
Version 1.3

1/27/1994

Memdebug

Document no TOOL-PM-1

Author: Schmit René

CRP-HT

Internet: Rene.Schmit@crpht.lu

Memdebug

- 2-

Table of Contents

Product Overview .. 3

Features .. 3

Usage Scope ... 3

Errors .. 3

Statistics ... 4

Customising Memdebug and Debugging ... 5

User Guide ... 6

Using Memdebug in a Program ... 6

Customising and Debugging Functions ... 6

Limitations and Known Bugs .. 8

Internals .. 9

Function Prototype List .. 12

Bibliography... 12

Memdebug

- 3-

Memdebug

Product Overview

Memdebug is a utility that helps you debug all memory allocations and frees in
your C programs. Use Memdebug to trace memory blocks that have not been freed
correctly, to simulate ‘out of memory’ errors and to optimise your malloc()/free()
sequences. Furthermore, chances are higher that your program will not hang your
computer when it performs some illegal memory operation such as freeing an illegal
pointer. Of course, all these errors are detected at run-time and logged with as much
debugging data as possible.

Memdebug is written in portable ANSI C, and only minor changes to your sources
are necessary to use its basic features. Later on, all Memdebug calls may be switched
off at compilation time, so that your final product version won’t be affected at all.

Features

Usage Scope

Memdebug supports all ANSI C <stdlib> memory management functions: mal-
loc(), calloc(), realloc() and free().

At compilation time, or more precisely during the pre-processor pass, all calls to
those functions are changed to calls of Memdebug’s own routines, which call the
standard library functions during their execution. When the MEMDEBUG pre-pro-
cessor symbol is not defined, no substitutions of the standard function calls are made,
and all Memdebug-specific function calls are changed to empty statements. Thus,
your final program won’t be affected by the presence of Memdebug calls.

Only data concerning memory management is treated by Memdebug. Bugs such as
illegal memory references are only partially detected by Memdebug. Memdebug looks
out for ‘off by one’ errors at the start and end of a memory block. Furthermore, the
content of data may be set to some dummy value by Memdebug’s version of free(),
which will probably make your program fail when it accesses this memory block later
on.

Many errors that are detected won’t have the usual fatal effect. But beware! Don’t
use Memdebug as a ‘Bug Preventer’, as eventually, the bugs will turn up again.
Moreover, the performances of your program degrade dramatically when Memdebug
is used!

Errors

By default, a message will be written to stderr for each error that Memdebug de-
tects. stderr may be redirected to another text file specified in the
set_MemdebugOptions() function. Generally, the message itself is preceded by a file
name and a line number. It represents the source location where the error occurred.

The following errors are detected by Memdebug:

Memory exhaustion: No more system or Memdebug memory (see later) is avail-
able at this point of execution. This error may occur during calls to malloc(), cal-
loc() and realloc().

Unallocated pointer: A pointer is used that was not obtained by a call to malloc(),
calloc() or realloc(). This error may occur during calls to the realloc() and
free() routines.

Memdebug

- 4-

Spurious free() calls: The free() routine has been called with the NULL pointer
as its argument. According to the ANSI standard, this is no error, and free() won’t
do anything if this happens, but you might consider it bad programming style to
free() NULL pointers.

Unbalanced allocation/free call number: When the program exits, Memdebug tests
whether all allocated blocks have been freed previously. If this is not he case, the
number of blocks still allocated are written to stderr. More information about the un-
freed blocks may be found in the statistical data.

Corrupted memory blocks: As mentioned above, Memdebug tests whether the
bytes immediately preceding or following a memory block remain unchanged. If the
user writes at these memory locations, an error will be written to stderr.

Statistics

During run time, Memdebug gathers an abundance of statistical data concerning
memory usage. This information is written to stdout, which may be redirected as
needed. Following are the main categories of data gathered:

General statistics: They include the number of times a given routine has been cal-
led, the current, maximal and overall number of currently allocated blocks and bytes
of memory, and some details about the number of errors that occurred.

Next comes an alphabetically sorted list of all the pointer variables that have been
used. Indicated are the name of the pointers used when the memory block has been
freed, the number of times the block has been freed as well as the overall and average
size allocated for this variable.

Follows a list containing all variables that have not been freed. Each line begins
with the file name and line number where the memory block was allocated, indicates
the size in bytes and the size expression during allocation and the current content of
the memory pointed to. Of course, the format of the data is unknown, so it is casted to
a string and serves only as an indication. Non-printing characters are replaced by dots,
so serial terminals won’t get disturbed.

Finally, a list containing a trace of all memory management function calls is prin-
ted. This list contains the file name and line number of the function call as well as the
name of the pointer variable (if available), the block’s size in bytes and the size ex-
pression.

Memdebug

- 5-

Customising Memdebug and Debugging

The user may customise Memdebug’s output and it’s behaviour during allocation.
To do so, he has to insert routine calls into his source programs. As already mentioned
earlier, these calls will be wiped out by macro definitions when the MEMDEBUG
symbol is not defined during compilation, and the presence of these routine calls will
not affect the final program behaviour.

The main customisation routine is the set_MemdebugOptions() routine. It serves
to select the statistics to be printed and to specify the output files, that’s to say the re-
direction of stderr and stdout. Furthermore, the user may set a limit in bytes or
calls for the allocation routines.

The print_MemdebugStatistics() routine may be inserted to explicitly print out
the statistics file at a given moment. Thus, the user may make a kind of snapshot of
the memory status anywhere in the program. Memdebug won’t print out automatically
a final statistic report when this routine has been called once.

The check_MemdebugError() function returns the number of illegal memory op-
erations that occurred during program execution. This function is especially useful for
behind-the-scenes test programs that do no direct output. This is also why no implicit
final statistics will be printed.

One last routine, generate_MemdebugError(), is used to simulate out of memory
errors. The next allocation after this call will fail. With the set_MemdebugOptions()
routine, you may specify the number of generate_MemdebugError() calls that may
be done before an error occurs.

Memdebug

- 6-

User Guide

Using Memdebug in a Program

To produce the MEMDEBUG object code files, you have to compile memdebug.c,
memfree.c and memalpha.c. BEWARE: don’t define the MEMDEBUG symbol, else the
utility will end up in an infinite loop!

Hint for UNIX users: with the ar command, create an archive file!

Three operations are necessary to add Memdebug’s facilities to a program. First,
the <Memdebug.h> library header needs to be included into every source file of the
program. If the program owns a common header file that is included everywhere, it’s
simplest to include <Memdebug.h> there.

Then, the MEMDEBUG pre-processor symbol has to be defined to enable
Memdebug’s functions. If possible, you should do this on the compiler call line (using
-d or -define or similar). Of course, you may also define (or #undefine) the symbol be-
fore every inclusion of <Memdebug.h>.

Finally, you will need to include the Memdebug objects file to your link list.

This is all that is needed to get the basic, default information of Memdebug. All er-
rors will be detected by Memdebug, and final statistics will be generated. All output
will be send to stderr and stdout. The internal memory limit is set to infinite, and
no call sequence trace is generated (to save some memory). Memory contents are des-
troyed when a free() of a pointer is made.

The first call to a memory management function will start Memdebug. Thus, if no
memory function is used, no final statistics will be printed.

Customising and Debugging Functions

enum t_Option

{

c_No = 0,

c_Yes

};

typedef enum t_Option t_Option;

void set_MemdebugOptions(

t_Option p_GeneralStatistics,

t_Option p_AlphabeticalList,

t_Option p_NotFreeList,

t_Option p_CallSequenceList,

t_Option p_SpuriousFreeList,

t_Option p_PrintContents,

t_Option p_DestroyContents,

long p_GenerateErrorCount,

size_t p_MaximalMemoryAvailable,

char* p_StatisticsFileName,

char* p_ErrorFileName

);

Memdebug

- 7-

The set_MemdebugOptions() function changes the options setting of Memdebug.
The first four parameters are used to tell Memdebug which statistic listings to print.
p_Spuriousfree may be set to c_No if you don’t care about free(NULL) calls.

p_PrintContents determines if the contents of an allocated pointer will be printed
out in string format. This may be turned off if you don’t care about the contents.

When p_DestroyContents is set to c_Yes (the default), the contents of the mem-
ory pointed to by a pointer will be replaced by the ‘@’ character before the memory is
released. This will probably result in a run-time error when the memory is (illegally)
referenced later on.

In p_GenerateErrorCount , you may indicate the number of gener-
ate_MemdebugError() calls that may be done before an error is generated. This may
be useful if you suspect your program to fail only after the n’th memory allocation.
The default error count is 0.

With p_MaximalMemoryAvailable, you may set the maximal amount of memory
that Memdebug will allocate at a given time. This parameter will be ignored during
subsequent calls of set_MemdebugOptions, and you can’t set the memory limitation
to 0 bytes (in fact, 0 is used to indicate ‘no change in setting’). Note however that sys-
tem memory may run out before it reaches the limit you indicate, and that Memdebug
doesn’t care about memory fragmentation. To test real life memory limitations, set
this limit to a lower value than the actual memory limit of the target machine!

p_StatisticsFileName and p_ErrorFileName indicate the file names that re-
place stdout and stderr. If you pass the empty string, stdout and stderr will be
used. The previous file(s) will be closed automatically (except, of course, stdout and
stderr).

void print_MemdebugStatistics (void);

Calling this function will cause Memdebug to generate a statistic listing, using the
currently set options.

int check_MemdebugError (void);

Returns the number of illegally freed memory, spurious free()s and corrupted
blocks. No more implicit statistics will be printed.

void generate_MemdebugError (void);

The next call to malloc(), calloc(), or realloc() will fail when gener-
ate_MemdebugError has been called p_GenerateErrorCount times, regardless of
the option settings and the size of the block to be allocated.

Memdebug

- 8-

Limitations and Known Bugs

Memdebug may hide some bugs in your program. Errors such as deallocating an
illegal pointer will no more cause your program to hang, but only until Memdebug is
turned off again. Thus, you should always inspect the error listing generated by
Memdebug.

Memdebug is quite a resource-intensive utility. It will slow down your program
considerably (maybe up to a hundred times!!!), and it needs a lot of space to memo-
rise all information. Thus, if your program itself uses much memory, or if you allocate
many small blocks, your system may run out of memory, and you can’t use
Memdebug. But before giving up, try turning off the allocation trace function. This
may save a considerable amount of memory!

Due to the slowing down of your application, you should be cautious while de-
bugging real-time applications. Memdebug may mess up all of your timing.

Final statistics printout and data cleanup are done by exit functions. So, if your
program also installs exit functions, and your system imposes some limit concerning
the number of such functions, you should know that there is one (1) such function in
Memdebug. Ensure all additional data cleanup functions are installed AFTER the ini-
tialisation of Memdebug, or you might get erroneous ‘pointer not freed’ messages.

Each redirection of an output uses one file descriptor, which might cause problems
with programs using a lot of files.

There might be a very slight chance that there’s still some memory bug in
Memdebug (such as an unreleased pointer). Unfortunately, debugging Memdebug
with Memdebug ends up in an infinite loop…

Besides: beware when compiling the library: don’t compile it with the MEMDEBUG
symbol defined, else your program will end up in an infinite loop. The Memdebug
functions themselves call memory allocation functions that, when Memdebug’ed, call
again a Memdebug function and so on.

One last note: Never (and in this context, never means NEVER) ship a program
version that has Memdebug enabled. Anyhow, your customers won’t like an applica-
tion that’s that slow and eats up so much memory. Memdebug is not a ‘Bug Hiding’
tool, but a debugging tool!

Memdebug

- 9-

Internals

Extensive use is made of the C pre-processor. All function calls are either replaced
by macro calls (when Memdebug is enabled), or faded out (in the other case).
Furthermore, the pre-defined symbols __FILE__ and __LINE__ are used to get loca-
tion information. All parameters are passed once with the # prefix, so that Memdebug
gets information about the identifiers and size expressions used.

Initialisation of Memdebug is done during the first call of one of Memdebug’s rou-
tines, including malloc(), calloc(), realloc() and free(). An initialisation rou-
tine is called each time, but when it has been called once, it will exit immediately on
every subsequent call.

Memdebug’s last statistic printout and all data cleanup are done at exit time. To
achieve this, some exit handlers have been installed, using the atexit() stdlib func-
tion.

The data structures used by Memdebug are primarily some simple counters to col-
lect usage number and size statistics. The operations performed on these counters are
straightforward.

The ‘of by one’ error checking is done with prefix and postfix sentinels. Instead of
allocating a block with the exact size required, Memdebug allocates some additional
space (see fig. 1)

Memdebug now fills the two sentinels with a random value, which is also stored in
the internal block descriptor (see below). When the block is either realloced or freed,
the three values are compared against each other, and an error is generated should one
of the sentinels no longer contain its original value.

Sentinels

User pointer returned

Allocated memory blocks

fig. 1

Memdebug

- 10-

Memorisation and semantic checking of the storage allocator functions required a
much more sophisticated data structure. Each memory block is represented by two re-
cords. One record contains general information about a variable, while another one
contains information about a particular instantiation of the variable. The first one will
be called ‘Block Descriptor’, and the second one ‘Call Sequence’.

When a block is allocated, a BlockDescriptor is created, and the pointer to the
block is stored in it. A reference to it is stored in an AVL tree called the
NotFreedTree, the pointer being used as a key. An AVL tree has been chosen for the
following reason: malloc() tends to allocate memory in subsequent locations, and
using a simple tree would be equivalent to using a list (the tree would degenerate). In
consequence, each retrieval of a BlockDescriptor will be accelerated considerable by
using an AVL tree, even if insertion and deletion of a node in such a tree are quite
costly.

A CallSequence record is allocated next, and in it are stored all data relevant to the
allocation of the block (the location, the size and so on). A pointer to the
BlockDescriptor is stored into the CallSequence descriptor, and vice versa. This dou-
ble reference will be used later on during the free() operation. Finally, the
CallSequence is inserted into the call sequence list (see fig. 2)

Block Descriptor

Call Sequence List

Free Tree

Fig.2

Memdebug

- 11-

During a free() operation, the BlockDescriptor is first looked for in the
NotFreedTree. If it isn’t found, an illegal deallocation has been attempted, and no
further actions are performed. If it is found, the variable that hold the pointer will be
looked for in another AVL Tree, the AllocatedTree. In this tree, references to the
block descriptors of all already freed variables are stored, the variable identifier serv-
ing as key. When the variable is found in this tree, the corresponding BlockDescriptor
is updated, and the intermediate block descriptor is freed. If the variable was not used
previously in a free() call, a reference to the intermediate BlockDescriptor is stored
into the tree (see fig. 3).

Furthermore, if the function trace service is enabled, a CallSequence descriptor is
appended to the CallSequenceList. In the other case, the malloc() descriptor is re-
moved from this list, which saves much memory.

Block Descriptor

Call Sequence List

Free Tree

malloc free

Alphabetical
Tree

Fig 3.

A calloc() call is treated similarly to a malloc() call.

A realloc() call requires updating the information in the intermediary
BlockDescriptor and adding a CallSequence block to the corresponding list. As the
pointer to the allocated block is the key in the NotFreedTree and realloc() may
change this pointer, the reference to the BlockDescriptor is always removed from the
tree and inserted again after the reallocation. Furthermore, an additional link is used in
the CallSequenceList, connecting a realloc() descriptor to its previous realloc()
or its original malloc() or calloc() descriptor.

Memdebug

- 12-

Function Prototype List

void generate_MemdebugError (void);

void print_MemdebugStatistics (void);

int check_MemdebugError (void);

void set_MemdebugOptions(t_biState p_GeneralStatistics,

t_biState p_AlphabeticalList,

t_biState p_NotFreeList,

t_biState p_CallSequenceList,

t_biState p_SpuriousFreeList,

t_biState p_PrintContents,

t_biState p_DestroyContents,

long p_GenerateErrorCount,

t_MemorySize p_MaximalMemoryAvailable,

char * p_StatisticsFileName,

char * p_ErrorFileName

);

Bibliography

K&R: stdlib for description of malloc(),free(), calloc(),realloc()

