VisualAge for Java, Version 2.0

Visual Composition

<|II

il VisualAge for Java, Version 2.0: Visual Composition

Contents

Notices .
Programming Interface Informat|on .
Trademarks and Service Marks

Chapter 1. Visual Programming Fundamentals
Chapter 2. How Classes and Beans Are Related
Chapter 3. Visual, Nonvisual, and Composite Beans

Chapter 4. Visual Composition Editor Overview
Free-Form Surface .
Beans Palette .
Selection Tool .
Choose Bean Tool
Adding Beans in the Visual Composmon Edltor
Property Sheets .
Setting Tabbing Order .
Tearing Off Properties .
Layout Managers in Visual Composmon
Supported Layouts .
Setting Layout Properties dunng V|sual Composmon
Dropping Beans into the Layout

Chapter 5. Bean Design for Visual Composition
Chapter 6. Use of Visual Beans Created in Other Tools

Chapter 7. Bean Interfaces and BeanlInfo
Promotion of Bean Features

Default Promoted Feature Names
Feature Naming Guidelines .

Chapter 8. Connections

The Source and Target of a Connectlon
Property-to-Property Connections.
Event-to-Property Connections.
Event-to-Method Connections .

Code Connections .

Parameter Connections

Chapter 9. Generated Code

Code Generated from Visually Composed Beans

Generated Feature Code .

Generated BeanInfo Descriptor Code (an advanced toplc)

How Generated Code Coexists with User-Written Code

Chapter 10. Example of Generated Feature Code

Chapter 11. Example of Code Generated from Visual Composite

Chapter 12. Morphing

© Copyright IBM Corp. 1997, 1998

Xi
Xi
Xi

© 00 ~ ol

©

10

11
12
13
14
14
15
16

19

21

23
23
24
24

27
27
28
29
29
29
30

33
33
35
36
37
39
41

45

Chapter 13. Object Serialization in VisualAge
Chapter 14. Internationalization in VisualAge
Chapter 15. Using Visual Composites Imported from Version 1

Chapter 16. Working with Beans Visually
Editing Beans within a Composite Bean
Renaming Beans and Connections .
Setting the Tabbing Order
Promoting Bean Features
Tearing Off Properties .
Editing Bean Properties
Opening the Property Sheet for a Bean
Using Property Interface Editors .
Using Code Strings in Bean Properties.
Changing Bean Colors.
Changing Bean Fonts .
Changing Bean Size and Posmon
Adding Bean Icons .
Editing Bean Labels.
Setting a Layout Manager during Vlsual Composmon
Setting Layout Properties during Visual Composition.
GridBag Layout Constraints . -
Creating a GUI Using GridBagLayout .
Working in the Beans List

Chapter 17. Composing Beans Visually
Embedding Beans in a Composite Bean .
Adding Beans From the Palette
Adding Beans Not on the Palette .
Unloading the Mouse Pointer .

Undoing and Redoing Changes in the Vlsual Composmon Edltor .

Saving a Bean.
Running and Testing Beans

Chapter 18. Manipulating Beans Visually
Selecting and Deselecting Beans.
Positioning Beans
Resizing Visual Beans.

Resizing Beans by Dragglng

Matching Bean Sizes Using the Tool Bar)
Moving Beans .
Copying Beans
Deleting Beans . .
Displaying Bean Pop-Up Menus .

Chapter 19. Connecting Beans

Connecting Features to Other Features

Connecting Features to Code .

Connecting from Connection Results .

Supplying Parameter Values for Incomplete Connectlons .
Supplying a Parameter Value Using a Connection
Supplying a Parameter Value Using a Constant
Specifying Values for Parameters by Default.

Editing Connection Properties .

VisualAge for Java, Version 2.0: Visual Composition

47

49

51

53
53
53
54
55
56
56
56
57
57
58
58
59
59
60
60
60
60
61
65

67
67
67
68
69
69
69
69

71
71
72
73
73
73
74
74
75
75

77
77
78
78
79
79
79
79
80

Chapter 20. Manipulating Connections
Showing and Hiding Connections.
Deleting Connections .
Selecting and Deselecting Connectlons
Selecting a Single Connection .
Selecting Multiple Connections.
Deselecting Connections .
Reordering Connections . .
Changing the Connection Name . .
Changing the Source and Target of Connectlons . .
Moving Either End of a Connection to a Different Bean.

Moving Either End of a Connection to a Different Feature.

Reversing the Direction of a Connection .
Changing the Shape of a Connection

Chapter 21. Managing the Beans Palette
Adding a Category to the Palette .

Adding a Bean to the Palette .
Deleting a Bean or Category from the Palette .

Chapter 22. Using VisualAge Beans in Visual Composition
Composing with User Interface Beans .

Composing with Factory and Variable Beans
Composing an Applet .

Composing a Window .

Adding a Pane or Panel .

Adding a Table or Tree View

Adding a Text Component .

Adding a List or Slider Component .

Adding a Button Component

Adding a Menu or Tool Bar . . .
Dynamically Creating and Accessing a Bean Instance .

Chapter 23. Enabling Custom Edit Support for Your Bean

Chapter 24. Property Editor Examples
Tag-Based Editor for the Person Bean .
Text-Based Editor for the Person Bean.
Custom Editor for the Person Bean .
Paintable Editor for the Person Bean

Chapter 25. Separating Strings for Translation
Separating Strings through Property Sheets .

Chapter 26. Incorporating User-Written Code into Visual Composites
Assembling a Bean from Generated and User-Written Code .

Modifying Generated Feature Code . .
Adapting User-Written Classes for Use as Beans .

Chapter 27. Defining Bean Interfaces for Visual Composition
Creating and Modifying a Beanlinfo Class .

Adding Property Features

Adding Method Features .

Adding Event Features

Promoting Features of Embedded Beans

Specifying Expert Features .

81
81
81
81
81
82
82
82
82
83
83
83
83
83

85
85
86
88

89
89
89
89
92
95
99

. 101
. 104
. 107
. 109
. 113

. 117

. 119
. 120
. 121
. 122
. 125

. 127
. 127

. 129
. 129
. 129
. 129

. 131
. 132
. 133
. 134
. 135
. 137
. 138

\Y

Specifying Hidden Features.138

Chapter 28. Beans for Visual Composition v
User Interface Beans .. 14
Factory and Variable Beans.142

Chapter 29. AppletBeans .143
Applet. .143
JApplet L ..o 144

Chapter 30. WindowBeans145
Dialog.14
FileDialog .146
Frame.14
JDialog Lo 1Ay
JFrame .148
JinternalFrame .148
JWindow. ... 140
Window .. .15

Chapter 31. Pane and PanelBeans151
JDesktopPane. 11
JEditorPane .. .152
JOptionPane .152
JPanel .153
JScrollPane. .153
JSplitPane154
JTabbedPane .155
JTlextPane .15
Panel .. .156
ScrollPane .156

Chapter 32. Table and TreeBeans1589
JTable. .159
TableColumn160
JTree160

Chapter33. TextBeans .161
Jlabel.10
JPasswordField .. .162
JTextArea .. .162
JTextFied .163
Label .. .13
TextArea. .. .1064
TextField.164

Chapter 34. List and SliderBeans167
Choice s et
JComboBox .1e8
JList .168
JProgressBar .169
JScrollBar ..169
JSlider ..170
List. 170
Scrollbar.1n1

Vi VisualAge for Java, Version 2.0: Visual Composition

Chapter 35. Button Beans
Button. e
Checkbox
CheckboxGroup .
JButton .
JCheckBox .
JRadioButton .
JToggleButton .

Chapter 36. Menu and Tool Bar Beans
CheckboxMenultem.
JCheckBoxMenultem .
JMenu.

JMenuBar

JMenultem . .o
JPopupMenu
JRadioButtonMenultem
JSeparator .

JToolBar .
JToolBarButton
JToolBarSeparator .
Menu .

MenuBar .

Menultem
MenuSeparator
PopupMenu.

Chapter 37. Factory and Variable Beans
Factory e
Variable .

Chapter 38. Visual Composition Editor
Status Area—Visual Composition Editor
The Tool Bar in Visual Composition .

Chapter 39. The Menu Bar in Visual Composition
Bean .
Tools .
Run
Properties
Beans List .
Show Connections .
Hide Connections
Align Left.
Align Center
Align Right .
Align Top.
Align Middle
Align Bottom
Distribute Horizontally .
Distribute Vertically .
Match Width
Match Height .

Chapter 40. Keys
Window Keys .

Contents

. 173
. 173
. 174
. 174
. 175
. 175
. 176
. 176

. 179
. 179
. 180
. 180
. 181
. 182
. 182
. 183
. 183
. 184
. 184
. 185
. 185
. 186
. 187
. 187
. 188

. 189
. 189
. 190

. 191
. 191
. 191

. 195
. 195
. 195
. 196
. 196
. 196
. 196
. 196
. 197
. 197
. 197
. 197
. 197
. 197
. 197
. 197
. 197
. 198

. 199
. 199

Vii

AcceleratorKeys. .200
HelpKeys200

Chapter 41. Pop-Up Menus for the Visual Composition Editor R ~4 0 X §
Add Bean from Project. .202
Browse Connections .202
Change BeanName .202
Change ConnectionName .202
ChangeType .203
Connect203
Connectable Features. .203
Delete.203
Event to Code Connection .203
Layout. 204

Distribute. .. .204

Horizontally In BoundingBox204

Horizontally In Surface. .204

Vertically In BoundingBox204

Vertically In Surface. .204
Modify Palette. .. .204
MorphiInto .205
Open206
Parameter fromCode .205
Promote Bean Feature. .205
Refresh Palette .205
Refresh Interface. .205
Reorder Connections From .205
Restore Shape .205
Set Tabbing. .206
Show Largelcons .206
Switchto. .206
Tear-Off Property. .206

Chapter 42. Modify Palette Window209
BeanType 209
Class Name or FileName .209
Palette List.210

Chapter 43. Choose Bean Window 2
BeanType 21
ClassName21
Name L 212

Chapter 44. Promote Features Window213
Promote Name .Z213
>>Promote. .213
<<Remove., s218

Chapter 45. Reorder Connections Window e e e215

Chapter 46. Connection Windows217
Method .218
Property .Z218
Event .218
Details218

Viii VisualAge for Java, Version 2.0: Visual Composition

Chapter 47. Property-to- Property Connection Window
Source Property .

Target Property

Source Event .

Target Event

Chapter 48. Event-to-Method Connection Window
Pass Event Data .

Event .

Method

Show Expert Features

Set Parameters

Chapter 49. Constant Parameter Value Properties Window

Chapter 50. Event-to-Code Connection Window
Method Class .

Event .

Methods .

Code Pane .

Pass Event Data .

Chapter 51. Parameter-from-Code Connection Window
Chapter 52. Morph Into

Chapter 53. Resolve Class References

Chapter 54. String Externalization Editor

Chapter 55. Externalizing: Package.Class

Chapter 56. BeanInfo Page
Features Pane—BeanInfo Page
Definitions Pane—BeanlInfo Page.
Information Pane—BeanInfo Page
Source Pane—Beaninfo Page .
Status Area—BeanlInfo Page

Chapter 57. BeanInfo Page Menus
Features—BeanlInfo Page
Show—BeanlInfo Page.
Sort—Beanlinfo Page .
Definitions—Beaninfo Page .
Information—Beaninfo Page

Chapter 58. BeanInfo Page Tools
Beaninfo Page Tool Bar .

BeanlInfo Class Generator

BeaniInfo Class SmartGuide.

Bean Icon Information SmartGuide .
Bean Information SmartGuide .

New Property Feature SmartGuide .
New Event Listener SmartGuide .
Event Listener Methods SmartGuide
New Event Set Feature SmartGuide.

. 219
. 219
. 219
. 219
. 220

. 221
. 221
. 221
. 221
. 222
. 222

. 223

. 225
. 225
. 225
. 225
. 226
. 226

. 227

. 229

. 231

. 233

. 235

. 237
. 238
. 239
. 240
. 240
. 240

. 241
. 241
. 242
. 243
. 243
. 245

. 247
. 247
. 248
. 248
. 249
. 249
. 250
. 251
. 252
. 252

Contents

iX

New Method Feature SmartGuide
Parameter SmartGuide

Add Available Features

Delete Features . .

Class Qualification Dialog

X VisualAge for Java, Version 2.0: Visual Composition

. 253
. 254
. 254
. 254
. 254

Notices

Any reference to an IBM licensed program in this publication is not intended to state
or imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM'’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help you
debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

AIX
AS/400
DB2
CICs
IBM
0S/2

© Copyright IBM Corp. 1997, 1998 Xi

Xii

0S/390
RS/6000

San Francisco
VisualAge
Visual Servlet
WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States and/or in other countries.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the U.S. and other countries.

Other company, product, and service hames, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

VisualAge for Java, Version 2.0: Visual Composition

Chapter 1. Visual Programming Fundamentals

VisualAge for Java includes a state-of-the-art object-oriented visual composition
editor for assembling program elements visually from JavaBeans components.

Object-oriented programming facilitates development of complex software systems
by breaking them up into a number of much smaller, simpler program elements
called objects. Objects work together by sending each other messages, that is, by
requesting behavior that is implemented by the target object. Taken as a group,
these behaviors comprise a class interface.

Using an object-oriented approach for complex systems provides the following
benefits:

* Individual classes are much easier to create and understand.

» Systems are much easier to maintain and enhance. Object implementations can
be modified individually without modifying the rest of the system, as long as the
objects continue to respond appropriately to messages sent to them by other
objects.

Despite these benefits, implementing large systems can still be expensive. One way
to reduce the cost is to reuse object implementations. Many companies would
prefer to buy reliable reusable classes, creating classes only for functions specific to
their business. This vision of constructing custom software using standard building
blocks has been called construction from parts. The building blocks themselves
have popularly been called parts or components.

However, reuse is hard to achieve when the class interfaces are too specific to the
application for which they were originally developed. To promote wider reuse, class
interface conventions called component models have been defined, such as
ActiveX, OpenDoc, and JavaBeans.

JavaBeans is the standard component model for the Java language and is the
component model used by VisualAge. JavaBeans includes the following definitions:

An event model. Event models specify how a component sends messages to
other objects without knowing the exact methods that the other object
implements. This enables a component to be reused with a range of objects that
have different interfaces

Events, properties, and methods. JavaBeans defines a component interface in
terms of the events it can signal, the property values that can be read and set,
and the methods it implements. This definition provides more structure to the
interface of a component compared with a simple class interface, facilitating the
use of tools such as the VisualAge Visual Composition Editor.

Introspection. Introspection refers to the ability to discover programmatically the
component interface for instances of a particular component class. The reason
to provide introspection is that it enables the use of programs such as the Visual
Composition Editor that can work with component instances at run time without
having the details of these components programmed into them.

The Visual Composition Editor enables you to create programs graphically from
existing beans. Beans are simply Java classes that comply with the JavaBeans
specification. JavaBeans is the component model supported and used throughout
VisualAge, so this documentation will refer to VisualAge components as beans.

© Copyright IBM Corp. 1997, 1998 1

VisualAge provides user interface beans based on Java classes in the Abstract
Windowing Toolkit (AWT) and Swing packages. The Visual Composition Editor is
also extensible. It allows you to work with beans you create yourself, and it allows
you to include beans imported into the environment from other sources. You can
even create your own beans graphically using the Visual Composition Editor and
then reuse these beans again within another program being created with the Visual
Composition Editor.

To build a program with the Visual Composition Editor, you draw a picture using a
canvas and palette of icons representing reusable beans. This picture specifies the
set of beans that implements the function of the larger program (or bean) you are
creating. For beans like user interface controls, the position of the controls relative
to each other in the picture specifies how the controls will appear in the final
program. For beans such as database components, the position of the bean in the
picture generally has no significance.

The Visual Composition Editor provides a very sophisticated connection capability
to specify how components of the picture will interact to implement functions of the
program. Using connections, much of the behavior of an application can be
specified graphically. Connections also allow you to integrate custom code written in
the Java language.

See the lavaBeans Home Pagd for links to detailed information on JavaBeans and
Beanlnfo.
RELATED COMCEPTS

I‘(‘halnrpr 2 _How Classes and Beans Are Related” on page 3

2 VisualAge for Java, Version 2.0: Visual Composition

http://www.java.sun.com/

Chapter 2. How Classes and Beans Are Related

VisualAge beans are Java classes that conform to the JavaBeans component
architecture. Composite beans are made up of embedded beans. We use the term
bean to refer to both a class and its instances, as follows:

* When we refer to beans on a palette or to beans that you create by writing code,
we mean bean classes .

* When we refer to beans on the free-form surface or to beans that are connected,
we mean bean instances . Sometimes, beans represent instances that have not
yet been created.

During visual composition, you interact with bean interfaces. The most useful bean
interfaces contain the following features:

Access to data, or properties. A complete property interface includes methods
to return the value of the property, to set the value of the property, and to notify
other beans when the value of the property changes. The interface for a
property does not have to be complete. For example, a property might be
read-only, in which case the interface would not support the ability to set the
value of a property. A property can be any of the following:

— An actual data object stored within the bean, such as the street in an
address bean

— A computed data, such as the sum of all numbers in an array or the profit
that is computed by subtracting dealer cost from the retail price

Access to the behavior of a bean, or methods. These represent tasks you can
ask a bean to perform, such as open a window or add an object to a collection
of objects.

Event notification. By signaling events, a bean can notify other beans that its
state has changed. For example, a push button can signal an event to notify
other objects when it is clicked, or a window can signal an event when it is
opened, or a bank account can signal an event when the balance becomes
negative.

Events can also be signaled when the value of a bean property changes, such
as when money is deposited into or withdrawn from a bank account. In this
case, the balance property is said to be bound to an event.

RELATED COMCEPTS

RELATED REFERENCES

Ic T E T arohie Born 59

© Copyright IBM Corp. 1997, 1998 3

4 VisualAge for Java, Version 2.0: Visual Composition

Chapter 3. Visual, Nonvisual, and Composite Beans

You can use many kinds of beans to construct program elements. All beans exist as
either primitives or composites. Primitive beans are the basic building blocks from
which composites are constructed. You must construct new primitive beans using a
programming language because there are no similar beans to use in building them.
Primitive beans can be either visual or nonvisual.

Visual beans are elements of the program that the user can see at run time. The
development-time representations of visual beans in the Visual Composition
Editor closely match their runtime visual forms. Users can edit these beans in
the Visual Composition Editor in their visual runtime forms. Examples include

windows, entry fields, and push buttons. In general, visual beans are subclasses
of java.awt.Component.

Nonvisual beans are elements of the program that are not necessarily seen by
the user at run time. On the Visual Composition Editor’s free-form surface, users
can manipulate these beans only as icons. Examples include business logic,
database queries, and communication access protocol beans.

Beans that have a visual representation at run time but do not support visual
editing are treated as nonvisual. Examples of this kind of nonvisual bean include
message boxes and file selection dialogs.

Composite beans can contain both visual and nonvisual components. In general,

composite beans are based on one of these classes, but you are by no means
limited to these:

» Applet or JApplet, for Web applets
* Frame or JFrame, for GUI applications

* Panel or JPanel, for reusable GUI surfaces embedded in either applets or
applications

e VisualServlet, for servlets
RELATED COMNMCEPTS

RELATED TASKS

© Copyright IBM Corp. 1997, 1998 5

6 VisualAge for Java, Version 2.0: Visual Composition

Chapter 4. Visual Composition Editor Overview

Visual composition is the creation of object-oriented program elements by
manipulating graphical representations of components. VisualAge provides a
powerful tool, the Visual Composition Editor, that enables you to visually construct
applications, applets, and reusable beans.

In the Visual Composition Editor, you select and place beans to create graphical
user interfaces (GUIs). These GUIs can include VisualAge beans, imported beans,
and beans you create yourself. By following a few guidelines, you can design
versatile beans that you can reuse in many compositions. VisualAge also enables
you to use nonvisual beans to perform the business logic and data access.

Development using visual composition can include the following steps:

1. Design your program elements. Determine what you can compose visually and
what you must write by hand.

2. Create nonvisual beans.

3. Using the Visual Composition Editor, enhance these classes by dropping beans
and setting initial values for properties. Extend the behavior of VisualAge beans
by writing code.

4. For business logic, add code to the appropriate class stubs.

5. Connect beans to define the program element’s behavior and flow.

6. Save your work. VisualAge generates and compiles the code for visually
composed beans. Select Run in the Visual Composition Editor to try out

the finished product.
RELATED COMNMCEPTS

FEree-Eorm Surface” an page d

RELATED TASKS

© Copyright IBM Corp. 1997, 1998 7

../../ide/tasks/ticaddpp.htm

Free-Form Surface

The free-form surface is the large open area in the Visual Composition Editor. It is
like a blank sheet of paper or a work area where you can add, manipulate, and
connect the beans that you use to create your composite bean.

Some of the functions you can perform on the free-form surface include:

Add visual beans.

Add nonvisual beans to build the application logic for a composite bean.
Delete beans.

Connect beans to define behavior.

You cannot edit on the free-form surface if the bean you are attempting to edit
meets any of the following conditions:

The class is in a system package.

* An exception occurred during the creation of the bean.

The class is a Java AWT lightweight component.
RELATED COMCEPTS

RELATED TASKS

RELATED REFERENCES

8 VisualAge for Java, Version 2.0: Visual Composition

../../ide/tasks/ticaddpp.htm

Beans Palette

Selection Tool

The beans palette, located on the left side of the Visual Composition Editor,
provides building blocks you can use to construct a program element. It consists of
categories in a drop-down list, each one containing groups of beans.

You can add a bean to your program element by first selecting the category, then a
bean, and then dropping it on the free-form surface, a container bean, or the beans
list.

To add multiple instances of the same bean, enable Sticky by holding Ctrl while
selecting the bean. Selecting a new bean or the Selection tool disables Sticky .

The status area displays the name of the selected category and bean.

The beans palette initially contains the following:

» Categories (including AWT, Swing, and Other) and the option to load Available
installed features to the workspace image.

* Beans provided with VisualAge

- [Selection Taall

* A pop-up menu

You can modify the palette by resizing it, changing the icon size, adding categories,
adding separators, adding beans you have constructed yourself or beans supplied
by a vendor, or removing separators, categories, or beans. In addition, the
Available feature in the category menu button, loads installed features to the
workspace. This may include the addition of categories and beans to the palette.
Modifying the palette can increase your productivity in the following ways:

* Reduce the time and effort required to place beans that you have created and
that you use often in the Visual Composition Editor.

* Reduce the time and effort required to place vendor beans or beans from
another project.

» Eliminate the need for manually placing beans through the Choose Bean tool,
which requires that you use the exact class name of the bean.

When you add a new bean to the palette, the entire visual or nonvisual bean is
represented with the default puzzle icon unless you designate another icon in

the BeanlInfo Class. Once you add beans to the palette, you can place them in the
free-form surfaceVisual Composition Editor in the same way you place beans that
VisualAge provides.

Select I:E‘ the Selection tool to unload the mouse pointer and return it to the

selection pointer. The loaded mouse pointer appears as a crosshair and carries a
bean that can be added to the free-form surface, the beans list, or to an existing
container bean. When unloaded, the mouse pointer reverts to an arrow that you use
to select and perform actions on beans. If the mouse pointer is not loaded, this tool
is not enabled..

Chapter 4. Visual Composition Editor Overview 9

Choose Bean Tool
Select i? the Choose Bean tool to retrieve a bean that is not on the palette
_|

and drop it on the beans list, free-form surface, or an existing container bean.
RELATED TASKS

RELATED REFEREMCES

Adding Beans in the Visual Composition Editor

When you place beans in the Visual Composition Editor:
* Avoid overlaying beans

It is not good interface design for one bean to overlay another bean. Completely
or partially overlaying a bean can result in focus problems, causing users to see
but be unable to select the bean.

* Embed composite beans into other composites

By embedding composite beans into other composites, you minimize the
confusing spider effect of connection lines. For example, you can create a
composite bean that consists of a panel on which you have placed buttons and
check boxes, and make connections. When you embed this bean in your main
interface, you cannot see the connection lines. You place and work with the
composite as one bean—not as a panel and separate buttons and check boxes.

If you need to edit the composite or its internal connections, you simply select
Open from the pop-up and the Visual Composition Editor for the composite

appears, as described in tEditing Beans within a Composite Bean” on page 53.

RELATED COMCEPTS

RELATED TASKS

Bddna ool
RELATED REFEREMCES

10 visualAge for Java, Version 2.0: Visual Composition

../../ide/tasks/ticaddpp.htm

Property Sheets

The bean property sheet provides options for changing the initial appearance and
state of beans. You can open the property sheet from the pop-up menu of a
selected bean either in the Visual Composition Editor or Beans List window. You
can also select Properties from the Tools pull-down menu or select from the

tool bar.

The left column of the bean property sheet contains a list of properties and the right
column contains the editable values. An expansion icon |El| to the left of the

property indicates that the property has more editable values. For example, when
you expand the constraints, sizing properties, such as X, y, width, and height,
appear for editing. When you select the value column of a property, you are
provided with an editing option. For example, if you want to modify the property for
a label, select the value field for label and enter the new label in the entry field. If
you want to change the background color for the same bean, a small button

appears when you select the value column for background. When you select this
button, a dialog window appears with color options.

You can specify the type of property editor to associate with the property by setting
the propertyEditor field in the BeanInfo. For more information, see "Enabling
Custom Edit Support for Your Bean.”

Once you open a property sheet, you can modify properties for most beans in
Visual Composition Editor. To edit another bean select it in the Visual Composition
Editor or from within the property sheet by selecting the bean from the drop-down
list at the top of the property sheet. If you open a property sheet after selecting
multiple beans, the property sheet provides editing options for only the common
values of the selected beans. For example, you can use this feature to set the left

Chapter 4. Visual Composition Editor Overview 11

and top inset of several beans in a GridBaglLayout at once.

@ TaDa - Properties

RELATED COMCEPTS

RELATED TASKS

Setting Tabbing Order

The tabbing order is the order in which the input focus moves from bean to bean as
the user presses the Tab key. The initial tabbing order is determined by the order in
which you drop the beans. The first bean in the tabbing order receives the initial
input focus. For example, if the first bean in the tabbing order is a button, that
button receives the initial input focus when the application starts.

12 visualAge for Java, Version 2.0: Visual Composition

../../ide/tasks/ticaddpp.htm

The tabbing order can be set or displayed only for beans that are placed within a
composite bean. For example, if you place a row of buttons in a frame window, you
can set the tabbing order for the buttons.

If the tabbing order includes each entry field in which a user can type, the user can
move the input focus from one entry field to another. Arrow keys only move the
cursor within an entry field; only the Tab key, backtab key, and mouse can change
the input focus from one entry field to another. Read-only fields do not need to be
included in the tabbing order.

Because the order in which beans are placed on a composite bean determines the
tabbing order, you will probably need to change the order as you add or rearrange
beans.

For example, drop three buttons and then rearrange them so that Button3 is
between Buttonl and Button2. The tabbing order of these buttons is Buttonl,
Button2, Button3, even though Button3 is now between Buttonl and Button2. You
must change the order to have the focus move from Buttonl, Button3, and Button2.

The color of the tab tags reflect information about the beans that you use. Yellow
tab tags represent simple beans, such as entry fields and buttons. Blue tab tags
represent composite beans and container beans.

RELATED COMNMCEPTS

RELATED TASKS

RELATED REFERENCES

Tearing Off Properties

You tear off a property to gain access to the encapsulated features of a bean. This
can be necessary when a property is in itself a bean and you want to connect to
one of its features. The torn-off property is not actually a separate bean but a
variable that represents the property itself or points to it.

For example, in an address book application you might tear off properties as
follows:

Chapter 4. Visual Composition Editor Overview 13

../../ide/tasks/ticaddpp.htm

* You might have a Person bean that contains both homeAddress and
workAddress properties, both of which, in turn, could contain street, city, and
State properties.

» Tearing off a homeAddress or workAddress property makes the nested street,
city, and state properties directly accessible. Now that the nested properties are
directly accessible, you can make connections to and from them, as well as to
their associated events and methods.

RELATED COMNMCEPTS

RELATED TASKS

Layout Managers in Visual Composition

Many container components support the use of layout managers. A layout manager
is a class that implements the java.awt.LayoutManager or java.awt.LayoutManager2
interface.

You assign a layout manager to the container. In most layouts, you can then define
properties for the layout that govern the specifics of the sizing and resizing behavior
for the components.

Visual composition makes it easy to try different layouts. If you prefer to lay beans
out individually, you can use the null layout setting (that is, no layout) and the Visual
Composition Editor alignment tools. For examples of using layout managers, see
the com.ibm.ivj.examples.vc.layoutmanagers classes shipped in the IBM Java
Examples project.

Supported Layouts

VisualAge supports the use of layout managers in container beans, as follows. For
several of these layouts, VisualAge sets layout properties by default.

* BorderLayout arranges components along each edge of the container (North,
South, East, and West), and one component in the center.

14 visualAge for Java, Version 2.0: Visual Composition

../../ide/tasks/ticaddpp.htm

If the container bean uses a layout other than border and has more than 5
components, changing the container layout to border could result in overlaid
components. The beans list allows you to easily perform tasks on the covered
components.

BoxLayout arranges components vertically or horizontally without wrapping. You
can nest multiple panels with different combinations of horizontal and vertical
BoxLayout to achieve an effect similar to GridBagLayout, without the complexity.
If you are using the vertical alignment, BoxLayout attempts to make all
components the same width. With horizontal alignment, BoxLayout attempts to
match component height.

CardLayout arranges components in a linear depth sequence similar to a deck of
cards, notebook, or tabbed dialog box. Each component is called a card.

You can use Switch To on the pop-up menu to move through the deck, or
perform tasks on the covered cards in the beans list.

FlowLayout arranges components in horizontal lines. The alignment property in
the layout manager enables you to specify where you want the flow to begin.

GridLayout arranges components in a table, all cells having the same size.

GridBaglLayout enables you to arrange components in a highly complex grid. As
you add or move beans, the free space shuffles so that beans are centered on
the interface, while retaining your arrangement. Grid cells are not necessarily
identical in size and components can span multiple cells. You can customize grid
sizing behavior down to each individual component.

Null layout means that no layout manager is assigned. Without a layout manager,
resizing the container at run time does not affect the size and position of the
components.

You can customize components within the null layout by means of dragging the
beans, using Tool Bar options, or through the constraints option in Properties.

Alignment tools are disabled for all but null layout.

For examples of using layout managers, see the
com.ibm.ivj.examples.vc.layoutmanagers classes shipped in the IBM Java
Examples project.

Setting Layout Properties during Visual Composition

BorderLayout—you can specify the spacing between adjacent components.

BoxLayout—you can specify whether components are layout out vertically or
horizontally

CardLayout—you can specify the spacing between adjacent components.
FlowLayout—you can specify the spacing between adjacent components, and the
alignment to start at center, left, or right.

GridBagLayout—you do not specify additional layout properties for a container
that uses GridBagLayout. However, you can specify constraints for the
components within the container.

GridLayout—you can specify the spacing between adjacent components, and the
number of rows and columns.

For layout manager details, see the Java APl documentation.

Consider waiting to set layout properties until you have settled on a layout manager.
Many values are lost when you switch layouts or move the component to another
container on the free-form surface.

Chapter 4. Visual Composition Editor Overview 15

Dropping Beans into the Layout

Once you have assigned a layout, the Visual Composition Editor provides visual
cues to help you place beans in the correct position. These cues appear when you
place the loaded mouse pointer in position and then press and hold mouse

button 1:

» For FlowLayout and GridLayout, a bold vertical bar appears. If you release the
mouse, VisualAge places the bean to the right of the vertical bar.

» For BorderLayout and null layouts, an outline of the placement options for the
bean appears: for BorderLayout the regions (North, South, etc.), for null layout
the container. When you release the mouse, VisualAge places the bean within
the outline under the crosshair.

» For GridBaglLayout, a bold grid appears that is based on the beans dropped so
far. VisualAge attempts to place the bean as indicated by the pointer. If the
pointed-to cell is empty, all borders of the cell are highlighted. If the pointer rests
on a row or column boundary, a new row or column is inserted. New rows
appear below the pointer; new columns appear to the right.

For CardLayout, the container is outlined. VisualAge adds beans to the top of the
card deck, making the first bean you dropped the bottom card. You can use Switch
To on the pop-up menu to move through the deck, or perform tasks on the covered
cards in the beans list.

To get access to the layout interface directly, drop a Variable bean on the free-form
surface to the right of the container. Change the type of the Variable bean to that of
the class implementing the layout manager interface (for example, CardLayout).
Connect the layout property of the container bean to the this property of the
Variable bean. Then connect to features of the Variable bean.

If you use a layout that allows for a bean to completely cover another bean, the
beans list enables you to easily perform tasks on the covered components. To
modify bean placement on the Visual Composition Editor from within the beans list,
open the Properties for the bean and modify the Constraints.

RELATED COMCEPTS

i : H ”

RELATED TASKS

RELATED REFEREMCES

16 visualAge for Java, Version 2.0: Visual Composition

../../ide/tasks/ticaddpp.htm

Chapter 4. Visual Composition Editor Overview

17

18 visualAge for Java, Version 2.0: Visual Composition

Chapter 5. Bean Design for Visual Composition

Designing a good bean is very similar to designing a good class: it must be usable.
In fact, making a bean usable for visual composition improves its use in handcoding
as well. Consider the following:

Implement a null constructor.

Keep your bean small. Minimize dependencies on other beans and classes.
Implement the java.io.Serializable interface.

For visual beans, subclass from java.awt.Component or one of its subclasses.

Make important functions available through settable properties. If necessary,
provide a custom editor to make setting properties easier. Avoid dependencies
upon the order in which properties are set.

Mark interface features in BeanlInfo to optimize clarity:

— Set preferred to true for those features that most people will use.

— Set expert to true for those properties that most people will never use.

— Set hidden to true for those properties that must not be used in connections.

— Set Design time property to false for those properties that you do not want
surfaced in the beans property sheet.

To take advantage of reflection, follow standard design patterns for methods,
events, and properties. Do not use the same set method names for different
properties. Provide a Beaninfo class with meaningful display names and
descriptions.

Set up bound properties where appropriate. However, be careful not to overdo it,
because property events are multicast through PropertyChangeEvent, which can
affect performance.

Have your bean signal events for significant state changes. Use unique event
classes instead of a single event class with a flag in eventData.

Provide .gif files so that the bean can be represented in the Visual Composition
Editor. Include both 16x16 and 32x32 versions, with transparent backgrounds.

To minimize the number of connections during visual composition, specify several
methods with a small number of parameters rather than a single method with
many parameters.

RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMNCES

|]

© Copyright IBM Corp. 1997, 1998 19

http://www.java.sun.com/beans/docs/index.html

20 visualAge for Java, Version 2.0: Visual Composition

Chapter 6. Use of Visual Beans Created in Other Tools

VisualAge can generate visual composites from GUI beans created outside the
VisualAge development environment. This can save you editing time if the bean
contains a large number of visual components. VisualAge constructs the composite
by querying an instance of your GUI bean about its contents. This is what you can
expect from this reverse-engineering process:

* VisualAge constructs only those controls that ultimately inherit from
Jjava.awt.Component.

« Each component must have a null constructor; VisualAge writes over the null
constructor of the class being edited to make it consistent with that for other
visual components. Be sure that all visuals embedded within a component also
have null constructors.

» VisualAge also generates its own names for visual components, so any
handwritten code referring to the previous component names must be updated
with the new names. If you want VisualAge to use the names you assigned in
the original bean, explicitly set the name of each component using the
setName() method before you proceed with reverse-engineering. An example
follows:
if (myBean == null) {

myBean = new JTextField();
myBean.setName ("myBean") ;
}

» VisualAge writes over methods and fields whose names collide with those it
typically generates. This most commonly occurs with get and set accessor
methods. For a complete list, read tChapter 9_Generated Cade” an page 33.

» Layout and property settings for visual components are preserved whenever
possible. Custom layout managers are not supported.

* No attempt is made to construct connections from method calls, but you can
draw new connections as soon as VisualAge has constructed the composite. In
most cases, you will have to draw event connections to get the bean to behave
as it did before the reverse-engineering.

* Embedded composites are constructed as primitives. Reverse-engineer the
embedded composites first.

» Serialized instances are constructed from the class, not from a serialization file.
As with nonserialized components, VisualAge sets properties from BeanlInfo
queries.

* When VisualAge does not have enough information to set a property, the
property is not set. (One example of this is the icon property of JButton and other
Swing components.)

Undo is not supported for reverse-engineering visual composites. If you are not
satisfied with the results, close the class browser without saving the newly
engineered composite. In any case, version the bean before you reverse-engineer
it.

To proceed with reverse-engineering, open the bean in the Visual Composition
Editor. From the Bean menu, select Construct Visuals from Source

RELATED COMCEPTS

RELATED TASKS

© Copyright IBM Corp. 1997, 1998 21

22 VisualAge for Java, Version 2.0: Visual Composition

../../ide/tasks/tiimport.htm

Chapter 7. Bean Interfaces and Beaninfo

The bean interface defines the property, event, and method features of your bean.
These features can be used in visual composition when your bean is added to
another bean. A BeanlInfo class describes the bean and features that you add to the
bean. Other features are inherited from the superclass of your bean unless you
choose not to inherit features.

You can define a bean interface in the following ways:

* In the Workbench window, create a new bean class based on a class with
features you need. By default, the new bean inherits the features of the class it
extends. You can control feature inheritance by setting the Inherit BeanInfo of
bean superclass option in the Design Time pane of the Options window. Open
the Options window from the Window menu of the Workbench.

* In the BeaniInfo page, add new features to a bean. You can add features to
extend the inherited feature set, to override inherited features, or both. When you
add a feature to a bean, VisualAge generates code that describes the feature in
the Beanlnfo class for the bean.

* In the Visual Composition Editor, promote features of embedded beans to the
interface of a composite bean. When you promote a feature of an embedded

bean, VisualAge generates code that describes the promoted feature in the
Beanlinfo class for the composite bean.

When you create a new bean, it does not initially have a BeanlInfo class. VisualAge
creates a Beanlinfo class when you add or promote the first feature that is not
inherited, or when you explicitly direct VisualAge to create a Beanlnfo class. You
can create a BeanlInfo class in the BeanInfo page.

RELATED COMCEPTS

{Promation of Bean Eeatures!|

RELATED TASKS

Promotion of Bean Features

When you create a composite bean, you might want some features of beans that
are embedded within it to appear in the interface of the composite bean. For
example, suppose you create a composite bean named ButtonSet containing a set
of buttons that you want to reuse. When you add the ButtonSet composite bean to
another composite, you want to be able to connect to each of the buttons.

To add features of embedded beans to the interface of a composite bean, you must

promote them to the composite’s interface. To add an entire embedded bean as a
property of the composite bean, promote the this property of the embedded bean.

© Copyright IBM Corp. 1997, 1998 23

When you promote a feature of an embedded bean, VisualAge generates code that
describes the promoted feature in the BeanlInfo class for the composite bean. After
the feature is promoted, you can manage the feature in the BeanInfo page the
same as you manage features that you add there.

When you add a bean with promoted features to another bean, you can use the
promoted features the same as you use other features of the bean. If you add a
bean that has an embedded bean as a property, you can tear off the property as a
Variable. Then, you can access the features of the embedded bean referenced by
the Variable.

RELATED COMCEPTS

RELATED TASKS

Default Promoted Feature Names

When you promote a feature of an embedded bean in the Promote Features
window, you can use a default feature name produced by VisualAge. If you do not
want to use the default feature name, you can change the name.

The default feature name is a combination of the name of the embedded bean and
the name of the feature you are promoting. This identifies the bean that implements
the feature, which is helpful if the composite bean contains more than one bean
with the same feature. Then, when you connect to the feature, you can tell which
embedded bean it belongs to.

For example, if you promote the enabled property for a bean named YesButton, the
default composite bean feature name is yesButtonEnabled).

RELATED COMCEPTS

RELATED TASKS

Feature Naming Guidelines

When you add or promote a feature, use these naming guidelines:

» Begin the feature name with a lowercase character. Features represent methods,
which typically have names that begin with a lowercase character. By contrast,
class names typically begin with an uppercase character.

¢ Do not use blanks in the feature name.
RELATED CONCEPTS

24 visualAge for Java, Version 2.0: Visual Composition

RELATED TASKS

Chapter 7. Bean Interfaces and BeanlInfo 25

26 VisualAge for Java, Version 2.0: Visual Composition

Chapter 8. Connections

When you make a connection in the Visual Composition Editor, you define the
interaction between components. For example, if you want a data value to change
when an event occurs, you would make an event-to-property connection. The
following table summarizes the types of connections that the Visual Composition
Editor provides. The return value is supplied by the connection’s normalResult
event.

Table 1. Connection Type Summary

Does
connection
have a return

If you want to... Use this connection type Color value?

Cause one data value property-to-property Dark blue No

to change another

Change a data value event-to-method Dark green Yes

whenever an event

occurs

Call a public behavior event-to-method Dark green Yes

whenever an event

occurs

Call a behavior event-to-code Dark green Yes

whenever an event

occurs

Supply a value to a parameter-from-property, Violet No

parameter parameter-from-code, or

parameter-from-method

The Source and Target of a Connection

A connection is directional; it has a source and a target. The direction in which you
draw the connection determines the source and target. The bean on which the
connection begins is the source; the bean on which it ends is the target.

Often, it does not matter which bean you choose as the source or target, but there
are connections where direction is important.

* In an event connection, the event is always the source.

» For property-to-property connections, if only one of the properties has a public
set method, VisualAge makes that property the target. This is done so that the
property that has the public set method can be initialized at run time.

* When you make property-to-property connections, the order in which you choose
the source and target is important. The source and target property values may be
different when the bean is first initialized. If they are, VisualAge resolves the
difference by changing the value of the target to match that of the source if the
properties are bound. Thereafter, if both properties have public set methods, the
connection updates either property if the other changes.

The target of a connection can have a return value. If it does, you can treat the
return value as a feature of the connection and use it as the source of another
connection. This return value appears in the connection menu for the connection as
normalResult.

© Copyright IBM Corp. 1997, 1998 27

Property-to-Property Connections

A property-to-property connection links two property values together. This causes
the value of one property to change when the value of the other changes, except as
noted in the tahla halny, A connection of this type appears as a bidirectional dark

blue linc g with dots at either end. The solid dot indicates the target, and
the hollow dot indicates the source.

When your bean is constructed at run time, the target property is set to the value of
the source property. These connections never take parameters.

For indexed properties,VisualAge generates two get/set method pairs—one for the
array and one for accessing elements within the array. When you connect indexed
properties, VisualAge uses the accessors for the entire array. If you want to access
an individual element, make a method connection to the specific accessor.

To achieve the behavior that you anticipate, you must know something about the
properties you are connecting. The following table shows the results of connecting
properties of different types.

Table 2. Behavioral Considerations for Connections

TARGET HAS...

SOURCE HAS...

Set method and
Event

Event only

Set method only

Set method and Event

Source and target
values are fully
synchronized.

This connection is not
valid.

The source initializes
the target. The target
updates whenever the
source’s value
changes.

Event only

The source
initializes the
target. The target
updates whenever
the source’s value
changes.

This connection is not
valid.

The source initializes
the target. The target
updates whenever the
source’s value
changes.

Set method only

The source
initializes the
target only. The
source updates
whenever the
target’s value
changes.

This connection is not
valid.

The source initializes
the target. No further
updates occur.

A bound property is a property whose value changes as the result of an event. For
example, when a deposit or withdrawal event occurs from a bank account, the
balance property is said to be bound to the event.

Properties in a property-to-property connection do not synchronize if;
* The property is not bound and has no associated event.

» At least one property is constrained, or prevented from changing under certain
conditions, and a change is vetoed.

* The event to which the properties are bound is asynchronous. See the bean
information for details on selecting another event.

28 VisualAge for Java, Version 2.0: Visual Composition

Because most of the properties in this version of AWT are not bound, the source
initializes the target when constructed and performs no further updates. If you want
the property values to synchronize when an event occurs, you must associate an
event with the property. You can do this by opening the property sheet for that
connection and selecting an event from the source or target event fields. For
example, the text property in AWT components is unbound. You can force this
property to fire by selecting the textChanged event from the event field.

Event-to-Property Connections

An event-to-property connection updates the target property whenever the source
event occurs. An event-to-property connection appears as a unidirectional dark
green arrow . with the arrowhead pointing to the target.

The property must have a public set method known to VisualAge; otherwise, you
cannot make the connection. If you open properties on a connection of this type,
the target of the connection appears as a method with the same name as that of
the target property.

Event-to-Method Connections

An event-to-method connection calls the specified method of the target object
whenever the source event occurs. An event-to-method connection appears as a
unidirectional dark green arrow - with the arrowhead pointing to the

target.

Often much of an application’s behavior can be specified visually by causing a
method of one bean to be invoked whenever an event is signalled by another bean.
For example, you might invoke the dispose method on a Frame bean when the
actionPerformed event is signalled by a button (this happens when the user clicks
the button).

A connection with a dashed line requires parameters. You can provide parameters
through a parameter connection, by passing event data (an option in the connection
window), or through a return value. For more information, see the Task information
on connections.

To access behavior that is not part of the bean interface, use code connections.

Code Connections

A code connection calls code of the composite bean whenever the source event
occurs. This type of connection appears as a unidirectional dark green arrow
- with the arrowhead pointing to a moveable text box on the

free-form surface.

If you want processing to occur when a bean in your composition signals an event,
but no available bean has a public method to accomplish that process, you can
write and connect to a custom private method of the class you are editing. These
methods are called code to distinguish them from the public methods for the
composite class that you create and publish as bean methods. Technically, your
code does not need to be private, and it is not different from other Java methods.

Chapter 8. Connections 29

Note: You might notice that in VisualAge Java, the word method is used in two
subtly different ways. In the Java language, method refers to a callable
function of any class. In JavaBeans, method refers to a subset of the Java
class methods that are exported as bean features. The set of JavaBeans
method features is often the same as the set of Java public methods.
However, the bean provider may further restrict the set of Java methods that
show up as JavaBeans features.

You can use a code connection for the bean you are developing to connect to:
* Private methods

* Public methods

* Protected methods

» Package-private methods

* Public methods of any of its embedded beans

You cannot, however, connect to private or protected methods of embedded beans.

You might want to create a code connection to:
* Reduced the number of connections in a bean.
» Encapsulate repeated tasks that are specific to the bean being developed.

* Keep an operation internal to the class, such as a composite bean performing a
calculation the user does not need to be aware of whenever a value changes.

Parameter Connections

In most cases, when a connection needs a parameter, the connection line appears
dashed. - - - - - - Jmm= A parameter connection supplies an input value to the

target of a connection by passing either the value from a property or the return
value from a method. In a parameter-from-method connection, the connection
appears as a unidirectional violet arrow g = With the arrowhead

pointing from the parameter of the original connection to the method providing the
value. In a parameter-from-property connection, the connection appears as a
bidirectional violet line with dots at either end. The solid dot indicates the target,
and the hollow dot indicates the source.

The original connection is always the source of a parameter connection; the source
feature is the parameter itself. If you select the parameter as the target, VisualAge
reverses the direction of the parameter connection automatically.

If the target of the original connection takes parameters and the same event
provides parameters by default, the connection line might appear solid. This is true
even if the target takes one input parameter and you have not otherwise provided
one. VisualAge can use any of the following means to supply parameters with
values:

» If the parameter is connected to a property, the connection calls the get method
for the property to get the value for the property and return it to the parameter.

» If the parameter is connected to a method, the connection code calls the method
and passes the return value for the method to the parameter.

« If the source of the original connection passes event data in the connection code,
VisualAge applies it to the parameter. If several values are required, event data
is applied to the first parameter only.

30 visualAge for Java, Version 2.0: Visual Composition

» If you specify a constant parameter value in the original connection, VisualAge
passes it in the connection code.

RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMCES

Chapter 8. Connections 31

32 VvisualAge for Java, Version 2.0: Visual Composition

Chapter 9. Generated Code

With the Visual Composition Editor, you lay out beans graphically and specify their
interaction using a high-level connection model. When you save your composition,
VisualAge generates Java code that maps this graphical representation to the
JavaBeans component model and to the APIs for the beans themselves. The
resulting generated code is best understood if you are familiar with the JavaBeans
component model; in fact, it is quite similar to code that an expert JavaBeans
programmer would have written by hand. If you are interested in understanding
more about the code generated by VisualAge, read the llavaBeans specification
first; then read the rest of this section and look at the code generated by VisualAge
for different visual compositions.

Some items are generated only once; others are regenerated every time the
product detects a relevant change. Some items are generated only if you have
indicated to VisualAge that you want certain capabilities present in your bean.
Methods that are regenerated whenever the product detects a relevant change are
indicated by iy to the right of the method signature.

Note: The code resides in the VisualAge repository, not as code files in your
working directory. To get a copy of your code or compiled class in a file, you
must export the class.

Code Generated from Visually Composed Beans

When you compose your bean visually, VisualAge generates much of the user
interface code for you. The connections you make between beans are often
sufficient to define behavior at run time. If not, you can extend it by adding your
own code.

In addition to other items generated for all classes, VisualAge generates the
following code for a composite bean. This code is generated when you save the
bean, select Re-generate Code from the Bean menu of the Visual Composition
Editor, or select Run:

» Afield declaration for each embedded bean, which takes its name from the name
given to the bean when it was dropped in the Visual Composition Editor. This
field is declared as private. To minimize potential collisions between handwritten
and generated code, all generated field names start with ivj.

* A private get method for each embedded bean, which takes its name from the
name given to the bean when it was dropped in the Visual Composition Editor.
Because Variable and Factory beans represent instances that do not exist at
initialization, VisualAge generates public get and set methods for them so that
they can be set at run time. Serialized instances are restored in the get method
through a call to Beans.instantiate(); other instances are created in the get
method in a new expression if they do not already exist.

Note: Take care when renaming embedded beans or torn-off properties.

Otherwise, VisualAge might generate an accessor method that overrides
an inherited method or overwrites a user-written method.

© Copyright IBM Corp. 1997, 1998 33

http://www.java.sun.com/beans/docs/index.html

» For each promoted feature, a public get and set method. If the promoted
feature’s name is the same as that of the bean in which the feature resides,
VisualAge generates the bean’s get and set methods as public instead of private.

» If at least one hidden-state bean is used, a serialized-object file (.sos) that takes
its name from that of the composite class (for example, iviMyComposite.sos).
VisualAge also generates a getSOSByteArrayCache() method, which reads a
byte stream from the serialized-object file into an instance variable for
deserializing.

* A private method for each method or code connection. For each
property-to-property connection where both end points are writable, two methods
are generated. Parameter connections appear in code as secondary calls within
the original connection.

The name of the connection method depends on the type of connection you
draw. By default, the naming convention is connFtoFx, where F represents the
type of feature being connected and x is an index number to ensure uniqueness.
This translates into the following possible combinations:

— connEtoM1 (the first event-to-method connection drawn)

— connEtoS1 (the first event-to-code connection drawn)

— connPtoP1lsetTarget (the first property-to-property connection drawn, setting
the target from the source)

— connPtoP1setSource (the first property-to-property connection drawn, setting
the source from the target)

When you rename a connection, VisualAge deletes the obsolete connection
method and generates a new method whose name is compatible with the
connection’s new name.

» For each event set connected to within the composite, listener methods to fulfill
the listener interface’s implementation requirements. For events in the set that
are not currently being used, VisualAge generates stubs only.

* An initConnections() method, which contains a call to every natifier required for
event connections in the composite bean. This method is not generated if there
are no connections in the composite. For example, if your bean contains a
connection from the actionPerformed event of Buttonl, this method contains the
call:
getButtonl().addActionListener(this);

* For applets, an init() method.

» For nonapplets, an initialize() method.

» A constructor with no arguments, which by default calls the superclass contructor
and the initialize() method.

VisualAge also generates the following methods if they do not exist:

* main(java.lang.String []). If you copy, rename, or move the bean, you must
delete this generated method, regenerate code for the composite, and save the
bean.

* For applets, getAppletinfo().

» getBuilderData(), which contains visual layout information for restoring the
free-form surface if the bean is exported and then imported into another
VisualAge Java development environment. This method is generated only if the
appropriate design-time option has been set in the Workbench.

» handleException(java.lang. Throwable), a stub method for debugging that gets
called in init() and the set methods.

34 visualAge for Java, Version 2.0: Visual Composition

Generated Feature Code

The term feature refers to an element of the bean interface. Features can be
properties, methods, or events. To add features to the interface, use SmartGuides
available from the Beaninfo page.

The following items are generated for each feature added from the BeanInfo page.

For each property, VisualAge generates the following:

— A declaration for a field, defaulting to package-private access
— If the property is readable, a get method

— If the property is writable, a set method

— If the property is indexed, two additional methods for you to access individual
elements

If at least one property is bound, the propertyChange event and associated
program elements are generated:

— propertyChange, a field of type java.beans.PropertyChangeSupport, declared
as protected transient

— addPropertyChangeListener(java.beans.PropertyChangeListener), a public
method

— firePropertyChange(java.lang.String, java.lang.Object, java.lang.Object), a
public method

— removePropertyChangeListener(java.beans.PropertyChangeListener), a public
method

If at least one property is constrained, the vetoableChange event and associated
program elements are generated:

— vetoableChange, a field of type java.beans.VetoableChangeSupport, declared
as protected transient

— addVetoableChangelListener(java.beans.VetoableChangeListener), a public
method

— fireVetoableChange(java.lang.String, java.lang.Object, java.lang.Object), a
public method

— removeVetoableChangeListener(java.beans.VetoableChangelListener), a public
method

For each event set, VisualAge generates the following items:
— A declaration for a protected listener field
— Public addListener and removelListener methods

For each new listener interface, VisualAge generates the following items.
VisualAge gives you the opportunity to specify your own names for these items
before they are created.

— An event class in the same package as the class being edited

— Alistener interface in the same package

— A multicaster class in the same package

— An event feature in the class being edited

— Public addListener and removeListener methods in the class being edited

In addition, VisualAge creates a Beanlnfo class when you add the first feature. After
that, VisualAge updates the Beanlinfo class to reflect each feature changed from the
Beaninfo page.

Chapter 9. Generated Code 35

Generated Beanlnfo Descriptor Code (an advanced topic)

BeanlInfo code defines the public interface of your bean in a standard way.
Specifying Beanlnfo code enables your bean to be used with any development tool,
including VisualAge, that supports the JavaBeans specification. With BeanInfo code
available, enabled tools can query an instance of your bean for information about its
interface, regardless of underlying implementation.

VisualAge generates BeanlInfo class code as needed to capture the interface details
you specify on the BeanInfo page for your bean. If a BeanInfo class does not exist
for the bean, VisualAge uses the process of reflection, matching interface features
against Java design templates, to create the class. If a BeanInfo class does exist,
VisualAge generates Beanlnfo code only for interface elements defined as bean
features (properties, methods created from the BeanInfo page, and events). For
more information about reflection, see the ificati

The following items are generated when you add features to the bean from the
BeanlInfo page:

* A classNameBeanlnfo class in the same package. This type of class normally
contains several list and descriptor methods, which enabled tools call to get
information about the bean. A list of the most commonly generated methods
follows:

— getBeanClass(), which returns a instance of java.lang.Class that corresponds
to the bean.

— getBeanClassName(), which returns a String whose value is the full name of
the bean.

— getEventSetDescriptors(), which returns an array of descriptors
corresponding to the event sets implemented in the bean.

— getMethodDescriptors(), which returns an array of descriptors corresponding
to the method features implemented in the bean.

— getPropertyDescriptors(), which returns an array of descriptors corresponding
to the properties implemented in the bean.

— findMethod(Class, String, int), used to locate a descriptor method that is
requested by name but not found.

— getAdditionalBeaninfo(), generated only if you opted to inherit BeanIinfo from
the bean’s superclass. (This is set from the Design Time page of the Options
notebook.)

» getBeanDescriptor(), which returns general information about the bean:
— If you marked the bean as expert, this method calls setExpert(true).
— If you marked the bean as hidden, this method calls setHidden(true).

— If you require all instances of the bean to be serialized, this method calls
setValue(" hidden-state”, Boolean.TRUE).

» For applets, an appletinfoPropertyDescriptor method used to get information
about the appletinfo property.

* For each method feature in the bean being browsed, a public
methodNameMethodDescriptor method in the associated BeanlInfo class. This
descriptor method determines how information about the method is revealed: its
true name, its display name, and a description of the bean. If you created the
bean in VisualAge, the descriptor method reflects selections you made through
the New Method Feature SmartGuide.

* handleException(java.lang. Throwable), a stub method for use in debugging.

36 VvisualAge for Java, Version 2.0: Visual Composition

http://www.java.sun.com/beans/docs/index.html

* For each property, a public propertyNamePropertyDescriptor method in the
associated BeanlInfo class:

If you opted to bind the property to an event, this method calls setBound(true).
If you marked the property as expert, this method calls setExpert(true).

— If you marked the property as preferred, this method calls
setValue(" preferred’, Boolean. TRUE).
— If you marked the property as design-time to keep it from appearing in the
property sheet at run time, this method calls
setValue(" iviDesignTimeProperty', Boolean.FALSE).
» If at least one property is bound, the following methods:

— addPropertyChangeListenerMethodDescriptor(), a public method in the
associated Beanlinfo class

— removePropertyChangelListenerMethodDescriptor(), a public method in the
associated BeanlInfo class
* For each method, a public methodNameMethodDescriptor() method in the

associated BeanlInfo class. If you opted to hide the method, the descriptor
method calls setHidden(true).

Note: If a Beaninfo class already exists, VisualAge does not generate BeanInfo
descriptors for methods added from the Methods page.

» For each event set, public event descriptor methods in the associated BeanInfo
class (for example, actionEventSetDescriptor() and
actionactionPerformed_javaawteventActionEventMethodEventSetDescriptor())

» For each new listener, a public event descriptor method in the associated
Beanlinfo class (for example, stringModifiedEventSetDescriptor (),
stringModifiedSignalModification CodeGenStringModifiedEventMethodEventDescriptor(),
and stringModifiedSignalModification_javalangObjectMethodEventDescriptor()).

How Generated Code Coexists with User-Written Code

Generated code falls into the following categories:

Items generated only if they do not exist. ~ These include
main(java.lang.String[]), handleException(java.lang. Throwable), and
getAppletinfo(). You can write your own versions or modify generated versions;
VisualAge preserves your code.

Items regenerated around handwritten changes. Most code of interest falls
into this category. These methods contain the reminder comment WARNING: THIS
METHOD WILL BE REGENERATED. and are indicated by iy to the right of each

method signature. The rest of this section describes how VisualAge handles this
type of generated code.

In general, VisualAge preserves handwritten changes to basic class declarations, as
follows:

» package and import statements associated with the class.
» Access and keyword modifiers for the class.
* Interfaces implemented completely by hand.

* Uniquely named fields, as long as their names do not start with jvj. Because
VisualAge uses ivj to mark generated fields, handwritten fields starting with jvj will

Chapter 9. Generated Code 37

be deleted the next time VisualAge generates code for the class. VisualAge does
not preserve updates to access modifiers (private, public, protected) in generated
fields.

* Uniquely named methods, including exceptions. VisualAge preserves updates to
access modifiers (private, public, protected) in generated methods if the updates
render access less restrictive.

* Handwritten comments in generated methods.

You can add lines of code in designated areas of generated methods. VisualAge
indicates these areas in the generated code with comment lines similar to the
following:

//user code begin {1}
//user code end

If a generated method does not include comment lines like these, any code you add
will be overwritten the next time the bean is saved.

RELATED COMCEPTS

« ”

RELATED TASKS

‘ H ”

RELATED REFEREMCES

38 visualAge for Java, Version 2.0: Visual Composition

Chapter 10. Example of Generated Feature Code

Suppose you define simpleString, the most basic property useful for visual
composition: readable, writable, and bound to an event. VisualAge generates the
following items:

» fieldSimpleString, a field of type java.lang.String with default (package-private)
access

» propertyChange, a field of type java.beans.PropertyChangeSupport declared as
protected transient

» getSimpleString() and setSimpleString(java.lang.String) methods

* add- and removePropertyChangeListener(java.beans.PropertyChangeListener)
methods

» firePropertyChange(java.lang.String, java.lang.Object, java.lang.Object)

If simpleString is indexed, VisualAge also generates the following items:
» getSimpleString(int)
» setSimpleString(int, java.lang.String)

Suppose you define an existing event set, action, for use in your class using default
values in the New Event Set SmartGuide. VisualAge generates the following items:

* aActionListener, a field of type java.awt.event.ActionListener declared as
protected transient

* add- and removeActionListener(java.awt.event.ActionListener) methods
» fireActionPerformed(java.awt.event.ActionEvent)

Suppose you define stringModified, a new listener event specifically for your class.
VisualAge generates the following items:

» StringModifiedListener, an interface.
» StringModifiedEvent and StringModifiedEventMulticaster classes.

* add- and removeStringModifiedListener(StringModifiedListener) methods in the
class being edited.

» A listener method stub, for example, signalStringModification(StringModifiedEvent
e). You must enter a name for this stub yourself.

RELATED COMCEPTS

I‘(‘halntpr 9_Generated Code” on page 33

RELATED TASKS

RELATED REFEREMNMCES

© Copyright IBM Corp. 1997, 1998 39

40 visualAge for Java, Version 2.0: Visual Composition

Chapter 11. Example of Code Generated from Visual
Composite

INDthing Ihere pet

Hello, World!
L

il

»
B
b pString

This simple Hello World! applet contains the following beans. The applet subclass
itself is represented by the dotted rectangle.

* Two TextField beans, FirstWordArea and SecondWordArea

* A Label bean, MyHello

* A Button bean, SplitButton

» A Variable bean of type java.lang.String, MyString

All the finished applet does at run time is split the text value of the Label bean into
two substrings and copy each substring to an entry field.

Suppose the composite is saved after the beans have been dropped and edited for
initial content. VisualAge generates field declarations and accessor methods as
follows:

* ivjFirstWordArea; getFirstWordArea(). The initial contents of FirstWordArea
("Nothing”) are set in getFirstWordArea().

* ivjSecondWordArea; getSecondWordArea(). The initial contents of
SecondWordArea ("here yet") are set in getSecondWordArea().

* iviMyHello; getMyHello().
* jvjSplitButton, getSplitButton().
* ivjMyString; getMyString() and setMyString(java.lang.String).

VisualAge also generates the following applet methods:
* main(java.lang.String [])

e init()

» getAppletinfo()

© Copyright IBM Corp. 1997, 1998 41

» getBuilderData()
* handleException(Throwable exception)

The first connection, connPtoP1, links the text property of MyHello to the this
property of MyString. Neither feature is bound. When you save the composite,
VisualAge generates these additional methods:

* connPtoP1SetSource()
* connPtoP1SetTarget()

 initConnections(), which calls connPtoP1SetTarget() to initialize the String
variable. Because neither property is bound, these methods are not called again
unless you connect to them using a code connection.

Connections from the actionPerformed event of SplitButton to the text property of
each TextField bean (connEtoM1 and connEtoM?2) reset the text displayed in each
entry field. By default, no event data is passed to the target of the connection, so
each connection requires input for the new value of text. Parameter connections
(connEtoM3 and connEtoM4) pass in these values: the value property of each push
button connection is connected to the substring(int, int) method of MyString. The
exact character indexes are provided as connection properties of connEtoM3 and
connEtoM4.

Now when you save the composite, VisualAge generates these additional methods:

* connEtoM1(java.awt.event.ActionEvent), which calls
getFirstWordArea().setText(getMyString().substring(0, 5)) (changing "Nothing” to
"Hello")

* connEtoMZ2(java.awt.event.ActionEvent), which calls
getSecondWordArea().setText(getMyString().substring(7,12)) (changing "here yet”
to "World")

» actionPerformed(java.awt.event.ActionEvent), which calls the connEtoM1 and
connEtoM2 methods

Suppose you then separate all text into a list bundle. If you opt for a new resource
bundle, VisualAge creates a resource class for you in the same package. In
addition, the get methods are regenerated to retrieve the appropriate resource
instead of using hardcoded text. The call for setting MyHello to "Hello, World!” looks
like this:

ivjMyHello.setText(java.util.ResourceBundle.getBundle
("CodeGen.HelloResources") .getString("rHelloWorldText"));

RELATED COMCEPTS

RELATED TASKS

42 \vVisualAge for Java, Version 2.0: Visual Composition

../../ide/tasks/tiexpubl.htm

RELATED REFEREMNCES

Chapter 11. Example of Code Generated from Visual Composite 43

44 visualAge for Java, Version 2.0: Visual Composition

Chapter 12. Morphing

In the Visual Composition Editor, morphing enables you to change the class or type
of a component without significantly reworking property or connection settings. This
capability can be very helpful in tasks like the following:

* Changing AWT components to Swing components

* Repairing breakage caused by renaming a class or moving it to a different
package

* Changing class beans to Variables (or the reverse)
However, you cannot change the superclass of a composite through morphing.

If renaming or moving a class has introduced a referencing error into a composite,
VisualAge alerts you when you attempt to open the composite. If you know that a
class has been moved or renamed and you already have the composite open, you
can select Resolve Class References from the Bean menu. In either situation,
VisualAge searches the repository for a like-named class and presents the first
candidate it finds. You can choose to proceed with the candidate VisualAge
suggests, ignore the problem for now, or specify an alternative class.

In situations other than breakage, you change the class or type of a component by
selecting Morph Into from the bean’s pop-up menu. In this case, you must specify
the name of the replacement class or bean type.

Common property settings and connection endpoints are preserved in the new
component. To determine feature commonality, VisualAge compares both name and
type; both must match. For example, suppose you change a component from
Java.awt. TextField to com.sun.java.swing.JTextField. The background color for the
original TextField happens to be gray. The gray setting is propagated into the new
JTextField.

Conversely, VisualAge discards property settings that cannot be used in the new
class. This includes torn-off properties but does NOT include promoted properties.
You must delete obsoleted promotions manually from the BeanInfo page of the
class browser.

Connection endpoints are handled similarly. Connections to features that are no
longer valid in the new class remain until code is regenerated for the composite. To
delete such connections instead, select Delete invalid connections before you
select OK to start the morphing process. Because components vary in their use of
like-named features, make sure that the updated composite behaves as you expect
it to.

RELATED REFEREMCES

© Copyright IBM Corp. 1997, 1998 45

46 VisualAge for Java, Version 2.0: Visual Composition

Chapter 13. Object Serialization in VisualAge

Object serialization is a means that the Java language provides to save state
information about a class instance between runs of a program element.

» Serializable classes support the java.io.Serializable interface, which provides a
protocol for writing self-contained instance state information to a binary file.

» Externalizable classes support the java.io.Externalizable interface, which provides
a protocol for writing identity information about an instance to a binary file. This
protocol is not complete; it depends on other state information being preserved
within the class itself.

To experiment with serialization, start with examples:

* The com.ibm.ivj.examples.vc.propertyeditors package of the IBM Java Examples
project contains one simple serializable class, called Name. To have VisualAge
write a serialization file for you, run the main() method of the NameWriter class.

* The Sun BDK Examples project shipped with VisualAge includes additional
examples of both serializable and externalizable classes. The sunw.demo.buttons
package contains a serializable class (ExplicitButton), an externalizable class
(ExternalizableButton), and sample classes (OrangeButtonWriter and
BlueButtonWriter, respectively) that can be used to save a sample instance.

Marking a class serializable does not require that it be serialized. It simply gives
you the flexibility to do so. For more information about object serialization issues in

general, see ISun’s Qhject Serialization sitd and the llavaBeans specificatiod.

VisualAge supports two different aspects of serialization:

» Direct consumption of serialization (.ser) files within the IDE. Wherever
serialized beans are supported, you can enter the name of an .ser file instead of
a class name. This includes adding the serialized bean to the beans palette and
dropping it into a composite. You can add serialization files to the beans palette
in the Visual Composition Editor just as you would bean classes present in your
workspace. Once a serialized bean has been dropped, you interact with it as you
would any other type of bean.

Before using a serialized bean, make sure that all classes referenced by the
serialized bean exist in your workspace. Otherwise, VisualAge cannot deserialize
the bean.

» Enforcement of required serialization. You can require that all instances of a
serializable bean be saved and restored through serialization by setting its
Hidden-state attribute to true in its associated Beanlnfo class. VisualAge writes
all hidden-state beans found within a class to a single serialized-object file (.so0s)
associated with the class.

VisualAge also uses serialization internally to preserve property settings, so it is
important that property values be serializable. By default, primitive types, arrays,
strings, and any bean that inherits from java.awt.Component are serializable.

RELATED COMNCEPTS

RELATED TASKS

RELATED REFERENCES

© Copyright IBM Corp. 1997, 1998 47

http://java.sun.com/products/jdk/1.1/docs/guide/serialization/index.html
http://www.java.sun.com/beans/docs/index.html

48 VisualAge for Java, Version 2.0: Visual Composition

Chapter 14. Internationalization in VisualAge

VisualAge supports two means of text separation by locale: list bundles and
property files. A list bundle is a persistent form of java.util.ListResourceBundle. A
property file is a persistent form of java.util. PropertyResourceBundle.

Both types of resource bundle contain key-value pairs.
ListResourceBundle.getContents() returns an array of key-value pairs. The
key-value pairs stored as static strings in a property file are used to initialize the
corresponding bean when it is loaded. Each resource bundle contains values for
one (or a default) locale. The name of the bundle can be keyed by locale so that
the virtual machine loads the appropriate resources for the current locale setting.

VisualAge supports the creation, editing, and use of resource bundles for all text
found in a class. You can separate String property values as you set them from the
Visual Composition Editor, or you can separate all text at once from the Workbench.

You can use your own resource bundles, or you can create them using VisualAge.
You can edit existing resource bundles by hand or from within VisualAge. Multiple

resource sources can be referenced within a single bean. VisualAge generates the
appropriate code the next time you save the bean.

VisualAge does not separate text located in user code fields. To take advantage of
programmatic string separation, move the user code into a separate method and
call the method from within the user code block.

RELATED TASKS

. H H H ”

RELATED REFEREMCES

java.util packagd

© Copyright IBM Corp. 1997, 1998 49

../../jdkref/Package-java.util.htm

50 visualAge for Java, Version 2.0: Visual Composition

Chapter 15. Using Visual Composites Imported from Version 1

If you imported composites using a Version 1 interchange file (.dat), you must open
them in the Visual Composition Editor and resave them in the current environment
before exporting again. This is necessary because the scheme through which
VisualAge records visual composition information changed after Version 1.

In Version 1, you shared composites with other repositories by exporting to an
interchange file distinct from Java source. Starting in Version 2, you share
composites by exporting to a Java source file. Visual composition information now
resides in a method within the class, named getBuilderData(). This method is
regenerated every time the composite is saved. Your resave operation gives
VisualAge the opportunity to generate this method the very first time.

° RELATED CONCEPTS

© Copyright IBM Corp. 1997, 1998 51

52 visualAge for Java, Version 2.0: Visual Composition

Chapter 16. Working with Beans Visually

You can perform the following tasks to modify your beans:

Editing Beans within a Composite Bean

VisualAge enables you to edit a composite bean or nonvisual bean that is
embedded within another composite bean.

To modify the bean, open the bean pop-up menu and select Open. The Visual
Composition Editor appears for that bean. If you add features to the embedded
bean from the BeanInfo page, select Refresh Interface when you return to the
original Visual Composition Editor.

RELATED COMNMCEPTS

RELATED TASKS

RELATED REFEREMCES

Renaming Beans and Connections

The Visual Composition Editor assigns default names to distinguish beans and
connections when you generate the code to build your program element. For

example, for each bean, VisualAge generates a get method that you should use to

access the bean within user methods or code. In addition to use in generated

methods for beans and connections, the names for selected beans and connections

appear in the information area at the bottom of the Visual Composition Editor.

The Visual Composition Editor assigns bean names based on the bean palette

name or the name you specify when you use the Choose Bean tool. For example,
VisualAge names the first button bean that you drop Buttonl, the second Button2,

© Copyright IBM Corp. 1997, 1998

53

the third Button3, and so forth. When you select this bean, the information area at
the bottom of the Visual Composition Editor displays the message Buttonl
selected.

The Visual Composition Editor assigns connection nhames based on the type of
connection. For example, the first property-to-property connection is named
connPtoP1, the second is connPtoP2, etc. All other connection types receive their
names simlarly. For example, an event-to-code connection is named connEtoC1, an
event-to-method is named connEtoM1, etc.

To assign bean or connection names that are more descriptive or meaningful to
your program element, follow these steps:

1. Move the mouse pointer over the bean or connection that you want to rename.
2. Click mouse button 2 and the pop-up menu appears.

3. Select Change Bean Name or Change Connection Name and the Name
Change Request or Connection Name Change Request window appears.

4. Type a new name in the entry field.
5. Click OK. The Visual Composition Editor changes the name.

To view the changes outside the Visual Composition Editor, you must regenerate
the code.

You can also rename beans in the property sheet and you can change bean or
connection names from the pop-up in the Beans List.

Note: When you name a bean, take into account that VisualAge uses the name of
the bean in generating get methods. For example, if you name a torn-off
property font, the generated method getFont overrides the inherited method.

RELATED COMNCEPTS
RELATED TASKS

RELATED REFEREMNMCES

Setting the Tabbing Order

The tabbing order specifies how the input focus moves from bean to bean as the
user presses the Tab key.

Open the pop-up menu for the composite bean.

Select Set tabbing and then Show tab tags and numbered tab tags appear.
Place the mouse pointer over the tab tag you want to change.

Press and hold mouse button 1.

Drag the tab tag to its new position.

Release mouse button 1.

Repeat until the numbered tags reflect the tabbing order you desire.

N o g~ wDdhE

You can also change the tabbing order by moving the beans in the Beans List.

54 visualAge for Java, Version 2.0: Visual Composition

RELATED COMCEPTS

‘ H B 9

RELATED REFEREMCES

Promoting Bean Features

If you want to connect to the features of a bean that is embedded within a
composite, you must promote bean features. To promote the bean features:

Open the bean pop-up.

Select Promote bean feature .

Select the type of feature: Method , Property , or Event.

From the list box, select the feature you want to promote and >> is enabled.
Click >> and the feature is listed in the Promoted features list.

Repeat for the other features you wish to promote.

If you wish to rename the feature, double-click and modify the name listed in the
Promote Name list.

If you wish to remove the feature from the Promoted features list, click <<.
9. Click OK.

No o wDdhR

©

When you promote features, VisualAge performs the following tasks:
* Saves the composite bean

* Generates the code for the composite bean

» Creates a Beanlnfo Class, if one doesn't already exist

* Adds a new connection between the embedded bean and the composite, where
appropriate (for all but promoted methods)

When you embed this bean within another bean, the features that you promoted are
listed under the type in the Connectable Features window. Connect the promoted
feature of each bean to effect the change you desire.

RELATED COMCEPTS

RELATED REFEREMCES

Chapter 16. Working with Beans Visually 55

Tearing Off Properties

If you want to gain access to an encapsulated feature of a bean, you must tear off
the property. To tear off a property:
1. Select Tear off property from the pop-up menu of the bean with the property

you want to access. Another menu appears listing all of the properties of the
bean.

2. Select the property you want to tear off. The mouse pointer is now loaded with a
variable bean representing or pointing to the property you selected.

3. Place the new bean on the free-form surface, as you would any other nonvisual
bean. The torn-off property now appears as a variable bean connected to the
original bean by a property-to-property connection.

RELATED COMNCEPTS

RELATED REFEREMCES

Editing Bean Properties

The property sheet for a bean provides a way to display and set initial property
values for the bean. Changes made to values in the property sheet are applied
immediately.

You can edit the properties for a single bean or select several beans and open a
property sheet for them. When you change a property on the property sheet, the
change affects all the selected beans.

Some of the tasks you can perform include:

Opening the Property Sheet for a Bean

To change the properties for a single bean, follow these steps:

1. From either the free-form surface or the Beans List window, place the pointer
over the bean and double-click mouse button 1. The property sheet for the
bean appears.

2. When you have chosen the property you want to modify, select the value field to
the right of the property name.

56 visualAge for Java, Version 2.0: Visual Composition

3. Make the appropriate changes from the provided options. Options for modifying
the properties depend upon the bean and may include selecting a button,
entering information into the field, selecting from a drop-down list, or proceeding
to other dialog boxes.

To change the properties for multiple beans (multiple selection), follow these steps:
1. Select the beans with properties you want to change.

2. Move the mouse pointer over one of the selected beans.

3. Click mouse button 2.
4

Select Properties from the pop-up menu. A property sheet for the selected
beans appears and displays the common properties for the selected beans.

Once you open a property sheet, you can modify properties for most beans in the
Visual Composition Editor. To open the properties on another bean select it in the
Visual Composition Editor. To select if from within the property sheet:

1. Open the drop-down list at the top of the property sheet.
2. Select the bean you want to modify.
3. Modify the properties.

Note:

If a common property is not visible on the property sheet, select the Show
expert features check box.

To enable national language support for your composite, be sure to read

Using Property Interface Editors

Some bean properties on the property sheet, such as border and model, use
interface editors. If the property has an interface editor, a small button, which

indicates a secondary window, appears to the right when you select the value field
for that property. When you select the j , the interface editor for that property

appears.

The interface editor provides two options: Code String and Bean Implementing
Interface . To enter your own code string for the property, select Code String and
type your code in the entry field. To see a list of available interfaces, select Bean
Implementing Interface . From the drop-down list, select the desired interface for
that property and modify any values listed.

Using Code Strings in Bean Properties
VisualAge enables you to set some bean properties using code strings. Curly
braces, { }, in the value column of a bean property sheet indicate that you can type

Java code directly into the property field.

For example, you can use code strings to dynamically instantiate a dialog window
when the user selects a button.

1. Create and save a dialog window named MyDialog.

Chapter 16. Working with Beans Visually 57

2. Create the main user interface bean and drop a factory bean with the type

MyDialog.

3. Connect the actionPerformed event of a button to the MyDialog method of the
factory.

4. Open the Event-to-Method Connection window and select the Set parameters
button.

5. Enter new java.awt.Frame() in the value field of the parent property.

This string directs VisualAge to create a new instance of MyDialog when the
button is selected.

6. Connect the actionPerformed event of the button to the Show() method of the
factory, to make the dialog visible.

Changing Bean Colors

Visual beans have color properties for the foreground and background. To change a
color property of a bean in its property sheet, do the following:

1. Select either the foreground or background property. A small selection button
j appears in the value column.

2. Click the button to open the Colors property window.

3. Select either the Basic, System, or RGB checkbox.

* Basic —Select either a color box or the color name. The selected color
appears in the preview window.

* System —Select the standard system object color.
* RGB—Manipulate the sliders to create the desired color.
* Click OK to accept the changes and return to the property sheet.

When you change bean colors, select colors that are available across various
platforms.

For an example, open the background property in the property sheet for any of the
com.ibm.ivj.examples shipped in the IBM Java Examples project.

Note: If you are setting the background property of a Swing bean, be sure the
opaque property of the bean is set to true.

Changing Bean Fonts

To change the font of a bean in its property sheet, do the following:
1. Select the font property. A small selection button :I appears in the value

column.
2. Click the button and the Fonts property window appears.

3. Modify any of the following font values:
* Name
* Style
* Size
4. Preview the font changes in the preview window.

58 visualAge for Java, Version 2.0: Visual Composition

5. Click OK to apply the changes and return to the property sheet.

When you change bean fonts, select fonts that are available across various
platforms.

For an example, open the font property in the property sheet for any
com.ibm.ivj.examples.vc. class shipped in the IBM Java Examples project.

Changing Bean Size and Position

If a bean is embedded in a container that does not use a layout manager (null
layout), you can change the x and y coordinates, the width, and the height using
the bean property sheet. To modify the size and position features, do the following:

1. Click the expansion icon |El| to the left of the constraints property.

2. Select the value field for the property you want to modify and enter the new
property value.

3. Press enter to apply the value.

Note: If you specify a non-null layout for the container, the bean position and sizing
constraints are affected by that layout manager.

When you open the bean property sheet using multiple selection, some size and
position constraints may appear stippled rather than solid because the values for
the field are not common to all the selected beans. Once you modify the constraint,
however, all the selected beans have the same value and the constraint appears
solid.

For an example of the different layout managers, see the
COM.ibm.ivj.examples.vc.layoutmanagers.LayoutManagers class shipped in the IBM
Java Examples project.

Adding Bean Icons

Some visual beans, such as JLabel and JButton, have icon properties. You can
assign an icon to these beans through the property sheet.

To add an icon to a visual bean:

1. Open the bean property sheet.

2. Select the Icon value field.

3. Select and the Icon Editor appears.

4. To add an icon from a graphics file, select File and enter the fully qualified path
and file name in the name field, or select Browse and select the file through the
file locator.

5. To add an icon from a URL, select URL and enter the fully qualified path and file
name in the name field.

6. Press Enter to view the icon in the preview pane.
7. Select OK to accept the icon.

Chapter 16. Working with Beans Visually 59

Editing Bean Labels

Some visual beans, such as buttons and menus, contain text strings. You can edit
these labels through the property sheet.

To edit the text of a label:
1. Open the bean property sheet.
2. Select the label value field.

3.

Enter the new label name.
RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMCES

Setting a Layout Manager during Visual Composition

To set a layout manager in a container bean, follow these steps:

1.
2.
3.

Open the property sheet for the container bean.
From the value column, select the cell for the layout property.
From the Layout Manager drop-down list, select a layout.

Setting Layout Properties during Visual Composition

The complexity of this task depends on which layout manager you choose for your
container bean and how much custom behavior your bean requires. Default
behavior exists to some extent for all layouts. To set layout properties for the
components of the container bean, follow these steps:

1.
2.

3.

4.

Open the property sheet for the component bean.

If one exists, click the expansion icon |El| to the left of the constraints property.
Select the value field for the property you want to modify and enter the new
property value.

Press enter to apply the value.

Consider waiting to set layout properties until you have settled on a layout manager.
Many values are lost when you switch layouts or move the component to another
container.

GridBag Layout Constraints

GridBag is a powerful tool for layout, however, because of its many choices, it can
become confusing. Once you have selected GridBag layout for your user interface,
adjust the constraints to affect the placement of beans within the layout.

60 visualAge for Java, Version 2.0: Visual Composition

Constraint Specifies...

Anchor Where within the cell (North, South, etc.) to
place a component that is smaller than the
cell.

Fill How to size the component (Vertical,

Horizontal, Both, or None) when the cell is
larger than the component’s requested size.

gridX, gridY The column (gridX) and row (gridY) where
your component resides. If gridwidth or
gridHeight is >1, gridX and gridY are the
starting row and column. The default places
a new component to the right or below the
previously added component.

gridWidth, gridHeight The number of cells the component should
use in a row (gridWidth) or column
(gridHeight).

insets The component’s external padding, the

minimum amount of space between the
component and the edges of its cell.

ipadX, ipadY The component’s internal padding within the
layout, or how much to add to the width
and/or height of the component.

weightX, weightY How to redistribute space for resizing
behavior. You should specify a weight for at
least one component in a row (weightX) and
column (weightY) to prevent all the
components from clumping together in the
center of their container. The distribution of
extra space is calculated as a proportional
fraction of the total weightX in a row and
weightY in a column.

Creating a GUI Using GridBagLayout

Follow these steps to create a To Do List GUI using GridBagLayout:

Chapter 16. Working with Beans Visually 61

To Do List

To Do kem:

Add Remove

1. To set up the applet:
* From your package in the IDE add an applet with JApplet as the superclass.

* Open the Visual Composition Editor to the JApplet. The applet contains a
JAppletContentPane, on which you work.

e Select from the tool bar, and place the Beans List window in a visible

but out of the way location.
* Select from the tool bar, and place the Properties window in a visible

but out of the way location.

Note: These windows are necessary for modifying properties and accessing
covered components throughout this process.

* Select the JApplet.

* From the Properties window, open the layout drop-down, and select
GridBagLayout.

2. To place beans in the GridBag:

* Select a JLabel from the palette and drop it on the JAppletContentPane.
Because GridBagLayout distributes extra space around the beans in the
layout, the JLabel falls to the center of the pane. You change this behavior,
later in the procedure, by setting the weightX/weightY constraints property on
one of the components in the layout.

* Select a JTextField.

* Hold mouse button 1 down and move the pointer to the right of the JLabel.
The dark line between the pointer and the JLabel indicates target emphasis.

62 VisualAge for Java, Version 2.0: Visual Composition

Release the mouse button while the emphasis line is on the right side of the
JLabel and the JTextField appears to the right of the JLabel.

Note: Beans dropped in GridBagLayout appear in their preferred size. The
preferred size, which is different for every component, is usually
dependent on one of the component’s property settings. For example,
the preferred size of JLabel is the size of the text within the label. If
the component is a container, like a JPanel or a JScrollPane, the
preffered size usually reflects the preffered size of the contents of the

component.
» Select another JLabel and position it so that target emphasis is on top of the
JLabell.
» Select a JScrollPane and position it so that target emphasis is under the
JLabell.

» Select a JList and place it on the the JScrollPane in the beans list. Because
the preferred size of the JScrollPane is small, it is easier to add the JList
bean directly onto the JScrollPane that is in the Beans List window. When
you drop the bean, the preferred sizes of the JScrollPane and JList align.

3. To adjust property values within the Properties window, select the bean and
then adjust the property value:

Bean... Property... Change Value to... What You See..

JTextFieldl columns 5 TextField width
increase

JLabell text To Do Item: Change in text

JLabel2 text To Do List Change in text

JLabel2 font Name—serif, Change in font style

Size—18 and size

JLabel2 horizontalAlignment | center Label placement is

centered

4. To adjust the constraints properties within the Properties window, select the
bean and then open the constraints tree-view and adjust the property value :

Note: Since the JScrollPane, not the JList, is the component that is sitting in
the GridBagLayout, you modify its constraints. Because the JList
completely covers the JScrollPane, you must select the pane from either
the Beans List window or the Properties window. If you select the JList
instead, you cannot adjust the component width within the layout

manager.

Bean...

Constraint...

Change Value To...

What You See..

JScrollPanel gridwidth

2

Pane covers two cells
width

JScrollPanel fill

both

Pane fills the cell
vertically and
horizontally

JScrollPanel weightX

Column containing
the JScrollpane
expands to fill the
extra horizontal
space in the JApplet

Chapter 16. Working with Beans Visually 63

JScrollPanel

weightY

Row containing the
JScrollpane expands
to fill the extra
vertical space in the
JApplet

JScrollPanel

insets

left—15, bottom— 5,
right—15

Padding on the left,
bottom, and right of
the pane

JLabel2

gridwidth

Label covers two
cells width

JLabel2

insets

top—15

Padding on the top of
the label

JTextFieldl

fill

horizontal

Textfield fills cell
horizontally

JTextFieldl

insets

top—15, bottom—25,
right—15

Padding around top,
bottom and right side
of the TextField

JLabell

ipadX

10

Internal padding
between text and
component border

JLabell

insets

top—15, left—15,
bottom—5, right—5

Padding around all
sides of label

Note: Setting the weightX and weightY on the JScrollPane, insures that the
GUI resizes proportionately. Setting the ipadX on JLabell, insures that
the label resizes proportionately. This is especially helpful when
translating your GUI into other languages.

5. To add the button panel:

* Select a JPanel and position it so that target emphasis is under the

JScrollPanel.

* Because JPanel defaults to null layout, it has no constraints and is not
visible. From the Beans List window, select JPanell and change the layout to
GridLayout in the Properties window.

* Place two JButtons on JPanell in the Beans List window.
6. To adjust the properties and constraints properties for JPanell and its contents:

Bean... Property... Change Value To... What You See...

JPanell constraints—anchor | EAST Panel placement
moves to the lower
right corner

JPanell constraints—insets bottom—15, right—15 | Padding around the
right and bottom of
the panel

JPanell layout—hgap 5 Space between the
buttons

JButtonl text Add Button label changes

JButton2 text Remove Button label changes

RELATED COMCEPTS

RELATED TASKS

64 visualAge for Java, Version 2.0: Visual Composition

RELATED REFEREMNCES

Working in the Beans List

The Beans List window displays an ordered list of the beans and connections on
the free-form surface. The beans are initially listed in the order in which they were
dropped, which also reflects the tabbing order. If you change the order of beans
that have tabbing set, the Visual Composition Editor reflects the updated tabbing
order.

To view the beans list, select Beans List from the tool bar or select from the

Tools pull-down menu.

You can perform the following tasks within the beans list:

* Drop a bean from the palette directly onto the beans list.

» Select a bean or connection.

* Reorder a bean or connection by dragging.

» Change the tabbing order.

* Move a bean to a different composite by dragging.

* Make connections between beans on the beans list.

» Perform any tasks on the bean or connection pop-up for an item in the beans list.

Chapter 16. Working with Beans Visually 65

E{_,. TaDa - Beans List Ed
= | ®pTaba N

=1 | TaDa

=l DJ.&ppIetEnntentF‘ane
Ab] JLabell
1T extField?
= B J5cralPanet

Al JLabel?
+ || JPanel
= Connechions
#=+ connktobd 1
&% connPtoP

<% connPtaP2

4 AW

RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMCES

FReans list” an page 196

66 VisualAge for Java, Version 2.0: Visual Composition

Chapter 17. Composing Beans Visually

Visually composing beans means using the Visual Composition Editor to place and
connect individual and composite beans in a graphical user interface (GUI). More
specifically, visually developing a user interface bean includes:

Designing the user interface.

Choosing a layout for the bean.

Dropping visual and nonvisual beans on the free-form surface or the beans list.
Changing properties and manipulating the beans.

Making connections to determine the behavior of the beans.

Manipulating connections.

Running, which includes saving, generating code, and compiling the class.
Making changes.

© No gk wDdhPR

When you edit the bean that represents the overall structure of your application
(usually its main user interface view), you graphically build your application. By
making connections between beans, you build your program’s business logic.

Embedding Beans in a Composite Bean

A composite bean is a bean that contains other beans. The beans you add are
referred to as embedded beans. You can embed primitive or composite beans into
your composite bean.

You can add beans that appear on the beans palette, as well as beans that do not
appear on the palette. Beans that do not appear on the palette may include
composite beans you created, such as a panel with several buttons.

Note: If you use a layout that allows a bean to completely cover another bean, the

[Beans List” on page 196 enables you to easily perform tasks on the covered

components.

Adding Beans From the Palette

To add a bean from the palette to the Visual Composition Editor surface, follow
these steps:

1. From the category menu button, select the category containing the bean you
want.

2. Select the bean you want. The mouse pointer becomes a crosshair, indicating
that the mouse pointer is loaded with the bean you selected.

3. Move the crosshair to the location where you want to place the bean.

4. Press and hold mouse button 1. An outline of the selected bean appears under
the crosshair. Without releasing the mouse button, move the crosshair to
position it precisely.

5. Release the mouse button. The bean you selected is placed at the location of
the crosshair, and the mouse pointer returns to normal.

Note: If you specify a non-null layout for the container, the bean placement is
affected by that layout manager.

© Copyright IBM Corp. 1997, 1998 67

To add a bean from the palette to the beans list, follow these steps:
1. Select the category containing the bean you want.
2. Select the bean you want.

3. From the Beans List window, click on the composite bean that you want to
place the bean within. The bean you selected is added to the beans list and the
composite bean.

Note: The layout you specified for the container affects the placement for the bean.
To modify bean placement on the Visual Composition Editor from within the
Beans List window, open the Properties for the bean and modify the
Constraints .

To add multiple instances of the same bean, enable Sticky by holding Ctrl while
selecting the bean. Selecting a new bean or the Selection tool disables Sticky .

If the bean you want to add is not on the beans palette, you can add it with the
Choose Bean tool from the beans palette.

Adding Beans Not on the Palette

You can add a bean as a class, a serialized bean, or a variable. When you add a
bean as a class, the default constructor for the class is used when the program
runs. This means that a real object is created, not a variable that points to a real
object defined elsewhere. For more about serialized beans, see [Chapter 13_Ohject

Before you try to add a serialized bean, make sure its serialization file (.ser) is
somewhere in the classpath for your workspace.

To place a bean on the Visual Composition Editor:

1. From the beans palette, select the Choose Bean tool; the Choose Bean
window appears.

2. Enter the fully qualified class name in the Class name field. The Browse button
is especially helpful in locating the Class name when several of the same name
exist in multiple packages.

3. Type a name for the bean in the Name field. This name appears in the
information area at the bottom of the Visual Composition Editor when you select
the placed bean; it represents the bean in generated bean code.

The Name field is optional. If you leave it blank, VisualAge generates a default
name based on the class.

4. To close the Choose Bean window after loading the mouse pointer with the
bean, click OK.

To enable the OK push button, you must enter the fully qualified name,
package, and class in the Class name field.

5. Move the crosshair to the desired location on either the Visual Composition
Editor surface or the beans list, and click mouse button 1.

If you are dropping a bean that uses a graphic resource, place the graphic resource
file in the directory where your program element is located. For example, if your
program element is called MyProject.MyPackage.MyApp, place your graphic
resource file in x:\..\ide\project_resources\MyProject\MyPackage\MyApp (where

68 VisualAge for Java, Version 2.0: Visual Composition

x is the drive where VisualAge is installed). If you have not exported your program
element or created subdirectories in the project_resources directory, you may need
to create the subdirectories manually.

Unloading the Mouse Pointer

To unload the mouse pointer at any time, from the beans palette, click the EE‘

Selection tool.

Undoing and Redoing Changes in the Visual Composition Editor

If you undo an operation that you decide you had right in the first place, select
Redo from the Edit pull-down menu. Redo restores the bean to the state before
the last Undo, including any connections that were deleted.

Undo and Redo affect operations you perform on the free-form surface and beans
palette in the Visual Composition Editor. They do not affect any of the functions in
the File pull-down menu.

Use Undo to reverse any or all of the changes you made to the Reorder
Connections list.

Saving a Bean

Saving a bean that you have constructed includes generating the source code. To
save the bean and generate the source code:

1. Select Bean from the menu bar.
2. Select Save Bean.

Note: Clicking the Run button from the tool bar also saves the bean and

generates the source code.

Running and Testing Beans

When you select Run from the tool bar, VisualAge performs the following

actions on your visually composed bean:

» Saves the bean

* Generates code

» Compiles the class

* Runs the compiled bean in an applet window

RELATED COMNCEPTS

FAddno B e ieoal T o T

. ”

FEree-Form Surface” an page d

" - N . "

Chapter 17. Composing Beans Visually 69

RELATED TASKS

RELATED REFEREMNCES

70 visualAge for Java, Version 2.0: Visual Composition

Chapter 18. Manipulating Beans Visually

Once you have placed beans on the free-form surface, you can make the following
changes to achieve the look and function you want:

Selecting and Deselecting Beans

To select a single bean, click the bean with mouse button 1. If you previously
selected other beans, they are deselected automatically.

To select multiple beans, do one of the following:

* For Windows platforms: Hold down Ctrl or Shift and click mouse button 1 on
each additional bean you want to select.

* For Windows platforms: To select all the beans within a container, select the
container bean and then, from the File pull-down, select Select All.
* For UNIX platforms and OS/2: Hold down mouse button 1 and move the mouse

pointer over each bean you want to select. After you select the beans, release
mouse button 1.

You can select beans or connections, but not both together. However, if you delete
a bean with connections, the Visual Composition Editor deletes the connections and
the bean.

When you select a bean in the Visual Composition Editor, selection handles i

appear on the corners and between the corner handls. If you select more than one
bean, the last bean selected has solid selection handles, indicating that it is the
anchor bean and the other selected beans have hollow selection handles. The
anchor bean is the guide by which the other beans are manipulated. For example, if
you want to match the widths of two beans, the anchor bean is used as the
guideline width.

To change the anchor bean, hold Shift and click the already selected new anchor
bean.

Note: You can also select and modify beans, one at a time, in the beans list.

To deselect a bean after you have selected it, click mouse button 1 anywhere on
the Visual Composition Editor.

To deselect multiple but not all selected beans, follow these steps:
1. Hold down the Ctrl key.

© Copyright IBM Corp. 1997, 1998 71

2. Click and release mouse button 1 on all the beans you want to deselect.

You can deselect all selected beans by clicking mouse button 1 anywhere but on a
selected bean.

Positioning Beans

Positioning a bean refers to aligning or spacing. For beans in a null layout, the tool
bar and the Tools pull-down menu provide options for aligning beans.

The anchor bean, indicated by solid selection handles, is the bean that serves as
the alignment reference. To align beans with one another, select the ones you want
to modify and select the anchor bean last. You can also change the anchor bean by
holding Shift and clicking on the new anchor bean.

To align beans:

1. Select all the beans you want to align, and then select the bean you want the
others to match.

2. Select one of the following alignment tools from the tool bar:

| Align Left

=1 Align Top

* Align Center

Align Middle

j Align Right
@ Align Bottom

The pop-up menu provides options for spacing within the bounding box, an unseen
box that contains the selected beans. You can also manage the placement of parts
by using a layout managerh.

-F

To space beans within the bounding box:

1. Select all the beans you want to evenly space. You must select a minimum of
three beans.

2. From the pop-up menu of one of the selected beans, select Layout and then
Distribute , and then either Horizontally in bounding box or Vertically in
bounding box .

Note: If you specify a non-null layout for the container, the bean alignment and
spacing are controlled by that layout manager and not the alignment tools.

72 VisualAge for Java, Version 2.0: Visual Composition

Resizing Visual Beans

You can change the size of a visual bean in the Visual Composition Editor using
any of the following techniques:

» Dragging the selection handles

* Matching by multiple selection

» Changing Constraints properties

* In a non-null layout manager, resetting layout constraints

Beans that cannot be resized, such as variables, menus, and tear-off properties
have reversed background color, but no selection handles. Beans using non-null
layouts cannot be resized, but have selection handles.

Note: If you specify a non-null layout for the container, the bean sizing is affected
by that layout manager.

Resizing Beans by Dragging

To change the size of a visual bean in a container using a null layout, follow these

steps:

1. Select the bean by clicking it with mouse button 1. To size several beans at
once, select all the beans you want to size.

2. Place the mouse pointer over one of the handles and hold down mouse button
1.

3. While holding down mouse button 1, drag the handle to a new location. As you
move the mouse, the outline of the bean dynamically changes size. When it is
the size you want, release the mouse button. The bean changes to the size that
you chose.

Note: Pressing the Esc key before releasing the mouse button cancels resizing
without making changes.

To size a bean in only one direction, press and hold the Shift key while sizing the
bean. Holding down the Shift key prevents one dimension of the bean from
changing when you resize the other dimension. For example, to change the width of
a bean but prevent its height from changing, hold down the Shift key while changing
the width.

Matching Bean Sizes Using the Tool Bar

1. Select all the beans you want to size, making sure the last bean you select, the
anchor, is the size you want the others to match. You can change the anchor by
holding Shift and clicking the new anchor.

2. Select one of the following from the tool bar or the Tools pull-down menu:
===] Match Width

>

Match Height
i |

The size of the selected beans changes to match the size of the anchor bean.

Chapter 18. Manipulating Beans Visually 73

Moving Beans

To move a bean in the Visual Composition Editor, follow these steps:
1. Place the mouse pointer over the bean you want to move.

2. Hold down the appropriate mouse button and move the mouse pointer to the
new location.

¢ In Windows, hold down mouse button 1.
¢ In OS/2, hold down mouse button 2.
e In UNIX platforms, hold down the middle mouse button.

3. Release the mouse button. The bean appears in its new location with a solid
border around it, indicating it is selected.

If the bean you are dragging is one of several that you selected, all selected beans
move together. Pressing the Esc key before releasing the mouse button cancels the
move without making changes.

You can reorder or reparent a bean in the beans list. To reorder, select a bean in
the beans list and drag it to a new position within its composite bean. This action
does not change the position of the bean in the Visual Composition Editor (except
as noted below), but reorders the list, which affects the tabbing order. To reparent a
bean, select and drag it to a different composite bean in the beans list. This action
does change the position of the bean in the Visual Composition Editor. You cannot,
however, select multiple beans on the beans list.

To modify bean placement on the Visual Composition Editor from within the Beans
List window without reparenting, open the Properties for the bean and modify the
Constraints.

Note: If you use BoxLayout, FlowLayout, or GridLayout managers, you can move
beans on the Visual Composition Editor surface by reordering them in the
beans list.

Moving a composite bean requires special handling. For information, see ECadd

Copying Beans

To copy beans using the clipboard:
1. Select all the beans you want to copy.

2. From the Edit pull-down menu, select Copy. A copy of each selected bean is
placed on the clipboard.

3. From the Edit pull-down menu, select Paste. The mouse pointer turns into a
crosshair, indicating that it is loaded with the copied beans.
If you decide against pasting the beans, unload the mouse pointer by selecting

the E-},‘ Selection tool.

4. Position the mouse pointer where you want the beans to be copied.

5. Click mouse button 1. Copies of the beans appear at the position of the
crosshair.

74 VisualAge for Java, Version 2.0: Visual Composition

As long as you do not copy another item to the clipboard, you can continue copying
these beans.

Note: When you copy or cut and paste beans, the Visual Composition Editor
preserves the bean names but not the connections.

When you copy or cut and paste two or more beans, they retain their positions
relative to each other.

To copy beans by dragging:

1. Select all the beans you want to copy. If you only want to copy one bean, you
do not have to select it.

2. Position the mouse pointer over one of the beans you want to copy.
3. Hold down both the Ctrl key and the appropriate mouse button.

* For Windows, hold mouse button 1.

* For OS/2, hold mouse button 2.

* For UNIX platforms, hold mouse button 2.

4. Move the mouse pointer to a new position. To help you with positioning, an
outline of the bean appears. When you are copying multiple beans, the outlines
of the selected beans move together as a group.

5. When the beans you are copying are in the desired position, release the mouse
button and Ctrl key. The copied beans appear where you positioned the outline.

Note: Pressing the Esc key before releasing the mouse button cancels copying
without making changes.

Copying a composite bean requires special handling. For information, see ECadd

Deleting Beans

To delete beans, select them and press Delete or select Delete from the pop-up
menu.

When you delete a connected bean, the connections between that bean and other
beans are also deleted. However, when you select Edit and then Undo, you restore
the deleted bean and any connections that were removed.

Displaying Bean Pop-Up Menus

To see a menu of operations you can perform on a bean, click mouse button 2 on
the bean. The pop-up menu for the bean appears. Choices on the pop-up menu
allow you to delete the bean, rename it, and perform other operations (which vary,
depending on the bean).

To display a pop-up menu for multiple beans:

* Select the beans.

* Place the mouse pointer over any of the selected beans.
* Click mouse button 2.

Chapter 18. Manipulating Beans Visually 75

Note: When you open a pop-up menu for multiple selected beans, one menu
displays the choices common to all selected beans. Operations performed
from that pop-up affect all selected beans.

RELATED COMNMCEPTS

76 VisualAge for Java, Version 2.0: Visual Composition

Chapter 19. Connecting Beans

In VisualAge, you draw connections between beans to define their interaction. This

involves using the mouse to select a feature of the source bean and connect it to

the feature of the target bean. The type of feature at the source—property or
event—and the type of feature at the target—property, method, or

code—determines the type of connection. For example, if the source is an event

and the target is a method, the connection is an event-to-method.

If you decide to change the connection behavior of the bean, you can edit or
reorder the existing connections without redrawing them.

Note: You can also perform connections within the Beans List window.

Connecting Features to Other Features

To connect two features, follow these steps. The term source refers to the where

the connection begins and the term target refers to where the connection ends.

1.

Select the source bean, click mouse button 2, and select Connect from the
pop-up menu.

In most cases, a cascade menu appears that displays the names of the most

commonly used (or preferred) features. If additional features exist that are

appropriate for the connection type, Connectable Features also appears on the

menu. Selecting Connectable Features opens a connection window with an
expanded list of features, sorted alphabetically and by feature type.

* If a connection window appears instead of the cascade menu, this means
that preferred features have not been assigned for the bean.

« If the Connectable Features selection does not appear on the menu, this

means the menu contains all available features, not just the preferred ones,

and there are no more from which to select.
Select a feature by doing one of the following:
« If the feature appears in the preferred list, select it.

» If the feature does not appear in the list but the Connectable Features
selection is available, select Connectable Features and then select the
feature from the expanded list in the connection window.

 If the feature does not appear in either the preferred or expanded list, you
may be able to edit the bean to add the feature you need.

If, at this point, you decide not to complete the connection, do one of the
following:

* If a pop-up menu appears, move the mouse pointer away from the
connection menu and click mouse button 1.

* If a window showing all the features appears, click Cancel.

The menu or window closes without completing the connection.

Place the mouse pointer over the target bean. As you move the mouse, a
dashed line trails from the mouse pointer back to the source bean.

Click mouse button 1. As with the source bean, either a pop-up menu or
connection window appears.

Select the target feature as before.

© Copyright IBM Corp. 1997, 1998

77

When you complete the connection, a colored connection line appears. The color
indicates the connection type, based on the features you selected as end points.

You make connections within the beans list in the same manner as in the Visual
Composition Editor. You cannot, however, start a connection on the Visual
Composition Editor and complete it in the beans list or vice versa. You may want to
draw connections on the beans list instead of the Visual Composition Editor if you
use a layout that allows for a bean to completely cover another bean.

Note: If you are using an unbound property in a property-to-property connection,
open properties on the connection and select an event to associate with the
property. When the event is triggered, the properties values align.

Connecting Features to Code

The source for a code connection must be either an event or a bound property (a
property that fires an event when its value changes). Connect to a code as follows:

1. Open the pop-up menu for the source bean.

2. Select Event to Code and the Event-to-Code Connection window appears.
3. Select an Event from the Event drop-down.
4

If you have already written the code, select it from the Method drop-down.
Otherwise, leave <new method> visible in the Method field.

5. Modify the code in the code window as appropriate. This window operates the
same as the code window for creating methods in the IDE.

6. If you want the event to pass its parameters to the new method, select Pass
event data at the bottom of the panel.

7. If the code takes input parameters and you want to specify them as constants,
save the code by opening the code pane pop-up and selecting Save. When the
code is saved, click Set parameters and enter the constants you want.

8. Click OK.
The connection window closes and VisualAge draws a green connection arrow
from the source bean to a moveable text box on the free-form surface. If the
connection arrow is dashed, you must supply values for the input parameters of
the code.

You can also create a code connection by selecting a source event and
targeting an Event-to-Code Connection on the free-form surface.

Connecting from Connection Results

An exception is any user, logic, or system error detected by a function that does not
deal with the error itself but passes the error on to a handling routine, called an
exception handler. In VisualAge, you can catch exceptions by connecting exception
events to either methods or code.

An exception is a feature of a connection, not a bean. It appears as
exceptionOccurred on the connection’s connection menu.

You can also pass the return value from the target of a connection. This return
value displays as the normalResult event of the connection. You can connect the
normalResult event to a feature of the same bean or another bean. For example,
you can connect the exceptionOccurred to a method that brings up a prompter with
an error message.

78 VisualAge for Java, Version 2.0: Visual Composition

Supplying Parameter Values for Incomplete Connections

Connections sometimes require parameters, or input arguments. If a connection
requires parameters that have not been specified explicitly or by default, it appears
as a dashed arrow, indicating that it is incomplete. When you have made all the
necessary parameter connections, the connection line becomes solid, indicating that
the connection is complete.

You can create parameter from method and parameter from code connections.
When the primary connection calls for a value parameter, it calls the method or
code, which passes the return value as the parameter.

Supplying a Parameter Value Using a Connection

1. Start a new connection using as the source, the dashed connection line that
requires the parameter.

2. For the target, select the feature that provides the value.

Supplying a Parameter Value Using a Constant

When connections need parameters with constant input values, provide these
values through the properties window of the incomplete connection, as follows:

1. Open properties for the incomplete connection by selecting Properties from the
pop-up menu or by double-clicking the connection line. The properties window
of the incomplete connection appears.

2. Select Set parameters . The Constant Parameter Value Properties window
appears showing the parameters for which you can set constant values.

3. Enter the constant parameter values you want to use.
4. Do one of the following:
» To apply and save the values and close the window, click OK.

» To close properties without saving any of the parameter values you just
entered, click Cancel.

Specifying Values for Parameters by Default

In most connections other than event-to-code, data is not passed by default from
the source of a connection to the target. However, you can set VisualAge so that it
always passes the available event data. In that case, the initial connection line may
not appear dashed.

To set the connection to always pass event data, follow these steps:
1. Open the properties for the connection.
2. Select the Pass event data check box.

Note: The source of the connection determines the event data that is passed.

The event-to-code dialog defaults the Pass event data check box to false only if
either of the following is not true:

* The event passes a parameter and the code accepts a method.
* The event parameter matches the type of the parameter accepted in the code.

Chapter 19. Connecting Beans 79

Editing Connection Properties

Connection properties enable you to change a connection without redrawing it.
Through the properties window, you can do the following:

* Change the source or target feature, depending on the connection type
* Reverse the direction of a property-to-property connection

» Specify an input parameter as a constant

* Delete the connection

To open properties for a connection from either the free-form surface or the Beans
List window, move the mouse pointer over the connection and do one of the
following:

* Double-click mouse button 1.
» Click mouse button 2 and select Properties from the connection’s pop-up menu.

RELATED COMNMCEPTS

‘ H ”

RELATED TASKS

RELATED REFEREMCES

80 visualAge for Java, Version 2.0: Visual Composition

Chapter 20. Manipulating Connections

Once you have made connections to and from beans on the free-form surface, you
can modify them as follows:

» Display or hide the connection lines

* Delete the connection

* Reorder the connections from a bean

* Change the connection name

* Change the source and target of the connection without starting over

Showing and Hiding Connections

You can show and hide connections by using the Show connections and

[=)

@ Hide connections tools. They can be found on the tool bar or as selections

on the Tools pull-down menu. These tools show or hide all connections that have
the selected bean or beans as their end points. If no beans are selected, these
tools show and hide all connections in the composite bean.

If you hide connections, the Visual Composition Editor is refreshed faster and is
less cluttered, making it easier for you to work.

You can also show and hide connections from the pop-up menu by selecting the
Browse Connections cascade menu. The choices in this menu affect only
connections going to and from the bean whose pop-up menu you opened.

Deleting Connections

To delete a connection, do one of the following:

» Select the connection and press the Delete key.

* From the connection’s pop-up menu, select Delete.

* From the connection’s properties window, click Delete .

Selecting and Deselecting Connections

You select connections in the same way that you select beans. When you select a
connection, boxes called selection handles Jjj appear on it to show that it is

selected. When first drawn, a connection contains three selection handles: one at
each end and one in the middle. You can use selection handles to change either of
the following:

* The end points of the connection.

* The shape of the connection line, by dragging the middle box to another location.
This helps you distinguish among several connection lines that are close
together.

Selecting a Single Connection
1. Move the mouse pointer over the connection you want to select.
2. Click mouse button 1 and the connection is selected.

© Copyright IBM Corp. 1997, 1998 81

Selecting Multiple Connections

To select multiple connections, do one of the following:

For Windows platforms: Hold down Ctrl or Shift and click mouse button 1 on
each connection you want to select.

For UNIX platforms and OS/2: Hold down mouse button 1 and move the mouse
pointer over each connection you want to select. After you select the
connections, release mouse button 1.

Deselecting Connections

To deselect a connection without selecting another bean or connection, follow these

steps:

1. Move the mouse pointer over the connection line.
2. Hold down the Ctrl key.

3. Click mouse button 1.

Reordering Connections

If you make several connections from the same bean, they run in the order in which
you made the connections. To ensure the correct flow of control when you generate
the source code, you might need to reorder the connections. If so, do the following:

1.
2.

Select the source bean.

From the source bean pop-up menu, select Reorder Connections From . The
Reorder Connections window appears, showing a list of your connections.

With the mouse pointer over the connection you want to reorder, press and hold
the appropriate mouse button:

¢ In OS/2, mouse button 2
¢ In Windows, mouse button 1
¢ In AIX, mouse button 3

Drag the connection to the place in the list where you want the connection to
occur.

Note: Parameter connections must always follow the connections they supply.
Release the mouse button.

Repeat these steps until the connections are listed in the order in which you
want them to occur.

Close the window.

Changing the Connection Name

You can change the name of a connection to make identification easier. To change
the connection name:

1.
2.
3.

Open the pop-up for the connection.
Select Change Connection Name .
Modify the connection name.

The connection name changes in the Visual Composition Editor and, after you save
the bean, in the source code.

82 VvisualAge for Java, Version 2.0: Visual Composition

Changing the Source and Target of Connections

You can change the end points of a connection without redrawing it, either by
dragging the connection or by changing its properties.

You can change the source of any connection. In most cases, you can also change
the target. However, you cannot change the target to a type that is not allowed. For
example, you cannot change a target to an event because an event can only be the
source of a connection.

Moving Either End of a Connection to a Different Bean

1. Select the connection.

2. Move the mouse pointer over the appropriate selection handle at the end of the
connection.

3. Press and hold mouse button 1.
4. Move the mouse pointer to the new bean or connection.
5. Release the mouse button.

If you change the target of a feature-to-method connection to a bean that does not
support the target method, the connection menu appears, and you can select a new
target feature.

Moving Either End of a Connection to a Different Feature

1. Open properties for the connection. The Properties window for that connection
type appears.

2. Select new end points from the lists shown.

3. Click OK.

Reversing the Direction of a Connection

The direction of property-to-property connections determines which end point is
initialized first. The target property is initialized first based on the value of the
source. Only property-to-property connections can be reversed. To do this, open
properties for the connection and select the Reverse push button.

Changing the Shape of a Connection

To help you distinguish among several connection lines that are close together, you
can change the shape of connections. To do this, follow these steps:

» Select the connection line you want to change.
» Place the mouse pointer over the middle selection handle of the connection line.

* Click and hold mouse button 1 and drag the connection line to the desired
shape.

* Release the mouse button and the new line is set with two new midpoint
handles.

You can change the connection back to its original shape by selecting Restore
Shape from the pop-up window.

RELATED COMCEPTS

Chapter 20. Manipulating Connections 83

RELATED TASKS

84 visualAge for Java, Version 2.0: Visual Composition

Chapter 21. Managing the Beans Palette

You can modify the beans palette at any time from the Visual Composition Editor
and in any of the following ways:

* Add a bean

* Add a category

* Add a grouping separator line
* Change icon size

* Refresh the palette

* Remove a bean

* Remove a category

* Reorder beans

* Resize the palette

To resize the palette, drag the sizing handle on the right side of the palette. If you
choose not to resize the palette and some of the beans are not visible, you can
access the beans by using the scroll buttons that appear at the top and bottom of
the palette.

To change the icon size on the palette and the Beans List, open the palette pop-up
and select Show Large Icons . This is a toggle option with the default set to small
icons (16x16). The large icons are 32x32.

To reorder the beans within a category, or move a bean to another category:
1. From the palette pop-up or the Bean pull-down, select Modify Palette .

2. From the Palette list, drag the bean to the position or category you desire.
3. Click OK.

If you have a category with many beans, you can group common beans using
separators. To add a grouping separator to a category:

1. Select the category.

2. Select Add Separator and VisualAge adds a separator to the end of the
category.

3. Select the new separator line and drag it to the desired location.
To remove a separator line, select the separator and then click Remove .

You may need to refresh the palette to view the following changes:
* Changing the icon that represents a bean

* Adding new beans

» Loading installed features manually at the package or class level

To refresh the palette, select Refresh Palette from the palette pop-up.

Adding a Category to the Palette
1. From the palette pop-up, select Modify Palette , and the Modify Palette window
appears.

2. From the Palette group box, select New Category and a new category item
appears highlighted in the list.

3. Enter the name for your new category in the highlighted region.

© Copyright IBM Corp. 1997, 1998 85

4. Enter or click OK.

£ Modify Palette
— Mew bean — Palette
Tupe: =] m A| Mevs Categom |
& [l " Senialized
a5 ShISlEe L JButton Rename Category |
—— 2] JCheckBox
Class name:

Categary: Swing

Browze. . |

—— @ JRadicButton
—— = JToggleButton
—— [an] JLabe!

— 99 JTextField

]

Remove |
Add Separator |

ri

Enter the name of the clazs.

Add to Cateqarny |

Restare Original Beans |

o]

Cahicel |

RELATED COMNMCEPTS

RELATED TASKS

RELATED REFEREMCES

Adding a Bean to the P

alette

To add beans to any category on the beans palette:

1. From the palette pop-up, select Modify Palette , and the Modify Palette window

appears.
2. Select the bean type.

» If you selected the Class bean type, enter the class name in the entry field or

select Browse to locate the class.

* If you selected the Serialized bean type, enter the file name in the entry field
or select Browse to locate the serialized object file to add.

3. Under Palette, select a category for the new bean.
4. Select Add to Category and click OK. The Visual Composition Editor adds the

bean to the category on the beans palette.

To add beans from a project to any category on the beans palette:

1. From the palette pop-up, select Add Bean from Project , and the Modify Palette
window appears.

2. From the Available beans pane, open the project in the drop-down list and

select the project that contains the beans you want to add to the palette.

86 visualAge for Java, Version 2.0: Visual Composition

3. Select the beans, by selecting the check boxes.

Under Palette, select a category for the new beans.

5. Select Add to Category and click OK. The Visual Composition Editor adds the
beans to the category on the beans palette.

7 Modify Palette [x]

—Available beans

[o ibm. v exarnples. awttestrarmesork. £
[] com.ibm. iv. examples. awttestiramewmark,

[o ibm. v, exammples. awttesttramesark. £
["] com.ibm. iv. examples. awttestiramewmark. £
[o ibm. v, exammples. awttesttramesark. £
["] com.ibm. iv. examples. awttestiramewmark. £
[o ibm. v, exammples. awttesttramesark. £
["] com.ibm. ivj. examples. awttestiramewmark. £

[l o ibm. iv. exarmples. awttestframewntai;l
| 3

— Palette
MHew Category |
il Y
® 5 AwT Rename Categom |
[Other Remove |

Add Separator |

" o

1]
Add to Category |

Restare Original Beans |

Select the clazses and/or senalized objects to add to the palette.

o]

Cancel |

You can also add class or serialized files from .jar files to the palette by following

the import SmartGuide from the File menu. The Modify Palette window that appears

contains an Available beans

list, where you select the beans you want to add to

the category you select, or create, in the Palette list.

£ Modify Palette []

— Palette

—Awailable beans

[surw. dermo. buttars. OurB utban
[D:Anetvbihidewintide project_resourcest
[]D:smetvbiidewinsidesproject_resourcess

1] |

i

B[AT Filename Categary |
[[Dther

Remowe |

Add Separator |

" o

Add to Categony |

Restore Original Beans |

Select the clazzes and/or zerialized objects to add to the palette,

[ox]

Cancel |

Note: If you designate an icon for the bean in the Information pane of the Beaninfo

class, it is used for the palette entry. Otherwise, a default icon is used.

RELATED COMNMCEPTS

‘ ”

Chapter 21. Managing the Beans Palette

87

RELATED TASKS

RELATED REFEREMCES

Deleting a Bean or Category from the Palette

To remove a bean from the beans palette:

1. From the Bean menu, select Modify Palette and the Modify Palette window
appears.

2. In the Palette tree view, expand the category that contains the part you wish to
remove.

3. Select Remove and a confirmation dialog appears.
4. Select Yes and then OK. The selected bean is removed from the beans palette.

To remove a category from the beans palette:

1. From the Bean menu, select Modify Palette and the Modify Palette window
appears.

2. In the list box, select the category that you wish to remove.
3. Select Remove and OK. The selected category is removed from the beans
palette.

RELATED COMNMCEPTS

. ”

RELATED TASKS

RELATED REFEREMNMCES

88 visualAge for Java, Version 2.0: Visual Composition

Chapter 22. Using VisualAge Beans in Visual Composition

You can use VisualAge beans, property settings and connections to compose a
wide variety of Java program elements. The following topics explain how to use
VisualAge beans to compose program elements in the Visual Composition Editor.

Composing with User Interface Beans

VisualAge provides a set of user interface beans that you can use to compose an
applet or application. The following topics explain how to use these beans:

. g o — !

Composing with Factory and Variable Beans

VisualAge provides Factory and Variable beans that you can use to create and
access bean instances. The following topic explains how to use these beans:

RELATED COMCEPTS

EChapter 2 How Classes and Beans Are Related” on page 3
RELATED TASKS

RELATED REFEREMCES

Composing an Applet

Applets are programs that can be downloaded and run by a Java-enabled web
browser. These programs are generally small and specialized. An applet runs in a
web page on a client system, within bounds specified by the page markup. A Java
applet operates within constraints that provide security from remote system
intrusion.

You can compose and test an applet in the Visual Composition Editor. To run an

applet in a web page, export the applet class and edit the web page source file to
include the applet.

© Copyright IBM Corp. 1997, 1998 89

VisualAge provides applet beans from the com.sun.java.swing and java.applet
packages, as well as others. Although Swing and AWT beans can be mixed, it is

inadvisable.

1. Create one of the following applet beans:

Bean

Description

%&W " or EApplet” ad

A program that can run in a compatible web browser

Creating an applet bean
Create an applet as a new composite bean. You can create the bean in
any of the following ways:

* From the Quick Start window. Select Quick Start from the File
pull-down menu to open the Quick Start window. Select Basic in the
left pane, Create Applet in the right pane, and the OK button to open
the SmartGuide — Create Applet window. See the related task topic
on Creating an applet for details.

* From the Create Applet tool bar button. Select the g button
on the tool bar to open the SmartGuide — Create Applet window.
Specify one of the applet beans as the superclass for your applet,

and request to compose the class visually. See the related task topic
on Creating an applet for details.

* From the Create Class tool bar button. Select the G button on
the tool bar to open the SmartGuide — Create Class window. Specify
one of the applet beans as the superclass for your applet, and

request to compose the class visually. See the related task topic on
Creating a class for details.

2. Compose the user interface and logic for the applet. Add and arrange visual

components, add nonvisual beans, and connect them to establish functional
relationships.

Accessing a JApplet bean in the Visual Composition Editor
When you create a JApplet bean, a content pane is also added in which
to place other components. With the exception of a JMenuBar, user
interface components are added to the content pane. As a result, the
content pane completely covers the Japplet bean in the Visual
Composition Editor. To access the JApplet bean, open the Beans List.

Resizing or moving a JApplet bean in the Visual Composition Editor
Select the JApplet bean in the Beans List. Then, you can resize or
move the JApplet in the Visual Composition Editor. If you try to select
the JApplet bean in the Visual Composition Editor, you will select its
content pane instead.

Replacing the content pane for a JApplet bean
To replace the content pane, delete it and add another container
component. When you delete the content pane, a warning is displayed
indicating that the content pane is missing. If you save the bean without
adding another content pane, a JPanel bean is used.

Arranging beans in an applet
Use either of the following methods:

90 visualAge for Java, Version 2.0: Visual Composition

* Use a layout manager to control size and position of beans within the
applet or applet content pane.

* Without using a layout manager, place beans approximately where
you want them and use visual composition tools to align them.

Accessing the applet context
The applet context represents the environment in which an applet is
running. It provides methods to get an image from a URL, to get an
audio clip from a URL, to find other applets within the document, and to
show a document at another URL. To access these applet context
methods, tear off the appletContext property of the Applet or JApplet
bean. Access a JApplet bean in the Beans List.

Accessing the document or applet URL
To get the URL of the HTML file that the applet is running in, connect to
the documentBase property or the getDocumentBase method of the
Applet or JApplet bean. To get the URL of the applet, connect to the
codeBase property or the getCodeBase method of the Applet or JApplet
bean.

Providing information about the applet
To define information about your applet, edit the getAppletinfo method
on the Methods page. To get the applet information for an About dialog,
connect to the appletinfo property or the getAppletinfo method of the
Applet or JApplet bean.

Test the applet. You can run the applet from the Visual Composition Editor. This
makes it easy to iteratively modify and test the applet while you compose it.
Testing an applet from the Visual Composition Editor

Do either of the following to test the applet:

» Select the button on the tool bar.

* From the Bean pull-down menu, select Run, then either In Applet
Viewer or Run main .

VisualAge performs the following steps:
a. Saves the edit description of the bean
b. Generates source code
c. Compiles the class
d. Runs the applet
Export the applet class and related resources from VisualAge.

Exporting an applet class
Select the applet class in the Workbench window. Then, select Export
from the File menu to open the SmartGuide — Export window. See the
related task topic on Exporting a class for details.

Edit your web page source file to add the applet. Specify the applet at the
location in your page markup where you want the applet to run. If you had
VisualAge generate an HTML file when you exported the applet, you need to
edit the source to specify attributes for the <applet> tag.

Adding an applet in an HTML file
Use the <applet> tag to identify the applet class and to specify the
dimensions of the bounding rectangle in which the applet is to run. The
following example includes an applet named MyApplet. The applet is
run in a rectangle that is 100 pixels wide and 80 pixels high.

Chapter 22. Using VisualAge Beans in Visual Composition 91

<applet code="MyApplet.class" width=100 height=80></applet>

See books documenting HTML for other attributes that can be specified
on the Applet tag.

For examples, see the BookmarkList class in the
com.ibm.ivj.examples.vc.swing.bookmarklist and
com.ibm.ivj.examples.vc.bookmarklist packages. These examples are shipped in the
IBM Java Examples project.

RELATED TASKS

Creating an applef
Creating a class
Exporting a clasd
Eddnad —

RELATED REFEREMCES

Bookmarkl ist Sampld

Composing a Window

Windows beans are the primary visual context for other user interface components.
VisualAge provides window beans from the com.sun.java.swing and java.awt
packages. Although Swing and AWT beans can be mixed, it is inadvisable.

You can compose and test a window in the Visual Composition Editor. You should
create a new composite bean as a subclass of a window class. You can also add
window beans for secondary windows. A FileDialog cannot be composed as a
primary window bean. It represents a system file dialog.

1. Create one of the following window beans:

Bean Description

L1Dialog” on page 147 or EDialog” od | A custom dialog, typically a secondary window
L1Erame” on page 144 or LErame’l | A desktop window with a title bar, sizing borders, and
bn page 144 sizing buttons

’ z A frame that is a child of another Swing component
LIWindow” on page 149 or A window without a title bar, sizing borders, and sizing
tWindow” on page 150 buttons

Creating a window bean
You can create a composite window bean in any of the following ways:

* From the Quick Start window. Select Quick Start from the File
pull-down menu to open the Quick Start window. Select Basic in the
left pane, Create Class in the right pane, and the OK button to open
the SmartGuide — Create Class window. Select one of the window
beans as the superclass for your window, and request to compose
the class visually. See the related task topic on Creating a class for
details.

92 visualAge for Java, Version 2.0: Visual Composition

../../ide/tasks/tinewapp.htm
../../ide/tasks/tinewcls.htm
../../ide/tasks/tiexpubl.htm
../../ide/tasks/ticaddpp.htm
../samples/shjbookm.htm

* From the Create Class tool bar button. Select the G button on
the tool bar to open the SmartGuide — Create Class window. Select
one of the window beans as the superclass for your window, and

request to compose the class visually. See the related task topic on
Creating a class for details.

Adding a secondary window to a composite bean
Add a window to the free-form surface of the composite bean.

¢ For a static window, add one of the window beans.

* For a dynamically created window, add a Factory. From the Factory’s
pop-up menu, select Change type . Then, specify the window bean
as the object type. Create the window when an event occurs by
connecting the event to a Factory constructor method for the window.

Compose the user interface and logic for the window. Add and arrange visual
components, add nonvisual beans, and connect them to establish functional
relationships.

Defining a window title
Enter text for the title property in the window’s property sheet.

Accessing a JWindow bean in the Visual Composition Editor
When you create a JDialog, JFrame, or JWindow bean, a content pane
is also added in which to place other components. With the exception of
a JMenuBar, user interface components are added to the content pane.
Because a JWindow has no frame, the content pane completely covers
the JWindow bean in the Visual Composition Editor. To access the
JWindow bean, open the Beans List.

Resizing or moving a JWindow bean in the Visual Composition Editor
Select the JWindow bean in the Beans List. Then, you can resize or
move the JWindow in the Visual Composition Editor. If you try to select
the JWindow bean in the Visual Composition Editor, you will select its
content pane instead.

Replacing the content pane for a JDialog, JFrame, or JWindow bean
To replace the content pane, delete it and add another container
component. When you delete the content pane, a warning is displayed
indicating that the content pane is missing. If you save the bean without
adding another content pane, a JPanel bean is used.

Arranging beans in a window
Use either of the following methods:

* Use a layout manager to control size and position of beans within the
window content pane or client component.

* Without using a layout manager, place beans approximately where
you want them and use visual composition tools to align them.

Keeping a dialog in focus until it is closed
Set the modal property to True in the dialog’s property sheet.

Preventing window resizing
Set the resizable property to False in the window’s property sheet.

Opening a window
Connect an event, such as the actionPerformed event of a button or
menu item, to the window's show() method.

Chapter 22. Using VisualAge Beans in Visual Composition 93

Closing a window
Connect an event, such as the actionPerformed event of a button or
menu item, to the window's dispose() method.

Specifying open or save for a file dialog
Specify the file operation for the mode property in the dialog’s property
sheet. Select LOAD for an open dialog, orSAVE for a save dialog.

Defining initial selection information for a file dialog
You can specify an initial directory, file, or both in the dialog’s property
sheet. Specify an initial directory name for the directory property.
Specify an initial file name for the file property.

Obtaining information from a dialog when it is closed
Connect the normalResult of the show() connection to the target
property for the information. Then, connect the dialog property that
contains the information to the appropriate parameter of the
normalResult-to-target connection.

For example, if you want to open a dialog to prompt for a name in a text
field and return it to a label in the primary window, do the following:

a. Connect an event in the primary window to the show() method of
the dialog.

b. Connect the normalResult of the show() connection to the text
property of the label in the primary window.

c. Connect the text property of the text field in the dialog to the value
parameter of the normalResult-to-text connection.

3. Test the window. You can run the window from the Visual Composition Editor.
This makes it easy to iteratively modify and test the window while you compose
it.

Testing a window from the Visual Composition Editor
You can test a composite bean that is a subclass of a window bean in
the Visual Composition Editor. Do either of the following to test the
window:

e Select the button on the tool bar.

* From the Bean pull-down menu, select Run, then Run main .

VisualAge performs the following steps:
a. Saves the edit description of the bean
b. Generates source code

c. Compiles the class

d. Runs the window

For examples, see the Customerinfo class in the
com.ibm.ivj.examples.vc.customerinfo package. These examples are shipped in the
IBM Java Examples project.

RELATED TASKS

T - " i " o m

Creating a clasd
Badoat —

94 visualAge for Java, Version 2.0: Visual Composition

../../ide/tasks/tinewcls.htm
../../ide/tasks/ticaddpp.htm

RELATED REFEREMNCES

Customerinfo Sampld

Adding a Pane or Panel

A pane or panel is a container for other components. It is used within another pane
or panel, within a window, or within an applet. VisualAge provides pane and panel
beans from the com.sun.java.swing and java.awt packages. Although Swing and
AWT beans can be mixed, it is inadvisable.

You can add a pane or panel bean as an embedded container for other
components. You can also create a bean as a subclass of one of these beans to
define a reusable component. This is particularly useful for panels.

1. Add or create one of the following pane or panel beans:

Bean Description
; z A pane for a desktop within another Swing container

L1EditorPane” on page 152 A pane for editing defined text types, such as HTML

" A simple dialog pane

L1Panel” on page 153 or [RPanel” ad | A composition surface for user interface components

z or A scrollable view for another component

A split view for other components

LiTabhedPane” on page 155 A tabbed view for other components

L1TextPane” on page 155 A pane for editing text with visible styles and

embedded objects

2. Define initial characteristics of the component.

Specifying when to display scroll bars in a JScrollPane or ScrollPane

bean

Select a scroll bar policy in the pane’s property sheet. For a
JScrollPane bean, set horizontal and vertical scroll bar policies with the
horizontalScrollBarPolicy and verticalScrollBarPolicy properties. For a
ScrollPane bean, set a policy for both scroll bars with the
scrollBarDisplayPolicy property. Select one of the following choices to
specify when to display the scroll bar or scroll bars:

* ALWAYS or SCROLLBARS ALWAYS—always display, regardless of
the relative size of the scroll pane and the component it contains.

* AS _NEEDED or SCROLLBARS _AS_NEEDED—display only when
the scroll pane is smaller than the component it contains. For a
JScrollPane bean, also specify a preferred size for the preferredSize
property.

* NEVER or SCROLLBARS NEVER—never display, regardless of the
relative size of the scroll pane and the component it contains

Enabling scrolling for a null layout in a JScrollPane or ScrollPane bean

If you use a null layout for a panel that is embedded in a scroll pane,
set the panel's size and preferredSize properties to support scrolling by
the scroll pane.

Chapter 22. Using VisualAge Beans in Visual Composition 95

../samples/shjcusti.htm

Scrolling a JScrollPane bean in the Visual Composition Editor
You can manipulate the scroll bars in a JScrollPane during composition,
but not by dragging the scroll box (thumb)

Defining the component orientation in a JSplitPane bean
Set the orientation property in the pane’s property sheet to arrange
components within the split pane. The default setting, HORIZONTAL,
arranges components on the left and right. To arrange components on
the top and bottom, select VERTICAL.

Adding components to a JSplitPane bean
You can add two components to a split pane. When you select a
component to add, hold down the mouse button to drag it over one half
of the split pane. When the mouse pointer is over the split pane and
before you release the mouse button, a target outline appears around
the half of the split pane that would receive the component. Drop one
component on each half of the split pane. Before you add the second
component, the first component appears to fill the split pane, but the
target outline appears when you move the mouse pointer over the side
of the split pane that does not yet have a component.

Defining the divider for a JSplitPane bean
Set the dividerLocation property to specify the initial position of the
divider between the panes. This has no effect unless two components
have been added to the split pane. Set the dividerWidth property to
specify the initial width of the divider. Set the oneTouchExpandable
property to True to enable the user to adjust the width of the divider.

Composing the first tab page of a JTabbedPane bean
When you drop a JTabbedPane, VisualAge automatically adds a JPanel
and names it Page. Customize this page to serve your purpose.
Change the tab and add the components you want. If you do not want a
JPanel as the page component, delete it and add another component.
To avoid background paint problems when you delete a page, set the
opaque property of the JTabbedPane to True.

Adding a tab page to a JTabbedPane bean
Drop the tab page component you want on the tab region of the pane. If
you drop the component on a tab, a tab containing the new component
is inserted after the tab you dropped the component on. If you drop the
component after the last tab in the tab region, the new component is
added as the last tab page.

Switching the composition focus to a tab page component
Select a tab page component to work with in any of the following ways:

» Select on the tab with a mouse. Then, click on the tab page
component to shift the focus from the tabbed pane to the tab page
component.

» Select the tab page component in the Beans List window.
Defining the tab for a JTabbedPane page

Define the tab in the property sheet as follows:

» Specify the tab text you want for the tabTitle property.

» By default, tabs are at the top of the pane. If you want the tabs on a
different edge of the pane, select the edge you want in the
tabPlacement property.

96 visualAge for Java, Version 2.0: Visual Composition

» If you want an icon on the tab, select an icon for the tablcon property.
If the tab can be disabled, you should also specify an icon for the
tabDisabledIcon property.

» If you want tool tip text for the tab, specify the text for the tabTip
property. Tool tip text is useful for expanding on the tab title to explain
what what a tab page provides.

» To change tab colors, set the tabBackground and tabForeground
properties.

» To specify whether the tab page is initially enabled or not, set the
tabEnabled property.

Composing minor tabs in a JTabbedPane bean
Add a JTabbedPane bean as a tab component in the primary tabbed
pane. Then, define tab placement for the minor tabs on a different edge
of the nested tabbed pane.

Customizing a JOptionPane dialog
For standard dialogs, you can call one of the JOptionPane static
methods without adding a JOptionPane bean. These methods are
described in the task on opening a standard JOptionPane dialog. If you
want to customize a dialog, add a JOptionPane bean as follows:

a. Add a JDialog or JinternalFrame bean as the frame for the option
pane.

b. Delete the content pane of the frame bean.

c. Add the JOptionPane as the content pane for the frame bean.
Then, set customized properties in the pane’s property sheet, including
the following:

» Specify the message type. Select one of the following choices for the
messageType property to specify the nature of the message:

— ERROR_MESSAGE

— INFORMATION_MESSAGE
— WARNING_MESSAGE

— QUESTION_MESSAGE

— PLAIN_MESSAGE

» Specify the option selection. Select one of the following choices for
the optionType property to specify the button choices for the dialog:

— DEFAULT _OPTION
— YES_NO_OPTION
— YES_NO_CANCEL_OPTION
— OK_CANCEL_OPTION
» To specify an initial option selection, set the initialValue property

» To provide an initial value for prompted input, set the
initialSelectionValue property

» To specify an icon, set the icon property
Defining initial properties of a JEditorPane bean

Define initial properties in the pane’s property sheet, including the
following:

» Specify the text content type for the contentType property. For
example, you can specify one of the following:

— text/plain—uses the DefaultEditorKit

Chapter 22. Using VisualAge Beans in Visual Composition 97

— text/html—uses the HTMLEditorKit

— text/rt—uses the RTFEditorKit

— application/rtf—uses the RTFEditorKit
* Enter any initial text for the text property.

» For HTML, you can specify a document page instead of initial text.
Specify the URL as a quoted string for the page property.

Specifying a styled document for a JTextPane bean
Set the styledDocument property in the pane’s property sheet.

Arranging beans in a JPanel or Panel bean
Use either of the following methods:

* Use a layout manager to control size and position for beans within
the panel

* Without using a layout manager, place beans approximately where
you want them and use visual composition tools to align them

Defining tool tip text
For Swing components, you can specify tool tip text, also known as
fly-over text or hover help. Enter text for the toolTipText property in the
component’s property sheet.

Defining initial availability
By default, the component is initially enabled for user interaction. To
initially disable the component, set the enabled property to False in the
component’s property sheet.

3. Provide runtime logic for the component.

Opening a standard JOptionPane dialog
The JOptionPane class provides a set of static methods for standard
dialogs. These methods have several signatures, enabling you to
specify certain dialog characteristics. Call any of these methods by
creating an event-to-code connection and specifying the method as the

target.
Standard dialog type For a dialog frame, use ... Far an internal frame, use
Confirmation dialog showConfirmDialog() showInternalConfirmDialog()
Input dialog showlnputDialog() showlInternallnputDialog()
Message dialog showMessageDialog() showlInternalMessageDialog()
General dialog with all of the |showOptionDialog() showlInternalOptionDialog()
preceding elements

The code should process any selected options or requested input.
Depending on the dialog type, the following options can be selected by
the user and returned from the dialog:

* YES OPTION—the user selected the Yes button

* NO_OPTION—the user selected the No button

* CANCEL_OPTION—the user selected the Cancel button
* OK_OPTION—the user selected the OK button

* CLOSED OPTION—the user explicitly closed the frame

Opening and closing a customized JOptionPane dialog

If you add a JOptionPane bean for customization, process the dialog as
follows:

98 visualAge for Java, Version 2.0: Visual Composition

a. Open the pane’s frame to display the dialog. Connect an event to
the frame’s show() method.

b. Close the pane’s frame when the user selects an option to close the
dialog. Connect the pane’s propertyChange event to the frame’s
setVisible() method. Then, set the connection parameter to False.

c. Connect the pane’s propertyChange event to a property to retrieve
an option or input value. Connect the parameter for the
event-to-property connection to one of the following option pane
properties:

* value—the selected option
» inputValue—the requested input value

Disabling or enabling a component
Connect a related event to the button’s enabled property. Specify the
parameter value for this connection in one of the following ways:

» To disable the component, open the connection’s properties and set
the parameter value to False.

* To enable the component, open the connection’s properties and set
the parameter value to True.

» To set the new state from another Boolean property, connect the
parameter to the other Boolean property.

For examples, see the Customerinfo, AddressView, and CustomerView classes in
the com.ibm.ivj.examples.vc.customerinfo package, and the DirectoryExplorer class
in the com.ibm.ivj.examples.vc.swing.directoryexplorer package. The AddressView
and CustomerView classes subclass a Panel as a reusable bean. The
showMessageBox() method of the Customerinfo class uses a JOptionPane. The
DirectoryExplorer class uses a JSplitPane. These examples are shipped in the IBM
Java Examples project.

RELATED TASKS

Bad =
RELATED REFEREMCES

I‘(‘haptpr 31 Pane and Panel Beans” an page 151

Customerinfa Sampld

Adding a Table or Tree View

A table or tree provides a view of objects from a data model that organizes objects
in a tabular or expandable tree format. VisualAge provides table and tree beans
from the com.sun.java.swing and com.sun.java.swing.table packages. You should
not use these beans with AWT components. Although Swing and AWT beans can
be mixed, it is inadvisable.

1. Add one of the following beans:

Bean Description

A table view of objects from a table data model

l1Tree” on page 160 A tree view of objects from a tree data model

2. Define initial characteristics of the component.

Chapter 22. Using VisualAge Beans in Visual Composition 99

../../ide/tasks/ticaddpp.htm
../samples/shjcusti.htm

Defining tool tip text
For Swing components, you can specify tool tip text, also known as
fly-over text or hover help. Enter text for the toolTipText property in the
component’s property sheet. To provide tool tip text for table cells, set
the toolTipText property of the cell renderer.

Defining initial availability
By default, the component is initially enabled for user interaction. To
initially disable the component, set the enabled property to False in the
component’s property sheet.

3. Add a data model for the component.

Defining a table data model
Create a data model class as a subclass of the AbstractTableModel
class. The AbstractTableModel provides most of the TableModel
interface, but you will need to implement the following methods:

getRowCount() By default, this method returns 0. You should return
the number of rows in the data array.

getColumnCount() By default, this method returns 0. You should return
the number of columns in the data array.

getValueAt(int, int) By default, this method returns null. You should return
the data array object at the row and column specified
by the arguments.

You will also need to provide column names and row data. You can do
this in the Methods page by by creating a field of column names as an
array of Strings whose initial value is names. You can populate the data
model with data that is either fixed or dynamically derived. You could
create a field for row data as a two-dimensional array of Objects, or as
a Vector.

To use a data model class in the Visual Composition Editor as the data
model for a JTable, add the class to the free-form surface. Then,
connect the data model’s this property to the table’s model property.

Defining table columns
By default, a table uses all columns for each row in the data model. If
you want to display data in a subset of columns or reorder the columns,
add a TableColumn bean to the table for each column you want to use.
Map the table column to the data model column by specifying the
0-based index of the model column for the modelindex property in the
TableColumn’s property sheet. Customize the column heading by
specifying a value for the headerValue property.

Defining a tree data model
Create a data model class as a subclass of the DefaultTreeModel class.
Define the tree nodes in the data model class.

To use a data model class in the Visual Composition Editor as the data
model for a JTrele, add the class to the free-form surface. Then,
connect the data model’s this property to the tree’'s model property.

4. Provide runtime logic for the component.

Getting a selection from a table

* To get the selected row, make a connection from the table’s
selectedRow property.

100 visualAge for Java, Version 2.0: Visual Composition

* To get the selected column, make a connection from the table’s
selectedColumn property.

» To get the contents of a selected cell, connect the table’s
getValueAt() method to the target property or parameter. Then,
connect the selectedRow property to the first parameter of the
getValueAt() connection, and the selectedColumn property to the
second parameter.

Disabling or enabling a component
Connect a related event to the button’s enabled property. Specify the
parameter value for this connection in one of the following ways:

» To disable the component, open the connection’s properties and set
the parameter value to False.

* To enable the component, open the connection’s properties and set
the parameter value to True.

» To set the new state from another Boolean property, connect the
parameter to the other Boolean property.

For examples, see the DirectoryExplorer class in the
com.ibm.ivj.examples.vc.swing.directoryexplorer package and the Amortization class
in the com.ibm.ivj.examples.vc.swing.mortgageamortizer package. These examples
are shipped in the IBM Java Examples project.

RELATED TASKS

B =
RELATED REFERENCES

|‘(‘hnlnfr-\r 32 Table and Tree Beans” on page 15d

Adding a Text Component

Text components are available for simple text and for enhanced text and editing
panes. VisualAge provides text beans from the com.sun.java.swing,
com.sun.java.swing.text, and java.awt packages. Although Swing and AWT beans
can be mixed, it is inadvisable.

You can add a text bean to enable text input or provide a label.
1. Add one of the following text beans:

Bean Description

L1l abel” on page 161 or tLabel” ad | A label, usually to identify another component
LlPasswordField” on page 164 A text field for sensitive data
L1TextArea” an page 167 or A multiline text area

FlexiArea” 64

LiTextField” on page 163 or A single-line text field

2. Define initial characteristics of the text component.

Chapter 22. Using VisualAge Beans in Visual Compositon 101

../../ide/tasks/ticaddpp.htm
../samples/shjamort.htm

Defining label text or initial input text
Enter text for the text property in the text component’s property sheet.
For a multiline text area, use In to denote a new line.

Adding a label graphic
For a JLabel bean, you can add a graphic to the label. Select a graphic
file for the icon property in the label’'s property sheet. Use the
horizontalTextPosition property to specify the position of text relative to
the graphic. The position choices are LEFT, CENTER, and RIGHT. The
default choice is RIGHT. Set the iconTextGap property to specify the
space between the icon and label text.

Defining keyboard access to an input field
For Swing text input components, you can define keyboard shortcuts to
place the focus in the input field or area.

» To define an accelerator for a text field, specify the accelerator
character, enclosed in single quotes, for the focusAccelerator
property in the text component’s property sheet. If you define tool tip
text for the text field, the accelerator is displayed with the tool tip text.
For example, if you specify ‘a’ as the focusAccelerator value, alt+A
appears after tool tip text when the user moves the mouse pointer
over the fext field.

» To define a label mnemonic for a text field, specify the mnemonic
character, enclosed in single quotes, for the displayedMnemonic
property in the JLabel's property sheet.

Aligning text
Select an alignment choice for the horizontalAlignment or alignment
property in the text component’s property sheet. The alignment choices
are LEFT, CENTER, and RIGHT.

Selecting initial text
To select the initial text, set the selectionStart and selectionEnd
properties in the text component’s property sheet. These values are
offsets from the beginning of the text, which is at offset 0. To select all
text without determining the initial text length, specify selection from
offset 0 to an offset that you consider to be larger than the initial text
length.

Defining a minimum size for layout managers
Some layout managers use a minimum size for placement of
components. To specify a minimum width for a text area, enter the
width, in characters, for the columns property in the text component’s
property sheet. To specify a minimum height for a text area, enter the
number of rows for the rows property.

Hiding input text
To hide input text, either use a JPasswordField bean or specify an echo
character for the echoChar property in the text component’s property
sheet.

Preventing text modification in a text area
To prevent any input in a text area, set the editable property to False in
the text component’s property sheet.

Making a text area scrollable
An AWT TextArea implements scrolling, duplicating the capability of a
ScrollPane. A JTextArea does not implement scrolling itself, but uses the

102 visualAge for Java, Version 2.0: Visual Composition

scrolling capability of a JScrollPane in which it is placed. If you want a
JTextArea to be scrollable, drop it in a JScrollPane.

Defining tool tip text for a text component
For Swing components, you can specify tool tip text, also known as
fly-over text or hover help. Enter text for the toolTipText property in the
component’s property sheet.

Defining initial availability
By default, the component is initially enabled for user interaction. To
initially disable the component, set the enabled property to False in the
component’s property sheet.

Provide runtime logic for the text component.

Synchronizing text
If you need to synchronize user input between two text components, do

the following:
a. Connect their text properties.
b. Open the connection properties.

c. Associate each end of the connection with the
keyReleased(java.awt.event.KeyEvent) event.

If you need to synchronize text that you set by connection from another
source, make connections to both text components.

Disabling a text component
To disable a text component when an event occurs, connect the event
to the component’s enabled property and set the connection parameter
value to False.

Enabling a text component
To enable a text component when an event occurs, connect the event to
the component’s enabled property and set the connection parameter
value to True.

For examples, see the LayoutManagers class in the
com.ibm.ivj.examples.vc.swing.layoutmanagers and
com.ibm.ivj.examples.vc.layoutmanagers packages and the Amortization class in
the com.ibm.ivj.examples.vc.swing.mortgageamortizer and

com.ibm.ivj.examples.vc.mortgageamortizer packages. These examples are shipped

in the IBM Java Examples project.
RELATED TASKS

Bdd =
RELATED REFEREMNCES

LayoutManagers Samplel
MortgageAmortizor Sampld

Chapter 22. Using VisualAge Beans in Visual Composition

103

../../ide/tasks/ticaddpp.htm
../samples/shjlaymr.htm
../samples/shjamort.htm

Adding a List or Slider Component

List components provide a list of items for the user to select. Slider components
show a range of selection values or show progress for the duration of an operation.
VisualAge provides list and slider beans from the com.sun.java.swing and java.awt
packages. Although Swing and AWT beans can be mixed, it is inadvisable.

You can add a list or slider bean to enable the user to select an item or value.
1. Add one of the following list or slider beans:

Bean Description

’ ’ or A selectable list with an entry field

FChoice” 164

LI ist” or LList” A selectable list of choices

LlPragressBar” on page 169 A progress indicator

’ ” or A scrolling component

FScrolbar 171

LiSlider” on page 170 A selection component for a range of values

2. Define initial characteristics of the component.

Making a JList bean scrollable
An AWT List implements scrolling, duplicating the capability of a
ScrollPane. A JList does not implement scrolling itself, but uses the
scrolling capability of a JScrollPane in which it is placed. If you want a
JList to be scrollable, drop it in a JScrollPane.

Defining choices for a JComboBox, Choice, JList, or List bean
For all of these components, you can specify choices using an
initialization method. For a JList, you can alternatively define the list in a
ListModel. Add the list model class to the free-form surface. Then,
connect the list model’s this property to the JList's model property.

To specify the choices using an initialization method, follow these steps:
a. After adding the bean, note its name. If you select the bean, its

name appears in the Visual Composition Editor status area.
Save your composite bean.

On the Methods page, add a method to initialize the choices. The
method signature should look like this:

void initializeChoices(choiceType myChoices);

Specify the appropriate class for the choiceType:
* com.sun.java.swing.JComboBox

e com.sun.java.swing.JList

* java.awt.Choice

* java.awt.List

Enter code in the initialization method to add choices. For a
JComboBox, Choice, or List bean, use the addltem() method:

myChoices.addItem("East");
myChoices.addItem("West");
myChoices.addItem("South");
myChoices.addItem("North");

104 visualAge for Java, Version 2.0: Visual Composition

For a JList bean, use the setListData() method:

String[] data = {"East", "West", "South", "North"};
myChoices.setListData(data);

e. Modify the get method for the bean you are initializing, for example,
getJComboBox1(). In user code block 1, add code to call the
initialization method you just created. The method call should look
like this:

initializeChoices(instanceName) ;

Specify the instance name for the bean as the instanceName
argument for the method call. The default instance name is
something like ivjJComboBox1, iviChoicel, ivjJList1, or ivjList1.

Defining the selection mode for a JList or List bean
You can define a list to allow either a single selection or multiple
selections. With single selection, the previous selection is deselected
when the user selects another choice. Multiple selection differs between
JList and List beans.

* The JList bean supports two modes of multiple selection. Select one
of the following choices for the selectionMode property in the JList
property sheet:

— SINGLE_SELECTION—allows only one choice to be selected at a
time

— SINGLE _INTERVAL _SELECTION—allows a range of choices to
be selected

— MULTIPLE_INTERVAL_SELECTION—allows multiple choices to
be selected, individually or in ranges

* The List bean supports only one mode of multiple selection. Select
one of the following choices for the multipleMode property in the List
property sheet:

— False—allows only one choice to be selected at a time
— True—allows multiple choices to be individually selected

Allowing text entry in a JComboBox bean
Set the editable property to True in the property sheet.

Defining the orientation of a JProgressBar, JSlider, JScrollBar, or

ScrollBar bean
Select a choice for the orientation property in the property sheet. The
orientation choices are VERTICAL and HORIZONTAL.

Defining the value range for a JProgressBar, JSlider, JScrollBar, or
ScrollBar bean
Set the minimum and maximum properties in the property sheet.

Defining the initial value of a JProgressBar, JSlider, JScrollBar, or

ScrollBar bean
Set value property in the property sheet. The initial value determines the
initial progress, selection, or scrolling position in the value range.

Defining tick marks or values for a JSlider bean
To define the value increment between tick marks, set the
majorTickSpacing and minorTickSpacing properties in the JSlider
property sheet. To automatically adjust a user selection to the closest
tick mark, set the snapToTicks property to True. To show the tick marks,
set the paintTicks property to True. To show the tick values, set the

Chapter 22. Using VisualAge Beans in Visual Composition 105

paintLabels property to True. To reverse the minimum and maximum
ends of the slider, set the inverted property to True.

Defining scrolling increments for a JScrollBar or ScrollBar bean
To define the value change when the user clicks on a scroll arrow, set
the unitincrement property in the ScrollBar property sheet. To define the
value change when the user clicks in the scroll bar range away from the
scroll box, set the blockincrement property.

Defining tool tip text
For Swing components, you can specify tool tip text, also known as
fly-over text or hover help. Enter text for the toolTipText property in the
component’s property sheet.

Defining initial availability
By default, the component is initially enabled for user interaction. To
initially disable the component, set the enabled property to False in the
component’s property sheet.

Provide runtime logic for the component.

Obtaining the selected choice or value
Connect a property representing the selection to a target property. Then,
open properties for the connection and select a source event that
indicates when the selection changes.

Bean Source property Source event

JComboBox selecteditem itemStateChanged

Choice selecteditem itemStateChanged

JList selectedValue or valueChanged
selectedValues

List selecteditem or itemStateChanged
selectedltems

JProgressBar value stateChanged

JSlider value stateChanged

JScrollBar value adjustmentValueChanged

ScrollBar value adjustmentValueChanged

To get the value of the selected choice, connect the Choice
selectedltem property to the value target. To get the index of the

selected choice, connect the Choice selectedindex property to the value

target.

Getting the value that a user enters in a JComboBox bean

If you set the editable property of a JComboBox bean to True, the user

can enter a value instead of selecting a choice from the list. To get an

entered value, do the following:

a. Tear off the editor property of the JComboBox bean.

b. Tear off the editorComponent property of the torn-off editor property.

c. Connect the keyReleased event of the torn-off editorComponent
property to the property that is to receive the entered value.

d. Connect the value parameter of the previous connection to the item
property of the torn-off editor property.

106 visualAge for Java, Version 2.0: Visual Composition

Calling a method when the value changes
To call a method when the value changes, connect a source event that
indicates when the selection changes to the method.

Obtaining the selected index or indexes for a JComboBox, Choice, JList,

or List bean
Connect the selectedindex or selectedindexes property to the value
target. Then, open properties for the connection and select a source
event that indicates when the selection changes.

Setting the value of a JProgressBar bean
Connect the value to the JProgressBar value property. Then, open
properties for the connection and select a source event that indicates
when the selection changes.

Disabling or enabling a component
Connect a related event to the component’'s enabled property. Specify
the parameter value for this connection in one of the following ways:

» To disable the component, open the connection’s properties and set
the parameter value to False.

» To enable the component, open the connection’s properties and set
the parameter value to True.

» To set the new state from another Boolean property, connect the
parameter to the other Boolean property.

For examples, see the BookmarkList class in the
com.ibm.ivj.examples.vc.swing.bookmarklist and
com.ibm.ivj.examples.vc.bookmarklist packages, the ToDoList class in the
com.ibm.ivj.examples.vc.todolist package, and the Amortization class in the
com.ibm.ivj.examples.vc.mortgageamortizer package. These examples are shipped
in the IBM Java Examples project.

RELATED TASKS

Bad =
RELATED REFEREMCES

Bookmarkl ist Sampld

Adding a Button Component

VisualAge provides button beans from the com.sun.java.swing and java.awt
packages. Although Swing and AWT beans can be mixed, it is inadvisable.

You can add a button bean to enable the user to perform an action or select a
state.

1. Add one of the following button beans:

Bean Description

s - or LButton’l A push button, generally used to perform a function

Chapter 22. Using VisualAge Beans in Visual Compositon 107

../../ide/tasks/ticaddpp.htm
../samples/shjbookm.htm

Bean Description

or A setting button that is checked when selected
LlRad.nn.BuLtan_n.n_page_.’LZd or A radio button or group for mutually exclusive settings
[CheckboxGroup” on page 174

’ 2 A two-state push button that appears to be pushed in
when selected

2. Define initial characteristics of the button component.

Defining a button label
Enter text for the text or label property in the component’s property
sheet.

Adding or customizing graphic images for Swing buttons
You can add images or replace default images. For example, you can
add graphics to a JButton or change the default images of a
JCheckBox. Select or specify a graphic file for one or more image
properties in the component’s property sheet.

* icon represents an unselected button
* pressedicon represents a button that is pressed
» selectedicon represents a selected button
» disabledicon represents an unselected button that is disabled
» disabledSelectedIcon represents a selected button that is disabled
 rollovericon represents an unselected rollover button
* rolloverSelectedicon represents a selected rollover button
Defining tool tip text for a button component
For Swing components, you can specify tool tip text, also known as
fly-over text or hover help. Enter text for the toolTipText property in the
component’s property sheet.
Defining initial availability
By default, the component is initially enabled for user interaction. To

initially disable the component, set the enabled property to False in the
component’s property sheet.

Defining the initial state of a toggle component
Set the selection or state property in the component’s property sheet.
For initial selection, set the property value to True. Otherwise, the value
should be False. If the component is one of a group of mutually
exclusive choices, only one member of the group should be initially
selected.

3. If applicable, assign a toggle component to a group of mutually exclusive
choices. Only one member of the group can be selected at a time.
Adding a group of JToggleButton or JRadioButton beans

Use a ButtonGroup to define a group of buttons:

a. Add the buttons for the group.

b. Add a ButtonGroup bean to the free-form surface.
c. Save the composite bean.
d

On the Methods page, add user code in the get method of each
button to add the button to the button group. For example, to add
JRadioButtonl to ButtonGroupl, add this code to the
getJRadioButton1() method:

108 visualAge for Java, Version 2.0: Visual Composition

getButtonGroupl.add(ivjJRadioButtonl);

Adding a group of Checkboxes as radio buttons
Use a CheckboxGroup bean to define a group of radio buttons:

a. Add the check boxes for the group.
b. Add a CheckboxGroup bean to the free-form surface.

c. In the property sheet of each Checkbox bean, specify the get
method of the CheckboxGroup for the checkboxGroup property. For
example, to add Checkbox to CheckboxGroupl, specify
getCheckboxGroupl() for the checkboxGroup property.

4. Provide runtime logic for the button component.

Calling a method when a button is selected

Connect the button’s actionPerformed(java.awt.event.ActionEvent) event
to the method on the target bean.

Obtaining the selected choice from a group
From the group’s popup menu, tear off the property that represents the
selected choice. For a ButtonGroup, tear off the selection property. For
a CheckboxGroup, tear off the selectedCheckbox property. After tearing
off the property, you can make connections to features of the Variable
that represents the selected choice property.

Disabling a button
Connect a related event to the button’s enabled property and set the
connection parameter value to False.

Enabling a button

Connect a related event to the button’s enabled property and set the
connection parameter value to True.

For examples, see the ToDolList class in the com.ibm.ivj.examples.vc.todolist
package, and the JRadioButtonPanel and RadioButtonPanel classes in the
com.ibm.ivj.examples.vc.utilitybeans package. These examples are shipped in the
IBM Java Examples project.

RELATED TASKS

Bdd =
RELATED REFEREMCES

Adding a Menu or Tool Bar

VisualAge provides menu beans from the com.sun.java.swing and java.awt
packages, and tool bar beans from the com.sun.java.swing and
com.ibm.uvm.abt.edit packages. Although Swing and AWT beans can be mixed, it is
inadvisable.

You can add a menu for a window, for a window component, or for another menu.
Define a menu with menu choices that call a method or select a setting.

Chapter 22. Using VisualAge Beans in Visual Composition 109

../../ide/tasks/ticaddpp.htm

Define a tool bar with buttons and other components that call a method. Tool bars
most commonly contain buttons with graphical images for functions such as
clipboard and file operations. A JToolBar can contain other components, however,
such as a JComboBox with font choices. The JToolBarButton bean is provided as a
convenient means of adding a JButton that is tailored for a tool bar. The
JToolBarSeparator bean represents a method call to add separation between other
components in a JToolBar.

1. Add one of the following menu or tool bar beans:

Bean Description

: ? or EMenu” od | A cascade menu for another menu
LiMenuRar’ an page 181 or A menu bar for a window
L1PapupMenu” an page 187 or A pop-up menu for window components
L1ToolRar” on page 184 A graphical set of tool choices

A button for a tool bar

L1ToolBarSeparator” an page 185 A visual separator between components in a tool bar

Adding a menu bar to a window
Drop a menu bar bean on the window. The menu bar appears in the
window. Additionally, a cascade menu is added on the free-form surface
and connected to a new menu label on the menu bar.

Adding a menu to a menu bar
Drop a menu bean on the menu bar. A menu is added on the free-form
surface and connected to a new menu label on the menu bar. If you
have already dropped the menu bean on the free-form surface, drag it
to the menu bar and drop it to make the connection.

Adding a cascade menu to another menu
Drop a menu bean on the base menu you want to cascade from. A
menu is added on the free-form surface and connected to a new menu
item on the base menu. If you have already dropped the new menu
bean on the free-form surface, drag it to the base menu and drop it to
make the connection.

Adding a pop-up menu
Drop a pop-up menu bean on the free-form surface. To show the menu
when the user clicks the pop-up mouse button on a window component,
connect the mouse event for the composite bean to a code that displays
the menu.

The following example code determines whether the pop-up mouse
button has been clicked, gets the window component, and shows the
pop-up menu:
protected void genericPopupDisplay(java.awt.event.MouseEvent e, java.awt.PopupMenu p) {
if ((e.isPopupTrigger())) {
e.getComponent().add(p);
p.show(e.getComponent (), e.getX(), e.getY());
}s
}
Adding a tool bar
You can add a JToolBar bean to the content pane of a Swing applet or
window. Before you add the tool bar, you should define the layout
property of the content pane as a border layout. Add the tool bar to one

110 visualAge for Java, Version 2.0: Visual Composition

of the border regions (North, South, East, or West). By default, a tool
bar is detachable because the floatable property is set to True. If you
want a floatable tool bar to be attachable to any side of the content
pane, do not add any other components to the four border regions.

When you add a JToolBar, a JToolBarButton is added with it. The
JToolBarButton is actually a JButton that is tailored for a tool bar.
Change properties of the JToolBarButton , such as the icon, to serve

your purpose.

Adding an action to a menu or tool bar
You can define a subclass of AbstractAction that can be used in one or
more Swing menus and tool bars. For example, you can define an
action for a clipboard operation and add it to menus and tool bars. You
must implement the actionPerformed() method of the subclass. Add the
AbstractAction subclass to the free-form surface. Save the bean. Then,
edit the get method for the menu or tool bar to add the AbstractAction

subclass.

2. Enable or disable the menu. When a menu is disabled, the user cannot open it.
By default, a menu is initially enabled.

Initially disabling a menu

Set the enabled property to False in the menu property sheet.

Disabling a menu when an event occurs
Connect the event to the menu’s enabled property. Then, set the
connection parameter value to False.

Enabling a menu when an event occurs
Connect the event to the menu’s enabled property. Then, set the
connection parameter value to True.

3. Add choices to the menu. Select from the following menu choice beans:

Bean Description

LICheckBoxMenultem” on page 18d | A menu choice that toggles a setting on and off

or ECheckboxMenultem” od

EiMenultem” on page 182 or A menu choice that calls a method
LIRadioButtonMenultem” od A menu choice that provides one of a set of mutually
hage 123 exclusive setting values

. - or A horizontal line that separates groups of related
MenuSeparator” on page 187 choices

Adding a choice to a menu

Drop one of the menu choice beans within a menu at the location you
want. Before you release the mouse button, a horizontal cursor line
indicates where the choice will be placed.

Moving a menu choice

Drag the menu choice and drop it at a new location, either in the same
menu or in another menu. Before you release the mouse button, a
horizontal cursor line indicates where the choice will be placed.

Adding a separator to a menu

Drop a separator bean within a menu at the location you want. Before
you release the mouse button, a horizontal cursor line indicates where
the separator will be placed.

Chapter 22. Using VisualAge Beans in Visual Composition 111

Adding a component to a tool bar
Drop a component bean on a JToolBar at the location you want. Before
you release the mouse button, a cursor line indicates where the choice
will be placed.

Moving a component on a tool bar
Drag the component and drop it at a new location. Before you release
the mouse button, a cursor line indicates where the choice will be
placed.

Adding a separator to a tool bar
Drop a JToolBarSeparator bean on a JToolBar at the location you want.
Before you release the mouse button, a cursor line indicates where the
separator will be placed.

4. Define each menu choice to indicate its purpose and, optionally, to provide a
keyboard shortcut.

Defining text for a menu choice
Enter the text in the value field of the /abel property in the property
sheet.

Defining a keyboard shortcut for a menu choice
Set the shortcut property in the property sheet for the menu choice.
Select the Shift check box if you want to use the Shift key. Select a
unigue key choice for the menu item.

5. Define the function or setting for each menu choice.

Calling a method from a menu choice
Connect the actionPerformed(java.awt.event.ActionEvent) event of the
menu choice to the method on the target bean. The method is called
when the user selects the menu choice.

Defining the initial state of a check box menu choice
Set the state property of the menu choice in its property sheet. If the
property value is True, the setting is initially on. Otherwise, the setting is
initially off.

Note: This property setting does not affect the appearance of a check
box menu item in the Visual Composition Editor.

Updating a setting for a check box menu choice
Connect the state property of the menu choice to the property on the
target bean. The property is set when the user toggles the menu choice.

6. Enable or disable menu choices as appropriate. For example, a menu choice
might have no meaning when another menu choice is toggled on, or when the
user has provide no input in a text field. When a menu choice is disabled, the
user cannot select it. By default, a menu choice is initially enabled.

Initially disabling a menu choice
Set the enabled property to False in the menu choice property sheet.

Disabling a menu choice when an event occurs
Connect the event to the menu choice’s enabled property. Then, set the
connection parameter value to False.

Enabling a menu choice when an event occurs
Connect the event to the menu choice’s enabled property. Then, set the
connection parameter value to True.

112 visualAge for Java, Version 2.0: Visual Composition

For examples, see the PopupMenuExample class in the
com.ibm.ivj.examples.vc.popupmenuexample package, the Amortization class in the
com.ibm.ivj.examples.vc.mortgageamortizer package, and the DirectoryExplorer
class in the com.ibm.ivj.examples.vc.swing.directoryexplorer package. These
examples are shipped in the IBM Java Examples project.

RELATED TASKS

Add =l
RELATED REFERENCES

Dynamically Creating and Accessing a Bean Instance

VisualAge provides beans that enable you to dynamically create and reference
bean instances visually. A Factory creates new instances of a bean type, based on
a connection from an event to a constructor for the Factory’s type. A Variable
references any instance of the Variable’s type that you assign to it using a
connection. With either a Factory or a Variable, you specify the bean type that it
can create or reference.

A Factory’s type specifies the type of bean instance, or object, that it creates. A
Variable’s type specifies the type of object that can be assigned to it. For example,
if you change a Factory’s type to Customer, it can create Customer objects. If you
change a Variable's type to Customer, you can use it to reference any Customer
object that you assign to it.

You can visually create and access beans in the Visual Composition Editor.
1. Add one of the following beans and specify the type of bean it represents:

Bean Description

LEactary” on page 189 A bean that dynamically creates instances of Java
beans

LVariable” on page 19d A bean that provides access to instances of Java
beans

Adding a Factory or Variable bean

a. Select a Factory or Variable bean from the Other category of the
beans palette. Alternatively, you can select a class type as a
Variable in the Choose Bean window.

b. Add the bean to the free-form surface of the composite bean you
are composing.

Changing the Factory or Variable type
When you add a Factory or Variable bean from the palette, its initial
type is Object. Change the type as follows:

a. Open the pop-up menu of the bean.

b. Select Change type to open the Choose a Type window.

c. Enter the full or partial type name in the Pattern field.

d. Select the type you want in the Class Names or Type Names field.

Chapter 22. Using VisualAge Beans in Visual Compositon 113

../../ide/tasks/ticaddpp.htm

e. If the type is found in more than one package, select the package in
the Package Names field that contains the one you want.

f. Select OK.

After you change the type, you can make connections to features of the
new type.

Changing the bean name
You might want to change the name of a Factory or Variable bean to a
more descriptive name for visual composition. This can be particularly
helpful for a Variable in some circumstances:

» If you change the Variable type. The initial name of the Variable
reflects its initial type.

» If you promote a feature from a Variable to a composite bean. The
Variable name is reflected in the default name of the promoted
feature.

Change the name as follows:
a. Open the pop-up menu of the Factory or Variable bean.

b. Select Change Bean Name to open the Bean Name Change
Request window.

c. Enter the new name.
d. Select OK.
2. Define when and how how the Factory or Variable bean is used.

Creating objects with a Factory
Connect an event to a Factory constructor method. If the constructor
you choose requires parameter values, provide these values either with
additional connections or property settings. Because the Factory
references an object that it creates until it creates another object, you
can make connections from its this event to methods and properties of
the object it references.

Assigning a bean instance to a Variable
Connect a bean property of the same type as the Variable to the this
property of the Variable. The connection assigns the source property to
the Variable, so the Variable references the source as a bean instance.
If the source bean itself is the source property , use its this property as
the connection source.

Two customized variations of this procedure are commonly used:

Tearing off a property
You can gain access to features of a bean that is a property of
another bean by detaching a reference to the property as a
bean instance in a Variable. Then, you can access the features
of the property through the Variable. This procedure is called
tearing off a property.

For example, you might use a Customer bean that has name,
address, and phone properties. The address property is an
Address bean that has street, city, state, and zipCode
properties. When you add a Customer bean, you can make
connections to its address property, but not to individual
elements of the address. If you tear off the address property of
the Customer bean, an Address Variable is placed on the
free-form surface. A connection assigns the address property of

114 visualAge for Java, Version 2.0: Visual Composition

the Customer bean to the Address Variable. You can make
connections to the properties of the Address Variable to access
elements of the Customer’s address property.

Promoting a Variable
You can enhance bean reusability by defining its data source as
a property of the bean. When you use the bean in another
bean, you can assign the data using a connection to the data
property. To do this, add a Variable for the data source bean
type in the reusable bean. Then, promote the Variable’s this
property to the interface of the reusable bean.

For example, you might compose a CustomerView bean that
provides a panel of fields to display or obtain information for a
Customer bean. To make the CustomerView bean reusable
wherever you might use a Customer bean, you don’t want to
specify a particular Customer bean as the data model for the
CustomerView bean. You can accomplish this as follows:

a. Use a Customer Variable bean, instead of a Customer bean,
in the CustomerView bean as the data model for the
customer information fields.

b. Connect properties of the Customer Variable to
corresponding customer information fields to tie the data
model to the user interface.

c. Promote the Customer Variable to the CustomerView bean
interface as a customer property.

d. Whenever you add a CustomerView bean to another bean,
also add either a Customer bean or another bean that
contains a Customer bean as a property. Connect the
Customer bean to the customer property of the
CustomerView bean. This assigns the Customer bean to the
Customer Variable in the CustomerView bean.

For examples that use a Variable, see the Amortization class in the
com.ibm.ivj.examples.vc.swing.mortgageamortizer package, and the AddressView
and CustomerView classes in the com.ibm.ivj.examples.vc.customerinfo package.
These examples are shipped in the IBM Java Examples project.

RELATED TASKS

Add =
RELATED REFERENCES

Customerlnfo Sampld

Chapter 22. Using VisualAge Beans in Visual Composition 115

../../ide/tasks/ticaddpp.htm
../samples/shjcusti.htm

116 visualAge for Java, Version 2.0: Visual Composition

Chapter 23. Enabling Custom Edit Support for Your Bean
The [lavaReans specification defines two ways for you to implement custom edit

behavior for your bean: property editors and customizers. Check the most recent
version of the spec for details; a summary of custom editors follows:

» For setting a single property, use a property editor. This simple GUI implements
the java.beans.PropertyEditor interface. You can associate a property editor with
a property type or a specific property. Property editors are typically grouped into
a single property sheet for the bean. The quickest way to create a property editor
is to inherit from java.beans.PropertyEditorSupport, a concrete implementation
class.

» For setting multiple properties through a single GUI, use a customizer. It is also a
good choice if the bean interface itself is large or complex enough that you want
to take responsibility for edit behavior for all properties in the bean. The quickest
way to create a customizer in VisualAge is to inherit from java.awt.Panel,
implementing the java.beans.Customizer interface.

All properties must be serializable. Java uses serialization to share instance
information.

You must explicitly assign a customizer for it to be used; this is not true for property

editors. The JavaBeans specification provides the following alternatives for

associating a property editor and property:

* Name the property editor class appropriately and place it in the same package. If
the property is of type MyObject, call the property editor class MyObjectEditor.

* Register the property editor with the PropertyEditorManager.
» Explicitly assign the property editor in the bean’s Beanlinfo class.

In VisualAge, you can assign property editors and customizers from the BeanlInfo
page of the class browser, or you can hand-edit the BeanlInfo class directly.

To assign a property editor when you define the property, enter the name of the
class in the Property editor field on the second page of the New Property Feature
SmartGuide. To assign a property editor at any other time, directly edit the Property
editor field in the Property Feature Information pane of the BeanInfo page. In this
case, the change does not take effect until you save the bean, either by closing the
class browser and electing to save changes or by typing Ctrl+S.

To assign a customizer to a bean, directly edit the Customizer class field in
theBean Information pane of the BeanInfo page. (Make sure you have no features
selected; if a feature is selected, the Feature Information pane appears instead.)
The change does not take effect until you save the bean, either by closing the class
browser and electing to save changes or by typing Ctrl+S.

To test a bean’s customization, drop the bean on the free-form surface and
double-click on it.

» If you have implemented a property editor, the standard property sheet appears.
Select the value field for the associated property. If the property editor has a
custom editor, a small button j appears to the right. Select the button to open

the custom editor.

© Copyright IBM Corp. 1997, 1998 117

http://www.java.sun.com/beans/docs/index.html

» If you have implemented a customizer, a property sheet appears, bearing a
Custom Properties button. Select the button to open the customizer; it appears
in a modal window.

For more information on implementing property editors themselves, see

Chapter 24_Property Editor Examples” on page 119, which discusses the

com.ibm.ivj.examples.vc.propertyeditors package.

RELATED COMNMCEPTS

RELATED TASKS

RELATED REFEREMCES

118 visualAge for Java, Version 2.0: Visual Composition

Chapter 24. Property Editor Examples

The [lavaReans specification and VisualAge support the following types of editors
implementing the java.beans.PropertyEditor interface:
ffag-hased] This editor presents a fixed list of property values (known
individually as tags) from a drop-down list in the property sheet.

ext-based] This editor accepts a single string from within a property sheet,
parsing it as necessary to set the property.

Custom 1 This editor opens a window separate from the property sheet to collect
settings information.

Paintable] This editor paints a graphic representation of the property value back
into the property sheet rather than returning a String value.

Each type of property editor supports a subset of the PropertyEditor interface,
meaning that a different set of method implementations returns non-null values. A
summary follows:

» All property editors must support setValue() and signal property change events.
They must also support either setAsText() or getCustomEditor(). If they support
getCustomEditor(), they must also return true from supportsCustomEeditor().

» Tag-based editors support getTags() and getAsText().
» Text-based editors support getAsText().
* Paintable editors support paintValue() and return true from isPaintable().

For properties that require special code to be generated for initialization, the
getJavalnitializationString() method should return a non-null value. VisualAge uses
this value when it generates code for the bean whose property you are setting. (For

an example, see tCustom Editar for the Persan Rean” on page 123)

For examples, look at the com.ibm.ivj.examples.vc.propertyeditors package shipped
with VisualAge in the IBM Java Examples project. Consider the Person bean, which
has the following properties: name, address, phoneNumber, sex, and incomeRange.

public class Person {
String fieldSex =
protected transient java.beans.PropertyChangeSupport propertyChange

= new java.beans.PropertyChangeSupport(this);

transient Address fieldAddress = null;
static public final int belowTwenty = 1;
static public final int twentyToFifty = 2;
static public final int fiftyToOneHundred
static public final int aboveOneHundred =
int fieldIncomeRange = 0;
String fieldPhoneNumber = "";
Name fieldName = null;

}

= 3;
4,

Because possible incomeRange values are predefinable, this property can be set
using a tag-based editor. The phoneNumber property has a known format in each
locale, so the example uses a text-based editor and validates the input argument in
setAsText() to make sure it matches the North American notion of a telephone
number. For the name property, the example uses a custom editor instead of
setAsText(); name is an instance of a serializable class, as required. We illustrate
a paintable editor for the sex property. Because this example does not include an
editor for the address property and the Address class happens not to be
serializable, the instance has been marked as transient.

© Copyright IBM Corp. 1997, 1998 119

http://www.java.sun.com/beans/docs/index.html

The sample package illustrates two means of associating a property editor. The
sex, incomeRange, and phoneNumber properties are of types (String and int) for
which there is default editor support in VisualAge, so editors for these properties
are explicitly assigned in the bean’s BeanlInfo class. The name property is of type
Name; because a NameEditor class exists in the same package, Java uses it by
default.

For a tour of each property editor, follow the Related Reference links below. To test
these editors, we used two simple visual composites based on Applet, PersonTester
and PaintTester. When you double-click on the Personl bean in each composite, a

standard property sheet appears with certain property editor examples enabled.

RELATED TASKS

RELATED REFEREMCES

Tag-Based Editor for the Person Bean

This topic discusses classes found in the com.ibm.ivj.examples.vc.propertyeditors
package. You can try this editor from either PersonTester or PaintTester.

The incomeRange property has a tag-based editor class associated with it. This
editor extends java.beans.PropertyEditorSupport, a concrete implementation class
for the java.beans.PropertyEditor interface. As a result, setValue() does not have
to be implemented locally.

public class IncomeRangeEditor extends java.beans.PropertyEditorSupport {
String[] stringValues = {
"0 - 20,000",
"20,000 - 50,000",
"50,000 - 100,000",
"100,000+" };

int[] intValues = {1, 2, 3, 4};

String[] codeGenStrings = {
"propertyeditors.Person.belowTwenty",
"propertyeditors.Person.twentyToFifty",
"propertyeditors.Person.fiftyToOneHundred",
"propertyeditors.Person.aboveOneHundred"};

public String getAsText() {
for (int i=0; i< intValues.length; i++) {
if (intValues[i] == ((Integer) getValue()).intValue())
return stringValues[i];
}

return "";

1
public String getJavalnitializationString() {
for (int i=0; i< intValues.length; i++) {
if (intValues[i] == ((Integer) getValue()).intValue())
return codeGenStrings[i];
}

return "0";

}

120 visualAge for Java, Version 2.0: Visual Composition

public String[] getTags() {
return stringValues;
1

public void setAsText(String text) throws java.lang.I1legalArgumentException {
for (int i=0; i< stringValues.length; i++) {
if (stringValues[i].equals(text)) {
setValue(new Integer(intValues[i]));
return;
}
1
throw new java.lang.I1legalArgumentException(text);
1
1

The getTags() method holds allowable property values in an array.
IncomeRangeEditor uses a set of parallel arrays to manage the allowable income
ranges. Note that the sole purpose of the codeGenStrings array is to address
incomeRange constants in the Person bean through the
getJavalnitializationString() method. The return value from this method appears in
the getPersonl() method of the PersonTester class:

private Person getPersonl() {

if (ivjPersonl == null) {

try {

ivjPersonl = new PropertyEditors.Person();
ivjPersonl.setSex("Female");

ivjPersonl.setName(new PropertyEditors.Name("Mrs.", "Susan", "Gail", "Carpenter"));
ivjPersonl.setPhoneNumber("555-1212");
ivjPersonl.setIncomeRange (propertyeditors.Person.belowTwenty);
// user code begin {1}

// user code end

} catch (java.lang.Throwable ivjExc) {

// user code begin {2}

// user code end

handleException(ivjExc);

}

}s

return ivjPersonl;

}
RELATED REFEREMCES

Text-Based Editor for the Person Bean

This topic discusses classes found in the com.ibm.ivj.examples.vc.propertyeditors
package.You can try this editor from either PersonTester or PaintTester.

The phoneNumber property has a text-based editor associated with it. This editor
extends java.beans.PropertyEditorSupport, a concrete implementation class for the
java.beans.PropertyEditor interface. As a result, setValue() does not have to be
implemented locally.
public class PhoneNumberPropertyEditor extends java.beans.PropertyEditorSupport {

public void setAsText(String text) throws java.lang.I1legalArgumentException {

if ((text.length() == 8) && (text.charAt(3) == '-')) {
setValue(text);

Chapter 24. Property Editor Examples 121

return;

}

if (text.length() == 7) {
setValue(text.substring(0,3) + "-" + text.substring(3,7));
return;

}

throw new java.lang.IllegalArgumentException(text);
}
1

The setAsText() method accepts only values that meet its format criteria;
otherwise, it throws an lllegalArgumentException.

RELATED REFEREMCES

Custom Editor for the Person Bean

This topic discusses classes found in the com.ibm.ivj.examples.vc.propertyeditors
package.You can try this editor from PersonTester only.

The name property has a custom editor (NameEditor) and custom editor panel
(NameCustomEditor) associated with it. Support of the PropertyEditor interface and
the edit function itself are decoupled in order to optimize performance in Person’s
property sheet. By decoupling them, we can delay construction of the custom editor
panel until the user requests it; only the property editor itself is instantiated when
the property sheet is first opened. This functional separation is significant when the
type being supported can occur several times in a single property sheet (like a
custom String editor), because each property requires its own instance of the
custom editor.

When you browse the sample, note the public constructor for NameEditor. All of the
other property editor classes in this sample have protected constructors, generated
by default because the superclass constructor is protected. When you explicitly
assign a property editor in BeanInfo, access to the protected constructor is not a
problem. For the name property, however, we have not explicitly assigned an editor
in Beanlinfo. In this case, the PropertyEditorManager class becomes involved in
coordinating edit support for the property, so we must provide a public constructor.

The NameEditor property editor looks like this:

public class NameEditor extends java.beans.PropertyEditorSupport {
java.beans.PropertyChangeSupport iPropertyChange
= new java.beans.PropertyChangeSupport(this);
NameCustomEditor iNameCustomEditor = null;
Name iName = null;

public String getAsText() {
return ((Name) getValue()).toString();
}
public java.awt.Component getCustomEditor() {
if (iNameCustomEditor == null) {
iNameCustomEditor = new NameCustomEditor();
iNameCustomEditor.setTheNameThis(getName());

122 visualAge for Java, Version 2.0: Visual Composition

1
return iNameCustomEditor;
1
public String getJavaInitializationString() {
Name tName = ((Name) getValue());
return "new propertypditors.Name(\"" +
tName.getTitle() +

II\II, \IIII +
tName.getFirstName() +
II\II, \IIII +
tName.getMiddleName() +
II\II’ \IIII +
tName.getLastName() +
||\||)||;

public Name getName() {
if (iName == null) iName = new Name();
return iName;

}

public Object getValue()
if (iNameCustomEditor =
return getName();
else
return iNameCustomEditor.getTheNameThis();

= null)

public void setValue(Object value) {
Object tValue = getName();
if (iNameCustomEditor == null) {
iName = ((Name) value);
iPropertyChange.firePropertyChange("value", tValue, value);

else
iNameCustomEditor.setTheNameThis((Name) value);

public boolean supportsCustomEditor() {
return true;
}

}

NameEditor manages the getting and setting of property values through the
property sheet; NameCustomEditor collects the information from the user. The
common currency between the property editor and the custom editor panel is a
Name instance. The NameCustomEditor panel looks like this:

Chapter 24. Property Editor Examples

123

Title

First

Middle 5]
TheMame

Last)

In this composite, property-to-property connections link Name properties in the
variable bean to the text properties of the TextField beans. The Choice bean
requires two connections: one from its selecteditem property to the title property of
the variable, and one from the title property of the variable to the select() method
of the Choice bean (passing in the current value of title as a parameter of the
select() method). The variable’s this property is promoted to the interface of the
composite so that it can be set from NameEditor during initialization.

To understand how these two classes interact, follow this partial program flow:

1.

When Person’s property sheet is opened, a NameEditor instance is created.
The getAsText() method is called to populate the value field for the name
property.

The setValue() method is called, passing the value that currently appears in
the property sheet as an input parameter. This value is then stored in
NameEditor's iName field.

When the value field is selected, NameEditor's supportsCustomEditor() method
is called. It returns true, so a small button appears in the value field.

When the button is selected, NameEditor's getCustomEditor() method is called,
creating an instance of NameCustomEditor and setting NameCustomEditor’s
TheName variable to match NameEditor's iName field.

If the OK button of NameCustomEditor is selected, the getValue() and
getJavalnitializationString() methods of NameEditor are called. If, however, the
Cancel button is selected, no methods are called in NameEditor.

RELATED REFEREMNMCES

[Text-Based Editar for the Person Rean” on page 121

124 visualAge for Java, Version 2.0: Visual Composition

Paintable Editor for the Person Bean

This topic discusses classes found in the com.ibm.ivj.examples.vc.propertyeditors
package.You can try this editor from PaintTester only.

The sex property has a paintable editor associated with it. This editor extends
java.beans.PropertyEditorSupport, a concrete implementation class for the
java.beans.PropertyEditor interface. As a result, setValue() does not have to be
implemented locally. In this type of property editor, we paint the tagged value back
into the property sheet instead of returning it as a String.

public class SexEditor extends java.beans.PropertyEditorSupport {
public String[] getTags() {
String[] tags = {"male", "female"};
return tags;
1
public boolean isPaintable() {
return true;

public void paintValue(java.awt.Graphics gfx, java.awt.Rectangle box) {
String tString = getAsText();

if (tString.equals("male"))
gfx.setColor(java.awt.Color.blue);

else
gfx.setColor(java.awt.Color.magenta);

gfx.drawString(tString, (box.x) + 1, (box.y) + (box.height) - 2);
return;

}
}

The getTags() method holds allowable property values in an array. Instead of using

getAsText() and setAsText() as we did for IncomeRangeFEditon, we override
isPaintable() and paintValue(). The resulting property sheet looks like this:

Chapter 24. Property Editor Examples 125

K PAINTTESTER - PRGSERTIES

[T Show ezpert features

APerzon j
beant ame - |
incomeR ange 0 - 20,000
name Mrz. Suzan Gaill Carpenter
phoreM umber ARE-1212
SEH female

-
beanM arme =

RELATED REFEREMCES

T 51 P EdiorE ; 179

126 visualAge for Java, Version 2.0: Visual Composition

Chapter 25. Separating Strings for Translation

Before doing this task, please read the conceptual information listed at the end of
this topic.

From the Workbench, you can separate all String values from the class at once.
From the Visual Composition Editor, you can separate String property values as you

Bet them in the property sheef.

To separate String values from an entire class at once, follow these steps:

1.
2.

6.

From the Projects page of the Workbench, select the class.

Select Selected and then Externalize Strings . Alternatively, click mouse button
2 and select Externalize Strings from the pop-up menu that appears.

The Externalizing: Package.Class window appears, bearing a list of hardcoded
strings found in the class.

Specify the type of resource bundle by selecting one of the following radio
buttons:

» List resource bundle
* Property resource file
Specify the name of the resource bundle.

» To choose an existing resource bundle, select the Browse button, pick a
bundle from the standard dialog box, and select OK.

» To create a new bundle, select New. Enter values as prompted, depending
on the type of resource bundle; select OK.

If necessary, mark for exclusion those strings listed under Strings to be
separated that should be left as is. To mark an item, select the graphic listed to
the left of the column, as follows:

» To separate the item, do nothing. Translate is already displayed.
* If the item must never be separated, select once to display Never

translate .
» To leave the item hardcoded for now, select twice to display Skip.

If you are not sure of an item, review it in the Context field.
Select OK to proceed with separation.

VisualAge marks each item marked with a special comment. To make a string

previously marked appear in the externalization list once again, find the string in

the code and delete the comment at the end of the line: //$NON-NLS-1$. Then
perform this task a second time.

Separating Strings through Property Sheets

To separate String property values as you set them, follow these steps:

1.
2.

Open the property sheet for each embedded bean that contains a text setting.
Select the value field to the right of the property name. A small button :I

appears to the right.

© Copyright IBM Corp. 1997, 1998 127

3. Select the small button. The String Externalization Editor window appears. At
the top of the window is a set of radio buttons that enable you to specify how
you want VisualAge to handle the text. The current property setting, if any,
appears in the Value field.

4. Select the appropriate radio button:
* Do not externalize string
» Externalize string

5. If you selected Do not externalize string , you are finished. Just select OK to
close the window.

6. If you selected Externalize string , specify the type of resource bundle by
selecting one of the following radio buttons:

» List resource bundle
* Property resource file
7. Specify the name of the resource bundle.

» To choose an existing resource bundle, select the Browse button, pick a
bundle from the standard dialog box, and select OK.

* To create a new bundle, select New. Enter values as prompted, depending
on the type of resource bundle; select OK.

The name of the bundle appears in the Bundle list. If you selected an existing
class, a currently defined key-value pair appears in fields below the bundle
name.

8. To define a resource, type its name in the Key field. If the resource already
exists, the corresponding value for the key appears in the Value field
underneath; otherwise, the field is empty. To edit the resource, type a new
value.

9. Select OK to close the window.
The next time you save the class, VisualAge modifies the generated get methods
for the beans whose properties you just set as bundles.

RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMNMCES

128 visualAge for Java, Version 2.0: Visual Composition

Chapter 26. Incorporating User-Written Code into Visual
Composites

Although VisualAge enables you to compose and generate user interface beans,
you will probably want to write other beans yourself at some point. These are
typically nonvisual beans that provide business logic. You can either create a new
bean and write the code to support its features, or you can define bean interface
features for code you have already written.

If you just need to extend the function of the bean, you can probably accomplish
this by using code connections. As a last resort, you can modify generated code for
the bean.

Assembling a Bean from Generated and User-Written Code

Before you get started, read the related conceptual topic about generated code.
1. Design the bean interface.

2. Define the bean interface in the BeanInfo page. VisualAge generates source
code for the interface features in the bean class. It also generates descriptor
methods for the bean and its features in an associated BeanInfo class.

3. Modify the feature code to provide the behavior you want.

Modifying Generated Feature Code

For properties, generated feature code is usually sufficient without modification. For
method features, you must modify the feature code to add the behavior you want
your bean to provide.

You can modify the feature code in the Source pane of either the Methods page or
the Beaninfo page. If you choose to modify feature code for visual composites, be
sure to stick to the designated user-code areas marked. Otherwise, VisualAge will
overwrite your code the next time the bean is saved.

If you need to modify the signature for a method that supports a feature, follow
these steps:

1. Remove the feature in the the BeanInfo page.
2. Modify or replace the method in the Methods page.
3. Add the feature again in the the BeanInfo page.

Adapting User-Written Classes for Use as Beans

Before you get started, read the related conceptual topic about generated code.

1. If you wrote a class outside of VisualAge, import the class. VisualAge interprets
the bean interface using introspector design patterns.

2. From the BeanlInfo page, extend the bean interface with new features as
needed. VisualAge generates a BeanInfo class when you add the first new
feature. The Beanlnfo class contains bean information for the bean, for the
features you imported and for each new feature you add.

© Copyright IBM Corp. 1997, 1998 129

If you add public methods on the Methods page, you can add them as features
on the BeanlInfo page. To add methods as features, select Add Available

Features from the Features menu. Then, select the methods you want to add
as features.

If you add a new method feature with the same name as a method you have

already written, VisualAge uses the existing method. Otherwise, it generates a new
method stub.

RELATED COMCEPTS

RELATED TASKS

| . I E I T |
RELATED REFERENCES

130 visualAge for Java, Version 2.0: Visual Composition

../../ide/tasks/tiimport.htm

Chapter 27. Defining Bean Interfaces for Visual Composition

The bean interface defines the property, event, and method features of your bean.
These features can be used in visual composition when your bean is added to
another bean. A BeanlInfo class describes the bean and features that you add to the
bean. Other features are inherited from the superclass of your bean unless you
choose not to inherit features. See the related conceptual topic about bean
interfaces for more information.

Add features to the bean interface in the BeanInfo page. You can use either the tool
bar or Features menu to add a new feature. When you add a feature, VisualAge
generates the following:

* Public methods for the feature in the bean class

¢ Bean information code that describes the feature in the Beanlnfo class for the
bean

If you create public methods for the bean in the Methods page, you can add them
as features in the BeanInfo page. Select Add Available Features from the
Features menu to open the Add Available Features window and add methods as
features.

Promote features of embedded beans in the Visual Composition Editor. You can
promote features from the pop-up menu of an embedded bean. When you promote
a feature, VisualAge generates the following:

¢ Public methods in the bean class that call methods of the embedded bean

* Bean information code that describes the feature in the BeanlInfo class for the
bean

RELATED COMCEPTS

I‘(‘haprpr 9_Generated Caode” an page 33

RELATED TASKS

0 H HY ”

RELATED REFEREMCES

© Copyright IBM Corp. 1997, 1998 131

Creating and Modifying a BeanlInfo Class

When you create a new bean, it does not initially have a BeanlInfo class. VisualAge
automatically creates a BeanlInfo class for a bean if one does not exist and you do
any of the following:

* Modify a BeaniInfo property in the Information pane of the BeanInfo page.
VisualAge generates bean information code that describes the bean.

* Add a new feature in the BeanInfo page. VisualAge generates bean information
code that describes the bean and the new feature.

* Promote a feature of an embedded bean in the Visual Composition Editor.
VisualAge generates bean information code that describes the bean and the
promoted feature.

You can explicitly create a BeanlInfo class in the BeanInfo page as follows:

1. From the Features menu, select New BeanlInfo Class to open the SmartGuide
— Beanlnfo Class window.

2. In the SmartGuide — BeanInfo Class window, you can specify a display name
and short description to use for the bean. If you want to provide customized
initialization of bean properties, specify a customizer class for the bean. Select
Next to open the SmartGuide — Bean Icon Information window.

3. In the SmartGuide — Bean Icon Information window, you can specify files
containing icons for the bean. Select Finish to create the BeanlInfo class.

You can also create or replace a BeanlInfo class in the BeanInfo page as follows.
From the Features menu, select Generate BeanlInfo class . VisualAge generates
bean information code that describes the bean and all features that you have added
or promoted to the bean interface.

To modify the information in a BeanlInfo class, edit bean information properties in
the Information pane of the Beaninfo page. If no feature is selected in the
Features pane, you can edit bean information for the bean. If a feature is selected,
you can edit bean information for the feature.

If you want a bean to be serialized, set the Hidden-state property of the bean to
true in the Information pane.

RELATED COMNCEPTS

RELATED TASKS

RELATED REFEREMCES

. H ”

132 visualAge for Java, Version 2.0: Visual Composition

Adding Property Features

Define property features to represent bean data or attributes that you want other
beans to have access to.

Add a new property feature in the Beanlnfo page as follows:
1. From the tool bar, select New Property Feature . If you prefer, you can

select New Property Feature from the Features menu. Either selection opens
the SmartGuide — New Property Feature window.

2. In the SmartGuide — New Property Feature window, do the following:

a. Specify the property name in the Property name field.

b. Specify the property type in the Property type field.

c. If you want the property value to be retrievable, make sure that the
Readable check box is selected. If this option is selected, a get method is
generated for the property.

d. If you want the property value to be modifiable, make sure that the
Writeable check box is selected. If this option is selected, a set method is
generated for the property.

e. If you want the property to send value changes on connections, make sure
that the bound check box is selected.

f. If the property consists of an array of elements, select the Indexed check
box. After you finish adding the property feature, select Add Available
Features from the Features menu to add the get and set array element
methods as features so you can make connections to them.

g. If you want other beans to be able to veto value changes for the property,
select the constrained check box.

h. Select Next to open the SmartGuide — Bean Information window.
3. In the SmartGuide — Bean Information window, do the following:

a. If you want a name other than the actual feature name to be displayed for
the property in the Visual Composition Editor, specify the name in the
Display name field. This name appears when the property is listed in
connection menus, the bean property sheet, and other windows.

b. If you want a description other than the feature name to be displayed for the
property in the Visual Composition Editor, specify the description in the
Short description field. This description appears in certain windows, such
as connection windows and the Promote Features window, when the
property is selected.

c. If you do not want the property to appear in development windows unless
the user chooses to display expert features, select the expert check box.

d. If you do not want the property to be exposed to the bean consumer, select
the hidden check box.

e. If you want to provide customized initialization of the property, specify a
property editor class.

f. Select Finish to add the property. VisualAge generates the following:

* Public methods for the feature in the bean class

¢ Bean information code that describes the feature in the BeanInfo class for
the bean

Chapter 27. Defining Bean Interfaces for Visual Compositon 133

You can modify BeanlInfo for the property in the Information pane of the Beaninfo
page. If you want the property to appear as a preferred feature in the connection
menu of the bean, set the feature’s Preferred property to true. If you do not want
the property to appear in the property sheet of the bean, set the feature’s Design
time property property to false.

RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMCES

Adding Method Features

Define method features to represent bean behaviors or functions that you want
other beans to have access to.

Add a new method feature in the BeanInfo page as follows:
1. From the tool bar, select New Method Feature . If you prefer, you can

select New Method Feature from the Features menu. Either selection opens
the SmartGuide — New Method Feature window.

2. In the SmartGuide — New Method Feature window, do the following:
a. Specify the method name in the Method name field.
b. Specify the method return type in the Return type field.

c. If your method feature requires parameter input, specify the number of
parameters in the Parameter count field.

d. Select Next to open the either the SmartGuide — Parameter window or the
SmartGuide — Bean Information window.

3. In the SmartGuide — Parameter window for each parameter, do the following:
a. Specify the parameter name in the Parameter name field.
b. Specify the parameter type in the Parameter type field.

c. If you want a name other than the actual parameter name to be displayed
for the parameter in the Visual Composition Editor, specify the name in the
Display name field. This name appears when the parameter is listed in
visual composition windows.

d. If you want a description other than the feature name to be displayed for the
parameter in the Visual Composition Editor, specify the description in the
Short description field. This description appears when the parameter is
selected in visual composition windows.

134 visualAge for Java, Version 2.0: Visual Composition

e. Select Next to open the SmartGuide — Bean Information window.
4. In the SmartGuide — Bean Information window, do the following:

a. If you want a name other than the actual feature name to be displayed for
the method in the Visual Composition Editor, specify the name in the
Display name field. This name appears when the method is listed in
connection menus, the Promote Features window, and other windows.

b. If you want a description other than the feature name to be displayed for the
method in the Visual Composition Editor, specify the description in the Short
description field. This description appears in certain windows, such as
connection windows and the Promote Features window, when the method is
selected.

c. If you do not want the method to appear in development windows unless the
user chooses to display expert features, select the expert check box.

d. If you do not want the method to be exposed to the bean consumer, select
the hidden check box.

e. Select Finish to add the method. VisualAge generates the following:
* A public method for the feature in the bean class

* Bean information code that describes the feature in the BeanlInfo class for
the bean

You can modify BeanlInfo for the method in the Information pane of the BeanlInfo
page. If you want the method to appear as a preferred feature in the connection
menu of the bean, set the feature’s Preferred property to true.

RELATED COMNCEPTS

I‘(‘haprpr 9_Generated Caode” an page 33

RELATED TASKS

RELATED REFEREMCES

Adding Event Features

Define event features to represent the occurrence of any events in your bean that
you want other beans to be aware of.

You can add an event feature in the BeanInfo page based on either an existing
event set or a new event set that you define. An event set consists of an event
listener interface with associated event object and multicaster classes. The
multicaster enables multiple listeners for an event.

Chapter 27. Defining Bean Interfaces for Visual Compositon 135

Add an event feature based on an existing event set in the BeanInfo page as
follows:

1. From the tool bar, select New Event Set Feature . If you prefer, you can

select New Event Set Feature from the Features menu. Either selection opens
the SmartGuide — New Event Set Feature window.

2. In the SmartGuide — New Event Set Feature window, do the following:
a. Specify the event name in the Event name field.
b. Select an event listener in the Event listener list.
c. Select Next to open the SmartGuide — Bean Information window.
3. In the SmartGuide — Bean Information window, do the following:

a. If you want a name other than the actual feature name to be displayed for
the event in the Visual Composition Editor, specify the name in the Display
name field. This name appears when the event is listed in connection
menus, the Promote Features window, and other windows.

b. If you want a description other than the feature name to be displayed for the
event in the Visual Composition Editor, specify the description in the Short
description field. This description appears in certain windows, such as
connection windows and the Promote Features window, when the event is
selected.

c. If you do not want the event to appear in development windows unless the
user chooses to display expert features, select the expert check box.

d. If you do not want the event to be exposed to the bean consumer, select the
hidden check box.

e. Select Finish to add the method. VisualAge generates the following:
* A public method for the feature in the bean class

* Bean information code that describes the feature in the Beanlnfo class for
the bean

Add an event feature based on a new event set in the BeanInfo page as follows:

1. Select New Listener Interface from the Features menu to open the
SmartGuide — New Event Listener window.

2. In the SmartGuide — New Event Listener window, do the following:
a. Specify the event name in the Event name field.

b. Specify the event listener name in the Event listener field. A default name
is produced based on the name you specify in the Event name field.

c. Specify the event object name in the Event object field. A default name is
produced based on the name you specify in the Event name field.

d. Specify the event multicaster name in the Event Multicaster field. A default
name is produced based on the name you specify in the Event name field.

e. Select Next to open the SmartGuide — Event Listener Methods window.
3. In the SmartGuide — Event Listener Methods window, do the following:

a. For each method that you want to add to the listener, specify the method in
the Method name field. Then, select the Add button. These listener
methods respond to the event. You must add code that responds to the
event in each method.

b. Select Next to open the SmartGuide — Bean Information window.
4. In the SmartGuide — Bean Information window, do the following:

a. If you want a name other than the actual feature name to be displayed for
the event in the Visual Composition Editor, specify the name in the Display

136 visualAge for Java, Version 2.0: Visual Composition

name field. This name appears when the event is listed in connection
menus, the Promote Features window, and other windows.

b. If you want a description other than the feature name to be displayed for the
event in the Visual Composition Editor, specify the description in the Short
description field. This description appears in certain windows, such as
connection windows and the Promote Features window, when the event is
selected.

c. If you do not want the event to appear in development windows unless the
user chooses to display expert features, select the expert check box.

d. If you do not want the event to be exposed to the bean consumer, select the
hidden check box.

e. Select Finish to add the method. VisualAge generates the following:
* A public method for the feature in the bean class

* Bean information code that describes the feature in the BeanlInfo class for
the bean

You can modify BeanlInfo for the event in the Information pane of the BeaniInfo
page. If you want the event to appear as a preferred feature in the connection
menu of the bean, set the feature’s Preferred property to true.

RELATED COMCEPTS

I‘(‘haprpr 9_Generated Caode” an page 33

RELATED TASKS

RELATED REFERENCES

Promoting Features of Embedded Beans

Promote features in the Visual Composition Editor as follows:

1.

From the pop-up menu of the embedded bean, select Promote bean feature to
open the Promote Features window.

For each feature that you want to promote, do the following:

a. Select Method, Property , or Event to filter promotable features in the
features list box.

In the features list box, select the feature you are promoting.
Select the >> button. The feature is moved to the Promoted features list.

Chapter 27. Defining Bean Interfaces for Visual Compositon 137

d. If you do not want to use the default name, double-click the feature name in
the Promote feature name field. Then, edit the name to change it.

3. Select OK to close the Promote Features window.
4. Save the composite bean to incorporate the features you just promoted. If you
run the test tool, the bean is automatically saved.

RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMCES

Specifying Expert Features

You can designate expert features that you do not normally want listed in
development windows. These are features that are complex or easily misused.

To designate a feature as expert, do either of the following:

* When adding the feature, select the expert check box in the SmartGuide — Bean
Information window.

« Edit the bean information in the Information pane of the BeaniInfo page. Select
the Expert property, then select true in the value column.

RELATED COMCEPTS

RELATED TASKS

RELATED REFERENCES

Specifying Hidden Features

You can designate hidden features that you do not want to be available for
connections and property settings. These are features that you use within the bean
for implementation that you do not want exposed.

To designate a feature as hidden, do either of the following:

* When adding the feature, select the hidden check box in the SmartGuide — Bean
Information window.

138 visualAge for Java, Version 2.0: Visual Composition

Edit the bean information in the Information pane of the BeanInfo page. Select
the Hidden property, then select true in the value column.

RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMCES

Chapter 27. Defining Bean Interfaces for Visual Compositon 139

140 visualAge for Java, Version 2.0: Visual Composition

Chapter 28. Beans for Visual Composition

VisualAge provides a wide range of beans that you can use to visually compose
your own program elements. These include the following:

» Basic user interface beans from the Abstract Windowing Toolkit (AWT)
* Enhanced user interface beans from the Java Foundation Classes (JFC) library

» Factory and variable beans for dynamically creating and referencing bean
instances

The following topics describe beans provided by IBM. When you create your own
beans, you can add them to the palette. See the related task topic on modifying the
palette.

User Interface Beans

VisualAge provides a set of user interface beans that you can use to compose an
applet or application. Basic user interface beans from the Abstract Windowing
Toolkit (AWT) are provided in the Java class libraries project. AWT beans are in the
java.awt and java.applet packages. Enhanced user interface beans from the Java
Foundation Classes (JFC) library are provided in the JFC class libraries project.
Swing beans are in com.sun.java.swing and related packages.

Although Swing and AWT components can be mixed, it is inadvisable. For this
reason, VisualAge does not allow you to drop AWT beans on Swing beans.
Because you might want to add Swing beans to AWT beans that you created before
Swing was available, VisualAge does allow you to drop Swing beans on AWT
beans. You can morph the AWT beans to Swing beans when you are ready to
convert completely to Swing.

The problem with mixing AWT and Swing beans arises from the fact that all AWT
components have peer classes that are specific to the operating system, while most
Swing components do not. Components with system peers are known as
heavyweight components. Components without system peers are known as
lightweight components. The only Swing heavyweight components are JApplet,
JDialog, JFrame, and JWindow. Painting problems occur if heavyweight
components are children of lightweight parents, because the heavyweight
components always paint over lightweight components.

VisualAge provides its own Beanlinfo classes for Swing and AWT beans. These
BeanlInfo classes are tailored for visual composition.

Swing beans have a LookAndFeel (L&F) architecture that specifies how Swing
components appear and behave. On the Visual Composition Editor, Swing beans
appear in the default, cross-platform Metal L&F implementation. To change the
runtime appearance to the System L&F of the current platform, execute the
following code in your main method before you construct your components:

String myLookAndFeel = com.sun.java.swing.UIManager.getSystemLookAndFeelClassName();
com.sun.java.swing.UIManager.setLookAndFeel (myLookAndFeel);

The myLookAndFeel can be the name of any class that implements
com.sun.java.swing.LookAndFeel and is available on the current platform. This code
changes only the runtime L&F implementation and not the images on the Visual
Composition Editor.

© Copyright IBM Corp. 1997, 1998 141

VisualAge information about Swing and AWT beans supplements class information
from JavaSoft. VisualAge reference topics for these beans provide links to JavaSoft
class information. The following topics describe these beans:

. }‘(‘hnlnfpr 31 _Pane and Panel Beans” on page 151

. I‘(‘halnfpr 32 Table and Tree Beans” on page 15d

. I‘(‘haptpr 35 Button Beans” on page. 173

Factory and Variable Beans

VisualAge provides Factory and Variable beans that you can use to dynamically
create and reference bean instances. The following topic describes these beans:

RELATED COMNCEPTS

I‘(‘halnrpr 2 _How Classes and Beans Are Related” on page 3

RELATED TASKS

" - " - " e "

142 visualAge for Java, Version 2.0: Visual Composition

Chapter 29. Applet Beans

Applets are programs that can be downloaded and run by a Java-enabled web
browser. These programs are generally small and specialized. An applet runs in a
web page on a client system, within bounds specified by the page markup. A Java
applet operates within constraints that provide security from remote system
intrusion.

VisualAge provides applet beans from Swing and AWT packages. A basic applet
bean from the Abstract Windowing Toolkit (AWT) is provided in the Java class
libraries project, in the java.applet package. An enhanced applet bean from the
Java Foundation Classes (JFC) library is provided in the JFC class libraries project,
in the com.sun.java.swing package. Although Swing and AWT beans can be mixed,
it is inadvisable.

The following beans provide applets:

Bean Description
LlApplet” an page 144 or EApplet! | A program that can run in a web browser
RELATED TASKS

RELATED REFEREMCES

Applet

Palette category
None

Palette bean
None

Project
Java class libraries

Package
java.applet

Type Bpplel

An Applet-based bean provides the foundation for a program that can be
downloaded and run in a Java-enabled web browser. To use this bean, specify
Applet as the superclass for a new applet bean.

Use a JApplet bean, rather than an Applet bean, if you want to use Swing
components in the applet. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFERENCES
tChapter 29_Applet Beans’l

© Copyright IBM Corp. 1997, 1998 143

../../jdkref/java.applet.Applet.htm#_top_

JApplet

Palette category
Swing

Palette bean

A

Project
JFC class libraries

Package
com.sun.java.swing

Type m

A JApplet-based bean provides the foundation for a program that can be
downloaded and run in a Java-enabled web browser. To use this bean, specify
com.sun.java.swing.JApplet as the superclass for a new applet bean.

The JApplet bean provides a content pane in which to place other components. The
content pane provides logical separation of the applet from its child components.
With the exception of a JMenuBar, user interface components are added to the
content pane, which completely covers the JApplet bean in the Visual Composition
Editor. The JApplet bean can be accessed from the Beans List. The default content
pane, a JAppletContentPane, is represented in the Beans List as the child of the
JApplet bean. You can delete the default content pane and replace it with another
container component.

Use an Applet bean, rather than a JApplet bean, if you want to use AWT
components in the applet. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFEREMCES

144 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.JApplet.htm#_top_

Chapter 30. Window Beans

Windows beans are the primary visual context for other user interface components.
VisualAge provides window beans from Swing and AWT packages. Basic window
beans from the Abstract Windowing Toolkit (AWT) are provided in the Java class
libraries project, in the java.awt package. Enhanced window beans from the Java
Foundation Classes (JFC) library are provided in the JFC class libraries project, in
the com.sun.java.swing package. Although Swing and AWT beans can be mixed, it
is inadvisable.

The following beans provide windows:

Bean Description
LiDialog” on page 147 or EDialog] | A custom dialog, typically a secondary window
LEileDialog” on page 144 A dialog for accessing the file system

‘ u or lErame’l A desktop window with a title bar, sizing borders, and
sizing buttons

A frame that is a child of another Swing component

LIWindow” on page 149 or A window without a title bar, sizing borders, and sizing
LWindow” on page 150 buttons

RELATED TASKS

RELATED REFEREMCES

Dialog

Palette category
AWT

Palette bean

D

Project
Java class libraries

Package
java.awt

Type w

Use a Dialog bean to provide a custom dialog. A dialog is typically used to display
or gather information for a single purpose.

The Dialog bean supports a client component in which to place other components.
The default client component is a Panel bean named ContentsPane. You can delete
the default client and replace it with another container component.

Use a JDialog bean, rather than a Dialog bean, if you want to use Swing

components in the dialog. Although Swing and AWT beans can be mixed, it is
inadvisable.

© Copyright IBM Corp. 1997, 1998 145

../../jdkref/java.awt.Dialog.htm#_top_

RELATED TASKS

RELATED REFEREMCES

FileDialog

Palette category
AWT

Palette bean

Project
Java class libraries

Package
java.awt

Type EileDialogd

Use a FileDialog bean to provide a dialog for accessing the file system. The user
can open or save files using this dialog. File dialogs are useful in stand-alone
applications. File dialogs are typically not used in applets due to security
constraints.

The FileDialog bean represents a system file dialog. The bean appears on the
free-form surface as an icon because it cannot be composed.

RELATED TASKS

RELATED REFEREMCES

Frame

Palette category
AWT

Palette bean

-

Project
Java class libraries

Package
java.awt
Type Eramd

146 visualAge for Java, Version 2.0: Visual Composition

../../jdkref/java.awt.FileDialog.htm#_top_
../../jdkref/java.awt.Frame.htm#_top_

Use a Frame bean to provide a desktop window with a title bar, sizing borders, and
sizing buttons. You can add beans to the frame to define menus and other user
interface components.

The Frame bean supports a client component in which to place other components.
The default client component is a Panel bean named ContentsPane. You can delete
the default client and replace it with another container component.

Use a JFrame bean, rather than a Frame bean, if you want to use Swing
components in the frame. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFEREMNCES

JDialog

Palette category
Swing

Palette bean

D

Project
JFC class libraries

Package
com.sun.java.swing

Type m

Use a JDialog bean to provide a custom dialog. A dialog is typically used to display
or gather information for a single purpose.

The JDialog bean provides a content pane in which to place other components. The
content pane provides logical separation of the dialog from its child components.
With the exception of a JMenuBar, user interface components are added to the
content pane. The default content pane, a JDialogContentPane, is represented in
the Beans List as the child of the JDialog bean. You can delete the default content
pane and replace it with another container component.

Use a Dialog bean, rather than a JDialog bean, if you want to use AWT
components in the dialog. Although Swing and AWT beans can be mixed, it is
inadvisable. Alternatively, use a JOptionPane bean to create any of a variety of
standard dialogs.

RELATED TASKS

RELATED REFEREMNMCES

Chapter 30. Window Beans 147

../../jfcref/com.sun.java.swing.JDialog.htm#_top_

JFrame

Palette category
Swing

Palette bean

]

Project
JFC class libraries

Package
com.sun.java.swing
Type [Eramd

Use a JFrame bean to provide a desktop window with a title bar, sizing borders,
and sizing buttons. You can add beans to the frame and its content pane to define
menus and other user interface components.

The JFrame bean provides a content pane in which to place other components. The
content pane provides logical separation of the frame from its child components.
With the exception of a JMenuBar, user interface components are added to the
content pane. The default content pane, a JFrameContentPane, is represented in
the Beans List as the child of the JFrame bean. You can delete the default content
pane and replace it with another container component.

Use a Frame bean, rather than a JFrame bean, if you want to use AWT
components in the frame. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFERENCES
tllnternalFrame’l

JinternalFrame

Palette category
Swing

Palette bean

m

Project
JFC class libraries

Package
com.sun.java.swing

Type [internalErame

148 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.JFrame.htm#_top_
../../jfcref/com.sun.java.swing.JInternalFrame.htm#_top_

Use a JinternalFrame bean to provide a frame that is a child of a JDesktopPane
bean. By contrast, a JFrame bean is a child of the desktop. The user can
manipulate an internal frame within a desktop pane. For example, the user can
maximize, minimize, resize, move, or close the internal frame.

The JinternalFrame bean provides a content pane in which to place other
components. The content pane provides logical separation of the frame from its
child components. With the exception of a JMenuBar, user interface components
are added to the content pane. The default content pane, a
JinternalFrameContentPane, is represented in the Beans List as the child of the
JinternalFrame bean. You can delete the default content pane and replace it with
another container component.

RELATED TASKS

RELATED REFERENCES

JWindow

Palette category
Swing

Palette bean

D

Project
JFC class libraries

Package
com.sun.java.swing
Type bwindowl

Use a JWindow bean to add a window without a title bar, sizing borders, and sizing
buttons. This bean is suitable for a splash window that your application displays
briefly at startup.

The JWindow bean provides a content pane in which to place other components.
The content pane provides logical separation of the window from its child
components. With the exception of a JMenuBar, user interface components are
added to the content pane, which completely covers the JWindow bean in the
Visual Composition Editor. The JWindow bean can be accessed from the Beans
List. The default content pane, a JWindowContentPane, is represented in the Beans
List as the child of the JWindow bean. You can delete the default content pane and
replace it with another container component.

Use a Window bean, rather than a JWindow bean, if you want to use AWT
components in the window. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

Chapter 30. Window Beans 149

../../jfcref/com.sun.java.swing.JWindow.htm#_top_

RELATED REFEREMNCES

Window

Palette category
None

Palette bean
None

Project
Java class libraries

Package
java.awt

Type {windoul

Use a Window bean to add a window without a title bar, sizing borders, and sizing
buttons. This bean is suitable for a splash window that your application displays
briefly at startup.

Use a JWindow bean, rather than a Window bean, if you want to use Swing
components in the window. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFEREMCES

150 visualAge for Java, Version 2.0: Visual Composition

../../jdkref/java.awt.Window.htm#_top_

Chapter 31. Pane and Panel Beans

A pane or panel is a container for other components. It is used within another pane
or panel, within a window, or within an applet. VisualAge provides pane and panel
beans from Swing and AWT packages. Basic pane and panel beans from the
Abstract Windowing Toolkit (AWT) are provided in the Java class libraries project, in
the java.awt package. Enhanced pane and panel beans from the Java Foundation
Classes (JFC) library are provided in the JFC class libraries project, in the
com.sun.java.swing package. Although Swing and AWT beans can be mixed, it is
inadvisable.

The following beans provide panes and panels:

Bean Description
W A pane for a desktop within another Swing container

LiEditorPane” on page 152 A pane for editing defined text types, such as HTML

A simple dialog pane

L1Panel” on page 153 or lRanel” ad | A composition surface for user interface components

L1ScrallPane” on page 153 or A scrollable view for another component

A split view for other components

L1TabhedPane” on page 155 A tabbed view for other components

A pane for editing text with visible styles and
embedded objects

RELATED TASKS

RELATED REFERENCES

JDesktopPane

© Copyright IBM Corp. 1997, 1998

Palette category
Swing

Palette bean

A

Project
JFC class libraries

Package
com.sun.java.swing

Type [DesktopPand

Use a JDesktopPane bean to provide a desktop within another Swing container.
Add one or more JinternalFrame beans to the desktop pane.

151

../../jfcref/com.sun.java.swing.JDesktopPane.htm#_top_

You should not use a JDesktopPane bean with AWT components. Although Swing
and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNCES

JEditorPane

Palette category
Swing

Palette bean

Project
JFC class libraries

Package
com.sun.java.swing

Type [EditorPand
Use a JEditorPane bean for editing defined text types, such as HTML.

You should not use a JEditorPane bean with AWT components. Although Swing and
AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNMCES

I‘Fhaprpr 31 Pane and Panel Beans” an page 151

JOptionPane

Palette category
Swing

Palette bean

Project

JFC class libraries

Package
com.sun.java.swing

Type [OptionPand

152 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.JEditorPane.htm#_top_
../../jfcref/com.sun.java.swing.JOptionPane.htm#_top_

Use a JOptionPane bean to provide a simple dialog for an input prompt, a
message, or user confirmation. The dialog is modal, so the thread is held until the
user dismisses the dialog.

You should not use a JOptionPane bean with AWT components. Although Swing
and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

JPanel

Palette category
Swing

Palette bean

o

Project
JFC class libraries

Package
com.sun.java.swing

Type [Panel

Use a JPanel bean as a composition surface for other user interface components,
such as buttons, lists, and text. You can add a panel to a window, an applet, or
another panel. In a Swing window or JApplet, a JPanel can either serve as the
contentPane, or be added to the contentPane.

Use a Panel bean, rather than a JPanel bean, if you want to use AWT components
in the panel. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

‘ ”

JScrollPane

Palette category
Swing

Palette bean

H

JFC class libraries

Project

Chapter 31. Pane and Panel Beans 153

../../jfcref/com.sun.java.swing.JPanel.htm#_top_

Package
com.sun.java.swing

Type [ScrallPand

Use a JScrollPane bean to provide a pane with scroll bars. This enables you to
define a pane that is not always completely within view. You can place one
component in the scroll pane. If you want multiple components within the scroll
pane, add a JPanel bean to the scroll pane and place the components on the
panel.

Use a ScrollPane bean, rather than a JScrollPane bean, if you want to use AWT
components in the pane. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFEREMCES

JSplitPane

Palette category
Swing

Palette bean

il

Project
JFC class libraries

Package
com.sun.java.swing

Type W

Use a JSplitPane bean to provide a split view for other components. You can place
one component on each pane. If you want multiple components within a pane, add
a JPanel bean to the pane and place the components on the panel.

You should not use a JSplitPane bean with AWT components. Although Swing and
AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

154 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.JScrollPane.htm#_top_
../../jfcref/com.sun.java.swing.JSplitPane.htm#_top_

JTabbedPane

Palette category
Swing

Palette bean

.
Project

JFC class libraries

Package
com.sun.java.swing

Type [TabbedPand

Use a JTabbedPane bean to provide a tabbed view for other components. Each
component you drop on a JTabbedPane becomes a new page with a separate tab.
If you want multiple components within a page, add a JPanel bean to the scroll
pane and place the components on the panel. When you add a JTabbedPane bean,
a JPanel bean is automatically added as the first page.

You should not use a JTabbedPane bean with AWT components. Although Swing
and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

JTextPane

Palette category
Swing

Palette bean

Project

JFC class libraries

Package
com.sun.java.swing

Type [TextPand

Use a JTextPane bean to provide a pane for editing text with visible styles and
embedded objects.

You should not use a JTextPane bean with AWT components. Although Swing and
AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

Chapter 31. Pane and Panel Beans 155

../../jfcref/com.sun.java.swing.JTabbedPane.htm#_top_
../../jfcref/com.sun.java.swing.JTextPane.htm#_top_

Panel

Palette category
AWT

Palette bean

o

Project
Java class libraries

Package
java.awt
Type Banel

Use a Panel bean as a composition surface for other user interface components,
such as buttons, lists, and text. You can add a panel to a window, an applet, or
another panel. In an AWT window, a Panel can either serve as the client
component, or be added to the client component.

Use a JPanel bean, rather than a Panel bean, if you want to use Swing
components in the panel. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFEREMCES

ScrollPane

Palette category
AWT

Palette bean

H

Project
Java class libraries

Package
java.awt
Type BcrallPand

Use a ScrollPane bean to provide a pane with scroll bars. This enables you to
define a pane that is not always completely within view. You can place one
component in the scroll pane. If you want multiple components within the scroll
pane, add a Panel bean to the scroll pane and place the components on the panel.

156 visualAge for Java, Version 2.0: Visual Composition

../../jdkref/java.awt.Panel.htm#_top_
../../jdkref/java.awt.ScrollPane.htm#_top_

Use a JScrollPane bean, rather than a ScrollPane bean, if you want to use Swing
components in the pane. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFERENCES

Chapter 31. Pane and Panel Beans 157

158 visualAge for Java, Version 2.0: Visual Composition

Chapter 32. Table and Tree Beans

A table or tree provides a view of objects from a data model that organizes objects
in a tabular or expandable tree format. VisualAge provides table and tree beans
from Swing packages in the JFC class libraries project, in the com.sun.java.swing
and com.sun.java.swing.table packages. You should not use these beans with AWT
components. Although Swing and AWT beans can be mixed, it is inadvisable.

The following beans provide tables and trees:

Bean Description

EiTanlel A table view of objects from a table data model
LTableCalumn” on page 164 A view of objects from a table data model column
LiTree” on page 160 A tree view of objects from a tree data model

RELATED TASKS

RELATED REFEREMCES

JTable

Palette category
Swing

Palette bean

il

JFC class libraries

Project

Package
com.sun.java.swing

Type [Tahid

Use a JTable bean to provide a view of objects from a table data model. Use the
table model to define or derive the objects for the table. You can do this either by
coding the model or by using a tool such as the database builder to create the data
model.

The user can select objects from the table, manipulate columns, and directly edit
table cells.

You should not use a JTable bean with AWT components. Although Swing and AWT
beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFERENCES
LChapter 32 Table and Tree Reans]]

© Copyright IBM Corp. 1997, 1998 159

../../jfcref/com.sun.java.swing.JTable.htm#_top_

TableColumn

Palette category
Swing

Palette bean
=]

Project
JFC class libraries

Package
com.sun.java.swing.table
Type [CableColumn

Use a TableColumn bean to provide a view of objects from a table data model
column. This bean enables you to map a column in a JTable bean to a column in
the table data model. You can also use it to define visual properties of a table
column. If you want a default table view of each column in the data model, do not
add any TableColumn beans to a JTable bean.

RELATED TASKS

RELATED REFEREMNCES

JTree

Palette category
Swing

Palette bean

=

Project
JFC class libraries

Package
com.sun.java.swing
Type [Tred

Use a JTree bean to provide a view of objects from a tree data model. Use the tree
model to define or derive the objects for the tree.

You should not use a JTree bean with AWT components. Although Swing and AWT
beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNCES

160 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.table.TableColumn.htm#_top_
../../jfcref/com.sun.java.swing.JTree.htm#_top_

Chapter 33. Text Beans

Text components are available for simple text and for enhanced text and editing
panes. VisualAge provides text beans from Swing and AWT packages. Basic text
beans from the Abstract Windowing Toolkit (AWT) are provided in the Java class
libraries project, in the java.awt package. Enhanced text beans from the Java
Foundation Classes (JFC) library are provided in the JFC class libraries project, in
the com.sun.java.swing and com.sun.java.swing.text packages. Although Swing and
AWT beans can be mixed, it is inadvisable.

The following beans provide simple text components:

Bean Description
Ll aheld or lLahel” on page 163 A label, usually to identify another component
LlPasswordEield” an page 162 A text field for sensitive data

‘ " or A multiline text area
LiTextEield” on page 164 or A single-line text field

RELATED TASKS

RELATED REFEREMNMCES

JLabel

Palette category
Swing

Palette bean

Project
JFC class libraries

Package
com.sun.java.swing

Type [Label

Use a JLabel bean to provide a text label for your user interface. You can add a
graphic to the label as well as text. You can also define a mnemonic in the label as
a means of quick access to a text input field.

Use a Label bean, rather than a JLabel bean, if you want to use it in an AWT
container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

© Copyright IBM Corp. 1997, 1998 161

../../jfcref/com.sun.java.swing.JLabel.htm#_top_

JPasswordField

Palette category
Swing

Palette bean

=3

Project
JFC class libraries

Package
com.sun.java.swing

Type [(PasswordEield

Use a JPasswordField bean to provide a text field for sensitive data. A
JPasswordField is a text field that always uses an echo character to mask
characters that are entered. The echo character can be specified in the property
sheet for the JPasswordField. You can use a focus accelerator to provide quick
accessability to the password field.

You should not use a JPasswordField bean with AWT components. Although Swing
and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNMCES

JTextArea

Palette category
Swing

Palette bean

E:|

Project
JFC class libraries

Package
com.sun.java.swing
Type bTextAred

Use a JTextArea bean to provide a large area for text entry or presentation. A text
area can contain multiple lines of text. To make a JTextArea bean scrollable, drop it
in a JScrollPane. You can use a focus accelerator to provide quick accessability to
the text area.

162 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.JPasswordField.htm#_top_
../../jfcref/com.sun.java.swing.JTextArea.htm#_top_

Use a TextArea bean, rather than a JTextArea bean, if you want to use it in an AWT
container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNCES

JTextField

Palette category
Swing

Palette bean

I

Project
JFC class libraries

Package
com.sun.java.swing

Type [TextField

Use a JTextField bean to provide a field for text entry or presentation. A text field
consists of a single line. You can use a focus accelerator to provide quick
accessability to the text field.

Use a TextField bean, rather than a JTextField bean, if you want to use it in an AWT
container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNMCES

Label

Palette category
AWT

Palette bean

Java class libraries

Project

Package
java.awt

Type @

Chapter 33. Text Beans 163

../../jfcref/com.sun.java.swing.JTextField.htm#_top_
../../jdkref/java.awt.Label.htm#_top_

Use a Label bean to provide a text label for your user interface.

Use a JLabel bean, rather than a Label bean, if you want to use it in a Swing
container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

TextArea

Palette category
AWT

Palette bean

L

Project
Java class libraries

Package
java.awt

Type fextAred

Use a TextArea bean to provide a large area for text entry or presentation. A text
area can contain multiple lines, and is vertically and horizontally scrollable.

Use a JTextArea bean, rather than a TextArea bean, if you want to use it in a Swing
container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNMCES

TextField

Palette category
AWT

Palette bean

I

Project
Java class libraries

Package
java.awt
Type [extField

164 visualAge for Java, Version 2.0: Visual Composition

../../jdkref/java.awt.TextArea.htm#_top_
../../jdkref/java.awt.TextField.htm#_top_

Use a TextField bean to provide a field for text entry or presentation. A text field
consists of a single line.

Use a JTextField bean, rather than a TextField bean, if you want to use it in a

Swing container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

‘ ”

Chapter 33. Text Beans

165

166 visualAge for Java, Version 2.0: Visual Composition

Chapter 34. List and Slider Beans

List components provide a list of items for the user to select. Slider components
show a range of selection values or show progress for the duration of an operation.
VisualAge provides list and slider beans from Swing and AWT packages. Basic list
and slider beans from the Abstract Windowing Toolkit (AWT) are provided in the
Java class libraries project, in the java.awt package. Enhanced list and slider beans
from the Java Foundation Classes (JFC) library are provided in the JFC class
libraries project, in the com.sun.java.swing package. Although Swing and AWT
beans can be mixed, it is inadvisable.

The following beans provide visual list and slider components:

Bean Description

’ ” or A selectable list with an entry field

EChaice]

L1List” on page 164 or LList” ad A selectable list of choices

LiProgressRar” an page 169 A progress indicator

’ z or A scrolling component

FScralbar 171

JSlider” A selection component for a range of values

RELATED TASKS

RELATED REFEREMCES

Choice

Palette category
AWT

Palette bean

Project
Java class libraries

Package
java.awt

Type m

Use a Choice bean to provide a drop-down list that lets the user select a single
choice. The current choice is always displayed. The user can open the list by
selecting the drop-down button.

Use a JComboBox bean, rather than a Choice bean, if you want to use it in a
Swing container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

© Copyright IBM Corp. 1997, 1998 167

../../jdkref/java.awt.Choice.htm#_top_

RELATED REFEREMNCES

JComboBox

Palette category
Swing

Palette bean
Project
JFC class libraries

Package
com.sun.java.swing

Type [CamhoBRoxd

Use a JComboBox bean to provide a selectable drop-down list. You can choose to
allow direct text entry as well as selection from the list.

Use a Choice bean, rather than a JComboBox bean, if you want to use it in an
AWT container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNMCES

JList

Palette category
Swing

Palette bean
=

Project
JFC class libraries

Package
com.sun.java.swing
Type s

Use a JList bean to provide a list of choices from which the user can make one or
more selections. Your program can add or remove choices from the list. If you want
the list to be scrollable, you should place it in a JScrollPane.

168 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.JComboBox.htm#_top_
../../jfcref/com.sun.java.swing.JList.htm#_top_

By default, the user can select one choice from the list. When the user selects a
choice, any previously selected choice is no longer selected. You can change the
behavior of the list to allow multiple selection.

Use a List bean, rather than a JList bean, if you want to use it in an AWT container.
Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

JProgressBar
Palette category
Swing
Palette bean
T
Project
JFC class libraries
Package
com.sun.java.swing
Type [ProgressBal
Use a JProgressBar bean to provide a progress indicator for an operation.
You should not use a JProgressBar bean with AWT components. Although Swing
and AWT beans can be mixed, it is inadvisable.
RELATED TASKS
RELATED REFEREMNCES
JScrollBar
Palette category
Swing
Palette bean
(4Ll
Project

JFC class libraries

Package
com.sun.java.swing

Chapter 34. List and Slider Beans 169

../../jfcref/com.sun.java.swing.JProgressBar.htm#_top_

Type m

Use a JScrollBar bean to provide a scrolling component. Generally, a JScrollPane is
a suitable alternative for a scrollable view with scroll bars.

Use a Scrollbar bean, rather than a JScrollBar bean, if you want to use it in an AWT
container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

JSlider

Palette category
Swing

Palette bean

&

Project
JFC class libraries

Package
com.sun.java.swing

Type [Siided
Use a JSlider bean to provide a selection component for a range of values.

You should not use a JSlider bean with AWT components. Although Swing and AWT
beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

List

Palette category
AWT

Palette bean
o
=

Project
Java class libraries

170 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.JScrollBar.htm#_top_
../../jfcref/com.sun.java.swing.JSlider.htm#_top_

Package
java.awt

Type Lisd

Use a List bean to provide a list of choices from which the user can make one or
more selections. Your program can add or remove choices from the list.

By default, the user can select one choice from the list. When the user selects a
choice, any previously selected choice is no longer selected. You can change the
behavior of the list to allow multiple selection.

Use a JList bean, rather than a List bean, if you want to use it in a Swing container.
Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

‘ B R ”

Scrollbar

Palette category
AWT

Palette bean
(412K

Project
Java class libraries

Package
java.awt

Type W

Use a Scrollbar bean to provide a slider that the user can manipulate to select a
value from a range of values. A scroll bar consists of a scroll shaft that represents
the range of values, a scroll box within the range, and scroll arrows at the ends of
the range. A scroll bar can be either horizontal or vertical.

Use a Scrollbar bean, rather than a JScrollBar bean, if you want to use it in an AWT
container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFERENCES

Chapter 34. List and Slider Beans 171

../../jdkref/java.awt.List.htm#_top_
../../jdkref/java.awt.Scrollbar.htm#_top_

172 visualAge for Java, Version 2.0: Visual Composition

Chapter 35. Button Beans

VisualAge provides button beans from Swing and AWT packages. Basic button
beans from the Abstract Windowing Toolkit (AWT) are provided in the Java class
libraries project, in the java.awt package. Enhanced button beans from the Java
Foundation Classes (JFC) library are provided in the JFC class libraries project, in
the com.sun.java.swing package. Although Swing and AWT beans can be mixed, it
is inadvisable.

The following beans provide button components:

Bean Description

LIRutton” on page 179 or tButtan’l | A push button, generally used to perform a function

W or A setting button that is checked when selected

« : ”

or A radio button or group for mutually exclusive settings

c S 74

« ”

A two-state push button that appears to be pushed in
when selected

RELATED TASKS

RELATED REFEREMNCES

Button

Palette category
AWT

Palette bean
haad

Project
Java class libraries

Package
java.awt

Type Buttod

Use a Button bean to provide a push button that the user can select to perform an
action. For example, you can define an OK button to let the user save changes and
close a window.

Use a JButton bean, rather than a Button bean, if you want to use it in a Swing
container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

[Chapter 35 Button Reans’

© Copyright IBM Corp. 1997, 1998 173

../../jdkref/java.awt.Button.htm#_top_

Checkbox

Palette category
AWT

Palette bean

Project
Java class libraries

Package
java.awt

Type Checkhod

Use a Checkbox bean to provide a settings choice that has two states, such as on
and off. A mark in the check box indicates that the choice is selected.

Check boxes are independently selectable, unless they are defined in a group. Use
check boxes in a group to provide a set of mutually exclusive choices that appear
as radio buttons. To define a group, associate each Checkbox bean with a
CheckboxGroup bean.

Use a JCheckBox bean, rather than a Checkbox bean, if you want to use it in a
Swing container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNCES

CheckboxGroup

Palette category
AWT

Palette bean

&
Project

Java class libraries

Package
java.awt

Type CheckhoxGroug

Use a CheckboxGroup bean to provide a set of mutually exclusive choices that
appear as radio buttons. Each choice in the group is a Checkbox bean that you
associate with the CheckboxGroup bean.

174 visualAge for Java, Version 2.0: Visual Composition

../../jdkref/java.awt.Checkbox.htm#_top_
../../jdkref/java.awt.CheckboxGroup.htm#_top_

Use JRadioButton beans with a Swing ButtonGroup, rather than Checkbox beans

with a CheckboxGroup, if you want to use them in a Swing container. Although

Swing and AWT beans can be mixed, it is inadvisable.
RELATED TASKS

RELATED REFERENCES

JButton
Palette category
Swing
Palette bean
sl
Project
JFC class libraries
Package
com.sun.java.swing
Type 0Buttod
Use a JButton bean to provide a push button that the user can select to perform an
action. For example, you can define an OK button to let the user save changes and
close a window.
Use a Button bean, rather than a JButton bean, if you want to use it in an AWT
container. Although Swing and AWT beans can be mixed, it is inadvisable.
RELATED TASKS
RELATED REFEREMNCES
JCheckBox

Palette category
Swing

Palette bean

Project
JFC class libraries

Package
com.sun.java.swing

Type [CheckRax

Chapter 35. Button Beans 175

../../jfcref/com.sun.java.swing.JButton.htm#_top_
../../jfcref/com.sun.java.swing.JCheckBox.htm#_top_

Use a JCheckBox bean to provide a settings choice that has two states, such as on
and off. A mark in the check box indicates that the choice is selected. You can
customize the images used for unselected and selected check boxes.

Use a Checkbox bean, rather than a JCheckBox bean, if you want to use it in an
AWT container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

JRadioButton
Palette category
Swing
Palette bean

O]

Project
JFC class libraries

Package
com.sun.java.swing

Type [RadioButtod

Use a JRadioButton bean to provide one of a group of mutually exclusive settings
choices. A mark on the radio button indicates that the choice is selected.

Use a Checkbox bean with a CheckboxGroup bean, rather than a JRadioButton
bean, if you want to use it in an AWT container. Although Swing and AWT beans
can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

JToggleButton

Palette category
Swing

Palette bean

L

Project
JFC class libraries

176 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.JRadioButton.htm#_top_

Package
com.sun.java.swing

Type [ToggleButiod

Use a JToggleButton bean to provide a two-state push button. The button appears
to be pushed in when selected, and popped out when not selected. Use
JToggleButton beans in a button group for a set of mutually exclusive functions.
When the user selects an unselected button in the group, the previously selected
button is popped out.

You should not use a JToggleButton bean with AWT components. Although Swing
and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFERENCES

Chapter 35. Button Beans 177

../../jfcref/com.sun.java.swing.JToggleButton.htm#_top_

178 visualAge for Java, Version 2.0: Visual Composition

Chapter 36. Menu and Tool Bar Beans

VisualAge provides menu beans from Swing and AWT packages and tool bar beans
from Swing and IBM packages. Basic menu beans from the Abstract Windowing
Toolkit (AWT) are provided in the Java class libraries project, in the java.awt
package. Enhanced menu and tool bar beans from the Java Foundation Classes
(JFC) library are provided in the JFC class libraries project, in the
com.sun.java.swing package. Visual composition implementation beans are
provided in the IBM Java Implementation project, in the com.ibm.uvm.abt.edit
package. Although Swing and AWT beans can be mixed, it is inadvisable.

The following beans provide menu and tool bar components:

Bean Description

’ - A menu choice that toggles a setting on and off

or LCheckhoxMenultem]

LIMenu” on page 18d or EMenu” ad | A cascade menu for another menu
LIMenuBar” an page 181 or A menu bar for a window

LIMenultem” an page 184 or A menu choice that calls a method

’ ” or A pop-up menu for window components

’ i ’ A menu choice that provides one of a set of mutually
m exclusive setting values
L1Separator” on page 183 or A horizontal line that separates groups of related

! ? choices
L1ToolRar” on page 184 A graphical set of tool choices

. ” A button for a tool bar
L1ToolRarSeparator” on page 185 A visual separator between components in a tool bar

RELATED TASKS

‘ H ”

RELATED REFEREMCES

CheckboxMenultem

Palette category
AWT

Palette bean
<

Java class libraries

Project

Package
java.awt

© Copyright IBM Corp. 1997, 1998

179

Type CheckboxMenultem

Use a CheckboxMenultem bean to provide a menu setting choice that the user can
toggle on and off.

Use a JCheckBoxMenultem bean, rather than a CheckboxMenultem bean, if you
want to use it in a Swing menu. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFEREMCES

JCheckBoxMenultem

Palette category
Swing

Palette bean

o'
Project

JFC class libraries

Package
com.sun.java.swing

Type [CheckBoxMenultem

Use a JCheckBoxMenultem bean to provide a menu setting choice that the user
can toggle on and off.

Use a CheckboxMenultem bean, rather than a JCheckBoxMenultem bean, if you
want to use it in an AWT menu. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFEREMCES

JMenu

Palette category
Swing

Palette bean

i

180 visualAge for Java, Version 2.0: Visual Composition

../../jdkref/java.awt.CheckboxMenuItem.htm#_top_
../../jfcref/com.sun.java.swing.JCheckBoxMenuItem.htm#_top_

Project
JFC class libraries

Package
com.sun.java.swing
Type

Use a JMenu bean to provide a set of related choices for a window or component.
You can add the menu either as a pull-down menu for a menu bar or as a cascade
menu for another menu. You can also add subclasses of AbstractAction to the
free-form surface and add them to the menu in the menu get method.

Use a Menu bean, rather than a JMenu bean, if you want to use it with an AWT
container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

JMenuBar

Palette category
Swing

Palette bean

=

JFC class libraries

Project

Package
com.sun.java.swing

Type OMenuBal

Use a JMenuBar bean to provide a set of pull-down menus for a window. When you
add a JMenuBar bean, one menu is automatically added to the menu bar. You can
modify this menu and add other menus that you need.

Use a MenuBar bean, rather than a JMenuBar bean, if you want to use it with an
AWT window or applet. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFEREMCES

Chapter 36. Menu and Tool Bar Beans 181

../../jfcref/com.sun.java.swing.JMenu.htm#_top_
../../jfcref/com.sun.java.swing.JMenuBar.htm#_top_

JMenultem

Palette category
Swing

Palette bean
Project
JFC class libraries

Package
com.sun.java.swing
Type IMenultend

Use a JMenultem bean to provide a functional choice for a menu.

Use a Menultem bean, rather than a JMenultem bean, if you want to use it in an
AWT menu. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNCES

JPopupMenu

Palette category
Swing

Palette bean

=

Project
JFC class libraries

Package
com.sun.java.swing

Type m

Use a JPopupMenu bean to provide a pop-up list of choices for window
components. The user can display the menu by clicking a pop-up mouse button on
a component. You can also add subclasses of AbstractAction to the free-form
surface and add them to the menu in the menu get method.

Use a PopupMenu bean, rather than a JPopupMenu bean, if you want to use it with
an AWT container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNMCES

182 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.JMenuItem.htm#_top_
../../jfcref/com.sun.java.swing.JPopupMenu.htm#_top_

JRadioButtonMenultem

Palette category
Swing

Palette bean

)
Project

JFC class libraries

Package
com.sun.java.swing

Type URadioButtonMenultery

Use a JRadioButtonMenultem bean to provide a menu setting choice for a group of
mutually exclusive choices.

You should not use a JRadioButtonMenultem bean in an AWT menu. Although
Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMCES

JSeparator

Palette category
Swing

Palette bean

S}
Project

JFC class libraries

Package
com.sun.java.swing

Type [Separatol

Use a JSeparator bean to visually separate other components. It is commonly used
to draw a horizontal line between groups of related choices in a menu, but can also
be used to separate components on a panel.

Use a MenuSeparator bean, rather than a JSeparator bean, if you want to use it in
an AWT menu. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

Chapter 36. Menu and Tool Bar Beans 183

../../jfcref/com.sun.java.swing.JRadioButtonMenuItem.htm#_top_
../../jfcref/com.sun.java.swing.JSeparator.htm#_top_

RELATED REFEREMNCES

JToolBar

Palette category
Swing

Palette bean

Project
JFC class libraries

Package
com.sun.java.swing

Type m

Use a JToolBar bean to provide a graphical set of tool choices. When you add a
JToolBar bean, a JToolBarButton bean is automatically added as the first
component. Add JToolBarButtons and other components to the tool bar. You can
also add subclasses of AbstractAction to the free-form surface and add them to the
tool bar in the tool bar get method.

You should not use a JToolBar bean with AWT components. Although Swing and
AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFERENCES

JToolBarButton

Palette category
Swing

Palette bean

-

Project
IBM Java Implementation

Package
com.ibm.uvm.abt.edit

Type JToolBarButton
Use a JToolBarButton bean to provide a JButton bean for a tool bar. VisualAge

customizes the JButton bean for a tool bar by presetting certain properties as
follows:

184 visualAge for Java, Version 2.0: Visual Composition

../../jfcref/com.sun.java.swing.JToolBar.htm#_top_

Property Setting

icon question mark
text null

margin 0,0,0,0
horizontalTextPosition CENTER
vertical TextPosition BOTTOM

The JToolBarButton bean is provided as a convenience. VisualAge generates code
for a JButton bean.

RELATED TASKS

. : ”

RELATED REFERENCES

JToolBarSeparator

Palette category
Swing

Palette bean

Java class
com.ibm.uvm.abt.edit.JToolBarSeparator

Project
IBM Java Implementation

Package
com.ibm.uvm.abt.edit

Type JToolBarSeparator

Use a JToolBarSeparator bean to provide visual separation between other
components on a tool bar. You can drop a JToolBarSeparator bean only on a
JToolBar bean. The JToolBarSeparator bean is provided as a convenience.
VisualAge generates code for the addSeparator() method of the JToolBar bean.

RELATED TASKS

. : ”

RELATED REFERENCES

Palette category
AWT

Chapter 36. Menu and Tool Bar Beans 185

Palette bean
Project
Java class libraries

Package
java.awt
Type Menil

Use a Menu bean to provide a set of related choices for a window or component.
You can add the menu either as a pull-down menu for a menu bar or as a cascade
menu for another menu.

Use a JMenu bean, rather than a Menu bean, if you want to use it with a Swing
container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNCES

MenuBar

Palette category
AWT

Palette bean

Project
Java class libraries

Package
java.awt
Type MenuRal

Use a MenuBar bean to provide a set of pull-down menus for a window. When you
add a MenuBar bean, one menu is automatically added to the menu bar. You can
modify this menu and add other menus that you need.

Use a JMenuBar bean, rather than a MenuBar bean, if you want to use it with a
Swing window or applet. Although Swing and AWT beans can be mixed, it is
inadvisable.

RELATED TASKS

RELATED REFEREMNCES

186 visualAge for Java, Version 2.0: Visual Composition

../../jdkref/java.awt.Menu.htm#_top_
../../jdkref/java.awt.MenuBar.htm#_top_

Menultem

Palette category
AWT

Palette bean
Project

Java class libraries

Package
java.awt

Type Menuiterd
Use a Menultem bean to provide a functional choice for a menu.

Use a JMenultem bean, rather than a Menultem bean, if you want to use it in a
Swing menu. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNCES

MenuSeparator

Palette category
AWT

Palette bean

Java class libraries

Project

Package
java.awt

Type MenuSeparator

Use a MenuSeparator bean to provide a horizontal line between groups of related

menu choices.

Use a JSeparator bean, rather than a MenuSeparator bean, if you want to use it in

a Swing menu. Although Swing and AWT beans can be mixed, it is inadvisable.
RELATED TASKS

RELATED REFEREMNMCES

Chapter 36. Menu and Tool Bar Beans

187

../../jdkref/java.awt.MenuItem.htm#_top_

PopupMenu

Palette category
AWT

Palette bean

Project
Java class libraries

Package
java.awt

Type W

Use a PopupMenu bean to provide a pop-up list of choices for window components.
The user can display the menu by clicking a pop-up mouse button on a component.

Use a JPopupMenu bean, rather than a PopupMenu bean, if you want to use it with
a Swing container. Although Swing and AWT beans can be mixed, it is inadvisable.

RELATED TASKS

RELATED REFEREMNMCES

188 visualAge for Java, Version 2.0: Visual Composition

../../jdkref/java.awt.PopupMenu.htm#_top_

Chapter 37. Factory and Variable Beans

VisualAge provides beans that enable you to dynamically create and reference
bean instances visually. These beans are not Java classes. A Factory creates new
instances of a bean type. A Variable references any instance of a bean type that
you assign to it. With either a Factory or a Variable, you specify the bean type that
it can create or reference.

The following beans provide support for bean instances:

Bean Description

m A bean that dynamically creates instances of Java
beans

l\ariahle” on page 194 A bean that provides access to instances of Java
beans

RELATED TASKS

RELATED REFEREMCES

Factory

Palette category
Other

Palette bean

Project
None

Package
None

Type None

A Factory bean dynamically creates instances of a Java bean that you specify. A
Factory is not a Java class, and is not an instance of the bean it creates. The
Factory creates a bean instance whenever an event occurs, based on a connection
you make from the event.

Generally, when you add a bean to a composite bean, a fixed instance of that bean
is created. When you add a Factory bean, however, a bean instance is not created.
Instead, you can make a connection to dynamically create a bean instance of the
type specified for the Factory. Connections to the Factory’s features then operate
on the created bean instance. If you create another bean instance, connections to
the Factory’s features operate on the newly created bean instance rather than on
the previously created instance. The Factory bean serves as a bean instance
generator.

RELATED TASKS

RELATED REFERENCES

© Copyright IBM Corp. 1997, 1998 189

Variable

Palette category
Other

Palette bean

(]
Project

None

Package
None

Type None

Use a Variable bean to reference any instance of a particular class. A Variable is
not a Java class, and is not an instance of the class it represents. Variable beans
are commonly used to represent tear-off properties and objects from other
composite beans.

Generally, when you add a bean to a composite bean, a single fixed instance of
that bean is created. When you add a Variable bean, however, a bean instance is
not created. Instead, you can make a connection to assign any bean instance of the
type specified for the Variable. Connections to the Variable’s features then operate
on the assigned bean instance. If you assign another bean instance to the Variable,
connections to the Variable’s features operate on the newly assigned bean instance
rather than on the previously assigned instance. The Variable bean serves as a
reference for bean instances.

RELATED TASKS

RELATED REFEREMCES

190 visualAge for Java, Version 2.0: Visual Composition

Chapter 38. Visual Composition Editor

The Visual Composition Editor is a powerful composing tool that you can use to:
* Build the user interface for your program by dropping beans.

» Construct business logic by connecting the beans.

» Edit existing beans.

The Visual Composition Editor makes it easy to build applets, beans, and entire
applications using the functions available on the menu bar, pop-up menus, tool bar,
and the variety of reusable beans on the beans palette. A description of the
functions on the tool bar or beans palette appears when the mouse pointer is
positioned over the item.

Areas in this window

RELATED COMCEPTS

RELATED TASKS

FSounoaboan ad

RELATED REFEREMNMCES

Status Area—Visual Composition Editor

The status area displays information about the last operation or your current
selection.

The Tool Bar in Visual Composition

Use the tools on the tool bar to help you build the user interface for your program.

© Copyright IBM Corp. 1997, 1998 191

You can also access some or all of these tools from the Tools pull-down menu in
the Visual Composition Editor, and from pop-up menus.

The alignment tools are only available when using the null layout manager.

The anchor bean, indicated by solid selection handles, is the bean that serves as
the alignment reference. When you want to align beans with one another, select the
ones you want to move and select the anchor bean last. You can also change the
anchor bean by holding the Ctrl key and double-clicking on the new anchor bean.

Tools in this area

ay
| —
B)

1)

3]
e [

TH

=
D
AR

192 visualAge for Java, Version 2.0: Visual Composition

RELATED COMCEPTS

RELATED TASKS

. H ”

RELATED REFEREMCES

Chapter 38. Visual Composition Editor 193

194 visualAge for Java, Version 2.0: Visual Composition

Chapter 39. The Menu Bar in Visual Composition

The following menus provide options unique to the Visual Composition Editor:

. FEean]
. Foos]

Bean

The Bean menu provides options to perform the following tasks:

Save Bean

Saves the current bean and generates and
compiles its code.

Re-generate Code

Generates and compiles the code for the
current bean.

Run—In Applet Viewer

Saves the current bean, generates and
compiles its code, and runs the bean in an
applet viewer.

Run—Run main

Saves the current bean, generates and
compiles its code, and runs the bean in a
test frame.

Run—Set Class Path

Modifies the path for the current class.
VisualAge adds the path for each dropped
bean. However, if you are using other files,
such as .gif files, be sure to add their
location to the path.

Modify Palette

Manipulates categories and beans in the
beans palette.

Fix Unresolved References

Changes the class of an unknown
component to one that is loaded into your
workspace. Before you select this, read

9 ”

bage231.

Construct Visuals from Source

Reverse-engineers a visual composite from
Java source code. Before you select this,
read [Chapter 6. Use of Visual Beand

Tools

Select Tools to help build and manipulate your user interface. The Visual
Composition Editor also provides such tools as Show connections and Hide
connections that lets you change how the free-form surface looks as you build

your user interface.

You can access all or some of these tools from the tool bar, which is just below the
menu bar in the Visual Composition Editor, and from pop-up menus.

The alignment tools are only available when using the null layout manager.

© Copyright IBM Corp. 1997, 1998

195

The anchor bean, indicated by solid selection handles, is the bean that serves as

the alignment reference. When you want to align beans with one another, select the

ones you want to move and select the anchor bean last. You can also change the

anchor bean by holding the Ctrl key and double-clicking on the new anchor bean.
Run

Select Run to save the bean, generate code, compile the class, and run the

compiled bean in an applet window.

Properties

Select E Properties to display the property sheet for the bean you selected.

The property sheet contains editable values for the selected bean. You can open
the property sheet for a selected bean either from the Visual Composition Editor or
Beans List window.

If you selected multiple beans and then Properties , a property sheet appears and
displays the common properties for the selected beans. When you change a
property on the property sheet, the change affects all the selected beans.

Beans List

Select Beans List to display a list of the beans and connections used in

your user interface. You can perform many of the same tasks within the beans list
as you would in the Visual Composition Editor. This ability is particularly important
when you are working with components that are covered by other components. For
example, if your base bean is a panel using a border layout, another panel used as
the center component expands to fill all empty space. Performing tasks on the
covered border layout panel is difficult.

Show Connections

Select to display the connections you create between beans. This tool works

[Z]

on all connections only if nothing is selected. Otherwise, only the connections to
and from the selected beans are affected.

The Visual Composition Editor displays all connections by default.
Hide Connections

Select @ Hide connections to conceal the connecting links between beans. If

you wish to hide all connections, do not select any beans. Otherwise, select only
the beans with connections you wish to hide.

If your program has numerous connections, you can reduce the visual clutter by
hiding those not currently being modified.beans

196 visualAge for Java, Version 2.0: Visual Composition

Align Left

Select |_ Align left to move the selected beans so that their left edges are

aligned.

Align Center
Select * Align center to move the selected beans so that their centers are
aligned vertically.

Align Right
Select ﬂ Align right to move the selected beans so that their right edges are
aligned.

Align Top
Select @ Align top to move the selected beans so that their top edges are
aligned.

Align Middle
Select -IIl— Align middle to move the selected beans so that their centers are
aligned horizontally.

Align Bottom

Select @ Align bottom to move the selected beans so that their bottom edges
are aligned.
Distribute Horizontally

Select @ Distribute horizontally to move the selected beans so that they are

spaced evenly between the left and right container borders.

Distribute Vertically

Select z==1 Distribute vertically to move the selected beans so that they are

spaced evenly between the top and bottom of the container borders.

Match Width

Select

Chapter 39. The Menu Bar in Visual Compositon 197

Match width to size the selected beans to the width of the anchor bean.

TH

Match Height

Select I" Match height to size the selected beans to the height of the anchor

bean.
RELATED CONCEPTS

‘ ”

FEree-Farm Surface” an page g

RELATED TASKS

RELATED REFERENCES

198 visualAge for Java, Version 2.0: Visual Composition

Chapter 40. Keys

You can use keys in the following ways while you are using this product:

Use the...

To...

Navigate within and among windows.

Speed up certain actions in product windows.

Display help information.

When a plus sign (+) joins two key names, use them together. Hold down the first
key and press the second key.

Mnemonics (single underlined characters) are available for menu bar and pull-down
choices. To select a menu bar choice using the mnemonics, hold down Alt and
enter the mnemonic for the choice that you want. (If the menu bar has the focus,

enter only the mnemonic.)

To select a choice on a pull-down menu, enter the mnemonic for the pull-down

choice.
Window Keys

Use the... To...

Alt Move the focus to and from the menu bar or close the system
menu.

Alt+F4 Close the primary window.

Alt+F5 In OS/2, restore the primary window.

Alt+F7 Move the primary window. Use the arrow keys to move the window
to a new position and then press Enter.

Alt+F8 Size the primary window. Use the arrow keys to change the size of
the window and then press Enter.

Alt+F9 Minimize the primary window to an icon.

Alt+F10 Maximize the primary window.

Alt+Spacebar Open the system menu for the primary window.

Arrow key Move the cursor from choice to choice.

Ctrl+Esc Display the Window List in OS/2 and the Task List in Windows NT.

Ctrl+F5 In Windows platforms, restore the primary window.

Ctrl+F9 In Windows platforms, minimize the primary window to an icon.

Enter Complete the selection of a menu bar choice or pull-down choice.
Also perform the action described on the push button that currently
has focus.

Esc Cancel a pull-down menu or cancel the action window if the window
contains a Cancel push button.

F10 Move the focus to and from the menu bar or close the system
menu.

Page Down or PgDn Scroll forward a page at a time.

Page Up or PgUp Scroll backward a page at a time.

© Copyright IBM Corp. 1997, 1998

199

Use the...

To...

Spacebar Select or deselect check boxes and list box choices. Also perform
the action described on the button that currently has focus.
Tab Move the selection cursor from field to field.

Accelerator Keys

You can use the following
product windows:

keys, when applicable, to speed up actions within the

Use the...

To...

Alt+up arrow

In UNIX platforms, move through all active windows.

Alt+Right Mouse Button

In UNIX platforms, minimize the active window.

Ctrl+z Reverse (undo) the operation most recently performed on the
bean.

Ctrl+Y (Redo) Remove the effect of the last Undo operation.

Ctrl+Alt+Right Mouse In UNIX platforms, select several parts at a time using the

Button right mouse button.

Ctrl+Click Select several parts at the same time. In UNIX platforms, use

the right mouse button.

Ctrl+Double-click

Assigns the anchor part in multiple selection.

Ctrl+X Move selected beans or information to the clipboard.
Note: Select the beans or text before using the Ctrl+Delete
keys.

Ctrl+E Exit (close) the current window.

Ctrl+S Saves any changes you made to the part.

Ctrl+G Generate bean code for the bean currently being edited. If the
bean has no primary bean, VisualAge saves the bean.

Ctrl+C Copy selected beans or information to the clipboard.

Ctrl+P Add a new bean to the beans palette.

Ctrl+Vv Load the mouse pointer with the contents of the clipboard.

Delete Delete the selected beans or text.

Shift+Drag Handles

To size in one direction only.

Shift+Control+Drag To copy and move the copy.
Help Keys
Use the... To...
F1 Display general help for the active window. You can use this
key on any window.
F11 Display the help index. You can use this key on any window.
Esc Display the previous help window.
Alt+F4 Close the help window.
Shift+F10 Display help for Help. You can use this on any help window.

200 visualAge for Java, Version 2.0: Visual Composition

Chapter 41. Pop-Up Menus for the Visual Composition Editor

VisualAge provides pop-up menus from the following:

Free-form surface
Beans palette
Beans
Connections

These menus provide options for adding or making changes to various elements of

theVisual Composition Editor or bean design.

Depending on the elements you work with, the following pop-up menu items are

available:

© Copyright IBM Corp. 1997,

FConnectable Eeatures” on page 2013

FEvent to Code Connection” on page 203

1998

201

Add Bean from Project

Select Add Bean from Project from the palette pop-up and the Modify Palette
window appears. This version of the Modify Palette window provides an option for
you to add beans from your project to the palette.

Browse Connections

Select Browse Connections to show or hide connections to or from the bean.

Menu choices

Show To Displays the connections for which the bean
is the target.

Show From Displays the connections for which the bean
is the source.

Show To/From Displays the connections for which the bean
is either the target or source.

Show All Displays all the connections among beans in
the Visual Composition Editor window.

Hide To Conceals the connections for which the bean
is the target.

Hide From Conceals the connections for which the bean
is the source.

Hide To/From Conceals the connections for which the bean
is either the target or source.

Hide All Conceals all connections among beans in
the Visual Composition Editor window.

Change Bean Name

Select Change Bean Name to change the name of a bean placed in the Visual
Composition Editor.

You can give beans descriptive names to more easily identify them. For example,
you can change the default name “Button1” to “Delete.” Change Bean Name does
not change the label that appears beans such as push buttons.

When you change the name of any bean, you change the beanName property. This
name appears in the status area at the bottom of the Visual Composition Editor
window as you make connections, and identifies the bean in the beans list.

Note: For subclasses of java.awt.Component, the bean name is the same as the
name property of the bean.

For a nonvisual bean, the name also appears as text beneath the icon for the bean
on the free-form surface.

Change Connection Name

From the connection pop-up, select Change Connection Name to change the
name of a connection in the Visual Composition Editor.

202 visualAge for Java, Version 2.0: Visual Composition

You can give connections descriptive names to more easily identify them. For
example, you can change the default name of a connection that changes the
background color from buttonlactionPerformed to ChangeBackgroundColor.

Change Type

Select Change type to change the class of a variable bean on the free-form
surface. The default class for a dropped variable bean is java.lang.Object. The
default class for a torn off property variable is the same as the declared type of the
property. For example, if you set a panel to CardLayout and tear off its layout
property, the variable type is LayoutManager, not CardLayout.

Connect

To make a connection between two beans, select Connect from the pop-up menu.
When you select Connect, the list of preferred features associated with the bean
appears.

Select a feature from the Preferred features list. If the feature you want is not in
the Preferred features list, select Connectable Features . A connection window
appears that lists the available features associated with the bean.

Connectable Features

The Connectable Features option is available from the bottom of the Connect
option on the pop-up. Select Connectable Features to see a complete list of the
available features (properties, events, and methods) for the bean that you are
connecting. The features in the list depend upon the bean and features with which
you are working. For example, since an event cannot be a target, the target
connections list does not include events.

If the Connectable Features pop-up does not display the feature you desire, check
the Show expert features check box. If the feature is designated Expert, it
appears in the list.

Delete

Select Delete to delete a bean and its connections, or just the bean, or just the
connections. You can use multiple select to delete more than one bean at a time.

Event to Code Connection

Select Event to Code from the bean pop-up to create a connection that calls a
code whenever a specified event occurs. The code can be an existing method or a
newly written method. For more information see LChapter 50_Event-to-Cade

Chapter 41. Pop-Up Menus for the Visual Composition Editor 203

Layout

Select Layout to adjust the placement of beans in a container using null-layout or
to adjust the placement of a container bean on the free-form surface. You can
adjust the layout of one bean or adjust placement of several beans in a container. If
you select one bean, you can adjust its placement horizontally or vertically, by
selecting Distribute . If you select two beans, you can adjust:

» Alignment to each other—Ileft, center, right, top, middle, bottom

* Relative size to each other—match width, match height, both

« Distribution—horizontally or vertically in the surface

If you select three or more beans, you can make all the above adjustment as well
as distribution horizontally or vertically within a bounding box.

Distribute

Select Distribute to space visual beans evenly within a specified area.

Horizontally In Bounding Box

Select Horizontally in bounding box to space the selected beans evenly between
the right and left edges of the bounding box they occupy. This item appears only if
three or more beans are selected.

Horizontally In Surface

Use Horizontally in surface to space the selected beans evenly between the right
and left edges of the bean on which they were dropped. If the selected beans sit
directly on the free-form surface, VisualAge distributes them across the entire
scrollable width of the free-form surface.

Vertically In Bounding Box

Use Vertically in bounding box to space the selected beans evenly between the
top and bottom edges of the bounding box they occupy. This item appears only if
three or more beans are selected.

Vertically In Surface

Use Vertically in surface to space the selected beans evenly between the top and
bottom edges of the bean on which they were dropped. If the selected beans sit
directly on the free-form surface, VisualAge distributes them across the entire
scrollable height of the free-form surface.

Modify Palette

Select Modify Palette from the palette pop-up and the Modify Palette window
appears.

204 visualAge for Java, Version 2.0: Visual Composition

Morph Into

Use Morph Into to change the class or type of a component. For example, you can
use this capability in a visual composite to change AWT components to Swing
components with few (if any) changes to property or connection settings. For more
information before you proceed, see L ing”

Open

Select Open to open an editor for the bean you selected. If the selected bean has
embedded visual beans, the Visual Composition Editor opens for the bean.

Parameter from Code

Select Parameter-from-Code from the bean pop-up to complete a connection that
calls code whenever a specified event occurs.

Promote Bean Feature

Use Promote bean feature to make a feature of an embedded bean accessible
outside the scope of the current composite.

Refresh Palette

Select Refresh Palette from the palette pop-up to view changes made to the
palette, such as recently added beans and changes to icons. Refresh Palette also
displays beans for features not loaded at the project level.

Refresh Interface

Select Refresh Interface to refresh the bean interface when you add methods or
other BeanlInfo in the BeanInfo page. The changes are reflected in the Visual
Composition Editor.

Reorder Connections From

Select Reorder Connections From to change the order in which the connections
are executed.

Since the connections from an object with the same noatification id run in the order
in which they are made, you must use Reorder Connections From to place the
connections in the order that want them to occur.

Restore Shape

Use Restore shape to redraw the selected connections in their original shape.

Chapter 41. Pop-Up Menus for the Visual Composition Editor 205

Set Tabbing

Select Set Tabbing to specify the tabbing order for beans that support tabbing. The
tabbing order determines the sequence in which beans receive focus when the user
presses the Tab, backtab, or cursor movement keys.

The initial tabbing order is determined by the order in which you add the beans.
Tabbing options include:

Default Ordering
Sets tabbing order from left to right, top to bottom.

Show Tab Tags
Shows tab tags next to all beans included in the tabbing order.

Hide Tab Tags
Hides the displayed tab tags.

You can change the tab order by dragging the tab tags to the desired order.

Show Large Icons

Select Show Large Icons from the palette pop-up to modify the size of icons on
the palette and the Beans List. Show Large Icons is a toggle with the default set to
display 16x16 icon images. The large icons are 32x32.

Switch to

Select Switch to when using the CardLayout manager. The CardLayout manager
arranges the components in a linear depth sequence (like a deck of cards). Switch
to enables you to navigate through the deck as follows:

First Arranges the cards so that the first card is on the top of the deck.
Next Moves the next card to the top of the deck.

Previous
Returns the card previously on the top of the deck to the top.

Last Moves the last card in the deck to the top.

Note: Switch to is also available for the Swing bean, JTabbedPane.

Tear-Off Property

Select Tear-off property to work with a property as if it were a stand-alone bean.
The torn-off property is a variable representing the property and not actually a
separate bean.

When you select Tear-off property , VisualAge displays the list of properties for the
bean you are tearing from. After you select a property from the list, you can drop
the torn-off property on the free-form surface. VisualAge creates a connection
(represented by a blue double-headed arrow) between the original bean and the
torn-off property. You can then form other connections to or from the torn-off
property.

RELATED COMCEPTS

206 visualAge for Java, Version 2.0: Visual Composition

Chapter 41. Pop-Up Menus for the Visual Composition Editor

207

208 visualAge for Java, Version 2.0: Visual Composition

Chapter 42. Modify Palette Window

Use this window to perform the following actions:

Add and remove a category
Add and remove a bean
Add and remove a grouping separator

* Reorder beans

* Rename a category

Once you have added beans to the palette, you can place them on the free-form
surface, in the beans list, or on an existing container bean, in the same way you

place beans that VisualAge provides.

Choose this button...

To perform this action...

Browse

Locate the class/file for the bean.

Add to Category

Add a bean to the selected category.

New Category

Create a new category for the palette.

Rename Category

Change the name of the selected palette
category.

Remove

Remove the selected bean or category from
the palette.

Add Separator

Place a separator line within the category
and drag it to the desired position.

Restore Original Beans

Restore the order and composition of the
base categories. User created categories or
beans are not affected.

OK

Perform the action and exit the window.

Cancel

Cancel the action.

Bean Type

The bean type field specifies the form of bean that you can add.

Select... If you want...
Class To add a bean to the palette.
Serialized To add a serialized bean to the palette.

Class Name or File Name

This field name changes according to the specified bean type.

If you specified...

The field name is...

Class

Class Name

Serialized

File Name

If you created the bean, the name you specified appears in the Name field.

© Copyright IBM Corp. 1997, 1998

209

Open the Modify Palette window from the palette pop-up or by selecting Bean and
Modify Palette . In the Name field enter the class name of the bean that you want
to add. If you created the bean, this is the same name you specified when you
originally created the bean. You can use the Browse button to locate the correct
File or Class name.

Palette List

The Palette list displays the current categories where you can add a bean. If you
create a new category, it appears in this list. You can expand the category for a list
of its beans and you can remove beans and categories by selecting the item and
then selecting Remove.

RELATED COMCEPTS

‘ ”

RELATED TASKS

210 visualAge for Java, Version 2.0: Visual Composition

Chapter 43. Choose Bean Window

Select the i? on the palette to retrieve a bean and drop it on the beans list,
| |

free-form surface, or an existing container bean. You must supply the fully qualified
class name to add the bean from this window. You can, however, use the Browse
button to locate the name.

Use the Choose Bean window under the following circumstances:
* When the bean does not appear on the beans palette.
* For beans that you do not use frequently.

Note: You cannot add a bean inside itself and you cannot embed a composite
bean inside itself.

Fields

Push buttons

To add the bean or variable to the free-form surface, select OK.

Bean Type
You can add a bean as a class, a serialized bean, or as a variable. When you add
a bean as a class, the default constructor for the class is used when the application
runs. This means that a real object is created, not a variable that points to a real
object defined elsewhere.
From Bean Type, select the type of bean you want to add.
Select... If you want...
Class To add an instance of a visual or nonvisual

bean

Variable To add a reference to an instance of a bean
Serialized To add a serialized bean

Class Name

This field name changes according to the specified bean type.

If you specified... The field name is...
Class Class Name

Variable Interface/Class Name
Serialized File Name

© Copyright IBM Corp. 1997, 1998 211

In the Class name field, enter the fully qualified name of the Java class. You can
use the Browse button to locate the name or, if you added the bean previously, it
appears in the drop-down list box.

Name

Enter a name in the Name field for the bean you want to drop. Bean names may
include letters and numbers, but must begin with a letter and include no spaces.
This text appears under the bean icon on the free-form surface. If you leave this
field blank, VisualAge assigns a Name for you.

RELATED COMCEPTS

RELATED TASKS

212 VvisualAge for Java, Version 2.0: Visual Composition

Chapter 44. Promote Features Window

Use this window to select the methods, properties, and events that you want to add
to the public interface for the composite bean.

Fields

Push buttons
. E>> Promotel
. << Removel

Promote Name

In the Promoted features list, double-click the name of the promoted feature and
enter the name that you want the property, method, or event to have when added to
the public interface for the bean. When you move a feature to the list of promoted
features, a default name appears in this field.

>> Promote
Select >> to add the property, method, or event to the Promoted features list.
Select OK to add the feature to the public interface of the bean. The feature that
you promote appears in the Connectable Features window and in the property
sheet.

<< Remove

Select << to delete the property, method, or event from the Promoted features list.
You must first select the feature from the Promoted features list.

RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMCES

© Copyright IBM Corp. 1997, 1998 213

214 visualAge for Java, Version 2.0: Visual Composition

Chapter 45. Reorder Connections Window

Use this window to change the sequence in which connections from the selected
bean are run.

If you make several connections from the same event or property of a bean, the
connections for the event or property run in the order in which you made the
connections. You can change the sequence by selecting and dragging the listed
connection.

RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMCES

‘ H ”

© Copyright IBM Corp. 1997, 1998 215

216 VvisualAge for Java, Version 2.0: Visual Composition

Chapter 46. Connection Windows

Use the connection windows to select the feature that you want to use in a
connection.

* The Start Connection From window appears when you select Connectable
Features from the connections pop-up window of the bean you are connecting
from.

* The Connect feature type Named window appears when you select
Connectable Features from the preferred features list of the bean you are
connecting to.

Fields

The values in these fields vary depending on the following:
* The bean you selected

» If you selected the free-form surface
* How you added features to the bean interface

Push buttons
To use the selected method, property, or event and continue, select OK.

The Set parameters push button appears when the target of your connection is a
method, writable property, or script. Select this push button to specify constant input
parameters for the method.

RELATED COMNMCEPTS

RELATED TASKS

© Copyright IBM Corp. 1997, 1998 217

Method

From the Method list, select the method you want to use. The list of methods
available depends on the bean you selected. The act of changing or setting the
value of a property can be considered a method, so property hames might also
appear in this list.

Property
From the Property list, select the property you want to use. The list of properties
available depends on the bean you selected.

Event
From the Event list, select the event you want to use. The list of events available
depends on the bean you selected.

Details

The Details field provides information about the selected feature.

218 visualAge for Java, Version 2.0: Visual Composition

Chapter 47. Property-to-Property Connection Window

Use the Property-to-Property Connection — Properties window to change the source
or target of a connection.

Fields

Push buttons

To update the source and target properties or event of the connection and close the
window, select OK.

To back out of the window without making changes, select Cancel.

To reset the source and target connections to the original configuration, select
Reset.

To switch the source and target properties of the connection, select Reverse.

To delete the connection, select Delete.

Source Property

The Source Property field shows the current source for the connection. To update
the connection, select a new source property from the list and then select OK.

If you cannot find the property you want, check the Show expert features check
box. If the property is designated as expert, it appears in the list.

Target Property

The Target Property field shows the current target for the connection. To update
the connection, select a new target property from the list. Then select OK.

If you cannot find the property you want, check the Show expert features check
box. If the property is designated as expert, it appears in the list.

Source Event

The Source Event field lists the event associated with the source of a connection.
To update the connection, select a new source event from the list and then select
OK.

© Copyright IBM Corp. 1997, 1998 219

Setting this field enables you to control whether the data synchronization is
unidirectional, bidirectional, or only performed at initialization. This field also enables
you to use an unbound property as the source of a connection. When the event is
triggered, the target is aligned with the source value. If you do not set this value
and the property is not bound, VisualAge allows you to make the connection, but
the target property value is not updated when the source property value changes.

Target Event

The Target Event field lists the event associated with the target of a connection. To
update the connection, select a new target event from the list. Then select OK.

Setting this field enables you to control whether the data synchronization is
unidirectional, bidirectional, or only performed at initialization. This field also enables
you to use an unbound property as the target of property-to-property connections.
When the event is triggered, the source is aligned with the target value. If you do
not set this value and the property is not bound, VisualAge allows you to make the
connection, but the source property value is not updated when the target property
value changes.

RELATED COMCEPTS

RELATED TASKS

. H ”

RELATED REFEREMCES

220 VvisualAge for Java, Version 2.0: Visual Composition

Chapter 48. Event-to-Method Connection Window

Use the Event-to-Method Connection — Properties window to change either end
point of an event-to-method connection.

Fields

Push buttons

To update the source and target connection features and close the window, select
OK.

To delete the connection, select Delete.

To specify constant parameter values for the target method, select Set parameters .

Pass Event Data

The Pass event data check box indicates whether connection code will pass data,
which is sent in the event notification, to the target as input. The specific nature of
the data varies by type of event.

This setting affects the visual cues that VisualAge uses to indicate incomplete
connections. Since event data is the first parameter value passed, if the target
method or code requires only one parameter and Pass event data is checked, the
connection appears complete. If the target method or code requires more than one
parameter, the connection continues to appear incomplete.

If this box is not checked and inputs are required, VisualAge does not attempt to
pass event data to the target, and the connection appears incomplete.

If an event has more than one data parameter and is not specified in another order,
the data is passed to the target's parameter in order.

Event

The Event field shows the current source event for the connection. To update the
connection, select a new source from the Event list. Then select OK.

Method

The Method field shows the current target method for the connection. To update
the connection, select a new target from the Method list. Then select OK.

© Copyright IBM Corp. 1997, 1998 221

Show Expert Features

Features that are designated as expert do not appear by default in the feature list.
When you select the Show expert features check box, VisualAge displays all
features, including those designated as expert.

Set Parameters

When you select the Set parameters push button, the Constant Parameter Value
Properties window opens. Use this window to specify parameter values for the
connection.

RELATED COMNCEPTS

RELATED TASKS

. : ”

RELATED REFEREMCES

222 VisualAge for Java, Version 2.0: Visual Composition

Chapter 49. Constant Parameter Value Properties Window

Use this window to supply a parameter as a constant value. In each parameter
field, enter the constant value to be assigned to the specified parameter at run time.

The fields provided in this window depend on the type and number of parameters
defined by the method.
RELATED COMCEPTS
RELATED TASKS
FEdfnac - — 4

RELATED REFEREMCES

© Copyright IBM Corp. 1997, 1998 223

224 VvisualAge for Java, Version 2.0: Visual Composition

Chapter 50. Event-to-Code Connection Window

Use the Event-to-Code Connection window to create a connection that calls code
whenever a specified event occurs.

Fields

Push buttons
To complete the connection and close the window, select OK.
To specify parameter values that are constant, select Set parameters .

To close the window without completing the connection, select Cancel.

Method Class

The Method class field lists the class being edited and all its superclasses. By
selecting one of the superclasses, you connect your code to code contained in the
superclass. The Method class field updates according to the class selected.

Event

From the Event list, select the event you want to use. The list of events available
depends on the bean you selected.

Methods

This field provides a drop-down list that contains a placeholder name for new
methods and the names of methods you previously created. If you select <new
method> and create a new method, VisualAge assigns a default method name by
combining the bean name with the event type. For example, if you create an
Event-to-Code Connection with buttonl as the source and actionPerformed as the
event with no event data passed, VisualAge assigns the name
button1_ActionPerformed to the new method. You can make the method more
descriptive and easier to recognize by changing its name.

Note: The connection name in the beans list is connEtoC1.

© Copyright IBM Corp. 1997, 1998 225

Code Pane

The method code pane is the large pane located below the event and method
fields. Enter your method code in this editable pane. You can also change the
name, return value, or parameters of the method by editing the method code. The
code pane pop-up menu provides options to assist in editing your code.

Pass Event Data

If you want the event to pass its parameters to the new method, check Pass event
data at the bottom of the panel.

The Pass event data check box indicates whether connection code will pass data,
which is sent in the event natification, to the target as input. The specific nature of
the data varies by type of event.

This setting affects the visual cues that VisualAge uses to indicate incomplete
connections. Since event data is the first parameter value passed, if the target
method or code requires only one parameter and Pass event data is checked, the
connection appears complete. If the target method or code requires more than one
parameter, the connection continues to appear incomplete.

If this box is not checked and inputs are required, VisualAge does not attempt to
pass event data to the target, and the connection appears incomplete.

If an event has more than one data parameter and is not specified in another order,
the data is passed to the target's parameter in order.

If the event and method parameters match in type, VisualAge defaults to Pass
event data . If the event does not have or does not accept parameters, the default
is to not pass event data.

RELATED COMCEPTS

RELATED TASKS

RELATED REFEREMCES

226 VisualAge for Java, Version 2.0: Visual Composition

Chapter 51. Parameter-from-Code Connection Window

Use the Parameter-from-Code Connection window to complete a connection that
calls code whenever a specified event occurs. The Parameter-from-Code
Connection window is similar to the Event-to-Code Connection window, except it is
used to complete an Event-to-Code Connection that requires further parameters.

RELATED COMNCEPTS

RELATED TASKS

‘ : ”

RELATED REFEREMCES

© Copyright IBM Corp. 1997, 1998 227

228 VisualAge for Java, Version 2.0: Visual Composition

Chapter 52. Morph Into

Use the Morph Into window to change the class or type of a component.

To change the class, enter the fully qualified name of the new class in the entry
field provided. To pick a class from the list of classes loaded in your workspace,
select Browse .

To specify a new type, select one of the following. Not all choices may be available,
depending on the current class and type of component.

* Class, a fully initialized instance.
e Variable, an uninitialized instance.

» Serialized , a fully initialized, serialized instance. If you select Serialized as the

new type, you must replace the displayed class name with the name of an .ser
file.

Connections to features that are no longer valid in the new class remain until code
is regenerated for the composite. To delete such connections instead, select Delete
invalid connections before you select OK to start the process.

RELATED COMNCEPTS

RELATED REFEREMNMCES

© Copyright IBM Corp. 1997, 1998 229

230 VvisualAge for Java, Version 2.0: Visual Composition

Chapter 53. Resolve Class References

Use the Resolve Class References window to change the class of an unknown
component to one that is loaded into your workspace.

When VisualAge encounters an unknown class reference, it attempts to find the
correct class name anywhere in the repository. VisualAge then displays the name of
the first class name it finds.

Push buttons

To leave the class unresolved for the moment, select Ignore .

To pick an alternative class name from the standard class dialog, select Replace.

To proceed with the change, select OK.
RELATED COMNMCEPTS

© Copyright IBM Corp. 1997, 1998 231

232 VisualAge for Java, Version 2.0: Visual Composition

Chapter 54. String Externalization Editor

Use the String Externalization Editor window to specify how you want a given String
property value separated for translation. Select one of the following radio buttons:

* Do not externalize string , for leaving literal String values in the generated code
» Externalize string , for specifying String separation

Resource type radio buttons
» List resource bundle
* Property resource file

Fields

* Bundle , the name of the resource bundle in which to define the String resource
» Key, the locale-independent string used to retrieve the resource

* Value, the locale-dependent string value of the resource

Push buttons
To create a new resource bundle, select New.

To pick from an existing resource bundle, select Browse .
RELATED COMNMCEPTS

RELATED TASKS

‘ H B H ”

© Copyright IBM Corp. 1997, 1998 233

234 visualAge for Java, Version 2.0: Visual Composition

Chapter 55. Externalizing: Package.Class

Use this window to specify how you want strings in this class separated for
translation.

Resource type radio buttons
» List resource bundle
* Property resource file

Fields

* An unlabeled entry field through which you specify the resource bundle name.
The name of the last bundle accessed, if any, appears in the field. A maximum of
eight bundle names is selectable from the drop-down list.

» Strings to be separated , which contains the following information. You can edit
all values.

— An unlabeled column that indicates how VisualAge will treat the item. One of
the following graphics appear: Translate , Never translate , or E

Skip.
— Key, the locale-independent string used to retrieve each resource.
— Value, the locale-dependent string value of a given resource.
» Context , which shows you where the selected string occurs.

Push buttons
To create a new resource bundle, select New.
To pick from an existing resource bundle, select Browse .

This window lists those strings that have not been previously externalized or
marked . To make a string previously marked appear in this window, find

the string in the code and delete the comment at the end of the line: //$NON-NLS-1$
RELATED COMNMCEPTS

RELATED TASKS

‘ H B H ”

© Copyright IBM Corp. 1997, 1998 235

236 VisualAge for Java, Version 2.0: Visual Composition

Chapter 56. BeanlInfo Page

Use the Beanlinfo page of the Class/Interface Browser to view, define, or modify
bean interface features. These features, consisting of properties, events, and
methods, represent the characteristics and behavior of your class. When you add
features in the Beanlnfo page, you define the external view of your bean to
consumers who use the bean. By contrast, when you compose a composite bean in
the Visual Composition Editor, you define the internal content of the bean.

When you add a new feature in the BeanlInfo page, VisualAge generates code for
the feature in the bean class. For some features, particularly properties, you might
not need to modify this generated code. Additionally, VisualAge generates code that
describes the feature in the Beanlnfo class for the bean. If a BeanInfo class does
not exist for the bean, it is created when you add the first feature in the BeanlInfo
page. You can also create a Beanlnfo class from the Features menu. See the

for links to detailed information on JavaBeans and Beanlinfo.

If you do not want your bean to inherit features from its superclass, turn off
BeanlInfo inheritance before a BeanlInfo class is created for your bean. If Beaninfo
is not inherited from the superclass, only features defined in your bean are available
to bean consumers. This means that no inherited features are available for
connections or the property sheet when your bean is embedded in another bean.
BeanlInfo inheritence does not affect accessibility within your class to inherited
methods and fields. To control Beaninfo inheritance, open the Options window from
the Window menu of the Workbench. Then, set the Inherit BeanInfo of bean
superclass check box in the Design Time pane.

If you edit an embedded bean in the Visual Composition Editor and then change its
features in the Beaninfo page, be sure to refresh the bean interface when you
return to the Visual Composition Editor. Do this by selecting Refresh Interface from
the bean pop-up menu in the Visual Composition Editor.

From the Beaninfo page, use either the Features menu or the tool bar, or both, to
manage bean features. Open the Features menu either by selecting it from the
menu bar Features choice or by opening it as a pop-up menu from the Features
pane.

Fields

RELATED TASKS

© Copyright IBM Corp. 1997, 1998 237

http://www.java.sun.com/

RELATED REFERENCES

i ”

Features Pane—Beaninfo Page

Use this pane to view locally defined features for a bean. To view inherited features,
browse the bean that defines the features. Initially, all local features except hidden
and expert features are listed.

To specify which features are listed, open the Features menu, select Show, then
select a choice to filter the list. The title of the Features pane reflects its filtered
contents. The features that are listed for each title are as follows:

Features
All features of the bean

Normal Features
All features except hidden and expert features

Method Features
Features that provide bean behavior and access to bean properties

Property Features
Features that represent bean properties

Event Features
Features that report the occurrence of an event in your bean

Expert Features
Features that are marked in BeaniInfo as expert

Hidden Features
Features that are marked in BeanInfo as hidden

Each listed feature is preceded by a symbol that indicates the feature type:

.-*E Property
1]

Fan Method
E

A Event

The following superscripts provide information about features in the pane:
= Bound

L i Constrained

E Expert
2 Hidden
I Indexed

238 VvisualAge for Java, Version 2.0: Visual Composition

=R Readable

W Writeable

If you select a feature in the Features pane, the following information appears in
other areas of the Beanlnfo page:

» Underlying classes, interfaces, and methods of the feature are listed in the
Definitions pane.

* Bean information for the feature appears in the Source pane.
» The fully-qualified name of the feature appears in the status area.
RELATED TASKS

RELATED REFEREMCES

Definitions Pane—Beaninfo Page

Use this pane to list the underlying classes, interfaces, and methods that define
features listed in the Features pane. If no features are selected, the Definitions
pane is empty. If you select a feature, definitions for the selected feature are listed.

If you select a definition in the Definitions pane, the following information appears
in other areas of the BeanInfo page:

» Source code for the class, interface, or method appears in the Source pane.

» The fully-qualified name of the class, interface, or method appears in the status
area.

RELATED REFEREMCES

Chapter 56. Beaninfo Page 239

Information Pane—BeanInfo Page

Use this pane to view or edit bean information for a bean or feature. The
information is obtained from the Beanlinfo class for the bean, if it exists, or by bean
reflection.

The title and content of the Information pane depend on whether you have
selected a feature in the Features pane. If a feature is selected, information is
displayed for the selected feature. Otherwise, information is displayed for the bean.
The title also depends on whether the information is obtained from BeanInfo or by
reflection. For example, if information is displayed for a bean by reflection, the
Information pane title is Bean Reflection Information. If the information is obtained
from Beanlnfo, the title is Bean Information.

You can modify bean information by selecting an item and editing its value field.
RELATED REFEREMCES

FEeatures Pane—Beaninfo Dngr-\” Qn page 239

Source Pane—BeanlInfo Page

Use this pane to view or edit source code for a feature definition. The Source pane
is displayed when you select a class, interface, or method in the Definitions pane.

RELATED COMCEPTS

RELATED REFEREMNCES

Status Area—Beaninfo Page

Use the status area at the bottom of the BeanInfo page to view the fully-qualified
name of a selected feature or feature definition.

» If you select a feature in the Features pane, the status area shows the feature
name.

» If you select a class, interface, or method in the Definitions pane, the status
area shows the name of the selected item.

* If nothing is selected, a message to that effect is displayed in the status area.
RELATED REFERENCES

FEeatures Pane—BReanlinfo D:::gp" Qn page 234

240 VvisualAge for Java, Version 2.0: Visual Composition

Chapter 57. BeanInfo Page Menus

Several menus are available in the BeanInfo page that you can use to work with
beans and their features. You can use the following menu bar choices to work with
features and related information:

» Edit: Use with the Source pane

» Features : Use with the Features pane

» Definitions : Use with the Definitions pane
* Information : Use with the Information pane

RELATED REFEREMCES

Features—BeanInfo Page

Use this menu to define or modify bean interface features. You can open the
Features menu either as a pull-down menu from the menu bar or as a pop-up
menu from the Features pane.

You can perform the following tasks from the Features menu:

» Create a bean information class for a bean

» List bean interface features for a bean

* Add or remove bean interface features

* Open a feature

Open Opens the Class/Interface Browser for the selected feature

Open to
Opens a menu of bean information choices

Show Opens a menu of filtering choices for the Features pane
Sort Opens a menu of ordering choices for the Features pane

New Beanlinfo Class
Opens a SmartGuide to create a BeanlInfo class for the bean

Generate BeanlInfo class
Creates a Beanlnfo class for the bean

Add Available Features
Opens a dialog to add methods and fields as features

New Property Feature
Opens a SmartGuide to create a new property feature

New Event Set Feature
Opens a SmartGuide to create a new event set feature

New Method Feature
Opens a SmartGuide to create a new method feature

© Copyright IBM Corp. 1997, 1998 241

New Listener Interface
Opens a SmartGuide to create a new event listener

Delete Opens a dialog to remove selected features and underlying definitions
RELATED TASKS

RELATED REFERENCES

tShow—Reaninfo Pagel

‘ B ”

Show—Beaninfo Page

Use this menu to determine what features are listed in the BeanlInfo page Features
pane. You can open this menu by selecting it from the Features menu. Then select
a choice to list all features or a subset of features for a bean. The features that are
listed for each menu choice are as follows:

Connectable Features
All features of the bean

Normal features
All features except hidden and expert features

Method features
Features that provide bean behavior and access to bean properties

Property features
Features that represent bean properties

Event features
Features that report the occurrence of an event in your bean

Expert features
Features that are marked in BeanlInfo as expert

Hidden features
Features that are marked in BeanInfo as hidden

RELATED REFEREMCES

242 visualAge for Java, Version 2.0: Visual Composition

Sort—BeanlInfo Page

Use this menu to order features in the BeanInfo page Features pane. You can
open this menu by selecting it from the Features menu. Then select a choice to
sort features by name or by type.

Sort by type
Orders the features by feature type

Sort by name
Orders the features by name

RELATED REFEREMCES

‘ ”

Definitions—BeaniInfo Page

Use this menu to work with feature definitions in the Definitions pane. You can
open the Definitions menu either as a pull-down menu from the menu bar or as a
pop-up menu from the Definitions pane.

Open Opens a browser for the selected method, class, or interface

Open to
Opens a menu of choices for opening another browser:

Project
A project browser for one of the following:

¢ The class or interface that contains the selected method
¢ The selected class or interface

Package
A package browser for one of the following:

e The class or interface that contains the selected method
¢ The selected class or interface

Type A browser for the selected class or interface

References To
Opens a menu of choices to search for the following:

This Method
Calls to the selected method from other methods

Sent Methods
Methods that are called from the selected method

Accessed Fields
Fields that are accessed by the selected method

ReferencedTypes
Classes and interfaces that are referenced by the selected method

This Type
References to the selected class or interface

Field References to a field in the selected class or interface

Chapter 57. Beaninfo Page Menus 243

Static Field
References to a static field in the selected class or interface

Constant
References to a constant in the selected class or interface

Declarations Of
Opens a menu of choices to search for declarations of the following:

This Method
The selected method

Sent Methods
Methods that are called from the selected method

Accessed Fields
fields that are accessed by the selected method

ReferencedTypes
Classes and interfaces that are referenced by the selected method

Replace With
Opens a menu of choices for replacement by one of the following:

Previous Edition
The previous edition of the selected method, class, or interface

Another Edition
Any other edition of the selected method, class, or interface

Manage
Opens a menu of management choices for a class or interface:

Version
Version the open edition of the selected class or interface

Release
Release the open edition of the selected class or interface

Create Open Edition
Create a new open edition of the selected class or interface

Change Owner
Change ownership of the selected class or interface

Compare With
Opens a menu of choices for comparison with one of the following:

Released Edition
The released edition of the selected class or interface

Previous Edition
The previous edition of the selected method, class, or interface

Another Edition
Any other edition of the selected method, class, or interface

Each Other
Selected methods, classes, or interfaces

Document
Opens a menu of choices for replacement by one of the following:

Print Prints source code for the selected class or interface

244 visualAge for Java, Version 2.0: Visual Composition

Generate javadoc
Generates Java API documentation for the selected class or
interface

Print Prints source code for the selected method
RELATED REFEREMCES

")

Information—BeanInfo Page

Use this menu to work with bean information for a bean or feature in the
Information pane. You can open the Information menu by selecting it from the
menu bar.

Revert
Returns the bean information to its previously saved state

Save Saves the current bean information
RELATED REFERENLCES

Chapter 57. BeanInfo Page Menus

245

246 VvisualAge for Java, Version 2.0: Visual Composition

Chapter 58. BeanlInfo Page Tools

Several tools are available from the BeanlInfo page to help you work with beans and
their features. You can access these tools through menus or the tool bar.

Creates or replaces a Beanlnfo class for a bean, without user input

Defines information about a bean and creates a Beanlnfo class

Specifies icon files for a bean

[Bean Information SmartGuide” on page 249Bean Information

Defines bean information for a new feature

Defines a new property feature

Defines a new event listener

Defines methods for a new event listener

Defines a new event set feature

Defines a new method feature

Defines a parameter for a new method feature

Lists methods that can be added as features

Lists features and underlying methods that can be deleted

Selects a fully-qualified class name for a bean

RELATED REFERENCES

[Beanlnfa Page Toal Rarl

BeanlInfo Page Tool Bar

Use the tool bar to launch some common tools in the Beaninfo page. The following
tools are available from the tool bar:

Open Debugger
Opens a window for debugging

Search
Opens a window to search for a class, interface, constructor, method, or
field

© Copyright IBM Corp. 1997, 1998 247

New Property Feature
Opens a window to define a new property feature

New Event Set Feature
Opens a window to define a new event set feature

New Method Feature
Opens a window to define a new method feature

RELATED REFERENCES

Beaninfo Class Generator

Use the Beanlinfo class generator to create bean information class code for the
bean you are working with. This produces bean information for all existing features.

Before you generate the bean information class, bean information for the Beaninfo
page is obtained by reflection. After you generate the bean information class, the
class is used to find bean information.

RELATED REFEREMCES

Beaninfo Class SmartGuide

Use the SmartGuide — BeanInfo Class window to create bean information class
code for the bean you are working with. This produces bean information for the
bean, but not for existing features. When you add new features, bean information is
added to the Beanlnfo class.

Before you add any new features, bean information for the BeanInfo page is
obtained by reflection. After you generate the bean information class, the class is
used to find bean information.

Fields

Display name
The display name represents the BeanlInfo class in the VisualAge user
interface. This field is optional. If you do not specify a display name, the
BeanlInfo class name is used.

Short description
The short description is used in the VisualAge user interface. This field is
optional. If you do not provide a description, the BeanlInfo class name is
used.

Customizer
A customizer class provides customized definition of property values for a
bean. This field is optional. If you want to provide a custom dialog for

248 visualAge for Java, Version 2.0: Visual Composition

modification of your bean properties, specify a class to support the dialog. If
you want to select an existing customizer class, select the Browse button.

expert Expert beans do not appear in the Visual Composition Editor by default.
However, you can request that expert beans be shown. Mark the bean as
expert if you want it to be available in visual composition, but not by default.
This option is not initially selected.

hidden
Hidden beans do not appear in some tools, but are available in the Visual
Composition Editor. Mark the bean as hidden if you do not want it to be
available in other tools. This option is not initially selected.

RELATED REFEREMCES

Bean Icon Information SmartGuide

Use the SmartGuide — Bean Icon Information window to specify the names of files
that define icons for your bean. These icons represent the bean on the palette, in
the Beans List, and on the free-form surface.

Fields

16X 16 Color
A file that contains a color icon that is 16 pixels wide and 16 pixels high.
This field is optional. To specify an icon file, select the Browse button.

32X 32 Color
A file that contains a color icon that is 32 pixels wide and 32 pixels high.
This field is optional. To specify an icon file, select the Browse button.

16X 16 Monochrome
A file that contains a monochrome icon that is 16 pixels wide and 16 pixels
high. This field is optional. To specify an icon file, select the Browse button.

32X 32 Monochrome
A file that contains a monochrome icon that is 32 pixels wide and 32 pixels
high. This field is optional. To specify an icon file, select the Browse button.

Bean Information SmartGuide

Use the SmartGuide — Bean Information window to define bean information for a
new feature. This information determines how the feature is viewed and accessed
in visual composition.

Fields

Display name
The display name represents the feature in the VisualAge user interface.
This field is optional. If you do not specify a display name, the feature name
is used.

Chapter 58. Beaninfo Page Tools 249

Short description
The short description is used in the VisualAge user interface. This field is
optional. If you do not provide a description, the feature name is used.

Property editor
A property editor provides customized definition of a property value. This
field is optional. It is available only for property features. If you want to
provide a custom dialog to modify a property, specify a property editor class
to support the dialog. To select an existing property editor, select the
Browse button.

For example, you might want to provide a property editor for an alignment
property that has an integer value. This property can be edited with the
registered integer property editor. However, a user can more easily
understand descriptive choices, such as Left, Center, and Right. You can
create a property editor class that presents these descriptive choices to the
user and maps them to integer values for the property.

expert Expert features do not appear in the Visual Composition Editor by default.
However, you can request that expert features be shown. Mark the feature
as expert if you want it to be available in visual composition, but not by
default. This option is not initially selected.

hidden
Hidden features do not appear in the Visual Composition Editor. Mark the
feature as hidden if you do not want it to be available in visual composition.
This option is not initially selected.

New Property Feature SmartGuide

Use the SmartGuide — New Property Feature window to add a new property
feature. Method features are also added to get and set the property. If the property
is readable, a get method feature is added, and if the property is writable, a set
method feature is added.

If the property is indexed, it contains individually accessible elements. Get and set
method features are added to access an element. These are in addition to the get
and set method features for the property as a whole. Note that an array property
can either be indexed or not. If it is not indexed, array elements are not accessible
in the Visual Composition Editor.

If the property is bound, the propertyChange event and related method features are
also added if they have not yet been added. The propertyChange event provides
notification of property value changes.

If the property is constrained, the vetoableChange event and related method
features are also added if they have not yet been added. The vetoableChange
event provides notification of requested property value changes. If a listener of the
vetoableChange event throws the PropertyVetoException, the property value
change is not committed.

Fields

Property name
The name of the property feature. Enter a name for the feature.

Property type
The data type of the property. The type value is initially java.lang.String. If

250 VvisualAge for Java, Version 2.0: Visual Composition

you need a different type, either enter a data type or select the Browse
button to select a fully-qualified type. You can focus the type search by
entering a partial type specification in the Property type field before you
select the Browse button.

Readable
A readable property can report its value. This means that you can make a

connection from the property to obtain its value. This option is initially
selected.

Writeable
A writable property can have its value modified. This means that you can

make a connection to the property to change its value. This option is initially
selected.

Indexed
An indexed property contains individually accessible elements. This means
that, if the property is readable and writable, you can make a connection to
obtain or change the value of an element. This option is initially not
selected.

bound
A bound property can report value changes. This means that you can make
a connection from the property to obtain the new value whenever it is
changed. VisualAge generates code to report the change using the

propertyChange event. This option is initially selected if a BeanInfo class
has been created for the bean.

If a property is not bound, you must associate an event with the source and
target properties in connection settings to obtain the value change.
VisualAge generates listener methods to get the source property value and
set the target property when the event occurs. For example, if you want to
obtain the text property value from a TextField bean when the Enter key is
pressed, you can associate the actionPerformed event with the text source
property and the target property.

constrained
A constrained property can have its value changes vetoed. This means that
you can make a connection from the vetoableChange event to a method
feature or code that could veto the proposed change. This option is initially
not selected.

RELATED REFEREMCES

New Event Listener SmartGuide

Use the SmartGuide — New Event Listener window to create a new event listener
and add it as an event set feature. An event set consists of an event listener
interface with associated event object and multicaster classes. The multicaster
enables multiple listeners for an event.

Chapter 58. Beaninfo Page Tools 251

Method features are also added that other beans can use to add and remove the
listener. These methods enable other beans to start and stop listening for the event.

Fields

Event name
The name of the event set feature. Enter a name for the feature.

Event listener
The name of the event listener. This field is initialized when you define the
Event name field. For example, if the event name is whatHappened, the
event listener name is initially WhatHappenedListener.

Event object
The name of the event object. This field is initialized when you define the
Event name field. For example, if the event name is whatHappened, the
event object name is initially WhatHappenedEvent.

Event Multicaster
The name of the event multicaster. This field is initialized when you define
the Event name field. For example, if the event name is whatHappened,
the event multicaster name is initially WhatHappenedMulticaster.

RELATED REFEREMCES

Event Listener Methods SmartGuide

Use the SmartGuide — New Event Listener window to define one or more methods
for a new event listener. These listener methods respond to the event. You must
add logic code for each method. The first listener method is added as an event
feature. To add additional listener methods as event features, select Add Available
Features from the Features menu. Then, in the Add Available Features window,
select the methods you want to add as features.

Fields

Method name
The name of an event method to add to the listener.

Event Listener methods
A list of methods for the event listener. To add the method in the Method
name field as a listener method, select the Add button. To remove the
selected method from the list, select the Remove button.

New Event Set Feature SmartGuide

Use the SmartGuide — New Event Set Feature window to select an existing event
listener and add it as an event set feature. An event set consists of an event
listener interface with associated event object and multicaster classes. The
multicaster enables multiple listeners for an event.

The event listener contains one or more methods that respond to the event. Each
listener method is added as an event feature. Method features are also added that

252 visualAge for Java, Version 2.0: Visual Composition

other beans can use to add or remove the listener. These methods enable other
beans to start and stop listening for the event.

Fields

Event name

The name of the event set feature. The initial selection is action. You can
select a different event set from the drop-down list.

Event listener
The name of the event listener. The initial selection depends on the
selected event set. For the action event, the initial listener is
Java.awt.event.ActionListener. You can select a different event listener from
the drop-down list. If you need to select a fully-qualified name for the
particular listener you want, select the Browse button for the listener.

RELATED REFEREMNCES

‘ 9

‘ ”

New Method Feature SmartGuide

Use the SmartGuide — New Method Feature window to add a new method feature.
The SmartGuide creates a new public class method for the feature. You must add
logic code for the method.

Fields

Method name
The name of the method feature. Enter a name for the feature.

Return type

The return data type of the method feature. The type value is initially void. If
you need a different type, either enter a data type or select the Browse
button to select a fully-qualified type. You can focus the type search by
entering a partial type specification in the Return type field before you

select the Browse button.
Parameter count

The number of parameters for the method feature. The initial selection is 0.
You can select a different number from the drop-down list. You define each
parameter with the parameter SmartGuide.

RELATED COMCEPTS

RELATED REFEREMNCES

Chapter 58. Beaninfo Page Tools 253

Parameter SmartGuide

Use the SmartGuide — Parameter window to define a parameter for a new method
feature.

Fields

Parameter name
The name of the method parameter. Enter a name for the parameter.

Parameter type
The data type of the parameter. The type value is initially boolean. If you
need a different type, either enter a data type or select the Browse button
to select a fully-qualified type. You can focus the type search by entering a
partial type specification in the Return type field before you select the
Browse button.

Display name
The display name is used in the VisualAge user interface. This field is
optional. If you do not specify a display name, the parameter name is used.

Short description
The short description is used in the VisualAge user interface. This field is
optional. If you do not provide a description, the parameter name is used.

RELATED REFEREMCES

[eaionDialog]

Add Available Features

Use the Add Available Features window to add features based on public methods
that are not defined as features. VisualAge finds all available public methods of the
class that have not been added as features, and lists them for you to select. For
example, methods that you add in the Methods page can be added as features. Get
and set methods for fields can be added as property features.

Delete Features

Use the Delete features window to remove features and underlying methods.
Features that you selected for deletion are listed in the All the following feature(s)
will be deleted: field. The methods that define the features are listed in the The
following selected method(s) will be deleted: field. If you want to delete any of
these methods, select them. Select OK to delete features and methods.

Class Qualification Dialog

254 visualAge for Java,

Use the Class Qualification Dialog to select a fully-qualified class or interface name
for a field in another window. The initial scope of the class or interface search is
determined by input to this dialog when it is opened.

Fields

Version 2.0: Visual Composition

Pattern

A selection pattern that determines class and interface names listed in the
Class/Interface Names field. The initial pattern depends on information

passed to this dialog.
Class/Interface Names

A list of unqualified class and interface names that match the selection
pattern. If there is no selection pattern, all available classes and interfaces
are listed.

Package Names
A list of packages that contain the selected class or interface. Select the
package that contains the class or interface you want. The selected

package name is used to qualify the selected class or interface name
returned to the calling window.

Chapter 58. Beaninfo Page Tools 255

