
19

 /* read description length and description from file */
 length = DFANgetfdslen(dfile, FIRST);
 iret = DFANgetfds(dfile,indescr, MAXDESCLEN, FIRST);
 printf(“\n\nDescription: \n%s\n” indescr);

 DFclose(dfile);
}

Remarks:

• These annotations are associated with the file, not with any particular

object within the file.

• We use the general purpose routines DFopen and DFclose. These

routines do not open and close HDF files for you. You must do it

explicitly.

The value DFACC_READ is defined in df.h. Hence the “#include
df.h” in the C program. It is assumed that the FORTRAN cannot

perform such an include, so DFACC_READ is defined with a PARAM-
ETER statement.

Getting Annotation Information from a File

DFANlastref

FORTRAN:

integer DFANlastref()

C:

int DFANlastref()

Purpose: To return the most recent reference number of a written or

read annotation.

Returns: The reference number on success; –1 on error.

* DFANlastref is callable only by C routines. There is no equivalent FORTRAN routine in the HDF

library.

18

 $ NOTFIRST = 0
 $ CR = char(10))

C****||***** read all file IDs from file ***************

 dfile = DFopen(filename, DFACC_READ, 0)
C *** first ID ***
 length = DFANgetfidlen(dfile, FIRST)
 ret = DFANgetfid(dfile,inlabel, MAXLABLEN, FIRST)

C *** rest of IDs ***
 do 200 while (ret .ge. 0)
 print *,’Length: ‘,length,’Ret:’,ret,’Label:’,inlabel
 length = DFANgetfidlen(dfile, NOTFIRST)
 ret = DFANgetfid(dfile,inlabel, MAXLABLEN, NOTFIRST)
 200 continue
 print *, ‘*** End of file IDs ***’

C *** read file description length and description ***
 length = DFANgetfdslen(dfile, FIRST)
 print *, ‘Description length: ‘, length
 ret = DFANgetfds (dfile, indescr, MAXDESCLEN, 1)

 print *, ‘Description:’,CR,indescr
 print *, ‘*** End of description ***’,CR

 ret = DFclose(dfile)
...

Figure 5.7 Reading File IDs and a File

Description (Continued)

C:

/**
*
* Example: retrieving file IDs and descriptions.
* Opens an HDF file and reads back file IDs and descriptions.
*
**/

#include “df.h”

#define MAXLABLEN 80
#define MAXDESCLEN 1000
#define FIRST 1
#define NOTFIRST 0
main ()
{
 DF *dfile;
 int ret, length;
 char inlabel[MAXLABLEN+1],indescr[MAXDESCLEN+1];

 /* open file to read file IDs and file description */
 dfile = DFopen(“myfile”, DFACC_READ, 0);

 /* read all file IDs from file */
 length = DFANgetfidlen(dfile, FIRST);
 while (length >= 0) {
 ret = DFANgetfid(dfile,inlabel, MAXLABLEN, FIRST);
 printf(“\nLabel: %s” inlabel);
 length = DFANgetfidlen(dfile, FIRST);
 }

17

Returns: Length of file ID on success; –1 on failure.

DFANgetfds

FORTRAN:

INTEGER FUNCTION DFANgetfds(file,desc, maxlen, isfirst)

INTEGER file - pointer to HDF file
CHARACTER*(*) desc - desc to read from file
INTEGER maxlen; - max allowable length for DESC
INTEGER isfirst; - 1: first one; 0: next one

C:

int DFANgetfds(dfile, desc, maxlen, isfirst)

DF *dfile; /* pointer to HDF file */
char *desc; /* desc to read from file */
int maxlen; /* max allowable length for DESC */
int isfirst; /* 1: first one; 0: next one */

Purpose: To get the file desc from a file.

Returns: Length of file DESC on success; –1 on failure.

Example: Reading File Annotations from an HDF file

The example in Figure 5.7 illustrates the use of DFANgetfidlen,
DFANgetfid, DFANgetfdslen and DFANgetfds to read from an HDF

file all file IDs and one file description.

Figure 5.7 Reading File IDs and a File

Description

FORTRAN:

 program annotate_test

C Program to tread file IDs and file descriptions

C****||***

 integer dfile, i, ret, first, length
 character*64 filename
 character*10 inlabel
 character*400 indescr

 integer DFopen, DFclose
 integer DFANgetfid, DFANgetfds
 integer DFANgetfidlen, DFANgetfdslen

 integer DFACC_READ
 integer MAXLABLEN, MAXDESCLEN
 character*1 CR

 parameter (
 $ MAXLABLEN =10,
 $ MAXDESCLEN =400,
 $ FIRST = 1,

16

DFANgetfidlen

FORTRAN:

INTEGER FUNCTION DFANgetfidlen(file, isfirst)

INTEGER file - pointer to HDF file
INTEGER isfirst - 1: first one; 0: next one

C:

int DFANgetfidlen(dfile, isfirst)

DF *dfile; /* pointer to HDF file */
int isfirst; /* 1: first one; 0: next one */

Purpose: To get the length of a file ID.

Returns: Length of file ID on success; –1 on failure.

DFANgetfid

FORTRAN:

INTEGER FUNCTION DFANgetfid(file,id, maxlen, isfirst)

INTEGER file - pointer to HDF file
CHARACTER*(*) id - id to read from file
INTEGER maxlen; - max allowable length for ID
INTEGER isfirst; - 1: first one; 0: next one

C:

int DFANgetfid(dfile, id), maxlen, isfirst)

DF *dfile; /* pointer to HDF file */
char *id; /* id to read from file */
int maxlen; /* max allowable length for ID */
int isfirst; /* 1: first one; 0: next one */

Purpose: To get a file id from a file.

Returns: Length of file ID on success; –1 on failure.

DFANgetfdslen

FORTRAN:

INTEGER FUNCTION DFANgetfdslen(file, isfirst)

INTEGER file - pointer to HDF file
INTEGER isfirst - 1: first one; 0: next one

C:

int DFANgetfdslen(dfile, isfirst)

DF *dfile; /* pointer to HDF file */
int isfirst; /* 1: first one; 0: next one */

Purpose: To get the length of a file ID.

15

main ()
{
...
 DF *dfile;
 char outlabel[MAXLABLEN+1], outdescr[MAXDESCLEN+1];

 dfile = DFopen(“myfile”, DFACC_WRITE, 0);

 /* store a file ID in the file*/
 strcpy (outlabel, “File #1”);
 DFANaddfid(dfile, outlabel);

 /* get and store description in file */
 /* (assume getdescr stores a description in outdescr) */
 getdescr(outdescr);
 DFANaddfds(dfile, outdescr, strlen(outdescr));

 DFclose(dfile);
...
}

Remarks:

• These annotations are associated with the file, not with any particular

object within the file.

• We use the general purpose routines DFopen and DFclose. These

routines do not open and close HDF files for you. You must do it

explicitly.

The value DFACC_WRITE is defined in df.h., hence the “#include
df.h” in the C program. It is assumed that the FORTRAN cannot

perform such an include, so DFACC_WRITE is defined with a PARAM-
ETER statement.

• Only one label and one description is added in this example, but more

could be added if desired.

• In the FORTRAN version the string length for the label should be

close to the actual expected string length, because in FORTRAN string

lengths generally are assumed to be the declared length of the array

that holds the string.

This is not the case for descriptions, because one of the parameters to

DFANaddfds is the length of the string.

Reading Annotations for HDF Files

These routines are for reading annotations for HDF files, rather than for

HDF objects within HDF files.

NOTE: The file annotation routines require that files be identified by a

file pointer, rather than by a filename. This means that you must open

the HDF file within your program before calling them. You should also

close the HDF file after calling them. The sample code in the example at

the end of this section illustrates the use of DFopen and DFclose.

14

Example: Adding File Annotations to an HDF File

The example in Figure 5.6 illustrates the use of DFANaddfid and

DFANaddfds to write to an HDF file a label and description for the file

itself.

Figure 5.6 Adding a File ID and a File

Description.t

FORTRAN:

 program annotate_test

C Program to write a file ID and file descriptions

C****||***

 integer dfile, ret
 character*64 filename
 character*7 baselabel
 character*10 outlabel
 character*400 outdescr

 integer DFopen, DFclose
 integer DFANaddfid, DFANaddfds

 integer DFACC_WRITE
 integer MAXLABLEN, MAXDESCLEN

 parameter (
 $ DFAN_LABEL = 0,
 $ DFAN_DESC = 1,
 $ MAXLABLEN =10,
 $ MAXDESCLEN =400)

C****||************ store file ID in file **************

 print *, ‘Enter HDF file name:’
 read *, filename

 dfile = DFopen(filename, DFACC_WRITE, 0)
 outlabel = ‘Label #1’
 ret = DFANaddfid (dfile, outlabel)

C****||***** get and store file description in file ****
C****||** (assume getdescr stores a description in outdescr) **

 call getdescr(outdescr)
 ret = DFANaddfds (dfile, outdescr,len(outdescr))

 ret = DFclose(dfile)

...

Figure 5.6 Adding a File ID and a File

Description.t (Continued)

C:

#include “df.h”
#define MAXLABLEN 80
#define MAXDESCLEN 1000

13

Writing Annotations for HDF Files

These routines are for writing annotations for HDF files, rather than for

HDF objects within HDF files.

NOTE: The file annotation routines require that files be identified by a

file pointer, rather than by a filename. This means that you must open

the HDF file within your program before calling them. You should also

close the HDF file after calling them. The sample code in the example at

the end of this section illustrates how to open and close files using

DFopen and DFclose.

DFANaddfid

FORTRAN:

INTEGER FUNCTION DFANaddfid(file,id)

INTEGER file - pointer to HDF file
CHARACTER*(*) id - id to write to file

C:

int DFANaddfid(dfile, id)

DF *dfile; /* pointer to HDF file */
char *id; /* id to write to file */

Purpose: To add a file id to a file.

Returns: 0 on success; –1 on failure.

DFANaddfds

FORTRAN:

INTEGER FUNCTION DFANaddfds(file, desc, desclen)

INTEGER file - pointer to HDF file
CHARACTER*(*) desc - description to write to file
INTEGER desclen - length of description

C:

int DFANaddfds(dfile, desc, desclen)

DF *dfile; /* pointer to HDF file */
char *desc; /* description to write to file */
int32 desclen; /* length of description */

Purpose: To add a file description to a file.

Returns: 0 on success; –1 on failure.

12

 integer i, nlabels, startpos, listlen
 integer reflist(20)
 integer DFTAG_SDG, , LISTSIZE, MAXLEN
 character*15 labellist(20)

 parameter (DFTAG_SDG = 700,
 * LISTSIZE = 20,
 * MAXLEN = 15)

 startpos = 1

 print *, ‘Labels of scientific datasets in myfile’
 nlabels = dallist(‘myfile’,DFTAG_SDG, reflist,
 * labellist, LISTSIZE, MAXLEN, startpos)

 do 100 i=1,nlabels
 print *,’ Ref number: ‘,reflist(i),’
 Label: ‘,labellist(i)
 100 continue

 stop
 end

C:

/*
* Program to test getlablist routine
*/

#include <stdio.h>
#include “df.h”
char *malloc();

#define LISTSIZE 20
#define MAXLEN 15

main()
{
 int i, nlabels, startpos=1, listlen=10;
 uint16 reflist[LISTSIZE];
 char labellist[MAXLEN*LISTSIZE+1];

 printf(“Labels of scientific datasets in myfile”);
 nlabels = DFANlablist(“myfile”,DFTAG_SDG, reflist,
 labellist, listlen, MAXLEN, startpos);
 for (i=0; i<nlabels; i++)
 printf(“\n\t%d\tRef number: %d\tLabel: %s”,
 i, reflist[i],labellist+(i*15));
 printf(“\n\n”);
}
Remarks:

• In the call to DFANlablist (dallist) you must pre-allocate the

arrays, reflist and labellist, with enough space to hold the

reference numbers and labels, respectively.

• The LISTSIZE in the parameter list tells the routine to read, at most,

20 labels and reference numbers. The MAXLEN indicates that each label

is to be stored in a 15-byte sequence in the array labellist. Since

startpos=1, the routine will start with the first entry.

11

CHARACTER*(*) filename - name of HDF file labels stored in
CHARACTER*(*) labellist - array of strings to place labels in
INTEGER tag - tag to find labels for
INTEGER reflist(*) - array to place refs in
INTEGER listsize - size of ref and label lists
INTEGER maxlen - maximum length allowed for label
INTEGER startpos - entries will be returned beginning

from the startpos entry up to the
listsize entry.

C:

int DFANlablist(filename, tag, reflist, labellist, listsize, maxlen,
startpos)

char *filename; /* name of HDF file labels stored in */
uint16 tag; /* tag to find labels for */
unit16 reflist[]; /* array to place refs in */
char *labellist; /* array of strings to place labels in */
int listsize; /* size of ref and label lists */
int maxlen; /* maximum length allowed for label */
int startpos; /* entries will be returned beginning from
 the startpos entry up to the listsize entry */

Purpose: To return a list of all reference numbers and labels for a given

tag.

Returns: The number of entries on success; –1 on error.

Input parameters are filename, tag, listsize, maxlen and

startpos. Listsize gives the number of available entries in the ref and

label lists, maxlen is the maximum length allowed for a label, and

startpos tells which label to start reading for the given tag. Beginning

from the startpos entry and extending to the listsize parameter,

entries will be returned. (If startpos is 1, for instance, all labels will be

read; if startpos=4, all but the first 3 labels will be read.)

Taken together, the reflist and labellist returned by DFANlablist
constitute a directory of all labels for a given tag in a file. The list,

labellist, can be displayed to show all of the labels for a given tag. Or,

it can be searched to find the ref of a data object with a certain label.

Once the ref for a given label is found, the corresponding data object can

be accessed by invoking the routine DFgetelement. This routine pro-

vides you with a mechanism for direct access to data objects in HDF files.

Example: Getting a List of Labels for Images in a File

The example in Figure 5.5 illustrates the use of DFANlablist to get a

list of all labels used for SDSs in an HDF file.

Figure 5.5 Getting a List of Labels

from a File

FORTRAN:

 program getlablist

C Program to test getlablist routine
C

 integer dallist

10

Figure 5.4 Getting Annotations from a

SDS (Continued)

C:

/*
* Program to test routines for reading a label and description
*/
#include “df.h”
extern uint16 DFfindnextref();

main()
{
 int desclen;
 uint16 ref;
 char label[20], *s;
 DF *dfile; /* HDF file pointer */

 /*** find ref of first SDS in file ***/
 dfile = DFopen(“myfile”, DFACC_READ, -1);
 ref = DFfindnextref(dfile, (unsigned short) DFTAG_SDG, 0);
 if (ref < 0) {
 printf(“Unable to find scientific dataset.\n”);
 exit(1);
 }
 DFclose(dfile);

 /*** get label, then description ***/
 DFANgetlabel(“myfile”, (uint16) DFTAG_SDG, ref, label, 11);
 printf(“Label: %s\n”, label);

 desclen = DFANgetdesclen(“myfile”,(uint16) DFTAG_SDG, ref);
 s = malloc(desclen+1);
 DFANgetdesc(“myfile”, (uint16) DFTAG_SDG, ref, s, desclen);
 printf(“Description: %s\n”, s);
}

Remarks:

• Lower level routines DFopen, DFclose, and DFfindnextref are used

here to find the ref number of the first occurrence of the SDG (scien-

tific data group) tag.

• In the above example, DFANgetlabel assumes that the label is not

more than 10 bytes long. If the program needs to know the length of a

label, it can call DFANgetlablen to find this out.

• Since the description could be very long, the routine DFANgetdesclen
is called to find the space requirements for the description. This space

is allocated before calling DFANgetdesc to get the description.

Listing All Labels for a Given Tag

DFANlablist

FORTRAN:

INTEGER FUNCTION DFANlablist(filename, tag, reflist, labellist,
listsize, maxlen, startpos)

9

Figure 5.4 Getting Annotations

from a SDS

FORTRAN:

 program getanntest

C Program to test routines for reading a label and description

C
C**

 integer DFopen, DFclose
 integer dfindnr, daglab, dagdesc, dagdlen
 integer desclen, ref, ret, dfile
 integer DFACC_READ, DFTAG_SDG
 character*20 label
 character*400 desc

 parameter (DFACC_READ = 1,
 $ DFTAG_SDG = 700)

C************** find ref of first SDS in file ****************

 dfile = DFopen(‘myfile’, DFACC_READ, -1)
 ref = dfindnr(dfile, DFTAG_SDG, 0)
 if (ref .lt. 0)
 * call fatalerror(‘Unable to find scientific dataset.’)
 ret = DFclose(dfile)

C************** get label, then description ****************
 ret = daglab(‘myfile’, DFTAG_SDG, ref, label, 11)
 print *,’Label: ‘, label

 desclen = dagdlen(‘myfile’, DFTAG_SDG, ref)
 if (desclen .gt. 400)
 $ call fatalerror(‘Descript too long. More than 400.’)
 ret = dagdesc(‘myfile’, DFTAG_SDG, ref, desc, desclen)
 print *,’Description: ‘
 print *, desc

 stop
 end

C**
* fatal error: subroutine to report fatal error and abort
C***

 subroutine fatalerror(s)
 character*(*) s

 print *, s
 print *, ‘DFerror:’, DFerrno()
 print *, ‘Program aborted.’
 print *, ‘ ‘
 stop
 end

8

DFANgetdesclen

FORTRAN:

INTEGER FUNCTION DFANgetdesclen(filename, tag, ref)

CHARACTER*(*) filename - name of HDF file descr is stored in
INTEGER tag, ref - tag/ref of item whose descr you

want

C:

int32 DFANgetdesclen(filename, tag, ref)

char *filename; /* name of HDF file descr is stored in */
uint16 tag, ref; /*tag/ref of item whose descr you want */

Purpose: To get the length of a description of the data object with the

given tag and reference number. This routine allows you to insure that

there is enough space allocated for a description before actually loading

it.

Returns: The length of description on success; –1 on failure.

DFANgetdesc

FORTRAN:

INTEGER FUNCTION DFANgetdesc(filename, tag, ref, desc, maxlen)

CHARACTER*(*) filename - name of HDF file descr is stored in
CHARACTER*(*) desc - space to return description in
INTEGER tag, ref - tag/ref of item whose descr you

want
INTEGER maxlen - size of space to return descr in

C:

int DFANgetdesc(filename, tag, ref, desc, maxlen)

char *filename; /* name of HDF file descr is stored in */
uint16 tag, ref; /*tag/ref of item whose descr you want */
char *desc; /*space to return description in */
int32 maxlen; /*size of space to return descr in */

Purpose: To read in the description of the data object with the given tag

and reference number.

Returns: 0 on success; –1 on failure.

The parameter maxlen gives the amount of space that is available for

storing the description. The length of maxlen must be at least one greater

than the anticipated length of the description, because a NULL byte is

appended to the annotation.

Example: Reading a Label and Description

This example program (Figure 5.4) illustrates the use of DFANgetlabel,

DFANgetdesclen, and DFANgetdesc to read from an HDF file a label

and description for a SDS.

7

write either one or both, depending on your needs.

Reading Annotations for HDF Objects

DFANgetlablen

FORTRAN:

INTEGER FUNCTION DFANgetlablen(filename, tag, ref)

CHARACTER*(*) filename - name of HDF file label is stored in
INTEGER tag, ref, - tag/ref of item whose label you

want

C:

int32 DFANgetlablen(filename, tag, ref)

char *filename; /* name of HDF file label is stored in */
uint16 tag, ref; /* tag/ref of item whose label you want */

Purpose: To get the length of a label of the data object with the given

tag and reference number. This routine allows you to insure that there is

enough space allocated for a label before actually loading it.

Returns: The length of label on success; –1 on failure.

DFANgetlabel

FORTRAN:

INTEGER FUNCTION DFANgetlabel(filename, tag, ref, label, maxlen)

CHARACTER*(*) filename, - name of HDF file label is stored in
CHARACTER*(*) label - space to return label in
INTEGER tag, ref - tag/ref of item whose label you

want
INTEGER maxlen - size of space to return label in

C:

int DFANgetlabel(filename, tag, ref, label, maxlen)

char *filename; /* name of HDF file label is stored in */
uint16 tag, ref; /* tag/ref of item whose label you want */
char *label; /* space to return label in */
int32 maxlen; /* size of space to return label in */

Purpose: To read in the label of the data object with the given tag and

reference number.

Returns: 0 on success; –1 on failure.

The parameter maxlen gives the amount of space that is available for

storing the label. The length of maxlen must be at least one greater than

the anticipated length of the label, because a NULL byte is appended to

the annotation.

6

Returns: 0 on success; –1 on failure.

The parameter desclen gives the length of the description that is to be

written out.

Example: Adding Annotations to a Scientific Dataset

The example in Figure 5.3 illustrates the use of DFANputlabel and

DFANputdesc to write to an HDF file a label and description for a SDS.

The HDF object that contains a SDS is call a scientific data group .

Essentially, a Scientific Data Group (SDG) is a group of tag/refs that

make up a SDS. The tag for a scientific data group is DFTAG_SDG.

Figure 5.3 Adding Annotations to a SDS

FORTRAN:

integer dsadata, daplab, dapdesc, dslref
integer ret, lref
parameter (DFTAG_SDG = 700)
real*4 dataset(2,5)
...
ret = dsadata(‘myfile’,2,shape,dataset)

lref = dslref()
ret = daplab(‘myfile’, DFTAG_SDG, lref,’testlab’)
Ret = dapdesc(‘myfile’, DFTAG_SDG, lref,’This is a test’,14)

C:

#include “df.h”
...
int i, rank, dimsizes[2];
char s[50];
float *data;
...
DFSDadddata(“myfile”,rank,dimsizes,data);
...
sprintf(s,”Data from black hole experiment\n8/18/87");
i = DFSDlastref();
DFANputlabel(“myfile”, DFTAG_SDG, i, “black hole”);
DFANputdesc(“myfile”, DFTAG_SDG, i, s, strlen(s));

Remarks:

• DFTAG_SDG is the tag that goes with a scientific data group.

• The call to DFSDlastref (dslref) returns the reference number of

the SDS last written to the file. This call is needed to complete the tag/

ref combination that uniquely identifies the desired scientific data

group that is being annotated.

• The file df.h that is included with the C source contains the number

that corresponds to the tag for a SDS. In the FORTRAN program, this

number is defined using a parameter statement. Tags and their

numbers are listed in Appendix A, “NCSA HDF Tags.”

• It is not necessary to write both a label and a description. You can

5

DFANgetfid dagfid gets file ID.

DFANgetfdslen dagfdsl gets file description length.

DFANgetfds dagfds gets file description.

DFANlastref* returns ref of last annotation

read or written.

Writing Annotations for HDF Objects

DFANputlabel

FORTRAN:

INTEGER FUNCTION DFANputlabel(filename, tag, ref, label)

CHARACTER*(*) filename - name of HDF file to put label in
CHARACTER*(*) label - label to write to the file
INTEGER tag, ref - tag/ref of item whose label we want

to store

C:

int DFANputlabel(filename, tag, ref, label)

char *filename; /* name of HDF file to put label in */
uint16 tag, ref; /* tag/ref of item whose label you want to

 store*/
char *label; /* label to write to the file */

Purpose: To write out a label for the data object with the given tag/ref.

Returns: 0 on success; –1 on failure.

DFANputdesc

FORTRAN:

INTEGER FUNCTION DFANputdesc(filename, tag, ref, desc, desclen)

CHARACTER*(*) filename - name of HDF file to put descr in
CHARACTER*(*) desc - description to write to the file
INTEGER tag, ref - tag/ref of item whose description

you want to store
INTEGER desclen - length of description

C:

int DFANputdesc(filename, tag, ref, desc, desclen)

char *filename; /* name of HDF file descr stored in */
uint16 tag, ref; /* tag/ref of item whose descr you want to

store */
char *desc; /* description to write to file */
int32 desclen; /* length of description */

Purpose: To write out a description for the data object with the given

tag/ref.

4

in either reading or writing the corresponding data object.

Reference numbers for objects other than these can be obtained with the

routine DFfindnextref, a general purpose HDF routine that requires

the use of the HDF routines DFopen and DFclose. Usage of

DFfindnextref is illustrated later in an example. See this chapter’s

section, “Example: Reading a Label and Description.”

The Annotation Interface

The HDF library provides two types of routines for storing and retrieving

annotations: (1) routines for file IDs and file descriptions, and (2) routines

for HDF data objects. These routines are callable from C and FORTRAN

programs that have access to the HDF library, version 3.0 and later.

In the following explanations, the term label refers to a string that

identifies a data element such as an image or floating-point dataset. A

label is a C string: it can contain any sequence of ASCII characters

except NULL, which terminates the string. A description, on the other

hand, can contain any sequence of ASCII characters, including NULL.

Hence, a description can contain several C strings. In those routines that

read or write descriptions, it is always necessary to specify explicitly the

lengths of the descriptions.

All of the callable annotation routines begin with the letters DFAN. Since

some FORTRAN compilers only accept identifiers with eight or fewer

characters, we’ve devised an alternate set of short names that you can

use when programming with one of these compilers. Table 5.1 contains

the normal names of the annotation routines, as well as the shorter

names. Both sets of names are supported on all HDF-supported

machines.(Refer to Appendix E, “Routine Lists,” for a complete listing of

HDF routines.)

Table 5.1 Long and Short Names for

Annotation Routines

Long Name Short Name Purpose

DFANputlabel daplab puts label of tag/ref.

DFANputdesc dapdesc puts description of tag/ref.

DFANgetlablen dagllen gets length of label of tag/ref.

DFANgetlabel daglab gets label of tag/ref.

DFANgetdesclen dagdlen gets length of description of

tag/ref.

DFANgetdesc dagdesc gets description of tag/ref.

DFANlablist dallist gets list of labels for a

particular tag.

DFANaddfid daafid adds file ID .

DFANaddfds daafds adds file description.

DFANgetfidlen dagfidl gets file ID length.

3

For example, suppose you have an HDF file that contains three scientific

datasets (SDS). Each SDS has its own DD consisting of the SDS tag

DFTAG_STG, and a unique reference number as illustrated in Figure 5.1.

Figure 5.1 Three SDS Tags with Their

Ref Numbers

DFTAG_SDG

DFTAG_SDG

DFTAG_SDG

2

4

9

tag ref

Suppose you wish to annotate the second SDS by storing the following

annotation with it in the file: “Data from black hole experiment
8/18/87.” This text would be stored in an HDF file as an annotation, and

it would have stored with it the tag DFTAG_SDG and reference number 4.

Figure 5.2 illustrates how the annotation would look in the file.

Figure 5.2 Displayed Example of

SDS, Ref #, and Annotation

DFTAG_SDG 4 Data from black hole experiment 8/18/87
tag: ref: description:

DFTAG_DIA 2

Annotation DD

Annotation "data"

Tags and Reference Numbers
Note that in order to use annotation routines, you need to know the tags

and reference numbers of the objects you wish to annotate. Tags are

listed in Appendix A, “NCSA HDF Tags.”

Special routines are available for obtaining the reference numbers of

certain tags, including tags for SDSs, Raster Image Sets, palettes, and

annotations. These are: DFSDlastref, DFR8lastref, DFPlastref,
and DFANlastref. They return the most recent reference number used

2

Chapter Overview

This chapter describes the routines that are available for storing and

retrieving data and file annotations.

Annotation Tags

It is often useful to associate in text form information about an HDF file

and its data contents, and to keep that information in the same file that

contains the data. HDF provides this capability in the form of annota-

tions. An HDF annotation is a sequence of ASCII characters that is

associated with one of three types of objects: (1) the file itself, (2) the

individual HDF data objects in the file, or (3) the tags that identify the

data elements. The current annotation interface supports only the first

two types of annotation.

HDF annotations can accommodate a wide variety of types of informa-

tion, including titles, comments, variable names, parameters, formulas,

and source code. Any textual information that a user might normally put

into a notebook concerning the collection, meaning, or use of a file or data

can be put into a file’s annotations.

Annotations are optionally supplied by a creator or user of an HDF file or

data object. Annotations come in two forms: labels, which normally

consist of short strings of characters, and descriptions, which can be long

and complex bodies of text.

File Annotations
Any HDF file can have labels (called file IDs) and descriptions stored in

them. There are routines in the annotations interface specifically de-

signed for reading and writing file IDs and file descriptions.

HDF Object Annotations
The annotation of HDF data objects is complicated by the fact that you

have to uniquely identify the objects being annotated. In order to under-

stand how annotations work for data objects, you need to know a little bit

about how HDF data objects are structured and identified within an HDF

file.

HDF data objects are the basic building blocks of HDF files. An HDF data

object has two parts: a 12-byte Data Descriptor (DD) and a data element.

A DD has four fields: a tag, a reference number, a 32-bit data offset, and a

32-bit data length. (The latter two are unimportant here.) Taken to-

gether, the tag and reference number for a data object uniquely identify

that object. Hence, the data object that a particular annotation refers to

can be identified by storing the object’s tag and reference number together

with the annotation.

Note that an HDF annotation is itself a data object, so it has its own DD.

This DD has a tag and a ref number, and it points to the “data” that

constitutes the annotation. The “data” that goes with an annotation

consists of three things: (1) the tag of the object that it is an annotation

for, (2) the ref of the object that it is an annotation for, and (3) the anno-

tation itself.

1

Chapter 5 Annotating Data Objects and Files

Chapter Overview

Annotation Tags

File Annotations

HDF Object Annotations

Tags and Reference Numbers

The Annotation Interface

Writing Annotations for HDF Objects

Reading Annotations for HDF Objects

Listing All Labels for a Given Tag

Writing Annotations for HDF Files

Reading Annotations for HDF Files

Getting Annotation Information from a File

