
14

yoyodyne_51% mail archive-server@ncsa.uiuc.edu

Subject: help

.

EOT

Null message body; hope that’s ok

yoyodyne_52% mail archive-server@ncsa.uiuc.edu

Subject: index

.

EOT

Null message body; hope that’s ok

The information you receive from both the help and index commands will

give you further instructions on obtaining NCSA software. This con-

trolled-access server will e-mail the distribution to you one segment at a

time.

U.S.Mail

Like other NCSA software, NCSA HDF is also available for purchase—

either individually or as part of the anonymous FTP reel or cartridge

tapes—through the NCSA Technical Resources Catalog. Orders can only

be processed if accompanied by a check in U. S. dollars made out to the

University of Illinois. To obtain a catalog, contact:

NCSA Documentation Orders

152 Computing Applications Building

605 East Springfield Avenue

Champaign, IL 61820

(217) 244-0072

13

Your login session should resemble the sample presented below, where

the remote user’s local login name is smith and user entries are indicated

in boldface type.

harriet_51% ftp ftp.ncsa.uiuc.edu

Connected to zaphod.

220 zaphod FTP server (Version 4.173 Tue Jan 31 08:29:00 CST 1989)

ready.

Name (ftp.ncsa.uiuc.edu: smith): anonymous

331 Guest login ok, send ident as password.

Password: smith

230 Guest login ok, access restrictions apply.

ftp> cd HDF

250 CWD command successful

ftp> get README.FIRST

200 PORT command successful.

150 Opening ASCII mode data connection for README.FIRST (10283

bytes).

226 Transfer complete.

local: README.FIRST remote: README.FIRST

11066 bytes received in .34 seconds (32 Kbytes/s)

ftp> quit

221 Goodbye.

harriet_52%

NCSA HDF documentation, program, and source code are now in the

public domain. You may copy, modify, and distribute these files as you

see fit.

Archive Server

To obtain NCSA software via an archive server:

1. E-mail a request to:

archive-server@ncsa.uiuc.edu

2. Include in the subject or message line, the word “help.”

3. Press RETURN.

4. Send another e-mail request to:

archive-server@ncsa.uiuc.edu

5. Include in the subject or message line, the word “index.”

6. Press RETURN.

For example, if you use the UNIX mailing system, your login session

should resemble the following sample, where user entries are indicated in

boldface type.

12

HDF file generated by your FORTRAN or C program), then be sure to

turn Macbinary mode off before performing the transfer.

• If the HDF file corresponds to a Macintosh application (e.g., NCSA

Layout, NCSA DataScope, etc.), and you want to transfer it so that it

can be accessed from a Macintosh application on another Mac, then be

sure to turn Macbinary mode on before performing the transfer.

How to Get HDF

You may obtain NCSA software via FTP, an archive server, or U.S. mail.

Instructions for doing so are provided below.

FTP

If you are connected to Internet (NSFNET, ARPANET, MILNET, etc.)

you may download NCSA HDF software, documentation, and source code,

at no charge from an anonymous file transfer protocol (FTP) server at

NCSA. The procedure you should follow to do so is presented below. If you

have any questions regarding this procedure or whether you are con-

nected to Internet, consult your local system administration or network

expert.

1. Log on to a host at your site that is connected to the Internet and is

running software supporting the FTP command.

2. Invoke FTP on most systems by entering the Internet address of

the server:

ftp ftp.ncsa.uiuc.edu

or

ftp 128.174.20.50

3. Log in by entering anonymous for the name.

4. Enter your local login name for the password.

5. Enter cd HDF to move to the HDF directory.

6. Enter get README.FIRST to transfer the instructions (ASCII) to

your local host.

7. Enter quit to exit FTP and return to your local host.

8. Review the README.FIRST file for complete instructions concern-

ing the organization of the FTP directories and the procedure you

should follow to download the README files that contain further

information on how to get and compile the most recently released

version of HDF for your machine and operating system and to

determine which files to transfer to your home machine.

11

FORTRAN 77 and K&R’s C
As much as possible, we have tried to stick closely to those implementa-

tions of the two languages that are in most common use today, namely

FORTRAN 77 and the version of C that is described in Kernighan &

Ritchie’s The C Programming Language, First Edition. If your FORTRAN

or C compiler understands FORTRAN 77 or K&R C, it should be able to

link easily to the interfaces.

Although we try to adhere to these standards, we must note that a

primary objective of the HDF project is to support HDF on a variety of

different machines, and this, in some cases, means accommodating some

deviations. We are also aware of the fact that many potential users of

HDF have compilers that our code does not accommodate. Let us know if

your particular dialect does not work with HDF. We may or we may not

be able to help.

HDF Without FORTRAN
If you do not use FORTRAN with HDF, you may want to compile the

HDF library without any FORTRAN routines in it. Two instances in

which you may choose to do so are the following:

1) If you want to reduce the size of the HDF library

2) If you don’t have a FORTRAN compiler to use in compiling the

library

Details on how to compile HDF without FORTRAN are contained in the

INSTALL file, a copy of which is included in Appendix F, “NCSA HDF

README Files on Anonymous FTP.”

Installing HDF

Details on how to install HDF are beyond the scope of this manual, but

you can get quite a bit of information about the process from the readme

files that come with the source code. These files are reprinted in Appen-

dix F. See the section below “How to Get HDF” for information on how to

get the actual HDF software.

Transferring HDF Files

HDF files are binary files, so any transfer protocol that transfers binary

files without changing them can be used to transfer HDF files.

Many HDF users use FTP to transfer HDF files. If you use FTP, switch to

binary mode when transferring HDF files.

If you use NCSA Telnet and you wish to transfer an HDF file to or from a

Macintosh, you must pay special attention to whether or not to enable the

“Macbinary” option. There are two case to consider:

• If the HDF file is not from a Macintosh application (e.g., it is a normal

10

• REAL x(*)

means that x refers to an array of reals of indefinite size and of indefi-

nite rank. It is the responsibility of the calling program to allocate an

actual array with the correct number of dimensions and dimension

sizes.

Case Sensitivity
Another difference between FORTRAN and C is that FORTRAN identifi-

ers, in general, are not case sensitive, whereas C identifiers are. Hence,

although the names of functions and variables listed in this manual use

both lower-case and upper-case letters, FORTRAN programs that call

them can use either upper or lower case without loss of meaning.

Name Length
Since some FORTRAN compilers can only interpret identifier names with

seven or fewer characters, the names of some of the FORTRAN routines

are sometimes shorter than the names of the corresponding C routines.

(Example: DFget (FORTRAN) vs. DFgetelement (C)). A listing of

short names for all functions can be found in Appendix C, “Eight-Charac-

ter FORTRAN Names.”

Header Files
If you use the high level interfaces, you probably do not need to include

an HDF header file with your program. However, you may need to

include a header file if your program uses special HDF declarations or

definitions. This would likely be the case, for instance, if you use the

general purpose routines described in Chapter 6, “General Purpose HDF

Routines.”

There are two header files, one for FORTRAN and one for C:

• dfF.h contains the declarations and definitions that are used by

FORTRAN routines.

• df.h contains the declarations and definitions that are used by the C

routines.

There is also a file called constants.f that contains FORTRAN param-

eter statements that declare the HDF constants that you are most likely

to use in a FORTRAN program that invokes HDF routines.

For example, if your program uses mnemonics for tags, the corresponding

numerical values for the tags can be found in constants.f (FOR-

TRAN), dfF.h (FORTRAN) or df.h (C). The contents of dfF.h , df.h

and constants.f are listed in Appendix B, “Header Files.”

Although the use of header files is always permitted in C programs, it is

not generally permitted in FORTRAN. It is, however, sometimes avail-

able as an option in FORTRAN. On UNIX systems, for example, the

macro processors m4 and cpp let your compiler include and preprocess

header files. If this or a similar capability is not available, you may have

to copy whatever declarations, definitions, or values you need from dfF.h

into your program code.

9

ret = DFSDsetdims(2, shape);

ret = DFSDsetdatastrs(“pressure 1”,

“Pascals”,”E15.9",”cartesian”);

ret = DFSDsetdimstrs(1,”x”,”cm”,”F10.2");

ret = DFSDsetdimstrs(2,”y”,”cm”,”F10.2");

ret = DFSDadddata(“Ex.hdf”, 2, shape, pressure);

NOTE: The “set” calls (DFSDsetdims(), etc.) indicate the ancillary

information that is to be stored with the SDS. DFSDsetdims is required;

the others are optional. DFSDadddata writes the scientific dataset data

to Ex.hdf. If Ex.hdf exists, the SDS is appended to the file. If Ex.hdf

does not exist, a new file is created, and the SDS is written as the first in

the file. The variable ret is assigned the value 0 if DFSDsetdims, etc.,

succeeds; the default value is, -1.

FORTRAN and C

The necessity to support both FORTRAN and C interfaces for HDF

inevitably leads to some difficulties in the design of the interfaces. What

is natural to a C interface can be quite unnatural to a FORTRAN inter-

face and vice versa. In order to make the FORTRAN and C versions of

each routine as identical as possible, some compromises have often had to

be made in the simplification of one or the other routine.

FORTRAN Stubs
Another element that affects the appearance of the routines is the fact

that almost all of the actual code underlying the HDF interfaces is

written in C. Every call to a FORTRAN routine ultimately makes access

to a C program that actually carries out the prescribed function. So, the

FORTRAN routines might better be referred to as FORTRAN stubs

rather than FORTRAN functions. When called, these stubs typically

translate all parameter values immediately to a data type that is acces-

sible to C, then call a corresponding C function to do the actual work.

Data Type Anomalies
Differences between the two languages also leads to some difficulties in

describing, using FORTRAN conventions, some of the data types in the

argument lists. For instance, some of the scientific dataset routines place

no restrictions on the rank (number of dimensions) that a data array can

have. This is perfectly legal in C, but unnatural in FORTRAN. Fortu-

nately, since both C and FORTRAN pass arrays by reference, no problem

arises in the actual interface between the FORTRAN calls and the

corresponding stubs. The only real problem is in the notation used in this

manual to describe the routines as if they were actual FORTRAN rou-

tines.

As a result, in the declarations contained in the headers of FORTRAN

functions, we use the following conventions:

• CHARACTER*1 x(*)

means that x refers to an array that contains an indefinite number of

characters. It is the responsibility of the calling program to allocate

enough space to hold whatever data is stored in the array.

8

The routine DFR8getimage is available for retrieving images from HDF

files. Routines are also available for storing color lookup tables (palettes)

with raster images.

Linking to the HDF library

If your FORTRAN or C program makes a call to HDF, it must be linked

to the HDF library. You can indicate this in the compile statement, or if a

separate linkage step is used, it may be done at that time. On UNICOS at

NCSA, this linkage can be performed at compile time with the following

statement.

FORTRAN:

cf77 -o myprog myprog.f -ldf

C:

cc -o myprog myprog.c -ldf

Writing an HDF Scientific
Dataset

An HDF scientific dataset (SDS) is a collection in an HDF file of informa-

tion about scientific data stored as a multi-dimensional regular grid.

Each SDS must include the actual data array, its rank (number of dimen-

sions), and its dimensions. Optionally, an SDS can also contain scales to

be used along the different axes when interpreting the data, maximum

and minimum values of the data, and the coordinate system used to

interpret the data. Labels, units, and format specifications for displaying

and interpreting the data may also be included.

Below is code presented first in FORTRAN, then in C, that stores a 200 x

200 floating-point array called “pressure” in an SDS in the HDF file,

Ex.hdf. It also stores labels, units, and formats as part of the same SDS.

FORTRAN:

INTEGERdssdims, dssdast, dssdist, dsadata

real pressure(200,200)

INTEGERshape(2), ret

shape(1) = 200

shape(2) = 200

ret = dssdims(2, shape)

ret = dssdast(‘pressure 1’,’Pascals’,’E15.9',’cartesian’)

ret = dssdist(1,’x’,’cm’,’F10.2')

ret = dssdist(2,’y’,’cm’,’F10.2')

ret = dsadata(‘Ex.hdf’, 2, shape, pressure)

C:

int DFSDsetdims(),DFSDsetdatastrs(),DFSDsetdimstrs(),

DFSDadddata();

float pressure[200][200];

int shape[2], ret;

shape[1] = 200;

shape[2] = 200;

7

call these routines, you just link the library to your program at compile

time.

Detailed information on how to install and use HDF on specific systems

can be found in the documentation that comes with the system-specific

versions of the software.

Examples

Writing an HDF 8-Bit Raster
Image Set

A typical use of HDF involves preparation of scientific data for visualiza-

tion as an 8-bit raster image. Using 8-bit raster imaging, the values on a

grid of numbers can be represented by color values in a palette of 256

colors.

The following code segments, the first in FORTRAN, the second in C,

convert a 200 x 100 floating-point array to an 8-bit raster image, then

store the image in an HDF file.

FORTRAN:

CHARACTER*1 image(200,100)

INTEGER istat, d8aimg

C Other Fortran code goes here

C Convert values in array ivals to character (8-bit) data

do 10 ix=1,200

 do 10 iy=1,100

 image(ix,iy) = char(ivals(ix,iy))

10 continue

C Write image to an HDF file

istat = d8aimg(‘myfile.hdf’, image, 200, 100, 0)

if (istat .ne. 0) then

 write(*,*) ‘Error writing HDF file’

endif

C:

char image[200][100];

int ix, iy, istat, DFR8addimage();

/* Other C code goes here */

for (ix=0; ix<200; ix++)

 for (iy=0; iy<100; iy++)

 image[ix][iy] = (char) (ivals[ix][iy]);

istat = DFR8addimage(“myfile.hdf”, image, 200, 100, 0);

if (istat != 0)

 printf(“Error writing HDF file\n”);

NOTE: DFR8addimage writes the image stored in the array image to

myfile.hdf. If myfile.hdf exists, the image is appended to the file. If

myfile.hdf does not exist, a new file is created, and the image is

written as the first image in the file. The variable istat is assigned the

value 0 if DFR8addimage succeeds; , -1 is assigned if it fails.

6

for storing and retrieving 8- and 24-bit raster images, palettes, scientific

data, and annotations. These interfaces, which are described in detail in

chapters 2 through 6, are mutually compatible, and user programs can

combine calls to routines in different interfaces when they need to store

different kinds of data in the same file.

In some rare cases, an application may require the use of a combination

of routines from different interfaces. Just as it is possible to define new

HDF tags, it is also possible to build new interfaces by combining rou-

tines from two or more existing interfaces.

HDF files tend to be used on several different machines, and HDF inter-

faces developed at NCSA are implemented on as many machines as

possible. An important goal in the development of NCSA HDF user

interfaces is to eliminate the necessity of changing program code when

moving an application from one machine to another.

HDF Utilities
The HDF command line utilities are application programs that can be

executed by entering them at the command level, just like other UNIX

commands. They make it possible for you to perform, at the command

level, common operations on HDF files for which you would normally

have to write your own program. For example, the utility r8tohdf is a

program that takes a raw raster image from a file and stores it in an

HDF files in a raster image set.

The HDF utilities provide capabilities for doing things with HDF files

that would be very difficult to do under your own program control. For

example, the utility hdfseq takes a a raster image from an HDF file and

displays it immediately on a Sun-3 console.

The HDF utilities are described in detail in Chapter 7, “NCSA HDF

Command Line Utilities.”

Getting Started with HDF

Appendix D, “Public HDF Directories on NCSA Computers,” contains a

list of machines at NCSA that have HDF libraries that are available to

all users. If you do not have access to a machine that already has an HDF

library, you will need to install it yourself or have your system adminis-

trator install it. Although procedures for installing the HDF library vary

from one system to another, the basic steps are the same in all cases.

First, you need to get the software from NCSA, as described in the

section, “How to Get HDF,” or elsewhere. You might get the actual

precompiled library, in which case you could load it into your machine

into an appropriate directory. If instead you get the source code for the

HDF library, you first have to compile the source code into a linkable

library.

Some of the HDF routines are command line utilities, which means that

you simply execute them by typing their names in as commands, using

the appropriate parameters. Other routines include those that you call

from within C or FORTRAN programs. When you write programs that

5

Figure 1. 3 HDF Software in an Integrated Comput-

ing Environment

Sun

Cray

Macintosh II

DataScope

Layout

Image

PalEdit

hdfseq, r8tohdf, ... hdfrseq, r8tohdf, ...

r8tohdf, hdfrseq, ... libdf.a

libdf.a
libdf.a

HDF

files

X Image

X DataSlice

CompositeTool

ImageTool

NCSA Scientific Visualization
Software and HDF

The use of HDF files guarantees the interoperability of the scientific

visualization tools at NCSA. Some tools operate on raster images, some

operate on color palettes, some use images, color palettes, data and

annotations, and so forth. HDF provides the range of data types that

these tools need, in a format that lets different tools with different data

requirements operate on the same files without confusion.

HDF Calling Interfaces

In order to minimize the amount of knowledge you need to have about

HDF, calling interfaces are being developed for specific types of applica-

tions, such as the storage and display of raster images or scientific data

archiving. A calling interface is a library of routines that can be called

from an application program for storing and retrieving information,

including raw data, from a particular type of HDF file.

Different applications typically require different interfaces.

Consequently, NCSA HDF provides FORTRAN and C calling interfaces

