Libraries

Libraries

] COLLABORATORS
TITLE :
Libraries
ACTION NAME DATE SIGNATURE
WRITTEN BY July 23, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Libraries

Contents

1 Libraries
1.1 Amiga® RKM Libraries: 22 Exec Signals
1.2 22 Exec Signals / The Signal System . . .
1.3 22/ The Signal System / Signal Allocation

1.4 22/ The Signal System / Waiting for a Signal
1.5 22/ The Signal System / Generating a Signal

1.6 22 Exec Signals / Function Reference . .

Libraries

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 22 Exec Signals

Tasks often need to coordinate with other concurrent system activities
(like other tasks and interrupts). This coordination is handled by Exec
through the synchronized exchange of specific event indicators called
signals.

This is the primary mechanism responsible for all intertask communication
and synchronization on the Amiga. This signal mechanism operates at a low
level and is designed for high performance. Signals are used extensively
by the Exec message system as a way to indicate the arrival of an
inter-task message. The message system is described in more detail in the
"Exec Messages and Ports" chapter.

Not for Beginners.

This chapter concentrates on details about signals that most
applications do not need to understand for general Amiga programming.
For a general overview of signals, see the "Introduction to Exec"
chapter of this manual.

The Signal System Function Reference

1.2 22 Exec Signals / The Signal System

The signal system is designed to support independent simultaneous events,
so several signals can occur at the same time. Each task has 32
independent signals, 16 of which are pre-allocated for use by the
operating system. The signals in use by a particular task are represented
as bits in a 32-bit field in its Task structure (<exec/tasks.h>). Two
other 32-bit fields in the Task structure indicate which signals the task
is waiting for, and which signals have been received.

Signals are task relative. A task can only allocate its own signals, and
may only wait on its own signals. In addition, a task may assign its own
significance to a particular signal. Signals are not broadcast to all

tasks; they are directed only to individual tasks. A signal has meaning to

Libraries

2/5

the task that defined it and to those tasks that have been informed of its
meaning.

For example, signal bit 12 may indicate a timeout event to one task, but
to another task it may indicate a message arrival event. You can never
wait on a signal that you did not directly or indirectly allocate
yourself, and any other task that wishes to signal you must use a signal
that you allocated.

Signal Allocation Waiting for a Signal Generating a Signal

1.3 22/ The Signal System / Signal Allocation

As mentioned above, a task assigns its own meaning to a particular signal.
Because certain system libraries may occasionally require the use of a
signal, there is a convention for signal allocation. It is unwise ever to
make assumptions about which signals are actually in use.

Before a signal can be used, it must be allocated with the AllocSignal ()
function. When a signal is no longer needed, it should be freed for reuse
with FreeSignal () .

BYTE AllocSignal (LONG signalNum) ;
VOID FreeSignal (LONG signalNum);

AllocSignal () marks a signal as being in use and prevents the accidental
use of the same signal for more than one event. You may ask for either a
specific signal number, or more commonly, you would pass -1 to request the
next available signal. The state of the newly allocated signal is cleared
(ready for use). Generally it is best to let the system assign you the
next free signal. Of the 32 available signals, the lower 16 are reserved
for system use. This leaves the upper 16 signals free for application
programs to allocate. Other subsystems that you may call depend on
AllocSignal() .

The following C example asks for the next free signal to be allocated for
its use:

if (-1 == (signal = AllocSignal(-1)))
printf ("no signal bits available\n");
else
{
printf("allocated signal number %1d\n", signal);
/* Other code could go here x/
FreeSignal (signal)

}
The value returned by AllocSignal() is a signal bit number. This value
cannot be used directly in calls to signal-related functions without first
being converted to a mask:

mask = 1L << signal;

It is important to realize that signal bit allocation is relevant only to
the running task. You cannot allocate a signal from another task. Note

Libraries

3/5

that functions which create a signal MsgPort will allocate a signal from

the task that calls the function. Such functions include OpenWindow (),
CreatePort (), and CreateMsgPort (). For this reason, only the creating
task may Wait () (directly or indirectly) on the MsgPort’s signal.

Functions which call Wait () include DoIO(), WaitIO() and WaitPort ().

1.4 22/ The Signal System / Waiting for a Signal

Signals are most often used to wake up a task upon the occurrence of some
external event. Applications call the Exec Wait () function, directly or
indirectly, in order to enter a wait state until some external event
triggers a signal which awakens the task.

Though signals are usually not used to interrupt an executing task, they
can be used this way. Task exceptions, described in the "Exec Tasks"

chapter, allow signals to act as a task-local interrupt.

The Wait () function specifies the set of signals that will wake up the
task and then puts the task to sleep (into the waiting state).

ULONG Wait (ULONG signalSet);

Any one signal or any combination of signals from this set are sufficient

to awaken the task. Wait() returns a mask indicating which signals
satisfied the Wait () call. ©Note that when signals are used in conjunction
with a message port, a set signal bit does not necessarily mean that there
is a message at the message port. See the "Exec Messages and Ports"

chapter for details about proper handling of messages.

Because tasks (and interrupts) normally execute asynchronously, it is
often possible to receive a particular signal before a task actually
Wait ()s for it. 1In such cases the Wait () will be immediately satisfied,
and the task will not be put to sleep.

The Wait () function implicitly clears those signal bits that satisfied the
wait condition. This effectively resets those signals for reuse.

However, keep in mind that a task might get more signals while it is still
processing the previous signal. If the same signal is received multiple
times and the signal bit is not cleared between them, some signals will go
unnoticed.

Be aware that using Wait () will break a Forbid() or Disable () state.
Wait () cannot be used in supervisor mode or within interrupts.

A task may Wait () for a combination of signal bits and will wake up when
any of the signals occur. Wait() returns a signal mask specifying which
signal or signals were received. Usually the program must check the
returned mask for each signal it was waiting on and take the appropriate
action for each that occurred. The order in which these bits are checked
is often important.

Here is a hypothetical example of a process that is using the console and
timer devices, and is waiting for a message from either device and a
possible break character issued by the user:

Libraries 4/5

consoleSignal = 1L << ConsolePort->mp_SigBit;

timerSignal = 1L << TimerPort->mp_SigBit;

userSignal = SIGBREAKF_CTRL_C; /* Defined in <dos/dos.h> x/
signals = Wait (consoleSignal | timerSignal | userSignal);

if (signals & consoleSignal)
printf ("new character\n");

if (signals & timeOutSignal)
printf ("timeout\n");

if (signals & userSignal)
printf ("User Ctrl-C Abort\n");

This code will put the task to sleep waiting for a new character, or the
expiration of a time period, or a Ctrl-C break character issued by the
user. Notice that this code checks for an incoming character signal
before checking for a timeout. Although a program can check for the
occurrence of a particular event by checking whether its signal has
occurred, this may lead to busy wait polling. Such polling is wasteful of
the processor and is usually harmful to the proper function of the Amiga
system. However, if a program needs to do constant processing and also
check signals (a compiler for example) SetSignal(0,0) can be used to get a
copy of your task’s current signals.

ULONG SetSignal (ULONG newSignals, ULONG signalSet);
SetSignal () can also be used to set or clear the state of the signals.

Implementing this can be dangerous and should generally not be done. The
following fragment illustrates a possible use of SetSignal().

signals = SetSignal (0,0); /+ Get current state of signals =/
if (signals & SIGBREAKF_CTRL_C) /* Check for Ctrl-C. */
{
printf ("Break\n"); /* Ctrl-C signal has been set. */
SetSignal (0, SIGBREAKF_CTRL_C) /* Clear Ctrl-C signal. */

}

1.5 22/ The Signal System / Generating a Signal

Signals may be generated from both tasks and system interrupts with the
Signal () function.

VOID Signal(struct Task =xtask, ULONG signalSet);
For example Signal (tc,mask) would signal the task with the specified mask
signals. More than one signal can be specified in the mask. The

following example code illustrates Wait () and Signal().

signals.c

Libraries

5/5

1.6 22 Exec Signals / Function Reference

The following chart gives a brief description of the Exec functions that

control task signalling. See the Amiga ROM Kernel Reference Manual:
Includes and Autodocs for details about each call.

Table 22-1: Exec Signal Functions

Exec Signal

interrupts.

\ |
\ |
\ Function Description |
\ = = = = = |
| AllocSignal() Allocate a signal bit. |
\ FreeSignal () Free a signal bit allocated with AllocSignal().

| SetSignal () Query or set the state of the signals for the current |
\ task. |
\ Signal () Signal a task by setting signal bits in its Task |
\ structure. |
| Wait () Wait for one or more signals from other tasks or |
\ |
\ |

	Libraries
	Amiga® RKM Libraries: 22 Exec Signals
	22 Exec Signals / The Signal System
	22 / The Signal System / Signal Allocation
	22 / The Signal System / Waiting for a Signal
	22 / The Signal System / Generating a Signal
	22 Exec Signals / Function Reference

