Date

Date

COLLABORATORS
TITLE -
Date
ACTION NAME DATE SIGNATURE
WRITTEN BY August 30, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Date iii

Contents

1 Date 1
1.1 Date.doc o o e e e e e 1
1.2 Date/--background-- e e e 2
1.3 Date/--history-- o o e e e e e e e 4
1.4 Date/ Datelnit. 6
1.5 Date/GregorianDayDiff e 7
1.6 Date/GregorianDayGreater o e e e e e e e 8
1.7 Date/GregorianDaysAfterWeekday 9
1.8 Date/GregorianDaysBeforeWeekday L 9
1.9 Date/GregorianDaySmaller e 10
1.10 Date/GregorianDiffDate L e 11
1.11 Date/GregorianEaster e e e e e e e 12
1.12 Date/GregorianLeapYear e e 13
1.13 Date/GregorianMonthDays e e e 13
1.14 Date/GregorianMoOONAZe o L e e e e e e e e e e 14
1.15 Date/GregorianToJD e 15
1.16 Date/GregorianWeek e e 16
1.17 Date/GregorianWeekday L e e 16
1.18 Date/GregorianYearDays L e 17
1.19 Date/GSYearToJD L e 18
1.20 Date/GYearToScaliger o o i e e e 18
1.21 Date/HeisDayDiff e 19
1.22 Date/HeisDayGreater v v v o i e 20
1.23 Date/HeisDaysAfterWeekday L e 21
1.24 Date/HeisDaysBeforeWeekday e 22
1.25 Date/HeisDaySmaller o e e e e e e e e 22
1.26 Date/HeisDiffDate o e e e 23
1.27 Date/HeisLeapYear o e e 24
1.28 Date/HeisMonthDays e e e e e e 25
1.29 Date/HeisToID o L e e 26

Date iv
1.30 Date/HeisWeek L 26
1.31 Date/HeisWeekday e 27
1.32 Date/HeisYearDays o e e e e e e 28
1.33 Date/HSYearToJD o e e e 28
1.34 Date/HYearToScaliger e e 29
1.35 Date/IDoMID e e e 30
1.36 Date/JIDToTIime o e e e e 30
1.37 Date/JSYearToJD e 31
1.38 Date/JulianDayDiff e 32
1.39 Date/JulianDayGreater o v v it e e e e e e e e e e e e e e e e e e e 33
1.40 Date/JulianDaysAfterWeekday e 33
1.41 Date/JulianDaysBeforeWeekday L 34
1.42 Date/JulianDaySmaller e e 35
1.43 Date/JulianDiffDate L L e 36
1.44 Date/JulianLeapYear e 37
1.45 Date/JulianMonthDays e e 37
1.46 Date/JulianToJD o o L e 38
1.47 Date/JulianWeek L e e e 39
1.48 Date/JulianWeekday 40
1.49 Date/JulianYearDays e e e 41
1.50 Date/JYearToScaliger o o e e e 41
1.51 Date/LMT o e 42
1.52 Date/MIDtoJD e e 43
1.53 Date/ScaligerYearToG o 0 e e e e e e e 43
1.54 Date/ScaligerYearToH e e 44
1.55 Date/ScaligerYearToJ e 44
1.56 Date/SecToTime e e 45
1.57 Date/TimeToJD o e 46
1.58 Date/TimeToSec L e 46
1.59 Date/TimeZoneFactor i e e e e 47

Date

1/48

Chapter 1

Date

1.1

Date.doc

—-—-background—--
——history——{()

_DateInit ()

GregorianDayDiff ()
GregorianDayGreater ()

GregorianDaysAfterWeekday ()
GregorianDaysBeforeWeekday ()

GregorianDaySmaller ()
GregorianDiffDate ()
GregorianEaster ()
GregorianLeapYear ()
GregorianMonthDays ()
GregorianMoonAge ()
GregorianTodD ()
GregorianWeek ()
GregorianWeekday ()
GregorianYearDays ()
GSYearTodD ()
GYearToScaliger ()
HeisDayDiff ()
HeisDayGreater ()
HeisDaysAfterWeekday ()
HeisDaysBeforeWeekday ()
HeisDaySmaller ()
HeisDiffDate ()
HeisLeapYear ()
HeisMonthDays ()
HeisToJD ()
HeisWeek ()
HeisWeekday ()
HeisYearDays ()
HSYearTodD ()
HYearToScaliger ()
JDtoMJD ()

JDToTime ()
JSYearTodD ()
JulianDayDiff ()
JulianDayGreater ()

Date 2/48

JulianDaysAfterWeekday ()
JulianDaysBeforeWeekday ()
JulianDaySmaller ()
JulianDiffDate ()
JulianLeapYear ()
JulianMonthDays ()
JulianToJdD ()
JulianWeek ()
JulianWeekday ()
JulianYearDays ()
JYearToScaliger ()

LMT

MJDtodD ()
ScaligerYearToG ()
ScaligerYearToH ()
ScaligerYearTodJ ()
SecToTime ()

TimeTodJdD ()

TimeToSec ()
TimeZoneFactor ()

1.2 Date/--background--

NAME
Date —-- This module was designed to help calc. calendar dates (V33)
FUNCTION

I know about the date routines in the Amiga-0S(TM), but I decided
not to use them because of their limited functionalities and of
the portability of this module!

NOTES
A tropical year is 365.2422 days! / 365d, 5h, 48min, 46sec
A moon month is 29.53059 days! / 29d, 12h, 44min, 2.9 sec
A moon phase is 7.38265 days!

(German) Books which helped me creating this library:
Kleine Naturwissenschaftliche Bibliothek, Band 23
Ewige Kalender
A.W. Butkewitsch & M.S. Selikson
5. Auflage
Teubner, Leipzig 1974
ISBN 3-322-00393-0

Tag und Woche, Monat und Jahr: eine Kulturgeschichte des
Kalenders

Rudolf Wendorff

Westdeutscher, Opladen 1993

ISBN 3-531-12417-X

Kalender und Chronologie: Bekanntes & Unbekanntes aus der
Kalenderwissenschaft

Heinz Zemanek

4. Auflage

Oldenbourg, Minchen 1987

Date 3/48

ISBN 3-486-20447-5

Meyers Handbuch

Uber das Weltall

Karl Schaifers & Gerhard Traving

5. Auflage

Bibliographisches Institut Mannheim 1973
ISBN 3-411-00940-3

(English) Books which helped me creating this library:
Mathematical Astronomy with a Pocket Calculator
Aubrey Jones Fras
unknown (first) Edition
David & Charles Newton Abbot, London 1978
ISBN 0-7153-7675-6

COPYRIGHT
This module is Copyright 1994 by Kai Hofmann - all rights reserved!
For private use, Public Domain, Gift Ware, Freeware and Shareware
you could use this module under following conditions:
- You send me a little gift (money is very welcome :)
For Bank Account see below - but *ONLYx send in DM
to this Bank Account!!!
Other nice gifts: all Amiga hardware, and I am searching for a
good old 1541 (C64 floppy)
— You include a notice in your product, that you use this library
and that it is Copyright by Kai Hofmann!
If you want to redistribute this library read the following points:
- Redistribution warranty is given to:
Fred Fish for his great Amiga-Software-Library
The German SAAR AG PD-Library
The German AMOK PD-Library
All public accessible INTERNET servers and PHONE boxes!
All others who do NOT take more than DM 5.- for one disk
ALL others who do NOT take more than DM 50.- for one CD
For commercial use send me DM 200.-
But if you are Apple or Microsoft you have to send (20000.- USS$S)

DISCLAIMER

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDER AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

Date

4/48

POSSIBILIT

ADDITIONAL

I have tried to make portable/useful and I hope bugfree software

for eternit
So I hope y

AUTHOR
Kai Hofmann
Arberger He
28307 Breme
Germany

Y OF SUCH DAMAGES.
INFORMATIONS

y — but this seems to be impossible (sorry!) :)
ou will pay a fee for this.

erstrabe 92
n

EMail: 1i07m@zfn.uni-bremen.de

(no phone -

Bank accoun
Account own
Bank code
Bank name

THANX
Thanx are g
Danial Armo

I hate it!)

t : 1203 7503

er: Kai Hofmann
290 501 01
Sparkasse in Bremen

oing to the following people:
r — For his hint about the Oberon-2 SHORT

command

Heinz Zeman
Christian S

Bor
Rita Reichl

ek - For his great book
chaefer - For spending time on this 1lib with his
land C++ 4.0 compiler

— For correcting my bad english ;-)

1.3 Date/--history--

NAME
history --

VERSION
SVER: Date

HISTORY
16.01.1994
HeisLea
22.01.1994
HeisMon
HeisYea
HeisDay
HeisDay
HeisWee
Gregori
JulianD
HeisDay
initiat
Types:
Vars of
(for ch
23.01.1994
Gregori

This is the development history of the Date module

33.088 (11.08.1994)

— Procedures: JulianleapYear, GregorianLeapYear &
pYear initiated.

- Procedures: JulianMonthDays, GregorianMonthDays,
thDays, JulianYearDays, GregorianYearDays,

rDays, JulianDayDiff, GregorianDayDiff,

Diff, JulianDaySmaller, GregorianDaySmaller,
Smaller, JulianWeekday, GregorianWeekday,

kday, JulianDaysBeforeWeekday,
anDaysBeforeWeekday, HeisDaysBeforeWeekday,
aysAfterWeekday, GregorianDaysAfterWeekday,
sAfterWeekday JulianDiffDate, FreeDate

ed.
Weekdays, Date, DatePtr initiated.

Gregorian reform initiated

anging to different countries)

— Procedures: JulianDiffDate finished,
anDiffDate, HeisDiffDate, JYearToScaliger,

Date

5/48

28.

30.

30.
31.

12

12.

13.

17.

17.

17.

18.
19.

19

22

24

27.

02.

GYearToScaliger, HYearToScaliger, ScaligerYearTod,
ScaligerYearToG, ScaligerYearToH, JSYearToJD,
GSYearToJD, HSYearToJD, JDtoMJD, MJDtoJD, JulianTodJD,
GregorianToJdD, HeisToJdD, TimeToJD, JDToTime, FreeTime
initiated.

Types: Time, TimePtr initiated.

01.1994 - Procedures: GregorianMoonAge, MoonMonthAge,
GregorianEaster initiated.

01.1994 - Procedures: JulianDiffDate, GregorianDiffDate,
HeisDiffDate, JDtoTime, GregorianEaster edited
(changing return value from ptr to VAL variables).
Procedures: FreeDate, FreeTime deleted.

Types: Date, DatePtr, Time, TimePtr deleted (not
longer needed, because of the procedure changes).
Procedures: GregorianMoonAge, GregorianEaster changed
year parameter from CARDINAL to INTEGER (this is more
consistent to the rest of the library).

Bugs removed: GregorianWeekday, HeisWeekday

(before removing, the weekday for leapyears was
wrong)

Procedure: GregorianEaster finished.
01.1994 - Ported to Oberon-2
01.1994 - Compiled with Oberon-2 V3.11

.02.1994 - Procedures: TimeZoneFactor, LMT, TimeToSec, SecToTime

initiated.

Version-String installed :)
02.1994 - Starting translation to SAS C 6.51

Date.h translated
02.1994 - Continuation of C translation
02.1994 - New Oberon-2 Port, because yesterday Daniel Armor
gives me a small hint about the SHORT command

(I did not know about this!)
02.1994 - Small bug in Autodocs removed

making this text as Date/—--history-- autodoc
02.1994 - Continuation of C translation
02.1994 - Finished with C translation
02.1994 - C bugs removed (thanks to SAS for helping a C Lamer
like me!), some optimizations done too.

.02.1994 - Oberon-2 version compiled with V40.17 includes
21.

02.1994 - Starting to write Modula-II testmodule
Vars for the begining of Heis calculation initiated.
Fixed small bugs in GregorianWeekday, HeisWeekday,
TimeToSec, SecToTime
Return-value of LMT changed to LONGINT!

Converting testmodule to Oberon-2

.02.1994 - Converting testmodule to C
23.

02.1994 - I noticed, that I forgot the 3 functions
JulianWeek, GregorianWeek, HeisWeek

.02.1994 - Initiated the 3 forgotten functions
26.

02.1994 - 1Initiating new GregorianEastern with GauR-algorithms
but ONLY for 1900-2099!

02.1994 - Bug fixed in JulianWeekday

Bugs fixed in JulianDayDiff, GregorianDayDiff,

HeisDayDiff

JulianDayGreater, GregorianDayGreater,

HeisDayGreater Initiated.

03.1994 - Small bug fixed in HeisDayDiff

Date

6/48

05.

11.

12

13.

Bugs from 27.02. fixed in Modula-II and Oberon-2
versions

I found the way to extend Gregorian Easter!
Little bug fixed in JulianWeek, GregorianWeek,

HeisWeek (~(M2) is not ! (C))
03.1994 - Some internal bugs removed
New internal procedures GregorianSB,
GregorianJHSB, GregorianJHStartSB!
Extending GregorianEaster :)
03.1994 - Things from 05.03. done in Modula-II and Oberon
.03.1994 - If _ SASC is defined autoinitialization instead of
_DateInit will be used!
03.1994 - After studying the SAS C Manual again I decided to

check for _ SASC_650 instead of _ SASC because of
the available priorities!

Setting the priority of _DateInit for
autoinitialization to 600!

15.03.1994 - Making Date as library
16.03.1994 - Some work on the Autodocs was done
eliminating OldGregorianEaster by comments
(ANSI: STOP bad standards like that there are NO
nested comments possible in C!!!)
19.03.1994 - Some work on the Autodocs was done in the M2 Code
20.03.1994 - Some work on the Autodocs was done in the Oberon Code
22.03.1994 - 1In JDtoMJD, MJD to JD an L was added to the constant
In GregorianWeekday (), HeisWeekday (),
JulianDiffDate (), GregorianDiffDate(),
HeisDiffDate (), JDToTime () I have inserted
conversions (found with Borland C++ 4.0)
24.03.1994 - Making Sun0S4.1.3, Sun0S5.3(Solaris2.3) &
RS6000 AIX3.2.7? binaries with gcc
Eliminating nested commends by inserting a space
between / and % (I hate this ANSI C standard
feature for commends : (
27.03.1994 - Adding library register assignments to the autodocs
03.04.1994 - Small fixes for the SAS C++ Compiler
Small bug fixed in the M2 version of GregorianEaster
04.04.1994 - Adding some ’'static’ keywords
10.04.1994 - Changing from Shareware to Gift Ware ;-)
02.08.1994 - Small fixes in the Autodocs (thanks to Rita Reichl
for correcting my bad english ;-)
11.08.1994 - Again small fixes in the Autodocs!
1.4 Date/_Datelnit
NAME
_DateInit —-- Procedure to initialize this module! (V33)
SYNOPSIS

_DateInit ();

void _DatelInit (void);

FUNCTION
Initialize this module, like the modulebody in Modula-II or Oberon-2

Date

7/48

INPUTS
None.

RESULT
None.

EXAMPLE
_DateInit ();
NOTES
This function is only needed/available if you do not compile this
with a SAS C Compiler (using Autoinitialization!)
If you are not using SASC - don’t forget to init this module with

this function - or you will get into trouble!!!

BUGS
unknown.

SEE ALSO

1.5 Date/GregorianDayDiff

NAME
GregorianDayDiff —-- Calculates the days between 2 dates. (V33)
SYNOPSIS
days = GregorianDayDiff (dayl,monthl,yearl,day2,month2,year?);
do do dil d2 d3 d4 d5

long GregorianDayDiff (const unsigned short dayl,
unsigned short monthl, int yearl, const unsigned short day2,
unsigned short month2, int year2);

FUNCTION
GregorianDayDiff gives you back the number of days between
two specified dates.

INPUTS
dayl - day of the first date
monthl - month of the first date
yearl - year of the first date
day?2 - day of the second date
month2 - month of the second month
year?2 - year of the second date
RESULT
days — The number of days between the two dates

(positive if datel <= date2).

EXAMPLE

Date 8/48

days = GregorianDayDiff (18,9,1970,22,1,1994);
printf ("Age of Kai Hofmann in days : %d\n",days);

NOTES
It is better only to use this function for years from -7 to 02.3200!

BUGS
If you use one of the dates 5.10.1582 to 14.10.1582 you will get a
wrong output because these days don’t exist!

SEE ALSO

GregorianLeapYear (), GregorianMonthDays (), GregorianYearDays (),
JulianDayDiff (),HeisDayDiff ()

1.6 Date/GregorianDayGreater

NAME

GregorianDayGreater —-—- Checks if datel is greater than datez. (V33)
SYNOPSIS

greater = GregorianDayGreater (dayl,monthl,yearl,day2,month2, year2);
do do dl d2 d3 d4 db

bool GregorianDayGreater (const unsigned short dayl,
const unsigned short monthl, const int yearl,
const unsigned short day2, const unsigned short month2,
const int year2);

FUNCTION
GregorianDayGreater test if datel is greater than date2.

INPUTS

dayl - day of the first date
monthl - month of the first date
yearl - year of the first date
day?2 - day of the second date
month2 - month of the second month
year2 - year of the second date
RESULT

greater - This is TRUE is datel > date2 otherwise it’s FALSE.
EXAMPLE
if (GregorianDayGreater (18,9,1970,22,1,1994))

printf ("<\n");

else
printf (">=\n");

NOTES
It is better only to use this function for years from -7 to 3200!

BUGS

Date 9/48

No known bugs.

SEE ALSO
JulianDayGreater () ,HeisDayGreater ()

1.7 Date/GregorianDaysAfterWeekday

NAME
GregorianDaysAfterWeekday —-- Returns the diff to wday after. (V33)
SYNOPSIS
days = GregorianDaysAfterWeekday (day,month, year, weekday) ;

do do dl d2 d3

unsigned short GregorianDaysAfterWeekday (const unsigned short day,
const unsigned short month, const int year,
const Weekdays weekday);

FUNCTION

Returns the days to the weekday after the specified date.
So if you specify the 22.1.1994 (Saturday) and Thursday
you get back 5!

If you specify the 22.1.1994 and Saturday you get back 0
(the same day)!

INPUTS

day - day of the date

month - month of the date

year - year of the date

weekday - weekday to search for building difference
RESULT

days — The days after to the searched weekday.

EXAMPLE

days = GregorianDaysAfterWeekday(22,1,1994, Thursday) ;
NOTES

It is better to use this function only from -7 to 3200!

BUGS
See GregorianWeekday () !

SEE ALSO
GregorianWeekday () ,JulianDaysAfterWeekday (), HeisDaysAfterWeekday ()

1.8 Date/GregorianDaysBeforeWeekday

NAME
GregorianDaysBeforeWeekday —-—- Returns the diff to wday before. (V33)

Date 10/48

SYNOPSIS
days = GregorianDaysBeforeWeekday (day,month, year, weekday) ;
do do di dz d3

unsigned short GregorianDaysBeforeWeekday (const unsigned short day,
const unsigned short month, const int year,
const Weekdays weekday);

FUNCTION

Returns the days to the weekday before the specified date.
So if you specify the 22.1.1994 (Saturday) and Thursday
you get back 2!

If you specify the 22.1.1994 and Saturday you get back 0
(the same day)!

INPUTS
day - day of the date
month - month of the date
year - year of the date

weekday - weekday to search for building difference
RESULT
days — The days back to the searched weekday (1-7)
If you get back 8 an error occurs!

EXAMPLE

days = GregorianDaysBeforeWeekday (22,1,1994, Thursday) ;
NOTES

It is better to use this function only from -7 to 3200!

BUGS
See GregorianWeekday () !

SEE ALSO
GregorianWeekday (), JulianDaysBeforeWeekday (), HeisDaysBeforeWeekday ()

1.9 Date/GregorianDaySmaller

NAME

GregorianDaySmaller —- Checks if datel is smaller than date2. (V33)
SYNOPSIS

smaller = GregorianDaySmaller (dayl,monthl,yearl,day2,month2,year2);
do do dl d2 d3 d4 d5

bool GregorianDaySmaller (const unsigned short dayl,
const unsigned short monthl, const int yearl,
const unsigned short day2, const unsigned short month2,
const int year2);

FUNCTION

Date 11/48

GregorianDaySmaller test 1f datel is smaller than date2.

INPUTS

dayl - day of the first date
monthl - month of the first date
yearl - year of the first date
day?2 — day of the second date
month2 - month of the second month
year?2 - year of the second date

RESULT

smaller - This is TRUE is datel < date2 otherwise it’s FALSE.
EXAMPLE

if (GregorianDaySmaller(18,9,1970,22,1,1994))
printf ("<\n");

else
printf (">=\n");

NOTES
It is better only to use this function for years from -7 to 3200!

BUGS
No known bugs.

SEE ALSO
JulianDaySmaller (),HeisDaySmaller ()

1.10 Date/GregorianDiffDate

NAME
GregorianDiffDate ——- Returns the diff date to another date. (V33)
SYNOPSIS
GregorianDiffDate (day,month, year,diffdays, dday,dmonth,dyear) ;
do dl d2 d3 a0 al a2

volid GregorianDiffDate (const unsigned short day,
const unsigned short month, const int year, int days,
unsigned short =xdday, unsigned short =xdmonth, int =xdyear);

FUNCTION
Returns the date which lies diffdays before/after the specified date.

INPUTS
day - day of the date
month - month of the date
year - year of the date

diffdays - difference to the date in days

RESULT
dday — Destination day
dmonth - Destination month

Date 12/48

dyear - Destination year

EXAMPLE
GregorianDiffDate (23,1,1994,7, &dday, &dmonth, &dyear) ;
NOTES

It is better to use this function only from -7 to 3200!

BUGS
unknown.

SEE ALSO

GregorianDayDiff (), GregorianMonthDays (), JulianDiffDate(),
HeisDiffDate ()

1.11 Date/GregorianEaster

NAME
GregorianEaster —-- Returns the date of eastern in a year (V33)
SYNOPSIS
Gregoriankaster (year,dday,dmonth) ;
do a0 al

void GregorianEaster (const int year, unsigned short =*dday,
unsigned short xdmonth);

FUNCTION
Returns the date of eastern for a specified year.

INPUTS
year - eastern is calculated for this year
RESULT
dday - day of easter-Sunday

dmonth - month of easter—-Sunday
EXAMPLE

GregorianEaster (1994, sdday, &dmonth) ;

NOTES

Use this only for 1900 to 2099!

Tested for 1977-1994! But this formula is from Gaul - so it must be
correct :) but extended by me (hope this will be a good thing too!)

BUGS
None.

SEE ALSO
GEP () , GregorianJHSB ()

Date

13/48

1.12 Date/GregorianLeapYear

NAME
GregorianLeapYear —- Checks if a year is a leap year. (V33)
SYNOPSIS
leapyear = GregorianLeapYear (year);
do do

bool GregorianleapYear (const int year);

FUNCTION

GregorianLeapYear checks if a year is a leap year.

For years after 1582 all years devideable by 4 are leap years,
without years devideable by 100, but years devideable by 400
are leap years again!

For years before 1582 see JulianLeapYear().

INPUTS
year - The year which should be checked (from -32768 to 32767)
I think only values from -7 to 3200 are valid, because of

the variant that was done on -8 by Augustus and other things!

RESULT
leapyear — TRUE if the year is a leap year, otherwise false.

EXAMPLE

if (GregorianLeapYear (1994))
printf ("leap year!\n");
else
printf ("no leap year!\n");

NOTES
A year is 365.2425 days long!
Use this function only for values from -7 to 3199!

BUGS
No known bugs.

SEE ALSO
JulianLeapYear (), HeisLeapYear ()

1.13 Date/GregorianMonthDays

NAME
GregorianMonthDays ——- Gives back the number of days of a month.
SYNOPSIS
days = GregorianMonthDays (month, year) ;

do do dl

unsigned short GregorianMonthDays (const unsigned short month,

(V33)

Date 14 /48

const int year);

FUNCTION

GregorianMonthDays gives you back the number of days a month in
a specified year has.

For the year 1582 and the month 10 there are only 21 days,
because of the Gregorian-reform 10 days are deleted from

the month (for more - look out for books about this!)
INPUTS
month - The month from which you want to get the number of days.
year - The year in which the month is.
RESULT
days - The number of days the month uses, or 0 if you use

a wrong month.
EXAMPLE
days = GregorianMonthDays(1l,1994);
printf ("Days of January 1994 : %d\n",days);
NOTES

Use this function only for years from -7 to 3199!

BUGS
none.

SEE ALSO
GregorianLeapYear (), JulianMonthDays (), HeisMonthDays ()

1.14 Date/GregorianMoonAge

NAME
GregorianMoonAge —-- Returns the age of the moon (V33)
SYNOPSIS
ep = GregorianMoonAge (day,month, year);
do do di dz

unsigned short GregorianMoonAge (const unsigned short day,
const unsigned short month, const int year);

FUNCTION
Returns the age of the moon on a specified date.

INPUTS
day — For this day the age is calculated.
month - For this month the age is calculated.
year - For this year the age is calculated.

RESULT
ep — The age of the moon on the specified date.

Date

15/48

EXAMPLE

ep = GregorianMoonAge (18,9,1994);
NOTES

Use this only for 1582 to 4100!

This is only a experimental version!

BUGS
unknown.

SEE ALSO
MoonMonthAge () , GregorianEP ()

1.15 Date/GregorianToJdD

NAME

GregorianToJD —-- Returns the JD for a date.

SYNOPSIS
jd = GregorianToJD (day,month, year) ;
do do dl d2

unsigned long GregorianTodJD (const unsigned short day,
const unsigned short month, const int year);

FUNCTION
Returns the JD for a Gregorian date.

INPUTS
day - day of the date to convert
month - month of the date to convert
year - year of the date to convert
RESULT

jd - This is the JD
EXAMPLE

jd = GregorianToJdD (23,1,1994);

NOTES

It is better to use this function only from -7 to 3200!

BUGS
unknown.

SEE ALSO

GSYearTodD (), GYearToScaliger (), GregorianDayDiff (), JulianToJdD (),

HeisToJD ()

Date 16/48

1.16 Date/GregorianWeek

NAME

GregorianWeek ——- Gets the weeknumber of a specified date. (V33)
SYNOPSIS

weeknr = GregorianWeek (day,month, year) ;
do do dl d2

unsigned short GregorianWeek (const unsigned short day,
const unsigned short month, const int year);

FUNCTION
GregorianWeek gets the weeknumber for a specified date.

INPUTS
day - day of the date
month - month of the date
year - year of the date
RESULT
week — This is the number of the week the specified date lies in.

If the first day in a new year is a Friday, Saturday or

Sunday, this would be the last week of the last year!

If the 29.12. is a Monday, the 30.12. is a Monday or a Tuesday,
the 31.12. is a Monday, Tuesday or a Wednesday this is the
first week of the next year!

EXAMPLE
weeknr = GregorianWeek (4,10,1582);

NOTES

It is better only to use this function for years from 0 to 3000!

BUGS
For years < 0 errors could occur.

SEE ALSO
JulianWeek (), HeisWeek (), GregorianWeekday (), GregorianDayDiff ()

1.17 Date/GregorianWeekday

NAME

GregorianWeekday —-- Gets the weekday of a specified date. (V33)
SYNOPSIS

weekday = GregorianWeekday (day,month, year);
do do dl d2

Weekdays GregorianWeekday (const unsigned short day,
unsigned short month, int year);

Date 17 /48

FUNCTION
GregorianWeekday gets the weekday for a specified date.

INPUTS
day - day of the date
month - month of the date
year - year of the date

RESULT
weekday - This result is of type:
Weekdays = (dayerr,Monday, Tuesday, Wednesday, Thursday,Friday,
Saturday, Sunday) ;
dayerr will show you, that an error occurs!

EXAMPLE

weekday = GregorianWeekday (22,1,1994);
if (weekday == dayerr)
{

NOTES
It is better only to use this function for years from -7 to 3200!
In this version dayerr will only occur for the lost days :)

BUGS
It’s not possible to use years < 0 (for more see JulianWeekday()) .

SEE ALSO
JulianWeekday (), HeisWeekday ()

1.18 Date/GregorianYearDays

NAME
GregorianYearDays —-- Gives back the number of days in a year. (V33)
SYNOPSIS
days = GregorianYearDays (year);

do do

unsigned int GregorianYearDays (const int year);

FUNCTION
GregorianYearDays gives you back the number of days in
a specified year.

INPUTS
year - The year in which to count the days.
RESULT
days — The number of days the year uses.

EXAMPLE

Date 18/48

days = GregorianYearDays(1994);
printf ("Days of 1994 : %d\n",days);

NOTES
It is better only to use this function for years from -7 to 3199!

BUGS
No known bugs.

SEE ALSO
GregorianMonthDays (), JulianYearDays (), HeisYearDays ()

1.19 Date/GSYearTodD

NAME
GSYearToJD —-- Calcs the JD from a Scaliger year. (V33)
SYNOPSIS
jd = GSYearTodD (syear);
do do

unsigned long GSYearToJD (const unsigned int syear);

FUNCTION
Returns the Julianday of a Scaliger year.

INPUTS
syear - Scaliger year

RESULT
jd - The Julianday

EXAMPLE

jd = GSYearTodD (4800);

NOTES

It is better to use this function only from 4707 to 7981!

BUGS
unknown.

SEE ALSO
JSYearToJdD () ,HSYearToJdD ()

1.20 Date/GYearToScaliger

NAME
GYearToScaliger —-- Returns the year as Scaliger year. (V33)

Date 19/48

SYNOPSIS
syear = GYearToScaliger (year);
do do

unsigned int GYearToScaliger (const int year);

FUNCTION
Returns the Scaliger year.

INPUTS
year - Gregorian year

RESULT
syear — The Scaliger year

EXAMPLE

syear = GYearToScaliger (1994);

NOTES

It is better to use this function only from -7 to 3200!

BUGS
unknown.

SEE ALSO
JYearToScaliger () ,HYearToScaliger ()

1.21 Date/HeisDayDiff

NAME
HeisDayDiff —-- Calculates the days between 2 dates. (V33)
SYNOPSIS
days = HeisDayDiff (dayl,monthl,yearl,day2,month2, year2);
do do dl d2 d3 d4 ds

long HeisDayDiff (const unsigned short dayl, unsigned short monthl,
int yearl, const unsigned short day2, unsigned short month2,
int year?2);

FUNCTION
HeisDayDiff gives you back the number of days between
two specified dates.

INPUTS
dayl - day of the first date
monthl - month of the first date
yearl - year of the first date
day?2 - day of the second date
month2 - month of the second month

year2 - year of the second date

Date 20/ 48

RESULT
days — The number of days between the two dates
(positive if datel <= date2).

EXAMPLE

days = HeisDayDiff (18,9,1970,22,1,1994);
printf ("Age of Kai Hofmann in days : %d\n",days);

NOTES
It is better only to use this function for years from -7 to 8000!

BUGS
If you use on of the dates 5.10.1582 to 14.10.1582 you will get
wrong output because these days don’t exist!

SEE ALSO

HeisLeapYear (), HeisMonthDays (), HeisYearDays (),
JulianDayDiff (), GregorianDayDiff ()

1.22 Date/HeisDayGreater

NAME

HeisDayGreater —-—- Checks if datel is greater than date2. (V33)
SYNOPSIS

greater = HeisDayGreater (dayl,monthl,yearl,day2,month2,year?2);
do do dl d2 d3 d4 d5

bool HeisDayGreater (const unsigned short dayl,
const unsigned short monthl, const int yearl,
const unsigned short day2, const unsigned short month2,
const int year2);

FUNCTION
HeisDayGreater test if datel is greater than date2.

INPUTS

dayl - day of the first date
monthl - month of the first date
yearl - year of the first date
day?2 - day of the second date
month2 - month of the second month
year2 - year of the second date

RESULT

greater - This is TRUE is datel > date2 otherwise it’s FALSE.
EXAMPLE

if (HeisDayGreater(18,9,1970,22,1,1994))
printf (">\n");

else
printf ("<=\n");

Date 21/48

NOTES
It is better only to use this function for years from -7 to 8000!

BUGS
No known bugs.

SEE ALSO
JulianDayGreater () ,GregorianDayGreater ()

1.23 Date/HeisDaysAfterWeekday

NAME
HeisDaysAfterWeekday —-- Returns the diff to the wday after. (V33)
SYNOPSIS

days = HeisDaysAfterWeekday (day,month, year,weekday) ;

do do dil dz d3

unsigned short HeisDaysAfterWeekday (const unsigned short day,
const unsigned short month, const int year,
const Weekdays weekday);

FUNCTION

Returns the days to the weekday after the specified date.
So if you specify the 22.1.1994 (Saturday) and Thursday
you get back 5!

If you specify the 22.1.1994 and Saturday you get back 0
(the same day)!

INPUTS

day - day of the date

month - month of the date

year — year of the date

weekday - weekday to search for building difference
RESULT

days — The days after to the searched weekday.

EXAMPLE

days = HeisDaysAfterWeekday(22,1,1994, Thursday) ;

NOTES

It is better to use this function only from -7 to 8000!

BUGS
See HeisWeekday () !

SEE ALSO
HeisWeekday (), JulianDaysAfterWeekday (), GregorianDaysAfterWeekday ()

Date

22/48

1.24 Date/HeisDaysBeforeWeekday

NAME
HeisDaysBeforeWeekday —-- Returns the diff to wday before. (V33)
SYNOPSIS

days = HeisDaysBeforeWeekday (day,month, year,weekday) ;

do do dil dz d3

unsigned short HeisDaysBeforeWeekday (const unsigned short day,
const unsigned short month, const int year,
const Weekdays weekday);

FUNCTION

Returns the days to the weekday before the specified date.
So if you specify the 22.1.1994 (Saturday) and Thursday
you get back 2!

If you specify the 22.1.1994 and Saturday you get back 0
(the same day)!

INPUTS
day - day of the date
month - month of the date
year - year of the date

weekday - weekday to search for building difference
RESULT
days — The days back to the searched weekday (1-7)
If you get back 8 an error occurs!

EXAMPLE

days = HeisDaysBeforeWeekday(22,1,1994, Thursday) ;

NOTES

It is better to use this function only from -7 to 8000!

BUGS
See HeisWeekday () !

SEE ALSO
HeisWeekday () ,JulianDaysBeforeWeekday (), GregorianDaysBeforeWeekday ()

1.25 Date/HeisDaySmaller

NAME

HeisDaySmaller —— Checks if datel is smaller than date2. (V33)
SYNOPSIS

smaller = HeisDaySmaller (dayl,monthl, yearl,day2,month2, year2);
do do dl d2 d3 d4 d5

bool HeisDaySmaller (const unsigned short dayl,

Date 23 /48

const unsigned short monthl, const int yearl,
const unsigned short day2, const unsigned short month2,
const int year2);

FUNCTION
HeisDaySmaller test if datel is smaller than date2.

INPUTS
dayl - day of the first date
monthl - month of the first date
yearl - year of the first date
day?2 - day of the second date
month2 - month of the second month
year?2 - year of the second date

RESULT

smaller - This is TRUE is datel < date2 otherwise it’s FALSE.
EXAMPLE

if (HeisDaySmaller(18,9,1970,22,1,1994))
printf ("<\n");

else
printf (">=\n");

NOTES
It is better only to use this function for years from -7 to 8000!

BUGS
No known bugs.

SEE ALSO
JulianDaySmaller, GregorianDaySmaller ()

1.26 Date/HeisDiffDate

NAME
HeisDiffDate —-- Returns the date for a diff to another date. (V33)
SYNOPSIS
HeisDiffDate (day,month, year,diffdays,dday, dmonth, dyear) ;

do dl d2 d3 ao al a2

vold HeisDiffDate (const unsigned short day,
const unsigned short month, const int year, int days,
unsigned short =xdday, unsigned short =xdmonth, int =xdyear);

FUNCTION
Returns the date which lies diffdays before/after the specified date.

INPUTS
day - day of the date
month - month of the date

year - year of the date

Date 24 /48

diffdays - difference to the date in days

RESULT

dday — Destination day
dmonth - Destination month
dyear - Destination year
EXAMPLE

HeisDiffDate (23,1,1994, 7, &dday, &dmonth, &dyear) ;
NOTES
It is better to use this function only from -7 to 8000!

BUGS
unknown.

SEE ALSO
HeisDayDiff (),HeisMonthDays (), JulianDiffDate (), GregorianDiffDate ()

1.27 Date/HeisLeapYear

NAME
HeisLeapYear —-—- Checks if a year is a leap year. (V33)
SYNOPSIS
leapyear = HeisLeapYear (year);
do do

bool HeisLeapYear (const int year);

FUNCTION
HeisLeapYear checks if a year is a leap year.
For years after 1582 see GregorianLeapYear (),
The correction from N. Heis says, that all years devideable by
3200 are no longer leap years!
For years before 1582 see JulianLeapYear

INPUTS
year - The year which should be checked (from -32768 to 32767)
I think only values from -7 to 32767 are valid, because of
the variant that was done on -8 by Augustus and other things!

RESULT
leapyear — TRUE if the year is a leap year, otherwise false.

EXAMPLE

if (HeisLeapYear (1994))
printf ("leap year!\n");
else
printf ("no leap year!\n");

Date 25/48

NOTES
A year is now 365.2421875 days!
Use this function only for values from -7 to 8000!

BUGS
No known bugs.

SEE ALSO
JulianLeapYear (), GregorianLeapYear ()

1.28 Date/HeisMonthDays

NAME
HeisMonthDays —-- Gives back the number of days of a month. (V33)
SYNOPSIS

days = HeisMonthDays (month, year) ;

do do dl

unsigned short HeisMonthDays (const unsigned short month,
const int year);

FUNCTION

HeisMonthDays gives you back the number of days a month in
a specified year has.

For the year 1582 and the month 10 there are only 21 days,
because of the Gregorian-reform 10 days are deleted from

the month (for more - look out for books about this!)
INPUTS
month - The month from which you want to get the number of days.
year - The year in which the month is.
RESULT
days - The number of days the month uses, or 0 if you use

a wrong month.
EXAMPLE

days = HeisMonthDays (1,1994);
printf ("Days of January 1994 : %d\n",days);

NOTES
Use this function only for years from -7 to 8000!

BUGS
See GregorianMonthDays!

SEE ALSO
HeisLeapYear (), JulianMonthDays (), GregorianMonthDays ()

Date 26 /48

1.29 Date/HeisToJD

NAME
HeisToJD —-- Returns the JD for a date. (V33)

SYNOPSIS
jd = HeisTodJdD (day,month, year);
do do dl d2

unsigned long HeisTodJD (const unsigned short day,
const unsigned short month, const int year);

FUNCTION
Returns the JD for a Heis date.

INPUTS
day - day of the date to convert
month - month of the date to convert
year - year of the date to convert
RESULT

jd - This is the JD

EXAMPLE

jd = HeisToJdD(23,1,1994);

NOTES

It is better to use this function only from -7 to 3268!

BUGS
unknown.

SEE ALSO
HSYearTodD (), HYearToScaliger (),HeisDayDiff (), JulianTodD(),HeisToJD ()

1.30 Date/HeisWeek

NAME

HeisWeek ——- Gets the weeknumber of a specified date. (V33)
SYNOPSIS

weeknr = HeisWeek (day,month, year);
do do di d2

unsigned short HeisWeek (const unsigned short day,
const unsigned short month, const int year);

FUNCTION
HeisWeek gets the weeknumber for a specified date.

INPUTS
day - day of the date

Date 27 /48

month - month of the date
year - year of the date

RESULT
week — This is the number of the week the specified date lies in.
If the first day in a new year is a Friday, Saturday or
Sunday, this would be the last week of the last year!
If the 29.12. is a Monday, the 30.12. is a Monday or a Tuesday,
the 31.12. is a Monday, Tuesday or a Wednesday this is the
first week of the next year!

EXAMPLE
weeknr = HeisWeek (4,10,1582);

NOTES

It is better only to use this function for years from 0 to 8000!

BUGS
For years < 0 errors could occur.

SEE ALSO
JulianWeek (), GregorianWeek () , HeisWeekday () ,HeisDayDiff ()

1.31 Date/HeisWeekday

NAME

HeisWeekday —-- Gets the weekday of a specified date. (V33)
SYNOPSIS

weekday = HeisWeekday (day,month,year);
do do dl dz

Weekdays HeisWeekday (const unsigned short day, unsigned short month,
int year);

FUNCTION
HeisWeekday gets the weekday for a specified date.

INPUTS
day - day of the date
month - month of the date
year - year of the date

RESULT
weekday - This result is of type:
Weekdays = (dayerr,Monday, Tuesday,Wednesday, Thursday,Friday,
Saturday, Sunday) ;
dayerr will show you, that an error occurs!

EXAMPLE

weekday = HeisWeekday(22,1,1994);
if (weekday == dayerr)

Date 28 /48

NOTES
It is better only to use this function for years from -7 to 8000!
In this version dayerr will only occur for the lost days :)

BUGS
It is not possible to use year < 0 (see JulianWeekday () for more).

SEE ALSO
JulianWeekday (), GregorianWeekday ()

1.32 Date/HeisYearDays

NAME
HeisYearDays —-- Gives back the number of days in a year. (V33)
SYNOPSIS

days = HeisYearDays (year) ;

do do

unsigned int HeisYearDays (const int year);

FUNCTION
HeisYearDays gives you back the number of days in
a specified year.

INPUTS
year - The year in which to count the days.
RESULT
days — The number of days the year uses.
EXAMPLE

days = HeisYearDays(1994);
printf ("Days of 1994 : %d\n",days);

NOTES
It is better only to use this function for years from -7 to 8000!

BUGS
No known bugs.

SEE ALSO
HeisMonthDays () ,JulianYearDays () ,GregorianYearDays ()

1.33 Date/HSYearToJdD

Date 29/48

NAME
HSYearToJdD —-- Calcs the JD from a Scaliger year. (V33)
SYNOPSIS
jd = HSYearTodD (syear);
do do

unsigned long HSYearToJD (const unsigned int syear);

FUNCTION
Returns the Julianday of a Scaliger year.

INPUTS
syear — Scaliger year

RESULT
jd - The Julianday

EXAMPLE

jd = HSYearTodD (6700) ;

NOTES
It is better to use this function only from 4707 to 7981!
In this version only GSYearToJD() is called, because the

Scaliger period is only valid to 3268

BUGS
unknown.

SEE ALSO
JSYearTodD () ,GSYearTodD ()

1.34 Date/HYearToScaliger

NAME
HYearToScaliger —-- Returns the year as Scaliger year. (V33)
SYNOPSIS

syear = HYearToScaliger (year);

do do

unsigned int HYearToScaliger (const int year);

FUNCTION
Returns the Scaliger year.

INPUTS
year - Heis year

RESULT
syear — The Scaliger year

Date 30/48

EXAMPLE

syear = HYearToScaliger (1994);

NOTES
It is better to use this function only from -7 to 8000!

BUGS
The Scaliger period is defined to 3268!!!.

SEE ALSO
JYearToScaliger () ,GYearToScaliger ()

1.35 Date/JDtoMJD

NAME
JDtoMJD —-- Switches from JD to MJD. (V33)

SYNOPSIS
mjd = JDtoMJD (jd) ;
do do

unsigned long JDtoMJD (const unsigned long jd);

FUNCTION
Returns the Modified Julianday of a Julianday.

INPUTS
jd - Julianday

RESULT
mjd - The Modified Julianday

EXAMPLE
mjd = JDtoMJD (2449354) ;
NOTES
none
BUGS
Only use this function for jd > 2400001, because mjd is only

defined for this, otherwise system will crash!

SEE ALSO
MJDtodJdD ()

1.36 Date/JDToTime

Date 31/48

NAME
JDToTime —-- Returns the real time for a JD time. (V33)
SYNOPSIS
JDToTime (jd, rhour, rmin, rsec) ;
d0 a0 al a2

void JDToTime (float jd, unsigned short xrhour, unsigned short *rmin,
unsigned short =rsec);

FUNCTION
Returns the real time for a JD time.

INPUTS
jd - JD time

RESULT

rhour - 24 hour real time
rmin - real minutes

rsec — real seconds

EXAMPLE

JDToTime (0.76543, &rhour, &rmin, &rsec) ;
NOTES

none.

BUGS
If jd is > 0 (including days) there will be occur arithmetic bugs!

SEE ALSO
TimeToJD ()

1.37 Date/JSYearToJdD

NAME
JSYearToJD —- Calcs the JD from a Scaliger year. (V33)
SYNOPSIS
jd = JSYearTodD (syear) ;
do do

unsigned long JSYearToJD (const unsigned int syear);

FUNCTION
Returns the Julianday of a Scaliger year.

INPUTS
syear - Scaliger year

RESULT
jd - The Julianday

Date 32/48

EXAMPLE

jd = JSYearTodD (4800);

NOTES

It is better to use this function only from 4707 to 6295!

BUGS
unknown.

SEE ALSO
GSYearToJdD () ,HSYearToJD ()

1.38 Date/JulianDayDiff

NAME
JulianDayDiff —-- Calculates the days between 2 dates. (V33)
SYNOPSIS
days = JulianDayDiff (dayl,monthl,yearl,day2,month2, year2);
do do dl d2 d3 d4 d5

long JulianDayDiff (const unsigned short dayl, unsigned short monthl,
int yearl, const unsigned short day2, unsigned short month2,
int year?2);

FUNCTION
JulianDayDiff gives you back the number of days between
two specified dates.

INPUTS

dayl - day of the first date
monthl - month of the first date
yearl - year of the first date
day?2 - day of the second date
month2 - month of the second month
year2 - year of the second date

RESULT

days — The number of days between the two dates
(positive 1if datel <= date2).

EXAMPLE

days = JulianDayDiff (18,9,1970,22,1,1994);
printf ("Age of Kai Hofmann in days : %d\n",days);
NOTES

It is better only to use this function for years from -7 to 1582!

BUGS
No known bugs.

Date 33/48

SEE ALSO
JulianLeapYear (), JulianMonthDays (), JulianYearDays (),
GregorianDayDiff () ,HeisDayDiff ()

1.39 Date/JulianDayGreater

NAME

JulianDayGreater —-—- Checks if datel is greater than date2. (V33)
SYNOPSIS

greater = JulianDayGreater (dayl,monthl,yearl,day2,month2,year2);
do do dl d2 d3 d4 ds

bool JulianDayGreater (const unsigned short dayl,
const unsigned short monthl, const int yearl,
const unsigned short day2, const unsigned short month2,
const int year2);

FUNCTION
JulianDayGreater test if datel is greater than date2.

INPUTS
dayl - day of the first date
monthl - month of the first date
yearl - year of the first date
day?2 - day of the second date
month2 - month of the second month
year2 - year of the second date

RESULT

greater - This is TRUE is datel > date2 otherwise it’s FALSE.
EXAMPLE
if (JulianDayGreater (18,9,1970,22,1,1994))

printf (">\n");

else
printf ("<=\n");

NOTES
It is better only to use this function for years from -7 to 1582!

BUGS
No known bugs.

SEE ALSO
GregorianDayGreater (), HeisDayGreater ()

1.40 Date/JulianDaysAfterWeekday

Date 34 /48
NAME
JulianDaysAfterWeekday —-—- Returns the diff to the wday after. (V33)
SYNOPSIS
days = JulianDaysAfterWeekday (day,month, year,weekday) ;
do do di dz d3

unsigned short JulianDaysAfterWeekday (const unsigned short day,
const unsigned short month, const int year,
const Weekdays weekday);

FUNCTION

Returns the days to the weekday after the specified date.
So if you specify the 22.1.1994 (Saturday) and Thursday
you get back 5!

If you specify the 22.1.1994 and Saturday you get back 0
(the same day)!

INPUTS

day - day of the date

month - month of the date

year - year of the date

weekday - weekday to search for building difference
RESULT

days — The days after to the searched weekday.

EXAMPLE

days = JulianDaysAfterWeekday (22,1,1994, Thursday) ;
NOTES

It is better to use this function only from -7 to 1582!

BUGS
See JulianWeekday () !

SEE ALSO
JulianWeekday (), GregorianDaysAfterWeekday (), HeisDaysAfterWeekday ()

1.41 Date/JulianDaysBeforeWeekday

NAME
JulianDaysBeforeWeekday —-—- Returns the diff to the wday before. (V33)
SYNOPSIS
days = JulianDaysBeforeWeekday (day,month, year,weekday) ;

do do di d2 d3

unsigned short JulianDaysBeforeWeekday (const unsigned short day,
const unsigned short month, const int year,
const Weekdays weekday);

Date 35/48

FUNCTION

Returns the days to the weekday before the specified date.
So if you specify the 22.1.1994 (Saturday) and Thursday
you get back 2!

If you specify the 22.1.1994 and Saturday you get back 0
(the same day)!

INPUTS

day - day of the date

month - month of the date

year - year of the date

weekday - weekday to search for building difference
RESULT

days - The days back to the searched weekday (0-6)
If you get back 8 an error occurs!

EXAMPLE

days = JulianDaysBeforeWeekday (22,1,1994, Thursday) ;

NOTES

It is better to use this function only from -7 to 02.1582!

BUGS
See JulianWeekday () !

SEE ALSO
JulianWeekday (), GregorianDaysBeforeWeekday () , HeisDaysBeforeWeekday ()

1.42 Date/JulianDaySmaller

NAME

JulianDaySmaller —-- Checks if datel is smaller than date2. (V33)
SYNOPSIS

smaller = JulianDaySmaller (dayl,monthl,yearl,day2,month2,year?2);
do do dl d2 d3 d4 ds

bool JulianDaySmaller (const unsigned short dayl,
const unsigned short monthl, const int yearl,
const unsigned short day2, const unsigned short month2,
const int year?2);

FUNCTION
JulianDaySmaller test if datel is smaller than date2.

INPUTS
dayl - day of the first date
monthl - month of the first date
yearl - year of the first date
day?2 - day of the second date
month2 - month of the second month

year2 - year of the second date

Date 36/48

RESULT
smaller — This is TRUE 1is datel < date2 otherwise it’s FALSE.

EXAMPLE
if (JulianDaySmaller (18,9,1970,22,1,1994))
printf ("<\n");

else
printf (">=\n");

NOTES
It is better only to use this function for years from -7 to 1582!

BUGS
No known bugs.

SEE ALSO
GregorianDaySmaller (),HeisDaySmaller ()

1.43 Date/JulianDiffDate

NAME
JulianDiffDate —-- Returns the date for a diff to another date. (V33)
SYNOPSIS
JulianDiffDate (day,month, year,diffdays,dday, dmonth, dyear);
do dl dz d3 a0 al a2

void JulianDiffDate (const unsigned short day,
const unsigned short month, const int year, int days,
unsigned short xdday, unsigned short *dmonth, int =xdyear);

FUNCTION
Returns the date which lies diffdays before/after the specified date.

INPUTS
day - day of the date
month — month of the date
year - year of the date

diffdays - difference to the date in days

RESULT

dday — Destination day
dmonth - Destination month
dyear - Destination year
EXAMPLE

JulianDiffDate(23,1,1994,7, &dday, &dmonth, &dyear) ;

NOTES
It is better to use this function only from -7 to 1582!

Date 37 /48

BUGS
unknown.

SEE ALSO
JulianDayDiff (), JulianMonthDays (), GregorianDiffDate () ,HeisDiffDate ()

1.44 Date/JulianLeapYear

NAME
JulianLeapYear —-- Checks if a year is a leap year. (V33)
SYNOPSIS
leapyear = JulianLeapYear (year);
do do

bool JulianLeapYear (const int year);

FUNCTION

JulianLeapYear checks if a year is a leap year in the julian calendar
For years after Chr. it checks if the year is devideable by 4.
For years before Chr. a leap year must have a modulo 4 value of 1

INPUTS
year - The year which should be checked (from -32768 to 32767)
I think only values from -7 to 32767 are valid, because of
the variant that was done on -8 by Augustus and other things!

RESULT
leapyear — TRUE if the year is a leap year, otherwise false.

EXAMPLE

if (JulianLeapYear (1994))
printf ("leap year!\n");
else
printf ("no leap year!\n");

NOTES
A year 1is 365.25 days long!
Use this function only for values from -7 to 1582!

BUGS
No known bugs.

SEE ALSO
GregorianLeapYear () ,HeisLeapYear ()

1.45 Date/JulianMonthDays

Date 38/48

NAME
JulianMonthDays —-- Gives back the number of days of a month. (V33)
SYNOPSIS
days = JulianMonthDays (month, year);

do do dl

unsigned short JulianMonthDays (const unsigned short month,
const int year);

FUNCTION
JulianMonthDays gives you back the number of days a month in
a specified year has.

INPUTS
month - The month from which you want to get the number of days.
year - The year in which the month is.

RESULT

days - The number of days the month uses, or 0 if you use

a wrong month.
EXAMPLE
days = JulianMonthDays (1,1994);

printf ("Days of January 1994 : %d\n",days);

NOTES
It is better only to use this function for years from -7 to 09.1582!

BUGS
No known bugs.

SEE ALSO
JulianLeapYear (), GregorianMonthDays (), HeisMonthDays ()

1.46 Date/JulianToJD

NAME
JulianToJD —- Returns the JD for a date. (V33)

SYNOPSIS
jd = JulianTodJD (day,month, year);
do do dl d2

unsigned long JulianToJD (const unsigned short day,
const unsigned short month, const int year);

FUNCTION
Returns the JD for a Julian date.

INPUTS
day - day of the date to convert

Date

39/48

month - month of the date to convert
year - year of the date to convert
RESULT

jd - This is the JD

EXAMPLE

jd = JulianTodD (23,1,1994);

NOTES

It is better to use this function only from -7 to 1582!

BUGS
unknown.

SEE ALSO

JSYearToJdD (), JdJYearToScaliger (), JulianDayDiff (), GregorianTodD (),
HeisTodJD ()

1.47 Date/JulianWeek

NAME

JulianWeek —-—- Gets the weeknumber of a specified date. (V33)
SYNOPSIS

weeknr = JulianWeek (day,month, year);
do do dl d2

unsigned short JulianWeek (const unsigned short day,
const unsigned short month, const int year);

FUNCTION
JulianWeek gets the weeknumber for a specified date.

INPUTS
day - day of the date
month - month of the date
year - year of the date

RESULT
week — This is the number of the week the specified date lies in.
If the first day in a new year is a Friday, Saturday or
Sunday, this would be the last week of the last year!

If the 29.12. is a Monday, the 30.12. is a Monday or a Tuesday,

the 31.12. is a Monday, Tuesday or a Wednesday this is the
first week of the next year!

EXAMPLE

weeknr = JulianWeek (4,10,1582);

NOTES

Date

40/48

It is is better only to use this function for years from 0 to 1582!

BUGS
For years < 0 errors could occur.

SEE ALSO
GregorianWeek (), HeisWeek (), JulianWeekday (), JulianDayDiff ()

1.48 Date/JulianWeekday

NAME

JulianWeekday —-- Gets the weekday of a specified date. (V33)
SYNOPSIS

weekday = JulianWeekday (day,month, year) ;
do do dl d2

Weekdays JulianWeekday (const unsigned short day,
unsigned short month, int year);

FUNCTION
JulianWeekday gets the weekday for a specified date.

INPUTS
day - day of the date
month - month of the date
year - year of the date

RESULT
weekday — This result is of type:
Weekdays = (dayerr,Monday, Tuesday,Wednesday, Thursday,Friday,
Saturday, Sunday) ;
dayerr will show you, that an error occurs!

EXAMPLE

weekday = JulianWeekday(4,10,1582);
if (weekday == dayerr)
{

NOTES
It is better only to use this function for years from 1 to 02.1582!
In this version no dayerr will occur!

BUGS
For years <= 0 errors could occur, or systemcrashs(?).

SEE ALSO
GregorianWeekday (), HeisWeekday ()

Date 41/48

1.49 Date/JulianYearDays

NAME
JulianYearDays -- Gives back the number of days in a year. (V33)
SYNOPSIS
days = JulianYearDays (year);

do do

unsigned int JulianYearDays (const int year);

FUNCTION
JulianYearDays gives you back the number of days in
a specified year.

INPUTS
year - The year in which to count the days.
RESULT
days — The number of days the year uses.
EXAMPLE

days = JulianYearDays (1994);
printf ("Days of 1994 : %d\n",days);

NOTES
It is better only to use this function for years from -7 to 1581!

BUGS
No known bugs.

SEE ALSO
JulianMonthDays () ,GregorianYearDays (),HeisYearDays ()

1.50 Date/JYearToScaliger

NAME
JYearToScaliger ——- Returns the year as Scaliger year. (V33)
SYNOPSIS

syear = JYearToScaliger (year);

do do

unsigned int JYearToScaliger (const int year);

FUNCTION
Returns the Scaliger year.

INPUTS
year - Julian year

RESULT

Date 42 /48

syear — The Scaliger year

EXAMPLE

syear = JYearToScaliger (1582);

NOTES

It is better to use this function only from -7 to 1582!

BUGS
unknown.

SEE ALSO
GYearToScaliger (),HYearToScaliger ()

1.51 Date/LMT

NAME
LMT —-- Calculates your local time in your timezone (V33)
SYNOPSIS

secs = LMT (secs,meridian, pos);

do do dl d2

unsigned long LMT (const unsigned long secs,
const float meridiandegree, const float posdegree);

FUNCTION
Calculates your Local Mean Time of your place!

INPUTS
secs - Seconds of the running day (hours*3600+minx60+sec)
meridian - Degrees of your timezone-meridian
pos — Degrees of your place
RESULT
secs — Local seconds of the running day
EXAMPLE

secs = LMT(76080,-15.0,-8.923055556) ;
NOTES
none

BUGS
No errorcheck, if you put in valid degrees (-180 to +180)

SEE ALSO

Date 43 /48

1.52 Date/MJDtoJD

NAME
MJDtoJD —-- Switches from MJD to JD. (V33)

SYNOPSIS
jd = MJDtoJD (mijd) ;
do do

unsigned long MJDtoJD (const unsigned long mijd);

FUNCTION
Returns the Julianday of a Modified Julianday.

INPUTS
mjd - Modified Julianday

RESULT
jd - The Julianday

EXAMPLE

jd = JDtoMJD (49353) ;
NOTES

none

BUGS
unknown.

SEE ALSO
MJDtodD ()

1.53 Date/ScaligerYearToG

NAME

ScaligerYearToG —-- Returns the Scaliger year as Gregorian year. (V33)
SYNOPSIS
year ScaligerYearToG (syear) ;

do do

int ScaligerYearToG (const unsigned int syear);

FUNCTION
Returns the Gregorian year of a Scaliger year.

INPUTS
syear - Scaliger year

RESULT
year — The Gregorian year

Date 44 /48

EXAMPLE

year = ScaligerYearToG(6400);

NOTES

It is better to use this function only from 4707 to 7981!

BUGS
unknown.

SEE ALSO
ScaligerYearToJd (), ScaligerYearToH ()

1.54 Date/ScaligerYearToH

NAME

ScaligerYearToH —-- Returns the Scaliger year as Heis year. (V33)
SYNOPSIS
year = ScaligerYearToH (syear);

do do

int ScaligerYearToH (const unsigned int syear);

FUNCTION
Returns the Heis year of a Scaliger year.

INPUTS
syear - Scaliger year

RESULT
year - The Heis year

EXAMPLE

year = ScaligerYearToH (7000);

NOTES

It is better to use this function only from 4707 to 7981!

BUGS
unknown.

SEE ALSO
ScaligerYearTod (), ScaligerYearToG ()

1.55 Date/ScaligerYearTod

NAME
ScaligerYearToJd —-- Returns the Scaliger year as Julian year. (V33)

Date 45/ 48

SYNOPSIS
year = ScaligerYearTodJ (syear);
do do

int ScaligerYearToJ (const unsigned int syear);

FUNCTION
Returns the Julian year of a Scaliger year.

INPUTS
syear - Scaliger year

RESULT
year - The Julian year

EXAMPLE

year = ScaligerYearToJ(4800);

NOTES
It is better to use this function only from 4707 to 6295!

BUGS
unknown.

SEE ALSO
ScaligerYearToG (), ScaligerYearToH ()

1.56 Date/SecToTime

NAME
SecToTime —- Returns the time from seconds (V33)

SYNOPSIS
SecToTime (secs, hour,min, sec) ;
do a0 al a2

SecToTime (unsigned long secs, unsigned short xhour,
unsigned short *min, unsigned short =*sec);

FUNCTION
Gives you back the time from the specified seconds

INPUTS
secs — Time in seconds
RESULT
hour - hours (0-23)
min - minutes (0-59)
sec - seconds (0-59)

EXAMPLE

Date 46 /48

SecToTime (76860, &hour, &min, &sec) ;
NOTES
Don’t forget to convert 24h time to AM/PM time if needed!

BUGS
No errorcheck, if you use a valid time

SEE ALSO
TimeToSec ()

1.57 Date/TimeTodD

NAME
TimeToJD —-- Returns the JD for a time. (V33)
SYNOPSIS
jd = TimeTodJD (hour,min, sec) ;
do do dl d2

float TimeToJD (const unsigned short hour, const unsigned short min,
const unsigned short sec);

FUNCTION
Returns the JD for a specified time.

INPUTS
hour - hour of the time to convert
min - minute of the time to convert

sec - sec. of the time to convert

RESULT
jd — This is the JD time

EXAMPLE

jd = TimeTodJD (16,33,0);
NOTES

none

BUGS
There is no check, if the specified time is a valid time!

SEE ALSO
JDToTime ()

1.58 Date/TimeToSec

Date 47 /48

NAME
TimeToSec —-- Returns the time in seconds (V33)
SYNOPSIS

secs = TimeToSec (hour,min, sec);

do do dl d2

unsigned long TimeToSec (const unsigned short hour,
const unsigned short min, const unsigned short sec);

FUNCTION
Gives you back the time in seconds

INPUTS

hour - hours you want (0-23)

min - minutes you want (0-59)
sec - seconds you want (0-59)
RESULT

secs — Time in seconds
EXAMPLE

secs = TimeToSec (21,15,00);
NOTES

Don’t forget to convert AM/PM time to 24h time!

BUGS
No errorcheck, if you use a valid time

SEE ALSO
SecToTime ()

1.59 Date/TimeZoneFactor

NAME
TimeZoneFactor —-- Returns the value you have to add to GMT time (V33)
SYNOPSIS
addhours = TimeZoneFactor (degrees);
do do

short TimeZoneFactor (const short degree);

FUNCTION

This gives you the hours you have to add to GMT time,
specified on the fact, that a timezone is 15 degrees
and that GMT is centered on 0 degrees!

INPUTS
degrees - Position of timezone you live in
(from -180 east to +180 west)

Date 48 /48

RESULT
addhours - Time to add to GMT time to get your locale zone time
(=12 to +12)

EXAMPLE

addhours = TimeZoneFactor (-8);

NOTES
none

BUGS
No errorcheck, if you put in valid degrees (-180 to +180)
Only full degrees are supportet, keep sure that you
round in the right way for 0.x degree places

I am not sure about the correct +/- behaviour!!!

SEE ALSO

	Date
	Date.doc
	Date/--background--
	Date/--history--
	Date/_DateInit
	Date/GregorianDayDiff
	Date/GregorianDayGreater
	Date/GregorianDaysAfterWeekday
	Date/GregorianDaysBeforeWeekday
	Date/GregorianDaySmaller
	Date/GregorianDiffDate
	Date/GregorianEaster
	Date/GregorianLeapYear
	Date/GregorianMonthDays
	Date/GregorianMoonAge
	Date/GregorianToJD
	Date/GregorianWeek
	Date/GregorianWeekday
	Date/GregorianYearDays
	Date/GSYearToJD
	Date/GYearToScaliger
	Date/HeisDayDiff
	Date/HeisDayGreater
	Date/HeisDaysAfterWeekday
	Date/HeisDaysBeforeWeekday
	Date/HeisDaySmaller
	Date/HeisDiffDate
	Date/HeisLeapYear
	Date/HeisMonthDays
	Date/HeisToJD
	Date/HeisWeek
	Date/HeisWeekday
	Date/HeisYearDays
	Date/HSYearToJD
	Date/HYearToScaliger
	Date/JDtoMJD
	Date/JDToTime
	Date/JSYearToJD
	Date/JulianDayDiff
	Date/JulianDayGreater
	Date/JulianDaysAfterWeekday
	Date/JulianDaysBeforeWeekday
	Date/JulianDaySmaller
	Date/JulianDiffDate
	Date/JulianLeapYear
	Date/JulianMonthDays
	Date/JulianToJD
	Date/JulianWeek
	Date/JulianWeekday
	Date/JulianYearDays
	Date/JYearToScaliger
	Date/LMT
	Date/MJDtoJD
	Date/ScaligerYearToG
	Date/ScaligerYearToH
	Date/ScaligerYearToJ
	Date/SecToTime
	Date/TimeToJD
	Date/TimeToSec
	Date/TimeZoneFactor

