8 29/The Text Function / Setting the Font Style 7
1.9 29 Graphics Library and Text/ Does the Text Fit? 8
1.10 29 Graphics Library and Text / Font Scaling and AspectRatio 10
1.11 29 Graphics Library and Text / Some Things to Look OutFor 13
1.12 29 Graphics Library and Text / What Fonts Are Available? 15
1.13 29 Graphics Library and Text / How an Amiga Font Structured in Memory? 16
1.14 29 Graphics Library and Text / But What About Color Fonts? 20
1.15 29 Graphics Library and Text / Composition of a Bitmap FontonDisk 21
1.16 29 Graphics Library and Text / Function Reference 23

Libraries

1/24

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 29 Graphics Library and Text

On the Amiga, rendering text is similar to rendering lines and shapes.
The Amiga graphics library provides text functions based around the
RastPort structure, which makes it easy to intermix graphics and text.

About Amiga Fonts

The Text Function

Does the Text Fit?

Font Scaling and Aspect Ratio

Some Things to Look Out For

What Fonts Are Available?

How is an Amiga Font Structured in Memory?
But What About Color Fonts?

The Composition of a Bitmap Font on Disk
Function Reference

1.2 29 Graphics Library and Text / About Amiga Fonts

In order to render text, the Amiga needs to have a graphical
representation for each symbol or text character. These individual images
are known as glyphs. The Amiga gets each glyph from a font in the system
font list. At present, the fonts in the system list contain a bitmap of a
specific point size for all the characters and symbols of the font.

Fonts are broken up into different font families. For example, the
Amiga’s Topaz is a font family. Each font family shares a basic look but
can have a variety of styles and point sizes.

The style of a font refers to a minor alteration in the way the plain
version of the font’s characters are rendered. Currently, the Amiga
supports three font styles: bold, italics and underline (the font’s style
may also be considered plain when it does not have any of these styles).
Although these styles can be inherent to a font, they are normally added
algorithmically as text is rendered.

On the Amiga, the point size of a font normally refers to the height of

Libraries

2/24

the font in pixels. For example, Topaz—-8 is 8 pixels high. Because the
size of Amiga pixels varies between display modes, the appearance of a
font will also vary between display modes. Future versions of the Amiga
0OS may measure font size in other units. For example, the standard point
in the PostScript page description language normally refers to a point as
being a square dot that is 1/72 of an inch on a side. Using a standard
measuring unit such as the PostScript point makes it possible to create a
WYSIWYG (What You See Is What You Get) display that exactly matches
printer or other device output.

When the Amiga first starts up, the only fonts in the system font list are
Topaz-8 and Topaz-9, both of which are in ROM. Any other fonts must be
loaded from disk or generated somehow. In Amiga operating systems prior
to Release 2, additional fonts have to be loaded from disk (usually from
the FONTS: directory) using the diskfont.library. For each font size of
each font family there is a corresponding bitmap file on disk. If there
is no bitmap on disk or in ROM for a specific font size, that font size is
not available (if the operating system is 1.3 or earlier).

System Fonts In Release 2

1.3 29/ About Amiga Fonts / System Fonts In Release 2

Under Release 2 and later versions of the 0S, the system has additional

font sources at its disposal. If an application asks the diskfont.library
to load a font of a size that has no corresponding bitmap on disk, the
library can generate that size font. If diskfont.library can find a

smaller or larger version of the font requested, it can scale that font’s
bitmap to the size needed. Of course, because the library is scaling a
bitmap, the quality of the bitmap can degenerate in the scaling process.

A more significant improvement to the diskfont.library is that contains
AGFA’s Intellifont® engine. As of Release 2.04 (V37) the diskfont.library
can utilize AGFA Compugraphic font outlines. The Compugraphic fonts (CG
fonts) are mathematical outlines that describe what the font’s characters
look like. The advantage of the outline fonts is that they can be scaled
to any point size without the loss of resolution inherent in bitmap
scaling. From the programmers point of view, no extra information is
necessary for using the CG fonts, the diskfont.library takes care of all
the scaling. Future releases of the 0S may bring finer control over the
font scaling engine which will allow an application to rotate and shear

glyphs.

1.4 29 Graphics Library and Text / The Text Function

Amiga text rendering is centered around the graphics.library function
Text (), which renders text into a rastport:

void Text (struct RastPort #*myrp, STRPTR mystring, ULONG count);

where myrp is a pointer to the target rastport, mystring is the string to
render, and count is the number of characters of mystring to render.

Libraries

3/24

Text () renders at the current rastport position and it takes care of
moving the rastport’s current X position as it renders each letter.
Text () only renders text horizontally, so repositioning the rastport’s Y

position (for example, for a new line) is the responsibility of the
application. This is covered in more detail later in this chapter.

Like the other rastport based graphics primitives, most of the text
rendering attributes are specified within the RastPort structure itself.
The current position, the color of the text, and even the font itself are
all specified in the RastPort structure.

Choosing the Font Rendering the Text
Setting the Text Drawing Attributes Setting the Font Style

1.5 29/ The Text Function / Choosing the Font

The graphics.library function SetFont () changes the rastport’s current
font:

void SetFont (struct RastPort *myrp, struct TextFont s*mytf);

The parameter mytf is a pointer to an open, valid TextFont structure. The
system uses the TextFont structure to keep track of fonts (The TextFont
structure is discussed in detail later in this chapter). The OpenFont ()
(from graphics.library) and OpenDiskFont () (from diskfont.library)
functions both return a pointer to a valid TextFont structure. The
OpenFont () function will only open fonts that have already been loaded and
are currently in the system list. Normally applications use the
OpenDiskFont () call instead of OpenFont () because OpenDiskFont () can load
and open fonts from disk as well as open those that are already in the
system list.

Here are prototypes for these functions:

struct TextFont =xOpenDiskFont (struct TextAttr xmytextAttr);
struct TextFont xOpenFont (struct TextAttr xmytextAttr);

The mytextAttr argument points to a TextAttr structure that describes the
requested font. The TextAttr structure (from <graphics/text.h>) looks
like this:

struct TextAttr {

STRPTR ta_Name; /+ name of the font x/

UWORD ta_YSize; /* height of the font */

UBYTE ta_style; /+ intrinsic font style =*/

UBYTE ta_Flags; /+ font preferences and flags =*/

}i

where ta_Name is a string naming the font to open, ta_¥YSize is the point
size of the font (normally in pixels), ta_Style is a bitfield describing
the font style, and ta_Flags is a bitfield that further describes
characteristics of the font. Note that the name of the font can either be
the font name alone (.font) or it can be prepended with a full
path. Without a path to the font, if the font is not already loaded into
the system list, OpenDiskFont () will look in the FONTS: directory for the

Libraries

4/24

font file. If there is a path, OpenDiskFont () will look in that directory
for the font files, allowing the user to put fonts in any directory
(although this is discouraged). OpenFont () and OpenDiskFont () try to find
a font that matches your TextAttr description. An important thing to
remember about OpenDiskFont () is that only a process can call it (as
opposed to a task). This is primarily because the function has to use
dos.library to scan disks for font files.

The font styles for ta_Style (from <graphics/text.h>) are:

FSF_UNDERLINED The font is underlined
FSF_BOLD The font is bolded

FSF_ITALIC The font is italicized
FSF_EXTENDED The font is extra wide

The flags for ta_Flags (from <graphics/text.h>) are:

FPF_ROMFONT This font is built into the ROM (currently, only
Topaz-8 and Topaz—-9 are ROM fonts).

FPF_DISKFONT This font was loaded from disk (with
diskfont.library)

FPF_REVPATH This font is designed to be printed from from right
to left (Hebrew is written from right to left)

FPF_TALLDOT This font was designed for a Hires screen (640x200
NTSC, non-interlaced)

FPF_WIDEDOT This font was designed for a Lores Interlaced screen

(320x400 NTSC)
FPF_PROPORTIONAL The character widths of this font are not constant
FPF_DESIGNED This font size was explicitly designed at this size
rather than constructed. If you do not set this bit
in your TextAttr, then the system may generate a
font for you by scaling an existing ROM or disk font
(under V36 and above) .

For example to open an 11 point bold, italic Topaz font, the code would
look something like this:

pseudotext.c

The example above uses the graphics.library’s SetFont () function to change
the rastport’s current font. ©Notice that this example restores the
rastport’s original font (myrp->Font) before exiting. This isn’t normally
necessary unless some other process assumes the rastport’s font (or other
drawing attributes) will not change. Intuition does not rely on the
window’s RPort.Font field for rendering or closing the default window
font, so applications can change that font without having to restore it.

Prior to Release 2, some applications assumed that any window they opened
would always use Topaz-8 without bothering to explicitly set it. Since
Topaz-8 was the normal default font before Release 2, this was usually not
a problem. However, under Release 2 and later versions of the 0S, the
user can easily change the default system fonts with the Font Preferences
editor. Hence, applications that make assumptions about the size of the

Libraries

5/24

default font look terrible under Release 2 (and in some cases are
unusable). Program designers should not make assumptions about the system
font, and wherever possible, honor the user font preferences. See the
"Preferences" chapter of this manual for more information on how to find
user preferences.

1.6 29/ The Text Function / Setting the Text Drawing Attributes

In addition to SetFont (), there are three rastport control functions that
set attributes for text rendering:

void SetAPen(struct RastPort *rp, ULONG pen);
void SetBPen(struct RastPort *rp, ULONG pen);
void SetDrMd(struct RastPort xrp, ULONG drawMode) ;

The color of the text depends upon the rastport’s current drawing mode and
pen colors. You set the draw mode with the SetDrMd() function passing it
a pointer to a rastport and a drawing mode: JAM1, JAM2, COMPLEMENT or
INVERSEID.

If the drawing mode is JAM1, the text will be rendered in the
RastPort.FgPen color. Wherever there is a set bit in the character’s
bitmap image, Text () will set the corresponding bit in the rastport to the
FgPen color. This is known as overstrike mode. You set the FgPen color
with the SetAPen () function by passing it a pointer to the rastport and a
color number.

If the drawing mode is set to JAM2, Text () will place the FgPen color as
in the JAM] mode, but it will also set the bits in the rastport to the
RastPort.BgPen color wherever there is a corresponding cleared bit in the
character’s bitmap image. Basically, this prints the character themselves
in the FgPen color and fills in the surrounding parts of the character
image with the BgPen color. You set the BgPen color with the SetBPen()
function by passing it a pointer to the rastport and a color number.

If the drawing mode is COMPLEMENT, for every bit set in the character’s
bitmap image, the corresponding bits in the rastport (in all of the
rastport’s bitplanes) will have their state reversed. cleared bits in the
character’s bitmap image have no effect on the destination rastport. As
with the other drawing modes, the write mask can be used to protect
certain bitplanes from being modified (see the "graphics primitives"
chapter for more details).

The JAM1, JAM2, and COMPLEMENT drawing modes are mutually exclusive of
each other but each can be modified by the INVERSVID drawing mode. If you
combine any of the drawing modes with INVERSVID, the Amiga will reverse
the state of all the bits in the source drawing area before writing
anything into the rastport.

The idea of using a RastPort structure to hold all the rendering
attributes is convenient if the rastport’s drawing attributes aren’t going
to change much. This is not the case where several processes need to
render into a rastport using very different drawing attributes. An easy
way around this problem is to clone the RastPort. By making an exact
duplicate of a RastPort, you can change the various rendering parameters

Libraries 6/24

of your RastPort without effecting other programs that render into the
RastPort you cloned. Because a RastPort only contains a pointer to the
rendering area (the bitmap), the original RastPort and the cloned RastPort
both render into the bitmap, but they can use different drawing parameters
(font, drawing mode, colors, etc.).

1.7 29/ The Text Function / Rendering the Text

When the Text () routine renders text, it renders at the current rastport
position along the text’s baseline. The baseline is an imaginary line on
top of which the text is rendered. Each font has a baseline that is a
constant number of pixels from the top of the font’s bitmap. For most
fonts, parts of some characters are rendered both above and below the
baseline (for example, vy, g, and j usually have parts above and below the
baseline). The part below the baseline is called the descender.

Figure 29-1: Descenders and Baseline of Amiga Fonts

Because Text () only increments the rastport’s current X position as it
renders text horizontally, programs that need to print several lines of
text have to take care of moving the current pointer to the beginning of
the next line, usually with the graphics.library’s Move () function:

void Move (struct RastPort *rp, LONG x, long y);
When moving the current position to the beginning of the next line, an

application must make sure it leaves enough space above and below the
baseline to prevent characters on different lines from overlapping each

other. There are a few fields in the TextFont structure returned by
OpenFont () and OpenDiskFont () that are useful for spacing and rendering
text:

struct TextFont {
struct Message tf_Message; /* reply message for font removal =/
/+ font name in LN used in this =/

\
UWORD tf_YSize; /+ font height | order to best =/
UBYTE tf_Style; /+ font style | match a font =/
UBYTE tf_Flags; /+ preferences and flags / request. =*/
UWORD tf_XSize; /* nominal font width */

UWORD tf_Baseline; /+ distance from the top of char to baseline «/
UWORD tf_BoldSmear; /* smear to affect a bold enhancement =/

UWORD tf_Accessors; /* access count =/

UBYTE tf_LoChar; /* the first character described here x/

UBYTE tf_HiChar; /* the last character described here =*/

APTR tf_CharData; /* the bit character data =*/

UWORD tf Modulo; /+ the row modulo for the strike font data =/

APTR tf_CharLoc; /+ ptr to location data for the strike font =/
/ * 2 words: bit offset then size «/

APTR tf_CharSpace; /% ptr to words of proportional spacing data =/

APTR tf_CharKern; /+ ptr to words of kerning data «*/
}i

Libraries 7124

The fields of interest to applications are as follows.

tf_YSize
The "height", in pixels, of this font. None of the characters in
this font will be taller than this value.

tf_XSize
This is the character width for monospaced (non-proportional) fonts.
The width includes the extra space needed to the left and right of
the character to keep the characters from running together.

tf Baseline
The distance in pixels from the top line of the font to the baseline.

tf_LoChar
This is the first character glyph (the graphical symbol associated
with this font) defined in this font. All characters that have ASCII
values below this value do not have an associated glyph.

tf_HiChar
This is the last character glyph defined in this font. All
characters that have ASCII values above this wvalue do not have an
associated glyph. An application can use these values to avoid
rendering characters which have no associated glyphs. Any characters
without an associated glyph will have the default glyph associated to
them. Normally, the default glyph is a rectangle.

To erase text, the graphics.library provides two functions that were
specifically designed to clear parts of a rastport based on the dimensions
of the current font:

void ClearEOL(struct RastPort *rp);
void ClearScreen(struct RastPort xrp);

Using the current font, ClearEOL() will clear the rest of the current text
line from the rastport’s current position to the edge of the rastport.
ClearEOL () was introduced in the Release 2 graphics.library.

ClearScreen() will clear the rest of the line as ClearEOL() does, but it
will also clear the rastport below the current line of text.

1.8 29/ The Text Function / Setting the Font Style

The OpenFont () and OpenDiskFont () functions both search through the fonts
available to them, looking for the font that most closely matches the
TextAttr structure. If these functions can’t find a font that matches
exactly, they will open the one with the same name that most closely
matches the TextAttr structure’s ta_¥YSize, ta_Style, and ta_Flags fields
(in that order of preference).

If the font doesn’t match your style choice exactly, it is possible to ask
the system to alter how it renders the font so it matches the style you
need. The rastport contains some flags that tell the system’s text
rendering functions to algorithmically add styles to characters as they

Libraries 8/24

are rendered. Currently, the system can add up to three styles to a font:
italics, bold, and underline. The system cannot alter the style of a font
if the style is already intrinsic to the font. For example, it is not
possible to add (or remove) the bold styling to a font if the font was
designed to be bolded. There are two graphics.library functions that deal
with software font style setting:

ULONG AskSoftStyle(struct RastPort x*rp);
ULONG SetSoftStyle(struct RastPort xrp, ULONG newstyle,
ULONG enable);

The AskSoftStyle() function returns a bitmask of the style bits available
to the rastport’s current font. The style bits are the same ones used by
the TextAttr’s ta_Style field (from <graphics/text.h>). SetSoftStyle()
changes the rastport’s current software style setting according to the
style bits set in the newstyle field (from the function prototype above).

SetSoftStyle () pays attention only to the bits of newstyle that have the

corresponding bit in the enable field set as well. This function returns
the style, which is the combined result of previous soft style selection,
the effect of this function, and the style inherent in the set font. The
following code fragment turns on the algorithmic font attributes for the

rastport (myrastport) based on those style attributes that were requested
in the OpenDiskFont () call (mytextattr.ta_Style) and not inherent in the

font.

/* Set the font and add software styling to the text if I asked for
a style in OpenFont () and didn’t get it. Because most Amiga fonts
do not have styling built into them (with the exception of the CG
outline fonts), if the user selected some kind of styling for the
text, it will have to be added algorithmically by calling
SetSoftStyle() .

*/

if (myfont = OpenDiskFont (mytextattr))

{

SetFont (myrastport, myfont);

SetSoftStyle (myrastport,
mytextattr.ta_Style ® myfont->tf_Style,
(FSF_BOLD | FSF_UNDERLINED | FSF_TITALIC));

CloseFont (myfont) ;

1.9 29 Graphics Library and Text / Does the Text Fit?

The Text () function renders its text on a single horizontal line without
considering whether or not the text it renders will actually fit in the
visible portion of the display area. Although for some applications this
behavior is acceptable, other applications, for example a word processor,
need to render all of their text where the user can see it. These
applications need to measure the display area to determine how much text
can fit along a given baseline. The graphics.library contains several
functions that perform some of the necessary measurements:

Libraries

9/24

WORD TextLength(struct RastPort »my_rp, STRPTR mystring,
ULONG mycount);

void TextExtent (struct RastPort xmy_rp, STRPTR mystring, LONG mycount,
struct TextExtent *textExtent);

void FontExtent (struct TextFont xfont,
struct TextExtent xfontExtent);

ULONG TextFit (struct RastPort *rp, STRPTR mystring, ULONG strlLen,
struct TextExtent *textExtent,
struct TextExtent *constrainingExtent,
LONG strDirection, ULONG constrainingBitWidth,
ULONG constrainingBitHeight);

The TextLength() function is intended to mimic the Text () function without
rendering the text. Using the exact same parameters as the Text ()
function, TextLength() returns the change in my_rp’s current X position
(my_rp.cp_x) that would result if the text had been rendered using the
Text () function. As in Text (), the mycount parameter tells how many
characters of mystring to measure.

Some fonts have characters that intrinsically render outside of the normal

rectangular bounds. This can result for example, from the Amiga’s version
of kerning (which is discussed later in this chapter) or from algorithmic
italicizing. In such cases, TextLength() is insufficient for determining

whether a text string can fit within a given rectangular bounds.

The TextExtent () function offers a more complete measurement of a string
than the TextLength() function. TextExtent (), which was introduced in
Release 2, fills in the TextExtent structure passed to it based on the
current rendering settings in my_rp. T The TextExtent structure
<graphics/text.h>) supplies the dimensions of mystring’s bounding box:

struct TextExtent {

UWORD te_Width; /+ same as TextLength «/
UWORD te_Height; /* same as tf_YSize */
struct Rectangle te_Extent; /* relative to CP */

bi
The Rectangle structure (from <graphics/gfx.h>):
struct Rectangle
{
WORD MinX,MinY;

WORD MaxX, MaxY;
bi

TextExtent () fills in the TextExtent as follows:
te_Width the same value returned by TextLength().
te_Height the font’s Y size.
te_Extent.MinX the pixel offset from the rastport’s current X position

to the left side of the bounding box defined by the
rectangle structure. Normally, this is zero.

Libraries

10/24

te_Extent.MinY the distance in pixels from the baseline to the top of
the bounding box.

te_Extent.MaxX the pixel offset from the rastport’s current X position

to the right side of the bounding box. Normally, this
is te_Width - 1.

te_Extent.MaxY the distance from the baseline to the bottom of the
bounding box.

The FontExtent () function is similar to the TextExtent () function. It
fills in a TextExtent structure that describes the bounding box of the
largest possible single character in a particular open font, including the
effects of kerning. Because the FontExtent () function looks at an open
TextFont structure rather than a rastport to figure out values of the
TextExtent structure, it cannot consider the effects of algorithmic
styling. Like TextExtent (), FontExtent () was introduced in Release 2, so
it is not available under the 1.3 or earlier 0OS releases.

The TextFit () function looks at a string and returns the number of
characters of the string that will fit into a given rectangular bounds.
TextFit () takes the current rastport rendering settings into consideration
when measuring the text. Its parameters (from the prototype above) are:

my_rp tells which rastport to get the rendering
attributes from

mystring the string to "fit"
strlen number of characters of mystring to "fit"
constrainingExtent a TextExtent describing the bounding

box in which to "fit" mystring

strDirection the offset to add to the string pointer to get
to the next character in mystring (can be
negative)

constrainingBitWidth an alternative way to specify the width of the
bounding box in which to "fit" mystring

constrainingBitHeight an alternative way to specify the height of the
bounding box in which to "fit" mystring

TextFit () will only pay attention to the constrainingBitWidth and
constrainingBitHeight fields if constrainingExtent is NULL.

Text Measuring Example

1.10 29 Graphics Library and Text / Font Scaling and Aspect Ratio

The Release 2 0S offers a significant improvement over the Amiga’s
previous font resources: it now has the ability to scale fonts to new
sizes and dimensions. This means, 1f the diskfont.library can’t find the

Libraries 11/24

font size an application requests, it can create a new bitmap font by
scaling the bitmap of a different size font in the same font family. The
2.04 (V37) release of the 0S improved upon the diskfont.library’s font
scaling ability so the Amiga now can utilize AGFA Compugraphic outline
fonts, yielding scalable fonts that don’t have the exaggerated jagged
edges inherent in bitmap scaling.

The best thing about the Amiga’s font scaling is that its addition to the
system is completely invisible to an application program. Because the
diskfont.library takes care of all the font scaling, any program that uses
OpenDiskFont () to open a font can have scalable fonts available to it.

For simple scaling, the programming interface is the same using Release 2
as it was under 1.3.

However, there is one feature of the Release 2 diskfont.library that the
1.3 programming interface cannot handle. When scaling a font (either from
an outline or from another bitmap), the Release 2 diskfont.library can
adjust the width of a font’s glyphs according to an aspect ratio passed to
OpenDiskFont (). A font glyph is the graphical representations associated
with each symbol or character of a font.

The aspect ratio refers to the shape of the pixels that make up the bitmap
that diskfont.library creates when it scales a font. This ratio is the
width of a pixel to the height of the pixel (XWidth/ YWidth). The
diskfont.library uses this ratio to figure out how wide to make the font
glyphs so that the look of a font’s glyphs will be the same on display
modes with very different aspect ratios.

To add this new feature, several changes to the OS were necessary:

1) The 0OS needed to be able to store an aspect ratio for any font loaded
into the system list.

2) The structures that diskfont.library uses to store bitmap fonts on
disk had to be updated so they can store the aspect ratio a font was
designed for.

3) The way in which an application requests fonts from diskfont.library
had to be altered so that an application could ask for a specific
aspect ratio.

For the diskfont.library to be able to scale a font to a new aspect ratio,
it needs to know what the font’s current aspect ratio is. The Amiga gets
the aspect ratio of a font currently in the system list from an extension
to the TextFont structure called (oddly enough) TextFontExtension. Under
Release 2, when the system opens a new font (and there is sufficient
memory), it creates this extension.

A font’s TextFont structure contains a pointer to its associated
TextFontExtension. While the font is opened, the TextFont’s
tf_Message.mn_ReplyPort field points to a font’s TextFontExtension. The
<graphics/text.h> include file #defines tf_Message.mn_ReplyPort as
tf_Extension.

The TextFontExtension structure contains only one field of interest: a
pointer to a tag list associated with this font:

Libraries

12/24

struct Tagltem xtfe_Tags; /+ Text Tags for the font =/

If a font has an aspect ratio associated with it, the 0S stores the aspect
ratio as a tag/value pair in the tfe_Tags tag list.

The TA_DeviceDPI tag holds a font’s aspect ratio. The data portion of the
TA_DeviceDPI tag contains an X DPI (dots per inch) value in its upper word
and a Y DPI value in its lower word. These values are unsigned words
(UWORD) . At present, these values do not necessarily reflect the font’s
true X and Y DPI, so their specific values are not relevant. At present,
only the ratio of the X aspect to the Y aspect is important (more on this
later in the article).

Notice that the X and Y DPI values are not aspect values. The X and Y
aspect values are the reciprocals of the X and Y DPI values, respectively:

XDPI 1/XAspect
YDPI = 1/YAspect

so, the aspect ratio is YDPI/XDPI, not XDPI/YDPI.

Before accessing the tag list, an application should make sure that this

font has a corresponding TextFontExtension. The ExtendFont () function
will return a value of TRUE if this font already has an extension or
ExtendFont () was able to create an extension for this font.

The Amiga has a place to store a font’s X and Y DPI values once the font
is loaded into memory, but where do these X and Y values come from? A
font’s X and Y DPI values can come from several sources. The X and Y DPI
can come from a font’s disk-based representation, or it can be set by the
programmer.

For the traditional Amiga bitmap fonts, in order to store the X and Y DPI
values in a bitmap font’s ".font" file, the structures that make up the
".font" file had to be expanded slightly. See the discussion of the
FontContentsHeader structure in the "Composition of a Bitmap Font on Disk"
section later in this chapter for more information. Currently, out of all
the system standard bitmap fonts (those loaded from bitmaps on disk or
ROM, not scaled from a bitmap or outline), only one has a built in aspect
ratio: Topaz-9.

For the Compugraphic outline fonts, the X and Y DPI wvalues are built into
the font outline. Because the format of the Compugraphic outline fonts is
proprietary, information about their layout is available only from AGFA
Compugraphic. For most people, the format of the outline fonts is not
important, as the diskfont.library handles converting the fonts to an
Amiga-usable form.

The other place where a font can get an aspect ratio is an application.
When an application opens a font with OpenDiskFont (), it can supply the
TA_DeviceDPI tag that the diskfont.library uses to scale (if necessary)
the font according to the aspect ratio. To do so, an application has to
pass OpenDiskFont () an extended version of the TextAttr structure called
the TTextAttr:

struct TTextAttr {
STRPTR tta_Name; /+* name of the font */

Libraries

13/24

UWORD tta_YSize; /* height of the font */
UBYTE tta_Style; /+ intrinsic font style */
UBYTE tta_Flags; /+ font preferences and flags */
struct Tagltem =*tta_Tags; /* extended attributes */

}i

The TextAttr and the TTextAttr are identical except that the tta_Tags
field points to a tag list where you place your TA_DeviceDPI tag. To tell
OpenDiskFont () that it has a TTextAttr structure rather than a TextAttr
structure, set the FSF_TAGGED bit in the tta_Style field.

For example, to ask for Topaz-9 scaled to an aspect ratio of 75 to 50 the
code might look something like this:

#define MYXDPI (75L << 16)
#define MYYDPI (50L)

struct TTextAttr mytta = {
"topaz.font", 9,
FSF_TAGGED, 0, NULL
}i

struct Tagltem tagitem[2];
struct TextFont xmyfont;
ULONG dpivalue;

tagitem([0].ti_tag = TA_DeviceDPI;
tagitem[0] .ti_Data = MYXDPI | MYYDPI;
tagitem[1l].ti_tag = TAG_END;
mytta.tta_tags = tagitem;

if (myfont = OpenDiskFont (&mytta))
{
dpi = GetTagData (TA_DeviceDPI,
oL,
((struct TextFontExtension x)
(myfont->tf_Extension))->tfe_Tags);
if (dpi) printf ("XDPI = %d YDPI = %d\n",
((dpi & OxXFFFF0000)>>16),
(dpi & OxO000O0FFFEF));
/+ Blah Blah print blah «/

CloseFont (myfont) ;

1.11 29 Graphics Library and Text / Some Things to Look Out For

One misleading thing about the TA_DeviceDPI tag is that its name implies
that the diskfont.library is going to scale the font glyphs according to
an actual DPI (dots per inch) wvalue. As far as scaling is concerned, this
tag serves only as a way to specify the aspect ratio, so the actual values

Libraries

14 /24

of the X and Y elements are not important, Jjust the ratio of one to the
other. A font glyph will look the same if the ratio is 2:1 or 200:100 as
these two ratios are equal.

To makes things a little more complicated, when diskfont.library scales a
bitmap font using an aspect ratio, the X and Y DPI values that the OS
stores in the font’s TextFontExtension are identical to the X and Y DPI
values passed in the TA_DeviceDPI tag. This means the system can
associate an X and Y DPI value to an open font size that is very different
from the font size’s actual X and Y DPI. For this reason, applications
should not use these values as real DPI values. Instead, only use them to
calculate a ratio.

For the Compugraphic outline fonts, things are a little different. The X
and Y DPI values are built into the font outline and reflect a true X and
Y DPI. When the diskfont.library creates a font from an outline, scaling
it according to an application-supplied aspect ratio, diskfont.library
does not change the Y DPI setting. Instead, it calculates a new X DPI
based on the font’s Y DPI value and the aspect ratio passed in the
TA_DeviceDPI tag. It does this because the Amiga thinks of a font size as
being a height in pixels. TIf an application was able to change the true Y
DPI of a font, the diskfont.library would end up creating font sizes that
were much larger or smaller than the YSize the application asked for. If
an application needs to scale a font according to height as well as width,
the application can adjust the value of the YSize it asks for in the
TTextAttr.

As mentioned earlier, almost all of the system standard bitmap fonts do
not have a built in aspect ratio. This means that if an application loads
one of these bitmap fonts without supplying an aspect ratio, the system
will not put a TA_DeviceDPI tag in the font’s TextFontExtension: the font
will not have an aspect ratio. 1If a font size that is already in the
system font list does not have an associated X and Y DPI, the
diskfont.library cannot create a new font of the same size with a
different aspect ratio.

The reason for this is the diskfont.library cannot tell the difference
between two instances of the same font size where one has an aspect ratio
and the other does not. Because diskfont.library cannot see this
difference, when an application asks, for example, for Topaz-8 with an
aspect ratio of 2:1, OpenDiskFont () first looks through the system list to
see if that font is loaded. OpenDiskFont () happens to find the ROM font
Topaz-8 in the system font list, which has no X and Y DPI. Because it
cannot see the difference, diskfont.library thinks it has found what it
was looking for, so it does not create a new Topaz-8 with an aspect ratio
of 2:1, and instead opens the Topaz-8 with no aspect ratio.

This also causes problems for programs that do not ask for a specific
aspect ratio. When an application asks for a font size without specifying
an aspect ratio, OpenDiskFont () will not consider the aspect ratios of
fonts in the system font list when it is looking for a matching font. If
a font of the same font and style is already in the system font list, even
though it may have a wildly distorted aspect ratio, OpenDiskFont () will
return the font already in the system rather than creating a new one.

Font Aspect Ratio Example }

Libraries

15/24

1.12 29 Graphics Library and Text / What Fonts Are Available?

The diskfont.library function AvailFonts() fills in a memory area
designated by you with a list of all of the fonts available to the system.
AvailFonts () searches the AmigaDOS directory path currently assigned to
FONTS: and locates all available fonts. If you haven’t issued a DOS
Assign command to change the FONTS: directory path, it defaults to the
sys:fonts directory.

LONG AvailFonts(struct AvailFontsHeader *mybuffer, LONG bufBytes,
LONG flags);

AvailFonts () fills in a memory area, mybuffer, which is bufBytes bytes
long, with an AvailFontsHeader structure:

struct AvailFontsHeader {
UWORD afh_NumEntries; /* number of AvailFonts elements */
/* struct AvailFonts afh_AF[], or struct TAvailFonts afh_TAF[]; =*/
}i

This structure is followed by an array of AvailFonts structures with the
number of entries in the array equal to afh_NumEntries:

struct AvailFonts {

UWORD af_Type; /+ MEMORY, DISK, or SCALED =*/
struct TextAttr af_Attr; /* text attributes for font x/
}i
Each AvailFonts structure describes a font available to the 0S. The flags
field lets AvailFonts () know which fonts you want to hear about. At

present, there are four possible flags:

AFF_MEMORY Create AvailFonts structures for all TextFont’s currently in
the system list.

AFF_DISK Create AvailFonts structures for all TextFont’s that are
currently available from disk.

AFF_SCALED Create AvailFonts structures for TextFont’s that do not have
their FPF_DESIGNED flag set. If the AFF_SCALED flag is not
present, AvailFonts () will not create AvailFonts structures
for fonts that have been scaled, which do not have the
FPF_DESIGNED flag set.

AFF_TAGGED These AvailFonts structures are really TAvailFonts structures.
These structures were created for Release 2 to allow
AvailFonts () to list tag values:

struct TAvailFonts {
UWORD taf_Type; /% MEMORY, DISK, or SCALED =/
struct TTextAttr taf_ Attr; /* text attributes for font =/
}i

Notice that AFF_MEMORY and AFF_DISK are not mutually exclusive; a font
that is currently in memory may also be available for loading from disk.
In this case, the font will appear twice in the array of AvailFonts (or

Libraries

16 /24

TAvailFonts) structures.

If AvailFonts () fails without any major system problems, it will be
because the buffer for the AvailFontsHeader structure was not big enough
to contain all of the AvailFonts or TAvailFonts structures. In this case,
AvailFonts () returns the number of additional bytes that mybuffer needed
to contain all of the TAvailFonts or AvailFonts structures. You can then
use that return value to figure out how big the buffer needs to be,
allocate that memory, and try AvailFonts () again:

int afShortage, afSize;
struct AvailFontsHeader =xafh;

afSize = AvailFonts(afh, 0L, AFF_MEMORY |AFF_DISK|AFF_SCALED|
AFF_TAGGED) ;

do
{
afh = (struct AvailFontsHeader *) AllocMem(afSize, 0);
if (afh)
{
afShortage = AvailFonts(afh, afSize, AFF_MEMORY |AFF_DISK|
AFF_SCALED |AFF_TAGGED) ;
if (afShortage)
{
FreeMem (afh, afSize);
afSize += afShortage;
}
}
else
{
fail ("AllocMem of AvailFonts buffer afh failed\n");
break;
}
} while (afShortage); /+ if (afh) non-zero here, then: */
/* 1. it points to a valid AvailFontsHeader, =/
/% 2. it must have FreeMem(afh, afSize) */
/* called for it after use. x/
The following code, AvailFonts.c, uses AvailFonts () to find out what fonts

are available to the system. It uses this information to open every
available font (one at a time), print some information about the font
(including the TA_DeviceDPI tag values if they are present), and renders a
sample of the font into a clipping region.

AvailFonts.c

1.13 29 Graphics Library and Text / How an Amiga Font Structured in Memory?

So far, this chapter has concentrated on using library functions to render
text, letting the system worry about the layout of the underlying font
data. As far as the 0OS representation of a loaded font is concerned,
outline fonts and normal bitmap fonts are structured identically. Color
fonts have some extras information associated with them and are discussed
a little later. Every loaded font, including color fonts, has a TextFont

Libraries

17 /24

structure associated with them:

struct TextFont {

struct Message tf_Message; /*x reply message for font removal =/

UWORD tf_YSize;
UBYTE tf_Style;
UBYTE tf_Flags;
UWORD tf_XSize;
UWORD tf_ Baseline;

UWORD tf_BoldSmear; /* smear to affect a bold enhancement =*/

UWORD tf_Accessors;

UBYTE tf_LoChar;

UBYTE tf HiChar;

APTR tf_CharData; /+ the bit character data =/

UWORD tf_Modulo; /+ the row modulo for the strike font data

APTR tf_CharLoc; /* ptr to location data for the strike font
/ * 2 words: bit offset then size
APTR tf_CharSpace;
/+ ptr to words of proportional spacing data
APTR tf_CharKern; /% ptr to words of kerning data
}i
The first field in this structure is a Message structure. The node in

this Message structure is what the OS uses to link together the fonts in
the system list. From this node, an application can extract a font’s
name. The other fields in the TextFont structure are as follows:

tf_YSize
The maximum height of this font in pixels.

tf_Style

The style bits for this particular font, which are defined in
<graphics/text.h>. These include the same style bits that were

mentioned in the discussion of the TextAttr structure in

"Choosing the Font" section of this chapter. In addition to those

the

*/
*/
*/

*/
*/

bits, there is also the FSF_COLORFONT bit, which identifies this as a

special kind of TextFont structure called a ColorTextFont structure.

This is discussed later in this chapter.

tf_Flags

The flags for this font, which were mentioned along with the style

bits in the section, "Choosing the Font".

tf_XSize

If this font is monospaced (non-proportional), tf_XSize is the width
of each character. The width includes the extra space needed to the
left and right of the character to keep the characters from running

together.

tf_ _Baseline

The distance in pixels from the top line of the font to the baseline.

tf_ _BoldSmear

When algorithmically bolding, the Amiga currently "smears"

rendering it, moving over tf_BoldSmear number of pixels,

and

a glyph by

Libraries

18 /24

rerendering the glyph.

tf_Accessors
The number of currently open instances of this font (like the open
count for libraries).

tf_LoChar
This is the first character glyph (the graphical symbol associated
with this font) defined in this font. All characters that have ASCII
values below this value do not have an associated glyph.

tf_HiChar
This is the last character glyph defined in this font. All
characters that have ASCII values above this wvalue do not have an
associated glyph. An application can use these values to avoid
rendering characters which have no associated glyphs. Any characters
without an associated glyph will have the default glyph associated to
them. Normally, the default glyph is a rectangle.

tf_CharData

This is the address of the bitmap from which the 0OS extracts the
font’s glyphs. The individual glyphs are bit-packed together. The
individual bitmaps of the glyphs are placed in ASCII order side by
side, left to right. The last glyph is the default glyph. The
following is what the bitmap of the suits-8 font example looks like
(suits8 is the complete, disk-based bitmap font example used later
in this chapter):

.@ER...ERER...... @ (G @QRER....QRRERREAREAREARA.o v ...
@EQREE.QERQRERE...QRQRRGE..... @e@..... @ERRE...QR........ @QR.. .ot
.@ERREEERE..RERRLEARER. .ALRQRRE. . Q. .Q..CR.CC. @QR.... il
..CRREEEEQ..CRECRLEREELEECRLCRRLEQRRLEEECRRERRERRE. @QR.. .ot
...0QRERR....QEQR.Q.RRQ..QRQRRE..QR..Q..CR.CE........ @R. ...t

@RQ......... @....... @RER....... @..... @QR........ @QR. ...t
..... @........QQREQR......@......QRCQRR...CREQARERREREA.

This font is rather sparse, as it only has five glyphs. Most fonts
at least have glyphs for each letter of the alphabet. 1In this
example, each glyph represents a symbol for a suit in a standard deck
of cards (from left to right: hearts, spades, diamonds, and clubs).
Notice that there is no space between the individual glyphs. The
spacing information is kept in separate tables to reduce the amount
of memory occupied by the font.

tf_Modulo
This is number of bytes the pointer must move to go from one line of
a glyph to the next. This is the pixel width of the entire font
bitmap divided by eight. Notice that the bitmap above does not stop
after it gets to the end of the last glyph. It is padded with zero
bits to the nearest WORD boundary.

tf_CharlLoc
This is a pointer to the CharLoc, the character location table. This
table tells the OS how far into the bitmap to look for a character
and how many pixels to fetch from each row. The CharLoc table for
the suits—-8 font looks like this:

Libraries

19/24

$0000000B, $000B0O00OB, $00160007, $001D000B, $0028000C

Each of the five long words in this character location table
corresponds to a glyph in Suits-8. Each long word is broken up into
two word values. The first word is the offset in pixels from the
left edge of the bitmap to the first column containing the
corresponding glyph. The second word is the width in pixels of the
corresponding glyph image in the bitmap (note, this is not the width
of the actual glyph as the actual glyph will have some space on
either side of it). For example, the diamond character (the third
character) starts at offset $16 (22) and it is 7 pixels wide.

tf_CharSpace
This is a pointer to an array of WORDs containing the width of each
glyph in the font. Each entry tells the OS how much to increment the
current horizontal position (usually RastPort.cp_X). For reverse
path fonts, these values can be negative.

tf_CharKern
This is a pointer to an array of "kerning" values. As it is used
here, the term "kerning" is unorthodox. On the Amiga, kerning refers
to the number pixels to leave blank before rendering a glyph. The
normal typographical definition of the word refers to the number of
pixels to back up before rendering the current glyph and is usually
associated with a specific pair of glyphs rather than one particular
glyph.

For each glyph the system renders, it has to do several things:

1) Get the value from the kerning table that corresponds to this
glyph and begin the rendering that number of pixels to the right.

2) Find this glyph’s bitmap using the CharLoc table and blit the
glyph to the rastport.

3) If this is a proportional font, look in the spacing table and
figure how many pixels to advance the rastport’s horizontal
position. For a monospaced font, the horizontal position
advance comes from the TextFont’s tf_XSize field.

Under Release 2, when the system opens a new font, it creates an extension

to the TextFont structure called the TextFontExtension. This extension is
important because it contains a pointer to the font’s tag list, which is
where the system keeps the font’s TA_DeviceDPI values. The TextFont’s
tf_Message.mn_ReplyPort field contains a pointer to the TextFontExtension
structure (the <graphics/text.h> include file #defines
tf_Message.mn_ReplyPort as tf_Extension). The only field of interest in
the TextFontExtension structure is:

struct Tagltem xtfe_Tags; /+ Text Tags for the font */

which points to the font’s tag list. Before accessing the tag list, an
application should make sure that this font has a corresponding
TextFontExtension. The ExtendFont () function will return a value of TRUE
if this font already has an extension or ExtendFont () was able to create

Libraries 20/ 24

an extension for this font.

1.14 29 Graphics Library and Text / But What About Color Fonts?

When the Amiga loads a color font, it has to account for more information
than will fit into the TextFont structures. For color fonts, the Amiga
uses a superset of the TextFont structure called the ColorTextFont
structure (defined in <graphics/text.h>):

struct ColorTextFont {
struct TextFont ctf_ TF;

UWORD ctf_Flags; /* extended flags x/

UBYTE ctf_Depth; /+ number of bit planes =/

UBYTE ctf_FgColor; /+ color that is remapped to FgPen =/
UBYTE ctf_Low; /+ lowest color represented here =/
UBYTE ctf_High; /* highest color represented here x/
UBYTE ctf_PlanePick; /% PlanePick ala Images x/

UBYTE ctf_PlaneOnOff; /* PlaneOnOff ala Images */

struct ColorFontColors xctf_ColorFontColors; /* colors for font =*/
APTR ctf_CharData[8]; /% pointers to bit planes ala tf_CharData =/
}i

The ctf_TF field is the TextFont structure described in the previous
section. There are two minor differences between the data stored in a
color font’s TextFont structure and an ordinary TextFont structure. The
first is that the color font’s TextFont.tf_Style field has the
FSF_COLORFONT bit set. The other difference is that the bitmap that
TextFont.tf_CharData points to can be a multi-plane bitmap.

The ctf_Flags field is a bitfield that supports the following flags:

CT_COLORFONT The color map for this font contains colors specified by the
designer.

CT_GREYFONT The colors for this font describe evenly stepped gray shades
from low to high.

The ctf_Depth field contains the bitplane depth of this font’s bitmap.

The ctf_FgColor contains the color that will be dynamically remapped
during output by changing ctf_FgColor to RastPort.FgPen. This field
allows a ColorTextFont to contain color outlines, shadows, etc. while also
containing a predominant color that can be changed by the user. If the
font does not have a predominant color, ctf_ FgColor is OxFF. For example,
given a color font that has a blue and red outline and a white center, the
person designing the font can set ctf_FgColor equal to white. Then when
the font is used in a paint package that supports color fonts, the white
will change to the current foreground color.

The fields ctf_Low and ctf_High contain the lowest and highest color

values in the ColorTextFont. For example, a four bitplane color font can
have sixteen colors, but the font may use only nine of those colors, thus
ctf_Low=0 and ctf_High=8. The most important use of these colors is for
defining the boundaries of a gray scale font. If the font uses less than
the total number of colors around but needs white as the lowest and black

Libraries

21/24

as the highest level of gray, the boundaries would have to be defined in
order for the font to be rendered correctly. Defaults for these values
should be the lowest and the highest values for the given number of
bitplanes.

The ctf_PlanePick and ctf_PlaneOnOff contain information for saving space
in memory for some types of ColorTextFont structures. The ctf_PlanePick
field contains information about where each plane of data will be rendered
in a given bitmap. The ctf_PlaneOnOff field contains information about
planes that are not used to render a plane of font data. If
ctf_PlaneOnOff contains a zero bit for a given plane, that bitplane is
cleared. If ctf_PlaneOnOff contains a set bit for a given plane, that
bitplane is filled. For more information on how the ctf_PlaneOnOff and
ctf_PlanePick fields work see the "Specifying the Colors of a Bob" section
of the "Graphics Sprites, Bobs and Animation" chapter of this book.

The ctf_ColorFontColors field contains a pointer to a ColorFontColors
structure:

struct ColorFontColors {
UWORD cfc_Reserved; /* *mustx be zero x/
UWORD cfc_Count; /+ number of entries in cfc_ColorTable =/
UWORD xcfc_ColorTable;
/+ 4 bit per component color map packed xXRGB «/
}i

Which specifies the colors used by this font. The ColorFontColors
cfc_Count field contains the number of colors defined in this structure.
Each color is defined as a single, UWORD entry in the cfc_ColorTable. For
each entry in cfc_ColorTable, the lowest four bits make up the blue
element, the next four bits the green element, the next four bits the red
element, and the upper four bits should be masked out.

The ctf_CharData[] fields is an array of pointers to each of the bitplanes
of the color font data.

1.15 29 Graphics Library and Text / Composition of a Bitmap Font on Disk

For each Amiga bitmap font stored on disk (normally in the FONTS: assign
directory), there is a corresponding ".font" file, a directory, and within
that directory, a series of files bearing numeric names. For example, for
the font Sapphire, within FONTS:, there is a file called sapphire.font, a
directory called Sapphire, and within the directory Sapphire are the files
14 and 19.

For a bitmap font (including color fonts), the ".font" file is a
FontContentsHeader structure:

struct FontContentsHeader ({
UWORD fch_FilelID; /* FCH_ID «*/
UWORD fch_NumEntries; /* the number of FontContents elements */
struct FontContents fch_FCI[];
/* or struct TFontContents fch_TFCI[]; */
bi

Libraries 22 /24

#define MAXFONTPATH 256

Where the fch_FileID field can be be either:

FCH_ID 0x0£f00 This FontContentsHeader uses FontContents
structures to describe the available sizes of
this font.

TFCH_ID 0x0£f02 This FontContentsHeader uses TFontContents
structures to describe the available sizes of
this font.

The fch_FileID can also be equal to 0x0f03, but that is only for scalable
outline fonts.

The FontContents structure:

struct FontContents {
char fc_FileName [MAXFONTPATH] ;
UWORD fc_YSize;
UBYTE fc_Style;
UBYTE fc_Flags;
}i

describes one of the sizes of this font that is available to the system as
a designed font size. For each FontContents structure, there should be a
corresponding font descriptor file in this font’s directory that contains
data for this size font. The FontContents fields correspond to the
similarly named field in the TextFont structure.

The TFontContents structure is almost the same as the FontContents
structure except that it allows the OS to store tag value pairs in the
extra space not used by the file name. Currently, this allows the 0S to
preserve the X and Y DPI (TA_DeviceDPI) values for a font.

struct TFontContents {

char tfc_FileName [MAXFONTPATH-2];
UWORD tfc_TagCount; /+ including the TAG_DONE tag =*/
/%
* 1f tfc_TagCount is non-zero, tfc_FileName is overlaid with
+ Text Tags starting at: (struct TaglItem x*)
* &tfc_FileName [MAXFONTPATH- (tfc_TagCount*sizeof
* (struct Tagltem))]
*/

UWORD tfc_YSize;

UBYTE tfc_Style;

UBYTE tfc_Flags;
}i

The fch_NumEntries contains the number of font sizes (and the number of
FontContents or TFontContents structures) that this ".font" file
describes. The fch_FC[] is the array of FontContents or TFontContents
structures that describe this font.

For each font size described in a FontContents (or TFontContents)
structure, there is a corresponding file in that font’s directory whose

Libraries 23 /24

name is its size. For example, for the font size Sapphire-19, there is a
file in the Sapphire directory called 19. That file is basically a
DiskFontHeader disguised as a loadable DOS hunk and is known as a font
descriptor file. This allows the diskfont.library to use the dos.library
to load the module just like it was a hunk of relocatable 680x0
instructions. It even contains two instructions before the real
DiskFontHeader structure that will cause the 680x0 to stop running the
DiskFontHeader if it does inadvertently get executed.

#define MAXFONTNAME 32 /* font name including ".font" */

struct DiskFontHeader {
/+ the following 8 bytes are not actually considered a part of =/

/+ the DiskFontHeader, but immediately precede it. The */
/* NextSegment is supplied by the linker/loader, and the */
/+ ReturnCode is the code at the beginning of the font in case x/
/* someone runs it... */
/ * ULONG dfh_NextSegment; actually a BPTR */
/ * ULONG dfh_ReturnCode; MOVEQ #0,D0 : RTS */
/+ here then is the official start of the DiskFontHeader... x/
struct Node dfh_DF; /* node to link disk fonts =*/

UWORD dfh_FilelID; /+ DFH_ID =*/

UWORD dfh_Revision; /* the font revision x/

LONG dfh_Segment; /+ the segment address when loaded =/
char dfh_Name [MAXFONTNAME]; /* the font name (null terminated) =x/
struct TextFont dfh_TF; /+ loaded TextFont structure =*/

}i

/+ unfortunately, this needs to be explicitly typed =/
/+ used only if dfh_TF.tf_Style FSB_TAGGED bit is set =/
#define dfh_TagList dfh_Segment /* destroyed during loading =/

The dfh_DF field is an Exec Node structure that the diskfont library uses
to link together the fonts it has loaded. The dfh_FilelID field contains
the file type, which currently is DFH_ID (defined in
<libraries/diskfont.h>). The dfh_Revision field contains a revision
number for this font. The dfh_Segment field will contain the segment
address when the font is loaded. The dfh_FontName field will contain the
font’s name after the font descriptor is LoadSeg()’ed. The last field,
dfh_TextFont is a TextFont structure (or ColorTextFont structure) as
described in the previous section. The following is a complete example of
a proportional, bitmap font.

suites8.asm

1.16 29 Graphics Library and Text / Function Reference

The following are brief descriptions of the Graphics and Diskfont library
functions that deal with text. See the Amiga ROM Kernel Reference Manual:
Includes and Autodocs for details on each function call.

Table 29-1: Graphics Library Text Functions

Libraries

Function Description
Text () Render a text string to a RastPort.
SetFont () Set a RastPort’s font.
AskFont () Get the TextAttr for a RastPort’s font.
OpenFont () Open a font currently in the system font list.
CloseFont () Close a font.
AddFont () Add a font to the system list.
RemFont () Remove a font from the system list.
StripFont () Remove the tf_Extension from a font (V36).
WeighTAMatch () Get a measure of how well two fonts match (V36).
ClearScreen () Clear RastPort from the current position to the end
of the RastPort.
ClearEOL() Clear RastPort from the current position to the end
of the line.
AskSoftStyle() Get the soft style bits of a RastPort’s font.
SetSoftStyle () Set the soft style bits of a RastPort’s font.
TextLength () Determine the horizontal raster length of a text
string using the current RastPort settings.
TextExtent () Determine the raster extent (along the X and Y axes)
of a text string using the current RastPort settings
(V36) .
FontExtent () Fill in a TextExtent structure with the bounding box
for the characters in the specified font (V36).
TextFit () Count the number of characters in a given string
that will fit into a given bounds, using the current
RastPort settings (V36).
Table 29-2: Diskfont Library Text Functions
Function Description
AvailFonts () Inquire which fonts are available from disk
and/or memory.
NewFontContents () Create a FontContents image for a font.
DisposeFontContents () Free the result from NewFontContents ().
NewScaledDiskFont () Create a DiskFont scaled from another font
(V36) .
OpenDiskFont () Open a font, loading it from disk if

necessary.

	Libraries
	Amiga® RKM Libraries: 29 Graphics Library and Text
	29 Graphics Library and Text / About Amiga Fonts
	29 / About Amiga Fonts / System Fonts In Release 2
	29 Graphics Library and Text / The Text Function
	29 / The Text Function / Choosing the Font
	29 / The Text Function / Setting the Text Drawing Attributes
	29 / The Text Function / Rendering the Text
	29 / The Text Function / Setting the Font Style
	29 Graphics Library and Text / Does the Text Fit?
	29 Graphics Library and Text / Font Scaling and Aspect Ratio
	29 Graphics Library and Text / Some Things to Look Out For
	29 Graphics Library and Text / What Fonts Are Available?
	29 Graphics Library and Text / How an Amiga Font Structured in Memory?
	29 Graphics Library and Text / But What About Color Fonts?
	29 Graphics Library and Text / Composition of a Bitmap Font on Disk
	29 Graphics Library and Text / Function Reference

