
Contents

General Information
About CCRP
About Multimedia Timers

CCRP High Performance Timer Objects
Introduction
Installation
Support, Etc.
Revision History
Distribution and Licensing Agreement
COMCTL32.DLL versions

Demos
Demo: TimerTest.vbp
Demo: Notify.vbp
Demo: ObjArray.vbp
Editorial: No More Lame Benchmarks!

ccrpTimers Library Reference
ccrpTimer Object
ccrpStopWatch Object
ccrpCountdown Object

Miscellaneous
Secondary Interfaces
Error Codes

Introduction

The CCRP High Performance Timer Objects provide much more robust options than Visual Basic's intrinsic
Timer control ever has. For years, the only option available to VB developers was to add a form to their project
if they wanted to use a timer. This had the effect of totally destroying any hope of encapsulation if, for example,
a class module needed periodic timer events.

No more superfluous forms!

This library provides ccrpTimer, ccrpStopWatch, and ccrpCountdown objects that may be instantiated
anywhere, at any time. All three objects use the multimedia timer, thus providing true 1ms resolution (if
supported by the hardware). Taking advantage of the WithEvents method of declaring an object instance,
Timer and Tick events may be sunk in either forms or class modules.

Secondary Interfaces are exposed for your implementation as another way to recieve "event" notification.
Using Implements in this manner allows notifications in situations where normal events would be blocked, and
also provides a method to simulate control arrays using class objects! See Demo: Notify.vbp and Demo:
ObjArray.vbp for a taste of the possibilities!

Client applications may specify the internal rate at which the ccrpTimers own multimedia timer is firing, thus
allowing control over the amount of CPU being consumed. Timer intervals may be any value from the minimum
supported by the system (typically 1ms) up to the maximum positive value for a Long (nearly 25 days!).

The ccrpTimers library was created by Karl E. Peterson (karl@mvps.org), a member of the VB Common
Controls Replacement Project, a group aiming to provide separate ActiveX controls to replace and extend the
controls found in COMCTL32.OCX, COMCTL232.OCX, and VB's intrinsic controls.

About Multimedia Timers
Multimedia timer raise a number of interesting issues. Some of them are dealt with in more detail in the About
Multimedia Timers section of this help file. The ccrpTimers library provides the most efficient access your
application can have to these valuable Windows resources.

Installing and Registering the Library
Understanding that the great bulk of CCRP's users will be sophisticated developers themselves, it has been
decided that you're quite capable of manual installation of these components. See the Installation topic for
complete details.

Included Demos
One demo is included (see: Demo: TimerTest.vbp) with this object library, consisting of three files
(TimerTest.vbp, FTimerTest.frm, and FTimerTest.frx) which you may place where you find convenient.
TimerTest is a project that demonstrates most of the features of all the CCRP Timer objects.

Service Pack Issues
The ccrpTimers library requires that either Service Pack 2 or Service Pack 3 be installed. A non-service pack
version of the ccrpTimers object library is not currently available.

Videosoft (http://www.videosoft.com) has kindly provided CCRP with a copy of their VSDOCX software
for documenting ActiveX controls. This help file was created using VSDOCX. CCRP would like to
extend their sincere thanks to Videosoft for their generousity.

CCRP Timer Objects
Copyright ©1995-98, Karl E. Peterson
http://www.mvps.org/vb
karl@mvps.org

About CCRP

As the interface to the Windows common control dynamic link library, COMCTL32.OCX gives developers
access to most of Window's common controls including the Listview, Toolbar, Statusbar, Progress Bar and
Imagelist. Powerful and versatile when implemented via the API, for the developer who relies on comctl32.ocx
there arise many disadvantages.

The comctl32.ocx file itself is over 600kb in size in size, making distribution impractical for small applications or
internet pages needing only a fraction of what the control encapsulates. The control is also restricted in the
features that it delivers, features users often associate as indicative of a 'state of the art' application.
COMCTL32.OCX can also be very sluggish; the ocx is but an interface to the real 450kb Windows
COMCTL32.DLL file, which contains the actual code for the common controls. In addition, Microsoft regularly
updates COMCTL32.DLL to provide new features but these new features are not available through
COMCTL32.OCX directly.

The Common Controls Replacement Project is a new and unique project, combining the extensive talents of
Windows developers who's aim is to provide smaller, faster, more fully-featured and free replacements to the
provided Microsoft Windows Common Controls, Common Dialog controls, and 'Intrinsic Controls' - those
provided as part of the standard VB toolbar. The project now has fourteen members who pool their knowledge
to create the CCRP controls.

For more information visit our website at http://www.zeode-sd.com/ccrp. Scan the pages for each control to see
its current features and development status. Registration for any control is free by filling out a short form from
the control's download link. And if you want to help out, see the information at the Join CCRP link.
For a comprehensive listing of the CCRP members, their projects and other information, including how to
become a CCRP developer, see the CCRP Membership page.

Note that some CCRP controls specify minimum design and runtime requirements to achieve full functionality.
These are listed along with each control's enhanced functionality on the control's information page, as well as
the download page. The requirements very from whether or not SP2 is required to use a control to the version
of COMCTL32.DLL needed for some properties, methods and events to function correctly. See
COMCTL32.DLL versions for more information on the latter and the Introduction for more information on
SP2.

Installation

Understanding that the great bulk of CCRP's users will be sophisticated developers themselves, it has been
decided that you're quite capable of manual installation of these components. It's really quite simple:

    * Unzip the contents of ccrpTmr.zip into a working directory.

    * Move the following files into your System directory:
ccrpTmr.dll
ccrpTmr.hlp
ccrpTmr.cnt
ccrpTmr.dep
ccrpTmr.tlb (optional)

    * Optionally, download the HtmlHelp file from http://www.mvps.org/vb/ccrptmr.
ccrpTmr.chm (optional)

    * The remaining files make up the samples, and may be placed whereever convenient.

Registering the Library
There are two methods you can use to register the DLL.

    * Drop into a DOS box, change to the System directory, and issue the following command:

C:\WinNT\System32\>regsvr32 ccrpTmr.dll

    * From the VB5 Project menu, select References..., then press the Browse button, find and highlight the
library, press OK.

If you get an error while attempting to register ccrpTmr.dll (the SP2 version of the DLL), it is likely that you do
not have SP2 installed and hence you will need to download and use ccrpTmrs.ocx (see Introduction about
SP2 issues).
 

Distribution and Licensing Agreement

For purposes of clarity and simplicity, the term "Controls" or "control" as used below shall be considered
synonamous with "Libraries" or "object library".

You must agree to the following distribution and licensing agreement before using the control. By
using the control you indicate your full agreement to the following:

All Common Controls Replacement Project (CCRP) controls are provided as freeware, restricted only by the
conditions set forth below.

Developers
CCRP controls are provided as freeware to developers who are solely responsible for determining the
suitability of the controls for their use. CCRP controls and related files are the property of the Common Controls
Replacement Project, and the CCRP retains the exclusive property rights to the controls. This agreement
grants application developers conditional permission for their use.

Application developers are free to distribute with their completed application any required CCRP control. This
also extends to include any demo code that may have been modified in order to achieve the functionality
desired in their application. By using CCRP software, the developer acknowledges these conditions covering
both the use and distribution of CCRP controls, and their use shall constitute acceptance of this agreement.

Under no circumstance does the control author or the Common Controls Replacement Project assume any
responsibility for the reliability of the CCRP controls, nor responsibility in the unlikely event of any possible loss
of data that may be incurred from such use.

Distributors
The CCRP website (http://www.mvps.org/ccrp) and the CCRP newsgroup (news.mvps.org) are the sole legal
distributors of CCRP controls.

No control or portion of any control package (ocx, dll, help file, demo code or zip) may be posted or distributed
via any web site, online service or BBS, or included on any CD or with any other software media without explicit
written permission from CCRP control lead developer unless the control is a required part of a completed
application being distributed. In addition, CCRP controls may not be distributed via any fee-based service or
media. Email addresses of the lead developers can be found on the CCRP Membership page.

Control Registration
We always like to know who uses our controls. And registering yourself as a developer using CCRP controls
has its advantages. Receive email notification of additions and updates, participate in the Project's
newsgroups, and access product support. Take a few seconds to register by answering five easy questions.

Support, Etc.

Support
The CCRP provides a public internet newsserver as a primary means of support. This should be the first place
to go, as you will not only recieve the author's attention, but also that of other users of the control or library in
question. This resource is located at news://news.mvps.org.

For e-mail support, contact the author directly at karl@mvps.org.

Updates
Visit the official CCRP website at http://www.mvps.org/ccrp to download updates and other CCRP controls or
get more information on this library.

Reporting Bugs / Submitting Feature Requests
To report bugs in the library or suggest features that you would like to see incorporated into a future version of
the library send email to karl@mvps.org.

Further Resources
Swing by the author's web site at http://www.mvps.org/vb for numerous VB samples and other tools.

If you're interested in an HtmlHelp version of this helpfile, that's also available at the author's web site. This
online (and downloadable) documentation will always be the most up-to-date, as it's the easiest to update and
distribute. To view the documentation online, or download a compiled version, hit
http://www.mvps.org/vb/ccrptmr.

About Multimedia Timers

Multimedia timer services allow applications to schedule timer events with the greatest resolution (or accuracy)
possible for the hardware platform. These multimedia timer services allow you to schedule timer events at a
higher resolution than other timer services. These timer services are useful for applications that demand high-
resolution timing. For example, a MIDI sequencer requires a high-resolution timer because it must maintain the
pace of MIDI events within a resolution of 1 millisecond.

Availability
The number of multimedia timers your application can create can vary depending on the operating system it is
running under. In Windows NT timers are allocated on a per process basis, while in Windows 95/98 there is an
absolute limit on the total number of timers system-wide.

Operating System Timers
Windows 95/98 32 total for system
Windows NT 16 per process

User Interface Issues
If you attempt to update the screen at very high frequencies (more often than every 10ms, or so), prepare for
fireworks. Windows 95 GDI is composed of much 16-bit code, and simply can't keep up. Hard-locks, and even
system resets, can occur. If the Interval property is user configurable, test before updating the screen:

Private Sub Timer1_Timer()
 Static Ticks As Long
 Ticks = Ticks + 1
 '
 ' Updating the display more often than every 10ms can blow
 ' Win95's 16-bit GDI to shreds -- hardlock or system reset.
 '
 If Timer1.Interval >= 10 Then
 lblTimer1.Caption = " " & Format(Ticks, "#,##0")
 ElseIf (Ticks Mod 10) = 0 Then
 lblTimer1.Caption = " " & Format(Ticks, "#,##0")
 End If
End Sub

The Zen of Timers
The ccrpTimers library practices "safe timers." That is, internally, a single multimedia timer is used and each
timer object is notified on each timer callback. The timer objects then, in turn, check to see if their specified
Interval has elapsed, and if so raise a Timer event (or fire a notification method) to their client. This scheme
insures the lowest possible impact on overall system performance.

Each timer object exposes a Stats property, which is actually a non-creatable class composed of data
regarding the current state of the ccrpTimers library and the system multimedia timer. You may use the
Stats.Frequency property set the internal interval used for the library timer. This is the rate at which all timer
objects are notified of timer callbacks. It is not related to how often your client class or form will be notified, as
long as this value is set to one equal to or lower than the Interval property of your timer object(s).

That last point is very important to keep in mind! The idea is to set the Stats.Frequency to a value that's as high
as possible, without going higher than the timer Interval(s) you plan to use. In practical usage, there's really no
need to go higher than 20 or 25 milliseconds, even if you only want a Timer event every few minutes or so. On
most of today's hardware, there will be no measurable impact from such a setting.

However, if you set the Stats.Frequency to 20, then set a ccrpTimer.Interval to 10, you'll find that your events
will only be half as regular as you desire. The whole point is to make it the highest common demoninator of all
the timer object Intervals you plan to use. For example, setting Stats.Frequency to 30 and Interval to 100

doesn't make sense, as the timer callbacks will occur at 90 and 120 milliseconds. The 90 will not be enough to
satisfy your Interval, so every notification will be at 120, or 20 milliseconds late. In this case, a setting of 20 or
25 would be far preferable.

Here's a little test you can run to observe how altering the Stats.Frequency setting will affect the accuracy with
which your timer events are fired. Open a new project, set a Reference to the ccrpTimers library, and add the
following code to the main form:

 Option Explicit

 Private WithEvents tmr As ccrpTimer

 Private Sub Form_Load()
 Set tmr = New ccrpTimer
 With tmr
 ' Alter next value widely (1 to 400)
 ' to observe accuracy variations.
 .Stats.Frequency = 1
 .Interval = 200
 .Enabled = True
 Debug.Print "Resolution: "; .Stats.Resolution
 End With
 End Sub

 Private Sub tmr_Timer(ByVal Milliseconds As Long)
 Debug.Print Milliseconds
 End Sub

You'll see that you'll come extremely close to hitting the desired Interval the lower the Stats.Frequency value
goes, and that the target will get progressively sloppier the higher you set this value. What you need to ask
yourself at that point is, just how much accuracy does your application require?

Perhaps one of the most important things to take from this little discussion is that timer events are something
that need to be handled expeditiously. Get in, get out. If you try to do too much, you'll clog up the system in a
hurry. If possible, it's always wisest to share system timers, thus reducing the overhead of having multiple
timers firing.

Revision History

Version 1.20 (build 151), April 30, 1998

    * Added the ccrpTimer.NotifyEx and ccrpCountdown.NotifyEx properties. These properties have been
declared As Object, in anticipation of accomodating two new secondary interfaces, the two existing interfaces,
and any and all new interfaces added in the future. Currently supported are two new additions --
ICcrpTimerNotifyEx and ICcrpCountdownNotifyEx -- and the two notification interfaces added in version 1.10.
These new interfaces (See Secondary Interfaces) vary from the original in that they also pass references to
the object firing their methods. With this identification available, it is easy to simulate control arrays with class
objects.

    * A new demo was added to illustrate simulated control array syntax via the new NotifyEx property and
secondary interface event notification. See Demo: ObjArray.vbp for details.

    * Fixed a limitation on the maximum value accepted for Interval properties. Previously, the Interval was
restricted to the maximum supported by the operating system (typically 1,000,000ms in NT and 65,535ms in
Win95/98). This restriction is no longer enforced, and you may set an Interval to any positive value within the
range of a Long (1 to 2,147,483,647ms).

    * Adjusted the values passed in the Milliseconds parameter of Timer and Tick events, so they more
accurately represent the true period elapsed since the last event.

Version 1.11 (build 130), April 11, 1998

    * Updated documentation to include information about new properties and interfaces.

    * Added the Tag property to each timer object.

Version 1.10 (build 113), March 29, 1998

    * Added the ccrpTimer.Notify and ccrpCountdown.Notify properties. This addition provides signficant new
functionality by exposing two new interefaces, ICcrpTimerNotify and ICcrpCountdownNotify. Client programs
may choose to use Implements to add this secondary interface to their forms, usercontrols, or classes. The
advantage of using the secondary interface over the classic event model is two-fold. Foremost, interface
notification is significantly faster than raised events. Also, raised events may be blocked within the Visual Basic
IDE by message boxes or modal dialogs, while interface notifications continue to come through, thus making
debugging signficantly easier.

    * A new demo, Demo: Notify.vbp, was added to illustrate usage of the Notify property and secondary
interface event notification.

Version 1.02 (build 100), March 15, 1998

    * Initial public release.

Error Codes

Various properties may raise an error 380 ("Invalid property value") if illegal values are assigned. This is
generally only in cases where reasonable assumptions can't be made.    For example, passing a negative value
to one of the Interval properties.

Valid property ranges are:
ccrpTimer.Interval >= 0      (0 defaults to MinimumResolution)

ccrpTimer.EventType 0 or 1    (Enumerated)

ccrpCountdown.Interval >= 0      (0 defaults to MinimumResolution)

ccrpCountdown.Duration > 0

It is also possible that the system may be depleted of available multimedia timers at the time the ccrpTimers
library is initialized. See About Multimedia Timers for more details on this, and the Zen of Timers.

No other properties should raise an error when set. If any other errors are raised, please notify the author at
once:

Karl E. Peterson
karl@mvps.org

Secondary Interfaces

The following interfaces are exposed to allow notification of timer "events" without threat of being blocked by
modal dialog boxes or message boxes. Although such blocking typically only occurs within the Visual Basic
IDE, it can be a nuisance during the development process. In addition, event notification via an interface can be
many times faster than through the inherently late-bound WithEvents model.

ICcrpTimerNotify
Implement the ICcrpTimerNotify interface within your class or form to be notified of all ccrpTimer events via a
method call. This interface is designed for use in situations where a single timer object is being used. Inform a
ccrpTimer object that your client is implementing this interface via the Notify property.

 Option Explicit

 Public Sub Timer(ByVal Milliseconds As Long)
 End Sub

ICcrpTimerNotifyEx
Implement the ICcrpTimerNotify interface within your class or form to be notified of all ccrpTimer events via a
method call. This interface is designed for use in situations where a multiple timer objects is being used.
Provides a method to simulate control arrays. Inform a ccrpTimer object that your client is implementing this
interface via the NotifyEx property.

 Option Explicit

 Public Sub Timer(ByVal Milliseconds As Long, ByVal Tmr As ccrpTimer)
 End Sub

ICcrpCountdownNotify
Implement the ICcrpCountdownNotify interface within your class or form to be notified of all ccrpCountdown
events via method calls. This interface is designed for use in situations where a single timer object is being
used. Inform a ccrpCountdown object that your client is implementing this interface via the Notify property.

 Option Explicit

 Public Sub Tick(ByVal TimeRemaining As Long)
 End Sub

 Public Sub Timer()
 End Sub

ICcrpCountdownNotifyEx
Implement the ICcrpCountdownNotify interface within your class or form to be notified of all ccrpCountdown
events via method calls. This interface is designed for use in situations where a single timer objects are being
used. Provides a method to simulate control arrays. Inform a ccrpCountdown object that your client is
implementing this interface via the NotifyEx property.

 Option Explicit

 Public Sub Tick(ByVal TimeRemaining As Long, ByVal Tmr As ccrpCountdown)
 End Sub

 Public Sub Timer(ByVal Tmr As ccrpCountdown)
 End Sub

Demo: Notify.vbp

The Notify sample demonstrates the use of Implemented interfaces as opposed to more traditional Events. The
FNotify.frm file uses Implements ICcrpTimerNotify and Implements ICcrpCountdownNotify to sink events
generated from two distinct instances of their related objects.

There are two main advantages in using implemented secondary interfaces rather than events. The first is
performance -- potentially reaching 10x or better. The second is that events can be blocked by a MsgBox or
modal dialog while running within the IDE. Secondary interfaces allow calls into your objects, forms or classes,
even when events might otherwise be blocked.

To use the more efficient secondary interfaces, add code such as the following to the Declarations section of
any class or form:

 Implements ICcrpTimerNotify
 Private tmrNotify As ccrpTimer

Note that WithEvents wasn't used in the declaration for the ccrpTimer object. There's no longer a need for that.
After entering the Implements directive, a new entry will appear in the left-hand dropdown of your code window.
Selecting "ICcrpTimerNotify" from this list will add a new procedure, and populate the right-hand dropdown list
with all the procedures you must implement:

 Private Sub ICcrpTimerNotify_Timer(ByVal Milliseconds As Long)
 ' code to handle Timer "events"
 End Sub

You're now prepared to accept "events" as calls into your class or form. To actually tell the ccrpTimers library
that this is what you want, simply pass a reference to your class or form into the Notify property:

 Private Sub Form_Load()
 Set tmrNotify.Notify = Me
 End Sub

Similarly, if you choose to implement the ICcrpCountdownNotify interface, you would use the following code:

 Implements ICcrpCountdownNotify
 Private cntNotify As ccrpCountdown

 Private Sub Form_Load()
 Set cntNotify.Notify = Me
 End Sub

 Private Sub ICcrpCountdownNotify_Tick(ByVal TimeRemaining As Long)
 ' code to handle Tick "events"
 End Sub

 Private Sub ICcrpCountdownNotify_Timer()
 ' code to handle Timer "events"
 End Sub

You can, of course, implement both secondary interfaces, as the Notify project demonstrates.

Demo: TimerTest.vbp

The TimerTest sample VB5 application displays all the functionality provided by ccrpTimers. In it you will see
how easy it is, using WithEvents, to create drop-in ccrpTimer replacements for VB's intrinsic Timer control.

Also shown is how to measure elapsed type using the ccrpStopWatch object, and set off a countdown with
intermittent notifications using the ccrpCountdown object. Dig into this sample, and see just how simple it is to
bump your resolution up to true millisecond accuracy!

The three files that compose TimerTest (TimerTest.vbp, FTimerTest.frm, FTimerTest.frx) may be placed
anywhere on your hard disk. To load the project, first ensure that you have properly registered (see
Introduction) the ccrpTimers object library.

Demo: ObjArray.vbp

The ObjArray sample demonstrates the use of Implemented interfaces as opposed to more traditional Events.
The FTmrArray.frm file uses Implements ICcrpTimerNotifyEx and Implements ICcrpCountdownNotifyEx to sink
events generated from two simulated control arrays of five distinct instances of their related objects.

There are two main advantages in using implemented secondary interfaces rather than events. The first is
performance -- potentially reaching 10x or better. The second is that events can be blocked by a MsgBox or
modal dialog while running within the IDE. Secondary interfaces allow calls into your objects, forms or classes,
even when events might otherwise be blocked.

A third advantage is demonstrated by ObjArray -- the ability to work with an array of objects that are capable of
firing events. Since the "events" are actually interface methods being fired into the client, there is no need to
use WithEvents in the array declaration. Simply add code such as the following to the Declarations section of
any class or form:

 Implements ICcrpTimerNotifyEx
 Private m_Tmr(0 To 4) As ccrpTimer

Note that WithEvents wasn't used in the declaration for the ccrpTimer object array. There's no longer a need for
that. After entering the Implements directive, a new entry will appear in the left-hand dropdown of your code
window. Selecting "ICcrpTimerNotifyEx" from this list will add a new procedure, and populate the right-hand
dropdown list with all the procedures you must implement:

 Private Sub ICcrpTimerNotifyEx_Timer(_
 ByVal Milliseconds As Long, _
 ByVal Tmr As ccrpTimers.ccrpTimer)
 ' code to handle Timer "events"
 End Sub

You're now prepared to accept "events" as calls into your class or form. The reference to the timer library object
provides your "Index" into the array. Several methods are used in the ObjArray demo to show the variety of
approaches that can be used in interpreting the passed object reference. Perhaps the simplest is to place an
Index value into the object's Tag property.

To tell the ccrpTimers library what object to notify of timer events, simply pass a reference to your class or form
into the NotifyEx property:

 Private Sub Form_Load()
 Dim i As Long
 For i = LBound(m_Tmr) To UBound(m_Tmr)
 Set m_Tmr(i) = New ccrpTimer
 Set m_Tmr(i).NotifyEx = Me
 Next i
 End Sub

Similarly, if you choose to implement the ICcrpCountdownNotifyEx interface, you would use code similar to the
following:

 Implements ICcrpCountdownNotifyEx
 Private m_Cnt(0 To 4) As ccrpCountdown

 Private Sub Form_Load()
 Dim i As Long
 For i = LBound(m_Cnt) To UBound(m_Cnt)

 Set m_Cnt(i) = New ccrpCountdown
 Set m_Cnt(i).NotifyEx = Me
 Next i
 End Sub

 Private Sub ICcrpCountdownNotify_Tick(_
 ByVal TimeRemaining As Long, _
 ByVal Tmr As ccrpTimers.ccrpCountdown)
 ' code to handle Tick "events"
 End Sub

 Private Sub ICcrpCountdownNotify_Timer(_
 ByVal Tmr As ccrpTimers.ccrpCountdown)
 ' code to handle Timer "events"
 End Sub

You can, of course, implement both secondary interfaces, as the ObjArray project demonstrates.

Editorial: No More Lame Benchmarks!

Warning: This might make sense
If you're like me, you're sick and tired of seeing really lame methods to time VB code.    The most common
mistakes include:

* using VB's own Timer function, with its clock-tick resolution of 55ms,
* not timing enough iterations to make for meaningful comparisons,
* not eliminating code that shouldn't be timed,
* not subtracting the time of code that couldn't be eliminated, and
* testing in the IDE rather than from an EXE.

Obviously, any results published that didn't account for the above are worse than worthless.    So, I'm providing
my ccrpTimers library as freeware, and encouraging folks to use it. The ccrpStopWatch object provides
millisecond resolution on most PCs, by employing the multimedia timer call timeGetTime. Using it is almost too
easy!    Check out this example:

A complete project, benchmarking the difference between 100,000 calls to Unicode and ANSI versions
of GetWindowsDirectory:

 Option Explicit

 Private Declare Function GetWindowsDirectoryA Lib "kernel32" _
 (lpBuffer As Any, ByVal nSize As Long) As Long
 Private Declare Function GetWindowsDirectoryW Lib "kernel32" _
 (lpBuffer As Any, ByVal nSize As Long) As Long

 Private Sub Form_Click()
 Dim tmr As ccrpStopWatch
 Dim tL As Long
 Dim t1 As Long, t2 As Long
 Dim i As Long
 Dim BufferA As String
 Dim BufferW() As Byte
 Const Loops As Long = 100000
 Const MAX_PATH = 260
 '
 ' Create instance of stopwatch class
 '
 Set tmr = New ccrpStopWatch
 '
 ' Determine overhead of looping
 '
 tmr.Reset
 For i = 1 To Loops
 Next i
 tL = tmr.Elapsed
 '
 ' See how long it takes to make (Loops) calls
 ' to an ANSI function
 '
 BufferA = Space(MAX_PATH)
 tmr.Reset
 For i = 1 To Loops
 Call GetWindowsDirectoryA(ByVal BufferA, MAX_PATH)

 Next i
 t1 = tmr.Elapsed
 '
 ' See how long it takes to make (Loops) calls
 ' to Unicode version of same function
 '
 ReDim BufferW(0 To (MAX_PATH * 2) - 1) As Byte
 tmr.Reset
 For i = 1 To Loops
 Call GetWindowsDirectoryW(BufferW(0), MAX_PATH)
 Next i
 t2 = tmr.Elapsed
 '
 ' Output results, subtracting loop overhead
 '
 Me.Cls
 Me.Print "Loop Overhead:", tL; " ms"
 Me.Print "ANSI Calls:", , t1 - tL; " ms"
 Me.Print "Unicode Calls:", t2 - tL; " ms"
 Debug.Print "Loop Overhead:", tL; " ms"
 Debug.Print "ANSI Calls:", , t1 - tL; " ms"
 Debug.Print "Unicode Calls:", t2 - tL; " ms"
 End Sub

Tests conducted on a dual-P6/200, with 128Mb RAM, running NT4/SP3 and VB5/SP2.

IDE Results
Loop Overhead: 16 ms
ANSI Calls: 1672 ms
Unicode Calls: 109 ms

EXE Results
Loop Overhead: 0 ms
ANSI Calls: 1422 ms
Unicode Calls: 78 ms

Conclusions
Amazing what a difference there is between making Unicode and ANSI calls, isn't there? That aside, how much
simpler could it be to accurately benchmark your VB code? Hopefully, you'll find this methodology not only
useful, but much more accurate than any others out there!

COMCTL32.DLL versions

Microsoft frequently provides updates to COMCTL32.DLL. These updates add new features to the controls
found in COMCTL32.DLL. At the time of writing, there are four versions of COMCTL32.DLL available:

version 4.00 - Installed by Windows 95
version 4.70 - Installed by Internet Explorer 3
version 4.71 - Installed by Internet Explorer 4
version 4.72 - A version released after Internet Explorer 4 which for the first time is redistributable.

The ComCtlVer will identify which of these is installed on the System:

2 - Win95
3 - IE3
4 - IE4

Currently the control does not differentiate between 4.71 and 4.72.

Version-specific features
The CCRP High Performance Timer Objects library will function without regard to what version of the common
controls you have installed, since it uses system multimedia timer services and does not use any features of
COMCTL32.DLL.

Obtaining the COMCTL32.DLL redistributable update
In order to redistribute version 4.72 of COMCTL32.DLL, you must download a self-extracting EXE from
Microsoft's web site. You must then call the EXE from within your setup program. You may not simply copy
COMCTL32.DLL in your setup program. CCRP highly recommend that you distribute this update to your clients
so that this and other CCRP controls will function fully. The self-extracting EXE can be downloaded from:

http://www.microsoft.com/msdn/downloads/files/40Comupd.htm

The self-extracting EXE is called 40comupd.exe and can be invoked silently from your setup program.

ccrpTimers Library
Controls

Description: CCRP: High Performance Timers Objects
Library: ccrpTimers
File Name: ccrpTmr.dll
Help File: ccrpTmr.hlp
GUID: {d1866ac5-bec8-11d1-bbac-0055003b26de}
Objects: ccrpStopWatch,

ccrpTimer,
ccrpCountdown

About this Help File
As noted elsewhere, this help file was generated using the VSDOCX tool from Videosoft. It's a very slick
method to automate much of the process behind documenting OCX and DLL files. However, like most
automation tools, it falls down at times too. It would seem Videosoft didn't spend much time testing against
DLLs, as the output is definitely geared towards OCX documentation. Please overlook "control" or "controls"
when you see those words (for example, the link at the top of this page <sigh>), and instead read them as
"object" or "objects." Similarly, ignore references to forms in the Syntax listings for each property and method.
There appears to be no way to keep those out of the helpfile without a lot of tedious manual editing. <deep
sigh> Nonetheless, VSDOCX is very cool, and getting close to the point where I'd unhesitatingly recommend it.

ccrpTimer Object
Properties          Methods          Events

Object Name: ccrpTimer
Description: Extremely accurate replacement for VB's standard Timer control
File Name: ccrpTmr.dll
Help File: ccrpTmr.hlp
GUID: {d1866abd-bec8-11d1-bbac-0055003b26de}
Properties: 7
Events: 1
Methods: 1

Before you can use ccrpTimer object in your application, you must add the ccrpTmr.dll file to your project. If
you use the object in most of your VB projects, you may want to add it to VB's Autoload file.

To distribute applications you create with the ccrpTimer object, you must install and register it on the user's
computer. The Setup Wizard provided with Visual Basic provides tools to help you do that. Please refer to the
Visual Basic manual for details. A dependency file (ccrpTmr.DEP) has been included for your convenience.

General Usage
When declaring a new instance of ccrpTimer, use the special syntax first made available with VB5 to do so
with full event support. Place a declaration similar to the following in the Declarations section of either a form or
class module:

Private WithEvents Timer1 As ccrpTimer

At this point, you'll note that Timer1 appears in the objects dropdown within that module's code window. By
selecting Timer1 from this list, a new event will be placed into your code:

Private Sub Timer1_Timer()

End Sub

Typically, you'll want to initialize the ccrpTimer object in either the Form_Load or Class_Initialize event:

Set Timer1 = New ccrpTimer

At any point after initializing the object, you may start setting its various property values. Use Interval to set
how often the Timer event should occur. The EventType property specifies whether to notify you continually
(just like VB's Timer control) or to set up a single occurance event.    As with VB's Timer control, Enabled turns
the ccrpTimer object on and off.

As with the other objects in the ccrpTimers library, properties are exposed via the Stats object to reveal the
MinimumResolution and MaximumResolution settings supported on the current hardware. Additionally, a
Resolution property is exposed to inform you what resolution the library is currently using. You may also set or
read the Frequency of the timer being used by ccrpTimers through Stats.

In general, your application should not set a frequency higher than absolutely necessary, to avoid forcing the
CPU to process extraneous hardware interrupts. See About Multimedia Timers for more details.

About Method (ccrpTimer Object)
See Also          Examples          Applies to

Shows About box for ccrpTimers.

Syntax
[form!]ccrpTimer.About

Remarks
This method is provided solely to provide you, the user, with a method of determining the origin of this DLL.

Enabled Property (ccrpTimer Object)
See Also          Examples          Applies to

Returns/sets a value that determines whether Timer events will occur as specified.

Syntax
[form!]ccrpTimer.Enabled[= {True | False}]

Remarks
Controls whether or not Timer events will fire every [Interval] milliseconds.

Disabling a Timer object by setting Enabled to False kills the object's internal timer, and prevents any further
Timer events from occuring. Timer events only occur when a Timer object's Enabled property is set to True.

Settings Description
True Allows object to trigger to events.
False (Default) Prevents object from triggering events.

Data Type
Boolean

Default Value
False

EventType Property
See Also          Examples          Applies to

Returns/sets a value that determines whether timer events will be periodic (recurring) or once-only.

Syntax
[form!]ccrpTimer.EventType[= TimerEventTypes]

Settings
Valid settings for the EventType property are:

Value Constant
0 TimerOneShot
1 TimerPeriodic

Remarks
The EventType property controls whether Timer events fire continuously, or only once.

Settings Description
TimerOneShot Event occurs once, after [Interval] milliseconds.
TimerPeriodic (Default) Event occurs every [Interval] milliseconds.

Data Type
TimerEventTypes (Enumeration)

Default Value
tmrPeriodic

Interval Property (ccrpTimer Object)
See Also          Examples          Applies to

Returns/sets the number of milliseconds between calls to the object's Timer events.

Syntax
[form!]ccrpTimer.Interval[= value As Long]

Remarks
The Interval property of the Timer object determines how often, in milliseconds, Timer events will fire.

Set the Enabled property to True to enable, or false to disable, Timer events.

Important Note
If you attempt to update the screen at very high frequencies (more often than every 10ms, or so), prepare for
fireworks. Windows 95 GDI is composed of much 16-bit code, and simply can't keep up. Hard-locks, and even
system resets, can occur. If the Interval is user configurable, test before updating the screen:

Private Sub Timer1_Timer()
 Static Ticks As Long
 Ticks = Ticks + 1
 '
 ' Updating the display more often than every 10ms can blow
 ' Win95's 16-bit GDI to shreds -- hardlock or system reset.
 '
 If Timer1.Interval >= 10 Then
 lblTimer1.Caption = " " & Format(Ticks, "#,##0")
 ElseIf (Ticks Mod 10) = 0 Then
 lblTimer1.Caption = " " & Format(Ticks, "#,##0")
 End If
End Sub

Data Type
Long

Default Value
100    (1/10 second)

Notify Property (ccrpTimer Object)
See Also          Examples          Applies to

Secondary interface provided for notification via method calls rather than events.

Syntax
[form!]ccrpTimer.Notify[= ICcrpTimerNotify]

Remarks
The ccrpTimer object will call methods within an object (form or class) that implements the ICcrpTimerNotify
interface, and registers itself using this property. There are several advantages to choosing this approach, as
opposed to the more classic WithEvents declaration. Principally, interfaces are early-bound, and hence much
faster in execution. Secondly, events may be blocked (within the IDE) by such things as message boxes or
modal dialogs. Therefore, debugging with Implements is much easier than debugging with WithEvents.

Data Type
ICcrpTimerNotify

Default Value
Nothing

NotifyEx Property (ccrpTimer Object)
See Also          Examples          Applies to

Secondary interface provided for notification via method calls rather than events. Supports identification of
originating object.

Syntax
[form!]ccrpTimer.NotifyEx[= object]

Remarks
The ccrpTimer object will call methods within an object (form or class) that implements the ICcrpTimerNotifyEx
interface, and registers itself using this property. There are several advantages to choosing this approach, as
opposed to the more classic WithEvents declaration. Principally, interfaces are early-bound, and hence much
faster in execution. Secondly, events may be blocked (within the IDE) by such things as message boxes or
modal dialogs. Therefore, debugging with Implements is much easier than debugging with WithEvents.

This property has been declared As Object so that it can accomodate a variety of interfaces. The intention is
that all supported interfaces may be passed here. Presently, the ICcrpTimerNotify and ICcrpTimerNotifyEx
interfaces are supported. ICcrpTimerNotifyEx is identical to ICcrpTimerNotify with one very important exception.
With each method, a reference to the ccrpTimer object firing that method is passed (see Secondary Interfaces
for details). This allows simulation of control arrays, as well as the ability to sink "events" from multiple timer
objects via a single interface without the need to resort to use of WithEvents. See Demo: ObjArray.vbp for
complete details on implementation.

Valid Interfaces
ICcrpTimerNotify, ICcrpTimerNotifyEx

Data Type
Object

Default Value
Nothing

Stats Property (ccrpTimer Object)
See Also          Examples          Applies to

Provides a class of information relevant to the current system's multimedia timer.

Syntax
[form!]ccrpTimer.Stats[= ccrpTimerStats]

Remarks
The Stats property of all ccrpTimers objects provides information regarding the current state of the system's
multimedia timer and how the ccrpTimers library is using it.

Frequency
This property may be used to set or return the frequency of the multimedia timer being used by the ccrpTimers
library. Internally, ccrpTimers runs off a single multimedia timer, and services all classes based on that timer. At
initialization, this timer is set to fire once every 1 millisecond, to offer users the most frequent events possible.
However, if you find that you need events fired at a lower frequency, you can conserve CPU usage by setting
ccrpTimers to use a higher frequency.

Important Note: All objects exposed by ccrpTimers library use a single timer, thus a single frequency!
Optimization of your CPU usage is achieved by selecting the Highest Common Denominator of all timer objects
to use as your desired Frequency.

Resolution
This property returns the functional resolution, or accuracy, of the multimedia timers requested by ccrpTimers
library. Resolution is considered the accuracy with which timer events occur. For example, if you request a
timer event every 100 milliseconds, and the system's minimum resolution is 5 milliseconds, the timer events will
occur within a range of 95 to 105 milliseconds apart. The ccrpTimers library requests a resolution of 1
millisecond, although the Frequency may be varied. It is important to recognize that resolution requests are just
that -- a request for a desired setting -- and are entirely dependent on the hardware being used.

MinimumResolution and MaximumResolution
These properties are provided for informational purposes only. They is a measure of the minimum and
maximum resolutions, or accuracy, of the multimedia timer on the hardware being tested. Resolution is
considered the accuracy with which timer events occur. For example, if you request a timer event every 100
milliseconds, and the system's minimum resolution is 5 milliseconds, the timer events will occur within a range
of 95 to 105 milliseconds apart. Most modern PCs are capable of true 1 millisecond minimum resolution, and
generally return 1,000,000 under NT and 65,535 under Windows 95 as their maximum resolution.

Data Type
ccrpTimerStats

Tag Property (ccrpTimer Object)
See Also          Examples          Applies to

Stores any extra data needed by your program.

Syntax
[form!]ccrpTimer.Tag[= value As Variant]

Remarks
A place for you to store any information required to uniquely identify, or related to, each instance of this object.
The setting of this property in no way affects the behavior of the object.

Data Type
Variant

Default Value
Empty

Timer Event (ccrpTimer Object)
See Also          Examples          Applies to

Event that fires whenever [Interval] milliseconds elapses.

Syntax
Private Sub ccrpTimer_Timer(ByVal Milliseconds As Long)

Remarks
Timer events occur at the first opportunity following [Interval] milliseconds when the Timer object is Enabled.
In situations where the processor is busy, multimedia timer events take low precedence and hence a Timer
event may actually be several milliseconds late.

The Milliseconds parameter to this event reports how long it's been since the last time the event has been
called or since the object has been enabled.

Use the Interval property to set how far apart Timer events should occur.

Set the Enabled property to True to enable, or false to disable, Timer events.

Based on the setting for the EventType property, Timer events will either be ongoing or "one-shot."

ccrpStopWatch Object
Properties          Methods          Events

Object Name: ccrpStopWatch
Description: Extremely accurate method to determine elapsed time.
File Name: ccrpTmr.dll
Help File: ccrpTmr.hlp
GUID: {d1866abb-bec8-11d1-bbac-0055003b26de}
Properties: 3
Events: 0
Methods: 2

Before you can use ccrpStopWatch object in your application, you must add the ccrpTmr.dll file to your
project. If you use the object in most of your VB projects, you may want to add it to VB's Autoload file.

To distribute applications you create with the ccrpStopWatch object, you must install and register it on the
user's computer. The Setup Wizard provided with Visual Basic provides tools to help you do that. Please refer
to the Visual Basic manual for details. A dependency file (ccrpTmr.DEP) has been included for your
convenience.

General Usage
When declaring a new instance of ccrpStopWatch, do so as you would any other object:

Dim sw As ccrpStopWatch
Set sw = New ccrpStopWatch

At the moment the object is initialized (with the Set statement above), the time is noted. At any point after that,
you may query the Elapsed property of the object to obtain the number of milliseconds that have gone by. Call
the Reset method to set the elapsed count back to zero.

As with the other objects in the ccrpTimers library, properties are exposed via the Stats object to reveal the
MinimumResolution and MaximumResolution settings supported on the current hardware. Additionally, a
Resolution property is exposed to inform you what resolution the library is currently using. You may also set or
read the Frequency of the timer being used by ccrpTimers through Stats.

The StopWatch object is extremely useful for benchmarking your code. See Editorial: No More Lame
Benchmarks! for one technique.

About Method (ccrpStopWatch Object)
See Also          Examples          Applies to

Shows About box for ccrpTimers

Syntax
[form!]ccrpStopWatch.About

Remarks
This method is provided solely to provide you, the user, with a method of determining the origin of this DLL.

Elapsed Property
See Also          Examples          Applies to

Returns the number of milliseconds elapsed since creation of the Stopwatch object or invocation of its Reset
method.

Syntax
value As Long = [form!]ccrpStopWatch.Elapsed

Remarks
The StopWatch object works by calling the timeGetTime API at initialization and whenever its Reset method is
called, and then storing this time for future use. When you query the Elapsed property of a StopWatch object,
timeGetTime is called again and the initialization time is subtracted from this new value, thus returning the
number of milliseconds since the first time was stored.

Query the Elapsed property whenever you need to know how long it's been since the StopWatch was
initialized. The StopWatch object is extremely useful for benchmarking your code. (See Editorial: No More
Lame Benchmarks! for one technique.)

Data Type
Long

Reset Method
See Also          Examples          Applies to

Resets the Stopwatch object's start time.

Syntax
[form!]ccrpStopWatch.Reset

Remarks
The StopWatch object works by calling the timeGetTime API at initialization, and storing this time for future
use. When you query the Elapsed property of a StopWatch object, timeGetTime is called again and the
initialization time is subtracted from this new value, thus returning the number of milliseconds since the first
time was stored.

When you call the Reset method, a new value is stored representing the current time, and against which future
measurements provided by Elapsed will be taken.

Stats Property (ccrpStopWatch Object)
See Also          Examples          Applies to

Provides a class of information relevant to the current system's multimedia timer.

Syntax
[form!]ccrpStopWatch.Stats[= ccrpTimerStats]

Remarks
The Stats property of all ccrpTimers objects provides information regarding the current state of the system's
multimedia timer and how the ccrpTimers library is using it.

Frequency
This property may be used to set or return the frequency of the multimedia timer being used by the ccrpTimers
library. Internally, ccrpTimers runs off a single multimedia timer, and services all classes based on that timer. At
initialization, this timer is set to fire once every 1 millisecond, to offer users the most frequent events possible.
However, if you find that you need events fired at a lower frequency, you can conserve CPU usage by setting
ccrpTimers to use a higher frequency.

Important Note: All objects exposed by ccrpTimers library use a single timer, thus a single frequency!
Optimization of your CPU usage is achieved by selecting the Highest Common Denominator of all timer objects
to use as your desired Frequency.

Resolution
This property returns the functional resolution, or accuracy, of the multimedia timers requested by ccrpTimers
library. Resolution is considered the accuracy with which timer events occur. For example, if you request a
timer event every 100 milliseconds, and the system's minimum resolution is 5 milliseconds, the timer events will
occur within a range of 95 to 105 milliseconds apart. The ccrpTimers library requests a resolution of 1
millisecond, although the Frequency may be varied. It is important to recognize that resolution requests are just
that -- a request for a desired setting -- and are entirely dependent on the hardware being used.

MinimumResolution and MaximumResolution
These properties are provided for informational purposes only. They is a measure of the minimum and
maximum resolutions, or accuracy, of the multimedia timer on the hardware being tested. Resolution is
considered the accuracy with which timer events occur. For example, if you request a timer event every 100
milliseconds, and the system's minimum resolution is 5 milliseconds, the timer events will occur within a range
of 95 to 105 milliseconds apart. Most modern PCs are capable of true 1 millisecond minimum resolution, and
generally return 1,000,000 under NT and 65,535 under Windows 95 as their maximum resolution.

Data Type
ccrpTimerStats

Tag Property (ccrpStopWatch Object)
See Also          Examples          Applies to

Stores any extra data needed by your program.

Syntax
[form!]ccrpStopWatch.Tag[= value As Variant]

Remarks
A place for you to store any information required to uniquely identify, or related to, each instance of this object.
The setting of this property in no way affects the behavior of the object.

Data Type
Variant

Default Value
Empty

ccrpCountdown Object
Properties          Methods          Events

Object Name: ccrpCountdown
Description: Object which notifies you after a specified period of time as elapsed.
File Name: ccrpTmr.dll
Help File: ccrpTmr.hlp
GUID: {d1866ac3-bec8-11d1-bbac-0055003b26de}
Properties: 8
Events: 2
Methods: 1

Before you can use ccrpCountdown object in your application, you must add the ccrpTmr.dll file to your
project. If you use the object in most of your VB projects, you may want to add it to VB's Autoload file.

To distribute applications you create with the ccrpCountdown object, you must install and register it on the
user's computer. The Setup Wizard provided with Visual Basic provides tools to help you do that. Please refer
to the Visual Basic manual for details. A dependency file (ccrpTmr.DEP) has been included for your
convenience.

General Usage
When declaring a new instance of ccrpCountdown, use the special syntax first made available with VB5 to do
so with full event support. Place a declaration similar to the following in the Declarations section of either a form
or class module:

Private WithEvents Countdown1 As ccrpTimer

At this point, you'll note that Timer1 appears in the objects dropdown within that module's code window. By
selecting Timer1 from this list, a new Timer event will be placed into your code:

Private Sub Countdown1_Timer()

End Sub

You will also be able to add a Tick event by dropping the events list in the code window:

Private Sub Countdown1_Tick(ByVal TimeRemaining As Long)

End Sub

Typically, you'll want to initialize the ccrpCountdown object in either the Form_Load or Class_Initialize event:

Set Countdown1 = New ccrpCountdown

At any point after initializing the object, you may start setting its various property values. Use the Duration
property to set how long the countdown should last before the Timer event occurs, and the Interval property to
set how often Tick events should occur during the countdown. As with VB's Timer control, Enabled turns the
ccrpTimer object on and off.

As with the other objects in the ccrpTimers library, properties are exposed via the Stats object to reveal the
MinimumResolution and MaximumResolution settings supported on the current hardware. Additionally, a
Resolution property is exposed to inform you what resolution the library is currently using. You may also set or
read the Frequency of the timer being used by ccrpTimers through Stats.

In general, your application should not set a frequency higher than absolutely necessary, to avoid forcing the
CPU to process extraneous hardware interrupts. See About Multimedia Timers for more details.

About Method (ccrpCountdown Object)
See Also          Examples          Applies to

Shows About box for ccrpTimers

Syntax
[form!]ccrpCountdown.About

Remarks
This method is provided solely to provide you, the user, with a method of determining the origin of this DLL.

Duration Property
See Also          Examples          Applies to

Returns/sets a value that determines how long the countdown will last. Measured in milliseconds.

Syntax
[form!]ccrpCountdown.Duration[= value As Long]

Remarks
Use the Duration property to set how long you want the countdown to last. The Timer event will fire when this
duration has transpired.

The time remaining in a countdown may be determined at any time by querying the TimeRemaining property.

The Interval property of the Countdown object determines how often Tick events will fire during the
countdown.

Set the Enabled property to True to begin a countdown, or to False to interrupt a countdown.

Data Type
Long

Default Value
1000    (1 second)

Enabled Property (ccrpCountdown Object)
See Also          Examples          Applies to

Returns/sets a value that determines whether the countdown should commence or continue.

Syntax
[form!]ccrpCountdown.Enabled[= {True | False}]

Remarks
Controls whether or not a countdown is underway.

Disabling a Countdown object by setting Enabled to False cancels the countdown set up by the control's
Duration property. Tick and Timer events only occur when a Countdown object's Enabled property is set to
True.

Settings Description
True Allows object to trigger to events.
False (Default) Prevents object from triggering events.

The Enabled property is automatically reset to False when a countdown finishes.

To temporarily delay a countdown, query and store the TimeRemaining property and set Enabled to False.
Later, set the stored value into the Duration property, and set Enabled to True.

Data Type
Boolean

Default Value
False

Interval Property (ccrpCountdown Object)
See Also          Examples          Applies to

Returns/sets a value that determines how often a client is notified of countdown progress. Measured in
milliseconds.

Syntax
[form!]ccrpCountdown.Interval[= value As Long]

Remarks
The Interval property of the Countdown object determines how often Tick events will fire during the
countdown.

Use the Duration property to set how long you want the countdown to last. The Timer event will fire when this
duration has transpired.

The time remaining in a countdown may be determined at any time by querying the TimeRemaining property.

Set the Enabled property to True to begin a countdown, or to False to interrupt a countdown.

Data Type
Long

Default Value
100    (1/10 second)

Notify Property (ccrpCountdown Object)
See Also          Examples          Applies to

Secondary interface provided for notification via method calls rather than events.

Syntax
[form!]ccrpCountdown.Notify[= ICcrpCountdownNotify]

Remarks
The ccrpCountdown object will call methods within an object (form or class) that implements the
ICcrpCountdownNotify interface, and registers itself using this property. There are several advantages to
choosing this approach, as opposed to the more classic WithEvents declaration. Principally, interfaces are
early-bound, and hence much faster in execution. Secondly, events may be blocked (within the IDE) by such
things as message boxes or modal dialogs. Therefore, debugging with Implements is much easier than
debugging with WithEvents.

Data Type
ICcrpCountdownNotify

Default Value
Nothing

NotifyEx Property (ccrpCountdown Object)
See Also          Examples          Applies to

Secondary interface provided for notification via method calls rather than events. Supports identification of
originating object.

Syntax
[form!]ccrpCountdown.NotifyEx[= object]

Remarks
The ccrpCountdown object will call methods within an object (form or class) that implements the
ICcrpCountdownNotifyEx interface, and registers itself using this property. There are several advantages to
choosing this approach, as opposed to the more classic WithEvents declaration. Principally, interfaces are
early-bound, and hence much faster in execution. Secondly, events may be blocked (within the IDE) by such
things as message boxes or modal dialogs. Therefore, debugging with Implements is much easier than
debugging with WithEvents.

This property has been declared As Object so that it can accomodate a variety of interfaces. The intention is
that all supported interfaces may be passed here. Presently, the ICcrpCountdownNotify and
ICcrpCountdownNotifyEx interfaces are supported. ICcrpCountdownNotifyEx is identical to
ICcrpCountdownNotify with one very important exception. With each method, a reference to the
ccrpCountdown object firing that method is passed (see Secondary Interfaces for details). This allows
simulation of control arrays, as well as the ability to sink "events" from multiple timer objects via a single
interface without the need to resort to use of WithEvents. See Demo: ObjArray.vbp for complete details on
implementation.

Valid Interfaces
ICcrpCountdownNotify, ICcrpCountdownNotifyEx

Data Type
Object

Default Value
Nothing

Stats Property (ccrpCountdown Object)
See Also          Examples          Applies to

Provides a class of information relevant to the current system's multimedia timer.

Syntax
[form!]ccrpCountdown.Stats[= ccrpTimerStats]

Remarks
The Stats property of all ccrpTimers objects provides information regarding the current state of the system's
multimedia timer and how the ccrpTimers library is using it.

Frequency
This property may be used to set or return the frequency of the multimedia timer being used by the ccrpTimers
library. Internally, ccrpTimers runs off a single multimedia timer, and services all classes based on that timer. At
initialization, this timer is set to fire once every 1 millisecond, to offer users the most frequent events possible.
However, if you find that you need events fired at a lower frequency, you can conserve CPU usage by setting
ccrpTimers to use a higher frequency.

Important Note: All objects exposed by ccrpTimers library use a single timer, thus a single frequency!
Optimization of your CPU usage is achieved by selecting the Highest Common Denominator of all timer objects
to use as your desired Frequency.

Resolution
This property returns the functional resolution, or accuracy, of the multimedia timers requested by ccrpTimers
library. Resolution is considered the accuracy with which timer events occur. For example, if you request a
timer event every 100 milliseconds, and the system's minimum resolution is 5 milliseconds, the timer events will
occur within a range of 95 to 105 milliseconds apart. The ccrpTimers library requests a resolution of 1
millisecond, although the Frequency may be varied. It is important to recognize that resolution requests are just
that -- a request for a desired setting -- and are entirely dependent on the hardware being used.

MinimumResolution and MaximumResolution
These properties are provided for informational purposes only. They is a measure of the minimum and
maximum resolutions, or accuracy, of the multimedia timer on the hardware being tested. Resolution is
considered the accuracy with which timer events occur. For example, if you request a timer event every 100
milliseconds, and the system's minimum resolution is 5 milliseconds, the timer events will occur within a range
of 95 to 105 milliseconds apart. Most modern PCs are capable of true 1 millisecond minimum resolution, and
generally return 1,000,000 under NT and 65,535 under Windows 95 as their maximum resolution.

Data Type
ccrpTimerStats

Tag Property (ccrpCountdown Object)
See Also          Examples          Applies to

Stores any extra data needed by your program.

Syntax
[form!]ccrpCountdown.Tag[= value As Variant]

Remarks
A place for you to store any information required to uniquely identify, or related to, each instance of this object.
The setting of this property in no way affects the behavior of the object.

Data Type
Variant

Default Value
Empty

Tick Event
See Also          Examples          Applies to

Occurs through the countdown, at [Interval] milliseconds, to indicate progress toward completion. Remaining
number of milliseconds is passed to event.

Syntax
Private Sub ccrpCountdown_Tick(ByVal TimeRemaining As Long)

Remarks
Tick events occur every [Interval] milliseconds during a countdown. The TimeRemaining in the countdown,
expressed in milliseconds, is passed as the only parameter to this event.

Use the Duration property to set how long you want the countdown to last. The Timer event will fire when this
duration has transpired.

The time remaining in a countdown may be determined at any time by querying the TimeRemaining property.

Set the Enabled property to True to begin a countdown, or to False to interrupt a countdown.

Timer Event (ccrpCountdown Object)
See Also          Examples          Applies to

Occurs when the countdown has competed.

Syntax
Private Sub ccrpCountdown_Timer()

Remarks
Timer events occur after [Duration] milliseconds following a countdown. The Timer event will fire immediately
after the final Tick event. Use the Duration property to set how long you want the countdown to last. The
Timer event will fire when this duration has transpired.

The Interval property of the Countdown object determines how often Tick events will fire during the
countdown.

The time remaining in a countdown may be determined at any time by querying the TimeRemaining property.

Set the Enabled property to True to begin a countdown, or to False to interrupt a countdown.

TimeRemaining Property
See Also          Examples          Applies to

Returns a value that indicates the number of milliseconds remaining in the countdown.

Syntax
value As Long = [form!]ccrpCountdown.TimeRemaining

Remarks
The TimeRemaining property returns the number of milliseconds, if any, remaining in an active countdown.
This property may be queried at any time from any procedure. The value of this property is automatically
passed to Tick events.

Data Type
Long

Default Value
0

TimerEventTypes Constants

Used with
EventType (ccrpTimer)

Value Constant
0 TimerOneShot
1 TimerPeriodic

