
BinProlog 3.30

User Guide

Paul Tarau

Departement d’Informatique

Université de Moncton

Moncton, Canada, E1A 3E9,

tarau@info.umoncton.ca

February 13, 1995

1

1 Installation

EITHER:

Edit ‘Makefile’. Change BINDIR and comment out ARCH_AND_OS,

for example:

BINDIR = /usr/local/bin

ARCH_AND_OS = sparc.sunos

then TYPE:

make install

OR:

Copy or symbolically link bin/bp<ARCH>.<OS> to ‘bp’

somewhere in your path, then type ‘bp’.

Normally the appropriate ‘wam’ (a C-ified self contained executable) or (for some
old architectures) typing ‘ru wam.bp’ (possibly a small ‘bp’ shell-script) are all you
need to have BinProlog 3.30 running. For DOS/Windows 386/486 PCs you will
have to edit bp.bat with your path information and then type bp. Something like
‘go32 ru.386 wam.bp’ directly in the distribution directory should also work.

To start BinProlog use

$ bp <command-line options> <wam-bytecode-file>

or simply

$ bp

Sizes of the blackboard, heap, stack, trail and code areas can be passed as com-
mand line parameters etc, in Kbytes:

usage: [-h heap] [-s stack] [-t trail] [-c code] [-b bboard] [-a 2âtoms] [-d 2ĥashtable
entries] [-i size of IO-buffer] [-q quietness] wamfile (default: wam.bp).

2 Obtaining BinProlog

The ORIGINAL DISTRIBUTION SITE for BinProlog1 is:

ftp clement.info.umoncton.ca (139.103.16.2)

1BinProlog Copyright c© Paul Tarau 1992-94 All rights reserved

2

in the directory:

/pub/BinProlog.

The ftp server clement.info.umoncton.ca is a Sparcstation ELC with SUNOS 4.1.1).
Please send comments and bug reports to binprolog@info.umoncton.ca.

3 Introduction to BinProlog

BinProlog has been developped by Paul Tarau mostly at the University of Moncton,
Canada, and is based on his BinWAM abstract machine, a specialization of the
WAM for the efficient execution of binary logic programs.

BinProlog is a fast and small Prolog compiler, based on the transformation of
Prolog to binary clauses. The compilation technique is similar to the Continuation
Passing Style transformation used in some ML implementations.

Although it (used to) incorporate some last minute research experiments, which
might look adventurous at the first sight, BinProlog is a fairly robust and com-
plete Prolog implementation featuring both C-emulated execution and generation of
standalone applications by compilation to C. Some of its features are:

• source-level transformation based stateless module system

• dynamic code,

• intuitionistic and linear implication,

• efficient high-order programming builtins,

• logical global variables,

• backtrackable destructive assignment,

• circular term unification,

• extended DCGs (now built in the engine as ‘invisible grammars’),

• continuation manipulation primitives,

• a garbage-collected hashing based global dictionnary for constant-time sparse
arrays and graphs,

• C-compatible floating point operations,

• a C-interface etc.

New features in added in version 3.30:

• source-level modules

3

• faster compilation to C and faster resulting C-code

• very small (dynamically linked) standalone executables (5K) for Solaris 2.x

• improved (fileevent based) Tcl/Tk interface now running under tcl7.4b2 and
tk4.0b2

• help/1 detecting near-matching predicate definitions

• help warnings for singleton variables

• spy/1 for debugging compiled code

The bp command starts the BinProlog toplevel.
Prolog sources for the compiler and builtins are in directory src.
The directories pl2c and dynpl2c contain various project (*.pro) files and a

makefile for generating a standalone applications through compilation to C.
The directory TCL contains a bidirectional pipe based BinProlog to Tcl/Tk in-

terface.
The directory cparser contains Koen De Bosschere’s ISO Prolog parser (written

in C) and BinProlog standalones based on the parser (cbp.*).
The directory multi contains Koen De Bosschere’s a blackboard based distrib-

uted programming extension to BinProlog and BinProlog executables which integ-
rate them (mbp.*).

3.1 Binarization

BinProlog is a small, program-transformation based compiler. Everything is con-
verted to Continuation Passing Binary Clauses:

A rule like

a(X):-b(X),c(X,Y),d(Y).

becomes

a(X,Cont):-b(X,c(X,Y,d(Y,Cont))).

A fact like

a(13).

becomes

a(13,Cont):-true(Cont).

A predicate using metavariables like

4

p(X,Y):-X,Y.

becomes

p(X,Y,Cont);-call(X,call(Y,Cont))).

with true/1 and call/2 efficient builtins in BinProlog.
You can now try out in BinProlog 3.30 your own binary programs by using ::-

instead of :- so that the preprocessor will not touch them2. Otherwise, from the
outside, BinProlog looks like any other Prolog.

Binarization allows a significant simplification of the Prolog engine, which can be
seen as specialization of the WAM for the execution of Continuation Passing Binary
Programs.

As a consequence, a very small emulator (about 60K on Solaris) that often fits
completely in the cache of the processor, a more efficient new data representation and
some low-level optimizations make BinProlog probably the fastest freely available
C-emulated Prolog at this time (812 KLIPS on a Sparcstation 20-41).

This means 3-5 times faster than C-Prolog, 2-3 times faster than SWI-Prolog,
1.5-2 times faster than (X)SB-Prolog and close to C-emulated Sicstus 2.1.

3.2 Machines supported

This distribution contains the Prolog source of the compiler and executable emulat-
ors for:

- Sparc - SunOS 4.x, Solaris 2.x;

- DEC Alpha - 64 bit

- 68k NeXT - Mach; SUN3 - SunOS 4.x

- MIPS - DEC;

- IBM R6000;

- 386-486-Pentium (MsDOS+Windows - with 32bits DOS-extender

go32 ver. 1.10, Linux, FreeBSD).

As the implementation makes no assumption about machine word size it is likely to
compile even on very strange machines that have a C-compiler. BinProlog’s integers
are inherited from the native C-system. For example on DEC ALPHA machines
BinProlog has 64 − 3 = 61 bit integers. On 32-bit systems it has 32 − 2 = 30 bit
integers. Floating point is double (64 bits) and it is guaranteed that computations
in Prolog will always give the same results as in the underlying C. As a matter of
fact BinProlog does not really know that it has floats but how this happens is rather
long to explain here.

2Take care if you use your own binary clauses to keep always the continuation as a last argument
of the last embedded continuation ‘predicate’. Look at the asm/0 tracer how BinProlog itself does
this.

5

4 Using BinProlog

BinProlog uses R.A. O’Keefe’s public domain tokeniser and parser and write utilities
(see the files read.pl, write.pl), DCGs and a transformer to binary programs. It
compiles itself in less than 1 minute on a Sparcstation 10-40.

The system has very fast (heap-based) copy term/2, findall/3 and findall/4

predicates, floating point, global logical variables, but still lacks full garbage collec-
tion.

A new term compression technique [?] (joint work with Ulrich Neumerkel) re-
duces heap-consumption and adds some extra speed . Ulrich’s iterative copy term/2

algorithm further accelerates BinProlog’s ‘copy-once’ heap-based findall/3 and
findall/4 so that findall-intensive programs may run 2-3 times faster in BinProlog
than in other (even native code) implementations.

All data areas are now user configurable, and all except the heap are garbage
collected. A garbage collector for the heap will be released soon.

Although other Prolog’s assert and retract primitives are emulated in BinProlog,
their functionality has been decomposed in separate simpler operations that give also
improved efficiency.

For permanent information BinProlog has a new, garbage-collected data area the
blackboard where terms can be stored and accessed efficiently with a a 2-key hashing
function using something like

?-bb_def(likes,joe,[any(beer),good(vine),vegetarian(food)]).

and updated with something like

?-bb_set(likes,joe,nothing).

or

?-bb_rm(likes,joe).

To get its value:

?-bb_val(likes,joe,What).

BinProlog 3.30 has also backtrackable global variables, with 2-keyed names.
Try:

?- Person=joe, friend#Person:=:mary, bb.

and then

?- friend # joe:=:X.

6

The blackboard can be used either directly or through an assert-retract style
interface.

A small exercise: if you want backtrackable behaviour of assert and retract you
can modify extra.pl and use A#B:=:X style global variables in their definition, instead
of bb def/3 etc.

The blackboard also gives constant-time sparse arrays and lemmas. For example
try:

?- for(I,1,99),bb_def(table,I,f(I,I)),fail.

?- bb.

BinProlog 3.30 has Edinburgh behaviour and tries to be close to Sicstus and
Quintus Prolog on the semantics of builtins without being too pedantic on what’s
not really important.

All the basic Prolog utilities are now supported (dynamic clauses, a metainter-
preter with tracing facility, sort, setof, dynamic operators floating point operations
and functions).

A fast deterministic append det_append/3 (i,i,o) has been added. Naive
reverse using det_append/3 makes more than 3 MegaLIPS on a Sparc 20-41 (a
3-times speed-up).

Almost all the builtins are now expanded inline resulting in improved heap con-
sumption and performance.

A few programs (an automatic Tetris player, a knight-tour, an OR-parallel sim-
ulator, Fibonacci, Tak with lemmas, a small neural-net simulator backprop.pl) il-
lustrate some of the new features. A few well-known benchmarks have been added
to help compare BinProlog with other implementations.

BinProlog has supported from start 30 bit integer arithmetic. Now it has also
floating point operations and functions like sin, cos, tan, log, exp, pow, etc. They
can be used either through the is/2 interface3:

?- X is cos(3.14)+sin(0).

or in relational form

?- cos(1,X).

Note that you should use something like Y=3+4, X is 1+expr(Y) instead of
Y=3+4, X is 1+Y which will not work in compiled code.

Floating point works has the same precision and semantics as the type double in
C. Floating point operations are close in speed to emulated Sicstus. To try them out
use the toy neural-network simulator bp.pl. This program uses also constant time
arrays and is therefore unusually fast compared to its execution in other Prologs like
Quintus or Sicstus.

3Is/2 now accepts execution of any predicate of arity n+ 1 as a function of arity n.

7

4.1 The interactive toplevel shell

To see the command line options:
$ bp -help

To compile and load <file> or <file>.pl or <file>.pro:
?-[<file>].

BinProlog searches them in the directories ., ./progs and ./myprogs, ../src

../library.

4.2 Real standalone applications through compilation to C

Starting with version 3.30 it is possible to separately compile user applications and
just link them with the emulator library and the C-ified compiler (see directory
pl2c). This allows creation of a fully C-ified application in a few seconds.

Just type make PROJ=queens in directory pl2c. The standalone application
queens is ready to be executed by typing queens. The generated C-code can be
seen in files queens.h and queens.c.

Moreover, on systems with dynamic linking like Solaris 2.x true executables of
size starting at about 6K can be created starting with version 3.30 (see directory
dynlib2c).

If you define a predicate main/0 then your executable will start directly from
there instead of the usual interactive top-level. Calling it with a high quietness-level
(i.e. command line switch -q5) will suppress warnings and unwanted messages.

4.3 Unix pseudo-executables

The following still works, although the new C-ification technique (see directories
pl2c, dynpl2c) can now create true one-file standalones.

It is possible to create (as in the past) a small runtime application from <file> or
<file>.pl as follows:

?-make_appl(<file>).

Note: the file must contain a clause

main(X):-...

That’s where execution starts. BinProlog’s shell (the precompiled wam.bp) file is
nothing but such an application which starts with a toplevel loop i.e. something
like:

main(X):-toplevel(X).

8

Deliver the appropriate wam ru or ru.exe file (the Prolog engine) with your applic-
ation. The user must type:

$ ru newappl.bp

to start it.

As a new feature, you can override this behaviour by simple defining a predicate
main/0 which then becomes the new starting point.

You can also generate (on UNIX systems) stand-alone executables that dynam-
ically start the emulator (thanks to Peter Reintjes for suggesting this). You can do
something like:

?- make_executable_unix_appl(’./ru’,’progs/hello.pl’,’hello’).

Then you can run it directly from the unix prompt:

$ hello

The code of this primitive is at the end of the file co.pl.
Again, we recommend using the C-ification technique which can already speed

up most applications and in the future will generate very fast code competitive with
native code compilers.

You can bootstrap the compiler, after modifying the *.pl files by:

?- boot.

?- make.

or, similarly for any other project having a top *.pro file:

?-make(ProjectFile).

?-make(ProjectFile,Module).

or

?-cmake(ProjectFile).

?-cmake(ProjectFile,Module).

if you intend to generate C-code and possibly hide non-public predicates inside
a module.

This allows to integrate your preferences and extensions written in Prolog to the
BinProlog kernel.

Make sure you keep a copy the original wam.bp in a safe place, in case things go
wrong when you type ?-boot.

9

4.4 Some limitations/features of BinProlog

We passed Occam’s razor on a few ”features” of Prolog that are obsolete in modern
programming environments and on some others that are, in our opinion, bad software
practice.

Only one file at a time can be compiled in the interactive environment:

?-[myfile].

or

?- compile(myfile).

Now BinProlog supports an include directive:

:-[include1].

:-[include2].

....

This suggest to make a project (*.pro) file using a set of include directives each
refereing to a *.pl file. When compiled to a file (by using the ?-make(MyProject)
command) a make-like memoing facility will avoid useless recompilation of the in-
cluded (*.pl) files by creation of precompiled (*.pl_wam) files. For large projects
this is the recommended technique. Creation of C-ified standalone files is also pos-
sible (see the pl2c directory).

Programs that work well can be added to the BinProlog kernel. This avoids repeated
recompilation of working code and predicates in the kernel are protected against
name clashing.

New programs can be loaded in the interactive environment. When they work
well, they migrate to the kernel. You can prepare a good Makefile to do the job of
ensure_loaded of other Prolog’s. When everything is OK you can deliver it as a
run-time-only application.

Programs are searched with suffixes "", ".pl", ".pro" in the directories .,

./progs and ./myprogs.
There’s no limit on the number of files you can compile to disk:

?- compile(wam,[file1,file2,...],’application.bp’).

Now BinProlog does implement consult/1, reconsult/1 and listing/0 for inter-
preted code but use of compile/1 is highly recommended instead. See the file ex-
tra.pl for the implementation. Faster than asserted code is so called assumed code
(see the next sections) i.e. intuitionistic and linear implication.

Here are some other limitations/features:

• Clauses of a predicate must be grouped.

10

• Clauses having undefined predicates occurring right after the head are rejected.

• ARITY is limited to 255.

• The heap garbage collector is not yet implemented, but we plan to add it
soon. However, the blackboard, dynamic code space, the string space and the
hashing table ARE garbage collected before loading a new program.

Mode is interactive by default (for compatibility with other Prologs) but if you use
a modern, windows based environment you may want to switch it off with:

?- interactive(no).

or turn it on again with

?- interactive(yes).

4.5 Other BinProlog goodies and new predicates

A few BinProlog specific predicates are available:

• restart/0 - cleans every data area

• cwrite/1 - fast but restricted write

• symcat/3 (i,i,o) returns a new symbol of the form <first>_<second>.

• gensym/2 (i,o) forms a new name of the form <name>_<counter>.

• sread/2 (i,o) reads from a name a (ground) term, swrite(i,o) writes a
term to a name.

• term termcat/3 (i,i,o) adds its second argument as last argument of its
first argument and returns the new term

• term chars/2 converts between a ground term and its string representation

• not/1 is a form of sound negation

• for/3 as for instance in ?-for(I,1,5),write(I),nl,fail generates a failure
driven loop

It is a good idea to take a look at BinProlog’s *.pl for other builtin-or-library
predicates before implementing them yourself. The file write.pl contain various
output predicates like

• write/1

• writeq/1

11

• portray clause/1

• print/1

• display/1

• ttyprint/1

• ttynl/1

You can extend BinProlog by adding new predicates to the file extra.pl and then
use the predicate boot/0 defined in the file co.pl.

4.6 Efficient findall based meta-programming

BinProlog’s findall/3 is so efficient that you can afford (with some care) to use it
instead of explicit (and more painful) first-order programs as in:

% maplist with findall

maplist(Closure,Is,Os):-

Closure=..L1,

det_append(L1,[I,O],L2),

P=..L2,

findall(O,map1(P,I,Is),Os).

map1(P,I,Is):-member(I,Is),P.

This can be used as follows:

?- maplist(+(1),[10,20,30],T).

=> T=[11,21,31]

Note that constructing Closure only once (although this may not be in any
Prolog text-book!) is more efficient than doing it at each step.

The predicate gc call(Goal) defined in the file lib.pl executes Goal in minimal
space. It is explained in the Craft of Prolog by R.A. O’Keefe, MIT Press. Do not
hesitate to use it. BinProlog offers a very fast, heap-oriented findall, so you can
afford to use gc call. In good hands, it is probably faster than using assert/retract
or the usual mark-and-sweep garbage collector of other implementations.

4.7 Builtins

The following (user-level) builtins are supported, with semantics (intended to be)
close to SICSTUS and QUINTUS Prolog.

12

fail/0

nl/0

var/1

nonvar/1

integer/1

atomic/1

+/3 % arithmetic offers also the usual is/2 interface

-/3

* /3

// /3

mod/3

<< /3

>> /3

/\ /3

\/ /3

/3 % bitwise XOR

\ /3 % bitwise NOT

random/1 % returns an integer, not a float

get0/1

put/1

< /2

> /2

=< /2

>= /2

=:= /2

=\= /2

compare/3

seeing/1

seen/0

telling/1

told/0

copy_term/2

functor/3

arg/3

name/2

abort/0

is_compiled/1 % checks if a predicate is compiled

Other useful predicates are defined in the file lib.pl and work as expected.

true/0,

=/2,

.. -> .. ; ..

13

;/1

call/1

\+/1

repeat/0

findall/3

findall/4

for/3

numbervars/4

see/1

tell/1

system/1

statistics/0

statistics/2

atom/1

compound/1

=../2

length/2

tab/1

get/1

== /2

\== /2

A @< B

A @> B

A @=< B

A @>= B

compile/1 - see co.pl for the compiler

read/1 - see the file: read.pl

write/1 - see the file: write.pl

halt/0,

halt(ReturnCode),

listing/0, % only for interpreted code

listing(Pred,Arity),

assert/1,

asserta/1,

assertz/1,

retract/1,

retractall/1

erase/1,

dynamic/1,

instance/2,

clause/2,

clause/3,

consult/1, % usable for debugging or dynamic code

reconsult/1, % they override compiled definitions !!!

14

setof/3,

bagof/3,

sort/3,

keysort/3,

setarg/3, % backtrackable update of arg I of term T with new term X

is_builtin/1 % lists the system-level builtins (written in C):

current_predicate/1 % lists/checks existence of a predicate/arity

predicate_property/2 % lists/checks if a property (arg 2) is associated with a head

Operators are defined and retrieved with

:-op/3, current_op/3.

Including files are supported. For compile/1 use

:-compile(file).

or

:-[file]. % this calls the compiler too !!!

For consulting included interpreted code within an embedding reconsult/1 use:

:-consult(file).

in your (unique) top-level file. This overcomes the limitation of having only one
top-level file.

5 Source-level stateles modules

(module)/1

current_module/1

is_module/1 - checks/generates an existing module-name

module_call/2, ’:’/2 - calls a predicate hidden in a module

module_name/3 - adds the name of a module to a symbol

module_predicate/3 - adds the name of a module to a goal

modules/1 - gives the list of existing modules

The following example:

:-module m1.

:-public d/1.

a(1).

a(2).

15

a(3).

a(4).

d(X):-a(X).

:-module m2.

:-public b/1.

b(X):-c(X).

c(2).

c(3).

c(4).

c(5).

c(6).

:-module m3.

:-public test/1.

test(X):-b(X),d(X).

:-module user.

go:-modules(Ms),write(Ms),nl,fail.

go:-test(X),write(X),nl,fail.

Executiong ?-go. will generate the following output:

[user/0,m1/0,m2/0,m3/0]

2

3

4

Starting with version 3.30, predicates in the BinProlog system itself which are
not intended to be used by applications, are hidden in the module prolog but can
be accessed by calling them with ’prolog:my_predicate’(...).

Explicit naming of the module where the hidden predicate is defined should be
used when call/1, findall/3 etc. uses a hidden predicate, even if it is in the module
itself.

This draconian constraint is motivated by simplicity of BinProlog’s stateless
purely source-level module system. Basically predicates in a module have their
names prefixed as in ’my_current_module:my_predicate’ in a preprocessing

16

step, except if they are declared \verbpublic or are known to the system
as being so (i.e. in the case of builtins).

This basic concept of modules (essentially the same as what can be achieved with
extern and static declarations in C) covers only compiled code, and is mostly in-
tended to ensure multiple name spaces with a very simple semantics and no aditional
space or time overhead. On the other hand use of linear and intutionistic implication
is suggested for dynamic modular and hypothetical reasoning constructs.

Meta-predicate declarations are not supported at this time (mostly because they
are at least as cumbersome as just puting the right name extension in argument
positions which require it :-)), but they might be added in the future if a significant
number of users will ask to have them.

Note that builtins and predicates defined in a special module user are always
public. A public predicate keeps its name unchanged in the global name space while
hidden predicates have their names prefixed by the name of the module in their
definitions and in all their statically obvious (first-order) uses.

Alternatively, module/2 allows to define a module and its public predicates with
one declaration as in:

:-module(beings,[cat/4,dog/4,chicken/2,fish/0,maple/1,octopus/255]).

6 Editing, apropos/1, trace/1, spy/1, nospy/1

To edit a file and then compile it use:
?- edit(<editor>,<file>).

To edit and recompile the currently compiled file using the emacs editor type:
?- ed.

To edit and recompile the currently compiled file using the edit editor (under
DOS) type:

?- edit.

To simply recompile the last file type:
?- co.

The debugger/tracer uses R.A. O’Keefe’s public domain meta-interpreter. You can
modify it in the file ”extra.pl”.

DCG-expansion is supported by the public domain file dcg.pl.
To debug a file type:

?- reconsult(FileName).

and then

?- trace(Goal).

For interactivity, both the toplevel and the debugger depend on

17

?-interactive(yes).

or

?-interactive(no).

My personal preference is using interactive(no)within a scrollable window. However,
as traditionally all Prologs hassle the user after each answer BinProlog 3.30 will do
the same by default.

If you forget the name of some builtin, apropos/1 (or help/1) will give you some
(flexible up to one misspelled or missing letter) matches with their arities.

You can use the debugger to debug compiled code with the following trick if
you always debug bottom-up i.e. if you ensure that tools work before to using
them. For example, on top of the compiled file allperms.pl you can temporarily
interpret perm/2, insert/3 etc. to be able to trace them while keeping uninteresting
predicates compiled. By the way, this allows, to trace/debug parts of the kernel itself
in particular.

The following terminal session shows an example:

?- [allperms].

compiling(to(mem),progs/allperms.pl,...)

compile_time(230)

?- consult(user).

% using compile/1 is MUCH faster

reconsulting(user)

g0(N):-nats(1,N,Ns),perm(Ns,_),fail.

g0(_).

WARNING: redefining compiled predicate(g0/1)

perm([],[]).

perm([X|Xs],Zs):-

perm(Xs,Ys),

insert(X,Ys,Zs).

insert(X,Ys,[X|Ys]).

insert(X,[Y|Ys],[Y|Zs]):-

insert(X,Ys,Zs).

WARNING: redefining compiled predicate(perm/2)

WARNING: redefining compiled predicate(insert/3)

reconsulted(user,time = 20)

yes

?- interactive(no).

yes

?- trace(g0(3)).

Call: g0(3)

Call: nats(1,3,_645)

18

compiled(nats(1,3,_645))

Exit: nats(1,3,[1,2,3])

Call: perm([1,2,3],_648)

Call: perm([2,3],_1095)

Call: perm([3],_1362)

Call: perm([],_1629)

Exit: perm([],[])

Call: insert(3,[],_1362)

Exit: insert(3,[],[3])

Exit: perm([3],[3])

Call: insert(2,[3],_1095)

Exit: insert(2,[3],[2,3])

Exit: perm([2,3],[2,3])

Call: insert(1,[2,3],_648)

Exit: insert(1,[2,3],[1,2,3])

Exit: perm([1,2,3],[1,2,3])

Call: fail

compiled(fail)

Fail: fail

Redo: perm([1,2,3],[1,2,3])

Redo: insert(1,[2,3],[1,2,3])

Call: insert(1,[3],_2683)

Exit: insert(1,[3],[1,3])

Exit: insert(1,[2,3],[2,1,3])

Exit: perm([1,2,3],[2,1,3])

Call: fail

compiled(fail)

Fail: fail

Redo: perm([1,2,3],[2,1,3])

Redo: insert(1,[2,3],[2,1,3])

Redo: insert(1,[3],[1,3])

Call: insert(1,[],_2945)

Exit: insert(1,[],[1])

Exit: insert(1,[3],[3,1])

Exit: insert(1,[2,3],[2,3,1])

Exit: perm([1,2,3],[2,3,1])

Call: fail

compiled(fail)

Fail: fail

Redo: perm([1,2,3],[2,3,1])

Redo: insert(1,[2,3],[2,3,1])

Redo: insert(1,[3],[3,1])

Redo: insert(1,[],[1])

Fail: insert(1,[],_2945)

19

Fail: insert(1,[3],_2683)

Fail: insert(1,[2,3],_648)

Redo: perm([2,3],[2,3])

Redo: insert(2,[3],[2,3])

Call: insert(2,[],_2421)

Exit: insert(2,[],[2])

Exit: insert(2,[3],[3,2])

Exit: perm([2,3],[3,2])

Call: insert(1,[3,2],_648)

Exit: insert(1,[3,2],[1,3,2])

Exit: perm([1,2,3],[1,3,2])

Call: fail

compiled(fail)

Fail: fail

Redo: perm([1,2,3],[1,3,2])

Redo: insert(1,[3,2],[1,3,2])

Call: insert(1,[2],_2945)

Exit: insert(1,[2],[1,2])

Exit: insert(1,[3,2],[3,1,2])

Exit: perm([1,2,3],[3,1,2])

Call: fail

compiled(fail)

Fail: fail

Redo: perm([1,2,3],[3,1,2])

Redo: insert(1,[3,2],[3,1,2])

Redo: insert(1,[2],[1,2])

Call: insert(1,[],_3207)

Exit: insert(1,[],[1])

Exit: insert(1,[2],[2,1])

Exit: insert(1,[3,2],[3,2,1])

Exit: perm([1,2,3],[3,2,1])

Call: fail

compiled(fail)

Fail: fail

Redo: perm([1,2,3],[3,2,1])

Redo: insert(1,[3,2],[3,2,1])

Redo: insert(1,[2],[2,1])

Redo: insert(1,[],[1])

Fail: insert(1,[],_3207)

Fail: insert(1,[2],_2945)

Fail: insert(1,[3,2],_648)

Redo: perm([2,3],[3,2])

Redo: insert(2,[3],[3,2])

Redo: insert(2,[],[2])

20

Fail: insert(2,[],_2421)

Fail: insert(2,[3],_1095)

Redo: perm([3],[3])

Redo: insert(3,[],[3])

Fail: insert(3,[],_1362)

Redo: perm([],[])

Fail: perm([],_1629)

Fail: perm([3],_1362)

Fail: perm([2,3],_1095)

Fail: perm([1,2,3],_648)

Redo: nats(1,3,[1,2,3])

Fail: nats(1,3,_645)

Exit: g0(3)

Starting with version 3.08 spy/1 and nospy/1 allow to watch entry and exit from
compiled predicates. Note that they should be in the file to be compiled, before any
use of the predicate to be spied on as in:

% FILE: jbond.pl

:-spy a/1.

:-spy c/1.

b(X):-a(X),c(X).

a(1).

a(2).

c(2).

c(3).

This gives the following interaction:

?-[jbond].

......

?- b(X).

Call: a(_2158) <enter=call, other=trace>: ;

!!! compiled(a/1)

Exit: a(1)

Call: c(1) <enter=call, other=trace>: ;

!!! compiled(c/1)

Fail: c(1)

Redo: a(1)

Exit: a(2)

Call: c(2) <enter=call, other=trace>: ;

!!! compiled(c/1)

Exit: c(2)

21

X=2;

Redo: c(2)

Fail: c(2)

Redo: a(2)

Fail: a(_2158)

no

Although these are very basic debugging facilities you can enhance them at your will
and with some discipline in programming they may be all you really need. Anyway,
future of debugging is definitely not by tracing. One thing is to have stronger static
checking. In dynamic debugging the way go is to have a database of trace-events
and then query it with high level tools. We plan to add some non-tracing database-
oriented debugging facilities in the future.

You can generate a kind of intermediate WAM-assembler by

?- compile(asm,[file1,file2,...],’huge_file.asm’).

A convenient way to see interactively the sequence of program transformations Bin-
Prolog is based on is:

?- asm.

a-->b,c,d.

^D

DEFINITE:

a(A,B) :-

b(A,C),

c(C,D),

d(D,B).

BINARY:

a(A,B,C) :-

b(A,D,c(D,E,d(E,B,C))).

WAM-ASSEMBLER:

clause_? a,3

firstarg_? _/0,6

put_structure d/3,var(4-4/11,1/2)

write_variable put,var(5-5/10,1/2)

write_value put,var(2-2/6,2/2)

write_value put,var(3-3/7,2/2)

put_structure c/3,var(3-8/14,1/2)

write_variable put,var(2-9/13,1/2)

22

write_value put,var(5-5/10,2/2)

write_value put,var(4-4/11,2/2)

execute_? b,3

7 Compiling to C

Partial C-ification [?] is a translation framework which ‘does less instead of doing
more’ to improve performance of emulators close to native code systems.

Starting from an emulator for a language L written in C, we translate to C a
subset of its instruction set (usually frequent and fine-grained instructions which are
executed in contiguous sequences) and then simply use a compiler for C to generate
a unique executable program.

A translation threshold allows the programmer to empirically fine-tune the C-
ification process by choosing the length of the emulator instruction sequence, starting
from which, translation is enabled. The process uses a reasonable default value and
can be easily controlled by the programmer

:-set_c_threshold(Min,Max).

will ensure that only emulated sequences of length between Min and Max get
translated to C. This allows to handle gracefully the size/speed tradeoff.

Communication between the run-time system (still under the control of the emu-
lator) and the C-ified chunks is handled as follows.

The emulated code representation of a given program (in particular the compiler
itself) is mapped to a C data structure which allows exchange of symbol table
information at link time.

To be able to call a C-routine from the emulator we have to know its address.
Unfortunately, the linker is the only one that knows the eventual address of a C-
routine. A simple and fully portable technique to plug the address of a C-routine
into the byte code is to C-ify the byte-code of the emulator into a huge C array
of records, containing the symbolic address of the C-chunks. After compilation,
and linking with the emulator, the linker will automatically resolve all the missing
addresses and generate warnings for the missing C-routines.

This is compiled together with the C-code of the emulator to a stand alone
executable with performance in the range between pure emulators and native code
implementations.

The method ensures a strong operational equivalence between emulated and
translated code which share exactly the same observables in the run-time system.

An important characteristic is easy debugging of the resulting compiler, coming
from the full sharing of the run-time system between emulated and compiled code
and the following property we call instruction-level compositionality: if every trans-
lated instruction has the same observable effect on a (small) subset of the program
state (registers and a few data areas) in emulated and translated mode, then arbit-
rary sequences of emulated and translated instructions are operationally equivalent.

23

Currently C-ification covers term creation on the heap and frequently used inline
operations which can be processed in Binary Prolog before calling the ‘real goal’ in
the body.

Chunks containing small built-ins that do not require a procedure call will gen-
erate ‘leaf-routines’ in C (which are called efficently and do not use stack space).

On the other hand large built-ins implemented as macros in the emulator would
make code size explode. Implementing them as functions to be called from the C-
chunk would require code duplication and it would destroy the leaf-routine discipline
which is particularly rewarding on Sparcs. We have chosen to implement them
through an abstraction with a coroutining flavor: anti-calls. Note that calling a
built-in from a C-chunk is operationally equivalent to the following sequence:

• return from the chunk,

• execute the built-in in the emulator (usually a macro),

• call a new leaf-routine to resume the work left from the previous leaf-routine.

Overall, anti-calls can be seen as form of coroutining (jumping back and forth)
between native and emulated code. Anti-calls can be implemented with the direct-
jump technique even more efficiently, although for portability reasons we have chosen
a conventional return/call sequence, which is still fairly efficient as a return/call
costs the same as a call/return. Moreover, this allows the chunks to remain leaf-
routines, while delegating overflow and signal handling to the emulator. Note that
excessively small chunks created as result of anti-calls are removed by an optimizing
step of the compiler with the net result that such code will be completely left to the
emulator. This is of course more compact and provable to be not slower than its
fully C-expanded alternative.

7.1 Performance of C-ified code

The speed-up clearly depends on the amount of C-ification and on the statistical
importance of C-ified code in the execution profile of a program (see figure ??). We
have noticed between 10-20% speed increase for programs which take advantage of
C-ified code moderately, As these programs spend only 20-30% of their time in C-
ified sequences performances are expected to scale correspondingly when we extend
this approach to the full BinProlog instruction set and implement low-level gcc direct
jumps instead of function calls and anti-calls.

Code-sizes for C-ified BinProlog executables (dynamically linked on Sparcs with
Solaris 2.3) are usually even smaller than ‘compact’ Sicstus code which uses classical
instruction folding (a few hundreds of opcodes) to speed-up the emulator.

The following table shows some code-size/execution-speed variations with respect
to the threshold for the semi-ring (SEMI3) benchmark. Clearly, excessively small
chunks can influence adversely not only on size but also on speed. Something like
threshold=20, looks like a practical optimum for this program.

24

Bmark/Compiler emBP C-BP emSP natSP

NREV (KLIPS) 445 455 412 882

CAL (ms) 490 310 590 310

FIBO (ms) 1730 1320 1400 800

TAK (ms) 610 470 400 180

SEMI3 (ms) 1810 1410 1810 1310

QUEENS (ms) 3170 2220 2840 1070

Figure 1: Performance of emulated (emBP) and partially C-ified BinProlog 3.22
(C-BP) compared to emulated (emSP) and native (natSP) SICStus 2.1 9 on a Sparc
10/20).

threshold: 0 4 8 20 30 1000 emBP emSP natSP

size: (K) 34.5 32.2 29.9 16.3 13.1 12.9 4.8 22.0 31.9

speed: (ms) 1480 1430 1440 1450 1810 1790 1800 1810 1310

8 The Blackboard

A new interface has been added to separate backtrackable and surviving uses of
blackboard objects so this primitive and the def/3, set/3, rm/2 of previous version
although still available should be replaced either with:

• global logical variables

• garbage-collectible permanent objects.

8.1 Global logical variables

Syntax: A#B:=:X, or lval(A,B,X).

where X is any term on the heap. It has simply a global name A#B i.e. an entry in
the hashing table with keys A and B. The address in the table (C-pointers are the
same as logical variables in BinProlog) is trailed such that on backtracking it will
be unbound (i.e. point to itself). Unification with A#B:=:Y is possible at any point
in the program which knows the ‘name’ A#B.

Although a global logical variable cannot be changed it can be further instanti-
ated as it happens to ordinary Prolog terms. Backtracking ensures they vanish so
that no unsafe reference can be made to them.

The program lq8.pl is an efficient 8-queens program using global logical variables
to simulate the chess-board.

25

8.2 Garbage-collectible permanent objects.

On the other hand, if bb def/3 or bb set/3 is used to name objects on the black-
board, they ”survive” backtracking and can afterwards be retrieved as logical vari-
ables using bb_val/3.

bb_def/3 (i,i,i) defines a value

bb_set/3 (i,i,i) updates a value

bb_rm/2 (i,i) removes a value

bb_val/3 (i,i,o) retrieves the value

They are quite close to the recorda/recordz family of other Prologs although
they offer better 2-key indexing, are simpler and can be used to do much more things
efficiently.

You can look to the program progs/knight.pl on how to use them to implement
in a convenient and efficient way programs with backtrackable global arrays.

They can be used to save information that survives backtracking in a way similar
to other Prolog’s assert and retract and are safe with respect to garbage collection
of the blackboard.

The predicate bb list/1 gives the content of the blackboard as a heap object
(list), while bb/0 simply prints it out.

These predicates offer generally faster and more flexible management of dynamic
state information than other Prolog’s dynamic databases.

8.3 Assert and retract

For compatibility reasons BinProlog has them, implemented on top of the more
efficient blackboard manipulation builtins.

This is an approximation of other Prologs assert and retract predicates. It tries to
be close to Sicstus and Quintus with their semantics. For efficiency and programming
style reasons I strongly suggest not to use them too much.

If you want maximal efficiency use bb_def/3, bb_set/3, bb_val/3, bb_rm

They give you access to a very fast hashing table <key,key>--> value, the same
that BinProlog uses internally for indexing by predicate and first argument. They
are close to other Prolog’s ‘record’ family, except that they do even less.

To use dynamic predicates it is a good idea to declare them with dynamic/1

although asserts will now be accepted even without such a declaration. To define
dynamic code in a file you compile, dynamic declarations are mandatory.

To activate an asserted predicate it is a good idea to alway call it with

?-metacall(Goal).

instead of

?- Goal.

26

However, this is not a strong requirement anymore, as an important number of
users were unhappy with this restriction.

The dynamic predicates are:

assert/1

asserta/1

assertz/1

retract/1

clause/2

metacall/1

abolish/2

You can easily add others or improve them by looking to the sources in the file
extra.pl.

8.4 Assumed code, intutionistic and linear implication

Intuitionistic assumei/1 adds temporarily a clause usable in later proofs. Such a
clause can be used an indefinite number of times, mostly like asserted clauses, except
that it vanishes on backtracking. Its scoped version Clause=>Goal or [File]=>Goal
makes Clause or the set of clauses found in File available only during the proof of
Goal. Both vanish on backracking. Clauses are usable an indefinite number of times
in the proof, i.e. for instance ?-assumei(a(13)),a(X),a(Y) will succed.

Linear assumel/1 adds temporarily a clause usable at most once in later proofs.
This assumption also vanishes on backtracking. Its scoped version Clause-:Goal

or [File]-:Goal makes Clause or the set of clauses found in File available only
during the proof of Goal. Both vanish on backracking. Each clause is usable at most
once in the proof, i.e. for instance ?-assumel(a(13)),a(X),a(Y) will fail.

You can freely mix linear and intutionistic clauses and implications for the same
predicate. Try out something like

?-a(10)-:a(11)=>a(12)-:a(13)=>(a(X),a(X)).

X=11;

X=13;

no

This shows that a(10) and a(12) are consumed after their first use while a(11)
and a(13) are reusable indefinitely.

See the relatively straightforward implementation of these predicates in the file
extra.pl.

Note that BinProlog’s linear implication succeeds even if not all the assumptions
are consumed while in systems like Lolli this is a strong requirement. Quantifiers
and other linear operators are not implemented at this time, but can be added in
the future if there’s enough demand for them.

27

8.5 Overriding

Assumed predicate will override similarly named dynamic predicates which in turn
will override compiled ones. Note that overriding is done at predicate, not clause
level. Note also that multifile compiled clauses are still forbidden. However, multifile
assumed and dynamic code is now accepted.

8.6 Problem solving with linear implication

Linear implication is a serious and very convenient problem solving tool, which
allows avoiding explicit handling of complex data-structures. Let’s suppose we want
to walk through a (possibly circular) graph structure without looping.

With linear implication this becomes:

path(X,X,[X]).

path(X,Z,[X|Xs]):-linked(X,Y),path(Y,Z,Xs).

linked(X,Y):-c(X,Ys),member(Y,Ys).

go(Xs):-

c(1,[2,3]) -: c(2,[1,4]) -: c(3,[1,5]) -: c(4,[1,5]) -:

path(1,5,Xs).

or

path(X,X,[X]).

path(X,Z,[X|Xs]):-c(X,Y),path(Y,Z,Xs).

% data

go(Xs):-

(c(1,X1):-c1(X1)) -:

(c(2,X2):-c2(X2)) -:

(c(3,X3):-c3(X3)) -:

(c(4,X4):-c4(X4)) -:

path(1,5,Xs).

c1(2).

c1(3).

c2(1).

c2(4).

Some finite domain constraint solving can also be done quite efficiently (1.3
seconds on a Sparc 10-20 for the SEND + MORE = MONEY puzzle - see file progs/lconstr.pl).

28

% Program: linear implication based FD constraint solving

% Author: Paul Tarau, 1995

% cryptarithmetic puzzle solver -see progs/lconstr.pl

% a kind of "constraint solving with linear implication"

example1(

[s,e,n,d,m,o,r,e,y]=[S,E,N,D,M,O,R,E,Y],

[S,E,N,D]+

[M,O,R,E]=

[M,O,N,E,Y],

_

).

% Addition of two numbers - simplified version -

sum(As, Bs, Cs) :- sum(As, Bs, 0, Cs).

sum([], [], Carry, [Carry]).

sum([A|As], [B|Bs], Carry, [C|Cs]) :- !,

add2digits(A,B,Carry,C,NewCarry),

sum(As, Bs, NewCarry, Cs).

add2digits(A,B,Carry,Result,NewCarry):-

bind(A),bind(B),

add_with_carry(10,A,B,Carry,Result,NewCarry).

add_with_carry(Base,A,B,Carry,Result,NewCarry):-

S is A+B+Carry,

Result is S mod Base,

NewCarry is S // Base,

new_digit(Result).

bind(A):-var(A),!,digit(A).

bind(_).

new_digit(A):-digit(A),!.

new_digit(_).

solve(As,Bs,Cs,Z):-

digit(0)-:digit(1)-:digit(2)-:digit(3)-:digit(4)-:digit(5)-:

digit(6)-:digit(7)-:digit(8)-:digit(9)-:

(sum(As,Bs,Cs),

Z>0

).

puzzle:-

init(Vars,Puzzle,Names),

Puzzle=(Xs+Ys=Zs),Zs=[Z|_],

reverse(Xs,As), % see progs/lconstr.pl

29

reverse(Ys,Bs),

reverse(Zs,Cs),

solve(As,Bs,Cs,Z),

show_answer(Vars,Names,Puzzle), % see progs/lconstr.pl

fail.

puzzle:-

write(’no (more) answers’),nl,nl.

go:-

(init(X,Y,Z):-example1(X,Y,Z))-:puzzle,

fail.

Notice how linearly assumed digit/1 facts are consumed by bind/1 and new_digit/1
to enforce constraints as early as possible inside the addition loop.

8.7 The blackboard as an alternative to assert and retract

Designed in the early stages of Prolog, assert and retract have been overloaded
with different and often conflicting requirements. They try to be both the way to
implement permanent data structures for global state information, self-modifying
code and tools for Prolog program management. This created not only well-known
semantical but also expressivity and efficiency problems.

This unnecessary overloading is probably due to some of their intended uses
in interpreted Prologs like implementing the consult/1 and reconsult/1 code-
management predicates that can be replaced today by general purpose makefiles. As
a consequence, their ability to express sophisticated data structures is very limited
due mostly to unwanted copying operations (from heap to dynamic code area and
back) and due to their non-backtrackable behaviour.

For example, to ensure indefinite number of uses of an asserted clause most Pro-
logs either compile it on the fly or do some form of copying (usually twice: when
asserting and when calling or retracting). This is not only a waste of resources
but also forbids use of asserted clauses for dynamically evolving global objects con-
taining logical variables, one of the most interesting and efficient data structure
tricks in Prolog. Worst, variables representing global data structures have to be
passed around as extra arguments, just to bore programmers and make them dream
about inheritance and objects oriented languages. This also also creates error prone
maintenance problems. Just think about adding a new seventh argument to a 10-
parameter Prolog predicate having 10 clauses and being called 10 times.

Those are the main reasons for the re-design of these operations using BinProlog’s
blackboard.

Objects on the blackboard have indefinite extent. However, their names are ”ri-
gid designators” that can change their reference. Data objects do not disappear just
because they have no names anymore. This is the main difference with variables
in languages with destructive assignment. If the garbage collector ”can prove” that
an object or some part of it is will never be used again, the space will be recu-

30

perated automatically. Although objects cannot be ”changed” they can be further
instantiated as it happens to ordinary Prolog terms.

Efficient access to objects on the blackboard or part of them is based on an
efficient 2-key hashing table, internal to BinProlog’s run-time system.

8.8 The low-level blackboard operations

Six low-level4 primitives def/3, set/3, val/3, rm/2, copy term/2, save term/2

are used in BinProlog 3.30 to fully replace assert and retract while keeping distinct
their overloaded naming and copying function.

8.8.1 Naming primitives

The first four are simply an interface to BinProlog’s unique global hashing table
working as an

<Atomic-key1,Atomic-key2>-->HeapOrBlackboardObject.

function.

• def/3: (i,i,i) defines a value (usable only once) or fails;

• set/3: (i,i,i) updates a value that has been defined or warns and fails;

• val/3: (i,i,o) retrieves the value or fails if absent;

• rm/3: (i,i) deletes the value or fails if absent.

We call them naming primitives as they are used to name arbitrary heap or
blackboard objects for definition, update and access function. Naming objects on
the heap is generally unsafe and should be hidden from the user except for constants
which are actually copied in the hashing table instead of being pointed to. This
frequent case has been given to end users as an efficient 2-keys, 1-value dictionary
since the first release of BinProlog.

If blackboard operations are backtrackable heap objects can be safely named.
This suggested the implementation of global logical variables in BinProlog 3.30.

Otherwise, in BinProlog’s gc-safe transfers to and from the blackboard are doing
with a very efficient copying algorithm.

Not that if the garbage collector is not used naming objects on the blackboard is
safe as they are always at a lower address than the base of the heap. As a consequence
they survive backtracking while keeping their behaviour as close as possible to the
behaviour of usual heap objects. This usage is compatible with BinProlog 1.71 but
not recommended in BinProlog 3.30.

4We suggest avoiding these operations because they are not garbage collection-safe in BinProlog
3.30.

31

8.8.2 Copying primitives

Copy_term/2 is Prolog’s usual primitive extended to copy objects from the heap
and also from blackboard to the current top of the heap. We refer to [?] for the
implementation and memory management aspects of these primitives.

Save_term/2 copies an object possibly distributed over the heap and the black-
board to a new blackboard object. It also takes care not to copy parts of the object
already on the blackboard.

Remark that having known modes and argument types helps in the case of partial
evaluation or type inference systems. Separating Prolog’s asserts two main functions
(naming+copying) in lower level operations allows program transformers to go in-
side more complex blackboard operations and possibly use the typing and mode
information that comes from def/3, set/3 and val/3 to infer it for other predicates.

8.9 An useful Prolog extension: bestof/3

Bestof/3 is missing in all current Prolog implementations we know of. BinProlog’s
bestof/3 works like findall/3, but instead of accumulating alternative solutions,
it selects successively the best one with respect to an arbitrary total order relation.
If the test succeeds the new answer replaces the previous one. At the end, either the
query has no answers, case in which bestof fails, or an answer is found such that
it is better than every other answer with respect to the total order. The proposed
syntax is

?-bestof(X,TotalOrder,Goal)

At the end, X is instantiated to the best answer. For example, the maximum of
a list of integers can be defined simply as:

max(Xs,X):-bestof(X,>,member(X,Xs)).

The following is an efficient implementation implementation using the black-
board.

% true if X is an answer of Generator such that

% X Rel Y for every other answer Y of Generator

bestof(X,Closure,Generator):-

copy_term(X,Y),

Closure=..L1,

det_append(L1,[X,Y],L2),

Test=..L2,

bestof0(X,Y,Generator,Test).

bestof0(X,Y,Generator,Test):-

inc_level(bestof,Level),

Generator,

32

update_bestof(Level,X,Y,Test),

fail.

bestof0(X,_,_,_):-

dec_level(bestof,Level),

val(bestof,Level,X),

rm(bestof,Level).

% uses Rel to compare New with so far the best answer

update_bestof(Level,New,Old,Test):-

val(bestof,Level,Old),!,

Test,

bb_set(bestof,Level,New).

update_bestof(Level,New,_,_):-

bb_let(bestof,Level,New).

% ensure correct implementation of embedded calls to bestof/3

inc_level(Obj,X1):-val(Obj,Obj,X),!,X1 is X+1,bb_set(Obj,Obj,X1).

inc_level(Obj,1):-bb_def(Obj,Obj,1).

dec_level(Obj,X):-val(Obj,Obj,X),X>0,X1 is X-1,bb_set(Obj,Obj,X1).

Note that precomputation of Test in bestof/3 before calling the workhorse bestof0/4
is much more efficient than using some form of apply meta-predicate inside bestof0/4.

8.10 Blackboard based abstract data types

We will describe some simple utilisations of the blackboard to implement efficiently
some basic abstract data types. They all use the saved/2 predicate instead of
save_term/2. Saved/2 does basically the same work but also makes a call to the
blackboard garbage collector if necessary. The reader can find the code in the file
lib.pl of the BinProlog distribution.

8.10.1 Blackboard based failure surviving stacks

A very useful data structure that can be implemented with the blackboard is a
stack that survives failure but still allows the programmer to use some of the nice
properties of logical variables.

The main operations are push/3 that saves a term to the blackboard and pushes
it to a named stack, pop/3 that removes the top element from a named stack and
unifies it with its third argument and stack/3 that simply gives access to the list
on the blackboard representing the stack. The only operation that uses copying is
push/3, although if the term that is pushed to the stack has already some subterms
on the blackboard, such subterms will not be copied again.

The implementation is straightforward:

33

push(Type,S,X):-

default_val(Type,S,Xs,[]),

saved([X|Xs],T),

set(Type,S,T).

pop(Type,S,X):-

default_val(Type,S,V,[]),

V=[X|Xs],

set(Type,S,Xs).

stack(Type,S,Xs):-val(Type,S,Xs).

default_val(X,Y,V,_):-val(X,Y,V),!.

default_val(X,Y,D,D):-def(X,Y,D).

8.10.2 Constant time vectors

Defining a vector is done initializing it to a given Zero element. The vector_set/3
update operation uses saved/2, therefore the old content of vectors is also subject
to garbage collection.

vector_def(Name,Dim,Zero):- Max is Dim-1,

saved(Zero,BBVal),

for(I,0,Max), % generator for I from 0 to Max

let(Name,I,BBVal), % def/3 or set/3 if needed

fail.

vector_def(_,_,_).

vector_set(Name,I,Val):-saved(Val,BBVal),set(Name,I,BBVal).

vector_val(Name,I,Val):-val(Name,I,Val).

Building multi-dimensional arrays on these vectors is straightforward, by defining
an index-to-address translation function.

The special case of a high-performance 2-dimension (possibly sparse) global array
can be handled conveniently by using def/3, set/3, val/3 and saved/2 as in:

global_array_set(I,J,Val):-saved(Val,S),set(I,J,S).

8.11 Blackboard based problem solving

8.11.1 A complete knight tour

The following is a blackboard based complete knight-tour, adapted from Evan Tick’s
well known benchmark program.

34

% recommended use: ?-go(5).

go(N):-

time(_),

init(N,M), % prepare the chess board

knight(M,1,1),!, % finds the first complete tour

time(T),

write(time=T),nl,statistics,show(N). % shows the answer

% fills the blackboard with free logical variables

% representing empty cell on the chess board

init(N,_):-

for(I,1,N), % generates I from 1 to N nondeterministically

for(J,1,N), % for/3 is the same as range/3 in the Art of Prolog

bb_def(I,J,_NewVar), % puts a free slot in the hashing table

fail.

init(N,M):-

M is N*N. % returns the number of cells

% tries to make a complete knight tour

knight(0,_,_) :- !.

knight(K,A,B) :-

K1 is K-1,

val(A,B,K), % here we mark (A,B) as the K-th cell of the tour

move(Dx,Dy), % we try a next move nondeterministically

step(K1,A,B,Dx,Dy).

% makes a step and then tries more

step(K1,A,B,Dx,Dy):-

C is A + Dx,

D is B + Dy,

knight(K1,C,D).

% shows the final tour

show(N):-

for(I,1,N),

nl,

for(J,1,N),

val(I,J,V),

write(’ ’),X is 1-V // 10, tab(X),write(V),

fail.

show(_):-nl.

% possible moves of the knight

move(2, 1). move(2,-1). move(-2, 1). move(-2,-1).

35

move(1, 2). move(-1, 2). move(1,-2). move(-1,-2).

Constant time access in this kind of problems to cell(I,J) is essential for efficiency
as it is the most frequent operation. While the blackboard based version takes 39s
in BinProlog for a 5x5 squares chess board, an equivalent program representing the
board with a list of lists takes 147s in BinProlog, 167s in emulated Sicstus 2.1 and
68 seconds in native Sicstus 2.1. Results are expected to improve somewhat with
binary trees or functor-arg representation of the board but they will still remain
worse than with the blackboard based sparse array, due to their relatively high
log(N) or constant factor. Moreover, representing large size (possibly updatable!)
arrays with other techniques is prohibitively expensive and can get very complicated
due to arity limits or tree balancing as it can see for example in the Quintus library.

8.11.2 A lemma based TAK

The following tak/4 program uses lemmas to avoid heap explosion in the case of of
a particularly AND intensive program with 4 recursive calls, a problem particularly
severe in the case of the continuation passing binarization that BinProlog uses to
simplify the WAM. To encode the 2 first arguments in a unique integer some bit-
shifting is needed as it can be seen in tak_encode/3. To avoid such problems,
hashing on arbitrary terms like Quintus Prolog’s term_hash/2 looks a very useful
addition to BinProlog.

tak(X,Y,Z,A) :- X =< Y, !, Z = A.

tak(X,Y,Z,A) :-

X1 is X - 1,

Y1 is Y - 1,

Z1 is Z - 1,

ltak(X1,Y,Z,A1),

ltak(Y1,Z,X,A2),

ltak(Z1,X,Y,A3),

ltak(A1,A2,A3,A).

ltak(X,Y,Z,A):-

tak_encode(X,Y,XY),

tak_lemma(XY,Z,tak(X,Y,Z,A),A).

tak_encode(Y,Z,Key):-Key is Y<<16 \/ Z.

tak_decode(Key,Y,Z):-Y is Key>>16, Z is Key <<17>>17 .

%optimized lemma <P,I,G> --> O (instantiated executing G)

tak_lemma(P,I,_,O):-val(P,I,X),!,X=O.

tak_lemma(P,I,G,O):-G,!,def(P,I,O).

go:- statistics(runtime,_),

36

tak(24,16,8,X),

statistics(runtime,[_,T]),statistics,

write([time=T,tak=X]), nl.

We hope that we showed the practicality of BinProlog’s blackboard for basic
work on data structures and problem solving.

BinProlog’s blackboard primitives make a clear separation between the copying
and the naming intent overloaded in Prolog’s assert and retract.

Our blackboard primitives give most of the time simpler and more efficient solu-
tions to current programming problems than assert and retract while being closer
to a logical semantics and more cooperative to partial evaluation.

8.12 A Linda style interface to the blackboard

The following predicates show how to do some Linda-style operations on top of the
blackboard primitives.

The current focus of the operations is managed by object/1 and message/1.

Out/? puts a tuple Mes on the blackboard, rd/? reads it and in/? removes it.
Eval/? executes the Goal part of the clause (Answer:-Goal) focussed by object/1

and message/1. Then it puts the result Answer back to the blackboard. As Answer
itself can be of the form (A:-G), a limited number of cascaded evals are possible.

% out/1, rd/1, in/1

out(Mes):-object(Obj),message(Id),out(Obj,Id,Mes).

rd(Mes):-object(Obj),message(Id),rd(Obj,Id,Mes).

in(Mes):- object(Obj),message(Id),in(Obj,Id,Mes).

% out/2, rd/2, in/2

out(Id,Mes):-object(Obj),out(Obj,Id,Mes).

rd(Id,Mes):-object(Obj),rd(Obj,Id,Mes).

in(Id,Mes):-object(Obj),in(Obj,Id,Mes).

% out/3, rd/3, in/3

out(Obj,Id,_):-val(Obj,Id,_),!,fail.

out(Obj,Id,Mes):-saved(Mes,Sent),let(Obj,Id,Sent).

rd(Obj,Id,Mes):-val(Obj,Id,Mes).

in(Obj,Id,Mes):-val(Obj,Id,Mes),rm(Obj,Id).

% eval/0, eval/1, eval/2

eval:-object(Obj),message(Id),eval(Obj,Id).

eval(Id):-object(O),eval(O,Id).

eval(Obj,Id):-val(Obj,Id,(Answer:-Goal)),Goal,!,

saved(Answer,NewAnswer),

set(Obj,Id,NewAnswer).

37

% tools

object(New):-var(New),!,val(’$object’,’$object’,New).

object(New):-atomic(New),let(’$object’,’$object’,New).

message(New):-var(New),!,object(O),val(O,’$message’,New).

message(New):-atomic(New),object(O),let(O,’$message’,New).

9 Continuations as first order objects

9.1 Continuation manipulation vs. intuitionistic/linear implication

Using intuitionistic implication (actullay it should be -: but let’s forget this for a
moment) we can write in BinProlog:

insert(X, Xs, Ys) :-

paste(X) => ins(Xs, Ys).

ins(Ys, [X|Ys]) :- paste(X).

ins([Y|Ys], [Y|Zs]):- ins(Ys, Zs).

used to nondeterministically insert an element in a list, the unit clause paste(X) is
available only within the scope of the derivation for ins. This gives:

?- insert(a,[1,2,3],X).

X=[a,1,2,3];

X=[1,a,2,3];

X=[1,2,a,3];

X=[1,2,3,a]

With respect to the corresponding Prolog program we are working with a simpler
formulation in which the element to be inserted does not have to percolate as dead
weight throughout each step of the computation, only to be used in the very last
step. We instead clearly isolate it in a global-value manner, within a unit clause
which will only be consulted when needed, and which will disappear afterwards.

Now, let us imagine we are given the ability to write part of a proof state context,
i.e., to indicate in a rule’s left-hand side not only the predicate which should match
a goal atom to be replaced by the rule’s body, but also which other goal atom(s)
should surround the targeted one in order for the rule to be applicable.

Given this, we could write, using BinProlog’s @@ (which gives in its second argu-
ment the current continuation) a program for insert/3 which strikingly resembles
the intuitionistic implication based program given above:

38

insert(X,Xs,Ys):-ins(Xs,Ys),paste(X).

ins(Ys,[X|Ys]) @@ paste(X).

ins([Y|Ys],[Y|Zs]):-ins(Ys,Zs).

Note that the element to be inserted is not passed to the recursive clause of the
predicate ins/2 (which becomes therefore simpler), while the unit clause of the
predicate ins/2 will communicate directly with insert/3 which will directly ‘paste’
the appropriate argument in the continuation.

In this formulation, the element to be inserted is first given as right-hand side
context of the simpler predicate ins/2, and this predicate’s first clause consults the
context paste(X) only when it is time to place it within the output list, i.e. when
the fact ins(Ys,[X|Ys]),paste(X) is reached.

Thus for this example, we can also obtain the expressive power of intuition-
istic/linear implication by this kind of (much more efficient) direct manipulation of
BinProlog’s first order continuations.

10 Direct binary clause programming and full-blown

continuations

BinProlog 3.30 supports direct manipulation of binary clauses denoted

Head ::- Body.

They give full power to the knowledgeable programmer on the future of the compu-
tation. Note that such a facility is not available in conventional WAM-based systems
where continuations are not first-order objects.

We can use them to write programs like:

member_cont(X,Cont)::-

strip_cont(Cont,X,NewCont,true(NewCont)).

member_cont(X,Cont)::-

strip_cont(Cont,_,NewCont,member_cont(X,NewCont)).

test(X):-member_cont(X),a,b,c.

A query like

?-test(X).

will return X=a; X=b; X=c; X=whatever follows from the calling point of test(X).

catch(Goal,Name,Cont)::-

lval(catch_throw,Name,Cont,call(Goal,Cont)).

throw(Name,_)::-

lval(catch_throw,Name,Cont,nonvar(Cont,Cont)).

39

where lval(K1,K2,Val) is a BinProlog primitive which unifies Val with a back-
trackable global logical variable accessed by hashing on two (constant or variable)
keys K1,K2.

This allows for instance to avoid execution of the infinite loop from inside the
predicate b/1.

loop:-loop.

c(X):-b(X),loop.

b(hello):-throw(here).

b(bye).

go:-catch(c(X),here),write(X),nl.

Notice that due to its simple translation semantics this program still has a first
order reading and that BinProlog’s lval/3 is not essential as it can be emulated by
an extra argument passed to all predicates.

Although implementation of catch and throw requires full-blown continuations,
we can see that at user level, ordinary clause notation is enough.

11 Backtrackable destructive assignment

11.1 Updatable logical arrays in Prolog: fixing the semantics of
setarg/3

Let us recall that setarg(I,Term,Value) installs Value as the I-th argument of
Term and takes care to put back the old value found there on backtracking.

Setarg/3 is probably the most widelly used (at least in SICStus, Aquarius,
Eclipse, ProLog-by-BIM, BinProlog), incarnation of backtrackable mutable arrays
(overloaded on Prolog’s universal term type).

Unfortunately setarg/3 lacks a logical semantics and is implemented differently
in in various systems. This is may be the reason why the standardization (see its
absence from the Prolog ISO Draft) of setarg/3 can hardly reach a consensus in
the predictable future.

Ideally, setarg/3 should work as if a new term (array) had been created identical
to the old one, except for the given element. There’s no reason to ‘destroy’ a priori
the content of the updated cell or to make it subject to ugly side effects. Should this
have to happen for implementation reasons, a run-time error should be produced,
at least, although this is not the case in any implementation we know of.

Let us start with an inefficient but fairly clean array-update operation, setarg/4.

setarg(I,OldTerm,NewValue,NewTerm):-

functor(OldTerm,F,N),

functor(NewTerm,F,N),

40

arg(I,NewTerm,NewValue),

copy_args_except_I(N,I,OldTerm,NewTerm).

copy_args_except_I(0,_,_,_):-!.

copy_args_except_I(I,I,Old,New):-!,I1 is I-1,

copy_args_except_I(I1,I,Old,New).

copy_args_except_I(N,I,Old,New):-N1 is N-1,arg(N,Old,X),arg(N,New,X),

copy_args_except_I(N1,I,Old,New).

We can suppose that functor and arg are specified by a (finite) set of facts
describing their behavior on the signature of the program. For a given program, we
can obviously see setarg/4 as being specified similarly by a finite set of facts.

Furthermore,suppose that all uses of setarg/3 are replaced by calls to setarg/4
with the new states passed around with DCG-style chained variables.

This looks like a good definition of the intended meaning of a program using
setarg/3.

We will show that actual implementations (Sicstus and BinProlog) can be made
to behave accordingly to this semantics through a small, source level wrapping into
a suitable ADT.

Let ’$box’/1 be a new functor not in the signature of any user program. By
defining

safe_arg(I,Term,Val):-arg(I,Term,’$box’(Val)).

safe_setarg(I,Term,Val):-setarg(I,Term,’$box’(Val)).

Using ’$box’/1 in safe_arg/3 (safe_setarg/3) ensures that cell I of the func-
tor Term will be indirectly accessed (updated) even if it contains a variable which in
a WAM would be created on place and therefore it would be subject of unpredictable
side-effects.

The reason of the draconian warning in some Prolog manuals manual

...setarg is only safe if there is no further use of the old value of the
replaced argument...

. will therefore disappear and a purely logical setarg (with a translation semantics
expressible in term of setarg/4) can be implemented. Not only this ensures refer-
ential transparency and allows normal references to the old content of the updated
cells but it also makes incompatible implementations of setarg (Sicstus, Eclipse,
BinProlog) work exactly the same way5.

To finish the job properly, something like the following ADT can be created.

5A further ambiguity in some implementations of setarg/3 comes from the fact that it is not
clear if the location itself or its dereferenced contents should be mutated

41

new_array(Size,Array):-

functor(Array,’$array’,Size).

update_array(Array,I,Val):-

safe_setarg(I,Array,Val).

access_array(Array,I,Value):-

safe_arg(I,Array,Value).

We suggest to use this ADT in your program instead of basic setarg when per-
formance is not an absoulte requirement.

A new change_arg/3 builtin has been added to BinProlog to allow, efficient
failure-driven iteration with persistent information. It works like setarg/3 except
that side-effects are permanent. Sould unsafe heap objects be generated through
the precess change_arg/3 signals a run-time error. This is not the case as far the
result is either a constant (which is does not need new heap allocation) or the result
of moving a preexistent heap object to a new location.

For instance the (Haskell-style) fold/4 predicate (see library/high.pl) uses
change_arg/3 to avoid painful iteration and slow side-effects on the dynamic data-
base. The implementation is competitive is speed with hand-written explicitely
recursive code and uses only memory proportional to the size of the answer.

% fold,foldl based on safe failure driven destructive change_arg

foldl(Closure,Null,List,Final):-fold(Closure,Null,X^member(X,List),Final).

fold(Closure,Null,I^Generator,Final):-

fold0(s(Null),I,Generator,Closure,Final).

fold0(Acc,I,Generator,Closure,_):-

term_append(Closure,args(SoFar,I,O),Selector),

Generator,

arg(1,Acc,SoFar),

Selector,

change_arg(1,Acc,O),

fail.

fold0(Acc,_,_,_,Final):-

arg(1,Acc,Final).

?- foldl(+,0,[1,2,3],R).

?- fold(*,1,X^member(X,[1,2,3]),R).

42

12 ‘Invisible’ grammars

By using backtrackable setarg/3 and logical global variables (lval/3) we can imple-
ment easily a superset of DCG grammars practically equivalent with Peter VanRoy’s
Extended DCGs. We call them invisible grammars as no preprocessor is involved in
their implementation. It turns out that the technique has the advantage of ‘meta-
programming for free’ (without the expensive phrase/3), allows source level debug-
ging and can be made more space and time efficient than the usual preprocessing
based implementation. On real examples, their best use is for writting a Prolog
compiler (they can contribute to the writing of compact and efficient code with very
little programming effort) and for for large natural language processing systems.

Basically, they work as follows:

% tools

begin_dcg(Name,Xs):-lval(dcg,Name,Xs-Xs).

end_dcg(Name,Xs):-lval(dcg,Name,Xs-[]).

w(Word,Name):-

lval(dcg,Name,State),

State=_-[Word|Xs2],

setarg(2,State,Xs2).

begin_dcg(Xs):-begin_dcg(default,Xs).

end_dcg(Xs):-end_dcg(default,Xs).

w(Word):-w(Word,default).

% grammar

x:-ng,v.

ng:-a,n.

a:-w(the).

a:-w(a).

n:-w(cat).

n:-w(dog).

v:-w(walks).

v:-w(sleeps).

% test

go:-begin_dcg(Xs),x,end_dcg(Ys),write(Ys),nl,fail.

?- go.

[the,cat,walks]

[the,cat,sleeps]

[the,dog,walks]

43

[the,dog,sleeps]

[a,cat,walks]

[a,cat,sleeps]

[a,dog,walks]

[a,dog,sleeps]

The program can be found in progs/setarg dcg.pl. For reasons of efficiency (i.e.
to equal or beat preprocessor based DCGs in terms of both space and time) BinPro-
log’s ‘invisible grammars’ have been implemented in C and are accessible through
the following set of builtins:

dcg_connect/1 % works like ’C’/3 with 2 invisible arguments

dcg_def/1 % sets the first invisible DCG argument

dcg_val/1 % retrives the current state of the DCG stream

dcg_tell/1 % focus on a given DCG stream (from 0 to 255)

dcg_telling/1 % returns the number of the current DCGs stream

% INVISIBLE DCG connect operation: normally macro-expanded

’#’(Word):-dcg_connect(Word).

% example: ?-dcg_phrase(1,(#a,#b,#c),X).

dcg_phrase(DcgStream,Axiom,Phrase):-

dcg_telling(X),dcg_tell(DcgStream),

dcg_def(Phrase),

Axiom,

dcg_val([]),

dcg_tell(X).

13 BinProlog’s C-interface

To be able to extend BinProlog and possibly embedd it as logic engine in your no
run-time fee application you will need a BinProlog C-source code licence. See the files
SOURCE.LICENCE and PRICING for more information. You can also interact with
other languages under UNIX using the bidireactional pipe based interface starting
from BinProlog’s Tcl/Tk interfaced (see directory TCL).

The following sequence of quick examples shows how it works.

13.1 Calling C from BinProlog: adding new builtins

New builtins are added in header.pl and after a ”make realclean; make” a new version
of BinProlog containing them is generated automatically.

An example of declaration in headers.pl is:

b0(+/3,arith(1),in_body). % arity=3+1 by binarization

Notice that arith(1) means that it is ”like an arithmetic functions” which returns
one value, i.e this should be used as in

44

+(0,1,Result).

I would suggest to start with the simplest form of interaction: a call of your own
C-code from BinProlog. Try modifying the file c.c (provided with the C-sources of
BinProlog), function new_builtin() which looks as follows:

/*

New builtins can be called from Prolog as:

new_builtin(0,<INPUT_ARG>,<OUTPUT_ARG>)

X(1) contains the integer ‘opcode’ of your builtin

X(2) contains your input arg

regs[I] contains somthing that will be unified with what you return

(the precise value of I depends on the register allocator).

You are expected to ‘return’ either

- a non-null object that will be unified with <OUTPUT_ARG>, or

- NULL to signal FAILURE

As the returned object will be in a register this

can be used for instance to add a garbage collector

that moves every data area around...

*/

term new_builtin(H,regs,A,P,wam)

register term H,regs,*A;

register instr P;

register stack wam;

{ BP_check_call();

switch(BP_op)

{

/* for beginners ... */

case 0:

/* this just returns your input argument (default behavior) */

break;

case 1:

BP_result=BP_integer(13); /* this example returns 13 */

break;

case 2:

BP_result=BP_atom("hello"); /* this example returns ’hello’ */

break;

/* for experts ... */

case 3: /* iterative list construction */

45

{ cell middle,last,F1,F2; int i;

BP_make_float(F1, 77.0/2);

BP_make_float(F2, 3.14);

BP_begin_put_list(middle);

BP_put_list(BP_integer(33));

BP_put_list(F1);

BP_put_list(BP_string("hello"));

BP_put_list(F2);

BP_end_put_list();

BP_begin_put_list(last);

for(i=0; i<5; i++) {

BP_put_list(BP_integer(i));

}

BP_end_put_list();

BP_begin_put_list(BP_result);

BP_put_list(BP_string("first"));

BP_put_list(middle);

BP_put_list(last);

BP_put_list(F1);

BP_put_list(F2);

BP_end_put_list();

} break;

case 4: /* cons style list construction */

BP_begin_cons();

BP_result=

BP_cons(

BP_integer(1),

BP_cons(

BP_integer(2),

BP_nil

)

);

BP_end_cons();

break;

case 5: /* for hackers only ... */ ;

BP_result=(cell)H;

H[0]=g.DOT;

H[1]=X(2);

H[2]=g.DOT;

H[3]=BP_integer(99);

H[4]=g.DOT;

46

H[5]=(cell)(H+5); /* new var */

H[6]=g.DOT;

H[7]=(cell)(H+5); /* same var as previously created */

H[8]=g.DOT;

H[9]=BP_atom("that’s it");

H[10]=g.NIL;

H+=11;

break;

case 6:

BP_fail();

break;

case 7:

{ cell T=BP_input;

if(BP_is_integer(T))

{fprintf(g.tellfile,"integer: %d\n",BP_get_single_integer(T));

BP_result=BP_integer(-1);

}

else

BP_fail();

}

break;

case 8: /* for experts: calling BinProlog from C */

{ cell L,R,Goal;

BP_begin_put_list(L);

BP_put_list(BP_string("one"));

BP_put_list(BP_integer(2));

BP_put_list(BP_string("three"));

BP_put_list(BP_input); /* whatever comes as input */

BP_end_put_list();

BP_put_functor(Goal,"append",3);

BP_put_old_var(L);

BP_put_old_var(L);

BP_put_new_var(R);

BP_prolog_call(Goal); /* this will return NULL on failure !!!*/

BP_put_functor(Goal,"write",1);

BP_put_old_var(R);

BP_prolog_call(Goal); /* calls write/1 */

47

BP_put_functor(Goal,"nl",0);

BP_prolog_call(Goal); /* calls nl/0 */

BP_result=R; /* returns the appended list to Prolog */

}

break;

/* EDIT AND ADD YOUR CODE HERE....*/

default:

return LOCAL_ERR(X(1),"call to unknown user_defined C function");

}

return H;

}

13.2 Calling Prolog from C

/* this can be used to call Prolog from C : see example if0 */

term bp_prolog_call(goal,regs,H,P,A,wam)

register term goal,regs,H,*A;

register instr P;

register stack wam;

{

PREP_CALL(goal);

return bp(regs,H,P,A,wam);

}

/* simple example of prolog call */

term if0(regs,H,P,A,wam)

register term regs,H,*A;

register instr P;

register stack wam;

{ term bp();

cell goal=regs[1];

/* in this example the input GOAL is in regs[1] */

/* of course you can also build it directly in C */

/* unless you want specific action on failure,

use BP_prolog_call(goal) here */

H=bp_prolog_call(goal,regs,H,P,A,wam);

if(H)

fprintf(stderr,"success: returning from New WAM\n");

else

fprintf(stderr,"fail: returning from New WAM\n");

48

/* do not forget this !!! */

return H; /* return NULL to signal failure */

}

BinProlog’s main() should be the starting point of your program to be able to
initialize all data areas. To call back from C you can follow the example if0. A
sustained BinProlog-C dialog can be set up by using the 2 techniques described
previously.

The C-interface (composed of files c.h c.c c.pl) is activated with #define C_INTERFACE.
After doing a ”make” your changes will be integrated in the BinProlog ru file. If you
whish you can create a standalone C-executable by using BinProlog’s compilation
to C (see directories pl2c, dynpl2c).

14 Example programs

The directory progs contains a few BinProlog benchmarks and applications.

allperms.pl: permutation benchmarks with findall

bestof.pl: an implementation of bestof/3

bfmeta.pl: breadth-first metainterpreter

bp.pl: float intensive neural net learning by back-propagation

cal.pl: calendar: computes the last 10000 fools-days

fcal.pl: calendar: with floats

chat.pl: CHAT parser

choice.pl: Choice-intensive ECRC benchmark

cnrev.pl: nrev with ^/2 as a constructor instead of ./2

cube.pl: E. Tick’s benchmark program

fibo.pl: naive Fibonacci

ffibo.pl: naive Fibonacci with floats

hello.pl: example program to create stand-alone Unix application

knight.pl: knight tour to cover a chess-board (uses the bboard)

lknight.pl: knight tour to cover a chess-board (uses the lists)

ltak.pl: tak program with lemmas

lfibo.pl: fibo program with lemmas

lq8.pl : 8 queens using global logical variables

maplist.pl: fast findall based maplist predicate

nrev.pl: naive reverse

nrev30.pl: small nrev benchmark to reconsult for the meta-interpreter

or.pl: or-parallel simulator for binary programs (VT100)

other_bm*: benchmark suite to compare Sicstus, Quintus and BinProlog

puzzle.pl: king-prince-queen puzzle

q8.pl: fast N-queens

qrev.pl: quick nrev using builtin det_append/3

subset.pl: findall+subset

tetris.pl: tetris player (VT100)

49

15 Related work

Some BinProlog related papers can be found at clement.info.umoncton.ca in the file
papers.tar.Z.

The reader interested in the internals of BinProlog and other issues related to binary
logic programs, their transformations and performance evaluation is referred to [?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]

16 Appendix

Here is the list of currently visible public predicates exported by module Prolog.

!/0

(#)/1

(#)/3

* /3

(+)/3

(,)/2

(-)/3

(->)/2

(.)/2

/ /3

// /3

(/\)/3

(:)/2

(::-)/2

(:=:)/2

(;)/2

(<)/2

<< /3

(-:)/2

(=)/2

(=..)/2

(=:=)/2

(=<)/2

(==)/2

(=>)/2

(=\=)/2

(>)/2

(>=)/2

>> /3

(@<)/2

(@=<)/2

(@>)/2

(@>=)/2

C/3

\ /3

50

(\+)/1

(\/)/3

(\==)/2

^ /2

abolish/2

abort/0

acos/2

add_cont/3

add_instr/4

all/3

append/3

appendN/2

append_conj/3

append_disj/3

apropos/1

apropos/2

arg/3

arith_dif/2

arith_eq/2

asm/0

assert/1

asserta/1

assertz/1

assumei/1

assumel/1

at_most/2

atan/2

atom/1

atomic/1

bagof/3

bb/0

bb/1

bb_def/2

bb_def/3

bb_element/2

bb_get/4

bb_let/2

bb_let/3

bb_list/1

bb_list0/3

bb_op/3

bb_put/2

bb_reset/0

bb_rm/1

bb_rm/2

bb_set/2

bb_set/3

bb_val/2

bb_val/3

51

bmake/0

bmake/2

boot/0

bu0/3

bu1/1

bu_ctr/2

call/1

change_arg/3

char_in_cmd/2

clause/2

cmake/0

cmake/1

cnl/0

compare/3

compare0/3

compile/1

compound/1

consult/1

copy_term/2

copy_term/3

cos/2

ctime/1

current_module/1

current_op/3

current_predicate/1

current_predicate/2

cwrite/1

dcg_connect/1

dcg_def/1

dcg_tell/1

dcg_telling/1

dcg_val/1

debug/1

def/3

det_append/3

det_append0/3

dir/0

display/1

do_body/1

(dynamic)/1

edit/2

erase/1

errmes/2

exists_file/1

expand_term/2

expr/2

fail/0

file_extension_list/1

file_library/2

52

file_search_path/1

find_file/2

findall/3

findall/4

findall_load_heap/1

findall_store_heap/1

float/1

float/2

float_fun/3

float_fun2/4

flush/0

for/3

free_variables/4

functor/3

gc_call/1

gc_read/1

gensym/2

get/1

get0/1

get_code/1

greater/2

greater_eq/2

ground/1

halt/1

help/1

if/3

if0/3

include/1

init_gensym/1

input_float/4

instance/2

integer/1

integer/2

interactive/1

(is)/2

is_assumed/1

is_builtin/1

is_compiled/1

is_module/1

is_prolog/1

iso_close_stream/2

iso_eof/1

iso_get_byte/2

iso_lseek/4

iso_open_stream/3

iso_peek_byte/2

iso_put_byte/2

iso_read_term/3

iso_write_term/3

53

ith_clause/4

keysort/2

length/2

less/2

less_eq/2

lift_heap/2

list2term/2

list_asm/3

listing/0

listing/1

listing/2

log/3

ls/0

lval/3

lwrite/1

main/0

main/1

make/0

make/1

make/2

make/3

make_file_name/4

member/2

member_i/4

meta_interpreter/1

metacall/1

metatrue/1

mod/3

(module)/1

(module)/2

module_call/2

module_name/3

module_predicate/3

modules/1

name/2

new_builtin/3

nl/0

nonvar/1

(nospy)/1

(not)/1

number/1

numbervars/3

older_file/2

op/3

op0/3

or/2

otherwise/0

patch_it/4

phrase/2

54

phrase/3

portable_display/1

portray/1

portray_clause/1

pow/3

pp_clause/1

pp_term/1

predicate_property/2

profile/0

(public)/1

put/1

put_code/1

random/1

read/1

read_term/2

reconsult/1

repeat/0

restart/0

retract/1

retractall/1

rm/2

saved/2

see/1

see_or_fail/2

see_tell/2

seeing/1

seeing_telling/2

seen/0

seen_told/1

set/3

setarg/3

setof/3

setref/2

shell/1

show_code0/2

sin/2

sort/2

(spy)/1

spying/1

sqrt/2

sread/2

stat0/3

stat_dict/2

statistics/0

statistics/2

string_op/3

strip_cont/3

strip_cont0/2

swrite/2

55

symcat/3

system/1

tab/1

tan/2

tell/1

telling/1

term2list/4

term_append/3

term_chars/2

told/0

top_read_term/2

toplevel/0

tr_body/2

trace/1

true/0

ttyin/1

ttynl/0

ttyout/1

ttyprin/1

ttyprint/1

ttyput/1

ttywrite/1

ttywriteln/1

unix/1

unix_access/2

unix_argc/1

unix_argv/2

unix_cd/1

unix_getenv/2

unix_kill/2

user_error/2

val/3

var/1

vars_of/2

while/2

write/1

write_float/1

writeq/1

BinProlog’s default operator definitions (see file oper.pl) are the following:

:-op(1000,xfy,’,’).

:-op(1100,xfy,(’;’)).

:-op(1200,xfx,(’-->’)).

:-op(1200,xfx,(’:-’)).

:-op(1200,fx,(’:-’)).

:-op(700,xfx,’is’).

:-op(700,xfx,’=’).

56

:-op(500,yfx,’-’).

:-op(500,fx,’-’).

:-op(500,yfx,’+’).

:-op(500,fx,’+’).

:-op(400,yfx,’/’).

:-op(400,yfx,’*’).

:-op(650,xfy,’.’).

:-op(700,xfx,’>=’).

:-op(700,xfx,’>’).

:-op(700,xfx,’=<’).

:-op(700,xfx,(<)).

:-op(700,xfx,(=\=)).

:-op(700,xfx,(=:=)).

:-op(300,fy,(~)).

:-op(200,xfy,(^)).

:-op(300,xfx,(mod)).

:-op(400,yfx,(>>)).

:-op(400,yfx,(<<)).

:-op(400,yfx,(//)).

:-op(500,yfx,(#)).

:-op(500,fx,(#)).

:-op(500,yfx,(\/)).

:-op(500,yfx,(/\)).

:-op(700,xfx,(@>=)).

:-op(700,xfx,(@=<)).

:-op(700,xfx,(@>)).

:-op(700,xfx,(@<)).

:-op(700,xfx,(\==)).

:-op(700,xfx,(==)).

:-op(700,xfx,(=..)).

:-op(700,xfx,(\=)).

:-op(900,fy,(not)).

:-op(900,fy,(\+)).

:-op(900,fx,(spy)).

:-op(900,fx,(nospy)).

:-op(1050,xfy,(->)).

:-op(1050,xfx,(@@)).

:-op(1150,fx,(dynamic)).

:-op(1150,fx,(public)).

:-op(1150,fx,(module)).

:-op(1200,xfx,(::-)).

57

:-op(900,yfx,(:)).

:-op(600,xfx,(:=:)).

:-op(950,xfy,(-:)).

:-op(950,xfy,(=>)).

:-op(600,xfx,(<=)).

:-op(700,xfx,(=:)).

:-op(700,xfx,(:=)).

58

