
Libraries

Libraries ii

COLLABORATORS

TITLE :

Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1

1.1 Amiga® RKM Libraries: 17 Introduction to Exec . 1

1.2 17 Introduction to Exec / Multitasking . 1

1.3 17 Introduction to Exec / Dynamic Memory Allocation . 3

1.4 17 Introduction to Exec / Signals . 4

1.5 17 / Signals / Looking for Break Keys . 5

1.6 17 / Signals / Processing Signals Without Wait()ing . 5

1.7 17 Introduction to Exec / Interprocess Communications . 6

1.8 17 / / Waiting on Message Ports and Signals at the Same Time . 8

1.9 17 Introduction to Exec / Libraries and Devices . 8

1.10 17 / Libraries and Devices / Library Vector Offsets (LVOs) . 10

1.11 17 / Libraries and Devices / Calling a Library Function . 11

Libraries 1 / 14

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 17 Introduction to Exec

The Multitasking Executive, better known as Exec, is the heart of the
Amiga’s operating system. All other systems in the Amiga rely on it to
control multitasking, to manage the message-based interprocess
communications system, and to arbitrate access to system resources.
Because just about every software entity on the Amiga (including
application programs) needs to use Exec in some way, every Amiga
programmer has to have a basic understanding of its fundamentals.

Multitasking Interprocess Communications
Dynamic Memory Allocation Libraries and Devices
Signals

1.2 17 Introduction to Exec / Multitasking

A conventional micro-computer spends a lot of its time waiting for things
to happen. It has to wait for such things as the user to push buttons on
the keyboard or mouse, for data to come in through the serial port, and
for data to go out to a disk drive. To make efficient use of the CPU’s
time, an operating system can have the CPU carry out some other task while
it is waiting for such events to occur.

A multitasking operating system reduces the amount of time it wastes, by
switching to another program when the current one needs to wait for an
event. A multitasking operating system can have several programs, or
tasks, running at the same time. Each task runs independently of the
others, without having to worry about what the other tasks are doing.
From a task’s point of view, it’s as if each task has a computer all to
itself.

The Amiga’s multitasking works by switching which task is currently using
the CPU. A task can be a user’s application program, or it can be a task
that controls system resources (like the disk drives or the keyboard).
Each task has a priority assigned to it. Exec will let the task with the
highest priority use the CPU, but only if the task is ready to run. A
task can be in one of three states: ready, sleeping, or running.

Libraries 2 / 14

A ready task is not currently using the CPU but is waiting to use the
processor. Exec keeps a list of the tasks that are ready. Exec sorts
this list according to task priority, so Exec can easily find the ready
task with the highest priority. When Exec switches the task that
currently has control of the CPU, it switches to the task at the top of
this list.

A sleeping task is not currently running and is waiting for some event to
happen. When that event occurs, Exec will move the sleeping task into the
list of ready tasks.

A running task is currently using the CPU. It will remain the current
task until one of three things occur:

* A higher priority task becomes ready, so the OS preempts the current
task and switches to the higher priority task.

* The currently running task needs to wait for an event, so it goes to
sleep and Exec switches to the highest priority task in Exec’s ready
list.

* The currently running task has had control of the CPU for at least a
preset time period called a quantum and there is another task of
equal priority ready to run. In this case, Exec will preempt the
current task for the ready one with the same priority. This is known
as time-slicing. When there is a group of tasks of equal priority on
the top of the ready list, Exec will cycle through them, letting each
one use the CPU for a quantum (a slice of time).

The terms "task" and "process" are often used interchangeably to represent
the generic concept of task. On the Amiga, this terminology can be a
little confusing because of the names of the data structures that are
associated with Exec tasks. Each task has a structure associated with it
called a Task structure (defined in <exec/tasks.h>). Most application
tasks use a superset of the Task structure called a Process structure
(defined in <dos/dosextens.h>). These terms are confusing to Amiga
programmers because there is an important distinction between the Exec
task with only a Task structure and an Exec task with a Process structure.

The Process structure builds on the Task structure and contains some extra
fields which allow the DOS library to associate an AmigaDOS environment to
the task. Some elements of a DOS environment include a current input and
output stream and a current working directory. These elements are
important to applications that need to do standard input and output using
functions like printf().

Exec only pays attention to the Task structure portion of the Process
structure, so, as far as Exec is concerned, there is no difference between
a task with a Task structure and a task with a Process structure. Exec
considers both of them to be tasks.

An application doesn’t normally worry about which structure their task
uses. Instead, the system that launches the application takes care of it.
Both Workbench and the Shell (CLI) attach a Process structure to the
application tasks that they launch.

Libraries 3 / 14

1.3 17 Introduction to Exec / Dynamic Memory Allocation

The Amiga has a soft machine architecture, meaning that all tasks,
including those that are part of its operating system, do not use fixed
memory addresses. As a result, any program that needs to use a chunk of
memory must allocate that memory from the operating system.

There are two functions on the Amiga for simple memory allocation:
AllocMem() and AllocVec(). The two functions accept the same parameters,
a ULONG containing the size of the memory block in bytes followed by
32-bit specifier for memory attributes. Both functions return the address
of a longword aligned memory block if they were successful or NULL if
something went wrong.

AllocVec() differs from AllocMem() in that it records the size of the
memory block allocated so an application does not have to remember the
size of a memory block it allocated. AllocVec() was introduced in Release
2, so it is not available to the 1.3 developer.

Normally the bitmask of memory attributes passed to these functions will
contain any of the following attributes (these flags are defined in
<exec/memory.h>):

MEMF_ANY
This indicates that there is no requirement for either Fast or Chip
memory. In this case, while there is Fast memory available, Exec
will only allocate Fast memory. Exec will allocate Chip memory if
there is not enough Fast memory.

MEMF_CHIP
This indicates the application wants a block of Chip memory, meaning
it wants memory addressable by the Amiga custom chips. Chip memory
is required for any data that will be accessed by custom chip DMA.
This includes floppy disk buffers, screen memory, images that will be
blitted, sprite data, copper lists, and audio data. If your
application requires a block of Chip RAM, it must use this flag to
allocate the Chip RAM. Otherwise, the application will fail on
machines with expanded memory.

MEMF_FAST
This indicates a memory block outside of the range that the Amiga’s
custom chips can access. The "FAST" in MEMF_FAST has to do with the
custom chips and the CPU trying to access the same memory at the same
time. Because the custom chips and the CPU both have access to Chip
RAM, the CPU may have to wait to access Chip RAM while some custom
chip is reading or writing Chip RAM. In the case of Fast RAM, the
custom chips do not have access to it, so the CPU does not have to
contend with the custom chips access to Fast RAM, making CPU accesses
to Fast RAM generally faster than CPU access to Chip RAM.

Since the flag specifies memory that the custom chips cannot access,
this flag is mutually exclusive with the MEMF_CHIP flag. If you
specify the MEMF_FAST flag, your allocation will fail on Amigas that
have only Chip memory. Use MEMF_ANY if you would prefer Fast memory.

MEMF_PUBLIC

Libraries 4 / 14

This indicates that the memory should be accessible to other tasks.
Although this flag doesn’t do anything right now, using this flag
will help ensure compatibility with possible future features of the
OS (like virtual memory and memory protection).

MEMF_CLEAR
This indicates that the memory should be initialized with zeros.

If an application does not specify any attributes when allocating memory,
the system first looks for MEMF_FAST, then MEMF_CHIP. There are
additional memory allocation flags for Release 2: MEM_LOCAL, MEMF_24BITDMA
and MEMF_REVERSE. See the Exec Autodoc for AllocMem() in the Amiga ROM
Kernel Reference Manual: Includes and Autodocs or the include file
<exec/memory.h> for additional information on these flags. Use of these
flags under earlier versions of the operating system will cause your
allocation to fail.

Make Sure You Have Memory.

Always check the result of any memory allocation to be sure the type
and amount of memory requested is available. Failure to do so will
lead to trying to use an non-valid pointer.

When an application is finished with a block of memory it allocated, it
must return it to the operating system. There is a function to return
memory for both the AllocMem() and the AllocVec() functions. FreeMem()
releases memory allocated by AllocMem().

It takes two parameters, a pointer to a memory block and the size of the
memory block. FreeVec() releases memory allocated by AllocVec(). It
takes only one parameter, a pointer to a memory block allocated by
AllocVec(). The following example shows how to allocate and deallocate
memory.

APTR my_mem;

if (my_mem = AllocMem(100, MEMF_ANY))
{

/* Your code goes here */
FreeMem(my_mem, 100);

}
else { /* couldn’t get memory, exit with an error */ }

1.4 17 Introduction to Exec / Signals

The Amiga uses a mechanism called signals to tell a task that some event
occurred. Each task has its own set of 32 signals, 16 of which are set
aside for system use. When one task signals a second task, it asks the OS
to set a specific bit in the 32-bit long word set aside for the second
task’s signals.

Signals are what makes it possible for a task to go to sleep. When a task
goes to sleep, it asks the OS to wake it up when a specific signal bit
gets set. That bit is tied to some event. When that event occurs, that
signal bit gets set. This triggers the OS into waking up the sleeping

Libraries 5 / 14

task.

To go to sleep, a task calls a system function called Wait(). This
function takes one argument, a bitmask that tells Exec which of the task’s
signal bits to "listen to". The task will only wake up if it receives one
of the signals whose corresponding bit is set in that bitmask. For
example, if a task wanted to wait for signals 17 and 19, it would call
Wait() like this:

mysignals = Wait(1L<<17 | 1L<<19);

Wait() puts the task to sleep and will not return until some other task
sets at least one of these two signals. When the task wakes up, mysignals
will contain the bitmask of the signal or signals that woke up the task.
It is possible for several signals to occur simultaneously, so any
combination of the signals that the task Wait()ed on can occur. It is up
to the waking task to use the return value from Wait() to figure out which
signal or signals occurred.

Looking for Break Keys Processing Signals Without Wait()ing

1.5 17 / Signals / Looking for Break Keys

One common usage of signals on the Amiga is for processing a user break.
As was mentioned earlier, the OS reserves 16 of a tasks 32 signals for
system use. Four of those 16 signals are used to tell a task about the
Control-C, D, E, and F break keys. An application can process these
signals. Usually, only CLI-based programs receive these signals because
the Amiga’s console handler is about the only user input source that sets
these signals when it sees the Control-C, D, E, and F key presses.

The signal masks for each of these key presses are defined in <dos/dos.h>:

SIGBREAKF_CTRL_C
SIGBREAKF_CTRL_D
SIGBREAKF_CTRL_E
SIGBREAKF_CTRL_F

Note that these are bit masks and not bit numbers.

1.6 17 / Signals / Processing Signals Without Wait()ing

In some cases an application may need to process signals but cannot go to
sleep to wait for them. For example, a compiler might want to check to
see if the user hit Control-C, but it can’t to go to sleep to check for
the break because that will stop the compiler. In this case, the task can
periodically check its own signal bits for the Ctrl-C break signal using
the Exec library function, SetSignal():

oldsignals = ULONG SetSignal(ULONG newsignals, ULONG signalmask);

Although SetSignal() can change a task’s signal bits, it can also monitor

Libraries 6 / 14

them. The following fragment illustrates using SetSignal() to poll a
task’s signal bits for a Ctrl-C break:

/* Get current state of signals */
signals = SetSignal(0L, 0L);

/* check for Ctrl-C */
if (signals & SIGBREAKF_CTRL_C)
{

/* The Ctrl-C signal has been set, take care of processing it... */

/* ...then clear the Ctrl-C signal */
SetSignal(0L, SIGBREAKF_CTRL_C);

}

If your task is waiting for signals, but is also waiting for other events
that have no signal bit (such as input characters from standard input),
you may need to use SetSignal(). In such cases, you must be careful not
to poll in a tight loop (also known as busy-waiting). Busy-waiting hogs
CPU time and degrades the performance of other tasks. One easy way around
this is for a task to sleep briefly within its polling loop by using the
timer.device, or the graphics function WaitTOF(), or (if the task is a
Process) the DOS library Delay()) or WaitForChar() functions.

For more information on signals, see the "Exec Signals" chapter of this
manual.

1.7 17 Introduction to Exec / Interprocess Communications

Another feature of the Amiga OS is its system of message-based
interprocess communication. Using this system, a task can send a message
to a message port owned by another task. Tasks use this mechanism to do
things like trigger events or share data with other tasks, including
system tasks. Exec’s message system is built on top of Exec’s task
signaling mechanism. Most Amiga applications programming (especially
Intuition programming) relies heavily upon this message-based form of
interprocess communication.

When one task sends a message to another task’s message port, the OS adds
the message to the port’s message queue. The message stays in this queue
until the task that owns the port is ready to check its port for messages.
Typically, a task has put itself to sleep while it is waiting for an
event, like a message to arrive at its message port. When the message
arrives, the task wakes up to look in its message port. The messages in
the message port’s queue are arranged in first-in-first-out (FIFO) order
so that, when a task receives several messages, it will see the messages
in the order they arrived at the port.

A task can use a message to share any kind of data with another task. This
is possible because a task does not actually transmit an entire message,
it only passes a pointer to a message. When a task creates a message
(which can have many Kilobytes of data attached to it) and sends it to
another task, the actual message does not move.

Essentially, when task A sends a message to task B, task A lends task B a

Libraries 7 / 14

chunk of its memory, the memory occupied by the message. After task A
sends the message, it has relinquished that memory to task B, so it cannot
touch the memory occupied by the message. Task B has control of that
memory until task B returns the message to task A with the ReplyMsg()
function.

Let’s look at an example. Many applications use Intuition windows as a
source for user input. Without getting into too much detail about
Intuition, when an application opens a window, it can set up the window so
Intuition will send messages about certain user input events. Intuition
sends these messages to a message port created by Intuition for use with
this window. When an application successfully opens a window, it receives
a pointer to a Window structure, which contains a pointer to this message
port (Window.UserPort). For this example, we’ll assume the window has been
set up so Intuition will send a message only if the user clicks the
window’s close gadget.

When Intuition opens the window in this example, it creates a message port
for the task that opened the Window. Because the most common message
passing system uses signals, creating this message port involves using one
of the example task’s 32 signals. The OS uses this signal to signal the
task when it receives a message at this message port. This allows the
task to sleep while waiting for a "Close Window" event to arrive. Since
this simple example is only waiting for activity at one message port, it
can use the WaitPort() function. WaitPort() accepts a pointer to a
message port and puts a task to sleep until a message arrives at that port.

This simple example needs two variables, one to hold the address of the
window and the other to hold the address of a message.

struct Message *mymsg; /*defined in <exec/ports.h> */
struct Window *mywin; /* defined in <intuition/intuition.h> */

...

/* at some point, this application would have successfully opened a */
/* window and stored a pointer to it in mywin. */

...

/* Here the application goes to sleep until the user clicks */
/* the window’s close gadget. This window was set up so */
/* that the only time Intuition will send a message to this */
/* window’s port is if the user clicks the window’s close */
/* gadget. */

WaitPort(mywin->UserPort);
while (mymsg = GetMsg(mywin->UserPort))

/* process message now or copy information from message */
ReplyMsg(mymsg);

...

/* Close window, clean up */

The Exec function GetMsg() is used to extract messages from the message
port. Since the memory for these messages belongs to Intuition, the
example relinquishes each message as it finishes with them by calling
ReplyMsg(). Notice that the example keeps on trying to get messages from
the message port until mymsg is NULL. This is to make sure there are no

Libraries 8 / 14

messages left in the message port’s message queue. It is possible for
several messages to pile up in the message queue while the task is asleep,
so the example has to make sure it replies to all of them. Note that the
window should never be closed within this GetMsg() loop because the while
statement is still accessing the window’s UserPort.

Note that each task with a Process structure (sometimes referred to as a
process) has a special process message port, Process.pr_MsgPort. This
message port is only for use by Workbench and the DOS library itself. No
application should use this port for its own use!

Waiting on Message Ports and Signals at the Same Time

1.8 17 / / Waiting on Message Ports and Signals at the Same Time

Most applications need to wait for a variety of messages and signals from
a variety of sources. For example, an application might be waiting for
Window events and also timer.device messages. In this case, an
application must Wait() on the combined signal bits of all signals it is
interested in, including the signals for the message ports where any
messages might arrive.

The MsgPort structure, which is defined in <exec/ports.h>, is what Exec
uses to keep track of a message port. The UserPort field from the example
above points to one of these structures. In this structure is a field
called mp_SigBit, which contains the number (not the actual bit mask) of
the message port’s signal bit. To Wait() on the signal of a message port,
Wait() on a bit mask created by shifting 1L to the left mp_SigBit times
(1L << msgport->mp_SigBit). The resulting bit mask can be OR’d with the
bit masks for any other signals you wish to simultaneously wait on.

1.9 17 Introduction to Exec / Libraries and Devices

One of the design goals for the Amiga OS was to make the system dynamic
enough so that the OS could be extended and updated without effecting
existing applications. Another design goal was to make it easy for
different applications to be able to share common pieces of code. The
Amiga accomplished these goals through a system of libraries. An Amiga
library consists of a collection of related functions which can be
anywhere in system memory (RAM or ROM).

Devices are very similar to libraries, except they usually control some
sort of I/O device and contain some extra standard functions. Although
this section does not really discuss devices directly, the material here
applies to them. For more information on devices, see the "Exec Device I/O"
section of this manual or the Amiga ROM Kernel Reference Manual:
Devices.

An application accesses a library’s functions through the library’s jump,
or vector, table. Before a task can use the functions of a particular
library, it must first acquire the library’s base pointer by calling the
Exec OpenLibrary() function:

Libraries 9 / 14

struct Library *OpenLibrary(UBYTE *libName,
unsigned long mylibversion);

where libName is a string naming the library and mylibversion is a version
number for the library. The version number reflects a revision of the
system software. The chart below lists the specific Amiga OS release
versions that system libraries versions correspond to:

30 Kickstart 1.0 - This revision is obsolete.
31 Kickstart 1.1 - This was an NTSC only release and is obsolete.
32 Kickstart 1.1 - This was a PAL only release and is obsolete.
33 Kickstart 1.2 - This is the oldest revision of the OS still in

use.

34 Kickstart 1.3 - This is almost the same as release 1.2 except it
has an Autobooting expansion.library

35 This is a special RAM-loaded version of the 1.3 revision, except
that it knows about the A2024 display modes. No
application should need this library unless they
need to open an A2024 display mode under 1.3.

36 Kickstart 2.0 - This is the original Release 2 revision that was
initially shipped on early Amiga 3000 models.

37 Kickstart 2.04 - This is the general Release 2 revision for all
Amiga models.

The OpenLibrary() function looks for a library with a name that matches
libName and also with a version at least as high as mylibversion. For
example, to open version 33 or greater of the Intuition library:

IntuitionBase = OpenLibrary("intuition.library", 33L);

In this example, if version 33 or greater of the Intuition library is not
available, OpenLibrary() returns NULL. A version of zero in OpenLibrary()
tells the OS to open any version of the library. Unless your code
requires Release 2 features, it should specify a version number of 33 to
remain backwards compatible with Kickstart 1.2.

When OpenLibrary() looks for a library, it first looks in memory. If the
library is not in memory, OpenLibrary() will look for the library on disk.
If libName is a library name with an absolute path (for example,
"myapp:mylibs/mylib.library"), OpenLibrary() will follow that absolute
path looking for the library. If libName is only a library name
("diskfont.library"), OpenLibrary() will look for the library in the
directory that the LIBS: logical assign currently references.

If OpenLibrary() finds the library on disk, it takes care of loading it
and initializing it. As part of the initialization process, OpenLibrary()
dynamically creates a jump, or vector, table. There is a vector for each
function in the library. Each entry in the table consists of a 680x0 jump
instruction (JMP) to one of the library functions. The OS needs to create
the vector table dynamically because the library functions can be anywhere

Libraries 10 / 14

in memory.

After the library is loaded into memory and initialized, OpenLibrary() can
actually "open" the library. It does this by calling the library’s Open
function vector. Every library has a standard vector set aside for an
OPEN function so the library can set up any data or processes that it
needs. Normally, a library’s OPEN function increments its open count to
keep track of how many tasks currently have the library opened.

If any step of OpenLibrary() fails, it returns a NULL value. If
OpenLibrary() is successful, it returns the address of the library base.
The library base is the address of this library’s Library structure
(defined in <exec/libraries.h>). The Library structure immediately
follows the vector table in memory.

After an application is finished with a library, it must close it by
calling CloseLibrary():

void CloseLibrary(struct Library *libPtr);

where libPtr is a pointer to the library base returned when the library
was opened with OpenLibrary().

Library Vector Offsets (LVOs) Calling a Library Function

1.10 17 / Libraries and Devices / Library Vector Offsets (LVOs)

After an application has successfully opened a library, it can start using
the library’s functions. To access a library function, an application
needs the library base address returned by OpenLibrary() and the
function’s Library Vector Offset (LVO). A function’s LVO is the offset
from the library’s base address to the function’s vector in the vector
table, which means an LVO is a negative number (the vectors precedes the
library base in memory). Application code enters a library function by
doing a jump to subroutine (the 680x0 instruction JSR) to the proper
negative offset (LVO) from the address of the library base. The library
vector itself is a jump instruction (the 680x0 instruction JMP) to the
actual library function which is somewhere in memory.

Low Memory
/|\
|

________________|________________
| |
| JMP Function N (LVO=-(N*6)) |
| · |
| · |
| JMP Function 6 (LVO=-36) |
| JMP Function 5 (LVO=-30) |
| JMP Function Reserved (LVO=-24) |
| JMP Function Expunge (LVO=-18) |
| JMP Function Close (LVO=-12) |
| JMP Function Open (LVO=-6) |

Library Base____|_________________________________|

Libraries 11 / 14

| |
| Library Structure |
|_________________________________|
| |
| Data Area |
|_________________________________|

|
|
\|/

High Memory

Figure 17-1: An Exec Library Base in RAM

The only legal way for an application to access a library function is
through the vector table. A function’s LVO is always the same on every
system and is not subject to change. A function’s jump vector can, and
does, change. Assuming that a function’s jump vector is static is very
bad, so don’t do it.

Each library has four vectors set aside for library housekeeping: OPEN,
CLOSE, EXPUNGE, and RESERVED. The OPEN vector points to a function that
performs any custom initialization that this library needs, for example,
opening other libraries that this library uses. The CLOSE function takes
care of any clean up necessary when an application closes a library. The
EXPUNGE vector points to a function that prepares the library for removal
from the system. Normally the OS will not remove a library from memory
until the system needs the memory the library occupies. The other vector,
RESERVED, does not do anything at present and is reserved for future
system use.

1.11 17 / Libraries and Devices / Calling a Library Function

To call a function in an Amiga system library, an assembler application
must put the library’s base address in register A6 and JSR to the
function’s LVO relative to A6. For example to call the Intuition function
DisplayBeep():

;***
xref _LVODisplayBeep

;...
move.l A6, -(sp) ;save the current contents of A6

;---- intuition.library must already be opened
;---- and IntuitionBase must contain its base address

move.l IntuitionBase, A6 ;put intuition base pointer in A6
jsr _LVODisplayBeep(A6) ;call DisplayBeep()
move.l (SP)+, A6 ;restore A6 to its original value

IntuitionBase contains a pointer to the Intuition library’s library base
and _LVODisplayBeep is the LVO for the DisplayBeep() function. The
external reference (xref) to _LVODisplayBeep is resolved from the linker
library, amiga.lib. This linker library contains the LVO’s for all of the

Libraries 12 / 14

standard Amiga libraries. Each LVO label starts with "_LVO" followed by
the name of the library function.

System Functions Do Not Preserve D0, D1, A0 and A1.

If you need to preserve D0, D1, A0, or A1 between calls to system
functions, you will have to save and restore these values yourself.
Amiga system functions use these registers as scratch registers and
may write over the values your program left in these registers. The
system functions preserve the values of all other registers. The
result of a system function, if any, is returned in D0.

Some Task LVO Table LibFuncY()
--------- __________________ ----------

| |
| · |

main() | · |
· | JMP to LibFuncZ | {
· |- - - - - - - - - | blah = openblah();
x= ____\| JMP to LibFuncY |____\ dosomething();

LibFuncY() /|- - - - - - - - - | / closeblah(blah);
· | JMP to LibFuncX | }
· | · |

| · |
|__________________|
| |
| Library Base |
|__________________|

A task calls a which calls the which JMP’s to the
library function... functions JMP vector... actual library function.

Figure 17-2: Calling a Library Function

The example above is the actual assembly code generated by the macro named
LINKLIB, which is defined in <exec/libraries.i>. The following fragment
performs the same function as the fragment above:

LINKLIB _LVODisplayBeep, IntuitionBase

The amiga.lib linker library also contains small functions called stubs
for each function in the Amiga OS. These stubs are normally for use with
C code.

Function parameters in C are normally pushed on the stack when a program
calls a function. This presents a bit of a problem for the C programmer
when calling Amiga OS functions because the Amiga OS functions expect
their parameters to be in specific CPU registers. Stubs solve this problem
by copying the parameters from the stack to the appropriate register.

For example, the Autodoc for the Intuition library function MoveWindow()
shows which registers MoveWindow() expects its parameters to be:

MoveWindow(window, deltaX, deltaY);

Libraries 13 / 14

A0 D0 D1

The stub for MoveWindow() in amiga.lib has to copy window to register A0,
deltaX to register D0, and deltaY to register D1.

The stub also copies Intuition library base into A6 and does an
address-relative JSR to MoveWindow()’s LVO (relative to A6). The stub
gets the library base from a global variable in your code called
IntuitionBase. If you are using the stubs in amiga.lib to call Intuition
library functions, you must declare a global variable called
IntuitionBase. It must be called IntuitionBase because amiga.lib is
specifically looking for the label IntuitionBase.

/* This global declaration is here so amiga.lib can find
the intuition.library base pointer.

*/
struct Library *IntuitionBase;

...

void main(void)
{

...

/* initialize IntuitionBase */
if (IntuitionBase = OpenLibrary("intuition.library", 33L))
{

...

/* When this code gets linked with amiga.lib, the
linker extracts the DisplayBeep() stub routine from
from amiga.lib and copies it into the executable.
The stub copies whatever is in the variable
IntuitionBase into A6, and JSRs to
_LVODisplayBeep(A6).

*/
DisplayBeep();
...

CloseLibrary(IntuitionBase);
}
...

}

There is a specific label in amiga.lib for the library base of every
library in the Amiga operating system. The chart below lists the names of
the library base pointer amiga.lib associates with each Amiga OS library.
The labels for library bases are also in the "Function Offsets Reference"
list in the Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Table 17-1: Amiga.lib Library Base Labels

| |
Library Name Library Base Pointer Name
asl.library AslBase
commodities.library CxBase

Libraries 14 / 14

| diskfont.library DiskfontBase |
| * dos.library DOSBase |
| * exec.library SysBase |
| expansion.library ExpansionBase |
| gadtools.library GadToolsBase |
| graphics.library GfxBase |
| icon.library IconBase |
| iffparse.library IFFParseBase |
| intuition.library IntuitionBase |
| keymap.library KeyMapBase |
| layers.library LayersBase |
| mathffp.library MathBase |
| mathieeedoubbas.library MathIeeeDoubBasBase |
| mathieeedoubtrans.library MathIeeeDoubTransBase |
| mathieeesingbas.library MathIeeeSingBasBase |
| mathieeesingtrans.library MathIeeeSingTransBase |
| mathtrans.library MathTransBase |
| rexxsys.library RexxSysBase |
| rexxsupport.library RexxSupBase |
| translator.library TranslatorBase |
| utility.library UtilityBase |
| version .library (system private) |
| workbench.library WorkbenchBase |
Library Name Library Base Pointer Name
* Automatically opened by the standard C startup module

The chart mentions that SysBase and DOSBase are already set up by the
standard C startup module. For more information on the startup module,

You May Not Need amiga.lib.

Many C compilers provide ways of using pragmas or registerized
parameters, so that a C program does not have to link with an
amiga.lib stub to access a library function. See your compiler
documentation for more details.

	Libraries
	Amiga® RKM Libraries: 17 Introduction to Exec
	17 Introduction to Exec / Multitasking
	17 Introduction to Exec / Dynamic Memory Allocation
	17 Introduction to Exec / Signals
	17 / Signals / Looking for Break Keys
	17 / Signals / Processing Signals Without Wait()ing
	17 Introduction to Exec / Interprocess Communications
	17 / / Waiting on Message Ports and Signals at the Same Time
	17 Introduction to Exec / Libraries and Devices
	17 / Libraries and Devices / Library Vector Offsets (LVOs)
	17 / Libraries and Devices / Calling a Library Function

