Libraries

Libraries

] COLLABORATORS
TITLE :
Libraries
ACTION NAME DATE SIGNATURE
WRITTEN BY July 23, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Libraries

Contents

1 Libraries 1
1.1 Amiga® RKM Libraries: 20 Exec Memory Allocation 1
1.2 20 Exec Memory Allocation / Memory Functions 1
1.3 20/ Memory Functions / Memory Attributes e 2
1.4 20/ Memory Functions / Allocating System Memory vt e 3
1.5 20/Memory Functions / Freeing System Memory o o 4
1.6 20/ Memory Functions / Memory Information Functions 4
1.7 20//Memory Information Functions / Memory Requirements 5
1.8 20//Memory Info Functions / Calling Memory Information Functions 5
1.9 20/ Memory Functions / Using Memory Copy Functions 5
1.10 20// Using Memory Copy Functions / Copying System Memory 5
1.11 20// Summary of System Controlled Memory Handling Routines 6
1.12 20 Exec Memory Allocation / Allocating Multiple Memory Blocks 6
1.13 20/ Allocating Multiple Memory Blocks / Sample Code 7
1.14 20/ Allocating Multiple Memory Blocks /Result 8
1.15 20/ Allocating Multiple Memory / Multiple Memory Blocks and Tasks 8
1.16 20/ Allocating Multiple Memory / Summary of Allocation Routines 9
1.17 20 Exec Memory Allocation / Other Memory Functions 9
1.18 20/ Other Memory Functions / Allocating Memory at an Absolute Address 10
1.19 20/ Other Memory Functions / Adding Memory to the System Pool 11
1.20 20 Exec Memory Allocation / Function Reference 11

Libraries

1/11

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 20 Exec Memory Allocation

Exec manages all of the free memory currently available in the system.
Using linked list structures, Exec keeps track of memory and provides the
functions to allocate and access it.

When an application needs some memory, it can either declare the memory
statically within the program or it can ask Exec for some memory. When
Exec receives a request for memory, it looks through its list of free
memory regions to find a suitably sized block that matches the size and
attributes requested.

Memory Functions Other Memory Functions
Allocating Multiple Memory Blocks Function Reference

1.2 20 Exec Memory Allocation / Memory Functions

Normally, an application uses the AllocMem() function to ask for memory:
APTR AllocMem (ULONG byteSize, ULONG attributes);

The byteSize argument is the amount of memory the application needs and
attributes is a bit field which specifies any special memory
characteristics (described later). If AllocMem() is successful, it
returns a pointer to a block of memory. The memory allocation will fail
if the system cannot find a big enough block with the requested
attributes. If AllocMem() fails, it returns NULL.

Because the system only keeps track of how much free memory is available
and not how much is in use, it has no idea what memory has been allocated
by any task. This means an application has to explicitly return, or
deallocate, any memory it has allocated so the system can return that
memory to the free memory list. If an application does not return a block
of memory to the system, the system will not be able to reallocate that
memory to some other task. That block of memory will be lost until the
Amiga is reset. If you are using AllocMem() to allocate memory, a call to
FreeMem () will return that memory to the system:

Libraries 2/ 11

void FreeMem (APTR mymemblock, ULONG byteSize);

Here mymemblock is a pointer to the memory block the application is
returning to the system and byteSize is the same size that was passed when
the memory was allocated with AllocMem() .

Unlike some compiler memory allocation functions, the Amiga system memory
allocation functions return memory blocks that are at least longword
aligned. This means that the allocated memory will always start on an
address which is at least evenly divisible by four. This alignment makes
the memory suitable for any system structures or buffers which require
word or longword alignment, and also provides optimal alignment for stacks
and memory copying.

Memory Attributes

Allocating System Memory

Freeing System Memory

Memory Information Functions

Using Memory Copy Functions

Summary of System Controlled Memory Handling Routines

1.3 20/ Memory Functions / Memory Attributes

When asking the system for memory, an application can ask for memory with
certain attributes. The currently supported flags are listed below. Flags
marked "V37" are new memory attributes for Release 2. Allocations which
specify these new bits may fail on earlier systems.

MEMF_ANY
This indicates that there is no requirement for either Fast or Chip
memory. In this case, while there is Fast memory available, Exec

will only allocate Fast memory. Exec will allocate Chip memory if
there is not enough Fast memory.

MEMF_CHIP
This indicates the application wants a block of chip memory, meaning
it wants memory addressable by the Amiga custom chips. Chip memory

is required for any data that will be accessed by custom chip DMA.
This includes screen memory, images that will be blitted, sprite
data, copper lists, and audio data, and pre-V37 floppy disk buffers.
If this flag is not specified when allocating memory for these types
of data, your code will fail on machines with expanded memory.

MEMF_FAST
This indicates a memory block outside of the range that the special
purpose chips can access. "FAST" means that the special-purpose

chips do not have access to the memory and thus cannot cause
processor bus contention, therefore processor access will likely be
faster. Since the flag specifies memory that the custom chips cannot
access, this flag is mutually exclusive with the MEMF_CHIP flag. If
you specify the MEMF_FAST flag, your allocation will fail on any
Amiga that has only CHIP memory. Use MEMF_ANY if you would prefer
FAST memory.

Libraries

3/11

MEMF_PUBLIC
This indicates that the memory should be accessible to other tasks.
Although this flag doesn’t do anything right now, using this flag
will help ensure compatibility with possible future features of the
0OS (like virtual memory and memory protection).

MEMF_CLEAR
This indicates that the memory should be initialized with zeros.

MEMF_LOCAL (V37)
This indicates memory which is located on the motherboard which is
not initialized on reset.

MEMF_24BITDMA (V37)
This indicates that the memory should be allocated within the 24 bit
address space, so that the memory can be used in Zorro-II expansion
device DMA transactions. This bit is for use by Zorro-II DMA devices
only. It is not for general use by applications.

MEMF_REVERSE (V37)
Indicates that the memory list should be searched backwards for the
highest address memory chunk which can be used for the memory
allocation.

If an application does not specify any attributes when allocating memory,
the system tries to satisfy the request with the first memory available on
the system memory lists, which is MEMF_FAST if available, followed by
MEMF_CHIP.

Make Sure You Have Memory.

Always check the result of any memory allocation to be sure the type
and amount of memory requested is available. Failure to do so will
lead to trying to use an non-valid pointer.

1.4 20/ Memory Functions / Allocating System Memory

The following examples show how to allocate memory.
APTR apointer, anotherptr, vap;

if (! (apointer = AllocMem (100, MEMF_ANY)))
{ /% COULDN’T GET MEMORY, EXIT «*/ }

AllocMem () returns the address of the first byte of a memory block that is
at least 100 bytes in size or NULL if there is not that much free memory.
Because the requirement field is specified as MEMF_ANY (zero), memory will
be allocated from any one of the system—-managed memory regions.

if (! (anotherptr = (APTR)AllocMem (1000, MEMF_CHIP | MEMF_CLEAR)))
{ /% COULDN’T GET MEMORY, EXIT %/ }

The example above allocates only chip-accessible memory, which the system
fills with zeros before it lets the application use the memory. If the
system free memory list does not contain enough contiguous memory bytes in

Libraries 4/ 11

an area matching your requirements, AllocMem() returns a zero. You must
check for this condition.

If you are using Release 2, you can use the AllocVec() function to
allocate memory. In addition to allocating a block of memory, this
function keeps track of the size of the memory block, so your application
doesn’t have to remember it when it deallocates that memory block. The
AllocVec () function allocates a little more memory to store the size of
the memory allocation request.

if (!(yap = (APTR)AllocVec (512, MEMF_CLEAR)))
{ /% COULDN’T GET MEMORY, EXIT %/ }

1.5 20/ Memory Functions / Freeing System Memory

The following examples free the memory chunks shown in the previous calls
to AllocMem() .

FreeMem (apointer, 100);
FreeMem (anotherptr, 1000);

A memory block allocated with AllocVec () must be returned to the system
pool with the FreeVec(). This function uses the stored size in the
allocation to free the memory block, so there is no need to specify the
size of the memory block to free.

FreeVec (yap) ;

FreeMem() and FreeVec () return no status. However, if you attempt to free
a memory block in the middle of a chunk that the system believes is
already free, you will cause a system crash. Applications must free the
same size memory blocks that they allocated. An allocated block may not
be deallocated as smaller pieces. Due to the internal way the system
rounds up and aligns allocations. Partial deallocations can corrupt the
system memory list.

Leave Memory Allocations Out Of Interrupt Code.

Do not allocate or deallocate system memory from within interrupt
code. The "Exec Interrupts" chapter explains that an interrupt may
occur at any time, even during a memory allocation process. As a
result, system data structures may not be internally consistent at
this time.

1.6 20/ Memory Functions / Memory Information Functions

The memory information routines AvailMem () and TypeOfMem () can provide the
amount of memory available in the system, and the attributes of a
particular block of memory.

Memory Regquirements Calling Memory Information Functions

Libraries 5/11

1.7 20// Memory Information Functions / Memory Requirements

The same attribute flags used in memory allocation routines are valid for
the memory information routines. There is also an additional flag,
MEMF_LARGEST, which can be used in the AvailMem() routine to find out what
the largest available memory block of a particular type is. Specifying
the MEMF_TOTAL flag will return the total amount of memory currently
available.

1.8 20 //Memory Info Functions / Calling Memory Information Functions

The following example shows how to find out how much memory of a
particular type is available.

ULONG size;
size = AvailMem (MEMF_CHIP |MEMF_LARGEST) ;

AvailMem () returns the size of the largest chunk of available chip memory.
AvailMem () May Not Be Totally Accurate.

Because of multitasking, the return value from AvailMem() may be
inaccurate by the time you receive it.

The following example shows how to determine the type of memory of a
specified memory address.

ULONG memtype;

memtype = TypeOfMem ((APTR) 0x090000) ;
if ((memtype & MEMF_CHIP) == MEMF_CHIP) {/% ...It’s chip memory... =/}

TypeOfMem () returns the attributes of the memory at a specific address. If
it is passed an invalid memory address, TypeOfMem() returns NULL. This

routine is normally used to determine if a particular chunk of memory is
in chip memory.

1.9 20/ Memory Functions / Using Memory Copy Functions

For memory block copies, the CopyMem () and CopyMemQuick () functions can be
used.

Copying System Memory

1.10 20//Using Memory Copy Functions / Copying System Memory

The following samples show how to use the copying routines.

Libraries 6/11

APTR source, target;

source = AllocMem (1000, MEMF_CLEAR) ;
target AllocMem (1000, MEMF_CHIP);
CopyMem (source, target, 1000);

CopyMem () copies the specified number of bytes from the source data region
to the target data region. The pointers to the regions can be aligned on
arbitrary address boundaries. CopyMem() will attempt to copy the memory
as efficiently as it can according to the alignment of the memory blocks,
and the amount of data that it has to transfer. These functions are
optimized for copying large blocks of memory which can result in
unnecessary overhead if used to transfer very small blocks of memory.

CopyMemQuick (source, target, 1000);

CopyMemQuick () performs an optimized copy of the specified number of bytes
from the source data region to the target data region. The source and
target pointers must be longword aligned and the size (in bytes) must be
divisible by four.

Not All Copies Are Supported.
Neither CopyMem() nor CopyMemQuick () supports copying between
regions that overlap.

1.11 20 // Summary of System Controlled Memory Handling Routines

AllocMem() and FreeMem ()
These are system-wide memory allocation and deallocation routines.
They use a memory free-list owned and managed by the system.

AvailMem ()
This routine returns the number of free bytes in a specified type of
memory.

TypeOfMem ()
This routine returns the memory attributes of a specified memory
address.

CopyMem () /CopyMemQuick ()
CopyMem () is a general purpose memory copy routine. CopyMemQuick () is
an optimized version of CopyMemQuick (), but has restrictions on the
size and alignment of the arguments.

1.12 20 Exec Memory Allocation / Allocating Multiple Memory Blocks

Exec provides the routines AllocEntry () and FreeEntry () to allocate
multiple memory blocks in a single call. AllocEntry () accepts a data
structure called a MemList, which contains the information about the size
of the memory blocks to be allocated and the requirements, if any, that
you have regarding the allocation. The MemList structure is found in the

Libraries 7 /11

include file <exec/memory.h> and is defined as follows:

struct MemList

{

struct Node ml_Node;
UWORD ml_NumEntries; /% number of MemEntrys =/
struct MemEntry ml_ME[1]; /+ where the MemEntrys beginx/
i
Node
allows you to link together multiple MemLists. However, the node is

ignored by the routines AllocEntry () and FreeEntry().

ml_NumEntries
tells the system how many MemEntry sets are contained in this
MemList. ©Notice that a MemList is a variable-length structure and
can contain as many sets of entries as you wish.

The MemEntry structure looks like this:

struct MemEntry

{

union {
ULONG meu_Reqgs; /+ the AllocMem requirements =*/
APTR meu_Addr; /+ address of your memory x/
} me_Un;

ULONG me_Length; /* the size of this request */

i

Sample Code for Allocating Multiple Memory Blocks
Result of Allocating Multiple Memory Blocks

Multiple Memory Blocks and Tasks

Summary of Multiple Memory Blocks Allocation Routines

1.13 20/ Allocating Multiple Memory Blocks / Sample Code

Here’s an example of showing how to use the AllocEntry () with multiple
blocks of memory.

allocentry.c

AllocEntry() returns a pointer to a new MemList of the same size as the
MemList that you passed to it. For example, ROM code can provide a
MemList containing the requirements of a task and create a RAM-resident
copy of the list containing the addresses of the allocated entries. The
pointer to the MemList is used as the argument for FreeEntry() to free the
memory blocks.

Assembly Does Not Have MemEntry.

The MemList structure used by assembly programmers is slightly
different; it has only a label for the start of the MemEntry
array. See the Exec AllocEntry () Autodoc for an example of using
AllocEntry () from assembler.

Libraries 8/ 11

1.14 20/ Allocating Multiple Memory Blocks / Result

The MemList created by AllocEntry() contains MemEntry entries. MemEntrys
are defined by a union statement, which allows one memory space to be
defined in more than one way.

If AllocEntry() returns a value with bit 31 clear, then all of the
meu_Addr positions in the returned MemList will contain valid memory
addresses meeting the requirements you have provided. To use this memory
area, you would use code similar to the following:

#define ALLOCERROR 0x80000000
struct MemList =ml;

APTR data, moredata;
if (! ((ULONG)ml & ALLOCERROR))) /+ After calling AllocEntry to */
/* allocate ml x/
{
data = ml->ml_ME[O] .me_Addr;
moredata = ml->ml_ME[1] .me_Addr;

}
else exit (200); /* error during AllocEntry «/

If AllocEntry() has problems while trying to allocate the memory you have
requested, instead of the address of a new MemList, it will return the
memory requirements value with which it had the problem. Bit 31 of the
value returned will be set, and no memory will be allocated. Entries in
the list that were already allocated will be freed. For example, a failed
allocation of cleared Chip memory (MEMF_CLEAR | MEMF_CHIP) could be
indicated with 0x80010002, where bit 31 indicates failure, bit 16 is the
MEMF_CLEAR flag and bit 1 is the MEMF_CHIP flag.

1.15 20/ Allocating Multiple Memory / Multiple Memory Blocks and Tasks

If you want to take advantage of Exec’s automatic cleanup, use the MemList
and AllocEntry () facility to do your dynamic memory allocation.

In the Task control block structure, there is a list header named
tc_MemEntry. This is the list header that you initialize to include
MemLists that your task has created by call(s) to AllocEntry (). Here is a
short program segment that handles task memory list header initialization
only. It assumes that you have already run AllocEntry () as shown in the
simple AllocEntry () example above.

struct Task =*tc;
struct MemList *ml;

/* First initialize the task pointer and AllocEntry () the memlist ml */

if (!'tc—>tc_MemEntry)
NewList (tc—>tc_MemEntry); /+ Initialize the task’s memory */
/* list header. Do this once only! */
AddTail (tc—>tc_MemEntry, ml);

Libraries 9/ 11

Assuming that you have only used the AllocEntry () method (or AllocMem()
and built your own custom MemList), the system now knows where to find the
blocks of memory that your task has dynamically allocated. The RemTask ()
function automatically frees all memory found on tc_MemEntry.

CreateTask () Sets Up A MemList.

The amiga.lib CreateTask () function, and other system task and
process creation functions use a MemList in tc_MemEntry so that

the Task structure and stack will be automatically deallocated when
the Task is removed.

1.16 20/ Allocating Multiple Memory / Summary of Allocation Routines

AllocEntry () and FreeEntry()
These are routines for allocating and freeing multiple memory blocks
with a single call.

InitStruct ()
This routine initializes memory from data and offset values in a
table. Typically only assembly language programs benefit from using

this routine. For more details see the Amiga ROM Kernel Reference
Manual: Include & Autodocs.

1.17 20 Exec Memory Allocation / Other Memory Functions

Allocate () and Deallocate() use a memory region header, called MemHeader,
as part of the calling sequence. You can build your own local header to
manage memory locally. This structure takes the form:

struct MemHeader {

struct Node mh_Node;

UWORD mh_Attributes; /* characteristics of region «/
struct MemChunk »*mh_First; /* first free region */
APTR mh_Lower; /+ lower memory bound */
APTR mh_Upper; /* upper memory bound + 1 */
ULONG mh_Free; /+ total number of free bytes */

}i

mh_Attributes
is ignored by Allocate() and Deallocate().

mh_First
is the pointer to the first MemChunk structure.

mh_Lower
is the lowest address within the memory block. This must be a
multiple of eight bytes.

mh_Upper
is the highest address within the memory block + 1. The highest
address will itself be a multiple of eight if the block was allocated

Libraries 10/ 11

to you by AllocMem() .

mh_Free
is the total free space.

This structure is included in the include files <exec/memory.h> and
<exec/memory.i>.

The following sample code fragment shows the correct initialization of a
MemHeader structure. It assumes that you wish to allocate a block of
memory from the global pool and thereafter manage it yourself using
Allocate () and Deallocate().

allocate.c

How Memory Is Tagged.

Only free memory is "tagged" using a MemChunk linked list. Once
memory is allocated, the system has no way of determining which task
now has control of that memory.

If you allocate memory from the system, be sure to deallocate it when your
task exits. You can accomplish this with matched deallocations, or by
adding a MemList to your task’s tc_MemEntry, or you can deallocate the
memory in the finalPC routine (which can be specified if you perform
AddTask () yourself).

Allocating Memory at an Absolute Address
Adding Memory to the System Pool

1.18 20/ Other Memory Functions / Allocating Memory at an Absolute Address

For special advanced applications, AllocAbs () 1is provided. Using
AllocAbs (), an application can allocate a memory block starting at a
specified absolute memory address. If the memory is already allocated or
if there is not enough memory available for the request, AllocAbs()
returns a zero.

Be aware that an absolute memory address which happens to be available on
one Amiga may not be available on a machine with a different configuration
or different operating system revision, or even on the same machine at a
different times. For example, a piece of memory that is available during
expansion board configuration might not be available at earlier or later
times. Here is an example call to AllocAbs():

APTR absoluteptr;

absoluteptr = (APTR)AllocAbs (10000, 0x2F0000);
if (! (absoluteptr))
{ /* Couldn’t get memory, act accordingly. */ }

/+ After we’re done using it, we call FreeMem() to free the memory =*/
/* block. =*/
FreeMem (absoluteptr, 10000);

Libraries

11/11

1.19 20/ Other Memory Functions / Adding Memory to the System Pool

When non-Autoconfig memory needs to be added to the system free pool, the
AddMemList () function can be used. This function takes the size of the
memoryblock, its type, the priority for the memory list, the base address
and the name of the memory block. A MemHeader structure will be placed at
the start of the memory block, the remainder of the memory block will be
made available for allocation. For example:
AddMemList (0x200000, MEMF_FAST, 0, O0xF00000, "FZeroBoard");
will add a two megabyte memory block, starting at $F00000 to the system
free pool as Fast memory. The memory list entry is identified with
"FZeroBoard".

1.20 20 Exec Memory Allocation / Function Reference

The following are brief descriptions of the Exec functions that handle
memory management. See the Amiga ROM Kernel Reference Manual: Includes
and Autodocs for details on each call.

Table 20-1: Exec Memory Functions

TypeOfMem ()

Determine attributes of a specified memory address.

| Memory Function Description

| ======== S ———= ———= S S — ———=
| AllocMem() Allocate memory with specified attributes. If an

| application needs to allocate some memory, it will

\ usually use this function.

\ AddMemList () Add memory to the system free pool.

\ AllocAbs () Allocate memory at a specified location.

\ Allocate() Allocate memory from a private memory pool.

| AllocEntry () Allocate multiple memory blocks.

| AllocVec () Allocate memory with specified attributes and keep

\ track of the size (V36).

\ AvailMem () Return the amount of free memory, given certain

| conditions.

\ CopyMem () Copy memory block, which can be non-aligned and of

\ arbitrary length.

| CopyMemQuick () Copy aligned memory block.

\ Deallocate () Return memory block allocated, with Allocate() to the
\ private memory pool.

| FreeEntry () Free multiple memory blocks, allocated with

| AllocEntry () .

| FreeMem() Free a memory block of specified size, allocated with
\ AllocMem/() .

| FreeVec () Free a memory block allocated with AllocVec() .

| InitStruct () Initialize memory from a table.

\

\

	Libraries
	Amiga® RKM Libraries: 20 Exec Memory Allocation
	20 Exec Memory Allocation / Memory Functions
	20 / Memory Functions / Memory Attributes
	20 / Memory Functions / Allocating System Memory
	20 / Memory Functions / Freeing System Memory
	20 / Memory Functions / Memory Information Functions
	20 / / Memory Information Functions / Memory Requirements
	20 / / Memory Info Functions / Calling Memory Information Functions
	20 / Memory Functions / Using Memory Copy Functions
	20 / / Using Memory Copy Functions / Copying System Memory
	20 / / Summary of System Controlled Memory Handling Routines
	20 Exec Memory Allocation / Allocating Multiple Memory Blocks
	20 / Allocating Multiple Memory Blocks / Sample Code
	20 / Allocating Multiple Memory Blocks / Result
	20 / Allocating Multiple Memory / Multiple Memory Blocks and Tasks
	20 / Allocating Multiple Memory / Summary of Allocation Routines
	20 Exec Memory Allocation / Other Memory Functions
	20 / Other Memory Functions / Allocating Memory at an Absolute Address
	20 / Other Memory Functions / Adding Memory to the System Pool
	20 Exec Memory Allocation / Function Reference

