
14

Purpose: To provide status information about an HDF file.

Returns: 0 on success; -1 on failure.

This routine currently does nothing but return the version number of the

HDF library. It is intended for later expansion.

13

Returns: 0 if it is an HDF file; -1 if not.

DFnewref

FORTRAN:

INTEGER FUNCTION DFnewref(dfile)

INTEGER dfile - pointer to open HDF file

C:

uint16 DFnewref(dfile)

DF *dfile /* pointer to open HDF file */

Purpose: To get an unused reference number.

Returns: Unused ref number if successful; 0 on failure.

This routine is useful when you want to add a data element to an HDF

file and you need a unique reference number. The value returned is a ref

which is not used with any tag, except possibly DFTAG_MT.

DFnumber

FORTRAN:

INTEGER FUNCTION DFnewref(dfile)

INTEGER dfile - pointer to open HDF file

C:

int DFnumber(dfile, tag)

DF *dfile /* pointer to open HDF file */

unit16 tag; /* tag to count occurrences of */

Purpose: To return the number of occurrences of the given tag in the

HDF file.

Returns: The number of occurrences of tag in the file if successful; -1 on

error with DFerror set . If the tag is DFTAG_WILDCARD, DFnumber

returns the occurrences of all tags.

DFstat

FORTRAN:

INTEGER FUNCTION DFstat(dfile, dfinfo)

INTEGER dfile - pointer to an open HDF file

INTEGER dfinfo - pointer to information on file

C:

int DFstat()

DF *dfile /* pointer to an open HDF file */

struct DFdfinfo /* pointer to information about file */

12

DFdel

FORTRAN:

INTEGER FUNCTION DFdel(dfile, tag, ref)

INTEGER dfile - identifier of file access path

INTEGER tag, ref - tag and ref of data to be deleted

C:

int DFdel(dfile, tag, ref)

DF *dfile; /* file access path */

uint16 tag, ref; /* tag and ref of data to be deleted */

Purpose: To delete a tag/ref from the list of DDs.

Returns: 0 on success; -1 on failure.

The data to which this DD points is not affected by DFdel, but is re-

claimed when the file is compacted.

If there are multiple references to this data, then the other references

remain intact, and compaction does not affect the data itself. If there are

no other references to a data element, DFdel may implicitly leave the

data without any reference, making the data inaccessible.

Miscellaneous

DFerrno

FORTRAN:

INTEGER FUNCTION DFerrno()

C:

int DFerrno()

Purpose: To report the value of DFerror.

Returns: The value of DFerror.

DFishdf

FORTRAN:

INTEGER FUNCTION DFishdf(filename)

integer filename - name of HDF file

C:

int DFishdf(filename)

DF *filename /* name of HDF file */

Purpose: To tell if a file is an HDF file.

11

Purpose: To write out the DD blocks necessary to update the file.

Returns: 0 on success; -1 on failure.

All data elements that have been written or partially written to the file

are given valid DDs.

DFupdate is useful because HDF does not automatically write DDs to a

file when the corresponding data is written out. Instead, it keeps all of

the DDs in a special structure in primary memory, then writes them all

out when DFclose is called.

If a crash occurs after data has been written out to a file but before the

file is closed, changes that have been made to the file can be lost. If a

DFupdate is performed immediately after a write, then the changes

made by the write are not lost because both the DDs and the correspond-

ing data have been stored in the file.

DFdup

FORTRAN:

INTEGER FUNCTION DFdup(dfile, tag, ref, otag, oref)

INTEGER dfile - identifier of file access path

INTEGER tag, ref - new tag and ref to point to old data

INTEGER otag, oref - tag & ref that already point to data

C:

int DFdup(dfile, tag, ref, otag, oref)

DF *dfile; /* file access path */

uint16 tag, ref; /* new tag & ref to point to old data */

uint16 otag,oref; /* tag & ref that already point to data */

Purpose: To generate a DD whose offset and length are the same as

those of another tag/ref.

Returns: 0 on success and a negative error indicator if otag/oref is not

present in the file.

Sometimes it is desirable to have more than one DD point to a single data

element. In such cases, the offset and length fields are identical for two or

more DDs. DFdup is used to generate new references to data that are

already referenced from somewhere else.

DFdup creates a new tag/ref (tag/ref) that points to the same data as an

old tag/ref (otag/oref). If the new tag/ref combination already exists in

the file, then the offset and length are changed to their new values.

WARNING: When a data element that is referenced from several places

is modified, there is a danger that duplicate references to that data no

longer point to the correct data. For instance, when a data element is

moved, HDF does not automatically change all prior references to that

data to point to the data in its new location.

10

DFwrite starts at the last position left by a DFaccess or DFwrite

command and writes up to len bytes, then leaves the write pointer at the

end of the element.

DFwrite fails if the DFaccess mode is not ‘w’ or ‘a’ (“w” or “a”).

NOTE: The corresponding tag entry in the DD block is not updated until

DFclose or DFupdate is called.

DFseek

FORTRAN:

INTEGER FUNCTION DFseek(dfile, offset)

INTEGER dfile - identifier of file access path

INTEGER offset - offset within data element to seek

to

C:

int32 DFseek(dfile, offset)

DF *dfile; /* file access path */

int32 offset; /* offset within data to seek to */

Purpose: To set the read pointer to an offset within a data element.

Returns: On success, number of bytes from the beginning of the element

to the new pointer position; on failure, negative.

DFseek tries to count offset number of bytes from the beginning of the

element and set the read pointer there. The next time DFread is called,

the read occurs from the new position.

If offset is such that the seek goes out of the range of the data

item, an error is reported.

NOTE: DFseek is only valid when used in conjunction with a DFread. It

should not be used to position a write operation.

Manipulating Data Descriptors (DDs)

These routines perform operations on DDs without doing anything with

the data to which the DDs refer.

DFupdate

FORTRAN:

INTEGER FUNCTION DFupdate(dfile)

INTEGER dfile - identifier of file access path

C:

int DFupdate(dfile)

DF *dfile; /* file access path */

9

Purpose: To initiate a read or write on the data element with the

specified tag/ref combination. For read, write, or append access, respec-

tively, access is ‘r’, ‘w’, or ‘a’ (FORTRAN) and “r”, “w”, or “a” (C).

Returns: 0 on success; -1 on failure.

DFaccess must be invoked before the first DFread or DFwrite operation

can be performed. It checks that the access mode is valid and moves to

the first byte of the desired element in the file. If append access is speci-

fied, subsequent writes are appended to the end of the existing data.

DFread

FORTRAN:

INTEGER FUNCTION DFread(dfile, data, len)

INTEGER dfile - identifier of file access path

INTEGER len - number of bytes to read

CHARACTER*1 data(len) - array that will hold data

C:

int DFread(dfile, data, len)

DF *dfile; /* file access path */

char *data; /* array that will hold data */

int32 len; /* number of bytes to read */

Purpose: To read a portion of a data element.

Returns: If DFread is able to read any bytes, it returns the number of

bytes read. If it is at the end of the element before the read occurs, it

returns zero. On failure, it returns -1.

DFread starts at the last position left by a DFaccess, DFread or DFseek

command and reads into the array data; i.e., any data that remains in

the element up to len bytes. It fails if the DFaccess mode was not ‘r’

(“r”).

DFwrite

FORTRAN:

INTEGER FUNCTION DFwrite(dfile, data, len)

INTEGER dfile - identifier of file access path

INTEGER len - number of bytes to write

CHARACTER*1 data(len) - array with data to be written

C:

int DFwrite(dfile, data, len)

DF *dfile; /* file access path */

char *data; /* array with data to be written */

uint16 len; /* number of bytes to wriTe */

Purpose: To append data to a data element.

Returns: Number of bytes written on success; negative on failure.

8

DFput (FORTRAN) and DFputelement (C)

FORTRAN:

INTEGER FUNCTION DFput(dfile, tag, ref, storage, len)

INTEGER dfile - identifier of file access path

INTEGER tag, ref - tag and ref of data to store

INTEGER len - number of bytes of data to store

CHARACTER*1 storage(len) - array with data to be stored

C:

int DFputelement(dfile, tag, ref, ptr, len)

DF *dfile; /* file access path */

uint16 tag, ref; /* tag and ref of data to be stored */

char *ptr; /* pointer to data to be stored */

int32 len; /* number of bytes of data to be

 stored */

Purpose: To add or replace elements in dfile.

Returns: If DFputelement succeeds, the return value is the number of

bytes written. If it fails, -1 is returned.

The first len bytes in the array storage are written to the file with tag/

ref referring to them.

NOTE: Since there can be no two elements with the same tag and

reference numbers, any call with a tag/ref combination that duplicates an

existing tag/ref replaces the previous element.

NOTE: The corresponding tag entry in the DD block is not updated until

DFclose or DFupdate is called.

Reading or Writing Part of a Data Element

The second set of routines for reading and writing data elements makes it

possible to read or write all or part of a data element, in contrast to

DFput and DFget, described in the previous section, which can only read

or write entire elements.

DFaccess

FORTRAN:

INTEGER FUNCTION DFaccess(dfile, tag, ref, access)

INTEGER dfile - identifier of file access path

INTEGER tag, ref - tag and ref of data to be accessed

CHARACTER*1 access - access mode

C:

int DFaccess(dfile, tag, ref, access)

DF *dfile; /* file access path */

uint16 tag, ref; /* tag and ref of data to access */

char *access; /* access mode */

7

Returns: 0 on success; if there are no more elements which match the

pattern, a negative number is returned and tag and ref are set to zero.

The C version of this program returns a pointer to the actual data de-

scriptor for the tag/ref that have be set. Since FORTRAN cannot, in

general, support pointers or structures, the FORTRAN version returns in

three separate variables the tag, ref, and length from the data descriptor.

In addition to the values that are returned, DFfind updates the file

structure pointed to by dfile to indicate that the data object that has

been located is the “current” one.

If DFsetfind has set specific tag and ref values, DFfind prepares the

HDF system to access the corresponding object in the file. If ref were

the flag DFREF_WILDCARD, then DFfind prepares the system to access

the next ref for the specified tag. Similarly, if the tag was the flag

DFREF_WILDCARD, then DFfind prepares the system to access the next

tag for the specified ref.

Storing and Retrieving Entire Data Elements

There are two sets of routines for reading and writing data elements.

DFput (DFputelement) and DFget (DFgetelement), described here,

store and retrieve entire elements. A second set of routines may be used if

access to only part of a data element is desired. These routines are

covered in the next section.

DFget (FORTRAN) and DFgetelement (C)

FORTRAN:

INTEGER FUNCTION DFget(dfile, tag, ref, storage)

INTEGER dfile - identifier of file access path

INTEGER tag, ref - tag and ref of data to be

retrieved

CHARACTER*1 storage(*) - array for storing incoming data

C:

int DFgetelement(dfile, tag, ref, ptr)

DF *dfile; /* file access path */

uint16 tag, ref; /* tag and ref of data to be retrieved */

char *ptr; /* pointer to space for storing

 incoming data */

Purpose: To extract the data referred to by the tag/ref and place the

data in the array storage.

Returns: If DFget succeeds, the return value is the number of bytes

read. If it fails, -1 is returned.

6

DFsetfind and DFfind provide a kind of “seeking” capability, where the

objective is to seek to a particular data descriptor in the data descriptor

block, rather than to seek to a byte offset in the file.

DFsfind (FORTRAN) and DFsetfind(C)

FORTRAN:

INTEGER FUNCTION DFsfind(dfile, tag, ref)

INTEGER dfile - identifier of file access path

INTEGER tag, ref - tag and ref to be located

C:

int DFsetfind(dfile, tag, ref)

DF *dfile; /* file access path */

uint16 tag, ref; /* tag and ref to be located */

Purpose: To initialize searches for elements using tags or reference

numbers.

Returns: 0 on success and -1 on failure.

DFsetfind initializes any search for elements with a given tag or ref by

setting tag and ref values in the file pointer, dfile.

The parameter ref may be replaced by the “wildcard” flag,

DFREF_WILDCARD, which indicates that the search by DFfind is to begin

with the first ref in the file that matches the tag. Subsequent calls to

DFfind return the refs for the specified tag in ascending order.

Similarly, the tag parameter may be DFTAG_WILDCARD, indicating that

DFfind is to begin with the first tag that occurs with the specified ref.

If both tag and ref are wildcards, DFfind will return all of the tags and

reference numbers in the file in ascending order with reference numbers

as the primary field.

DFfind

FORTRAN:

INTEGER FUNCTION DFfind(dfile, tag, ref, len)

INTEGER dfile - identifier of file access path

INTEGER tag, ref - tag/ref of data

INTEGER len - number of bytes of data

C:

int DFfind(dfile, ptr)

DF *dfile; /* file access path */

struct DFdesc *ptr /* pointer to data descriptor for data */

Purpose: To locate the data descriptor needed for the next read from the

file.

5

Purpose: To update the DD blocks, then close the access path to the file

referred to by dfile.

Returns: 0 on success and -1 on failure.

NOTE: If the contents of a file have been changed, it is important to call

DFclose to ensure that the DD blocks are written to the file. (To cause

all DD blocks to be written to the file without also closing the file, see

DFupdate.)

Finding the Next Occurrence of a Given Object

DFfindnextref

FORTRAN:

INTEGER FUNCTION DFfindnextref(dfile, tag, lref)

INTEGER dfile - identifier of file access path

INTEGER tag - tag to look for

INTEGER ref - ref after which to search

C:

int DFfindnextref(dfile, tag, lref)

DF *dfile; /* file access path */

int16 tag, /* tag to look for */

lref; /* ref after which to search */

Purpose: To find the reference number for the next occurrence after the

last ref of the given tag.

Returns: The desired ref on success; -1 on failure.

This routine is useful for stepping through a file one object at a time. For

instance, it systematically reads all the annotations associated with all

occurrences of a given HDF object.

Finding Data Descriptors for HDF Objects

The routines DFsetfind and DFfind are for locating data descriptors in

a file. Given the tag and ref of a data object, DFsetfind initializes a

search for the object’s data descriptor, and DFfind returns information

from the data descriptor about the data. This information is necessary for

accessing the actual data.

DFsetfind and DFfind also make it possible to locate elements without

previous knowledge of their tags or reference numbers (or both). For

example, if you know that several instances of a given tag are in a file,

but do not know the reference numbers, you can use these routines to find

the reference numbers and their corresponding data descriptors. One call

to DFsetfind, followed by successive calls to DFfind, lets you step

through all of the refs that go with the tag.

4

macro processors m4 and cpp let your compiler include and preprocess

header files. If this or a similar capability is not available, you may have

to copy whatever declarations, definitions, or values you need from dfF.h

into your program code.

Opening and Closing Files

DFopen

FORTRAN:

INTEGER FUNCTION DFopen(filename, access, defDDs)

CHARACTER*64 filename - name of file to be opened

INTEGER access - type of access

INTEGER defDDs - number of data descriptors to

allocate per block

C:

DF *DFopen(filename, access, defDDs)

char *filename; /* name of file to be opened */

int access;/* type of access */

int defDDs;/* number of data descriptors to allocate

per block*/

Purpose: To provide an access path to the file named in filename with

the access given in access.

Returns: An integer (FORTRAN) or pointer (C) that identifies the file

access path. If the call succeeds, the return value is positive. If the call

fails, the return value is 0 (FORTRAN) or NULL (C).

DFopen also reads into memory all of the DD blocks in the file.

Values allowed for access are DFACC_READ for read only, DFACC_WRITE

for write only, DFACC_ALL for read and write, and DFACC_CREATE for

create or overwrite. If the file must be created or extended, defDDs

specifies the number of data descriptors (DDs) to be allocated per DD

block. If defDDs ≤ 0, the number of data descriptors is set to the machine

default.

NOTE: In the current implementation, only one file can be open at a

time.

DFclose

FORTRAN:

INTEGER FUNCTION DFclose(dfile)

INTEGERdfile - identifier of file access path

C:

int DFclose(dfile)

DF *dfile; /* file access path */

3

Table 6.1 General Purpose Routines

in the HDF

Library(Continued)

Long Name Short Name Function

DFgetelement dfget extracts the data referred to by the

tag/ref and places the data in the array storage.

DFputelement dfput adds or replaces elements in dfile.

DFaccess inititiates a read or write on the data

element with the specified tag/ref combination.

DFread reads a portion of a data element.

DFwrite appends data to a data element.

DFseek sets the read pointer to an offset within

a data element.

DFupdate writes out the DD blocks necessary to

update the file.

DFdup generates a DD whose offset and length

are the same as those of another tag/ref. I.e. duplicates a DD.

DFdel deletes a tag/ref from the list of DDs.

DFerrno reports the value of DFerror.

DFishdf tells if a file is an HDF file.

DFnewref generates an unused reference number.

DFnumber counts the number of occurrences of a

given tag in the HDF file.

DFstat provides status information about an

HDF file.

Header Files

You may need to include a header file if your program uses special HDF

declarations or definitions. There are two header files, one for FORTRAN

and one for C, that apply to the general purpose I/O routines listed here:

• dfF.h contains the declarations and definitions that are used by

FORTRAN routines.

• df.h contains the declarations and definitions that are used by C

routines.

For example, if your program uses mnemonics for tags, the corresponding

numerical values for the tags can be found in dfF.h (FORTRAN) or df.h

(C). The contents of dfF.h and df.h are listed in Appendix B.

Although the use of header files is always permitted in C programs, it is

generally not permitted in FORTRAN. It is, however, sometimes avail-

able as an option in FORTRAN. For example, on UNIX systems, the

2

Chapter Overview

The following chapter is a reference to the set of general purpose low-

level routines used when working with HDF files. Note that if you are

using a higher level HDF interface, such as RIS8, you probably do not

need to use these low-level routines.

Introduction

At times you may need a lower level of access to HDF files than that

provided by more application-oriented interfaces such as RIS8 and SDS.

The routines described in this chapter enable you to build and manipu-

late HDF files of any type, including those of your own invention. All

HDF applications developed at NCSA use these routines as their basic

building blocks.

NOTE: If you are using an HDF package such as RIS8, you probably do

not need to use any of these routines. In fact if you use some of these

lower level routines while simultaneously accessing a file with the higher

level interfaces, the higher level routines may not function properly.

In order to understand how these routines work, it is important to under-

stand the underlying structure of all HDF files. Detailed information

about the basic HDF structure and how it works can be found in NCSA

HDF Specifications, which may be obtained by contacting NCSA’s Soft-

ware Tools Group at the address listed on the README page at the

beginning of this manual.

Table 6.1 lists the long and short names and the functions of the general

purpose routines currently contained in the HDF library. The following

sections provide descriptions and examples of these calling routines.

Table 6.1 General Purpose Routines

in the HDF Library

Long Name Short Name Function

DFopen provides an access path to the file

named in filename with the access given in access.

DFclose updates the DD blocks, then closes the

access path to the file referred to by dfile.

DFfindnextref dfindnr finds the ref number for the next

occurrence of a given tag.

DFsetfind dfsfind initializes searches for elements using

tags or reference numbers.

DFfind dffind locates the data descriptor needed for

the next read from the file.

1

Chapter 6 General Purpose HDF Routines

Chapter Overview

Introduction

Header Files

Opening and Closing Files

Finding the Next Occurrence of a Given Object

Finding Data Descriptors for HDF Objects

Storing and Retrieving Entire Data Elements

Reading or Writing Part of a Data Element

Manipulating Data Descriptors (DDs)

Miscellaneous

