
The Memory Library

Programmer’s Manual

Thomas Richter

Copyright c© 2001 by Thomas Richter, all rights reserved. This publication is freely distribute-able under
the restrictions stated below, but is also Copyright c© Thomas Richter.

Distribution of the publication by a commercial organization without written permission from the author
to any third party is prohibited if any payment is made in connection with such distribution, whether directly
(as in payment for a copy of the publication) or indirectly (as in payment for some service related to the
Publication, or payment for some product or service that includes a copy of the publication “without charge”;
these are only examples, and not an exhaustive enumeration of prohibited activities).

However, the following methods of distribution involving payment shall not in and of themselves be a
violation of this restriction:

1. Posting the publication on a public access information storage and retrieval service for which a fee is
received for retrieving information (such as an on-line service), provided that the fee is not content-
dependent (i.e., the fee would be the same for retrieving the same volume of information consisting
of random data).

2. Distributing the publication on a CD-ROM, provided that

(a) it is reproduced entirely and verbatim on such CD-ROM, including especially this license agree-
ment;

(b) the CD-ROM is made available to the public for a nominal fee only,

(c) a copy of the CD is made available to the author for free except for shipment costs, and

(d) provided further that all information on such CD-ROM is re-distribute-able for non-commercial
purposes without charge.

Redistribution of a modified version of the publication is prohibited in any way, by any organization,

regardless whether commercial or non-commercial. Everything must be kept together, in original and

unmodified form.

Disclaimer: This publication is provided “as is” without any warranty of any kind, either

expressed or implied, including, but not limited to, the implied warranties of merchan-

tability and fitness for any particular purpose. Further, the author does not warrant,

guarantee, or make any representation regarding the use of, or the results of the use

of, the information contained herein in term of correctness, accuracy, reliability, cur-

rentness, or otherwise; the entire risk as to its quality and accuracy is assumed solely by

the user. Should the information prove inaccurate, the user (and not the author) assumes

the either cost of all necessary correction. In no event will the author be liable for

direct, indirect, incidental, or consequential damages resulting from any defect or inac-

curacy in this publication, even if advised of the possibility of such damages. Some laws do

not allow the exclusion or limitation of implied warranties or liabilities for incidental or

consequential damages, so the above limitation or exclusion may not apply.

Amiga is a registered trademark, Amiga-DOS, Exec and Kickstart are registered trademarks of Amiga

Intl. Motorola is a registered trademark of Motorola, inc. Unix is a trademark of AT&T.

ii The MemLib Programmer’s Manual

Contents

1 Introduction to the MemoryLib 1
1.1 Supported Hardware . 1
1.2 Basic Concepts . 1

2 Address Spaces 3
2.1 Address Spaces plus Tasks and MMUContexts . 3
2.2 Function Reference . 5

3 Memory Pools 6
3.1 Function Reference . 7
3.2 Memory Control Functions . 8
3.3 Function Reference . 9

4 Building Address Spaces 10
4.1 Tags Selecting the Target Context . 10
4.2 Tags Selecting the Size of the Virtual Memory Region 10
4.3 Tags Defining the Swap Mechanism . 10
4.4 Miscellaneous Tags . 12
4.5 Example Code . 12

5 Building VMPools 13
5.1 Private Swapping Mechanisms . 13
5.2 Pool Management Tags . 14
5.3 Memory and Caching modes . 15
5.4 Enhanced Virtual Memory Pool Functions . 16
5.5 Example Code . 17
5.6 Function Reference . 18

6 Swap Fail Hooks 19

7 Custom Swap Hooks 20

CONTENTS iii

1 Introduction to the MemoryLib

The very purpose of the memory library is to offer the power of “virtual memory” to the Amiga
Operating System. Now, what is virtual memory then? It’s the illusion of memory that is “not really
there”. Hence, programs using virtual memory access so called logical memory addresses that are not
necessarily represented by physical hardware. The contents of these addresses is then currently not
available in system RAM, but represented on some external hardware, typically a hard disk. If this
happens, one says that the corresponding logical address is swapped out. Whenever a program tries
to access a logical address that is currently not represented by the hardware, the memory library
interacts, allocates real physical memory from the system, and loads the corresponding data from
the swap device — as said typically a hard disk — into the physical memory. All this happens under
the feet of the application program, as a completely transparent operation. An application using
the memory library will not be aware that parts of the addresses it is currently using are not in main
memory, just because the memory library will load them into memory whenever the program tries
to access them. Therefore the word “illusion”. This illusion is quite useful, though: Programs that
require more memory than available main memory could use virtual memory instead. The memory
library keeps care about which parts of the required memory are really loaded in the main memory,
and which parts may reside on disk. Another application of virtual memory is to mirror a huge file
in memory, as if it has been loaded as a single gigantic block. As an application accesses this file,
the memory library loads and disposes parts of this file automatically for you — hence, it seeks in
the file as the application accesses different portions of its image.

Obviously, virtual memory requires some support by the hardware. The responsible hardware
circuit is the MMU, short for memory management unit. The memory library does not attempt to
program the MMU itself; rather, it leaves this dirty work for another library, the mmu library. This
library comes with its own documentation you should have a look into as well.

On the other hand, virtual memory requires some support of the operating system as well.
Unfortunately, the initial design of Amiga OS did not keep care about virtual memory, mainly
because at the time of its writing MMUs were not an option for a low-priced customer system. Some
preparations have been made, at least, but little application programs keep care. The conclusion of
this constructional problem is that there is no transparent integration of virtual memory into Amiga

OS. This does not mean that there cannot be virtual memory at all. It just means that applications
that want to use virtual memory have to make special preparations to make use of it. The memory
library will not, though, make old applications use virtual memory transparently. As said, there
is no way to make this happen. The memory library will, though, provide the required interface
functions to manage virtual memory, should an application require it.

1.1 Supported Hardware

The memory library supports all hardware the mmu library supports. In fact, as long as an mmu
library is present, it is completely independent of the underlying hardware. At the time of writing,
the 68020/68851 combination as well as the 68030, 68040 and 68060 processors are supported by
the mmu library, and hence by the memory library.

1.2 Basic Concepts

The memory library handles two basic objects: The AdrSpace and the VMPool. An AdrSpace defines
the stage on which virtual memory plays — if an exec Task enters an AdrSpace, it shares the same
logical addresses with all other Tasks that are part of this AdrSpace. Hence, the AdrSpace links
virtual addresses to a swapping mechanism, and hence defines the meaning of virtual addresses. If
you know the interface of the mmu library, then this might sound quite common. A very similar
concept exists on the mmu library, namely that of an MMUContext. In fact, an AdrSpace is a natural

Introduction to the MemoryLib 1

extension of the mmu library MMUContext, and each MMUContext may carry at most one AdrSpace.
On the contrary, each AdrSpace may also only extend one MMUContext. Hence, there is a one-to-one
relation between address spaces and MMUContexts. Similar to the MMUContext, AdrSpaces don’t
have any documented structure, you won’t need any to make use of it.

Each exec Task may run as part of an AdrSpace, and as exec schedules Tasks, it also schedules
AdrSpaces. Therefore, AdrSpaces are similar to “processes” of other operating systems, e.g. Unix,
and exec Tasks are more like “threads” because any two Tasks belonging to the same address space
may see and modify the data of each other. Virtual memory allocated within one AdrSpace is,
however, invisible to Tasks of other AdrSpaces.

Unlike mmu library MMUContexts, no initial AdrSpace exists if the system boots up. Hence, all
Tasks are “only” able to see the system wide shared memory. You need to build an MMUContext and
an AdrSpace on top if you want to use virtual memory, and Tasks have to enter this AdrSpace

explicitly to make use of it.

Virtual memory does have its restrictions since other parts of the operating system are not
prepared to handle virtual memory. Virtual memory may not be accessed from within supervisor
mode, e.g. within interrupts. The corresponding memory will simply not “appear” at its place, and
the result is either reading of invalid data, a MuForce hit, or a system crash. Virtual memory must

not be accessed while in a Forbid() or Disable() state. The reason for this restriction is quite
simple: Access of virtual memory may require that its contents must be swapped in, i.e. loaded from
disk, and this requires a Task switch by very construction. For the very same reason, virtual memory
must not be accessed while the swapping device is blocked in some way, e.g. the corresponding filing
system containing the swap file has been shut down. Since one cannot ensure which parts of the
operating system may access memory without keeping care of these side conditions, and whether
the Os passes data structures to other Tasks not sharing the same AdrSpace in first place, placing

Os structures in virtual memory is illegal.

VMPools are, similar to their exec counterpart, memory pools virtual memory can be allocated
from. An AdrSpace may provide more than one VMPool. Each pool may have its own swap-
ping mechanism if required, and each pool may define special properties of the memory it admi-
nistrates — as for example the exec memory flags MEMF_CHIP, or special MMU caching modes as
MAPP_CACHEINHIBIT. Except that, a VMPool may also mirror the contents of a file. For this appli-
cation, it cannot be used for memory allocation and release. Rather, its logical addresses are used
to address the data within the mirror file.

✷ An AdrSpace is the extension of an MMUContext. They are in a one-to-one relationship.

✷ An AdrSpace assigns a common meaning to logical addresses for all Tasks that entered it.
Tasks belonging to different AdrSpaces may use the very same logical address for quite diffe-
rent purposes, and may find different data under the very same address.

✷ Exec Tasks must enter AdrSpaces explicitly to make use of the virtual memory within. If
they don’t, they are only able to access the shared public memory.

✷ As exec schedules its Tasks, it also schedules AdrSpaces.

✷ Virtual memory must not be accessed while in Forbid() or Disable() state, or from within
supervisor mode.

✷ Os structures must never be allocated within virtual memory, neither may you pass any virtual
memory address to the Os.

✷ VMPools are build within AdrSpaces. They are the entity you allocate virtual memory from.

✷ All memory chunks allocated from a VMPool share the same memory and caching flags.

2 The MemLib Programmer’s Manual

2 Address Spaces

The first step to build a new AdrSpace is to build a new MMUContext. This job is out of scope of
the memory library, but requires the mmu library, namely its CreateMMUContext() function.
The mmu library provides a huge set of tags for this function, but in the most frequent case, the
following should be enough:

struct MMUContext *ctx;

ctx = CreateMMUContext(MCXTAG_SHARE,DefaultContext(),TAG_DONE);

This will build a new MMUContext that shares all definitions from the public global context, i.e.
modifications of the global context will be forwarded automatically, except for memory regions
declared otherwise.

A new address space is then created on top of this context by the following call:

struct MMUContext *ctx;

struct AdrSpace *adr;

char *swapfile;

adr = NewAdrSpace(MEMTAG_CONTEXT,ctx,

MEMTAG_VMSWAPTYPE,MEMFLAG_SWAPFILE,

MEMTAG_SWAPFILENAME,swapfile, /* swap to this file */

MEMTAG_VMSIZE,64*1024*1024, /* 64 MB size */

TAG_DONE);

The NewAdrSpace() function is tag-based, it provides much more options that are discussed below
in full detail in section 4. For the moment, the above example should be enough — it builds an
address space on top of the passed-in context that swaps into a file of the indicated name, and is
64MB large.

Address spaces and contexts are disposed in reverse order by the following two functions:

struct AdrSpace *adr;

DeleteAdrSpace(adr);

and, after disposing the address space,

struct MMUContext *ctx;

DeleteMMUContext(ctx);

which is again an mmu library call.

2.1 Address Spaces plus Tasks and MMUContexts

A Task need not to be part of an AdrSpace at all — note that this is an important difference to
the mmu library concept where a task is at least part of the public global context. If a task hasn’t
entered an AdrSpace, it may of course still address objects, but only those that are in the global
shared memory Amiga Os provides since ever. Virtual memory requires, though, that a Task enters

an AdrSpace explicitly, which then defines how the virtual addresses are interpreted.

Entering an AdrSpace is done by the following call:

Address Spaces 3

struct AdrSpace *adr;

struct Task *task;

BOOL ok;

ok = EnterAddressSpace(adr,task);

This call returns TRUE for success or FALSE on failure. Hence, this call is the “memory” ana-
logue of the mmu library call EnterMMUContext(). Similar to the mmu library, it requires the
tc_Switch and tc_Launch function pointers of the task to be patched over.

BOOL is not a Context! Note that EnterAddressSpace() may fail if the system runs
out of memory. Entering an address space requires the allocation of some private admi-
nistration structures. Unlike EnterMMUContext(), which returns on success the old
context the task was part of, this function returns a boolean success/failure indicator.

Similarly, a task may leave an address space on demand:

BOOL ok;

struct Task *task;

ok = LeaveAddressSpace(task);

Afterwards, the task will have access to system-wide shared memory only. This call cannot fail
unless you pass in incorrect parameters, hence you don’t need to check the return value typically.

Since AdrSpaces and MMUContexts are in one-to-one relation, you may want to find out the
address space a context is attached to. The following call will either return this address space, or
NULL in case the context doesn’t carry an address space:

struct AdrSpace *adr;

struct MMUContext *ctx;

adr = AdrSpaceOf(ctx);

Similarly, the underlying context of an address space is returned by the following:

struct AdrSpace *adr;

struct MMUContext *ctx;

ctx = MMUContextOf(adr);

As an address space is always build on top of a context, this call cannot fail.

By the following call, you find the address space a task is part of:

struct Task *task;

struct AdrSpace *adr;

adr = CurrentAddressSpace(task);

This returns NULL for tasks that may only access global shared memory, or its address space. It will
return the address space of the calling task if you set task to NULL.

4 The MemLib Programmer’s Manual

2.2 Function Reference

This chart provides a brief reference to the functions mentioned in this chapter:

Table 1: Basic Address Space Functions

MemLib function Description

NewAdrSpace() Create a new address space
DeleteAdrSpace() Delete an address space
EnterAddressSpace() Attach a task to an address space
LeaveAddressSpace() Remove a task from an address space
CurrentAddressSpace() Return the address space of a task
AdrSpaceOf() Return the address space of a context
MMUContextOf() Return the context of an address space

Address Spaces 5

3 Memory Pools

The memory library handles virtual memory in memory pools; these pools are responsible for
administration of virtual memory, and virtual memory is allocated from and disposed into these
pools. Similar to exec memory pools, all memory allocated from a pool shares the same properties
concerning the memory type and, additionally, the same caching mode; e.g. a pool may administrate
chip memory only, or may hold only cache-inhibited memory. Further, you may build more than
one VMPool within an AdrSpace. The following call is required to construct a new pool:

struct AdrSpace *adr;

struct VMPool *pool;

pool = NewVMPool(MEMTAG_ADRSPACE, adr, TAG_DONE);

This will construct a new pool, or will return NULL on failure. More options can be given to fine-tune
the memory pool, they will be presented in section 5.

Not an Exec Pool. Memory pools created by NewVMPool are very different from exec
library pools. You must not allocate from memory library pools with exec functions,
and vice versa.

A pool can be disposed again; this will also release all the memory handled by the pool:

struct VMPool *pool;

DeleteVMPool(pool);

Enter, then Build! The calling task of all pool and virtual memory related functions,
including the construction and deletion of pools, must have entered the address space it
builds pools for, or it allocates memory within.

The following function pair is used to allocate memory from a pool and to release it again. They
are the memory library analogues of the well-known exec AllocMem() and FreeMem() functions:

struct VMPool *pool;

ULONG size;

APTR mem;

mem = AllocVMemory(pool,size);

The returned pointer points to the allocated virtual memory; it is NULL on failure. Note that virtual
memory allocation may fail similar to ordinary memory allocation, even though it is less likely to
fail. You should therefore check for out of memory situations as well.

Virtual memory is released again by

struct VMPool *pool;

APTR mem;

ULONG size;

FreeVMemory(pool,mem,size);

Allocation size and released size must coincide; it is illegal to break up a large memory block into
several small blocks and to release these small blocks separately.

Forbid is Forbidden. You must not call the above functions within Forbid() or Disable()
state. AllocVMemory() will simply fail if you try to, other functions may even crash.
Virtual memory administration requires the task switching enabled since memory must
be swapped in or out.

6 The MemLib Programmer’s Manual

3.1 Function Reference

The following chart gives the function reference for the last chapter:

Table 2: Basic Memory Pool Functions

MemLib function Description

NewVMPool() Create a new virtual memory pool
DeleteVMPool() Dispose a pool and its contents
AllocVMemory() Allocate virtual memory from a pool
FreeVMemory() Release virtual memory

Memory Pools 7

3.2 Memory Control Functions

Virtual memory must not be accessed while the task switching is disabled. Further, you must not
place Os structures into virtual memory. Clearly, this restricts the usefulness of the virtual memory
provided by this library. To weaken the above restrictions somewhat, the memory library can be
told not to swap out certain memory regions, or even to place them in a physical memory buffer
that is large enough to hold the selected chunk as a continuous memory block similar to ordinary
shared memory.

The following call will “lock” virtual memory blocks in memory, hence will prohibit that they are
swapped out. Once you’ve locked a block, you are free to use the memory within this block even
with multitasking disabled:

struct AdrSpace *adr;

APTR mem;

ULONG size;

BOOL ok;

ok = LockMemory(adr,mem,size);

The call returns a boolean success/failure indicator — note that this call is likely to fail if you
want to lock a very large memory block in main memory, especially if the system is low on memory
anyhow.

The next call releases a lock again:

struct AdrSpace *adr;

ULONG size;

APTR mem;

UnlockMemory(adr,mem,size,FALSE);

Afterwards, this memory may be swapped out again immediately. The fourth parameter of this call
should be set to FALSE for typical applications.

LockMemory() and UnlockMemory() nest, i.e. each call to LockMemory() must be mat-
ched by one and only one call to UnlockMemory() unlocking the same memory block that has
been locked by LockMemory(). Unlocking a memory block in different chunks than locking the
same block is illegal.

If you set the fourth parameter of UnlockMemory() to TRUE, all locks on this memory region
are released immediately, overriding any locks, and overriding the nesting. This option should be
used with great care.

Even though LockMemory() guarantees that the locked memory is represented in physical
memory, it does not guarantee that it is represented in a continuous memory block, neither does
it tell you anything about the physical addresses of these blocks. It may therefore happen that a
huge memory block of, for example, 64K is represented by tiny discontinuous blocks of 4K that are
splattered all around the physical space. The CPU won’t care about this fragmentation as the MMU
generates the illusion of a continuous memory block, but memory in this form is unsuitable for DMA
devices, as hard-disks. Hence, even the virtual memory became “less virtual” by LockMemory() is
not yet “real enough” for DMA devices and hence unsuitable to be passed to any kind of IO function,
e.g. Read() or DoIO(). The following function pair will ensure that the memory block is really in
one piece:

struct AdrSpace *adr;

ULONG size;

APTR mem,physical;

8 The MemLib Programmer’s Manual

physical = HoldMemory(adr,mem,size);

This call returns the true physical address where the selected virtual memory block is represented,
and this value is finally suitable to be passed to any IO function.

Needless to say, this operation is costly because it requires a continuous chunk of system memory,
and may therefore fail — it returns NULL on failure.

The next call will release the hold-lock again:

struct AdrSpace *adr;

ULONG size;

APTR mem;

UnholdMemory(adr,mem,size,FALSE);

You need to pass in here the logical address, i.e. the same arguments you used to “held” a memory
block. The meaning of the last FALSE argument is similar to that of the UnlockMemory() call;
it defines whether UnholdMemory() nests or releases all locks at once, ignoring the nest-count.
You should use the nesting variant for almost all applications and leave the argument as FALSE.

Don’t Lock Yourself Out. Locking or holding memory is a relatively expensive operation
as it requires that the selected memory regions are really represented in main memory.
This contradicts of course the virtual memory concept that allows memory blocks larger
than the available main memory. Therefore, try to avoid locking huge blocks at once,
lock only small blocks, one after another. Don’t hold locks too long or the system may
run out of memory.

3.3 Function Reference

The following chart gives again the function reference for the last chapter:

Table 3: Memory Control Functions

MemLib function Description

LockMemory() Disallow swapping of a block
UnlockMemory() Re-allow swapping
HoldMemory() Lock memory into a continuous block
UnholdMemory() Release the hold-lock

Memory Pools 9

4 Building Address Spaces

We saw in the last chapter how to build simple address spaces using the NewAdrSpace() function.
We will now present some advanced options, in the form of additional tags.

4.1 Tags Selecting the Target Context

The following tags can be specified to select the MMU context an AdrSpace is build on:

MEMTAG_CONTEXT Defines the mmu.library MMUContext directly the address space shall
be build on. At most one address space per context; do not attach an address space to the
public context or to a supervisor context, this won’t work.

MEMTAG_TASK If MEMTAG_CONTEXT is missing, this tag can be used alternatively to specify
the target context. The MMUContext the specified task is part of will then be used as target
for the new AdrSpace. The default for this tag is the current task.

4.2 Tags Selecting the Size of the Virtual Memory Region

The following tags select various sizes for the virtual memory administrated by the AdrSpace:

MEMTAG_VMSIZE Total size of virtual memory area to be handled by this address space, not
including the usual system shared memory. Default is as large as the system, the swapping
device and MEMTAG_VMMAXSIZE (see below) allows.

MEMTAG_VMMAXSIZE This tag limits the size of the virtual memory region to be allocated
to the indicated size. The resulting address space will hold at most the indicated size, but
might hold less due to limitations of the swap device.

MEMTAG_MAXSYSMEM Maximal amount of physical system memory this address space is
allowed to allocate. If a new page must be swapped in, the total amount of physical page
memory held by this address space is compared against this threshold. If it is larger, pages
are swapped out. However, if you hold locks on memory blocks by means of LockMemory()
or HoldMemory(), the library may ignore this threshold temporarily as long as the locks
remain; i.e., locking will not fail due to this threshold as long as enough system memory is
available. Default is half the system memory minus a safety margin.

MEMTAG_CACHESIZE Defines the size in bytes of an additional write cache that is used to
minimize the seeking within a swap file or swap partition/device. This cache keeps swapped
out pages and is written out “in one go” as soon as necessary. Defaults to sixteen pages, or
no write cache if MEMTAG_READONLY has been set to TRUE. The memory type of the cache is
controlled by MEMTAG_BUFMEMTYPE, and defaults to MEMF_PUBLIC.

4.3 Tags Defining the Swap Mechanism

The following list of tags define how memory is swapped out or in, and what kind of swapping device
is used. In principle, all swapping activity goes thru hooks that can be completely user defined.
However, to avoid unnecessary complexity, the library comes with its own set of built-in hooks that
can be selected here as well. Custom swap-hooks are described in a separate chapter.

MEMTAG_VMHOOK A custom defined swap hook as struct Hook * that will be called for
swapping activities. More on these hooks later. Either this or the next tag must be given to
define a swapping mechanism.

10 The MemLib Programmer’s Manual

MEMTAG_VMSWAPTYPE Defines a library pre-defined swap hook as swapping mechanism;
this is the preferred option. The following pre-defined swap hooks are available:

MEMFLAG_SWAPFILE Swap to a dos.library file. Note that this is slow for the FFS,
but is the least critical way to provide a swap target.

MEMFLAG_SWAPPART Swap to a dos.library “Device” in the sense of a partition
on a hard disk. This is the best compromise between speed and safety. As sectors within
this partition are accessed directly, the partition contents will be lost, though.

MEMFLAG_DEVICE Swap to an exec.library “device” given by a device name and a
unit.

The following tags are used only for MEMFLAG_SWAPFILE and define further parameters for this
hook:

MEMTAG_SWAPFILENAME A char * to the name of the swap file. Mandatory for file
swapping.

MEMTAG_SWAPFILELOCK A lock onto a directory the above file name is relative to.
Defaults to the current directory of the calling process.

MEMTAG_KEEPFILE If set to TRUE, the file is not deleted when the AdrSpace is shut down.
Defaults to FALSE, i.e. the swap file will be deleted when done.

MEMTAG_PREDEFINED If set to TRUE, the swap file is assumed to be existent already and
the contents of this file is mirrored into the virtual memory. Defaults to FALSE. Most useful
in combination with MEMTAG_KEEPFILE. Examples for the application of this tag will be given
in a separate chapter.

MEMTAG_READONLY Requires MEMTAG_PREDEFINED set to TRUE and allows reading from
the swap file only to browse it in memory. Any changes made to the memory are discarded.
Should be combined with the MMU property MAPP_ROM or MAPP_READONLY for the pools of
this address space for optimal performance. Defaults to FALSE.

The following are only for MEMFLAG_SWAPPART, hence if the library swaps to a partition:

MEMTAG_SWAPDEVICENODE A pointer to a dos.library struct DeviceNode that de-
fines the swap partition. Either this or the next tag must be given to specify a swap partition.

MEMTAG_SWAPPARTNAME The dos.library device name of the swap partition as char
* with or without trailing colon, e.g. SWAP:.

The last set of tags is only used for MEMFLAG_SWAPDEVICE:

MEMTAG_DEVICENAME The name of an exec.library “device” to which memory shall
be swapped. This must be a “trackdisk”-like device that allows random access. This tag is
mandatory.

MEMTAG_DEVICEUNIT Unit number of the above device to swap to. Defaults to zero.

MEMTAG_DEVICEFLAGS Flags for “OpenDevice()” for this device. Defaults to zero.

MEMTAG_BUFMEMTYPE Intermediate buffer memory type for the device in case the device
is unable to perform I/O on all system memory addresses. Default is MEMF_24BITDMA. Note
that this is a very conservative setting that should work with almost all devices; you might
want to specify MEMF_ANY here if you know that your selected device is able to perform this.
Note further that the memory.library never passes logical addresses to the swapping device,
but always already translated physical addresses.

Building Address Spaces 11

MEMTAG_MASK Defines a memory mask to check the memory against. If the output buffer
“and-ed” with the complement of this mask is non-zero, the device swap hook will use single-
block I/O to perform the operation. Note that, similar to the above, you need not to specify
a mask to exclude virtual memory. The library will always pass physical addresses to the
device. Default is 0x00fffffc, which is a very conservative setting and allows only device
access within the 24 bit address space. A well-written device driver will accept 0xffffffff here.

MEMTAG_MAXTRANSFER The size of the largest memory block this device will be able
to access at a time. Defaults to 0x001fe000.

MEMTAG_DEVICESIZE Size of the area to be reserved for the swapping activities. Limi-
ted by 2GB. Note that due to the broken design of many devices, i.e. lack of support for
TD_GETGEOMETRY, this size cannot be obtained safely from the device itself.

MEMTAG_DEVICEORIGIN Byte offset from the beginning of the device to the first block
of the device where swapped data will be held. This is a pointer to a “QUAD word”, i.e. a two-
ULONG array containing the high and low word defining the size as 64 bit integer. If any part
of the swap area exceeds the 64 bit limit, the device must be either TD64 or NSD compliant
with the further restriction that NSDPatch must be running to activate NSD support.

MEMTAG_SECTORSIZE Size of a sector (or “block”) of the device in bytes. This value is
only used for single-block transfers and defaults to 512 bytes.

4.4 Miscellaneous Tags

The following tags define various miscellaneous options for the AdrSpace:

MEMTAG_SWAPFAILHOOK A pointer to a struct Hook that will be called whenever swap-
ping memory in or out fails. If this happens, the library tried already to bring up a Re-
try/Cancel requester, and tries several times to submit the I/O operation, but without suc-
cess. Your swap hook may either terminate the program, or release memory you do not require
immediately. A separate chapter discusses the use of this failure hook.

MEMTAG_WINDOWPTRPTR Defines a pointer to a window pointer — note the double
indirection — where error requesters concerning the virtual memory system will appear. If
the pointer the argument is set to (struct Window *)(~0), no requesters will be generated
and the library will react as if all requesters have been canceled. If set to NULL, requesters will
appear on the Workbench. Default is NULL, or a pointer to the pr_WindowPtr component of
the MEMTAG_TASK, should this tag be available.

4.5 Example Code

The following code segment shows how to build your own address space from a shared copy of the
global context, and how to attach your task to this new address space:

struct MMUContext *ctx;

struct AdrSpace *adr;

/*

* create a new MMU Context to operate in

*/

ctx = CreateMMUContext(MCXTAG_SHARE,CurrentContext(NULL),TAG_DONE);

if (ctx == NULL) {

Printf("Failed to create a new MMU context.\n");

12 The MemLib Programmer’s Manual

adr = NULL;

} else {

adr = NewAdrSpace(MEMTAG_MAXSYSMEM,64<<12, /* at most 256 K */

MEMTAG_VMSWAPTYPE,MEMFLAG_SWAPPART,

MEMTAG_SWAPPARTNAME,"SWAP:",

MEMTAG_VMMAXSIZE,64*1024*1024, /* at most 64MB */

MEMTAG_PROVIDESMEM,TRUE, /* true memory */

MEMTAG_CONTEXT,ctx,

TAG_DONE);

}

if (adr) {

if (EnterAddressSpace(adr,NULL)) {

Printf("Entered the address space successfully.\n");

/* more code goes here: Build memory pools, etc... */

...

/* detach the current task from the address space */

LeaveAddressSpace(NULL);

}

DeleteAdrSpace(adr); /* dispose the address space */

DeleteMMUContext(ctx); /* and the context below */

}

5 Building VMPools

Similar to address spaces, VMPools offer a lot of additional options on creation. The following
chapter presents all additional tags.

The group of the next three tags defines in one way or another the AdrSpace the VMPool shall
become part of.

MEMTAG_ADRSPACE A pointer to the struct AdrSpace within which this pool shall be
created.

MEMTAG_CONTEXT A pointer to a MMUContext that is attached to an AdrSpace; the pool
will then be build within the AdrSpace that is attached to the specified context.

MEMTAG_TASK A pointer to a struct Task that is attached to an AdrSpace; the pool will
be build within this AdrSpace. Defaults to the current task.

Due to the default of the above tags — building the pool within the address space of the current
task — you typically need not to specify any of the above at all.

5.1 Private Swapping Mechanisms

Memory within VMPools is swapped in or out using the swap hook of the address space they are part
of. However, you may also specify a local swap hook exclusively for your pools. This is useful, for
example, if you require virtual memory at the one hand, but also require the mirror of an additional
file in memory at the other hand; you would define an address space with an ordinary file or partition

Building VMPools 13

swap hook, a pool within this address space providing the virtual memory, and a second pool with
a custom swap hook that maps the contents of the input file to memory.

You enforce private swapping mechanisms for pools by either of the two following tags:

MEMTAG_VMHOOK A custom defined swap hook as struct Hook * that will be called for
swapping activities.

MEMTAG_VMSWAPTYPE Defines a library pre-defined swap hook as swapping mechanism.

The second tag requires additional specifications about the location of the swap file; these are
identically to the tags of NewAdrSpace() described in section 4.3.

Pools that use private swapping mechanisms must be build with the following tags as well

MEMTAG_PREALLOC,TRUE, /* build the puddle immediately */

MEMTAG_FIXEDSIZE,TRUE, /* do not enlarge pool */

or the construction of the VMPool will fail.

5.2 Pool Management Tags

Another set of tags defines the type of the VMPool. Pools are not limited to providing the memory
for AllocVMemory() and FreeVMemory(); they can be used as well to mirror the image of a
file into memory. This requires, however, that you tell the pool that you don’t want to activate its
memory administration functions as otherwise these functions would overwrite the mirror of the file
in memory.

MEMTAG_PREALLOC If set to TRUE, the pool memory will be allocated already at full size
from the available virtual memory space of the AddressSpace on setup. Full size means here
“as large as the swap hook permits”. For a file type swap hook this would be the size of the
swap file. If set to FALSE, which is the default, memory puddles are build as soon as required.
This option is useful for mapping files into memory — use a file type swap hook, and set this
option to TRUE.

MEMTAG_FIXEDSIZE If set to TRUE, this tag forbids the creation of new puddles if the pool
runs out of memory. This is only useful if MEMTAG_PREALLOC is TRUE as well or you will never
be able to do anything useful at all with this pool. The default is FALSE.

MEMTAG_PROVIDESMEM Is TRUE by default, and should remain TRUE to be able to allocate
virtual memory from this pool by means of AllocVMemory(). If set to FALSE, the memory
allocation and release functions will fail on this pool, but PoolVBase() and PoolVSize()
will be enabled. This indicates that you either want to manage the memory provided by this
pool yourself, or that this pool is used for providing virtual addresses for mirroring a file to
memory.

MEMTAG_PREDEFINED The pool contents is pre-defined by the contents of the swap device
if this is TRUE. Otherwise, allocated memory from this pool has undefined contents. This is
only useful with MEMTAG_PROVIDESMEM set to FALSE as otherwise the memory management
functions of the memory library will overwrite the predefined memory contents by their own
administration structures. This tag defaults to FALSE.

MEMTAG_READONLY If this is set to TRUE, changes made to the pool are not written back
to swap space. Requires MEMTAG_PROVIDESMEM set to FALSE or the pool will become corrupt
as soon as it must be swapped because internal administration information of the memory
management is not updated properly. The default is FALSE.

14 The MemLib Programmer’s Manual

MEMTAG_PUDDLESIZE Size of a memory puddle in bytes that will be created if a memory
block runs out of data. Puddles are enforced to be at least one MMU page large. Defaults to
eight pages.

MEMTAG_PUDDLETHRES Threshold defining which allocations go into separate puddles
and which allocations are taken from the common puddles. The default for this tag is half the
puddle size. Note that this threshold must be smaller than the puddle size.

MEMTAG_POOLPRI Priority of this pool relative to all other pools within the same address
space. Higher priority pools will be swapped out later and are hence likely to keep memory
resident for a longer time. Defaults to zero.

Note that the puddle administration of VMPools looks very similar to that of the memory pools
provided by exec, but the internal workings are very different. Hence, never attempt to mix exec
and memory library type of pool allocation.

5.3 Memory and Caching modes

All memory allocated from a pool share the same the same exec memory type, should the memory
be resident; further, the caching flags are the same as well. This means that you can tell the memory
library that all resident memory of a pool shall be allocated in chip memory such that the custom
chips may find it as soon as you held it with HoldMemory(). You can also tell the memory
library to make the memory the pool provided cache-inhibited, or write-protected. The following
tags define these properties:

MEMTAG_MEMFLAGS An exec/memory.h type memory properties describing the physical
memory to be allocated for this pool. Defaults to MEMF_ANY. Note that the memory type is
only relevant as long as you really lock memory pages in memory, as they may otherwise get
swapped out.

MEMTAG_CACHEFLAGS An mmu/context.h type “MMU properties” of the memory to be
addressed by the pool. The original properties of the memory are filtered thru the inverse of
the mask given by the next tag, then combined with this flag collection to form the properties
of the allocated pages. As the default for the following mask tag is zero, these flags will be
ignored unless you specify a mask. Then, this tag has the default of zero.

Note that the memory library will not allow all combinations of flags and mask; you are for
example not allowed to mark MEMF_CHIP memory as cache-able.

MEMTAG_CACHEMASK A property mask as defined in mmu/context.h describing which
caching flags of the above tag are relevant. A zero-bit in this mask ignores your selection and
uses the corresponding property bit of the allocated physical memory, a one-bit makes your
selection relevant.

Not all combinations of cache flags and mask are useful. Let’s list some important combinations:

MAPP_COPYBACK Make the memory copyback-cacheable; this is the fastest caching mode.
There is no need to ask for this caching type explicitly as the memory library tries to find
the optimal caching mode anyhow. You may however have the copyback bit set to zero in the
flags, and enabled in the mask to request writethrough caching. Since the 68020 and 68030 do
not offer copyback caching, this flag is ignored on the older members of the Motorola processor
family.

MAPP_CACHEINHIBIT If this is specified for flags and mask, caching is disabled completely.

Building VMPools 15

MAPP_NONSERIALIZED This is ignored unless you disabled caching; it is a special non-
caching mode the 68040 offers which allows re-ordering of memory accesses to speed up the
access. This flag is ignored for all other processors.

MAPP_IMPRECISE This flag is also ignored unless you disabled caching. It allows the 68060
to react a bit sloppy on physical bus errors and is ignored by all other processors. Since Amiga
memory should never generate bus errors, it doesn’t hurt to enable this flag for cache-inhibited
memory.

MAPP_ROM Enables defensive write protection; writes into memory pages will fail silently.
Note that the memory library requires to write into the allocated pages; therefore, this flag
must be combined with MEMTAG_PROVIDESMEM set to FALSE.

MAPP_WRITEPROTECTED Enables the aggressive write protection. Writes into the pool
memory pages will cause either a software failure requester or a MuForce hit. Similar to the
above, this rules memory allocation from this pool out.

5.4 Enhanced Virtual Memory Pool Functions

Memory pools need not just to hold memory to be allocated by AllocVMemory(). Memory pools
may also hold a “mirror image” of the swap medium. As a typical application, a memory pool may
hold the contents of a file by defining its swap hook as type MEMFLAG_SWAPFILE. The program can
then easily read the contents of the file by reading the memory within the pool, and could even
modify the file contents by writing into the pool memory. For this purpose, VMPools should be build
with the following tag combination:

MEMTAG_PREALLOC,TRUE, /* build the puddle immediately */

MEMTAG_PROVIDESMEM,FALSE, /* no memory */

MEMTAG_FIXEDSIZE,TRUE, /* do not enlarge pool */

This enables support for the following two extended memory library administration functions:

struct VMPool *pool;

APTR mem;

mem = PoolVBase(pool);

This places the start address of the pool into mem. Further, you may also ask the pool about its
byte size:

struct VMPool *pool;

ULONG size;

size = PoolVSize(pool);

This returns the size of the pool in bytes. Note, however, that this need not to be exactly the size
of the swap file in bytes; the memory library has to round up pool sizes to multiples of the MMU
page size, which makes the size returned by PoolVSize() larger. You need to ask the dos library
directly for the file size to be on the safe side.

Special Offer! PoolVBase() and PoolVSize() will not work at all if you don’t create
the pool with the special tags shown above. They will fail immediately. On the other
hand, AllocVMemory() and FreeVMemory() will fail on these pools.

16 The MemLib Programmer’s Manual

5.5 Example Code

The first example presents how to create a standard virtual memory pool and how to allocate
memory from it. This example assumes that you have already build an address space and entered
it, as show in section 4.5.

struct VMPool *vmpool;

vmpool = NewVMPool(MEMTAG_PROVIDESMEM,TRUE, /* build for memory allocation */

MEMTAG_PUDDLESIZE,5<<12, /* 20K puddles */

TAG_DONE);

if (vmpool) {

APTR mem;

mem = AllocVMemory(vmpool,238); /* allocate 238 bytes */

if (mem) {

/* similar to exec: check for failure! Virtual memory is

* large, but not bottomless.

*/

... /* operate on memory */

FreeVMemory(vmpool,mem,238);

}

DeleteVMPool(vmpool); /* done with it. */

/* This disposes *all* memory within the pool as well */

}

In the second example, we demonstrate how one could map the contents of a file into a memory
pool, and uses then the PoolVBase() function to read from the file in memory; similar to the
above, we assume that a valid address space has been build already. We use here a memory pool
with a private swapping hook.

struct VMPool *vmpool;

BOOL readonly = FALSE; /* allow writing to the file? */

char *file; /* name of the file to map */

vmpool = NewVMPool(MEMTAG_PREDEFINED,TRUE, /* mem contents is predefined */

MEMTAG_READONLY,readonly, /* allow reading only? */

MEMTAG_PREALLOC,TRUE, /* build the puddle immediately*/

MEMTAG_PROVIDESMEM,FALSE, /* no memory */

MEMTAG_FIXEDSIZE,TRUE, /* do not enlarge pool */

MEMTAG_VMSWAPTYPE,MEMFLAG_SWAPFILE, /* swapping mechanism */

MEMTAG_SWAPFILENAME,file, /* name of the swap file */

MEMTAG_KEEPFILE,TRUE, /* keep when done */

TAG_DONE);

if (vmpool) {

UBYTE *mirroraddress;

mirroraddress = (UBYTE *)PoolVBase(vmpool);

/* mirroraddress points now to the first character of the file

Building VMPools 17

* that is, reading from mirroraddress[4711] will read the 4711th

* byte of that file.

*/

... /* work on the file */

DeleteVMPool(vmpool); /* done with it */

}

Note that in the above example, the file size must be obtained directly from the dos library. This is
because the memory library will round up the pool size to the next full MMU page.

5.6 Function Reference

Again the function reference for the previous section:

Table 4: Memory Control Functions

MemLib function Description

PoolVBase() Get the virtual base address of a pool
PoolVSize() Obtain the (rounded) size of a pool

18 The MemLib Programmer’s Manual

6 Swap Fail Hooks

Under the default settings, the memory library will show failure requesters in case the swapping
mechanism failed. Requesters might be generated due to two different reasons: The first reason is
an input/output error within the swap hook, i.e. loading or saving swapped data to the swap device
failed. This requester is automatic and will pop up even with a swap fail hook installed. It can be
disabled by setting the MEMTAG_WINDOWPTRPTR to a pointer to ~0. The second kind of requester will
be generated if the memory library runs out of memory; it can be disabled similar to the first kind,
of course, but you may also install a swap fail hook into your AdrSpace. This will disable the second
kind of requester only, but will still make the first kind happen. Your hook will get called as soon
as either the user cancels the I/O error requester, or the library is low on memory; the purpose of
the hook is then to clean-up your own resources to allow continue swapping.

The swap fail hook is setup by the following tag, to be passed to NewAdrSpace():

struct AdrSpace *adr;

struct Hook *hook;

adr = NewAdrSpace(MEMTAG_SWAPFAILHOOK, hook,

...

TAG_DONE);

Your hook is called with an Object * set to NULL, its message, however, points to the following
structure, defined in <memory/memfailhook.h>:

struct SwapFailMsg {

APTR sfm_AddressSpace;/* the address space that failed */

APTR sfm_Memory; /* lower memory that failed */

ULONG sfm_Size; /* size of the memory range */

LONG sfm_Error; /* type of error */

};

The component sfm_AdressSpace points to the address space that caused the error condition.
This is the — or one of – the address space(s) you installed your fail hook into. sfm_Memory is
the lower boundary of the memory block whose swap operation failed, as given by its logical ad-
dress, and sfm_Size the size of this block in bytes. This will be typically a multiple of the MMU
page size. sfm_Error contains an error code describing the cause of the fault. The possible error
codes include the ones defined in <dos/dos.h> and <memory/memerrors.h>. This will be either
ERROR_NO_FREE_STORE for out of memory faults, or an I/O type of error to indicate that the user
canceled the error requester of the swap hook.

The return code of the hook must be one of the three following values:

#define SWFRET_RETRYSWAP 0

#define SWFRET_RETRYFAULT 1

#define SWFRET_DEACTIVATE 2

SWFRET_RETRYSWAP indicates that your tried some countermeasures against the error,
and the memory library shall retry the swap access. In case of out of memory errors, you
tried successfully to release enough memory, in case of I/O errors you made the swap device
available again. Do not generate this result code in case you couldn’t do anything against the
fault or the memory library will simply come back.

SWFRET_RETRYFAULT If you signal this result code, the memory.library will declare the
access of the user application for handled and will restart it. Note that this differs from
SWFRET_RETRYSWAPby giving control back to the application that requested the virtual memory

Swap Fail Hooks 19

in first place. If you generated this exception, you should have successfully tried to avoid the
page fault by making the failing pages available directly by the mmu library as otherwise a
new page fault would be generated immediately and your hook would be called again.

SWFRET_DEACTIVATE This is the worst-case handling of the fault: If this result code is
received, the mmu library “Exception Hook” of the address space gets deactivated and the
page fault is signaled as handled. If the failing page is not made available, the MMU will just
generate another page fault which, however, will no longer reach the memory library. The fault
is either captured by MuForce causing a “Hit”, or falls thru to the exec access error handler.
This handler will first try to call the task specific exception handler, and will otherwise cause
a guru. This is obviously the least pleasant way to handle a page fault, but the last resort in
case everything else failed.

7 Custom Swap Hooks

Even though the built-in swap hooks allow swapping to files, partitions and devices cover the most
common cases, you may require your own private swap mechanism for special applications. The
memory library may even help here: To signal a private swap hook, pass a pointer to your struct
Hook when creating either an AdrSpace or a VMPool by the following tag:

struct Hook *hook;

New...(MEMTAG_VMHOOK,hook,

...

TAG_DONE);

Once help of your swap hook is required, it will be called with the Object pointer set to NULL and
the Message parameter pointing to the following structure:

struct VMHookPacket {

ULONG vhp_Type; /* packet type */

APTR vhp_HookInfo; /* user defined data */

APTR vhp_Range; /* physical address */

ULONG vhp_Size; /* address size */

ULONG vhp_Offset; /* ID for swapping in/out */

};

The most important component here is vhp_Type defining the type of the packet, and the usage
of other components:

VMPACK_INIT Send for initialization of your hook. vhp_HookInfo will be NULL here, and
vhp_Range will point to your hook structure. The aim of this packet is to initialize your hook.
The hook shall either return an error code as documented in <dos/dos.h> or, alternatively,
<memory/memerrors.h>, or shall return 0 to indicate success. On success, you may have filled
vhp_HookInfo by a pointer to a private administration structure that is from now on passed
to each call of the hook in this very same component.

VMPACK_EXIT Send to shut down a swap hook. vhp_HookInfo points to a private structure
you might have placed here on VMPACK_INIT, vhp_Range points again to the hook itself. This
call shall release all resources, including memory for your administration structure.

VMPACK_OPEN Request to open and allocate the swap resource. vhp_HookInfo points to
your private administration structure, vhp_Size defines the requested byte size of the swap
domain. This call may open a swap file, for example, if a previous VMPACK_SIZE hasn’t done
so already. This hook returns an error code of the same type as VMPACK_INIT.

20 The MemLib Programmer’s Manual

VMPACK_SIZE Request and inquiry the available byte size of the swap medium. This packet
may be sent before VMPACK_OPEN takes place to ask the hook about the available range.
vhp_HookInfo points again to your administration structure, vhp_Size to a user requested
upper limit. This might be ~0 to indicate that the hook shall return the maximal possible
size. vhp_Offset will be set to the MMU page size. The available swap size has to be placed
into vhp_Size again, and the hook shall return an error code, or 0 for success. If your hook
doesn’t round the available size to full MMU page sizes, the memory library will round the
size down to the next page. If you require other rounding, make sure to align the size to the
next suitable page size.

VMPACK_CLOS Close or shutdown a swap medium. vhp_HookInfo points to your admini-
stration data, no other information is provided. This packet will be generated if and only
if VMPACK_OPEN succeeded. Hence, if you opened a swap medium already in VMPACK_SIZE,
you may need to close it in VMPACK_EXIT instead as the size inquiry and open may fail and
VMPACK_CLOSE will never reach your hook.

VMPACK_READ Read data from the swap device into a memory library supplied buffer. This
defines therefore the “swap in” operation. vhp_HookInfo points to your administration data,
vhp_Range to the physical address of the buffer to fill in. vhp_Size is the byte siz of the buffer.
Finally, vhp_Offset is set to the byte offset from the beginning of the swap medium to the
requested data. Hence, this addresses the data to be swapped in. This call shall either return
0 or an error code, but do not yet generate an error requester here.

VMPACK_WRIT Write out data from a memory library buffer to a swap medium; hence,
“swap out” data. Otherwise, identically to VMPACK_READ.

VMPACK_ALRT Generate an alert requester due to a failure of either swap-in VMPACK_READ or
swap-out VMPACK_WRIT. vhp_HookInfo points to your administration data, vhp_Range to a
struct Window, defining an intuition window whose IDCMP shall be blocked. Note that you
get a pointer here, not a double pointer. This pointer is NULL to indicate that the requester
shall appear on the workbench, or (APTR)(~0) to signal that no requester shall be generated
at all. vhp_Size is an error code, as returned by the two packet types above. This call
shall return either TRUE to signal that the access shall be retried, or FALSE to cancel the I/O
operation. In this case, the error will be delivered to the swap fail hook, see section 6, should
it be present; otherwise, the faulty task will run into an access error — and will hence guru.

VMPACK_TICK This packet doesn’t define any particular action, it just gets generated each
second. The packet can either be used to define a time base, or to enforce cache flushes, or
to shut down a drive motor — whatever regular activity your hook may require. You may
just ignore this packet in case you don’t need it. As always, vhp_HookInfo points to your
administration data.

Custom Swap Hooks 21

References

[1] Thomas Richter: The MMU Library Programmer’s Manual. Thomas Richter, on Aminet as
MuManual.lha (2000,2001)

[2] Motorola MC68030UM/AD Rev. 2: MC68030 Enhanced 32-Bit Microprocessor User’s Manual,

3rd ed. Prentice Hall, Englewood Cliffs, N.J. 07632 (1990)

[3] Motorola MC68040UM/AD Rev. 1: MC68040 Microprocessor User’s Manual, revised ed. Mo-
torola (1992,1993)

[4] Motorola MC68060UM/AD Rev. 1: MC68060 Microprocessor User’s Manual. Motorola (1994)

[5] Motorola MC68000PM/AD Rev. 1: Programmer’s Reference Manual. Motorola (1992)

[6] Yu-Cheng Liu: The M68000 Microprocessor Family. Prentice-Hall Intl., Inc. (1991)

[7] Dan Baker (Ed.): Amiga ROM Kernel Reference Manual: Libraries. 3rd. ed. Addison-Wesley
Publishing Company (1992)

[8] Dan Baker (Ed.): Amiga ROM Kernel Reference Manual: Includes and Autodocs. 3rd. ed.

Addison-Wesley Publishing Company (1991)

[9] Ralph Babel: The Amiga Guru Book. Ralph Babel, Taunusstein (1993)

22 The MemLib Programmer’s Manual

