
IBM VisualAge for Java, Version 2.0

Getting Started

S430-4086-01

IBM

IBM VisualAge for Java, Version 2.0

Getting Started

S430-4086-01

IBM

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page vii .

Second Edition (August 1998)

This edition applies to Release 2.0 of IBM VisualAge for Java and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product. The
term ″VisualAge″ as used in this publication, refers to the VisualAge for Java product set.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

If you have comments about this document, address them to:

IBM Canada Ltd. Laboratory
Information Development
3G/950/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada, M3C 1H7
FAX: (416) 448-6161
torrcf@vnet.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices vii
Trademarks and Service Marks vii

Chapter 1. Introduction 1
About this document 1

What this document includes 1
Sample program in this document . . . 2
Who this document is for 2
About this product 2
What’s new in VisualAge for Java
Version 2.0 2
Where you can get the latest VisualAge
for Java information. 3
Conventions used in this document . . 3

Chapter 2. The Basics 5
What Is VisualAge for Java? 5

Rapid application development 5
Create industrial-strength Java programs 6
Maintain multiple editions of programs 6

Key concepts 6
Development with a repository 6
The workspace and the repository . . . 6
Importing and exporting code 7
The Workbench 7
Visual programming with the Visual
Composition Editor 9
Beans 9
Connections 10
The Visual Composition Editor 10

Chapter 3. Building your first applet . . 13
Getting started with your first applet . . . 13

Starting VisualAge for Java 14
Now that you are up and running . . . 14

Using a SmartGuide. 15
Creating an applet, a project, and a
package 16

Using the Visual Composition Editor . . . 17
Working with beans 17
Are You Familiar with Event-to-Code
Programming? 18

Building the To-Do List applet 18
Adding a text field and a label 19
Changing the text of a label and adding
another label 19

Adding a scroll pane for your list . . . 20
Adding a list 20
Adding buttons 20

Sizing and aligning visual beans 21
Sizing, aligning, and distributing beans 21

Correcting mistakes 22
Connecting beans 23

Event-to-method and
parameter-from-property connections 23
Event-to-Code Connection. 27

Saving and testing the To-Do List applet 29
Saving your visual bean 29
Testing the applet 29
Saving your workspace 30

Chapter 4. Adding State Checking to Your
Applet 31
Finding your To-Do List applet in the
Workbench 31
Versioning an edition of your applet . . . 32
Adding state checking to your applet . . . 33

Desired behavior of the Remove button 33
Overview of adding the desired behavior
to the Remove button 33
Open your To-Do List applet in the
Visual Composition Editor 34
Set the properties of the Remove button 34
Create a new method to check if an item
is selected 35
Add a connection to enable and disable
the Remove button 36
Saving and testing your changes . . . 36

Chapter 5. Enhancing the To-Do List
Program 39
Behavior of the To-Do List program . . . 39
Steps for adding file access to the To-Do
List program 40
Creating new methods 40
Creating a new method: adding a method
for reading files 41
Creating a new method: adding a method
for writing files 43

© Copyright IBM Corp. 1997, 1998 iii

Using the Scrapbook to test code . . . 45
Adding buttons to the To-Do List applet
user interface 46
Adding JFileChooser beans to the free-form
surface 48
Connecting the Open To-Do File button 49

Create the connection to show and
dispose of the open file dialog 50
Create the connection to invoke
readToDoFile 51

Testing the Open To-Do File button . . . 52
Connecting the Save To-Do File button . . 54

Create the connection to show and
dispose of the save file dialog 54
Create the connection to invoke
writeToDoFile 55

Saving and testing the completed To-Do List
program. 57

Chapter 6. What Else Can You Do With
the Visual Composition Editor? 59
Manipulating beans 59

Selecting beans 59
Selecting several beans 60
Deselecting beans 60
Moving beans 60
Copying beans 61
Copying beans using the clipboard. . . 61
Deleting beans 61

Sizing, aligning, and positioning beans . . 62
Sizing beans 62
Aligning beans 62
Matching the dimensions of another
bean 63
Distributing beans evenly 63

Changing bean properties 64
Opening the Properties window for a
bean 64

Changing bean colors and fonts 65
Changing the color of a bean. 66
Changing the font of a bean 67
Portability of colors and fonts 68

Connecting beans 68
Property-to-property connections . . . 69
Event-to-method connections. 70
Event-to-code connections. 72
Parameter connections 73
Changing the properties of connections 75
Connection parameters 76
Manipulating connections 78

Working with relational data: the Select
bean 82
Adding buttons for relational database
access: the DBNavigator bean 83

Chapter 7. Managing Editions 85
About editions 85
Versioning an edition 87
Updating your code again. 88

Creating a new edition 88
Adding a counter to the ToDoList
program. 88

Returning to a previous edition 91
Exploring the Repository 92

Examining examples in the repository 94
Summary 94

Chapter 8. What Else Can You Do? . . . 95
Printing program elements 95

Changing the default printer 96
Printing the Graph of a Class Hierarchy 96

Navigating 97
Moving between windows 97
Windows you can open from the
Window menu 97

Searching 101
Searching for a program element . . . 102
Searching with the Search dialog . . . 102
Searching for references and declarations 103
Searching from the Workspace menu 103
Searching for a program element within
a browser page 104

Browsing 104
Browsing a project 105
Browsing a package 106
Browsing a class 107
Browsing an interface 108
Browsing a method 109

Writing code by hand 110
Code Assist 110
Code Clues. 115
Format Code 116

Internationalization Support 116
Using the Quick Start window 117
Debugging 118

Opening the debugger 118
Setting breakpoints 118
Removing breakpoints 119
Using the Debugger browser 119

iv Getting Started

Other things you can do with the
integrated debugger. 122

Support for JavaBeans 123
What are JavaBeans? 123
Bean Features 124
BeanInfo Classes 124
The BeanInfo page 125
Using the BeanInfo Page 126

Customizing the workspace 126
Setting customization options 126

Domino AgentRunner 128
More information about VisualAge for Java 132

Printing material 132
Where you can get the latest VisualAge
for Java information. 133

Contents v

vi Getting Started

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that
does not infringe any of IBM’s intellectual property rights may be used
instead of the IBM product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those
expressly designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

Director of Licensing
Intellectual Property and & Licensing
International Business Machines Corporation
North Castle Drive, MD - NC119
Armonk, New York 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of information which has been exchanged, should contact IBM Canada
Ltd., Department 071, 1150 Eglinton Avenue East, North York, Ontario M3C
1H7, Canada. Such information may be available, subject to appropriate terms
and conditions, including in some cases payment of a fee.

This publication may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
may include the names of individuals, companies, brands, and products. All
of these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

IBM may change this publication, the product described herein, or both.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

© Copyright IBM Corp. 1997, 1998 vii

IBM
Operating System/2
OS/2
OS/400
TeamConnection
VisualAge

Domino, and Lotus Notes are trademarks of the Lotus Development
Corporation in the U.S. and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Other company, product, and service names, which may be denoted by a
double asterisk(**), may be trademarks or service marks of others.

viii Getting Started

Chapter 1. Introduction

About this document

The purpose of this document is to introduce you to:
v The basic concepts and terms you need for using VisualAge for Java
v The fundamentals you need to know in creating an application using

VisualAge for Java

To help achieve these goals, we guide you through creating a simple Java
applet. Then we guide you through adding features to this applet.

What this document includes

This document is divided into these sections:
v The basics introduces the overall capabilities of VisualAge for Java and

outlines the concepts you need to know.
v Building your first applet introduces the visual programming features of

VisualAge for Java by leading you through the process of creating a simple
applet.

v Adding state checking to your applet gives you more details on the visual
programming features of VisualAge for Java and shows you how to make
improvements to the applet you created in the previous part. This part also
introduces VisualAge for Java’s approach to code management.

v Creating the To-Do List program shows you how to add more features to
your applet and gives you more details on VisualAge for Java’s overall
coding environment.

v What else you can do with the Visual Composition Editor gives you more
details on the powerful visual programming capabilities of VisualAge for
Java.

v Managing editions of your program gives you more details on the edition
control features of VisualAge for Java.

v What else can you do with the IDE gives you more information on the
following features of VisualAge for Java:
– Printing
– Navigating
– Searching
– Browsing
– Debugging

© Copyright IBM Corp. 1997, 1998 1

– Support for JavaBeans
– Customizing your programming environment

v Domino AgentRunner introduces you to building, running and debugging
Domino agents in VisualAge for Java.

v Where to find more information describes the overall help system that
comes with VisualAge for Java. It also gives you details on printing
material from the help system.

Sample program in this document

By doing the exercises in this document, starting with Building your first
applet, you will create a sample program called 'To-Do List'. You can find a
completed version of this example in the com.ibm.ivj.examples.vc.todolist
package in the IBM Java Examples project in the VisualAge for Java repository.

See Examining examples in the repository for details on how to examine the
completed version of this example.

Who this document is for

This document is written for programmers who want to become familiar with
the basic use of VisualAge for Java, and for anyone who wants an overall
perspective on the product. It introduces you to the basic concepts behind
building programs using VisualAge for Java, explains the general process of
visual programming with VisualAge for Java, and walks you through a
sample program. To get the most out of this document, you should be familiar
with the basics of the Java language.

About this product

VisualAge for Java is a complete, integrated environment for creating Java
applications and applets.

VisualAge for Java gives you interactive visual programming tools and a set
of JavaBeans that represent common interface components. You create
programs by assembling and connecting beans. In many cases, you may not
even have to write code. When you do need to write code, VisualAge for Java
provides a state-of-the-art, integrated development environment in which to
do your coding.

What’s new in VisualAge for Java Version 2.0

VisualAge for Java, Version 2.0 includes the following new features:
v Support for JDK1.1.6, including Swing 1.0.2, inner classes and anonymous

classes, and the Java Native Interface (JNI)
v New IDE features

2 Getting Started

– Advanced coding tools such as automatic formatting, automatic code
completion and fix-on-save

– Context-sensitive help
– Advanced debugging tools such as conditional breakpoints and both

multiple and incremental program debug
– Support for JavaDoc output

v New Visual Composition Editor features
– Visual programming support for Swing beans
– Wizards for string externalization to assist in building multi-language

applications
– Support for object serialization
– Ability to import GUIs built in other Java IDEs

v New Data Access Beans that provide access to relational data
v For Windows users, the ability to check VisualAge for Java code in or out

of VisualAge TeamConnection™, ClearCase, or PVCS
v Tool Integrator APIs that allow you to add third-party tools that are

launched from within the IDE, store and retrieve components from the
integrated repository, or add JavaBeans to the Visual Composition Editor’s
parts palette

Where you can get the latest VisualAge for Java information

To get the latest information updates, bookmark this Web site.

www.software.ibm.com/ad/vajava

The Library section provides additional Java programming books, papers and
links.

Conventions used in this document

The following conventions are used in the text:

Highlight style Used for

Boldface New terms the first time they are used

Items you can select, such as buttons and
menu choices

Chapter 1. Introduction 3

Italics Special emphasis

Method names in general discussion.
Method names that you can select in the
VisualAge for Java environment, however,
are boldface, and method names in code
samples are monospace font.

Property and event names

Text that you can enter

Monospace font Examples of Java code

File names

4 Getting Started

Chapter 2. The Basics

What Is VisualAge for Java?

VisualAge for Java is an integrated, visual environment that supports the
complete cycle of Java program development. In particular, VisualAge for Java
gives you everything you need to perform the development tasks described in
this section.

Rapid application development

You can use VisualAge for Java’s visual programming features to quickly
develop Java applets and applications. In the Visual Composition Editor you
point and click to:
v Design the user interface for your program
v Specify the behavior of the user interface elements
v Define the relationship between the user interface and the rest of your

program

VisualAge for Java generates the Java code to implement what you visually
specify in the Visual Composition Editor. In many cases you can design and
run complete programs without writing any Java code.

In addition to its visual programming features, VisualAge for Java gives you
SmartGuides to lead you quickly through many tasks, including:
v Creating new applets
v Creating new program elements. In VisualAge for Java, a program element

is one of the following:
– Project: the top-level program element in VisualAge for Java. A project

contains packages.
– Package: the Java language construct. Packages contain classes and

interfaces.
– Class: the Java language construct. Classes contain methods and fields.
– Interface: the Java language construct. Interfaces contain methods and

fields. The fields in interfaces must be static final fields.
– Method: the Java language construct.

v Creating features for JavaBeans.
v Importing code from the file system and exporting code to the file system

© Copyright IBM Corp. 1997, 1998 5

Create industrial-strength Java programs

VisualAge for Java gives you the programming tools that you need to develop
industrial-strength code. Specifically, you can:
v Use the completely integrated visual debugger to examine and update code

while it is running
v Build, modify, and use JavaBeans
v Browse your code at the level of project, package, class, or method

Maintain multiple editions of programs

VisualAge for Java has a sophisticated code management system that makes it
easy for you to maintain multiple editions of programs. When you want to
capture the state of your code at any point, you can version an edition. This
marks the particular edition as read-only and allows you to give it a name.

Key concepts

This section gives you the basic definitions that you need to get started.

Development with a repository

Within the VisualAge for Java environment, you do not manipulate Java code
files. Instead, VisualAge for Java manages your code in a database of
structured objects, called a repository. VisualAge for Java shows code to you
as a hierarchy of program elements:

project

package

class or interface

public, default, protected, private methods

Because you are manipulating program elements rather than files, you can
concentrate on the logical organization of the code without having to worry
about file names or directory structures.

The workspace and the repository

All activity in VisualAge for Java is organized around a single workspace,
which contains the source code for the Java programs that you are currently

6 Getting Started

working on. The workspace also contains all the packages, classes, and
interfaces that are found in the standard Java class libraries and other class
libraries that you may need.

While you work on code in the workspace, the code is automatically stored in
a repository. In addition to storing all the code that is in the workspace, the
repository contains other packages that you can add to the workspace if you
need to use them.

In VisualAge for Java, you can manage the changes that you make to a
program element by creating editions of the program element. The workspace
contains at most one edition of any program element. The repository, on the
other hand, contains all editions of all program elements.

Importing and exporting code

You can easily move your code between your file system and VisualAge for
Java. If you want to bring existing Java code into VisualAge for Java, you use
the Import SmartGuide to specify files (or whole directory structures) that you
want to bring in. VisualAge for Java compiles your code, indicates if there are
any errors, and adds the appropriate program elements to the workspace.

When you want to run your program outside of VisualAge for Java, you can
export it using the Export SmartGuide. VisualAge for Java creates a Java
source (*.java) file or compiled (*.class) file for each class that you
export.

The Workbench

VisualAge for Java gives you a variety of ways to examine and manipulate
your code using different windows. The primary window you use in
VisualAge for Java is called the Workbench. This window displays all of the
program elements in the workspace.

Chapter 2. The Basics 7

Tool bar

The Workbench tool bar, which is located below the menu bar, gives you easy
access to the tasks you perform most frequently in the Workbench. These
tasks include standard editing operations, running, debugging, searching, and
manipulating program elements. Specifically, on the Projects page, from left to
right on the tool bar, the tools are: run, debug, search, create program
elements such as projects and packages, and show edition information such as
1.0 or 1.1.

Note: To identify any tool in any of the tool bars in VisualAge for Java, place
the mouse pointer over the tool. A label will appear that identifies the
tool.

Pages in the Workbench window

Each page gives you a specific viewpoint on the code in the workspace:
v The Projects page displays all the projects in the workspace. You can

expand projects to see the program elements inside them.
v The Packages page displays all the packages in the workspace. You can

expand packages to see the program elements inside them.
v The Classes page displays all the classes in the workspace in a hierarchy

rooted at java.lang.Object. You have the choice of displaying the hierarchy
as a list or as a graphical view. You can expand a class to see what classes
inherit from it.

v The Interfaces page displays all the interfaces in the workspace.

8 Getting Started

v The All Problems page displays all the classes and methods in the
workspace that have unresolved problems in them. When you save code,
VisualAge for Java compiles it automatically.

Note: It is important to make a clear distinction between the Workbench and
the workspace. The Workbench is a window in the VisualAge for Java
user interface. It displays the program elements that are in the
workspace.

Visual programming with the Visual Composition Editor

The Visual Composition Editor is the portion of VisualAge for Java where
you can develop programs by visually arranging and connecting software
objects called JavaBeans, or simply beans. This process of creating
object-oriented programs by manipulating graphical representations of
components is called visual programming.

Beans

In VisualAge for Java, beans are the components that you manipulate when
you program visually. These beans are Java classes that adhere to the
JavaBeans specification. In the Visual Composition Editor, you select beans
from a palette, specify their characteristics, and make connections between
them. Beans can contain other beans and connections to beans. See Support
for JavaBeans for more details on the role of beans in VisualAge for Java.

There are two types of beans that you use within the Visual Composition
Editor:
v A visual bean can be seen in your program at run time. Visual beans, such

as windows, buttons, and text fields, make up the graphical user interface
(GUI) of a program.

v A nonvisualbean does not appear in your program at run time. A
nonvisual bean typically represents an object that encapsulates data and
implements behavior within a program.

A bean’s public interface determines how it can interact with other beans.
The public interface of a bean consists of the following features:
v Properties are data that can be accessed by other beans. This data can

represent any logical property of a bean, such as the balance of an account,
the size of a shipment, or the label of a button.

v Events are signals that indicate something has happened. Opening a
window or changing the value of a property, for example, will trigger an
event.

v Methods are operations that a bean can perform. Methods can be triggered
by connections from other beans.

Chapter 2. The Basics 9

Connections

In the Visual Composition Editor, connections define how beans interact with
each other. You can make connections between beans and between other
connections. A connection has a source and a target. The point at which you
start the connection is called the source; the point at which you end the
connection is called the target.

The Visual Composition Editor

The Visual Composition Editor is the visual programming tool integrated with
VisualAge for Java. It is one of the pages in the window that appears when
you browse a class.

The Visual Composition Editor is made up of several components: the beans
palette along the left side, the status area along the bottom, the tool bar along
the top, and the free-form surface where you lay out the beans. In the
diagram below, three beans are on the surface: a checkbox bean and two radio
button beans.

You use the Visual Composition Editor to construct new beans. These new
beans can contain other beans as well as connections between beans. You can

10 Getting Started

think of the beans you construct in the Visual Composition Editor as
composite beans because they contain other beans. The composite beans you
build make up your program.

Beans palette

The beans palette, which is located on the left side of the Visual Composition
Editor, contains the set of ready-made beans that you use most frequently. The
beans palette organizes the beans into categories.

The Status area at the bottom of the Visual Composition Editor indicates the
category and bean currently selected in the beans palette, or the bean or
connection currently selected on the free-form surface.

Note: You can also identify a bean by placing the mouse pointer over the icon
for the bean. A label will appear that identifies the icon.

Tool bar

The tool bar, which is located below the menu bar of the Visual Composition
Editor, provides easy access to the tools commonly used while manipulating
beans. These tools help with such tasks as positioning beans, sizing beans,
showing and hiding connections between beans, and testing your program.
Specifically, the tools from left to right are: run, specify properties, provide a
beans list, show or hide the connections, arrange the beans on on the surface
in a number of ways, and debug.

Most of the tools in the tool bar act on the beans that are currently selected in
the free-form surface. If no beans are selected for a tool to act on, the tool is
unavailable.

Note: The Tools menu also provides access to these tools.

Free-form surface

The large open area in the Visual Composition Editor is called the free-form
surface. You use the free-form surface as the visual programming area where
you construct your program. You cannot drop nonvisual beans on top of
visual beans.

Regardless of the type of bean, every bean has a pop-up menu that contains
options you can use to modify or work with that bean.

Chapter 2. The Basics 11

12 Getting Started

Chapter 3. Building your first applet

This section guides you through building your first applet in VisualAge for
Java: a To-Do List.

You will create a To-Do List applet, which consists of a bean (a composite bean)
that is made up of many other beans. The applet has a JTextField bean for
entering a To-Do item and a JList bean for displaying the To-Do items. There
are also two JButton beans for adding and removing items from the list. The
user interface for the completed To-Do List applet looks like this:

In the completed applet, you type an item into the To-Do Item field and select
Add. This adds the item to the To-Do List. If you select an item from the
To-Do List and select Remove, the item is removed from the To-Do List.

Getting started with your first applet

If you haven’t already installed VisualAge for Java, refer to the readme.txt file
on the product CD for information on how to install the product. The
VisualAge for Java installation program installs all the files that are necessary
for your development environment.

© Copyright IBM Corp. 1997, 1998 13

Starting VisualAge for Java

You can start VisualAge for Java by doing one of the following:
v For OS/2®, from the VisualAge for Java folder, double-click the IDE icon.

v For Windows 95 and Windows NT, select VisualAge for Java and then IDE
from the Start - Programs menu.

When you first start VisualAge for Java, Enterprise Edition, you
will be prompted to choose an owner for your workspace and a network
name for the user called Administrator. For the purposes of these exercises,
you can select Administrator as your workspace owner and you can enter
any value as the Administrator’s network name. For more information on the
team programming environment, see Getting Started for VisualAge for Java,
Enterprise Edition.

Now that you are up and running

After you start VisualAge for Java, the Workbench window appears:

The Workbench window is used for accessing other windows, creating
program elements, and viewing the contents of program elements.

14 Getting Started

Next, the VisualAge Welcome window appears:

The VisualAge Welcome window provides a fast path to creating applets,
classes, and interfaces.

Choose Go to the Workbench and click OK.

Tip: Another useful window that helps you accomplish common tasks
quickly and easily in the IDE is the Quick Start window. It includes tasks
for creating program elements, learning to use the Scrapbook, managing
the repository, and adding samples and useful beans to your workspace.
You can launch it any time by pressing F2 or selecting QuickStart from
the File menu in any IDE browser. Keep this in mind when you are
creating and managing programs of your own in the IDE. See Using the
Quick Start window for more information.

Using a SmartGuide

For the To-Do List applet, you create an applet as well as a project and a
package to contain your work. You create these using a SmartGuide that you
access from the VisualAge Quick Start window.

Chapter 3. Building your first applet 15

When you manipulate your new applet in the Visual Composition Editor, you
are visually manipulating JavaBeans. These JavaBeans (or, simply, beans) are
represented as classes when you examine your applet in the Workbench.

VisualAge for Java suggests that you give your applets (and all other classes)
names that begin with a capital letter. Class names are case-sensitive, and
cannot contain spaces. If a class name consists of multiple words, do not type
spaces between the words, but instead capitalize the first letter of each word
(for example, ToDoList).

Creating an applet, a project, and a package

To open the SmartGuide, from the Workbench File menu, select Quick Start.
Then from the Quick Start window:
1. Select Basic and then Create Applet.
2. Select OK. The Create Applet SmartGuide opens.

In the Create Applet SmartGuide SmartGuide, follow these steps to create
your applet:
1. In the Project field, type a project name, such as My ToDoList Project.

16 Getting Started

2. In the Package field, type a package name, such as todolist.
3. In the Applet name field, type a name, such as ToDoList.
4. In the Superclass field, using Browse, select JApplet. It becomes

com.sun.java.swing.JApplet.
Do not use Applet (java.applet.Applet) as it is used with the Abstract
Windowing Toolkit (AWT). The applet you are building uses Swing
components. As a rule, Swing beans should be used with the JApplet
superclass; AWT beans should be used with the Applet superclass.

5. Select Compose the class visually.
6. Select Finish.

VisualAge for Java creates a project, a package, and an applet, then opens the
Visual Composition Editor on the applet.

Using the Visual Composition Editor

When the Visual Composition Editor opens, you can begin visually
constructing your To-Do List applet. The To-Do List applet consists of a bean
containing several visual beans.

Working with beans

When working with beans in VisualAge for Java, you use the following
fundamental techniques: dragging beans, selecting multiple beans, and
displaying pop-up menus.

Dragging beans

To drag a bean, click and hold down the appropriate mouse button (In OS/2,
use mouse button 2 to drag a bean; in Windows, use mouse button 1). Move
the crosshair to the desired location and release the button.

Selecting multiple beans

To select multiple beans, hold down the Ctrl key and click mouse button 1 on
the items you want to select. This is referred to as a selection set.

Note: Only beans that can be operated upon as a set can be contained in a
selection set. A set of beans placed within a window, for instance, can
be selected together for the purpose of sizing or alignment. However,
you cannot select the window bean and one of the beans it contains
together.

Chapter 3. Building your first applet 17

Displaying bean pop-up menus

To display a pop-up menu, click mouse button 2 on the bean.

Are You Familiar with Event-to-Code Programming?

The Visual Composition Editor is a visual programming environment. By
using icons and mouse actions, you create your application code. However,
you can also link visual events, such as clicking a button, with code that you
yourself create. See the Event-to-Code Connection section in Connecting
Beans, to see how to access hand-coded methods through an event-to-code
feature.

Building the To-Do List applet

When the Visual Composition Editor opens for the new ToDoList applet, the
default JApplet is represented as a gray rectangle on the free-form surface. To
build the rest of the user interface, you must add several other visual beans.
When you have finished creating the user interface for the To-Do List applet,
the free-form surface of the Visual Composition Editor should look like this:

To make a user interface that looks like this, you need to add, size, and align
the remaining beans.

Note: As you add beans to the applet, you may find that the default JApplet
bean is too small to accommodate all the other beans. If this happens,
you can resize the JApplet bean by selecting it and dragging one of the
selection handles using mouse button.

18 Getting Started

Although this bean uses a <null> layout manager, it could be built using one
of the layout managers, such as GridBagLayout. For an example of creating
the user interface for this bean in GridBagLayout, see 'Creating a GUI Using
GridBagLayout' in the online helps.

Adding a text field and a label

In this stage of the applet creation, you add a JTextField bean that is used to
enter the To-Do items, and a JLabel bean to identify the field. These beans are
in the Swing category of the beans palette.

Tip: As you work with the palette, you may find the icons too small for your
preference. To make them larger, right-click on any gray area on the
palette and select Show Large Icons from the pop-up pane.

1. From the beans palette, select the JTextField bean. The information

area at the bottom of the Visual Composition Editor displays Category:
Swing Bean: JTextField, reflecting the current selection in the beans palette.

2. Move the mouse pointer over the JApplet bean (the rectangle on the
free-form surface). The pointer changes to a crosshair, indicating that it is
now loaded with the bean you selected. Click mouse button 1 where you
want to add the JTextField.
If you accidentally picked the wrong bean and have not dropped the bean
into the JApplet yet, select the correct bean, or select the Selection tool
from the beans palette to unload the mouse pointer.

After you have added the JTextField bean to the JApplet, you can move it
to a new location by dragging it with the mouse. You can also resize it by
dragging a side of the rectangle.

3. Select the JLabel bean and add JLabel just above the JTextField.

Don’t worry about their exact positions. Later you’ll learn how to use the
tools from the tool bar to match sizes and align beans.

Changing the text of a label and adding another label

Change the text of JLabel to To-Do Item by editing the text as follows:
1. Select the JLabel bean. Select Properties from the tool bar.

2. In the Properties window, click text field, and type To-Do Item (instead of
JLabel1). The label now contains the text To-Do Item. You may need to
stretch the label to see it.

3. You can add another label below the JTextField by copying JLabel1. To
copy a bean:

Chapter 3. Building your first applet 19

a. Select the bean.
b. From the Edit menu, select Copy.
c. From the Edit menu, select Paste. The pointer changes to a crosshair,

indicating that it is now loaded with the bean you selected.
d. Click mouse button 1 below the JTextField to add the new label.

4. Change the text for the new label to To-Do List by editing it as you did
for JLabel1.

Tip: You can also copy a bean using the Ctrl key. Position the mouse pointer
over the JLabel bean, hold down the Ctrl key, and drag the copy of the
bean to below the JTextField bean.

Adding a scroll pane for your list

Add a scroll pane so that your list of items can be scrolled.
1. Select the JScrollpane bean. (Notice it comes from another group on

the palette; the group of container beans.)
2. Add JScrollPane below the text field.

Adding a list

To create the list in which the To-Do items are displayed, you need to add a
JList:
1. Select the JList bean and place it inside the scroll pane. The JList

bean adjusts to fill the JScrollPane.
2. In the Properties window, change the selectionMode property to

SINGLE_SELECTION. This simplifies the code needed to handle selection
within the list.

3. It is good practice to save your work periodically. To save your work, from
the Bean menu select Save Bean.

Adding buttons

To add and remove items from the To-Do list, you need to add two buttons:
1. To add more than one instance of a bean at a time, press and hold the Ctrl

key before selecting the bean.
2. Select the JButton bean. Add a button to the right of the text field.

Notice that the mouse pointer remains a crosshair, indicating that it is still
loaded with the JButton bean. To add another JButton, click mouse button
1 below JButton1.

20 Getting Started

3. Select the Selection tool from the beans palette to unload the mouse
pointer.

4. Change the text on JButton1 to Add and JButton2 to Remove by editing them
as you did with the label beans.

5. Save your work using Save Bean from the Bean menu.

Congratulations! You have just created your first user interface using
VisualAge for Java. Next, you need to size and align the beans within the
To-Do List applet.

Sizing and aligning visual beans

Since this bean does not use a layout manager, you need to clean up the
appearance of your user interface by using the sizing and aligning tools from
the tool bar on the Visual Composition Editor. The tool bar provides several
different tools for sizing and aligning beans. You’ll learn a great deal about
how to use them by experimenting with the different tools.

The following steps explain how to match the size of two beans, align the
beans with other beans, and evenly distribute the beans within another bean.
You’ll learn more about sizing and changing beans in Manipulating beans.

Sizing, aligning, and distributing beans

The order in which you size, align, and distribute the beans is not always
important. Usually, you start with the upper left corner and work your way
through all the beans in the window.

To size the list so it matches the width of the text field, do the following:
1. Select the Beans List from the tool bar.

From the list, select JScrollPane1. Remember, you want to size the
container the list is in, which is the scroll pane

2. Hold down the Ctrl key to select multiple items and select the text field
using mouse button 1.

3. Select the Match Width tool from the tool bar.

Because the text field was selected last, it becomes the anchor bean for the
match width operation. The width of the list is changed to match the
width of the text field.

Note: The anchor bean has solid selection handles. The other selected items
have outlined selection handles.

Chapter 3. Building your first applet 21

To size and align the Add button and the Remove button, do the following:
1. Resize the Remove button to an appropriate size for the applet.
2. Select the Add button, hold down the Ctrl key and select the Remove

button using mouse button 1. Then, select the Match Width tool from the
tool bar.

3. Because the buttons remain selected, you can now align their left edges by
selecting the Align Left tool from the tool bar.

To align the left side of the text field, list, and labels, do the following:
1. Move the label for the text field (the one that says To-Do Item) to the

position you want it in the applet.
2. Select the scroll pane (making certain it is the scroll pane, not the list), the

text field and and their associated labels, making sure to select the label of
the text field last.
By selecting the text field label last, you make it the anchor bean for the
alignment operation.

3. Select the Align Left tool from the tool bar.

4. Because the text field, list, and labels are still selected, you can evenly
distribute them in the window by selecting the Distribute Vertically tool
from the tool bar.

5. Save your work.

You have now completely finished the user interface of your To-Do List
applet.

Note: The entire applet that you are creating is a bean. When you select Bean
and then Save Bean from the menu, you are saving the entire applet.

Correcting mistakes

If you make a change in the Visual Composition Editor and then decide that
you should have left things as they were, select Undo from the Edit menu to
restore your work to its previous state. You can undo as many operations as
you want, all the way back to when you opened the Visual Composition
Editor for the current bean.

If you undo an operation and then decide that you did the right thing in the
first place, select Redo from the Edit menu. Redo will restore the view to the

22 Getting Started

state it was in before the last Undo. As soon as you close the Visual
Composition Editor for your bean, you lose any ability to undo or redo
changes.

Connecting beans

Now that you have added the visual beans to create the user interface, the
next step is connecting them.

Event-to-method and parameter-from-property connections

This is a short discussion of the event-to-method connections used in this
example. It is not necessary for you to make the connections as you follow
along in this text. Step-by-step instructions are provided in the next section.

The behavior of the To-Do List applet is to add the text entered in the text
field to the list when the Add button is selected, and to remove a selected
item from the list when the Remove button is selected. To do this, you need
to make event-to-methodconnections between the buttons and the text field
and the list. In the example, you will extend your list to include a model
called DefaultListModel. The Java Foundation Classes, also known as Swing,
separate data from the view of the data. The actual list items are stored in the
list model and then a connection sends the model’s data to the list in the
applet.

Because selecting a button signals an actionPerformed(java.awt.event.ActionEvent)
event and adding an item to the list model is performed by the
addElement(java.lang.Object) method, the event-to-method connection for
adding an item to the list model is between the Add JButton’s
actionPerformed(java.awt.event.ActionEvent) event and the DefaultListModel’s
addElement(java.lang.Object) method. Removing an item from the list is
performed by connecting the Remove JButton’s
actionPerformed(java.awt.event.ActionEvent) event to the
removeElementAt(java.lang.Object) method of the DefaultListModel.

Simply adding these two event-to-method connections does not actually cause
anything to be added to or removed from the list model because both the
addElement(java.lang.Object) and removeElementAt(java.lang.Object) methods
require a parameter that specifies what object is to be added to or removed
from the list. You specify the parameters by creating parameter-from-property
connections.

The text from the JTextField is provided as the parameter to the
addElement(java.lang.Object) method. The selectedValue from the JList is
provided as the parameter to the removeElementAt(java.lang.Object) method.

Chapter 3. Building your first applet 23

Adding a list model and making your connections

You must first add a list model before connecting your beans. Why do you
need a list model? In the Java Foundation Classes (also called Swing) data
and views of the data are separate. A list is simply one view of some To-Do
items. The To-Do list items themselves are contained in the list model. To add
a list model, do the following:
1. Select the Choose Bean tool from the palette.

2. Select Class as the Bean Type from the Choose Bean window. Using
Browse with a pattern of 'de', select the DefaultListModel class:

Click OK and place the DefaultListModel on the free-form surface, below
the applet (the gray area).

3. Now you can begin your connections to move items into your list. Select
the Add button, then click mouse button 2. In the pop-up menu that
appears, select Connect and then actionPerformed.
The mouse pointer changes, indicating that you are in the process of
making a connection. If you accidentally started the wrong connection,
press the Esc key to cancel.

4. To complete the connection, click mouse button 1 on the DefaultListModel
and then select Connectable Features. Click addElement(java.lang.Object)
from the pop-up menu that appears. A dashed line appears, which means
that more information is necessary. In this case, the value of the parameter
for the addElement(java.lang.Object) method is missing.

24 Getting Started

5. To make the parameter-from-property connection that specifies what to
add to the list, follow these steps:
a. Move the mouse pointer on top of the dashed event-to-method

connection line.
b. Click mouse button 2. Select Connect then obj from the pop-up menu

that appears.
c. Click mouse button 1 on the text field, and then select text from the

pop-up menu that appears.

6. Finally, you must get the To-Do items from the DefaultListModel to the list
in your applet, so that users can see them in the applet. This is a
connection that sends data from a source (the model) to a view (the list).

Chapter 3. Building your first applet 25

Click mouse button 2 on the DefaultListModel. Select Connect and then
this from the pop-up window. Click mouse button 1 on the list and select
model from the pop-up window. A blue line appears indicating a
property-to-property connection.

To make the event-to-method connection for the Remove button, do the
following:
1. Select the Remove button, then click mouse button 2. In the pop-up menu

that appears, select Connect and then actionPerformed.
2. Click mouse button 1 on the DefaultListModel, then select Connectable

Features From the pop-up menu that appears, select
removeElementAt(int). Again, a dashed line appears, which means that
more information is necessary. In this case, the value of the parameter for
the removeElementAt(int) method is missing.

3. To make the parameter-from-property connection that specifies what to
remove from the list, follow these steps:
a. Move the mouse pointer on top of the dashed connection line.
b. Click mouse button 2, then select Connect, then index from the pop-up

menu that appears.
c. Click mouse button 1 on the list, then select selectedIndex from the

pop-up menu that appears.
d. Save your work.

Your connections should now look like this:

26 Getting Started

Event-to-Code Connection

Event-to-code programming allows you to associate a hand-written method
with an event. In the first applet you created, you did not need to write any
methods because VisualAge for Java generated them based on your visual
elements and connections. However, sometimes additional logic is required. In
this brief section you can link an event, like the click of a button, with your
own hand-written methods and it is added to the Visual Composition Editor.
An actual example of using this approach, however, is not shown here.

To link an event such as the click of a button with your own hand-written
method, do the following:
1. Click mouse button 2 on the Add button. Click mouse button 1 on Event

to Code in the pop-up window. The Event-to-Code window appears.

Chapter 3. Building your first applet 27

2. At this point, add your code. Before the return statement, add a comment:
// testing event-to-code programming. (You will get to add more real
code using the Event-to-Code feature later.) Click OK to save it. An
information message appears, telling you the text has been modified. Click
Yes. Your method appears in the Visual Composition Editor as shown
below.

3. If you had added a real method that performed a function then your
method would be run when the Add button was clicked. Select the text
box that contains the method name. Click mouse button 2 on the method.
Select Delete from the pop-up window. Save your work.

28 Getting Started

For an introduction to some features of the VisualAge for Java IDE that help
you write manual code quickly and neatly, go to Writing code by hand.

With the user interface complete and the behavior of the applet defined by the
connections between the visual beans, you are now ready to test your work.

Saving and testing the To-Do List applet

You have already saved parts of your applet as you have been working. When
you save changes to a bean, you are replacing the old specification of the bean
with a new one. When you do this, VisualAge for Java will be using the new
specification of the bean for all new uses of it. It is good practice to save your
changes to a bean periodically as you are working with it and when you have
finished editing it.

Saving your visual bean

In the Visual Composition Editor, do the following:
v To save your bean, from the Bean menu select Save bean.

A message box appears saying that your bean is being saved and that
runtime code is being generated. This generated runtime code is what is
used to create your bean when you run your application.

Testing the applet

Now that your work is saved, you can test your To-Do List applet.
1. To begin testing your applet from within the Visual Composition Editor,

select Run from the tool bar

The Applet Viewer starts with your applet in it.
2. When the To-Do List applet appears, experiment with it to ensure that it

behaves the way you expect it to. For the To-Do List applet, you need to
ensure you can add typed items to the list and remove selected items from
the list.

Note: As you design your applet, the Swing beans are presented with Sun’s
Metal look. For example, a JButton will look like a Metal JButton as
opposed to a Windows JButton. You can add your own code to have
your beans rendered in a different system’s look and feel at runtime.
For example, you could add code to have your beans have a Windows
look and feel. Adding this user code is not covered in this document.

Be sure to close the applet window when you have completed your testing.

Chapter 3. Building your first applet 29

At any time, you may return to the Visual Composition Editor and make
changes, save the changes, then test the applet again.

Congratulations! Your To-Do List applet is finished.

Saving your workspace

Before you continue, save your workspace. When you save your workspace,
you are saving the current state of all the code that you are working on and
the state of any windows that you currently have open. To save your
workspace, select Save Workspace from the File menu.

30 Getting Started

Chapter 4. Adding State Checking to Your Applet

There is one piece of unfinished business left over from the To-Do List applet
that you created. To keep the applet as simple as possible, we did not include
any kind of state checking. The Add and Remove buttons are always
available. This is not the ideal behavior for the applet. For example, a user
should only be able to select the Remove button if there is an item selected in
the To-Do List.

This section leads you through the steps to add state checking to your applet.
It’s a chance for you to review what you learned when you created the To-Do
List applet and to learn a bit more about how the Visual Composition Editor
works. This section only deals with the Remove button, but if you want to
experiment, you can try to add the same kind of state checking for the Add
button.

Before we update the applet to include state checking, we’ll go through the
steps to find your applet and to create a versioned edition of it.

Note: This section assumes that you have completed the steps described in
Building your first applet. You should now have a completed, working
To-Do List applet. If you have not done so already, please complete the
steps to create the basic To-Do List applet.

Finding your To-Do List applet in the Workbench

Before you can add state checking to your To-Do List applet, you may need to
find it. When you created it in the Visual Composition Editor, you may not
have kept track of where VisualAge for Java was putting the code it generated
to implement the applet. Don’t worry. VisualAge for Java gives you powerful
search capabilities for finding program elements. These capabilities are
described in more detail in Searching. For now, here is quick way to find your
To-Do List applet:
1. In the Workbench window, select the Projects page.
2. From the Selected menu, select Go To and then Type. The GoTo Type

secondary window appears:

© Copyright IBM Corp. 1997, 1998 31

3. Enter the name of your To-Do List applet (for example, ToDoList) in the
Pattern field. As you enter the name, the Type Names list changes to
include only the types (that is, the classes and interfaces) that match what
you have entered so far.

4. Select the name of your To-Do List applet from the Type Names list. If
packages are listed in Package Names, it means that more than one
package has a class with the name you specified. Select the package in
which you created the To-Do List applet and select OK.

5. The list of projects is updated. The project and package that contain your
applet are expanded, and the class for your applet is selected.

Now you have found the class for your applet, you are ready to version it.

Versioning an edition of your applet

When you version an edition of a program element, you give it a name and
explicitly save its current state. When you make more changes to the code and
save these changes, a new edition is created based on the versioned edition. If
you decide you want to undo your changes or try a different set of changes,
you can simply return to the versioned edition. For more details on editions
and versioned editions, see Managing editions of your code.

32 Getting Started

Before you make any changes to your To-Do List applet class, version it so
you can return to it if necessary. To version the class for your applet:
1. Ensure that the class for your applet is selected. From the Selected menu,

select Manage and then Version. The Versioning Selected Items
SmartGuide appears.

2. Ensure that Automatic is selected and click OK. If Show Edition Names is
selected in the tool bar, a version name appears next to the class.

The next time you modify this class and save it, VisualAge for Java creates a
new edition based on the code in this versioned edition. If you run into
problems while you are making updates to your applet, you can return to the
working edition of the To-Do List applet that you just created.

Editions are managed by a team of developers in the Enterprise
edition. Only owners of editions can version them. Also, versioning is often
followed by releasing. For more information on the team development
environment, see the online help or the Getting Started document for
VisualAge for Java, Enterprise Edition.

Adding state checking to your applet

Now that you have versioned an edition of your applet, you are ready to add
state checking.

Desired behavior of the Remove button

Currently, the Remove button is always enabled, even if no items are in the
list. Here is how the Remove button should work:
v When the applet starts, the Remove button should be disabled.
v When an item is selected in the To-Do List, the Remove button should be

enabled.
v When a selected item in the To-Do List has been deleted, the Remove

button should be disabled.

Overview of adding the desired behavior to the Remove button

To get the desired behavior for the Remove button, you need to:
v Open the To-Do List applet in the Visual Composition Editor.
v Set the properties of the Remove button so it is disabled when the applet

first starts.
v Create a new method that checks if any item is selected in the To-Do List.
v Add an Event-to-Code connection to enable the button when an item is

selected in the To-Do List.

Chapter 4. Adding State Checking to Your Applet 33

Open your To-Do List applet in the Visual Composition Editor

First, open your To-Do List applet class in the Visual Composition Editor:
1. Select the class for your To-Do List applet in the Workbench.
2. From the Selected menu, select OpenTo and then Visual Composition.
3. The free-form surface appears. It should look like this:

Set the properties of the Remove button

Now set the properties of the Remove button so it is disabled when the
applet starts:
1. Select the Remove button and click mouse button 2. Select Properties from

the pop-up menu that appears. The Properties secondary window appears.

34 Getting Started

2. Select the field to the right of enabled. Select False from the drop down
list in this field and close the Properties window. The Remove button
should now appear disabled:

Create a new method to check if an item is selected

Next, create a new method in your To-Do List applet that checks to see if any
items are selected in the To-Do List. To create a new method:
1. Select the Methods page.
2. Select Create Method or Constructor from the tool bar.

The Create Method SmartGuide appears.
3. In the Create Method SmartGuide, enter the following field beside Types:

boolean enableRemove(

Click Types. In the Types pop-up window, enter JL as the pattern. Select JList
from the Type Names panel. Click Insert.
4. Add checkList as the parameter name for the JList type; then add a closing

parenthesis. Your method should now be:
boolean enableRemove(com.sun.java.swing.JList
checkList)

This specifies a method that takes one parameter (a JList) and returns a
boolean value.
5. Select Finish to generate the method.
6. Select the new enableRemove(com.sun.java.swing.JList) method from the

Methods list and add the code to implement it. If you are viewing this
document in a browser, you can select the following code, copy it, and
paste it into the Source pane. The finished method should look like this:
public boolean enableRemove(com.sun.java.swing.JList checkList) {
if (checkList.getSelectedIndex() < 0)
return false;
else
return true;

}

7. To save this new method, click mouse button 2 in the Source pane and
select Save from the pop-up menu that appears.

This simple method calls the getSelectedIndex method for its checkList
parameter. If getSelectedIndex returns -1, there are no items selected in the list
and enableRemove(com.sun.java.swing.JList) returns false (so the Remove button
appears faded). Otherwise, enableRemove(com.sun.java.swing.JList) returns true
(so the Remove button appears with solid black text like the Add button).

Chapter 4. Adding State Checking to Your Applet 35

Add a connection to enable and disable the Remove button

Next, add the connection that enables the Remove button when an item is
selected in the To-Do List:
1. Select the Visual Composition page.
2. Select the list and click mouse button 2. Select Connect then

listSelectionEvents from the pop-up menu that appears. The mouse
pointer changes to indicate that you are in the process of making a
connection.

3. Complete the connection by clicking mouse button 1 on the free-form
surface and selecting Event to Code. Select method enableRemove() and
select OK.

4. The connection is incomplete because you need to provide information as
to what JList should be checked for selected items. To complete the
connection, select it, click mouse mouse button 2, and select Connect.
Connect checkList to the JList1 this property.

5. The boolean that is returned from the enableRemove method is used to
set the enabled property of the Remove button. Select the connection to the
enableRemove method and click mouse button 2. Select Connect and
select normalResult. Connect normalResult to the Remove button enabled
property.

Every time an item is selected in the list, the enabled property of the Remove
button is set to true.

Saving and testing your changes

Before you continue, save your work and test it:

36 Getting Started

1. To save the current state of your work in the Visual Composition Editor,
select Save Bean from the Bean menu.

2. To test the changes you made, select Run from the tool bar.

3. The Applet Viewer appears with your applet.
4. Experiment with it to ensure that the behavior of the Remove button is

correct. Ensure that the Remove button is disabled when the applet starts
and then becomes enabled as soon as an item is selected in the To-Do List.
Ensure that the Remove button becomes disabled again when nothing is
selected in the To-Do List.

Congratulations! You have successfully added state checking to your To-Do
List applet.

Now that you have a new level of your code working, create another
versioned edition of it by following the steps in Versioning an edition of your
applet.

Chapter 4. Adding State Checking to Your Applet 37

38 Getting Started

Chapter 5. Enhancing the To-Do List Program

In the previous section, you added state checking to your simple To-Do List
applet. This section leads you through the steps of modifying your simple
To-Do List applet so that it can save To-Do lists to named files and open files
containing To-Do lists.

As you modify your applet, you will learn about:
v Creating new methods
v Adding business logic code in the Visual Composition Editor
v Updating the user interface
v Running code as an applet or an application

Note: This section assumes that you have completed the steps described in
Adding state checking to your applet. You should now have a
completed, working To-Do List applet with simple state checking. If
you have not done so already, please complete the steps to add state
checking to your To-Do List applet.

Behavior of the To-Do List program

Before jumping into the modifications that you will be making to your applet
to create the updated To-Do List program, let’s review how the finished
program will work.

Here is what the To-Do List program will look like:

© Copyright IBM Corp. 1997, 1998 39

Like your existing applet, the updated To-Do List program adds the text in
the To-Do Item field to To-Do List when you select the Add button. When
you select the Remove button, the program removes the selected item from
the To-Do list.

What about the new buttons? Here is an overview of their behavior:
v When you select Open To-Do File, a file dialog appears from which you

can select the file you want to open. If you select a file, its contents are put
into the To-Do list.

v When you select Save To-Do File, a file dialog also appears. In this dialog
you can specify the file where you want to save your list. If you select a file
for saving, the contents of the To-Do list are copied into this file.

In addition to the differences in interface and behavior, there is one other
important difference between the To-Do List applet and the To-Do List
program. Because it needs access to the file system to read and write files, the
To-Do List program must be run as an application rather than an applet. Java
applets are not allowed to access the file system.

Steps for adding file access to the To-Do List program

Here is a summary of the steps that you will follow to create the enhanced
To-Do List program:
1. Create new methods with logic for reading and writing files.
2. Add the Open To-Do File >and Save To-Do File buttons to the user

interface.
3. Add JFileChooser beans for opening and saving files.
4. Add connections from the Open To-Do File >button.
5. Test the program to verify your work so far.
6. Add connections from the Save To-Do File >button.
7. Test the completed program.

The following sections describe these steps in detail.

Creating new methods

The next step in enhancing the To-Do List program is adding some methods
that contain the logic for the To-Do List program to read and write To-Do
files.

Here are the individual tasks that need to be completed to create the new
class:

40 Getting Started

v Add a method for reading To-Do files.
v Add a method for writing To-Do files.

The following sections describe these tasks in more detail.

Creating a new method: adding a method for reading files

This section guides you through creating a method called readToDoFile that
reads an input file.

Before creating this method, let’s review what it is supposed to do:
v Accept as arguments a directory, a file name, and a DefaultListModel object.
v Read the contents of the file line-by-line and add each line as an item in the

DefaultListModel object.

Here are the detailed steps for creating this method:
1. Select the ToDoList class.
2. Select Add and then Method from the Selected menu. When the Create

Method SmartGuide appears, enter the following method name: void
readToDoFile(File dirName, File fileName, DefaultListModel fillList)

3. This specifies a method that takes three arguments.
v dirName - the name of the directory that holds the file to be read
v fileName - the name of the file to be read
v fillList - the DefaultListModel object in the interface that receives the

contents of the file
4. Select Finish to generate the method.
5. Select the new readToDoFile method and add the code to implement it. If

you are viewing this document in a browser, you can select the following
code, copy it, and paste it into the Source pane. The finished method
should look like this:
public void readToDoFile (File dirName, File fileName,

DefaultListModel fillList) {
FileReader fileInStream = null;
BufferedReader dataInStream;

String result;
// if valid directory and filenames have been passed in,
// read the file and fill the list
if ((dirName != null) && (fileName != null)) {

try {
fileInStream= new FileReader(fileName);

}
catch (IOException e) {

System.err.println
('IO exception opening To-Do File ' +fileName);

Chapter 5. Enhancing the To-Do List Program 41

return;
}
dataInStream = new BufferedReader(fileInStream);
// clear the existing entries from the list
fillList.removeAllElements();
try {

// for each line in the file create an item in the list
while ((result = dataInStream.readLine()) != null) {

if (result.length() != 0)
fillList.addElement(result);

}
}
catch (IOException e) {System.err.println

('IO exception reading To-Do File ' +fileName);}
try {

fileInStream.close();
dataInStream.close();

}
catch (IOException e) { System.err.println

('IO exception closing To-Do File ' +fileName);}
}
else {

System.err.println
('Null file name and/or directory reading To-Do File');

}
return;

}

Select Save from the Edit menu to save your changes and recompile.

Before continuing with the next task, let’s review the code in this method:
1. At the beginning of the method, there are declarations of the fields that are

used to manipulate the file and its contents, and an if statement that tests
whether both the directory and the file name are non-null:
FileReader fileInStream = null;
BufferedReader dataInStream;
String result;
// if valid directory and filenames have been passed in,
// read the file and fill the list
if ((dirName != null) && (fileName != null)) {

2. Next, there are statements to associate the file with a FileReader and to
associate the FileReader with a BufferedReader. Using a BufferedReader
makes it possible to read the file a line at a time.
try {

fileInStream= new FileReader(+fileName);
}
catch (IOException e) {

System.err.println('IO exception opening To-Do File '
+fileName);

return;
}
dataInStream = new BufferedReader(fileInStream);

42 Getting Started

3. Next, we clear the fillList. Then, a loop reads the file one line at a time
into the String result. Then, if result is not a zero-length String, it adds
result as an item to fillList:

fillList.removeAllElements();
try {

// for each line in the file create an item in the list
while (((result = dataInStream.readLine()) != null)) {

if (result.length() != 0)
fillList.addElement(result);

}
}
catch (IOException e) {System.err.println('IO exception reading To-Do File '

+fileName);}

4. Finally, there are statements to close the streams associated with the file:
try {

fileInStream.close();
dataInStream.close();

}
catch (IOException e) { System.err.println('IO exception closing To-Do File '

+fileName);}

Creating a new method: adding a method for writing files

You have one more method to add to the ToDoList class. This method, called
writeToDoFile, writes an output file. Let’s review what this method is supposed
to do:
v Accept as arguments a directory, a file name, and a DefaultListModel object
v Write each item in the DefaultListModel object as a line in the file

Here are the detailed steps for creating this method:
1. Select the ToDoList class.
2. From the Selected menu, select Add and then Method. When the Create

Method SmartGuide appears, enter the following in the method name:
void writeToDoFile(File dirName, File fileName, DefaultListModel
fillList)

This specifies a method that takes 3 arguments.

dirName
The name of the directory that holds the file to be written

fileName
The name of the file to be written

fillList
The DefaultListModel object in the interface containing the items
to be written to the file

3. Select Finish to generate the method.

Chapter 5. Enhancing the To-Do List Program 43

4. Select the new writeToDoFile method and add the code to implement it. If
you are viewing this document in a browser, you can select the following
code, copy it, and paste it into the Source pane. The finished method
should look like this:

public void writeToDoFile(File dirName, File fileName,
DefaultListModel fillList) {

FileWriter fileOutStream = null;
PrintWriter dataOutStream;
// carriage return and line feed constant
String crlf = System.getProperties().getProperty('line.separator');
// if valid directory and filenames passed, write the file from the list
if ((dirName != null) && (fileName != null)) {

try {
fileOutStream = new FileWriter(fileName);

}
catch (IOException e) {

System.err.println
('IO exception opening To-Do File ' +fileName);
return;

}
dataOutStream = new PrintWriter(fileOutStream);
// for every item in the list, write a line to the output file
for (int i = 0; i < fillList.getSize(); i++) {

try {
dataOutStream.write(fillList.get(i)+crlf);

}
catch (Exception e) { System.err.println
('Exception writing To-Do File ' +fileName);}

}
try {

fileOutStream.close();
dataOutStream.close();

}
catch (IOException e) { System.err.println
('IO exception closing To-Do File ' +fileName);}

}
else {

System.err.println
('Null file name and/or directory writing To-Do File');

}
return;

}

Select Save from the Edit menu to save your changes and recompile.

This code is similar to the code for readToDoFile. Before continuing with the
next step, let’s review the loop that actually writes lines to the file:
for (int i = 0; i < fillList.getSize(); i++) {

try {
dataOutStream.write(fillList.get(i)+crlf);

44 Getting Started

}
catch (Exception e) { System.err.println('Exception writing To-Do File '

+fileName);}
}

This loop goes through each item in fillList. Each item is appended with
crlf (a String consisting of the line separator characters) and written to the
file. The line separator characters force each item to be written on a separate
line in the file.

Using the Scrapbook to test code

Before continuing, let’s pause and consider the line separator for a moment.
Suppose you have never seen this before and you want to see how it works.
You can use the scrapbook window to test out a code fragment that exercises
this part of your class.

To test the line separator code:
1. Select Scrapbook from the Window menu. The Scrapbook window

appears.
2. Enter the following code into a page in the Scrapbook window:

String crlf = System.getProperties().getProperty('line.separator');
System.out.println('Here is one line.'+crlf+'And here's another line.');

3. Select both of these lines of code and select Run from the Scrapbook
window tool bar.

4. Select Console from the Window menu. The Console window should look
like this:

Chapter 5. Enhancing the To-Do List Program 45

Notice that the line separator splits the output so that it appears on separate
lines. This simple example demonstrates how you can use the Scrapbook
window to try out a piece of code quickly and conveniently.

Adding buttons to the To-Do List applet user interface

You have completed all of the steps that added logic to the ToDoList class.
Now you are ready to make modifications to the user interface of the To-Do
List applet. Your current To-Do List applet should look like this:

You need to add two new buttons to this user interface:
v An Open To-Do File button to trigger opening a file to read into the To-Do

list
v A Save To-Do File button to trigger saving the contents of the To-Do list to

a file

To add these two buttons:
1. Select the ToDoList class for your To-Do List applet.
2. From the Selected menu, select Open To and then Visual Composition.
3. The free-form surface appears. It should look like this:

46 Getting Started

4. Select a JButton bean and add a button under the existing Remove button.
You may need to move your Add and Remove buttons or lengthen the
free-form surface to make space for your new button.

5. Select the button you just added and change its text to Open To-Do File....
To change the text:
v Open Properties for the new JButton (JButton3).
v Change the text value to Open To-Do File....

6. Follow the same procedure to add another button below JButton3. Change
the text of this button to Save To-Do File...

7. Size the new buttons to match the width of the existing buttons:
v Select the Add button. Hold down the Ctrl key and select the Remove,

Open To-Do File and Save To-Do File buttons so that all four buttons
are selected. The Save To-Do File button, the last bean selected, has
solid selection handles, indicating that it is the anchor bean. The anchor
bean is the bean that acts as the guide for resizing or the bean that the
other selected beans match.

v Select Match Width from the tool bar.

8. Align the two new buttons with the existing Add and Remove buttons:
v Select the Save To-Do File button. Hold down the Ctrl key and select

the Open To-Do File, Remove, and Add buttons so that all four buttons
are selected. The Add button becomes the anchor bean.

v Select Align Left from the tool bar.

9. Distribute evenly all four buttons:
v Because you have all buttons already selected, click Distribute

Vertically on the tool bar.

Chapter 5. Enhancing the To-Do List Program 47

You have added the two new buttons for the To-Do List program. Now you
are ready to associate them with some action.

Adding JFileChooser beans to the free-form surface

Now that you have added the new buttons, the next step is to add file dialog
beans for opening files and saving files. Later, you will use these file dialog
beans to obtain a file selection and provide parameters to the readToDoFile
and writeToDoFile methods.

These file dialog beans are preview beans for Swing that are not part of the
Java Foundation Classes. Note that the Java Foundation Classes (JFC) present
these file dialogs in a platform-independent representation as shown below:

In the finished To-Do List program, a file dialog appears when a user selects
the Open To-Do File or Save To-Do File button. In the file dialogs, the user
specifies the name of the file to open or save.

To add the file dialog beans:
1. Select the JFrame bean from the palette.

2. Add the JFrame bean to the right side of the applet area, that is, outside of
the gray area. Add a second JFrame bean below JFrame1. Select both of
them and open the Property window to change the layout to
BorderLayout.

3. Select Choose Bean from the palette.

48 Getting Started

4. When the Choose Bean window appears, select Browse to specify the
com.sun.java.swing.preview.JFileChooser class. Click OK. Place the
JFileChooser bean (which is the file dialog itself) inside JFrame1.

5. Add a second JFileChooser dialog bean inside JFrame2.

Your free-form surface should look similar to the one below.

Save the current state of your work in the Visual Composition Editor by
selectingSave Bean from the Bean menu.

Note: The exact positions of the file dialog beans do not affect the interface of
the finished program. However, it will be easier for you to follow the
instructions in the following sections for connecting beans if you line
up these beans according to the instructions in this section.

Connecting the Open To-Do File button

Now that you have added all the new beans to the free-form surface, you are
ready to begin connecting them.

The To-Do List applet should perform the following actions when a user
selects the Open To-Do File button:

Chapter 5. Enhancing the To-Do List Program 49

1. Show the file dialog.
2. Dispose of the file dialog.
3. Invoke the readToDoFile method.

You implement actions 1 and 2 by making connections between the Open
To-Do File button and the JFileChooser bean for opening files. You implement
action 3 by making a connection between the Open To-Do File button and the
DefaultListModel bean.

Create the connection to show and dispose of the open file dialog
1. Select the Open To-Do File button and click mouse button 2. Select

Connect and then actionPerformed from the pop-up menu that appears.
The mouse pointer changes to indicate that you are in the process of
making a connection.

2. Complete the connection by clicking mouse button 1 on the JFileChooser
bean to the right of the applet. From the pop-up menu that appears, select
Connectable Features. Choose Methods from the End connection to
window. Select showOpenDialog(java.awt.Component). Click OK.

3. Select the connection just completed and click mouse button 2. Select
Connect and then parent from the pop-up menu. Click the frame
containing the file chooser and select this from the pop-up menu.

Now the free-from surface should look like this:

50 Getting Started

You have completed all the connections between the Open To-Do File button
and the JFileChooser that get data from a file and put it in your To-Do list.
Now you are ready to make the connection that invokes readToDoFile in the
DefaultListModel bean.

Create the connection to invoke readToDoFile
1. Select the Open To-Do File button and click mouse button 2. Select

Connect and then actionPerformed from the pop-up menu that appears.
2. Click mouse button 1 on the free-form surface and select Event to Code.
3. In the Event to Code window, select method readToDoFile(java.io.File,

java.io.File, com.sun.java.swing.DefaultListModel) and then select OK.
The connection that appears is incomplete because readToDoFile takes three
parameters: a directory name, a file name, and a DefaultListModel object.
Begin by specifying the directory name:
v Select the connection and click mouse button 2.
v Select Connect and then dirName from the pop-up menu that appears.

Notice the selections under Connect include the names of all the
parameters that you specified for readToDoFile when you created it as a
method.

v Move the mouse pointer to JFileChooser1 and click mouse button 1.
Select Connectable Features from the pop-up menu that appears.

v Choose Method from the End connection to secondary window, select
getCurrentDirectory() and then select OK.

4. You have specified one of the parameters, but the connection is still not
complete. To specify the file name:
v Select the connection between the Open To-Do File button and the

readToDoFile method; click mouse button 2.
v Select Connect and then fileName from the pop-up menu that appears.
v Click mouse button 1 on JFileChooser1. Select Connectable Features

from the pop-up menu that appears.
v Choose Method from the secondary window, select getSelectedFile()

and then select OK.
5. There is still one parameter to specify before the connection is complete:

the List object.
v Select the connection between the Open To-Do File button and the

readToDoFile method; click mouse button 2.
v Select Connect and then fillList from the pop-up menu that appears.
v Click mouse button 1 on the DefaultListModel bean and select this from

the pop-up menu that appears. This last connection is significant. It
specifies that the DefaultListModel bean in the user interface is the
fillList parameter for readToDoFile. In other words, the DefaultListModel

Chapter 5. Enhancing the To-Do List Program 51

bean in the interface is the DefaultListModel object in which
readToDoFile adds items as it reads the input file.

6. The free-form surface should look like this:

Congratulations! You have completed all the connections from the Open
To-Do File button. Now you are ready to test the work you have done so far
on the To-Do List program.

Testing the Open To-Do File button

Now that you have made all the connections for the Open To-Do File button,
you are ready to test the work you have done so far.

To test the current state of the To-Do List program:
1. First, prepare a simple text file to use for testing. Use the Scrapbook

window to create and save a sample To-Do file called test1.txt with the
following lines in it:
Get a mortgage
Buy home
Buy 2nd car
Renovate home
Ask for a raise

52 Getting Started

2. Save your current work in the Visual Composition Editor by selecting
Save Bean from the Bean menu. VisualAge for Java generates code to
implement the connections you specified in the last step.

3. Select Run from the tool bar.
4. The To-Do List program appears.
5. Select the Open To-Do File button. A file dialog like the one below should

appear. Note that the bottom right-hand button says 'Open'. If you simply
leave the cursor on Open without clicking, hover help tells you what the
button will do.

6. From this file dialog, go to the drive and directory in which the test1.txt
file is located. To select a drive, click Program and select a drive. The
directories and files from the drive are shown. Select your file and click
Open.

7. The To-Do List in your program should now be loaded with the items
from the test1.txt file:

Chapter 5. Enhancing the To-Do List Program 53

Now that you have tested your current progress on the To-Do List program,
you are ready to complete the program by making the connections from the
Save To-Do File button.

Connecting the Save To-Do File button

You are now ready to make the final connections from the Save To-Do File
button.

The To-Do File program should perform the following actions when the Save
To-Do Filebutton is selected:
1. Show the file dialog.
2. Dispose of the file dialog.
3. Invoke the writeToDoFile method to write the list of items in the To-Do list

to a file that is selected in the file dialog.

You implement actions 1 and 2 by making connections between the Save
To-Do File button and the Save JFileChooser dialog bean. You have already
implemented action 3 by making the connection between the Save To-Do File
button and the readToDoFile method.

As you complete the connections listed in this section, you may notice that
they are very similar to the connections you made from the Open To-Do File
button.

Create the connection to show and dispose of the save file dialog
1. Select the Save To-Do File button and click mouse button 2. Select

Connect and then actionPerformed from the pop-up menu that appears.
2. Click mouse button 1 on JFileChooser2. From the pop-up menu that

appears, select Connectable Features. Choose Method from the End
connection to window. Select showSaveDialog(java.awt.Component).
Click OK.

3. Select the connection just completed and click mouse button 2. Select
Connect and then parent from the pop-up menu. Click the frame
containing the file chooser and select this from the pop-up menu.

Now the free-form surface should look like this:

54 Getting Started

Now you are ready to make the connection that invokes writeToDoFile.

Create the connection to invoke writeToDoFile
1. Select the Save To-Do File button and click mouse button 2. Select

Connect and then actionPerformed from the pop-up menu that appears.
2. Click mouse button 2 on the the free-form surface. From the pop-up menu

that appears, select Event to Code.
3. In the Event to Code window, select writeToDoFile(java.io.File,

java.io.File, com.sun.java.swing.DefaultList Model). The connection that
appears is incomplete because writeToDoFile takes three parameters: a
directory name, a file name, and a DefaultListModel object. Begin by
specifying the directory name:
v Select the connection and click mouse button 2.
v Select Connect and then dirName from the pop-up menu that appears.

Notice the selections under Connect include the names of all the
parameters that you specified for writeToDoFile when you created it as a
method in the ToDoList class.

v Move the mouse pointer to FileChooser2 and click mouse button 1.
Select Connectable Features from the pop-up menu that appears.

v Choose Method from the End connection to secondary window. Select
getCurrentDirectory(), and then select OK.

Chapter 5. Enhancing the To-Do List Program 55

4. To specify the file name:
v Select the connection between the Save To-Do File button and the

writeToDoFile method and click mouse button 2.
v Select Connect and then fileName from the pop-up menu that appears.
v Click mouse button 1 on FileChooser2. Select Connectable Features

from the pop-up menu that appears.
v Choose Method from the secondary window, select getSelectedFile()

and then select OK.
5. There is still one parameter required before the connection is complete. To

specify the DefaultListModel object:
v Select the connection between the Save To-Do File button and the

writeToDoFile method; click mouse button 2.
v Select Connect then fillList from the pop-up menu that appears.
v Click mouse button 1 on the DefaultListModel bean and select this from

the pop-up menu that appears.
6. The free-form surface should look like this:

Congratulations! You have completed all the connections from the Save To-Do
File button. Your To-Do File program is complete and you are ready to test it.

56 Getting Started

Saving and testing the completed To-Do List program

Now that you have completed the enhanced To-Do List program, you are
ready to save and test it.

To save and test your completed To-Do List program:
1. Select Save Bean from the Bean menu to save your changes. VisualAge for

Java generates the code to implement all the work you have done in the
Visual Composition Editor since the last time you saved.

2. Select Run from the tool bar.
3. Try creating and saving a new To-Do file:
v Add the following items to the To-Do List. For each item, enter the item

in the To-Do Item field and select Add:
– Get paint

– Get wallpaper

– Spouse says OK?

– Start painting

– Start wallpapering

v Select Save To-Do File. A save file dialog should appear. In this dialog,
go to the directory in which you saved the test1.txt file for testing the
Open To-Do File button. Enter the file name test2.txt and select Save.

4. Now try loading the list from test1.txt. Select Open To-Do File. An open
file dialog should appear. Select test1.txt, then select Open. The original
list from test1.txt should be loaded into To-Do List.

5. Now try replacing the current list with the one you saved in test2.txt.
Select Open To-Do File. Select test2.txt, then select Open. The list from
test2.txt should replace the test1.txt list in To-Do List.

Congratulations! You have completed a Java program that combines a user
interface created in the Visual Composition Editor with nonvisual code that
you created directly.

Before you continue, create a versioned edition of the ToDoList class.
1. Select the ToDoList class in the Workbench. Select Manage and then

Version from the Selected menu. The Versioning Selected Items
SmartGuide appears.

2. Ensure that Automatic is selected and select Finish.

Chapter 5. Enhancing the To-Do List Program 57

58 Getting Started

Chapter 6. What Else Can You Do With the Visual
Composition Editor?

In Building your first applet, you learned a great deal about constructing user
interfaces using the Visual Composition Editor’s beans palette, tool bar, and
free-form surface. To build on these fundamental skills, you need to learn
about manipulating beans and their properties, working with connections and
their properties, and correcting mistakes.

While reading through this section, you might want to create a new applet,
open a Visual Composition Editor on it, and try out some of the tasks
described.

Manipulating beans

After you add beans to an applet, you will often want to align them, size
them, or perform similar tasks. Before you can align or size your beans,
however, you must learn to manipulate them. This section introduces you to
the following tasks:
v Selecting beans
v Deselecting beans
v Moving beans
v Copying beans

Selecting beans

To select a bean, click on it with mouse button 1.

When you select a bean, small, solid boxes called selection handles appear in
the corners of the bean to assist you in manipulating that bean.

Note: Beans that cannot be sized do not have selection handles. Instead, these
beans change their background color when they are selected. Beans
with this behavior include nonvisual beans and menu beans.

© Copyright IBM Corp. 1997, 1998 59

If other beans are selected when you select a bean, they will be deselected
automatically. This is referred to as single selection. The name of the bean
currently selected is displayed in the status area at the bottom of the Visual
Composition Editor.

Selecting several beans

If several beans are selected, the last one selected has solid selection handles
indicating that it is the anchor bean. The other selected beans have hollow
selection handles.

The anchor bean is important when performing operations such as bean
sizing and alignment. The other selected beans set their position or size to the
position or size of the anchor bean. You can change the anchor bean by
holding the shift key and selecting the bean you want to be the anchor.

To select several beans, do one of the following:
v Click mouse button 1 on one of the beans you want to select, then hold

down the Ctrl key and click mouse button 1 on each additional bean you
want to select. Remember, the last bean selected becomes the anchor around
which sizing and alignment operations take place.

v In OS/2, you can click and hold mouse button 1 on a bean. Move the
mouse pointer over each additional bean you want to select. After you have
selected all the beans you want, release mouse button 1.

When multiple beans are selected, the status area displays the number of
beans selected (for example, 3 beans selected).

Deselecting beans

To deselect all the beans currently selected, click mouse button 1 on another
bean or in an open area of the free-form surface.

To deselect one bean from a group of beans that have been selected, hold
down the Ctrl key and click with mouse button 1 on the bean you want to
deselect. If the bean you deselected was the anchor bean, the previously
selected bean will become the anchor bean.

Moving beans

To move beans, follow these steps:
1. Click and hold with the appropriate mouse button on the bean:
v In OS/2, hold down mouse button 2 to move beans.

60 Getting Started

v In Windows, hold down mouse button 1 to move beans.
2. Move the mouse pointer to the location at which you want to position the

bean and release the mouse button.

You can move several beans at once by first selecting all of the beans you
want to move. You can then grab any selected bean (by clicking on it with
mouse button 1) and drag all the selected beans to their new location.

Copying beans

After you add a bean, you can copy that bean instead of adding another one
from the beans palette. Copying a bean is one method of adding multiple
copies of the same bean. One obvious advantage to copying a bean is that you
can make common modifications to one bean and simply duplicate it as often
as needed. Copying a bean that has connections does not duplicate the
connections.

To copy a bean, follow these steps:
1. Hold down the Ctrl key and select with the appropriate mouse button on

the bean you want to copy.
v In OS/2, use mouse button 2 to copy beans.
v In Windows, use mouse button 1.

2. Drag the mouse pointer to the position where you want the new bean and
release the mouse button and the Ctrl key.

You can copy several beans at once by first selecting all the beans you want to
copy. Then, hold the Ctrl key, grab any selected bean, and drag a copy of the
beans to their new location.

Copying beans using the clipboard

To copy beans using the clipboard, follow these steps:
1. Select the bean or beans you want to copy.
2. From the Edit menu of the Visual Composition Editor, select Copy.
3. Then, from the Edit menu, select Paste. The mouse pointer becomes a

cross-hair.
4. Move the mouse pointer to the location where you want to add the new

bean or beans and click mouse button 1.

Deleting beans

To delete a bean, simply select it and press the Delete key, or select Delete
from the bean’s pop-up menu.

Chapter 6. What Else Can You Do With the Visual Composition Editor? 61

To delete several beans, multiple-select the beans you want to delete before
performing the delete operation.

If you delete a bean that has connections to or from it, the bean and all of its
connections are deleted. However, in this case, you are prompted to confirm
whether you want to continue before the beans and connections are deleted. If
you accidentally delete an item you wish to retain, simply select Undo from
the Edit menu of the Visual Composition Editor.

Sizing, aligning, and positioning beans

This section describes the facilities available in the Visual Composition Editor
for sizing, aligning, and positioning beans.

Note: Beans that are containers (such as a JApplet or a Frame) have a layout
property. This property provides specific layout managers that control
the positioning of beans within the container. Using a layout manager
is the preferred way to create a user interface. However, if you use a
<null> layout, the Visual Composition Editor provides tools for
aligning and positioning beans.

Sizing beans

To size a bean, follow these steps:
1. Select the bean you want to size. The selection handles display at each

corner.
2. Drag any one of the selection handles using mouse button 1 to adjust the

size of the bean.
Before you release the mouse button, an outline of the bean is displayed to
show you the new size of the bean.

To size the bean in only one direction, hold down the Shift key while you
drag a selection handle in a horizontal or vertical direction.

You can also use the constraints property in the bean’s Properties window to
size the beans. For more information about Properties windows, see Changing
bean properties.

Aligning beans

To align beans with other beans in a <null> layout, follow these steps:
1. Select the beans you want to align, ensuring that the last bean selected is

the bean you want the others to align with.
2. Select one of the following alignment tools from the tool bar:

62 Getting Started

Align Left

Align Top

Align Center

Align Middle

Align Right

Align Bottom

Matching the dimensions of another bean

You can size beans to the same width or height as another bean.
1. Select the beans you want to match, ensuring that the last bean selected is

the one you want the others to match.
2. Select one of the following sizing tools from the tool bar:

Match Width

Match Height

You can also match the dimensions of two or more beans by selecting them
and then clicking mouse button 2. Select Layout and then Match Size from
the pop-up menu that appears. You can select to match Width, Height, or
Both.

Distributing beans evenly

To distribute beans evenly within a composite bean that uses <null> layout,
follow these steps:
1. Select the beans you want to distribute evenly.
2. Select one of the following distribution tools from the tool bar:

Distribute Horizontally

Distribute Vertically

To evenly distribute beans within an imaginary bounding box that surrounds
the multiple-selected beans, follow these steps:
1. Multiple-select the beans you want to evenly distribute. A minimum of

three beans must be selected.

Chapter 6. What Else Can You Do With the Visual Composition Editor? 63

2. From the pop-up menu of one of the selected beans, select Layout and
then Distribute. Then select one of the following:

Horizontally In Bounding Box
Evenly distribute the selected beans within the area bounded by
the left-most edge of the left-most bean and the right-most edge of
the right-most bean.

Vertically In Bounding Box
Evenly distribute the selected beans within the area bounded by
the top-most edge of the top-most bean and bottom-most edge of
the bottom-most bean.

There are two more selections in Distribute:

Horizontally In Surface
Distributes the selected beans in the same way as Distribute
Horizontally from the tool bar.

Vertically In Surface
Distributes the selected beans in the same way as Distribute
Vertically from the tool bar.

Changing bean properties

A Properties window provides a way to display and set the properties and
other options associated with a bean or connection. In addition to
bean-specific properties, you can set data validation and layout properties.

Opening the Properties window for a bean

To open the Properties window for a bean, do any of the following:
v Double-click on the bean.
v Select Properties from the pop-up menu for the bean.
v Select the bean and select Properties from the tool bar.

If you open the Properties window for a bean, you can show the properties of
another bean in the window by:
v Selecting another bean
v Selecting another embedded bean from the drop-down list at the top of the

Properties window

Here is an example of the Properties window for a bean:

64 Getting Started

Bean property names and their values are displayed in a table format. How
property values are changed depends on the property type itself. For a
JTextField bean, for example, the value of the beanName property is a string
and can be changed directly within a cell in the Properties window. Some
property values can be changed by selecting from a drop-down list. Other
bean property values (for example, color and font) can be changed through a
second window displayed for that purpose.

To edit any bean property, open its Properties window and click on the value
you want to change. If the value is a string or integer value, you can edit it
directly. If the value is a color value, select the button in the value column

to bring up the colors window. If the value is a boolean, click on the cell in
the value column of the table and select either True or False from the
drop-down list.

After changing the properties of a bean, you can apply them in the following
ways:
v By selecting another entry in the Properties window
v By closing the Properties window
v By clicking on another bean or on the free-form surface.

Changing bean colors and fonts

Another enhancement that you can make to your visual beans is to change
the colors and fonts that the beans use.

If you are developing applets to be used on multiple platforms, you should
carefully consider the effect of choosing colors and fonts that are different
from the default system colors and fonts. For example, if you choose a

Chapter 6. What Else Can You Do With the Visual Composition Editor? 65

particular font available in OS/2, that font might not be available in
Windows. For more information, see Portability of colors and fonts.

Changing the color of a bean
1. In the Visual Composition Editor, double-click on a JButton bean whose

color you want to change. The Properties window appears.
2. To change the background color of a bean, select the value for the

background property in the Property window. Select the button that
appears:

The Backgound window opens:

3. In the Background window, click mouse button 1 on the color you want to
use. The color appears in the color pane. Then select OK.

Now double-click on a JLabel bean. Follow the same steps, again choosing the
background property. This time a slightly different window appears, as
shown below. To alter colors, use the slider controls, or select Basic or System
and choose a color.

66 Getting Started

Note: You cannot change the color of beans in Menus.

Changing the font of a bean
1. In the Visual Composition Editor, double-click on the bean whose font you

want to change.
2. In the Properties window that opens, select the value of the font property.

Select the button that appears in the value column for font.

The Font window opens:

3. Using the Name drop-down list, select the font you want to use.
4. Using the Style and Size choices, select the size and style you want to use.

A sample of the font you have selected is displayed in the text area. You
can type additional text in this area to see the appearance of various
characters.

5. When you have finished specifying the font, select OK. The selected font
is shown in the value column for font.

Chapter 6. What Else Can You Do With the Visual Composition Editor? 67

Note: Some beans, such as Menu beans, may not support the changing of
fonts depending on the target platform.

Portability of colors and fonts

If your applet will be used on multiple platforms, the colors and fonts of the
beans must be available on all systems that will run your applet.

If you do decide to change the colors of beans in your applet, use only basic
colors in the window, since non-basic colors may appear differently on
different platforms.

If you decide to change the font of a bean, ensure that the font you choose
will be available on all the systems that will be running the finished program.
You might also have problems with certain fonts if your applet will be run on
systems that use code pages designed for languages other than English.

Connecting beans

In Building your first applet, you learned about making connections. In this
section, you explore the different types of connections and what you can do
with them. It is best to follow along in the Visual Composition Editor as the
different connection types are described and to try any examples discussed.
Creating and experimenting with connections is an excellent way to learn how
to use them.

Note: In Property-to-property connections, you create a new applet. You can
reuse this applet to follow along with all of the examples in this
section.

There are six types of connections:

Property-to-property
Property-to-property connections link two data values together so that
if both source and target events are specified in the connection’s
Property window, the two values stay in sync.

Event-to-method
Event-to-method connections call a method when an event occurs.

Event-to-code
Event-to-code connections run some code when an event occurs.

Parameter-from-property
Parameter-from-property connections use the value of a property as
the parameter for a connection.

68 Getting Started

Parameter-from-code
Parameter-from-code connections run a code when a connection
parameter is required.

Parameter-from-method
Parameter-from-method connections use the result of a method as a
parameter to a connection.

Event-to-code and parameter-from-code connections enable you to connect to
methods of the composite bean.

A connection has a source and a target. The point at which you start the
connection is called the source. The point at which you end the connection is
called the target. For information on connection properties, see Changing the
properties of connections.

Note: If a particular bean method, property, or event does not appear in the
bean’s preferred feature list in its bean or connection pop-up menu, you
can select Connect and thenConnectable Features from the bean
pop-up or connection pop-up menu to display a complete list. The list
of methods, properties, and events displayed in a window opened by
selecting Connectable Features represents a bean’s complete public
interface.

Property-to-property connections

Property-to-property connections tie two data values together. The color of
this connection type is blue. A simple example of a property-to-property
connection follows:
1. Create a new applet using the Create Applet SmartGuide:
v Select Create Applet from the Workbench tool bar.

v In the Create Applet SmartGuide, enter a name for the applet and
specify a project and package for the applet. For Superclass, use Browse
and enter JApplet as the pattern to get com.sun.java.swing.JApplet.
Ensure Compose the class visually is selected and select Finish.

2. When the Visual Composition Editor opens on your new applet, place a
JTextField bean and a JLabel bean within the default Applet bean.

3. Connect the text property of the JTextField bean to the text property of the
JLabel bean:
v Select the JTextField bean and click mouse button 2. Select Connect and

then text from the pop-up menu that appears.
v Click mouse button 1 on the JLabel bean and select text from the

pop-up menu that appears.

Chapter 6. What Else Can You Do With the Visual Composition Editor? 69

4. Select the new connection you just created and click mouse button 2.
Select Properties in the pop-up menu that appears. The
Property-to-property connection Properties window appears.

5. In the Properties window, select text for the Source event and select OK.

The free-form surface should look like this:

When you run the applet that contains these beans, the JLabel text becomes
JTextField1.

For property-to-property connections, either endpoint can serve as the source
or target. The only time it matters which property is the source and which is
the target for a connection is at initialization. During initialization, the value
of the target is updated to match the value of the source.

A property-to-property connection is initiated from the source bean’s Connect
choice in the pop-up menu and is terminated by selecting the appropriate
target bean’s feature.

Event-to-method connections

Event-to-method connections cause a method to be called when a certain
event takes place. The color of this connection type is green.

70 Getting Started

For event-to-method connections, the event is always the source and the
method is always the target. A simple example of an event-to-method
connection follows:
1. Place a JButton bean within the default JApplet bean in the Visual

Composition Editor. Change the text of this button to Open Window.
2. Place a JFrame bean on the free-form surface of the Visual Composition

Editor.
3. Connect the actionPerformed event of the JButton to the show method of the

JFrame bean. To do this connection, click the title bar of JFrame (not inside
the box itself). The frame appears when the Button is selected.

The free-form surface should look like this:

Properties can also be used to call a method, and events can be used to
change the value of a property. This behavior is possible because VisualAge
for Java can associate an event with a change in property value. As a result,
you can make the following connections with properties:

Connecting an event to a property

In addition to calling a method, an event can also be used to set a property
value. In this case, a parameter must be used with the connection to supply
the property value. A simple example of an event-to-property connection
follows:
1. Place a JLabel bean within the default applet bean in the Visual

Composition Editor and change its text property in the Properties window
to the string This is a JFrame title.

2. Place a JButton bean within the applet bean in the Visual Composition
Editor.

3. Place a JFrame bean on the free-form surface of the Visual Composition
Editor.

4. Connect the actionPerformed event of the JButton to the show method of the
JFrame bean. Remember to click the title bar of JFrame to see the show
method.

5. Connect the componentShown event of the applet bean to the title property
of the JFrame bean.

Chapter 6. What Else Can You Do With the Visual Composition Editor? 71

6. Now, to provide the parameter for the event-to-property connection you
just created, connect the text property of the JLabel bean to the value
property in the connection pop-up menu.

The free-form surface should look like this:

When you run the applet and select the button, the title text of the frame is
set to This is a JFrame title. This example is rather contrived, but it conveys the
idea. For more information, see Connection parameters.

Event-to-code connections

Event-to-code connections run a given method when a certain event takes
place. This provides a way to implement or alter applet behavior directly
through the use of the Java language. The target of an event-to-code method
can be any method in the class that you are manipulating in the Visual
Composition Editor.

Note: An event-to-method connection is made between two beans. An
event-to-code connection is made between a bean and a method in the
composite bean. The method in the composite been does not have to be
public.

The color of an event-to-code connection is green. To create an event-to-code
connection:
1. Select the source bean (for example, a JButton). Click mouse button 2 to

display the bean’s pop-up menu. Select Connect and then select an event,
such as actionPerformed. The mouse pointer changes.

2. Move the mouse pointer to any open area of the free-form surface. It
cannot be over any bean, including the default Applet bean. Click mouse
button 1 and select Event to Code from the pop-up menu.

3. The resulting window allows you to pick from the list of available
methods, or to create a new method.

4. Once you’ve selected a method, select OK to complete the connection.

72 Getting Started

The connection is drawn between the source bean and a movable text box that
contains the name of the method.

Parameter connections

The last three types of connections supply a parameter to a connection from
various sources:
1. Parameter-from-property
2. Parameter-from-code
3. Parameter-from-method

The color for a parameter connection line is purple.

Parameter-from-property

Parameter-from-property connections use the value of a property as the
parameter to a connection. As with other connection types, a
parameter-from-property connection is initiated from the source bean’s
Connect choice in the pop-up menu and is terminated by clicking mouse
button 1 over the target connection line requiring the parameter. You then
select the appropriate property from the pop-up menu for the connection.

A parameter-from-property connection was used in building the To-Do List
sample. When we connected the JTextField bean’s text property to the
connection between the JButton bean and the DefaultListModel bean, we were
making a parameter-from-property connection. Refer to Connecting beans for
the specific connection details for the To-Do List sample. The following
example also illustrates the use of the parameter-from-property connection:
1. Place a JLabel bean, a JTextField bean, and a JButton bean within the

applet bean in the Visual Composition Editor.
2. Connect the actionPerformed(awt.java.event.ActionEvent) event of the JButton

bean to the text property of the JLabel bean.
3. Now, make the parameter-from-property connection by connecting the text

property of the JTextField bean to the value property of the connection
pop-up menu.

The free-form surface should look like this:

Chapter 6. What Else Can You Do With the Visual Composition Editor? 73

When you run the applet and type text into the text field and select the
button, the label text is set to match the text in the text field.

Parameter-from-code

Parameter-from-code connections run a method whenever a parameter to a
connection is required. This connection is much the same as a
parameter-from-property connection, except that the value supplied to the
connection is returned from a Java method instead of a bean property value.

For the sake of illustration, assume that we have created a simple method
called stringFromCode in the applet class that returns the text this is a string. An
example of a parameter-from-code connection follows. Unlike other
connection types, a parameter-from-code connection is initiated from the
parameter name in the connection’s pop-up menu and is terminated as
follows:
1. Place a JLabel bean and a JButton bean within the default JApplet bean in

the Visual Composition Editor.
2. Connect the actionPerformed event of the JButton to the text property of the

JLabel bean.
3. Now, create the parameter-from-code connection by connecting the value

property in the connection pop-up menu to the method as follows:
v Click mouse button 2 on the connection; select Connect and then value

from the pop-up menu. The mouse pointer changes.
v Click mouse button 1 on any open area of the free-form surface and

select Parameter from Code from the pop-up menu.
v The resulting window allows you to pick from the list of available

methods. In our case, the method stringFromCode() appears (this is the
method that we created in the applet class).

v Once you’ve selected a method, select OK to complete the connection.

Parameter-from-method

Parameter-from-method connections use the result of a method as a parameter
to a connection. An example of how to use a parameter-from-method
connection follows:

74 Getting Started

1. Place a JButton bean and a JTextField bean within the default applet bean
in the Visual Composition Editor.

2. Connect the actionPerformed event of the JButton bean to the text property
of the JButton bean. (Yes, connecting an event to a property for the same
bean does make sense in the right situation.)

3. Then, make the parameter-from-method connection by connecting the
getText() method of the JTextField bean to the value property in the
connection’s pop-up menu. This provides the needed connection
parameter and causes the connection line to become solid in color.

When you test the applet, type a string into the text field and then select the
Button. The string becomes the label for the Button.

Changing the properties of connections

Connections, like beans, have properties. To open the properties for a
connection, select Properties from the connection’s pop-up menu. Or, just
double-click on the connection.

The following figure shows the Properties window for a property-to-property
connection:

Chapter 6. What Else Can You Do With the Visual Composition Editor? 75

You can use a connection’s Properties window to change the source or target
property of the connection. To do this, select a different source or target
property from the appropriate list. To display the current source and target
properties of the connection, select Reset.

If you want the source property of a property-to-property connection to be the
target property, and vice versa, you can change the source and target
properties by selecting Reverse in the connection’s Properties window.

When you have finished changing the connection’s properties, select OK.

Connection parameters

Event-to-method and event-to-code connections sometimes require parameters
(or arguments). The method’s parameters are available as properties of the
connection. Therefore, to specify a parameter, you simply make a connection
to the parameter property of the event-to-method connection itself.

When a connection requires parameters that have not been specified, it
appears as a dashed line, indicating that the connection is not complete.

In the applet, you connected the JButton bean’s actionPerformed event to the
DefaultListModel bean’s addElement(java.langObject) method, and a dashed line
resulted:

The parameters that methods require are indicated by the items inside
parentheses () in the method name. For example, the
addElement(java.lang.Object) method takes one parameter, an Object. A method
named insert ElementAt(java.lang.Object, int) takes two parameters, an Object
and an int.

When you have specified all of the necessary parameters, the connection line
becomes solid, indicating the connection is complete. If you do not supply
enough parameters for a connection, the connection continues to appear as a
dashed line.

76 Getting Started

To specify parameters you can use properties or constants.

Properties as parameters

Most of the time, the parameters you need are properties of other beans you
are working with in the Visual Composition Editor. To use a bean’s property
as a parameter:
1. Make a new connection using the bean’s property as the source.
2. For the target, click mouse button 1 on the connection line that requires

the parameter, and then from its connection menu, select the particular
parameter property you are specifying.
While making a connection to a connection line, you will see a small
visual cue in the middle of the connection line when the mouse pointer is
directly over the connection line, indicating the pointer is positioned
correctly.

In the To-Do List applet, the text entered in the JTextField bean is used as the
parameter of the event-to-method connection between the Add Button and the
DefaultListModel bean.

In this example, you provided the parameter of the event-to-method
connection by making a property-to-property connection between the
JTextField bean’s text property and the event-to-method connection’s obj
property. The connection’s obj property is the name of the first and only
parameter of the addElement(java.lang.Object) method.

Constants as parameters

Parameter values can also be constants. You specify a constant value for a
parameter in the Properties window for the connection.

Chapter 6. What Else Can You Do With the Visual Composition Editor? 77

For example, to specify a constant value for the parameter for an
event-to-method connection:
1. Double-click on the event-to-method connection.

The Properties window for an event-to-method connection opens:

2. In this window, select Set parameters. The Constant Parameter Value
Settings window opens:

3. In the Constant Parameter Value Settings window, type the constant values
for the parameters you want to add.

4. When you finish, select OK, and then select OK in the Properties window
for the event-to-method connection.

Manipulating connections

Like beans, once connections are made, you can manipulate them in many
different ways.

Selecting and deselecting connections

You select and deselect connections the same way you select and deselect
beans. You can select multiple connections. The information about the

78 Getting Started

currently selected connection is displayed in the information area at the
bottom of the Visual Composition Editor.

Note: You cannot select beans and connections at the same time.

Deleting connections

To delete a connection, select Delete from its pop-up menu. You can also
delete a connection by selecting the connection and pressing the Delete key.

To delete several connections, select the connections you want to delete, and
then select Delete from the pop-up menu of one of the selected connections.

Reordering connections

When you make several connections from the same event or property of a
bean, the connections run in the order in which they were made. However, if
you create the connections in a different order than the order in which you
want to run them, you can reorder them. Add a JButton and two JFrame
containers. Connect an actionPerformed event from the button to a show method
at one frame. Make the same connection to the second frame. You now have
two connections to open frames. When you run the applet, one frame will
appear followed by the second after you click the button.

If you need to change the order of connections, simply reorder the
connections from the bean by doing the following:
1. From the bean’s pop-up menu, select Reorder Connections From.

The Reorder connections window appears:

Chapter 6. What Else Can You Do With the Visual Composition Editor? 79

The Reorder connections window contains all of the connections for the
bean you selected. In this example, the (JButton1, actionPerformed ->
JFrame2, show() connection is the first one that runs.

2. In the Reorder connections window use the appropriate mouse button to
reverse the frame appearance order. In OS/2, use mouse button 2; in
Windows, use mouse button 1.
As you drag a connection through the list, a dark line appears to indicate
where the connection will be inserted when you release the mouse button.
Rerun your applet to see the effect.

Showing, hiding, and browsing connections

You can show and hide connections by using the Hide Connections tool and
the Show Connections tool from the tool bar.

These tools show and hide all connections to and from the selected bean or
beans. If no beans are selected, these tools will show and hide all the
connections in the Visual Composition Editor.

You can selectively show and hide a bean’s connections by selecting Browse
Connections from the bean’s pop-up menu and then selecting one of the
following:

Show To
Shows all connection lines extending to the bean

Show From
Shows all connection lines extending from the bean

Show To/From
Shows all connection lines extending to and from the bean

Show All
Shows all connection lines

Hide To
Hides all connection lines extending to the bean

80 Getting Started

Hide From
Hides all connection lines extending from the bean

Hide To/From
Hides all connection lines extending to and from the bean

Hide All
Hides all connection lines

Arranging connections

When you select a connection, selection handles are displayed at both ends
and along the connection line. You can then drag the mid-point selection
handle to a new position. This makes the connection line draw in a different
area of the free-form surface, which can help you distinguish among several
connection lines that are close together. When additional selection handles
appear, you can then drag the middle selection handle to a new position to
bend the connection line even further.

You can restore a connection line to its original shape. From the pop-up menu
for the connection line, select Restore Shape.

Changing connection endpoints

VisualAge for Java gives you the ability to change the endpoint bean of a
connection, meaning that you can change the source or target bean of the
connection. It is quicker than deleting the connection and creating a new one.

For event-to-method and property-to-property connections, you can move
either end of the connection. For event-to-code connections, you can only
move the event end of the connection.

To change either end of a connection:
1. Select the connection whose endpoint you want to change. Selection

handles appear along the connection line.
2. Move the mouse pointer over the selection handle at the end of the

connection you want to change. Using the appropriate mouse button, drag
the selection handle to the new bean. In OS/2, use mouse button 2; in
Windows, use mouse button 1.
If you move the endpoint of a connection to a bean that does not have the
same property available as in the original connection, the bean’s
connection pop-up menu appears so you can specify a new property to
connect to.

Chapter 6. What Else Can You Do With the Visual Composition Editor? 81

Working with relational data: the Select bean

VisualAge for Java supports access to relational databases through JDBC. You
can access relational data in an applet or application by using the Data Access
beans on the Visual Composition Editor beans palette. (Before you can use the
Data Access beans, you must first use the Quick Start window to add the
Data Access beans feature to Visual Age for Java, and you must change the
classpath. For more information on accessing relational data, refer to the
online help.)

The Data Access beans comprise a Select bean and a DBNavigator bean. The
Select bean gives you a fast, easy to use, visual programming way of
accessing relational data in your applet or application.

To access relational data using the Select bean:
1. Add the Select bean to the Visual Composition Editor surface.
2. Edit the Select bean properties. The query property allows you to define

the following things:
v Connection alias. This identifies the characteristics of the database

connection for the Select bean. These include characteristics such as the
URL for the connection, and the user ID and password to be passed
with the connection request.

v SQL specification. This specifies the SQL statement for the Select bean.
You can use the SQL editor that is provided to enter the SQL statement
manually, or you can use the SQL Assist SmartGuide to compose the
SQL statement visually. You can select one or more tables, join tables,
specify search conditions, identify columns for display, sort the results,
map the data types of the result columns into Java classes, and view the
resulting SQL statement. You can even do a test run of the query.

82 Getting Started

3. Connect the Select bean to a visual component of your applet or
application, such as a button bean. When a user uses the application or
applet, and selects the visual component, for example clicks the button, the
SQL statement for the Select bean retrieves a result set.

You can also use the Select bean to apply changes that users make to a result
row, even deletion of a row, and commit the changes to the database. In these
cases, you use update and delete methods provided by the Select bean.

Adding buttons for relational database access: the DBNavigator bean

The DBNavigator bean gives you an easy way of adding to your program
element a set of buttons that navigate the rows of a result set and perform
various relational database operations.

Chapter 6. What Else Can You Do With the Visual Composition Editor? 83

For example, one of the buttons makes the next row in the result set the
current row, and another button commits changes to the database.

The DBNavigator bean is used in conjunction with a Select bean. As described
above, the Select bean is used to retrieve a result set from a relational
database. The DBNavigator bean operates on the result set.

To use the DBNavigator bean:
1. Add the DBNavigator bean to the Visual Composition Editor surface.
2. Edit DBNavigator bean properties. Among the properties that you edit are

properties that specify which buttons will be displayed.
3. Connect the DBNavigator bean to a Select bean.

84 Getting Started

Chapter 7. Managing Editions

You’ve just reached a milestone in the development of your program, and
you’re ready to start coding some new features. Maybe you just want to
explore a different (perhaps more efficient) implementation of a method that
already works, but you’re not sure if changes or additions will introduce new
problems. This is a good time to create a versioned edition of your code.

With VisualAge for Java, you can manage multiple editions of program
elements. You have already seen some of the concepts for managing editions.
This section briefly reviews these concepts and shows you how to use the
edition management features of VisualAge for Java.

In this section, you’ll learn about:
v Editions in VisualAge for Java
v Versioning an edition
v Updating your program with the assurance of easily reverting back
v Returning to a previous edition
v Exploring the repository
v Managing the workspace

Editions are managed by a team of developers. Packages and
projects can only be versioned by their owners; classes can only be versioned
by their developers. Versioning an edition is often followed by releasing. For
information on the team development environment, see Getting Started for
VisualAge for Java, Enterprise Edition.

About editions

As you’ve been saving your program elements, VisualAge for Java has been
keeping track of your code. In fact, the code you are working on is saved in
an edition. An edition is a 'cut' or 'snapshot' of a particular program element.

To see more information on the edition you’re working on, use the Workbench
window’s tool bar to select Show Edition Names. Notice that each

program element includes either an alphanumeric name or a timestamp
beside it; this is the edition information (described below in more detail). You
can also see the same information from the Source pane. For example, select
your ToDoFile class and move the mouse over the class icon in the Source

© Copyright IBM Corp. 1997, 1998 85

pane title bar. The hover-help window displays the edition information. The
edition information is also displayed in the status area below the Source pane.

An edition of a program element keeps track of all code within the program
element, including program elements within it. For example, an edition of a
package includes classes and interfaces and the methods within these classes
and interfaces.

At any time, the workspace only contains one edition of a given program
element: the edition that you are currently working on. To help manage your
program elements, VisualAge for Java also includes a source code repository,
which can contain many editions of the same program element. The
workspace is the center of activity in the VisualAge for Java programming
environment. The repository is not a development environment, but you can
browse and retrieve its contents as needed. You can save as many editions of
a program element as you wish. All editions are stored and are accessible
from the repository.

You can replace an edition that is in the workspace with another edition from
the repository. Note that the current edition is always marked by an asterisk
(by default) to the left of the edition name when you browse an edition list in
the repository.

86 Getting Started

There are two fundamental types of editions:
v Open edition

An open edition of a program element can be modified. You can bring this
edition into the workspace, making it the current edition, and change it as
required. In the screen image above, the open editions are marked by
timestamps. For example, (13/06/97 10:25:34 AM) is an open edition.

v Versioned edition
A versioned edition of a program element cannot be changed. When you
version an edition, you establish a frozen (read-only) code base to which
you can revert any time. In the screen image above, versioned editions are
designated by alphanumeric names (for example, Beta 2 or 1.1).
The edition that is in the workspace may be a versioned edition, although
any changes you make and save automatically create a new open edition.

When you save a program element, not only is your code incrementally
compiled behind the scenes, the open edition is updated in both the
workspace and the repository.

Versioning an edition

You can version a project, a package, or a class. When you version one of
these program elements, all program elements contained within it are also
versioned. For example, if you version a package, all classes that are part of
that package are also versioned.

Let’s create a versioned edition of your code.
1. Select the package in which you created your To-Do List applet. From

theSelected menu, click Manage and then Version. The Versioning
Selected Items SmartGuide appears.

2. Ensure the Automatic radio button is selected and then select OK.

Chapter 7. Managing Editions 87

In the Workbench hierarchy, notice that the timestamp beside the package
name has been replaced with the new version number. This versioned edition
is now permanently stored in the repository, regardless of what happens to
your editions in the workspace. You can create open editions based on this
versioned edition, and the versioned edition will always be available from the
repository.

Updating your code again

Now that you have a versioned edition of your program in the repository, you
can change your program elements in the workspace with the assurance that
you can always revert back to the versioned edition.

Creating a new edition

Because a versioned edition cannot be modified, you will need to create a new
open edition from the versioned edition before you can continue changing the
program element. If the edition in the workspace is the versioned edition, a
new edition is automatically created for you if you make changes to the
program element and then save it. For example:
1. Select your ToDoList class in the Workbench, and type a new comment in

the Source pane.
2. From the pop-up menu in the Source pane, select Save.

Notice that the edition name (in the hierarchy pane) changes from the
versioned edition name to a timestamp. Because the workspace can only hold
one edition of a program element at any given time, the new edition replaces
the versioned edition. (Of course, a copy of the versioned edition can always
be retrieved from the repository.)

Adding a counter to the ToDoList program

Let’s add a counter to the ToDoList program, which will reflect the number of
items in the To-Do list at any given time. To add this feature, we need to
change the applet as follows:
1. Add labels for the counter name and the counter itself.
2. Connect the Add, Remove, and Open To-Do File buttons to the counter

label.

When modified, the running applet will look like this:

88 Getting Started

Adding the labels

To add the two Labels using the Visual Composition Editor:
1. Select the ToDoList class in the Workbench and select Open To then

Visual Composition from the Selected menu. This opens the ToDoList
class in the Visual Composition Editor.

2. To make it easier to create the new connections, hide the existing
connections by selecting Hide Connections from the tool bar:

3. Select a JLabel bean from the palette.
4. Click mouse button 1 beneath the list to add the label. You may wish to

select the scrollpane, the text field and the labels and move them slightly
up to make room for the new label.

5. Modify the text of the JLabel bean to To-Do Counter.
6. Add another JLabel bean to the right of the JLabel bean you just added.
7. Double-click on this new JLabel bean to open its Properties window. Select

the value field to the right of the horizontalAlignment field. From its
pull-down menu, select RIGHT, which right-justifies the value. In the text
field, change the value to 0, which is the initial value of the counter. Close
the Properties window.

8. Align the two new JLabel beans.
v Select the counter name label, then the text field, and select the Align

Left tool.

Chapter 7. Managing Editions 89

v Select the counter label, then the text field, and select the Align Right
tool from the tool bar.

v Select the counter name label, then the counter label, and then select the
Align Middle tool.

The visual beans have been added and aligned. The free-form surface should
look like this:

Now you’re ready to add the connections.

Note: All the other connections you made are still there, they are just hidden
now because you selected Hide Connections from the tool bar. The
new connections that you make in the next step will not be hidden.

Connecting the labels

To connect the Add button to the counter:
1. Select the Add button and click mouse button 2. From the pop-up menu

select Connect and then actionPerformed.
2. Position the mouse over the counter label and click mouse button 1.
3. From the pop-up menu, select text. A dashed green line now appears,

indicating an incomplete connection.
4. Select the connection and click mouse button 2. Select Connect and then

value from the pop-up menu that appears.
5. Position the mouse over the DefaultListModel bean and click mouse

button 1.
6. From the pop-up menu, select Connectable Features to bring up the End

connection to (DefaultListModel1) window.

90 Getting Started

7. From the Method list, select the getSize() method and then select OK.
This provides the count of the list of items as input for setting the counter
string. The connection is now complete.

8. Connect the Remove and Open To-Do File buttons in the same manner.
You’re simply updating the count of items in the list whenever an action is
taken that may modify the count. In this applet, any of the top three
buttons have this potential.

Now the free-form surface should look like this:

From the Bean menu, select Save Bean. The changes you’ve made are
reflected in this open edition, both in the workspace and in the repository.
Select the Run tool from the tool bar to launch the applet viewer and see the
counter in action.

Returning to a previous edition

Your program now contains a counter. It works fine, but after thinking about
it for a while, you decide that you want to keep the interface as clean as
possible — no bells and whistles. So, now you want to take out the counter
code. Of course, you could just delete the labels and connections you’ve
added, but you might inadvertently delete one of the other program elements
or connections? No need to worry. Remember, you versioned the previous
edition!

Follow these steps to replace the current edition with a previous edition from
the repository:
1. Select the ToDoList class in the Workbench and click mouse button 2.

Chapter 7. Managing Editions 91

2. From the pop-up menu, select Replace With and then select Another
Edition.

3. From the Select replacement for ToDoList secondary window, select the
edition that you previously versioned and select OK.

(Because you want to replace the current edition with the previous edition,
you could have also selected Replace With and then Previous Edition
from the pop-up menu.)

The edition information beside the class name now indicates the version
number, not the timestamp of the open edition you had been working on.

If you change your mind again and decide that the counter should stay, you
can always add it back; the edition that contained the counter is still in the
repository.

Exploring the Repository

In addition to its suite of edit-compile-debug tools, VisualAge for Java
provides robust code management facilities. You’ve seen how easy it is to
work with multiple editions of a program element. But what else can you get
from the repository?

From the Window menu, select Repository Explorer.

92 Getting Started

The Repository Explorer provides a visual interface to your repository. The
repository includes all editions of all program elements. This includes all the
program elements that are currently in the workspace.

Within the Repository Explorer, you can open or compare program elements
that are stored in the repository. There’s no need to swap editions in and out
of the workspace to view them or compare them.

By comparing different editions, you can see:
v What changes have been made as a result of code generation
v Precisely how an edition with errors differs from a bug-free edition

To compare two editions of a package:
1. Select the Repository Packages page.
2. Select package in which you created the To-Do List applet from the

Package Names list.
3. From the Editions list, hold down mouse button 1 and drag-select the top

two editions. From the Editions menu, select Compare. The Comparing
window appears:

4. Select a class or method name in the Element pane, and you’ll see two
sets of corresponding code in the text panes below. Here, you can compare
the two program elements. From the Differences pull-down menu, you
can select Next Difference and Previous Difference. You can also select
the arrows:

Chapter 7. Managing Editions 93

in the upper right corner of the window to move back and forth in

the list of differences.

All program elements that are in the workspace are indicated by an asterisk
(*).

Examining examples in the repository

VisualAge for Java comes with a wide variety of example code. Use the
Repository Explorer window to examine these examples. For instance, to
examine the completed version of the To-Do List program in the Repository
Explorer:
1. Select the Repository Projects page. Select IBM Java Examples from the

Project Names list.
2. Select an edition from the Editions list and select

com.ibm.ivj.examples.vc.todolist from the Packages list. The class in this
package appears in the Types list. To examine this class, select it and click
mouse button 2. Select Open from the pop-up menu that appears.

Suppose that you want to run these completed samples, or make your own
updates to them. First, you must bring them into the workspace. For example,
to bring the completed version of the To-Do List program into the workspace:
1. In the Workbench, select the project into which you want to add the To-Do

List program and select Add and then Package from the Selected menu.
The Add Package SmartGuide appears.

2. Select Add packages from the repository.
3. Select com.ibm.ivj.examples.vc.todolist from the Available package

names list. Select an edition from the Editions list and click Finish.

The package for the To-Do List program is added to your workspace, and you
can update it and run it.

Summary

With the repository and the ability to work with multiple editions of your
program elements, code management becomes easy. VisualAge for Java keeps
you on the right track.

94 Getting Started

Chapter 8. What Else Can You Do?

You have already seen many of the interesting things that you can do in
VisualAge for Java, but there is much more. This section gives you some more
detail on the following features of VisualAge for Java:
v Printing program elements
v Navigating
v Searching
v Browsing
v Writing code by hand
v Internationalization
v Using the Quick Start window
v Debugging
v Support for JavaBeans
v Customizing the workspace

Printing program elements

VisualAge for Java gives you several options for printing program elements.
You can print projects, packages, classes, interfaces, or methods. When you
print a program element that is composed of other program elements, you
have the option of printing these other program elements. For example, when
you print a package, you can also print the classes in the package.

To print a program element:
1. Select the program element and select Document, Print from its pop-up

menu. The Print dialog.

© Copyright IBM Corp. 1997, 1998 95

2. The items that you can select to print depend on what kind of program
element you are printing:
v Selections under Projects are available if you are printing a project.
v Selections under Packages are available if you are printing a project or a

package.
v Selections under Types are available if you are printing a project,

package, class, or interface.
v Selections under Methods are always available.

3. By default, all the items under Projects, Packages, and Types are selected,
and Entire Method is selected under Methods. Change these selections if
you want and select OK to start printing.

4. If no default printer has been selected, a message appears asking you to
select one.

Changing the default printer

You can change the default printer or change a printer’s setup by selecting
Print Setup from the File menu of any window.

Printing the Graph of a Class Hierarchy

You can print a graph view of a class hierarchy for a project or a package. The
output goes to the default printer. To print a class hierarchy graph:
1. In the Workbench or another browser, select the project or package for

which you want to print the graph.
2. From the element’s pop-up menu, select Open To, Classes. This opens the

Classes page of a browser on the project or package.

96 Getting Started

3. In the Class Hierarchy pane title bar, click the Graph Layout button .

4. From the Class Hierarchy pane’s pop-up menu, select Document,Print
Graph. The graph, showing the inheritance of each class, will be output to
the default printer.

Navigating

VisualAge for Java gives you many different ways to look at your code. This
section gives you a brief overview of the primary windows in VisualAge for
Java and tells you how to move from one window to another.

Moving between windows

Every window in VisualAge for Java has a Window menu. You can move
between windows by selecting the window you want from this menu.

If the window you select is already open, it becomes the active window. If the
window you want is not open, it is opened and becomes the active window. If
you select Switch To in the Window menu, you can select from any of the
windows that are currently open.

Recently-used windows are stored in a list in the File menu. If you want to
open a window that you recently closed, select it from the list in the
Filemenu.

In addition to being opened explicitly by you, some windows are also opened
by VisualAge for Java as you perform your development tasks. For example,
suppose you run a program by selecting a class in the Workbench window
and selecting Run from the Selected menu. If there is an active breakpoint in
your program, the Debugger window opens when the breakpoint is reached.
To return to the Workbench window, select Workbench from the Window
menu in the Debugger window.

Windows you can open from the Window menu

Here is a summary of the windows that you can open from the Window
menu:
v Scrapbook - gives you a place to try out code. You can enter and run code

fragments without making them a part of any package, project, or class.

Chapter 8. What Else Can You Do? 97

v Console - displays standard out. It also gives you an area for entering input
to standard in. If more than one thread is waiting for input from standard
in, you can select which thread gets the input.

98 Getting Started

v Log - displays messages and warnings from VisualAge for Java.

v Debugger - displays running threads and the contents of their runtime
stacks. In the Debugger you can suspend and resume execution of threads,
inspect and modify variable values, and set, remove, and configure
breakpoints. The Window menu lets you open the Debugger browser to the
Debug page or the Breakpoints page, or open the dialogs for setting
breakpoints on external class methods and caught exceptions. See
Debugging for more details.

Chapter 8. What Else Can You Do? 99

v Repository Explorer - displays all of the editions of program elements in the
repository. See Exploring the Repository for more details.

100 Getting Started

In addition to these windows, you can do the following actions from the
Window menu.
v Clone - opens a duplicate of the current window. You can then browse the

two windows independently. Changes made to program elements are
reflected in both windows.

v Lock - locks open the current window. If you try to close it, a message box
informs you that the window is locked. You must unlock the window
before you can close it.

v Maximize - resizes the current window so that it covers the entire screen.
v Orientation - changes the general layout of the panes in the window. The

images in this information, for example, show the horizontal orientation,
which, in the IDE, you can optionally change to a vertical orientation.

v Show Edition Names - enables or disables edition name labels for program
elements.

v Workbench - opens (or brings into focus) the Workbench browser.

Searching

VisualAge for Java is designed to make it easy for you to find program
elements and to move around within the interface. This section tells you how
to take advantage of the search features of the IDE.

Chapter 8. What Else Can You Do? 101

Searching for a program element

The IDE gives you several choices for searching for program elements. For
example, in program element panes, if you press a letter key, VisualAge for
Java selects the first displayed program element that begins with that letter. If
you press the same letter again, the next program element that begins with
that letter is selected.

Searching with the Search dialog

You can use the Search dialog to perform powerful searches of the workspace.
To open the Search dialog, use any one of the following methods:
v Select Search from the Workspace menu of any window.
v Select text in a Source pane, and then Search from the Edit menu.
v Select the Search button from any window’s toolbar.

This will open the Search dialog. If you selected text or a program element
before launching the search, the Search string field will contain what was
selected.

Select the type of program element you want to search for, the scope of the
search, and the usage of the element, by enabling the appropriate radio
buttons. Click Start. When the search is complete, and if the IDE finds a
match to your criteria, the Search Results window will open.

102 Getting Started

In the Search Results window, you can browse and modify the contained
program elements, and re-run searches.

Searching for references and declarations

The pop-up menu for types and methods contains special searches that are
often needed. For classes and interfaces, The References To pop-up menu
option has sub-options that search the workspace for references to the selected
type or one of its fields. Results of the search are displayed in the Search
Results window.

For methods, the References To pop-up menu option has sub-options that
search the workspace for references to the selected method, methods it calls,
fields it accesses, or types it references. The Declarations Of sub-options
search for declarations of these same program elements. Results of the search
are displayed in the Search Results window.

Searching from the Workspace menu

You can also search for a program element by selecting one of the Open
selections from the Workspace menu. Running this search will result in
opening a browser on the searched-for element. For example, if you select
Open Type Browser from the Workspace menu, the Open Type dialog is
displayed:

Chapter 8. What Else Can You Do? 103

As you enter string in the Pattern field, the Type Names list updates to show
only the classes and interfaces that match what you have typed in so far.
Select String from the Type Names list and select OK to open a browser on
the String class. For some type names, which may exist in more than one
package, you also need to select a package from the Package Names list.

Searching for a program element within a browser page

If you want to find a program element that you know is contained in the
current browser page, use the Go To menu option for the element type. For
example, if you are in the Projects page of the workbench, and you want to
find the java.lang.String class, Select Go To, Type from the Selected menu. In
the Go To Type dialog, enter string in the Pattern field, select the String class
from the type list, and java.lang from the package list. When you click OK,
the IDE will go to and select the java.lang.String class in the All Projects pane
in the Workbench.

Browsing

VisualAge for Java gives you extensive facilities for browsing program
elements.

104 Getting Started

In the IDE, you browse a program element by opening it. There are many
ways to open a program element in VisualAge for Java, but for now here are
two simple methods:
v Select the program element and select Open from the Selected menu or

from the pop-up menu for the program element.
v Select the appropriate browser in the Workspace menu (Open Type

Browser, Open Package Browser, or Open Project Browser) for the
program element. A secondary window appears that lists all the classes and
interfaces, packages, or projects in the workspace. Enter the name of your
program element and select OK.

When you open a program element, a window appears that displays
information about this program element. The following sections describe in
more detail the windows that appear when you open each kind of program
element.

Browsing a project

When you open a project, you get a window with four pages:
v The Packages page displays the hierarchy of packages contained in this

project.
v The Classes page displays the hierarchy of classes contained in this project.
v The Interfaces page displays the interfaces contained in this project.
v The Editions page displays all the editions of this project.
v The Problems page lists all program elements in the project that contain

errors.

Chapter 8. What Else Can You Do? 105

Browsing a package

When you open a package, you get a window with the three pages:
v The Classes page displays the hierarchy of classes contained in this package
v The Interfaces page displays the interfaces contained in this package
v The Editions page displays all the editions of this package
v The Problems page lists all program elements in the package that contain

errors.

106 Getting Started

Browsing a class

When you open a class, you get a window with the five pages:
v The Methods page displays the methods contained in this class.
v The Hierarchy page displays the position of the class in the overall class

hierarchy.
v The Editions page displays the editions of this class.
v The Visual Composition page displays the Visual Composition Editor.
v The BeanInfo page displays the JavaBean information for this class.

Chapter 8. What Else Can You Do? 107

Browsing an interface

When you open an interface, you get a window with two pages:
v The Methods page displays the methods contained in this interface
v The Editions page displays the editions of this interface

108 Getting Started

Browsing a method

When you open a method, you get a window with two pages:
v The Source page lists the source for the method
v The Editions page displays the editions of this method

Chapter 8. What Else Can You Do? 109

Writing code by hand

For the most part, as you have progressed through this Getting Started
document, you have been using the Visual Composition Editor and the
SmartGuides to generate Java code for you, or you have been copying in
sections of code that we have provided for you. When you create your own
applications, you will likely need to write sections of code by hand, in the
Source panes of the IDE browsers. VisualAge for Java provides several tools
to help you write correct, neat code by hand. This section describes some of
these tools.

Code Assist

Source panes and some other dialogs and browsers (for example, the
Configure Breakpoints dialog) contain code assist, a tool to help you find the
classes, methods, and fields you are looking for without having to refer to
class library reference information. Code assist is accessed by typing
Ctrl+Spacebar.

When you type Ctrl+Spacebar, classes methods, and types that could be
inserted in the code at the cursor are shown in a pop-up list, from which you
can select one. Code assist performs a visibility check and classes, methods,
and fields that are not visible are not displayed. If the code assist mechanism

110 Getting Started

cannot find a member that fits the current location of the cursor, the
information line at the bottom of the pane will indicate that no code assist is
available for the current context.

Code Assist for Types

To insert the name of a class or interface in your code, enter the first one or
more letters of the type name, and then type Ctrl+Spacebar. A pop-up list
appears, containing types that start with what you have entered. Enter more
letters to narrow down the list. Select an item to insert it into your code at the
cursor. If the type needs to be qualified, the qualification is also automatically
inserted.

Example:

Create a test project and package. In the test package, create a class called
AssistTest. In the AssistTest class, create a method called assistMethod.
Suppose you want to declare a local Integer variable, i. In the body of the
assistMethod source, type the following letters:
In

Type Ctrl+Spacebar. The pop-up list of options will appear.

The list of available types is long. To find 'Integer,' enter the letters 'te'. Now,
'Integer' will be near the top of the list.

Chapter 8. What Else Can You Do? 111

Select it using the arrow keys and Enter.

Now, finish the declaration, so that the method looks like this:
public void assistMethod() {

Integer i;
}

Save the method by typing Ctrl+S. You will use this test method in the next
example.

Code Assist for Methods and Fields

Code assist will also list the methods and fields available for an object or
class. Enter objectName., and optionally one or more letters from the start of
the method or field name, and then type Ctrl+Spacebar. The list of methods
and fields for the object will pop-up. Select one to insert it in the code.

Example:

In the assistMethod method you created in the previous example, below the
line that declares i, enter the following code (the period is important):
i = Integer.

Type Ctrl+Spacebar. A list of methods and fields in Integer will pop up.

112 Getting Started

Enter the letters 'val', until you find 'valueOf(String) Integer'. The parameter
types (in this case 'String') and return type ('Integer') are shown.

Select 'valueOf(String) Integer', and it will be inserted into your code. Enter a
string such as '35' between the parentheses and end the line with a
semi-colon. The method source will now look like this:
public void assistMethod() {

Integer i;
i = Integer.valueOf('35');

}

If you request code assist for a method or field from a class that requires
qualification, the class must be qualified before you type Ctrl+Spacebar.
Otherwise, no code assist will be available. Generally, the code that appears
before the cursor must be compilable before you request code assist.

Example:

Suppose java.util.* is not in your class’ import statement. This means that the
class ResourceBundle must be qualified when you use it in your class. If you

Chapter 8. What Else Can You Do? 113

type the following code, and then type Ctrl+Spacebar to get the list of
methods available, no list will be available:
public String newMethod () {
ResourceBundle a = ResourceBundle.

// place cursor after period
// and type Ctrl+Spacebar

However, if you type the following code, where the class qualification is
provided, code assist is available:
public String newMethod () {
ResourceBundle a = java.util.ResourceBundle.

// place cursor after period
// and type Ctrl+Spacebar

An easier way to produce a qualified name in this case (assuming you do not
want to add this class or package to the import list) is to place the cursor
before the period and type Ctrl+Spacebar. Select the class name from the list
and it will be fully qualified for you automatically. Then type the period and
Ctrl+Spacebar. The list of methods in ResourceBundle will now pop-up.

Code Assist for Method Parameters

Code assist includes pop-up help for method parameters. For example when
you select 'valueOf(String) Integer' from the pop-up list in an example, above,
the following text is inserted at the cursor:
valueOf()

The cursor is automatically placed between the parentheses, and the pop-up
label 'String' appears to let you know what type of parameter to add.

Important to Note:

v Code assist is case sensitive. For example, if you are looking for a program
element that starts with upper-case 'C', then ensure you type in an
upper-case letter 'C' before you type Ctrl+Spacebar. Likewise, as you
narrow down the pop-up list, type in the proper case.

v Code assist is not available in a class definition.

114 Getting Started

v When accessing code assist for names that start with Java keywords such as
'for', 'while', or 'if', type Ctrl+Spacebar at least one letter before or after the
end of the keyword. Otherwise, the information bar will indicate that no
code assist is available in the current context.

v If typing Ctrl+Spacebar does not launch code assist on your system, try
using Ctrl+L.

Code Clues

If you try to save code that contains an error, the IDE warns you that the code
has an error. If it can determine the type of error, it will present a list of
possible solutions. You can select one and correct the error, or you can save
the code with the error (it will be added to the list of problems on the
Problem page of the IDE browsers that contain the program element).

For example, add the following line (including the mistake) to the
assistMethod method from above:
System.out.pritn(i);

When you save the method, the following dialog will appear, suggesting
alternative code that will fix the problem:

Chapter 8. What Else Can You Do? 115

Select the suggested correction 'print(Object) void' and click Correct. The
method will be saved with the replacement code. If you click Save, the
method will be saved with the error. If you click Cancel, the method will not
be saved and the error will remain in the code.

Format Code

To promote neat, easy-to-read coding, the IDE provides an automatic code
formatter which automatically controls how your code appears when you
write it in a Source pane. To set code formatter options, including indentation
and new-line controls:
1. Open the Options dialog by selecting Options from the Window menu.
2. In the left-hand list in the Options dialog, expand the Coding item.
3. Select the Formatter item. On the Formatter page you can enable options

that tell the Source panes to start a new line for each statement in a
compound statement, or to use and opening brace.

4. Select the Indentation item. On the Indentation page, you can select an
indentation style.

These specifications are applied automatically to all new code. If you have
imported code from the file system, or if you change the formatting options,
you can apply the options to code in a particular source pane by selecting
Format Code from the pane’s pop-up menu.

Internationalization Support

VisualAge for Java supports two means of text separation by locale: list
bundles and property files. A list bundle is a persistent form of
java.util.ListResourceBundle. A property file is a persistent form of
java.util.PropertyResourceBundle.

Both types of resource bundle contain key-value pairs. For list resource
bundles, these pairs are stored within a bundle class in the repository:
ListResourceBundle.getContents() returns an array of key-value pairs. The
key-value pairs in a property resource bundle are stored on the file system.

Each resource bundle contains values for one (or a default) locale. The name
of the bundle can be keyed by locale so that the virtual machine loads the
appropriate resources for the current locale setting.

VisualAge for Java supports the creation, editing, and use of resource bundles
for all text found in a class. You can separate String property values as you set
them from the Visual Composition Editor, or you can separate all text at once
from the Workbench.

116 Getting Started

You can use your own resource bundles, or you can create them using
VisualAge for Java. You can edit existing resource bundles by hand or from
within VisualAge for Java. Multiple resource sources can be referenced within
a single bean. VisualAge for Java generates the appropriate code the next time
you save the bean.

Using the Quick Start window

Several of the most frequent tasks you will perform in the IDE are collected in
an easy-to-access window called Quick Start. To open the Quick Start window,
select Quick Start from any IDE window’s File menu, or press F2.

The list on the left-hand side shows the categories of Quick Start Tasks. Select
one to see the available tasks, displayed in the right-hand side. To start a task,
select it and click OK.

Basic Tasks

The basic tasks for creating program elements launch the appropriate
SmartGuide to help you create applets, classes, interfaces, projects, and
packages.

The Experiment with Code task opens a page in the Scrapbook. The page
provides introductory instructions for learning what the Scrapbook can do. It
guides you through learning the basic steps to evaluating code and variable
values in the Scrapbook.

Chapter 8. What Else Can You Do? 117

Team Development Tasks The team development tasks provide
you with easy access to projects in the repository. Also, a team administrator
can administer users. The Management Query option lets you search for
program elements based on status, owner, or developer.

Repository Management Tasks

The Compact Repository task lets you duplicate the current repository,
leaving out purged and opened editions.

You can use the Change Repository option to connect your
workspace to another repository (shared or local), or to recover if the server
fails.

Features Tasks

With the Add Feature and Remove Feature options, you can add to your
workspace projects that are provided with VisualAge for Java, but are
installed as part of the repository. These projects include IDE samples and
Data Access Beans. A secondary window will appear to let you select which
of these projects ('features') to add or remove.

Debugging

VisualAge for Java includes an integrated visual debugger with a rich set of
features. This section outlines some of these features.

Opening the debugger

You can open the debugger manually by selecting Debug, Debugger from the
Window menu. If a program is running, you can suspend its thread and view
its stack and variable values. Alternatively, the debugger will automatically
open, with the current thread suspended, for any of several reasons:
v A breakpoint in the code is encountered.
v A conditional breakpoint that evaluates to true is encountered.
v An exception is thrown and not caught.
v An exception selected in the Caught Exceptions dialog is thrown.
v A breakpoint in an external class is encountered.

Setting breakpoints

When a program is running in the IDE and encounters a breakpoint, the
running thread is suspended and the Debugger browser is opened so that you
can work with the method stack and inspect variable values. In the IDE, you

118 Getting Started

can set breakpoints in any text pane that is displaying source. Suppose that
you want to set a breakpoint in the writeToDoFile method in the ToDoList class
from the To-Do List program.

To set this breakpoint:
1. Select the ToDoList class in the Workbench. Expand the class to show its

methods.
2. Select the writeToDoFile method. The source for the method is shown in the

Source pane.
3. Double-click mouse button 1 in the left margin of the Source pane beside

the following line (in the loop that writes items):
dataOutStream.write(fillList.get(i)+crlf);

4. A breakpoint indicator appears in the margin of the Source pane beside
this line:

You can also set a breakpoint on a line that does not already have a
breakpoint by following these steps:
1. Move the cursor to the line.
2. Click mouse button 2 and select Breakpoint from the pop-up menu.

Removing breakpoints

To remove a breakpoint in a source pane, double-click on the breakpoint
indicator. You can also remove a breakpoint by following these steps:
1. Move the cursor to the line.
2. Click mouse button 2 and select Breakpoint from the pop-up menu.

Try removing the breakpoint you just set. Now reset it. You will be using this
breakpoint in the next section to examine the features of the Debugger
browser.

Using the Debugger browser

The Debugger browser opens automatically when the program you are
executing reaches an active breakpoint or has an unhandled exception.

Chapter 8. What Else Can You Do? 119

Now that we have set a breakpoint, let’s run the To-Do List program to see
what happens:
1. In the Workbench, select the ToDoList class. Select the Run toolbar button

.

2. When the To-Do File program appears, add at least three items to the
To-Do List and then select Save To-Do File. When the Save To-Do File
dialog appears, enter a file name and select Save. The Debugger browser
appears. It should look like this:

The thread you are debugging is selected in the All Programs/Threads list.
The list of methods below the thread is the current stack. When you select
a method in the stack the Visible Variables pane shows its visible
variables. The Source pane shows the source where the breakpoint is set.

3. Select the Resume toolbar button to continue execution of the program.
Because this breakpoint is inside a loop that writes each item to the

file, the thread is suspended again and the Debugger window displays it.
4. Examine some of the variables in the Visible Variables list. For example, to

see the value of the loop counter variable i, select int i from the Visible
Variables pane (it’s at the bottom of the list). Its value appears in the Value
pane:

120 Getting Started

This value of the loop counter is exactly what you would expect after the
loop has been executed once.

5. Now let’s disable this breakpoint:
v Select Breakpoints tab in the Debugger browser. The Breakpoints page

appears:

v The Breakpoints page lists all the breakpoints that you have set in the
workspace. The Methods pane lists all the methods in which you have
set breakpoints. The Source pane displays the source for the method
that is selected in the Methods pane.

v To disable your breakpoints, click the Global Enable Breakpoints tool
bar button so that it is in the up (disabled) position. The breakpoint

indicator changes colors to show that it is disabled. Note that it is not
removed, but it will be ignored when the program resumes.

v Select the Debug tab to return to the Debug page.

Chapter 8. What Else Can You Do? 121

6. You can update and save code in the Source pane of the Debugger
window. When you resume execution of the program, you see the changes
you made to the code. For example, suppose that you wanted to change
the writeToDoFile method so that items were written to the file in reverse
order. You could make this change by modifying the beginning of the for
loop to look like this:
for (int i = fillList.getSize()-1; i >= 0; i–) {

Make this change in the Source pane of the Debugger page, and then
select Save from the Edit menu.

7. Now select Resume from the tool bar to continue execution of the
program. In the To-Do File program, add the following values to the
To-Do List and then select Save To-Do File to save them to a file:
v item A

v item B

v item C

v last item

8. Now select Open To-Do File and open the file you just saved. The To-Do
List should look like this:
v last item

v item C

v item B

v item A

Before you continue, return to the Breakpoints page and enable your
breakpoints again by clicking the Global Enable Breakpoints button into the
down position.

Other things you can do with the integrated debugger

The debugger has many other features that you will find helpful for
debugging your programs. To learn more about the following tasks, as well as
others, see the online help for the integrated debugger.

Set conditional breakpoints

Sometimes you want a breakpoint to suspend the thread only under certain
conditions. A breakpoint can be configured so that an expression is evaluated
before the debugger decides to suspend execution. If the expression includes a
boolean that evaluates to true, the breakpoint suspends execution as usual. If
it evaluates to false, the breakpoint is ignored.

122 Getting Started

To configure a breakpoint, click mouse button 2 on its symbol in the margin
of a source pane. Select Modify from the pop-up menu. Enter the expression
in the field. See the online help for the integrated debugger for more details
on configuring breakpoints.

Set external and caught exception breakpoints

Besides setting breakpoints in code in the workspace, you can also set
breakpoints on methods in external classes (classes that reside outside the
workspace, in the file system, and that are loaded at run-time). You can also
specify exception types that will break execution if they are thrown, even if
your code catches and handles them. See the online help for the integrated
debugger for more details on external breakpoints and breakpoints on caught
exceptions.

Step through code

When a running thread has been suspended, you can step through code line
by line or method by method, in a variety of ways. This is a controlled way of
checking variable values at each point in your program.

Using inspectors to view and modify variables

You can open an inspector window to look closely at a particular variable in a
suspended thread. The inspector lets you view and modify variable values
and evaluate expressions.

Support for JavaBeans

VisualAge for Java includes support for JavaBeans. This section gives you a
very brief introduction to JavaBeans and some details on how VisualAge for
Java supports them.

What are JavaBeans?

JavaBeans are Java objects that behave according to the JavaBeans
specification. JavaBeans (or, more simply, beans) are reusable software
components that you can manipulate in a development environment like
VisualAge for Java. The method signatures and class definition of a bean
follow a pattern that permits environments like VisualAge for Java to
determine their properties and behavior. This ability for a beans-aware
environment to determine the characteristics of a bean is called introspection.

Chapter 8. What Else Can You Do? 123

Bean Features

Beans have three kinds of features:
v Events

v Methods

v Properties

You might remember seeing these three categories when you connected the
beans of the To-Do File program in the Visual Composition Editor. A bean
exposes a feature when it makes that feature available to other beans.

Here are brief descriptions of the three kinds of features:
1. Events are the events that the bean causes to occur. Other beans can

register their interest in these events and be notified when they occur.
2. Methods are actions that a bean exposes for invocation by other beans.

Bean methods are a subset of the public methods of the Java class that
constitutes the bean.

3. Properties are the attributes exposed by a bean. Properties can be read,
written, or both. Properties can have the following characteristics:
v A bound property triggers the propertyChange event when its value is

changed.
v A constrained property allows other beans to determine whether the

value of the property can be changed (triggers the vetoableChange
event).

v An indexed property is an array, so it exposes additional methods to
address individual elements.

v A hidden property is not visible to humans. It is for use by bean-aware
tools only.

v An expert property should only be manipulated by expert users.
v A normal property is one that is neither hidden nor expert.

BeanInfo Classes

Beans can have accompanying BeanInfo classes. These classes explicitly
describe the events, methods, and properties that a bean exposes. VisualAge
for Java can generate BeanInfo classes for your beans. The BeanInfo class has
the same name as the bean with the suffix 'BeanInfo'.

The BeanInfo class contains public methods that return information about the
bean, including the class of the bean, the name of the class of the bean, and
details about the events, methods, and properties of the bean.

124 Getting Started

The BeanInfo page

In VisualAge for Java, you manipulate the characteristics of a bean in the
BeanInfo page of the class browser.

The top left pane lists the features of the bean. You can specify the kinds of
features the BeanInfo page shows by selecting an entry under Show in the
Features menu. The following groups of features are available:

All All features in the bean, including features that were generated by
VisualAge for Java

Normal
Features you explicitly defined for the bean

Property
Properties

Event Events

Method
Methods

Chapter 8. What Else Can You Do? 125

Hidden
Hidden features

Expert Expert features

When you select a feature, VisualAge for Java lists information in the top
right pane depending on what kind of feature is selected:

Event Interface, listener methods, add listener method, remove listener
method

Property
Type, read method, write method

Method
Signature

The top right pane lists the program elements that are associated with the
selected feature. If you select one of the program elements, its source is
displayed in the bottom pane.

If you do not select a program element in the upper right pane, the bottom
pane lists the bean information for the selected feature, including its
description, display name, and whether or not it is expert or hidden.

Using the BeanInfo Page

How would you use the BeanInfo page to create and manipulate the features
of a bean? The IBM Java Examples package com.ibm.ivj.examples.vc.customerinfo
is an example that makes use of property features. For instance, the Address
class has properties for street, city, state, and zipCode. For instructions on how
to build this sample, go to the Samples portion of the online product
documentation under the Visual Composition samples and select
CustomerInfo.

Customizing the workspace

VisualAge for Java gives you a range of characteristics that you can change to
customize the IDE to suit your own needs and tastes. This section shows you
how to set customization options and gives you a brief overview of the items
that you can customize.

Setting customization options

In VisualAge for Java, you customize the workspace by setting options in the
Options dialog. Let’s examine how this window works by setting the option
that determines what happens when you double click on a program element.

126 Getting Started

By default, double-clicking on a program element icon opens the program
element in a browser of its own. For example, when you double-click on a
package icon, a package browser opens, showing all the types contained in
the package. You can change this behavior so that double-clicking on a
program element icon expands or collapses the program element tree beneath
that icon.

To specify that double-clicking on a program element expands the tree view
beneath the program element:
1. Select Options from the Window menu. The Options dialog appears.

2. Select the General page, if it is not already selected.
3. Under Action on double-clicking an item in a tree view, enable the

Expand radio button.
4. Click OK.

Now, when you double-click on a program element icon, the tree view
expands to show the program elements contained by the clicked-on element.

Chapter 8. What Else Can You Do? 127

To set all of the options on a page back to their default values, select Defaults
and then select OK.

The tree view on the left-hand side of the Options dialog can be expanded to
show all available pages.

Note: Each parent item in the tree (for example Coding) also has a page.

The following pages are available in the Options dialog:
v The General page displays options for some miscellaneous IDE behaviors.

The Cache page displays options for memory management.
v The Appearance pages display options for how lists, source code, dialogs,

banners, and printer output appear, including color, size, and font.
v The Coding page displays options for tabbing and saving code.
v The Compiler page displays options for reporting compiler errors.
v The Debugging page displays options for the integrated debugger and for

generating a stack trace.
v The Formatter page displays options for the automatic code formatter,

which standardizes how code is shown in Source panes.
v The Indentation page displays options for how each new line of code is

indented.
v The Method Javadoc and Type Javadoc pages display options for

generating standard Javadoc comments for each new method and type.
v The Help page displays options for specifying which web browser is used

to display the help information.
v The Tips and Warning pages displays options for specifying which help

tips and warnings you want to see.
v The Resources page lets you set the class path so that programs running in

the workspace can find the resource files and classes that they need.
v The RMI Registry page displays options for remote method invocation

(RMI).
v The Design Time page displays options for BeanInfo support and the

Visual Composition Editor.

Domino AgentRunner

Lotus Domino is an application and messaging server with an integrated set
of services that enable you to create interactive business solutions for the
Internet and corporate intranets. The Domino AgentRunner is a tool which
can be used to build, run, and debug Domino agents in VisualAge for Java.

128 Getting Started

The AgentRunner uses a set of debug classes that access Notes context
information while you are running an agent in the IDE, on a Lotus Notes
client.

To use the AgentRunner, you must follow these steps:
1. Set up your Notes and VisualAge for Java environments.
2. Create an agent in the IDE with a class that extends DebugAgentBase.
3. Export the class file into the file system.
4. Run the agent inside Notes to generate an AgentContext document in the

AgentRunner.nsf. The AgentContext document is what allows you to
build, debug and run without having to switch between the IDE and
Notes.

5. Debug your agent in the IDE using VisualAge for Java’s debugger.
6. Create the Production agent.

Each of these steps is described in more detail below.

Set up the AgentRunner

First you have to set up your Notes environment to access the AgentRunner
classes, and then you have to set up the VisualAge for Java environment to
access Domino Java classes and Notes AgentContext documents.

To set up your Notes 4.6 environment to support the AgentRunner, follow
these steps:
1. Add the IVJAgentRunner.jar file to the JavaUserClasses statement in your

notes.ini file. If you do not have a JavaUserClasses statement in your
notes.ini file already, you can cut and paste the following statement to the
end of your notes.ini file so that your JavaUserClasses points to the
IVJAgentRunner.jar file.
JavaUserClasses=X:\VAJava\ide\runtime\IVJAgentRunner.jar

where X:\VAJava is the path where VisualAge for Java is installed. After
you have edited the notes.ini file, you must shut down Notes and restart it
so that your changes take effect.

2. Set your path to point to your Notes directory by entering
set path=%path%X:/path/Notes

on a command line. X is the drive on which Notes is installed. path is the
path to your Notes directory. Your Notes directory will be temporarily
added to your path. When you close your command window, this setting
will be erased. Do not close the command window in which you set your
path until you have finished using the AgentRunner. (If you want to
permanently add this pointer, set the path to Notes in your computer’s
systems settings.)

Chapter 8. What Else Can You Do? 129

3. Copy the AgentRunner.nsf file from X:\VAjava\ide\runtime (where
X:\VAjava is the path where VisualAge for Java is installed) to your
notes\data directory.

Your Notes environment is now set up to support the AgentRunner. Next, you
have to set up your VisualAge for Java Environment.

Add the Domino Java classes to the Workbench

To set up your VisualAge for Java IDE to use the AgentRunner, add the
Domino Java class library from the repository to your workspace. (From the
Workbench window’s Selected menu, select Add > Project. The Add Project
SmartGuide will open.)

You now should see the Domino Java class library on the Projects page of the
Workbench window. This project contains a package called lotus.notes, with
all the Java classes for Notes Object Interface/Domino 4.6 and additional
Debug classes that support the AgentRunner tool. You can now use these
classes when running or debugging an agent in the IDE.

Import an agent from Notes

In the Workbench, create a project called Domino Agents.

Next, use the Import SmartGuide to import your agent from Notes into this
new project. The imported Java code is compiled and any unresolved
problems are added to the All Problems page. Your .java file appears as in a
package in your Domino Agents project in the Workbench.

Create a new agent in VisualAge for Java:

Use the Create Class SmartGuide to create a class in your new package, in
your Domino Agents project. Click on the class with mouse button 1. In the
Source pane of the Workbench, write the code for your agent. (For
instructions, see the Java Programmer’s Guide for Lotus Notes).

Export the class file

When you have finished writing your agent, use the Export SmartGuide to
save it and export the .class file from the IDE to the file system, so it can be
read by Notes.

You can now generate your AgentContext document in a Notes Database.

Run the agent in Notes to generate an AgentContext document

130 Getting Started

Create a Java agent in a Notes database. See the Notes help for more
information on creating an agent.
1. Open Lotus Notes 4.6.
2. Create your agent in the appropriate database.
3. Fill in the details for your agent. Select the Java radio button for What

should this agent run

4. Click Import class files and select the file that you exported from
VisualAge for Java.

5. Run the agent.

The AgentContext document is automatically generated in the
AgentRunner.nsf when you run your agent in Notes from an agent class that
extends DebugAgentBase. A call to getSession() will, after generating an
AgentContext document, return null. So any use of the returned session will
result in a thrown exception. But, since the purpose of running the agent is
only to generate the context document (and not to run any of the agent code),
you can ignore the exception.

Debug your agent

When you have generated an AgentContext document, you are ready to
debug it in VisualAge for Java.
1. Set one or more breakpoints in the NotesMain() method of your agent.
2. Select your agent with mouse button 2.
3. Select Tools - Domino AgentRunner.

You have two options:
v Select Properties if you want to modify your AgentContext or select a

different AgentContext. The AgentRunner window will open. Select the
AgentContext that you wish to use and then click Run Agent. To modify
your agent, click Update Agent Context. You can change the Agent Runs
on and Search Criteria fields to generate the UnprocessedDocuments
collection that you would like to use for debugging purposes. You must
supply this information because it cannot be determined from running the
agent. When you have finished updating your AgentContext, click the
Update AgentContext Document button and close the window. Click Run
Agent. (To make your new AgentContext the default choice, click Save
Selection before you click Run Agent.)

or

v Select Run if you wish to run your agent with the default AgentContext
document. The default is either the last AgentContext that you ran or the
last one that you saved. If you have set any breakpoints or have errors in

Chapter 8. What Else Can You Do? 131

your code, the Debugger window will open and allow you to step through
your code. See the online help for more information on using the debugger.

Create the production agent

When your development of the agent is complete, you can move your agent
to Notes. First, in the IDE, you have to change your agent’s base class to
extend lotus.notes.AgentBase instead of DebugAgentBase.

Export the .class file to the file system. and reimport it in your agent in Notes.

You can now run your agent in Notes.

More information about VisualAge for Java

This Getting Started document is only a brief overview of what you can do
with VisualAge for Java. For more complete information, see the complete set
of online help that is available from the Help menu of any window in
VisualAge for Java.

This online help is organized into several categories, all of which are directly
accessible both from the home page of the Help and from any of the content
pages:
v Concepts - definitions and overall grounding in the concepts you need to

know to use VisualAge for Java
v References - operational details and other kinds of reference information

organized to make it easy for you to retrieve what you need
v Tasks - how to perform tasks: step-by-step guidelines for accomplishing

specific goals
v PDF Index - provides a way of printing all information on a given topic.
v Samples - describes the samples that come with the product and how to

get them. Some samples include directions on how to build them with the
Visual Composition Editor.

v Glossary - defines terms used frequently in VisualAge for Java.

Printing material

You can print any topic in the help for VisualAge for Java. To print a topic:
1. Display the help topic you want to print.
2. Select the content frame (the bottom-right frame) by clicking mouse button

1 on the frame.
3. Select Print Frame from the File menu.

132 Getting Started

To print all the information on a topic, use the PDF Index files.

Where you can get the latest VisualAge for Java information

To get the latest information updates, bookmark this Web site:

www.software.ibm.com/ad/vajava

The Library section provides additional Java programming books, papers and
links.

Chapter 8. What Else Can You Do? 133

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

S430-4086-01

