
This chapter covers control creation in depth. The majority of the topics are organized
according to the sequence of control development tasks outlined in “Control Creation
Recap,” at the end of the topic, “Creating an ActiveX Control.”

First and most important, however, is an introduction to the terminology and concepts
of control creation, in the topics “Control Creation Terminology,” “Control Creation
Basics,” and “Interacting with the Container.”

These are followed by topics associated with development tasks:

1. Determine the features your control will provide.

1“Visual Basic ActiveX Control Features.”

2. Design the appearance of your control.

2“Drawing Your Control.”

3. Design the interface for your control — that is, the properties, methods, and events
your control will expose.

3“Adding Properties to Controls,” “Adding Methods to Controls,” “Raising Events
from Controls,” and “Providing Named Constants for Your Control.”

4. Create a project group consisting of your control project and a test project.

4“Setting Up a New Control Project and Test Project.”

5. Implement the appearance of your control by adding controls and/or code to the
UserControl object.

6. Implement the interface and features of your control.

5“Creating Robust Controls.”

7. As you add each interface element or feature, add features to your test project to
exercise the new functionality.

6“Debugging Controls.”

8. Design and implement property pages for your control.

7This subject is covered in “Creating Property Pages for ActiveX Controls.”

9. Compile your control component (.ocx file) and test it with all potential target
applications.

8“Distributing Controls.”
1

The chapter ends with “Localizing Controls,” which discusses localizing your control
for other languages. The complete list of top-level topics is:

Contents
· Control Creation Terminology

· Control Creation Basics

· Interacting with the Container

—1

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 1 of 95 Printed: 10/23/96 06:43 PM

· Visual Basic ActiveX Control Features

· Drawing Your Control

· Adding Properties to Controls

· Adding Methods to Controls

· Raising Events from Controls

· Providing Named Constants for Your Control

· Setting Up a New Control Project and Test Project

· Creating Robust Controls

· Debugging Controls

· Distributing Controls

· Localizing Controls
1

Sample Application: CtlPlus.vbg
Includes a fully functional version of the ShapeLabel control created in the step by
step procedures in Chapter 4, “Creating an ActiveX Control,” and other controls that
illustrate the control creation features in this chapter. If you installed the sample
applications, you will find CtlPlus.vbg in the \CompTool\ActvComp subdirectory of
the Visual Basic samples directory (\Vb\Samples\CompTool\ActvComp).

The UserControl Object
An ActiveX control created with Visual Basic is always composed of a UserControl
object, plus any controls — referred to as constituent controls — that you choose to
place on the UserControl.

Like Visual Basic forms, UserControl objects have code modules and visual
designers, as shown in Figure 9.1. You place constituent controls on the UserControl
object’s designer, just as you would place controls on a form.

—2

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 2 of 95 Printed: 10/23/96 06:43 PM

Figure 9.1 UserControl designer and code window

2
Like forms, UserControls are stored in plain text files that contain the source code and
property values of the UserControl and its constituent controls. Visual Basic uses the
extension .ctl for these source files.

The relationship of .ctl files and ActiveX control projects to finished controls and .ocx
files is shown in Figure 9.2.

—3

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 3 of 95 Printed: 10/23/96 06:43 PM

Figure 9.2 ActiveX control projects are built into .ocx files

3
If a UserControl or its constituent controls use graphical elements which cannot be
stored as plain text, such as bitmaps, Visual Basic stores those elements in a .ctx file
with the same name you give to the .ctl file. This is analogous to the .frx files used to
store graphical elements used in forms.

The .ctl and .ctx files completely define an ActiveX control’s appearance and
interface (properties, methods, and events). You can include .ctl files in any of the
project types. “Two Ways to Package ActiveX Controls,” later in this chapter,
discusses this subject in depth.

Delegating to the UserControl and Constituent
Controls that Compose Your ActiveX Control
Your ActiveX control is said to be composed of a UserControl and its constituent
controls because each instance will actually contain those objects.

That is, whenever you place an instance of your ActiveX control on a form, a
UserControl object is created, along with instances of any constituent controls you
placed on the UserControl designer. These objects are encapsulated inside your
control.

The UserControl object has an interface — that is, properties, methods, and events —
of its own. The interface of your ActiveX control can delegate to the UserControl
object’s interface members, which are hidden from the user of your control by
encapsulation.

That is, rather than writing your own code to implement a BackColor property, you
can delegate to the UserControl object’s BackColor property, and let it do all the
work. In practice, this means that the BackColor property of your ActiveX control
simply calls the BackColor property of the UserControl object.

—4

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 4 of 95 Printed: 10/23/96 06:43 PM

In the same manner, you can piggy-back your control’s Click event on the existing
functionality of the UserControl object’s Click event.

The interface for your ActiveX control can also delegate to the properties, methods,
and events of the constituent controls you place on the UserControl designer, as
discussed in “Exposing Properties of Constituent Controls,” “Adding Methods to
Controls,” and “Exposing Events of Constituent Controls,” later in this chapter.

For More Information For a discussion of what controls you can place on a
UserControl designer, see “Controls You Can Use As Constituent Controls,” later in
this chapter.

2

Three Ways to Build ActiveX Controls
There are three models for control creation in Visual Basic. You can:

· Author your own control from scratch.

· Enhance a single existing control.

· Assemble a new control from several existing controls.
4

The second and third models are similar, because in both cases you put constituent
controls on a UserControl object. However, each of these models has its own special
requirements.

Authoring a User-Drawn Control
Writing a control from scratch allows you to do anything you want with your
control’s appearance and interface. You simply put code into the Paint event to draw
your control. If your control’s appearance changes when it’s clicked, your code does
the drawing.

This is the model you should select if you’re creating a new visual widget, such as a
button that crumbles to dust and disappears when clicked.

For More Information Creating a user-drawn control is discussed further in
“Drawing Your Control,” later in this chapter.

3

Enhancing an Existing Control
Enhancing an existing control means putting an instance of the control on a
UserControl designer and adding your own properties, methods, and events.

You have complete freedom in specifying the interface for your enhanced control.
The properties, methods, and events of the control you start with will only be
included in your interface if you decide to expose them.

“Exposing Properties of Constituent Controls,” later in this chapter, describes how to
do this manually, and how to make it easier by using the ActiveX Control Interface
Wizard.

—5

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 5 of 95 Printed: 10/23/96 06:43 PM

Enhancing the appearance of an existing control is more difficult than enhancing the
interface, because the control you’re enhancing already contains code to paint itself,
and its paint behavior may depend on Windows messages or other events.

Experienced Windows programmers can subclass the constituent control using the
AddressOf operator described in “Using the Windows API,” in the Component Tools
Guide. This allows some control over the control’s appearance, but there is no way to
alter the control’s paint code.

It’s easier to work with the control’s built-in paint behavior, and instead enhance it by
adding properties, methods, and events, or by intercepting and altering existing
properties and methods. This is discussed further in “Drawing Your Control,” later in
this chapter.

Assembling a Control from Several Existing
Controls
You can construct your control’s appearance and interface quickly by assembling
existing controls on a UserControl designer.

For example, the ShapeLabel control provided in the CtlPlus.vbg sample application,
and discussed in the step by step procedures in “Creating an ActiveX Control,” uses a
Shape control to provide its visual background and a Label control to display its
caption.

Figures 9.3 and 9.4 show how multiple constituent controls can contribute to the
appearance and interface of an ActiveX control.

Figure 9.3 Constituent controls provide ShapeLabel’s appearance

—6

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 6 of 95 Printed: 10/23/96 06:43 PM

5
Constituent controls contribute to the appearance of an instance of your control by
their mere presence on the UserControl designer. They contribute to your control’s
interface by delegation, as shown in Figure 9.4.

Figure 9.4 Constituent controls contribute to ShapeLabel’s interface

6
For example, ShapeLabel’s Caption property delegates to the Caption property of the
constituent control lblCaption as shown in the following code fragment.

Public Property Get Caption() As String
Caption = lblCaption.Caption

End Property

Public Property Let Caption(NewCaption As String)
lblCaption.Caption = NewCaption
PropertyChanged "Caption"

End Property
4

For More Information “Drawing Your Control” and “Exposing Properties of
Constituent Controls,” later in this chapter, discuss control assemblies in more depth.
The purpose and importance of PropertyChanged are discussed in “Adding Properties
to Controls,” later in this chapter.

5

Two Ways to Package ActiveX Controls
An ActiveX control created with Visual Basic is defined by a UserControl module.
The source code you add to this module, to implement your ActiveX control, is stored
in a .ctl file.

—7

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 7 of 95 Printed: 10/23/96 06:43 PM

You can include UserControl modules in most Visual Basic project types, but only
ActiveX control projects can provide controls to other applications. Controls in all
other project types are private.

Thus there are two ways to package controls:

· Public controls can only exist in ActiveX control projects. You make a control
public by setting the Public property of the UserControl object to True.

9Public controls can be used by other applications, once the ActiveX control
project has been compiled into a control component (.ocx file).

· Private controls can exist in any project type. You make a control private by
setting the Public property of the UserControl object to False.

10After the project is compiled, private controls cannot be used by other
applications. They can be used only within the project in which they were
compiled.

11If you attempt to set the Public property of a UserControl object to True, and the
UserControl is not in an ActiveX control project, an error occurs.

7
If one of the controls in an ActiveX control project is meant to be used only as a
constituent of other controls in the project, you can set the Public property of the
UserControl to False. The control will then be available only to the controls of which
it is a constituent part. Other applications will not be able to use it.

Note You cannot include UserControl modules in a project marked for
unattended execution. If the Unattended Execution box is checked on the
General tab of the Project Properties dialog box, the project cannot contain
any user interface elements.

6

Including Controls as Compiled Code vs.
Source Code
If you create your controls as public classes in an ActiveX control project, you can
distribute the compiled control component (.ocx file) with any application you create.
When you use SetupWizard to create a setup program for an application in which
you’ve used such a control, the compiled .ocx file will be included automatically.

You can also create a setup program for the control component itself, and distribute it
to other developers. “Licensing Issues for Controls,” later in this chapter, discusses
the licensing support available for control components authored using Visual Basic.

Changing the Packaging
Once you’ve authored a control, you can easily change the way the control is
packaged.

For example, if you have some private controls that are part of a Standard EXE
project, and you want to allow other applications to use them, you can add the .ctl

—8

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 8 of 95 Printed: 10/23/96 06:43 PM

files to an ActiveX control project, and compile it into a distributable control
component (.ocx file).

Source Code
Instead of including the compiled control component in your applications, you can
simply add the .ctl file to the project for the application. When the application is
compiled, the control is compiled into the executable.

The primary advantages of including a control as source code are:

· There is no additional .ocx file to distribute.

· You don’t have to debug your control for all possible test cases. You only have to
debug the features used by your application.

· You don’t have to worry about whether your application will work with future
versions of the control, because the version your application uses is compiled
in.

8
Note Some developers may argue that avoiding the additional .ocx file is not
really an advantage. All Visual Basic applications require support files, and
SetupWizard automatically includes them in your setup program, so you’re
not avoiding any extra work.

7
Of course, there’s no such thing as a free lunch. There are also disadvantages to
including controls as source code:

· If you discover a bug in the control, you cannot simply distribute an updated .ocx
file. You must recompile the entire application.

· Multiple applications will require more disk space, because instead of sharing one
copy of an .ocx file, each application includes all the code for the control.

· Each time you use the source code in an application, there will be an opportunity
to fix bugs or enhance the code. It may become difficult to keep track of which
version of a control was used in which version of which application.

· Sharing source code with other developers may be problematic. At the very least,
it’s likely to require more support effort than distributing a compiled
component. In addition, you give up control and confidentiality of your source
code.

9

Understanding Control Lifetime and Key Events
Designing ActiveX controls involves a radical shift in perspective. The key events
you must respond to are different — for example, your life will revolve around the
Resize event — and there’s no such thing as QueryUnload. But that’s just the
beginning.

“Control Creation Terminology,” earlier in this chapter, introduced the idea that a
control is not a permanent fixture of a form. Indeed, design-time and run-time

—9

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 9 of 95 Printed: 10/23/96 06:43 PM

instances of your control will be created and destroyed constantly — when forms are
opened and closed, and when you run the project.

Each time an instance of your ActiveX control is created or destroyed, the
UserControl object it’s based on is created or destroyed, along with all of its
constituent controls. (“The UserControl Object,” earlier in this chapter, explains the
basis of all ActiveX controls created with Visual Basic.)

Consider, for example, a day in the life of the ShapeLabel control used in the step by
step procedures in “Creating an ActiveX Control.”

10.The user creates an instance of ShapeLabel — by double-clicking on the Toolbox,
or by opening a form on which an instance of ShapeLabel was previously
placed.

11.The constituent controls, a Shape and a Label, are created.

12.The UserControl object is created, and the Shape and Label controls are sited on it.

13.The UserControl_Initialize event procedure executes.

14.The ShapeLabel control is sited on the form.

15.If the user is placing a new ShapeLabel, the InitProperties event of the
UserControl object occurs, and the control’s default property values are set. If
an existing form is being opened, the ReadProperties event occurs instead, and
the control retrieves its saved property values.

16.The UserControl_Resize event procedure executes, and the constituent controls are
resized according to the size the user made the new control instance, or the size
they were before the form was closed.

17.The Show and Paint events occur. If there are no constituent controls, the
UserControl object draws itself.

18.The user presses F5 to run the project. Visual Basic closes the form.

19.The UserControl object’s WriteProperties event occurs, and the control’s property
values are saved to the in-memory copy of the .frm file.

20.The control is unsited.

21.The UserControl object’s Terminate event occurs.

22.The UserControl object and its constituent controls are destroyed.
10

And that’s not the half of it. The run-time instance of the form is now created, along
with a run-time instance of the ShapeLabel control. When the user closes the form
and returns to design mode, the ShapeLabel is destroyed and re-created once again.

The rest of this topic explains the key events in a UserControl object’s life, and
provides reference lists of the events you receive in several important scenarios.

Key UserControl Events
The meanings of the key events in the life of a UserControl object are as follows:

—10

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 10 of 95 Printed: 10/23/96 06:43 PM

· The Initialize event occurs every time an instance of your control is created or re-
created. It is always the first event in a control instance’s lifetime.

· The InitProperties event occurs only in a control instance’s first incarnation, when
an instance of the control is placed on a form. In this event, you set the initial
values of the control’s properties.

· The ReadProperties event occurs the second time a control instance is created, and
on all subsequent re-creations. In this event, you retrieve the control instance’s
property values from the in-memory copy of the .frm file belonging to the form
the control was placed on.

· The Resize event occurs every time a control instance is re-created, and every time
it is resized — whether in design mode, by the developer of a form, or at run
time, in code. If your UserControl object contains constituent controls, you
arrange them in the event procedure for this event, thus providing your control’s
appearance.

· The Paint event occurs whenever the container tells the control to draw itself. This
can occur at any time, even before the control receives its Show event — for
example, if a hidden form prints itself. For user-drawn controls, the Paint event
is where you draw your control’s appearance.

· The WriteProperties event occurs when a design-time instance of your control is
being destroyed, if at least one property value has changed. In this event, you
save all the property values a developer has set for the control instance. The
values are written to the in-memory copy of the .frm file.

· The Terminate event occurs when the control is about to be destroyed.
11

In addition to the events listed above, the Show and Hide events may be important to
your control. Show and Hide occur as indicated in Figure 9.5.

Figure 9.5 Show and Hide Events

12
In order to draw to the screen in Windows, any control must have a window,
temporarily or permanently. Visual Basic ActiveX controls have permanent windows.
Before a control has been sited on a form, its window is not on the container. The
UserControl object receives Show and Hide events when the window is added and
removed.

—11

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 11 of 95 Printed: 10/23/96 06:43 PM

While the control’s window is on the form, the UserControl receives a Hide event
when the control’s Visible property changes to False, and a Show event when it
changes to True.

The UserControl object does not receive Hide and Show events if the form is hidden
and then shown again, or if the form is minimized and then restored. The control’s
window remains on the form during these operations, and its Visible property doesn’t
change.

If the control is being shown in an internet browser, a Hide event occurs when the
page is moved to the history list, and a Show event occurs if the user returns to the
page.

Note If your control is used with earlier versions of Visual Basic, the
UserControl object will not receive Show and Hide events at design time. This
is because earlier versions of Visual Basic did not put any visible windows on
a form at design time.

8
For More Information The topic “Life and Times of a UserControl Object,” one
of the step by step procedures in “Creating an ActiveX Control,” demonstrates the
key events in the life of a control and illustrates how often control instances are
created and destroyed.

9

The Incarnation and Reincarnation of a Control
Instance
Let’s follow a control instance from its placement on a form, through subsequent
development sessions, until it’s compiled into an application. We’ll assume the
control was already developed and compiled into an .ocx file, before the curtain
opens.

The scenarios that follow mention both Resize and Paint events. Which event you’re
interested in depends on the control creation model you’re using, as discussed in
“Three Ways to Build ActiveX Controls,” earlier in this chapter.

If your control provides its appearance using constituent controls, you’ll use the
Resize event to size the constituent controls. If you’re authoring a user-drawn control,
on the other hand, you can ignore the Resize event and remarks about constituent
controls. User-drawn controls draw their appearance in the Paint event. This is
discussed in “Drawing Your Control,” later in this chapter.

Note In all of these scenarios, the order and number of Resize and Paint
events may vary.

10

The Control Instance is Placed on a Form
When you double-click a control’s icon in the Toolbox, a design-time instance of the
control is placed on the form you’re designing. The following events occur in the
UserControl object at the heart of the control instance:

—12

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 12 of 95 Printed: 10/23/96 06:43 PM

Event What gets done

Initialize Constituent controls have been created, but the control has not been
sited on the form.

InitProperties The control instance sets default values for its properties. The control
has been sited, so the Extender and Ambient objects are available.
This is the only time the instance will ever get this event.

Resize, Paint The control instance adjusts the size of its constituent controls, if
any, according to its default property settings. A user-drawn control
draws itself.

11
The developer of the form can now see the control, and set its properties in the
Properties window. After the developer does this, she may press F5 to run the project.

From Design Mode to Run Mode
When F5 is pressed, the control's design-time instance on the form is destroyed. When
the form is loaded at run time, the control is recreated as a run-time instance.

Event What gets done

WriteProperties Before the design-time instance is destroyed, it has a chance to save
property values to the in-memory copy of the .frm file.

Terminate Constituent controls still exist, but the design-time control instance is
no longer sited on the form. It’s about to be destroyed.

Initialize Constituent controls have been created, but the run-time control
instance has not been sited on the form.

ReadProperties The control instance reads the property values that were saved in the
in-memory .frm file. The control has been sited on the run-time
instance of the form, so the Extender and Ambient objects are
available.

Resize, Paint The control instance adjusts the size of its constituent controls, if
any, according to its current property settings. A user-drawn control
draws itself.

12
The developer tests the form by clicking the control, or taking other actions that cause
the control’s properties, methods, and events to be exercised.

From Run Mode to Design Mode
Finally the developer closes the form and returns to design mode. The run-time
instance of the control is destroyed, and a design-time instance is created:

Event What gets done

Terminate The run-time instance never gets a chance to save property settings.
Changes to property values while the program was running are
discarded.

Initialize Design-time instances of constituent controls have been created, but
the design-time control instance has not been sited on the form.

ReadProperties The control reads the property values that were saved in the in-

—13

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 13 of 95 Printed: 10/23/96 06:43 PM

memory copy of the .frm file. The control has been sited on the
design-time instance of the form, so the Extender and Ambient
objects are available.

Resize, Paint The control instance adjusts the size of its constituent controls, if
any, according to its saved property settings. A user-drawn control
draws itself.

13

Closing the Form
If the developer doesn’t need to work on the form any more, she may close it. Or it
may be quitting time, and she may close the whole project. In either case, the control
instance on the form is destroyed.

Event What gets done

WriteProperties Before the design-time instance is destroyed, it has a chance to save
property values to the in-memory copy of the .frm file.

Terminate Constituent controls still exist, but the control instance is no longer
sited on the form. It’s about to be destroyed.

14
Note In all of the scenarios above, the control instance has been saving its
property values to the in-memory copy of the .frm file. If the developer
chooses not to save the project before closing it, those property settings will
be discarded.

15

Additional Scenarios
When the developer re-opens the project, and opens the form to work on it again, the
control is reincarnated as a design-time instance. It receives Initialize, ReadProperties,
Resize, Paint, and WriteProperties events.

Note A WriteProperties event? Yes, indeed. When the project is opened,
Visual Basic creates an in-memory copy of the .frm file. As each control on
the form is created, it gets a ReadProperties event to obtain its saved
property values from the .frm file, and a WriteProperties event to write those
property values to the in-memory copy of the .frm file.

16
Compiling the Project
When the project is compiled into an application or component, Visual Basic loads all
the form files invisibly, one after another, in order to write the information they
contain into the compiled file. A control instance gets the Initialize, ReadProperties,
and WriteProperties events. The control’s property settings are compiled into the
finished executable.

Running the Compiled Program or Component
Whenever a user runs the installed application or component, and the form is loaded,
the control receives Initialize, ReadProperties, and Resize events. When the form is
unloaded, the control receives a Terminate event.

—14

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 14 of 95 Printed: 10/23/96 06:43 PM

Controls on World Wide Web Pages
Unlike Visual Basic projects and compiled programs, HTML pages don’t save design-
time information. Therefore a control on an HTML page always acts as though it’s
being created for the very first time. When the HTML is processed by a browser, a
control on the page receives the Initialize, InitProperties, Resize, and Paint events.

Property values specified with the <param name> tag, between the <OBJECT> and
</OBJECT> tags that specify the control’s place on the page, are assigned once the
control is running, as discussed in “Adding Internet Features to Controls,” later in this
chapter.

Events You Won’t Get in a UserControl object
Some events you’re familiar with from working with forms don’t exist in a
UserControl object. For example, there is no Activate or Deactivate event, because
controls are not activated and deactivated the way forms are.

More striking is the absence of the familiar Load, Unload, and QueryUnload events.
Load and Unload simply don’t fit the UserControl lifestyle; unlike a form, a control
instance isn’t loaded at some point after it’s created — when a UserControl object’s
Initialize event occurs, constituent controls have already been created.

The UserControl object’s Initialize and ReadProperties events provide the
functionality of a form’s Load event. The main difference between the two is that
when the Initialize event occurs, the control has not been sited on its container, so the
container’s Extender and Ambient objects are not available. The control has been
sited when ReadProperties occurs.

Note ReadProperties doesn’t occur the first time a control instance is placed
on a container — in that case the InitProperties occurs instead.

17
The UserControl event most like a form’s Unload event is Terminate. The constituent
controls still exist at this point, although you no longer have access to the container,
because your control has been unsited.

The WriteProperties event cannot be used as an analog of Unload, because it occurs
only at design time.

UserControl objects don’t have QueryUnload events because controls are just parts of
a form; it’s not up to a control to decide whether or not the form that contains it
should close. A control’s duty is to destroy itself when it’s told to.

Events Peculiar to UserControls
The GotFocus and LostFocus events of the UserControl object notify user-drawn
controls when they should show or stop showing a focus rectangle. These events
should not be forwarded to the user of your control, because the container is
responsible for focus events.

—15

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 15 of 95 Printed: 10/23/96 06:43 PM

If your UserControl has constituent controls that can receive focus, the EnterFocus
event will occur when the first constituent control receives the focus, and the
ExitFocus event will occur when focus leaves the last constituent control. See “How
to Handle Focus in your Control,” later in this chapter.

If you have allowed developers to set access keys for your control, the
AccessKeyPress event occurs whenever a user presses an access key. See “Allowing
Developers to Set Access Keys for Your Control,” later in this chapter. The
AccessKeyPress event can also occur if your control is a default button or cancel
button. This is discussed in “Allowing Your Control to be a Default or Cancel
Button,” later in this chapter.

The AmbientChanged event occurs whenever an Ambient property changes on the
container your control has been placed on. See “Using the Ambient Object to Stay
Consistent with the Container,” later in this chapter.

Interacting with the Container
As explained in “Control Creation Terminology,” earlier in this chapter, instances of
your control never exist by themselves. They are always placed on container objects,
such as Visual Basic forms.

Container objects supply additional properties, methods, and events that appear to the
user to be part of your control. This is discussed in the related topic, “Understanding
the Container’s Extender Object.” You can use the Parent property of the Extender
object to access the properties and methods of the container your control has been
placed on.

You can also obtain information about the container through the UserControl object’s
Ambient property. The object returned by this property offers hints for property
settings, such as BackColor, that can make your control’s appearance consistent with
that of its container. The Ambient object is discussed in “Using the Ambient Object to
Stay Consistent with the Container.”

Note The Ambient and Extender objects are not available until your control
has been sited on the container. Thus they are not available in the
UserControl object’s Initialize event. When the InitProperties or
ReadProperties event occurs, the control instance has been sited.

18

All Containers are Not Created Equal
A consequence of your control’s dependence on container objects is that some
features may not be available in all containers. Many ActiveX control features require
support from the container a control is placed on, and will be disabled if the container
doesn’t provide the required support.

The following features are supported by Visual Basic forms, but may not be
supported by all containers:

—16

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 16 of 95 Printed: 10/23/96 06:43 PM

· Transparent control background, discussed in “Giving Your Control a Transparent
Background,” later in this chapter.

· The ControlContainer property, discussed in “Allowing Developers to Put Controls
on Your Control,” later in this chapter.

· Alignable controls, discussed in “Making Your Control Align to the Edges of
Forms,” later in this chapter.

· Modeless dialog boxes your control may show.
13

Understanding the Container’s Extender Object
When you view an instance of your control in the Properties window, you’ll see a
number of properties you didn’t author. These extender properties are provided by the
container your control is placed on, but they appear to be a seamless extension of
your control, as shown in Figure 9.6.

Figure 9.6 Extender properties, methods, and events are provided by the
container

14
A UserControl object can access extender properties through its Extender object. For
example, the ShapeLabel control in “Creating an ActiveX Control” uses the following
code to initialize its Caption property:

Private Sub UserControl_InitProperties()
' Let the starting value for the Caption
' property be the default Name of this
' instance of ShapeLabel.
Caption = Extender.Name

End Sub
19

Extender properties are provided for the developer who uses your control. Generally
speaking, the author of a control should not attempt to set them with code in the
UserControl. For example, it’s up to the developer to decide where a particular
instance of your control should be located (Top and Left properties), or what icon it
should use when dragged.

Extender Properties are Late Bound

—17

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 17 of 95 Printed: 10/23/96 06:43 PM

When you compile your control component, Visual Basic has no way of knowing
what kind of container it may be placed on. Therefore references to Extender
properties will always be late bound.

Standard Extender Properties
The ActiveX control specification lists the following properties that all containers
should provide:

Property Type Access Meaning

Name String R The name the user assigns to the control instance.

Visible Boolean RW Indicates whether the control is visible.

Parent Object R Returns the object which contains the control,
such as a Visual Basic form.

Cancel Boolean R True if the control is the cancel button for the
container.

Default Boolean R True if the control is the default button for the
container.

20
Although it is highly recommended that containers implement these properties,
containers do not have to do so. Thus you should always use error trapping when
referring to properties of the Extender object in your code, even standard properties.

Many containers provide additional extender properties, such as Left, Top, Width, and
Height properties.

Note If you wish your control to be invisible at run time, set the UserControl
object’s InvisibleAtRuntime property to True, as discussed in “Making Your
Control Invisible at Run Time,” later in this chapter. Do not use the Extender
object’s Visible property for this purpose.

21

Container-Specific Controls
If you design your control so that it requires certain Extender properties, your control
will not work in containers that don’t provide those properties. There is nothing
wrong with building such container-specific controls, except that the potential market
for them is smaller.

If you are creating a control designed to address a limitation of a particular container,
such considerations may not matter to you. However, conscientious use of error
trapping will prevent your control from causing unfortunate accidents if it is placed
on containers it was not specifically designed for.

Working with Container Limitations
Visual Basic provides a rich set of extender properties and events, listed in Help for
the Extender object. Many containers provide only a limited subset of these.

—18

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 18 of 95 Printed: 10/23/96 06:43 PM

In general, Extender properties, methods, and events are not the concern of the
control author. Many Extender properties, such as Top and Left, or WhatsThisHelpID,
cannot be implemented by a control, because the container must provide the
underpinnings these properties require.

Collisions Between Control and Extender Properties
If an instance of your control is placed on a container that has an extender property
with the same name as a property of your control, the user will see the extender
property.

For example, suppose you gave your control a Tag property. When an instance of
your control is placed on a Visual Basic form, a Tag property is supplied by the form’s
Extender object. If your control is called ShapeLabel, the user might write the
following code:

ShapeLabel1.Tag = "Triceratops"
22

The code above stores the string “Triceratops” in the Tag property provided by the
Visual Basic form’s Extender object. If an instance of your control is placed on a
container whose Extender object doesn’t supply a Tag property, the same code will
store the string in the Tag property you implemented.

In order to access the Tag property of your control on a Visual Basic form, the user
could employ another Extender object property, as shown in the following code
fragment:

ShapeLabel1.Object.Tag = "Triceratops"
23

The Object property returns a reference to your control’s interface just as you defined
it, without any extender properties.

Using the Ambient Object to Stay Consistent with the
Container

Containers provide ambient properties to give controls hints about how they can best
display themselves in the container. For example, the ambient BackColor property
tells a control what color to set its own BackColor property to in order to blend in
with the container.

Visual Basic makes ambient properties available to your ActiveX control through an
Ambient object. The Ambient property of the UserControl object returns a reference
to the Ambient object.

The Ambient object provided by Visual Basic contains all of the standard ambient
properties defined by the ActiveX Controls Standard, whether or not they are actually
provided by the container your control instance was placed on.

This means that you can safely access any of the properties of the Ambient object
visible in the Object Browser. If you access an ambient property not provided by the

—19

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 19 of 95 Printed: 10/23/96 06:43 PM

container, the Ambient object returns a default value, as listed in Help for the Ambient
object properties.

Containers That Provide Additional Ambient Properties
Control containers may define their own ambient properties. These container-specific
ambient properties are not visible in the Object Browser, because they are not in
Visual Basic’s type library. You can learn about such properties in the documentation
for a container, and access them as if they were properties of the Ambient object.

Because these properties are not in the type library, Visual Basic cannot verify their
existence at compile time. Therefore you should always use error handling when
working with Ambient properties.

Another consequence of the lack of type library information is that calls to container-
specific ambient properties are always late-bound. By contrast, calls to standard
ambient properties are early-bound.

Important Ambient Properties
You can ignore many of the standard ambient properties. In a Visual Basic ActiveX
control, you can ignore the MessageReflect, ScaleUnits, ShowGrabHandles,
ShowHatching, SupportsMnemonics, and UIDead properties of the Ambient object.

Ambient properties you should be aware of are listed below.

UserMode
The most important property of the Ambient object is UserMode, which allows an
instance of your control to determine whether it’s executing at design time
(UserMode = False) or at run time. Use of this property is discussed in “Creating
Design-Time-Only or Run-Time-Only Properties,” later in this chapter.

Tip To remember the meaning of UserMode, recall that at design time the
person working with your control is a developer, rather than an end user. Thus
the control is not in “user” mode, so UserMode = False.

24

LocaleID
If you’re developing a control for international consumption, you can use the
LocaleID ambient property to determine the locale. Use of this property is discussed
in “Localizing Your Control,” later in this chapter.

DisplayName
Include the value of the DisplayName property in errors your control raises at design-
time, so the developer using your control can identify the control instance that is the
source of the error.

ForeColor, BackColor, Font, and TextAlign
These properties are hints your control can use to make its appearance match that of
the container. For example, in the InitProperties event, which each instance of your

—20

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 20 of 95 Printed: 10/23/96 06:43 PM

UserControl receives when it is first placed on a container, you can set your control’s
ForeColor, BackColor, Font, and TextAlign to the values provided by the ambient
properties. This is a highly recommended practice.

You could also give your control properties which the user could use to keep a control
instance in sync with the container. For example, you might provide a
MatchFormBackColor property; setting this property to True would cause your
control’s BackColor property always to match the value of the BackColor property of
the Ambient object. You can provide this kind of functionality using the
AmbientChanged event, discussed below.

DisplayAsDefault
For user-drawn controls, this property tells you whether your control is the default
button for the container, so you can supply the extra-heavy border that identifies the
default button for the end user.

If you didn’t set your control up to be a default button, you can ignore this property.
See “Allowing Your Control to be a Default or Cancel Button,” in this chapter.

For More Information See “User-Drawn Controls,” in this chapter.
25

The AmbientChanged Event
If your control’s appearance or behavior is affected by changes to any of the
properties of the Ambient object, you can place code to handle the change in the
UserControl_AmbientChanged event procedure.

The argument of the AmbientChanged event procedure is a string containing the
name of the property that changed.

Important If you’re authoring controls for international use, you should
always handle the AmbientChanged event for the LocaleID property. See
“Localizing Controls,” later in this chapter.

26
Note If an instance of your control is placed on a Visual Basic form, and the
FontTransparent property of the form is changed, the AmbientChanged event
will not be raised.

27

Visual Basic ActiveX Control Features
Visual Basic allows you to author full-featured ActiveX controls. The topics included
in this section explain many of the features of the UserControl object that enable
ActiveX control capabilities.

You can read about other potential ActiveX control capabilities in “Adding Properties
to Controls,” “Adding Methods to Controls,” and “Raising Events from Controls.”

—21

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 21 of 95 Printed: 10/23/96 06:43 PM

You can also add property pages to your control, as discussed in “Creating Property
Pages for ActiveX Controls.”

Many of the features described in this section are also demonstrated in the
CtlPlus.vbg sample application, which you can find in
\VB\Samples\CompTool\ActvComp.

How to Handle Focus in Your Control
The way you handle focus for your control depends on which model you’re using to
develop your control. Models for building ActiveX controls are discussed in “Three
Ways to Build ActiveX Controls,” earlier in this chapter.

User-Drawn Controls
If you’re authoring a user-drawn control, there won’t be any constituent controls on
your UserControl. If you don’t want your control to be able to receive the focus, set
the CanGetFocus property of the UserControl object to False. CanGetFocus is True
by default.

If your user-drawn control can receive the focus, it will receive GotFocus and
LostFocus events when it receives and loses the focus. A user-drawn control is
responsible for drawing its own focus rectangle when it has the focus, as described in
“User-Drawn Controls,” in this chapter.

This is the only function your UserControl’s GotFocus and LostFocus events need to
fulfill for a user-drawn control. You don’t need to raise GotFocus or LostFocus events
for the user of your control, because the container’s extender provides these events.

Note The UserControl object of a user-drawn control will also receive a
EnterFocus event prior to GotFocus, and an ExitFocus event after LostFocus.
You don’t need to put any code in the event procedures of these event, and in
fact it is recommended that you not do so.

28

Controls That Use Constituent Controls
If you’re authoring a control that enhances a single constituent control, or is an
assembly of constituent controls, your UserControl object will be unable to receive
the focus, regardless of the setting of the CanGetFocus property, unless none of its
constituent controls can receive the focus.

If no constituent controls can receive the focus, and CanGetFocus is True, then your
UserControl object will receive the same events a user-drawn control receives. The
only thing you need to do with these events is provide a visual indication that your
control has the focus.

How Constituent Controls Are Affected by CanGetFocus
As long as your control contains at least one constituent control that can receive the
focus, the UserControl object will never receive GotFocus and LostFocus events. In

—22

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 22 of 95 Printed: 10/23/96 06:43 PM

this situation, the CanGetFocus property takes on a new meaning, more on the order
of “can be tabbed to.”

The reason for this is that the user may click on a constituent control that can receive
the focus, and if this happens, the constituent control will get the focus — regardless
of the setting of CanGetFocus.

However, if CanGetFocus is True, the user will not be able to tab to any of your
control’s constituent controls. Generally speaking, this is not a good idea.

EnterFocus and ExitFocus
When the focus moves from outside your control to any of your control’s constituent
controls, the UserControl object will receive an EnterFocus event. The GotFocus
event for the constituent control that receives the focus will be raised after the
UserControl_EnterFocus event procedure.

As long as the focus remains within your control, the UserControl object’s focus-
related events will not be raised. As the focus moves from one constituent control to
another, however, the appropriate GotFocus and LostFocus events of the constituent
controls will be raised.

When the focus moves back outside your control, the last constituent control that had
the focus will receive its LostFocus event. When the event procedure returns, the
UserControl object will receive its ExitFocus event.

You can use the EnterFocus event to change which constituent control receives the
focus. You may wish to do this in order to restore the focus to the constituent control
that last had it, rather than simply allowing the first constituent control in your
UserControl’s tab order to receive the focus, which is the default behavior.

Tip If your control is complex — as for example an Address control with
multiple constituent controls — you may be tempted to validate the data in the
ExitFocus event. Don’t. Instead, give the user a Validate method that can be
called in the LostFocus event provided by the container your control instance
is placed on. It’s good design practice to give the user of your control as much
freedom as possible in using events.

29
Tip Generally speaking, it’s not a good idea to use MsgBox when you’re
debugging focus-related events, because the message box immediately
grabs the focus. It’s a very bad idea to use MsgBox in EnterFocus and
ExitFocus events. Use Debug.Print instead.

30

Receiving Focus via Access Keys
Avoid hard coding access keys for your control’s constituent controls, because access
keys permanently assigned to your control in this fashion will limit a user’s freedom
to choose access keys for her form. In addition, two instances of your control on the
same form will have access key conflicts.

—23

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 23 of 95 Printed: 10/23/96 06:43 PM

“Allowing Developers to Set Access Keys for Your Control,” later in this chapter,
discusses how you can give the user of your control the ability to set access keys on
instances of your control.

Forwarding Focus to the Next Control in the Tab Order
If your control cannot receive the focus itself, and has no constituent controls that can
receive the focus, you can give your control the same behavior displayed by Label
controls. That is, when the access key for your control is pressed, the focus is
forwarded to the next control in the tab order.

To enable this behavior, set the ForwardFocus property of the UserControl object to
True.

Controls You Can Use As Constituent Controls
You can place any of the controls supplied with Visual Basic on a UserControl, with
the exception of the OLE container control.

Any ActiveX control you’ve purchased, or any control written to the older OLE
specification, can be placed on a UserControl.

As long as you’re authoring a control for your own use, that’s all you need to know.
However, if you’re going to distribute your control to others, even if you’re giving it
away, you need to consider distribution and licensing issues.

Note Toolbox objects other than controls, such as insertable objects — for
example, Microsoft Excel Charts — cannot be placed on UserControl objects.

31

The Easy Part — UserControl and Intrinsics
The UserControl object and the Visual Basic intrinsic controls are created by the
Visual Basic run-time DLL. Anyone who installs your .ocx file will automatically get
a copy of the run-time DLL and support files, so if you author your controls using just
the UserControl and intrinsic controls, you have no further licensing or distribution
issues to worry about.

The intrinsic controls include: PictureBox, Label, TextBox, Frame, CommandButton,
CheckBox, OptionButton, ComboBox, ListBox, HScrollBar, VScrollBar, Timer,
DriveListBox, DirListBox, FileListBox, Shape, Line, Image, and Data.

ActiveX controls included with the Professional Edition of Visual Basic are subject to
licensing rules, as explained below.

Distributing Constituent Controls
An instance of your control is composed of a UserControl object and its constituent
controls, as explained in “The UserControl Object,” earlier in this chapter. In order to
add an instance of your control to a form, a developer must be able to create these
objects.

—24

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 24 of 95 Printed: 10/23/96 06:43 PM

SetupWizard makes this task easy. When you create a Setup program for your .ocx
file, SetupWizard includes all the .ocx files for the constituent controls, along with the
Visual Basic run-time DLL and any necessary support files.

When a developer runs your Setup program, the .ocx files that provide the constituent
controls are installed on his computer. The only other thing he needs to worry about is
whether he has the legal right to use them.

If none of the constituent controls require a license, the developer is set. However, if
you used controls you purchased, or any of the ActiveX controls included with Visual
Basic, Professional Edition, there are licensing requirements to be met.

Licensing Constituent Controls
When you purchase a control, you generally acquire the right to distribute instances
of that control royalty-free as part any application you create. However, such license
agreements do not give you the right to sell or give away the control to other
developers — which is what you’re doing when you use it as a constituent control.

So the rule is: In order to use your control, a developer must have licenses for all the
licensed controls you’ve used as constituent controls.

Distribution and Licensing Examples
Applying the rule yields the following examples.

ActiveX Controls Included with Visual Basic
Suppose you author some controls using some of the ActiveX controls included with
Visual Basic, Professional Edition. SetupWizard adds the necessary .ocx files to your
Setup program.

· A developer who has a copy of Visual Basic, Professional Edition buys your .ocx
and installs it. She already has the .ocx files, and the license for them, so she
has everything she needs.

· A student who has a copy of Visual Basic, Standard Edition buys your control and
installs it. He has the .ocx files, but doesn’t have the license to use them.

· A stock market analyst who has a copy of Microsoft Excel buys your control and
installs it. She has the .ocx files, but doesn’t have the license to use them.

15
ActiveX Controls You’ve Purchased
Suppose you purchase MegaDino.ocx from Late Cretaceous Computing, and use the
Tyrannosaur and Velociraptor controls from this .ocx to develop your own
UltimatePredator control. You package this control in UPred.ocx, and you give it
away.

Anyone to whom you give a copy of UPred.ocx must have purchased and installed
MegaDino.ocx in order to use the UltimatePredator control legally. This is true
regardless of the development software they’re using.

—25

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 25 of 95 Printed: 10/23/96 06:43 PM

In fact, if the creators of MegaDino.ocx and DinoRama.ocx used the standard registry
key licensing scheme, people to whom you give UPred.ocx will be unable to use the
UltimatePredator control unless they have MegaDino.ocx installed.

Shareware Controls
Suppose you author your control using a shareware control.

If you sell your control component (.ocx file), the purchaser must also pay the author
of the shareware control the appropriate license fee.

If you distribute your control component as shareware, a person who wants to use it
must pay the appropriate license fees to you and to the author of the shareware control
you used.

Constituent Controls and the Internet
If you want people to be able to use your control on World Wide Web pages,
remember that the rule for Web servers is exactly the same as the rule for developers.
That is, in order to use your control, a Web server must have licenses for all the
licensed controls you’ve used as constituent controls.

For More Information Licensing issues, including how to add licensing support
for the controls you author, how licensing support works, and the mechanism for
using licensed controls with the World Wide Web are discussed in “Licensing Issues
for Controls,” later in this chapter.

32

Object Models for Controls
Complex controls such as TreeView and Toolbar provide run-time access to their
functionality through objects. For example, the TreeView control has a Nodes
collection containing Node objects that represent the items in the hierarchy the
TreeView control displays. Users can create new nodes using the Add method of the
Nodes collection.

Objects like Node and Nodes are called dependent objects. Dependent objects exist
only as a part of some other object, as Node objects are always part of a TreeView
control. They cannot be created independently.

You can provide dependent objects like Node and Nodes by including class modules
in your ActiveX control project and organizing them into an object model. Object
models can be as simple as the Nodes collection with its Node objects, or arbitrarily
complex.

Important Control components can only provide dependent objects. They
cannot provide objects that can be independently created, using the New
operator or the CreateObject function.

33
For More Information Dependent objects are discussed in “Instancing for Classes
Provided by ActiveX Components,” in “General Principles of Component Design.”

—26

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 26 of 95 Printed: 10/23/96 06:43 PM

Also, you can read about object models in “Organizing Objects: The Object Model,”
which is also in “General Principles of Component Design.”

Some design considerations for collections in controls are discussed in “Creating
Robust Controls,” later in this chapter. More information on robust techniques for
using objects can be found in “Private Communications Between Your Objects,” in
“General Principles of Component Design.”

Classes, class modules, and objects are discussed in ”Programming with Objects.”
34

Allowing Developers to Put Controls on Your Control
Some controls can act as containers for other controls. For example, if you place
controls on a Visual Basic PictureBox control, all of the controls move when you
move the PictureBox. Visual Basic users take advantage of this capability to group
controls, produce scrollable pictures, and so on.

You can allow developers to place controls on your ActiveX control by setting the
ControlContainer property of the UserControl object to True.

Controls a developer places on an instance of your ActiveX control can be accessed
using the ContainedControls collection of the UserControl object. You can use this
collection at either design time or run time.

The ContainedControls Collection vs. the Controls Collection
The ContainedControls collection is different from the Controls collection, which
contains only the constituent controls you have used in designing your ActiveX
control. This is illustrated in Figure 9.7, which supposes that the ShapeLabel control’s
ControlContainer property is True.

—27

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 27 of 95 Printed: 10/23/96 06:43 PM

Figure 9.7 The Controls and ContainedControls collections

16
Availability of the ContainedControls Collection
You cannot access the ContainedControls collection in the Initialize event of your
UserControl object. Support for the ControlContainer feature is provided by the
object your control is placed on, so your control must be sited on the container object
before ContainedControls is available. When the UserControl object receives its
ReadProperties event, siting has occurred.

Once your control is sited, and support for the ControlContainer feature is present, the
ContainedControls collection may not immediately contain references to the controls
a developer has placed on your control. For example, if your control is on a Visual
Basic form, the Count property of the ContainedControls collection will be zero until
after the UserControl_ReadProperties event procedure has executed.

Performance Impact of ControlContainer
There is extra overhead required to allow a developer to place controls on instances of
your ActiveX control. Clipping must be done for the contained controls, which must
appear on top of all the constituent controls in your UserControl, and of course the
ContainedControls collection must be maintained.

In other words, controls that serve as containers for other controls are heavyweight
controls.

For best performance of your controls, you should set ContainedControls to True only
if it makes sense for a particular control. For example, it doesn’t make much sense for
a control assembly like an Address Control to be a container for other controls.

—28

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 28 of 95 Printed: 10/23/96 06:43 PM

Support for ControlContainer
ControlContainer support will not work for every container your control may be
placed on. Visual Basic forms support the ISimpleFrame interface that enables the
ControlContainer feature, so your control can always support this capability on a
Visual Basic form.

If an instance of your control is placed on a container that is not aware of
ISimpleFrame, ControlContainer support will be disabled. Your control will continue
to work correctly in all other ways, but developers will be unable to place other
controls on an instance of your control.

In order for the ContainedControls collection to be available, an ISimpleFrame-aware
container must implement the IVBGetControls interface. Calls to the collection will
cause errors if the container does not implement this interface, so it’s a good idea to
use error handling when you access the collection.

Note Controls placed on a container with a transparent background are not
visible. If you want your control to be a control container, don’t give it a
transparent background.

35

Allowing Your Control to be Enabled and Disabled
The Enabled property is an odd beast. It’s an extender property, but the Extender
object doesn’t provide it unless your control has an Enabled property of its own, with
the correct procedure ID. If the extender’s Enabled property isn’t present, your
control will not display the same enabled/disabled behavior as other controls.

Your property should delegate to the Enabled property of the UserControl object, as
shown in the following code sample:

Public Property Get Enabled() As Boolean
Enabled = UserControl.Enabled

End Property

Public Property Let Enabled(ByVal NewValue As Boolean)
UserControl.Enabled = NewValue
PropertyChanged "Enabled"

End Property
36

Add this code to the code window of the UserControl your ActiveX control is based
on, as discussed in “Adding Properties to Controls,” later in this chapter.

Note You can easily add the Enabled property by using the ActiveX Control
Interface Wizard to create the interface for your control. The wizard includes
the Enabled property in its list of recommended properties.

37
Notice that the Enabled property of the UserControl object is qualified by the object’s
class name (UserControl). The class name can be used to distinguish properties and
methods of the UserControl object from members of your ActiveX control which
have the same names.

—29

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 29 of 95 Printed: 10/23/96 06:43 PM

The Enabled property of the UserControl object acts much like the Enabled property
of a form, enabling and disabling the UserControl and all of its constituent controls.

Note The purpose and importance of PropertyChanged are discussed in
“Adding Properties to Controls,” later in this chapter.

38

Assigning the Procedure ID for the Enabled Property
In order for your Enabled property to work correctly, you need to assign it the
Enabled procedure ID. Procedure IDs are discussed in “Properties You Should
Provide,” later in this chapter.

 To assign the procedure ID for the Enabled property

1 On the Tools menu, click Procedure Attributes to open the Procedure Attributes
dialog box.

2 In the Name box, select your Enabled procedure.

3 Click Advanced to expand the Procedure Attributes dialog box.

4 In the Procedure ID box, select Enabled to give the property the correct
identifier.

17
When you give your Enabled property the correct procedure ID, the container’s
Extender object shadows it with its own Enabled property; when the user sets the
extender property, the container sets your Enabled property.

The reason for this odd arrangement is to ensure consistent Windows behavior. When
a form is disabled, it’s supposed to disable all of its controls, but the controls are
supposed to continue to paint themselves as if they were enabled.

A Visual Basic form conforms to this behavior by tricking its controls. It sets the
Extender object’s Enabled property to False for all of its controls, without calling the
Enabled properties of the controls. The controls think they’re enabled, and paint
themselves so, but in code they appear to be disabled.

If your control has an Enabled property without the Enabled procedure ID, it will
remain enabled in code while all the controls around it are disabled. You can see this
by putting a command button and a control of your own on a form, and adding the
following code:

Private Sub Command1_Click()
Form1.Enabled = False
Debug.Print Command1.Enabled
Debug.Print MyControl1.Enabled

End Sub
39

Run the program before and after assigning the Enabled procedure ID to your
control’s Enabled property. In the first case, you’ll see that the command button’s
Enabled property returns False, while your control’s Enabled property returns True.
After the procedure ID is assigned, both controls will return False.

—30

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 30 of 95 Printed: 10/23/96 06:43 PM

Correct Behavior for the Enabled Property
You should avoid setting the UserControl’s Enabled property, except in your control’s
Enabled property. The reason for this is that the container is responsible for enabling
and disabling the controls it contains. It’s rude for a control to tamper with properties
the user is supposedly in control of.

Painting a User-Drawn Control’s Disabled State
When you author a user-drawn control, you have to provide your own representation
of your control’s disabled state. If you have implemented an Enabled property as
shown above, you can determine when you need to do this by testing the value of
UserControl.Enabled in the UserControl_Paint event procedure.

For More Information See “User-Drawn Controls,” later in this chapter.
40

Giving Your Control a Transparent Background
Setting the BackStyle property of the UserControl object to Transparent allows
whatever is behind your control to be seen, in between the constituent controls on
your UserControl’s surface.

If one of the constituent controls on the UserControl is a Label whose BackStyle
property has also been set to Transparent, and whose Font property specifies a
TrueType font, Visual Basic will clip around the font. In addition, mouse clicks that
fall in the spaces between letters will be passed through to the container.

Setting BackStyle to Transparent may affect the performance of your control. If your
control uses a large number of constituent controls, or a Label control with a
transparent background, a TrueType font, and a large amount of text, Visual Basic
must do a great deal of clipping to make the background show through correctly.

Note Controls placed on a container with a transparent background are not
visible. If you want your control to be a control container, don’t give it a
transparent background.

41

Allowing Developers to Set Access Keys for Your
Control

Placing ampersand characters (&) in the captions of Label controls and
CommandButton controls creates access keys with which the end user of an
application can shift focus to the control. You can create a similar effect in your
ActiveX controls.

For example, suppose you have created a user-drawn button. In the Property Let for
your button’s Caption property, you can examine the text of the caption the user has
entered. If there’s an ampersand in front of a letter, you can assign that letter to the
AccessKeys property of the UserControl object.

—31

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 31 of 95 Printed: 10/23/96 06:43 PM

When the end user presses one of the access keys enabled in this fashion, your
UserControl object receives an AccessKeyPress event. The argument of this event
contains the access key that was pressed, allowing you to support multiple access
keys on a control.

Access Keys for Control Assemblies
Control assemblies may contain constituent controls that can get the focus, and that
support access keys of their own. You can use this fact to provide access key
functionality.

Suppose you’ve authored a general-purpose control that consists of a text box and a
label; you want the user to be able to set an access key in the label’s caption, and
forward the focus to the text box. You can accomplish this by giving the label and text
box TabIndex values of zero and one (the TabIndex values on the UserControl are not
visible outside your control), and delegating the Caption property of your control to
the label, thus:

Property Get Caption() As String
Caption = Label1.Caption

End Property

Property Let Caption(NewCaption As String)
Label1.Caption = NewCaption

End Property
42

When a developer assigns the text “&Marsupial” to your Caption property, the label
control will do all the access key work for you.

Note When the end user presses an access key on one of your constituent
controls, the UserControl does not receive an AccessKeyPress event.

43

Control Assemblies with Fixed Text
For fixed-purpose control assemblies, such as an Address control, you can put
ampersand characters (&) in the captions of constituent controls. Unfortunately, these
hard-coded access keys may conflict with other access key choices the user wishes to
make on a form.

In a more sophisticated variation of this scheme, you might add an AccessKeyXxxx
property to your control for the appropriate constituent controls. That is, if the caption
of the label next to the txtLastname control was “Last Name,” you would add an
AccessKeyLastName property. The developer using your control could assign any
character from the label’s caption to this property, and in the Property Let code you
could change the caption to contain the ampersand.

Making Your Control Align to the Edges of Forms
When creating controls like toolbars and status bars, it’s useful to be able to make the
control align to one of the borders of the form it’s placed on. You can give your

—32

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 32 of 95 Printed: 10/23/96 06:43 PM

ActiveX control this capability by setting the Alignable property of the UserControl
object to True.

If the container your control is placed on supports aligned controls, it will add an
Align property to the Extender object. When the user chooses an alignment, your
control will automatically be aligned appropriately.

In the Resize event of your UserControl, you will have to redraw your user-drawn
control or rearrange the constituent controls of your control assembly. You can use the
Align property of the Extender object to determine which container edge the control
instance has been aligned to.

Note Not all containers support alignable controls. If you attempt to test the
value of the Align property, make sure you use error trapping.

44

Making Your Control Invisible at Run Time
To author a control that’s invisible at run time, like the Timer control, set the
InvisibleAtRuntime property of the UserControl object to True.

Important Don’t use the Visible property of the Extender object to make
your control invisible at run time. If you do, your control will still have all the
overhead of a visible control at run time. Furthermore, the extender properties
are available to the user, who may make your control visible.

45
Invisible Controls vs. Ordinary Objects
Before you create a control that’s invisible at run time, consider creating an ordinary
object provided by an in-process code component (ActiveX DLL) instead.

Objects provided by in-process code components require fewer resources than
controls, even invisible controls. The only reason to implement an invisible control is
to take advantage of a feature that’s only available to ActiveX controls.

Setting a Fixed Size for Your Control
Controls that are invisible at run time typically maintain a fixed size. You can
duplicate this behavior using the Size method of the UserControl object, as shown
here:

Private Sub UserControl_Resize()
Size 420, 420

End Sub
46

The Width and Height properties of a UserControl object are always given in Twips,
regardless of ScaleMode.

Adding an AboutBox to Your Control

—33

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 33 of 95 Printed: 10/23/96 06:43 PM

ActiveX controls typically have an About “property” at the top of the Properties
window, with an ellipsis button. Clicking the button shows an About box identifying
the control and the software vendor that created it.

Visual Basic makes it easy to provide such About boxes. You can have separate About
boxes for each control in your control component (.ocx file), or one About box that all
the controls in the component share.

 To add an About box to a control component

5 Create an About box by adding a form to your ActiveX control project, and giving
it appropriate text and controls. Name the form dlgAbout.

6 In the code window for any control in the project, add the following Sub
procedure:

1Public Sub ShowAboutBox()
2 dlgAbout.Show vbModal
3 Unload dlgAbout
4 Set dlgAbout = Nothing
5End Sub 18
1Important Unloading the About box and setting it to Nothing frees the
memory it was using. This is a courtesy to the user of your controls.

19
7 On the Tools menu, click Procedure Attributes to open the Procedure Attributes

dialog box. If the ShowAboutBox procedure is not selected in the Name box,
click the drop down and select it.

8 Click Advanced to expand the Procedure Attributes dialog box.

9 In the Procedure ID box, select AboutBox to give the ShowAboutBox procedure
the correct identifier.

10 Repeat steps 2 through 5 for each control in the project.
20

Note The name of the About box form and the method that shows it can be
anything you like. The procedure above used dlgAbout and ShowAboutBox for
purposes of illustration only.

47
If you wish to have separate About boxes for each control, simply create additional
forms, and show a different form in each control’s ShowAboutBox method.

Of course, each form you add to the project increases its size. You can get the same
effect with the single dlgAbout form by giving it a property named, let us say,
ControlID. This property identifies which control dlgAbout is being shown for. In
each control’s ShowAboutBox method, set the ControlID property before showing
dlgAbout. Place code in the Load event of dlgAbout to change the text and bitmaps
on the About box appropriately.

For More Information Adding properties and methods to forms is discussed in
“Programming with Objects.”

48

—34

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 34 of 95 Printed: 10/23/96 06:43 PM

Providing a Toolbox Bitmap for Your Control
The Toolbox bitmap size is 16 pixels wide by 15 pixels high, as specified by the
ActiveX control specification. You can create a bitmap this size, and assign it to the
ToolboxBitmap property of your UserControl object.

Important Do not assign an icon to the ToolboxBitmap property. Icons do
not scale to well to Toolbox bitmap size.

49
Visual Basic automatically uses the class name of your control as the tool tip text
when users hover the mouse pointer over your icon in the Toolbox.

Tip When creating bitmaps, remember that for many forms of color-
blindness, colors with the same overall level of brightness will appear to be
the same. You can avoid this by restricting your bitmap to white, black, and
shades of gray, or by careful color selection.

50

Allowing Your Control to be a Default or Cancel Button
Default and cancel buttons are controlled by the container. To notify the container that
your control is capable of being a default or cancel button, set the DefaultCancel
property of the UserControl to True.

If you have set the Default or Cancel property to True for one of the constituent
controls on your UserControl, you must set the DefaultCancel property of the
UserControl to True or the constituent control property will be ignored.

User-drawn controls can examine the DisplayAsDefault property of the Ambient
object to determine whether they should draw the extra black border that visually
identifies a default button.

If DefaultCancel is True, and the user makes an instance of your control the default
button, the UserControl’s AccessKeyPressed event will occur when the user presses
the Enter key. The argument of the event will contain the ASCII value 13.

If an instance of your control is the cancel button, the argument of the
AccessKeyPress event will contain the ASCII value 27.

Important The status of a default or cancel button can change at any time.
You must place code in the UserControl’s AmbientChanged event to detect
changes in the DisplayAsDefault property, and adjust your control’s
appearance accordingly.

51

Adding Internet Features to Controls
ActiveX controls created with Visual Basic can support asynchronous downloading of
property values, such as Picture properties that may contain bitmaps. Through the

—35

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 35 of 95 Printed: 10/23/96 06:43 PM

Hyperlink property of the UserControl object, they can also request that a browser
jump to a URL, or navigate through the history list.

These features are available when the control is placed on a container that provides
the necessary support functions, such as Microsoft Internet Explorer.

You may wish to design your control to support both normal loading of property
values from a PropertyBag, which is not supported by browsers, and asynchronous
downloading of property values.

Note Asynchronous downloading of local files is available in any application.
52

Asynchronous Downloading
A control requests asynchronous downloading of a property by calling the AsyncRead
method of the UserControl object. This method can be called from any event, method,
or property procedure of your control, as long as the control has already been sited on
the container.

The call returns immediately, and downloading proceeds in the background, as shown
in Figure 9.8a.

Figure 9.8a Starting asynchronous download of a bitmap property

21
When the container has retrieved the entire property value, the control receives an
AsyncReadComplete event that identifies the property whose value has been
retrieved. The control can then access the retrieved data and set the property value, as
shown in Figure 9.8b.

—36

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 36 of 95 Printed: 10/23/96 06:43 PM

Figure 9.8b Asynchronous download completes

22
The example code in this topic follows this scheme to create a simple control that
displays a bitmap. A more elaborate version of this example is the AsyncPicture
control in the CtlPlus.vbp sample application. It has more bells and whistles, but
fewer explanations.

To work through the example, open a new Standard EXE project. Use the Project
menu to add a UserControl to the project. Place a PictureBox control on the
UserControl, and set the properties as shown in the following table:

Object Property Setting

UserControl Name AsyncBitmap

PictureBox Name picBitmap

AutoSize True
53

The control will have two properties, an ordinary Picture property and a related
PictureFromURL property. The Picture property is implemented with all three
property procedures, because a Picture object can be assigned with or without the Set
statement.

Public Property Get Picture() As Picture
Set Picture = picBitmap.Picture

End Property

Public Property Let Picture(ByVal NewPicture _
As Picture)

Set picBitmap.Picture = NewPicture
PropertyChanged "Picture"

End Property

Public Property Set Picture(ByVal NewPicture _
As Picture)

Set picBitmap.Picture = NewPicture
PropertyChanged "Picture"

End Property
54

—37

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 37 of 95 Printed: 10/23/96 06:43 PM

The Picture property of the ActiveX control simply delegates to the Picture property
of the picture box, picBitmap. The picture box does all the work of displaying the
bitmap.

The new property overrides the Picture property of the UserControl object. From now
on, if you type Picture without qualifying it, you will get the ActiveX control’s
Picture property, as defined here. To access the Picture property of the UserControl,
you must now qualify it by typing UserControl.Picture.

Note The purpose and importance of PropertyChanged are discussed in
“Adding Properties to Controls,” later in this chapter.

55
The PictureFromURL Property
When a URL string is assigned to the ActiveX control’s PictureFromURL property,
the Property Let begins a download of the bitmap. When the download is complete,
the bitmap is assigned to the Picture property. PictureFromURL is thus an alternate
way of assigning a value to the Picture property.

The PictureFromURL property stores the URL string in a private data member, in the
Declarations section of the UserControl:

Option Explicit
Private mstrPictureFromURL As String

56
The Property Get simply returns this string, so the program can discover where the
picture was downloaded from. The Property Let does all the work:

Public Property Get () As String
PictureFromURL = mstrPictureFromURL

End Property

Public Property Let PictureFromURL(ByVal NewString _
As String)

' (Code to validate path or URL omitted.)
mstrPictureFromURL = NewString
If (Ambient.UserMode = True) _

And (NewString <> "") Then
' If program is in run mode, and the URL string
' is not empty, begin the download.
AsyncRead NewString, vbAsyncTypePicture, _

"PictureFromURL"
End If
PropertyChanged "PictureFromURL"

End Property
57

When a URL string is assigned to the PictureFromURL property, the string is saved in
the private variable. If the project the control has been added to is in run mode (which
will always be true for a control on an HTML page) and if the URL string is not
empty, the Property Let starts an asynchronous download, and then exits.

The asynchronous download is begun by calling the UserControl’s AsyncRead
method, which has the following syntax:

—38

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 38 of 95 Printed: 10/23/96 06:43 PM

AsyncRead Target, AsyncType [, Property]
58

The Target argument specifies the location of the data. This can be a path or a URL.
The host determines the correct method to retrieve the data.

The AsyncType argument specifies the form in which the retrieved data will be
provided. The Value property of data It has the following possible values:

Constant Description

vbAsyncTypePicture The retrieved data is provided as a Picture object.

VbAsyncTypeFile The retrieved data is placed in a file created by Visual Basic. A
string containing the path to the file is provided. This is useful
when the data contains a large AVI file to be played. The control
author can assign the string to the file name property of the
appropriate constituent control.

VbAsyncTypeByteArray The retrieved data is provided as a byte array. It is assumed that
the control author will know how to handle this data.

59
The Property argument is a string containing the name of the property whose value is
to be downloaded. You can use this to enable multiple simultaneous downloads,
because this same string is returned in the AsyncReadComplete event, and can be
used in a Select statement.

The value of the Property argument can also be used as the argument of the
CancelAsyncRead method, described below.

Completing the Download
As each requested download completes, the control receives an AsyncReadComplete
event. The argument of the AsyncReadComplete event is a reference to an
AsyncProperty object, which can be used to identify the downloaded property and
retrieve the downloaded data.

Private Sub UserControl_AsyncReadComplete(_
AsyncProp As VB.AsyncProperty)

On Error Resume Next
Select Case AsyncProp.PropertyName

Case "PictureFromURL"
Set Picture = AsyncProp.Value
Debug.Print "Download complete"

End Select
End Sub

60
You should place error handling code in this event procedure, because an error
condition may have stopped the download. If this was the case, that error will be
raised when you access the Value property of the AsyncProperty object.

When the downloaded bitmap is assigned to the Picture property, the control repaints.

Note In addition to the Value property that contains the downloaded data
and the PropertyName property that contains the name of the property being
downloaded, the AsyncProperty object has an AsyncType property. This

—39

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 39 of 95 Printed: 10/23/96 06:43 PM

contains the same value as the AsyncType argument of the AsyncRead
method that started the download.

61

A Bit More Code
So far, the example has no way to save a bitmap assigned at design time. That is,
there is no code in the InitProperties, ReadProperties, and WriteProperties events.
That code is omitted here, because the purpose of the example is to show
asynchronous downloading of a local file.

One more bit of code will prove useful, however. The reason for using a picture box
to display the bitmap, instead of simply using the Picture property of the UserControl,
is to take advantage of the AutoSize property of the picture box. The following code
resizes the entire control whenever the picture box is resized by the arrival of a new
bitmap.

Private Sub picBitmap_Resize()
' If there's a Picture assigned, resize.
If picBitmap.Picture <> 0 Then

UserControl.Size picBitmap.Width, _
picBitmap.Height

End If
End Sub

62
The resizing only happens if the picture box actually contains a Picture object. This
allows the user to specify the size of the empty picture box while the download is
pending. The code is as follows:

Private Sub UserControl_Resize()
If picBitmap.Picture = 0 Then

picBitmap.Move 0, 0, ScaleWidth, ScaleHeight
Else

If (Width <> picBitmap.Width) _
Or (Height <> picBitmap.Height) Then

Size picBitmap.Width, picBitmap.Height
End If

End If
End Sub

63
If there is no Picture object, the picture box is sized to fill the visible area of the
UserControl. If there is a Picture object, and the UserControl is resized, it will snap
back to the size of the picture box.

Starting the Download
Close the UserControl designer. The control is now running, even though the rest of
the project is in design mode. The default control icon on the Toolbox is enabled, so
you can add an instance of the control to Form1.

Locate a large bitmap on your computer — the larger the better. Note the file name
and path to the file. Add the following code to the Declarations section of Form1,
substituting the name and path of your bitmap for the one shown here:

—40

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 40 of 95 Printed: 10/23/96 06:43 PM

Option Explicit
Const DOWNLOADFILE = "file:\windows\forest.bmp"

64
Make sure the string begins with file:\ so that it’s a valid URL for a local file.

Place the following code in the form’s Load event:

Private Sub Form_Load()
AsyncBitmap1.PictureFromURL = DOWNLOADFILE
DEBUG.PRINT "Load event complete"

End Sub
65

When the form loads, the URL for the local bitmap file will be assigned to the
PictureFromURL property, starting the download.

Running the Sample
Press F5 to run the project. In the Immediate window, notice that the first message is
“Load event complete,” followed by the "Download complete" message from the
AsyncReadComplete event.

If the bitmap was large enough, you may also have noticed that Form1 painted while
the bitmap was still downloading. Close Form1, to return to design mode.

Run the project again, and this time click the Close button on Form1 as soon as you
see it. Because the download is proceeding asynchronously in the background, the
form becomes active and can respond to user input before the bitmap has been loaded.

Up to this point, the example only demonstrates downloading of a local file. It can’t
be used on a Web page, because controls in Standard EXE projects cannot be used by
other applications. The AsyncPicture control in the CtlPlus.vbp sample application
can actually be used with HTML.

Canceling Asynchronous Downloads
You can call the CancelAsyncRead method to cancel an asynchronous data load.
CancelAsyncRead takes the property name as an argument; this must match the value
of the PropertyName argument in a prior AsyncRead method call.

Only the specified data load is canceled. All others continue normally.

Navigating with the Hyperlink Object
The Hyperlink object gives your control access to ActiveX hyperlinking functionality.
Using the properties and methods of the Hyperlink object, your control can request a
hyperlink-aware container, such as Microsoft Internet Explorer, to jump to a given
URL or to navigate through the history list.

You can access the Hyperlink object through the Hyperlink property of the
UserControl object. The following code fragment assumes that the control’s URLText
property contains a URL string. Clicking on the control causes it to request that its
container navigate to that URL.

Private Sub UserControl_Click()

—41

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 41 of 95 Printed: 10/23/96 06:43 PM

HyperLink.NavigateTo Target:=URLText
End Sub

66
If the target is not a valid URL or document, an error occurs. If the control is sited on
a container that does not support hyperlinking, an application that is registered as
supporting hyperlinking is started to handle the request.

The NavigateTo method accepts an optional Location argument, which specifies a
location within the target URL. If a location is not specified, the server will jump to
the top of the URL or document.

The NavigateTo method also accepts an optional FrameName argument, which
specifies a frame within the target URL.

Note If your control is placed on a container that does not support the IHLink
interface, the Hyperlink property of the UserControl object will return Nothing.
You should test the property for this value before attempting to use the
Hyperlink object.

67

Moving Through the History List
You can call the GoForward and GoBack methods to navigate through the History
list. For example:

Hyperlink.GoForward
68

If GoForward and GoBack are called when there are no entries in the History list to
move forward to, an error occurs. GoForward and GoBack will also raise errors if the
container is not hyperlink-aware.

For More Information Details of Internet support for ActiveX controls authored
in Visual Basic can be found on the Microsoft Visual Basic Web site. On the Visual
Basic Help menu, click Microsoft on the Web, then click Product News.

Information on designing Internet and intranet applications with Visual Basic can be
found in Building Internet Applications.

69

Designing Controls for Use With HTML
A control on an HTML page is specified using the HTML <OBJECT> and
</OBJECT> tags. When the HTML is processed, the control is created and
positioned. If the <OBJECT> tag includes any <PARAM NAME> attributes, the
property values supplied with those attributes are passed to the control’s
ReadProperties event using the standard PropertyBag object, as discussed in
“UserControl Lifetime and Key Events.”

Once the HTML page is active, the control’s property values may also be set by
scripts attached to events that occur on the page.

Note If there are no <PARAM NAME> attributes other than those that set
extender properties (such as Top and Left), the control may receive an

—42

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 42 of 95 Printed: 10/23/96 06:43 PM

InitProperties event rather than a ReadProperties event. This behavior is
dependent on browser implementation, and should not be relied on.

70
The Setup Wizard makes it easy to create an Internet setup for your control, with
cabinet (.cab) files that can be automatically downloaded when a user opens an
HTML page containing an instance of your control. Support files, such as
MSVBVM50.DLL, can be downloaded separately. P-code .ocx files are very
compact, so if support files already exist on a user’s computer, downloading can be
very fast.

Visual Basic controls can support digital signatures, safe initialization, and safe
scripting.

Important In order to use a control that includes licensing support on an
HTML page, the a licensed copy of the control component must be installed
on the Web server that provides the page. This is discussed in “Licensing
Issues for Controls,” later in this chapter.

71

Making Your Control Safe for Scripting and
Initialization on HTML Pages
Code that’s downloaded as a result of opening a page on the World Wide Web doesn’t
come shrink-wrapped, blazoned with a company name to vouch for its reliability.
Users may be understandably skeptical when they’re asked to okay the download. If
you intend for your control to be used on HTML pages, there are several things you
can do to reassure users.

· Digital signatures create a path to you (through the company that authorized your
certificate), in the event that your control causes harm on a user’s system. You
can incorporate your signature when you use Setup Wizard to create an Internet
setup for your control component.

· Marking your control safe for scripting tells users that there’s no way a script on
an HTML page can use your control to cause harm to their computers, or to
obtain information they haven’t supplied willingly.

· Marking your control safe for initialization lets users know there’s no way an
HTML author can harm their computers by feeding your control invalid data
when the page initializes it.

23
This topic explains how to design your control so that when you create your Internet
setup, you’ll be able to mark your control as safe for scripting and safe for
initialization.

Note The default setting for Internet Explorer is to display a warning and to
refuse to download a component that has not been marked safe for scripting
and initialization.

72

—43

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 43 of 95 Printed: 10/23/96 06:43 PM

For More Information The latest information on digital signatures, cabinet files,
and Internet setup can be found on the Microsoft Visual Basic Web site. On the Visual
Basic Help menu, click Microsoft on the Web, then click Product News.

73

Safe for Scripting
When a Web designer places your control on an HTML page, he uses a scripting
language such as JavaScript or Visual Basic, Scripting Edition to access the control’s
properties, invoke its methods, and handle its events. By marking your control as safe
for scripting, you’re providing an implicit warrantee: “No matter what VBScript or
JavaScript code is used, this control cannot be made to harm a user’s computer, or to
take information the user hasn’t volunteered.”

As the author of your control, you can be reasonably sure that in normal use it won’t
destroy data or compromise the security of a user’s computer. Once your control is in
the hands of a Web designer, however, you have no guarantee that it will be used in
the ways you intended.

Keys to Scripting Safety
As an example of a control that’s not safe for scripting, consider the rich text box. The
RichTextBox control has a SaveFile method that can be used to write the contents of
the control to a file. A malicious person could write a script that would cause this
control to over-write an operating system file, so that the user’s computer would
malfunction.

What makes the control unsafe is not that it can save information to a file — it’s the
fact that the script can specify the filename. This observation provides the key to
creating controls that are safe for scripting. As long as your control doesn’t allow a
script to specify the source or target for file or registry operations, or make API calls
that can be directly controlled by a script, it is probably safe for scripting.

Thus, a control that permits a Web page designer to do any of the following is
probably not safe for scripting:

· Create a file with a name supplied by a script.

· Read a file from the user’s hard drive with a name supplied by a script.

· Insert information into the Windows Registry (or into an .ini file), using a key (or
filename) supplied by a script.

· Retrieve information from the Windows Registry (or from an .ini file), using a key
(or filename) supplied by a script.

· Execute a Windows API function using information supplied by a script.

· Create or manipulate external objects using programmatic IDs (for example,
“Excel.Application”) that the script supplies.

24
The line between safe and unsafe can be a fine one. For example, a control that uses
the SaveSetting method to write information to its own registry key doesn’t disqualify

—44

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 44 of 95 Printed: 10/23/96 06:43 PM

itself for safe scripting by doing so. On the other hand, a control that allows the
registry key to be specified (by setting a property or invoking a method) is not safe.

A control that uses a temporary file may be safe for scripting. If the name of that
temporary file can be controlled by a script, then the control is not safe for scripting.
Even allowing a script to control the amount of information that goes into the
temporary file will make the control unsafe for scripting, because a script could
continue dumping information into the file until the user’s hard disk was full.

As a final example, a control that uses API calls is not necessarily unsafe for
scripting. Suppose, however, that the control allows a script to supply data that will be
passed to an API, and doesn’t guard against oversize data overwriting memory, or
invalid data corrupting memory. Such a control is not safe for scripting.

As an indication of the seriousness of scripting safety, note that VBScript itself does
not include methods to access the registry, save files, or create objects.

Choosing Constituent Controls
You might think that using a constituent control that’s not safe for scripting would
automatically make your ActiveX control unsafe for scripting. This is not necessarily
true.

As explained in “Adding Properties to Controls,” later in this chapter, the properties
and methods of constituent controls do not automatically become part of your
control’s interface. As long as you avoid exposing the properties and methods that
make a constituent control unsafe, you can use it without making your own control
unsafe.

For example, if you use the RichTextBox as a constituent control, you should not
expose its SaveFile method.

Important Do not provide a property that returns a reference to an unsafe
constituent control. A script could use this reference to access the properties
and methods that make the control unsafe.

74
Documenting Scripting Safety
Determining whether a control is safe is not a trivial exercise. You may find it helpful
to record your design decisions that affect safe scripting. A useful exercise is to
construct tables containing the following:

· All of your control’s public properties, methods, and events.

· All of the files and registry keys accessed, and all API calls used.
25

If there are any dependencies or data transfer between the elements of these two
tables, then the control is probably not safe for scripting.

You may wish to have this documentation reviewed by an experienced programmer
who understands both ActiveX controls and scripting.

—45

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 45 of 95 Printed: 10/23/96 06:43 PM

Safe for Initialization
A control marked as safe for initialization carries an implicit guarantee that it will
cause no harm no matter how its properties are initialized.

On an HTML page, your control’s initial state is set using PARAM NAME attributes
with the OBJECT tag that embeds your control on the page. If a malicious Web
designer can make your control steal information or otherwise cause harm by placing
invalid data in a PARAM NAME attribute, then your control is not safe for
initialization.

The best defense against malicious data is to validate each property value that’s
obtained in your control’s ReadProperties event. All the data a Web designer places in
PARAM NAME attributes is supplied to your control through the PropertyBag object
in the ReadProperties event. (A well-written control should perform this kind of
validation anyway, to prevent problems caused by developers who manually edit .frm
files.)

For More Information The most up-to-date information on authoring controls for
the Internet can be found on the Microsoft Visual Basic Web site. On the Visual Basic
Help menu, click Microsoft on the Web, then click Product News.

75

Using Show and Hide Events
The Show and Hide events can be very useful on Web pages. If your control is
performing a resource-intensive task, such as showing a video clip or repeatedly
downloading and displaying a stock value, you may want to pause this activity when
the Hide event occurs.

The Hide event means that the user has moved on to another page, relegating the page
your control is on to the History list. The Show event means that the user has returned
to your page, and can thus be the signal for resuming resource-intensive display tasks.

For More Information The Show and Hide events are discussed in “UserControl
Lifetime and Key Events,” earlier in this chapter.

76

Binding a Control to a Data Source
Visual Basic allows you to mark properties of your control as bindable. A developer
can associate bindable properties with database fields, making it easier to use your
control in database applications.

Use the Procedure Attributes dialog box, accessed from the Tools menu, to mark
properties of your control as bindable. Figure 9.9 shows the data binding options
made available by clicking the dialog’s Advanced button.

—46

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 46 of 95 Printed: 10/23/96 06:43 PM

Figure 9.9 Data binding options for ActiveX control properties

26
The controls supplied with Visual Basic can be bound to database fields using their
DataSource and DataField properties. You can select one property of your control to
be bound to the DataField property. Typically, this will be the most important piece of
data your control holds.

Although you can mark only one field as bound to the field specified in the DataField
property, you can mark additional properties of your ActiveX control as bindable.
Developers can use the DataBindings collection to bind these additional bindable
properties to data fields.

Note Some development tools and control containers do not support data
binding. This topic describes the support for data-bound controls provided by
Visual Basic.

77

The DataBindings Collection
The DataBindings collection is an extender property that Visual Basic provides to
users of your control. It allows the developer to access the list of bindable properties
on your control.

Note All bindable properties appear in the DataBindings collection at run
time. At design time, only properties marked “Show in DataBindings collection
at design time” will appear when the DataBindings property is accessed in the
Properties window.

78

—47

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 47 of 95 Printed: 10/23/96 06:43 PM

For example, you might create an Address control assembly, using labels and text
boxes as constituent controls. The bindable properties of your control would
correspond to the text boxes on your control, as shown in Figure 9.10.

Figure 9.10 An Address control assembly with multiple fields

27
The mapping between properties of the control and contents of the constituent
controls is accomplished by delegation, as in this code fragment:

Public Property Get AddressLine1() As String
AddressLine1 = txtAddressLine1.Text

End Property

Public Property Let AddressLine1(NewValue As String)
If CanPropertyChange("AddressLine1")

txtAddressLine1.Text = NewValue
' The following line tells Visual Basic the
' property has changed--if you omit this line,
' the data source will not be updated!
PropertyChanged "AddressLine1"

End If
End Property

79
Delegating to the text box control means that the text box does all the work of
displaying the value and accepting user changes. Because the user can change the
value of the property while the text box is displaying it, you must also mark the
property as changed in the text box’s Change event, as shown below.

Private Sub txtAddressLine1_Change()
PropertyChanged "AddressLine1"

End Sub
80

Important In order for the new value to be written back to the data source,
you must call PropertyChanged. If you don’t call the PropertyChanged
method, your control will not be bound for update.

81
For More Information The PropertyChanged method has another important
purpose, as discussed in “Adding Properties to Controls,” later in this chapter.

—48

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 48 of 95 Printed: 10/23/96 06:43 PM

82
Calling CanPropertyChange
Your control should always call CanPropertyChange before changing the value of a
property that can be data-bound. Do not set the property value if CanPropertyChange
returns False. Doing so may cause errors in some control containers.

If your control always calls CanPropertyChange, you can check “Property will call
CanPropertyChange before changing” on the Procedure Attributes dialog box.

Note At present, CanPropertyChange always returns True in Visual Basic,
even if the bound field is read-only in the data source. This does not cause a
problem with the code shown above, because Visual Basic doesn’t raise an
error when your program attempts to change a read-only field; it just doesn’t
update the data source.

83
Discovering and Setting Bindable Properties at Run Time
If a developer placed an instance of the AddressBox control on a form, she could
execute the following code to list the bindable properties:

Dim dtb As DataBinding
For Each dtb In AddressBox1.DataBindings

Debug.Print dtb.PropertyName
Next

84
At run time, the developer could use the following code to bind the AddressLine1
property to the AddrLine1 field, assuming that field was available on the data source
specified by the DataSource extender property:

AddressBox1.DataBindings(_
"AddressLine1").DataField = "AddrLine1"

85
Finding Out Whether a Field has Changed
You can test the DataChanged property of a DataBinding object to find out if the
value of a field has changed. This property functions in the same way as the
DataChanged extender property of bound controls.

Setting Multiple Data Bindings at Design Time
Bindable properties always appear in the DataBindings collection at run time. By
default, they do not appear in the Data Bindings dialog box at design time.

If you want a bindable property to appear in the Data Bindings dialog box, select that
property in the Procedure Attributes dialog box and check “Show This Property in the
Bindings Collection.”

—49

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 49 of 95 Printed: 10/23/96 06:43 PM

Figure 9.11 Using the Data Bindings dialog box

28
The Data Field box shows all fields available on the data source specified by the
current value of the DataSource extender property on the control instance.

Attributes and Flags
If you have developed OLE controls in the past, you can use the following table to see
what flags are set by the Procedure Attributes dialog box. The table also shows how
these attributes are accessed through the Member object in the Visual Basic
Extensibility Model.

Attribute Flag Member Object

Property is data bound. BINDABLE Bindable

This property binds to DataField. DEFAULTBIND DefaultBind

Show in DataBindings collection at design
time.

DISPLAYBIND DisplayBind

Property will call CanPropertyChange
before changing.

REQUESTEDIT RequestEdit

86

Allowing Developers to Edit Your Control at Design
Time

Some controls, like the OLE control supplied with Visual Basic, allow you to edit the
control’s contents at design time. You can enable this behavior for your control by
setting the EditAtDesignTime property of your UserControl object to True.

—50

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 50 of 95 Printed: 10/23/96 06:43 PM

If a container supports this feature, it will add an Edit menu item to the context menu
that appears when a developer right-clicks on an instance of your control at design-
time.

The developer using the control can activate a control instance by right-clicking the
control to get the Context menu, then clicking Edit. The control will be activated, and
will behave as it does at run time.

This allows you to author controls with visual design features, such as letting the user
size rows and columns, or set property values by typing directly into constituent
controls. You can detect whether your control is running at design time by testing the
UserMode property of the Ambient object. This property is False at design time.

The control only remains active while it is selected. When the developer clicks on
another control, the control will deactivate. To reactivate the control, the developer
must select Edit from the context menu.

Note When your control is activated in this fashion, the events of the
UserControl object will occur, so that your control can operate normally, but
your control will be unable to raise any events. The RaiseEvent method will
simply be ignored; it will not cause an error.

87

Drawing Your Control
The way you draw your control’s appearance depends on the control creation model
you’re using.

If you’re creating a user-drawn control, you have to do all the drawing yourself. You
have to know when to draw your control, what state it’s in (for example, clicked or
unclicked), and whether you should draw a focus rectangle.

If you’re enhancing an existing control or creating a control assembly, on the other
hand, your UserControl’s constituent controls provide your control’s appearance. The
constituent controls draw themselves automatically, and all you have to worry about
is whether they’re positioned correctly on the UserControl.

For More Information Control creation models are discussed in “Control Creation
Basics,” earlier in this chapter.

88

User-Drawn Controls
When you’re doing your own drawing, the only place you need to put drawing code is
in the UserControl_Paint event procedure. When the container repaints the area your
control is located on, the UserControl object will receive a Paint event.

If the built-in graphics methods of the UserControl object, such as Line and Circle,
don’t meet your drawing needs, you can use Windows API calls to draw your control.
Regardless of the drawing technique, the code goes in UserControl_Paint.

—51

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 51 of 95 Printed: 10/23/96 06:43 PM

If your control has to change its appearance based on user actions, such as when the
user clicks on the control, you can raise the Paint event by calling the UserControl’s
Refresh method.

Note Do not set BackStyle = Transparent when authoring a user-drawn
control. When the UserControl is transparent, no Paint events will be raised
and graphics methods will not work.

89
Important In Paint events, do not use DoEvents, or any other code that
yields to other programs. Doing so will cause errors.

90
The following example demonstrates the basic principle of a three-state button, each
of the three states being represented by a different bitmap. To work through the
example, open a new Standard EXE project and use the Project menu to add a
UserControl to the project. Place a PictureBox on the UserControl, and set object
properties as follows:

Object Property Setting

UserControl Name TripleState

PictureBox AutoRedraw True

Name picStates

Picture (Any bitmap)

Visible False
91

Note The example works best if the bitmap chosen for the Picture property
changes color dramatically from left to right.

92
Add the following code to the Declarations section of the UserControl’s code
window.

Option Explicit
' Private variable keeps track of the current state.
Private mintState As Integer

93
A simple mechanism is used to provide the three states: Clicking on the control
rotates through the states by incrementing the value of a private state variable each
time the control is clicked. If the value becomes too large, it is reset to zero. Add this
code to the UserControl’s Click event.

Private Sub UserControl_Click()
mintState = mintState + 1
If mintState > 2 Then mintState = 0
' The following line causes Paint event to occur.
Refresh

End Sub
94

Add the following code to the UserControl’s Paint event. When the Paint event
occurs, the code copies one-third of the bitmap in the invisible PictureBox to the

—52

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 52 of 95 Printed: 10/23/96 06:43 PM

UserControl. Which third is copied depends on the current value of the private state
variable mintState.

Private Sub UserControl_Paint()
PaintPicture picStates.Picture, 0, 0, ScaleWidth, _

ScaleHeight, mintState * picStates.Width / 3, _
0, picStates.Width / 3

End Sub
95

Note Another way to provide a different appearance for the each of your
control’s states is to use the Select…Case statement.

96
When mintState is zero, its initial value, the first third of the hidden bitmap will be
copied onto the UserControl, as shown in Figure 9.12.

Figure 9.12 Copying the first third of the hidden bitmap to the UserControl

29
Click the Close box on the UserControl designer, to enable its icon in the Toolbox.
Double-click the icon to place a copy of the control on a form, and press F5 to run the
project. Click on the control to change the state.

You can hide the form behind another window, or minimize and restore the form, to
verify that the control correctly retains its state, and repaints accordingly.

Tip For better performance when drawing your own control, make sure the
AutoRedraw property is set to False.

97
For More Information See “Drawing the ShapeLabel Control,” in “Creating an
ActiveX Control.”

Using Windows API calls is discussed in “Accessing the Microsoft Windows API.”
The PaintPicture method is discussed in “Working with Text and Graphics.”

98

Working with Other Events

—53

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 53 of 95 Printed: 10/23/96 06:43 PM

In similar fashion, you can simulate other event-driven appearance changes, such as
button presses. To animate button presses, put state-changing code in the MouseUp
and MouseDown events. Regardless of the events being used, the principle is the
same: change the state, and call the Refresh method.

Showing That a User-Drawn Control Has the Focus
If your control can get the focus, you will need a second state variable to keep track
of whether your control currently has the focus, so that each time your control
redraws itself it will show (or not show) an appropriate indication that it has the
focus.

The Windows API DrawFocusRect can be used to draw the type of single-pixel dotted
line used to show focus in the CommandButton control. There is no comparable API
for non-rectangular shapes.

For More Information See “How to Handle Focus in your Control,” earlier in this
chapter.

99

Showing a User-Drawn Control as Disabled
If you implement an Enabled property, you will need to keep track of whether your
control is enabled, so you can provide a visual cue to the user when your control is
disabled.

If you implement your control’s Enabled property as discussed in “Allowing Your
Control to be Enabled and Disabled,” earlier in this chapter, you can simply test
UserControl.Enabled to determine whether to draw your control as enabled or
disabled.

The way you draw your control to indicate that it’s disabled is entirely up to you.

User-Drawn Controls That Can Be Default Buttons
Setting the DefaultCancel property of your UserControl object to True tells the
container your control can be a default or cancel button, so the Extender object can
show Boolean Default and Cancel properties.

You can examine the value of the DisplayAsDefault property of the Ambient object to
determine whether your control should show the extra black border that tells the end
user your control is the default button. Show the border only when the
DisplayAsDefault property is True.

Important Correct behavior for a button in Windows is to show the default
border only if your control has been designated as the default button, and no
other button has the focus. DisplayAsDefault is True only if both of these
conditions are met. Other methods of determining when to display the border
may result in incorrect behavior.

100

—54

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 54 of 95 Printed: 10/23/96 06:43 PM

For More Information See “Understanding the Container’s Extender Object,” and
“Using the Ambient Object to Stay Consistent with the Container,” earlier in this
chapter.

The VBButton sample application demonstrates a button control written using Visual
Basic.

101

Providing Appearance Using Constituent Controls
If you’re enhancing an existing control, that single constituent control will typically
occupy the entire visible surface of your UserControl object. You can accomplish this
by using the Move method of the constituent control in the Resize event of the
UserControl, as shown below.

Private Sub UserControl_Resize()
picBase.Move 0, 0, ScaleWidth, ScaleHeight

End Property
102

The code above assumes that an enhanced picture control is being authored. A
PictureBox control has been placed on the UserControl, and named picBase.

If the control you’re enhancing has a minimum size, or a dimension that increases in
large increments — such as the height of a ListBox control, which changes by the
height of a line of text — you will have to add code to determine whether the Move
method has produced the desired result.

You can rely on the control you’re enhancing to handle painting, including (where
appropriate) default button highlighting.

Tip You may also have to add code to resize your UserControl object, to
accommodate a constituent control that can’t be sized arbitrarily — such as a
text box or list box. To avoid exhausting stack space with recursive calls to the
Resize event, use static variables to determine when the UserControl_Resize
event procedure is making recursive calls.

103

Resizing a Control Assembly
If you’re authoring a control assembly, the Resize event will be more complex,
because you have to adjust both size and relative location of multiple constituent
controls.

Enforcing a Minimum Control Size
If you author a control with a large number of constituent controls, there may be a
minimum size below which resizing the constituent controls is futile, because too
little of each control is visible to be of any use, or because the enforced minimum
sizes of some constituent controls has been reached.

There is no real harm in allowing the user to reduce the size of your control to
absurdity. Most controls allow this, because preventing it is a lot of work, and because

—55

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 55 of 95 Printed: 10/23/96 06:43 PM

at some point you have to rely on your user’s desire to produce an application that
works and is usable.

In the event that resizing below some threshold causes your control to malfunction,
you might make all of your constituent controls invisible, as an alternative to
enforcing a minimum size.

The following code fragment provides a simple example of enforcing a minimum
size.

Private Sub UserControl_Resize()
Dim sngMinH As Single
Dim sngMinW As Single

' Code to resize constituent controls. It is
' assumed that each of these will have some minimum
' size, which will go into the calculation of the
' UserControl's minimum size.

sngMinW = <<Width calculation>>
sngMinH = <<Height calculation>>

If Width < sngMinW Then Width = sngMinW
If Height < sngMinH Then Height = sngMinH

End Sub
104

Notice the <<pseudo-code placeholders>> for the calculation of your control’s
minimum width and height. These calculations will be in the ScaleMode units of your
UserControl. They may be very complicated, involving the widths and heights of
several of the constituent controls.

The Width and Height properties of the UserControl are then set, if necessary.

Important The Width and Height properties of the UserControl include the
thickness of the border, if any. If BorderStyle = 1 (Fixed Single), the area
available for constituent controls will be reduced by two pixels (not Twips) in
both width and height. If you have exposed the BorderStyle property for your
user to set, include code to test the current value.

105
As an alternative, you could use the Size method:

If Width > sngMinW Then sngMinW = Width
If Height > sngMinH Then sngMinH = Height
If (sngMinW <> Width) Or (sngMinH <> Height) Then

' (Optionally, set recursion flag.)
Size sngMinW, sngMinH
' (Clear recursion flag, if set.)

End If
106

This code is more slightly more complicated, but it simplifies things if you need to
avoid recursion when resizing your control, as discussed below.

—56

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 56 of 95 Printed: 10/23/96 06:43 PM

Important The Width and Height properties of the UserControl are always
expressed in Twips, regardless of the ScaleMode setting. If you have set
ScaleMode to something other than Twips, use the ScaleX and ScaleY
methods to convert your minimum size calculations to Twips.

107
Dealing with Recursion
No code for recursion is included in the example above, and recursion is virtually
guaranteed. For example, if you attempt to resize the control so that both width and
height are below the minimum values, the Resize event will reset the Width property,
which will cause a second Resize to be raised immediately.

This second Resize event will test and reset the height, and then return — so that by
the time the first Resize event tests the height, it will already have been reset to the
minimum. Clearly, this can lead to confusing debugging situations.

Even if you use the Size method, a second Resize event will occur, repeating all your
calculations. This can be avoided by setting a flag when you deliberately resize the
control. The Resize event should check this flag, and skip all processing when it is
True.

A recursion flag is not necessary for simple minimum size situations, but is virtually
required for more complicated scenarios.

For example, if you use the code above in a control whose Align property is True, so
that it aligns to the form it’s placed on, as described in “Making Your Control Align to
the Edges of Forms,” infinite recursion errors are guaranteed, until stack space is
exhausted and an error occurs.

Important Always use error handling in Resize event procedures. Errors
here cannot be handled by the container, and your control component will
therefore fail, causing the application using your control to fail, as well.

108
For More Information The models for creating controls are discussed in “Three
Ways to Build ActiveX Controls” earlier in this chapter.

109

Adding Properties to Controls
You implement properties of your ActiveX control by adding property procedures to
the code module of the UserControl that forms the basis of your control class.

By default, the only properties your control will have are the extender properties
provided by the container. You must decide what additional properties your control
needs, and add code to save and retrieve the settings of those properties.

Properties for controls differ in two main ways from properties of other objects you
create with Visual Basic.

—57

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 57 of 95 Printed: 10/23/96 06:43 PM

· Property values are displayed in the Properties window and Properties Pages
dialog box at design time.

· Property values are saved to and retrieved from the container’s source file, so that
they persist from one programming session to the next.

30
As a result of these differences, implementing properties for controls has more
requirements and options than for other kinds of objects.

Implement Control Properties Using Property
Procedures
The most important consequence of the differences listed above is that control
properties should always be implemented using property procedures instead of public
data members. Otherwise, your control will not work correctly in Visual Basic.

Property procedures are required because you must notify Visual Basic whenever a
property value changes. You do this by invoking the PropertyChanged method of the
UserControl object at the end of every successful Property Let or Property Set, as
shown in the following code fragment.

Private mblnMasked As Boolean

Public Property Get Masked() As Boolean
Masked = mblnMasked

End Property

Public Property Let Masked(ByVal NewValue As Boolean)
mblnMasked = NewValue
PropertyChanged "Masked"

End Property
110

There are two reasons for notifying Visual Basic that a property value has changed:

· If you don’t call PropertyChanged, Visual Basic cannot mark control instances as
needing to be saved. They will not get WriteProperties events, and developers
who use your control will lose any property values they set at design time.

· Because property values may be displayed in more than one place, the
development environment must be informed when a property value changes, so
it can synchronize the values shown in the Properties window, the Property
Pages dialog box, and so forth.

31
Run-Time Properties
Properties that are available only at run time don’t need to call the PropertyChanged
method, unless they can be data-bound. However, they still need to be implemented
using property procedures, as explained in the related topic “Creating Design-Time-
Only or Run-Time-Only Properties.”

For More Information Authoring controls that can be bound to data sources is
discussed in “Binding Your Control to a Data Source,” earlier in this chapter.

—58

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 58 of 95 Printed: 10/23/96 06:43 PM

111

Properties You Don’t Need to Implement
Right away, you can avoid a lot of work. The Extender object, which is provided by
the container your control is placed on, will supply a number of properties for you.
DragIcon, HelpContextID, TabIndex, Top, and Visible are a few of the extender
properties supplied by Visual Basic forms.

For More Information To see all the properties Visual Basic’s Extender object
provides, search the Language Reference in the Books Online index for Extender
Object. The Extender object is discussed in “Understanding the Container’s Extender
Object,” earlier in this chapter. An odd exception is the Enabled property, which you
must implement so that the Extender object can mask it. See “Allowing Your Control
to be Enabled and Disabled,” later in this chapter.

112
For More Information The UserControl object is discussed in “The UserControl
Object,” earlier in this chapter. General information on creating properties for objects,
such as making a property the default for an object, is provided in “Adding Properties
and Methods to Classes,” in “General Principles of Component Design.”

113

Saving the Properties of Your Control
As discussed in “Understanding Control Lifetime and Key Events,” earlier in this
chapter, instances of controls are continually being created and destroyed — when
form designers are opened and closed, when projects are opened and closed, when
projects are put into run mode, and so on.

How does a property of a control instance — for example, the Caption property of a
Label control — get preserved through all this destruction and re-creation? Visual
Basic stores the property values of a control instance in the file belonging to the
container the control instance is placed on; .frm/.frx files for forms, .dob/.dox files for
UserDocument objects, .ctl/.ctx files for UserControls, and .pag/.pgx files for
property pages. Figure 9.13 illustrates this.

—59

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 59 of 95 Printed: 10/23/96 06:43 PM

Figure 9.13 An .frm file contains saved control properties

32
When you author a control, you must include code to save your property values
before a control instance is destroyed, and read them back in when the control
instance is re-created. This is illustrated in Figure 9.14.

—60

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 60 of 95 Printed: 10/23/96 06:43 PM

Figure 9.14 Saving and retrieving property values

33
Figure 9.14 is slightly oversimplified. You don’t actually have to close a form to
cause the WriteProperties event procedures of control instances to be executed.
Saving a form file to disk causes WriteProperties events to be raised for all controls
on the form.

Tip This topic explains the mechanism for saving and retrieving property
values in code, but you won’t normally have to write all the code described
here. The ActiveX Control Interface Wizard can generate most of the code to
save and retrieve your property values.

—61

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 61 of 95 Printed: 10/23/96 06:43 PM

114

Saving Property Values
Use the PropertyBag object to save and retrieve property values. The PropertyBag is
provided as a standard interface for saving property values, independent of the data
format the container uses to save its source data.

The following code example uses the Masked property, a Boolean property described
in the related topic “Adding Properties to Controls.”

Private Sub UserControl_WriteProperties(PropBag As _
PropertyBag)

' Save the value of the Boolean Masked property.
PropBag.WriteProperty "Masked", Masked, False
' . . . more properties . . .

End Sub
115

The WriteProperty method of the PropertyBag object takes three arguments. First is a
string that identifies the property being saved, followed by value to be saved —
usually supplied by accessing the property, as shown above.

The last parameter is the default value for the property. In this case, the keyword
False is supplied. Typically, you would create a global constant, such as
PROPDEFAULT_MASKED, to contain this value, because you need to supply it in
three different places, in the WriteProperties, ReadProperties, and InitProperties event
procedures.

The Importance of Supplying Defaults
It may seem strange, at first, to be supplying a default property value when you’re
saving the value of a property. This is a courtesy to the user of your control, because it
reduces the size of the .frm, .dob, .pag, or .ctl file belonging to the container of the
control.

Visual Basic achieves this economy by writing out a line for the property only if the
value is different from the default. Assuming that the default value of the Masked
property is False, the WriteProperty method will write a line for the property only if
the user has set it to True.

You can easily see how this technique reduces the size of .frm files by opening a new
Standard EXE project, adding a CommandButton to Form1, and saving Form1.frm.
Use a text editor such as Notepad or Wordpad to open Form1.frm, and compare the
number of properties that were written to the file for Command1 to the number of
properties in the Properties window for Command1.

Wherever possible, you should specify default values for the properties of your
control when initializing, saving, and retrieving property values.

Retrieving Property Values
Property values are retrieved in the ReadProperties event of the UserControl object,
as shown below.

—62

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 62 of 95 Printed: 10/23/96 06:43 PM

Private Sub UserControl_ReadProperties(PropBag As _
PropertyBag)

On Error Resume Next
' Retrieve the value of the Masked property.
Masked = PropBag.ReadProperty("Masked", False)
' . . . more properties . . .

End Sub
116

The ReadProperty method of the PropertyBag object takes two arguments: a string
containing the name of the property, and a default value.

The ReadProperty method returns the saved property value, if there is one, or the
default value if there is not. Assign the return value of the ReadProperty method to
the property, as shown above, so that validation code in the Property Let statement is
executed.

If you bypass the Property Let by assigning the property value directly to the private
data member or constituent control property that stores the property value while your
control is running, you will have to duplicate that validation code in the
ReadProperties event.

Tip Always include error trapping in the UserControl_ReadProperties event
procedure, to protect your control from invalid property values that may have
been entered by users editing the .frm file with text editors.

117
Properties that are Read-Only at Run Time
If you create a property the user can set at design time, but which is read-only at run-
time, you have a small problem in the ReadProperties event. You have to set the
property value once at run time, to the value the user selected at design time.

An obvious way to solve this is to bypass the Property Let, but then you have no
protection against invalid property values loaded from source files at design time. The
correct solution to this problem is discussed in “Creating Design-Time-Only, Run-
Time-Only, or Read-Only Run-Time Properties.”

Initializing Property Values
You can assign the initial value of a property in the InitProperties event of the
UserControl object. InitProperties occurs only once for each control instance, when
the instance is first placed on a container.

Thereafter, as the control instance is destroyed and re-created for form closing and
opening, project unloading and loading, running the project, and so on, the control
instance will only receive ReadProperties events. This is discussed in “Understanding
Control Lifetime and Key Events,” earlier in this chapter.

Be sure to initialize each property with the same default value you use when you save
and retrieve the property value. Otherwise you will lose the benefits that defaults
provide to your user, described in “The Importance of Supplying Defaults,” earlier in
this topic.

—63

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 63 of 95 Printed: 10/23/96 06:43 PM

Tip The easiest way to ensure consistent use of default property values is to
create global constants for them.

118

Exposing Properties of Constituent Controls
By default, the properties of the UserControl object — and the constituent controls
you add to it — are not visible to the end user of your control. This gives you total
freedom to determine your control’s interface.

Frequently, however, you will want to implement properties of your control by simply
delegating to existing properties of the UserControl object, or of the constituent
controls you’ve placed on it. This topic explains the manual technique of exposing
properties of the UserControl object or its constituent controls.

Understanding delegation and property mapping will help you get the most out of the
ActiveX Control Interface Wizard, which is designed to automate as much of the
process as possible. It will also enable you to deal with cases that are too complicated
for the wizard to handle.

Exposing Properties by Delegating
Suppose you want to create a control that allows the end user to edit a field with a
special format, such as a Driver’s License Number. You start by placing a single text
box on a UserControl, and naming it something catchy like txtBase.

Because your new control is an enhancement of a single Visual Basic control, you
also resize txtBase to fit the UserControl. You do this in the UserControl’s Resize
event, as discussed in “Providing Appearance Using Constituent Controls,” earlier in
this chapter.

To create the BackColor property of your control, you can simply expose the
BackColor property of the text box, as shown in this code fragment from the
UserControl’s code module.

Public Property Get BackColor() As OLE_COLOR
BackColor = txtBase.BackColor

End Property

Public Property Let BackColor(ByVal NewColor _
As OLE_COLOR)

' . . . property validation code . . .
txtBase.BackColor = NewColor
PropertyChanged "BackColor"

End Property
119

The purpose and importance of PropertyChanged are discussed in “Adding Properties
to Controls,” earlier in this chapter.

The BackColor property you create for your control simply saves its value in the
BackColor property of the text box control. Methods are exposed in similar fashion,

—64

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 64 of 95 Printed: 10/23/96 06:43 PM

by delegating the work to the corresponding method of the control you’re enhancing.
Delegation is discussed in “Composing Objects,” in “Programming with Objects.”

Tip When you use the OLE_COLOR data type for color properties, the
Properties window will automatically show the ellipsis button that brings up
the standard color selection dialog box. Standard property types are
discussed in the related topic “Using Standard Control Property Types.”

120
Important Because properties of the UserControl object and constituent
controls are exposed by delegation, you cannot expose design-time-only
properties such as Appearance and ClipControls. The settings you choose for
such properties will be fixed for your ActiveX control.

121

Mapping Properties to Multiple Controls
Frequently you will want to map more than one constituent control property to a
property of your control. Delegation gives you the flexibility to handle this situation.

Suppose, for example, that you’ve created your control’s appearance by placing
several check boxes, option buttons, and labels on a UserControl. It makes sense for
the BackColor of your UserControl to be the background color of your control.
However, it also makes sense for the BackColor properties of the constituent controls
to match this color.

The following code fragment illustrates such an implementation:

Public Property Get BackColor() As OLE_COLOR
BackColor = UserControl.BackColor

End Property

Public Property Let BackColor(ByVal NewColor _
As OLE_COLOR)

Dim objCtl As Object
' . . . property validation code . . .
UserControl.BackColor = NewColor
For Each objCtl In Controls

If (TypeOf objCtl Is OptionButton) _
Or (TypeOf objCtl Is CheckBox) _
Or (TypeOf objCtl Is Label) _

Then objCtl.BackColor = NewColor
Next
PropertyChanged "BackColor"

End Property
122

When the property value is read, the value is always supplied from the BackColor
property of the UserControl. Always choose a single source to be used for the
Property Get.

Note When you give your control a property which the underlying
UserControl object already possesses, using that property name in your code
will refer to the new property you have defined, unless you qualify the
property name with UserControl, as shown above.

—65

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 65 of 95 Printed: 10/23/96 06:43 PM

123
For More Information Using the Controls collection to iterate over all constituent
controls is discussed in “Control Creation Terminology,” earlier in this chapter. The
purpose and importance of PropertyChanged are discussed in “Adding Properties to
Controls,” earlier in this chapter.

124

Multiple BackColor Properties
The implementation above raises an interesting question. What if you want to provide
the user of your control with a way to set the background color of all the text boxes
on your control? You’ve already mapped BackColor to its most natural use, but you
can always get creative with property names.

For example, you might add a TextBackColor property, modeled on the example
above, that would set the BackColor properties of all the text boxes on your control.
Choose one text box as the source of the TextBackColor, for the Property Get, and
you’re in business. (It doesn’t make much sense to use the UserControl’s BackColor
for this purpose.)

Mapping to Multiple Object Properties
As another example of multiple property mapping, you might implement TextFont
and LabelFont properties for the control described above. One property would control
the font for all the labels, and the other for all the text boxes.

When implementing multiple mapped object properties, you can take advantage of
multiple object references. Thus you might implement the LabelFont property as
shown in the following code fragment:

Public Property Get LabelFont() As Font
Set LabelFont = UserControl.Font

End Property

' Use Property Set for object properties.
Public Property Set LabelFont(ByVal NewFont As Font)

Set UserControl.Font = NewFont
SyncLabelFonts
PropertyChanged "LabelFont"

End Property

Private Sub SyncLabelFonts()
Dim objCtl As Object
For Each objCtl In Controls

If TypeOf objCtl Is Label Then
Set objCtl.Font = UserControl.Font

End If
Next

End Sub
125

The code in the SyncLabelFonts helper function assigns to each Label control’s Font
property a reference to the UserControl object’s Font object. Because all of the

—66

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 66 of 95 Printed: 10/23/96 06:43 PM

controls have references to the same Font object, changes to that font will be reflected
in all the labels.

A helper function is used because the same code must be executed when your control
is initialized, and when saved properties are read.

Note The purpose and importance of PropertyChanged are discussed in
“Adding Properties to Controls,” earlier in this chapter.

126
The code to initialize, save, and retrieve the LabelFont property is shown below.
Optionally, you can set the characteristics of the UserControl’s font to match those of
the container’s font, as discussed in “Using the Ambient Object to Stay Consistent
with the Container.”

Private Sub UserControl_InitProperties()
SyncLabelFonts

End Sub

Private Sub UserControl_ReadProperties(PropBag As _
VB.PropertyBag)

On Error Resume Next
Set LabelFont = PropBag.ReadProperty("LabelFont")

End Sub

Private Sub UserControl_WriteProperties(PropBag As _
VB.PropertyBag)

PropBag.WriteProperty "LabelFont", LabelFont
End Sub

127
Because the Font object is a standard object, it can be saved and retrieved using
PropertyBags.

The developer using your control can now use the Property window to set a font for
the LabelFont property. Supposing that the name you give your control is MultiEdit,
she can also use code like the following at run time:

Private Sub Command1_Click()
YourControl1.LabelFont.Bold = True
YourControl1.LabelFont.Name = "Monotype Sorts"

End Sub
128

The beauty of this code is that it never calls the Property Let for the LabelFont
property, as you can verify by adding the code above to a UserControl that has several
constituent Label controls, and putting breakpoints in the Property Get and Property
Let.

When Visual Basic executes the first line above, the Property Get is called, returning
a reference to the UserControl’s Font object. The Bold property of the Font object is
set, using this reference. Because the constituent Label controls all have references to
the UserControl’s Font object, the change is reflected immediately.

Don’t Expose Constituent Controls as Properties

—67

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 67 of 95 Printed: 10/23/96 06:43 PM

You might wonder why you shouldn’t simply expose constituent controls whole. For
example, if your UserControl has a text box control named Text1 on it, you might try
to write the following:

' Kids, don't try this at home.
Property Get Text1() As TextBox

Set Text1 = Text1
End Property

129
The user of your control could then access all the properties and methods of Text1,
and you’ve only written one line of code.

The code above will not compile, because TextBox is not a public data type. But
that’s not the real reason this is a bad idea.

It might simplify your life to expose all the properties and methods of a constituent
control, rather than selectively exposing them, but consider the experience that awaits
the user of your control. He now has direct access to the Text property of Text1,
bypassing any validation code you might have written in a Property Let. He can also
change the height and width of the text box, which may completely wreck the code
you’ve written in your UserControl_Resize event procedure.

All in all, the developer is likely to conclude that your control is too buggy to be
worth using. But wait, there’s more. If the developer uses your control with other
development tools, such as Microsoft Excel or Microsoft Access, type library
information for the constituent controls will not be available. All references to Text1
will be late bound, so your control will be not only buggy, but slow.

Exposing constituent controls also limits your ability to change your control’s
implementation in the future. For example, you might want to base a future version of
your control on a different constituent control than the intrinsic TextBox control.
Unless the properties and methods of this SuperTextBox exactly matched those of the
intrinsic TextBox, your users would be unable to upgrade without rewriting their
code.

It’s good programming practice to expose only those constituent control properties
required for the operation of your control. For example, if the text box mentioned
above holds a user name, you might expose the value of Text1.Text through a
UserName property.

Using the ActiveX Control Interface Wizard
When you have a large number of constituent controls, or even one constituent
control with many properties you wish to expose, the ActiveX Control Interface
Wizard can significantly reduce the amount of work required to expose constituent
control properties.

Using the ActiveX Control Interface Wizard is discussed in the related topic
“Properties You Should Provide.”

—68

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 68 of 95 Printed: 10/23/96 06:43 PM

Using Standard Control Property Types
The code examples in the related topic “Exposing Properties of Constituent Controls”
show the use of the standard types Font and OLE_COLOR to create properties that
use standard, system-supplied property pages, which the user can access with the
ellipsis button in the Properties window.

Whenever possible, use the standard data types and enumerations provided by Visual
Basic as data types of your control’s properties. This makes life easy for your users,
by presenting consistent property value choices in the Properties window.

Standard Enumerations
The following code uses the standard enumeration for the MousePointer property.

Public Property Get MousePointer() As _
MousePointerConstants

MousePointer = UserControl.MousePointer
End Property

Public Property Let MousePointer(ByVal NewPointer As _
MousePointerConstants)

UserControl.MousePointer = NewPointer
PropertyChanged "MousePointer"

End Property
130

When the MousePointer property appears in the Properties window, it will have the
same enumeration as the MousePointer properties of other controls.

You can use the Object Browser to determine what enumerations are available in the
Visual Basic type libraries.

Note The purpose and importance of PropertyChanged are discussed in
“Adding Properties to Controls,” earlier in this chapter.

131

Standard Data Types
Visual Basic provides four standard data types of special interest to control authors.

OLE_COLOR
The OLE_COLOR data type is used for properties that return colors. When a property
is declared as OLE_COLOR, the Properties window will display a color-picker dialog
that allows the user to select the color for the property visually, rather than having to
remember the numeric equivalent.

An example of the use of OLE_COLOR can be found in “Exposing Properties of
Constituent Controls.”

OLE_COLOR is treated internally as a Long.

OLE_TRISTATE

—69

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 69 of 95 Printed: 10/23/96 06:43 PM

The OLE_TRISTATE data type is used for three-state check boxes. If you’re
authoring a control with check box functionality, declare its Value property as
OLE_TRISTATE.

OLE_TRISTATE is an enumeration with the following values:

· 0 - Unchecked

· 1 - Checked

· 2 - Gray
34

OLE_OPTEXCLUSIVE
If you’re developing a control with option-button functionality, use the
OLE_OPTEXCLUSIVE data type for the Value property of your control. This will
cause your control’s Value property to behave like that of the intrinsic OptionButton
control. That is, when instances of your control are grouped, and the user clicks an
unselected control instance, the currently selected instance’s Value is automatically
set to 0 (thus unselecting the button), and the Value of the clicked instance is set to 1.

This behavior is handled by the container. The container checks the Value property for
each control it contains, and groups those that are of type OLE_OPTEXCLUSIVE.

Note You must use the Procedure Attributes dialog box to make the Value
property the default property, in order for the control host to enable the
behavior described.

132
OLE_OPTEXCLUSIVE is handled as a Boolean type internally.

OLE_CANCELBOOL
Use this data type for an event argument that allows the user to cancel the event. For
example, the standard KeyPress event passes a Cancel parameter as its last parameter.
If the user sets this parameter to False, the event is canceled.

OLE_CANCELBOOL is handled as a Boolean type internally.

Creating Design-Time-Only, Run-Time-Only, or Read-
Only Run-Time Properties

To create a property that can be read at run time, but can be set only at design time,
implement the property using property procedures. In the Property Let or Property Set
procedure, test the UserMode property of the Ambient object. If UserMode is True,
raise an error, as shown in the following code fragment:

Private mdblSerendipity As Double

Property Get Serendipity() As Double
Serendipity = mdblSerendipity

End Property

Property Let Serendipity() As Double

—70

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 70 of 95 Printed: 10/23/96 06:43 PM

' (Code to validate property values omitted.)
If Ambient.UserMode Then Err.Raise Number:=31013, _

Description:= _
"Property is read-only at run time."

Serendipity = mdblSerendipity
PropertyChanged "Serendipity"

End Property
133

To suppress a property completely at run time, you can also raise a “Property is not
available at run time” error in Property Get.

Note Implementing properties of the Variant data type requires all three
property procedures, Property Get, Property Let, and Property Set, because
the user can assign any data type, including object references, to the
property. In that case, the error raised in Property Let must also be raised in
Property Set.

134

Handling Read-Only Run-Time Properties in the
ReadProperties Event
The recommended practice for the ReadProperties event is to assign the retrieved
value to the property, so that the Property Let is invoked. This allows the validation
code in the Property Let to handle invalid values the user has manually entered into
the container’s source file, as described in “Saving the Properties of Your Control.”

Clearly, this is problematic for read-only run-time properties. The solution is to
bypass the Property Let, and assign the retrieved value directly to the private member
or constituent control property. If the property accepts only certain values, you can
use a helper function that can be called from both Property Let and ReadProperties.

The following code fragment illustrates these two solutions:

Private Sub UserControl_ReadProperties(PropBag As _
PropertyBag)

On Error Resume Next
' Retrieve the value of the HasWidgets property,
' which is read-only at run time.
mblnHasWidgets = _

PropBag.ReadProperty("HasWidgets", False)

' Retrieve the value of the Appearance property,
' which can be set at design time, is read-only at
' run time, and has two valid values, Appears3D
' and AppearsFlat.
mintAppearance = ValidateAppearance(_

PropBag.ReadProperty("Appearance", Appears3D))

' . . . more properties . . .
End Sub

135
For properties with Boolean, String, or general-purpose numeric values, you can
simply assign the value to the private member, as with the HasWidgets property in the
example above.

—71

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 71 of 95 Printed: 10/23/96 06:43 PM

The Property Let for the Appearance property would call the same
ValidateAppearance helper function used in the example above. The helper function
might look something like this:

Private Sub ValidateAppearance(ByVal Test As Integer)
Select Case Test

Case Appears3D
Case AppearsFlat
Case Else

Err.Raise 30013, , "Invalid value"
End Select

End Sub
136

Important The discussion of valid property values above assumes that the
correct data type is used. If the wrong data type is entered in the source file, a
type mismatch error will occur. An error will also occur if the Appearance
property value is invalid. (This is why you should always use error trapping in
ReadProperties.) You can ignore the error with On Error Resume Next, as
above, and the property will have whatever value the private member
contained at startup. If this would not be a valid value for your control, you
must take some action in response to the error.

137

Creating Run-Time-Only Properties
You can create a property that is available only at run time by causing property
procedures to fail during design time (that is, when the UserMode property of the
Ambient object is False).

Visual Basic’s Properties window does not display properties that fail during design-
time.

Tip You can open the Procedure Attributes dialog box, select your run-time-
only property, click the Advanced button, and check “Don’t show in Property
Browser” to prevent the Properties window from interrogating the property.
This keeps the Properties window from putting you in break mode every time
it queries the property, which is a nuisance when you’re debugging design-
time behavior.

138

Marking a Property as the Properties Window Default
When you first place a new control instance on a form or other container, Visual
Basic chooses a property to highlight the Properties window. This will be the same as
the last property that was highlighted, if the new control has that property. Otherwise,
Visual Basic uses the property marked as the user interface default.

If you don’t specify this user interface default, Visual Basic highlights a property
according to various internal criteria, such as the order in which you added properties
to the type library.

—72

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 72 of 95 Printed: 10/23/96 06:43 PM

 To specify the user interface default for your control

11 In the UserControl code window, place the cursor in one of the property
procedures for the property.

12 On the Tools menu, click Procedure Attributes to open the Procedure Attributes
dialog box.

13 The property should be shown in the Name box. If not, use the Name box to select
it.

14 Click the Advanced button to show advanced features. Check User Interface
Default in the Attributes box, then click OK or Apply.

35
Tip The best candidate for the user interface default is the property users
will most often set. For example, the Interval property is the user interface
default for the Timer control.

139

Grouping Properties by Category
The Properties window has two tabs, one showing all of a control’s properties in
alphabetical order, and one which organizes the properties into categories.

You can assign each of your control’s properties to one of the existing categories, or
create new categories. Assigning categories is highly recommended, because Visual
Basic places all unassigned properties in the Misc category.

 To assign a property to a property category

15 In the UserControl code window, place the cursor in one of the property
procedures for the property you want to assign to a category.

16 On the Tools menu, click Procedure Attributes to open the Procedure Attributes
dialog box.

17 The property should be shown in the Name box. If not, use the Name box to select
it.

18 Click the Advanced button to show advanced features. Select the desired category
in the Property Category box, then click OK or Apply.

36
You can create a new category by typing a category name in the Property Category
box. The category will be created only for this control. You can use the same category
name for other controls, but it must be entered separately for each control.

Tip To reduce user confusion, assign properties to the same categories they
appear in for other controls. If possible, use existing categories. Create new
categories only when you have a group of related properties that will clearly
be easier to use if grouped in a new category.

140

Properties You Should Provide

—73

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 73 of 95 Printed: 10/23/96 06:43 PM

Recommended properties include Appearance, BackColor, BackStyle, BorderStyle,
Enabled, Font, and ForeColor. It’s also a good idea to implement properties
commonly found on controls that provide functionality similar to yours.

In addition, you may wish to selectively implement properties of any constituent
controls on your UserControl object, as discussed in “Exposing Properties of
Constituent Controls,” earlier in this chapter.

All of the above properties should use the appropriate data types or enumerations, as
discussed in the related topics “Using Standard Control Property Types” and
“Exposing Properties of Constituent Controls.”

Note If you’re authoring a control that provides its appearance using
constituent controls, implementing the Appearance property is problematic.
For most controls, the Appearance property is available only at design time —
but you can only delegate to run-time properties of constituent controls.

141

Procedure IDs for Standard Properties
Every property or method in your type library has an identification number, called a
procedure ID or DISPID. The property or method can be accessed either by name
(late binding) or by DISPID (early binding).

Some properties and methods are important enough to have special DISPIDs, defined
by the ActiveX specification. These standard procedure IDs are used by some
programs and system functions to access standard properties of your control.

For example, there’s a procedure ID for the method that displays an About Box for a
control. Rather than rummaging through your type library for a method named
AboutBox, Visual Basic calls this procedure ID. Your method can have any name at
all, as long as it has the right procedure ID.

 To assign a standard procedure ID to a property

19 On the Tools menu, click Procedure Attributes to open the Procedure Attributes
dialog box.

20 In the Name box, select the property.

21 Click Advanced to expand the Procedure Attributes dialog box.

22 In the Procedure ID box, select the procedure ID you want to assign to the
property. If the procedure ID you need is not in the list, enter the number in the
Procedure ID box.

142
Important Selecting (None) in the procedure ID box does not mean that the
property or method will not have a procedure ID. It only means that you have
not selected a particular procedure ID. Visual Basic assigns procedure IDs
automatically to members marked (None).

143

One Procedure ID to a Customer

—74

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 74 of 95 Printed: 10/23/96 06:43 PM

A property or method of a control can have only one procedure ID, and no other
property or method of the control can have the same procedure ID.

That is, every control in your control component can have a default property
(procedure ID = 0), but only one property on each control can have that procedure ID.

If you assign the same procedure ID to two different members, the one that comes
first in the type library is the only one that can be accessed. The other might as well
not exist.

Procedure IDs of Interest
It’s always a good idea to assign the standard procedure ID to a property, if there is
one. The Procedure Attributes dialog box lists procedure IDs by the property name
they are usually associated with. You may find the following IDs of particular
interest.

AboutBox
Allows you to specify a method that shows an About Box for your control, as
discussed in “Adding an About Box to Your Control,” earlier in this chapter. There is
no particular method name associated with this ID.

Caption, Text
Either of these procedure IDs will give a property the Properties window behavior
demonstrated by the Caption and Text properties of Visual Basic intrinsic controls.
That is, when a user types a value into the Properties window, the new value will be
reflected immediately in the control.

This means that your Property Let procedure will be called for each keystroke the
user enters, receiving a complete new value each time.

The property you assign these to need not be called Caption or Text, although those
properties represent the kind of functionality these procedure IDs were designed to
support.

(Default)
The default property of a control is the one that will be accessed when no property
has been specified. For example, the following assigns the string “Struthiomimus” to
the (default) Caption property of Label1:

Label1 = "Struthiomimus"
144

Enabled
This procedure ID must be assigned to the Enabled property of your control, in order
for its enabled/disabled behavior to match that of other controls. This is discussed in
“Allowing Your Control to be Enabled or Disabled,” earlier in this chapter.

For More Information The procedure IDs of interest to control authors are listed
in the Procedure ID box of the Procedure Attributes dialog box. For a complete list of
DISPIDs, consult the ActiveX specification.

145

—75

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 75 of 95 Printed: 10/23/96 06:43 PM

Providing Useful Defaults
Whenever you implement a property with the same name as one of the standard
ambient properties, such as BackColor, Font, and ForeColor, you should consider
whether the value of the corresponding property of the Ambient object would be a
useful default.

You can see an example of this behavior by changing the size of the font on a Visual
Basic form, and then adding a label or command button. The new control uses the
form’s current font settings as its default font settings. Most of the intrinsic controls
follow this example.

If you’re authoring a check box, option button, or label, setting the control’s default
BackColor to match Ambient.BackColor might be a useful service to your users.

Clearly, this requires some thought about how controls are used. For example, on a
text box the Font property would be a good candidate for ambient matching, while the
BackColor property would not.

For More Information See “Using the Ambient Object to Stay Consistent with the
Container,” earlier in this chapter.

146

Using the ActiveX Control Interface Wizard
The ActiveX Control Interface Wizard can assist you in determining what properties
to provide, and in delegating to the appropriate constituent controls.

After you have placed all the constituent controls you’re going to use on your
UserControl, start the wizard and select your control. The wizard will examine your
constituent controls, and produce a list of all the properties, methods, and events that
appear in all their interfaces, plus those in the UserControl object’s interface, and the
standard properties listed above. You can select from this list those properties,
methods, and events you want in your control’s interface.

The wizard will produce default mappings of your control’s properties to properties of
the UserControl object or of constituent controls. In subsequent steps, you can modify
these mappings.

When you have finished determining your control’s interface and delegating to
existing properties, the wizard will generate property procedure code to implement
the properties, using the correct data types for standard properties, and including
delegation code for all your property mappings, enormously reducing the amount of
work required to generate a full-featured control.

Adding Methods to Controls
You implement methods of your ActiveX control by adding Public Sub and Function
procedures to the code module of the UserControl that forms the basis of your control
class.

—76

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 76 of 95 Printed: 10/23/96 06:43 PM

By default, the only methods your control will have are the extender methods
provided by the container, such as the Move method. You can decide what additional
methods your control needs, and add code to implement them.

Standard Methods
If your control is not invisible at run time, you should provide a Refresh method. This
method should simply call UserControl.Refresh. For user-drawn controls, this will
raise the Paint event; for controls built using constituent controls, it will force a
refresh of the constituent controls.

It’s also a good idea to implement methods commonly found on controls that provide
functionality similar to yours. In addition, you may wish to selectively implement
methods of the UserControl object, or of its constituent controls.

Using the ActiveX Control Interface Wizard
The ActiveX Control Interface Wizard can assist you in determining what methods to
provide, and in delegating to the appropriate constituent controls.

After you have placed all the constituent controls you’re going to use on your
UserControl, start the wizard and select your control. The wizard will examine your
constituent controls, and produce a list of all the properties, methods, and events that
appear in all their interfaces, plus those in the UserControl object’s interface. You can
select from this list those properties, methods, and events you want in your control’s
interface.

The wizard will produce default mappings of your control’s methods to methods of
the UserControl object or of constituent controls. In subsequent steps, you can modify
these mappings.

When you have finished with determining your control’s interface, and delegating to
existing methods, the wizard will generate Sub and Function procedures to implement
the properties, including delegation code for all your mappings. This greatly reduces
the amount of work required to generate a full-featured control.

Raising Events from Controls
It’s important to distinguish between the events received by your UserControl object
(or by the controls it contains) and the events your control raises. Events your control
receives are opportunities for you to do something interesting; events your control
raises provide opportunities for the developer who uses your control to do something
interesting.

This principle is demonstrated, with illustrations, in the step by step procedure
“Adding an Event to the ShapeLabel Control” in “Creating an ActiveX Control.”

Exposing Events of Constituent Controls

—77

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 77 of 95 Printed: 10/23/96 06:43 PM

The mechanism for exposing events is different from the delegation used to expose
properties and methods. You expose an event in a constituent control by raising your
own event, as in the following code fragment from a UserControl code module:

' Declaration of your control's Click event.
Public Event Click()

' When the txtBase text box control raises a Click,
' your control forwards it by raising the Click
' event you declared.
Private Sub txtBase_Click()

RaiseEvent Click
End Sub

' You may also want to raise your control's Click event
' when a user clicks on the UserControl object.
Private Sub UserControl_Click()

RaiseEvent Click
End Sub

147
Notice that your Click event may be raised from multiple locations in your code. You
can add your own code before and after raising the Click event.

The Difference Between Events and Properties or Methods
It may help to think of properties and methods as inbound, and events as outbound.
That is, methods are invoked from outside your control, by the developer who’s using
your control. Thus, the developer invokes a method of your UserControl object, and
you respond by delegating to the method of your constituent control.

By contrast, events originate in your control and are propagated outward to the
developer, so that she can execute code in her event procedures. Thus, your
UserControl object responds to a click event from one of its constituent controls by
raising its own Click event, thus forwarding the event outward to the developer.

Using the ActiveX Control Interface Wizard
The ActiveX Control Interface Wizard can greatly simplify the task of forwarding
events. This is discussed in the related topic “Events Your Control Should Raise.”

Events the Container Provides for Your Control
The container’s extender object may provide events for the benefit of developers
using your control. If your control is used with Visual Basic, the user of your control
gets four such events without any work on your part: GotFocus, LostFocus,
DragOver, and DragDrop.

You don’t need to be concerned with extender events. They are invisible to your
control, and you cannot put code in their event procedures.

Specifying a Default Event for the Code Window

—78

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 78 of 95 Printed: 10/23/96 06:43 PM

The first time you select a control instance in the Object box of the container’s code
window, Visual Basic selects an event to highlight in the Procedure box, and inserts
into the code window an event procedure for that event.

If a control doesn’t specify this user interface default, Visual Basic selects the first
event alphabetically.

Note While you’re working with a new control in the development
environment, before you’ve specified the user interface default, Visual Basic
may sometimes select the default event based on internal considerations,
such as which event went into the type library first.

148
 To specify the user interface default for your control’s events

23 In the UserControl code window, place the cursor on the declaration of the event
you want to specify as the user interface default.

24 On the Tools menu, click Procedure Attributes to open the Procedure Attributes
dialog box.

25 The property should be shown in the Name box. If not, use the Name box to select
it.

26 Click the Advanced button to show advanced features. Check User Interface
Default in the Attributes box, then click OK or Apply.

37
Tip You can only mark one event as the user interface default. Choose the
event users will most frequently place code in.

149

Events Your Control Should Raise
Recommended events include Click, DblClick, KeyDown, KeyPress, KeyUp,
MouseDown, MouseMove, and MouseUp. It’s also a good idea to implement events
commonly found on controls that provide functionality similar to yours.

In addition, you may wish to selectively implement events of the constituent controls
on your UserControl object, or of the UserControl object itself.

It’s important to use the same arguments, with the same data types, as these standard
events, as discussed in “Exposing Events of Constituent Controls.” Data types are
discussed in “Using Standard Control Property Types.”

Using the ActiveX Control Interface Wizard
The ActiveX Control Interface Wizard can assist you in determining what events to
provide, and in forwarding the appropriate constituent control events.

After you have placed all the constituent controls you’re going to use on your
UserControl, start the wizard and select your control. The wizard will examine your
constituent controls, and produce a list of all the properties, methods, and events that
appear in all their interfaces, plus those in the UserControl object’s interface, and the

—79

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 79 of 95 Printed: 10/23/96 06:43 PM

standard events listed above. You can select from this list those properties, methods,
and events you want in your control’s interface.

The wizard will produce default mappings of your control’s events to events of the
UserControl object or of constituent controls. In subsequent steps, you can modify
these mappings.

When you have finished determining your control’s interface, the wizard will
generate code to raise the events you’ve selected, using the correct arguments and
data types for standard events, and including event forwarding code for all your event
mappings. This enormously reduces the amount of work required to generate a full-
featured control.

Providing Named Constants for Your
Control

As with other component types, public enumerations can be shared by all of the
controls in a control component (.ocx file). Place public Enums for your component
in any UserControl code module.

“Providing Named Constants for Your Component,” in “General Principles of
Component Design,” discusses techniques for providing constants, validating
constants in properties, and so forth. See that topic for general information on the
subject.

There are two additional factors specific to control components:

· Enum member names are used in the Properties window.

· Global objects cannot be used to simulate string constants.
38

Enum Member Names in the Properties Window
As an example of the first factor, consider the following Enum and property:

Public Enum DINOSAUR
dnoTyrannosaur
dnoVelociraptor
dnoTriceratops

End Enum

Private mdnoFavoriteDinosaur As DINOSAUR

Public Property Get FavoriteDinosaur() As DINOSAUR
FavoriteDinosaur = mdnoFavoriteDinosaur

End Property

Public Property Let FavoriteDinosaur(ByVal NewDino _
As DINOSAUR

mdnoFavoriteDinosaur = NewDino

—80

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 80 of 95 Printed: 10/23/96 06:43 PM

PropertyChanged "FavoriteDinosaur"
End Property

150
When you set the FavoriteDinosaur property in the Properties window, the drop down
list will contain dnoTyrannosaur, dnoVelociraptor, and dnoTriceratops.

As you can see, there’s a fine tradeoff here between names that will look good in the
drop down, and names that will avoid collisions with names used in Enums for other
components.

As a rule of thumb, don’t abandon the prefix (“dno” in the example above) that
groups constants in global lists. The prefix provides at least some protection from
name conflicts. On the other hand, don’t make your prefixes so long that they obscure
the names.

Cannot Simulate String Constants Using Global Objects
Class modules in control components can have one of two values of the Instancing
property, Private or PublicNotCreateable. The Instancing values that enable global
objects are not available in control components, so it is not possible to simulate string
constants using properties of global objects, as described in “Providing Named
Constants for Your Component” in “General Principles of Component Design.”

Setting Up a New Control Project and Test
Project

As discussed in “Two Ways to Package ActiveX Controls,” earlier in this chapter,
Visual Basic enables you to author shareable control components (.ocx files), or to
include private controls as .ctl files in your component project. These two scenarios
have different testing requirements.

Testing Private Controls
The only way to test a private control is to place it on a form within the project. Of
course, there may be several forms in the project that use the control, but it is
recommended that you create a separate form for testing your private controls.

The reason for this is that simply using the control is not likely to test it exhaustively.
Once your application or component is compiled, user actions you have not
anticipated may cause unexpected results in your control’s code.

By including a test form that exercises all of your control’s interface members, you
can test your control more thoroughly.

Testing Controls in Control Components
When you’re developing a control component, you need thorough test coverage of all
aspects of your control. This coverage is best provided using a separate test project.

—81

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 81 of 95 Printed: 10/23/96 06:43 PM

Visual Basic allows you to run multiple projects, so you can load your test project and
ActiveX control project and run them together for debugging purposes.

Once you have compiled your control component, the test project can be used as a
test harness for quality assurance test suites.

If you use the ActiveX Control Interface Wizard to build the interface and generate
code for your control, you can get a test project created by simply checking an option
on the wizard’s final screen.

Examples of creating a new ActiveX control project and a test project can be
found in the step by step procedures “Creating the ControlDemo Project” and
“Adding the TestCtlDemo Project,” in “Creating an ActiveX Control.”

Tip You may prefer to author your controls as private controls in a Standard
EXE project, and to test them by placing them on forms within the project.
When you’re ready to compile an .ocx file, you can remove the .ctl files from
the Standard EXE project and add them to an ActiveX control project.

You can then set up the Standard EXE project as a test harness, using the
Controls tab of the Components dialog box to add your controls to the
Toolbox, as described in “Compiling the ControlDemo Component,” in
“Creating an ActiveX Control.”

151
For More Information “Two Ways to Package ActiveX Controls” lists several
reasons why you might want to create a control component, even if you’re just
distributing controls as part of your own applications.

152

Creating Robust Controls
For your user, the three most important things about an ActiveX control are
robustness, robustness, and robustness. Because a control component runs in the
process space of an application that uses it, fatal errors in your controls are also fatal
errors for the application.

The following lists of DOs and DON’Ts are by no means inclusive. They only
provide a starting point for producing robust controls.

Error Handling
DO DON’T

Provide thorough error handling in every event
procedure you put code in, whether the event
belongs to the UserControl or to a constituent
control.

Raise errors in any event procedures.

In particular, provide thorough error handling in
the UserControl’s Paint, Resize, and Terminate
events.

—82

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 82 of 95 Printed: 10/23/96 06:43 PM

153
Unhandled errors in event procedures will be fatal to your control component, and the
application using it, because there will never be a procedure on the call stack that can
handle the errors.

It’s perfectly safe to raise errors in property procedures and methods, because
properties and methods are always invoked by other procedures, and errors you raise
can be handled by the user in those procedures.

Object Models
If your control component includes dependent objects, such as a collection of
ToolbarButton objects for a Toolbar control:

DO DON’T

Create wrapper classes for collections of such
objects, as described in “General Principles of
Component Design,” and in “Standards and
Guidelines.”

Use the Collection object without a wrapper
class. The Collection object accepts any variant,
meaning your users could accidentally insert
objects that might cause errors in your control’s
code.

Use property procedures for collection
properties.

Implement such properties as simple data
members.

154
For example, if you create a ToolbarButtons class as the wrapper class for a collection
of ToolbarButton objects, add the property to your UserControl object as a read-only
property procedure:

Private mToolbarButtons As ToolbarButtons

Property Get ToolbarButtons() As ToolbarButtons
Set ToolbarButtons = mToolbarButtons

End Property

Private Sub UserControl_Initialize()
Set mToolbarButtons = New ToolbarButtons

End Sub
155

By contrast, the following implementation allows your user to accidentally set
ToolbarButtons to Nothing, destroying the collection:

Public ToolbarButtons As New ToolbarButtons
156

Implementing Properties
DO implement properties using property procedures, instead of public data members.

You can use Property Let to validate property values. If you use public data members,
you’ll have to check the data every time you use it; and if that happens in an event
procedure, you won’t be able to raise an error without bringing down the application
that’s using your control component.

—83

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 83 of 95 Printed: 10/23/96 06:43 PM

In addition, your properties will not work correctly in the Properties window and
Property Pages dialog box, as discussed in “Adding Properties to Your Control,”
earlier in this chapter.

Debugging Controls
The most important difference between debugging controls and debugging other
objects is that some of the code in your control must execute while the form a control
instance is placed on is in design mode.

For example, the code in the property procedures you use to implement your control’s
properties must execute when the developer using your control sets its properties
using the Properties window.

Code that saves and retrieves your control’s property values must also run at design
time, whenever the user loads a form containing an instance of the control, puts the
project in Run mode, or saves the project to disk.

Code in the Resize event (or the Paint event, for user-drawn controls) must run at
design time to provide the design-time appearance of your control.

You can see this feature in action in the step by step procedure “Running the
ShapeLabel Control at Design Time,” in “Creating an ActiveX Control.”

For More Information General information on debugging components can be
found in “Debugging, Testing, and Deploying Components.”

157

Running Code at Design Time
To put a control you’re authoring into a state such that its code can execute at design
time, you must close the control’s visual designer, by clicking the Close box or
pressing CTRL+F4.

When the designer is closed, Visual Basic enables the control’s icon in the Toolbox,
so that you can add instances of the control to forms for testing.

If code in your control hits a break point at design time, for example during a
Property Let invoked by the Properties window, Visual Basic enters break mode, just
as it would if your project were running. When you press F5 to continue execution, the
code in your control resumes execution. Visual Basic remains in design mode.

You can see this by setting a break point in a property procedure, and then placing an
instance of your control on a test form.

Making Changes to Existing Controls
When you open the UserControl designer for a control, Visual Basic disables all
instances of the control and grays the control’s icon in the Toolbox. If you have a test
form open with instances of the control on it, Visual Basic covers the disabled control
instances with cross-hatching.

—84

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 84 of 95 Printed: 10/23/96 06:43 PM

You can also disable control instances by certain changes to code in the control’s code
window, such as adding a new property or method, or adding code to a previously
unused event procedure.

Once a control instance has been disabled in this fashion, it cannot execute code. It
will not even receive a Terminate event.

Refreshing Control Instances
When you close the UserControl designer, the disabled instances of the control are
quietly destroyed (they get no more events) and replaced with fresh instances. You
can see this by putting Debug.Print statements in the Initialize and Terminate events
of a control.

You can also refresh the control instances by right-clicking the test form and selecting
Update UserControls from the context menu. If there are any control designers open,
they will be closed before the control instances are refreshed.

For More Information General information on debugging components can be
found in “Debugging, Testing, and Distributing Components.”

158

Distributing Controls
As discussed in “Two Ways to Package ActiveX Controls,” earlier in this chapter,
Visual Basic lets you author shareable control components (.ocx files), or simply
include private controls as .ctl files in the project for your application or component.

This topic and its related topics focus on distribution, versioning, and licensing issues
for control components. Private controls are compiled directly into an executable or
component, and are distributed along with it. Being private, they also have no
versioning or licensing issues.

Distributing Control Components
When you distribute a control component, you’re providing a tool other developers
can use in their applications. Versioning issues address the question of how you
update that tool without breaking your customers’ code.

Because you’re providing a tool, instead of a finished application, you have licensing
issues to consider. You have to decide whether to include licensing support for your
control. If you plan on building your controls using licensed controls from other
authors, you need to consider how that affects your distribution plans.

Because the tool you’re creating is an-process component (“ocx” is really just another
way to spell DLL), you have to select a base address that will minimize memory
conflicts, and thus avoid performance problems.

Finally, because the tool you’re creating uses the Visual Basic run-time DLL, and
possibly other support files, you have to create a Setup program.

—85

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 85 of 95 Printed: 10/23/96 06:43 PM

Setup is covered in the remainder of this topic. The important subject of base
addresses is discussed in “Setting Base Addresses for In-Process Components” in
“Debugging, Testing, and Deploying Components.”

Creating Setup for ActiveX Control Components
ActiveX controls created with Visual Basic require the Visual Basic run-time DLL.
Depending on what constituent controls you use, you may require additional support
files. To ensure that you distribute all the necessary support files, using SetupWizard
is recommended.

For the most part, using SetupWizard for control components is no different from
using it for any other component created using Visual Basic. This subject is
thoroughly covered in “Debugging, Testing, and Deploying Components.”

If you plan to use your control component for Internet or intranet development, you
can obtain the most up-to-date information on setup options from the Microsoft
Visual Basic Web site. On the Visual Basic Help menu, click Microsoft on the Web,
then click Product News.

For More Information The SetupWizard is introduced in “Distributing Your
Application.”

159

Licensing Issues for Controls
Licensing for controls is a sensitive issue. After you’ve spent hundreds of hours
developing a control, what if somebody else puts an instance of it on a UserControl,
exposes all the properties, methods, and events, adds one or two trivial properties,
then compiles and sells it as a new control?

Visual Basic’s licensing support protects your investment. When you add licensing
support to your control component, a license key is compiled into it. This key covers
all the controls in the component.

Running your Setup program transfers the license key to another computer’s registry,
allowing your controls to be used for development. Simply copying your .ocx file to
another computer and registering it does not transfer the license key, so the controls
cannot be used.

 To add licensing support to your control project

· On the Project menu, click <MyProject> Properties to open the Project
Properties dialog box. Select the General tab, check Require License Key,
then click OK.

39
When you make the .ocx file, Visual Basic will create a .vbl file containing the
registry key for licensing your control component. When you use the setup wizard to
create Setup for your .ocx, the .vbl file is automatically included in the setup
procedure.

—86

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 86 of 95 Printed: 10/23/96 06:43 PM

How Licensing Works
When a developer purchases your control component and runs your Setup program,
the license key is added to the registry on her computer.

Thereafter, whenever the developer puts an instance of your control on a form, Visual
Basic (or any other developer’s tool) tells the control to create itself using the registry
key.

If a developer has obtained a copy of your control component, but not the registry
key, the control cannot create instances of itself in the development environment.

When a Developer Distributes Applications
When the developer compiles a program that uses one of your controls, the license
key for your component is compiled in. When she creates a Setup for the program,
your .ocx is included. Users can then purchase the compiled program and run Setup.
Your control is installed on each user’s machine — but your license key is not added
to the registry.

Each time a user runs the program, the Visual Basic run-time DLL asks your control
to create a run-time instance of itself, and passes it the key that was compiled into the
program. Your control doesn’t have to check the registry, because Visual Basic passed
it the key.

Thus the user can run a compiled application without having to have the control
component’s license key in the registry.

Licensing and the User
Suppose the user later obtains a copy of Visual Basic. Noticing that your control
component is installed on his computer, he adds your .ocx file to a project.

The first time he tries to put an instance of one of your controls on a form, Visual
Basic tells the control to create itself using the registry key. The key is not there, so
the control component can’t be used in the development environment.

Licensing and General-Purpose User Applications
When desktop applications such as Microsoft Word and Microsoft Excel create
control instances on documents or user forms, they tell the control to create an
instance of itself using the license key in the registry. This means that a licensed
control cannot be used by an end user unless the user has purchased your control
component and installed it.

User documents cannot have the license key compiled into them. Suppose the user of
a desktop application gives a coworker a copy of your control component along with
a document that contains one of your controls. When the document is opened, the
control will be asked to create its run-time instance — using the registry key.

—87

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 87 of 95 Printed: 10/23/96 06:43 PM

In other words, the coworker must also have purchased and installed your control
component. Otherwise, when the document is opened, the control instance cannot be
created.

Corporate developers who author ActiveX controls for use by end users within their
companies may find it more convenient to omit licensing support. This will make it
easier for end users to distribute documents containing controls.

Licensing and the Control Author
Now suppose that someone who purchased your control component decides to use
one of your controls to author a new control of her own. As with any other program,
when she compiles her control component, your license key is compiled in.
SetupWizard creates a license key for the new component, but does not add your
license key to the setup program.

When a developer installs this new code component, its license key is placed in the
registry. The developer then runs Visual Basic, and attempts to put an instance of the
control on a form.

The control is asked to create itself using the registry key. In turn, it asks its
constituent controls to create themselves using their registry keys. Your control
doesn’t find its license key in the registry, so control creation fails.

Distributing Controls That Use Licensed Controls
If the control author wishes to distribute a new control that uses a control you
authored, she must inform purchasers that in order to use her control, they must have
your control component installed on their computers.

Alternatively, the control author might negotiate with you for the right to distribute
your license key along with her own, in the setup program for her control.

In either case, both license keys will be installed on a developer’s machine, so the
developer can create design-time instances of the second author’s controls. When
those controls are compiled into an executable program, both license keys are
compiled in.

When the program is subsequently installed by a user and run, the second author’s
control is asked to create itself. Its constituent controls are also asked to create
themselves, and passed their license keys. (And so on, if your control uses constituent
controls with license keys.)

For More Information Licensing and distribution of constituent controls,
including those supplied with the Professional Edition of Visual Basic, is discussed in
“Controls You Can Use As Constituent Controls,” earlier in this chapter.

160

Licensing and the Internet
Licensed controls can be used on World Wide Web pages, in conjunction with
browsers that support control licensing. Both the control component and the license

—88

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 88 of 95 Printed: 10/23/96 06:43 PM

key must be available to be downloaded to the computer of the person accessing a
Web page.

The downloaded license key is not added to the registry. Instead, browser asks the
control to create a run-time instance of itself, and passes it the downloaded license
key.

The owner of the Web server that uses your control must have purchased and installed
your control, just as a developer would, in order to supply both control and license.

If the license is not available, control creation will fail, and the browser will receive a
standard control creation error. Whether the browser passes this message along to the
person accessing the Web page, or simply ignores it, depends on the person that
developed the browser.

For More Information See “Controls You Can Use As Constituent Controls,”
earlier in this chapter.

161

Versioning Issues for Controls
When you create a new version of a control, there are several areas of backward
compatibility you must address:

· Your controls interface; that is, its properties, methods, and events.

· UserControl properties that affect control behavior.

· Whether property values are saved and retrieved.

· Procedure attribute settings.
40

Interface Compatibility
You can add new properties, methods, and events without breaking applications
compiled using earlier versions of your control component. However, you cannot
remove members from the interface, or change the arguments of members.

You can use Visual Basic’s Version Compatibility feature to avoid creating
incompatible interfaces. On the Component tab of the Project Properties dialog box,
click Binary Compatibility in the Version Compatibility box. This enables a text box
in which you can enter the path and file name of the previous version of your
component.

The default value in this text box is the last location where you built the component.
If you are going to continue using that location to build the new version of your
control component, it’s a good idea to place a copy of your previous version in
another location, and then enter that location in the text box.

For More Information Interface compatibility and the use of the Version
Compatible Component box are discussed in “Version Compatibility,” in “General
Principles of Component Design.”

162

—89

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 89 of 95 Printed: 10/23/96 06:43 PM

UserControl Properties
Be careful when changing properties of the UserControl object, such as
ControlContainer. If a previous version of your control had this property set to True,
so that developers could use the control to contain other controls, and you change the
property to False in a subsequent version, existing applications may no longer work
correctly if the new version is installed on the same computer.

Saving and Retrieving Property Values
You may retain a property for backward compatibility, but stop mentioning it in your
Help file, and mark it as Hidden using the Procedure Attributes dialog box.

You can stop saving the value of such obsolete properties in the WriteProperties
event, but you should continue to load their values in the ReadProperties event. If you
stop loading a property value, you will break any previously compiled application that
used the property.

Procedure Attribute Settings
Changing attributes of a procedure may break applications that were compiled using
previous versions of your control component. For example, it you use the Procedure
Attributes dialog to change the default property or method of a control, code that
relied on the default will no longer work.

Localizing Controls
You can increase the market for your control component by localizing it. A localized
control displays text — captions, titles, and error messages — using the language of
the locale in which the control is used for application development, rather than the
language of the locale in which it was authored.

This topic examines localization issues specific to ActiveX controls. General
localization issues are discussed in “International Issues.”

Using the LocaleID
When you compile an executable with Visual Basic, the LocaleID (also referred to as
the LCID) of the Visual Basic version is compiled in. Thus an application compiled
with the German version of Visual Basic will contain &H0407, the LocaleID for
Germany.

In the same way, the LocaleID is compiled into an ActiveX control component
created with Visual Basic. This becomes the default LocaleID for your controls. If
this were the end of the story, you would have to compile a new version of your
component, using the correct version of Visual Basic, for every locale in which you
wanted to distribute it.

Fortunately, control components are more flexible than compiled applications. Your
component can be used with versions of Visual Basic for any locale, and even with

—90

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 90 of 95 Printed: 10/23/96 06:43 PM

development tools that support other locales, because they can determine the correct
LocaleID at run time.

Discovering the LocaleID
The LocaleID property of the Ambient object returns the LocaleID of the program
your control was used in. The Ambient object is available as a property of the
UserControl object, as described in “Using the Ambient Object to Stay Consistent
with the Container,” earlier in this chapter.

You can test the Ambient property as soon as an instance of your control is sited on
the container; that is, in the InitProperties or ReadProperties events. Once you know
the LocaleID, you can call code to load locale-specific captions, error message text,
and so forth from a resource file or satellite DLL, as described later in this topic.

You need to call this code in both events, because the InitProperties event occurs only
when a control instance is first placed on a container. Thereafter the control instance
receives the ReadProperties event instead, as discussed in “Understanding
UserControl Lifetime and Key Events,” earlier in this chapter.

You should also call your locale code in the AmbientChanged event, because your
control could be used in an application that resets its locale according to Windows
Control Panel settings, which can be changed by the user at any time. Your control
could also receive AmbientChanged events if it’s used as a constituent control, as
described later in this topic.

Avoid Accessing Constituent Controls in the Initialize Event
The constituent controls on your UserControl discover the LocaleID by checking the
Ambient object which the UserControl, like any good container, makes available to
them. This happens automatically, with no effort on your part.

When the Initialize event occurs, your control has been created, and all the constituent
controls have been created and sited on your control’s UserControl object. However,
your control has not yet been sited on the container, so the UserControl cannot supply
the correct LocaleID to the constituent controls.

If code in the Intialize event accesses the properties and methods of the constituent
controls, their responses will reflect the LocaleID of the version of Visual Basic you
used to compile your component, rather than the LocaleID of the application in which
your control is compiled. For example, a method call might return a string in the
wrong language.

To avoid this, you should not access constituent controls in the Initialize event.

Responding to the AmbientChanged Event
The AmbientChanged event occurs whenever an Ambient property changes on the
container your control has been placed on, as discussed in “Using the Ambient Object
to Stay Consistent with the Container,” earlier in this chapter.

—91

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 91 of 95 Printed: 10/23/96 06:43 PM

Applications compiled with Visual Basic use the LocaleID of the version of Visual
Basic that compiled them. However, your control could be used in an application
written using a development tool such as Microsoft Visual C++, in which it is
possible to change an application’s LocaleID in response to system messages.

For example, if a user opens the Control Panel and changes the locale, an application
would receive a notification of the change, and reset itself accordingly. Your controls
can handle this situation by including code to change locale dynamically, as in the
following example.

Private Sub UserControl_AmbientChanged(_
PropertyName As String)

Select Case PropertyName
Case "LocaleID"

' Code to load localized captions,
' messages, and so forth from a resource
' file or satellite DLL, as described below.

' Case statements for other properties.

End Select
End Sub

163
A change in the locale can also occur if you use your control as a constituent of
another control. As described above, constituent controls don’t get the correct
LocaleID when they’re first sited on a UserControl object. When the outermost
control has been sited on the application’s form, all the constituent controls will
receive AmbientChanged events with the correct LocaleID.

Base Language and Satellite DLLs
The most flexible localization technique is to compile your control component with
the default text strings and error messages in the language of the locale you expect to
be your largest market. Place text strings and error messages for other locales in
satellite ActiveX DLLs, one for each locale.

This scheme makes your component very attractive to developers who create versions
of their programs for multiple languages, because they can work with multiple locales
on one development machine.

Satellite DLLs are also attractive to users in multilingual countries. Such users may
have programs compiled by programmers in different locales; if two such programs
use your control component, satellite DLLs allow both programs to coexist on a
user’s computer.

Important Your control should not raise an error if the requested satellite
DLL is not found, as this could cause the entire application to fail. In the event
the satellite DLL is not available, simply use the default locale in which your
control component was built.

164
Naming Satellite DLLs

—92

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 92 of 95 Printed: 10/23/96 06:43 PM

If you use an open-ended naming convention for your satellite DLLs, you can supply
additional DLLs later without recompiling your program. An example of such a
naming convention would be to include the LocaleID in the DLL names. Using this
convention, your satellite DLLs for the Belgian French, German, and US English
locales might be named MyControls20C.dll, MyControls407.dll and
MyControls409.dll.

If you use Windows API calls to load and extract resources from your satellite DLLs,
you can create the name of the DLL to be loaded by converting the LocaleID to a
string, and appending it to a base name. (Note that the examples above use the
hexadecimal representation of the LocaleID.)

You build your satellite DLLs as Visual Basic ActiveX DLL projects. To do this,
create a class module with methods for retrieving resources. Give the class a name
such as Localizer. Add this class module to each DLL project.

Use your open-ended naming scheme for the Project Name, so that each DLL has a
unique programmatic ID, or ProgID, in the Windows registry. Each time you compile
a new satellite DLL, you create a new Localizer class, whose full programmatic ID
includes the Project Name of the DLL.

In your ActiveX control project, you can then create an instance of the appropriate
Localizer class using code such as the following:

Dim strProgID As String
Dim objLoc As Object
' Generate the ProgID of the Localizer object
' for the appropriate satellite DLL.
strProgID = "MyControls" & Hex$(Ambient.LocaleID) _

& ".Localizer"
Set objLoc = CreateObject(strProgID)
If objLoc Is Nothing Then

' Satellite DLL not found; use default locale.
Else

' Call methods of Localizer object to retrieve
' localized string and bitmap resources.

End If
165

The code above uses late binding (that is, the variable objLoc is declared As Object).
You can get better performance with early binding, by using the Implements feature
of Visual Basic. Instead of making the resource retrieval methods members of the
Localizer class, you can define them in an abstract class named IResources.

In your Localizer class, use the Implements statement to implement IResources as a
second interface. You can call the methods of this interface with early binding, as
shown below.

' Early-bound variable for IResources interface.
Dim ires As IResources
' Get the IResources interface of the Localizer
' object obtained from the satellite DLL.
Set ires = objLoc

—93

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 93 of 95 Printed: 10/23/96 06:43 PM

' Call the methods of your IResources interface
' to retrieve localized resources.
Set cmdOK.Caption = ires.GetString(ID_CMDOK)

166
As with the late-bound Localizer object, you can simply add the Localizer class
module, with its second interface, to each satellite DLL project. The ability to add the
same interface to several different classes is called polymorphism.

For More Information The Implements feature is discussed in “Providing
Polymorphism by Implementing Interfaces,” in “General Principles of Component
Design.” Accessing satellite DLLs is discussed in “International Issues.” Adding
resource files to Visual Basic projects is discussed in “More About Programming.”

167

Resource Files
An alternative to satellite DLLs is to place text strings and error messages in a
resource file, and compile the file into your control component. There are
disadvantages to this technique.

· If you use one resource file for each locale, you must compile a separate .ocx file
for each locale. To avoid file name conflicts, you can put a locale indicator in
the name of each .ocx file, as for example MyControlsDE.ocx for German, or
MyControlsFR.ocx for French.

· Unfortunately, you cannot avoid type library name conflicts so easily. A developer
can have only one locale version of your control installed at a time. This may be
a drawback in multilingual markets.

· Although you can avoid the problem of compiling multiple .ocx files by putting
the text and error message strings for all locales into a single resource file, the
result will be a much larger .ocx file, and you will have to recompile the
component to add support for new locales.

41

Localizing Interfaces
If you localize property, method, and event names, you must compile a separate
version of your control for each locale. To allow multiple versions of your control to
coexist on one computer, you must use a different name for your control in each
version.

As a result of the different interface and control names, multilingual developers will
have to rewrite their code for each language version of a program that uses your
control. This will make your control component less attractive to such developers.

Microsoft applications, such as Visual Basic, do not localize interface member names.

Localizing Property Pages
Microsoft applications localize property pages, but not property names. If you use this
scheme, the caption that shows up on a property page may not match the name of the
property in the Properties window.

—94

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 94 of 95 Printed: 10/23/96 06:43 PM

When localizing captions for properties on property pages, take care to select captions
that make it obvious what the property is. Alternatively, you may wish to include the
property name in parentheses.

For principles of form layout that simplify localization, see “International Issues.”

Localizing Type Library Information
There is no way to retrieve a browser string from a localized DLL or resource file, so
browser strings must be compiled into your type library. To produce localized type
libraries, you must use the Procedure Attributes dialog box to change the browser
strings for all your properties, methods, and events. You must then re-compile your
executable.

Localizing type library information thus limits your ability to localize using satellite
DLLs. You may wish to leave your browser strings in the default language of your
control.

For More Information See “International Issues.”
168

—95

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 11 Page: 95 of 95 Printed: 10/23/96 06:43 PM

	Contents
	Sample Application: CtlPlus.vbg
	The UserControl Object
	Delegating to the UserControl and Constituent Controls that Compose Your ActiveX Control

	Three Ways to Build ActiveX Controls
	Authoring a User-Drawn Control
	Enhancing an Existing Control
	Assembling a Control from Several Existing Controls

	Two Ways to Package ActiveX Controls
	Including Controls as Compiled Code vs. Source Code
	Changing the Packaging
	Source Code

	Understanding Control Lifetime and Key Events
	Key UserControl Events
	The Incarnation and Reincarnation of a Control Instance
	The Control Instance is Placed on a Form
	From Design Mode to Run Mode
	From Run Mode to Design Mode
	Closing the Form
	Additional Scenarios
	Compiling the Project
	Running the Compiled Program or Component
	Controls on World Wide Web Pages

	Events You Won’t Get in a UserControl object
	Events Peculiar to UserControls

	Interacting with the Container
	All Containers are Not Created Equal
	Understanding the Container’s Extender Object
	Extender Properties are Late Bound
	Standard Extender Properties
	Container-Specific Controls
	Working with Container Limitations
	Collisions Between Control and Extender Properties

	Using the Ambient Object to Stay Consistent with the Container
	Containers That Provide Additional Ambient Properties
	Important Ambient Properties
	UserMode
	LocaleID
	DisplayName
	ForeColor, BackColor, Font, and TextAlign
	DisplayAsDefault

	The AmbientChanged Event

	Visual Basic ActiveX Control Features
	How to Handle Focus in Your Control
	User-Drawn Controls
	Controls That Use Constituent Controls
	How Constituent Controls Are Affected by CanGetFocus
	EnterFocus and ExitFocus

	Receiving Focus via Access Keys
	Forwarding Focus to the Next Control in the Tab Order

	Controls You Can Use As Constituent Controls
	The Easy Part — UserControl and Intrinsics
	Distributing Constituent Controls
	Licensing Constituent Controls
	Distribution and Licensing Examples
	ActiveX Controls Included with Visual Basic
	ActiveX Controls You’ve Purchased
	Shareware Controls
	Constituent Controls and the Internet

	Object Models for Controls
	Allowing Developers to Put Controls on Your Control
	The ContainedControls Collection vs. the Controls Collection
	Availability of the ContainedControls Collection
	Performance Impact of ControlContainer
	Support for ControlContainer

	Allowing Your Control to be Enabled and Disabled
	Assigning the Procedure ID for the Enabled Property
	 To assign the procedure ID for the Enabled property

	Correct Behavior for the Enabled Property
	Painting a User-Drawn Control’s Disabled State

	Giving Your Control a Transparent Background
	Allowing Developers to Set Access Keys for Your Control
	Access Keys for Control Assemblies
	Control Assemblies with Fixed Text

	Making Your Control Align to the Edges of Forms
	Making Your Control Invisible at Run Time
	Invisible Controls vs. Ordinary Objects
	Setting a Fixed Size for Your Control

	Adding an AboutBox to Your Control
	 To add an About box to a control component

	Providing a Toolbox Bitmap for Your Control
	Allowing Your Control to be a Default or Cancel Button
	Adding Internet Features to Controls
	Asynchronous Downloading
	The PictureFromURL Property
	Completing the Download
	A Bit More Code
	Starting the Download
	Running the Sample
	Canceling Asynchronous Downloads

	Navigating with the Hyperlink Object
	Moving Through the History List

	Designing Controls for Use With HTML
	Making Your Control Safe for Scripting and Initialization on HTML Pages
	Safe for Scripting
	Keys to Scripting Safety
	Choosing Constituent Controls
	Documenting Scripting Safety

	Safe for Initialization

	Using Show and Hide Events

	Binding a Control to a Data Source
	The DataBindings Collection
	Calling CanPropertyChange
	Discovering and Setting Bindable Properties at Run Time
	Finding Out Whether a Field has Changed

	Setting Multiple Data Bindings at Design Time
	Attributes and Flags

	Allowing Developers to Edit Your Control at Design Time

	Drawing Your Control
	User-Drawn Controls
	Working with Other Events
	Showing That a User-Drawn Control Has the Focus
	Showing a User-Drawn Control as Disabled
	User-Drawn Controls That Can Be Default Buttons

	Providing Appearance Using Constituent Controls
	Resizing a Control Assembly
	Enforcing a Minimum Control Size
	Dealing with Recursion

	Adding Properties to Controls
	Implement Control Properties Using Property Procedures
	Run-Time Properties
	Properties You Don’t Need to Implement

	Saving the Properties of Your Control
	Saving Property Values
	The Importance of Supplying Defaults

	Retrieving Property Values
	Properties that are Read-Only at Run Time

	Initializing Property Values

	Exposing Properties of Constituent Controls
	Exposing Properties by Delegating
	Mapping Properties to Multiple Controls
	Multiple BackColor Properties
	Mapping to Multiple Object Properties
	Don’t Expose Constituent Controls as Properties
	Using the ActiveX Control Interface Wizard

	Using Standard Control Property Types
	Standard Enumerations
	Standard Data Types
	OLE_COLOR
	OLE_TRISTATE
	OLE_OPTEXCLUSIVE
	OLE_CANCELBOOL

	Creating Design-Time-Only, Run-Time-Only, or Read-Only Run-Time Properties
	Handling Read-Only Run-Time Properties in the ReadProperties Event
	Creating Run-Time-Only Properties

	Marking a Property as the Properties Window Default
	 To specify the user interface default for your control

	Grouping Properties by Category
	 To assign a property to a property category

	Properties You Should Provide
	Procedure IDs for Standard Properties
	 To assign a standard procedure ID to a property
	One Procedure ID to a Customer
	Procedure IDs of Interest
	AboutBox
	Caption, Text
	(Default)
	Enabled

	Providing Useful Defaults
	Using the ActiveX Control Interface Wizard

	Adding Methods to Controls
	Standard Methods
	Using the ActiveX Control Interface Wizard

	Raising Events from Controls
	Exposing Events of Constituent Controls
	The Difference Between Events and Properties or Methods
	Using the ActiveX Control Interface Wizard

	Events the Container Provides for Your Control
	Specifying a Default Event for the Code Window
	 To specify the user interface default for your control’s events

	Events Your Control Should Raise
	Using the ActiveX Control Interface Wizard

	Providing Named Constants for Your Control
	Enum Member Names in the Properties Window
	Cannot Simulate String Constants Using Global Objects

	Setting Up a New Control Project and Test Project
	Testing Private Controls
	Testing Controls in Control Components

	Creating Robust Controls
	Error Handling
	Object Models
	Implementing Properties

	Debugging Controls
	Running Code at Design Time
	Making Changes to Existing Controls
	Refreshing Control Instances

	Distributing Controls
	Distributing Control Components
	Creating Setup for ActiveX Control Components

	Licensing Issues for Controls
	 To add licensing support to your control project
	How Licensing Works
	When a Developer Distributes Applications
	Licensing and the User
	Licensing and General-Purpose User Applications

	Licensing and the Control Author
	Distributing Controls That Use Licensed Controls

	Licensing and the Internet

	Versioning Issues for Controls
	Interface Compatibility
	UserControl Properties
	Saving and Retrieving Property Values
	Procedure Attribute Settings

	Localizing Controls
	Using the LocaleID
	Discovering the LocaleID
	Avoid Accessing Constituent Controls in the Initialize Event
	Responding to the AmbientChanged Event
	Base Language and Satellite DLLs
	Naming Satellite DLLs

	Resource Files

	Localizing Interfaces
	Localizing Property Pages
	Localizing Type Library Information

