
26

25

The two functions shown in Figure 2.15 convert a floating-point data

array into an 8-bit raster array. Once converted, this raw raster array is

ready to be stored in RIS8 format.

Figure 2.15 Converting Floating-Point

Data to RIS8

C:

/* floattor8.c
 */
#include “df.h”

#define CHAR_MAX 255

/*
 * floattoR8
 * Convert a data array into a raster array by dividing the
 * range in the data into 256 regions, numbering the regions
 * from zero to 255, and assigning to each position in the
 * raster array the number of the corresponding region.
 *
 * Assume that raster array allocated is big enough.
 */
floattoR8(data, raSter, size, max, min)
float data[];
char raster[];
int size;
float max, min;
{
 int32 i;
 float32 step;

 if ((max == 0) && (min == 0))
 findMaxMin(data, size, &max, &min);

 step = (max - min) / CHAR_MAX;
 if (step == 0)
 return(-1);

 for(i=0;i<size;i++)
 raster[i] = (char) ((data[i] - min) / step);
}

/*
 * findMaxMin
 * Finds the maximum and minimum values in a data array.
 */
findMaxMin(data, size, max, min)
float32 data[];
int32 size;
float32 *max, *min;
{
 int32 i;

 *max = *min = data[0];
 for(i=1;i<size;i++) {
 if (*max < data[i])
 *max = data[i];
 else if (*min > data[i])
 *min = data[i];
 }
}

24

• Writes the palette and image as a run-length encoded raster image set

to a file called testrig1.hdf

• Reads the palette and image back in, this time storing the image in

image2 and storing the palette back in palette

• Compares the contents of image2 to the contents of image1 to deter-

mine whether they are identical, as they should be

Figure 2.14 C Program Dealing with Raster Image Sets

C:

#include “df.h”

main
{

char
image1[131072], /* raw image to be read in from denaa031,

 then put into an RIS8 in testrig.df */
image2[131072], /* image to be read in from testrig.df */
palette[768],
reds[256], /* colors to be loaded into palette */
greens[256],
blues[256],

p; / pointer to palette */
int j;
int width, height,

ispal; /* boolean to tell if there is a palette */
FILE *fp;

fp = fopen(“denaa031”,”r”); /* read in raw 256x512 image */
fread(image1, 131072, 1, fp);
fclose(fp);

fp = fopen(“ps.pal”,”r”); /* read RGB values from palette file */
fread(reds,1,256,fp);
fread(greens,1,256,fp);
fread(blues,1,256,fp);
fclose(fp);

p = palette;
for (j=0; j<256; j++) { /* reorganize palette so that */

p++ = reds[j]; / RGB values are interleaved */
*p++ = greens[j];
*p++ = blues[j];

}

printf(“Ready to write out image \n”);
DFR8setpalette(palette);
DFR8putimage(“testrig1.df”,image1,256,512,DFTAG_RLE);
printf(“Just wrote out image \n”);

DFR8getdims(“testrig1.df”,&width, &height, &ispal);
printf(“After getdim\n”);
printf(“\tdimensions:%d :%d\n\tispal: %d\n”, width,height,ispal);
DFR8getimage(“testrig1.df”,image2,width,height,palette);
printf(“After getimage ... “);
if (memcmp(image1, image2, 131072) ==0) printf(“identical\n”);
else printf(“different\n”);

}
C Functions to Convert
Floating-Point Data to
8-Bit Raster Data

23

Sample Programs

The following sections contain various FORTRAN and C programs that

use HDF functions.

A FORTRAN Program to Copy
a RIS8 from One File to An-
other

This program reads into image1 an 8-bit raster image from an HDF file

called ‘testrig1.df’. At the same time, it reads a palette into the array

palette. The dimensions of the image are read into width and height.

It is assumed that the image is small enough to fit into the 150,000-

character array image1; i.e., the value width*height must be less than

150,000.

The program next writes out the palette and image to the file

‘testrig2.df’. Since the compress parameter in DFR8putimage is 12,

the output image is encoded using run length encoding.

(Figure 2.13)

Figure 2.13 FORTRAN Program to

Copy a RIS8 from One File

to Another

FORTRAN:

PROGRAM RISexample

CHARACTER*1 image1(150000)
CHARACTER*1 palette(768)
INTEGER width, height, ispal
INTEGER ret

ret = DFR8getdims(‘testrig1.df’, width, height, ispal)
ret = DFR8getimage(‘testrig1.df’,image1,width,height,palette)

ret = DFR8setpalette(palette);
ret = DFR8putimage(‘testrig2.df’,image1,width,height,12)

stop
end

A C Program to Convert a
Raw Palette and Raw Raster
Image to HDF RIS8 Format

The example in Figure 2.14 shows a complete program for processing

RIS8 data. Several features of HDF image storage are illustrated here.

The program does the following, in order:

• Reads into image1 a 256 x 512 8-bit raster image from a non-HDF file

called denaa031

• Reads into each of red, green, and blue 256 values representing the

palette from a file called ps.pal (The palette stored in ps.pal is not

in HDF format, so it is rearranged into proper format in a new, 768-

byte array called palette.)

22

Figure 2.11 Reading an RIS24:

Dimensions and Interlace

Known

C:

int DF24getimage;
char image[3][256][512];

DF24getimage(“myfile.hdf”,image,256,512);
 .
 .
 .

Remarks:

• The RIS24, stored in a file called ‘myfile.hdf’, is read into an array

called image.

• The raster image stored in the file is known to be 256 x 512.

• The array image is a 3 x 256 x 512 array of 8-bit characters.

Example: Read an Image, Dimensions and Interlace Not Known

Figure 2.12 illustrates a set of C calls that read in an image, where the

dimensions of the image and interlace scheme are not known ahead of

time.

Figure 2.12 Reading an RIS24:

Dimensions and Interlace

Not Known

C:

int DF24getdims, DF24getimage;
int width, height, il;
char *image; /* pointer to space to return image */

DF24getdims(“myfile.hdf”,&width,&height,&il);
DF24reqil(2);
image = (char *) malloc(3*width*height);
DF24getimage(“myfile.hdf”,image,width,height);
 .
 .
 .

Remarks:

• The RIS24 , stored in a file called ‘myfile.hdf’, is read into an array

called image.

• The data is stored in the array image as if the array were three planes

of size width x height.

• Since no explicit declaration is given for image, it is the responsibility

of the program to compute offsets in the array that correspond to

particular elements.

21

DFANgetlablist, which returns a list of labels for a given tag together

with their reference numbers. It provides, in a sense, a random access to

images.

NOTE: There is no guarantee that reference numbers appear in se-

quence in an HDF file; therefore, it is not safe to assume that a reference

number is the sequence number for an image.

DF24reqil

FORTRAN:
INTEGER FUNCTION DF24reqil(il)
INTEGER il - interlace to get next image with

C:
int DF24reqil(il)
int il; /* interlace to get next image with */

Purpose: To cause next DF24getimage to store image in memory with

the specified interlace.

Returns: 0 on success; –1 on failure with DFerror set.

Regardless of what interlace scheme is used to store the image,

DF24reqil causes the image to be loaded into memory and be interlaced

according to the specification of il.

NOTE: Since a call to DF24reqil may require a substantial reordering

of the data, I/O performance could be adversely affected; e.g. it could

result in much slower I/O performance than would be achieved if no

change in interlace were requested.

Interlace codes: 0 = pixel interlacing; 1 = scan-line interlacing;

2 = scan-plane interlacing.

DFR8restart

FORTRAN:

INTEGER FUNCTION DFR24restart()

C:

int DFR24restart()

Purpose: To cause the next get to read from the first RIS24 in the file,

rather than the RIS24 following the one that was most recently read.

Returns: 0 on success; -1 on failure

Example: Reading in a 24-bit Image

Figure 2.11 shows a C call that reads in an image when the dimensions

and interlace are already known.

20

Interlace codes: 0 = pixel interlacing; 1 = scan-line interlacing;

2 = scan-plane interlacing.

DF24getimage

FORTRAN:
INTEGER FUNCTION DF24getimage(name, image, width, height)
CHARACTER*(*) name - name of HDF file
CHARACTER*(*) image - pointer to space to return image
INTEGER width, height - dimensions of space to redurn image

C:
int DF24getimage(filename, image, width, height)
char *filename; /* name of HDF file */
char *image; /* pointer to space to return image */
int32 width, height; /* dimensions of space to return image */

Purpose: To get image from next 24-bit RIS.

Returns: 0 on success; –1 on failure with DFerror set.

If DFR24getdims has not been called, DFR24getimage finds the next

image in the same way that DFR24getdims does.

The amount of space allocated for the image should be

width x height x 3 bytes.

To specify that the next call to DF24getimage should read the raster

image from the RIS24 using a particular interlace, rather than the

interlace used to store the image in the file, make a call to DF24reqil
(see below).

DF24readref

FORTRAN:
INTEGER FUNCTION
DF24readref(name, ref)
character*(*) name - name of file containing image
integer ref - reference number for next DF24getimage

C:
int
DF24readref(filename, ref)

char *filename; /* file containing image */
uint16 ref; /* reference number for next DF24getimage
*/

Purpose: To specify the reference number of the image to be read when

DF24getimage is next called.

Returns: 0 on success; -1 on failure.

You will most likely use this routine in conjunction with

19

Figure 2.10 Storing Multiple RIS24s in

a Single File

C:

int DF24addimage
char pic1[800][1200][3], pic2[800][1200][3]
char pic3[800][3][1200], pic4[800][3][1200]

DF24addimage(‘myfile’,pic1,800,1200)
DF24addimage(‘myfile’,pic2,800,1200)
DF24setil(1)
DF24addimage(‘myfile’,pic3,800,1200)
DF24addimage(‘myfile’,pic4,800,1200)
 .
 .
 .

Reading 24-Bit Raster Images
from a File

The two routines, DF24getdims and DF24getimage, are sufficient to

read raster images from a file. If enough is known about the images and

interlacing, only the latter routine is needed.

DF24getdims

FORTRAN:
INTEGER FUNCTION DF24getdims(name, width, height, il)
CHARACTER*(*) name - name of HDF file
INTEGER width, height - for returning dimensions
INTEGER il - for returning inteRlace of image in file

C:
int DF24getdims(filename, pwidth, pheight, pil)
char *filename; /* name of HDF file */
int32 *pwidth, *pheight; /* for returning dimensions */
int *pil; /* for returning interlace of image

 in file */

Purpose: To get dimensions and interlace storage scheme of next image

RIS.

Returns: 0 on success; –1 on failure with DFerror set.

If the file is being opened for the first time, DF24getdims returns infor-

mation about the first image in the file. If an image has already been

read, DF24getdims finds the next image. Thus, images are read in the

same order in which they were written to the file.

If you know the dimensions of the image beforehand, there is no need to

call DF24getdims. Simply allocate arrays with the proper dimensions for

the image and let DF24getimage read in the images. If, however, you do

not know the values of width and height, you must call DF24getdims
to get them and then use them to determine the right amount of space

needed for the array image.

Successive additional calls to DF24getdims and DF24getimage, respec-

tively, retrieve all of the images in the file in the sequence in which they

were written.

18

DF24addimage

FORTRAN:

INTEGER FUNCTION DF24addimage(name, image, width, height)
CHARACTER*(*) name - name of HDF file
CHARACTER*(*) image - array for return image
INTEGER width, height - dimensions of array image

C:
int DF24addimage(filename, image, width, height)
char *filename; /* name of HDF file */
char *image; /* pointer to array for return image */
int32 width, height; /* dimensions of array image */

Purpose: To write out a 24-bit image.

Returns: 0 on success; –1 on failure with DFerror set.

Array image is assumed to be width x height x 3 bytes.

Example: Writing a RIS24 with the Default Pixel Interlace

The C code in Figure 2.9 demonstrates how the default pixel interlace is

used when storing the 400 x 600 arrAy picture in a file in RIS24 format.

Figure 2.9 Storing an RIS24 Using

Pixel Interlace

C:

int DF24addimage;
char picture[3][600][400];
int ret;

ret = DF24addimage(“herfile.hdf”,picture,600,400);

if (ret != 0)
 printf(“Error writing image to myfile.hdf.”);
 .
 .
 .

Example: Writing Several 24-bit Images

Figure 2.10 shows a series of C calls in which four 800 x 1200 images are

written to the same file. The first two calls use the default interlace

scheme; the second two calls use scan-line interlace.

17

three components (R, G, and B) informs NCSA HDF to assume that the

image is stored as an array of size 100 x 200 x 3.

Specifically, an interlace code of 2 indicates that the bytes that describe

the image are stored in the following order in the file or memory: R

values are stored in the first 100 x 200 bytes of the array for each of the

pixels in the image; the G values for the image are stored in the second

100 x 200 plane; and the B values in the third.

Figure 2.8 illustrates how an RIS24 — stored using the scan-plane

interlace — looks in an HDF file.

Figure 2.8 Scan-Plane Interlace

description record

raster image

dimensions: 400 x 600
interlace: scan- plane

Red plane:

Green plane:

Blue plane:

Compression Schemes
As of this writing, image compression has not been implemented for 24-

bit images in HDF. However, there are plans to implement a routine to

cause 24-bit images to be stored in compressed mode. This routine should

be available in the next release of HDF.

Writing 24-Bit Raster Images
to a File

DF24setil

FORTRAN:
INTEGER FUNCTION DF24setil(il)

INTEGER il; - interlace of image

C:
int DF24setil(il)

int il; /* interlace of image */

Purpose: To set interlace scheme to be used on subsequent writes.

Returns: 0 on success; –1 on failure with DFerror set.

If DF24setil is not called, the interlace code is assumed to be 0. Inter-

lace codes: 0 = pixel interlacing; 1 = scan-line interlacing;

2 = scan-plane interlacing.

16

Table 2.3 Interlace Scheme Codes

Value of il Interlace Scheme

0 pixel

1 scan-line

2 scan-plane

Pixel Interlace Scheme

The default interlace scheme describes an image pixel-by-pixel. This

scheme is called pixel interlace. The code to specify the pixel interlace

scheme in an RIS24 is 0 (zero).

For example, by default, NCSA HDF assumes that a 100 x 200 image

with three components (R, G, and B) is stored as an array of size 3 x 100 x

200, and that each element of this array is exactly one byte in size and

contains an R, G, or B value.

Specifically, an interlace code of 0 indicates that the bytes that describe

the image are stored in the following order in the file or memory:

R, G, and B values are stored, in that order, in the first three bytes of the

first row of the array, corresponding to the first pixel in the first row of

the image.

R, G, and B values are stored in the second three bytes of the first row of

the array, corresponding to the second pixel in the first row of the image.

And so forth, until the RGB values for the 100 pixels of the first row of

the image are stored. This process is repeated until the RGB values for

each pixel in the 200 lines of the image are stored.

Scan-Line Interlace Scheme

The scan-line interlace scheme describes an image line-by-line. The code

to specify the scan-line interlace scheme is 1.

For example, an interlace scheme code of 1 for a 100 x 200 image with

three components (R, G, and B) informs NCSA HDF to assume that the

image is stored as an array of size 100 x 3 x 200.

Specifically, an interlace code of 1 indicates that the bytes that describe

the image are stored in the following order in the file or memory: 100 R

values are stored consecutively in the first row of the array for each of the

pixels in the first line of the image, then 100 G values are stored in the

second row of the array for each of the pixels in the first line of the image,

then 100 B values are stored in the third row of the array for each of the

pixels in the first line of the image, and so forth, until the RGB values for

each of the 200 lines of pixels in the image are stored.

Scan-Plane Interlace Scheme

The scan-plane interlace scheme describes an image color component-by-

color component. The code to specify the scan-plane interlace scheme is 2.

For example, an interlace scheme code of 2 for a 100 x 200 image with

15

The RIS8 interface only supports writing an image from an array that

was allocated to be exactly the same size of the image.

Figure 2.7 FORTRAN Image Stored in

Oversized Buffer

400

500

200

150

24-Bit Raster Image Sets

The phrase 24-bit raster image set (RIS24) refers to the set of tags and

associated information required to store a 24-bit raster image in an HDF

file. An RIS24 contains at least the following components:

• An image—here, a two-dimensional array of 24-bit pixel representa-

tions, where each 24-bit pixel value has three 8-bit components: one

each for the red, green, and blue (RGB) values of the pixel color. These

RGB values may be arranged in the file in one of three different ways

(see the following section, “Interlace Schemes”).

• An interlace scheme—a code that describes the order in which the pixel

components are physically stored in the file (see the following section,

“Interlace Schemes”).

• Dimensions—two values that represent the x and y dimensions of the

image, respectively.

Interlace Schemes
An interlace scheme describes the way an image is stored in a file or in

memory. NCSA HDF supports different interlace schemes because

graphics applications and devices vary in the way they organize graphics

images. By storing an image in a file using a scheme that is consistent

with the expected application or device, you can achieve substantial

improvements in performance. The value of the integer argument il
determines which scheme is to be used, as shown in Table 2.3. The

interlace schemes are described in the following sections.

14

150 bytes high. It is assumed that the array image is dimensioned to

be exactly the correct size. Alternatively, after DFR8getdims has read

in the height and gidth, space for it could be allocated by the program.

• The parameter pal is a 768-byte array, three bytes per color, repre-

senting R, G, and B values, respectively, for each color.

Example: Reading in a Raster Image Set

Figure 2.6 shows a FORTRAN program that reads in an image whose size

is different from the size of the space allocated to hold the image. It then

moves the image to a array that is of the correct size, and outputs the

new image to a new HDF file.

Figure 2.6 Reading an RIS8: Dimen-

sions Different from

Allocated Space

FORTRAN:

 program big_buffer

C Program using DFR8getimage when buffers are larger than image
C

C****||***
 integer DFR8getdims, DFR8getimage
 integer width, height, ispal, ret
 character*1 image(500,400)
 character*1 newimage(200,150), pal(768)

C****||****** read in image into “too-large” array ********
 ret = DFR8getdims(‘old.hdf’, width, height, ispal)
 ret = DFR8getimage(‘old.hdf’, image,500, 400, pal)
 print *, ‘width=’,width,’ height=’,height

C****||*** copy image to an array that is the “right size” ***
 do 100 i=1,200
 do 100 j=1,150
 newimage(i,j) = image(i,j)
 100 continue

C****||*** write newimage new file—same as original image ***
 ret = DFR8putimage(‘new.hdf’,newimage,200,150,0)

 stop
 end

Remarks:

• The RIS8, stored in a file called, old.hdf, is read into an array called

image. This array is deliberately made larger than the expected

image. Figure 2.7 shows how the image fits inside the buffer. Note that

since FORTRAN is used, the image is stored “on its side.”

• The array newimage is an array that is exactly the size of the image.

After it is written to new.hdf, you can view the image in that file and

see that it is identical to the original image.

• Although it is possible, as this example illustrates, to read an image

into a buffer that is larger than the image, the reverse is not possible.

13

• The raster image stored in the file is known to be 200 bytes wide and

150 bytes high. Because of the storage order used by FORTRAN, the

program is loading the image “on its side.” Hence, the declaration

“CHARACTER*1 image(200,150)” rather than “CHARACTER*1
image(150,200).”

• It is assumed that the array image is dimensioned to be exactly the

correct size.

• The parameter pal is a 768-byte array, three bytes per color, repre-

senting R, G, and B (red, green, and blue) values, respectively, for each

color.

• If DFR8getimage executes successfully, the return value 0 is assigned

to ret; otherwise, –1 is assigned. In this example, the value of ret is

not used.

Example: Reading in a Raster Image Set (C)

Figure 2.5 shows a C program that reads in an image when the dimen-

sions are already known, and a palette is known to exist. The program

also writes out the image to a new file.

Figure 2.5 Reading an RIS8: Dimen-

sions and Presence of

Palette Known (C)

C:

/*
** Program to illustrate use of DFR8getdims and DFR8getimage
*/
#define HEIGHT 150
#define WIDTH 200

main()
{
 int DFR8getdims(), DFR8getimage(), DFR8putimage();
 int ispal, ret, width, height;
 char image[HEIGHT][WIDTH], pal[768];

/************* read in image *****************/
 DFR8getdims(“old.hdf”, &width, &height, &ispal);
 if ((width==WIDTH) && (height==HEIGHT)) {
 DFR8getimage(“old.hdf”,image,width,height,pal);
 } else {
 printf(“Wrong dimensions. Program aborted.”);
 exit(1);
 }
/****** write same image to different file ***********/
 DFR8addimage(“new.hdf”, image, width, height, 0);

}

Remarks:

• The RIS8, stored in a file called, ‘old.hdf’, is read into an array called

image.

• The raster image stored in the file is known to be 200 bytes wide and

12

DFR8lastref

FORTRAN:

(not yet implemented in FORTRAN)

C:

int DFR8lastref()

Purpose: To get last reference number written or read for an RIS8.

Returns: Reference number on success; -1 on failure.

This routine is primarily used for annotations. See Chapter 5, “Annotat-

ing Data Objects and Files,” for examples.

Example: Reading in a Raster Image Set (FORTRAN)

Figure 2.4 shows a FORTRAN program that reads in an image when the

dimensions are already known, and a palette is known to exist. The

program also writes out the image to a new file.

Figure 2.4 Reading an RIS8: Dimen-

sions and Presence of

Palette Known (FOR-

TRAN)

FORTRAN:

 program test_getimage

C Program to illustrate use of DFR8getdims and DFR8getimage
C

C****||***
 INTEGER DFR8getdims, DFR8getimage, DFR8addimage
 INTEGER ispal, ret, width, height
 CHARACTER*1 image(200,150), pal(768)

C****||***************** read in image ********************
 ret = DFR8getdims(‘old.hdf’, width, height, ispal)
 if ((width.eq.200) .and. (height.eq.150)) then
 ret = DFR8getimage(‘old.hdf’,image,width,height,pal)
 else
 print *, ‘Wrong dimensions. Program aborted.’
 stop
 endif

C****||***** write same image to different file ************
 ret = DFR8addimage(‘new.hdf’,image, width,height, 0)

 stop
 end .

Remarks:

• The RIS8, stored in a file called, ‘old.hdf’, is read into an array called

image.

11

DFR8readref

FORTRAN:
INTEGER FUNCTION
DFR8readref(name, ref)
character*(*) name - name of file containing image
integer ref - reference number for next DFR8getimage

C:
int
DFR8readref(filename, ref)

char *filename; /* file containing image */
uint16 ref; /* reference number for next DFR8getimage */

Purpose: To specify the reference number of the image to be read when

DFR8getimage is next called.

Returns: 0 on success; -1 on failure.

This routine is most likely to be used in conjunction with

DFANgetlablist, which returns a list of labels for a given tag together

with their reference numbers. It provides, in a sense, a random access to

images.

NOTE: There is no guarantee that reference numbers appear in sequence

in an HDF file; therefore, it is not safe to assume that a reference number

is the sequence number for an image.

DFR8restart

FORTRAN:

INTEGER FUNCTION DFR8restart()

C:

int DFR8restart()

Purpose: To cause the next get to read from the first RIS8 in the file,

rather than the RIS8 following the one that was most recently read.

Returns: 0 on success; -1 on failure

DFR8nimages

FORTRAN:

(No FORTRAN version is currently available.)

C:

int DFR8nimages(filename)

char *filename; /* name of HDF file */

Purpose: To count the number of images contained in an HDF file.

Returns: Number of images on success; -1 on failure.

10

DFR8getimage

FORTRAN:
INTEGER FUNCTION
DFR8getimage(filename, image, bufwidth, bufheight, palette)

CHARACTER*(*) filename - name of file with RIS8 image
INTEGER bufwidth,bufheight - dimensions of the buffer

allocated to store image
CHARACTER*1 image(bufwidth,bufheight) - array that will hold

 image
CHARACTER*1 palette(768) - palette to go with image

C:
int
DFR8getimage(filename, image, bufwidth, bufheight, palette)

char *filename; /* name of file with RIS8
 image */

int32 bufwidth, bufheight; /* dimensions of the buffer
 allocated to store image */

char image[bufheight][bufwidth]; /* array that will
 hold image */

char palette[768]; /* palette to go with image */

Purpose: To retrieve the image and its palette, if it is present, and store

them in the specified arrays.

Returns: 0 on success; -1 on failure.

If palette is NULL, no palette is loaded, even if there is one stored with

the image. If the image in the file is compressed, DFR8getimage auto-

matically decompresses it.

If DFR8getdims has not been called, DFR8getimage finds the next

image in the same way that DFR8getdims does.

NOTE: The variables bufwidth and bufheight give the number of

columns and rows, respectively, in the array which you’ve allocated in

memory to store the image. The image may actually be smaller than the

allocated space.

NOTE: The order in which you declare dimensions is different between

C and FORTRAN. Ordering varies because FORTRAN arrays are stored

in column-major order, while C arrays are stored in row-major order.

(Row-major order implies that the horizontal coordinate varies fastest).

When DFR8putimage writes an image to a file, it assumes row-major

order. The FORTRAN declaration that causes an image to be stored in

this way must have the width as its first dimension and the height as its

second dimension. To take this into account as you build your image in

your program, you need to build the image “on its side.”

9

Figure 2.3 Storing Multiple RIS8s in a

Single File

FORTRAN:

INTEGER DFR8setpalette, DFR8putimage, DFR8addimage
CHARACTER*1 palA(768), palB(768)
CHARACTER*1 pic1(1200,800), pic2(1200,800)
CHARACTER*1 pic3(1200,800), pic4(1200,800)
INTEGER ret, DFTAG_RLE

PARAMETER (DFTAG_RLE = 11)

ret = DFR8setpalette(palA)
ret = DFR8putimage(‘myfile’,pic1,1200,800,DFTAG_RLE)
ret = DFR8addimage(‘myfile’,pic2,1200,800,DFTAG_RLE)
ret = DFR8setpalette(palB)
ret = DFR8addimage(‘myfile’,pic3,1200,800,0)
ret = DFR8addimage(‘myfile’,pic4,1200,800,0)
 .
 .
 .

Reading 8-Bit Raster Images
from a File

The two routines, DFR8getdims and DFR8getimage, are sufficient to

read raster images from a file. If enough is known about the images and

palettes, only the latter routine is needed.

DFR8getdims

FORTRAN:
INTEGER FUNCTION DFR8getdims(filename,width,height,ispalette)

CHARACTER*(*) filename - name of file with RIS8 image
INTEGER width, height - dimensions of next image in file
INTEGER ispalette - 1 if there is a palette, else 0

C:
int DFR8getdims(filename,width,height,ispalette)

char *filename; /* name of file with RIS8 image */
int32 *width, *height; /* dimensions of next image in

 file */
int *ispalette; /* 1 if there is a palette, else

 0 */
Purpose: To open the file with name filename, find the next image,

retrieve the dimensions of the image in width and height, and tell, via

ispalette, whether there is a palette associated with the image.

Returns: 0 on success; -1 on failure.

If the file is being opened for the first time, DFR8getdims returns infor-

mation about the first image in the file. If an image has already been

read, DFR8getdims finds the next image. Thus, images are read in the

same order in which they were written to the file.

Normally, DFR8getdims is called before DFR8getimage so that if neces-

sary, space allocations for the image and palette can be checked, and the

dimensions can be verified. If this information is already known,

DFR8getdims need not be called.

8

int32 width, height; /* dimensions of the image */
int compress; /* type of compression to use, if
 any */

Purpose: To append to the file the RIS8 for the image.

Returns: 0 on success; -1 on failure.

In all other respects, DFR8addimage is functionally equivalent to

DFR8putimage.

Example: Writing a Palette and an Image in RIS8 Format

Figure 2.2 demonstrates in FORTRAN how a palette stored in the array

colors and a raw image stored in the 400 x 600 array picture
(height=400, width=600) are written to a file in RIS8 format.

Figure 2.2 Storing an RIS8

FORTRAN:

INTEGER DFR8setpalette, DFR8putimage
CHARACTER*1 colors(768)
CHARACTER*1 picture(600,400)
INTEGER ret

ret = DFR8setpalette(colors)
ret = DFR8putimage(‘herfile.hdf’,picture,600,400,0)

if (ret .ne. 0)
write(*,*) ‘Error writing image to myfile.hdf.’
 .
 .
 .

Remarks:

• The RIS8 with this palette and image is stored as the first image in

‘herfile.hdf’. Note that if something already existed in this file, it

will be lost, because DFR8putimage recreates the file. If you simply

want to append an image to the file, use DFR8addimage.

• The image is not compressed in the file.

• The palette is assumed to be organized in the manner described

earlier: R, G, B (first color); R, G, B (second color); and so forth.

Example: Writing a Series of RIS8 Images

Figure 2.3 illustrates a series of FORTRAN calls in which four 800 x 1200

(height=800; width=1200) images are written to the same file. The first

two use palette palA and are compressed using the run length encoding

technique; the third and fourth use palette palB and are not compressed.

7

C:
int DFR8putimage(filename, image, width, height, compress)

char *filename; /* name of file to store RIS8 in */
int32 width, height; /* dimensions of image */
char *image; /* array with image to put in file */
int compress; /* type of compression to use, if any */

Purpose: To write out the RIS8 for the image as the first image in the

file.

Returns: 0 on success; -1 on failure.

If before the call to DFR8putimage there was other information in the

file, the function overwrites that information.

The argument compress identifies the scheme to be used for compress-

ing the data, if any. Refer to Table 2.2 for valid values of compress.

If IMCOMP compression is used, the image must include a palette. (See

the discussion of 8-bit compression schemes in the section, “Compression

Schemes.”)

NOTE: DFR8addimage (see below) writes an image to a file by append-

ing it, rather than overwriting it.

NOTE: In FORTRAN, the dimensions of the array image must be the

same as the dimensions of the image itself.

NOTE: The order in which you declare dimensions is different between

C and FORTRAN. Ordering varies because FORTRAN arrays are stored

in column-major order, while C arrays are stored in row-major order.

(Row-major order implies that the horizontal coordinate varies fastest).

When DFR8putimage writes an image to a file, it assumes row-major

order. The FORTRAN declaration that causes an image to be stored in

this way must have the width as its first dimension and the height as its

second dimension. To take this into account as you build your image in

your program, you need to build the image “on its side.”

DFR8addimage

FORTRAN:
INTEGER FUNCTION DFR8addimage(filename,image,width,height, compress)

CHARACTER*(*) filename - name of file to add RIS8 to
CHARACTER image(width,height) - array holding image

to be added to file
INTEGER width, height - dimensions of the image
INTEGER compress - type of compression to use, if

any

C:

int DFR8addimage(filename,image,width,height,compress)

char *filename; /* name of file to add RIS8 to */
char image[height][width]; /* array holding image to add to
 file */

6

A Note About IMCOMP

IMCOMP should be used with caution if you are concerned about losing

information in your image. IMCOMP compression first breaks an image

into 4 x 4 arrays of pixels, then for each array chooses two colors to

distribute in the array. (These two colors are added to a 256-color palette

that IMCOMP compression builds. This new palette is based on, but

different from, the original palette assigned.) Each of the 16 pixels in the

4 x 4 array can now be represented by one bit (0=first color; 1=second

color). In addition to these sixteen bits, there are two bytes that give the

palette locations of the two colors that were assigned to the 4 x 4 array.

Since each 4 x 4 array uses only 4 bytes, IMCOMP stores an image at a

cost of 2 bits per pixel, which is 25% of the original storage requirement

for the 8-bit image. The drawback of this savings is loss of information—

only two colors are allowed to occupy each 4 X 4 array of pixels—whereas

in the original image, 16 colors could occupy the same space. For many

images this cost is bearable and hardly noticeable, but for some images,

the results can be totally unrecognizable.

Also note that IMCOMP is dependent on the existence of a palette. If you

are going to use IMCOMP, you must include a palette with your image.

Writing 8-Bit Raster Images to
a File

DFR8setpalette

FORTRAN:
INTEGER FUNCTION DFR8setpalette(palette)

CHARACTER*1 palette(768) - palette to go with image

C:
int DFR8setpalette(palette)

char palette[768]; /* palette to go with image */

Purpose: To indicate what palette, if any, is to be used for subsequent

images.

Returns: 0 on success; -1 on failure.

The palette that is set here continues as the default palette until it is

changed by a new call to the routine.

DFR8putimage

FORTRAN:
INTEGER FUNCTION DFR8putimage(filename, image, width, height, com-
press)

CHARACTER*(*)filename - name of file to store RIS8 in
INTEGER width, height - dimensions of image
CHARACTER image(width,height) - array holding image to be

 put in file
INTEGER compress - type of compression to use, if

any

5

Figure 2.1 Two Raster Image Sets in

an HDF File

400 x 600

raster image

palette

500 x 500

dimensions

raster image

palette

dimensions

Compression Schemes
A compression scheme indicates if and how an image is compressed.

Compression schemes currently supported by NCSA HDF are run length

encoding and IMCOMP. The value of the integer argument compress in

DFR8putimage and DFR8addimage determines which scheme, if any, is

to be used, as shown in

Table 2.2.

Table 2.2 Compression Scheme

Codes

Value Compression Scheme

0 none

DFTAG_RLE run length encoding (RLE)

DFTAG_IMCOMP IMCOMP

The HDF tags DFTAG_RLE and DFTAG_IMCOMP are defined as the values

11 and 12, respectively, in the file ‘df.h’. You can avoid using num-

bers for compression codes if you include this file in your program.

A Note About RLE

The run length encoding (RLE) method used in HDF works as follows:

Each sequence of pixels begins with a count byte. The low seven bits of

the count byte indicate the number of bytes in the sequence (n). The high

bit of the count byte indicates whether the next byte should be replicated

n times (high bit=1), or whether the next n bytes should be included as is

(high bit=0).

The amount of space saved by RLE depends upon how much repetition

there is among the pixels in the rows. (Pixels are stored in rows.) If there

is a great deal of repetition, much space is saved; if there is little repeti-

tion, the savings can be very small. In the worst case—when every pixel

is different from the one that precedes it—an extra byte is added for

every 127 bytes in the image.

4

tion is stored in the same file as the actual images, the software does not

have to search elsewhere for this pertinent information. More impor-

tantly, you may be spared from having to supply the information. This

reduction in the need to coordinate disparate pieces of information about

a raster image can make the job of creating and running image-process-

ing programs significantly easier.

8-Bit Raster Image Sets

The phrase, 8-bit raster image set (RIS8), refers to the set of tags and

associated information required to store an 8-bit raster image in an HDF

file. An RIS8 contains at least the first three of the following components

and may also contain a palette:

• An image—here, a two-dimensional array of 8-bit numbers, one for

each pixel in the raster image, where pixel values range from 0 to 255

(Pixel values indicate to the hardware which colors to use when

drawing the corresponding pixels on the screen.)

• Dimensions—two values that represent the x and y dimensions of the

image, respectively

• A compression scheme—a code that indicates if and how the image was

compressed (See the following section, “Compression Schemes.”)

• A palette—a lookup table with 256 entries that tells the color to

associate with each of the 256 possible pixel values (Each entry in the

palette is chosen from a master palette of 224 RGB colors. Each palette

entry consists of three bytes, one each for red, green, and blue. The

first three bytes represent the R, G, and B values of the first color in

the palette; the next three the R, G, and B values of the second color;

and so forth. The total size of a palette is 768 bytes.)

An example of an HDF file with two raster image sets is illustrated in

Figure 2.1.

3

Table 2.1 Raster Image Set Routines

in the HDF Library

(Continued)

Long Name Short Name Function

DFR8getimage d8gimg retrieves the image and any associated

palette, and stores them in arrays.

DFR8readref d8rref sets the reference number of the image

to get next

DFR8restart d8first gets the next get command to read

from the first RIS8 in the file, rather

than the next.

DFR8nimages counts the number of images stored in

the file (FORTRAN version currently

not available)

DFR8lastref returns reference number of last RIS8

read or written

DF24setil d2setil sets the interlace to be used when

writing out the RIS24 for the image.

DF24addimage d2iaimg appends the RIS24 for the image to

the file.

DF24getdims d2igdims retrieves the dimensions and interlace

of the image.

DF24getimage d2igimg retrieves the image and stores it in an

array.

DF24readref d2rref sets the reference number of the image

to get next

DFR24restart d8first causes the next get command to read

from the first RIS24 in the file, rather

than the next one.

DF24reqil d2reqil specifies an interlace to be used in

place of the interlace indicated in the

file when the next raster image is

read.

Reasons to Use Raster Image Sets

When raster images are stored in the form of HDF raster image sets, it

becomes possible to use a variety of software tools for displaying and

manipulating them. NCSA Image, for instance, can operate directly on

images stored in HDF raster image format. Other software can display

raster images in HDF format on a variety of different machines.

The use of raster image sets in HDF files makes it easier for programs to

handle raster images. When palette, dimension, or compression informa-

2

Chapter Overview

This chapter discusses the purposes and use of raster image sets, which

allow you to store an image, together with its dimensions and a palette,

in an HDF file. This chapter specifically introduces and describes the two

raster image set interfaces currently contained in the HDF library: RIS8

and RIS24.

Header Files

The header file dfrig.h contains the declarations and definitions that

are used by the routines listed in this chapter. This file can, if needed, be

included with your C source code, and in some cases also with FORTRAN

code.

Raster Image Sets

A raster image set (RIS) is a set of tags and associated information

required to store an image in an HDF file. In HDF, 8-bit raster image

sets (RIS8) are used to store 8-bit raster images, and 24-bit raster image

sets (RIS24) are used to store 24-bit raster images.

The HDF library currently contains routines for storing raw raster

images in RIS8 or RIS24 format and for retrieving raster images from

files containing raster image sets. These routines are callable from C and

FORTRAN programs that have access to the library. They work on

several computers, including Cray systems running UNICOS, Alliant,

Vax, Sun, and Macintosh models.

Table 2.1 lists the long and short names and the functions of the RIS8

and RIS24 routines currently contained in the HDF library. The following

sections provide descriptions and examples of these calling routines.

Table 2.1 Raster Image Set Routines

in the HDF Library

Long Name Short Name Function

DFR8setpalette d8spal sets the default palette to be used for

subsequent images.

DFR8putimage d8pimg writes out the RIS8 for the image as

the first image in the file.

DFR8addimage d8aimg appends the RIS8 for the image to the

file.

DFR8getdims d8gdims retrieves the dimensions of the image

and indicates whether a palette is

associated and stored with the image.

1

Chapter 2 Storing Raster Images

Chapter Overview

Header Files

Raster Image Sets

Reasons to Use Raster Image Sets

8-Bit Raster Image Sets

Compression Schemes

Writing 8-Bit Raster Images to a File

Reading 8-Bit Raster Images from a File

24-Bit Raster Image Sets

Interlace Schemes

Compression Schemes

Writing 24-Bit Raster Images to a File

Reading 24-Bit Raster Images from a File

Sample Programs

A FORTRAN Program to Copy a RIS8 from One File to

Another

A C Program to Convert a Raw Palette and Raw Ras-

ter Image to HDF RIS8 Format

C Functions to Convert Floating-Point Data to

8-Bit Raster Data

