
VisualAge for Java, Version 2.0

Tool Integrators for ISVs

IBM

ii Tool Integrators for ISVs

Contents

Legal Notices . v
Notices . v

Tool Integrators for ISVs . 1
External Tool Integration . 1
External Class Integration . 2
Overview of the Tool Integrator API 2

Package Overview . 3
Usage Notes . 3

Setting Up a Tool for Integration 4
Create a Subdirectory for the Tool 4
Copy all Tool Files into the Base Directory 5
Create a Control File . 5
Examples of Control Files 6
Create Control Files for Other Supported Languages (optional) 7

Setting Up Class Libraries or Beans for Integration 7
Create a Subdirectory for the Feature 7
Copy Related Files to the Base Directory 7
Create a Control File . 8
Examples of Control Files 9
Create Control Files for Other Supported Languages (optional) 9
Feature Setup at IDE Startup 10
Adding a Feature to the Workspace and Visual Composition Editor Palette . 10

Running the Tool from within the IDE 10
Selection Context and Selection Group 11

Updating and Removing Integrated Tools and Classes 12
Example: Using the Tool Integrator API to Associate Data with a Package . . 12

Preparation before Testing the Example 14

© Copyright IBM Corp. 1998 iii

iv Tool Integrators for ISVs

Legal Notices

Notices

Note to U.S. Government Users — Documentation related to restricted rights —
Use, duplication or disclosure is subject to restrictions set forth in GSA ADP
Schedule Contract with IBM Corp.

Any reference to an IBM licensed program in this publication is not intended to state
or imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information Programming interface information is
intended to help you create application software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help you
debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

v AIX

v AS/400

v DB2

© Copyright IBM Corp. 1998 v

v CICS

v IBM

v OS/2

v OS/390

v RS/6000

v San Francisco

v VisualAge

v Visual Servlet

v WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States and/or in other countries.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the U.S. and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the U.S. and/or other countries.

Other company, service, and product names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of their respective owners.

vi Tool Integrators for ISVs

Tool Integrators for ISVs

External Tool Integration

Warning: Only experienced programmers should attempt to use the VisualAge for
Java Tool Integrator. The Tool Integrator is ideally suited for use by ISVs.

With the VisualAge for Java Tool Integrator, you can integrate Java applications that
reside on the file system such that they can be launched from within the IDE. The
Java classes that make up the tool do not reside in the workspace, but are
dynamically loaded from the file system. The Tool Integrator provides a standard
framework for integration and upgrading of such Java tools.

The Tool Integrator only supports Java applications; that is, the entry point must be
a main() method within a specific class. Applets cannot be integrated; instead, use
the conventional IDE import facilities. To integrate an external class library or bean,
use the Feature Integrator.

The IDE makes the following core class libraries available to the tool at run time:

v JDK 1.1.6

v JFC 1.2 (including Swing)

v VisualAge for Java Tool Integrator API

To ensure that any other classes required by tool are accessible, you should
provide them with the tool itself in the file system. Because tools are kept in
separate directories, they cannot share classes. Classes that are required by
multiple tools must be copied into each tool directory. Unless a class belongs to one
of the core class libraries (cited above) or is supplied by you in the tool base
directory, there is no guarantee that any other classes will be available to be
referenced, even if it is in the workspace. The IDE class path setting can be
modified for an individual IDE using the tool, but you should make no general
assumptions about accessing non-core class libraries.

An integrated tool is run using the tool’s class files, which reside on the file system.
These files are not loaded into the IDE, and are not visible to the user in the core
IDE tools (for example, the Workbench).

When resolving class references, the VisualAge for Java class loader looks for
classes in the following sequence:

1. The tool base directory.

2. The Tool Integrator API.

3. The JFC API.

4. The JDK API.

For classes in the tool base directory, do not use names that conflict with the Tool
Integrator API, JFC, or JDK. Results are unpredictable.

If the class is not found in any of the above locations, the class reference is not
resolved. The Tool Integrator does not look for classes anywhere else. If you
suspect that a class reference is not being resolved and would like more
information, make sure to select the 'Show system programs in debugger and
console' option in the Debugging page of the Options dialog. The Console window
may provide information on unresolved class references.

© Copyright IBM Corp. 1998 1

External Class Integration

Warning: Only experienced programmers should attempt to use the VisualAge for
Java Feature Integrator. The Feature Integrator is ideally suited for use by ISVs.

With the VisualAge for Java Feature Integrator, you can conveniently integrate Java
class libraries and beans, called features, that reside on the file system. Once a
feature has been integrated and added to the workspace, it can be used within IDE
the same way that any other classes in the IDE are used. The Feature Integrator
allows class libraries and beans not shipped with VisualAge for Java to appear
tightly integrated with VisualAge for Java environment, and provides a common
framework for integration of such classes.

Keep in mind that the Feature Integrator is a convenience mechanism for classes
that are not shipped with VisualAge for Java, and that these classes can also be
manually imported into the repository and added to the workspace using
conventional IDE facilities.

When the IDE starts, new features are automatically imported into the repository,
and are made available in the Quick Start Feature selection dialog for 'Add Feature'
and through the Visual Composition Editor palette 'Available...' selection dialog.
Features can be loaded from the Quick Start window or from the Visual
Composition Editor palette.

Similar to the Feature Integration mechanism, you can integrate file-based Java
applications with the IDE by using the Tool Integrator.

Overview of the Tool Integrator API

Warning: Only experienced programmers should attempt to use the VisualAge for
Java Tool Integrator API. This API is ideally suited for use by ISVs.

The VisualAge for Java Tool Integrator API provides a powerful Java class library
for programmatically managing code and data from within the IDE. While a
programmer can use the IDE SmartGuides, menus, and other user interface
facilities to work with code, this API lets you manage the environment
programmatically.

The API provides methods to perform the following tasks:

v browse the workspace and repository, and query objects

v load editions from the repository into the workspace

v import / export Java source, class files, and repository files

v work with type (class/interface) source code

v launch key IDE elements, such as various prompters and project/package/ type
browsers

v manipulate the CLASSPATH of an executing tool

v access tool data

Why would you use the Tool Integrator API? Consider this scenario: you are
developing an application in VisualAge for Java that requires a high degree of
interaction with the file system. You need to export your code to the file system to
properly test it. Using the conventional IDE user interface, you would use the Export

2 Tool Integrators for ISVs

SmartGuide to deploy the class files. With the Tool Integrator API, you can write a
tool that encapsulates all the user interface steps into a single class execution.

Package Overview

The API consists of a project called 'IBM IDE Utility class libraries'. When VisualAge
for Java is installed, this project is only in the repository. You must add it to the
workspace to work with the classes. The project contains two packages:

v com.ibm.ivj.util.base - base workspace and repository access.

v com.ibm.ivj.util.builders - code builders (direct source manipulation). This
package contains an initial definition of builder support that is sufficient for code
generators. In this case, the generators create an internal source code structure
that is then saved in the IDE. Support is provided for preserving simple user
changes (using structured comment blocks) across regeneration of the code.

Usage Notes

Code that uses the Tool Integrator API must be executed from within the IDE. There
is no supported mechanism for getting to this API from outside the IDE, although
tools that execute in a separate process can still make use of the API by writing a
request handler that runs within the IDE. The request handler could be structured
as a long-running tool extension. Examples include an RMI server or an http server
with servlets that communicates with the external process through some private
request/response protocol, calling the Tool Integrator API to handle the requests.

When developing code in the IDE that uses the Tool Integrator API, ensure that the
classpath properties for the class include 'IBM IDE Utility local implementation' in
the 'Extra directories path' list. The classes can be found in <prod
dir>\ide\project_resources\IBM IDE Utility local implementation. Once completed tool
classes are deployed, the API classes are automatically included on the classpath
of each executing tool action.

The tools can store tool-specific data within VisualAge for Java. Any serializable
Java object can be tool data.

tool options
tool data associated with a tool key. Data is unique to each user
workspace.

program element data
tool data associated with a program element
(project/package/class/interface) that resides in the workspace. Data is
unique to each user workspace.

shared data
tool data associated with a program element. Data is stored in the
repository, so it can be shared in a team environment.

All three of these facilities are intended to be used to store relatively modest
amounts of information. It is not intended to be used as a mass storage
mechanism. Although the API does not impose any limits on data size, storing large
data objects (especially shared data) can lead to performance degradation.

Access to both the workspace and repository is provided at a granularity level of
project, package, class, or interface. With the exception of basic code-builder

Tool Integrators for ISVs 3

support, no API is provided to manipulate individual methods. Common Java
facilities, such as introspection, can be used to access information at the method
level.

To begin using the API, begin with the ToolEnv class, a bootstrap class used by a
tool to gain access to the API services. ToolEnv.connectToWorkspace() returns a
reference to a concrete implementation of the workspace. A repository is obtained
from the workspace by calling one of the Workspace.getRepository() methods.

The classes and API are split in terms of code relating to the workspace and
elements relating to the repository. The workspace includes projects, packages and
types that have been added from the repository. All such program elements have
corresponding editions in the repository. Thus, an API object representing a
workspace project/package/type is distinct from the API object representing its
corresponding edition in the repository. The relationship a workspace object has
with other workspace objects is different than with repository objects. In the
workspace, a project can include many packages, while a package can only belong
to one project. In the repository, a project edition can include many package
editions, and a package edition can belong to many project editions.

The repository can be directly queried for names of project and package editions. If
a project or package name is supplied, the repository can also be queried for the
corresponding list of the project or package editions.

Setting Up a Tool for Integration

A user-defined tool can be set up any time after VisualAge for Java has been
installed. After the tool has been set up, the tool becomes visible from within the
IDE once the IDE has been restarted.

The high-level steps to set up a tool for IDE integration are:

1. Create a subdirectory for the tool, called the base directory.

2. Copy all application classes, resource files, and HTML help into the base
directory.

3. Create a control file that provides the IDE with details on the integration.

4. Create additional control files for other supported languages. (optional)

Create a Subdirectory for the Tool

Create a subdirectory from the ide/tools directory. This will be the base directory for
the tool. The subdirectory name should be based on the tool’s complete package
prefix. When naming the subdirectory, replace the periods (.) in the package name
with dashes (-). The following table shows two examples.

Complete package prefix Base directory for tool

com.dingbat.widgets com-dingbat-widgets

abc.enterprise.databuilder abc-enterprise-databuilder

Unique base directory names distinguish integrated tools from each other.

4 Tool Integrators for ISVs

Copy all Tool Files into the Base Directory

Copy all class files and resource files into the base directory, ensuring the
appropriate subdirectory structure is maintained. You can build the tool itself in the
IDE and export the class files to the tool base directory.

In addition, copy any tool documentation files (HTML) into the base directory.

Create a Control File

Create a control file, named default.ini, and copy it into the base directory. The
control file provides integration information to the IDE. This file must be a flat ASCII
file, cannot include blank lines, and must follow this format:

Name=<tool_name>
Version=<tool_version>
Help-Item=<menu_item_text>,<HTML_filename>
Menu-Group=<menu_group_text>
Menu-Items=<menu_item_group>[;...]
<menu_item_group>=<menu_item_text>,<start_class>,<context_type>
Quick-Start-Group=<Quick_Start_category>
Quick-Start-Items=<Quick_Start_group>[;...]
<Quick_Start_group>=<Quick_Start_text>,<start_class>

Parameter values cannot be delimited by quotation marks. In addition, commas (,)
and semi-colons (;) cannot be used except when delimiting parameter values, as
specified in the syntax above. Only the Name and Version entries are mandatory;
all other entries are optional.

Name Identifies the integrated tool by name. The name can be any sequence of
alphanumeric characters and punctuation (except commas, semi-colons,
and colons), and should not exceed 40 characters in length.

Version
Specifies the released version of the tool.

Help-Item (optional)
Identifies a Help menu entry with the supplied menu text, linking to the main
HTML file for the tool. The URL for the file is relative to the tool’s base
directory.

Menu-Group (optional)
Indicates that all menu items are to be placed in a submenu, and specifies
the name of the submenu.

Menu-Items (optional)
Lists one or more menu items. Each menu item includes the text appearing
on the menu, the class to be invoked when the menu item is selected, and
an optional context type. The context type must be one of '-P' (project), '-p'
(package), '-c' (class). If a context type is provided, the menu item is
accessible from the Selection menu when that context has been selected. If
no context type is provided, the menu item represents a general workspace
action (accessible from Workspace > Tools). Each start_class must be the
fully-qualified class name.

Tool Integrators for ISVs 5

Quick-Start-Group (optional)
Indicates that all Quick Start entries are to be placed under the specified
Quick Start category. If multiple tools specify the same
Quick_Start_category, they appear in the same Quick Start category. If no
category is specified, all Quick Start item entries are automatically placed in
a default tools Quick Start category.

Quick-Start-Items (optional)
Lists one or more Quick Start items. Each item includes the text displayed
in the Quick Start window, and the class to be invoked when the item is
selected. Each start_class must be the fully-qualified class name.

A tool can be invoked from both the Tools menu and the Quick Start window.

Examples of Control Files

All examples below assume that the directory ide\tools\com-whammo exists, and
includes all required files.

Example 1. Menu Integration

Name = Whammo Formatter
Version = 2.0
Menu-Items = Whammo Formatter,com.whammo.WStart1,

Example 2. Menu Group and Help Integration

Name = Whammo Formatter
Version = 2.0
Menu-Group = Whammo
Menu-Items = Run All,com.whammo.WStart1, ; Run on Selected
Classes,com.whammo.WStart2,-c
Help-Item = Whammo Formatter,index.html

Example 3. QuickStart Integration

Name = Whammo Formatter
Version = 2.0
Quick-Start-Items = Run All,com.whammo.WStart1;
Configure,com.whammo.WStartConfig

Example 4. QuickStart Group and Help Integration

Name = Whammo Formatter
Version = 2.0
Quick-Start-Group = Whammo
Quick-Start-Items = Run All,com.whammo.WStart1;
Configure,com.whammo.WStartConfig
Help-Item = Whammo Formatter,index.html

6 Tool Integrators for ISVs

Create Control Files for Other Supported Languages (optional)

Create a control file for each language you want to support, and place these files
into the base directory. To name these control files, follow the Java naming
convention for locale support: <language>[_<country>].ini. For example, en_GB.ini
would be the name of the British English control file, and fr.ini would be the name of
the French control file.

When determining which control file to use, the Tool Integrator follows this
sequence, using <language> and <country> values for the default locale:

1. Find the file <language>_<country>.ini

2. Find the file <language>.ini

3. Find the file default.ini

All control files must be in flat ASCII format, although parameter values can use
non-ASCII Unicode values with \uxxxx notation.

Even if language-specific control files are supplied, a default.ini file must always be
supplied. As well, only a change in the timestamp of default.ini can trigger the Tool
Integrator to recognize tool updates.

Setting Up Class Libraries or Beans for Integration

An external class library or set of beans can be set up any time after VisualAge for
Java has been installed. In VisualAge for Java, the external class libraries or beans
are also called features. After features have been set up, they become visible within
the IDE once the IDE has been restarted.

The high-level steps to set up classes for IDE integration are:

1. Create a subdirectory for the classes, called the base directory.

2. Copy all related files into the base directory.

3. Create a control file that provides the IDE with details on the integration.

4. Create additional control files for other supported languages. (optional)

Create a Subdirectory for the Feature

Create a subdirectory from the ide/features directory. This will be the base directory
for the feature. The subdirectory name should be based on the classes’ complete
package prefix. When naming the subdirectory, replace the periods (.) in the
package name with dashes (-). The following table shows two examples.

Complete package prefix Base directory for class library

com.dingbat.widgets com-dingbat-widgets

abc.enterprise.databuilder abc-enterprise-databuilder

Unique base directory names distinguish features from each other.

Copy Related Files to the Base Directory

Two files are required to enable the Feature Integrator facility: projects.dat and
default.ini.

Tool Integrators for ISVs 7

The file projects.dat is a VisualAge for Java Version 2.0 repository that must
contains Java projects. Only one versioned edition of each project can be included
in the repository. You can create this file by importing the classes into an existing
IDE project and then exporting the project as a repository (.dat) file. This ensures
that the class data available at load time is compiled. Given bytecodes, the IDE can
perform optimizations that reduce footprint and increase performance for importing
and loading.

The file default.ini is the control file, and is described in the following section.

Resource files associated with the feature can be optionally provided. Follow these
steps when providing resource files:

1. Create a subdirectory called project_resources under the feature base directory.

2. Under the project_resources directory, create a subdirectory for each project in
the feature, with the same name as the project. The resource files should be
copied under each project subdirectory, provided as expected by the referencing
Java code.

When the feature is integrated with the IDE, all subdirectories of project_resources
are copied into ide/project_resources, overwriting any project resource files that
have the same names.

Create a Control File

Create a control file, named default.ini, and copy it into the base directory. The
control file provides integration information to the IDE. This file must be a flat ASCII
file, cannot include blank lines, and must follow this format:

Name=<feature_name>
Version=<feature_version>
Help-Item=<menu_text>,<HTML_filename>
Palette-Items=<category_group>[;...]
<category_group>=<category_name>,<class_name>[,<class_name>...]
Prereq-Features=<base_directory>[< base_directory>]

Parameter values cannot be delimited by quotation marks. In addition, commas (,)
and semi-colons (;) cannot be used except when delimiting parameter values, as
specified in the syntax above. Only the Name and Version entries are mandatory;
all other entries are optional.

Name Identifies the integrated feature by name. The name can be any sequence
of alphanumeric characters and punctuation (except commas, semi-colons,
and colons), and should not exceed 40 characters in length.

Version
Specifies the released version of the feature. Feature versions should not
be confused with the versioned edition names of projects and packages in
the repository file, as there is no relationship between them.

Help-Item (optional)
Identifies a Help menu entry with the supplied menu text, linking to the main
HTML file for the feature. The URL for the file is relative to the feature’s
base directory.

Palette-Items (optional)
Lists bean categories and their corresponding beans that will be added to

8 Tool Integrators for ISVs

the Visual Composition Editor beans palette. Beans in the same category
should be separated by commas, while each category should be separated
by a semi-colon (;).

Prereq-Features (optional)
Specifies one or more features that are prerequisites of this feature. A
prerequisite feature is specified by its base directory name. Prerequisite
features are loaded when this feature is loaded. After the feature has been
unloaded, however, prerequisite features must be unloaded separately.

Examples of Control Files

Example 1. Class Library Integration with Help

Name = Factory API
Version = 3.0
Help-Item = Factory API, index.html

Example 2. Class Library Integration with Help and One Palette Category

Name = Factory API
Version = 3.0
Help-Item = Factory Beans, beans.html
Palette-Items = Factory, com.factory.Generator1,com.factory.Generator2

Example 3. Class Library Integration with Help and Two Palette Categories

Name = Factory API
Version = 3.0
Help-Item = Factory Beans, beans.html
Palette-Items = Factory1, com.factory.Generator1,com.factory.Generator2; Factory2,
com.factory.Mulcher1, com.factory.Mulcher2

Create Control Files for Other Supported Languages (optional)

Create a control file for each language you want to support, and place these files
into the base directory. To name these control files, follow the Java naming
convention for locale support: <language>[_<country>].ini. For example, en_GB.ini
would be the name of the British English control file, and fr.ini would be the name of
the French control file.

When determining which control file to use, the IDE follows this sequence, using
<language> and <country> values for the default locale:

1. Find the file <language>_<country>.ini

2. Find the file <language>.ini

3. Find the file default.ini

All control files must be in flat ASCII format, although parameter values can use
non-ASCII Unicode values with \uxxxx notation.

Even if language-specific control files are supplied, a default.ini file must always be
supplied. As well, only a change in the timestamp of default.ini can trigger the IDE
to recognize feature updates.

Tool Integrators for ISVs 9

Feature Setup at IDE Startup
1. All Java projects in the feature’s projects.dat file are copied to the repository.

If a problem occurs in either copying the feature to the repository or adding it to
the workspace, the feature’s default.ini is renamed to default.$$$ in order that
the IDE will not encounter this problem every time it starts. As well, an error
message is produced.

2. If the feature includes a project_resources directory, all subdirectories of this
directory are copied to ide/project_resources. Any existing files in
ide/project_resources with the same name are overwritten, so take care when
naming your resource files.

3. Information from the default.ini is saved in the workspace registry of installed
features.

If a feature is successfully installed, all feature files still remain on the file system.
This way, the feature can be easily re-loaded if the workspace needs to be changed
or is corrupted.

Adding a Feature to the Workspace and Visual Composition Editor
Palette

Once a feature has been successfully integrated, you must still add it to the
workspace in order to use it.

1. From the IDE, select F2 to bring up the Quick Start window.

2. Select Features > Add Feature and select OK.

3. From the selection dialog, select the feature you would like to add to the
workspace and then select OK.

The feature is now added to the workspace and any beans specified in a control file
Palette-Items entry appear on the Visual Composition Editor palette.

You can also add the feature from the Visual Composition Editor palette:

1. From the palette pulldown, select Available...

2. From the selection dialog, select the Feature to be added and then select OK.

After a feature has been added, it can be deleted through the Quick Start window.

Running the Tool from within the IDE

Once integrated, a user-defined tool that resides on the file system can be launched
in two ways. In each case, the main() method for the application is called.

1. From the IDE Tools menu. The tool can have a single menu entry off the Tools
menu, or a submenu that contains several menu entries. Each menu entry is
associated with a Java application that resides in the base directory of the tool.

2. From the Quick Start window. The tool can have an entry under its own
category, or be placed under the default tools Quick Start category.

The tool is launched via a mechanism that emulates a Java interpreter command.
Imagine that the class is launched by a command with the following syntax:

java <class_name> [selection_group]

where:

10 Tool Integrators for ISVs

class_name
The name of the application class file, which must contain a main() method.

selection_group
The selection context with the appropriate switch, if there is a selection
context. See below for details.

Selection Context and Selection Group

An application may have been set up such that it can only be launched when a
specific program element type is selected. The group of items that are currently
selected is called the selection context. The selection context can be either one or
more projects, one or more packages, or one or more classes. The names of the
selected program elements are passed as parameters to the application’s main()
method, as well as a switch indicating the program element type.

The invocation switches are:

-P (for Projects)
-p (for Packages)
-c (for Classes)

From the selection context, the Tool Integrator constructs a selection group. For
example, if the selection context includes two packages, myPack1 and myPack2,
the selection group is ’-P 'myPack1' 'myPack2'’. Items in the selection context may
contain spaces because the command creates a single string from the name of the
selected item. For example, if the projects 'Banking Facility' and 'Java Class
Libraries' have been selected, the selection group is ’-P 'Banking Facility' 'Java
Class Libraries'’. Default package names are passed as they appear in the IDE. For
example, the Animator class that is in the default package for Sun JDK Animator
would be passed as 'Default package for Sun JDK Animator.Animator'.

Each invocation of a tool passes a single selection context to the application. The
same tool can support multiple selection contexts for different invocations.

You are responsible for handling all input parameters passed to the tool as a result
of launching the tool with a selection context. You are also responsible for
managing any restrictions on the selection context, and to deal with any exceptions
that result from handling the input parameters.

Limitation: do not try to concurrently execute two or more tools that use the same
classes, where one tool loads the classes from the workspace and the other tool
loads the classes from the file system. This may be a typical scenario for tools that
generate code against a set of runtime libraries and also use the same set of
libraries during tool execution. The libraries must be added to the workspace in
order for the generated code to be usable. The tool could have also included the
same libraries in the tool installation directory tree for its own execution. This
limitation manifests itself as an exception in one or more of the executing programs.
Depending on the nature of the code, this is typically either an exception indicating
a class could not be found, or a cast exception. Simply terminate the offending
programs and run the actions sequentially. See the Release Notes for more details.

Tool Integrators for ISVs 11

Updating and Removing Integrated Tools and Classes

To update a tool or feature, copy any new files into the base directory or
appropriate subdirectories, overwriting the existing files. The system timestamp on
the control file (default.ini) must have also changed for the updates to take effect.
As well, the IDE must be restarted for the updates to take effect.

Although this update process is typically used to replace an existing version of a
tool or feature with a newer one, it is possible to make available multiple versions of
the tool or feature. The easiest way to support multiple versions is to treat each
version as a distinct tool or feature. Essentially, you need to place each version in a
unique base directory. It is also advisable to provide a unique Name entry in each
control file so that each version can be distinguished by the user in the IDE.

To remove a tool from the IDE, you need to:

1. Delete the tool base directory.

2. Replace your current workspace with a new workspace:

a. Ensure that all program elements are versioned. If you are working in a
team environment and your program elements are ready for general
availability to the rest of the team, you may also choose to release them. By
releasing, it will quicker to add program elements to the workspace after you
have refreshed the workspace.

b. Shutdown the IDE.

c. From the product CD, unzip ide.zip into the <prod dir>\ide\program directory.
This replaces the workspace file. Reposity data is left unaffected.

d. Start the IDE.

e. Add program elements back into the workspace.

To remove a feature from the IDE,

1. Delete the feature base directory.

2. Remove the classes from the workspace.

Example: Using the Tool Integrator API to Associate Data with a
Package

Consider the following situation: you want to attach reminders to yourself about
packages that you write in the IDE. You can use the Tool Integrator API to write a
tool that lets you input text, associate it with a package, and retrieve the text.

This hypothetical tool, called TextReminder, can be launched against a package. It
presents a simple dialog with a text area for inputting your comments, and buttons
for applying and canceling changes.

When data is associated with a workspace object (in this example, a package), it
must be uniquely identified by a key, which is a java.lang.String object. This allows
multiple tools to store information associated with the same workspace object. For
simplicity, we suggest you use the fully qualified tool name as the key.

Note: Any data associated with an IDE object must implement the Serializable
interface. In this example, we use String, which does implement Serializable.

The class for the tool does the following things:

12 Tool Integrators for ISVs

1. Takes the fully qualified name of the selected package as a parameter, -p
packagename.

2. Gets a workspace object by using the ToolEnv.connectToWorkspace() method.

3. Retrieves the Package object for the given package name by using the
Workspace.loadedPackageNamed() method.

4. Checks to see if the package has a text comment associated with it by using
the Package.testToolWorkspaceData() method, passing in the key
'TextReminder'. This method returns a boolean indicating whether any data is
associated with the package for this tool.

5. If data does exist, retrieves it using the Package.getToolWorkspaceData()
method, with the key as a parameter. This returns a ToolData object.

6. The ToolData object consists of the key and the text. The tool extracts the text
by using the ToolData.getData() method, which returns a Serializable object. In
this case, since we are storing and retrieving String objects, cast the returned
object to a String.

7. Outputs the String to the dialog.

8. When changes have been made to the output text, the tool writes the text back
to the ToolData object by using ToolData.setData(). Then it applies changes to
the package object by using Package.setToolWorkspaceData().

9. If you want remove any associated data (so that
Package.testToolWorkspaceData() returns false), use
Package.clearToolWorkspaceData().

The resulting class might look like this:
private static String key = 'TextReminder';

public static void main(String[] args) {
boolean saveTheComment = true;
boolean deleteTheComment = false;
String pkgName = args[1];

try {
Workspace theWS = ToolEnv.connectToWorkspace();
Package pkg = theWS.loadedPackageNamed(pkgName);
ToolData toolData = null;
String userComment = new String();

if (pkg.testToolWorkspaceData(key)) {
toolData = pkg.getToolWorkspaceData(key);
userComment = (String)toolData.getData();

}
else
toolData = new ToolData(key,userComment);

// Code that allows the user to view/edit
// the comment omitted.

if (saveTheComment) { // likely dependent on button click
toolData.setData(userComment);
pkg.setToolWorkspaceData(toolData);

}
else if (deleteTheComment) // likely dependent on button click
pkg.clearToolWorkspaceData(key);

// otherwise the user is not modifying the comment.
}

catch(Exception ex) { }
}

Tool Integrators for ISVs 13

Preparation before Testing the Example

To test the example in the IDE before deploying it, you need to ensure that the
execution classpath in the IDE has been properly set up, and that an execution
context is passed to main() during test execution.

To set up the classpath:

1. Open the Properties dialog on the class, and on the Class Path page, select the
Project path checkbox and then press Compute Now .

2. Select the Extra directories path checkbox and then select Edit . From the
dialog, select Add Directory... and then select ide\project_resources\IBM IDE
Utility local implementation.

To set up a test invocation context, open the Properties dialog on the class, and on
the Program page, enter the command-line arguments expected by the main()
method. For example '-p my.package'.

14 Tool Integrators for ISVs

