Testfile

Testfile

COLLABORATORS
TITLE :
Testfile
ACTION NAME DATE SIGNATURE
WRITTEN BY November 18, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Testfile iii

Contents

1 Testfile 1
1.1 Table Of Contents o i ittt e e e e e e e e e 1
0 2
I3 /break 2
14 Jcase e 4
1.5 char . . . 5
L6 /oonst 6
1.7 feontinUe e e e e e 7
1.8 /default 8
1.9 /do . . e 9
1.10 /double 10
LIL Jelse . . . o 11
112 Jenum . . .o e e 12
LI3 /EXteIN . . . e e e e e e e 14
L14 /Mfloat 16
LIS Jfor. . o e 17
116 /80t0 . . o o e e 19
LIT Af Lo o 20
LA /ANt . . o e e e 22
119 Jlong o o 23
120 /re@iSter o o o e e e e e e 24
121 /return Lo e 25
1.22 /short . . . o o 26
1.23 [signed L e e 27
1.24 /sizeof e 28
L25 /static 29
1.26 /structo e e 31
L27 [switch o e e 34
1.28 /typedef o e e e e 35
1.20 /uniono e e 36

Testfile iv

1.30 /funsigned 38
L31 /void . . o o o 39
1.32 /volatile 40

1.33 /while . . . e 41

Testfile 1/42

Chapter 1

Testfile

1.1 Table Of Contents

TABLE OF CONTENTS

auto
break
case
char
const
continue
default
do
double
else
enum
extern
float
for

goto

if

int

long
register
return
short
signed
sizeof
static
struct
switch
typedef
union
unsigned
void
volatile
while

Testfile 2/42

12 "w
NAME
auto — Is an access modifier which declares variables to be
local.
SYNOPSIS

auto <datatype> <variable list>;

FUNCTION
Auto declares variables to be local. It is almost never used
by anyone. It exists only because it was part of the original
C set of keywords. To declare a local variable all you need to
do is to declare it inside the code block that you intend to
use it in. A code block begins at the start of a curly brace
"{" and ends with another curly brace "}".

INPUTS
<datatype> - A basic C type or a user defined (complex) type.
<variable list> - A list of variables separated by commas.

RESULT
none.

EXAMPLE
auto int x, y, z = 25;

NOTES
Never use, it Jjust doesn’t look very professional.

BUGS
none. — If there are, there is something really wrong with your
compiler;—)

SEE ALSO
extern, static, register.

void, char, int, float, double,
long, short, signed, unsigned,
const, volatile.

1.3 /break
NAME
break - Used either as a part of a switch statement, or to
prematurely break out of a loop.
SYNOPSIS

switch (<var>)
{
case <constl>:
<statement sequence>;
break;
case <const2>:

3/42

Testfile
<statement sequence>;
break;
default:
<statement sequence>;
}
or
while (<var>==0)
{
if (<var>==0) break;
printf ("This text will not be printed\n");
}
FUNCTION
This C keyword will prematurely break you out of a looping
structure or can be used to terminate a statement sequence
after a case statement. In this last role it is optional
but is almost always used unless there is a specific reason
not to.
INPUTS
none.
RESULT
none.
EXAMPLE
switch (x)
{
case 1:
printf ("x is equal to 1.\n");
break;
case 2:
printf("x is equal to 2\n");
printf ("and it is not equal to 1.\n");
break;
default:
printf("x is not equal to 1 or 2\n");
printf ("it must be something else then.\n");
}
or
while (x==0)
{
if (x==0) break;
printf ("This text will not be printed\n");
}
NOTES

Switch statements do not require the break statement, but
in most instances you will want to use break. An example
of when you wouldn’t want to use break would be if you
wanted the first case <statement sequence> to execute and
also the second <statement sequence> if the first is called

Testfile 4/42
but only the second if the second case is called.
BUGS
none - If you’re even considering that break might have a
bug, maybe you should either rethink the problem, or
invest in an expensive compiler, only to find that
the problem is still there.
SEE ALSO
switch, continue.
case, for, while, do.
1.4 /case
NAME
case - Used with the switch statement
SYNOPSIS
case <const>: <statement sequence>;
FUNCTION
Case 1s used with the switch statement and can be considered
to be part of the switch statement as "do" is associated with
a "do while" loop.
INPUTS
<const> - Any integer constant, can be either declared with
the "const" keyword or simply typed in directly as
an integer number. Character constants and
enumerations may be used also.
<statement sequence> - The single statement or block of
statements which is/are to be executed
by default.
RESULT
none.
EXAMPLE
switch (x)
{
case 1:
printf("x is equal to 1.\n");
break;
case 2:
printf ("x is equal to 2\n");
printf("and it is not equal to 1.\n");
break;
default:
printf ("x is not equal to 1 or 2\n");
printf ("it must be something else then.\n");
}
NOTES

It should be noted that in a switch statement any constant of
type char, (or any other type other than an int), will first

Testfile 5/42

be converted to an integer. This doesn’t really matter as

far as the programmer is concerned unless the variable type

is larger than an integer, in which case the value will get
garbled and the program will behave in a way which was
unintended. The reason switch will only handle integral types
is for speed reasons.

BUGS
As stated above, only works with types smaller or equal in
size to integers.

SEE ALSO
switch, break, const, int, char.

1.5 /char

NAME
char - Is a data type which declares a variable of type char.

SYNOPSIS
char <variable list>;

FUNCTION
Char declares a variable of type char, meaning that the
variable will hold a single ASCII character. Technically
type char is an 8 bit type that will hold any number between
-128 and 127. Often operating systems will declare their own
variable types and will usually have one called BYTE or UBYTE
or the like which is either a char or unsigned char.

INPUTS
<variable 1list> - A list of the variables you are declaring,
separated by commas.

RESULT
none.

EXAMPLE
char x, v = "a’, z[257] = "This is a string of characters";

NOTES
To store a string of characters in a variable,
(i.e. Hello there) you make an array of characters and store
each letter in one element of that array. The declaration
would look like this, (char thsisastrn[257];) You could
then store a sentence of up to 256 characters in length.
Also I’'d like to mention that there is a w_char type that isn’t
a built in C type but is defined in one of the standard headers
and can be used to store characters for languages besides
english and the like. I believe that w_char is usually used
for unicode, but I'm not really sure about the details. 1If
your interested in making your programs portable to other
countries and cultures then check it out. Also it should be
noted that in C++ w_char is a built in type.

Testfile

6/42

1.6

BUGS
none. - Man, if you’ve got bugs with this, you’ve got some
serious problems!!!

SEE ALSO
void, int, float, double.

long, short, signed, unsigned,
const, volatile,

extern, static, register, auto,
struct, union, typedef, enum.

/const

NAME
const - Is an access modifier which is used to declare a

special "constant" variable type.

SYNOPSIS
const <datatype> <name> = <expression>, <name> = <expression>,
etc, etc;

FUNCTION
Const declares and initializes variables which cannot be
altered by the program after initialization. The declaration
looks the same as a normal variable declaration with the
exception that the "const" keyword precedes it, and each
constant must be initialized at the time it is declared, (i.e.
given a value such as x = 25). An example of a practical use
would be to make PI a const float equal to 3.14...

INPUTS
<datatype> - A basic C datatype, (i.e. char, int, float, double),

or a user defined (complex) data type.
<name> - Name of the constant being declared.
<expression> - Any "statement" which evaluates to the
declared type, (i.e. For type int, 25 would be
acceptable) .

RESULT
none.

EXAMPLE
const float PI = 3.14, e_raised2_x = 2.71828;

NOTES

While const types may not be altered by the program, they may

be altered by some hardware dependent means. A good example of

this would be to store the address of a place in memory that
always contains the current time in a constant pointer that
your program can’t alter, but can look at whenever it wants
to know the time. Honestly a technique like this might make

more sense in C++ where you can declare variable in the middle

of your code. Also in this example you should probably use
the keyword volatile to keep the compiler from doing any

Testfile 7142

optimizations that would cause flaky results. I was really
just giving it as a for instance so you can take it or leave
it. Also, the word "constant" refers to both the special type
and any fixed value in the program,

(i.e. 25425 or "Hello world\n"). The reason for this is that
from the compiler’s point of view they are stored in the same
way. Also, you can think of it from the standpoint that 25+25
is a constant expression because the answer will always be 50.
In many cases, (OK ALL CASES), you may use a #define
preprocessor directive in place of the const variable type.

It should be noted, however, that #define works in a different
manner than const does, (at least from the compilers point of
view.)

BUGS
none.

SEE ALSO
volatile, #define.
void, char, int, float, double,
long, short, signed, unsigned.

extern, static, register, auto,
struct, union, typedef, enum.

1.7 /continue

NAME
continue - Used in a loop to force the next iteration, (cycle),
immediately.
SYNOPSIS

for (<var>=0; <var><100; <var>++)
{
if (<var>>=50) continue;
printf ("$d\n", <var>);

FUNCTION
Continue is used to force the next iteration of a looping
structure, (i.e. for, while, do while). Continue is used in
much the same manner as the break statement, except that
instead of breaking completely out of the loop, it just causes
the loop to skip to the end, and then start on the next
iteration. In the examples for instance, only the numbers
0-49 are printed even though the loop is executed and the <var>
is incremented 100 times.

INPUTS
none.

RESULT
none.

EXAMPLE

Testfile

8/42

for (x = 0; x<100; =x++)
{
if(x>=50) continue;
printf ("&d\n", x);

NOTES
When continue is used in a for loop, the variable is
incremented, then the conditional statement is tested, then the
loop starts again. This is the same action which would take
place if the end of the code block had been reached. 1In
"while" and "do while", only the conditional statement is
evaluated, (as they do not have the built in ability to
increment variables), and then the loop starts again.

BUGS
none.

SEE ALSO
break.
for, while, do.

1.8 /default

NAME
default - Used in conjunction with the switch statement to
specify a default course of action.

SYNOPSIS
default: <statement sequence>;

FUNCTION
Default is used in conjunction with the switch statement to
specify a default course of action when no case statements

have been matched. 1In essence, it is to switch, what else is
to if.
INPUTS
<statement sequence> - The single statement or block of
statements which is/are to be executed
by default.
RESULT
none.
EXAMPLE

switch (x)
{
case 1:
printf("x is equal to 1.\n");
break;
case 2:
printf("x is equal to 2\n");
printf ("and it is not equal to 1.\n");
break;

Testfile 9/42

default:
printf("x is not equal to 1 or 2\n");
printf ("it must be something else then.\n");

NOTES
none.

BUGS
none.

SEE ALSO
switch, case.

1.9 /do

NAME
do - Part of the "do while" looping construct.

SYNOPSIS
do
{
<statement sequence>;
} while (<conditional statement>);

FUNCTION
Do is used to start a "do while" loop. A "do while" loop
behaves in almost the same manner as a while loop, with the
exception that the <statement sequence> is executed before
the <conditional statement>. This has the effect that the
loop always executes at least once regardless of whether the
<conditional statement> is true or false.

INPUTS
<statement sequence> - The single statement or block of
statements which is/are to be executed.

<conditional statement> - A statement which evaluates to either
true or false. False is equal to 0
and true is anything else, however
it is common practice to have -1 or 1
represent true.

RESULT
none.
EXAMPLE
do
{
printf ("Enter a number between 1 & 5...\n");
scanf ("%d", &x);
} while ((x<1) || (x>5));
NOTES

In the example above the loop reads in x from the user and then
tests to see if that value is acceptable. A "while" loop could

Testfile 10/ 42

not have been used effectively because x could have been set to
anything, including a value which would have caused the

program to skip the loop entirely. You could conceivably

set x to zero before you enter a "while" loop, but it is

easier and more readable simply to use "do while". Nuff said.

BUGS
none.

SEE ALSO

while, for.
if, switch.

1.10 /double

NAME
double - Is a data type and keyword used to declare variables
which hold double precision floating point values.
SYNOPSIS

double <variable list>;

FUNCTION
Double declares variables that can be used to store double
precision floating point numbers. A double precision number

is 64 bits wide in memory, meaning that the number can

range from -1.7e-308 to 1.7e308. It should be noted that
unlike int, but like float, the double type can be used to
store fractional numbers which are extremely small or extremely
large. Double should be used when variables of type float are
too small to hold the desired number or when extreme accuracy
in calculations is needed.

INPUTS
<variable list> - A list of the variables you are declaring,
separated by commas.
RESULT
none.
EXAMPLE

double x, vy, z = 3.14;

NOTES
In older versions of C, double was a synonym for long float.
As per the ANSI standard, long float is no longer accepted and
the double keyword must be used. Both float and double require
more space and more CPU time to do calculations on than do
ints. Try to avoid using them inside of loops that are crucial
to the speed of the program. Instead try to put them in places
where the expression in question only gets executed every now
and then, and not 100 times a second. There is a way to do
division on ints so that the remainder is known. This is much
faster and more information is available, (see div). Many
times you must link a special library to your code to do

Testfile

11/42

floating point math, (i.e. to be able to use floats and
doubles) . This is because they are so much slower and most
programmers try to avoid them except in special cases. It is
also because there are different ways for the compiler to do
the math internally. If you have an FPU for example, you can
compile your code to take advantage of that special hardware by
linking it to a library that supports an FPU, or you can link
to a generic library, (mieee library for example), and all of
the calculations will be preformed by the software, with the
effect that your program will run on computers that aren’t
lucky enough to have an FPU, (like my computer for example).

If in doubt, use mieee, it’s safer. When I speak of libraries
it should be noted that I am talking about link libraries which
come with your compiler and not the amigados shared libraries
which reside in the libs: assign.

BUGS

Slow.

SEE ALSO

void, int, char, double.

long, short, signed, unsigned,
const, volatile,

extern, static, register, auto,
struct, union, typedef, enum.

1.11 Jelse
NAME
else - Part of the if statement which specifies a default
course of action, (OPTIONAL).
SYNOPSIS
if (<conditional statement>)
{
<statement sequence>;
}
else
{
<statement sequence>;
}
FUNCTION
Else specifies a default course of action to take when the
<conditional statement> evaluates to false. 1If it evaluates
to true then else is skipped.
INPUTS

<conditional statement> - A statement which evaluates to either
true or false. False is equal to O
and true is anything else, however
it is common practice to have -1 or 1
represent true.

<statement sequence> - The single statement or block of

Testfile

12/42

statements which is/are to be executed
by default.

RESULT

none.

EXAMPLE

if (%)
{
printf ("x is unequal to zero.\n");

}

else

{
printf("x is 0.\n");

NOTES

Else can be used in a couple of ways. It can be used as shown
above to produce an either or type of decision or can be used
to string together several ifs, (i.e.

if (x==0) {<statement sequence>;}
else if (x<0) {<statement sequence>;}
else if (x>0) {<statement sequence>;}).

You could just use 3 ifs in this situation, however the
"if else if ladder" executes faster because if the first
expression is met then the rest are skipped by default and
don’t waste time evaluating to false.

BUGS

none.

SEE ALSO

if, switch.
for, while, do.

1.12 /enum
NAME
enum - Defines an enumeration data type, and is used to declare
variables of that type.
SYNOPSIS

enum <tagname> {<enumeration list>} <variable list>;

FUNCTION

Enum defines a new data type, much the same way struct and
union do. These new data types that the user creates are
often referred to as "user defined types". Enum is also used
in the declaration of variables that are to be of a type
which was defined using enum. Enum really can’t be

explained without an example so we’ll refer to the example
below. "coins" is the new data type. "money" is a global
variable of type coins. "moremoney" is a local variable of

Testfile

13/42

typ
"mo
any
may
bel
or

tes
ide

INPUTS

<ta

<en

<va

RESULT
non

EXAMPL
enu

int

{

e coins. Now that we have our two variables "money" and
remoney" we can assign them a value of type coins, (i.e.

of {penny, nickel, dime, or quarter}. Conditional tests
be performed on "money" and "moremoney". We used switch
ow, but you may use if statements, while, for, do while,
any other C construct that allows conditional (true/false)
ts. I think if you look over the example, you’ll get the
a of what enumerations are good for.

gname> - The name of the variable type being created, (i.e.
you would use this name when declaring variables
of this type.

umeration list> - The list of enumeration names that will

be used as the "pseudo data" for any
variable being declared as type <tagname>.
riable list> - A list of the variables you would like to
declare separated by commas. This allows
variables to be declared at the same time
the data type is defined.

e.

E
m coins {penny, nickel, dime, quarter} money;

main (void)
enum coins moremoney;

money = penny;
moremoney = dime;

switch (money)

{

case penny: printf ("Hey I’ve got a penny.\n");

break;

case nickel: printf ("Hey I’ve got a nickle.\n");
break;

case dime: printf ("Hey I’ve got a dime.\n");
break;

case quarter: printf ("Hey I’ve got a quarter.\n");

switch (moremoney)

{

case penny: printf ("Hey, I’ve got another penny.\n");

break;

case nickel: printf ("Hey, I’ve got another nickel.\n");
break;

case dime: printf ("Hey, I’ve got another dime.\n");
break;

case quarter: printf ("Hey, I’ve got another quarter.\n");

exit (0);

Testfile

14 /42

NOTES

It should be noted that enum is just a fancy way of disguising
the int variable type. In the example above "money = penny" is
equivalent to "money = 0", and "moremoney = dime" is equal to

"moremoney = 2". The <enumeration list> assigns the different

names integer values beginning with 0 and going up by one, (i.e.

1, 2, 3, 4, 5, 6, etc). You can alter this pattern by using
an assignment in the definition, (i.e. enum coins {penny = 0,
nickel =5, dime = 10, quarter = 25}. By doing this you could
create tests like (if (nickle+nickle==dime) printf ("2 nickels
equals 1 dime.");). You can even assign two names the same
value, (i.e. enum coins {penny, nickel, dime, quarter,
two_bits = 3, half _dollar}. 1In this situation penny = O,
nickel =1, dime = 2, quarter = 3, two_bits = 3, and

half dollar = 4.

BUGS

Any restrictions that would apply to type int, also apply to
enums, on the other hand any advantages that ints have over
other types also apply to enums. This is why enumerations
work with the switch statement so well.

SEE ALSO

struct, union, typedef.

switch, if,
for, while, do.

1.13 /extern
NAME
extern — Is an access modifier used in variable declarations
to specify that the variable is declared in another
source file which will be linked later.
SYNOPSIS

extern <data type> <variable list>;

FUNCTION

Extern is used in variable declarations to specify that the
variable is declared in another source file which will be
linked later. It isn’t a definition per say, but merely lets
the compiler know that the variable is out there. 1If you don’t
tell the compiler that the variable is declared elsewhere

then it will most likely spit up an "unknown identifier" error,
and if you don’t use the extern keyword then the linker will
spit out a "multiply declared identifier" error or something
like that. Basically, a program can’t define something

twice, so you have to use extern to tell the compiler that even
though this variable hasn’t been declared yet, it can still go
ahead and compile the proggy just as if it had been declared.

Testfile

15/42

INPUTS

<data type> - Is any one of C’s built in data types like: int,
char, float, double, etc. Also you may use your

own user defined (complex) data types,
(i.e., structs, unions, etc).
<variable list> - Is a list of variables that have been

declared elsewhere, separated by commas. see

the example for clarification.

RESULT

none.

EXAMPLE

/* sourcenumberl.c =*/
void testfunction (void);

int x, y = 2, z[50] = {0};
int main (void)
{

testfunction () ;

return 0;
/* sourcenumber2.c =*/
extern int x, vy, z[50];
void testfunction (void)

{
printf ("%d, %d, $d\n", x, y, z[0]);

NOTES

The example above is cut up into two source files. Something
to note about using extern is that it only makes sense to use
it when dealing with multiple source code files. Also notice
how the arrays were handled. Typically I like to declare
something as external exactly the same way I declared it

originally, (but without the initialization). In the second
source file I could just as easily have written,
(extern x, vy, z[];). Stick to whatever makes the most sense

to you, I just find it easier to mimic the original form as
it’s less semantic bs to remember and I think it aids in
readability.

BUGS

I certainly hope not!!!

SEE ALSO

volatile, register,
const, signed, unsigned, short, long.

Testfile 16/ 42

1.14 /float

NAME

float - Is a data type used for holding floating point numbers
between -3.4e38 and 3.4e38.

SYNOPSIS
float <variable list>;

FUNCTION
float is a data type used for holding floating point numbers
between -3.4e38 and 3.4e38. A floating point number takes more
time for the computer to do calculations on than int. It is
always preferable to use int if you can use one type or the
other however there are just some spots that you can’t get out
of using floating point numbers. Floating point numbers are
useful in two common happenstances: one, the number being
stored is of exceptional accuracy, (like .000231), and
maintaining that accuracy is crucial, or two, if the number is
too large to store in an int or a long int,
(like 3.2861 * 10728).

INPUTS
<variable list> - A list of the wvariables being declared
separated by commas.

RESULT
none.

EXAMPLE
float x, y = 3.14, z[5] = {2.2, 3.3, 4.4, 5.5, 6.6};

NOTES
When you do decide you need floats, try to avoid using them
inside of loops that that are crucial to the speed of the
program. Instead try to put them in places where the
expression in question only gets executed every now and then,

and not 100 times in a second. There is a way to do
division on ints so that the remainder is known. This is much
faster and more information is available, (see div). Many

times you must link a special library to your code to do
floating point math, (i.e. to be able to use floats and
doubles) . This is because they are so much slower and most
programmers try to avoid them except in special cases. It is
also because there are different ways for the compiler to do
the math internally. If you have an FPU for example, you can
compile your code to take advantage of that special hardware by
linking it to a library that supports an FPU, or you can link
to a generic library, (mieee library for example), and all of
the calculations will be preformed by the software, with the
effect that your program will run on computers that aren’t
lucky enough to have an FPU, (like my computer for example).

If in doubt, use mieee, it’s safer. When I speak of libraries
it should be noted that I am talking about link libraries which
come with your compiler and not the amigados shared libraries
which reside in the libs: assign.

Testfile 17/ 42

BUGS
Contact the manufacturer of your compiler on this one, they’ve
obviously been exposed to too many drugs in the 60’s.

SEE ALSO
void, int, char, double.

long, short, signed, unsigned,
const, volatile,

extern, static, register, auto,
struct, union, typedef, enum.

1.15 /for

NAME
for - The C keyword used for constructing, (most notably), a
for loop. The for keyword is very versatile however, and
can be used to construct different kinds of loops,
(like infinite loops, and pseudo while loops).

SYNOPSIS
for (<variable assignments>; <test conditions>; <statements>)
{

<statement sequence>;

FUNCTION
The for loop is useful for keeping track of how many iterations
have gone by during an operation, and also to terminate based
on either the number iterations, or on some other unrelated
criteria. C for loops have much more bite to them then other
languages. A for loop is really just a while loop with added
capabilities. The statement for (;x<10;) printf ("Hi\n"); is
exactly equivalent to while (x<10) printf ("Hi\n");, (Well at
least functionally it is, I don’t know how the computer sees
it). All of the parts of the for loop are completely optional
so you can pick and choose what you need and what you don’t.
for example the statement for (;;) { } throws the program
into an infinite loop, which may only be broken out of
using a break statement. Also it is worthwhile to mention
that each part of the for loop may contain multiple
declarations, test conditions, and statements. for instance
for (x = 0, y = 10; x<=10 && y>=0; x++, y—--)

printf ("%$3d, %3d\n", x, vy);

tells the program to set x equal to 0 and y to 10, to keep
going until either x is greater than 10 or y becomes less than
zero and to increment x and decrement y after printf () prints
it’s little message.

INPUTS
<variable assignments> - A list of variables to assign a value
to, or in rare cases any other
statement you would wish only to
execute at the beginning of the for

Testfile 18/ 42

loop. Frankly statements should
probably just come before the for
loop as a matter of good form. Each
assignment should be separated by a
comma.
<test conditions> - Truly only one test condition can be put
here, however, in practice you may just
separate each test condition by a && or
|| or any other C test operator depending
on how you think the thing should work,
and thus have multiple test conditions.
<statements> - I called this one statements for lack of a
better word. This space is typically used for
incrementing and/or decrementing the values
initialized in the first part of the for loop,
however, any statements may go here. Again
I think as a matter of good form you should
try to stick to incrementing and decrementing,
and if you really have to have some statements
execute, then just stick them at the end of the
<statement sequence>.
<statement sequence> - The single statement or block of
statements which is/are to be executed.

RESULT
none.

EXAMPLE
for (x = 0, v = 0; x < 10; x++, y+=2)
{
printf ("%$3d, %3d\n", x, y);

NOTES
When I first learned C, coming from BASIC, I thought that C
for loops were needlessly ambiguous, and generally retarded,
however later, after a couple books, much tinkering, and a lot
of, "Ohhhhh, that’s why;)", I learned that the small sacrifice
in straight forwardness yielded 10 times to the functionality
and applicability of the construct. I personally regard the C
for loop as one of the most useful features of the language,
and it’s certainly something that sets it apart from most other
languages which lock you into a certain way of doing it.
The way I got through the fact that the C for loop isn’t very
obvious to the beginning programmer, is to invent a dialogue
for translating what the for loop is doing into English. When
you see the statement
for (x = 0; x < 10; x++) {printf ("hi\n");
you can translate it as , set x equal to 0, while x is less
than 10 execute printf ("hi\n") and increment x, then repeat.
It’s useful to look at the for loop as a while loop with added
capabilities. Also remember that any and all parts of a for
loop are completely optional, and that each part may contain
multiple statements, test conditions etc.

BUGS
Bugs you say, nope, none here.

Testfile

19/42

SEE ALSO
do, while, switch, break, continue, default, if, else.

1.16 /goto

NAME
goto - Jumps to another part of the program. NEVER USE!!!!
If your code ever leeks out and other programmers get
wind, you’re reputation will never recover, companies
won’t hire you, you’ll be an outcast, shunned by all
but the most loathsome of BASIC programmers.

SYNOPSIS
goto <label>

<label>:

FUNCTION
Goto has no function, it has no reason to exist, but to satisfy
those unimaginative BASIC programmers who dare set their
obviously unadaptable feet into C water just to have them
ripped off by some shark in the guise of a nerdy keyboard
jockey. No, but seriously, goto is regarded by all as bad
programming technique, and should be avoided at all cost on
pain of unintelligible source code, both to you and anyone else
who might have business with it later. There is only one
conceivable instance that I’'m aware of where goto might be an
actual benefit to source code readability. Say you have
yourself nested in several layers of loops and some condition
happens, (maybe an error or even some debug code), and you have
to exit out of all of the loops. It is inconvenient to use
breaks, because you have to put one into every loop until your
safely back into wherever the original calling code was.
Frankly, it’s probably a better idea to rethink the way your
doing it and try to come up with a way that doesn’t involve
goto unless it’s Jjust temporary debug code which will be taken
out after the bug has been solved.

INPUTS
<label> - Is the only argument goto takes. You must put a
label somewhere in the code of the current function
you are in. goto will not find a label if it is
located in another function. the label is followed
by a colon when marking the location, but not when
used with goto. If I didn’t explain that well see
the example and it should become clear.
RESULT
none.
EXAMPLE
label:

printf ("Hello World ;-)\n");

Testfile 20/ 42

goto label;

NOTES
A lot of C and C++ programmers truly wonder why goto was
included in the language when it already had such a rich set of
control structures? I personally believe it’s because C was
originally cooked up in the 60s or 70s, or something, when
basic programming was all the rage. When people finally
realized that goto wasn’t all it was cracked up to be, it was
too late to take it out of the language for backward
compatibility’s sake. That being said I’11 make a note here
that should in no way convince you that using goto is OK. Goto
is generally faster than the built in control structures
because it’s tailored to the specific task at hand and doesn’t
generate redundant code. Also I think each time you use a C
control stucture there’s a certain amount of overhead involved,
but don’t quote me on that. If you ever look at assembly,
you’ll see the equivilant of gotos all over the place. Goto
is alot closer to how the machine thinks than the other control
structures. However, truly the amount of time lost by using C
constructs is truly minimal and is barely worth mentioning.
Personally, and I know someone is going to blast me for this,
I'm glad it was included in the language, even though I and
nobody else ever uses it. I always like having the choice to
do things the way I like, which is truly what C programming is
all about anyway. The language doesn’t dictate matters of
style, that Jjob is left to the programmer where it belongs.
P.S. Unions also fall into the category of "why", but again,
I think that just because a feature doesn’t fit all situations,
or even most situations, it is at least nice to know it’s there
for that one out of a million chance you might actually use it.

BUGS
You shouldn’t use this keyword enough to know if there are any
bugs. In fact, if you’re still reading this, there’s something
wrong. Here, directly below are a list of things you can use
instead.

SEE ALSO
for, while, do, switch, break, continue,
THE WHOLE CONCEPT OF USING FUNCTIONS TO ENCAPSULATE CODE & DATA

1.17 Jif
NAME
if - Used to form (if-then) constructs. Is the basic way to
make decisions in C.
SYNOPSIS

if (<conditional statement>)

{

<statement sequence>;

}

else if (<conditional statement>)

Testfile

21/42

<statement sequence>;

}

else

{

<statement sequence>;

FUNCTION

If is used to form (if-then) constructs. It is the basic way
to make decisions in C. Basically, anytime you have to choose
between two courses of action based on some data or user input
you use an if. If tests for truth, (if such and such is true
then do something or other else do this other thing). Anything
that is unequal to 0 is true, zero is false. 2+2 is true,

2-2 is false... If this makes little sense, don’t worry, I'm
not explaining it well anyway. 1f you put a statement in your
code like printf("%d\n", 2==2), then the output would most
likely be 1 or -1, but could honestly be anything other than 0.
Likewise printf ("$d\n", 2==4), would output 0. Usually when
testing for truth you use the symbols > < >= <= != == g¢§& ||.

> greater than

< less than

>= greater than or equal to

<= less than or equal to

!= not equal to

== equal to

and

|| or

These are all logical operators as opposed to bitwise
operators which are used to manipulate binary values.

>3]
°g)

INPUTS

<conditional statement> - A statement which evaluates to either
true or false. False is equal to 0
and true is anything else, however
it is common practice to have -1 or 1
represent true.
<statement sequence> - The single statement or block of
statements which is/are to be executed.

RESULT

none.

EXAMPLE

if (x==3) printf("x is equal to 3\n");
else
{
printf ("OK, you were wrong.\n");
printf("x is not equal to 3.\n");

NOTES

Get used to if. You’ll be using it a lot.

BUGS

Aside from being iffy, "Ok, Ok, bad joke", none.

Testfile 22/ 42

SEE ALSO
switch.

1.18 /int

NAME
int - Declares variables of type int, (quite possibly the most
commonly used data type in C programming.)

SYNOPSIS
int <variable list>;

FUNCTION
int declares variables of type int. Assuming that integers
are a 16 bit data type, (on some computers they’re 32 bits
by default, but could be 64 or anything else depending on
the hardware), an integer is any whole number which falls
between the ranges of -32768 and 32767. An integer must be

at least that large. A long integer must likewise be at
least a 32 bit number meaning anything between -2147483648 and
2147483647.
INPUTS
<variable list> - Is a list of variables to be declared as

type int separated by commas.

RESULT
none.

EXAMPLE
int X, Y = 2, z[5] = {1, 2, 3, 4, 5};

NOTES
Integers are just about the fastest datatype in C.
Calculations done with ints are lightning fast, plus
by using the register keyword you can ask the C compiler
to store them directly in the CPU’s memory so access 1is
even faster. The down side of course is you can’t do
fractions in the traditional sense. 5/2 yields 2. The
remainder is simply chopped off. To retain the whole
answer with the remainder use the div function found in
the stdlib.h. There are ways you can get ints and long ints
to do just about any job you want done, it just takes a little
fore—-thought.

BUGS
Only works on whole numbers and can’t hold very large numbers.

SEE ALSO
void, char, float, double.

long, short, signed, unsigned,
const, volatile,
extern, static, register, auto,

Testfile 23/ 42

struct, union, typedef, enum.

1.19 /long
NAME
long - Is an access modifier, which can be used to preface
either int or double to change their meaning, usually
to increase their size.
SYNOPSIS

long <data type> <variable list>;

FUNCTION
Long is an access modifier, which can be used to preface either
int or double to change their meaning, usually to increase
their size. 1long can be used by itself and it is understood
that you mean long int. A normal integer is usually 16 bits
long, but a long integer is typically 32 bits long meaning
instead of being able to only hold a max 32,767 a long can
hold 2,147,483,647. Similarly when used in reference to
double it specifies that it should take up, (I think), 80
bits instead of the normal 64. This translates from something
like 1.7 % 107308 into 3.4 * 1074932. Don’t quote me on
that last one, I don’t think long double’s are very standard,
and seriously, if you ever need a number that big, or that
accurate, it probably means your a much better programmer than
I, and you have no business reading this anyway unless of
course it’s for a good laugh.

INPUTS
<data type> - In this case can only be int or double.

<variable list> - A list of variables to be declared as
long, or long double.

RESULT
none.

EXAMPLE
long x, y = 2, z = 1000000;
// same as long int x, y = 2, z = 1000000;

NOTES
Long is one of those funny things that got really screwed
up when the ANSI folks decided to mess around with
it’s meaning. Originally in the old Kernigan & Ritchie
standard of C, long made a whole lot more sense. You
had the standard data types like char int and float.
ints were either short or long, likewise floats too
were either short or long. If you didn’t specify the
keyword long then it was assumed to be short. Ints were
16 bits short 32 long, floats were 32 short and 64 long.
In fact the keyword double and long float are synonymous.
and long doubles didn’t exist. To me, that makes sense,
but when the ANSI people came to standardize C compilers

Testfile

24 /42

everywhere, (and they did a good Jjob, I just don’t like
the way they did this), they not only said that we’re now
going to call long floats double and make a new long
double type, but they made it illegal to make a long
float. If you try it, I’11l lay you 10 to 1 odds your
compiler will choke. Anyway, so now years after the

ANSI standard, long has a very obscure meaning now,

at least in reference to what it meant originally.

BUGS

Only works with int and double. Otherwise none.

SEE ALSO

1.20

void, int, char, float, double.

short, signed, unsigned,

const, volatile,

extern, static, register, auto,
struct, union, typedef, enum.

/register

NAME

register - Is an access modifier which is used to specify
to the compiler that the following variable
declarations are such that speed is crucial
and that the compiler should perform added
optimizations on these variables.

SYNOPSIS

register <data type> <variable list>;

FUNCTION

Register is an access modifier which is used to specify to the
compiler that the following variable declarations are such that
speed is crucial and that the compiler should perform added
optimizations on these variables. Really this keyword should
only be used on ints, which you would like to be stored in

the CPU’s registers so they take up less access time, (hence
the name register). Only ints can be stored in the CPU’s
registers, and it should be understood that this is only

a request and not a command, the compiler may or may not

store the variables in question in the CPU’s registers, it
may or may not perform added optimizations on the variables
that can’t go into the registers.

INPUTS

<data type> - Any C data type, (i.e. char, int, float, double)
<variable list> - A list of variable being declared separated
by commas.

RESULT

none.

EXAMPLE

Testfile 25/ 42

register int x, y = 0;

NOTES
It’s pretty much just a simple way to make you feel like
you’ve optimized your code, when in fact the speed difference
is minimal. Really the best way to optimize a program is well
thought out algorithms that do their Jjob with as little pull
on the CPU as possible.

BUGS
It’s only a request, it may or may not have any effect.

SEE ALSO
void, char, int, float, double.

long, short, signed, unsigned,
const, volatile,

extern, static, auto,

struct, union, typedef, enum.

1.21 /return

NAME
return - Exits a function immediately and a return value may
be specified.
SYNOPSIS

<data type> <function name> (<argument list>)
{

<statement sequence>;

return <return value>;

FUNCTION
Return exits a function immediately and a return value may
be specified. Unless a function declares a void return type
it must have at least one return statement that terminates
the function and returns a value of the appropriate type.
A function may have multiple return statements.

INPUTS
<data type> - May be any of C’s built in data types or it
may be a user defined (complex) data type, such
as a struct.
<function name> - Any valid identifier which serves as the
name of the function.
<argument list> - An argument list consists of variable

declarations separated by commas. See
the example for clarification on this.
<statement sequence> - The single statement or block of
statements which is/are to be executed.
<return value> - The data to be passed back to the routine

that originally called the function.

RESULT

Testfile 26/ 42

What should I write for this, it is the result. This is the
mechanism by which a result is produced.

EXAMPLE
int main(int argc, char xargv)

{

printf ("Hello dare\n");
return 0;

NOTES
none.

BUGS
none.

SEE ALSO

1.22 /short

NAME
short - Is an access modifier, which can be used to preface
int to change it’s meaning.
SYNOPSIS

short int <variable list>;

FUNCTION
short is an access modifier, which can be used to preface int
to change it’s meaning. Actually, in practice, a short int

is the same as saying int, and likewise short can be specified
by itself where the definition short x; is the same as saying
int x; technically, ints can be 16 or 32 bits, (or really any
number of bits depending on the machine), and short is any
number of bits less than or equal to the default int.

INPUTS
<variable list> - A list of variables to be declared separated
by commas.

RESULT
none.
EXAMPLE
short int x, y = 0;
// same as short x, y = 0;
NOTES

Short and long are two of a kind so you should take a look

at what long is all about as well. Short can only be applied
to integers, while long can be applied to ints and doubles.
Again I think the ANSI standard kind of changed the meaning of
short, which is all right, and since I don’t know how it was
originally used, and don’t have any pre-ANSI compilers to test
it out on, I'm just going to leave a big hairy blank on the

Testfile

27142

history. 1In general short and long should only be used on
ints, and on a more personal note, I’ve never used the short
keyword once to my recollection. Usually it’s assumed that
ints are shorts, and if your computer or compiler is more
comfortable with 32 bit numbers than 16, why limit the size
when there’s no need. Bottom line, you’ll probably use long
all the time, but probably forget short even exists.

BUGS

none to my knowledge.

SEE ALSO

1.23

long,

void, int, char, float, double.
signed, unsigned,

const, volatile,

extern, static, register, auto,
struct, union, typedef, enum.

/signed

NAME
signed - Is an access modifier which may be used on either
character or integer data types.
SYNOPSIS

signed <data type> <variable list>;

FUNCTION

Signed is an access modifier which may be used on either
character or integer data types. Signed is used mainly

to specify that a char can either be negative or positive.
Doing this causes the maximum number a char can hold to be
cut in half. Really all variable types, including char, are
signed by default so I'm not sure that there is ever an
instance where you would want to use this modifier.

INPUTS

<data type> - In this case either char or int.
<variable list> - A list of variables to be declared separated
by commas.

RESULT

none.

EXAMPLE

signed char x, y = -100;
printf ("$d\n", vy);

NOTES

Notice that in the example above when I printed y with
printf I used a %d instead of %c which is normally used
for characters. The reason is, I’'m using the type char

Testfile

28/42

here to store numbers and not characters in the normal sense.

BUGS
none.

SEE ALSO

unsigned,

void, int, char, float, double.

long, short, const, volatile,

extern,
struct,

1.24 /sizeof

NAME
sizeof -

SYNOPSIS

static, register, auto,
union, typedef, enum.

Is used to calculate the size of variables and other
objects.

size_t sizeof (<variable type>)<expression>;

or

size_t sizeof <variable> <expression>;

FUNCTION

Sizeof is used to calculate the size of variables and other

objects.
variable

in calculating the size for an object that is being dynamically

Sizeof is useful in determining the size of a
or other object, but it’s most useful application is

allocated. Basically malloc () and sizeof go together like
peanut butter and jelly.

INPUTS
<variable type> - Can be any of C’s built in type’s or a user
defined type like a struct or something.
<variable> - Or you can use the variable itself. sizeof will

return how much memory it’s taking up.

<expression> - Any expression which you might want to use to

RESULT
size_t -

EXAMPLE
#include
#include

modify the number that sizeof returns.

Is the size of the object passed to sizeof in bytes.
size_t is defined in stddef.h. Technically speaking,
sizeof figures an objects size as a multiple of the
char type, (which is almost always a byte). If your
computer stores characters in something larger than
an 8 bit byte, then you might have to rethink your
implementation. In practice though, I’ve never heard
of this happening.

<stdio.h>
<stdlib.h>

Testfile 29/ 42

struct test
{
int i;
char c;
} teststruct; typedef struct test test;

int main (void)

{

int x, #*ptr;

ptr = (int x)malloc(sizeof (int) x5);
for (x = 0; x < 5; x++)
{

* (ptr+x) = x;

printf ("$d\n", =*(ptr+x));
}
printf ("Won’t work, sizeof ptr isn’t %d\n", sizeof (ptr));
printf ("size of x is %d\n", sizeof (x));
printf ("size of teststruct is %d\n", sizeof (teststruct));
printf ("testtruct should be sizeof (int)+sizeof (char) .\n");
printf ("just to test, sizeof (int)+sizeof (char)==%d\n",
sizeof (int) +sizeof (char));
return O;

NOTES
Sizeof is a unary operator. I almost always use it as though
it were a function, but it is an operator none the less.
malloc and it’s related functions calloc realloc and free
which are used to allocate memory from the operating system
are where sizeof gets used most often.
Also the type size_t is defined in stddef.h.

BUGS
none.

SEE ALSO
size_t, malloc, calloc, realloc, free.

1.25 /static

NAME
static - Is used to specify that a variable is to remain in
memory even when the function or block to which
it is assigned goes out of scope.
SYNOPSIS

static <data type> <variable list>

FUNCTION
Static is used to specify that a variable is to remain in
memory even when the function or block to which it is assigned
goes out of scope. Simply stated, normally when you exit a
function, all local variables in that function are destroyed
so the memory can be used elsewhere, (i.e., when you go back
into that function later, the variables are not the same as

Testfile

30/42

when you left the function.) The static keyword specifies
that you don’t want the memory to be dumped, so when you

come back into the function, everything is just as you left
it. There are two practical uses for static variables that
come blaringly to mind. One is when you need to keep track
of some bit of info between function calls, (like maybe

how many times you’ve called the function or something). The
other is when you want to return a pointer to info generated
by the function, but don’t want to declare a global variable
and call by value isn’t economical.

There is a another and somewhat confusing use of the keyword
static, which is to specify that a global identifier, (which
can be any identifier including a variable or function), is

to have internal linkage. What this means is basically that
say you have two source code files and both of them contain
either functions and/or variables with the same names. If you
try to compile them together, you’ll get an error from the
compiler. TIf you declare the vars and or functions in question
with the static keyword it tells the compiler that the source
code is useing the variable within itself and not the one that
was defined in the other source code file. At first this looks
like a useless feature that no-one in their right mind would
use, but it does have one VERY important use. The problem with
global variables is that they can very quickly polute your code
which is why you’re encouraged to use static variables within

a function. Sometimes however, you have to use a global var

to get the job done, and there’s no way around it. Well if
you’ re working on a large project made up of multiple files

you can use the static keyword when you define your global
variable, and it will in effect shield all the other source
file segments from your global variable. They won’t be

aware that it even exists. I suggest you play with this a
little, as it’s an extremely useful tool for allowing you to
"cheat" the system, and still have super clean code.

INPUTS

<data type> - Any of C’s built in data types, or a user defined
(complex) data type of your own.
<variable list> - A list of variables being declared separated
by commas.

RESULT

none.

EXAMPLE

#include <stdio.h>
int *test (int a, int b);

int main (void)
{

int x, #*mainptr;

mainptr = test (0, 10);
for (x = 0; x < 10; x++) printf ("%$d\n", =*(ptr+x));
printf ("\n\n\n");

Testfile

31/42

mainptr = test (5, 15);
for (x = 0; x < 15; x++) printf ("$d\n", =* (ptr+x));

return O;

int *test (int a, int b)
{
int x;
static int *ptr = NULL;

if (ptr==NULL) ptr = (int x)malloc(sizeof (int) xb);
else ptr = (int *)realloc(ptr, sizeof (int) xb);
for (x = a; x < b; x++) *(ptr+x) = x;

return ptr;

NOTES
Static shouldn’t be used when it’s not needed, but it is an
invaluable tool for maintaining the structure of a program
when trying to do some things. Mainly static’s main purpose
for existing is to limit the need for global variables.
Indeed even when the use of global variables is necessary,
the static keyword can be used to limit the impact they have
on the overall program.

BUGS
none. Sorry if I didn’t explain this keyword well. It’s
a little hard for me to word. When all else fails,
experiment, a little old fashioned hacking never hurt
anyone.

SEE ALSO
auto, extern, register, const, volatile,

void, char, int, float, double.

long, short, signed, unsigned,
struct, union, typedef, enum.

1.26 /struct

NAME
struct - Is used to create user defined (complex) variable
types on top of C’s built in types.
SYNOPSIS

struct <type name>
{

<variable declarations>;
} <global wvariable list>;

FUNCTION
Struct is used to create user defined (complex) variable
types on top of C’s built in types. Basically struct allows

you to structure a bunch of variables into a logical grouping.

Testfile

32/42

If your familiar with the concept and terminology of databases
a struct is like making a field, which will later contain

a whole bunch of data pertaining to a single subiject.

If the idea is unclear, try looking at the example for
clarification.

INPUTS

<type name> - Is the name of the new type you are creating.
Think of this as roughly corresponding to int,
char, or float or the like with the exception
that this is your own custom variable type.
<variable declarations> - Several lists of variable
declarations which may be made up of
any of C’s built in types, or of
other user defined (complex) types
defined elsewhere.
<global variable list> - A list of variables of this newly
defined type separated by commas. Any
variables declared here are considered
global. You may declare global
variables of this type elsewhere but
it is considered proper to do it here.

RESULT

none.

EXAMPLE

#include <stdio.h>
#include <string.h>

struct phonepage

{
char name[257];
int areacode, localcode, fourdigitcode;
char address[257];

} phonebook [10];

// the following line is just so you can type phonepage

// instead of typing struct phonepage to declare a variable

// of that type. THIS IS NOT A NECESSARY STATEMENT.

// It is intended to make the meaning of the statements in main
// stand out more clearly.

typedef struct phonepage phonepage;

int main (void)
{
phonepage myfriend;

strcpy (myfriend.name, "Harry");
myfriend.areacode = 900;
myfriend.localcode = 555;
myfriend.fourdigitcode = 1234;
strcpy (myfriend.address,

"Beverly Hill 90210, <Yeah right ;-)>");

phonebook [0] = myfriend;

Testfile

33/42

printf ("My friend’s name is %$s\n", phonebook[0].name);

printf ("My friend’s phone number is (%d) %d-%d\n",
phonebook [0] .areacode, phonebook[0].localcode,
phonebook [0] . fourdigitcode);

printf ("my friend’s address is %s\n", phonebook[0].address);

return 0;

NOTES

When I first started learning C, the syntax of how to construct
a struct really baffled me, mostly because in many of
the books I was reading each programmer had a different way

of doing it. Specifically the difference between the name at
the beginning and the list of names that follows the definition
threw me for a loop. It was never impressed on me by the

different authors, that the name at the top is a new variable
type, and the list of names at the end are simply variables of
that type. Structs are really the first glimmer of the object
oriented way of looking at a problem. C is not an object
oriented language, but structs promote the grouping of data
into logical/conceptual objects. C++ takes the next step and
lets you put code into your own variables as well as data.
There’s more to object oriented programming then just that,
but I'm just trying to impress that if you’ve no idea what
object oriented programming is, Structs definitely fall into
the spirit of object oriented programming.
P.S. a structure can also be used to create a bit field.
A bit field is useful when you want to pack as much info
into a given piece of memory as is humanly possible.
This is an advanced technique which I'm too lazy to go into
in depth here. If you think you might need one, or are just
interested, or need the syntax, pick up any book on C
programming and look in the index for bit fields.
A bit field looks something like this,
struct test
{
int booll
int bool2
int bytel
int byte2

o O =
Ne Ne N

~.

BUGS

none.

SEE ALSO

typedef, union, enum,

void, char, int, float, double.
long, short, signed, unsigned,

const, volatile,

extern, static, register, auto.

Testfile 34 /42

1.27 /switch

NAME
switch - A statement used to choose between alternate courses
of action based on an integer or enumeration value.

SYNOPSIS
switch (<variable>)
{
case <const value>:
<statement sequence>;
break; // 1if this is omitted, 2nd case will execute too.
case <const value>:
<statement sequence>;
break;
default:
<statement sequence>;

FUNCTION
Switch is a statement used to choose between alternate courses
of action based on an integer or enumeration value. Switch

is similar in purpose to an If-Then, but is more restrictive.
Essentially all a switch can test for is equality. When a
single variable must be tested multiple times for equality
and a simple inequality won’t suffice, a switch statement
can add more clarity to the code then an if-else if ladder.

INPUTS
<variable> - The variable that is to be tested in the body of
the switch statement.

<const value> - Any constant expression that evaluates to an
integer number. If the <variable> is equal
to this number, then the statement sequence
directly after is executed. const value may
not contain any variables.

<statement sequence> - The single statement or block of

statements which is/are to be executed.

RESULT
none.

EXAMPLE
#include <stdio.h>

int main (void)
{

int x = 2;

switch (x)
{
case 1:
printf ("1\n");
break;
case 2:
printf ("2\n");

Testfile 35/42

break;
default:
printf ("3\n");
}

return 0;

NOTES
Switch is often used when the user is supposed to select
one of several options. Menu programs, and similar progs
that prompt for user input can benefit from the use of

switches. Also, remember, switch only works with integral
types. This could be a char, int or enumeration.
BUGS
none.
SEE ALSO
case, break, default, int, enum,
if, else.

1.28 /typedef

NAME
typedef - Is a C keyword for creating an alias for data types.

SYNOPSIS
typedef <old name> <new name>;

FUNCTION
Typedef is a C keyword for creating an alias for data types.
Typedef can be used to substitute your own names for variable
types, like typedef unsigned char byte;. Also you can use it
to abbreviate long type definitions so their not such a pain to

type.

INPUTS

<old name> - This is the old data type name. It can be made up
of several names, like unsigned char or
struct test.

<new name> - This is the alias of the data type. This
can’t contain any spaces as C assumes the last
word in a typedef statement is the alias. Also
it should be noted that you may specify that the
new type should inherently an array or pointer or
something, (i.e., typedef char strtypel[257]; or
typedef int xintptr;).

RESULT
none.

EXAMPLE
typedef char strtypel[257];
typedef int *intptr;
typedef struct
{

Testfile 36/42
strtype str;
int x, vy, z;
} structtype;
NOTES
The last part of the example is a little ambiguous and deserves
some explanation. In a normal struct definition, any name that
follows the closing bracket is the name of a global variable
that you are declaring. In this instance typedef is saying to
replace structtype with the whole struct definition. To
demonstrate what I'm talking about, try compiling the following
example.
#include <stdio.h>
#include <string.h>
int main (void)
{
struct {int x, vy, z; char str[257];} hello;
strcpy (hello.str, "Hello There\n");
printf ("%$s\n", hello.str);
return 0;
}
In this code fragment, hello is a wvariable, and the part that
says struct {int x, vy, z; char str[257];} IS the data type.
you are basically assigning the variable hello a unique data
type that can’t be assigned anywhere else unless of course you
were to re-specify the struct from scratch.
BUGS
none.
SEE ALSO

struct, union, enum, void, int, char, float, double.

1.29 /union
NAME
union - Similar to struct, but specifies that it’s data members

are to occupy the same area of memory.

SYNOPSIS

union <type name>
{

<variable declarations>;
} <global wvariable 1list>;

FUNCTION

Union is similar to struct, but specifies that it’s data
members are to occupy the same area of memory. So, if you
specified a union (union test {int x; char c;} ;) then

any data assigned to ¢ is also assigned to the low order
bits of x, and any value assigned to x can also be accessed
by ¢ assuming that value is no larger than 8 bits in which

Testfile 37 /42

case the value returned by c is truncated.

INPUTS
<type name> - Is the name of the new type you are creating.
Think of this as roughly corresponding to int,
char, or float or the like with the exception
that this is your own custom variable type.
<variable declarations> - Several lists of variable
declarations which may be made up of
any of C’s built in types, or of
other user defined (complex) types
defined elsewhere.
<global variable list> - A list of variables of this newly
defined type separated by commas. Any
variables declared here are considered
global. You may declare global
variables of this type elsewhere but
it is considered proper to do it here.

RESULT
none.

EXAMPLE
#include <stdio.h>
#include <values.h>

union test

{
int x;
char c;

int main (void)
{

union test aunion;

aunion.x = MAXINT;

printf ("$d\n", aunion.x);
aunion.c = "a’;

printf ("$d\n", (int)aunion.c);
printf ("$d\n", aunion.x);

return O;

NOTES
Unions only have a few very specialized applications in low
level programming. For instance when writing the malloc
function, programmers generally use a union to control how the
memory is allocated. For application programmers, (That’s you
and me), I can’t off hand think of any situation that would
warrant the use of a union.

Testfile 38/42

BUGS
none.

SEE ALSO
struct, enum, typedef, void, int, char, float, double.

1.30 /unsigned

NAME
unsigned - Is an access modifier which may be used on either
character or integer data types.

SYNOPSIS
unsigned <data type> <variable list>;

FUNCTION
Unsigned is an access modifier which may be used on either
character or integer data types. Unsigned is used mainly
to extend the maximum value an integer, (or other integral
type), may hold. (An integral type is any built in,
non-floating point, type. Definitely not complex types.)

INPUTS
<data type> - In this case either char or int.
<variable list> - A list of variables to be declared separated
by commas.

RESULT
none.

EXAMPLE
unsigned int x, y = 40000;
printf ("$d\n", vy);

NOTES
Normally an integer value is 16 bits long, translating into
any number between -32767 and 32767. Making an int unsigned
will effectively change the range to 0 through 65,7??? basically
doubling highest possible positive integer. This can be
useful when you need numbers slightly higher than 32767 but
don’t need to store any negative values, like in a loop
counter or something.

BUGS
none.

SEE ALSO
signed,

void, int, char, float, double.
long, short, const, volatile,

extern, static, register, auto,
struct, union, typedef, enum.

Testfile

39/42

1.31 /void

NAME
void - Used to specify that a function doesn’t return any
return values, or can declare void pointers which
can hold a pointer of any type.

SYNOPSIS
void <function name> () ;
or
void x<var or func name>;

FUNCTION
Void is used to specify that a function doesn’t return any
return values, or can declare void pointers which
may be cast into any other ptr type without explicit casting.
note that C++ is a little more strict about using a void
ptr as an implicit cast and you may have to go ahead and
cast it explicitly if your using a C++ compiler.

INPUTS
<function name> - Any valid function name which will have a
void return type specifying that this
function has no return type.
<var or func name> - If it is a variable name then you
are specifying a void ptr variable type.
if it is a function name then you
are specifying a void ptr return type.
A void ptr return type does not indicate
no return value. It specifies that the
type of the pointer which is being
returned is generic and may be any type.

RESULT
none.

EXAMPLE
#include <stdio.h>
#include <stdlib.h>

int main (void)

{

int *x;
x = malloc (sizeof (int));
*xX = 67;

printf ("$d\n", =*x);

return 0O;

NOTES
In the example above, malloc returns a void ptr. This
allows x to be assigned the value even though it is an
integer pointer.

Testfile

In addition to all I’'ve said so far, I think that void used as
a return type signifying no return type, was instituted by the
ANSI standard. I believe they did it this way because of
some incompatibility with the previous syntax for defining

C functions in the Ritchie/Kernigan definition. I think

they wanted to maintain compatibility with programs using the
older definitions, but needed to find a way to distinguish
between the two. I don’t know the details as I'm not very
familiar with that definition of C since it is quit old,

(at least a decade now). A lot of old code uses it though

so it’s useful to know the distinction. You should use the
new syntax though as it allows better type checking by the
compiler, and on top of that I recommend always declaring
return types even if the return type is int, because the
latest definition of C++ doesn’t support implicit int

return types anymore. "If your like me, you use C AND

C++ compilers to compile your C programs, (depending on the
tools you have available to you at the time), plus it’s just
a good idea to make your C programs compatible with C++

just in case you ever want to go to it later. You might

want to mix your old routines with your new code or something.

BUGS
none.

SEE ALSO
signed,

void, int, char, float, double.
long, short, const, volatile,

extern, static, register, auto,
struct, union, typedef, enum.

1.32 /volatile

NAME
volatile - Is an access modifier which specifies that a given
variable may be altered by another program outside
the current program’s control and for the compiler
to perform no optimizations that would cause an
error should such an outside alteration happen.
SYNOPSIS

volatile <data type> <variable list>;

FUNCTION
Volatile is an access modifier which specifies that a given
variable may be altered by another program outside the current
program’s control and for the compiler to perform no
optimizations that would cause an error should such an outside
alteration happen. Most frequently, this type of variable is
used when you want your program to access some fixed hardware
(or software) resource which is regulated by the 0S and/or

Testfile 41/ 42

other programs must access and/or change it. A good example
of this is if you wanted to access the computer’s clock
directly. You’d assign a pointer to wherever the time info
is kept in the computer, and whenever you’d want to know

the time you could just take a look at that pointer.

INPUTS
<data type> - Any of C’s built in types or your own user
defined (complex) data type.
<variable list> - A list of variables being declared separated
by commas.

RESULT
none.

EXAMPLE
volatile int x;

NOTES

Anytime one uses the volatile keyword, it denotes that your
getting pretty close to the system, IE pretty low level. If
your trying to write portable software that will compile on
multiple platforms, (which should be the goal of every good
little programmer), it’s not a good idea to start accessing
hardware, which may or may not exist on other platforms or
even later models of the same type of computer, (DOES AGA
RING ANY BELLS HERE). In closing, this keyword is best left
to system and compiler programmers.

PS, Don’t take my word on this as gospel, I'm not very
familiar with volatile and it’s uses.

BUGS
none.

SEE ALSO
const, extern, static, register, auto.

1.33 /while

NAME
while - Used to form a while loop, the most basic looping
structure in C.

SYNOPSIS
while (<condition>)
{

<statement sequence>;

FUNCTION
While is used to form a while loop, the most basic looping
structure in C. While executes while the <condition> is true,
when the condition becomes false the loop exits. The test
condition is evaluated first when you enter the loop and then

Testfile 42/ 42

once every time the loop finishes a cycle.

INPUTS
<condition> - Any valid C expression that evaluates to either
true of false.
<statement sequence> - The single statement or block of
statements which is/are to be executed.

RESULT
none.

EXAMPLE
x = 0;
while (x<10)
{
x++;
printf ("$d\n", x);

NOTES
While and do while differ only in that a do while evalutes it’s
conditional statement after the first iteration and while
evaluates it’s expression before the loop is executed. This
distinction can have a profound effect on what happens if
one is unaware of the distinction, however the loops can
generally substitute each other with minor modification.

BUGS
none.

SEE ALSO
do, for, switch, break, continue, default, if, else.

	Testfile
	Table Of Contents
	"
	/break
	/case
	/char
	/const
	/continue
	/default
	/do
	/double
	/else
	/enum
	/extern
	/float
	/for
	/goto
	/if
	/int
	/long
	/register
	/return
	/short
	/signed
	/sizeof
	/static
	/struct
	/switch
	/typedef
	/union
	/unsigned
	/void
	/volatile
	/while

