
The topics in this chapter provide introductions to ActiveX controls provided with
Visual Basic (also see "Using the ActiveX Controls – 1). For many of these, you will
also find scenarios — along with code — featuring the controls in sample
applications.

Contents
· Using the Slider Control

· Using the StatusBar Control

· Using the TabStrip Control

· Using the ToolBar Control

· Using the TreeView Control

Using the Slider Control
A Slider control consists of a scale, defined by the Min and Max properties, and a
"thumb," which the end user can manipulate using the mouse or arrow keys. At run
time, the Min and Max properties can be dynamically reset to reflect a new range of
values. The Value property returns the current position of the thumb. Using events
such as the MouseDown and MouseUp events, the Slider control can be used to
graphically select a range of values.

Possible Uses
· To set the value of a point on a graph.

· To select a range of numbers to be passed into an array.

· To resize a form, field, or other graphic object.
1

TickStyle and TickFrequency Properties
The Slider control consists of two parts: the thumb and the ticks, as shown below:

—1

Using the ActiveX Controls – 2

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 1 of 30 Printed: 07/26/96 04:19 PM

2
The appearance of the control depends on the TickStyle property. In brief, the ticks
can appear along the bottom of the control, as shown above (the default style), along
the top, along both top and bottom, or not at all.

In addition to the placement of the ticks, you can also program how many ticks
appear on the control by setting the TickFrequency property. This property, in
combination with the Min and Max properties, determines how many ticks will
appear on the control. For example, if the Min property is set to 0, the Max to 100,
and the TickFrequency to 5, there will be one tick for every five increments, for a
total of 21. If you reset the Min and Max properties at run time, the number of ticks
can be determined by using the GetNumTicks method, which returns the number of
ticks on the control.

Set the Min, Max Properties at Design Time or
Run Time
The Min and Max properties determine the upper and lower limits of a Slider control,
and you can set these properties at either design time or run time. At design time,
right-click on the control and click Properties to display the Property Pages dialog
box, as shown below:

—2

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 2 of 30 Printed: 07/26/96 04:19 PM

3
At run time, you can reset the Min and Max settings to accommodate different ranges.
For example, if you are using the Slider to change values in a database, you can use
the same control and bind it to different fields depending on what table the user is
editing.

SmallChange and LargeChange Properties
The SmallChange and LargeChange properties determine how the Slider control will
increment or decrement when the user clicks it. The SmallChange property specifies
how many ticks the thumb will move when the user presses the left or right arrow
keys. The LargeChange property specifies how many ticks the thumb will move when
the user clicks the control or when the user presses the PAGEUP or PAGEDOWN keys.

Selecting Ranges
If the SelectRange property is set to True, the Slider control changes its appearance,
as shown below:

4
To select a range of values, you must use the SelStart and SelLength properties. For a
detailed example of this, see "Slider Scenario 2: Select a Range of Values with the
Slider" in this chapter.

—3

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 3 of 30 Printed: 07/26/96 04:19 PM

Slider Scenario 1: Resize a Graph Control Proportionally
One possible use of the Slider is to resize a PictureBox control on a form while
keeping its proportions.

The code below uses the following objects:

· Form named "frmPictureBox"

· Slider control named "sldResize"

· PictureBox control named "picPhoto"
5

 To resize a PictureBox control with a Slider control

1 Create two global variables for the Height and Width properties.

2 Use the Form’s Load event to set global variables and the Max property.

3 Resize the height and width of the PictrureBox through the Scroll event.
6

Create Two Global Variables for Height and
Width
One simple formula for retaining proportions would be:

picPhoto.Height = sldResize.Value * _
OriginalHeight / 100
picPhoto.Width = sldResize.Value * OriginalWidth / 100

1
This formula depends on two constant values: the original height and width of the
PictureBox control. These values should be set when the form is loaded, and should
be available as global variables, as shown below:

Option Explicit
Private gHeight As Long
Private gWidth As Long

2

Use the Form Load Event to Set Global Values and the Max
Property
To set the values for the global variables, use the Form object's Load event. It's also
more efficient to calculate the values of OriginalHeight/100 and OriginalWidth/100
once, and store those values in global variables, as shown below:

gHeight = picPhoto.Height / 100
gWidth = picPhoto.Width / 100

3
The Load event can also be used to set the Max property of the Slider control. The
Max property specifies the maximum value the Slider will accommodate. To keep the
math simple, set the value of the Max property to 100:

sldResize.Max = 100
4

—4

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 4 of 30 Printed: 07/26/96 04:19 PM

The complete code below, then, sets the global variables and the Max property in the
Form object's Load event:

Private Sub Form_Load()
gHeight = picPhoto.Height/100
gWidth = picPhoto.Width/100
sldResize.Max = 100

End Sub
5

Resize the Height and Width of the PictureBox through the
Scroll Event
The Slider control has a Scroll event that occurs whenever the Slider's thumb is
moved by the user. Use this event when you wish to continually process the Value
property of the Slider control. In the present scenario, this means the size of the
PictureBox will be dynamically changed as the thumb is moved. (If you don't want
the user to be distracted by the dynamically changing control, you should use the
Click event. The Click event updates the size of the control after the thumb has been
released.) The code below shows the formula within the Scroll event:

Private Sub sldResize_Scroll()
picPhoto.Height = sldResize.Value * gHeight
picPhoto.Width = sldResize.Value * gWidth

End Sub
6

The Complete Code
The complete code is shown below:

Private gHeight As Long
Private gWidth As Long

Private Sub Form_Load()
gHeight = picPhoto.Height / 100
gWidth = picPhoto.Width / 100
sldResize.Max = 100

End Sub

Private Sub sldResize_Scroll()
picPhoto.Height = sldResize.Value * gHeight
picPhoto.Width = sldResize.Value * gWidth

End Sub
7

Slider Scenario 2: Select a Range of Values with the
Slider

Another feature of the Slider control is the ability to select a range of values. In this
implementation, when the user presses the SHIFT key while clicking on the Slider
control, the MouseDown event occurs. Code in that event sets the SelectRange and
SelStart properties. When the user releases the mouse button, the MouseUp event

—5

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 5 of 30 Printed: 07/26/96 04:19 PM

occurs, and in that code the SelLength property is set, from which a range of values
can be extracted.

The code below uses the following objects:

· Form named "frmSlider"

· Slider control named "sldSelect"
7

 To select a range of values with the Slider control

4 Set the Slider control's SelectRange property to True.

5 In the MouseDown event, test to see if the SHIFT key is down.

6 In the MouseUp event, set the SelLength property to Value - SelStart.
8

Set the Slider Control's SelectRange Property to
True
To enable the selection of a range of values, the SelectRange property must be set to
True. One place to do this is the Form object's Load event, as shown below:

Private Sub Form_Load()
sldSelect.SelectRange = True

End Sub
8

Alternatively, you can set the property to True at design time by right-clicking on the
control, and clicking on Properties to display the Property Pages dialog box.

MouseDown Event: Test to See if the Shift Key
is Down
In order to select a range, the user must hold down the SHIFT key while moving the
slider's thumb. The MouseDown event has a Shift argument, which allows you to
determine if the SHIFT key is being held down. The If statement can be used to test for
this possibility, as shown below:

Private Sub sldSelect_MouseDown _
(Button As Integer, Shift As Integer, _
x As Single, y As Single)

If Shift = 1 Then
' If the user has the Shift key down,
' handle it here.

End If
End Sub

9

MouseDown Event: Set the SelStart and
SelLength Properties
If the SHIFT key is being held down by the user, the code then sets the SelStart and
SelLength properties to appropriate values. The SelStart property specifies where a

—6

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 6 of 30 Printed: 07/26/96 04:19 PM

selection of values will begin. In the present context, the SelStart property would be
set to where the thumb is placed — the Slider control's Value property.

The SelLength property specifies a range of values to select; this property begins at
the SelStart value. In the MouseDown event, a new range is being selected, so any
previous range must be deselected by setting the SelLength property to 0. This is
shown in the code below:

sldSelect.SelStart = SldResize.Value
' Set previous SelLength (if any) to 0.
sldSelect.SelLength = 0

10

MouseUp Event: Set the SelLength to the Value
- SelStart Property
To select a range, the user must hold the SHIFT key down while dragging the mouse.
The code to set the new range is therefore found in the MouseUp event, which occurs
when the end user releases the slider thumb. The code below sets the SelLength
property with a simple formula, the value of the thumb minus the SelStart property:

sldSelect.Value - sldSelect.SelStart
11

However, it is possible for the user to release the SHIFT key while selecting a range. In
that case no selection should occur. Therefore the above code will only execute if the
SHIFT key is still down. As with the MouseDown event, an If statement can test for
this possibility:

Private Sub sldSelect_MouseUp _
(Button As Integer, Shift As Integer, _
x As Single, y As Single)

If Shift = 1 Then
' If user selects backwards from a point,
' an error will occur.
On Error Resume Next
' Else set SelLength using SelStart and
' current value.

sldSelect.SelLength = _
sldSelect.Value - sldSelect.SelStart

Else
'If user lifts SHIFT key, set SelLength
' to 0 (to deselect the SelRange) and exit.
sldSelect.SelLength = 0

End If
End Sub

12

The Complete Code
The complete code is shown below:

Private Sub Form_Load()
sldSelect.SelectRange = True

End Sub

—7

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 7 of 30 Printed: 07/26/96 04:19 PM

Private Sub sldSelect_MouseDown _
(Button As Integer, Shift As Integer, _
x As Single, y As Single)

If Shift = 1 Then
sldSelect.SelStart = sldSelect.Value
' Set previous SelLength (if any) to 0.
sldSelect.SelLength = 0

End If
End Sub

Private Sub sldSelect_MouseUp _
(Button As Integer, Shift As Integer, _
x As Single, y As Single)

If Shift = 1 Then
' If user selects backwards from a point,
' an error will occur.
On Error Resume Next
' Else set SelLength using SelStart and
' current value.

sldSelect.SelLength = _
sldSelect.Value - sldSelect.SelStart

Else
'If user lifts SHIFT key, set SelLength
' to 0 (to deselect the SelRange) and exit.
sldSelect.SelLength = 0

End If
End Sub

13

Using the StatusBar Control
A StatusBar control is a frame that can consist of several panels which inform the user
of the status of an application. The control can hold up to sixteen frames.
Additionally, the control has a "simple" style (set with the Style property), which
switches from multi-panels to a single panel for special messages.

The StatusBar control can be placed at the top, bottom, or sides of an application.
Optionally, the control can "float" within the application's client area.

Possible Uses
· To inform the user of a database table's metrics, such as number of records, and the

present position in the database.

· To give the user information about a RichTextBox control's text and font status.

· To give status about key states (such as the Caps Lock or the Number Lock)
9

The Panel Object and the Panels Collection

—8

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 8 of 30 Printed: 07/26/96 04:19 PM

The StatusBar control is built around the Panels collection. Up to sixteen Panel
objects can be contained in the collection. Each object can display an image and text,
as shown below:

10
At run time, you can dynamically change the text, images, or widths of any Panel
object, using the Text, Picture and Width properties. To add Panel objects at design
time, right-click on the control, and click on Properties to display the Property Pages
dialog box, as shown in Figure 2.26 below:

Figure 2.26 StatusBar panels page

11
Using this dialog box, you can add individual Panel objects, and set the various
properties for each panel.

Use the Set Statement with the Add Method to
Create Panels at Run Time
To add Panel objects at run time, use the Set statement with the Add method. First
declare an object variable of type Panel, then set the object variable to a Panel created
with the Add method, as shown in the code below:

—9

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 9 of 30 Printed: 07/26/96 04:19 PM

' The StatusBar control is named "sbrDB."
Dim pnlX As Panel
Set pnlX = sbrDB.Panels.Add()

14
Once you have created a Panel object and set the object variable to reference the new
object, you can set the various properties of the Panel:

pnlX.Text = Drive1.Drive
pnlX.Picture = LoadPicture("mapnet.bmp")
pnlX.Key = "drive"

15
If you plan to have the control respond when the user clicks on a particular Panel
object, be sure to set the Key property. Because the Key property must be unique, you
can use it to identify particular panels.

Use the Select Case Statement in the PanelClick
Event to Determine the Clicked Panel
To program the StatusBar control to respond to user clicks, use the Select Case
statement within the PanelClick event. The event contains an argument (the panel
argument) which passes a reference to the clicked Panel object. Using this reference,
you can determine the Key property of the clicked panel, and program accordingly, as
shown in the code below:

Private Sub sbrDB_PanelClick(ByVal Panel As Panel)
Select Case Panel.Key
Case "drive"

Panel.Text = Drive1.Drive
Case "openDB"

Panel.Text = rsOpenDB.Name
Case Else
' Handle other cases.
End Select

End Sub
16

The Style Property: Automatic Status Functions
One feature of the StatusBar control is its ability to display key states, time, and date
with a minimum of code. By simply setting the Style property, any Panel object can
display one of the following:

Constant Value Description

sbrText 0 (Default). Text and/or a bitmap. Set text with the Text property.

sbrCaps 1 Caps Lock key. Displays the letters CAPS in bold when Caps
Lock is enabled, and dimmed when disabled.

sbrNum 2 Number Lock. Displays the letters NUM in bold when the
number lock key is enabled, and dimmed when disabled.

sbrIns 3 Insert key. Displays the letters INS in bold when the insert key is
enabled, and dimmed when disabled.

sbrScrl 4 Scroll Lock key. Displays the letters SCRL in bold when scroll

—10

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 10 of 30 Printed: 07/26/96 04:19 PM

lock is enabled, and dimmed when disabled.

sbrTime 5 Time. Displays the current time in the system format.

sbrDate 6 Date. Displays the current date in the system format.

sbrKana 7 Kana. displays the letters KANA in bold when kana lock is
enabled, and dimmed when disabled. (enabled on Japanese
operating systems only)

17
The code below creates eight Panel objects, and assigns one of the eight styles to
each:

Private Sub MakeEight()
' Delete the first Panel object, which is
' created automatically.
StatusBar1.Panels.Remove 1
Dim i As Integer

' The fourth argument of the Add method
' sets the Style property.
For i = 0 To 7

StatusBar1.Panels.Add , , , i
Next i

' Put some text into the first panel.
StatusBar1.Panels(1).Text = "Text Style"

End Sub
18

Bevel, AutoSize, and Alignment Properties
Program Appearance
Using the Bevel, AutoSize, and Alignment properties, you can precisely control the
appearance of each Panel object. The Bevel property specifies whether the Panel
object will have an inset bevel (the default), raised, or none at all. All three bevels are
shown in the figure below:

12
Settings for the Bevel property are:

Constant Value Description

sbrNoBevel 0 The Panel displays no bevel, and text looks like it is displayed
right on the status bar

sbrInset 1 The Panel appears to be sunk into the status bar.

sbrRaised 2 The Panel appears to be raised above the status bar.
19

The AutoSize property determines how a Panel object will size itself when the parent
container (either a Form or a container control) is resized by the user. The figure
below shows a StatusBar control before being resized:

—11

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 11 of 30 Printed: 07/26/96 04:19 PM

13
When the container (the Form on which the StatusBar control is placed) of the
control is resized, notice that the first panel retains its width, the second "springs" to
fill the extra space, and the third sizes according to its contents (and therefore retains
its width):

14
Settings for the AutoSize property are:

Constant Value Description

sbrNoAutoSize 0 None. No autosizing occurs. The width of the panel is always and
exactly that specified by the Width property.

sbrSpring 1 Spring. When the parent form resizes and there is extra space
available, all panels with this setting divide the space and grow
accordingly. However, the panels' width never falls below that
specified by the MinWidth property.

sbrContents 2 Content. The panel is resized to fit its contents.
20

Tip Set the AutoSize property to Content (2) when you want to assure that
the contents of a particular panel are always visible.

21
The Alignment property specifies how the text in a panel will align relative to the
panel itself as well as any image in the panel. As with a word processor, the text can
be aligned left, center, or right, as shown below:

15
Settings for the Alignment property are:

Constant Value Description

sbrLeft 0 Text appears left-justified and to right of bitmap.

sbrCenter 1 Text appears centered and to right of bitmap.

sbrRight 2 Text appears right-justified but to the left of any bitmap.
22

Style Property and the SimpleText Property
The StatusBar control features a secondary mode in which the multiple panels are
replaced by a single panel that spans the width of the control. This single panel has
one property, the SimpleText property which specifies what text is displayed on the

—12

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 12 of 30 Printed: 07/26/96 04:19 PM

panel. To display this single panel, set the Style property of the StatusBar to
sbrSimple (1).

One reason for switching to the Simple style and displaying a single panel is to notify
the user that a lengthy transaction is occurring. For example, if you are performing a
database operation, the Simple style may be used to notify the user of the current state
of the transaction, as seen in the code below:

Private Sub GetRecords(State)
' The query finds all records which match
' the parameter State. While the query
' is creating the recordset, show the
' SimpleText on the StatusBar control.
sbrDB.SimpleText = "Getting records …"
sbrDB.Style = sbrSimple ' Simple style.
sbrDB.Refresh ' You must refresh to see the

' Simple text.

Set rsNames = mDbBiblio.OpenRecordset _
("select * from Names Where State= " & _
State)

End Sub
23

Using the TabStrip Control
A TabStrip acts like the dividers in a notebook or the labels on a group of file folders.
By using a TabStrip control, you can define multiple pages for the same area of a
window or dialog box in your application.

16

Possible Uses
· To create a tabbed dialog that sets various text attributes for a RichTextBox

control.

· To create a tabbed dialog that sets preferences for an application.
17

The Tabs Collection
The control consists of one or more Tab objects in a Tabs collection. At both design
time and run time, you can affect the Tab object's appearance by setting properties,
and at run time, by invoking methods to add and remove Tab objects.

—13

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 13 of 30 Printed: 07/26/96 04:19 PM

Associate the ImageList Control with the
TabStrip Control
To identify a tab's function, you can assign an image from the ImageList control to
the Tab object. You must first associate an ImageList control with the TabStrip
control, and this can be accomplished at either design time or run time.

 To associate an ImageList control with a TabStrip control at design
time:

7 Populate the ImageList control with images for the tabs.

8 Right-click on the TabStrip control and click Properties to open the TabStrip
Property Page dialog box.

9 On the General tab, click the ImageList box and select the ImageList control you
have populated.

18
1. To associate an ImageList control with the control at run time, simply set the

ImageList property to the name of the ImageList control, as shown in the
example below:

Private Sub Form_Load()
' The TabStrip control is named "tabRTF," and the
' ImageList control is named "imlRTF."
tabRTF.ImageList = imlRTF

End Sub
24

Create Tabs at Design Time or Run Time
You can create Tab objects at both design and run time. To create Tab objects at
design time, use the Property Pages dialog box.

 To create Tab objects at design time

10 Right-click the TabStrip control and click Properties to display the Property
Pages dialog box.

11 Click Tabs to display the Tabs page, as shown in Figure 2.36, below:
19

—14

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 14 of 30 Printed: 07/26/96 04:19 PM

Figure 2.36 TabStrip Property Pages

20

Create Tab Objects at Run Time Using the Add Method
To create Tab objects at run time, use the Add method for Tab objects.

Note One Tab object is created for you by default.
25

 To create a collection of Tab objects at run time

12 Declare a variable as type Tab. As you add each Tab object, the variable will
contain the reference to the newly created object. Use this reference to set
various properties of the new Tab object.

13 Using the Set statement with the Add method, set the object variable to the new
Tab object.

14 Using the object variable, set the properties of the new Tab object.
21

The code below uses the Form object's Load event to create two Tab objects, then sets
the Caption, Image, and Key properties of the new Tab object.

Private Sub Form_Load()
' The TabStrip control is named "tabData"
' Declare a variable, then use the Set
' statement with the Add method to create a new
' Tab object, while setting the object variable to
' the new Tab. Use the reference to set properties.
Dim tabX As Tab
' Tab 1: Find text.

—15

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 15 of 30 Printed: 07/26/96 04:19 PM

Set tabX = tabData.Tabs.Add()
tabX.Key = "find"
tabX.Caption = "Find"
tabX.Image = "Find" ' Assuming this image exists.

' Tab 2: Draw objects.
Set tabX= tabData.Panels.Add()
tabX.Key = "draw"
tabX.Caption = "Draw"
tabX.Image = "draw" ' Assuming this image exists.

End Sub
26

Tip Using the Add method without setting the object variable is more efficient
than setting the properties with the object variable. In this case, the code
above could be rewritten as:

tabData.Tabs.Add , "find", "Find", "find"
tabData.Tabs.Add , "draw", "Draw", "draw"

27

Use the Client Area to Position Container
Controls
The TabStrip control is commonly used to create tabbed dialog boxes. Each page in
the dialog box consists of a tab and a client area, as seen in the figure below:

22
At run time, when the user clicks on a tab, you must program the client area to be
reconfigured with a different set of container controls (discussed below in "Managing
Tabs and Container Controls").

At design time, draw a container control, such as the PictureBox or Frame control, on
the form. If you use a Frame control, you can set its BorderStyle property to be
invisible at run time. Copy and paste the same control to create an array of controls;
create one control for each Tab object you have created.

—16

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 16 of 30 Printed: 07/26/96 04:19 PM

On each container control, draw the controls that should appear on a tab. Your form
may appear something like Figure 2.37, below:

Figure 2.37 TabStrip at design time with two PictureBox controls

23
After you have created the container controls, there is one additional technique
required to position them over the TabStrip control's client area: use the Move method
with the ClientLeft, ClientTop, ClientWidth, and ClientHeight properties of the
Tabstrip control, as shown in the code below:

Private Sub Form_Load()
' The name of the TabStrip is "tabRTF."
' The Frame control is named "fraTab."
For i = 0 To fraTab.Count - 1
With fraTab(i)

.Move tabRTF.ClientLeft, _
tabRTF.ClientTop, _
tabRTF.ClientWidth, _

—17

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 17 of 30 Printed: 07/26/96 04:19 PM

tabRTF.ClientHeight
End With
Next i

End Sub
28

Managing Tabs and Container Controls
A tabbed dialog box contains more than one Tab object. As seen above, a Frame
control (or other container control) should be associated with each Tab object. To
efficiently manage the numerous Tab objects and container controls, the following
strategy can be used:

2. At design time, create all the Tab objects you need.

3. Create a control array of container controls, one member for each Tab object.

4. On each container control, draw the controls that you want to have on a tab page.

5. At run time, use the control's SelectedItem property to determine the Index of the
clicked Tab object.

6. Use the ZOrder method to bring the appropriate container control to the front.
24

The code to bring the proper container control to the front would then resemble the
code below:

Private Sub tabRTF_Click()
picRTF(tabRTF.SelectedItem.Index - 1).ZOrder 0

End Sub
29

Tip At design time, you can set the Index property of the control array to become a
1-based array. Because the Tabs collection is also a 1-based collection, the above code
would then be rewritten:

picRTF(TabRTF.SelectedItem.Index).ZOrder 0
30

For More Information For an example of code implementing the strategy outlined
above, see "TabStrip Scenario: Create a Tabbed Dialog Box."

31

Tab Style Property: Buttons or Tabs
The Style property determines whether the TabStrip control looks like

notebook tabs (Tabs),

25
or push buttons (Buttons).

—18

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 18 of 30 Printed: 07/26/96 04:19 PM

26
The advantages of each are outlined below:

Style Possible Use

Tabs Use the Tabs style to create Tabbed dialog boxes. With this style, the complete
tabbed dialog, including the client area, is drawn for you. Your code must
manage what appears in the client area.

Buttons The Buttons style can be used to create a toolbar or task bar — in other
words, when you do not need the client area, but prefer to have only the
buttons as an interface element. Alternatively, you may wish to use the
Buttons style when you do not need a well-defined client area drawn for you.

32
Multi-Row Tabs
Another feature of the TabStrip control is the MultiRow property. When this property
is set to True, a large number of Tab objects appear in rows, as seen in the figure
below:

27
If the MultiRow property is set to False, the same set of tabs appears in a single row,
with a pair of scroll buttons at the rightmost end:

28
The TabWidthStyle property determines the appearance of each row, and, if
TabWidthStyle is set to Fixed, you can use the TabFixedHeight and TabFixedWidth
properties to set the same height and width for all tabs in the TabStrip control.

Using the Toolbar Control
A Toolbar control contains a collection of Button objects used to create a toolbar you
can associate with an application.

29
Typically, a toolbar contains buttons that correspond to items in an application's
menu, providing a graphic interface for the user to access an application's most
frequently used functions and commands. The Toolbar control can also contain other
controls, such as ComboBox or TextBox controls.

—19

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 19 of 30 Printed: 07/26/96 04:19 PM

To create a toolbar, you must add Button objects to a Buttons collection; each Button
object can have optional text and/or an image, supplied by an associated ImageList
control. Set text with the Caption property, and an image with the Image property for
each Button object. At design time, you can add Button objects to the control with the
Toolbar Property Pages dialog box. At run time, you can add or remove buttons from
the Buttons collection using Add and Remove methods.

To add other controls at design time, simply draw the desired controls on the toolbar.
Alternatively, you can create a Button object with a Placeholder style and position the
desired control over the button in a Resize event.

Double-clicking a toolbar at run time invokes the Customize Toolbar dialog box,
which allows the user to hide, display, or rearrange toolbar buttons. To enable or
disable the dialog box, set the AllowCustomize property. You can also invoke the
Customize Toolbar dialog box by invoking the Customize method. If you wish to save
and restore the state of a toolbar, or allow the end user to do so, use the SaveToolbar
and RestoreToolbar methods.

Possible Uses
· Provide a consistent interface between applications with matching toolbars.

· Place commonly used functions, such as File operations, in an easy to access place.

· Provide a graphical, intuitive interface for your application.
30

The Buttons Collection
The Toolbar control consists of one or more Button objects in a Buttons collection. At
both design time and run time, you create Button objects. Each button can have an
image, a caption, a Tooltip, or all three, as shown below:

31
Each button object also has a Style property (discussed below) that determines how
the button will behave.

Associate the ImageList Control with the
Toolbar Control
Toolbars usually feature icons that represent a function of the application. For
example, an icon of a floppy disk is generally understood to represent a "Save File"
function. To get your toolbar to display such images, you must first associate an
ImageList control with the Toolbar control, and this can be accomplished at either
design time or run time.

—20

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 20 of 30 Printed: 07/26/96 04:19 PM

 To associate an ImageList control with a Toolbar control at design
time

15 Populate the ImageList control with images for the Toolbar.

16 Right-click on the Toolbar control and click Properties to open the Property
Pages dialog box.

17 On the General tab, click the ImageList box and select the ImageList control you
have populated.

32
7. To associate an ImageList control with the Toolbar control at run time, simply set

the ImageList property to the name of the ImageList control, as shown in the
example below:

Private Sub Form_Load()
' The Toolbar control is named "tlbTools," and the
' ImageList control is named "imlTools."
tlbTools.ImageList = imlTools

End Sub
33

Create Buttons at Design Time or Run Time
 To create Button objects at design time

18 Right-click on the Toolbar control and click Properties to display the Toolbar
Property Pages.

19 Click the Buttons tab to display the dialog box shown in Figure 2.38, below:

1Figure 2.38 Toolbar control property pages

1

—21

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 21 of 30 Printed: 07/26/96 04:19 PM

33
20 Click Insert Button to insert a new Button object.

21 Set appropriate properties, such as Key, Caption, Image, and ToolTipText.

22 Set the Button object's Style property by clicking the Style box and selecting a
style.

34
 To create a collection of Button objects at run time

23 Declare an object variable of type Button. As you add each Button object, the
variable will contain the reference to the newly created object. Use this
reference to set various properties of the new Button object.

24 Using the Set statement with the Add method, set the object variable to the new
Button object.

25 Using the object variable, set the properties of the new Button object.
35

The code below uses the Form object's Load event to create one Button object, then
sets the Key, Caption, TooltipText, and Style properties of the new Button object.

Private Sub Form_Load()
' Declare a variable, then set using the Set
' statement with the Add method, create a new
' Button object, and set the object variable to
' the new Button. Use the reference to set
' properties.
Dim myButton As Button
Set myButton = tlbTools.Add()
myButton.Key = "left"
myButton.Caption = "Align Left"
myButton.ToolTipText = "Align Left"
myButton.Style = tbrSeparator

End Sub
34

Tip Using the arguments of the Button collection's Add method is more
efficient than setting the properties with the object variable. In this case, the
code above could be rewritten as:

35
tlbTools.Buttons.Add , "left", "Align Left", _
tbrSeparator

36

Button Style Property Determines Button
Behavior
An important property of the Button object is the Style property. The Style property
determines how a button behaves — and the function assigned to the button can have
a bearing on which style is applied to it. The five button styles are listed below, with
their possible uses:

Constant Value Possible Use

tbrDefault 0 Use the Default button style when the function it represents has
no dependence on other functions. For example, a Save File

—22

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 22 of 30 Printed: 07/26/96 04:19 PM

operation can be performed at any time. Further, when the button
is depressed, it springs back again when the function is finished.

tbrCheck 1 The Check style should be used when the function it represents is
a toggle of some kind. For example, when using a RichTextBox
control, selected text can be either bold or not. Thus, when the
button is depressed, it stays depressed until it is pressed again.

tbrButtonGroup 2 Use the ButtonGroup style when a group of functions are
mutually exclusive. That is, only one of the functions represented
by the group of buttons can be on at a time. For example, text in
a RichTextBox control can only be left-aligned, center-aligned,
or right-aligned—it cannot be more than one style at a time.
Note: although only one button at a time can be depressed, all
buttons in the group can be unpressed

tbrSeparator 3 The separator style has no function except to create a button that
is eight pixels wide. Use the separator style to create a button that
separates one button from another. Or use it to enclose the group
of buttons with the ButtonGroup style.

tbrPlaceholder 4 The placeholder style functions as a "dummy" button: use this
button to create a space on the Toolbar control where you want to
have another control (such as a ComboBox or ListBox control)
appear.

37

Placing Controls on the Toolbar
You can easily place other controls, such as the ComboBox, TextBox, or
OptionButton control, on the Toolbar control at design time.

 To place other controls on the Toolbar control at design time

26 Create Button objects and assign appropriate properties.

27 Create a space on the toolbar where you want the other control to appear, then add
a button with the Placeholder style, and set the Width property to an appropriate
value.

28 Draw the other control in the space occupied by the placeholder button.
36

Reposition Other Controls in the Resize Event
If the Wrappable property is set to True, the Toolbar control wraps automatically
when the end user resizes the form. While Button objects wrap automatically, controls
placed on them do not. To enable controls to wrap, first create a Button object with
the Placeholder style, and draw the control in the space created by the button (as
shown in the above topic). Then reposition the control over the button using the Move
method in the Form object's Resize event, as shown below:

Private Sub Form_Resize()
' The Toolbar is named "tlbRTF"
' The Button object's Key is "btnFonts"
' The Combobox is named "cmbFonts"

—23

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 23 of 30 Printed: 07/26/96 04:19 PM

' The ComboBox is placed over the position of the
' Button object using the Move method.
With tlbRTF.Buttons("btnFonts")

cmbFonts.Move .Left, .Top, .Width
cmbFonts.ZOrder 0

End With
End Sub

38

Use the Select Case Statement in the
ButtonClick Event to Program Button
Functionality
The ButtonClick event occurs whenever a button (except buttons with the placeholder
or separator style) is clicked. You can identify the button that was clicked by its Index
property or its Key property. Using either of these properties, use the Select Case
statement to program the button's function, as shown in the example code below:

Private Sub tlbRTF_Click(ByVal Button As Button)
Select Case Button.Key
Case "OpenFile"

' Call a user-defined function to open a file.
OpenFile

Case "Bold"
' Call a user-defined function to bold text.
BoldText

Case Else
' Handle other cases.

End Select
End Sub

39

Use the MixedState Property to Signify
Indeterminate States
In some cases, a function of your application may return an indeterminate state — a
state that is a combination of two or more states. For example, if the user selects text
in a RichTextBox, and some of the text is italicized, the button that represents
italicized text cannot be either checked or unchecked; the text in the selection is both.
To signify this indeterminate state, set the MixedState property to True. This dithers
the image on the button to create a third state of the button's image.

Set ToolTip Text with the ToolTipText Property
A ToolTip is the text that appears above a button whenever the cursor hovers (without
clicking) over a Button object.

37

—24

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 24 of 30 Printed: 07/26/96 04:19 PM

You can add a ToolTip to any button at design time by typing the text you want to
appear in the ToolTipText box of the Toolbar control's Property Pages.

At run time, you can dynamically change the ToolTip by setting the ToolTipText
property for the Button object. The following code occurs in a CommandButton
control that changes the Key and ToolTipText property of one button:

Private Sub cmdChangeButton_Click()
' The name of the toolbar is "tlbFunctions"
' Reset the Key and ToolTipText properties of
' a button with Key property value "1 funct"
tlbfuncts.Buttons("1 funct"). _
ToolTipText = "Function 7"

tlbfuncts.Buttons("1 funct").Key = "7 funct"
End Sub

40

Allowing End Users to Customize the Toolbar
If you set the AllowCustomize property to True, the end user can customize the
toolbar by double-clicking it. Double-clicking the toolbar displays the Customize
Toolbar dialog box, shown in figure 2.39 below:

Figure 2.39 Customize Toolbar dialog box

38
Alternatively, you can display the dialog box by invoking the Customize method.

Using the SaveToolbar and RestoreToolbar Methods
If you allow your end user to reconfigure the Toolbar control, you can save and
restore the toolbar by using the SaveToolbar and RestoreToolbar methods. For
example, if several users use the same application but have different toolbar
preferences, use the SaveToolbar method to allow each person to create a customized
toolbar. Then create a login procedure that identifies each user, and uses that
information to restore the user's personalized toolbar with the RestoreToolbar method.

—25

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 25 of 30 Printed: 07/26/96 04:19 PM

The SaveToolbar method saves the current state of the Toolbar control to the system
registry. The method requires three arguments. The first argument, key, must be an
integer. The second and third argments, subkey and value, must be strings. To store
different versions of the same toolbar in the same subkey, set the value argument to a
different string.

The code below uses two constants to define the first two arguments. In the Form
object's Load event, the code invokes a procedure named "Login" that returns the
password of the user. The code then uses that value to restore a previously stored
toolbar. The command button named "cmdSaveToolbar" saves the current state using
the same three values.

' Declarations: SaveToolbar method constants.
Const SaveKey = 1
Const SaveSubKey = "MyToolbar"
Dim mSaveVal As String ' Module variable that

 ' identifies user.

Private Sub Form_Load()
' Run a login procedure that identifies the
' user. Use the user's password to identifiy the
' user's toolbar.
mSaveVal = LogIn()

' Restore state of Toolbar1 using Constants.
Toolbar1.RestoreToolbar SaveKey, SaveSubKey, _
mSaveVal

End Sub

Public Function LogIn()
' Ask the user for a password.
LogIn = InputBox("Password")

End Function

Private Sub cmdSaveToolbar_Click()
' Save the toolbar using the same constants.
Toolbar1.SaveToolbar SaveKey, SaveSubKey, mSaveVal

End Sub
41

Using the TreeView Control
The TreeView control is designed to display data that is hierarchical in nature, such as
organization trees, the entries in an index, the files and directories on a disk.

—26

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 26 of 30 Printed: 07/26/96 04:19 PM

Figure 2.40 Typical TreeView

39

Possible Uses
· To create an organization tree that can be manipulated by the user.

· To create a tree that shows at least two or more levels of a database.
40

Setting Node Object Properties
A "tree" is comprised of cascading branches of "nodes," and each node typically
consists of an image (set with the Image property) and a label (set with the Text
property). Images for the nodes are supplied by an ImageList control associated with
the TreeView control. For more information on using the ImageList control with other
controls, see "Using the ImageList control."

A node can be expanded or collapsed, depending on whether or not the node has child
nodes — nodes which descend from it. While a tree can have any number of child
nodes, there can only be only one "root" node from which all nodes descend. The
number of nodes is not limited (except by machine constraints). Figure 3.2 shows a
tree with two root nodes; "Root 1" has three child nodes, and "Child 3" has a child
node itself. "Root 2" has child nodes, as indicated by the "+" sign, but is unexpanded.

—27

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 27 of 30 Printed: 07/26/96 04:19 PM

Figure 2.41 Root and child nodes

41
Each node in a tree is actually a programmable Node object, which belongs to the
Nodes collection. As in other collections, each member of the collection has a unique
Index and Key property which allows you to access the properties of the node. For
example, the code below uses the Index of a particular node ("7") to set the Image and
Text properties:

tvwMyTree.Nodes(7).Image = "closed"
tvwMyTree.Nodes(7).Text = "IEEE"

42
However, if a unique key, for example "7 ID" had been assigned to the node, the same
code could be written as follows:

tvwMyTree.Nodes("7 ID").Image = "closed"
tvwMyTree.Nodes("7 ID").Text = "IEEE"

43

Node Relationships and References to Relative Nodes
Each node can be either a child or a parent, depending on its relationship to other
nodes. The Node object features several properties which return various kinds of
information about children or parent nodes. For example, the following code uses the
Children property to return the number of children — if any — a node has:

MsgBox tvwMyTree.Nodes(10).Children
44

However, some of the properties do not return information, as the Children property
does, but instead return a reference to another node object. For example, the Parent
property returns a reference to the parent of any particular node (as long as the node is
not a root node). With this reference, you can manipulate the parent node by invoking
any methods, or setting properties, that apply to Node objects. For example, the code
below returns the Text and Index properties of a parent node:

MsgBox tvwMyTree.Nodes(10).Parent.Text
MsgBox tvwMyTree.Nodes(10).Parent.Index

45
Tip Use the Set statement with an object variable of type Node to
manipulate references to other Node objects. For example, the code below
sets a Node object variable to the reference returned by the Parent property.

—28

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 28 of 30 Printed: 07/26/96 04:19 PM

The code then uses the object variable to return properties of the relative
node:

46
Dim tempNode As Node ' Declare object variable.
' Set object variable to returned reference.
Set tempNode = tvwMyTree.Nodes(10).Parent
MsgBox tempNode.Text ' Returns parent's Text.
MsgBox tempNode.Index ' Returns parent's Index.

47

Adding Node Objects to the Nodes Collection
To add a Node to the tree, use the Add method (Nodes collection). This method
includes two arguments, relative and relationship, which can determine where the
node will be added. The first argument relative names a node; the second argument
relationship specifies the relationship between the new node and the node named in
relative.

For example, the following code adds a node named "11 node" as a child of another
node named "7 node." The intrinsic constant tvwChild specifies that the new node is a
child of the node named in the previous argument. The third argument assigns the
Key property to the new node.

tvwMyTree.Nodes.Add "7 node", tvwChild, "11 node"
48

Other possible relationships include:

Constant Value Description

tvwLast 1 The Node is placed after all other nodes at the same level of the
node named in relative.

tvwNext 2 The Node is placed after the node named in relative.

tvwPrevious 3 The Node is placed before the node named in relative.

tvwChild 4 The Node becomes a child node of the node named in relative.
49

For example, suppose there were three existing nodes, and you wished to place a
fourth node between the second and the third nodes, the code would be:

' Assuming the second node's Key value is "2 node".
tvwMyTree.Nodes.Add "2 node", tvwNext

50
Other arguments of the Add method are key, text, and image. Using these arguments,
you can assign the Key, Text, and Image properties as the Node object is created.

For More Information For more information about the Nodes collection's Add
method See “Add Method” in the Language Reference by typing "Add Method" and
clicking "Add Method (Nodes Collection)."

51
A second way of adding nodes is to declare an object variable of type Node, and then
use the Set statement with the Add method. The Set statement sets the object variable
to the new node. You can then use the object variable to set the node's properties, as
shown below:

—29

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 29 of 30 Printed: 07/26/96 04:19 PM

Dim nodX As Node
Set nodX = tvwMyTree.Nodes.Add("10 node", tvwChild)
nodX.Key = "11 node"
nodX.Text = "IEEE"
nodX.Image = "closed"

52
Tip Using the Set statement with the Add method makes reading and
debugging your code easier. However, using the Add method and its
arguments to add nodes creates faster code.

53

—30

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 5 Page: 30 of 30 Printed: 07/26/96 04:19 PM

	Contents
	Using the Slider Control
	Possible Uses
	TickStyle and TickFrequency Properties
	Set the Min, Max Properties at Design Time or Run Time
	SmallChange and LargeChange Properties
	Selecting Ranges
	Slider Scenario 1: Resize a Graph Control Proportionally
	 To resize a PictureBox control with a Slider control
	Create Two Global Variables for Height and Width
	Use the Form Load Event to Set Global Values and the Max Property
	Resize the Height and Width of the PictureBox through the Scroll Event

	The Complete Code

	Slider Scenario 2: Select a Range of Values with the Slider
	 To select a range of values with the Slider control
	Set the Slider Control's SelectRange Property to True
	MouseDown Event: Test to See if the Shift Key is Down
	MouseDown Event: Set the SelStart and SelLength Properties
	MouseUp Event: Set the SelLength to the Value - SelStart Property
	The Complete Code

	Using the StatusBar Control
	Possible Uses
	The Panel Object and the Panels Collection
	Use the Set Statement with the Add Method to Create Panels at Run Time
	Use the Select Case Statement in the PanelClick Event to Determine the Clicked Panel
	The Style Property: Automatic Status Functions
	Bevel, AutoSize, and Alignment Properties Program Appearance
	Style Property and the SimpleText Property

	Using the TabStrip Control
	Possible Uses
	The Tabs Collection
	Associate the ImageList Control with the TabStrip Control
	 To associate an ImageList control with a TabStrip control at design time:

	Create Tabs at Design Time or Run Time
	 To create Tab objects at design time
	Create Tab Objects at Run Time Using the Add Method
	 To create a collection of Tab objects at run time

	Use the Client Area to Position Container Controls
	Managing Tabs and Container Controls
	Tab Style Property: Buttons or Tabs
	Multi-Row Tabs

	Using the Toolbar Control
	Possible Uses
	The Buttons Collection
	Associate the ImageList Control with the Toolbar Control
	 To associate an ImageList control with a Toolbar control at design time

	Create Buttons at Design Time or Run Time
	 To create Button objects at design time
	 To create a collection of Button objects at run time

	Button Style Property Determines Button Behavior
	Placing Controls on the Toolbar
	 To place other controls on the Toolbar control at design time
	Reposition Other Controls in the Resize Event

	Use the Select Case Statement in the ButtonClick Event to Program Button Functionality
	Use the MixedState Property to Signify Indeterminate States
	Set ToolTip Text with the ToolTipText Property
	Allowing End Users to Customize the Toolbar
	Using the SaveToolbar and RestoreToolbar Methods

	Using the TreeView Control
	Possible Uses
	Setting Node Object Properties
	Node Relationships and References to Relative Nodes
	Adding Node Objects to the Nodes Collection

