PicCon

Morten Eriksen

PicCon

] COLLABORATORS
TITLE :
PicCon
ACTION NAME DATE SIGNATURE
WRITTEN BY Morten Eriksen August 15, 2024

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

PicCon iii

Contents

1 PicCon 1
1.1 PicConHelp 1
1.2 PicCon/Introductiono e |
1.3 PicCon/SNES 2
1.4 PicCon/Sega Megadrive e 2
1.5 PicCon/Emplant L e e e 3
1.6 PicCon/AHRM e 3
1.7 PicCon/Requirements o it e e e e e e 3
1.8 PicCon/Installation e e e 3
1.9 PicCon/FilesInDistribution 0 e e e e e 3
110 PicCon/Usage v o it i e e e e e e e e 4
1.11 PicCon/Usage/Scan modus i v v it e e e e e e e e e e e e e e e e 5
1.12 PicCon/Usage/Tutorials e 6
1.13 PicCon/Usage/Tutorials o e e e e 6
1.14 PicCon/Usage/Tutorials e e e e e e e e e e 6
1.15 PicCon/Usage/Tutorials e 7
1.16 PicCon/Usage/General info e 7
1.17 PicCon/Disclaimer and Author Info 7
1.18 PicCon/How To Register e e e 8
1.19 PicCon/Project o o o i e e e e 8
1.20 PicCon/Project/Open piCture i v v it e i e e e e e e e e e e 9
1.21 PicCon/Project/Open IFF o e 9
1.22 PicCon/Project/Load image v v v i i i e e e e e e e e e e e e e e e e 9
1.23 PicCon/Project/Load palette e 10
1.24 PicCon/Project/Save image o it i e e e e e 10
1.25 PicCon/Project/Save palette e e e e e e e e e e 10
1.26 PicCon/Project/Save grid L e 10
1.27 PicCon/Project/Save data as... o o i e e e e e 10
1.28 PicCon/Project/Change screenmode o o v i it e e e e e e e e 12
1.29 PicCon/Project/Modify palette e 12

PicCon iv
1.30 PicCon/Project/Load prefs 12
1.31 PicCon/Project/Save prefs e e e e e e 12
1.32 PicCon/Project/Info e e 12
1.33 PicCon/Project/About e e e e e e 12
1.34 PicCon/Project/Iconify e e 12
1.35 PicCon/Project/Quit e e e e e e e e e e e e 12
1.36 PicCon/Edit e 13
1.37 PicCon/Edit/Cut frame e e 13
1.38 PicCon/Edit/Grab frame 13
1.39 PicCon/Edit/Box frame e e 13
1.40 PicCon/Edit/Set frame e e 14
1.41 PicCon/Edit/Free frame o e e 14
1.42 PicCon/Edit/AUtOCIop o o o e e e 14
1.43 PicCon/Edit/Autoscan i i e e e e e e e e 14
1.44 PicCon/Edit/FLip 15
1.45 PicCon/Settings o o v i i e e e e e e e e e e e 15
1.46 PicCon/Settings/Miscellaneous L e 15
1.47 PicCon/Settings/Imageformat L e e e e e e e e 15
1.48 PicCon/Settings/Imageformat/Bitplanes 16
1.49 PicCon/Settings/Imageformat/Interleaved e e 17
1.50 PicCon/Settings/Imageformat/Mask e 17
1.51 PicCon/Settings/Imageformat/Chunky e 18
1.52 PicCon/Settings/Imageformat/Sprite e e 19
1.53 PicCon/Settings/Imageformat/WBIcon e 21
1.54 PicCon/Settings/Imageformat/Fontset e 22
1.55 PicCon/Settings/Imageformat/IFF e 23
1.56 PicCon/Settings/Imageformat/SNES modes 23
1.57 PicCon/Settings/Imageformat/SNES hardware e 25
1.58 PicCon/Settings/Imageformat/Sega L e 28
1.59 PicCon/Settings/Imageformat/Megadrive hardware 29
1.60 PicCon/Settings/Paletteformat L e 30
1.61 PicCon/Settings/Paletteformat/4bits e e e e e 31
1.62 PicCon/Settings/Paletteformat/8bits Lo 31
1.63 PicCon/Settings/Paletteformat/32bits e e e e e 31
1.64 PicCon/Settings/Paletteformat/LoadRGB4 Lo 31
1.65 PicCon/Settings/Paletteformat/LoadRGB32 e 31
1.66 PicCon/Settings/Paletteformat/IFF e 32
1.67 PicCon/Settings/Paletteformat/SNES Sbits 32
1.68 PicCon/Settings/Paletteformat/Megadrive 3bits L o o 32

PicCon v
1.69 PicCon/Settings/Paletteformat/Copperlist e 32
1.70 PicCon/Settings/Grid settings o o v i e e e e e e 33
1.71 PicCon/Settings/Grabpen e e e e e e 34
1.72 PicCon/MISC . . . o o o e e e e 34
1.73 PicCon/Misc/Fake SNES screen i e e 34
1.74 PicCon/Misc/Remake Amiga SCTEEN o v i v v i i e e i e e e e e e e e e e 34
1.75 PicCon/Misc/Pen usage inframe e e e 34
1.76 PicCon/Misc/Remap pensinframe e 35
1.77 PicCon/Misc/Trace unused Pens o o v vt ittt e e e e e e 35
1.78 PicCon/Misc/Convert EHB->normal e 35
1.79 PicCon/Misc/Reselect SyStempens ittt e e e e e e e 35
1.80 PicCon/HiStory o o e e e 35
1.81 PicCon/Thanks to... e e e 38

PicCon

1/38

Chapter 1

PicCon

1.1 PicCon Help

Introduction

Requirements

Installation

Files in Distribution

Usage

Disclaimer and Author Info
How To Register

Thanks to...

History

1.2 PicCon/Introduction

PicCon

Copyright © 1993 - 1994
All Rights Reserved
Written by

Morten Eriksen

PicCon is short for "Picture Converter". This is a utility made for programmers, which will convert IFF ILBMs (plus any
pictureformat you’ve got support for in your datatypes library) to an appropriate image format. This is an essential stage mainly
in the development of games, but is also useful in development of other software (like demos, applications, etc.). Not only whole

pictures can be converted, but also parts of pictures can be cut out to be saved as e.g. sprites or small bitplanes.

Features include (those marked with (3.0 only) works only with OS3.0 (or later)):

o Uses datatypes.library to read pictures (can load and process e.g. JPEGs and GIFs if you’ve got the datatypes) (3.0 only). If

wanted, PicCon can also be run without the datatypes.library present, as custom IFF ILBM loading is included.

o Compatible with all screenmodes on OCS, ECS and AGA-chipsets.

o Display independent code and use of Commodores standard screenmoderequester (2.1+ only) secures that PicCon will run in

any displaymode on a capable monitor.

PicCon 2/38

o Correct handling of all screenmodes, including extra halfbrite (EHB), Hold-And-Modify (both HAM6 and HAMS) and Dual
Playfields (DPF).

o Saving in numerous image formats, like ordinary bitplanes, chunkymode, sprites (even AGA-specific spriteformats), IFF ILBM,
workbench icons plus more.

o Saving of palettes in many formats, both ECS-compatible (4-bits-per gun, 12 bits per entry) and AGA-compatible (8-bits-per-
gun, 24 bits per entry), OCS/ECS copperlists, AGA copperlists, IFF, and more.

0 Manipulation of cutted frame (autocropping and flipping).

o Choose to save data as binary, assembly, C, E or Pascal source for including directly into your own sourcecode. Or save as
linkmodules for inclusion in the linking process (handy for larger projects).

o Automatic leftaligning of frames and blanking of trailing bits and bytes upon saveoperations (no need to keep your images on
8-pixel alignments).

o Gridsave for saving loads of blocks of images in one go (for e.g. maptiles, frames in a spriteanimation, ...).

o Special autoscan modus for fast processing of whole screens packed with graphical objects to be converted. It would even be
possible to have all sprite- and animationframes your game containes in a single screen, and convert them all in one go (!).

o Some often used imageprocessing functions included (some of which are very handy for programmers, though not included in
any bitmap drawing-packages).

o Extensive SNES support.
o Sega Megadrive support.
NOTE:

PicCon is shareware software. If you find it useful, please register to get the full version. Please refer to the How to Register
section of this documentation.

The difference between the demoversion and the registered version is that the demoversion has the Save grid and Autoscan
functions disabled, and will exit after you’ve done 2 saves.

Please notice that you are not entitled to use the demoversion on a regular basis without registration. The demoversion is only
for evaluation of the program. If you don’t use it, delete it.

Your name and a personal code will be inserted in the registered version of PicCon.

1.3 PicCon/SNES

SNES is an abbreviate for Super Nintendo Entertainment System, also known as the Super Famicom in the U.S. of A.
SNES support in an Amiga graphicsconverter is not such a stupid idea as you might think for several reasons:

1) Lots of people do SNES development partly or fully on the Amiga.

2) The Emplant SNES emulation will probably be ready soon (this was written in March *94).

3) Parts of the Amiga and SNES demoscenes (yes, there really is one!) ’overlap’, by which I mean to say that many Amigacoders
also program for the SNES.

The SNES support in PicCon was implemented by request from Daniel Hansson. Thanks for your help, mate!

1.4 PicCon/Sega Megadrive

The Sega Megadrive is also known as the Genesis in the U.S. of A.

Sega Megadrive support in an Amiga graphicsconverter is not such a stupid idea as you might think for several reasons:
1) Lots of people do Megadrive development partly or fully on the Amiga.

2) The Emplant Megadrive emulation will probably be ready soon (this was written in April *94).

3) Conversions are often done between Amiga and Megadrive software (the main CPU of the Megadrive is a MC68000).

PicCon 3/38

1.5 PicCon/Emplant

Emplant is a plug-in card developed by Utilities Unlimited that make it possible to flawlessly emulate just about anything in the
homecomputermarket on your Amiga. As I'm writing this (March *94), the Mac emulation has been on the market for several
months, the IBM-PC compatibles (i486) emulation is due real soon now and lots of other goodies is supposed to follow (like
C64, SNES and MegaDrive/Genesis emulation).

1.6 PicCon/AHRM

AHRM is an abbreviation for the Amiga Hardware Reference Manual, which should be present in any good Amiga coder’s
personal library!

(The ISBN code for the second printing is 0-201-18157-6).

1.7 PicCon/Requirements

REQUIREMENTS

Any Amiga with Kickstart 2.04 (or greater).
Tested on:

* A500, A1200, A4000

* 68000, 68EC020, 68EC030, 68040

* Kickstarts 37.175, 39.106

*0.5 - 2.0MB CHIPRAM, 0 - 6MB FASTRAM

* All screenmodes on all monitortypes distributed with OS3.0 (except the A2024 monitortype, which [haven’t been able to check
up)

Also tested with Enforcer and Mungwall. As far as I can tell, PicCon is free from hits (please let me know if you find any).

If you find any bugs under your configuration, please contact me (address in the Disclaimer and Author Info section).

1.8 PicCon/Installation

INSTALLATION
Just drag the PicCon drawer to the place on your harddisk where you want to install PicCon.

Also make sure that if you want to take advantage of the datatypes.library, you have to have datatypes.library installed in LIBS:,
some picture datatypes installed in SYS:Classes/DataTypes and the corresponding datatypes descriptors in Sys:Devs/DataTypes.
(Take a look at the WorkBench disks supplied with your Amiga to get this set up correctly).

1.9 PicCon/FilesInDistribution

FILES IN DISTRIBUTION

PicCon/PicCon - main program

PicCon/PicCon.info - workbench icon for program
PicCon/PicCon.guide - AmigaGuide Help/Documentation for PicCon

PicCon/PicCon.guide.info - workbench icon for docsfile

PicCon

4/38

PicCon.info - drawer icon

PicCon/Extra/

PicCon/PicCon/

PicCon/MagicWB/

In the PicCon/Extra/ drawer:

Examplel - example image file #1 (for the quick tutorials)

Example2 - example image file #2 (for the quick tutorials)

In the PicCon/Sources/ drawer:

Splanespic.s - asmsource for displaying a picture in 5 planes (PAL)
8planespic.s - asmsource for displaying a picture in 8 planes (PAL)
6planesHAMpic.s - asmsource for displaying a HAM®6 picture (PAL)
8planesHAMpic.s - asmsource for displaying a HAMS picture (PAL)
16pixSprite.s - asmsource for a moving 16 pixels wide sprite
64pixSprite.s - asmsource for 4 moving 64 pixels wide sprites

init.i - initialize and reset system routines

includes.i - system includes

spritel6.raw - a spriteimage to go with the 16pixSprite.s source

sprite64.raw - spriteimages for the 64pixSprite.s source

(Note about the sources: all sources have been compiled successfully with AsmOne, DevPac and PhxAss. The sources are only
meant as a help for novice assembler coders on the Amiga. Be aware that all sources shut down the multitasking, and if you have
a problem with this, don’t use them. The two *.raw files only serve as examples to use in the spritesources (you have to make the

other raw-files yourself (with PicCon), as they were too big to include in the archive)).

In the PicCon/MagicWB/ drawer:

PicCon.info - a very nice icon to use for PicCon if you’ve installed MagicWB. Thanks to Niels Jgrgensen for the sending me the

icon!

1.10 PicCon/Usage

USAGE

PicCon can either be started from CLI by typing its name in a shell/cli-window, or by doubleclicking it’s icon.

Upon CLI-startup, PicCon can be run in it’s special Scan modus.

On startup you’ll be presented with information on the version of the program and the license (or information on how to register

if you are using the demoversion).

After clicking "Ok" you’ll have the program waiting for input through the menubar or the keyboard. Click below for full

explanation on each of the menuchoices:

Project Edit Settings Misc

..or here for some other information concerning the use of PicCon:
General info

I’ve also whipped up a few quick tutorials for some of the functions:
Grab frame

Autoscan

Remap pens in frame

Trace unused pens

PicCon 5/38

1.11 PicCon/Usage/Scan modus

If PicCon is started from the command line with exactly 3 parameters, it’ll enter it’s special scan modus. The effect of this is
the same as if you (from inside PicCon) load a picture and then use Autoscan. (If PicCon is started with any other number of
parameters than 3, it will start up in it’s normal way).

The syntax for the 3 parameters is like this:
PicCon [picturefile] [savefile] [boxpen#]

PicCon will then start, load the picturefile, scan the picture and save all the frames boxed in the boxpen, and join them to the
savefile. The settings that decide the imageformat and the saveformat will be taken from the S:PicCon.prefs file (as the number
of different possibilities you have with the various imageformats is getting pretty high, this was the best way of doing this that I
could think of).

This option should lead to considerable savings of time spent mucking about in graphics converters during big projects (like
games), as this option makes it easy (with a bit of thought) to save all the graphical images your project contains with a single
command in the CLI!

Now, how is this possible? Easy, just use this approach:

1. Make boxes in a specified pen on the picture which your graphician should draw the images (used in the project) inside. Keep
only images of the same type on the same pictures (do not mix f.ex. spriteimages and interleaved blitterdata).

2. Make a drawer on your disk (f.ex. MyDisk:ScriptFiles), into which you put the preferencesfile for each imagetype you’re
using in your projects.

3. Make a scriptfile that in turn copies the prefs-files to S: and runs PicCon.
Here’s a quick example just to make things completely clear:

Let’s say I'm making a game. In this game I use a whole bunch of images in spriteformat, 16 pixels wide attached and with no
CTRL words, (for animated parts of a mothership, or something...) and I need a lot of images in interleaved format, all with an
extra blitterword attached to the left of the frames (for the rest of the moving objects on the screens (BOBs)). All sprites have
to use the same palette, and all BOBs also use the same palette. Before I start this project, I make two huge screens in DPaint
with loads of boxes (in the same color), maybe with some descriptive text in it, to show my graphician what I need and how I
want the graphics. After the graphician now has drawn some (or all) of the frames I need, I enter PicCon, set the imageformat to
"Sprite 16, Attached on, CTRL words off" and set the saveformat to "Binary". All the images are of the same size, the .offsets
of the individual frames are not interesting, so I also turn off Save Autoscan offsets in the Miscellaneous menuoption. I then
save the preferences file (with Save prefs). I make a directory on my harddisk (MyDisk:ScriptFiles) and copy the S:PicCon.prefs
file to this drawer as "Prefs1". I now set the imageformat to "Interleaved, Blitterwords left" and save the prefs again. I copy the
S:Piccon.prefs file to MyDisk:ScriptFiles/Prefs2. Then I make a script that looks like this (assume the boxes have been drawn
with pen #15):

copy S:PicCon.prefs MyDisk:ScriptFiles/TempPrefs

copy MyDisk:ScriptFiles/Prefs1 S:PicCon.prefs

PicCon MyDisk:IFFs/SpriteFrames MyDisk:R AWs/SpriteFrames 15
copy MyDisk:ScriptFiles/Prefs2 S:PicCon.prefs

PicCon MyDisk:IFFs/BlitFrames MyDisk:RAWs/BlitFrames 15
copy MyDisk:ScriptFiles/TempPrefs S:PicCon.prefs

delete MyDisk:ScriptFiles/TempPrefs

Then just set the ’script’-bit in the scriptfile’s modebits, and each time your graphician has changed some of the graphics, and
you want to try out how it looks in your game, just enter the name of the scriptfile in the CLI, and seconds after you’ve got the
files containing the raw, ready-to-use images in your "MyDisk:RAWs’ drawer. Not bad, eh? ;)

BTW, to avoid having requesters pop up to inform you about what you saved, etc, just remove the requesters (in the Miscellaneous
settingswindow) before you save the preferencesfiles. If you do this, no user interaction will be necessary at all (unless something
goes wrong).

If anything in this explanation seemed unclear, please check out the documentation on the Autoscan function (if you’re still stuck,
try playing around a bit, look at the size of the savefiles, etc).

PicCon 6/38

1.12 PicCon/Usage/Tutorials

Quick tutorial to show the use of the AutoScan function:

1. Load the file "Example2".

2. Hit ’z’ or select Autoscan.

3. Choose the filename for the savefile.

4. Pick the correct boxpen from the palette (which is the last-but-one entry (pen #14)).

5. The 5 frames in the boxes will now be saved to the file you specified, and the offsets into the file for the individual frames will
be saved to the file "[filename].offset". The frames will be saved in the format you’ve specified in Imageformat.

This way, it’s possible to save all the frames in e.g. a game in one go (!). This should lead to considerable savings of valuable
time for most programmers.

1.13 PicCon/Usage/Tutorials

Quick tutorial to show the use of the Grab function:

1. Load the file "Example2".

2. Hit *g’ or select Grab frame.

3. Pick the correct boxpen from the palette (which is the last-but-one entry (pen #14)).

4. Click somewhere inside one of the boxes. The inner frame will now be selected, just as if you’d framed it manually.
5. Do your stuff here (like saving, flipping, cropping etc).

6. Repeat the process by again hitting "g’. Notice that you’ll not be requested for the boxpen any more, as it’s assumed it’s
the same as the first time you ’grabbed’ a frame. To change the pen by which you wish to grab boxed frames, choose Set new
grabpen.

1.14 PicCon/Usage/Tutorials

Quick tutorial to show the use of the Remap function:
1. Load the file "Examplel".
2. Notice that the graphician here did two mistakes;

a) he filled the background with pen #11 instead of pen #0 (which should always be used for the background if you’re doing
graphics for e.g. games)

b) some of the (dark) pixels inside the bee-image is drawn with pen #0, which is not good, as any background graphics will show
through it if it’s moved and animated over other graphics (as it would be in a game)

Now, how should this be solved? Using DPaint, you’d have to either redraw parts of the image by hand (ugh!), or you’d make a
stencil (which sounds easy, but in most cases it’s very cumbersome). Instead you should use this function in PicCon.

3. Hit ’s’ to get the Set frame window. Now change the x2-value to 71, and y2 to 54. The brush has now been framed.
4. Select Remap pens in frame from the Misc menu. Pick pen #0, hit "Swap", hit pen #11, hit "Done".

5. To get the colorvalues correct, now choose Modify palette from the Project menu. Pick pen #0, hit "Swap", hit pen #11, hit
llOk".

Voila!

6. After this, you might want to select Reselect systempens to get menus and requesters that would be nicer to look at.

PicCon 7 /38

1.15 PicCon/Usage/Tutorials

Quick tutorial to show the use of the Compress pens function:

1. Load the file "Examplel".

2. Hit *1’ to bring up the Info-box. Notice that the picture uses 5 bitplanes (32 colors).
3. Choose Trace unused pens from the Misc menu.

4. You’ll be prompted with a requester telling you that 20 colors are unused, and if you want the palette to be compressed. Select
’Yes’ to shift all used pens to the lowest pennumbers.

5. You’ll now be prompted with a new requester, asking you if you want to remove the extra bitplane. Answer "Yes’ again.

6. The picture is now reduced to 4 bitplanes (hit ’i’ to conform this), and the unused pens is the 4 equal colorvalued pens at the
back (as you can see by choosing Modify palette from the Project menu).

1.16 PicCon/Usage/General info

Here are some general hints about using PicCon:

o You can modify the dimensions of the current frame by using the cursorkeys. Cursorkeys only to expand frame, shift +
cursorkeys to reduce size of frame.

o The option to swap the picturecolors with the WB colors has been removed as this option should in most cases be superfluous in
version 2 (and later) of PicCon, as the program is now coded to make controlled use of the systempens. Only the most extremly
strange palettes (like all monocolored entries) should cause the menus and requesters to be rendered unreadable. Note that not
all systempens can be controlled under OS2.0, and therefore PicCon will switch in 4 standard paletteentries when you use menus
in PicCon on a 2.0 Amiga.

o As you can see, the most used functions in the program have hotkeys. You can not only activate them by holding the Right
Amiga key and pressing the appropriate hotkey, but also by pressing the hotkey alone. This way it’s possible to operate PicCon by
keeping one hand on the keys, and one hand on the mouse (like e.g. DeLuxePaint). (Oh, BTW, try to find the "hidden mode"...)

o The cutted box’ dimensions, the current imageformat and the current paletteformat will usually be displayed in the screen title-
bar. The image- and paletteformats are shortened (so I could be sure that it always fits in the smallest screens). The shortversions
shouldn’t be so hard to figure out, e.g. Imageformat set to packed chunky and Save data as set to assemblersource would insert
this on the titlebar: CHNK/PCK/ASM, and a spritesave with attachment and CTRLwords saved as a linkobject: SPR32/AC/LNK.

o The RAW files which are saved from PicCon have some information regarding their format and dimensions set in the file’s
Comment-field. Use the DOS command ’list [filename]’ to see what I mean. This format is pretty easy to understand too: first
there’s a 4 letter abbreviate of the format (e.g. BPLS for bitplanes), then there’s Width x Height x Depth, and finally there’s a
longword that describes the screenmode ID used in PicCon upon saving. This feature can be turned off in the Miscellaneous
settings window.

1.17 PicCon/Disclaimer and Author Info

PicCon Information
PicCon Copyright © 1993 - 1994 Morten Eriksen, All Rights Reserved.

The registered version is copyrighted, and is a personal license only. The demoversion is freely distributable as long as all of the
files are included in their original form without additions, deletions or modifications of any kind, and only a nominal fee can be
charged for the distribution. This software is provided "AS IS" without warranty of any kind, either expressed or implied. By
using PicCon, you agree to accept the entire risk as to the quality and performance of the program.

Please send your comments, wishes and bug reports for PicCon to:

Morten Eriksen

PicCon 8/38

Jonsborgv. 18

7563 Malvik

NORWAY

Phone: +47-73977371

Or by email (I love getting email!):
mortene @stud.unit.no

Remember to state the version number you are using, in all correspondance.

1.18 PicCon/How To Register

How To Register

To register, send me an errorfree double-density disk and USD $15 (or GBP £10, FFR 75, DM 25, NKR 100, SKR 100, DKR
100, or an equal amount in any currency). Cash only, please. This will earn you the latest full version plus any number of free
upgrades.

If you’ve got the possibility of receiving the package through email, send only money (no disk), and let me know how to contact
you.

For future upgrades for registered users; send money to cover for a disk, packing and postage (one 2DD disk is approx. $1 USD,
packing approx. $1 USD and postage is approx. $1.5 inside Europe and approx. $2 USD outside, which should sum up to ~$3.5
- $4 USD). This is not necessary if you’ve got an email adress where you can receive the upgrade, as they will be automatically
mailed to you.

Notice that the demoversion is not freeware. If you use it regularly, you should register.
Mail to:

Morten Eriksen

Jonsborgv. 18

7563 Malvik

NORWAY

Phone: +47-73977371

Email (send me lots of email!):

mortene @stud.unit.no

Also contact me for questions, ideas for future releases, bugreports, wanted new formats (no matter how weird! Anyone want to
have 3DO support? C64 sprites? Sure! Just inform me on the format specifications/limits), or anything else. Most of the new
features and other program improvements from version 1 to 2 were suggestions and demands from the users.

Please support Amiga shareware, don’t spread the registered version, nor use a pirated version. Increased support means better
and more software for the Amiga range of computers.

1.19 PicCon/Project

Menuchoices on the "Project"-menu:
Open picture

Open IFF

Load image

Load palette

PicCon 9/38

Save image

Save palette

Save grid

Save data as
Change screenmode
Modify palette
Load prefs

Save prefs

Info

About PicCon

Iconify
Quit

1.20 PicCon/Project/Open picture

Choose the picturefile to load. PicCon will load a picture in any picture format which you have support for in your datatypes
library. The IFF ILBM datatype specification is delivered as standard with the distribution of WorkBench3.0, but there’s many
more in the Public Domain and as shareware (including JPEG, GIF, PCX and BMP).

After the file has been loaded and depacked (this might take some time, especially with JPEG-pictures), you’ll be presented with
a requester displaying some information on the picture. Click "Ok", and the picture will now be displayed on your screen (the
"Ok"/"Cancel" requester can be turned off in the Miscellaneous settings window if it annoys you). From here on you can start
cutting out and saving pieces of the picture in many different image formats, save this picture’s palette, etc.

Loading through the datatypes library may only be done on Amigas with OS3.0 (or later). On 2.0 Amigas, you have to use Open
IFF to load pictures.

1.21 PicCon/Project/Open IFF

This option exists in addition to Open picture for those who only have OS2.0 (or for any other reason don’t want to use the
datatypes.library).

1.22 PicCon/Project/Load image

This function will load RAW data and display it as if it were loaded as an ordinary picture. Useful for loading old RAW files (for
which you’ve deleted the IFF ILBM-file), among other things.

When selecting this function, PicCon assumes that you want to load a RAW file in the same format as you have specified in
the Imageformat settings. With some formats you must also specify width, depth and displaytype (a requester will pop up,
allowing you to set these parameters). After setting these options, you’re requested to select the screenmode you want the file to
be displayed in. When the frame has been loaded, you’re free to treat it as any file loaded with Open picture or Open IFF (cut
frames, save images etc).

With this function, you can even load the images contained in workbench icons and Amiga fontsets (all imageformats are
supported, except SNES and Megadrive RAW characterset).

Note that this option ignores the Save data as setting, as only binaries can be loaded.

See also Save image.

PicCon 10/38

1.23 PicCon/Project/Load palette

This function loads and inserts a palette into the picture currently displayed. The paletteformat is assumed to be the same as the
one you’ve specified in the Paletteformat settings window.

Note that this option ignores the Save data as setting, as only binaries can be loaded.

See also Save palette.

1.24 PicCon/Project/Save image

Save the picture information contained in the frame in your chosen image format. If no frame is cut out, this option will save
the whole picture in your specified format. See also: Imageformat and Save data as. The dimensions of the selected frame is
normally displayed in the menubar.

1.25 PicCon/Project/Save palette

Save this picture’s palette in your specified format. See also: Paletteformat and Save data as.

1.26 PicCon/Project/Save grid

Save a bunch of frames ordered in a grid. Very useful for saving maptiles, groups of spriteanimationframes etc. This function
will save the tiles you’ve decided to save (with the Grid settings) exactly in the same way as if you’ve saved all tiles by hand, and
then joined together the files.

See also: Grid settings and Save data as.

1.27 PicCon/Project/Save data as...

Choose if the saved data should be output as RAW binary, assemblysource, C source, Pascal source or as a linkable objectmodule.
Data output as assembly sourcecode will look like this:

SECTION mydata, DATA

dc.b $45,$fe,$12,$56,$12,$56,$12,$56,$45,$fe

dc.b $14,$2¢,$32,$52,$1f,$fe,$ee,$16,$23,$23

dc.b $a2,$ba,$11,$01

C sourcecode will be saved in this format:

UBYTE myData[] =

{
0x45,0xfe,0x12,0x56,0x12,0x56,0x12,0x56,0x45,0xfe,
0x14,0x2e,0x32,0x52,0x 1f,0xfe,0xee,0x16,0x23,0x23,

PicCon 11/38

0xa2,0xba,0x11,0x01

b

...while Pascal sourcecode will be saved in this format:
Const

myData : Array[$0..$[# of entries - 1]] of Byte =

(

$45,%1e,$12,$56,$12,$56,$12,$56,$45,$fe,
$14,$2¢,$32,$52,$1f,$fe.$ee,$16,$23,$23,

$a2,$ba,$11,$01

);

...and E source:

myData:

CHAR $45,$fe,$12,$56,$12,$56,$12,$56,$45,$fe,
CHAR $14,$2¢,$32,$52,$1f,$fe,$ee,$16,$23,$23,

CHAR $a2,$ba,$11,501

These examples show how a sourcecode will be saved in byte-format, but PicCon recognizes if word- or longwordformat would
be more appropriate. E.g.: 16 pixels wide sprites will be saved with two words on each line, while 64 pixels wide sprites will be
saved with 4 longwords on each line.

NOTE:

Often you want the saved data to reside in CHIP RAM. To obtain this, you’ll have to specify for your compiler to place it in a
chipdata section. In assembly you’ll do this by appending either *,CHIP’ or °_C’ to the 'DATA’ keyword, e.g.:

SECTION mydata,DATA_C

All assemblycompilers may not be completely compatibel with this use of the CHIPMEM option, check your manual.

In SAS/C, you’ll insert the keyword "chip’ between the "'UBYTE’ keyword and the name of your datasection (e.g. myData):
UBYTE chip myData[] =

{

};

When saving as a linkmodule, you’ll be asked to specify the external definition (which is the name of the pointer that points to
the beginning of the data. This pointer can later be referenced in your sourcecode with "xref [name]" (assembler) or e.g. "extern
void *[name]" (C-source)). You must also specify the type of memory you want the module to be loaded to.

PicCon 12/38

1.28 PicCon/Project/Change screenmode

Sometimes when you load a picture it will be loaded in a screenmode which is not very convenient for cutting out pieces of
the picture (pixelperfect framing in SuperHires is not very easy...). Then use this menuchoice to change the screenmode. All
screenmodes contained in your Monitor-drawer (in DEVS:Monitors/) will be listed out for you to choose from.

The screenmode requester wasn’t available in the Amiga’s operating system until version 2.1, so this option will be ghosted if
you’re running on 2.04 or 2.05.

1.29 PicCon/Project/Modify palette

A standard paletterequester has now been included in PicCon for editing the paletteentries on the fly. If you’ve ever used a
paletterequester before, no explanations should be needed on this option. ;)

1.30 PicCon/Project/Load prefs

Load and set the preferences in the S:PicCon.prefs file. This is also automatically done upon starting PicCon. See Save prefs too.

1.31 PicCon/Project/Save prefs

Save settings to S:PicCon.prefs. This file will be automatically loaded upon startup, but can also be done manually by choosing
Load prefs from the menu.

Settings included in the preferences file are: savetype (binary/ assemblysource/C source/linkmodule), image format, palette
format, last used directory and filenames on loading/saving, plus lots of other settings and some internal data.

This option is handy if you grow tired if reselecting the same directory/ filename/menuoptions every time you load PicCon.

1.32 PicCon/Project/Info

Displays information about the picture and the framed box.

1.33 PicCon/Project/About

Displays information about the program, the author and the license.

1.34 PicCon/Project/Iconify

Frees up the memory taken by the screen and the window that PicCon uses. Select the iconify-bar that pops up on the Workbench
and click the right mouse button to reenter the program.

1.35 PicCon/Project/Quit

Exits program.

PicCon 13/38

1.36 PicCon/Edit

Menuchoices on the "Edit"-menu:
Cut frame

Grab frame

Box frame

Set frame

Free frame

Autocrop

Autoscan

Flip X

FlipY

1.37 PicCon/Edit/Cut frame

After selection of this menuitem, your mousepointer will be followed by a cross. Upon pressing the left mousebutton, you now
have the possibility of selecting an appropriate piece of your picture for saving in RAW format. Just keep the left mousebutton
pressed while you drag the mousepointer so that you boxes in the piece you want to save. See also Grab frame, Box frame and
Set frame.

Notice that your mousepointer will contain coordinates which tell you the current position in your picture, and when framing, the
current size of your framebox. Upon 8-pixels boundaries, the coordinates in the mousepointer will change color to indicate this.
Notice also that you don’t need to put your frames on 8-pixel offsets and bytemultiple boundaries to get a correct saved image.
PicCon will automatically adjust, left-align and blank any trailing bits and bytes on the boxed frames upon any saveoperations.

If your picture is "open’ (clearly seperated items on the screen) you can use the Autocrop option after selection to avoid having
to do pixelperfect boxing of your frame.

If you misplace the selection, you might want to use the Set frame option to correct some of the coordinates.

1.38 PicCon/Edit/Grab frame

If you keep the graphical objects you want to cut out in boxes (f.ex. to guide your graphician, so he doesn’t draw too big objects),
then you can use this option to frame the images. Just select the pen by which the box is drawn, and click somewhere inside the
box.

Notice that the box have to be complete, "holes" in the boxwalls will make the box unusable.

If you’ve got many frames stored in this "boxed" format, you might consider using the Autoscan function, which will save all
your boxes in one go.

The second time you use this option, you will not be requested for the boxpen, as it’s assumed that it is the same as the first time
you use this function. Change the selected boxpen with the Set new grabpen setting. Please note that there is no restrictions on
the boxpen concerning usage in your frames (the algorithm will only react on complete boxes).

See also Cut frame, Box frame and Set frame plus the quick tutorial: Grab frame.

1.39 PicCon/Edit/Box frame

This function let you cut out your frame with a fixed sized box. The size of the box is set from the current frame, or manually in
case there is no cutted frame.

This is handy if you want to cut several pieces with the same size out of your picture. See also Cut frame, Grab frame and Set
frame.

PicCon 14 /38

1.40 PicCon/Edit/Set frame

Instead of selecting a frame by dragging out the framebox, you can use this function to manually input the coordinates of the
corners of the framebox. See also Cut frame, Grab frame and Box frame.

This function is also handy if you miss slightly when you use the mouse to select the framebox; just pop up the coordinates
inputbox and modify the coordinates.

1.41 PicCon/Edit/Free frame

Frees the selected framebounds (by setting the max dimensions).

1.42 PicCon/Edit/Autocrop

After framing a piece of the picture, you might want to use this option to make the framing ’perfect’ (no extra space included).
This function excludes the need to do pixelperfect framing.

1.43 PicCon/Edit/Autoscan

If you’re working on large projects, it’s very timeconsuming to manually cut and save the individual frames. With a bit of
planning and the help of this option, you can greatly reduce the time spent in PicCon. First you have to keep all the graphical
objects in boxes, as you would with the Grab frame function (and all boxes have to be in the same color). Second, select your
wanted imageformat (e.g. Bitplanes, Sprites or whatever). Now use this option to get PicCon to automatically scan and save all
boxed frames in one go. The frames will be saved to a single file, while the offsets to the different frames in the file will be saved
to another file with the same name, but with ".offset" appended to the filename.

The frames will be saved top-to-bottom and left-to-right, which means that frames with lower topmost y coordinates will be
appended first to your savefile, while frames with identic topmost y coordinates will be saved according to leftmost x coordinates
(lowest leftmost x coordinate -> saved first).

Note that it is the inner box that will be saved (the borders are not included). So to save e.g. a 64x64 frame, you’d have to make a
66x66 pixels wide box (including the borders). There is no restrictions on the use of the boxpen otherwise in your picture, other
than that all "insides" of boxes made with that particular pen will be saved to the file (single pixels drawn with the boxpen in your
frames will be discovered and not reacted on in the autoscan-algorithm, so your graphician is free to use all the available pens in
his masterpieces...).

Note also that this function will work exactly as if you’d cutted and saved all the frames individually, and then joined the files
afterwards.

The .offset-file will consist of ASCII-text, in this format:
frame_000 EQU $00000000
frame_001 EQU $00004000
frame_002 EQU $00007800

frame_xxx EQU S$yyyyyyyy
(Labels on the left side, offsets on the right side. This format should be compatible with most assemblers).

See also the quick tutorial: Autoscan.

PicCon 15/38

1.44 PicCon/Edit/Flip

Will flip your selected frame in the chosen direction (if no frame is cutted, the whole picture will be flipped).

This option will be useful if you don’t want to have flip-routines in your code, but rather include the flipped frames as binary
data.

1.45 PicCon/Settings

Imageformat
Paletteformat
Grid settings
Miscellaneous

Set new grabpen

1.46 PicCon/Settings/Miscellaneous

The options in the "Miscellaneous settings" window are supposed to be an easy way to configure PicCon so that you can remove
things that might annoy you.

Set filecomments:

If this option is on, the RAW image files that PicCon saves will have information about the format and the dimensions of the
frame included in the file’s commentfield. Use the DOS-command ’list’ on a file saved from PicCon to see what I mean.

Confirm loads:

Use this option to turn on or off the requester that pops up before the current picture is swapped with the one you want to load
(the requester that gives you some information about the picture, and let you have the choice of cancelling a load).

Confirm overwrites:

Ask the user before any files get overwritten.

Inform saves:

Pop up a requester after you’ve saved a file to tell you what you actually saved.
Autosave prefs on exit:

If you always want to restart in the state you left PicCon.

Include pen O in penstats:

Often the frames containes mostly transparency, and in that case, the Pen usage in frame isn’t very helpful. Then use this option
to not include pen 0 in the penstatistics window.

Save Autoscan offsets:

If you use the Autoscan function, and all the frames in your picture are of the same size, you probably don’t need the information
contained in the .offsets-file.

1.47 PicCon/Settings/Imageformat

The settings in this window is for selecting the way the boxed frame will be saved when choosing Save image in the Project
menu.

Settings in the "Imageformat"-window:

PicCon

16/38

Bitplanes
Interleaved
Mask
Chunky
Sprites

WB icon
Fontset

IFF ILBM
SNES modes
Megadrive

1.48 PicCon/Settings/Imageformat/Bitplanes

Set RAW save to ordinary bitplaneformat:

<- framewidth ->

etc

PicCon 17 /38

In conjunction with this format, you must also specify the "Blitterwords" option. If you set this format to any other than "None",
an extra column of words (16 pixels, 2 bytes) will be saved to either the left or the right (or both) of the raw bitplaneframe. This
is necessary to be able to use the blitterchip’s shiftmodus.

(Check your copy of the AHRM).

About HAMS pictures: the two controlplanes in HAMS pictures are supposed to be at the front (bitplanepointers in $dffOe0 and
$dff0e4), but when setting up HAMS screens through OS functions, they are inserted at the back of the eight planes. PicCon will
save RAW HAMS images with the controlplanes at the front.

1.49 PicCon/Settings/Imageformat/Interleaved

Set RAW save to interleaved format (useful for blittergraphics and fast displays):

[11
[11
[11
[11
| Bitplane O | Bitplane 1 I-- . . etc
[11
[11
[11
[11

In conjunction with this format, you must also specify the "Blitterwords" option. If you set this format to any other than "None",
an extra column of words (16 pixels, 2 bytes) will be saved to either the left or the right (or both) of each of the interleaved raw
planeframes. This is necessary to be able to use the blitterchip’s shiftmodus.

(Check your copy of the AHRM).

About HAMS pictures: the two controlplanes in HAMS pictures are supposed to be at the front (bitplanepointers in $dff0e0 and
$dff0e4), but when setting up HAMS screens through OS functions, they are inserted at the back of the eight planes. PicCon will
save RAW HAMS images with the controlplanes at the front.

1.50 PicCon/Settings/Imageformat/Mask

If this option is selected upon saving, a mask of the current frame will be created and saved. The mask is created by OR’ing all
the bitplaneframes together, effectively making a ’shadow’ of the object within the frame. Such frames are necessary to use when
you want to animate or move blitter objects on top of some backgroundgraphics. Otherwise some of the background bitplanes
will "crash" with your object’s bitplanes. Just set up the blitter (or use the CPU) to perform this logic function on all common
background- and objectplanes:

bckgnd mask result

000

010

101

110

(result = ~mask & bckgnd)

PicCon 18/38

This is referred to as the cookie-cut method in the AHRM.

Along with this option, you must also choose if you want to save the frame with blitterwords (see Bitplanes or Interleaved), and
if you want to save one maskframe, or if you want to save multiple interleaved frames:

If the "Single plane" option is set, the selected frame will be saved as a blittermask in this format:

framewidth

frame- | Mask |
height | |

[

[11

[

[11

...where the bits in "Mask" is made up by OR’ing together the individual bit- planes in the frame.
If the "Interleaved" option is set, the selected frame will be saved as a blittermask in this format:
+ + + Ao +

[T

(11T

(11T

(I

| Mask | Mask |....... | Mask |

[plane0 | planel | | planeN |
[T
[T
[HT

+ 4+ 4 4 +
T T T T T

The mask will be saved as many times as there’s bitplanes in the picture (N).

This format makes it possible to mask out unwanted bits in all bitplanes with only one blitteroperation (if you’ve made your
screen interleaved).

1.51 PicCon/Settings/Imageformat/Chunky

Chunkymode is an often used IBM-PC format, but will also be used in the Amigascene with the introduction of the Akikochip
in the CD32-console (and besides; the IBM-PC Emplant emulation is supposed to be out soon).

PicCon 19/38

In chunkymode, 1 byte is saved for each pixel in the picture. E.g.: If you’ve got 5 bitplanes, with bits set in planes 0 and 3, and
unset in planes 1, 2 and 4, the pixel will have this value:

%00001001=3%09=dec9
bit# 76 54 3 2 1 0 (bits in unused bitplanes will be unset)

Along with the "Chunky"-option, you must also specify the "Packed"-setting. If you don’t select packed chunky, the frame will
be saved in the format explained above. If you do set the "Packed"-option, the pixels from each byte will be leftshifted to remove
any superfluous bits (e.g. in the above example we’ll get the value: %01001xyz, where xyz will be shifted in from the next byte
in the framedata).

1.52 PicCon/Settings/Imageformat/Sprite

Will set RAW saveformat to Amiga sprites.
You must also set the spritewidth, attachment and CTRLwords options:

Spritewidth is set to either 16, 32 or 64 pixels. 32 and 64 pixels wide sprites might only be used with the AGA chipset.
Spriteheight is unlimited on any version of the Amiga chipsets.

For displaying sprites with more than 3 colors, you’ll have to make them attached. This means that you must overlap two sprites
to get 15 colors to choose from. The sprites will be saved like this:

e +
[

[

| Sprite O |

[

[
e +
[

[

| Sprite 1 |

[

[
e +

(Check your copy of the AHRM).

Setting the "CTRLwords" option will make the program append some blank bytes in front of and behind the sprite(s) when saved.
The bytes in front of the sprite is used to set position, attachment and other control bits. The bytes behind the actual imagedata
is used for spritetermination.

The number of bytes appended to the actual spritedata will depend upon your selected spritewidth. If you’re using 16 pixels wide
sprites, 2 words will be appended in front of the sprite(s) and 2 words behind. For 32 pixels wide sprites, you’ll get 2 longwords
extra in front and behind, and for 64 pixels wide sprites it’ll be 2 double longwords.

(Check your copy of the AHRM).

Notice that if your frame is wider than the width of one sprite (16, 32 or 64 pixels), several sprites will be appended to the same
savefile. This makes it possible to save a whole row of sprites in one operation. E.g. a 48-pixels wide frame of 16-pixels wide,
attached sprites with CTRLwords will be saved like this:

| CTRLwords |

PicCon

20/38

11

| sprite #0 |

[| spriteheight
| planes O + 1 |
11

(11

| sprite #0 |

[| spriteheight
| planes 2 + 3 |
(11

(11

| sprite #1 |

| I spriteheight
| planes O + 1 |
(11

(11

| sprite #1 |

| I spriteheight
[planes 2 + 3 |
(11

PicCon 21/38

| termination |

11

| sprite #2 |

| | spriteheight
| planes 0 + 1 |
11

11

| sprite #2 |

| | spriteheight
| planes 2 + 3 |
11

1.53 PicCon/Settings/Imageformat/WBIcon

This option sets the image format of the savefile to standard Amiga workbench icon. The format and type of the icon must also
be set:

Formats supported:

WBDISK:

Same type as e.g. the RAM Disk icon.

WBDRAWER:

Same type as any drawer in your workbench.
WBTOOLS:

Executable files (and scriptfiles).

WBPROJECT:

Files that need a program to "treat them", e.g. docfiles.
WBGARBAGE:

Same type as the standard Amiga garbage can.

PicCon 22 /38

WBDEVICE:

I don’t know what kind of files that use this icontype, as I don’t think I have ever seen a "device-icon". I can’t save icons of this
format either, as they have no default in the 3.0 workbench (well, not in my workbench, that is). Maybe this is a future format?

WBKICK:

These icons can be saved under my configuration, but I still don’t know what they are good for, as I have never seen any files
with a WBKICK icon.

WBAPPICON:

Same story here as with WBDEVICE, it don’t seem to be possible for me to obtain specifications on this iconformat, as the
defaulticon can’t be loaded with the icon.library function "GetDefDiskObject".

Gadgettypes supported:

Complement:

If this option is set, your iconimage will be complemented when

picked by the user.

Backfill:

If this option is set, your iconimage will be "backfilled" when picked by the user.
Image:

Set this option if you want your icon to have two different images, one for when the icongadget is up, and one for when it’s pressed
down. If this option is on upon choosing Save image, you’ll be prompted to cut out another frame for use as the "selectrender
image" (icongadget down). The frame that you’ve already picked will be used as the icongadget up image.

When you specify the filename of the workbench icon, you don’t need to include the .info extension, as this will be done
automatically.

If you choose to Save image with this option on, the Save data as settings will be ignored, as workbench icons are always pure
binaries.

1.54 PicCon/Settings/Imageformat/Fontset

This option will let you convert fontsets drawn in ordinary bitmaps to the Amiga’s custom font format. This makes it possible
to draw fonts in f.ex. DPaint, and then save them as fonts ready to be used in any word processing package, on the Workbench,
in your texteditor, in videotitling etc. Currently, PicCon supports only monospaced and monocolored fonts. To learn how this
option works, it’s best to load one of your existing fonts from disk (set imageformat to Fontset, then choose Load image), and
then save it back to disk (under another name, in case you should do anything wrong). Just frame the box which containes the
data to all your fonts, set the appropriate values in the Options-window and select Save image.

The Options-window values should be set as specified here:
XSize:

Set the width in pixels of a single character.

YSize:

Set the heigth in pixels of a single character.

Baseline:

Set the baseline of the font (must be at least 1 less than YSize). Baseline tells any applications using the font how to handle "low"
characters (like g, j, y, etc).

LoChar:

First character in the block you want to save (if this is f.ex. the space, set LoChar to 32 (as the ASCII value for space is 32)).
HiChar:

Last character in the block you want to save (if this is f.ex. the Z’, set HiChar to 90 (as the ASCII value for *Z’ is 90)).

Note that if your picture consist of several bitplanes, only the bits in bitplane #0 will be saved to the fontsfile, as PiCon does not
(yet) support multicolored fonts.

PicCon 23/38

1.55 PicCon/Settings/Imageformat/IFF

Frames saved with this option on will be saved as IFF brushes/pictures (useful for inclusion in drawing packages, DTP programs
etc). If you choose to Save image with this option on, the Save data as settings will be ignored, as IFF frames are always pure
binaries.

1.56 PicCon/Settings/Imageformat/SNES modes

If you’re not familiar with the SNES graphics architecture or if you’ve just started using PicCon, please check out the explanation
of the SNES’ different graphicsmodes: SNES hardware.

Now for the SNES-mode options:

2-bit characters:

Save data in frame as a 2-bit characterset.

4-bit characters:

Save data in frame as a 4-bit characterset.

8-bit characters:

Save data in frame as an 8-bit characterset.

Mode 7:

Save data in frame as a chunkypixel bitmap characterset.
Swap Hi/Low bytes:

If this option is set and you’re saving 2-, 4- or 8-bit characters, the two bytes (representing the bitplanes data) in each character-
graphics word will be swapped. F.ex. will a 4-bit character not be saved like this:

1010101010101010
3232323232323232
...but like this:

0101010101010101
2323232323232323

If this option is on and you’re not saving an ordinary 2/4/8-bit character screen, but a Mode7 screen, the high and low bytes in
the screenposition words will be swapped:

€1 +
T T

[bitmapdatalcharacter| (= 8 + 8 bits)

+ +
T T

...will become:

€ 4+
T T

Icharacterlbitmapdatal (= 8 + 8 bits)

+ +
T T

Pack equal chars:

Remove duplicated characters from the characterset before saving. You normally wouldn’t want to use this option unless you’re
also specifying to save the screenpositions of the characters (or a MODE7 screen) aswell. This option works with both the
ordinary characterbased displays and with the MODE? characters.

Pack flip chars:

PicCon 24 / 38

Remove characters that can be duplicated by flipping some of the other characters in the characterset. Use this option for
maximum optimization (beware that characterpacking with this option is ~4 times slower than ordinary equal characters packing).
You normally wouldn’t want to use this option unless you’re also specifying to save the screendata aswell. The correct bits will
be set in each screendata word if this option is switched on (and you’re saving the screenposition data along). This option only
works with the ordinary characterbased displays (as there’s no bits for characterflipping in the MODE?7 screendata).

Priority:

Use this option to set the priority bit to either 0 or 1 in the screendatawords (use this to f.ex. set the priority for SNES-objects to 1,
while ordinary screendata have priority 0). This option only works with ordinary non-MODE7 displays, as MODE?7 screendata
have no prioritybit to set.

Save positiondata:

Save out a file containing the screendata positions (characterselection words) along with the characterset. The screendata file will
be saved to a file with the same name as the filename you specified for the characterset data, but with ".screen" appended to the
filename. In the ordinary characterbased displays, the screendata in this file will also have the flip- and prioritybits set correctly.

The position data will always be saved in word-format.

With 2-, 4- or 8-bit characters:

+ 4+
T T

lylxlplpallcharacters!| (= 16 bits)

+ 4+
T T

(y - yflip, x - xflip, p - priority, pal - paletteselection, characters - characterselection)

...and with Mode7:

+ +
T T

| characters | (= 16 bits)

+ +
T T

If this option is not set, only the characterset which would make up the graphics in your selected frame will be saved, with no
information what-so-ever on the individual positions they have on the screen. This will normally only be used with charactersets
which haven’t been packed in any way, or on SNES objects.

(.screen files for charactersets that have not been optimized in any way will just be a monotone incrementing row of numbers:
$0000, $0001, $0002, $0003.. while on frames/screens that are packed, the screenposition data will make all duplications and
flip-duplications be set correctly.)

Make MODEY7 screen:

This option will join, "interleave" and save the characterbitmap data and the screendata positions to the same file, ready to use in
a MODE display. The bitmapdata will normally be in the highbytes and the characterselection bytes in the lowbytes (opposite
if the "Swap" flag is set).

Note that there’s no hardcoded limits on any of the saveformats. If you need to save exactly one SNES screen, it’s up to you to
make sure that the frame you're saving is 256x256 pixels wide. I avoided setting limitations on these saveformats so that PicCon
would be as flexible as possible (most often you don’t want to save whole screens, as most of the data is just objects or parts of
screens, and if PicCon could only save whole screens, lots of storage would be wasted).

There’s one exception from this rule, though (regarding flexibility). If you want to make a MODE?7 screen and save it, your
savefile will always be $8000 bytes, as characterbitmap data for up to 256 characterbitmaps will always be joined with a $80x$80
grid of character selection bytes, no matter how wide and high your selected frame is. The upper left corner of your frame will
also be the upper left corner displayed in the MODE?7 screen. This is the only way of displaying a MODE?7 screen on the SNES.
So if you want to make a full MODE?7 screen, you have to cut a 1024x1024 pixels wide and high frame, with not more data than
can be held in maximum 256 characters. If you cut a frame that is less than 1024x1024 pixels, the rest of the MODE7 screen will
be filled up with character number zero in the chunky characterset. If this behavior is not wanted, don’t set the "Make MODE7
screen” option as the chunky characterset and the screenposition data will then be saved to two seperate files (as with the ordinary
2/4/8-bit characterbased modes).

If there’s anything you didn’t quite understand here, it might help to read the SNES hardware section. If things are still unclear,
or if you think there’s some stuff I’ve not implemented that should be included in a SNES converter, please mail (or email) me.
Address in the Disclaimer and Author Info section of this document. (I'm generally not very hard to ask... :)

PicCon 25/38

1.57 PicCon/Settings/Imageformat/SNES hardware

The SNES graphicsmodes can be viewed as two seperate issues: characterbased and chunkymode. I’ll explain the characterbased
displaymodes first:

The characterbased displays are made up of screens of 32x32 wordpointers (each word is pointing to a character in a pre-defined
characterset, and a character is 8x8 pixels wide and high). A SNES screen is therefore 32*8 = 256 pixels wide and high. Here’s
a sample screen:

Word pointers

Il

TopLeft Il

+ V / +

$0000 IXX XX XX XX XX XX XX XX XX XX XX XX\ XX XXI
$0020 IXX XX XX XX XX XX XX XX XX XX XX XX / XX XXI
$0040 IXX XX XX XX XX XX XX XX XX XX XX XX\ XX XXI
$0060 IXX XX XX XX XX XX XX XX XX XX XX XX / XX XXI
A

R TAVA

A

$03e0 IXX XX XX XX XX XX XX XX XX XX XX XX / XX XX

+ +
T T

Bottom
Right
The bits in each pointer are used like this:

+ 4
T T

bit:l FIEIDICIBIAI9I8I7161514131211101

4+ | | |
1 | | |

[-FLIP- |-P-| -PALETTE- | -CHARACTER- |
[vhirlll

leolil(1 outof 8l (1 outof 1024 available) |
Irrlolavailable)l |

Feillll

+ 4
T T

[l

[+-

| | These bits are used to

| | select the palettebuffer
| | for this character. (The
| | palettebits will not be

[l used by PicCon in it’s

PicCon 26 /38

| | current state).

[

[+-

| This bit is used to set priority.

I

+-

These bits choose if the characterdata

should be flipped around the x- or y-axis

(or both).

...and the 10 characterselection bits are used as pointers into a charactergraphics table (a characterset).
Now...how are the characters stored in this characterset? There’s 3 different characterbased displaymodes, 2- 4- and 8-bit:
A 2-bit character:

+--+--+

Ip1IpOl 2 bytes, 8 + 8 pixels, bitplanes 1 and 0, row 0

+--+--+

Ip1pOl 2 bytes, 8 + 8 pixels, bitplanes 1 and 0, row 1

ot

+--+--+ .

Ip1IpOl 2 bytes, 8 + 8 pixels, bitplanes 1 and 0, row 6
-+

Ip1IpOl 2 bytes, 8 + 8 pixels, bitplanes 1 and 0, row 7
-t

pl - byte in plane 1

pO - byte in plane 0

A 4-bit character is built with two 2-bit characters; one containing
planes 1 and 0, and one containing planes 3 and 2. Like this:
1010101010101010

3232323232323232

(4-bit characters are also used in building up the SNES’ equivalent of the hardwaresprites of the Amiga (they’re called "objects"
on the SNES): an object must be 16xYYY characters (YYY is max 512) wide and high (so the SNES-objects have up to 16
different colors, and are 8%16 = 128 pixels wide). So be aware that to extract SNES "sprites" from PicCon, you have to cut a
128xYYY pixels wide frame in 4-bit character mode).

An 8-bit character is built with four 2-bit characters; one containing
planes 1 and 0, one containing planes 3 and 2, one containing planes
5 and 4 and one containing planes 7 and 6. Like this:
1010101010101010

3232323232323232

5454545454545454

PicCon 27 /38

7676767676767676
(Each number represents the next byte in the respective plane).
And now for the chunkymode (which is also sort of an charactermode (I'll bet you’re confused now, huh?)):

In the SNES’ version of chunkypixels (called MODEY7) the display is made up of characters aswell, although the characters now
take up 8 * 8 = 64 bytes, as each character is a small chunkybitmap:

e R s EE S
1001011021031041051061071
e T
10810910al0bl0cl0dI0elOf]
e S
[10111112113114115116117I
s e
[18I11911al1bl1cl1dl1el1fl (8 * 8 pixels, one byte
+--+--+--+--+--+--+--+--+ each pixel = 64 bytes
[201211221231241251261271 each character)

e R st S R R
12812912al2bl2cl2dI2el2f]
e R st EE T e
130131132133134135136137I
e T
13813913al3bl3cl3dI3el3f]
S S

A screen in MODET7 have to be $80x$80 characters wide and high (= 1024x1024 pixels). Each character on the screen is selected
with a byte that indicates the offset into the characterset (1 byte = 8 bits = 256 different characters). 256 different characters, each
built up with a 8x8 chunkybitmap yields 256*8*8 bytes = $4000 bytes. When you set up the MODE?7 screen, the $4000 bytes of
characterbitmaps are combined with the $80x$80 = $4000 bytes of character selectors to $4000 words (= $8000 bytes) of MODE7
screendata. The highbytes of the screenpositions contain the characterbitmapdata and the lowbytes contain the characterselection
bytes. So if the first characterbitmap is all $ff’s and the first $40 characters of the MODE?7 screen are all unique, the first $40
words of the MODE?7 screendata would look like this:

4 4+ 4. 4 4. 4+ 4. 4+ 4
T T T T T T T T T

I$£f00I$£0 1I$EFO21$£F031$£F04ISEEOSISTTOOISLOT!

L L T S
I$£E08I$F09I$f0al$TObISTFOCISTFOIS T Ol STTOf]
s T e T e e &
ISELOISEET LISEF12I$EF131$£E141$EE15I$EF161$££17!
e T e L
I$£E18ISTE19ISE 1 al$ T 1 bISTE1cI$f1 dISTT1el$ff11]

I$EE20I$£12 1ISTF221$£1231$£E24I$£251$ 2615127

+ 4 4+ 4+ 4. 4+ 4. 4+ 4
T T T T T T T T T

I$EE28ISFE291$f12al$T2bISTT2cI$T2dISTT2el $1T21]

PicCon 28 /38

I$EE38ISE391$EE3alSE3bISTE3cIS T3 IS T3l $ 3 1]
oot

...or if the character in position (3,0) on the screen is equal to the one in position (0,0) and the ones in positions (1,0), (2,0), (4,0),
(5.0), and so on are unique, we’d get these data for our MODE7 screen (the "Pack equals" option is on):

e
I$E00I$FO 1I$FFO21$F00I$FO3ISTFO4I$TFOSISTO6!

...and so on (character 0 will be duplicated in position (3,0) and the character in (3,0) will not be saved to our characterset).

1.58 PicCon/Settings/Imageformat/Sega

If you’re not familiar with the Sega Megadrive’s graphics architecture or if you’ve just started using PicCon, please check out the
explanation of the Megadrive’s different graphicsmodes: Sega Megadrive hardware.

Now for the Megadrive options:
Pack equal chars:

Remove duplicated characters from the characterset before saving. You normally wouldn’t want to use this option unless you’re
also specifying to save the screenpositions of the characters.

Pack flip chars:

Remove characters that can be duplicated by flipping some of the other characters in the characterset. Use this option for
maximum optimization (beware that characterpacking with this option is ~4 times slower than ordinary equal characters packing).
You normally wouldn’t want to use this option unless you’re also specifying to save the screendata aswell. The correct bits will
be set in each screendata word if this option is switched on (and you’re saving the screenposition data along).

Save positiondata:

Save out a file containing the screendata positions (characterselection words) along with the characterset. The screendata file will
be saved to a file with the same name as the filename you specified for the characterset data, but with ".screen" appended to the
filename. In the ordinary characterbased displays, the screendata in this file will also have the flip- and depthbits set correctly.

The position data will always be saved in word-format:

+ +
T T

[dlylxIpallcharacters| (= 16 bits)

+ 4+
T T

(d - depth, y - yflip, x - xflip, pal - paletteselection, characters - characterselection)

If this option is not set, only the characterset which would make up the graphics in your selected frame will be saved, with no
information what-so-ever on the individual positions they have on the screen. This will normally only be used with charactersets
which haven’t been packed in any way, or on Megadrive sprites.

(.screen files for charactersets that have not been optimized in any way will just be a monotone incrementing row of numbers:
$0000, $0001, $0002, $0003.. while on frames/screens that are packed, the screenposition data will make all duplications and
flip-duplications be set correctly.)

Depth:

PicCon 29/38

Use this option to set the depth bit to either O or 1 in the screendatawords.

Note that there’s no hardcoded limits on any of the saveformats. If you need to save exactly one Megadrive screen, it’s up to
you to make sure that the frame you’re saving is 320x224 pixels wide. I avoided setting limitations on these saveformats so that
PicCon would be as flexible as possible (most often you don’t want to save whole screens, as most of the data you want to save
is just sprites or parts of screens, and if PicCon could only save whole screens, lots of storage would be wasted).

If there’s anything you didn’t quite understand here, it might help to read the Sega Megadrive hardware section. If things are still
unclear, or if you think there’s some stuff I’'ve not implemented that should be included in a Megadrive converter, please mail (or
email) me. Address in the Disclaimer and Author Info section of this document. (I'm generally not very hard to ask... :)

1.59 PicCon/Settings/Imageformat/Megadrive hardware

The Sega Megadrive graphicsmode is solely characterbased. This means that the whole display is made up of layers of 8x8 pixels
wide characters (that acts as small bitmaps).

The characterbased displays are made up of screens of 40x28 wordpointers (each word is pointing to a character in a pre-defined
characterset, and a character is 8x8 pixels wide and high). A Megadrive screen is therefore 40*8x28*8 = 320x224 pixels wide
and high. Here’s a sample screen:

Word pointers

Il

TopLeft Il

+ V / +

$0000 IXX XX XX XX XX XX XX XX XX XX XX XX\ XX XX
$0028 IXX XX XX XX XX XX XX XX XX XX XX XX / XX XXI
$0050 IXX XX XX XX XX XX XX XX XX XX XX XX\ XX XX
$0078 IXX XX XX XX XX XX XX XX XX XX XX XX / XX XX
A

B VAY

A

$0438 IXX XX XX XX XX XX XX XX XX XX XX XX / XX XX

+ +
T T

Bottom
Right
The bits in each pointer (XX) are used like this:

+ 4+
T T

bit:I FIEIDICIBIAIOI8I7161514131211101

4 |---] | | |

I-d-I -PAL- |I-FLIP- | -CHARACTER- |
lellvhll

[pl(1outleol(1loutof2048 available) |
[tlof4)Irrll

[hiltill

+ 4
T T

PicCon 30/38

[+- + +

| These bits are used to |

| select the palettebuffer |

| for this character. (The +-

| palettebits will not be These bits choose

| used by PicCon in it’s if the characterdata

| current state). should be flipped

| around the x- or y-

+- axis (or both).

This bit is used to set depth.

...and the 11 characterselection bits are used as pointers into a charactergraphics table (a characterset).
Now...how are the characters stored in this characterset? This is the format used:
Ip - left pixel

rp - right pixel

0,1,2,3 - bitin 0.,1.,2. or 3rd bitplane

p..rp. Ip..xp. Ip..rp. .Ip..rp. -> 8 pixels in a row
32103210 32103210 32103210 32103210 |

32103210 32103210 32103210 32103210 |

32103210 32103210 32103210 32103210 |

32103210 32103210 32103210 32103210 +- 8 pixelrows
32103210 32103210 32103210 32103210 |

32103210 32103210 32103210 32103210 |

32103210 32103210 32103210 32103210 |

32103210 32103210 32103210 32103210 |

Megadrive hardware sprites are also made up of the same kind of characters. A sprite can be up to 4x4 characters wide and high
(sprites can therefore be anything from 8x8 to 32x32 pixels).

1.60 PicCon/Settings/Paletteformat

The settings in this window is for selecting the way the picturepalette will be saved when choosing Save palette in the Project
menu.

Settings in the "Paletteformat"-window:
4 bits

8 bits

32 bits

LoadRGB4

LoadRGB32

IFF

SNES 5 bits

Megadrive 3 bits

Copperlist

PicCon 31/38

1.61 PicCon/Settings/Paletteformat/4bits

Will save out your palette in the standard old chipset and enhanced chipset formats (4-bits-per-gun, 1 word per color).
E.g.:

White is $Offf, red is $0f00 and purple is $OfOf.

“blue component

"green component

“red component

“unused

1.62 PicCon/Settings/Paletteformat/8bits

Will save out your palette in the new AGA chipset format (8-bits-per-gun, 2 words (1 longword) per color).
E.g.:

White is $OOfEftt, red is $00ff0000 and purple is $00ffOOf.

“"blue component

“"green component

“"red component

““unused

1.63 PicCon/Settings/Paletteformat/32bits

Will save out your palette in the internal systemformat (32-bits-per-gun, 3 longwords per color)).
E.g.:
Purple is $fffFFFO0000000fTEEES.

AAAAAAAA

blue component

AAAAAAAA

green component

AAAAAAAA

red component

1.64 PicCon/Settings/Paletteformat/LoadRGB4

Will save the palette as an array ready to be passed to the graphics.library function "LoadRGB4".

Look up the autodocs specification of "LoadRGB4" if you’re unfamiliar with the format.

1.65 PicCon/Settings/Paletteformat/LoadRGB32

Will save the palette as an array ready to be passed to the graphics.library function "LoadRGB32".

Look up the autodocs specification of "LoadRGB32" if you’re unfamiliar with the format.

PicCon 32/38

1.66 PicCon/Settings/Paletteformat/IFF

Saves out the palette in IFF format (e.g. for reading in DPaint). If this option is set, the Save data as setting will be ignored (IFF
files are always of binary format).

1.67 PicCon/Settings/Paletteformat/SNES 5 bits

Will save out the palette in the format used by the SNES:
E.g.:
Purple is %0111110000011111:

AAAAA

red component

AAAAA

green component
AAAAA blue component

“unused

Note that the RGB-components have been swapped to BGR (done by Nintendo to

get them in the correct alphabetical order...).

1.68 PicCon/Settings/Paletteformat/Megadrive 3 bits

Will save out the palette in the format used by the Sega Megadrive:
E.g.
Purple is %0000111000001110

AAAA A A A

unused
“*red component
“"“green component
“"blue component

Note that the RGB-components have been swapped to BGR.

1.69 PicCon/Settings/Paletteformat/Copperlist

Will save out your palette as a list of commands that the Amiga graphicscoprocessor (a.k.a. COPPER) understands. Insert the
palette coppercommands into your own custom copperlist to make use of the paletteentries.

PicCon knows the format of both OCS/ECS and AGA chipsets, and will save in the appropriate format according to the number
of bits-per-gun specified:

4 bits-per-gun: OCS/ECS copperlist.
8 bits-per-gun: AGA copperlist.
The other options (32bits, LoadRGB4, LoadRGB32 and IFF) will ignore the Copperlist setting.

PicCon 33/38

1.70 PicCon/Settings/Grid settings

Imagine this: you are coding a game where you need loads of background graphicstiles (say, 16x16 pixels wide, which are then
combined to make bigger objects in the background). To get maximum speed (minimum CPU/blitter load), you need to have
each one of them in interleaved RAW format. What do you do? You’d probably save out the whole bitmap with an IFF-converter
and then code your own custom formatconverter to get the tiles the way you wanted them. This is not necessary any more, as
PicCon is able to save a grid of frames in any of the usual formats, except as IFF ILBMs or as Workbench icons.

The options in the grid settings window are explained below:
Grid orientation (horizontal/vertical):
Choose to save the tiles in either left-to-right (horizontal) or top-to-bottom (vertical) fashion.

(As an example, let’s say we’ve got a 3x3 grid of frames:

e SR &
(111
(112131
(111
e e SRS &
[T
(415161
[111
e
[11]
(718191
[T

S SRS &

With horizontal orientation, these frames will be saved in this order 1,2,3,4,5,6,7,8,9, while if you set vertical orientation, the
internal positions in the saved file will be like this: 1,4,7,2,5,8,3,6,9.)

Blockwidth:

Set the width in number of pixels in the individual tiles.
Blockheight:

Set the height in number of pixels in the individual tiles.
Blocks horiz.:

Number of blocks horizontally. (3 in the above example)
Blocks vert.:

Number of blocks vertically. (3 in the above example)
Total #:

The total number of blocks you want to save (if no blocks are "missing" in your chunk of frames, this number will usually be
(blocks horiz.)*(blocks vert.)). (9 in the above example)

Note that your chunk of frames to be saved must have the upper left pixel in the absolute upper left corner of the screen (at (0,0)).

The gridsave option will not be influenced by any box you’ve cutted in the picture. The individual tiles will all be saved in the
format you select in the Imageformat window. All tiles will be appended together in a single file.

See also Save grid.

PicCon 34 /38

1.71 PicCon/Settings/Grabpen

Choose a new boxpen to search for in the Grab frame function.

1.72 PicCon/Misc

Menuchoices on the "Misc"-menu:
Pen usage in frame

Remap pens in frame

Trace unused pens

Convert EHB->normal

Reselect systempens

Fake SNES screen

Remake Amiga screen

1.73 PicCon/Misc/Fake SNES screen

Due to a different videoarchitecture, pictures ported directly from the Amiga to the SNES (or the other way around) will look
a bit strange. This is caused by the fact that while the Amiga (in PAL mode) uses 320x256 pixels to build one ordinary low
resolution screen, the SNES uses 256x256 pixels to make the exact same display. So while the SNES has a ’pixelratio’ of 1:1,
the Amiga has a ratio of 5:4. The "Fake SNES screen" function is supposed to simulate the way your graphics will look on a
SNES display. This is achieved by first duplicating all pixels 5 times horizontally and then ’divide’ the pixelwidth of all pixels
horizontally by 4 by setting the SuperHighRes mode. By doing this, we’ll get the same pixel aspectratio as the SNES does.
Clever, huh? Thanks to Daniel Hansson for coming up with this excellent idea!

To use this function, your picture has to be displayed in lowres, non-interlaced, non-HAM on a PAL screen (otherwise, the
aspectratio would still come up all wrong...). If your picture is not in this format, and you still want to use this function, you may
change the displaymode with the Change screenmode option in the Project-menu.

Don’t save any graphics from this display for use on the SNES, as this display will be treated the same way as any other PicCon
display (that is; all pixels would be saved 5 times horizontally). You may wish to save out the picture as IFF ILBM in this new
format for further editing in DPaint, though, as you can infact draw in this ’faked” SNES displaymode by using a 5x1 pixel
brush (and only insert the 'SNES-pixels’ on a 5x1 grid). Later you can then use the Remake Amiga screen function to obtain an
ordinary Amiga display (and then save out the graphics in the SNES RAW modes).

1.74 PicCon/Misc/Remake Amiga screen
Before you read this, you might want to read about the Fake SNES screen function.
Use this function to convert a faked SNES display back into the ordinary Amiga display. This is done by discarding 4 out of the

5 even pixels and resetting to the low resolution display. Note that this function will also work with ordinary PAL SuperHires
Non-Interlaced screens, but will in that case just partly destroy your picture.

1.75 PicCon/Misc/Pen usage in frame

This function makes a histogram of the relative usage of the pens in the selected frame.

PicCon 35/38

1.76 PicCon/Misc/Remap pens in frame

I guess this function was pretty high on the "most wanted feature" list by the coders? (It’s not included in DPaint, and the version
of this function implemented in Brilliance can’t work on selected areas of the screen.)

Anyway, it gives you the possibility of either moving or interchanging all pixels of a pen to another pen. This function works
inside your selected frame.

Do not confuse the "Move" and "Swap" functions in this feature with the corresponding calls in the "Modify palette" option.
Nothing is actually done with the values of the paletteentries, but with the bitrepresentations of the individual pixels in the
bitmap.

See also the quick tutorial: Remap pens in frame.

1.77 PicCon/Misc/Trace unused pens

This function will find all the unused and duplicated pens in the palette and "push" them at the end (by moving all pixels set
with other pens into the front of the palette). If the number of unused and duplicated palette- entries are so high that 1 or more
bitplanes are not needed (say, if you only use 13 pens in a 5 bitplanes picture (which has 32 pens available), it would be possible
to render the exact same picture in 4 bitplanes), you’ll also be asked if you want to remove the superfluous bitplane(s).

See also the quick tutorial: Trace unused pens.

1.78 PicCon/Misc/Convert EHB->normal

This function converts a 6 bitplanes picture in extra halfbrite modus (with 32 editable paletteentries) to an ordinary 6 bitplanes
picture (with 64 editable paletteentries).

This also makes it possible to use the other simple "imageprocessing" tools in PicCon to work on these pictures.

1.79 PicCon/Misc/Reselect systempens

If for any reason the selected systempens (the pens which are used to render the menubar, requestergadgets etc) should make
something hard to read, use this function to reselect them.

(The systempens might get changed if you use the paletterequester, and you should then use this function if they get hard to read
(or just ugly to look at). This also applies if you use the Load palette option).

Be aware, though, that on Amiga’s with OS2.0 it’s impossible to control the menubar pens.

1.80 PicCon/History

History:

|
|
v1.07:

- fixed many small bugs and quirks (as usual)

PicCon

36/38

- now perfect handling of the smallest bitmaps (e.g. DPaint-
Brushes)

v1.08:

- included option to save data as linkobject

- included loading of raw- and IFF-palettes

- option to save palette as IFF was added

- new imagesave format; IFF

- raw savefiles now have frameinformation in the commentfield
- loading of RAW images and WorkBench icons implemented
- now possible to save multiple sprites in one go

v2.00:

- removed bug that sometimes caused crash upon exit

- paletterequester

- option to iconify PicCon added

- fixed a bug that made it difficult to specify memorytype and
external definition name on palette linkobject files

- no longer needs datatypes.library to be present

- IFF ILBM loading without datatypes.library

- IDCMP_VANILLAKEY - no need to hold right Amigakey when using

hotkeys any longer (more like DPaint ;-)

- now saves WBicons at any width (don’t have to be multiples of
16 pixels)

- fixed icontype bug on icons that use drawerstructures

- no longer needs iffparse.library to be present

- added option to save frames with extra blitterwords attached
either left or right (or both) for easy blittershift operations

- added option to save chunky images in packed format

- added option to load raw chunky images in packed format

- quick automatic framegrabs with less userinteraction is now
possible ("Grab frame")

- image and palette saveformats displayed in titlebar at all times,
along with the coordinates of the framebox

- new saveoption: Grids (nice for saving e.g. 100s of blocks of
graphical data for maptiles/spriteframes/...)

- functions to compress pens and remove superfluous bitplanes added
- conversion: EHB --> 64 colors normal

- added control of systempens (all menus/requesters/gadgets should
be fully visible on all but the most extreme palettes (like all

paletteentries having e.g. the same value))

PicCon

37/38

- new autoscan feature

- added option to save data as Pascal sourcecode

- made more functional demoversion

v2.01:

- fixed a bug in the demoversion

v2.10:

- better (more flexible) imagesave options input

- AutoScan now also works with other saveformats than pure binary
- added new palettesave mode: SNES 5-bits

- added new RAW save formats: SNES characters and SNES Mode 7
- added "Fake SNES" and "Remake Amiga" functions to help SNES
developers

- made better algorithm for system penselection

- fixed a bug in the linkobject format

- made AmigaGuide docsfile more fontinsensitive (reformatted

text and turned on autowrap)

- added a new Settings-window for editing of general settings in
PicCon (for removal of annoying requesters, etc)

- removed all OS3.0 dependencies. PicCon no longer requires OS3.0+,
but OS2.04+ (and still takes advantage of 3.0 features)

v2.20:

- removed a bug that caused PicCon to still be incompatible with 2.0
- automatic processing of pictures from command line (makes it
possible to have scripts that does the whole job for you, without
even entering the program!)

- made "Settings"-menu available on startup

- made "Save prefs" and "Iconify" options available on startup

- removed separate "Load palette"-settings window (now possible

to load all kinds of palettes that are saveable from PicCon)

- removed separate "Load image"-settings

- added patterngadget to filerequester

- added the option to load and save Amiga monospaced, monocolored
bitmapfonts

- fixed a bug with HAMS bitplanes/interleaved format

- included support for saving as E source

- fixed a bug in the Pascal source saveformat

- Sega Megadrive characterset saving

- Sega Megadrive palette saving

- fixed a small bug in "Trace unused pens"

- fixed a bug in SNES character flippacking

- made it possible to move boxwalls with cursorkeys

PicCon 38/38

1.81 PicCon/Thanks to...

Thanks to...

* my girlfriend Guri

* my brother Mads (for doing excellent graphics)

* Stian (for nice coding)

* Mika Saastamoinen for being my first registered user :)

* my betatesters (Vidar Petursson, Bgrge Ngst and Daniel Hansson (special thanks to Daniel Hansson for lots of help with the
SNES implementation))

... and to everybody else who has helped me with bugreports and clever suggestions for enhancements, and last (but certainly not
least): those who have registered.

	PicCon
	PicCon Help
	PicCon/Introduction
	PicCon/SNES
	PicCon/Sega Megadrive
	PicCon/Emplant
	PicCon/AHRM
	PicCon/Requirements
	PicCon/Installation
	PicCon/FilesInDistribution
	PicCon/Usage
	PicCon/Usage/Scan modus
	PicCon/Usage/Tutorials
	PicCon/Usage/Tutorials
	PicCon/Usage/Tutorials
	PicCon/Usage/Tutorials
	PicCon/Usage/General info
	PicCon/Disclaimer and Author Info
	PicCon/How To Register
	PicCon/Project
	PicCon/Project/Open picture
	PicCon/Project/Open IFF
	PicCon/Project/Load image
	PicCon/Project/Load palette
	PicCon/Project/Save image
	PicCon/Project/Save palette
	PicCon/Project/Save grid
	PicCon/Project/Save data as...
	PicCon/Project/Change screenmode
	PicCon/Project/Modify palette
	PicCon/Project/Load prefs
	PicCon/Project/Save prefs
	PicCon/Project/Info
	PicCon/Project/About
	PicCon/Project/Iconify
	PicCon/Project/Quit
	PicCon/Edit
	PicCon/Edit/Cut frame
	PicCon/Edit/Grab frame
	PicCon/Edit/Box frame
	PicCon/Edit/Set frame
	PicCon/Edit/Free frame
	PicCon/Edit/Autocrop
	PicCon/Edit/Autoscan
	PicCon/Edit/Flip
	PicCon/Settings
	PicCon/Settings/Miscellaneous
	PicCon/Settings/Imageformat
	PicCon/Settings/Imageformat/Bitplanes
	PicCon/Settings/Imageformat/Interleaved
	PicCon/Settings/Imageformat/Mask
	PicCon/Settings/Imageformat/Chunky
	PicCon/Settings/Imageformat/Sprite
	PicCon/Settings/Imageformat/WBIcon
	PicCon/Settings/Imageformat/Fontset
	PicCon/Settings/Imageformat/IFF
	PicCon/Settings/Imageformat/SNES modes
	PicCon/Settings/Imageformat/SNES hardware
	PicCon/Settings/Imageformat/Sega
	PicCon/Settings/Imageformat/Megadrive hardware
	PicCon/Settings/Paletteformat
	PicCon/Settings/Paletteformat/4bits
	PicCon/Settings/Paletteformat/8bits
	PicCon/Settings/Paletteformat/32bits
	PicCon/Settings/Paletteformat/LoadRGB4
	PicCon/Settings/Paletteformat/LoadRGB32
	PicCon/Settings/Paletteformat/IFF
	PicCon/Settings/Paletteformat/SNES 5 bits
	PicCon/Settings/Paletteformat/Megadrive 3 bits
	PicCon/Settings/Paletteformat/Copperlist
	PicCon/Settings/Grid settings
	PicCon/Settings/Grabpen
	PicCon/Misc
	PicCon/Misc/Fake SNES screen
	PicCon/Misc/Remake Amiga screen
	PicCon/Misc/Pen usage in frame
	PicCon/Misc/Remap pens in frame
	PicCon/Misc/Trace unused pens
	PicCon/Misc/Convert EHB->normal
	PicCon/Misc/Reselect systempens
	PicCon/History
	PicCon/Thanks to...

