
33

Bugs and Suggestions

Please notify us of any bugs you have found in our software and any suggestions

you have for future releases or products.

Using the report form below, mail user feedback, bugs, or software suggestions

via U.S. mail to:

NCSA Software Tools Group

HDF

152 Computing Applications Bldg.

605 East Springfield Avenue

Champaign, IL 61820

Send reports regarding bugs via electronic mail to:

bugs@ncsa.uiuc.edu

Send reports regarding software suggestions or comments via electronic mail to:

softdev@ncsa.uiuc.edu

Name:

Institution:

Address (Electronic):

Address (U.S. Mail):

Telephone: () – .

Version of NCSA HDF: Type machine:

Version of system software:

Suggestion or description of problem:

32

 DFSDgetslice: reads part of a dataset.

 DFSDsettype: specifies data attributes: data type and

 representation, system type, and array order.

* new utilities, including the following:

 hdfed: lets you browse in an HDF file and manipulate some of the

 data

Figure F.4 Code Changes: Changes Made to HDF in Release 3.0 and 3.1 (Continued)

 fptohdf: converts floating point data to HDF floating point data

 and/or 8-bit raster images

 r24tohdf: converts a raw RGB 24-bit image to an 8-bit RIS8 with a

 palette

 paltohdf: converts a raw palette to hdf format

 hdftopal: converts palette in an hdf file to raw format

31

 DF24getimage: retrieves the image and stores it in an array.

 DF24reqil: specifies an interlace to be used in place of the

 interlace indicated in the file when the next raster

 image is read.

An interface for annotating HDF data objects and files, which includes

the following routines:

Figure F.4 Code Changes: Changes Made to HDF in Release 3.0 and 3.1 (Continued)

 DFANgetlablen: gets length of label of a tag/ref

 DFANgetlabel: gets label of tag/ref

 DFANgetdesclen: gets length of description of tag/ref

 DFANgetdesc: gets description of tag/ref

 DFANputlabel: puts label of tag/ref

 DFANputdesc: puts description of tag/ref

 DFANlastref: returns ref of last annotation read or written

 DFANlablist: gets list of labels for a particular tag

An interface for input and output of 8-bit palettes, including the

following routines:

 DFPaddpal: appends a palette to a file.

 DFPgetpal: reads in the next palette in the file.

 DFPputpal: writes a palette to a file.

 DFPnpals: indicates number of palettes in a file.

 DFPwriteref: sets the reference number of the next palette to be

 written.

 DFPreadref: gets the reference number of the next palette to be

 retrieved.

 DFPrestart: specifies that the next call to DFPgetpal reads the

 first palette in the file, rather than the next.

 DFPlastref: returns the value of the reference number most recently

 read or written.

Scientific data set routines for storing and retrieving subsets (slices)

of scientific data, and for choosing optional storage formats and data

types:

 DFSDstartslice: prepares system to write part of a dataset to a file.

 DFSDputslice: writes part of a dataset to a file.

 DFSDendslice: indicates write completion for part of a dataset.

30

 cc myprog.c libdf.a -o myprog

If the include file “dfrig.h” is in the directory “incdir”, and the

library file “libdf.a” is in “libdir”, use

Figure F.4 Code Changes: Changes Made to HDF in Release 3.0 and 3.1

#***

#

NCSA HDF version 3.1

July 1, 1990

#

...

#***

These are changes made in release 3.1

* fixed bug concerning checking the status of opening a file

 with unbuffered i/o

* Added function DF24readref and DFGRreadref for random access

 of 24-bit rasters

* Added function DF24restart

* Added function DF24setil

* Speed up the DFSDgetdata, DFSDputdata, DFSDadddata,

 DFSDgetslice and DFSDputslice functions, especially for UNICOS

 machines

* Added functions DFANaddfid, DFABaddfds, DFANgetfidlen,

 DFANgetfid, DFANgetdslen, DFANgetfds, DFANaddfann,

 DFANgetfannlen, DFANgetfann and DFANlastref.

* Revised DFANlablist so that it returns all ref numbers for a

 given tag

* Fixed bug with DFSDgetdata where it does not move to the next

 SDG

* Added some macros to make passing character arrays from

 fortran to C easier

* Fixed some more minor bugs

* Recoded some parts for cosmetic reasons

———————

New features of HDF 3.0 include the following:

Fortran support for Macintosh II, for Language System Fortran and MPW C

3.0.

An interface for basic i/o of 24-bit raster images, which includes the

following routines:

 DF24addimage:appends a 24-bit raster image set to the file.

 DF24getdims: retrieves the dimensions and interlace of the

 image.

29

(Note to Macintosh and PC users: These routines have been compiled and

run successfully on Macs using MPW C Version 2.0.2, and on PCs using

Lattice C Version 3.0. We cannot guarantee that they will compile

correctly with other compilers. We would appreciate any feedback you

can give on experiences you have compiling them on other compilers.

For a non-Unix system, the Makefile may be used as a guide for compiling

the files. An approximate summary of the procedure is:

 cc -c df.c dfr8.c dfgroup.c dfcomp.c dfimcomp.c dfsd.c dfkit.c

 ar libdf.a df.o dfr8.o dfgroup.o dfcomp.o dfimcomp.o dfsd.o

 ranlib libdf.a

This creates the library file “libdf.a”.

To create the utilities “hdfls”, “hdfrseq”, “r8tohdf”, “hdftor8”,

”tektohdf”, “hdftotek”, and “hdfcomp”, the procedure is:

 cc hdfls.c libdf.a -o hdfls

 cc hdfrseq.c libdf.a -o hdfrseq

 cc r8tohdf.c libdf.a -o r8tohdf

 cc hdftor8.c libdf.a -o hdftor8

 cc tektohdf.c libdf.a -o tektohdf

 cc hdftotek.c libdf.a -o hdftotek

 cc hdfcomp.c libdf.a -o hdfcomp

To use the program “hdfseq”, create “hdfseq” as a symbolic link to the

executable “hdfrseq”. “hdfseq” displays images on the console of a

Sun or Iris workstation.

Figure F.3 INSTALL: Instructions

for Installing HDF (Continued)

——————— Compiling Subsets of HDF ———————

If you wish to use only some of the HDF Sets, it is possible to create

versions of the library which only contain the desired interfaces. For

instance, a user who works only with images, but not with raw floating

point data may wish to have only the Raster Image Set (RIS) but not the

Scientific Data Set. The following is the list of source files necessary

for each of the Sets included in the current version of HDF.

Basic Low level HDF: df.c dfkit.c df.h dfi.h

Basic Low level Fortran: df.c dfF.c dfFf.f dfkit.c df.h dfi.h

8-bit Raster Image Set (RIS-8): dfr8.c df.c dfkit.c dfcomp.c dfimcomp.c

 dfgroup.c df.h dfi.h dfrig.h

8-bit Raster Image Set Fortran: dfr8.c dfr8F.c dfr8Ff.f df.c dfkit.c

 dfcomp.c dfimcomp.c dfgroup.c df.h dfi.h dfrig.h

Scientific Data Set (SDS): dfsd.c df.c dfkit.c dfgroup.c df.h dfi.h dfsd.h

Scientific Data Set Fortran: dfsd.c dfsdF.c dfsdFf.f df.c dfkit.c

 dfgroup.c df.h dfi.h dfsd.h

—————— Compiling C programs with HDF ————————

To use HDF routines in your program, use “#include dfrig.h”, “#include dfsd.h”

etc. at the top of your program, depending on the Sets you are using.

Call the appropriate HDF routines as described in the

documentation. Compile your C program “myprog.c” as follows:

28

 Fortran stub routines, and utilities

make build — compile library and utilities

make buildnostub — compile library (without Fortran stubs)

 and utilities

make libdf.a — compile library

make libnostub — compile library with Fortran stub routines

make utils — compile utilities

make install — install library and utilities

make clean — rm intermediate files

make cleanup — rm all make products

** VMS

Several DCL script files are provided for compilation.

MAKE.COM — runs MAKELIB.COM and MAKEUTILS.COM

MAKELIB.COM — makes the full library, DF.OLB

MAKENOF.COM — makes the library *without* the fortran

 stubs, also DF.OLB

MAKEUTILS.COM — compiles the utilities

To run MAKE.COM, for example, type @MAKE at the DCL prompt.

Also provided is SETUPUTILS.COM to setup the commands for

the utils to make them easier to use. Edit this file before

running to customize the directory path.

** MAC

The Macintosh version of HDF is only supported under MPW

3.0, MPW C 3.0, and (if you are using fortran with it) LS

Fortran v2 onwards.

If you have just the generic distribution, the Makefile for

the MAC is in MAKE.HQX, a binhexed version of the MPW

Figure F.3 INSTALL: Instructions

for Installing HDF (Continued)

makefile. In the Macintosh distribution, the Makefile is

named Makefile.

To generate commands for compiling type

 make

in MPW shell.

Make targets available are :

make / make all — compile and install library and utilities

make allnostub — compile and install library without

 Fortran stub routines, and utilities

make build — compile library and utilites

make buildnostub — compile library (without Fortran stubs)

 and utilities

make libdf.a — compile library

make libnostub — compile library with Fortran stub routines

make utils — compile utilities

make install — install library and utilities

make clean — rm intermediate files

make cleanup — rm all make products

** PC compatibles

The batch file MAKE.BAT is included to compile the library

and utilities. Type

 MAKE

in the MS-DOS prompt.

27

of NCSA Computers (Continued)

 hdftor8 - a utility to convert an HDF raster 8 bit image into a raw

 raster image.

 r8tohdf - a utility to convert a raw raster image to an HDF raster 8

 bit image.

 hdfcomp - a utility to change the compression scheme used for 8-bit

 raster images in HDF files.

If you execute any of these commands with no parameters, it will display

the list of acceptable parameters.

In the doc/ directory you will find files containing the HDF

documentation.

In the examples/ directory you will find example codes using HDF. The

example codes should be self explanatory.

In the include/ directory you will find the necessary include files for

use in your own programs that link with the HDF library.

In the lib/ directory you will find the HDF library which contains the

necessary subroutines for developing your own HDF applications.

In the src/ directory you will find the source for all of the HDF

utilities and library.

If you have any questions, please contact the NCSA Consulting Office.

Figure F.3 INSTALL: Instructions for Installing

HDF

 NCSA HDF version 3.1

 July 1, 1990

The file HINTS contains some hints for errors and unusual cases.

*Compiling and installing

** UNIX

For UNICOS, SGI or fortran compilers that uses only short

names (< 8 characters), see HINTS.

We now provide makefiles for each configuration we support.

These Makefile’s are named Mfile.<SystemName>. In addition,

Mfile.GEN is the generic makefile which you could modify and

use if your configuration is not supported.

Find the Makefile for your system. If your system is a sun3

or sun4, you could now do

 cp Mfile.SUN Makefile

 make

or just

 make -f Mfile.SUN

to make the libraries.

Make targets available are :

make / make all — compile and install library and utilities

make allnostub — compile and install library without

26

* If you want to see more software like NCSA HDF, you need to send us a

* letter, email or US mail, telling us what you are doing with NCSA HDF.

* We need to know:

* 1) What science you are working on (an abstract of your work would be

* fine);

* 2) How NCSA HDF has helped you, e.g., whether it has increased your

* productivity or allowed you to perform operations you were unable to

* do before.

*

* We encourage you to cite the use of NCSA HDF , and any other NCSA

* software you have used, in your publications. A bibliography of your

* work would be extremely helpful.

*

* This is a new kind of shareware. You share your science and successes

* with us, and we attain the resources necessary to share more software

* like NCSA HDF with you.

*

Figure F.2 README.NCSA. for HDF Users of NCSA Computers

#***

#

NCSA HDF version 3.1

July 1, 1990

#

...

#

#***

 NCSA HDF version 3.1

 December 1, 1989

 Using HDF at NCSA

 HDF is installed on various systems at NCSA. The following is a list

of directories in which HDF is installed on different systems:

 Cray-2: /usr/local/apps/hdf

 Cray-XMP: /usr/local/apps/hdf

 Suns: /soft/hdf

 Medusa: /usr/hdf

 Replicant: /usr/hdf

The current version of HDF will be in that directory and its

subdirectories.

In the bin/ directory you will find several HDF utilities, such as:

 hdfls - a utility to display information about the contents of an HDF file.

 hdfrseq - a utility to display a raster 8 bit image remotely using

 the NCSA Interactive Color Raster protocol.

Figure F.2 README.NCSA. for HDF Users

25

files in src/fixatr also. If your system is a MacII and you need to use

fortran, get the fortran files in src/mac. This will prompt you for each

of the source files, asking if you want to download them. Answer “y” to each.

This will produce the source files for that system in your directory.

Compile these files according to the instructions in the file INSTALL.

To obtain the documentation enter “cd ../../doc” to move to the

directory containing the documentation. There are two subdirectories,

with “ascii” providing the documentation in readable form, and “word”

providing it in Macintosh Microsoft Word format. Each subdirectory has

two subdirectories, containing the user documentation (NCSA_HDF) and the

technical specification (HDF_Specs), respectively. The Word files must

be downloaded in binary mode with Macbinary mode enabled. The ascii

files may be downloaded in ascii mode.

**

 Obtaining HDF using remote login

**

If you have an account on the NCSA Suns, you may download HDF in this way.

To obtain a copy of HDF for a particular system, login to zaphod.ncsa.uiuc.edu,

cd to the directory /sdg/ftp/HDF and use the “transfer” script.

Usage: transfer systemtype hostname [directory]

where systemtype is “unicos”, “sun”, “alliant”, “iris4”, “mac”,

”vms” or “pc”, hostname is the ftp name of the host you want to transfer

the files to, and directory is the directory on the target system in

which you want the files to be placed.

Transfer will create the source files appropriate for the system type,

then open an ftp connection to the target machine and ask you to login.

When you do, it will automatically copy the required files to the target

system in the directory you specified. It will also deposit all the

documentation, in Macintosh Microsoft Word format if transferring to a

Macintosh, in ascii format otherwise. It will deposit all the files in

the same directory, as contrasted to using the “tar” approach outlined

in the section on anonymous ftp, which will create a tree of

subdirectories.

*———————————————————————————————————

* * NCSA HDF Version 3.00 source code and documentation are in the

* public domain. Specifically, we give to the public domain all rights

* for future licensing of the source code, all resale rights, and all

* publishing rights.

*

* We ask, but do not require, that the following message be included in

* all derived works:

*

* Portions developed at the National Center for Supercomputing

* Applications at the University of Illinois at Urbana-Champaign.

*

*

* THE UNIVERSITY OF ILLINOIS GIVES NO WARRANTY, EXPRESSED OR IMPLIED,

* FOR THE SOFTWARE AND/OR DOCUMENTATION PROVIDED, INCLUDING, WITHOUT

* LIMITATION, WARRANTY OF MERCHANTABILITY AND WARRANTY OF FITNESS FOR

* A PARTICULAR PURPOSE.

*

Figure F.1 README.FIRST (Contin-

ued)

24

developed by NCSA. For more information about HDF, see the

January/February 1989 NCSA Data Link article, the document “NCSA HDF”, and

the document “HDF Specification”.

This version of HDF runs on CRAYs running UNICOS, ALLIANTs, SUNs and

IRIS 4D machines running Unix, MACs running MacOS, VAXen running VMS and

PCs running MS/DOS.

Compilation of these programs produces a library of HDF routines that

can be called from either FORTRAN or C programs.

There is an older version of HDF implemented for CRAYs running CTSS, available

from NCSA. This version only implements the 8-bit Raster Image Set. If you

are interested in this, please contact Mike Folk (see below).

This document describes how to obtain a version of HDF for your system.

Other information, including hints on using HDF, descriptions of the

files that comprise the distribution, and instructions on how to to

create a library, can be found in other README files in this directory.

There are two ways of obtaining HDF, depending on whether you are

accessing this system by remote login or anonymous ftp.

Accordingly, this document contains the following sections:

 Obtaining HDF using anonymous ftp

 Obtaining HDF using remote login

If you have any questions, problems or suggestions, you can contact us

via Email at mfolk@ncsa.uiuc.edu or likkai@ncsa.uiuc.edu, or by writing

to Mike Folk, Software Development, NCSA, 605 East Springfield Ave.,

Champaign, IL 61820, or call 217 244 0647.

**

 Obtaining HDF using anonymous ftp

**

Login to ftp.ncsa.uiuc.edu (128.174.20.50), with a login name of

”anonymous”. Give your real name as password. Move to the directory

”HDF” by issuing the command “cd HDF” to ftp. Now you are ready to

transfer files. There are two ways to do this:

1. You may use the command “get hdf3.00.tar.Z” to download a compressed

”tar” format file. (Be sure to set file transfer mode to binary with the

command “binary”.) Unpacking hdf.tar with the Unix “uncompress” and “tar”

utility on your system will produce a tree of subdirectories similar to

the ones in this directory. These files are described in INSTALL. They

must be compiled according to the instructions in that section. (NOTE: this

tar file is very large, as it contains all the source files, plus

all of the documentation. If space is dear, consider using the method

described in the next paragraph.)

1a) For MacII/MPW users, there is a binhexed stuffit file called

hdf3.00.sit.hqx. Use ascii mode to get this file, unbinhex it, then

unstuff it. This will provide you will all the files for the MacII.

2. As an alternative to “tar”, you may download the files you require

directly. Use “cd src” to move to the directory containing source

files. Then use the command “mget *”. If your system is VMS, get the

Figure F.1 README.FIRST (Contin-

ued)

23

Appendix F NCSA HDF README Files on Anonymous FTP

This appendix includes listings of the README files which can be found

in the anonymous FTP directory that contains NCSA HDF. These listings

were made on July 5, 1990 and do not necessarily reflect the current

contents of the files. The best way to obtain the most recent versions is to

access them through anonymous FTP.

Figure F.1. README.FIRST

#***

#

NCSA HDF version 3.1

July 1, 1990

#

NCSA HDF Version 3.1 source code and documentation are in the public

domain. Specifically, we give to the public domain all rights for future

licensing of the source code, all resale rights, and all publishing rights.

#

We ask, but do not require, that the following message be included in all

derived works:

#

Portions developed at the National Center for Supercomputing Applications at

the University of Illinois at Urbana-Champaign.

#

THE UNIVERSITY OF ILLINOIS GIVES NO WARRANTY, EXPRESSED OR IMPLIED, FOR THE

SOFTWARE AND/OR DOCUMENTATION PROVIDED, INCLUDING, WITHOUT LIMITATION,

WARRANTY OF MERCHANTABILITY AND WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE

#

#***

 NCSA HDF version 3.1

 July 1, 1990

This is NCSA HDF version 3.1. Suggestions and bug reports are welcome.

Included in this version are:

 the basic low-level routines to perform I/O to HDF files,

 routines to process 8-bit Raster Image Sets

 routines to process Scientific Data Sets.

 routines to process 24-bit Raster Image Sets

 routines to extract slabs from Scientific Data Sets

 routines to process Palettes (independently of images)

 routines to process Annotations for data items

NCSA HDF is the Hierarchical Data Format, a standard file format

Figure F.1 README.FIRST (Contin-

ued)

22

a data element.

DFupdate writes out the DD blocks necessary to

update the file.

DFdup generates a DD whose offset and length

are the same as those of another tag/ref.

DFdel deletes a tag/ref From the list of DDs.

DFerrno reports the value of DFerror.

DFishdf tells if a file is an HDF file

DFnewref generates an unused reference number

DFstat provides status information about an

HDF file.

Utility Routines

hdfls displays the tags, ref numbers, and (optionally) lengths of

data elements.

hdfed lets you browse in an HDF file and manipulate some of the

data.

fptohdf converts floating-point data to HDF floating point data

and/or 8-bit raster images.

r8tohdf converts one or more raw 8-bit images to HDF RIS8 for-

mat and writes them to a file, possibly with palettes.

hdftor8 converts images and or palettes from HDF format to raw

format and stores them in two corresponding sets of files.

r24tohdf converts a raw RGB 24-bit image to an 8-bit RIS8 with a

palette.

paltohdf converts a raw palette to hdf format.

hdftopal converts palette in an hdf file to raw format.

hdfseq/hdfrseq displays sequences of images directly to the screen

from HDF files containing raster images.

21

DFSDputdata dspdata writes the data to the file, overwriting

other file contents.

DFSDputslice dspslc writes part of a dataset to a file.

DFSDrestart dsfirst sets the next get command to read

from the first SDS in the file, rather than the next.

DFSDsetdatastrs dissdast sets label, unit, and format

specifications for the data.

DFSDsetdims dssdims sets the default rank and dimension

sizes for succeeding files.

DFSDsetdimscale dssdisc sets the scale for a dimension.

DFSDsetdimstrs dssdist sets label, unit, and format

specifications for a dimension and its scale.

DFSDsetlengths dsslens sets maximum lengths for strings that

will hold labels, units, formats, and the name of the coordinate

system.

DFSDsetmaxmin dssmaxm sets maximum and minimum data

values.

DFSDsettype dsstype specifies data attributes—data type and

representation, system type, and array order.

DFSDstartslice dssslc prepares system to write part of a

dataset to a file.

General Purpose Routines

DFopen provides an access path to the file

named in filename with the access given in access.

DFclose updates the DD blocks, then closes the

access path to the file referred to by dfile.

DFsetfind dfsfind initializes searches for elements using

tags or reference numbers.

DFfind dffind locates the data descriptor needed for

the next read from the file.

DFgetelement dfget extracts the data referred to by the

tag/ref and places the data in the array storage.

DFputelement dfput adds or replaces elements in dfile.

DFaccess inititiates a read or write on the data

element with the specified tag/ref combination.

DFread reads a portion of a data element.

DFwrite appends data to a data element.

DFseek sets the read pointer to an offset within

20

DFPreadref dprref sets the reference number of the next

palette to be retrieved.

DFPrestart dprest specifies that the next call to DFPgetpal

reads the first palette in the file, rather than the next.

DFPwriteref dpwref sets the reference number of the next

palette to be written.

Annotation Routines

DFANgetdesc dagdesc gets description of tag/ref.

DFANgetdesclen dagdlen gets length of description of tag/ref.

DFANgetlabel daglab gets label of tag/ref..

DFANgetlablen dagllen gets length of label of tag/ref.

DFANlablist dallist gets list of labels for a particular tag.

DFANlastref returns ref of last annotation read or

written.

DFANputdesc dapdesc puts description of tag/ref.

DFANputlabel daplab puts label of tag/ref.

Scientific Dataset Routines

DFSDadddata dsadata appends the data to the file, not

overwriting other file contents.

DFSDclear dsclear clears all possible set values.

DFSDendslice dseslc indicates write completion for part of a

dataset.

DFSDgetdata dsgdata reads the next dataset in the file.

DFSDgetdatastrs dsgdast reads the label, unit, and format

specification for the data.

DFSDgetdims dsgdims gets the number of dimensions of the

dataset and the sizes of the dimensions for the next SDS in the file.

DFSDgetdimscale dsgdisc reads the scale for a dimension.

DFSDgetdimstrs dsgdist reads the label, unit, and format for a

dimension and its scale.

DFSDgetmaxmin dsgmaxm reads the maximum and minimum

values.

DFSDgetslice dsgslc reads part of a dataset.

19

Appendix E Routine Lists

Raster Image Routines

DFR8addimage d8aimg appends the RIS8 for the image to the

file.

DFR8getdims d8gdims retrieves the dimensions of the image

and indicates whether a palette is associated and stored with the image.

DFR8getimage d8gimg retrieves the image and any associated

palette, and stores them in arrays.

DFR8putimage d8pimg writes out the RIS8 for the image as the

first image in the file.

DFR8restart d8first sets the next get command to read

from the first RIS8 in the file, rather than the next.

DFR8setpalette d8spal sets the default palette to be used for

subsequent images.

DF24addimage d2iaimg appends the RIS24 for the image to the

file.

DF24getdims d2igdims retrieves the dimensions and interlace

of the image.

DF24getimage d2igimg retrieves the image and stores it in an

array.

DF24reqil d2reqil specifies an interlace to be used in place

of the interlace indicated in the file when the next raster image is read.

DF24setil d2setil sets the interlace to be used when

writing out the RIS24 for the image.

Palette Routines

DFPaddpal dpapal appends a palette to a file.

DFPgetpal dpgpal reads in the next palette in the file.

DFPlastref dplref returns the value of the reference

number most recently read or written.

DFPnpals dpnpals indicates number of palettes in a file.

DFPputpal dpppal writes a palette to a file.

18

FORTRAN:

cf77 myprog.f -o myprog -ldf

where myprog is the name of the executable program.

As another example, suppose you have a program called myprog.c

written in C for one of the Sun systems. If myprog.c contains calls to

HDF routines, you can link libdf.a to your program when you compile

it by entering:

C:

cc myprog.c -o myprog /soft/hdf/lib/libdf.a

17

Appendix D Public HDF Directories on NCSA Computers

There are public HDF directories on several machines at NCSA. In each

supported HDF directory you will find the following:

• A README file that gives further information about the software and

how to use it (Be sure to read this file before using the software,

because it may contain important information about recent changes to

the software.)

• The subdirectory lib/ with the library file libdf.a, which contains

the high-level routines described in this manual for working with

raster image sets and scientific datasets, as well as the lower-level

general purpose routines for building and manipulating HDF routines

of any type

• The subdirectory bin/ with the executable utility programs

• The subdirectory src/, which contains the source code for the latest

supported version of all programs

• The subdirectory include/, which contains the header files listed in

Appendix B of this manual

• The subdirectory examples/, which contains one or more sample

programs that use HDF

The HDF public directories are currently accessible on the CRAY-2,

CRAY X-MP, Alliant FX/8 (medusa), Alliant FX/80 (replicant), and NCSA

Sun systems. The pathnames of these directories are listed in Table D.1.

Table D.1 Pathnames of NCSA

HDF Directories

NCSA Computer Directory Path

CRAY-2 /usr/lib

CRAY X-MP /usr/lib

Alliant FX/80 (replicant) /usr/hdf/lib

Sun systems /soft/hdf/lib

SGI systems /rels/shared/soft/hdf

In order to compile a program that uses one of the NCSA HDF library

routines, you need to link the library to your program when you compile

or link your program. For example, suppose you have a program called

myprog.f written in FORTRAN for the CRAY-2 system. If myprog.f

contains calls to HDF routines, you can link libdf.a to your program

when you compile it by entering:

16

Table C.1 Long and Short Version

FORTRAN Names

(Continued)

Long Version Short Version

DFSDadddata dsadata

DFSDclear dsclear

DFSDendslice dseslc

DFSDgetdata dsgdata

DFSDgetdatalen dsgdaln

DFSDgetdatastrs dsgdast

DFSDgetdimlen dsgdiln

DFSDgetdims dsgdims

DFSDgetdimscale dsgdisc

DFSDgetdimstrs dsgdist

DFSDgetmaxmin dsgmaxm

DFSDgetslice dsgslc

DFSDputdata dspdata

DFSDputslice dspslc

DFSDrestart dsfirst

DFSDsetdatastrs dssdast

DFSDsetdims dssdims

DFSDsetdimscale dssdisc

DFSDsetdimstrs dssdist

DFSDsetlengths dsslens

DFSDsetmaxmin dssmaxm

DFSDsettype dsstype

DFSDstartslice dssslc

15

Appendix C Eight-Character FORTRAN Names

Some FORTRAN compilers on machines that NCSA supports, such as

UNICOS FORTRAN (CFT77) on the CRAY-2 system, only accept identi-

fier names that are eight or fewer characters. Therefore, a set of equiva-

lent names has been devised that can be used when programming with

one of these compilers. Table C.1 contains official names, together with

the shorter, less descriptive versions. Both sets of names are supported

on all HDF-supported machines.

Table C.1 Long and Short Version

FORTRAN Names

Long Version Short Version

DF24addimage d2iaimg

DF24getdims d2igdims

DF24getimage d2igimg

DF24reqil(il) d2reqil

DF24setil d2setil

DFANgetdesc dagdesc

DFANgetdesclen dagdlen

DFANgetlabel daglab

DFANgetlablen dagllen

DFANlablist dallist

DFANlastref —————

DFANputdesc dapdesc

DFANputlabel daplab

DFPaddpal dpaPal

DFPgetpal dpgpal

DFPlastref dplref

DFPnpals dpnpals

DFPputpal dpppal

DFPreadref dprref

DFPrestart dprest

DFPwriteref dpwref

DFR8addimage d8aimg

DFR8getdims d8gdims

DFR8getimage d8gimg

DFR8putimage d8pimg

DFR8restart d8first

DFR8setpalette d8spal

14

 * DFE_NODIM = -34,

 * DFE_NOTENOUGH = -35)

C Logical Constants

 PARAMETER (DFACC_READ = 1,

 * DFACC_WRITE = 2,

 * DFACC_CREATE = 4,

 * DFACC_ALL = 7)

13

 *

 * DFTAG_RIG = 306,

 * DFTAG_LD = 307,

 * DFTAG_MD = 308,

 * DFTAG_MA = 309,

Figure B.3 FORTRAN: Constants File constants.h (Continued)

 PARAMETER (DFTAG_CCN = 310,

 * DFTAG_CFM = 311,

 * DFTAG_AR = 312,

 * DFTAG_DRAW = 400,

 * DFTAG_RUN = 401,

 *

 * DFTAG_XYP = 500,

 * DFTAG_MTO = 501,

 *

 * DFTAG_T14 = 602,

 * DFTAG_T105 = 603,

 *

 * DFTAG_RLE = 11,

 * DFTAG_IMCOMP = 12)

C Error Return Codes

 PARAMETER (DFE_NOERROR = 0,

 * DFE_FNF = -1,

 * DFE_DENIED = -2,

 * DFE_ALROPEN = -3,

 * DFE_TOOMANY = -4,

 * DFE_BADNAME = -5,

 * DFE_BADACC = -6 ,

 * DFE_NOTOPEN = -8,

 * DFE_CANTCLOSE = -9,

 * DFE_DFNULL = -10,

 * DFE_ILLTYPE = -11,

 * DFE_UNSUPPORTED = -12,

 * DFE_BADDDLIST = -13,

 * DFE_NOTDFFILE = -14,

 * DFE_SEEDTWICE = -15,

 * DFE_NOSPACE = -16,

 * DFE_READERROR = -18,

 * DFE_WRITEERROR = -19)

 PARAMETER (DFE_SEEKERROR = -20,

 * DFE_NOFREEDD = -21,

 * DFE_BADTAG = -22,

 * DFE_BADREF = -23,

 * DFE_RDONLY = -24,

 * DFE_BADCALL = -25,

 * DFE_BADPTR = -26,

 * DFE_BADLEN = -27,

 * DFE_BADSEEK = -28,

 * DFE_NOMATCH = -29,

 * DFE_NOTINSET = -30,

 * DFE_BADDIM = -31,

 * DFE_BADOFFSET = -32,

 * DFE_BADSCHEME = -33,

12

#endif DFTAG_NULL

Figure B.3 FORTRAN: Constants File constants.h

/***

*

* NCSA HDF version 2.0

* December 20, 1988

*

* NCSA HDF Version 2.0 source code and documentation are in the public domain.

* Specifically, we give to the public domain all rights for future licensing

* of the source code, all resale rights, and all publishing rights.

*

* We ask, but do not require, that the following message be included in all

* derived works:

*

* Portions developed at the National Center for Supercomputing Applications at

* the University of Illinois at Urbana-Champaign.

*

* THE UNIVERSITY OF ILLINOIS GIVES NO WARRANTY, EXPRESSED OR IMPLIED, FOR THE

* SOFTWARE AND/OR DOCUMENTATION PROVIDED, INCLUDING, WITHOUT LIMITATION,

* WARRANTY OF MERCHANTABILITY AND WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE

*

***/

C *——————————————————————————————————————

C * File: dfF.h

C * Purpose: Fortran header file for HDF routines

C * Contents:

C * Tag definitions

C * Error return codes

C * Logical constants

C * Remarks: This file can be included with user programs

C *——————————————————————————————————————*

 PARAMETER (DFREF_WILDCARD = 0,

 * DFTAG_WILDCARD = 0,

 * DFTAG_NULL = 1)

 PARAMETER (DFTAG_FID = 100,

 * DFTAG_FD = 101,

 * DFTAG_TID = 102,

 * DFTAG_TD = 103,

 * DFTAG_DIL = 104,

 * DFTAG_DIA = 105,

 * DFTAG_NT = 106,

 * DFTAG_MT = 107,

 *

 * DFTAG_ID8 = 200,

 * DFTAG_IP8 = 201,

 * DFTAG_RI8 = 202,

 * DFTAG_CI8 = 203,

 * DFTAG_II8 = 204)

 *

 PARAMETER (DFTAG_ID = 300,

 * DFTAG_LUT = 301,

 * DFTAG_RI = 302,

 * DFTAG_CI = 303,

11

#defineDFTAG_SDC 708 /* Coord sys */

/* compression schemes */

#defineDFTAG_RLE 11 /* run length encoding */

#defineDFTAG_IMCOMP 12 /* IMCOMP compression */

/*—————————————————————————————————————*/

/* Error Return Codes */

#defineDFE_NOERROR 0 /* No error */

#defineDFE_FNF -1 /* File not found error */

#defineDFE_DENIED -2 /* Access to file denied */

#defineDFE_ALROPEN -3 /* File already open */

#defineDFE_TOOMANY -4 /* Too Many DF’s or files open */

#defineDFE_BADNAME -5 /* Bad file name on open */

#defineDFE_BADACC -6 /* Bad file access mode */

#defineDFE_BADOPEN -7 /* Other open error */

#defineDFE_NOTOPEN -8 /* File can’t be closed: it isn’t open */

#defineDFE_CANTCLOSE -9 /* fclose wouldn’t work! */

#defineDFE_DFNULL -10 /* DF is a null pointer */

#defineDFE_ILLTYPE -11 /* DF has an illegal type: internal error */

#defineDFE_UNSUPPORTED -12 /* Feature not currently supported */

#defineDFE_BADDDLIST -13 /* No DD list: internal error */

#defineDFE_NOTDFFILE -14 /* Not a DF file and it is not 0 length */

#defineDFE_SEEDTWICE -15 /* DD list already seeded: internal error */

#defineDFE_NOSPACE -16 /* Malloc failed */

#defineDFE_NOSUCHTAG -17 /* No such tag in the file: search failed*/

#defineDFE_READERROR -18 /* There was a read error */

#defineDFE_WRITEERROR -19 /* There was a write error */

#defineDFE_SEEKERROR -20 /* There was a seek error */

#defineDFE_NOFREEDD -21 /* No free DD’s left: internal error */

#defineDFE_BADTAG -22 /* illegal WILDCARD tag */

#defineDFE_BADREF -23 /* illegal WILDCARD reference # */

#defineDFE_RDONLY -24 /* The DF is read only */

#defineDFE_BADCALL -25 /* Calls in wrong order */

#defineDFE_BADPTR -26 /* NULL ptr argument */

#defineDFE_BADLEN -27 /* negative len specified */

#defineDFE_BADSEEK -28 /* Attempt to seek past end of element */

#defineDFE_NOMATCH -29 /* No (more) DDs which match specified tag/ref */

#defineDFE_NOTINSET -30 /* Warning: Set contained unknown tag: ignored */

#defineDFE_BADDIM -31 /* negative or zero dimensions specified */

#defineDFE_BADOFFSET -32 /* Illegal offset specified */

#defineDFE_BADSCHEME -33 /* Unknown compression scheme specified */

#defineDFE_NODIM -34 /* No dimension record associated with image */

#defineDFE_NOTENOUGH -35 /* space provided insufficient for size of data

Figure B.2 C Header File: df.h (Continued)

*/

#defineDFE_NOVALS -36 /* Values not available */

#defineDFE_CORRUPT -37 /* File is corrupted */

#defineDFE_BADCONV -37 /* Don’t know how to convert data type */

#defineDFE_BADFP -38 /* The file contained an illegal floating point no*/

/*—————————————————————————————————————*/

/* Logical Constants */

#defineDFACC_READ 1 /* Read Access */

#defineDFACC_WRITE 2 /* Write Access */

#defineDFACC_CREATE 4 /* force file to be created */

#defineDFACC_ALL 7 /* logical and of all the above values */

10

DFerror; /* Error code for DF routines */

/*—————————————————————————————————————*/

/* Tag Definitions */

#defineDFREF_WILDCARD 0 /* wildcard ref for searches */

#defineDFTAG_WILDCARD 0 /* wildcard tag for searches */

#defineDFTAG_NULL 1 /* empty DD */

/* utility set */

#defineDFTAG_FID 100 /* File identifier */

#defineDFTAG_FD 101 /* File description */

#defineDFTAG_TID 102 /* Tag identifier */

#defineDFTAG_TD 103 /* Tag descriptor */

#defineDFTAG_DIL 104 /* data identifier label */

#defineDFTAG_DIA 105 /* data identifier annotation */

#defineDFTAG_NT 106 /* number type */

#defineDFTAG_MT 107 /* machine type */

/* raster-8 set */

#defineDFTAG_ID8 200 /* 8-bit Image dimension */

#defineDFTAG_IP8 201 /* 8-bit Image palette */

#defineDFTAG_RI8 202 /* Raster-8 image */

#defineDFTAG_CI8 203 /* RLE compressed 8-bit image */

#defineDFTAG_II8 204 /* IMCOMP compressed 8-bit image */

/* Raster Image set */

#defineDFTAG_ID 300 /* Image DimRec */

#defineDFTAG_LUT 301 /* Image Palette */

#defineDFTAG_RI 302 /* Raster Image */

#defineDFTAG_CI 303 /* Compressed Image */

#defineDFTAG_RIG 306 /* Raster Image Group */

#defineDFTAG_LD 307 /* Palette DimRec */

#defineDFTAG_MD 308 /* Matte DimRec */

#defineDFTAG_MA 309 /* Matte Data */

#defineDFTAG_CCN 310 /* color correction */

#defineDFTAG_CFM 311 /* color format */

#defineDFTAG_AR 312 /* aspect ratio */

#defineDFTAG_DRAW 400 /* Draw these images in sequence */

#defineDFTAG_RUN 401 /* run this as a program/script */

Figure B.2 C Header File: df.h (Continued)

#defineDFTAG_XYP 500 /* x-y position */

#defineDFTAG_MTO 501 /* machine-type override */

/* Tektronix */

#defineDFTAG_T14 602 /* TEK 4014 data */

#defineDFTAG_T105 603 /* TEK 4105 data */

/* Scientific Data set */

#defineDFTAG_SDG 700 /* Scientific Data Group */

#defineDFTAG_SDD 701 /* Scientific Data DimRec */

#defineDFTAG_SD 702 /* Scientific Data */

#defineDFTAG_SDS 703 /* Scales */

#defineDFTAG_SDL 704 /* Labels */

#defineDFTAG_SDU 705 /* Units */

#defineDFTAG_SDF 706 /* Formats */

#defineDFTAG_SDM 707 /* Max/Min */

9

/* DF is the internal structure associated with each DF file */

/* It holds information associated with the file as a whole */

/* ### Note: there are hooks for having multiple DF files open at a time */

typedef struct DF {

DFdle

list, / Pointer to the DLE list */

last_dle; / last_dle and last_dd are used in searches to indicate

element returned by previous call to DFfind */

int

type, /* 0= not in use, 1= normal, -1 = multiple */

/* this is a hook for when multiple files are open */

access,/* permitted access types: 0=none, 1=r, 2=w, 3=r/w */

changed, /* True if anything in DDs modified since last write */

last_tag, /* Last tag searched for by DFfind */

last_ref, /* Last reference number searched for */

last_dd, /* see last_dle */

defdds,/* default number of DD’s in each block */

up_access; /* access permissions to element being read/updated */

/* Used by DFstart */

DFdd

up_dd;/ DD of element being read/updated, used by DFstart */

/* file handle is a file pointer or file descriptor */

/* depending whether we use buffered or unbuffered i/o */

#ifdef DF_BUFFIO

FILE * /* file pointer */

#else DF_BUFFIO

int /* file descriptor */

#endif DF_BUFFIO

file; /* File handle for real file */

} DF;

typedef struct DFdi { /* data identifier: specifies data element uniquely */

uint16 tag;

uint16 ref;

} DFdi;

typedef struct DFdata { /* structure for returning status information */

int version; /* version number of program */

} DFdata;

Figure B.2 C Header File: df.h (Continued)

/*—————————————————————————————————————*/

/* Procedure types */

DF *DFopen();

int32 DFgetelement();

int32 DFread();

int32 DFseek();

int32 DFwrite();

/*—————————————————————————————————————*/

/* Global Variables */

#ifndef DFMASTER

extern

#endif DFMASTER

int

8

* WARRANTY OF MERCHANTABILITY AND WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE

*

***/

/*———————————————————————————————————————

 * File: df.h

 * Purpose: header file for HDF routines

 * Invokes: dfi.h

 * Contents:

 * Structure definitions: DFddh, DFdd, DFdesc, DFdle, DF, DFdi, DFdata

 * Procedure type definitions

 * Global variables

 * Tag definitions

 * Error return codes

 * Logical constants

 * Remarks: This file is included with user programs

 * Since it includes stdio.h etc., do not include these after df.h

 ——————————————————————————————————————/

#ifndef DFTAG_NULL /* avoid re-inclusion */

/* include DF (internal) header information */

#include “dfi.h”

/*—————————————————————————————————————*/

/*Type declarations */

typedef struct DFddh { /* format of data descriptor headers as in file */

int16

dds; /* number of dds in header block */

int32

next; /* offset of next header block */

} DFddh;

typedef struct

uint16

tag, /* data tag */

ref; /* data reference number */

int32

offset, /* offset of data element in file */

length; /* number of bytes */

} DFdd;

Figure B.2 C Header File: df.h (Continued)

/* descriptor structure is same as dd structure. ###Note: may be changed */

#defineDFdesc DFdd

/* DLE is the internal structure that stores data descriptor information */

/* It is a linked list of DDs */

typedef struct DFdle { /* Data List element */

struct DFdle

next; / link to next dle */

DFddh

ddh; /* To store headers */

DFdd

dd[1]; /* dummy size */

} DFdle;

7

#defineDFE_DENIED -2

#defineDFE_ALROPEN -3

#defineDFE_TOOMANY -4

#defineDFE_BADNAME -5

#defineDFE_BADACC -6

#defineDFE_NOTOPEN -8

#defineDFE_CANTCLOSE -9

#defineDFE_DFNULL -10

#defineDFE_ILLTYPE -11

#defineDFE_UNSUPPORTED -12

#defineDFE_BADDDLIST -13

#defineDFE_NOTDFFILE -14

#defineDFE_SEEDTWICE -15

#defineDFE_NOSPACE -16

#defineDFE_READERROR -18

#defineDFE_WRITEERROR -19

#defineDFE_SEEKERROR -20

#defineDFE_NOFREEDD -21

#defineDFE_BADTAG -22

#defineDFE_BADREF -23

#defineDFE_RDONLY -24

#defineDFE_BADCALL -25

#defineDFE_BADPTR -26

#defineDFE_BADLEN -27

#defineDFE_BADSEEK -28

#defineDFE_NOMATCH -29

#defineDFE_NOTINSET -30

#defineDFE_BADDIM -31

#defineDFE_BADOFFSET -32

#defineDFE_BADSCHEME -33

#defineDFE_NODIM -34

#defineDFE_NOTENOUGH -35

C Logical Constants

#defineDFACC_READ 1

#defineDFACC_WRITE 2

#defineDFACC_CREATE 4

#defineDFACC_ALL 7

#endif DFTAG_NULL

Figure B.2 C Header File: df.h

/***

*

* NCSA HDF version 2.0

* December 20, 1988

*

* NCSA HDF Version 2.0 source code and documentation are in the public domain.

* Specifically, we give to the public domain all rights for future licensing

* of the source code, all resale rights, and all publishing rights.

*

* We ask, but do not require, that the following message be included in all

* derived works:

*

* Portions developed at the National Center for Supercomputing Applications at

* the University of Illinois at Urbana-Champaign.

*

*

* THE UNIVERSITY OF ILLINOIS GIVES NO WARRANTY, EXPRESSED OR IMPLIED, FOR THE

* SOFTWARE AND/OR DOCUMENTATION PROVIDED, INCLUDING, WITHOUT LIMITATION,

6

C * File: dfF.h

C * Purpose: Fortran header file for HDF routines

C * Contents:

C * Tag definitions

C * Error return codes

C * Logical constants

C * Remarks: This file can be included with user programs

C *——————————————————————————————————————*

#ifndef DFTAG_NULL

#defineDFREF_WILDCARD 0

#defineDFTAG_WILDCARD 0

#defineDFTAG_NULL 1

#defineDFTAG_FID 100

#defineDFTAG_FD 101

#defineDFTAG_TID 102

#defineDFTAG_TD 103

#defineDFTAG_DIL 104

#defineDFTAG_DIA 105

#defineDFTAG_NT 106

#defineDFTAG_MT 107

#defineDFTAG_ID8 200

#defineDFTAG_IP8 201

#defineDFTAG_RI8 202

#defineDFTAG_CI8 203

#defineDFTAG_II8 204

#defineDFTAG_ID 300

#defineDFTAG_LUT 301

#defineDFTAG_RI 302

#defineDFTAG_CI 303

#defineDFTAG_RIG 306

#defineDFTAG_LD 307

#defineDFTAG_MD 308

#defineDFTAG_MA 309

Figure B.1 FORTRAN Header File: dfF.h (Continued)

#defineDFTAG_CCN 310

#defineDFTAG_CFM 311

#defineDFTAG_AR 312

#defineDFTAG_DRAW 400

#defineDFTAG_RUN 401

#defineDFTAG_XYP 500

#defineDFTAG_MTO 501

#defineDFTAG_T14 602

#defineDFTAG_T105 603

#defineDFTAG_RLE 11

#defineDFTAG_IMCOMP 12

C Error Return Codes

#defineDFE_NOERROR 0

#defineDFE_FNF-1

5

Appendix B Header Files and FORTRAN Constants File

This appendix includes the general header files used in compiling all

HDF libraries. These files do not have to be included with most applica-

tions, but they could be usefully added to code that refers to specific tags

by name, or code that is designed to be responsive to different error

conditions. You get these files when you get the HDF source code.

You will see that the C header (df.h) shown in Figure B.2 is more

completely commented than the FORTRAN header () shown in Figure

B.1. Thus, you may want to look at the C header for explanations of some

definitions, even if you plan to use the #define statements from the

FORTRAN header.

The file constants.f shown in Figure B.3 is equivalent to dfF.h

(Figure B.1), put uses the FORTRAN PARAMETER statement to declare

constants, and hence may be more useful for inserting into your FOR-

TRAN code.

Other headers used for specific applications, such as the RIS interface

and the SDS interface can be found by obtaining the source code from

NCSA. These headers also do not normally have to be included with your

source code.

Figure B.1 FORTRAN Header File: dfF.h

/***

*

* NCSA HDF version 2.0

* December 20, 1988

*

* NCSA HDF Version 2.0 source code and documentation are in the public domain.

* Specifically, we give to the public domain all rights for future licensing

* of the source code, all resale rights, and all publishing rights.

*

* We ask, but do not require, that the following message be included in all

* derived works:

*

* Portions developed at the National Center for Supercomputing Applications at

* the University of Illinois at Urbana-Champaign.

*

* THE UNIVERSITY OF ILLINOIS GIVES NO WARRANTY, EXPRESSED OR IMPLIED, FOR THE

* SOFTWARE AND/OR DOCUMENTATION PROVIDED, INCLUDING, WITHOUT LIMITATION,

* WARRANTY OF MERCHANTABILITY AND WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE

*

***/

C *——————————————————————————————————————

4

DFTAG_SD Scientific Data reals 702 points to scientific data.

DFTAG_SDS Scales reals 703 shows scales to be used when interpreting and

displaying data.

DFTAG_SDL Labels strings 704 labels for all dimensions and for the data.

DFTAG_SDU Units strings 705 displays units for all dimensions and for the data.

DFTAG_SDF Formats strings 706 formats for displaying axes and data.

DFTAG_SDM Max/min 2 reals 707 shows maximum and minimum values for the data.

DFTAG_SDC Coordinate system string 708 shows coordinate system to be used to interpret data.

DFTAG_SDT Transpose 0 bytes 709 indicates that data is transposed in the file.

3

DFTAG_RI Raster Image x*y bytes 302 points to raster image data.

DFTAG_CI Compressed Image n bytes 303 points to a compressed raster image.

DFTAG_RIG Raster Image Group n*4 bytes 306 lists the Data Identifiers (tag/ref) that describe a

raster image set.

DFTAG_LD LUT Dimension 20 bytes 307 defines the dimensions of the 2D array that its

corresponding LUT tag refers to.

DFTAG_MD Matte Dimension 20 bytes 308 defines the dimensions of the 2D array that its

corresponding MA tag refers to.

DFTAG_MA Matte Data n bytes 309 points to matte data.

DFTAG_CCN Color Correction n bytes 310 specifies the Gamma correction for the image and

color primaries for the generation of the image.

DFTAG_CFM Color Format string 311 indicates what interpretation should be given to each

element of each pixel in a raster image.

DFTAG_AR Aspect Ratio 4 bytes 312 indicates the visual aspect ratio for this image.

Table A.1 HDF Tags (Continued)

Tag Name Data Type Number Use

Composite Image Tag

DFTAG_DRAW Draw n*4 bytes 400 identifies a list of Data Identifiers (tag/ref) which

define a composite image.

DFTAG_RUN Run n bytes 401 identifies code that is to be executed as a program or

script.

Tag for Composite or Raster Images

DFTAG_XYP XY Position 8 bytes 500 indicates an XY position on the screen for composites

and other groups.

Vector Image Tags

DFTAG_T14 Tektronix 4014 n bytes 602 points to a Tek 4014 data stream. The bytes in the

data field, when read and sent to a Tektronix 4014

terminal, will be displayed as a vector image.

DFTAG_T105 Tektronix 4105 n bytes 603 points to a Tek 4105 data stream. The bytes in the

data field, when read and sent to a Tektronix 4105

terminal, will be displayed as a vector image.

Scientific Data Set Tags

DFTAG_SDG Scientific Data Group n*4 bytes 700 lists the Data Identifiers (tag/ref) that describe a

scientific dataset.

DFTAG_SDD Scientific Data n bytes 701 defines the rank and dimensions of the

Dimension Record array that the corresponding SD refers to.

2

DFTAG_FD File Descriptor text 101 points to a block of text describing the overall file

contents. It is intended to be user-supplied comments

about the file.

DFTAG_TID Tag Identifier string 102 provides a way for a human reader to tell the mean-

ing of a tag stored in a file.

DFTAG_TD Tag Descriptor text 103 similar to TID, but allows more extensive text to be

included.

DFTAG_DIL Data Identifier Label string 104 associates the string with the Data Identifier as a

label for whatever that Data Identifier points to in

turn. By including DILs, any piece of data can be

given a label for future reference. For example, this is

often used to give titles to images.

DFTAG_DIA Data Identifier text 105 associates the text block with the Data

Annotation Identifier as annotation for whatever that Data

Identifier points to in turn. With DIA, any Data

Identifier can have a lengthy, user-written descrip-

tion of why that data is in the file.

DFTAG_NT Number Type 4 bytes 106 used by any other element in the file to indicate

specifically what a numeric value looks like.

DFTAG_MT Machine Type 0 bytes 107 specifies that all unconstrained or partially con-

strained values in this HDF file are of the default

type for that hardware.

Table A.1 HDF Tags (Continued)

Tag Name Data Type Number Use

Raster-8 (8-Bit Only) Tags

DFTAG_ID8 Image Dimension-8 4 bytes 200 two 16-bit integers representing the width and height

of an 8-bit raster image in bytes.

DFTAG_IP8 Image Palette-8 768 bytes 201 a 256 x 3 byte array representing the red, green and

blue elements of the 256-color palette respectively.

DFTAG_RI8 Raster Image-8 x*y bytes 202 a row-wise representation of the elementary

8-bit image data.

DFTAG_CI8 Compressed Image-8 n bytes 203 a row-wise representation of the elementary

8-bit image data. Each row is compressed using a

form of run-length encoding.

DFTAG_II8 IMCOMP Image-8 n bytes 204 a 4:1 compressed 8-bit image, using the IMCOMP

compression scheme.

General Raster Image Tags

DFTAG_ID Image Dimension 20 bytes 300 defines the dimensions of the 2D array that its

corresponding RI tag refers to.

DFTAG_LUT Look Up Table n bytes 301 table to be used by hardware to assign RGB colors or

HSV colors to data values.

1

Appendix A NCSA HDF Tags

Overview

This appendix includes a Table containing brief descriptions of most of

the tags that have been assigned at NCSA for general use. The list is

growing and will be expanded in future editions of the documentation.

More detailed descriptions of the tags can be found in an appendix of the

NCSA HDF Specifications. To obtain a draft of this document, contact the

NCSA Software Development Group at the address listed on the

README page at the beginning of this manual.

Tag Types and Descriptions

The following table has five columns. The Tag column gives the abbrevi-

ated symbolic name of the tag that is often used in an augmented form in

HDF programs. The Name column gives a name commonly used in

human-readable media. The Data Type column describes the type of data

that is associated with the tag, and where possible, gives the amount of

data. The Number column gives the actual numeric value that is stored in

the file to represent the tag. The Use column describes the tag in brief

and general terms.

In the table, the term string refers to a sequence of ASCII characters,

with a zero byte possibly occurring at the end, but nowhere else. The

term text likewise refers to a sequence of ASCII characters, but it may

contain zero bytes elsewhere than at the end.

Table A.1 HDF Tags

Tag Name Datatype Number Use

Utility Tags

DFTAG_NULL No Data none 001 used for place holding and filling up empty portions of

the Data Descriptor Block.

DFTAG_RLE Run length encoding 0 bytes 011 specifies that run length encoding is used to compress

an image.

DFTAG_IMC IMCOMP 0 bytes 012 specifies that IMCOMP compression is used to

Compression compress an image.

DFTAG_FID File Identifier string 100 points to a string that the user wants to associate

with this file. It is intended to be a user-supplied title

for the file.

