
21

Options

-s single step through the images. Once an image is

displayed, it remains on the screen until you press

RETURN to display the next image or enter Q to

quit.

-l makes the image as large as possible on the screen.

-p xloc yloc places the upper left corner of the display at position

(xloc, yloc) on the screen.

-e expansion expands the image by the expansion factor specified

by expansion.

The syntax for hdfrseq is exactly the same.

Example 6

Five images are stored in RIS8 form in the files star1, star2, star3,

star4, and star5. You want to use hdfrseq to display all five images,

in sequence, but with a pause between them. To make them appear on

screen three times their normal size, enter:

hdfrseq -s -e 3 star1 star2 star3 star4 star5

20

hdftopal: Extracting a palette
from an HDF file

hdftopal converts a palette from an HDF file to a raw palette in a raw

palette file. The outgoing palette will have 768 bytes: first 256 red values,

then 256 greens, then 256 blues.

The syntax for hdftopal is:

hdftopal hdffile rawpalfile

hdffile, the input file, is an HDF file containing a palette.

rawpalfile is a 768-byte output file with the red, green, and blue

components stored as described above.

hdfrseq and hdfseq: Display-
ing Images

The utilities hdfseq and hdfrseq display sequences of images, one after

the other, from files containing raster image sets.

Although hdfseq and hdfrseq perform essentially the same function,

the situations in which they are used are different. hdfseq displays

images on a Sun-3 console and on any SGI IRIS that has gllib, when

those images are stored at the Sun 3 or IRIS workstation. When hdfseq
executes on a file, it causes the raster image to be displayed immediately

on the console.

hdfrseq performs the same operation, only remotely, via a terminal

emulator such as Telnet 2.3 or Teltool 1.2. (The “r” in hdfrseq stands for

remote.) When hdfrseq executes on a file, it converts the image from

RIS8 format to NCSA’s ICR (interactive color raster) format and sends it

to the receiving terminal. ICR is a protocol that is easy to transmit to a

remote display station. If the receiving software on the display station

can decipher the ICR protocol, it displays the image on the console.

In a typical application, the display station would be running a program,

such as NCSA Telnet (Version 2.3 or later) or NCSA Teltool (Version 1.2

or later), that understands ICR and immediately converts the incoming

stream to a screen display.

The syntax for hdfseq is:

hdfseq [-s] [-l] [-p xloc yloc] [-e expansion] file1 file2 ...

file1, file2, and so forth are HDF files that contain raster image sets.

Only one image is displayed per file. If more than one file is listed, the

corresponding images are displayed in sequence, that is, in the order in

which the files are listed. Each new image overwrites the preceding

image on the screen.

19

A file called denm.hdf contains three 512 x 256 images and three pal-

ettes. To extract these images and palettes and put them in separate

files, enter:

hdftor8 denm.hdf

Six files are produced with the names img1.512.256, img2.512.256,

img3.512.256, pal.1, pal.2, and pal.3.

r24hdf8: Converting 24-bit
Raster Image to HDF 8-Bit
Raster Images

The command line utility r24hdf8 quantizes a raw RGB 24-bit pixel

image into an 8-bit image with a 256-color palette and stores both the

palette and image in an HDF file.

The syntax for r24hdf8 is:

r24hdf8 x_dim y_dim r24_file hdf8_file

x_dim is the x dimension of the image (horizontal zize).

y_dim is the y dimension of the image (vertical zize).

r24_file is a file containing the raw RGB 24 bit image. The order of

pixels is left to right and top to bottom. Each pixel is three contiguous

bytes: red byte, green byte, and blue byte. Use filter ptox to convert

from “planar” to “pixel” where planar means all red bytes for the whole

image, followed by all green bytes for the whole image, followed by all

blue bytes for the whole image.

hdf8_file, the output file, is an HDF file with one 8-bit raster image

set; i.e. 8-bit image, dimensions, and RGB palette.

paltohdf: Converting a Raw
Palette to HDF

paltohdf converts a raw palette to HDF format. The incoming palette is

assumed to have 768 bytes organized in the following order: 256 red

values, 256 green values, and 256 blue values. The palette in the HDF

file will have the RGB values interlaced: RGB RGB RGB... This is stan-

dard HDF format for 8-bit palettes.

The syntax for paltohdf is:

paltohdf rawpalfile hdffile

rawpalfile is a 768-byte input file with the red, green, and blue compo-

nents stored as described above.

hdffile, the output file, is an HDF file. If hdffile does not exist, it is

created and the palette is added to it. If it already exists, the palette is

appended to it.

18

them in pic.hdf, enter:

r8tohdf 300 400 pic.hdf -i pic1 pic2 pic3

Example 4

A combination of different types of raster image sets is to be stored in a

file called ras.hdf. The image from file rawras1 is to be stored without

a palette. The images from rawras2 are to be stored with a palette that

is copied from a file called mypal. The images from rawras1 and

rawras2 are to be compressed using run length encoding, and rawras3
is not to be compressed. All images are

256 x 512.

r8tohdf 256 512 ras.hdf -c rawras1 -p mypal rawras2 -r rawras3

hdftor8: Extracting 8-Bit
Raster Images and Palettes
from an HDF File

The utility hdftor8 extracts the images and or palettes from an HDF file

and stores them in two sets of files that contain only images and palettes,

respectively. The syntax for hdftor8 is as follows:

hdftor8 hdf_file [-i] [-v] [-r image_file][-p palette_file]

Where hdf_file is the file to extract images and palettes from, and

image_file and palette_file are basic names of the files that will

contain the images and palettes. These names are extended as follows:

For each image file, the filename is given the extension “.#.@.%”, where #

stands for the image number from the original file, @ is the x dimension

of the image, and % is the y dimension of the image. For each palette file,

the filename is given the extension “.#”, where # stands for the palette

number from the original file.

If no names are given for the image file, the default name “img.#.@.%” is

used, where #, @ and % are defined as in the preceding paragraph.

Similarly the default name for a palette file is “pal.#”.

Options

-i puts the program in interactive mode, so you can specify

filenames interactively.

-v specifies verbose mode, providing descriptive

messages.

-r indicates that the file whose name follows is to hold

images.

-p indicates that the file whose name follows is to hold

palettes.

Example 5

17

Utilities for Working with Raster Image Sets

There are three utility programs for working with HDF files that contain

raster image sets. These routines can be executed interactively at the

command level without being embedded in programs.

r8tohdf: Converting 8-Bit
Raster Images to HDF

The utility r8tohdf converts one or more raw images to HDF RIS8

format and writes them to a file. The syntax for storing one RIS8 in a file

using r8tohdf is as follows:

r8tohdf rows cols outfile [-p palfile] {[-c],[-r],
[-i]} imf1 imf2 ...

where

• rows and cols are the number of rows and columns, respectively, of

the raster image

• outfile is the file that will contain the raster image set, and

• imf1, imf2, and so forth, are files containing 8-bit raw raster images.

Options

-p palfile optionally stores a file containing a palette in the

RIS8. If -p is not specified, no palette is stored in the RIS8.

{[-c],[-r],[-i]} optionally chooses compression by run

length encoding (-c), compression by the IMCOMP method

(-i), or no compression (-r). The default is -r.

Example 1

A 256 x 512 byte raw raster image is contained in a file called rawras,

and the palette with which it is to be used is stored in a file called mypal.

To convert this information to an RIS8 without compression and store the

result in a file called ras.hdf, enter:

r8tohdf 256 512 ras.hdf -p mypal rawras

Example 2

A 800 x 1000 byte raw raster image is stored in a file called bigpic. You

want to first convert this information to an RIS8 with run length encod-

ing for compression and no palette, and then store the result in a file

called bigpic.hdf. Enter:

r8tohdf 800 1000 bigpic.hdf -c bigpic

Example 3

Three 300 x 400 raw images are contained in files pic1, pic2, and pic3.

To convert all three files to RIS8s with imcomp compression and store

16

Figure 7.3 Format Used in a Text File

for Input

nrows ncols

max_value min_value

scale for vertical axis

scale for horizontal axis

data1 data2 data3

......

NOTE: There are nrows vertical axis scale values and ncols horizon-

tal axis scale values. data1, data2, etc., are the floating-point data and

are assumed to be ordered by rows, left to right and top to bottom.

Examples
Example 1

Convert floating-point data in file f1.txt to a SDS format, and store it as

an SDS in HDF file o1:

fptohdf f1.txt -o o1

Example 2

Convert floating-point data in file f2 to an 8-bit raster image and store it

as an RIS8 in file o2:

fptohdf f2 -o o2 -r

Example 3

Convert floating-point data in file f3 to RIS8 format and SDS format and

store both the RIS8 and the SDS in file o3:

fptoHdf f3 -o o3 -r -f

Example 4

Convert floating-point data in file f4 to a 500 x 600 raster image, storing

the corresponding RIS8 in file o4. Also store a palette from palfile with

the image:

fptohdf f4 -o o4 -r -e 500 600 -p palfile

Example 5

Convert floating-point data in all files whose names begin with the letter

‘f ‘ to 500 x 600 images and store the corresponding RIS8s in file o5:

fptohdf f* -o o5 -r -i 500 600

15

Options

-r Stores as image in raster image set in output file

-e Expands float data via pixel replication to produce image

(default if -I option chosen)

-i Applies bilinear interpolation when expanding float data

to produce image

<horiz> <vert>

when -e or -i options are chosen, these give the resolution

in pixels of the desired image

-p palfile
Stores palette with image; get palette from HDF file palfile.

-m <mean>
Causes the data to be scaled around <mean> when

generating the image, according to the following

formulas:

newmax = mean + 0.5*max(abs(max-mean),abs(mean-min))
newmin = mean - 0.5*max(abs(max-mean),abs(mean-min))

-f Stores as scientific dataset in output file (default)

Notes
• Image expansion is available via either pixel replication (-e) or bilinear

interpolation (-i), but not both.

• If the “-i” option is chosen, the expanded image must have dimensions

that are greater than or equal to the dimensions of the original dataset

• An optional palette can accompany the image by loading it from an

HDF file that contains a palette.

• Data from several input files (one set per input file) are stored as

several datasets and/or images in one output file. Alternatively, a shell

script can be used to call fptohdf repeatedly to convert data from

several input files to several corresponding HDF files.

• If an HDF file is used for input, it must contain an SDS. The SDS need

only contain a dimension record and the data, but if it also contains

max and min values and/or scales for the horizontal and vertical axes,

these will be used also.

(“Scales” are used for determining the gaps between the points on the

axes. If the gaps are all the same, a uniform scale is given, such as

“1.0 2.0 3.0 ... n”. In an HDF file, scales may be omitted, but in a text

file (see below) they must be included.)

• If a text file is used for input, it must follow the format shown in

Figure 7.3.

14

#!/bin/csh -f
set file=$1
shift
hdfed -batch $file -nobackup << EOF
info -all -group $*
close
quit
EOF
echo “”

This shell script lists information about the groups in an HDF file. The “-
batch” in the line that calls hdfed tells hdfed that the edit commands

are to be taken from the stream of characters beginning on the next line

and ending with the EOF symbol.

fptohdf: Converting Floating-Point Data to SDS and/or RIS8

Basics
fptohdf is a utility that converts floating-point arrays (from either text

files or HDF scientific datasets) to either HDF 8-bit raster image sets

(RIS8) or HDF scientific datasets (SDS), or both, and stores the results in

an HDF file (see Fig. 7.2). The image can be scaled about a mean value

that is provided by the user.

Figure 7.2 The fptohdf Utility

Floating-Point Data
Set: HDF SDS

Floating-Point Data
Set: Text File

RIS8

SDS

RIS8 and SDS

fptohdffptohdf(or)

(or)

(or)

The syntax of fptohdf is as follows:

fptohdf infile [infile ...] -o outfile [out_opts]

out_opts:

[[-r] [[-e|-i] <horiz> <vert>] [-p palfile]

-m <mean>] [-f]

• infile is a file containing a single floating-point array in

either text or HDF SDS format. If the format is text, see “Notes” below

on how it must be organized.

• outfile is a file containing the converted dataset in HDF format.

Depending on out_opts, outfile contains a scientific dataset and/or

raster image set for each of the datasets in the input files.

13

he> ! groups we can use the select command

he>

he> select -help

select [<predicates>]

<commands>*

end

Steps through all elements in the file that satisfies the

predicates and execute the commands on them.

he>

he> select tag=306

>> putr8 -image testImages# -palette testPalettes# -verbose

>> end

Writing to file: testImages5

Writing to file: testPalettes5

Writing to file: testImages12

Writing to file: testPalettes12

Writing to file: testImages19

Writing to file: testPalettes19

he>

he> ! select and if commands take the same predicates as

he> ! next and pref. There are also the predicates

he> ! “succeed” and “fail” that test the return status

he> ! of the last command.

he>

put he> ! put puts an element into a binary file

he> ! This is a dumb routine and does not know about the

he> ! formats of the element

he>

he> put -help

put [-file <file>] [-verbose]

Put the raw binary of this element in a file

-file Out file name (default “element#.@”)

-verbose Output diagnostic info

he>

he> put -file binary#

he> put -file myBinary -verbose

Writing to file: myBinary

he>

he> ! that’s it for now

he> revert;close;quit

zaphod|2%

hdfed with the -batch Option
Sometimes we want to have hdfed execute a series of commands, without

waiting for a prompt between commands. This process is useful when a

certain sequence of hdfed commands is commonly used, as illustrated in

the following shell script:

12

he> ! Let’s look at the file ‘test’.

he> close;open test;info -all

(1) Scientific Data (SciData) : (tag 702), Ref: 1

(2) Scientific Data (SciData) : (tag 702), Ref: 2

(3) Scientific Data (SciData) : (tag 702), Ref: 3

(4) Number type (Utility) : (tag 106), Ref: 3

(5) SciData description (SciData) : (tag 701), Ref: 3

(6) SciData scales (SciData) : (tag 703), Ref: 3

(7) SciData max/min (SciData) : (tag 707), Ref: 3

*(8) Scientific Data Group (SciData) : (tag 700), Ref: 3

Empty (tag 1) : 8 slots.

he>

he> close;

he>

display he> !We will open a file with some RIS8 images.

he>

he> open denm.HDF

he> display

he>

he> ! display displays the current r8 group image via ICR.

he> ! I.e. if you are using NCSA Telnet on a MacII, this

he> ! would display the images from denm.hdf on your screen

he> ! NOTE: not guaranteed to work otherwise.

he>

putr8 he> ! putr8 puts an r8 group into raw files

he> putr8 -help

putr8 [-image <image>] [-palette <pal>] [-verbose]

Put an r8 group into raw image and palette files

-image Image file name template (default “img#.@.%”)

-palette Palette file name template (default “pal#”)

-verbose To give output of steps taken

he>

he> putr8 -image my_image#.@.% -palette my_palette -verbose

Writing to file: my_image5.512.256

Writing to file: my_palette

he>

getr8 he> ! getr8 works in the reverse fashion

he> getr8 -help

getr8 <image> <xdim> <ydim> [-palette <palette>] [-raster|-rle|- imcomp]

Get a r8 group from raw files

-palette Raw palette file

-rasterNo compression (default)
Figure 7.1 Tutorial Session (Continued)

-rle Run-length compression

-imcompImcomp compression

he>

select he> ! To step through a file and, say, putr8 on all r8

11

-editorUse editor (default EDITOR env value)

he>

he> annotate -editor /usr/ucb/ex

“/tmp/he965.0” 1 line, 32 characters

:p

testing 1 2 3 4 5 6 7 8 9 0....

:s/$/<some additional stuff>/

testing 1 2 3 4 5 6 7 8 9 0....<some additional stuff>

:wq

“/tmp/he965.0” 1 line, 55 characters

he> info -label

(7) Scientific Data Group (SciData) : (tag 700), Ref: 1

Label: testing 1 2 3 4 5 6 7 8 9 0....<some additional stuff>

he>

he> annotate -descriptor -editor /usr/ucb/ex

“/tmp/he965.1” 1 line, 48 characters

:p

gdshjfhjdf asdgy sdf sdgf sdfg sgdfh as dbf asl

:c

This is the descriptor, it can have non-graphic characters

.

:wq

“/tmp/he965.1” 1 line, 58 characters

he>

he> info -all

(1) Machine type (Utility) : (tag 107), Ref: 4369

...

*(7) Scientific Data Group (SciData) : (tag 700), Ref: 1
Figure 7.1 Tutorial Session (Continued)

(8) Data Id Label (Utility) : (tag 104), Ref: 2

(9) Data Id Label (Utility) : (tag 104), Ref: 3

(10) Data Id Annotation (Utility) : (tag 105), Ref: 4

(11) Data Id Annotation (Utility) : (tag 105), Ref: 5

(12) Data Id Annotation (Utility) : (tag 105), Ref: 6

(13) Data Id Annotation (Utility) : (tag 105), Ref: 7

Empty (tag 1) : 3 slots.

he>

write he> ! Write to another HDF file

he>

he> write -help

write <file> [-attachto <atag> <aref>]

Write an element or group into another HDF file

 -attachto: ONLY for writing annotations

 <atag>/<aref>: What element to attach annotation to

he>

he> write test

he>

10

Number type (Utility) : (tag 106), Ref: 1

Data Id Label (Utility) : (tag 104), Ref: 2

Data Id Label (Utility) : (tag 104), Ref: 3

Data Id Annotation (Utility) : (tag 105), Ref: 4

Empty (tag 1) : 6 slots.

he> delete

he> ! This deletes the Scientific Data Group.

he> info -all

(1) Machine type (Utility) : (tag 107), Ref: 4369

(3) Number type (Utility) : (tag 106), Ref: 1

(8) Data Id Label (Utility) : (tag 104), Ref: 2

(9) Data Id Label (Utility) : (tag 104), Ref: 3
Figure 7.1 Tutorial Session (Continued)

(10) Data Id Annotation (Utility) : (tag 105), Ref: 4

Empty (tag 1) : 11 slots.

he>

he> ! Let’s delete an element.

he>

he> next tag=104 ref=3

he> info -all

(1) Machine type (Utility) : (tag 107), Ref: 4369

(3) Number type (Utility) : (tag 106), Ref: 1

(8) Data Id Label (Utility) : (tag 104), Ref: 2

*(9) Data Id Label (Utility) : (tag 104), Ref: 3

(10) Data Id Annotation (Utility) : (tag 105), Ref: 4

Empty (tag 1) : 11 slots.

he> delete

he> info -all

(1) Machine type (Utility) : (tag 107), Ref: 4369

(3) Number type (Utility) : (tag 106), Ref: 1

(8) Data Id Label (Utility) : (tag 104), Ref: 2

(10) Data Id Annotation (Utility) : (tag 105), Ref: 4

Empty (tag 1) : 12 slots.

he>

revert he> ! Reverting to original, unaltered file. This

he> ! cannot work if nobackup is used when opening.

he> ! the file.

he> ! Here we revert back to the original file:

he> revert

he>

annotate he> ! Annotations are labels and descriptors.

he>

he> annotate -help

annotate [-label|-descriptor] [-editor <editor>]

Edit an annotation

-label Edit label (default)

-descriptor Edit descriptor

9

he> ! to go back to groups

he> next group

he> info

(7) Scientific Data Group (SciData) : (tag 700), Ref: 1

he>

dump he> ! to see the binary representation of this element

he>

he> dump -help

dump [-offset <offset>] [-length <len>]

[-decimal|-octal|-hexadecimal|-float|-ascii]

Od the present element

-offsetStart offset

-lengthLength to look at

-decimal Decimal format

-octal Octal format

-hexadecimal Hexadecimal format

-float Float format

-ascii Ascii format

he>

he> dump

0000000 001276 000001 001275 000001 001277 000001 001303 000001

0000020

he>

he> dump -decimal

0000000 00702 00001 00701 00001 00703 00001 00707 00001

0000020

he>

delete he> ! deleting groups

he>

he> delete -help

delete

Delete this element or group.

he>

he> ! If an element is required by other groups it is

he> ! alone. However, this is not perfect since the way

he> ! group membership is determined can be pretty ad hoc

he>

he> info -all -group

**Group 1:

Scientific Data Group (SciData) : (tag 700), Ref: 1

Scientific Data (SciData) : (tag 702), Ref: 1

SciData description (SciData) : (tag 701), Ref: 1

SciData scales (SciData) : (tag 703), Ref: 1

SciData max/min (SciData) : (tag 707), Ref: 1

**These do not belong to any group:

Machine type (Utility) : (tag 107), Ref: 4369

8

Empty (tag 1) : 6 slots.

he>

next he> ! Move in the file using next and prev.

prev he> ! The move direction depends on the relative positions,

predicates he> ! so it is often necessary to do an ‘info -all’ first

he>

he> info -all

(1) Machine type (Utility) : (tag 107), Ref: 4369

(2) Scientific Data (SciData) : (tag 702), Ref: 1

(3) Number type (Utility) : (tag 106), Ref: 1

(4) SciData description (SciData) : (tag 701), Ref: 1

(5) SciData scales (SciData) : (tag 703), Ref: 1

(6) SciData max/min (SciData) : (tag 707), Ref: 1

*(7) Scientific Data Group (SciData) : (tag 700), Ref: 1

(8) Data Id Label (Utility) : (tag 104), Ref: 2

(9) Data Id Label (Utility) : (tag 104), Ref: 3

(10) Data Id Annotation (Utility) : (tag 105), Ref: 4

Empty (tag 1) : 6 slots.

he>

* he> ! The ‘*’ in the first column marks the current

he> ! position.

he> ! The next and prev commands work on predicates.

he> ! Default predicate is “group”.

he> ! This means that each move will move to the next/prev

he> ! group if I now want to move to the max/min element,

he> ! I can use the ‘tag=’ predicate

he>

he> prev tag=707

he> info

(6) SciData max/min (SciData) : (tag 707), Ref: 1

he>

he> ! Other predicates are ref”, “any”, with comparators

he> ! “=”, “!=”, “>”, “<“, “>=”, “<=”

he> ! For example, “group ref >= 10” is legal and matches

he> ! a group with ref>=10.

he>

he> ! This predicate persist for next and prev.

he> ! That means that if I now do another ‘next’

he> ! it will look for a tag=707

he>

he> next

Reached end of file. Not moved.
Figure 7.1 Tutorial Session (Continued)

he> info

(6) SciData max/min (SciData) : (tag 707), Ref: 1

he>

7

he>

he> info -help

info [-all] [-long] [-group] [-label]

-all Show info for all elements in file

-long Show more info

-group Organize info in group(s)

-label Show label if any

he>

he> info -all -label -long

(1) Machine type (Utility) : (tag 107)

Ref: 4369, Offset: 0, Length: 0 (bytes)

Label: Sun Machine type??

(2) Scientific Data (SciData) : (tag 702)

Ref: 1, Offset: 202, Length: 40000 (bytes)

(3) Number type (Utility) : (tag 106)

Ref: 1, Offset: 40202, Length: 4 (bytes)

(4) SciData description (SciData) : (tag 701)

Ref: 1, Offset: 40206, Length: 22 (bytes)

(5) SciData scales (SciData) : (tag 703)

Ref: 1, Offset: 40228, Length: 802 (bytes)

(6) SciData max/min (SciData) : (tag 707)

Ref: 1, Offset: 41030, Length: 8 (bytes)

*(7) Scientific Data Group (SciData) : (tag 700)

Ref: 1, Offset: 41038, Length: 16 (bytes)

Label: testing 1 2 3 4 5 6 7 8 9 0....<additional stuff>

(8) Data Id Label (Utility) : (tag 104)

Ref: 2, Offset: 41275, Length: 53 (bytes)

(9) Data Id Label (Utility) : (tag 104)
Figure 7.1 Tutorial Session (Continued)

Ref: 3, Offset: 41230, Length: 22 (bytes)

(10) Data Id Annotation (Utility) : (tag 105)

Ref: 4, Offset: 41252, Length: 23 (bytes)

Empty (tag 1) : 6 slots.

he> info -group -all

**Group 1:

Scientific Data Group (SciData) : (tag 700), Ref: 1

Scientific Data (SciData) : (tag 702), Ref: 1

SciData description (SciData) : (tag 701), Ref: 1

SciData scales (SciData) : (tag 703), Ref: 1

SciData max/min (SciData) : (tag 707), Ref: 1

**These do not belong to any group:

Machine type (Utility) : (tag 107), Ref: 4369

Number type (Utility) : (tag 106), Ref: 1

Data Id Label (Utility) : (tag 104), Ref: 2

Data Id Label (Utility) : (tag 104), Ref: 3

Data Id Annotation (Utility) : (tag 105), Ref: 4

6

annotate Annotate an object

if Conditional statement

select Loop for each object

alias Set or show aliases

unalias Remove an alias

wait Message and wait for return

Tutorial Session

In the absence of a user’s manual for hdfed, this document contains a

tutorial in the form of a session on the editor. Examples of almost all of

the commands are given below. In the following script, bold characters

represent those typed by a user. Plain text characters represent charac-

ters that were printed by the computer.

Figure 7.1 Tutorial Session

zaphod|2% he

he> ! This is a script of a session on the HDF editor.

he> ! It is meant as an example for anyone learning to use

he> ! the editor.

he> ! The exclamation mark in the FIRST column starts

! he> ! a comment

he>

help he> ! help command

he> help

Type <command> -help for usage of command

e.g. “open -help” give help on the open command

DO NOT just type the command and expect a help line

Some commands like delete do not need any argument

If you are just starting to learn, try this program on

a file that is expendable

List of commands:

————————

open Open HDF file

close Close HDF file

...

...

open he> ! opening a file

he>

he> open -help

open <file> [-nobackup]

-nobackup Don’t make a backup for this file.

he>

he> open h1

he>

info he> ! look into the contents of this file

he> ! using info

5

• - batch
Specifies that input to hdfed is to be input via a stream of

hdfed commands, rather than interactively.

To receive usage information, as well as a quick list of the hdfed com-

mands, type the command:

hdfed -help

While you are using the editor, you receive the prompt:

he>

You can now enter hdfed commands.

Many hdfed commands have qualifiers, or flags. For instance the info

command may optionally be followed by -all, -long,
-group, or -label.

All of the commands and flags can be abbreviated to the extent that their

abbreviations are unique. For example -he is an ambiguous abbrevia-

tion because it could stand for either the flag

-hexadecimal or the flag -help; on the other hand, the flag

-hel is not ambiguous.

To obtain information about the usage of a command, type:

<command> -help

Do not just type the command and expect a help line. Some commands,

such as delete, do not need any argument, so this could have unfortu-

nate results.

Table 7.2 lists the hdfed commands.

Table 7.2 hdfed Commands

Name Function

help Provide help on use of hdfed
open Open HDF file

close Close HDF file

revert Revert to original file

next Go to next object/group that satisfies

predicate

prev Go to previous object/group that satisfies predicate

info Show information about data object

dump Display data in binary, ASCII, etc.

display Display a raster image using ICR

put Put data element as binary into raw file

putr8 Put an ris8 group into raw file

getr8 Get an ris8 group from raw file

delete Delete an object/group

write Write an object/group to another HDF file

4

hdfed: Editing an HDF File

Basics
The hdfed utility provides all the capabilities of hdfls, but also allows

you to examine the data itself and to move data between two HDF files.

Actual editing (changing) of individual data objects with hdfed is cur-

rently somewhat limited.

hdfed is modeled to some extent after ed, the Unix line editor. When you

invoke hdfed, your terminal screen acts as a window into an HDF file.

Your initial view of the file is as a set of tags and reference numbers.

Each tag/ref combination uniquely identifies a data object in the file.

NOTE: The term data object in this context refers to the tag/ref for the

data, plus the data itself. The term data or data element refers to the

actual data that the tag/ref refers to. This “data” may be descriptive

information, such as a label or dimension record for an image. The term

group refers to a predefined collection of data objects that correspond to a

particular application. For instance, a “raster image group” refers to the

collection of data objects that are used to store all of the information in a

Raster Image Set.)

Once you have opened an HDF file with hdfed, you can do several things

with the file, including the following:

• Select an HDF object to examine more closely.

• Move forward or backward among the objects in the file.

• Get information about an object (tag, ref, size, label).

• Display a raster image using the ICR protocol.

• Display a dump of any object.

• Delete an object.

• Annotate an object.

• Write an object to another HDF file.

• Write a data element in its binary form to a non-HDF file.

• Close the file and exit, or open a new file.

hdfed also has a small set of special commands, including a conditional

statement, a looping statement, an alias command and an unalias com-

mand. A simple ‘help’ feature also exists.

The syntax for hdfed is:

hdfed [filename] [-nobackup] [-batch]

If filename is present, the corresponding file is opened, and a backup is

made of the file. Otherwise, a file may be opened from within the editor.

Options

• - nobackup
Specifies that no backup file is to be made. If this option

is omitted, a backup file is automatically created.

3

Table 7.1 Scientific Dataset Routines

in the HDF Library

(Continued)

hdfseq/hdfrseq displays sequences of images directly to the screen

from HDF files containing raster images.

hdfls: Listing Basic Information about an HDF File

The utility hdfls provides a quick look at the tags, reference numbers,

and (optionally) lengths of the data elements. The syntax for hdfls is:

hdfls [-o] [-l] filename

-o Order: Indicates that the reference numbers are to be displayed

in ascending order.

-l Long format: Displays more information about the file.

Example 1

A file called aa.hdf contains three items associated with a raster image:

(1) the image dimensions, (2) a palette, and (3) the raster image. To

display information about the contents of the file, enter:

hdfls aa.hdf

The following is displayed:

aa.hdf:
Image Dimensions-8 (Raster-8) : (tag 200)
Ref nos: 1

Image Palette-8 (Raster-8) : (tag 201)
Ref nos: 3

Raster Image-8 (Raster-8) : (tag 202)
Ref nos: 1

To display the same information together with the length of each data

element, enter:

hdfls -l aa.hdf

The resulting display is:

aa.hdf:
Image Dimensions-8 (Raster-8) : (tag 200)

Ref no 1 4 bytes

Image Palette-8 (Raster-8) : (tag 201)
Ref no 3 768 bytes

Raster Image-8 (Raster-8) : (tag 202)
Ref no 1 120000 bytes

2

Chapter Overview

A small but growing number of utility routines and command line utili-

ties are available for working with HDF files. Currently available pro-

grams are described below.

Introduction

The command line utilities are application programs that can be executed

by entering them at the command level, just like other UNIX commands.

These utilities serve two purposes:

1) They make it possible for you to perform, at the command level,

common operations on HDF files for which you would normally have to

write your own program. For example, the utility r8tohdf is a pro-

gram that takes a raw raster image from a file and stores it in an HDF

file in a raster image set.

2) They provide capabilities for doing things with HDF files that would

be very difficult to do under your own program control. For example,

the utility hdfseq takes a a raster image from an HDF file and

displays it immediately on a Sun-3 console.

Table 7.1 lists the names and the functions of the utilities described in

this chapter. The following sections provide descriptions and examples of

these routines.

Table 7.1 Scientific Dataset Routines

in the HDF Library

Name Function

hdfls displays the tags, ref numbers, and (optionally)

lengths of data elements.

hdfed lets you browse in an HDF file and manipulate

some of the data.

fptohdf converts floating-point data to HDF floating-point

data and/or 8-bit raster images.

r8tohdf converts one or more raw 8-bit images to HDF

RIS8 format and writes them to a file, possibly with palettes.

hdftor8 converts images and or palettes from HDF format to

raw format and stores them in two corresponding sets of files.

r24hdf8 converts a raw RGB 24-bit image to an 8-bit RIS8

with a palette.

paltohdf converts a raw palette to hdf format.

hdftopal converts palette in an hdf file to raw format.

1

Chapter 7 NCSA HDF Command Line Utilities

Chapter Overview

Introduction

hdfls: Listing Basic Information about an HDF

hdfed: Editing an HDF File

Basics

Tutorial Session

hdfed with the -batch Option

fptohdf: Converting Floating-Point Data to SDS

and/or RIS8

Basics

Notes

Examples

Utilities for Working with Raster Image Sets

r8tohdf: Converting 8-Bit Raster Images to HDF

hdftor8: Extracting 8-Bit Raster Images and Palettes

from an HDF File

r24hdf8: Converting 24-Bit Raster Images to HDF 8-

Bit Raster Images

paltohdf: Converting a Raw Palette to HDF

hdftopal: Extracting a Palette from an HDF file

hdfrseq/hdfseq: Displaying Images

