
Libraries

Libraries ii

COLLABORATORS

TITLE :

Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1

1.1 Amiga® RKM Libraries: 28 Graphics Sprites, Bobs and Animation . 1

1.2 28 Graphics Sprites, Bobs and Animation / About the GELs System . 1

1.3 28 / About the GELs System / Types of GELs . 2

1.4 28 / / Types Of GELs / Simple Sprites . 2

1.5 28 / / Types Of GELs / VSprites . 3

1.6 28 / / Types Of GELs / Bobs and AnimComps . 3

1.7 28 / / Types Of GELs / AnimObs . 3

1.8 28 / / Types Of GELs / VSprites vs. Bobs . 4

1.9 28 / About the GELs System / The GELs System . 5

1.10 28 / / The GELs System / Initializing the GEL System . 6

1.11 28 Sprites, Bobs and Animation / Using Simple (Hardware) Sprites . 6

1.12 28 / Using Simple (Hardware) Sprites / Simple Sprite Functions . 8

1.13 28 / / Simple Sprite Functions / Accessing A Hardware Sprite . 8

1.14 28 / / Sprite Functions / Changing The Appearance Of A Simple Sprite . 9

1.15 28 / / Simple Sprite Functions / Moving A Simple Sprite . 9

1.16 28 / / Simple Sprite Functions / Relinquishing A Simple Sprite . 10

1.17 28 / / Simple Sprite Functions / Controlling Sprite DMA . 10

1.18 28 Graphics Sprites, Bobs and Animation / Using Virtual Sprites . 10

1.19 28 / Using Virtual Sprites / Specification of VSprite Structure . 11

1.20 28 / Using Virtual Sprites / Reserved VSprite Members . 12

1.21 28 / Using Virtual Sprites / Using VSprite Flags . 12

1.22 28 / Using Virtual Sprites / VSprite Position . 13

1.23 28 / Using Virtual Sprites / VSprite Image Size . 14

1.24 28 / Using Virtual Sprites / VSprites and Collision Detection . 14

1.25 28 / Using Virtual Sprites / VSprite Image Data . 14

1.26 28 / Using Virtual Sprites / Specifying the Colors of a VSprite . 15

1.27 28 / Using Virtual Sprites / Adding and Removing VSprites . 16

1.28 28 / Using Virtual Sprites / Changing VSprites . 17

1.29 28 / Using Virtual Sprites / Getting the VSprite List In Order . 17

Libraries iv

1.30 28 / Using Virtual Sprites / Displaying the VSprites . 17

1.31 28 / / Displaying the VSprites / Drawing the Graphics Elements . 17

1.32 28 / / Displaying the VSprites / Merging VSprite Instructions . 18

1.33 28 / / Displaying the VSprites / Loading the New View . 18

1.34 28 / / Displaying the VSprites / Synchronizing with the Display . 18

1.35 28 Graphics: Sprites, Bobs and Animation / VSprite Advanced Topics . 19

1.36 28 / VSprite Advanced Topics / Reserving Hardware Sprites . 19

1.37 28 / VSprite Advanced Topics / How VSprites Are Assigned . 20

1.38 28 / Advanced Topics / How VSprite and Playfield Colors Interact . 21

1.39 28 Graphics Sprites, Bobs and Animation / Using Bobs . 21

1.40 28 / Using Bobs / The VSprite Structure and Bobs . 22

1.41 28 / Using Bobs / VSprite Flags and Bobs . 22

1.42 28 / Using Bobs / The Bob Structure . 23

1.43 28 / / The Bob Structure / Linking Bob and VSprite Structures . 24

1.44 28 / Using Bobs / Using Bob Flags . 24

1.45 28 / Using Bobs / Specifying the Size of a Bob . 25

1.46 28 / Using Bobs / Specifying the Shape of a Bob . 25

1.47 28 / Using Bobs / Specifying the Colors of a Bob . 26

1.48 28 / Using Bobs / Other Items Influencing Bob Colors . 27

1.49 28 / / Other Items Influencing Bob Colors / ImageShadow . 27

1.50 28 / / Other Items Influencing Bob Colors / PlanePick . 27

1.51 28 / / Other Items Influencing Bob Colors / PlaneOnOff . 28

1.52 28 / Using Bobs / Bob Priorities . 29

1.53 28 / / Bob Priorities / Letting the System Decide Priorities . 29

1.54 28 / / Bob Priorities / Specifying the Drawing Order . 30

1.55 28 / Using Bobs / Adding a Bob . 30

1.56 28 / Using Bobs / Removing a Bob . 31

1.57 28 / Using Bobs / Sorting and Displaying Bobs . 31

1.58 28 / Using Bobs / Changing Bobs . 32

1.59 28 / Using Bobs / Double-Buffering . 32

1.60 28 / / Double-Buffering / DBufPacket and Double-Buffering . 33

1.61 28 / / Collisions and GEL Structure Extensions . 34

1.62 28 / Collisions and GEL Structure Extensions / Detecting Gel Collisions . 34

1.63 28 / / Detecting Gel Collisions / Preparing for Collision Detection . 34

1.64 28 / / Detecting Collisions / Building a Table of Collision Routines . 35

1.65 28 / / Detecting Gel Collisions / VSprite Collision Mask . 35

1.66 28 / / Detecting Gel Collisions / VSprite BorderLine . 36

1.67 28 / / Detecting Gel Collisions / VSprite HitMask and MeMask . 37

1.68 28 / / Detecting Gel Collisions / Using HitMask and MeMask . 37

Libraries v

1.69 28 / / Setting Up For Boundary Collisions . 38

1.70 28 / / / Parameters To Your Boundary Collision Routine . 39

1.71 28 / / / Parameters To Your Inter-GEL Collision Routines . 39

1.72 28 / / Set Up For Boundary Collisions / Handling Multiple Collisions . 39

1.73 28 / / Adding User Extensions To Gel Data Structures . 40

1.74 28 Graphics Sprites, Bobs and Animation / Animation with GELs . 41

1.75 28 / Animation with GELs / Animation Data Structures . 41

1.76 28 / Animation with GELs / Animation Types . 43

1.77 28 / / Animation Types / Simple Motion Control . 43

1.78 28 / / Animation Types / Sequenced Drawing . 43

1.79 28 / / Animation Types / Ring Motion Control . 43

1.80 28 / Animation with GELs / Specifying Animation Components . 44

1.81 28 / / Specifying Animation Components / Sequencing AnimComps . 44

1.82 28 / / Specifying Animation Components / Position of an AnimComp . 44

1.83 28 / / Animation Components / Specifying Time for Each Image . 45

1.84 28 / / Animation Components / Linking Multiple AnimComp Sequences . 45

1.85 28 / / Specifying Animation Components / Component Ordering . 45

1.86 28 / Animation with GELs / Specifying the Animation Object . 46

1.87 28 / / / Linking the AnimComp Sequences to the AnimOb . 46

1.88 28 / / Specifying the Animation Object / Position of an AnimOb . 47

1.89 28 / / Specifying Animation Object / Setting Up Simple Motion Control . 48

1.90 28 / / Specifying Animation Object / Setting Up Ring Motion Control . 48

1.91 28 / / / Using Sequenced Drawing and Motion Control . 48

1.92 28 / Animation with GELs / The AnimKey . 49

1.93 28 / Animation with GELs / Adding Animation Objects . 49

1.94 28 / Animation with GELs / Moving the Objects . 49

1.95 28 / Animation with GELs / Your Own Animation Routine Calls . 50

1.96 28 / Animation with GELs / Standard Gel Rules Still Apply . 51

1.97 28 / Animation with GELs / Animations Special Numbering System . 51

1.98 28 / Animation with GELs / Animtools.h and Animtools.c . 51

1.99 28 Graphics Sprites, Bobs and Animation / Function Reference . 52

Libraries 1 / 52

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 28 Graphics Sprites, Bobs and Animation

This chapter describes how to use the functions provided by the graphics
library to manipulate and animate Graphic Elements (also called GELs). It
is divided into six sections:

* An overview of the GELs animation system, including fundamental terms
and structures

* Explanation of simple (hardware) Sprites and an example showing their
usage

* Explanation of VSprites and an example showing their usage

* Explanation of Bobs and an example showing their usage

* Discussion of topics that apply to all GELs such as collision
detection and data structure extensions.

* Discussion of animation, using AnimComps and AnimObs and an example
showing their usage

About the GELs System
Using Simple (Hardware) Sprites
Using Virtual Sprites
Complete VSprite Example
VSprite Advanced Topics
Using Bobs
Collisions and GEL Structure Extensions
Animation with GELs
Function Reference

1.2 28 Graphics Sprites, Bobs and Animation / About the GELs System

Before going into details, a quick glossary is in order. A playfield
forms the background that GELs operate in. It encompasses the View,
ViewPort, and RastPort data structures. (VSprites appear over, and Bobs

Libraries 2 / 52

appear in the playfield.) Playfields can be created and controlled at
several levels. Refer to the "Graphics Primitives" and "Layers Library"
chapters for details on lower-level playfield control. The chapter
"Intuition Screens" explains how to get higher-level access to playfields.

GELs, or graphic elements, are special graphic objects that appear in the
foreground and can be moved easily around the display. They are software
constructs based on the Amiga’s sprite and blitter hardware. The GELs
system is compatible with all playfield modes, including dual-playfield.
All the various types of GELs are defined by data structures found in
<graphics/gels.h>.

Types of GELs The GELs System

1.3 28 / About the GELs System / Types of GELs

The GEL types are (in order of increasing complexity):

VSprites for Virtual Sprites. These are represented by the VSprite
data structure and implemented with sprite hardware.

Bobs Blitter Objects. These are represented by the VSprite and
Bob data structures and implemented with blitter hardware.

AnimComps Animation Components. These are represented by the
VSprite, Bob and AnimComp data structures and implemented
with blitter hardware.

AnimObs Animation Objects. These are used to group AnimComps. They
are not strictly GELs, but are described here.

Simple Sprites Bobs and AnimComps VSprites vs. Bobs
VSprites AnimObs

1.4 28 / / Types Of GELs / Simple Sprites

Simple Sprites (also known as hardware sprites) are not really part of the
GELs system but are the basis for VSprites. Simple Sprites are graphic
objects implemented in hardware that are easy to define and easy to
animate. The Amiga hardware has the ability to handle up to eight such
sprite objects. Each Simple Sprite is produced by one of the Amiga’s
eight sprite DMA channels. They are 16-bits wide and arbitrarily tall.

The Amiga system software offers a choice of how to use these hardware
sprites. After a sprite DMA channel has displayed the last line of a
Simple Sprite, the system can reuse the channel for a different sprite
lower on the screen. This is how VSprites are implemented--as a software
construct based on the sprite hardware.

Hence, Simple Sprites are not really part of the animation system (they
are not GELs). In fact, if Simple Sprites and GELs are used in the same
display, the GELs system must be told specifically which Simple Sprites to

Libraries 3 / 52

avoid. Simple Sprites are described in this chapter because they are
alternatives to VSprites.

1.5 28 / / Types Of GELs / VSprites

The VSprite, or virtual sprite, is the simplest type of GEL. The VSprite
data structure contains just a bit more information than is needed to
define a hardware sprite. VSprites take advantage of the system’s ability
to reuse sprite DMA channels--each VSprite can be temporarily assigned to
a hardware sprite, as needed. This makes it appear to an application
program that it has a virtually unlimited supply of VSprites.

Since VSprites are based on hardware sprites, rules that apply to hardware
sprites apply to VSprites too. VSprites are not rendered into the
underlying BitMap of the playfield and so do not affect any bits in the
BitMap. Because they are hardware based, they are positioned at absolute
display coordinates and are not affected by the movement of screens. The
starting position of a sprite must not occur before scanline 20, because
of certain hardware DMA time constraints. VSprites have the same size
limitations as hardware sprites, they are 16-bits wide and arbitrarily
tall.

The VSprite data structure also serves as the root structure of more
complex GEL types--Bobs and AnimComps.

1.6 28 / / Types Of GELs / Bobs and AnimComps

Like VSprites, Bobs and AnimComps are graphics objects that make animation
easier. They are rendered using the blitter. The blitter is a special
Amiga hardware component used to move data quickly and efficiently,
optionally performing logical operations as it does. It can be used to
move any kind of data but is especially well suited to moving rectangular
blocks of display data.

It is important to keep in mind that Bobs and AnimComps are based on the
blitter hardware while VSprites use the sprite hardware. However all three
GEL types use the VSprite structure as their root data structure. The
system uses pointers to link the VSprite, Bob and AnimComp structures,
"extending" the VSprite structure to include all GEL types.

Since Bobs and AnimComps are rendered with the blitter they actually
change the underlying playfield BitMap. The BitMap area where the GEL is
rendered can be saved. By moving the GEL to new locations in small
increments while also saving and restoring the Bitmap as you proceed, you
can create an animation effect. Bobs and AnimComps use the same
coordinates as the playfield and can be any size.

1.7 28 / / Types Of GELs / AnimObs

Libraries 4 / 52

The AnimOb (Animation Object) is a data structure that is used to group
one or more AnimComps for convenient movement. For example, an AnimOb
could be created that consists of two AnimComps, one that looks like a
planet and another containing a sequence that describes orbiting moons.
By moving just the AnimOb the image of the planet can be moved across the
display and the moons will travel along with it, orbiting the planet the
entire time. The system automatically manages the movement of all the
AnimComps associated with the AnimOb.

1.8 28 / / Types Of GELs / VSprites vs. Bobs

If you are going to manage the movement and sequencing of GELS yourself,
you need to decide if sprite animation (VSprites) or blitter animation
(Bobs, AnimComps and AnimObs) best suit your needs. If you’ve got simple
requirements or lots of coding time, you may even opt to use only Simple
Sprites, and control them yourself. On the other hand if you want the
system to manage your animations, AnimComps must be used and they are
Bobs at heart.

Some fundamental differences between VSprites and Bobs are:

* VSprite images and coordinates currently low-resolution pixels, even
on a high resolution display. Bob images and coordinates have the
same resolution as the playfield they are rendered into.

* VSprites have a maximum width of 16 (low resolution) pixels. Bobs
can be any width (although large Bobs tend to slow down the system).
The height of either VSprites or Bobs can be as tall as the display.

* VSprites have a maximum of three colors (Simple Sprites can have
fifteen if they’re attached). Because the system uses the Copper to
control VSprite colors on the fly, the colors are not necessarily the
same as those in the background playfield. Bobs can use any or all
of the colors in the background playfield. Limiting factors include
playfield resolution and display time. Bobs with more colors take
longer to display.

* VSprites are positioned using absolute display coordinates, and don’t
move with screens. Bobs follow screen movement.

In general, VSprites offer speed, while Bobs offer flexibility.

The following figure shows how the various GEL data structures, VSprites,
Bobs and AnimComps are linked together.

VSPRITE BOB ANIMCOMP
____________ ____________ ____________
	_\|	_\|				
VSprite		/	VSprite		/	VSprite
____________			____________			____________
	_					
VSpriteBob	-	_			VSpriteBob	__
____________			____________			

Libraries 5 / 52

____________		____________				
		/_				/_
	Bob	\		Bob	>___	
	____________			____________	\	
__	BobVSprite		__	BobVSprite	__	

____________		____________		
	_			
BobComp	-	_		
____________	____________			

	/_	
AnimComp	\	

Bob	____	

Figure 28-1: GEL Structure Layout

1.9 28 / About the GELs System / The GELs System

Before you can use the GELs system, you must set up a playfield. The GELs
system requires access to a View, ViewPort, and RastPort structure. These
structures may be set up through the grapics library or Intuition. For
most examples in this chapter, the Intuition library is used for this
purpose.

All GELs have a VSprite structure at their core. The system keeps track
of all the GELs that it will display (the active GELs) by using a standard
Exec list structure to link the VSprites. This list is accessed via the
GelsInfo data structure, which in turn is associated with the RastPort.
The GelsInfo structure is defined in the file <graphics/rastport.h>. When
a new GEL is introduced to the system, the new GEL is added immediately
ahead of the first existing GEL whose x, y value is greater than or equal
to that of the new GEL, always trying to keep the list sorted.

As GELs are moved about the screen, their x, y values are constantly
changing. SortGList() re-sorts this list by the x, y values. (Although
this is a list of VSprite structures, bear in mind that some or all may
really be Bobs or AnimComps.)

The basic set up of the GelsInfo structure requires three important
fields: sprRsrvd, gelHead and gelTail. The sprRsrvd field tells the
system which hardware sprites not to use when managing true VSprites. For
instance, Intuition uses sprite 0 for the mouse pointer so this hardware
sprite is not available for assignment to a VSprite. The gelHead and
gelTail are VSprite structures that are used to manage the list of GELs.
They are never displayed. To activate or deactivate a GEL, a system call
is made to add it to or delete it from this list.

Other fields must be set up to provide for collision detection, color
optimization, and other features. A complete example for setting up the

Libraries 6 / 52

GelsInfo structure is shown in the animtools.c lisitng at the end of this
chapter.

Initializing the GEL System

1.10 28 / / The GELs System / Initializing the GEL System

To initialize the animation system, call the system function InitGels().
It takes the form:

struct VSprite *vsHead;
struct VSprite *vsTail;
struct GelsInfo *gInfo;

InitGels(vsHead, vsTail, gInfo);

The vsHead argument is a pointer to the VSprite structure to be used as
the GEL list head. (You must allocate an actual VSprite structure for
vsHead to point to.) The vsTail argument is a pointer to the VSprite
structure to be used as the GEL list tail. (You must allocate an actual
VSprite structure for vsTail to point to.) The gInfo argument is a
pointer to the GelsInfo structure to be initialized.

InitGels() forms these structures into a linked list of GELs that is empty
except for these two dummy elements (the head and tail). It gives the
head VSprite the maximum negative x and y positions and the tail VSprite
the maximum positive x and y positions. This is to aid the system in
keeping the list sorted by x, y values, so GELs that are closer to the top
and left of the display are nearer the head of the list. The memory space
that the VSprites and GelsInfo structures take up must already have been
allocated. This can be done either by declaring them statically or
explicitly allocating memory for them.

Once the GelsInfo structure has been allocated and initialized, GELs can
be added to the system. Refer to the setupGelSys() and cleanupGelSys()
functions in the animtools.c lisitng at the end of the chapter for
examples of allocating, initializing and freeing a GelsInfo structure.

1.11 28 Sprites, Bobs and Animation / Using Simple (Hardware) Sprites

Simple Sprites can be used to create animations, so even though are not
really part of the GELs system, they are desribed here as a possible
alternative to using VSprites. For more information on the sprite
hardware, including information on attached sprites, see the Amiga
Hardware Reference Manual.

The SimpleSprite structure is found in <graphics/sprite.h>. It has fields
that indicate the height and position of the Simple Sprite and a number
that indicates which of the 8 hardware sprites to use.

Simple Sprites are always 16 bits wide, which is why there is no width
member in the SimpleSprite structure. Currently, sprites always appear as

Libraries 7 / 52

low-resolution pixels, and their position is specified in the same way.
If the sprite is being moved across a high-resolution display in single
pixel increments, it will appear to move two high-resolution pixels for
each increment. In low-resolution mode, a single Lores pixel movement
will be seen. Similarly, in an interlaced display, the y direction
motions are in two-line increments. The same sprite image data is placed
into both even and odd fields of the interlaced display, so the sprite
will appear to be the same size in any display mode.

The upper left corner of the ViewPort area has coordinates (0,0). Unlike
VSprites, the motion of a Simple Sprite can be relative to this position.
(That is, if you create a Simple Sprite relative to your ViewPort and move
the ViewPort around, the Simple Sprite can move as well, but its movement
is relative to the origin of the ViewPort.)

The Sprite pairs 0/1, 2/3, 4/5, and 6/7 share color registers. See
"VSprite Advanced Topics" later in this chapter, for precautions to take
if Simple Sprites and VSprites are used at the same time.

The following figure shows which color registers are used by Simple
Sprites.

00 Unused
01 Unused

·
·
· _

16 Unused |
17 Color 1 |
18 Color 2 |-- Sprites 0 and 1
19 Color 3 _|
20 Unused |
21 Color 1 |
22 Color 2 |-- Sprites 2 and 3
23 Color 3 _|
24 Unused |
25 Color 1 |
26 Color 2 |-- Sprites 4 and 5
27 Color 3 _|
28 Unused |
29 Color 1 |
30 Color 2 |-- Sprites 6 and 7
31 Color 3 _|

Figure 28-2: Sprite Color Registers

Sprites do not have exclusive use of the color registers. If the ViewPort
is 5 bitplanes deep, all 32 of the system color registers will still be
used by the playfield display hardware.

Note:

Color zero for all Sprites is always a "transparent" color, and the
colors in registers 16, 20, 24, and 28 are not used by sprites. These
colors will be seen only if they are rendered into a playfield. For

Libraries 8 / 52

further information, see the Amiga Hardware Reference Manual.

If there are two ViewPorts with different color sets on the same display,
a sprite will switch colors when it is moved across their boundary. For
example, Sprite 0 and 1 will appear in colors 17-19 of whatever ViewPort
they happen to be over. This is because the system jams all the
ViewPort’s colors into the display hardware at the top of each ViewPort.

Simple Sprite Functions

1.12 28 / Using Simple (Hardware) Sprites / Simple Sprite Functions

There are four basic functions that you use to to control Simple Sprites:

GetSprite() Attempts to allocates a sprite for exclusive use
ChangeSprite() Modifies a Simple Sprite’s image data

MoveSprite() Changes a Simple Sprite’s position
FreeSprite() Relinquishes a sprite so it can be used by others

To use these Simple Sprite functions (or the VSprite functions) the SPRITE
flag must have been set in the NewScreen structure for OpenScreen(). If
Intuition is not being used, this flag must be specified in the View and
ViewPort data structures before MakeVPort() is called.

Accessing A Hardware Sprite
Changing The Appearance Of A Simple Sprite
Moving A Simple Sprite
Relinquishing A Simple Sprite
Controlling Sprite DMA
Complete Simple Sprite Example

1.13 28 / / Simple Sprite Functions / Accessing A Hardware Sprite

GetSprite() is used to gain exclusive access to one of the eight hardware
sprites. Once you have gained control of a hardware sprite, it can no
longer be allocated by the GELs system for use as a VSprite. The call is
made like this:

struct SimpleSprite *sprite;
SHORT number;

if (-1 == (sprite_num = GetSprite(sprite, number)))
return_code = RETURN_WARN; /* did not get the sprite */

The inputs to the GetSprite() function are a pointer to a SimpleSprite
structure and the number (0-7) of the hardware sprite to be accessed, or
-1 to get the first available sprite.

A value of 0-7 is returned if the request was granted, specifying which
sprite was allocated. A returned value of -1 means the requested sprite
was not available. If the call succeeds, the SimpleSprite data structure
will have its sprite number field filled in with the appropriate number.

Libraries 9 / 52

1.14 28 / / Sprite Functions / Changing The Appearance Of A Simple Sprite

The ChangeSprite() function can be used to alter the appearance of a
Simple Sprite. ChangeSprite() substitutes new image data for the data
currently used to display a Simple Sprite. It is called by the following
sequence:

struct ViewPort *vp;
struct SimpleSprite *sprite;
APTR newdata;

ChangeSprite(vp, sprite, newdata);

The vp input to this function is a pointer to the ViewPort for this Sprite
or 0 if this Sprite is relative only to the current View. The sprite
argument is a pointer to a SimpleSprite data structure. (You must
allocate an actual SimpleSprite structure for sprite to point to.) Set
newdata to the address of an image data structure containing the new
image. The data must reside in Chip (MEMF_CHIP) memory.

The structure for the new sprite image data is shown below. It is not a
system structure, so it will not be found in the system includes, but it
is described in the documentation for the ChangeSprite() call.

struct spriteimage
{
UWORD posctl[2]; /* position and control data for this Sprite */

/* Two words per line of Sprite height, first of the two words

* contains the MSB for color selection, second word contains

* LSB (colors 0,1,2,3 from allowable color register selection

* set). Color ’0’ for any Sprite pixel makes it transparent.

*/
UWORD data[height][2]; /* actual Sprite image */

UWORD reserved[2]; /* reserved, initialize to 0, 0 */
};

1.15 28 / / Simple Sprite Functions / Moving A Simple Sprite

MoveSprite() repositions a Simple Sprite. After this function is called,
the Simple Sprite is moved to a new position relative to the upper left
corner of the ViewPort. It is called as follows:

struct ViewPort *vp;
struct SimpleSprite *sprite;
SHORT x, y;

MoveSprite(vp, sprite, x, y);

There are three inputs to MoveSprite(). Set the vp argument to the
address of the ViewPort with which this Simple Sprite interacts or 0 if
this Simple Sprite’s position is relative only to the current View. Set
sprite to the address of your SimpleSprite data structure. The x and y

Libraries 10 / 52

arguments sepcify a pixel position to which the Simple Sprite is to be
moved.

1.16 28 / / Simple Sprite Functions / Relinquishing A Simple Sprite

The FreeSprite() function returns a hardware sprite allocated with
GetSprite() to the system so that GELs or other tasks can use it. After
you call FreeSprite(), the GELs system can use it to allocate VSprites.
The syntax of this function is:

WORD sprite_number;

FreeSprite(sprite_number);

The sprite_number argument is the number (0-7) of the sprite to be
returned to the system.

1.17 28 / / Simple Sprite Functions / Controlling Sprite DMA

Two additional functions used with Simple Sprites are the graphics library
macros ON_SPRITE and OFF_SPRITE. These macros can be used to control
sprite DMA. OFF_SPRITE prevents the system from displaying any sprites,
whether Simple Sprites or VSprites. ON_SPRITE restores the sprite display.

Be Careful With OFF_SPRITE.

The Intuition mouse pointer is a sprite. Thus, if OFF_SPRITE is
used, Intuition’s pointer will disappear too. Use care when calling
OFF_SPRITE. The macro turns off sprite fetch DMA, so that no new
sprite data is fetched. Whatever sprite data was last being displayed
at this point will continue to be displayed for every line on the
screen. This may lead to a vertical color bar if a sprite is being
displayed when OFF_SPRITE is called.

1.18 28 Graphics Sprites, Bobs and Animation / Using Virtual Sprites

This section describes how to set up the VSprite structure so that it
represents a true VSprite. True VSprites are managed by the GELs system
which converts them to Simple Sprites and displays them. (Later sections
describe how a VSprite structure can be set up for Bobs and AnimComps.)

Before the system is told of a VSprite’s existence, space for the VSprite
data structure must be allocated and initialized to correctly represent a
VSprite. Since the system does no validity checking on the VSprite
structure, the result of using a bogus structure is usually a fireworks
display, followed by a system failure.

The system software provides a way to detect collisions between VSprites
and other on-screen objects. There is also a method of extending the
VSprite structure to incorporate user defined variables. These subjects

Libraries 11 / 52

are applicable to all GELs and are explained later in the section on
"Collisions and GEL Structure Extensions".

Specification of VSprite Structure
Reserved VSprite Members
Using VSprite Flags
VSprite Position
VSprite Image Size
VSprites and Collision Detection
VSprite Image Data
Specifying the Colors of a VSprite
Adding and Removing VSprites
Changing VSprites
Getting the VSprite List In Order
Displaying the VSprites

1.19 28 / Using Virtual Sprites / Specification of VSprite Structure

The VSprite structure is defined in the include file <graphics/gels.h> as
follows:

/* VSprite structure definition */
struct VSprite {

struct VSprite *NextVSprite;
struct VSprite *PrevVSprite;
struct VSprite *DrawPath;
struct VSprite *ClearPath;
WORD OldY, OldX;
WORD Flags;
WORD Y, X;
WORD Height;
WORD Width;
WORD Depth;
WORD MeMask;
WORD HitMask;
WORD *ImageData;
WORD *BorderLine;
WORD *CollMask;
WORD *SprColors;
struct Bob *VSBob;
BYTE PlanePick;
BYTE PlaneOnOff;
VUserStuff VUserExt;
};

There are two primary ways to allocate and fill in space for VSprite data.
They can be statically declared, or a memory allocation function can be
called and they can be filled in programmatically. The declaration to
statically set up a VSprite structure is listed below.

/* VSprite static data definition.

** must set the following for TRUE VSprites:

** VSPRITE flag.

** Width to 1.

** Depth to 2.

Libraries 12 / 52

** VSBob to NULL.

*/
struct VSprite myVSprite =

{
NULL, NULL, NULL, NULL, 0, 0, VSPRITE, 0, 0, 5, 1, 2, 0, 0,
&myImage, 0, 0, &mySpriteColors, NULL, 0x3, 0, 0
};

This static allocation gives the required VSprite structure, but does not
allocate or set up collision masks for the VSprite. Note that the VSprite
structure itself does not need to reside in Chip memory.

Refer to the makeVSprite() and freeVSprite() functions in the animtools.c
listing at the end of the chapter for an example of dynamically
allocating, initializing and freeing a VSprite structure.

1.20 28 / Using Virtual Sprites / Reserved VSprite Members

These VSprite structure members are reserved for system use (do not write
to them):

NextVSprite and PrevVSprite -- These are used as links in the
GelsInfo list.

DrawPath and ClearPath -- These are used for Bobs, not true
VSprites.

OldY and OldX -- Previous position holder, the system
uses these for double buffered Bobs,
but application programs can read
them too.

The values can be set like this:

myVSprite.NextVSprite = NULL;
myVSprite.PrevVSprite = NULL;
myVSprite.DrawPath = NULL;
myVSprite.ClearPath = NULL;
myVSprite.OldY = 0;
myVSprite.OldX = 0;

1.21 28 / Using Virtual Sprites / Using VSprite Flags

The Flags member of the VSprite structure is both read and written by the
system. Some bits are used by the application to inform the system;
others are used by the system to indicate things to the application.

The only Flags bits that are used by true VSprites are:

VSPRITE
This may be set to indicate to the system that it should treat the
structure as a true VSprite, not part of a Bob. This affects the

Libraries 13 / 52

interpretation of the data layout and the use of various system
variables.

VSOVERFLOW
The system sets this bit in the true VSprites that it is unable to
display. This happens when there are too many in the same scan line,
and the system has run out of Simple Sprites to assign. It indicates
that this VSprite has not been displayed. If no sprites are
reserved, this means that more than eight sprites touch one scan
line. This bit will not be set for Bobs and should not be changed by
the application.

GELGONE
If the system has set GELGONE bit in the Flags member, then the GEL
associated with this VSprite is not on the display at all, it is
entirely outside the GEL boundaries. This area is defined by the
GelsInfo members topmost, bottommost, leftmost and rightmost (see
<graphics/rastport.h>). On the basis of that information, the
application may decide that the object need no longer be part of the
GEL list and may decide to remove it to speed up the consideration of
other objects. Use RemVSprite() (or RemBob(), if it’s a Bob) to do
this. This bit should not be changed by the application.

The VSprite.Flags value should be initialized like this for a VSprite
GEL:

myVSprite.Flags = VSPRITE;

1.22 28 / Using Virtual Sprites / VSprite Position

To control the position of a VSprite, the x and y variables in the VSprite
structure are used. These specify where the upper left corner of the
VSprite will be, relative to the upper left corner of the playfield area
it appears over. So if VSprites are used under Intuition and within a
screen, they will be positioned relative to the upper left-hand corner of
the screen.

In a 320 by 200 screen, a y value of 0 puts the VSprite at the top of that
display, a y value of (200 - VSprite height) puts the VSprite at the
bottom. And an x value of 0 puts the VSprite at the left edge of that
display, while an x value of (320 - VSprite width) puts the VSprite at the
far right. Values of less than (0,0) or greater than (320, 200) may be
used to move the VSprite partially or entirely off the screen, if desired.

See the "Graphics Primitives" chapter for more information on display
coordinates and display size. See the Amiga Hardware Reference Manual for
more information on hardware sprites.

Position VSprites Properly.

It is important that the starting position of true VSprites is not
less than -20 in the y direction, which is the start of the active
display area for sprites. Also, if they are moved too far to the
left, true VSprites may not have enough DMA time to be displayed.

Libraries 14 / 52

The x, y values may be set like this to put the VSprite in the upper-left:

myVSprite.Y = 0;
myVSprite.X = 0;

1.23 28 / Using Virtual Sprites / VSprite Image Size

A true VSprite is always one word (16 pixels) wide and may be any number
of lines high. It can be made to appear thinner by making some pixels
transparent. Like Simple Sprites, VSprite pixels are always the size of a
pixel in low-resolution mode (320x200); regardless of the resolution the
display is set to. To specify how many lines make up the VSprite image,
the VSprite structure member, Height, is used. VSprites always have a
Depth of two, allowing for three colors. The values may be set like this:

myVSprite.Width = 1; /* ALWAYS 1 for true VSprites. */
myVSprite.Height = 5; /* The example height. */
myVSprite.Depth = 2; /* ALWAYS 2 for true VSprites. */

1.24 28 / Using Virtual Sprites / VSprites and Collision Detection

Some members of the VSprite data structure are used for special purposes
such as collision detection, user extensions or for system extensions
(such as Bobs and AnimComps). For most applications these fields are set
to zero:

myVSprite.HitMask = 0; /* These are all used for collision */
myVSprite.MeMask = 0; /* detection */
myVSprite.BorderLine = 0;
myVSprite.CollMask = 0;

myVSprite.VUserExt = 0; /* Only use this for user extensions to */
/* VSprite */

myVSprite.VSBob = NULL; /* Only Bobs and AnimComps need this */

The special uses of these fields are explained further in the sections
that follow.

1.25 28 / Using Virtual Sprites / VSprite Image Data

The ImageData pointer of the VSprite structure must be initialized with
the address of the first word of the image data array. The image data
array must be in Chip memory. It takes two sequential 16-bit words to
define each line of a VSprite. This means that the data area containing
the VSprite image is always Height x 2 (10 in the example case) words long.

A VSprite image is defined just like a real hardware sprite. The
combination of bits in corresponding locations in the two data words that
define each line select the color for that pixel. The first of the pair

Libraries 15 / 52

of words supplies the low-order bit of the color selector for that pixel;
the second word supplies the high-order bit.

These binary values select colors as follows:

00 - selects "transparent"
01 - selects the first of three VSprite colors
10 - selects the second VSprite color
11 - selects the third VSprite color

In those areas where the combination of bits yields a value of 0, the
VSprite is transparent. This means that the playfield, and all Bobs and
AnimComps, and any VSprite whose priority is lower than this VSprite will
all show through in transparent sections. For example:

(&VSprite->ImageData) 1010 0000 0000 0000
(&VSprite->ImageData + 1) 0110 0000 0000 0000

Reading from top to bottom, left to right, the combinations of these two
sequential data words form the binary values of 01, 10, 11, and then all
00s. This VSprite’s first pixel will be color 1, the next color 2, the
third color 3. The rest will be transparent, making this VSprite appear to
be three pixels wide. Thus, a three-color image, with some transparent
areas, can be formed from a data set like the following sample:

Address Binary Data VSprite Image Data
------- ----------- ------------------
mem 1111 1111 1111 1111 Defines top line
mem + 1 1111 1111 1111 1111 3333 3333 3333 3333

mem + 2 0011 1100 0011 1100 Defines second line
mem + 3 0011 0000 0000 1100 0033 1100 0011 3300

mem + 4 0000 1100 0011 0000 Defines third line
mem + 5 0000 1111 1111 0000 0000 3322 2233 0000

mem + 6 0000 0010 0100 0000 Defines fourth line
mem + 7 0000 0011 1100 0000 0000 0032 2300 0000

mem + 8 0000 0001 1000 0000 Defines fifth line
mem + 9 0000 0001 1000 0000 0000 0003 3000 0000

The VSprite.Height for this sample image is 5.

1.26 28 / Using Virtual Sprites / Specifying the Colors of a VSprite

The system software provides a great deal of versatility in the choice of
colors for Virtual Sprites. Each VSprite has its own set of three colors,
pointed to by SprColors, which the system jams into the display’s Copper
list as needed.

SprColors points to the first of three 16-bit values. The first value
represents the color used for the VSprite bits that select color 1, the

Libraries 16 / 52

second value is color 2, and the third value is color 3. When the system
assigns a hardware sprite to carry the VSprite’s image, it jams these
color values into the Copper list (the intermediate Copper list, not the
color table), so that the View’s colors will be correct for this VSprite
at the time the VSprite is displayed. It doesn’t jam the original
palette’s colors back after the VSprite is done. If there is another
VSprite later, that VSprite’s colors will get jammed; if there is not
another VSprite, the colors will remain the same until the next ViewPort’s
colors get loaded.

If the SprColors pointer is set to NULL, that VSprite does not generate a
color-change instruction stream for the Copper. Instead, the VSprite
appears drawn in whatever color set that the hardware sprite happens to
have in it already.

Since the registers are initially loaded with the colors from the
ViewPort’s ColorMap, if all VSprites have NULL SprColors, they will appear
in the ViewPort’s colors.

To continue our example, a set of colors can be declared and the VSprite
colors set with the following statements:

WORD mySpriteColors[] = { 0x0000,
0x00f0,
0x0f00 }; /* Declare colors statically */

myVSprite.SprColors = mySpriteColors; /* Assign colors to VSprite */

1.27 28 / Using Virtual Sprites / Adding and Removing VSprites

Once a true VSprite has been set up and initialized, the obvious next step
is to give it to the system by adding it to the GEL list. The VSprite may
then be manipulated as needed. Before the program ends, the VSprite
should be removed from the GELs list by calling RemVSprite(). A typical
calling sequence could be performed like so:

struct VSprite myVSprite = {0};
struct RastPort myRastPort = {0};

AddVSprite(&myVSprite, &myRastPort);

/* Manipulate the VSprite as needed here */

RemVSprite(&myVSprite);

The &myVSprite argument is a fully initialized VSprite structure and
&myRastPort is the RastPort with which this VSprite is to be associated.
Note that you will probably not like the results if you try to
RemVSprite() a VSprite that has not been added to the system with
AddVSprite(). See the Amiga ROM Kernel Reference Manual: Includes and
Autodocs for additional information on these functions.

Libraries 17 / 52

1.28 28 / Using Virtual Sprites / Changing VSprites

Once the VSprite has been added to the GELs list and is in the display,
some of its characteristics can be changed dynamically by:

* Changing y, x to a new VSprite position

* Changing ImageData to point to a new VSprite image

* Changing SprColors to point to a new VSprite color set

Study the next two sections to find out how to reserve hardware Sprites
for use outside the VSprite system and how to assign the VSprites.

1.29 28 / Using Virtual Sprites / Getting the VSprite List In Order

When the system has displayed the last line of a VSprite, it is able to
reassign the hardware sprite to another VSprite located at a lower
position on the screen. The system allocates hardware sprites in the
order in which it encounters the VSprites in the list. Therefore, the
list of VSprites must be sorted before the system can assign the use of
the hardware Sprites correctly.

The function SortGList() must be used to get the GELs in the correct order
before the system is asked to display them. This sorting step is
essential! It should be done before calling DrawGList(), whenever a GEL
has changed position. This function is called as follows:

struct RastPort myRastPort = {0};

SortGList(&myRastPort);

The only argument is a pointer to the RastPort structure containing the
GelsInfo.

1.30 28 / Using Virtual Sprites / Displaying the VSprites

The next few sections explain how to display the VSprites. The following
system functions are used:

DrawGList() Draws the VSprites into the current RastPort.
MrgCop() Installs the VSprites into the display.

LoadView() Asks the system to display the new View.
WaitTOF() Synchronizes the functions with the display.

Drawing the Graphics Elements Loading the New View
Merging VSprite Instructions Synchronizing with the Display

1.31 28 / / Displaying the VSprites / Drawing the Graphics Elements

Libraries 18 / 52

The system function called DrawGList() looks through the list of GELS and
prepares the necessary Copper instructions and memory areas to display the
data. This function is called as follows:

struct RastPort myRastPort = {0};
struct ViewPort myViewPort = {0};

DrawGList(&myRastPort, &myViewPort);

The myRastPort argument specifies the RastPort containing the GelsInfo
list with the VSprites that you want to display. The &myViewPort argument
is a pointer to the ViewPort for which the VSprites will be created.

1.32 28 / / Displaying the VSprites / Merging VSprite Instructions

Once DrawGList() has prepared the necessary instructions and memory areas
to display the data, the VSprites are installed into the display with
MrgCop(). (DrawGList() does not actually draw the VSprites, it only
prepares the Copper instructions.)

struct View *view;

MrgCop(view);

The view is a pointer to the View structure whose Copper instructions are
to be merged.

1.33 28 / / Displaying the VSprites / Loading the New View

Now that the display instructions include the definition of the VSprites,
the system can display this newly configured View with the LoadView()
function:

struct View *view;

LoadView(view);

Again, view is a pointer to the View that contains the the new Copper
instruction list (if you are using GELs in an Intuition Screen, do not
call LoadView().)

The Copper instruction lists are double-buffered, so this instruction does
not actually take effect until the next display field occurs. This avoids
the possibility of some function trying to update the Copper instruction
list while the Copper is trying to use it to create the display.

1.34 28 / / Displaying the VSprites / Synchronizing with the Display

Libraries 19 / 52

To synchronize application functions with the display, call the system
function WaitTOF(). WaitTOF() holds your task until the vertical-blanking
interval (blank area at the top of the screen) has begun. At that time,
the system has retrieved the current Copper instruction list and is ready
to allow generation of a new list.

WaitTOF();

WaitTOF() takes no arguments and returns no values. It simply suspends
your task until the video beam is at the top of field.

1.35 28 Graphics: Sprites, Bobs and Animation / VSprite Advanced Topics

This section describes advanced topics pertaining to VSprites. It contains
details about reserving hardware sprites for use outside of the GELs
VSprite system, information about how VSprites are assigned, and more
information about VSprite colors.

Reserving Hardware Sprites
How VSprites Are Assigned
How VSprite and Playfield Colors Interact

1.36 28 / VSprite Advanced Topics / Reserving Hardware Sprites

To prevent the VSprite system from using specific hardware sprites, set
the sprRsrvd member of the GelsInfo structure. The pointer to the GelsInfo
structure is contained in the RastPort structure. If all of the bits of
this 8-bit value are ones (0xFF), then all of the hardware sprites may be
used by the VSprite system. If any of the bits is a 0, the sprite
corresponding to that bit will not be utilized by VSprites.

Reserving Can Cause Problems.

Reserving sprites increases the likelihood of the system not being
able to display a VSprite (VSOVERFLOW). See the next section,
"How VSprites are Assigned," for further details on this topic.

You reserve a sprite by setting its corresponding bit in sprRsrvd. For
instance, to reserve sprite zero only, set sprRsrvd to 0x01. To reserve
sprite three only, set sprRsrvd to 0x08.

If a hardware sprite is reserved, the system will not consider it when it
makes VSprite assignments. Remember, hardware sprite pairs share color
register sets. If a hardware sprite is reserved, its mate should probably
be reserved too, otherwise the reserved sprite’s colors will change as the
unreserved mate is assigned different VSprites. For example, it is common
practice to reserve Sprites 0 and 1, so that the Intuition pointer (Sprite
0) is left alone. This could be accomplished with the following
statements:

struct RastPort myRastPort = {0}; /* the View structure is defined */

Libraries 20 / 52

myRastPort.GelsInfo->sprRsrvd = 0x03; /* reserve 0 and 1 */

The GfxBase structure may be examined to find which sprites are already in
use. This may, at your option, impact what sprites you reserve. If
Intuition is running, sprite 0 will already be in use as its pointer.

The reserved sprite status is accessible as

currentreserved = GfxBase->SpriteReserved;

The next section presents a few trouble-shooting techniques for VSprite
assignment.

1.37 28 / VSprite Advanced Topics / How VSprites Are Assigned

Although VSprites are managed for you by the GELs system there are some
underlying limitations which could cause the system to run out of VSprites.

As the system goes through the GEL list during DrawGList(), whenever it
finds a true VSprite, it goes through the following procedure. If there is
a Simple Sprite available (after the reserved sprites and preceding
VSprites are accounted for), Copper instructions are added that will load
the sprite hardware with this VSprite’s data at the right point on the
screen. It may need to add a Copper instruction sequence to load the
display’s colors associated with the sprite as well.

There are only 8 real sprite DMA channels. The system will run out of
hardware sprites if it is asked to display more than eight VSprites on one
scan line. This limit goes down to four when the VSprites have different
SprColor pointers. During the time that there is a conflict, the VSprites
that could not be put into Simple Sprites will disappear. They will
reappear when (as the VSprites are moved about the screen) circumstances
permit.

These problems can be alleviated by taking some precautions:

* Minimize the number of VSprites to appear on a single horizontal line.

* If colors for some Virtual Sprites are the same, make sure that the
pointer for each of the VSprite structures for these Virtual Sprites
points to the same memory location, rather than to a duplicate set of
colors elsewhere in memory. The system will know to map these into
Sprite pairs.

If a VSprite’s SprColors are set to NULL, the VSprite will appear in the
ViewPort’s ColorMap colors. The system will display the VSprite in any
one of a set of four different possible color groupings as indicated in
the Simple Sprite section above.

If SprColors points to a color set, the system will jam SprColors into the
display hardware (via the Copper list), effectively overriding those
ColorMap registers. The values in the ColorMap are not overwritten, but
anything in the background display that used to appear in the ColorMap

Libraries 21 / 52

colors will appear in SprColors colors.

1.38 28 / Advanced Topics / How VSprite and Playfield Colors Interact

At the start of each display, the system loads the colors from the
ViewPort’s color table into the display’s hardware registers, so whatever
is rendered into the BitMap is displayed correctly. But if the VSprite
system is used, and the colors are specified (via SprColors) for each
VSprite, the SprColors will be loaded by the system into the display
hardware, as needed. The system does this by generating Copper
instructions that will jam the colors into the hardware at specific
moments in the display cycle. Any BitMap rendering, including Bobs, which
share colors with VSprites, may change colors constantly as the video
display beam progresses down the screen.

This color changing can be avoided by taking one of the following
precautions:

* Use a four bitplane playfield, which only allows the lower 16 colors
to be rendered into the BitMap (and allows Hires display mode).

* If a 32-color playfield display is being used, avoid rendering in
colors 17-19, 21-23, 25-27, and 29-32, which are the colors affected
by the VSprite system.

* Specify the VSprite SprColors pointer as a value of NULL to avoid
changing the contents of any of the hardware sprite color registers.
This may cause the VSprites to change colors depending on their
positions relative to each other, as described in the
previous section.

1.39 28 Graphics Sprites, Bobs and Animation / Using Bobs

The following section describes how to define a Bob (blitter object). Like
VSprites, a Bob is a software construct designed to make animation easier.
The main advantage of a Bob over a VSprite is that it allows more colors
and a width greater than 16 pixels to be defined.

To create a Bob, you need both a Bob structure and a VSprite structure.
The components common to all GELs -- height, collision-handling
information, position in the drawing area and pointers to the image
definition -- are part of the VSprite structure. The added features --
such as drawing sequence, data about saving and restoring the background,
and other features not applicable to VSprites -- are further specified in
the Bob structure.

The VSprite Structure and Bobs Bob Priorities
VSprite Flags and Bobs Adding a Bob
The Bob Structure Removing a Bob
Using Bob Flags Sorting and Displaying Bobs
Specifying the Size of a Bob Changing Bobs
Specifying the Shape of a Bob Complete Bob Example

Libraries 22 / 52

Specifying the Colors of a Bob Double-Buffering
Other Items Influencing Bob Colors

1.40 28 / Using Bobs / The VSprite Structure and Bobs

The root VSprite structure is set up as described earlier for true
VSprites, with the following exceptions:

Y, X Bob position is always in pixels that are the same
resolution as the display.

Flags For Bobs, the VSPRITE flag must be cleared. SAVEBACK
or OVERLAY can also be used.

Height, Width Bob pixels are the size of the background pixels. The
Width of Bobs may be greater than one word.

Depth The Depth of a Bob may be up to as deep as the
playfield, provided that enough image data is provided.

ImageData This is still a pointer to the image, but the data
there is organized differently.

SprColors This pointer should be set to NULL for Bobs.

VSBob This is a pointer to the Bob structure set up as
described below.

1.41 28 / Using Bobs / VSprite Flags and Bobs

The bits in the VSprite.Flags field that apply to a Bob are the VSPRITE
flag, the SAVEBACK flag and the OVERLAY flag. When a VSprite structure is
used to define a Bob, the VSPRITE flag in the VSprite.Flags field must be
set to zero. This tells the system that this GEL is a Bob type.

To have the GEL routines save the background before the Bob is drawn and
restore the background after the Bob is removed, specify the SAVEBACK flag
(stands for "save the background") in the VSprite structure Flags field.
If this flag is set, the SaveBuffer must have been allocated, which is
where the system puts this saved background area. The buffer must be
large enough to save all the background bitplanes, regardless of how many
planes the Bob has. The size in words can be calculated as follows:

/* Note that Bob.Width is in units of words. */
size = Bob.Width * Bob.Height * RastPort.BitMap.Depth;

To allocate this space, the graphics function AllocRaster() can be used.
AllocRaster() takes the width in bits, so it is a convenient way to
allocate the space needed. The makeBob() routine below shows another way
to correctly allocate this buffer. For example:

/* space for 16 bits times 5 lines times 5 bitplanes */

Libraries 23 / 52

myBob.SaveBuffer = AllocRaster((UWORD) 16, (UWORD) (5 * 5));

Warning:

The SaveBuffer must be allocated from Chip memory and contain an
even number of word-aligned bytes. The AllocRaster() function
does this for you. The AllocRaster() function rounds the width
value up to the next integer multiple of 16 bits which is greater
than or equal to the current value an it obtains memory from the Chip
memory pool.

OVERLAY is the other VSprite.Flags item that applies to Bobs. If this flag
is set, it means that the background’s original pixels show through in any
area where there are 0 bits in the Bob’s shadow mask (ImageShadow,
explained later). The space for the ImageShadow shadow mask must have
been allocated and initialized. The ImageShadow mask must be allocated
from Chip memory.

If the OVERLAY bit is cleared, the system uses the entire rectangle of
words that define the Bob image to replace the playfield area at the
specified x,y coordinates. See the paragraphs below called "ImageShadow.

1.42 28 / Using Bobs / The Bob Structure

The Bob structure is defined in the include file <graphics/gels.h> as
follows:

struct Bob
{
WORD Flags; /* general purpose flags */
WORD *SaveBuffer;/* buffer for background save */
WORD *ImageShadow; /* shadow mask of image */
struct Bob *Before; /* draw this Bob before Bobs on this list */
struct Bob *After; /* draw this Bob after Bobs on this list */
struct VSprite *BobVSprite;/* this Bob’s VSprite definition */
struct AnimComp *BobComp; /* pointer to this Bob’s AnimComp def */
struct DBufPacket *DBuffer; /* pointer to this Bob’s dBuf packet */
BUserStuff BUserExt; /* Bob user extension */
};

The Bob structure itself does not need to be in Chip memory. The (global)
static declaration of a Bob structure could be done like so:

struct Bob myBob =
{
0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 0
};

However, since most of the Bob structure members are pointers, it is more
common to allocate and set the Bob up dynamically. Refer to the makeBob()
and freeBob() functions in the "animtools.c" example at the end of the
chapter for an example of allocating, initializing and freeing a Bob
structure.

Libraries 24 / 52

Linking Bob and VSprite Structures

1.43 28 / / The Bob Structure / Linking Bob and VSprite Structures

The VSprite and Bob structures must point to one another, so that the
system can find the entire GEL. The structures are linked with statements
like this:

myBob.BobVSprite = &myVSprite;
myVSprite.VSBob = &myBob;

Now the system (and the application program) can go back and forth between
the two structures to obtain the various Bob variables.

1.44 28 / Using Bobs / Using Bob Flags

The following paragraphs describe how to set the Flags field in the Bob
structure (note that these flags do not apply to the Flags field of the
VSprite structure).

SAVEBOB
To tell the system not to erase the old image of the Bob when the Bob
is moved, specify the SAVEBOB flag in the Bob structure Flags field.
This makes the Bob behave like a paintbrush. It has the opposite
effect of SAVEBACK.

It’s Faster To Draw A New Bob.

It takes longer to preserve and restore the raster image than simply
to draw a new Bob image wherever required.

BOBISCOMP
If this Bob is part of an AnimComp, set the BOBISCOMP flag in the Bob
structure to 1. If the flag is a 1, the pointer named BobComp must
have been initialized. Otherwise, the system ignores the pointer,
and it may be left alone (though it’s good practice to initialize it
to NULL). See "Animation Data Structures" for a discussion
of AnimComps.

BWAITING
This flag is used solely by the system, and should be left alone.
When a Bob is waiting to be drawn, the system sets the BWAITING flag
in the Bob structure to 1. This occurs only if the system has found
a Before pointer in this Bob’s structure that points to another Bob.
Thus, the system flag BWAITING provides current draw-status to the
system. Currently, the system clears this flag on return from each
call to DrawGList().

BDRAWN
This is a system status flag that indicates to the system whether or
not this Bob has already been drawn. Therefore, in the process of
examining the various Before and After flags, the drawing routines

Libraries 25 / 52

can determine the drawing sequence. The system clears this flag on
return from each call to DrawGList().

BOBSAWAY
To initiate the removal of a Bob during the next call to DrawGList(),
set BOBSAWAY to 1. Either the application or the system may set this
Bob structure system flag. The system restores the background where
it has last drawn the Bob. The system will unlink the Bob from the
system GEL list the next time DrawGList() is called, unless the
application is using double-buffering. In that case, the Bob will
not be unlinked and completely removed until two calls to DrawGList()
have occurred and the Bob has been removed from both buffers. The
RemBob() macro sets the BOBSAWAY flag.

BOBNIX
When a Bob has been completely removed, the system sets the BOBNIX
flag to 1 on return from DrawGList(). In other words, when the
background area has been fully restored and the Bob has been removed
from the GEL list, this flag in is set to a 1. BOBNIX is especially
significant when double-buffering because when an application asks
for a Bob to be removed, the system must remove it from both the
drawing buffer and from the display buffer. Once BOBNIX has been
set, it means the Bob has been removed from both buffers and the
application is free to reuse or deallocate the Bob.

SAVEPRESERVE
The SAVEPRESERVE flag is a double-buffer version of the SAVEBACK
flag. If using double-buffering and wishing to save and restore the
background, set SAVEBACK to 1. SAVEPRESERVE is used by the system to
indicate whether the Bob in the "other" buffer has been restored; it
is for system use only.

1.45 28 / Using Bobs / Specifying the Size of a Bob

Bobs do not have the 16-pixel width limit that applies to VSprites. To
specify the overall size of a Bob, use the Height and Width members of the
root VSprite structure. Specify the Width as the number of 16-bit words
it takes to fully contain the object. The number of lines is still
specified with the Height member in the VSprite data structure.

As an example, suppose the Bob is 24 pixels wide and 20 lines tall. Use
statements like the following to specify the size:

myVSprite.Height = 20; /* 20 lines tall. */
myVSprite.Width = 2; /* 24 bits fit into two words. */

Because Bobs are drawn into the background playfield, the pixels of the
Bob are the same size as the background pixels, and share the color
palette of the ViewPort.

1.46 28 / Using Bobs / Specifying the Shape of a Bob

Libraries 26 / 52

The layout of the data of a Bob’s image is different from that of a
VSprite because of the way the system retrieves data to draw Bobs.
VSprite images are organized in a way convenient to the Sprite hardware;
Bob images are set up for easy blitter manipulation. The ImageData
pointer is still initialized to point to the first word of the image
definition.

Note:

As with all image data, a Bob’s ImageData must be in Chip memory
for access by the blitter.

The sample image below shows the same image defined as a VSprite in the
"Using Virtual Sprites" section above. The data here, however, is laid
out for a Bob. The shape is 2 planes deep and is triangular:

<first bitplane data>

mem 1111 1111 1111 1111 Least significant bit of sprite line 1
mem + 1 0011 1100 0011 1100 Least significant bit of sprite line 2
mem + 2 0000 1100 0011 0000 Least significant bit of sprite line 3
mem + 3 0000 0010 0100 0000 Least significant bit of sprite line 4
mem + 4 0000 0001 1000 0000 Least significant bit of sprite line 5

<second bitplane data>

mem + 5 1111 1111 1111 1111 Most significant bit of sprite line 1
mem + 6 0011 0000 0000 1100 Most significant bit of sprite line 2
mem + 7 0000 1111 1111 0000 Most significant bit of sprite line 3
mem + 8 0000 0011 1100 0000 Most significant bit of sprite line 4
mem + 9 0000 0001 1000 0000 Most significant bit of sprite line 5

<more bitplanes of data if Bob is deeper>

1.47 28 / Using Bobs / Specifying the Colors of a Bob

Typically a five-bitplane, low-resolution mode display allows playfield
pixels (and therefore, Bob pixels) to be selected from any of 32 active
colors out of a system palette of 4,096 different color choices. Bob
colors are limited to the colors used in the background playfield.

The system ignores the sprColors member of the VSprite structure when the
VSprite structure is the root of a Bob. Instead, the Bob’s colors are
determined by the combination of the Depth of the Bob image and its
PlanePick, PlaneOnOff and ImageShadow members.

Use the Depth member in the VSprite structure to indicate how many planes
of image data is provided to define the Bob. This also defines how many
colors the Bob will have. The combination of bits in corresponding Y,X
positions in each bitplane determines the color of the pixel at that
position.

For example, if a Depth of one plane is specified, then the bits of that

Libraries 27 / 52

image allow only two colors to be selected: one color for each bit that
is a 0, a second color for each bit that is a 1. Likewise, if there are 5
planes of image data, all 32 colors can be used in the Bob. The Bob Depth
must not exceed the background depth. Specify Depth using a statement
such as the following:

myVSprite.Depth = 5; /* Allow a 32 color, 5-bitplane image. */

1.48 28 / Using Bobs / Other Items Influencing Bob Colors

The three other members in the VSprite structure that affect the color of
Bob pixels are ImageShadow, PlanePick, and PlaneOnOff.

ImageShadow PlanePick PlaneOnOff

1.49 28 / / Other Items Influencing Bob Colors / ImageShadow

The ImageShadow member is a pointer to the shadow mask of a Bob. A shadow
mask is the logical or of all bitplanes of a Bob image. The system uses
the shadow mask in conjunction with PlaneOnOff, discussed below, for color
selection. It also uses the shadow mask to "cookie cut" the bits that will
be overwritten by this Bob, to save and later restore the background.

The following figure shows the shadow mask of the image described above.

mem + 0 1111 1111 1111 1111 Shadow mask for line 1
mem + 1 0011 1100 0011 1100 Shadow mask for line 2
mem + 2 0000 1111 1111 0000 Shadow mask for line 3
mem + 3 0000 0011 1100 0000 Shadow mask for line 4
mem + 4 0000 0001 1000 0000 Shadow mask for line 5

Space for the ImageShadow must be provided and this pointer initialized to
point to it. The amount of memory needed is equivalent to one plane of
the image:

shadow_size = myBob->BobVSprite->Height * myBob->BobVSprite->Width;

The example image is 5 high and 1 word wide, so, 5 words must be made
available.

Note:

The ImageShadow memory must be allocated from Chip memory
(MEMF_CHIP).

1.50 28 / / Other Items Influencing Bob Colors / PlanePick

Libraries 28 / 52

Because the Depth of the Bob can be less than the background, the
PlanePick member is provided so that the application can indicate which
background bitplanes are to have image data put into them. The system
starts with the least significant plane of the Bob, and scans PlanePick
starting at the least significant bit, looking for a plane of the RastPort
to put it in.

For example, if PlanePick has a binary value of: 0 0 0 0 0 0 1 1 (0x03)
then the system draws the first plane of the Bob’s image into background
plane 0 and the second plane into background plane 1.

Alternatively, a PlanePick value of: 0 0 0 1 0 0 1 0 (0x12) directs the
system to put the first Bob plane into plane 1, and the second Bob plane
into plane 4.

1.51 28 / / Other Items Influencing Bob Colors / PlaneOnOff

What happens to the background planes that aren’t picked? The shadow mask
is used to either set or clear the bits in those planes in the exact shape
of the Bob if OVERLAY is set, otherwise the entire rectangle containing
the Bob is used. The PlaneOnOff member tells the system whether to put
down the shadow mask as zeros or ones for each plane. The relationship
between bit positions in PlaneOnOff and background plane numbers is
identical to PlanePick: the least significant bit position indicates the
lowest-numbered bitplane. A zero bit clears the shadow mask shape in the
corresponding plane, while a one bit sets the shadow mask shape. The
planes Picked by PlanePick have image data - not shadow mask - blitted in.

This provides a great deal of color versatility. One image definition can
be used for many Bobs. By having different PlanePick / PlaneOnOff
combinations, each Bob can use a different subset of the background color
set.

There is a member in the VSprite structure called CollMask (the collision
mask, covered under "Detecting GEL Collisions") for which the application
may also reserve some memory space. The ImageShadow and CollMask pointers
usually, but not necessarily, point to the same data, which must be
located in Chip memory. If they point to the same location, obviously,
the memory only need be allocated once.

An example of the kinds of statements that accomplish these actions (see
the makeVSprite() and makeBob() examples for more details):

#define BOBW 1
#define BOBH 5
#define BOBD 2

/* Data definition from example layout */
WORD chip BobData[]=

{
0xFFFF, 0x300C, 0x0FF0, 0x03C0, 0x0180,
0xFFFF, 0x3E7C, 0x0C30, 0x03C0, 0x0180
};

Libraries 29 / 52

/* Reserve space for the collision mask for this Bob */
WORD chip BobCollision[BOBW * BOBH];

myVSprite.Width = BOBW; /* Image is 16 pixels wide (1 word) */
myVSprite.Height = BOBH; /* 5 lines for each plane of the Bob */
myVSprite.Depth = BOBD; /* 2 Planes are in ImageData */

/* Show the system where it can find the data image of the Bob */
myVSprite.ImageData = BobData;

/* binary 0101, render image data into bitplanes 0 and 2 */
myVSprite.PlanePick = 0x05;

/* binary 0000, means colors 1, 4, and 5 will be used.

* binary 0010 would mean colors 3, 6, and 7.

* " 1000 " " " 9, C, and D.

* " 1010 " " " B, E, and F.

*/
myVSprite.PlaneOnOff = 0x00;

/* Where to put collision mask */
myVSprite.CollMask = BobCollision;

/* Tell the system where it can assemble a GEL shadow */
/* Point to same area as CollMask */
myBob.ImageShadow = BobCollision;

/* Create the Sprite collision mask in the VSprite structure */
InitMasks(&myVSprite);

1.52 28 / Using Bobs / Bob Priorities

This subsection describes the choices for inter-Bob priorities. The
inter-Bob priorities tell the system what order to render the Bobs. Bobs
rendered earlier will appear to be behind later Bobs. A Bob drawn earlier
is said to have the lower priority and a Bob drawn later is said to have
the higher priority. Thus, the highest priority Bob will be drawn last
and will never be obstructed by another Bob.

Letting the System Decide Priorities
Specifying the Drawing Order

1.53 28 / / Bob Priorities / Letting the System Decide Priorities

The priority issue can be ignored and the system will render the Bobs as
it finds them in the GelsInfo list. To do this, set the Bob’s Before and
After pointers to NULL. Since the GelsInfo list is sorted by GEL x, y
values, Bobs that are higher on the display will appear behind the lower
ones, and Bobs that are more to the left on the display will appear behind
Bobs on the right.

Libraries 30 / 52

As Bobs are moved about the display, their priorities will change.

1.54 28 / / Bob Priorities / Specifying the Drawing Order

To specify the priorities of the Bobs, use the Before and After pointers.
Before points to the Bob that this Bob should be drawn before, and After
points to the Bob that this Bob should be drawn after. By following these
pointers, from Bob to Bob, the system can determine the order in which the
Bobs should be drawn. (Take care to avoid circular dependencies in this
list!)

Note:

This terminology is often confusing, but, due to historical reasons,
cannot be changed. The system does not draw the Bobs on the Before
list first, it draws the Bobs on the After list first. Next, it draws
the current Bob, and, finally, the Bobs on the Before list.

For example, to assure that myBob1 always appears in front of myBob2, The
Before and After pointers must be initialized so that the system will
always draw myBob1 after myBob2.

myBob2.Before = &myBob1; /* draw Bob2 before drawing Bob1 */
myBob2.After = NULL; /* draw Bob2 after no other Bob */
myBob1.After = &myBob2; /* draw Bob1 after drawing Bob2 */
myBob1.Before = NULL; /* draw Bob1 before no other Bob */

As the system goes through the GelsInfo list, it checks the Bob’s After
pointer. If this is not NULL, it follows the After pointer until it hits
a NULL. Then it starts rendering the Bobs, going back up the Before
pointers until it hits a NULL. Then it continues through the GelsInfo
list. So, it is important that all Before and After pointers of a group
properly point to each other.

Note:

In a screen with a number of complex GELs, you may want to specify
the Before and After order for Bobs that are not in the same
AnimOb. This will keep large objects together. If you do not do
this, you may have an object drawn with half of its Bobs in front of
another object! Also, in sequences you only set the Before and
After pointers for the active AnimComp in the sequence.

1.55 28 / Using Bobs / Adding a Bob

To add a Bob to the system GEL list, use the AddBob() routine. The Bob
and VSprite structures must be correct and cohesive when this call is
made. See the makeBob() and makeVSprite() routines in the animtools.c
file listed at the end of this chapter for a detailed example of setting
up Bobs and VSprites. See the setupGelSys() function for a more complete
example of the initialization of the GELs system.

Libraries 31 / 52

For example:

struct GelsInfo myGelsInfo = {0};
struct VSprite dummySpriteA = {0}, dummySpriteB = {0};
struct Bob myBob = {0};
struct RastPort rastport = {0};

/* Done ONCE, for this GelsInfo. See setupGelSys() at the end of this

** chapter for a more complete initialization of the Gel system

*/
InitGels(&dummySpriteA, &dummySpriteB, &myGelsInfo);

/* Initialize the Bob members here, then AddBob() */
AddBob(&myBob, &rastport);

1.56 28 / Using Bobs / Removing a Bob

Two methods may be used to remove a Bob. The first method uses the
RemBob() macro. RemBob() causes the system to remove the Bob during the
next call to DrawGList() (or two calls to DrawGList() if the system is
double-buffered). RemBob() asks the system to remove the Bob at the next
convenient time. See the description of the BOBSAWAY and BOBNIX flags
above. It is called as follows:

struct Bob myBob = {0};

RemBob(&myBob);

The second method uses the RemIBob() routine. RemIBob() tells the system
to remove this Bob immediately. For example:

struct Bob myBob = {0};
struct RastPort rastport = {0};
struct ViewPort viewport = {0};

RemIBob(&myBob, &rastport, &viewport);

This causes the system to erase the Bob from the drawing area and causes
the immediate erasure of any other Bob that had been drawn subsequent to
(and on top of) this one. The system then unlinks the Bob from the system
GEL list. To redraw the Bobs that were drawn on top of the one just
removed, another call to DrawGList() must be made.

1.57 28 / Using Bobs / Sorting and Displaying Bobs

As with VSprites, the GelsInfo list must be sorted before any Bobs can be
displayed. This is accomplished with the SortGList() function. For Bobs,
the system uses the position information to decide inter-Bob priorities,
if not explicitly set by using the Bob.Before and Bob.After pointers.

Once the GelsInfo list has been sorted, the Bobs in the list can be
displayed by calling DrawGList(). This call should then be followed by a

Libraries 32 / 52

call to WaitTOF() if the application wants to be sure that the Bobs are
rendered before proceeding. Call these functions as follows:

struct RastPort myRastPort = {0}; /* Of course, these have to be */
struct ViewPort myViewPort = {0}; /* initialized... */

SortGList(&myRastPort);
DrawGList(&myRastPort, &myViewPort);/* Draw the elements (Bobs only) */
WaitTOF();

Warning:

If your GelsInfo list contains VSprites in addition to Bobs, you
must also call MrgCop() and LoadView() to make all the GELs
visible. Or, under Intuition, RethinkDisplay() must be called to
make all the GELs visible.

1.58 28 / Using Bobs / Changing Bobs

The following characteristics of Bobs can be changed dynamically between
calls to DrawGList():

* To change the location of the Bob in the RastPort drawing area,
adjust the X and Y values in the VSprite structure associated with
this Bob.

* To change a Bob’s appearance, the pointer to the ImageData in the
associated VSprite structure may be changed. Note that a change in
the ImageData also requires a change or recalculation of the
ImageShadow, using InitMasks().

* To change a Bob’s colors modify the PlanePick, PlaneOnOff or Depth
parameters in the VSprite structure associated with this Bob.

* To change a Bob’s display priorities, alter the Before and After
pointers in the Bob structure.

* To change the Bob into a paintbrush, specify the SAVEBOB flag in the
Bob.Flags field.

Changes Are Not Immediately Seen.

Neither these nor other changes are evident until SortGList() and
then DrawGList() are called.

1.59 28 / Using Bobs / Double-Buffering

Double-buffering is the technique of supplying two different memory areas
in which the drawing routines may create images. The system displays one
memory space while drawing into the other area. This eliminates the
"flickering" that is visible when a single display is being rendered into

Libraries 33 / 52

at the same time that it is being displayed.

Double-buffering For One Means Double-buffering For All.
--
If any of the Bobs is double-buffered, then all of them must be
double-buffered.

To find whether a Bob is to be double-buffered, the system examines the
pointer named DBuffer in the Bob structure. If this pointer has a value
of NULL, the system does not use double-buffering for this Bob. For
example:

myBob.DBuffer = NULL; /* do this if this Bob is NOT double-buffered */

DBufPacket and Double-Buffering

1.60 28 / / Double-Buffering / DBufPacket and Double-Buffering

For double-buffering, a place must be provided for the system to store the
extra information it needs. The system maintains these data, and does not
expect the application to change them. The DBufPacket structure consists
of the following members:

BufY, BufX Lets the system keep track of where the object was located
in the last frame (as compared to the Bob structure
members called OldY and OldX that tell where the object
was two frames ago). BufY and BufX provide for correct
restoration of the background within the currently active
drawing buffer.

BufPath Assures that the system restores the backgrounds in the
correct sequence; it relates to the VSprite members
DrawPath and ClearPath.

BufBuffer This field must be set to point to a buffer the same size
as the Bob’s SaveBuffer. This buffer is used to store the
background for later restoration when the system moves the
object. This buffer must be allocated from Chip memory.

To create a double-buffered Bob, execute a code sequence similar to the
following:

struct Bob myBob = {0};
struct DBufPacket myDBufPacket = {0};

/* Allocate a DBufPacket for myBob same size as previous example */
if (NULL != (myDBufPacket.BufBuffer = AllocRaster(48, 20 * 5)))

{
/* tell Bob about its double buff status */
myBob.DBuffer = myDBufPacket;
}

The example routines makeBob() and freeBob() in the animtools.c listing at
the end of this chapter show how to correctly allocate and free a

Libraries 34 / 52

double-buffered Bob.

1.61 28 / / Collisions and GEL Structure Extensions

This section covers two topics that are applicable to all GELs: how to
extend GEL data structures for your own purposes and how to detect
collisions between GELs and other graphics objects.

Detecting Gel Collisions
Setting Up For Boundary Collisions
Adding User Extensions To Gel Data Structures

1.62 28 / Collisions and GEL Structure Extensions / Detecting Gel Collisions

All GELs, including VSprites, can participate in the software collision
detection features of the graphics library. Simple Sprites must use
hardware collision detection. See the Amiga Hardware Reference Manual for
information about hardware collision detection.

Two kinds of collisions are handled by the system routines:
GEL-to-boundary hits and GEL-to-GEL hits. You can set up as many as 16
different routines to handle different collision combinations; one routine
to handle the boundary hits, and up to fifteen more to handle different
inter-GEL hits.

You supply the actual collision handling routines, and provide their
addresses to the system so that it can call them as needed (when the hits
are detected). These addresses are kept in a collision handler table
pointed to by the CollHandler field of the GelsInfo list. Which routine
is called depends on the 16-bit MeMask and HitMask members of the VSprite
structures involved in the collision.

When you call DoCollision(), the system goes through the GelsInfo list
which, is constantly kept sorted by x, y position. If a GEL intersects
the display boundaries and the GELs HitMask indicates it is appropriate,
the boundary collision routine is called. When DoCollision() finds that
two GELs overlap, it compares the MeMask of one with the HitMask of the
other. If corresponding bits are set in both, it calls the appropriate
inter-GEL collision routine at the table position corresponding to the
bits in the HitMask and MeMask, as outlined below.

Preparing for Collision Detection VSprite BorderLine
Building a Table of Collision Routines VSprite HitMask and MeMask
VSprite Collision Mask Using HitMask and MeMask

1.63 28 / / Detecting Gel Collisions / Preparing for Collision Detection

Before you can use the system to detect collisions between GELS, you must
allocate and initialize a table of collision-detection routines and place
the address of the table in the GelsInfo.CollHandler field. This table is

Libraries 35 / 52

an array of pointers to the actual routines that you have provided for
your collision types. You must also prepare some members of the VSprite
structure: CollMask, BorderLine, HitMask, and MeMask.

1.64 28 / / Detecting Collisions / Building a Table of Collision Routines

The collision handler table is a structure, CollTable, defined in
<graphics/gels.h>. It is accessed as the CollHandler member of the
GelsInfo structure. The table only needs to be as large as the number of
bits for which you wish to provide collision processing. It is safest,
though, to allocate space for all 16 entries, considering the small amount
of space required.

Call the routine SetCollision() to initialize the table entries that
correspond to the HitMask and MeMask bits that you plan to use. Do not
set any of the table entries directly, instead give the address to
SetCollision() routine and let it handle the set up of the
GelsInfo.CollTable field.

For example, SetCollision() could be called as follows:

ULONG num;
VOID (*routine)();
struct GelsInfo *GInfo;

VOID myCollisionRoutine(GELA, GELB) /* sample collision routine */
struct VSprite *GELA;
struct VSprite *GELB;
{

/* process gels here - GELA and GELB point to the base VSprites */
/* of the gels, you can use the user extensions to identify what */
/* hit (if you need the info). */

}

/* GelsInfo must be allocated and initialized */

routine = myCollisionRoutine;

SetCollision(num, routine, GInfo)

The num argument is the collision table vector number (0-15). The
(*routine)() argument is a pointer to your collision routine. And the
GInfo argument is a pointer to the GelsInfo structure.

1.65 28 / / Detecting Gel Collisions / VSprite Collision Mask

The CollMask member of the VSprite is a pointer to a memory area allocated
for holding the collision mask of that GEL. This area must be in Chip
memory and its size is the equivalent of one bitplane of the GEL’s image.
The collision mask is usually the same as the shadow mask of the GEL,
formed from a logical-OR combination of all planes of the image. The
following figure shows an example collision mask.

Libraries 36 / 52

If this is the ...and this is the ...then its
image in plane 1... image in plane 2... CollMask is:

··············· ··············· ···············
·*************· ··············· ·*************·
··*·········*·· ··············· ··*·········*··
···*·······*··· ······***······ ···*··***··*···
····*·····*···· ·······*······· ····*··*··*····
·····*···*····· ··············· ·····*···*·····
······*·*······ ··············· ······*·*······
·······*······· ··············· ·······*·······
··············· ··············· ···············

Figure 28-3: A Collision Mask

Alternatively, you may have a collision mask that is not derived from the
image. In this case, the actual image isn’t relevant. The system will
not register collisions unless the other objects touch the collision mask.
If the collision mask is smaller than the image, other objects will pass
through the edges without a collision.

1.66 28 / / Detecting Gel Collisions / VSprite BorderLine

For faster collision detection, the system uses the BorderLine member of
the VSprite structure. BorderLine specifies the location of the horizontal
logical-OR combination of all of the bits of the object. It may be
compared to taking the whole object’s shadow/collision mask and squishing
it down into a single horizontal line. You provide the system with a
place to store this line. The size of the data area you allocate must be
at least as large as the image width.

In other words, if it takes three 16-bit words to hold one line of a GEL,
then you must reserve three words for the BorderLine. In the VSprite
examples, the routine makeVSprite() correctly allocates and initializes
the collision mask and borderline. For example:

WORD myBorderLineData[3]; /* reserve space for BorderLine */
/* for this Bob */

myVSprite.BorderLine = myBorderLineData; /* tell the system */
/* where it is */

Here is a sample of an object and its BorderLine image:

011000001100 Object
001100011000
001100011000
000110110000
000010100000

011110111100 BorderLine image

Libraries 37 / 52

Using this squished image, the system can quickly determine if the image
is touching the left or rightmost boundary of the drawing area.

To establish default BorderLine and CollMask data, call the InitMasks()
function.

1.67 28 / / Detecting Gel Collisions / VSprite HitMask and MeMask

Software collision detection is independently enabled and disabled for
each GEL. Further, you can specify which of 16 possible collision routines
you wish to have automatically executed. DoCollision(), in addition to
sensing an overlap between objects, uses these masks to determine which
routine (if any) the system will call when a collision occurs.

When the system determines a collision, it performs a logical-AND of the
HitMask of the upper-leftmost object in the colliding pair with the MeMask
of the lower-rightmost object of the pair. The bits that are 1s after the
logical-AND operation choose which one of the 16 possible collision
routines to perform.

* If the collision is with the boundary, bit 0 is always a 1 and the
system calls the collision handling routine number 0. Always assign
the routine that handles boundary collisions to vector 0 in the
collision handling table. The system uses the flag called BORDERHIT
to indicate that an object has landed on or moved beyond the
outermost bounds of the drawing area (the edge of the clipping
region). The VSprite example earlier in this chapter uses collision
detection to check for border hits.

* If any one of the other bits (1 to 15) is set, then the system calls
your collision handling routine corresponding to the bit set.

* If more than one bit is set in both masks, the system calls the
vector corresponding to the rightmost (the least significant) bit
only.

1.68 28 / / Detecting Gel Collisions / Using HitMask and MeMask

This section illustrates the use of the HitMask and MeMask to define one
type of collision.

Suppose there are two classes of objects that you wish to control on the
display: ENEMYTANK and MYMISSILE. Objects of class ENEMYTANK should be
able to pass across one another without registering any collisions.
Objects of class MYMISSILE should also be able to pass across one another
without collisions. However, when MYMISSILE and ENEMYTANK collide, the
system should generate a call to a collision routine.

Choose a pair of collision detect bits not yet assigned within MeMask, one
to represent ENEMYTANK, the other to represent MYMISSILE. You will use
the same two bits in the corresponding HitMask. In this example, bit 1
represents ENEMYTANK objects and bit 2 represents MYMISSLE objects.

Libraries 38 / 52

MeMask HitMask
------ -------

Bit Number 2 1 2 1
--- ------ - - - -
ENEMYTANK 1 0 1 1 0
ENEMYTANK 2 0 1 1 0
MYMISSILE 1 0 0 1

In the MeMask, bit 1 is set to indicate that this object is an ENEMYTANK.
Bit 2 is clear (zero) indicating this object is not a MYMISSILE object.
In the HitMask for ENEMYTANK objects, bit 1 is clear (zero) which means,
"I will not register collisions with other ENEMYTANK objects." However,
bit 2 is set (one) which means, "I will register collisions with MYMISSILE
objects."

Thus when a call to DoCollision() occurs, for any objects that appear to
be colliding, the system ANDs the MeMask of one object with the HitMask of
the other object. If there are non-zero bits present, the system will
call one of your collision routines.

In this example, suppose that the system senses a collision between
ENEMYTANK 1 and ENEMYTANK 2. Suppose also that ENEMYTANK 1 is the
top/leftmost object of the pair. Here is the way that the collision
testing routine performs the test to see if the system will call any
collision-handling routines:

Bit Number 2 1
--- ------ - -
ENEMYTANK 1 MeMask 0 1
ENEMYTANK 2 HitMask 1 0

Result of logical-AND 0 0

Therefore, the system does not call a collision routine. But suppose that
DoCollision() finds an overlap between ENEMYTANK 1 and MYMISSILE, where
MYMISSILE is the top/leftmost of the pair:

Bit Number 2 1
--- ------ - -
MYMISSILE MeMask 1 0
ENEMYTANK 2 HitMask 1 0

Result of logical-AND 1 0

Therefore, the system calls the collision routine at position 2 in the
table of collision-handling routines.

1.69 28 / / Setting Up For Boundary Collisions

To specify the region in the playfield that the system will use to define
the outermost limits of the GEL boundaries, you use these GelsInfo
members: topmost, bottommost, leftmost, and rightmost. The DoCollision()
routine tests these boundaries when determining boundary collisions within
this RastPort. They have nothing whatsoever to do with graphical

Libraries 39 / 52

clipping. Graphical clipping makes use of the RastPort’s clipping
rectangle.

Here is a typical program segment that assigns the members correctly (for
boundaries 50, 100, 80, 240). It assumes that you already have a RastPort
structure pointer named myRastPort.

myRastPort->GelsInfo->topmost = 50;
myRastPort->GelsInfo->bottommost = 100;
myRastPort->GelsInfo->leftmost = 80;
myRastPort->GelsInfo->rightmost = 240;

Parameters To Your Boundary Collision Routine
Parameters To Your Inter-GEL Collision Routines
Handling Multiple Collisions

1.70 28 / / / Parameters To Your Boundary Collision Routine

During the operation of the DoCollision() routine, if you have enabled
boundary collisions for a GEL (by setting the least significant bit of its
HitMask) and it has crossed a boundary, the system calls the boundary
routine you have defined. The system will call the routine once for every
GEL that has hit, or gone outside of the boundary. The system will call
your routine with the following two arguments:

* A pointer to the VSprite structure of the GEL that hit the boundary

* A flag word containing one to four bits set, representing top,
bottom, left and right boundaries, telling you which of the
boundaries it has hit or exceeded. To test these bits, compare to the
constants TOPHIT, BOTTOMHIT, LEFTHIT, and RIGHTHIT.

See the VSprite example given earlier for an example of using boundary
collision.

1.71 28 / / / Parameters To Your Inter-GEL Collision Routines

If, instead of a GEL-to-boundary collision, DoCollision() senses a
GEL-to-GEL collision, the system calls your collision routine with the
following two arguments:

* Address of the VSprite that is the uppermost (or leftmost if y
coordinates are identical) GEL of a colliding pair.

* Address of the VSprite that is the lowermost (or rightmost if y
coordinates are identical) GEL of the pair.

1.72 28 / / Set Up For Boundary Collisions / Handling Multiple Collisions

Libraries 40 / 52

When multiple elements collide within the same display field, the
following set of sequential calls to the collision routines occurs:

* The system issues each call in a sorted order for GELs starting at
the upper left-hand corner of the screen and proceeding to the right
and down the screen.

* For any colliding GEL pair, the system issues only one call, to the
collision routine for the object that is the topmost and leftmost of
the pair.

1.73 28 / / Adding User Extensions To Gel Data Structures

This section describes how to expand the size and scope of the VSprite,
Bob and AnimOb data structures. In the definition for these structures,
there is an item called UserExt at the end of each. If you want to expand
these structures (to hold your own special data), you define the UserExt
member before the <graphics/gels.h> file is included. If this member has
already been defined when the <graphics/gels.h> file is parsed, the
compiler preprocessor will extend the structure definition automatically.
If these members have not been defined, the system will make them SHORTs,
and you may still consider these as being reserved for your private use.

To show the kind of use you can make of this feature, the example below
adds speed and acceleration figures to each GEL by extending the VSprite
structure. When your collision routine is called, it could use these
values to transfer energy between the two colliding objects (say, billiard
balls). You would have to set up additional routines, executed between
calls to DoCollision(), that would add the values to the GELs position
appropriately. You could do this with code similar o the following:

struct myInfo
{
short xvelocity;
short yvelocity;
short xaccel;
short yaccel;
};

These members are for example only. You may use any definition for your
user extensions. You would then also provide the following line, to
extend the VSprites structure, use:

/* Redefine VUserStuff for my own use. */
#define VUserStuff struct myInfo

To extend the Bobs structure, use:

#define BUserStuff struct myInfo

To extend the AnimObs structure, use:

#define AUserStuff struct myInfo

Libraries 41 / 52

When the system is compiling the <graphics/gels.h> file with your program,
the compiler preprocessor substitutes "struct myInfo" everywhere that
UserExt is used in the header. The structure is thereby customized to
include the items you wish to associate with it.

Typedef Cannot Be Used.

You cannot use the C-language construct typedef for the above
statements. If you want to substitute your own data type for one of
the UserStuff variables, you must use a #define.

1.74 28 Graphics Sprites, Bobs and Animation / Animation with GELs

An animation sequence is composed of a series of drawings. Each drawing
differs from the preceding one so that when they are arranged in a stack
and viewed sequentially, the images appear to flow naturally.

In classic film animation, image drawing is done in two stages. The
background for each scene is painted just once. Then, the cartoon
characters and any other foreground objects are painted on transparent
sheets of celluloid called cells which are placed over the background.
With cells, animation can be achieved by redrawing only the parts of the
scene that move while the background stays the same. Animation on the
Amiga works similarly. The background is formed by the playfield while
the objects that move can be conveniently handled with the GELs system.

Animation Data Structures Moving the Objects
Animation Types Your Own Animation Routine Calls
Specifying Animation Components Standard Gel Rules Still Apply
Specifying the Animation Object Animations Special Numbering System
The AnimKey Animtools.h and Animtools.c
Adding Animation Objects

1.75 28 / Animation with GELs / Animation Data Structures

There are two main data structures involved in Amiga animation: AnimComp
and AnimOb.

The AnimComp (Animation Component), is an extension of the Bob structure
discussed in the previous section. An AnimComp provides a convenient way
to link together a series of images so that they can be sequenced
automatically, and so multiple sequences can be grouped together. An
AnimComp is analogous to one sheet of celluloid representing a single
image to be placed over the background.

struct AnimComp
{

WORD Flags; /* AnimComp flags for system & user */
WORD Timer;
WORD TimeSet;
struct AnimComp *NextComp;
struct AnimComp *PrevComp;

Libraries 42 / 52

struct AnimComp *NextSeq;
struct AnimComp *PrevSeq;
WORD (*AnimCRoutine)();
WORD YTrans;
WORD XTrans;
struct AnimOb *HeadOb;

/* Pointer back to the controlling AnimOb */
struct Bob *AnimBob;

/* Underlying Bob structure for this AnimComp */
};

The AnimComp structure contains pointers, PrevSeq and NextSeq, that lets
you group these cells into stacks that will be viewed sequentially. The
AnimComp structure also has PrevComp and NextComp pointers that let you
group stacks into complex objects containing multiple independently moving
parts.

The second animation data structure is the AnimOb which provides the
variables needed for overall control over a group of AnimComps. The
AnimOb itself contains no imagery; it simply provides a common reference
point for the sequenced images and specifies how the system should move
that point.

struct AnimOb
{

struct AnimOb *NextOb, *PrevOb;
LONG Clock;
WORD AnOldY, AnOldX; /* old y,x coordinates */
WORD AnY, AnX; /* y,x coordinates of the AnimOb*/
WORD YVel, XVel; /* velocities of this object */
WORD YAccel, XAccel; /* accelerations of this object */
WORD RingYTrans, RingXTrans; /* ring translation values */
WORD (*AnimORoutine)(); /* address of user procedure */
struct AnimComp *HeadComp; /* pointer to first component */
AUserStuff AUserExt; /* AnimOb user extension */

};

These structures can be used in various ways. A simple animation of a
rotating ball could be created with three or four AnimComps linked
together in a circular list by their NextSeq and PrevSeq fields. The
system displays the initial AnimComp (the "top of the stack"), then
switches to the AnimComp pointed to by NextSeq, and then switches to its
NextSeq and so on until it reaches the end of the sequence. The sequence
starts over again automatically if the last AnimComp.NextSeq points back
to the first AnimComp in the stack.

For a more complex animation of a walking human, you could use five
stacks, i.e., five circular lists of AnimComps; four stacks for the arms
and legs and a single stack for the head and torso. To group these stacks
into one cohesive unit showing a human figure, you use the PrevComp and
NextComp pointers in the AnimComp structure. All the stacks would also
share a common AnimOb, so that the combined sequences can be moved as a
single object.

Figure 28-4: Linking AnimComps For a Multiple Component AnimOb

Libraries 43 / 52

1.76 28 / Animation with GELs / Animation Types

The GELs system provides several ways of setting up automatic animation,
loosely based on some categories of movement in real life. Some things
(like balls or arrows) can move independently of the background, and look
even more realistic if they tumble or rotate as they move; other things
(like worms, wheels, and people) must be anchored to the background, or
they will appear to slide unnaturally.

The system software allows these types of animation through simple motion
control, motion control with sequenced drawing, and sequenced drawing
using Ring Motion Control.

Simple Motion Control Sequenced Drawing Ring Motion Control

1.77 28 / / Animation Types / Simple Motion Control

To produce motion of a simple object, such as a ball, the object is simply
moved relative to a background display, a little at a time. This is
simple motion control, and can be accomplished with one AnimComp and one
AnimOb, by simply changing the AnimOb’s position every N video frames.
The apparent speed of the object is a combination of how often it is moved
(every frame, every other frame, etc.) and how far it is moved (how much
the AnimOb’s AnX and AnY are changed).

1.78 28 / / Animation Types / Sequenced Drawing

To make the ball appear to rotate is a little more complex. To produce
apparent movement within the image, sequencing is used. This is done by
having a stack of AnimComp’s that are laid down one after the other, a
frame at a time. The stack can be arranged in a circular list for
repeating movement. So, when you combine a sequence of drawings using
AnimComps with simple motion control using an AnimOb, you can perform more
complex animations such as having a rotating ball bounce around.

1.79 28 / / Animation Types / Ring Motion Control

Making a worm appear to crawl is similar to the rotating ball. There is
still a stack of AnimComps that are sequenced automatically, and one
controlling AnimOb. But each AnimComp image is drawn so that it appears
to move relative to an internal point that remains stationary throughout
the stack. So instead of the AnimOb’s common reference point moving in
each frame, you tell the system how far to move only at the end of each
AnimComp sequence.

Figure 28-5: Ring Motion Control

As illustrated in the figure at left, the sequence of events for Ring
Motion Control look like this:

Libraries 44 / 52

Draw AnimComp1, Draw AnimComp2, Draw AnimComp3, Move AnimOb,
Draw AnimComp1, Draw AnimComp2, Draw AnimComp3, Move AnimOb,
Draw AnimComp1...

1.80 28 / Animation with GELs / Specifying Animation Components

For each AnimComp, you initially specify:

* A pointer to the AnimComp’s controlling AnimOb.

* Initial and alternate views, their timing and order.

* The initial inter-component drawing priorities (for multiple
AnimComp sequences, this specifies which sequence to display
frontmost).

* A pointer to a special animation routine related to this
component (optional).

* Your own extensions to this structure (optional).

Sequencing AnimComps Linking Multiple AnimComp Sequences
Position of an AnimComp Component Ordering
Specifying Time for Each Image

1.81 28 / / Specifying Animation Components / Sequencing AnimComps

To specify the sequencing of AnimComp images, the pointers called PrevSeq
and NextSeq are used to build a doubly-linked list. The sequence can be
made circular (and usually is) by linking the first and last AnimComps in
the sequence: the NextSeq of the last AnimComp must point back to the
first AnimComp, and the PrevSeq of the first AnimComp must point to the
last AnimComp. If the list is a loop, then the system will continue to
cycle through the list until it is stopped. If the list is not a loop,
then the program must act to restart the sequence after the last item is
displayed. The AnimCRoutine field of the last AnimComp can be used to do
this.

1.82 28 / / Specifying Animation Components / Position of an AnimComp

To specify the placement of each AnimComp relative to its controlling
AnimOb, you set the AnimComp members XTrans and YTrans. These values can
be positive or negative.

The system is designed so that only one of the AnimComps in any given
sequence is "active" (being displayed) at a given point in time. It is
the only image in the sequence that is (or is about to be) linked into the
GelsInfo list. The Timer determines how long each Component in the
sequence remains active, as described below.

Libraries 45 / 52

1.83 28 / / Animation Components / Specifying Time for Each Image

The AnimComp members Timer and TimeSet are used to specify how long the
system should keep each sequential image on the screen.

When the system makes an animation component active, it copies the value
you have put in the TimeSet member into the Timer member. As the
animation proceeds, the system decrements Timer; as long as it is greater
than zero, then that AnimComp remains active. When the Timer value
reaches zero, the system makes the next AnimComp in the sequence active,
and the process repeats.

If you initialize the value in TimeSet to zero, the system will not
sequence this component at all (and Timer will remain zero).

1.84 28 / / Animation Components / Linking Multiple AnimComp Sequences

When an AnimOb is built from multiple AnimComp sequences, the sequences
are linked together by the the PrevComp and NextComp fields of the
AnimComps. These pointers must be initialized only in the initial
AnimComp of each sequence. The other components that are not initially
active should have their PrevComp and NextComp pointers set to NULL.

Do Not Use Empty Fields.

You cannot store data in the empty PrevComp and NextComp fields. As
the system cycles through the AnimComps, the NextComp and PrevComp
fields are set to NULL when an old AnimComps is replaced by a new
AnimComp. The new AnimComp is then linked in to the list of
sequences in place of the old one.

1.85 28 / / Specifying Animation Components / Component Ordering

The PrevSeq, NextSeq, PrevComp and NextComp linkages have no bearing on
the order in which AnimComps in any given video frame are drawn. To
specify the inter-component priorities (so that the closest objects appear
frontmost) the Before and After pointers in the initially active
AnimComp’s underlying Bob structure are linked in to the rest of the
system, as described previously in the discussion of Bobs.

This setup needs to be done once, for the initially active AnimComps of
the AnimOb only.

The animation system adjusts the Before and After pointers of all the
underlying Bob structures to constantly maintain the inter-component
drawing sequence, even though different components are being made active
as sequencing occurs.

These pointers also assure that one complete object always has priority
over another object. The Bob Before and After pointers are used to link
together the last AnimComp’s Bob of one AnimOb to the first AnimComp’s Bob
of the next AnimOb.

Libraries 46 / 52

1.86 28 / Animation with GELs / Specifying the Animation Object

For each AnimOb, you initially specify:

* The starting position of this object

* Its velocity and acceleration (optional).

* A pointer to the first of its AnimComps.

* A pointer to a special animation routine related to this object
(optional).

* Your own extensions to this structure (optional).

Linking the AnimComp Sequences to the AnimOb
Position of an AnimOb
Setting Up Simple Motion Control
Setting Up Ring Motion Control
Using Sequenced Drawing and Motion Control

1.87 28 / / / Linking the AnimComp Sequences to the AnimOb

Within each AnimOb there may be one or more AnimComp sequences. The
HeadComp of the AnimOb points to the first AnimComp in the list of
sequences.

Each sequence is identified by its "active" AnimComp. There can only be
one active AnimComp in each sequence. The sequences are linked together
by their active AnimComps; for each of these the NextComp and PrevComp
fields link the sequences together to create a list. The first sequence
in the list (HeadComp of the AnimOb), has its PrevComp set to NULL. The
last sequence in the list has its NextComp set to NULL. None of the
inactive AnimComps should have NextComp or PrevComp fields set.

To find the active AnimComp at run time, you can look in the AnimOb’s
HeadComp field. To find the active AnimComp from any another AnimComp,
use the HeadOb field to find the controlling AnimOb first and then look in
its HeadComp field to find the active AnimComp.

The figure below shows all the linkages in data structures needed to
create the animation GELs.

| |
| Next AnimOb |
|___________________|
| |
| Previous AnimOb | Non-Current
|___________________| Original -----------
| | -------- Additional views
| \\\\\\\\\ | (first view) of each component,
| \\\\\\\\\ | of an AnimOb waiting to be used.
|___________________| ___________________ _ _ _ _ _ _ _ _ _ _

Libraries 47 / 52

HeadComp	_\| Next AnimComp	__	Next AnimComp			
___________________		/	___________________			_ _ _ _ _ _ _ _ _ _

	Previous AnimComp			Previous AnimComp
	___________________			_ _ _ _ _ _ _ _ _ _
	Sequence Linkage	--	-	Sequence linkage
	___________________			_ _ _ _ _ _ _ _ _ _
	\\\\\\\\\			\\\\\\\\\
	___________________			_ _ _ _ _ _ _ _ _ _
___________________	_ _ _ _ _ _ _ _ _ _			
		/_		

|\| Next AnimComp |\ | Next AnimComp |
	/	___________________	--.	_ _ _ _ _ _ _ _ _ _	
	__	Previous AnimComp			Previous AnimComp
	___________________			_ _ _ _ _ _ _ _ _ _	
	Sequence Linkage	--	-	Sequence linkage	--
	___________________			_ _ _ _ _ _ _ _ _ _	
	\\\\\\\\\			\\\\\\\\\	
	___________________			_ _ _ _ _ _ _ _ _ _	
___________________	_ _ _ _ _ _ _ _ _ _				
		/_			
	Next AnimComp	\	Next AnimComp		
	___________________		_ _ _ _ _ _ _ _ _ _		
____	Previous AnimComp		Previous AnimComp		

|___________________| |_ _ _ _ _ _ _ _ _ _|
| | | |
| Sequence Linkage |----| Sequence linkage |--
___________________		_ _ _ _ _ _ _ _ _ _
\\\\\\\\\		\\\\\\\\\
___________________		_ _ _ _ _ _ _ _ _ _

Figure 28-6: Linking of an AnimOb

1.88 28 / / Specifying the Animation Object / Position of an AnimOb

To position the object and its component parts, use the AnimOb structure
members AnX and AnY. The following figure illustrates how each component
has its own offset from the AnimOb’s common reference point.

Figure 28-7: Specifying an AnimOb Position

When you change the animation object’s AnX and AnY, all of the component

Libraries 48 / 52

parts will be redrawn relative to it the next time DrawGList() is called.

1.89 28 / / Specifying Animation Object / Setting Up Simple Motion Control

In this form of animation, you can specify objects that have independently
controllable velocities and accelerations in the X and Y directions.
Components can still sequence.

The variables that control this motion are located in the AnimOb structure
and are called:

* YVel, XVel--the velocities in the y and x directions. These
values are added to the position values on each call to Animate()
(see below).

* YAccel, XAccel--the accelerations in the xa nd y directions.
These values are added to the velocity values on each call to
Animate() (see below). The velocity values are updated before the
position values.

1.90 28 / / Specifying Animation Object / Setting Up Ring Motion Control

To make a given component trigger a move of the AnimOb you set the
RINGTRIGGER bit of that AnimComp’s Flags field. When the system software
encounters this flag, it adds the values of RingXTrans and RingYTrans to
the AnX and AnY values of the controlling AnimOb. The next time you
execute DrawGList(), the drawing sequence will use the new position.

You usually set RINGTRIGGER in only one of the animation components in a
sequence (the last one); however, you can use this flag and the
translation variables any way you wish.

1.91 28 / / / Using Sequenced Drawing and Motion Control

If you are using Ring Motion Control, you will probably set the velocity
and acceleration variables to zero. For instance, consider the example of
a person walking. With Ring Motion Control, as each foot falls it is
positioned on the ground exactly where originally drawn. If you included
a velocity value, the person’s foot would not be stationary with respect
to the ground, and the person would appear to "skate" rather than walk.
If you set the velocity and acceleration variables at zero, you avoid this
problem.

When the system activates a new AnimComp, it checks the Flags field to see
if the RINGTRIGGER bit is set. If so, the system adds RingYTrans and
RingXTrans to AnY and AnX respectively.

Libraries 49 / 52

1.92 28 / Animation with GELs / The AnimKey

The system uses one pointer, known as the AnimKey, to keep track of all
the AnimObs via their PrevOb and NextOb linkage fields. The AnimKey acts
as the anchor for the list of AnimObs you are using and is initialized
with code such as the following:

struct AnimOb *animKey;

InitAnimate(&animKey);
/* Only do this once to initialize the AnimOb list */

As each new object is added (via AddAnimOb()), it is linked in at the
beginning of the list, so AnimKey will always point to the object most
recently added to the list. To search forward through the list, start
with the AnimKey and move forward on the NextOb link. Continue to move
forward until the NextOb is NULL, indicating the end of the list. The
PrevOb link will allow you to move back to a previous object.

Set Up PrevOb and NextOb Correctly.

It is important that the NextOb link of the last object is NULL,
and that the PrevOb of the first object is NULL. In fact, the
system expects the animation object lists to be exactly the way
that they are described above. If they are not, the system will
produce unexpected results.

1.93 28 / Animation with GELs / Adding Animation Objects

Use the routine AddAnimOb() to add animation objects to the controlled
object list. This routine will link the PrevOb and NextOb pointers to
chain all the AnimObs that the system is controlling.

struct RastPort myRPort;
struct AnimOb myAnimOb;
struct AnimOb *animKey; /* Must be initialized with InitAnimate() */

AddAnimOb(&myAnimOb, &animKey, &myRPort);

1.94 28 / Animation with GELs / Moving the Objects

When you have defined all of the structures and have established all of
the links, you can call the Animate() routine to move the objects.
Animate() adjusts the positions of the objects as described above, and
calls the various subroutines (AnimCRoutines and AnimORoutines) that you
have specified.

After the system has completed the Animate() routine, some GELs may have
been moved, so the GelsInfo list order may possibly be incorrect.
Therefore, the list must be re-sorted with SortGList() before passing it
to a system routine.

Libraries 50 / 52

If you are using collision detection, you then perform DoCollision().
Your collision routines may also have an effect on the relative position
of the GELs. Therefore, you should again call SortGList() to assure that
the system correctly orders the objects before you call DrawGList(). When
you call DrawGList(), the system renders all the GELs it finds in the
GelsInfo list and any changes caused by the previous call to Animate() can
then be seen.

This is illustrated in the following typical call sequence:

struct AnimOb **myAnimKey;
struct RastPort *rp;
struct ViewPort *vp;

/* ... setup of graphics elements and objects */

Animate(myAnimKey, rp); /* "move" objects per instructions */
SortGList(rp); /* put them in order */
DoCollision(rp); /* software collision detect/action */
SortGList(rp); /* put them back into right order */
DrawGList(vp, rp); /* draw into current RastPort */

1.95 28 / Animation with GELs / Your Own Animation Routine Calls

The AnimOb and AnimComp structures can include pointers for your own
routines that you want the system to call. These pointers are stored in
the AnimOb’s AnimORoutine field and in the AnimComp’s AnimCRoutine field,
respectively.

When Animate() is called, the system performs the following steps for
every AnimOb in the AnimKey list:

* Updates the AnimOb’s location and velocities.

* Calls the AnimOb.AnimORoutine routine if one is supplied.

* The for each AnimComp of the AnimOb:

· If this sequence times out, switches to the new AnimComp.

· Calls the AnimComp.AnimCRoutine if one is supplied.

· Sets the underlying VSprite’s x,y coordinates.

If you want a routine to be called, you put the address of the routine in
either AnimComp.AnimCRoutine or AnimOb.AnimORoutine member as needed. If
no routine is to be called, you must set these fields to NULL. Your
routines will be passed one parameter, a pointer to the AnimOb or AnimComp
it was related to. You can use the user structure extensions discussed
earlier to hold the variables you need for your own routines.

For example, if you provide a routine such as this:

VOID MyOCode(struct AnimOb *anOb)
{

Libraries 51 / 52

/* whatever needs to be done */
}

Then, if you put the address of the routine in an AnimOb structure:

myAnimOb.AnimORoutine = MyOCode;

MyOCode() will be called with the address of this AnimOb when Animate()
processes this AnimOb.

1.96 28 / Animation with GELs / Standard Gel Rules Still Apply

Before you use the animation system, you must have called the routine
InitGels(). The section called "Bob Priorities" describes how the system
maintains the list of GELs to draw on the screen according to their
various data fields. The animation system selectively adds GELs to and
removes GELs from this list of screen objects during the Animate()
routine. On the next call to DrawGList(), the system will draw the GELs
in the list into the selected RastPort.

1.97 28 / Animation with GELs / Animations Special Numbering System

Velocities and accelerations can be either positive or negative. The
system treats the velocity, acceleration and Ring values as fixed-point
binary fractions, with the decimal point at position 6 in the word. That
is: vvvvvvvvvv.ffffff where v stands for actual values that you add to the
x or y (AnX, AnY) positions of the object for each call to Animate(), and
f stands for the fractional part. By using a fractional part, you can
specify the speed of an object in increments as precise as 1/64th of an
interval.

If you set the value of XVel at 0x0001, it will take 64 calls to the
Animate() routine before the system will modify the object’s x coordinate
position by a step of one. The system constant ANFRACSIZE can be used to
shift values correctly. So if you set the value to (1 << ANFRACSIZE), it
will be set to 0x0040, the value required to move the object one step per
call to Animate(). The system constant ANIMHALF can be used if you want
the object to move every other call to Animate().

Each call you make to Animate() simply adds the value of XAccel to the
current value of XVel, and YAccel to the current value of YVel, modifying
these values accordingly.

1.98 28 / Animation with GELs / Animtools.h and Animtools.c

Here is the listing of the animtools.h header file and the animtools.c
link file used by the examples in this chapter. The makeSeq() and
makeComp() subroutines here demonstrate how to use the GELs animation
system.

Libraries 52 / 52

animtools.h animtools.c

1.99 28 Graphics Sprites, Bobs and Animation / Function Reference

The following are brief descriptions of the Amiga’s graphics animation
functions. See the Amiga ROM Kernel Reference Manual: Includes and
Autodocs for details on each function call.

Table 28-1: Graphics Animation Functions
__
| |
| Animation |
| Function Description |
|==|
| AddAnimOb() Add an AnimOb to the linked list of AnimObs. |
| AddBob() Add a Bob to the current gel list. |
| AddVSprite() Add a VSprite to the current gel list. |
| Animate() Process every AnimOb in the current animation list. |
| ChangeSprite() Change the sprite image pointer. |
| DoCollision() Test every gel in gel list for collisions. |
| DrawGList() Process the gel list, queueing VSprites, drawing Bobs.|
| FreeGBuffers() Deallocate memory obtained by GetGBuffers(). |
| FreeSprite() Return sprite for use by others and virtual sprite |
| machine. |
| GetGBuffers() Attempt to allocate all buffers of an entire AnimOb. |
| GetSprite() Attempt to get a sprite for the simple sprite manager.|
| InitGels() Initialize a gel list; must be called before using |
| gels. |
| InitGMasks() Initialize all of the masks of an AnimOb. |
| InitMasks() Initialize the BorderLine and CollMask masks of a |
| VSprite. |
| MoveSprite() Move sprite to a point relative to top of ViewPort. |
| RemBob() Remove a Bob from the gel list. |
| RemIBob() Immediately remove a Bob from the gel list and the |
| RastPort. |
| RemVSprite() Remove a VSprite from the current gel list. |
| SetCollision() Set a pointer to a user collision routine. |
| SortGList() Sort the current gel list, ordering its y,x |
| coordinates. |
|__|

	Libraries
	Amiga® RKM Libraries: 28 Graphics Sprites, Bobs and Animation
	28 Graphics Sprites, Bobs and Animation / About the GELs System
	28 / About the GELs System / Types of GELs
	28 / / Types Of GELs / Simple Sprites
	28 / / Types Of GELs / VSprites
	28 / / Types Of GELs / Bobs and AnimComps
	28 / / Types Of GELs / AnimObs
	28 / / Types Of GELs / VSprites vs. Bobs
	28 / About the GELs System / The GELs System
	28 / / The GELs System / Initializing the GEL System
	28 Sprites, Bobs and Animation / Using Simple (Hardware) Sprites
	28 / Using Simple (Hardware) Sprites / Simple Sprite Functions
	28 / / Simple Sprite Functions / Accessing A Hardware Sprite
	28 / / Sprite Functions / Changing The Appearance Of A Simple Sprite
	28 / / Simple Sprite Functions / Moving A Simple Sprite
	28 / / Simple Sprite Functions / Relinquishing A Simple Sprite
	28 / / Simple Sprite Functions / Controlling Sprite DMA
	28 Graphics Sprites, Bobs and Animation / Using Virtual Sprites
	28 / Using Virtual Sprites / Specification of VSprite Structure
	28 / Using Virtual Sprites / Reserved VSprite Members
	28 / Using Virtual Sprites / Using VSprite Flags
	28 / Using Virtual Sprites / VSprite Position
	28 / Using Virtual Sprites / VSprite Image Size
	28 / Using Virtual Sprites / VSprites and Collision Detection
	28 / Using Virtual Sprites / VSprite Image Data
	28 / Using Virtual Sprites / Specifying the Colors of a VSprite
	28 / Using Virtual Sprites / Adding and Removing VSprites
	28 / Using Virtual Sprites / Changing VSprites
	28 / Using Virtual Sprites / Getting the VSprite List In Order
	28 / Using Virtual Sprites / Displaying the VSprites
	28 / / Displaying the VSprites / Drawing the Graphics Elements
	28 / / Displaying the VSprites / Merging VSprite Instructions
	28 / / Displaying the VSprites / Loading the New View
	28 / / Displaying the VSprites / Synchronizing with the Display
	28 Graphics: Sprites, Bobs and Animation / VSprite Advanced Topics
	28 / VSprite Advanced Topics / Reserving Hardware Sprites
	28 / VSprite Advanced Topics / How VSprites Are Assigned
	28 / Advanced Topics / How VSprite and Playfield Colors Interact
	28 Graphics Sprites, Bobs and Animation / Using Bobs
	28 / Using Bobs / The VSprite Structure and Bobs
	28 / Using Bobs / VSprite Flags and Bobs
	28 / Using Bobs / The Bob Structure
	28 / / The Bob Structure / Linking Bob and VSprite Structures
	28 / Using Bobs / Using Bob Flags
	28 / Using Bobs / Specifying the Size of a Bob
	28 / Using Bobs / Specifying the Shape of a Bob
	28 / Using Bobs / Specifying the Colors of a Bob
	28 / Using Bobs / Other Items Influencing Bob Colors
	28 / / Other Items Influencing Bob Colors / ImageShadow
	28 / / Other Items Influencing Bob Colors / PlanePick
	28 / / Other Items Influencing Bob Colors / PlaneOnOff
	28 / Using Bobs / Bob Priorities
	28 / / Bob Priorities / Letting the System Decide Priorities
	28 / / Bob Priorities / Specifying the Drawing Order
	28 / Using Bobs / Adding a Bob
	28 / Using Bobs / Removing a Bob
	28 / Using Bobs / Sorting and Displaying Bobs
	28 / Using Bobs / Changing Bobs
	28 / Using Bobs / Double-Buffering
	28 / / Double-Buffering / DBufPacket and Double-Buffering
	28 / / Collisions and GEL Structure Extensions
	28 / Collisions and GEL Structure Extensions / Detecting Gel Collisions
	28 / / Detecting Gel Collisions / Preparing for Collision Detection
	28 / / Detecting Collisions / Building a Table of Collision Routines
	28 / / Detecting Gel Collisions / VSprite Collision Mask
	28 / / Detecting Gel Collisions / VSprite BorderLine
	28 / / Detecting Gel Collisions / VSprite HitMask and MeMask
	28 / / Detecting Gel Collisions / Using HitMask and MeMask
	28 / / Setting Up For Boundary Collisions
	28 / / / Parameters To Your Boundary Collision Routine
	28 / / / Parameters To Your Inter-GEL Collision Routines
	28 / / Set Up For Boundary Collisions / Handling Multiple Collisions
	28 / / Adding User Extensions To Gel Data Structures
	28 Graphics Sprites, Bobs and Animation / Animation with GELs
	28 / Animation with GELs / Animation Data Structures
	28 / Animation with GELs / Animation Types
	28 / / Animation Types / Simple Motion Control
	28 / / Animation Types / Sequenced Drawing
	28 / / Animation Types / Ring Motion Control
	28 / Animation with GELs / Specifying Animation Components
	28 / / Specifying Animation Components / Sequencing AnimComps
	28 / / Specifying Animation Components / Position of an AnimComp
	28 / / Animation Components / Specifying Time for Each Image
	28 / / Animation Components / Linking Multiple AnimComp Sequences
	28 / / Specifying Animation Components / Component Ordering
	28 / Animation with GELs / Specifying the Animation Object
	28 / / / Linking the AnimComp Sequences to the AnimOb
	28 / / Specifying the Animation Object / Position of an AnimOb
	28 / / Specifying Animation Object / Setting Up Simple Motion Control
	28 / / Specifying Animation Object / Setting Up Ring Motion Control
	28 / / / Using Sequenced Drawing and Motion Control
	28 / Animation with GELs / The AnimKey
	28 / Animation with GELs / Adding Animation Objects
	28 / Animation with GELs / Moving the Objects
	28 / Animation with GELs / Your Own Animation Routine Calls
	28 / Animation with GELs / Standard Gel Rules Still Apply
	28 / Animation with GELs / Animations Special Numbering System
	28 / Animation with GELs / Animtools.h and Animtools.c
	28 Graphics Sprites, Bobs and Animation / Function Reference

