
VisualAge for Java, Version 2.0

External SCM Tools

IBM

ii External SCM Tools

Contents

Legal Notices . v
Notices . v

External SCM Tools (Windows) 1
External SCM Tools . 1
Preparing to Use an External SCM Tool (Windows) 2
Setting Your SCM Connection Parameters (Windows) 4
Adding Classes to the SCM Repository (Windows) 4
Checking Classes Out from an SCM Repository (Windows) 5
Checking Classes In with an External SCM Tool (Windows) 7
Undoing Checkout with an External SCM Tool (Windows) 8
Getting the Latest Version from an External SCM Tool (Windows) 8
Comparing a Class to a Version in the SCM Repository (Windows) 9
Displaying SCM History (Windows) 9
Launching Your SCM Program (Windows) 10

© Copyright IBM Corp. 1998 iii

iv External SCM Tools

Legal Notices

Notices

Note to U.S. Government Users — Documentation related to restricted rights —
Use, duplication or disclosure is subject to restrictions set forth in GSA ADP
Schedule Contract with IBM Corp.

Any reference to an IBM licensed program in this publication is not intended to state
or imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information Programming interface information is
intended to help you create application software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help you
debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

v AIX

v AS/400

v DB2

© Copyright IBM Corp. 1998 v

v CICS

v IBM

v OS/2

v OS/390

v RS/6000

v San Francisco

v VisualAge

v Visual Servlet

v WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States and/or in other countries.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the U.S. and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the U.S. and/or other countries.

Other company, service, and product names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of their respective owners.

vi External SCM Tools

External SCM Tools (Windows)

The VisualAge for Java IDE offers an interface for checking .java source files in and
out of an external software configuration management (SCM) system. This interface
is a complementary feature that you can select when you install VisualAge for Java.
It supports the following SCM tools:

v ClearCase 3.2 for Windows NT, from Rational Software Corporation

v PVCS Version Manager 6.0, from INTERSOLV, Inc.

v VisualAge TeamConnection Version 3.0, from IBM Corporation

External SCM Tools

The interface from VisualAge for Java to external SCM tools uses Microsoft’s
Source Code Control (SCC) API. It is supported for Windows NT and Windows 95
clients. It may work with other SCC-compliant SCM tools, but IBM has only tested
the products and releases listed above.

If you selected the interface to external SCM tools when you installed VisualAge for
Java, the Workbench window provides a menu for adding classes to source control,
checking classes in and out of the SCM repository, and importing the most recently
checked-in version of a class from the SCM repository. Prior to VisualAge for Java,
Version 2.0, if you wanted to check a class into your SCM tool’s repository, you had
to do the following steps:

1. Export the classes from the VisualAge for Java repository to the file system

2. Launch your SCM client program from outside the IDE

3. Use your SCM client program to check in the files that you created when you
exported from VisualAge for Java

To check out a class, you would reverse the process. By contrast, with the interface
to external SCM tools, the intermediate import and export steps are automated so
you only need to select Checkin or Checkout from a menu in the IDE.

The interface from VisualAge for Java to external SCM tools does not provide any
automatic synchronization of version names between the VisualAge for Java
repository and the external SCM tool. VisualAge for Java does not prevent you from
changing a program element in your workspace if you have omitted to check it out
in the external SCM tool. The External SCM menu provides a convenient way for
you to use an existing SCM tool without leaving the VisualAge for Java IDE, but
you will need to correlate the functions of the two systems.

See the table below for a comparison of terms used by different SCM programs.

External SCM Tools and VisualAge for Java Team Development
VisualAge for Java, Enterprise Edition, provides a team development environment
that uses a shared, object-based source code repository. This is VisualAge for
Java’s implementation of SCM; it provides software configuration support for
development projects where multiple programmers work on the same code at the
same time, and where they may need to support multiple versions. This shared
repository implementation, sometimes called ENVY, is used by VisualAge Smalltalk
and has become a de facto SCM standard for team development in Smalltalk
environments.

© Copyright IBM Corp. 1998 1

Version control and repository management are integrated into VisualAge for Java,
Enterprise Edition. The shared repository offers excellent support for day-to-day
team programming activities. Even so, you may wish to install external SCM
support as a complementary feature for one of the following reasons:

v You already use another SCM tool as your standard for application development.

v You have established practices for archiving applications on a particular
enterprise server, for example for disaster recovery purposes.

v The repository in VisualAge for Java manages Java objects only; you may wish
to manage all of your development artifacts with a single tool, or to integrate
multiple programming languages across your environment.

v VisualAge for Java, Enterprise Edition, allows programmers to work concurrently
on the same class. (Each programmer works in a separate, unique edition of the
class, and class owners must approve changes by releasing them.) This
approach encourages programmers to think in terms of objects rather than files,
and it fosters team communication. Nonetheless, you may be more comfortable
with a traditional file checkin/checkout approach that enforces serial development
of classes.

Comparison of SCM Terms
As you use the VisualAge for Java interface to external SCM tools, the following
table may help you to correlate the terms that you encounter.

VisualAge for
Java’s interface to
external SCM tools

PVCS ClearCase VisualAge
TeamConnection

SCM repository archives data repository repository

project project combination of VOB
+ view

combination of family
+ release +
component + work
area; sometimes
known as version
context

check in check in check in check in part

check out check out check out check out part

undo checkout unlock revision undo checkout unlock part

add to source control create archive add to source control create part

get latest check out the tip
(latest version) with
no read or write lock

not applicable extract part

comments change description comments remarks

Preparing to Use an External SCM Tool (Windows)

Before you can use the VisualAge for Java interface to an external source
configuration management (SCM) tool, you must meet the following prerequisites:

1. You must install the client code for your SCM tool on your workstation.

2. In the Windows NT registry, your SCM tool must be registered under the key
HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider , for the
variable ProviderRegKey . To verify this, issue regedit from a command
prompt. For more information, consult your SCM tool’s documentation on
enabling Source Code Control (SCC) functionality.

2 External SCM Tools

3. Using the native SCM software, someone has to create an organizational
structure that your SCM tool will use to manage your .java files. Depending on
the SCM software that you use, one or more of the following organizational
units may be required:

v VOBs and views (ClearCase)

v Project files (PVCS Version Manager)

v Families, releases, components, and work areas (VisualAge
TeamConnection)

You will require this organizational information when you define your SCM
connection.

4. You must test your native SCM client with the structure mentioned above. A
good exercise is to export a few classes from VisualAge for Java to the file
system, and to check them in using your native SCM client program. This action
should have the following results:

v Your client workstation has access to at least one work directory that is
recognized by your SCM tool. See below for a further explanation of work
directories.

v You are familiar with the organizational structures that your SCM tool uses.

v You are familiar with settings that your SCM tool requires, such as drive
mappings, file mounts, or the creation of views.

5. Some SCM tools, for example PVCS Version Manager, may need to be
reconfigured to handle four-character (.java) file extensions.

Once you have met these prerequisites, you are ready to set the default parameters
for VisualAge for Java to use when connecting to your external SCM tool. See
below for a link to information on performing this task.

The Work Directory
When you define the connection to your external SCM tool, you will need to specify
a work directory. Here is an example of how the work directory is used.

If you were not using the automated interface from VisualAge for Java to your
external SCM tool, you would have to export your classes manually and then use
your SCM client software to check them in and out. For example, you might export
the class HanoiApplet to a directory called workdir. Since HanoiApplet is part of the
package COM.ibm.ivj.examples.hanoi, VisualAge for Java would export to a file
called workdir\COM\ibm\ivj\examples\HanoiApplet.java. This is the file that you
would check in and out of your SCM tool’s repository.

With the SCM interface provided with VisualAge for Java, you can select
HanoiApplet in the IDE, and then select Tools > External SCM > Checkin from its
pop-up menu. This will export the class to a .java file and check it in for you. If you
specify workdir as the default work directory when you set your SCM connection
parameters, the class is automatically exported to
workdir\COM\ibm\ivj\examples\HanoiApplet.java.

As mentioned above in the list of prerequisites, the work directory must be
recognized by your SCM tool.

External SCM Tools (Windows) 3

Setting Your SCM Connection Parameters (Windows)

Before you can use the VisualAge for Java interface for checking classes in and out
of an external SCM tool, you must set your default SCM connection parameters.
Before you can set your parameters, you must meet the prerequisites described in
the file on preparing to use an external SCM tool. See below for a list of links to
related information.

To establish the default parameters for your external SCM connection:

1. Select any VisualAge for Java project, package, or class in the Workbench
window.

2. From the pop-up menu, select Tools > External SCM > Change Connection .
The SCM Connection dialog box will open. (If you do not see this menu option,
you may need to reinstall VisualAge for Java, this time selecting the
complementary feature for External SCM Tools.)

3. Click Change to request a list of projects that your SCM tool recognizes.

We use the term project to refer to your SCM tool’s basic unit of organization.
For more details, see the related files on SCM concepts and on preparing to
use the external SCM interface. Links to these files are listed below.

4. Select a project from the list. (If you are using ClearCase, it does not actually
matter which project ou select from the list.) The SCM Connection dialog box
will reappear, with the Project Name field completed.

5. Click Browse to select the default work directory that the SCM interface should
use when it adds .java files to source control and checks them into the SCM
repository. See the link to related concepts, below, for more information on work
directories.

6. When you have returned to the SCM Connection dialog box and your selected
directory appears in the Work Directory field, click OK.

These parameters will now be passed from VisualAge for Java to your external
SCM tool, when you check classes in and out or perform other SCM operations.

The next step is to add your classes to source control in the external SCM tool, so
you can check them in and out. See the list of links below for more information.

Adding Classes to the SCM Repository (Windows)

Before you can use the check classes and interfaces in and out of an SCM tool,
you must add them to source control in the SCM tool’s repository. Before that, you
must meet the prerequisites described in the file on preparing to use an external
SCM tool. See the list of links below for more information.

In the VisualAge for Java IDE, you can select individual classes and interfaces that
you wish to add to your SCM repository, as a preliminary step to checking them in
and out. You can also select projects or packages in the IDE, as a convenient way
to add all of their contained classes and interfaces to the SCM repository at once.
There is no other relationship between projects and packages in VisualAge for
Java, and the organizational constructs in your SCM tool. You will need to correlate
the names, contents, and versions of your VisualAge for Java program elements
with the elements stored in your SCM repository.

To add classes and interfaces from VisualAge for Java to source control in the SCM
repository:

4 External SCM Tools

1. From the Workbench window, select one or more projects, packages, classes,
or interfaces.

2. From the pop-up menu, select Tools > External SCM >Add . VisualAge for Java
will pass the list of classes and interfaces to the SCM tool, which validates the
request.

3. If there are no problems, the Set Comments dialog box will appear. Enter the
comments that you want the SCM tool to log when it adds the .java files to its
repository, and click OK.

4. VisualAge for Java exports the classes and interfaces to the file system on your
computer, in the work directory that you specified when you set your SCM
connection parameters. Next, VisualAge for Java invokes the SCM client
function to add those .java files to source control within the project that you
specified when you set your SCM connection parameters.

Wait for the Operation Complete dialog box to appear before you do any other
software configuration tasks.

5. Click OK to close the Operation Complete dialog box.

The classes and interfaces remain in your VisualAge for Java workspace and
repository. When you want to change them, remember to check them out of the
SCM repository. VisualAge for Java will does not enforce SCM checkout, but your
SCM tool will not allow you to check in changes to program elements that you have
not checked out.

As you create new classes and interfaces in your VisualAge for Java projects and
packages, remember to add them to the SCM repository as well. There is no
automated relationship between the VisualAge for Java source code repository and
external SCM repositories.

To see where the classes and interfaces that you just added to the SCM repository
are stored:

1. From the Workbench window, select one or more projects, packages, classes,
or interfaces.

2. From the pop-up menu, select Tools > External SCM >Launch SCM Program .

3. Use the SCM tool’s client software to check the contents of the SCM repository.

The team roles that determine privileges within VisualAge for Java do
not apply to external SCM tools. Any member of the team can add any edition of a
class or interface to the SCM repository, regardless of who owns that program
element in VisualAge for Java. SCM activities are governed by the security policies
of the SCM tool that you use.

Checking Classes Out from an SCM Repository (Windows)

In the IDE, you can select classes and interfaces that you wish to check out of an
external SCM tool’s repository. When you take this action, VisualAge for Java
automatically does the following things:

v Invokes your SCM client software to check out the most recently checked-in
version of each class and interface

v Creates new open editions of the classes and interfaces in the VisualAge for
Java repository

v Replaces the editions that were in your workspace with the new open editions

External SCM Tools (Windows) 5

You can select classes and interfaces individually, or you can select them grouped
in projects or packages as input to the SCM tool. There is no other relationship
between projects and packages in VisualAge for Java and the organizational
constructs used by your SCM tool.

Before you can check classes in or out, you must add them to source control in
your SCM tools’ repository. See the list of topics below for links to related
information.

To check classes and interfaces out of your SCM tool’s repository:

1. From the Workbench window, select the classes and interfaces that you wish to
check out, or select the projects or packages that contain the classes you wish
to check out.

2. From the pop-up menu, select Tools > External SCM >Checkout . VisualAge
for Java will pass the list of classes and interfaces to the SCM tool, which
validates the request.

3. If there are no problems, the Set Comments dialog box will appear. Enter the
comments that you want the SCM tool to log when it checks the classes out of
its repository, and click OK.

The classes and interfaces are checked out of the SCM repository, from the project
that you identified when you set your SCM connection parameters. Open editions of
the classes and interfaces are created in the VisualAge for Java repository, and
added to your workspace. The classes and interfaces remain checked out of the
SCM repository until you check them in again, or until you undo the checkout
operation.

Since the class already existed in VisualAge for Java, the owner of
the new edition is the existing class owner. As the person who created the open
edition, you are the class developer and therefore the only person who can version
that particular edition.

If you check out classes and interfaces from the SCM repository, and
if the containing package or project in your VisualAge for Java workspace has been
versioned, then a scratch edition of the package or project will be created. To
prevent this, create an open edition of each project or package before selecting its
classes for checkout.

Checking Out Classes that Were Not Developed in VisualAge for Java
The above procedure requires that the classes or interfaces are already in your
workspace, and therefore in the VisualAge for Java source code repository. To
check out classes that exist in the SCM repository but not in the VisualAge for Java
repository:

1. Start the native client software for your SCM tool by selecting Tools >External
SCM > Launch SCM Program from the pop-up menu of any program element
in the workspace.

2. Use the SCM client to check the classes out.

3. From the Workbench window, select File > Import to import the files into the
VisualAge for Java repository. Open editions of the classes and interfaces will
be created in the workspace.

4. To change ownership of the classes to the team member who will
be responsible for them, select Manage > Change Owner .

6 External SCM Tools

Checking Classes In with an External SCM Tool (Windows)

If you have checked classes or interfaces out of your SCM repository, you must
either check them back in again or undo the checkout operation before anyone else
can check them out.

In the VisualAge for Java IDE, you can select individual classes and interfaces that
you wish to check into your SCM repository. You can also select projects or
packages in the IDE, as a convenient way to check all of their contained classes
and interfaces into the SCM repository at once. There is no other relationship
between projects and packages in VisualAge for Java, and the organizational
constructs (for example, project files, folders, versioned object bases, views, or
workareas) in your SCM tool.

Before you can check classes in or out, you must add them to source control in
your SCM tools’ repository. See the list of topics below for links to related
information.

To check classes and interfaces from VisualAge for Java into the SCM repository:

1. From the Workbench window, select one or more projects, packages, classes,
or interfaces.

2. From the pop-up menu, select Tools > External SCM >Checkin . VisualAge for
Java will pass the list of classes and interfaces to the SCM tool, which validates
the request.

3. If there are no problems, the Set Comments dialog box appears. Enter the
comments that you want the SCM tool to log when it checks the files into its
repository, and click OK.

4. VisualAge for Java exports the classes and interfaces to the file system on your
computer in the work file that you specified when you set your SCM connection
parameters. Next, VisualAge for Java invokes the SCM client function to check
those .java files into the SCM repository.

Wait for the Operation Complete dialog box to appear before you do any other
software configuration tasks.

5. Click OK to close the Operation Complete dialog box.

Depending on the SCM tool that you use, you may see an error message that says
the SCM operation failed when you try to check in files that have not changed. If
you know that you have not changed a class, undo checkout instead of checking it
in.

The exported classes and interfaces are checked into the SCM repository within the
project that you specified when you set your SCM connection parameters. The
classes and interfaces remain in your VisualAge for Java workspace and
repository. If you do not check them out of your SCM repository again, VisualAge
for Java will still allow you to create new open editions and to make changes, but
your SCM tool will not allow you to check the changed editions in.

The team roles that determine privileges within VisualAge for Java do
not apply to external SCM tools. Any member of the team can add any edition of a
class or interface to the SCM repository, regardless of who owns that program
element in VisualAge for Java. SCM activities are governed by the security policies
of the SCM tool that you use.

External SCM Tools (Windows) 7

Undoing Checkout with an External SCM Tool (Windows)

Normally, after you check classes or interfaces out of the SCM repository, you
modify them and then check them in again. If you decide not to check in your
changes, you should cancel your checkout to make the program elements available
to other users of the SCM repository.

To cancel checkout of classes and interfaces:

1. From the Workbench window, select the classes and interfaces that you wish to
make available again. To select all classes within a project or package, select
the project or package.

2. From the pop-up menu, select Tools > External SCM >Undo Checkout .

3. VisualAge for Java will pass the list of classes and interfaces to the SCM tool,
which validates the request.

4. If there are no problems, the Operation Complete dialog box will appear. Click
OK.

Other developers can now check the classes and interfaces out of the SCM
repository. Depending on the external SCM tool that you use, a backup copy of the
classes and interfaces may be created on your workstation.

Getting the Latest Version from an External SCM Tool (Windows)

The interface to external SCM tools allows you to import the most recently
checked-in editions of classes and interfaces from your SCM repository into
VisualAge for Java, without checking them out. You might do this for testing
purposes.

As with checkout, VisualAge for Java will do the following things when you get the
latest classes and interfaces from your SCM library:

v Retrieves the most recently checked-in versions of the classes and interfaces,
from the project that you specified when you set your SCM connection
parameters, and copies them to the work directory that you specified.

v Automatically imports the class files from the work directory to the VisualAge for
Java repository. New open editions are created.

v Replaces the editions that were in your workspace with the new open editions.

To get the most recently checked-in editions of classes and interfaces from your
SCM repository:

1. From the Workbench window, select the classes and interfaces that you wish to
retrieve, or select the projects or packages whose classes you wish to retrieve.

2. From the pop-up menu, select Tools > External SCM >Get Latest . VisualAge
for Java will pass the list of classes and interfaces to the SCM tool, which
validates the request.

3. If there are no problems, the Operation Complete dialog box will appear. Click
OK.

Open editions of the classes and interfaces are created in the VisualAge for Java
repository, and are added to your workspace.

8 External SCM Tools

Since the class already existed in VisualAge for Java, the owner of
the new edition is the existing class owner. As the person who created the open
edition, you are the class developer and therefore the only person who can version
that particular edition.

If you get classes and interfaces from the SCM repository, and if the
containing package or project in your VisualAge for Java workspace has been
versioned, then a scratch edition of the package or project will be created. To
prevent this, create an open edition of each project or package before you retrieve
its classes.

Retrieving Classes That Do Not Exist in the VisualAge for Java Repository
The above procedure requires that the classes or interfaces are already in your
workspace, and therefore in the VisualAge for Java source code repository. To get
the most recently checked-in versions of classes that exist in the SCM repository
but not in the VisualAge for Java repository:

1. Start the native client software for your SCM tool by selecting Tools >External
SCM > Launch SCM Program from the pop-up menu of any program element
in the workspace.

2. Use the SCM client to get the .java files.

3. From the Workbench window, select File > Import to import the files into the
VisualAge for Java repository. Open editions of the classes and interfaces will
be created in the workspace.

Comparing a Class to a Version in the SCM Repository (Windows)

After you have checked a class or interface out of an external SCM tool’s
repository, and made changes to it in VisualAge for Java, you may want to compare
the edition of the class that is in your workspace to a previous one in the SCM
tool’s repository.

1. From the Workbench window, select the class or interface.

2. From the pop-up menu, select Tools > External SCM >Compare . VisualAge for
Java passes the class name to the SCM tool for validation. If there are no
problems, the class is automatically exported from the VisualAge for Java
repository to the file system on your workstation, in the work directory that you
specified when you set your SCM connection parameters. (This step is required
by the SCM tools, which work with files rather than with the object-based
repository of VisualAge for Java.)

If the automatic export step is successful, VisualAge for Java invokes the compare
function of your SCM software program. If the export is not successful, confirm that
you have checked the class out of the SCM repository. (If the file is checked in, the
file status in the work directory is read-only.)

Displaying SCM History (Windows)

In the VisualAge for Java IDE, you can request a history of SCM events for
selected classes and interfaces. You can select projects or packages as a
convenient way to see the SCM history for all of their contained classes and
interfaces at once.

Adding classes to source control, checking in and out of the SCM repository, and
undoing checkout are all examples of SCM events. To request a history:

External SCM Tools (Windows) 9

1. From the Workbench window, select one or more projects, packages, classes,
or interfaces.

2. From the pop-up menu, select Tools > External SCM >History . VisualAge for
Java will pass the list of classes and interfaces to the SCM tool, which validates
the request.

3. If there are no problems, the SCM client software on your workstation will be
invoked to display a history for those classes and interfaces.

Launching Your SCM Program (Windows)

VisualAge for Java provides a seamless interface from the IDE to several popular
software configuration management tools. At times, you may also need to launch
the native client software for your SCM tool, for example to check resource files into
your SCM repository. (The SCM interface in VisualAge for Java only supports Java
source files.)

To launch your SCM client software from inside the IDE:

1. From the Workbench window, select any project, package, classes, or interface.

2. From the pop-up menu, select Tools > External SCM >Launch SCM Program .

Default SCM
If you have more than one SCM tool installed on your computer, VisualAge for Java
automatically interfaces with the one that is defined as the default in the Windows
registry, under the key
HKEY_LOCAL_MACHINES\Software\SourceCodeControlProvider , for the
variable ProviderRegKey .

10 External SCM Tools

