
When you need capabilities that go beyond the core language and controls provided
with Visual Basic, you can make direct calls to procedures contained in dynamic-link
libraries (DLLs). By calling procedures in DLLs, you can access the thousands of
procedures that form the backbone of the Microsoft Windows operating system, as
well as routines written in other languages.

As their name suggests, DLLs are libraries of procedures that applications can link to
and use at run time rather than link to statically at compile time. This means that the
libraries can be updated independently of the application, and many applications can
share a single DLL. Microsoft Windows itself is comprised of DLLs, and other
applications call the procedures within these libraries to display windows and
graphics, manage memory, or perform other tasks. These procedures are sometimes
referred to as the Windows API, or application programming interface.

Note If you are using the Control Creation Edition of Visual Basic, some of
the material covered in this document may not be applicable. With the full
editions of Visual Basic you have the ability to create applications, ActiveX
documents, and other types of components. Although some of the
terminology may relate to application specific objects such as forms, in most
cases the underlying concepts also apply to ActiveX control creation.

1

DLLs or Automation?
Another way to bring more power into Visual Basic is through Automation (formerly
called OLE Automation). Using Automation is simpler than calling routines in a DLL,
and it doesn't create the same level of risk that you'll hit when going straight to the
Windows API. By using Automation, you can get programmatic access to a wide
range of objects exposed by external applications.

Contents
· Using a DLL Procedure in Your Application

· Accessing the Microsoft Windows API

· Declaring a DLL Procedure

· Passing Strings to a DLL Procedure

· Passing Arrays to a DLL Procedure

· Passing User-Defined Types to a DLL Procedure

· Passing Function Pointers to DLL Procedures and Type Libraries

· Passing Other Types of Information to a DLL Procedure

· Converting C Declarations to Visual Basic
2

—1

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 1 of 23 Printed: 09/12/96 11:45 AM

Using a DLL Procedure in Your Application
Because DLL procedures reside in files that are external to your Visual Basic
application, you must specify where the procedures are located and identify the
arguments with which they should be called. You provide this information with the
Declare statement. Once you have declared a DLL procedure, you can use it in your
code just like a native Visual Basic procedure.

Important When you call any DLLs directly from Visual Basic, you lose the
built-in safety features of the Visual Basic environment. This means that you
increase the risk of system failure while testing or debugging your code. To
minimize the risk, you need to pay close attention to how you declare DLL
procedures, pass arguments, and specify types. In all cases, save your work
frequently. Calling DLLs offers you exceptional power, but it can be less
forgiving than other types of programming tasks.

3
In the following example, we'll show how to call a procedure from the Windows API.
The function we'll call, SetWindowText, changes the caption on a form. While in
practice, you would always change a caption by using Visual Basic's Caption
property, this example offers a simple model of declaring and calling a procedure.

Declaring a DLL Procedure
The first step is to declare the procedure in the Declarations section of a module:

Private Declare Function SetWindowText Lib "user32" _
Alias "SetWindowTextA" (ByVal hwnd As Long, _
ByVal lpString As String) As Long

4
You can find the exact syntax for a procedure by using the API Viewer application, or
by searching the Win32api.txt file. If you place the Declare in a Form or Class
module, you must precede it with the Private keyword. You declare a DLL procedure
only once per project; you can then call it any number of times.

For More Information For more information on declare statements, see the topic
"Declaring a DLL Procedure" later in this chapter.

Calling a DLL Procedure
After the function is declared, you call it just as you would a standard Visual Basic
function. Here, the procedure has been attached to the Form Load event:

Private Sub Form_Load()
SetWindowText Form1.hWnd, "Welcome to VB"

End Sub
5

When this code is run, the function first uses the hWnd property to identify the
window where you want to change the caption (Form1.hWnd), then changes the text
of that caption to "Welcome to VB."

—2

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 2 of 23 Printed: 09/12/96 11:45 AM

Remember that Visual Basic can't verify that you are passing correct values to a DLL
procedure. If you pass incorrect values, the procedure may fail, which may cause your
Visual Basic application to stop. You'll then have to reload and restart your
application. Take care when experimenting with DLL procedures and save your work
often.

Note Very few API calls recognize the default Variant data type. Your API
calls will be much more robust if you declare variables of specific types and
use Option Explicit.

6

Accessing the Microsoft Windows API
You can gain access to the Windows API (or other outside DLLs) by declaring the
external procedures within your Visual Basic application. After you declare a
procedure, you can use it like any other language feature in the product.

The most commonly used set of external procedures are those that make up Microsoft
Windows itself. The Windows API contains thousands of functions, subs, types, and
constants that you can declare and use in your projects. These procedures are written
in the C language, however, so they must be declared before you can use them with
Visual Basic. The declarations for DLL procedures can become fairly complex. While
you can translate these yourself, the easiest way to access the Windows API is by
using the predefined declares included with Visual Basic.

The file Win32api.txt, located in the \Winapi subdirectory of the main Visual Basic
directory, contains declarations for many of the Windows API procedures commonly
used in Visual Basic. To use a function, type, or other feature from this file, simply
copy it to your Visual Basic module. You can view and copy procedures from
Win32api.txt by using the API Viewer application, or by loading the file in any text
editor.

Note The Windows API contains a vast amount of code. To find reference
information on the procedures and other details included in this API set, refer
to the Win32 SDK, included in the \Tools directory of your Visual Basic CD.

7

Using the API Viewer Application
The API Viewer application enables you to browse through the declares, constants,
and types included in any text file or Microsoft Jet database. After you find the
procedure you want, you can copy the code to the Clipboard and paste it into your
Visual Basic application.

—3

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 3 of 23 Printed: 09/12/96 11:45 AM

Figure 1.1 The API Viewer application

1
To load the Win32api.txt file, choose Load Text File from the File menu. After the file
is loaded, you can view entries in the Available Items list box by selecting Declares,
Constants, or Types in the API Type drop-down list box. To search for specific items
in the file, use the Search button.

To load a Jet database API file, choose Load Database File from the File menu. You
can then search for specific items in the database by typing the first letter of the item
you want to find.

Adding Procedures to Your Visual Basic Code
Once you have found a procedure you want, choose the Add button to add the item to
the Selected Items box. You can add as many items as you like. To remove an entry
from the Selected Items box, select the item, then choose the Remove button.

To copy the items from the Selected Items list box to the Clipboard, choose the Copy
button. All of the items in the list will be copied. You can then open your Visual Basic
project and go to the module in which you want to place the API information.
Position the insertion point where you want to paste the declarations, constants,
and/or types, and then choose Paste from the Edit menu.

Converting Text Files to Jet Database Files

—4

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 4 of 23 Printed: 09/12/96 11:45 AM

To optimize speed, you can convert the Win32api.txt file into a Jet database file,
because it is much faster to display the list when opening a database than when
opening a text file.

To convert the text file, start the API Viewer application, then choose the Load Text
File command from the File menu and open the .txt file. A message will appear asking
if you want to convert the .txt file to a database file. Choose Yes to confirm the
conversion. If you choose No, you can still convert the file later by choosing the
Convert Text to Database command from the File menu.

Loading an API File Automatically from the
Command Line
You can specify a text or database file on the command line for Apilod32.exe so that
the file is automatically loaded when you start API Viewer. Use the following syntax
to load the file you choose when you start the API Viewer application:

Apilod32.exe {/T|/D} filename
8

Argument Description

/T API Viewer will load the file as a text file. /T must be uppercase.

/D API Viewer will load the file as a database file. /D must be uppercase.

filename The path of the file you want to open.
9

There must be a space between /T or /D and the filename argument. An error message
will be displayed if the file is not found. If you specify a file that is not a database or
text file, an error message will be displayed when you try to load the file.

For example, you might enter the following command line for API Viewer in the
Windows Program Item Properties dialog box (by choosing Properties from the File
menu):

C:\VB\Winapi\Apilod32.exe /D C:\VB\Winapi\Win32api.mdb
10

Viewing the Win32api.txt file with a Text Editor
You can also load the Win32api.txt file in a text editor, such as Microsoft Word or
WordPad, to locate the procedures you want to use. Again, you just copy the
procedures from the file to a Visual Basic module to use them in your application.

Tip Don't load the Win32api.txt file into a module. This is a large file, and it
will consume a lot of memory in your application. You will generally use only a
handful of declarations in your code, so selectively copying the declarations
you need is much more efficient.

11

Using Procedures from Other Sources

—5

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 5 of 23 Printed: 09/12/96 11:45 AM

If you are attempting to call a procedure in a DLL that is not part of the operating
system, you must determine the proper declaration for it. The topic "Declaring a DLL
Procedure" explains the syntax of the Declare statement in detail.

Declaring a DLL Procedure
Even though Visual Basic provides a broad set of predefined declares in the
Win32api.txt file, sooner or later you'll want to know how to write them yourself. You
might want to access procedures from DLLs written in other languages, for example,
or rewrite Visual Basic's predefined declares to fit your own requirements.

To declare a DLL procedure, you add a Declare statement to the Declarations section
of the code window. If the procedure returns a value, write the declare as a Function:

Declare Function publicname Lib "libname" [Alias "alias"] [([[ByVal] variable [As type] [,[ByVal]
variable [As type]]...])] As Type

12
If a procedure does not return a value, write the declare as a Sub:

Declare Sub publicname Lib "libname" [Alias "alias"] [([[ByVal] variable [As type] [,[ByVal]
variable [As type]]...])]

13
DLL procedures declared in standard modules are public by default and can be called
from anywhere in your application. DLL procedures declared in any other type of
module are private to that module, and you must identify them as such by preceding
the declaration with the Private keyword.

Procedure names are case-sensitive in 32-bit versions of Visual Basic. In previous,
16-bit versions, procedure names were not case-sensitive.

Specifying the Library
The Lib clause in the Declare statement tells Visual Basic where to find the .dll file
that contains the procedure. When you're referencing one of the core Windows
libraries (User32, Kernel32, or GDI32), you don't need to include the file name
extension:

Declare Function GetTickCount Lib "kernel32" Alias _
"GetTickCount" () As Long

14
For other DLLs, the Lib clause is a file specification that can include a path:

Declare Function lzCopy Lib "c:\windows\lzexpand.dll" _
(ByVal S As Integer, ByVal D As Integer) As Long

15
If you do not specify a path for libname, Visual Basic will search for the file in the
following order:

1. Directory containing the .exe file

2. Current directory

3. Windows 32-bit system directory (often but not necessarily \Windows\System32)

—6

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 6 of 23 Printed: 09/12/96 11:45 AM

4. Windows 16-bit system directory (often but not necessarily \Windows\System)

5. Windows directory (not necessarily \Windows)

6. Path environment variable
2

The following table lists the common operating environment library files.

Dynamic Link Library Description

Advapi32.dll Advanced API services library supporting numerous
APIs including many security and Registry calls

Comdlg32.dll Common dialog API library

Gdi32.dll Graphics Device Interface API library

Kernel32.dll Core Windows 32-bit base API support

Lz32.dll 32-bit compression routines

Mpr.dll Multiple Provider Router library

Netapi32.dll 32-bit Network API library

Shell32.dll 32-bit Shell API library

User32.dll Library for user interface routines

Version.dll Version library

Winmm.dll Windows multimedia library

Winspool.drv Print spooler interface that contains the print spooler
API calls

16

Working with Windows API Procedures that Use
Strings
When working with Windows API procedures that use strings, you'll need to add an
Alias clause to your declare statements to specify the correct character set. Windows
API functions that contain strings actually exist in two formats: ANSI and Unicode.
In the Windows header files, therefore, you'll get both ANSI and Unicode versions of
each function that contains a string.

For example, following are the two C-language descriptions for the SetWindowText
function. You'll note that the first description defines the function as
SetWindowTextA, where the trailing "A" identifies it as an ANSI function:

WINUSERAPI
BOOL
WINAPI
SetWindowTextA(

HWND hWnd,
LPCSTR lpString);

17
The second description defines it as SetWindowTextW, where the trailing "W"
identifies it as a wide, or Unicode function:

WINUSERAPI

—7

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 7 of 23 Printed: 09/12/96 11:45 AM

BOOL
WINAPI
SetWindowTextW(

HWND hWnd,
LPCWSTR lpString);

18
Because neither function is actually named "SetWindowText," you need to add an
Alias clause to the declare to point to the function you want to reference:

Private Declare Function SetWindowText Lib "user32" _
Alias "SetWindowTextA" (ByVal hwnd As Long, ByVal _
lpString As String) As Long

19
Note that the string that follows the Alias clause must be the true, case-sensitive name
of the procedure.

Important For API functions you use in Visual Basic, you should specify the
ANSI version of a function, because Unicode versions are only supported by
Windows NT — not Windows 95. Use the Unicode versions only if you can be
certain that your applications will be run only on Windows NT-based systems.

20

Passing Arguments by Value or by Reference
By default, Visual Basic passes all arguments by reference. This means that instead of
passing the actual value of the argument, Visual Basic passes a 32-bit address where
the value is stored. Although you do not need to include the ByRef keyword in your
Declare statements, you may want to do so to document how the data is passed.

Many DLL procedures expect an argument to be passed by value. This means they
expect the actual value, instead of its memory location. If you pass an argument by
reference to a procedure that expects an argument passed by value, the procedure
receives incorrect data and fails to work properly.

To pass an argument by value, place the ByVal keyword in front of the argument
declaration in the Declare statement. For example, the InvertRect procedure accepts
its first argument by value and its second by reference:

Declare Function InvertRect Lib "user32" Alias _
"InvertRectA" (ByVal hdc As Long, _
lpRect As RECT) As Long

21
You can also use the ByVal keyword when you call the procedure.

Note When you're looking at DLL procedure documentation that uses C
language syntax, remember that C passes all arguments except arrays by
value.

22
String arguments are a special case. Passing a string by value means you are passing
the address of the first data byte in the string; passing a string by reference means you
are passing the memory address where another address is stored; the second address
actually refers to the first data byte of the string. How you determine which approach

—8

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 8 of 23 Printed: 09/12/96 11:45 AM

to use is explained in the topic "Passing Strings to a DLL Procedure" later in this
chapter.

Nonstandard Names
Occasionally, a DLL procedure has a name that is not a legal identifier. It might have
an invalid character (such as a hyphen), or the name might be the same as a Visual
Basic keyword (such as GetObject). When this is the case, use the Alias keyword to
specify the illegal procedure name.

For example, some procedures in the operating environment DLLs begin with an
underscore character. While you can use an underscore in a Visual Basic identifier,
you cannot begin an identifier with an underscore. To use one of these procedures,
you first declare the function with a legal name, then use the Alias clause to reference
the procedure's real name:

Declare Function lopen Lib "kernel32" Alias "_lopen" _
(ByVal lpPathName As String, ByVal iReadWrite _
As Long) As Long

23
In this example, lopen becomes the name of the procedure referred to in your Visual
Basic procedures. The name _lopen is the name recognized in the DLL.

You can also use the Alias clause to change a procedure name whenever it's
convenient. If you do substitute your own names for procedures (such as using WinDir
for GetWindowsDirectoryA), make sure that you thoroughly document the changes so
that your code can be maintained at a later date.

Using Ordinal Numbers to Identify DLL
Procedures
In addition to a name, all DLL procedures can be identified by an ordinal number that
specifies the procedure in the DLL. Some DLLs do not include the names of their
procedures and require you to use ordinal numbers when declaring the procedures
they contain. Using an ordinal number consumes less memory in your finished
application and is slightly faster than identifying a procedure in a DLL by name.

Important The ordinal number for a specific API will be different with
different operating systems. For example, the ordinal value for
GetWindowsDirectory is 432 under Win95, but changes to 338 under Window
NT 4.0. In sum, if you expect your applications to be run under different
operating systems, don't use ordinal numbers to identify API procedures. This
approach can still be useful when used with procedures that are not APIs, or
when used in applications that have a very controlled distribution.

24
To declare a DLL procedure by ordinal number, use the Alias clause with a string
containing the number sign character (#) and the ordinal number of the procedure. For
example, the ordinal number of the GetWindowsDirectory function has the value 432
in the Windows kernel; you can declare the DLL procedure as follows:

—9

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 9 of 23 Printed: 09/12/96 11:45 AM

Declare Function GetWindowsDirectory Lib "kernel32" _
Alias "#432" (ByVal lpBuffer As String, _
ByVal nSize As Long) As Long

25
Notice that you could specify any valid name for the procedure in this case, because
Visual Basic is using the ordinal number to find the procedure in the DLL.

To obtain the ordinal number of a procedure you want to declare, you can use a utility
application, such as Dumpbin.exe, to examine the .dll file. (Dumpbin.exe is a utility
included with Microsoft Visual C++.) By running Dumpbin on a .dll file, you can
extract information such as a list of functions contained within the DLL, their ordinal
numbers, and other information about the code.

For More Information For more information on running the Dumpbin utility,
refer to the Microsoft Visual C++ documentation.

Flexible Argument Types
Some DLL procedures can accept more than one type of data for the same argument.
If you need to pass more than one type of data, declare the argument with As Any to
remove type restrictions.

For example, the third argument in the following declare (lppt As Any) could be
passed as an array of POINT structures, or as a RECT structure, depending upon your
needs:

Declare Function MapWindowPoints Lib "user32" Alias _
"MapWindowPoints" (ByVal hwndFrom As Long, _
ByVal hwndTo As Long, lppt As Any, _
ByVal cPoints As Long) As Long

26
While the As Any clause offers you flexibility, it also adds risk in that it turns off all
type checking. Without type checking, you stand a greater chance of calling the
procedure with the wrong type, which can result in a variety of problems, including
application failure. Be sure to carefully check the types of all arguments when using
As Any.

When you remove type restrictions, Visual Basic assumes the argument is passed by
reference. Include ByVal in the actual call to the procedure to pass arguments by
value. Strings are passed by value so that a pointer to the string is passed, rather than
a pointer to a pointer. This is further discussed in the section "Passing Strings to a
DLL Procedure."

Passing Strings to a DLL Procedure
In general, strings should be passed using ByVal, unless you are passing them to an
OLE 2.0 API or a Visual Basic procedure. Visual Basic uses a String data type known
as a BSTR, which is a data type defined by Automation (formerly called OLE
Automation). A BSTR is comprised of a header, which includes information about the
length of the string, and the string itself, which may include embedded nulls. A BSTR

—10

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 10 of 23 Printed: 09/12/96 11:45 AM

is passed as a pointer, so the DLL procedure is able to modify the string. (A pointer is
a variable that contains the memory location of another variable, rather than the actual
data.) Most BSTRs are Unicode, which means that each character takes two bytes.
BSTRs typically end with a two-byte two null character.

Figure 1.2 The BSTR type

3
The procedures in most DLLs (and in all procedures in the Windows API) recognize
LPSTR types, which are pointers to standard null-terminated C strings (also called
ASCIIZ strings). LPSTRs have no prefix. The following figure shows an LPSTR that
points to an ASCIIZ string.

Figure 1.3 The LPSTR type

4
If a DLL procedure expects an LPSTR (a pointer to a null-terminated string) as an
argument, pass the BSTR by value. Because a pointer to a BSTR is a pointer to the
first data byte of a null-terminated string, it looks like an LPSTR to the DLL
procedure.

For example, the sndPlaySound function accepts a string that names a digitized sound
(.wav) file and plays that file.

Private Declare Function sndPlaySound Lib "winmm.dll" _
Alias "sndPlaySoundA" (ByVal lpszSoundName As String, _
ByVal uFlags As Long) As Long

27
Because the string argument for this procedure is declared with ByVal, Visual Basic
passes a BSTR that points to the first data byte:

Dim SoundFile As String, ReturnLength As Long
SoundFile = Dir("c:\Windows\System\" & "*.wav")
Result = sndPlaySound(SoundFile, 1)

28
In general, use the ByVal keyword when passing string arguments to DLL procedures
that expect LPSTR strings. If the DLL expects a pointer to an LPSTR string, pass the
Visual Basic string by reference.

When passing binary data to a DLL procedure, pass a variable as an array of the Byte
data type, instead of a String variable. Strings are assumed to contain characters, and

—11

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 11 of 23 Printed: 09/12/96 11:45 AM

binary data may not be properly read in external procedures if passed as a String
variable.

If you declare a string variable without initializing it, and then pass it by value to a
DLL, the string variable is passed as NULL, not as an empty string (""). To avoid
confusion in your code, use the vbNullString constant to pass a NULL to an LPSTR
argument.

Passing Strings to DLLs that Use Automation
Some DLLs may be written specifically to work with Automation data types like
BSTR, using procedures supplied by Automation.

Because Visual Basic uses Automation data types as its own data types, Visual Basic
arguments can be passed by reference to any DLL that expects Automation data types.
Thus, if a DLL procedure expects a Visual Basic string as an argument, you do not
need to declare the argument with the ByVal keyword, unless the procedure
specifically needs the string passed by value.

Some DLL procedures may return strings to the calling procedure. A DLL function
cannot return strings unless it is written specifically for use with Automation data
types. If it is, the DLL probably supplies a type library that describes the procedures.
Consult the documentation for that DLL.

For More Information For information on Automation data types, see the OLE 2
Programmer's Reference, published by Microsoft Press.

Procedures That Modify String Arguments
A DLL procedure can modify data in a string variable that it receives as an argument.
However, if the changed data is longer than the original string, the procedure writes
beyond the end of the string, probably corrupting other data.

You can avoid this problem by making the string argument long enough so that the
DLL procedure can never write past the end of it. For example, the
GetWindowsDirectory procedure returns the path for the Windows directory in its
first argument:

Declare Function GetWindowsDirectory Lib "kernel32" _
Alias "GetWindowsDirectoryA" (ByVal lpBuffer As _
String, ByVal nSize As Long) As Long

29
A safe way to call this procedure is to first use the String function to set the returned
argument to at least 255 characters by filling it with null (binary zero) characters:

Path = String(255, vbNullChar)
ReturnLength = GetWindowsDirectory(Path, Len(Path))
Path = Left(Path, ReturnLength)

30
Another solution is to define the string as fixed length:

Dim Path As String * 255
ReturnLength = GetWindowsDirectory(Path, Len(Path))

—12

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 12 of 23 Printed: 09/12/96 11:45 AM

31
Both of these processes have the same result: They create a fixed-length string that
can contain the longest possible string the procedure might return.

Note Windows API DLL procedures generally do not expect string buffers
longer than 255 characters. While this is true for many other libraries, always
consult the documentation for the procedure.

32
When the DLL procedure calls for a memory buffer, you can either use the
appropriate data type, or use an array of the byte data type.

Passing Arrays to a DLL Procedure
You can pass individual elements of an array the same way you pass a variable of the
same type. When you pass an individual element, it will be passed as the base type of
the array. For example, you can use the sndPlaySound procedure to play a series
of .wav files stored in an array:

Dim WaveFiles(10) As String
Dim i As Integer, worked As Integer

For i = 0 to UBound(WaveFiles)
worked = sndPlaySound(WaveFiles(i), 0)

Next i
33

Sometimes you may want to pass an entire array to a DLL procedure. If the DLL
procedure was written especially for Automation, then you may be able to pass an
array to the procedure the same way you pass an array to a Visual Basic procedure:
with empty parentheses. Because Visual Basic uses Automation data types, including
SAFEARRAYs, the DLL must be written to accommodate Automation for it to accept
Visual Basic array arguments. For further information, consult the documentation for
the specific DLL.

If the DLL procedure doesn't accept Automation SAFEARRAYs directly, you can still
pass an entire array if it is a numeric array. You pass an entire numeric array by
passing the first element of the array by reference. This works because numeric array
data is always laid out sequentially in memory. If you pass the first element of an
array to a DLL procedure, that DLL then has access to all of the array's elements.

As an example, consider how you can use an API call to set tab stops within a text
box There are internal tab stops in multiple-line (but not single-line) text box controls:
If the text in the text box contains tab characters (character code 9), the text following
the tab character is aligned at the next tab stop. You can set the position of these tab
stops by calling the SendMessage function in the Windows API and passing an array
that contains the new tab stop settings.

Private Declare Function SendMessageSetTabs Lib _
"user32" Alias "SendMessageA" (ByVal hwnd As Long, _
ByVal wMsg As Long, ByVal wParam As Long, _
lParam As Any) As Long
Const EM_SETTABSTOPS = &HCB

—13

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 13 of 23 Printed: 09/12/96 11:45 AM

Sub ChangeTabs(anyText As TextBox, tabcount As Integer)
Dim i As Integer
Dim alngTabs() As Long
Dim lngRC As Long
ReDim alngTabs(tabcount - 1)

For i = 0 To UBound(alngTabs)
alngTabs(i) = (i + 1) * 96
' Set value to specify tabs in "dialog units."

Next i
' Call with null pointer to empty existing
' tab stops.
lngRC = SendMessageSetTabs(anyText.hwnd, _
EM_SETTABSTOPS, 0, vbNullString)
' Pass first element in array; other elements
' follow it in memory.
lngRC = SendMessageSetTabs(anyText.hwnd, _
EM_SETTABSTOPS, tabcount, alngTabs(0))
anyText.Refresh

End Sub
34

When you call this procedure, you specify the name of the text box and the number of
tab stops you want to use for the indent. For example:

Private Sub Command1_Click()
ChangeTabs Text1, 4

End Sub
35

This approach will also work for string arrays. A DLL procedure written in C treats a
string array as an array of pointers to string data, which is the same way Visual Basic
defines a string array.

For More Information For more information on SAFEARRAYs and other
Automation data types, see the Microsoft Press book, OLE 2 Programmer's
Reference.

Passing User-Defined Types to a DLL
Procedure

Some DLL procedures take user-defined types as arguments. (User-defined types are
referred to as "structures" in C and as "records" in Pascal.) As with arrays, you can
pass the individual elements of a user-defined type the same way you would pass
ordinary numeric or string variables.

You can pass an entire user-defined type as a single argument if you pass it by
reference. User-defined types cannot be passed by value. Visual Basic passes the
address of the first element, and the rest of the elements of a user-defined type are
stored in memory following the first element. Depending on the operating system,
there may also be some padding.

—14

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 14 of 23 Printed: 09/12/96 11:45 AM

For example, several procedures in the operating environment DLLs accept a user-
defined type for a rectangle, which has the following structure:

Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type
36

Two of the procedures that accept a rectangle are DrawFocusRect, which draws a
dotted outline around the specified rectangle, and InvertRect, which inverts the colors
of the specified rectangle. To use the procedures, place these declarations in the
Declarations section of a form or standard module:

Declare Function DrawFocusRect Lib "User32" Alias _
"DrawFocusRect" (ByVal hdc As Long, _
lpRect As RECT) As Long

Declare Function InvertRect Lib "User32" Alias _
"InvertRect" (ByVal hdc As Long, _
lpRect As RECT) As Long

Dim MouseRect As RECT
37

Now you can use the following Sub procedures to call the DLLs:

Private Sub Form_MouseDown (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

ScaleMode = 3
If Button And 1 Then

MouseRect.Left = X
MouseRect.Top = Y
MouseRect.Right = X
MouseRect.Bottom = Y

End If
End Sub

Private Sub Form_MouseUp (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

ScaleMode = 3
If Not (Button And 1) Then

MouseRect.Right = X
MouseRect.Bottom = Y
InvertRect hDC, MouseRect

End If
End Sub

Private Sub Form_MouseMove (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

ScaleMode = 3
If Button And 1 Then

DrawFocusRect hDC, MouseRect
MouseRect.Right = X
MouseRect.Bottom = Y

—15

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 15 of 23 Printed: 09/12/96 11:45 AM

DrawFocusRect hDC, MouseRect
End If

End Sub
38

User-defined types can contain objects, arrays, and BSTR strings, although most DLL
procedures that accept user-defined types do not expect them to contain string data. If
the string elements are fixed-length strings, they look like null-terminated strings to
the DLL and are stored in memory like any other value. Variable-length strings are
incorporated in a user-defined type as pointers to string data. Four bytes are required
for each variable-length string element.

Note When passing a user-defined type that contains binary data to a DLL
procedure, store the binary data in a variable of an array of the Byte data
type, instead of a String variable. Strings are assumed to contain characters,
and binary data may not be properly read in external procedures if passed as
a String variable.

39

Passing Function Pointers to DLL
Procedures and Type Libraries

If you're familiar with the C programming language, function pointers may be
familiar to you. If you're not, the concept merits some explanation. A function pointer
is a convention that enables you to pass the address of a user-defined function as an
argument to another function you've declared for use within your application. By
using function pointers, you can now call functions like EnumWindows to list the
open windows on the system, or EnumFontFamilies to catalog all of the current fonts.
You can also use them to gain access to many other functions from the Win32 API
that have not previously been supported in Visual Basic.

For Visual Basic 5.0, several limitations apply to the use of function pointers. For
details, see "Limitations and Risks with Function Pointers" later in this topic.

Learning About Function Pointers
The use of function pointers is best illustrated with an example. To start, look at the
EnumWindows function from the Win32 API:

Declare Function EnumWindows lib "user32" _
(ByVal lpEnumFunc as Long, _
ByVal lParam as Long) As Long

40
EnumWindows is an enumeration function, which means that it can list the handle of
every open window on your system. EnumWindows works by repeatedly calling the
function you pass to its first argument (lpEnumFunc). Each time EnumWindows calls
the function, EnumWindows passes it the handle of an open window.

—16

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 16 of 23 Printed: 09/12/96 11:45 AM

When you call EnumWindows from your code, you pass a user-defined function to
this first argument to handle the stream of values. For example, you might write a
function to add the values to a list box, convert the hWnd values to window names, or
take whatever action you choose.

To specify that you're passing a user-defined function as an argument, you precede the
name of the function with the AddressOf keyword. Any suitable value can be passed
to the second argument. For example, to pass the function MyProc as an argument,
you might call the EnumWindows procedure as follows:

x = EnumWindows(AddressOf MyProc, 5)
41

The user-defined function you specify when you call the procedure is referred to as
the callback function. Callback functions (or "callbacks," as they are commonly
called) can perform any action you specify with the data supplied by the procedure.

A callback function must have a specific set of arguments, as determined by the API
from which the callback is referenced. Refer to your API documentation for
information on the necessary arguments and how to call them.

Using the AddressOf Keyword
Any code you write to call a function pointer from Visual Basic 5.0 must be placed in
a standard .BAS module — you can't put the code in a class module or attach it to a
form. When you call a declared function using the AddressOf keyword, you should be
aware of the following conditions:

· AddressOf can only be used immediately preceding an argument in an argument
list; that argument can be the name of a user-defined sub, function, or property.

· The sub, function, or property you call with AddressOf must be in the same project
as the related declarations and procedures.

· You can only use AddressOf with user-defined subs, functions, or properties —
you cannot use it with external functions declared with the Declare statement,
or with functions referenced from type libraries.

· You can pass a function pointer to an argument that is typed As Any or As Long in
a declared Sub, Function, or user-defined type definition.

5

Storing a Function Pointer in a Variable
At times, you may need to store a function pointer in an intermediate variable before
passing it to the DLL. This is useful if you want to pass function pointers from one
Visual Basic function to another. It's required if you are calling a function like
RegisterClass, where you need to pass the pointer through an argument to a structure
(WndClass), which contains a function pointer as one of its elements.

To assign a function pointer to an element in a structure, you write a wrapper
function. For example, the following code creates the wrapper function FnPtrToLong,
which can be used to put a function pointer in any structure:

—17

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 17 of 23 Printed: 09/12/96 11:45 AM

Function FnPtrToLong (ByVal lngFnPtr As Long) As Long
FnPtrToLong = lngFnPtr

End Function
42

To use the function, you first declare the type, then call FnPtrToLong. You pass
AddressOf plus your callback function name for the second argument.

Dim mt as MyType
mt.MyPtr = FnPtrToLong(AddressOf MyCallBackFunction)

43

Subclassing
Subclassing is a technique that enables you to intercept Windows messages being sent
to a form or control. By intercepting these messages, you can then write your own
code to change or extend the behavior of the object. Subclassing can be complex, and
a thorough discussion of it is beyond the scope of this book. The following example
offers a brief illustration of the technique.

Important When Visual Basic is in break mode, you can't call vtable
methods or AddressOf functions. As a safety mechanism, Visual Basic simply
returns 0 to the caller of an AddressOf function without calling the function. In
the case of subclassing, this means that 0 is returned to Windows from the
WindowProc. Windows requires nonzero return values from many of its
messages, so the constant 0 return may create a deadlock situation between
Windows and the Visual Basic, forcing you to end the process.

44
This application consists of a simple form with two command buttons. The code is
designed to intercept Windows messages being sent to the form and to print the
values of those messages in the Immediate window.

The first part of the code consists of declarations for the API functions, constant
values, and variables:

Declare Function CallWindowProc Lib "user32" Alias _
"CallWindowProcA" (ByVal lpPrevWndFunc As Long, _

ByVal hwnd As Long, ByVal Msg As Long, _
ByVal wParam As Long, ByVal lParam As Long) As Long

Declare Function SetWindowLong Lib "user32" Alias _
"SetWindowLongA" (ByVal hwnd As Long, _
ByVal nIndex As Long, ByVal dwNewLong As Long) As Long

Public Const GWL_WNDPROC = -4
Global lpPrevWndProc As Long
Global gHW As Long

45
Next, two subroutines enable the code to hook into the stream of messages. The first
procedure (Hook) calls the SetWindowLong function with the GWL_WNDPROC
index to create a subclass of the window class that was used to create the window. It
then uses the AddressOf keyword with a callback function (WindowProc) to intercept
the messages and print their values in the Immediate window. The second procedure

—18

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 18 of 23 Printed: 09/12/96 11:45 AM

(Unhook) turns off subclassing by replacing the callback with the original Windows
procedure.

Public Sub Hook()
lpPrevWndProc = SetWindowLong(gHW, GWL_WNDPROC, _
AddressOf WindowProc)

End Sub

Public Sub Unhook()
Dim temp As Long
temp = SetWindowLong(gHW, GWL_WNDPROC, _
lpPrevWndProc)

End Sub

Function WindowProc(ByVal hw As Long, ByVal uMsg As _
Long, ByVal wParam As Long, ByVal lParam As Long) As _
Long

Debug.Print "Message: "; hw, uMsg, wParam, lParam
WindowProc = CallWindowProc(lpPrevWndProc, hw, _
uMsg, wParam, lParam)

End Function
46

Finally, the code for the form sets the initial hWnd value, and the code for the buttons
simply calls the two subroutines:

Private Sub Form_Load()
gHW = Me.hwnd

End Sub

Private Sub Command1_Click()
Hook

End Sub

Private Sub Command2_Click()
Unhook

End Sub
47

Limitations and Risks with Function Pointers
Working with function pointers can be unforgiving. You lose the stability of Visual
Basic's development environment any time you call a DLL, but when working with
function pointers, it can be especially easy to cause the application to fail and to lose
your work. Save often and back up your work as necessary. Following are notes on
some areas that require special attention when working with function pointers:

· Debugging. If your application fires a callback function while in break mode, the
code will be executed, but any breaks or steps will be ignored. If the callback
function generates an exception, you can catch it and return the current value.
Resets are prohibited in break mode when a callback function is on the stack.

· Thunks. Thunking is the way that Windows enables relocatable code. If you delete
a callback function in break mode, its thunk is modified to return 0. This value
will be correct most of the time — but not all of the time. If you delete a

—19

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 19 of 23 Printed: 09/12/96 11:45 AM

callback function in break mode and then type it again, it's possible that some
callees will not know about the new address. Thunks aren't used in the .exe ¾
the pointer is passed directly to the entry point.

· Passing a function with the wrong signature. If you pass a callback function that
takes a different number of arguments than the caller expects, or mistakenly
calls an argument with ByRef or ByVal, your application may fail. Be careful to
pass a function with the correct signature.

· Passing a function to a Windows procedure that no longer exists. When
subclassing a window, you pass a function pointer to Windows as the Windows
procedure (WindowProc). When running your application in the IDE, however,
it's possible that the WindowProc will be called after the underlying function
has already been destroyed. This will likely cause a general protection fault and
may bring down the Visual Basic development environment.

· "Basic to Basic" function pointers are not supported. Pointers to Visual Basic
functions cannot be passed within Visual Basic itself. Currently, only pointers
from Visual Basic to a DLL function are supported.

6

Passing Other Types of Information to a
DLL Procedure

Visual Basic supports a wide range of data types, some of which may not be
supported by the procedures in certain dynamic-link libraries. The following topic
describes how to handle some of the special cases you may find when using Visual
Basic variables with DLL procedures.

Passing Null Pointers
Some DLL procedures may sometimes expect to receive either a string or a null value
as an argument. If you need to pass a null pointer to a string, declare the argument As
String and pass the constant vbNullString.

For example, the FindWindow procedure can determine if another application is
currently running on your system. It accepts two string arguments, one for the class
name of the application, and another for the window title bar caption:

Declare Function FindWindow Lib "user32" Alias _
"FindWindowA" (ByVal lpClassName As String, _
ByVal lpWindowName As String) As Long

48
Either of these arguments can be passed as a null value. Passing a zero-length string
("") does not work, however, as this passes a pointer to a zero-length string. The value
of this pointer will not be zero. You instead need to pass an argument with the true
value of zero. The easiest way to do this is by using the constant value vbNullString
for the appropriate argument:

—20

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 20 of 23 Printed: 09/12/96 11:45 AM

hWndExcel = FindWindow(vbNullString, "Microsoft Excel")
49

Another way to handle this situation is to rewrite the declare to substitute a Long data
type for the argument that you want to pass as null, and then call that argument with
the value 0&. For example:

Declare Function FindWindowWithNull Lib "user32" -
Alias "FindWindowA" (ByVal lpClassName As Long, _
ByVal lpWindowName As String) As Long

hWndExcel = FindWindow(0&, "Microsoft Excel")
50

Passing Properties
Properties must be passed by value. If an argument is declared with ByVal, you can
pass the property directly. For example, you can determine the dimensions of the
screen or printer in pixels with this procedure:

Declare Function GetDeviceCaps Lib "gdi32" Alias _
"GetDeviceCaps" (ByVal hdc As Long, _
ByVal nIndex As Long) As Long

51
You can also pass the hDC property of a form or the Printer object to this procedure to
obtain the number of colors supported by the screen or the currently selected printer.
For example:

Private Sub Form_Click ()
Const PLANES = 14, BITS = 12

Print "Screen colors ";
Print GetDeviceCaps(hDC, PLANES)* 2 ^ _
GetDeviceCaps(hDC, BITS)
Print "Printer colors ";
Print GetDeviceCaps(Printer.hDC, PLANES) * _
2 ^ GetDeviceCaps(Printer.hDC, BITS)

End Sub
52

To pass a property by reference, you must use an intermediate variable. For example,
suppose you want to use the GetWindowsDirectory procedure to set the Path property
of a file list box control. This example will not work:

ReturnLength = GetWindowsDirectory(File1.Path,_
Len(File1.Path))

53
Instead, use the following code to set the property:

Dim Temp As String, ReturnLength As Integer
Temp = String(255, 0)
ReturnLength = GetWindowsDirectory(Temp, Len(Temp))
Temp = Left(Temp, ReturnLength)
File1.Path = Temp

54
Use this technique with numeric properties if you want to pass them to DLL
procedures that accept arguments by reference.

Using Handles with DLLs
—21

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 21 of 23 Printed: 09/12/96 11:45 AM

A handle is a unique Long value defined by the operating environment. It is used to
refer to objects such as forms or controls. The operating environment DLL procedures
make extensive use of handles — handles to windows (hWnd), handles to device
contexts (hDC), and so on. When a procedure takes a handle as an argument, always
declare it as a ByVal Long. DLL functions that return a handle can be declared as
Long functions. Handles are identifier (ID) numbers, not pointers or numeric values;
never attempt mathematical operations on them.

The hWnd property of forms and nongraphical controls and the hDC property of
forms and picture box controls supply valid handles that you can pass to DLL
procedures. Like any other property passed to a DLL procedure, they can be passed
only by value.

Passing Variants
Passing an argument of type Variant is similar to passing any other argument type, as
long as the DLL procedure uses the Automation VARIANT data structure to access
the argument data. To pass Variant data to a argument that is not a Variant type, pass
the Variant data ByVal.

Converting C Declarations to Visual Basic
The procedures in DLLs are most commonly documented using C language syntax.
To call these procedures from Visual Basic, you need to translate them into valid
Declare statements and call them with the correct arguments.

As part of this translation, you must convert the C data types into Visual Basic data
types and specify whether each argument should be called by value (ByVal) or
implicitly, by reference (ByRef). The following table lists common C language data
types and their Visual Basic equivalents for 32-bit versions of Windows.

C language data type In Visual Basic declare
as

Call with

ATOM ByVal variable As Integer An expression that
evaluates to an Integer

BOOL ByVal variable As Long An expression that
evaluates to a Long

BYTE ByVal variable As Byte An expression that
evaluates to a Byte

CHAR ByVal variable As Byte An expression that
evaluates to a Byte

COLORREF ByVal variable As Long An expression that
evaluates to a Long

DWORD ByVal variable As Long An expression that
evaluates to a Long

HWND, HDC, HMENU, ByVal variable As Long An expression that

—22

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 22 of 23 Printed: 09/12/96 11:45 AM

etc. (Windows handles) evaluates to a Long

INT, UINT ByVal variable As Long An expression that
evaluates to a Long

LONG ByVal variable As Long An expression that
evaluates to a Long

LPARAM ByVal variable As Long An expression that
evaluates to a Long

LPDWORD variable As Long An expression that
evaluates to a Long

LPINT, LPUINT variable As Long An expression that
evaluates to a Long

LPRECT variable As type Any variable of that user-
defined type

LPSTR, LPCSTR ByVal variable As String An expression that
evaluates to a String

LPVOID variable As Any Any variable (use ByVal
when passing a string)

LPWORD variable As Integer An expression that
evaluates to an Integer

LRESULT ByVal variable As Long An expression that
evaluates to a Long

NULL As Any or
ByVal variable As Long

ByVal Nothing or ByVal 0&
or vbNullString

SHORT ByVal variable As Integer An expression that
evaluates to an Integer

VOID Sub procedure Not applicable

WORD ByVal variable As Integer An expression that
evaluates to an Integer

WPARAM ByVal variable As Long An expression that
evaluates to a Long

—23

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 7 Page: 23 of 23 Printed: 09/12/96 11:45 AM

	DLLs or Automation?
	Contents
	Using a DLL Procedure in Your Application
	Declaring a DLL Procedure
	Calling a DLL Procedure

	Accessing the Microsoft Windows API
	Using the API Viewer Application
	Adding Procedures to Your Visual Basic Code
	Converting Text Files to Jet Database Files
	Loading an API File Automatically from the Command Line
	Viewing the Win32api.txt file with a Text Editor
	Using Procedures from Other Sources

	Declaring a DLL Procedure
	Specifying the Library
	Working with Windows API Procedures that Use Strings
	Passing Arguments by Value or by Reference
	Nonstandard Names
	Using Ordinal Numbers to Identify DLL Procedures
	Flexible Argument Types

	Passing Strings to a DLL Procedure
	Passing Strings to DLLs that Use Automation
	Procedures That Modify String Arguments

	Passing Arrays to a DLL Procedure
	Passing User-Defined Types to a DLL Procedure
	Passing Function Pointers to DLL Procedures and Type Libraries
	Learning About Function Pointers
	Using the AddressOf Keyword
	Storing a Function Pointer in a Variable
	Subclassing
	Limitations and Risks with Function Pointers

	Passing Other Types of Information to a DLL Procedure
	Passing Null Pointers
	Passing Properties
	Using Handles with DLLs
	Passing Variants

	Converting C Declarations to Visual Basic

