
This chapter describes the procedures you’ll use to debug, register, and distribute your
component, and the version compatibility features that allow you to enhance your
component without breaking existing applications that use it.

In addition, you’ll find topics related to distributing components, including Help files,
browser strings, and creating versions of your component for use internationally.

Contents
· Testing and Debugging ActiveX Components

· Generating and Handling Errors

· Providing User Assistance for ActiveX Components

· Deploying ActiveX Components

· Version Compatibility
1

For More Information See “Debugging Your Code and Handling Errors,”
“International Issues,” and “Distributing Your Applications.”

1

Testing and Debugging ActiveX
Components

Visual Basic provides two different component debugging scenarios. For in-process
components, you can load a test project (Standard Exe or ActiveX Exe) and one or
more component projects into the development environment as a project group. You
can run all the projects in the group together, and step directly from test project code
into in-process component code.

Out-of-process components can be debugged using two instances of the development
environment. One instance of Visual Basic runs the test project, while the second runs
the component project. You can step directly from test project code into component
code, and each instance of Visual Basic has its own set of breakpoints and watches.

Combinations of these scenarios are possible. You can debug an application that uses
both in-process and out-of-process components, as shown in Figure 7.1.

—1

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 1 of 35 Printed: 08/12/96 09:35 AM

Figure 7.1 Debugging in-process and out-of-process components

2
When an ActiveX Exe project is in run mode, like MyComponent in Figure 7.1, the
client application (MyApp) can create objects and access their properties and
methods. Each out-of-process component a client uses must be in its own instance of
the development environment. The client application and all of its in-process
components — DLLs and OCXs — can run together in a single instance of the
development environment.

For More Information There are special considerations for debugging and testing
ActiveX control projects, and other project types that include private controls. See
“Setting Up a New Control Project and Test Project” and “Debugging Controls” in
“Building ActiveX Controls.” The fundamentals of debugging are covered in
“Debugging Your Code and Handling Errors.”

2

How to Test ActiveX Components
To test a component, you need to create a client application. Components exist to
provide objects for clients, which makes it hard to test them by themselves.

Your test project should invoke all the properties, methods, and events of each object
provided by your component, testing both valid and invalid values of all arguments.

For example, rather than simply making one call to the Spin method of the Widget
object, make a series of calls that try valid and invalid values of all arguments. Pay
particular attention to the highest and lowest valid values, as these boundary
conditions are a frequent source of problems.

Test for both functionality and error cases. Make sure your component behaves well
in case of errors, such as unexpected input. It’s especially important to make sure

—2

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 2 of 35 Printed: 08/12/96 09:35 AM

you’ve covered all error conditions in event procedures of in-process components,
because such errors can be fatal to client applications that use the component.

Tip Your test project can also be used to test the compiled component, as
described in “How to Test Compiled Components.”

3

Make the Test Program Generic for Better
Coverage
You can improve your testing process by making the test program more generic. For
example, if you create a text box for each argument of the Spin method, and a button
to invoke the method, you can use an automated test tool such as Microsoft Test to
maintain and run comprehensive test suites. This makes it easier to test combinations
of properties and methods.

Testing Components as Part of an Application
If you’re creating components as part of an application, you can use the application
itself as the test program. In theory, thorough testing of the application will discover
any problems with its components.

In practice, however, this is rarely true. An application may not exercise all the
interfaces of the components it uses, even under stress testing.

It’s also a lot more work to set up test cases when you have to figure out what
application behavior must be tested in order to test a particular feature of the
component. You’ll be better served by a comprehensive test program that directly
tests each element of each object’s interface.

If each component has been tested separately, testing your application with the
components provides an extra level of quality assurance.

Creating a Test Project
The test project must be an Exe project.

The way you set the test project up depends on whether you’re testing an in-process
or out of process component. The reason for this is explained in “Testing and
Debugging ActiveX Components.”

For More Information See “Testing and Debugging ActiveX Components” for a
list of topics related to testing and debugging.

4

Creating a Test Project for an In-Process Component
This topic describes explains how to set up test projects to exercise most of the
objects in-process components can provide.

—3

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 3 of 35 Printed: 08/12/96 09:35 AM

 To create a test project for an in-process component

1 The test project is loaded in the same copy of the development environment where
your component project is loaded. On the File menu, click Add Project to open
the Add Project dialog box, click the Standard Exe icon to select it, then click
OK to add a Standard Exe project to the project group.

1The caption of the Project window changes to Project Group, with a default
name, to indicate that multiple projects are loaded.

2As described in “How to Test ActiveX Components,” use an ActiveX Exe project
as your test project if your component implements call-backs.

2 On the File menu, click Save Project Group to save the group containing the
component and test project. From now on, you can open both projects simply
by opening the project group.

3 (ActiveX control components skip this step.) Make sure the test project is active —
that is, that one of its files is highlighted in the Project window. On the Project
menu, click References to open the References dialog box. Locate your
component in the list, and check it.

1Note When setting up a test program for ActiveX control projects, don’t
set a reference. A control project automatically adds itself to the
Components dialog box the first time you place a control on a test project
form. For additional information, see “Debugging Controls” in “Building
ActiveX Controls.”

5
3If your component still does not appear in the References dialog box of your test
project, make sure at least one class module in the component has its Instancing
property set to a value other than Private and PublicNotCreatable.

4 In the Project window, right-click the test project, and click Set As Start Up on
the context menu to make the test project the one that runs when you press F5.

2Note Because ActiveX control projects cannot be startup projects, a test
project added to an ActiveX control project will automatically assume the
startup role. If the test project entry in the Project window is in bold-face
type, the test project is already the startup project.

6
5 Add code to test the properties and methods of each public class provided by your

component.
3

With the test project selected in the Project window, you can use the Object Browser
to verify that the public classes, methods, and properties of your component are
available. You can also use the Object Browser to examine and add description
strings, and to verify that Help topics are correctly linked.

The view you get in the Object Browser differs depending on which project is
currently active — that is, which one is selected in the Project window. When your

—4

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 4 of 35 Printed: 08/12/96 09:35 AM

component project is active, the Object Browser will show both public members and
Friend functions. When the test project is active, only the public members are visible.

For More Information Friend functions are discussed in “Private
Communications Between Your Objects” in “General Principles of Component
Design.” Special considerations for debugging ActiveX control projects, including
running code at design time, are covered in “Debugging Controls” in “Building
ActiveX Controls.”

7

Using Break on Error in Components
You can change the way Visual Basic enters break mode when an error occurs in your
component by setting the Error Trapping option in your component project.

In your component project, choose Options from the Tools menu to open the Options
dialog box, and select the General tab. There are three options for error trapping, as
described below.

Note When you start an instance of Visual Basic, the setting for Error
Trapping defaults to Break in Class Module.

8
Suppose you have a component that provides a Widget object that has a Spin method.
The following descriptions assume that the test application has called the Spin
method of the Widget object, and that an error has occurred in the Spin method’s
code.

· Break on All Errors: The component project is activated, and the Spin method’s
code window receives the focus. The line of code that caused the error is
highlighted. Visual Basic always enters break mode on such an error, even if
error handling is enabled in the Spin method.

3Note You can press ALT+F8 or ALT+F5 to step or run past the error.
9

· Break in Class Module: If error handling is not enabled in the Spin method, or if
you are deliberately raising an error for the client by calling the Raise method
of the Err object in the Spin method’s error handler, the component project is
activated, and the Spin method’s code window receives the focus. The line of
code that caused the error is highlighted.

4Note You can press ALT+F8 or ALT+F5 to step or run past the error.
10

4If error handling is enabled in Spin, then the error handler is invoked. As long as
you don’t raise an error in the error handler, Visual Basic does not enter break
mode.

· Break on Unhandled Errors: Visual Basic never enters break mode in properties or
methods of the component. If error handling is not enabled in the client
procedure that called the Spin method, execution stops on the line of code that
made the call.

—5

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 5 of 35 Printed: 08/12/96 09:35 AM

5To understand the behavior of Break on Unhandled Errors in a component
project, remember that the component’s properties and methods are always called
by somebody else. An error in a property or method can always be handled by
passing it up the call tree into the client procedure that called the property or
method.

4
Note When an out-of-process component enters break mode, focus may not
immediately switch to the component project. If you click anywhere on the
client, the Component Busy dialog box will be displayed. Click the Switch To
button to give the focus to the component project.

11
For More Information See “Debugging Your Code and Handling Errors.”

12

How to Test Compiled Components
When you choose Make from the File menu, your component will be registered
automatically in the Windows Registry. You can switch your test application between
the component project and the compiled component using the procedures in this topic.

In-Process Components
The following procedures perform the switch for an in-process component (ActiveX
DLL project or ActiveX control project).

Û To switch from an in-process component project to the compiled .dll
or .ocx file

6 On the File menu, click Make <projectname> to create the compiled in-process
component.

7 In the Project window, select the component project.

8 On the File menu, click Remove <projectname> to remove the component
project from the project group.

6A warning message will appear: “The project is referenced from another project.
Are you sure you want to remove it?” Click OK to remove the project.

9 Press F5 to run the test project.

7Visual Basic automatically switches references to the compiled .ocx or .dll file.
5

 To switch back to testing your in-process component project

10 On the File menu, click Add Project to open the Add Project dialog box.

11 Use the Recent or Existing tab to open your component project.

12 Press F5 to run the test project.

8Visual Basic automatically switches references back to the component project.
6

—6

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 6 of 35 Printed: 08/12/96 09:35 AM

Testing Your Component with Other
Applications
You can test your component from any application that can make Automation calls.
For example, you can open a Microsoft Excel module, add a reference to your
component by choosing References from the Tools menu, and write procedures to
create and use objects provided by your component.

Even if you do not expect your component to be used as an extension of end user
software tools like Microsoft Excel and Microsoft Access, it’s a good idea to test it
with such tools. The more programming tools your component works with, the more
value it will have for your company or for your customers.

For More Information See “Testing and Debugging ActiveX Components” for a
list of topics related to testing and debugging.

13

Generating and Handling Errors in ActiveX
Components

There’s no such thing as an unhandled error in a component. Untrapped errors in a
method of your component, or errors you generate using the Raise method of the Err
object, will be raised in the client application that called the method.

Raising errors or returning error codes to the client is the appropriate behavior for
components. A well behaved component does not intrude on the client application’s
user interface by displaying message boxes containing error text.

Users of an application may be blissfully unaware that your component is part of the
application they’re using. Seeing error messages from a program unknown to them
will not improve their day, or help them solve the problem.

For More Information The basics of error handling are discussed in “Debugging
Your Code and Handling Errors.”

14

Deciding How to Generate Error Messages
When an application calls a method of an object your component provides, there are
two general ways in which the method can provide error information.

· Basic-style: The method can raise an error. The client application can implement
an error handler to trap errors that may be raised by the method.

· Windows API-style: The value returned by the method can be an error code. The
client application can examine the return value to determine whether an error
has occurred.

7

—7

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 7 of 35 Printed: 08/12/96 09:35 AM

There are a number of programming tradeoffs to consider when you select an error
generation strategy for your component, but the most important consideration should
be the convenience of the developer who will use your component.

For example, if your methods always return an error value, the developer using your
component must use in-line error handling, that is, the developer must always test the
return value after calling a method. This is the way Windows API calls work.

If you raise errors, on the other hand, the developer has the choice of implementing
in-line error handling (On Error Resume Next) or writing error-handling routines (On
Error GoTo). This flexibility is a hallmark of the coding style familiar to Basic
developers.

Be Consistent
Whichever error generation strategy you adopt, be consistent. Developers will not
appreciate having to test return values from some methods, and trap errors from
others. The more difficult it is to use a component, the less benefit there is from re-
using the code.

If you decide to return error values instead of raising them, it’s better for all return
values to be error codes. This means that if a method also returns a data value, you
must use a ByRef parameter for the data. While this is an inconvenience for the user
of the method, it’s less of an inconvenience than having to test the data type of a
return value, to see whether it’s an error, before using it as a data value.

Note Client applications that use out-of-process components should always
employ some form of error handling, because failures in the underlying cross-
process communication layer will be raised as errors in the client application.

15
For More Information “Raising Errors from Your Component” discusses
standards and techniques for raising errors from ActiveX components.

16

Guidelines for Raising Errors from Your Component
Use the Raise method of the Err object to raise errors that can be trapped by client
applications. When you call the Raise method in the error handler of one of your
methods or Property procedures, or when error handling is turned off (On Error GoTo
0), the error will be raised in the client application, in the procedure that directly
called your method.

If the procedure that called your method has no error handler, the error condition
moves up the call tree of the client until it reaches a procedure that has an error
handler, just as any other error would.

When raising an error condition from your component, you don’t need to worry about
whether the client is written in Visual Basic, Microsoft Visual C++, or another
programming language. Any client application can receive the errors your component
raises.

—8

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 8 of 35 Printed: 08/12/96 09:35 AM

Here are a few guidelines you should follow when raising errors from a component.

· The error number you return to client applications is generated by adding an
intrinsic constant (vbObjectError) to your internal error number. The resulting
value is the one you should document for your users.

· The internal error numbers you add to vbObjectError should be in the range 512 to
65535 (&H200 to &HFFFF). Numbers below 512 may conflict with values
reserved for use by the system.

· Establish a “fatal error” or “general failure” code and message for conditions from
which your component can’t recover.

· When calling Err.Raise, supply both an error number and a text string describing
the error.

· Document your errors in the Help file for your component. For the convenience of
your users, you may want to show error numbers in both decimal and
hexadecimal format.

8
For example, you might implement the SpinDirection property of the Widget object
as a Property procedure, to ensure that it accepts only certain values, as in the
following code fragment from the Widget class module of the hypothetical
SmallMechanicals component.

' Enumeration for SpinDirection property values.
' (The prefix "sm" identifies it as belonging to the
' SmallMechanicals component.)
Public Enum smSpinDirection

smSDClockwise
smSDCounterClockwise

End Enum

' Module-level storage for SpinDirection property.
Private msdSpinDirection As smSpinDirection

' Implementation of the SpinDirection property.
Property Get SpinDirection() As smSpinDirection

SpinDirection = msdSpinDirection
End Property

Property Let SpinDirection(ByVal sdNew As _
smSpinDirection)

' The Select Case does nothing if spdNew contains
' a valid value.
Select Case sdNew

Case smSDClockwise
Case smSDCounterClockwise
Case Else

Err.Raise _
(ERR_SPN_INVALID + vbObjectError), _
CMP_SOURCENAME, _
LoadResString(ERR_SPN_INVALID)

End Select

—9

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 9 of 35 Printed: 08/12/96 09:35 AM

' If no error, assign the new property value.
msdSpinDirection = sdNew

End Property
17

The code above assumes that ERR_SPN_INVALID and CMP_SOURCENAME are
public constants declared in a standard module, and that error text strings are stored in
a resource file.

Because there is no error handler in the Property Let procedure used to set the value
of the Spin property, the error is raised in the client application, in the procedure that
attempted to set the invalid value.

The text string for the error message is loaded from the component project’s resource
file, using the internal error number as an index. This technique reduces the amount
of memory required to run the component. By concentrating all the text strings in one
place, it also simplifies the creation of international versions of the component.

Note Programmers who have used the C++ language will recognize
vbObjectError as facility interface (FACILITY_ITF), the base constant for the
range of errors reserved for a component’s interface.

18
For More Information “Handling Errors in a Component” discusses the handling
of internal errors, particularly those raised by components your component is using.
Providing error messages in multiple languages is discussed in “International Issues.”

19

Handling Errors in a Component
When authoring a component, you should be prepared to handle three types of errors:

· Errors generated in your component code that you handle internally.

· Errors generated in your component code that you want to pass back to the client
application.

· Errors generated by another component from which your component has obtained
object references.

9

Handling Errors Internally
Handling the first of these three error types is no different for a component than for
any other application developed using Visual Basic. This type of error handling is
covered in “Debugging Your Code and Handling Errors.”

Passing Errors Back to the Client
As outlined in “Raising Errors from Your Component,” you can use the Raise method
of the Err object to raise errors in a client application that calls methods provided by
your component. For the error to be raised in the client, you must call Raise from
your method’s error-handling routine, or with error handling disabled, as in the
following fragment of code from the Run method of a hypothetical Widget object.

—10

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 10 of 35 Printed: 08/12/96 09:35 AM

Public Sub Run()
' Use in-line error handling.
On Error Resume Next
' (Many lines of Run method code omitted.)
' If the following test fails, raise an error in
' the client that called the method.
If intWidgetState <> STATE_RUNNING Then

' Disable in-line error handling.
On Error Goto 0
Err.Raise _

Number:=(ERR_WDG_HALTED + vbObjectError), _
Source:=CMP_SOURCENAME, _
Description:=LoadResString(ERR_WDG_HALTED)

End If
' (Run method code continues.)

End Sub
20

When you raise errors for invalid parameter values, you can simply place the
Err.Raise statements at the beginning of the method, before the first On Error
statement. The same is true of code to validate property values; place it at the
beginning of the Property Let or Property Set.

Raising Errors from Error Handlers
Frequently your properties and methods will include code to handle internal errors.
Such code may from time to time contain cases in which no sensible internal response
is possible. In such cases, it’s reasonable for the property or method to fail and return
an error to the client:

On Error Goto ErrHandler
' (Code omitted.)
Exit Sub

ErrHandler:
Select Case Err.Number

' Errors that can be handled (not shown).
Case 11

' Division by zero cannot be handled in any
' sensible fashion.
Err.Raise ERR_INTERNAL + vbObjectError, _

CMP_SOURCENAME, _
LoadResString(ERR_INTERNAL)

' Other errors (not shown).
End Select

21
In most cases it doesn’t make sense to return the original “Divide by zero” error to the
client. The client has no way of knowing why such an error occurred within your
property or method, so the message is of no use in finding a solution.

If the developer of the client was aware of the possibility of this internal error,
because of the excellent documentation you provided, he may have included code to
handle it, and shown the end user of the application a useful error message.

—11

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 11 of 35 Printed: 08/12/96 09:35 AM

If the developer didn’t handle it, ERR_INTERNAL might at least serve a diagnostic
purpose by including the method parameters in the error message text, as information
to pass on to the author of the component.

Handling Errors from Another Component
If your component uses objects provided by another component, you must handle
errors that may result when you call methods of those objects. You should be able to
obtain a list of these errors from the second component’s documentation.

It’s important to handle such errors within your component, and not return them to the
client application that called your component. The client was written to use your
component, and to respond to your component’s error codes. The user or programmer
who wrote it may have no knowledge of secondary components you’re using.

Encapsulation of Errors
The idea that a client application should receive errors only from the components it
calls directly reflects the object-oriented concept of encapsulation. In the case of
errors, encapsulation means that an object is self-contained. Although the object in
your component may use other objects supplied by other components, the client
application is ignorant of those objects.

For this reason, you should always specify the source argument of the Raise method
when you handle an error from another component. Otherwise, the Source property of
the client application’s Err object will contain the name of the component your
component called.

Note You should not use the value of the Source property of the Err object
for program flow decisions. The Source property may provide useful context
information when you’re debugging your component, but the text it contains
may be version dependent.

22
The following code fragment shows the error handler for a method that uses objects
in another component. When it encounters an error it cannot handle, or an
unanticipated error, the error handler raises an error for the client, using its own error
numbers and descriptions.

' Code from the Spin method of a hypothetical Widget
' object.
Public Sub Spin(ByVal Speed As Double)

On Error Goto ErrHandler
' Code containing calls to objects in the Gears
' component (omitted).
Exit Sub

ErrHandler:
Select Case Err.Number

' Other errors (not shown).
' --- Errors from the Gears component. ---
Case vbObjectError + 2000

—12

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 12 of 35 Printed: 08/12/96 09:35 AM

' Error 2000 is handled by shifting to
' another gear (code not shown).

Case vbObjectError + 3000
' Error 3000 causes spin-down; error must be
' returned to caller.
Err.Raise ERR_SPN_SPINDOWN + vbObjectError, _

CMP_SOURCENAME, _
LoadResString(ERR_SPN_SPINDOWN)

' --- Unanticipated errors from components. ---
Case vbObjectError To (vbObjectError + 65536)

Err.Raise ERR_SPN_FAILURE + vbObjectError, _
CMP_SOURCENAME, _
LoadResString(ERR_SPN_FAILURE)

' Other errors (not shown).
End Select

End Sub
23

Note Some components use older error return mechanisms. Such
components may return error numbers in the range 0 – 65535.

24
When the Gears component raises Error 3000, the Spin method must return an error
to the application that called it. The error returned is an error of the Spin method. The
application using the Spin method doesn’t know that Spin is implemented using the
Gears component, and could not be expected to deal with Error 3000. All it needs to
know is that a spin-down condition has occurred.

In the preceding example a global constant, CMP_SOURCENAME, is used for the
source argument of the Raise method. If you raise errors outside an error handler, and
do not specify the source argument, Visual Basic uses the name you entered in the
Project Name field of the General tab in the Project Properties dialog box, combined
with the Name property of the class module.

While this may be useful for you to know while debugging your component, it’s
better for the compiled component to specify a consistent value for the source
argument in all errors it raises.

Note It’s frequently easier to use in-line error handling when making calls to
components, because the same error may require a different response
depending on the method that was called, or the circumstances in which it
was called. If you’re calling two different components, they may use the same
number for different errors.

25

Bending Encapsulation Rules
There may be cases in which some of the error messages returned by a secondary
component may contain information of use to the end user of the client application.
For example, an error message might contain the name of a file.

In such cases, you may want to bend encapsulation rules to pass along this
information. The safest way to do this is to include the text of the Description

—13

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 13 of 35 Printed: 08/12/96 09:35 AM

property of the Err object in your own error message text, as in the following
fragment of error-handling code:

' Error 3033 is returned from a call to another
' component; the message text contains a file name that
' will be useful in resolving the problem.
Case vbObjectError + 3033

' Raise a Print Run Failure error to the client,
' and append the message text from Error 3033.
Err.Raise _

ERR_PRINTRUNFAILURE + vbObjectError, _
CMP_SOURCENAME, _
LoadResString(ERR_PRINTRUNFAILURE) _

& Err.Description
26

In some cases, it may be useful to the end user to know what component originated
the error, and the original error number and message text. You can include all of this
information in the description of the error you raise.

For More Information See “Debugging Your Code and Handling Errors.”
27

Providing User Assistance for ActiveX
Components

Creating a Help file for your component is highly recommended. One of the most
important benefits of components is enabling code reuse, a goal you will be much
more likely to achieve if developers and end users can easily get Help for the objects
you’ve authored.

You can also provide browser strings that briefly describe your objects and their
properties, methods, and events. Users of your component can view these description
strings using the Object Browsers in their programming tools, and jump to the Help
topics you’ve provided.

For More Information Creating Help files is discussed in the Microsoft Windows
Help Authoring Kit, available from Microsoft Press.

When it comes to user assistance, don’t underestimate the importance of choosing
good names for your objects and their interfaces. See “What’s in a Name?” in
“General Principles of Component Design,” and “Object Naming Guidelines” in
“ActiveX Component Standards and Guidelines.”

28

How to Specify a Help File for Your Component
 To specify a Help file for your component

13 On the Project menu, click Project Properties to open the Project Properties
dialog box, then click the General tab.

—14

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 14 of 35 Printed: 08/12/96 09:35 AM

14 In the Help File Name box, enter the path and name of the Help file you‘ve
created for your component.

15 In the Project Help Context ID box, enter the context ID for the specific Help
topic to be called when the user clicks the “?” button while your component’s
type library is selected in the Object Browser.

10
For More Information “Providing Help and Browser Strings for Objects” gives
the procedure for linking objects and their interface members to Help topics. User
assistance features available for components are listed in “Providing User Assistance
for ActiveX Components.”

29

Providing Help and Browser Strings for Objects
Objects are created from classes. The Object Browser displays information about the
classes from which objects are created.

The following procedure can be used to link Help topics and provide browser strings
for classes, and for their properties, methods, and events. When Visual Basic creates
the type library for your component, it includes this information. Users of your
component can view the description strings using the Object Browsers in their
programming tools, and jump to your Help topics.

For an alternate method of supplying Help and browser strings for properties,
methods, and events, see “Providing Help and Browser Strings for Properties,
Methods, and Events.”

 To enter description strings and link your classes and their members
to Help topics

16 Press F2 to open the Object Browser. In the Project/Library box, select your
project.

9If you’re not sure which is the Project/Library box, hover the mouse pointer
over the boxes until you see the tool tip.

17 In the Classes list, right click the name of a class to bring up the context menu, and
click Properties to open the Member Options dialog box.

10Alternatively, in the Members list, right click the name of a property, method,
or event to bring up the context menu, and click Properties to open the Member
Options dialog box.

18 In the Help Context ID box, type the context ID of the Help topic to be shown if
the user clicks the “?” button when this class or member is selected in the
Object Browser.

11The path and name of the Help file for the project should appear in the Help
File box. If it does not, see “How to Specify a Help File for Your Component” for
instructions on setting it.

19 In the Description box, type a brief description of the class or member.

—15

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 15 of 35 Printed: 08/12/96 09:35 AM

20 Click OK to return to the Object Browser. The description string you entered
should appear on the panel at the bottom of the browser.

21 Repeat steps 2 through 5 for each class and for each member of each class.
11

Figure 7.2 shows the Object Browser and Member Options dialog box as they would
appear when setting the description and Help context ID for a class in a hypothetical
test application.

Figure 7.2 Setting the description and Help context ID

12
Note You can enter Help context IDs and descriptions for private classes in
your component, but this information will only be available to you when you’re
actually working on your component project. It will not appear in the type
library for your component.

You cannot supply browser strings or Help topics for enumerations.
30

For More Information Creating Help files is discussed in the Microsoft Windows
Help Authoring Kit, available from Microsoft Press. User assistance features available
for components are listed in “Providing User Assistance for ActiveX Components.”

31

—16

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 16 of 35 Printed: 08/12/96 09:35 AM

Providing Help and Browser Strings for Properties,
Methods, and Events

You can use the Procedure Attributes dialog box to enter description strings for your
properties, methods, and events, and to provide links to topics in your Help file.
When Visual Basic creates the type library for your component, it includes this
information. Users of your component can view the description strings using the
Object Browsers in their programming tools, and jump to the Help topics.

You can use the Visual Basic Object Browser to enter description strings for your
classes, as described in “Providing Help and Browser Strings for Objects.” The
Object Browser can also be used to enter this information for properties, methods, and
events.

 To enter description strings and link Help topics to your properties,
methods, and events

22 In the Project window, select a module and press F7 (or click View Code on the
Project window toolbar) to open its code window.

23 On the Tools menu, click Procedure Attributes to open the Procedure Attributes
dialog box.

24 Select a property, method, or event in the Name box.

25 In the Help Context ID box, type the context ID of the Help topic to be shown if
the user clicks the “?” button when this member is selected in the Object
Browser.

12The path and name of the Help file for the project should appear in the Help
File box. If it does not, see “How to Specify a Help File for Your Component” for
instructions on setting it.

26 In the Description box, type a brief description of the member.

27 Click the Apply button to save the information.

28 Repeat steps 3 through 6 for each property and method in the module.
13

Figure 7.3 shows the Procedure Attributes dialog box as it would appear when setting
the description and Help context ID for a member of a class in a hypothetical test
application.

—17

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 17 of 35 Printed: 08/12/96 09:35 AM

Figure 7.3 Setting the description and Help context ID

14
Note You can enter Help context IDs and descriptions for members of
private classes in your component, but this information will only be available
to you when you’re actually working on your component project. It will not
appear in the type library for your component. You cannot supply browser
strings or Help topics for enumerations.

32
For More Information Creating Help files is discussed in the Microsoft Windows
Help Authoring Kit, available from Microsoft Press. User assistance features available
for components are listed in “Providing User Assistance for ActiveX Components.”

33

Deploying ActiveX Components
In addition to providing objects for use by client applications, some components can
function as standalone desktop applications, in the way Microsoft Excel does. If your
component is in this category, you can distribute it as you would any Visual Basic
application.

“Distributing Your Applications” contains all the information you need to use the
Setup Wizard, or to create a custom Setup for your application.

Ways to Distribute Components
There are several ways to distribute a component. For example:

· As part of your own Visual Basic applications.

· As a tool users can access from Automation-enabled desktop applications such as
Microsoft Excel and Microsoft Access.

· As a component other developers can include in their applications, or use with the
Internet.

· As part of an enterprise application, running on a remote computer (requires the
Enterprise Edition of Visual Basic).

15

—18

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 18 of 35 Printed: 08/12/96 09:35 AM

For all of these distribution scenarios except the first, you can create a standalone
Setup for your component.

Distributing a Component as Part of a Visual Basic
Application
To distribute your component as part of a Visual Basic application, you can use Setup
Wizard to create a setup program for the application. If your application has a
reference to the component, Setup Wizard will locate the component using its registry
entries, and include it — along with its support files — in the list of files needed to
create distribution media.

As with components that are also standalone desktop applications, this scenario is
largely covered by ordinary application setup. The only additional consideration is the
use of implemented interfaces.

Including Type Libraries for Implemented Interfaces
If you’ve used the Implements keyword to add additional interfaces to your classes,
as described in “Providing Polymorphism by Implementing Interfaces” in “General
Principles of Component Design,” you may need to include the type libraries for
those interfaces in Setup for your component.

You need to include the type library that includes a particular interface if:

· Any classes the interface has been added to are provided by out-of-process
components.

· The application will provide objects to other applications, and some of those
objects implement the interface.

16
The reason type libraries need to be included with your application in these two
situations is that invoking an object’s properties and methods cross-process requires
marshaling their arguments. In order to marshal the arguments, type library
information must be available.

Standalone Setup for a Component
To distribute your component for use by other developers, by Internet providers, or as
part of an Enterprise application, use Setup Wizard to create a standalone setup
program. Setup Wizard will automatically include necessary support files. Be sure to
include your Help file.

Important For in-process components, see the related topic “Setting Base
Addresses for In-Process Components,” which contains important information
regarding base addresses and their effect on the performance of your
component.

34
Developers who use your component can install it on their computers, and then use
the Setup Wizard or the Setup Toolkit to include it in the distribution media for their
applications.

—19

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 19 of 35 Printed: 08/12/96 09:35 AM

The steps required to produce Setup for your component will also give you the file
dependency information you need to provide to developers who want to use your
component with Microsoft Excel, Microsoft Visual C++, or other Automation-enabled
development tools.

Distributing Type Libraries for Implemented Interfaces
If you’ve used the Implements keyword to add additional interfaces to your classes,
as described in “Providing Polymorphism by Implementing Interfaces” in “General
Principles of Component Design,” you need to include the type libraries for those
interfaces in Setup for your component.

Special Considerations
Distribution issues particular to ActiveX controls — such as licensing —can be found
in “Building ActiveX Controls.”

If you plan to use your component for Internet development, Setup Wizard can create
CAB files for you. You can obtain the most up-to-date information on Internet setup
options from the Microsoft Visual Basic Web site. On the Visual Basic Help menu,
click Microsoft on the Web, then click Product News.

Remote Automation support is discussed in the Guide to Building Client/Server
Applications with Visual Basic, included with the Enterprise Edition of Visual Basic.

For More Information See “Distributing Your Applications.”
35

Setting Base Addresses for In-Process Components
In 32-bit operating systems, the code pages for an in-process component (.dll or .ocx
file) are shared between processes that use the component, as long as the component
can load at its base address. Thus three clients could be using the controls in your
component, but the code would be loaded into memory only once.

By contrast, if the memory locations used by an in-process component conflict with
memory locations used by other in-process components or by the executable, the
component must be rebased to another logical memory location in the executable’s
process space.

Rebasing requires the operating system to dynamically recalculate the logical
memory locations where code and data are loaded. This recalculation slows down the
load process, and code that is dynamically relocated generally cannot be shared
between executables.

You can greatly improve your component’s memory use by choosing a good base
address.

Setting the Base Address

—20

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 20 of 35 Printed: 08/12/96 09:35 AM

To enter the base address for your component, open the Project Properties dialog box
and select the Compile tab. The address is entered in the DLL Base Address box, as
an unsigned decimal or hexadecimal integer.

The default value is &H11000000 (285,212,672). If you neglect to change this value,
your component will conflict with every other in-process component compiled using
the default. Staying well away from this address is recommended.

Choosing a Base Address
Choose a base address between 16 megabytes (16,777,216 or &H1000000) and two
gigabytes (2,147,483,648 or &H80000000).

The base address must be a multiple of 64K. The memory used by your component
begins at the initial base address and is the size of the compiled file, rounded up to the
next multiple of 64K.

Your program cannot extend above two gigabytes, so the maximum base address is
actually two gigabytes minus the memory used by your component.

Note Executables will usually load at the 4 megabyte logical address. The
region below 4 megabytes is reserved under Windows 95, and regions above
two gigabytes are reserved by both Windows 95 and Windows NT.

36

Use a Good Random Number Generator
Because there is no way to know what base addresses might be chosen by other in-
process components your users might employ, the best practice is to choose an
address at random from the indicated range, and round it up to the next multiple of
64K.

If your company produces many in-process components, you may wish to randomly
calculate the base address of the first, and then arrange the others above or below the
first, thus guaranteeing at least that your company’s components will not have
memory conflicts.

Version Compatibility in ActiveX
Components

A component can be part of another application because it provides Automation
interfaces that the other application can manipulate. Each public class module has a
default interface that includes all the properties and methods you added to the class
module, plus any secondary interfaces implemented using the Implements feature.

Once your component has been used in an application — or, in the case of ActiveX
controls, embedded in a document or on a Web page — you can change its interfaces
only at the risk of breaking the client application.

—21

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 21 of 35 Printed: 08/12/96 09:35 AM

Suppose, for example, that the Spin method of your Widget object has one argument,
Speed. If you distribute a new version of your component, in which you redefine the
Spin method so that it also requires a Direction argument, you could cause run-time
errors in existing applications.

At the same time, a successful component will inevitably spark requests for
enhancements. You will want to provide new objects, or add new properties and
methods to existing objects. Occasionally you will even want to change the arguments
of existing methods of existing objects.

For More Information See “Polymorphism, Interfaces, Type Libraries, and
GUIDs” in “General Principles of Component Design” for background information
and concepts.

37

When Should I Use Version Compatibility?
Visual Basic provides two mechanisms for maintaining backward compatibility while
enhancing software components — the Version Compatibility feature and the
Implements feature.

Version Compatibility
Visual Basic’s Version Compatibility feature is a way of enhancing your components
while maintaining backward compatibility with programs that were compiled using
earlier versions. The Version Compatibility box, located on the Component tab of the
Project Options dialog box, contains three options:

· No Compatibility: Each time you compile the component, new type library
information is generated, including new class IDs and new interface IDs. There
is no relation between versions of a component, and programs compiled to use
one version cannot use subsequent versions.

· Project Compatibility: Each time you compile the component, new type library
information is generated — but the type library identifier is kept, so that your
test projects can maintain their references to the component project.

1Important For the purpose of releasing compatible versions of a
component, Project Compatibility is the same as No Compatibility.

38
· Binary Compatibility: When you compile the component, Visual Basic creates new

class IDs and interface IDs only if necessary — and preserves the class ID and
interface ID information from the previous version, so that programs compiled
with the earlier version will continue to work.

13Visual Basic also warns you when changes to your code would make the new
version incompatible with previously compiled applications.

5Note When people talk about Version Compatibility, they’re usually
referring to Binary Compatibility.

17

—22

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 22 of 35 Printed: 08/12/96 09:35 AM

The appropriate use of these options is described below.

Using the Implements Statement for
Compatibility
The Implements statement allows you to add multiple interfaces to class modules, as
described in “Polymorphism, Interfaces, Type Libraries, and GUIDs” and “Providing
Polymorphism by Implementing Interfaces” in “General Principles of Component
Design,” and in “Polymorphism” in “Programming with Objects.”

Multiple interfaces allow your systems to evolve over time, without breaking existing
components or requiring massive re-compiles, because a released interface is never
changed. Instead, new functionality is added to a system by creating new interfaces.

This approach is much more in keeping with the design philosophy of the Component
Object Model (COM), on which the ActiveX specification is based.

Note The Binary Compatibility option of Version Compatibility is useful in
conjunction with Implements and multiple interfaces, to prevent changes to
the default interfaces of your classes.

39

When to Use Version Compatibility Options
If you decide to use the Version Compatibility feature, you may find the following
rules helpful in determining when to use the different options:

Use No Compatibility to Make a Clean Break
When you begin working on a new version of an existing component, you may decide
that the only way to make necessary enhancements is to break backward
compatibility. In this case, set No Compatibility the first time you compile your
project. This guarantees that you’ll start with a clean slate of identifiers, and that
existing programs won’t mistakenly try to use the incompatible version.

You should also change the file name of your component at this time, so that the
incompatible version won’t over-write earlier versions on your users’ hard disks.

After compiling once with No Compatibility, switch to Project Compatibility to
simplify your development tasks.

Use Project Compatibility for New Development
Use the Project Compatibility setting when you’re developing the first version of a
component. Project Compatibility preserves the type library identifier, so that you’re
not continually setting references from your test projects to your component projects.

Using Project Compatibility also makes it easier to switch between the component
project and the compiled component when you’re testing.

Project Compatibility is discussed in “Project Compatibility: Avoiding MISSING
References.”

—23

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 23 of 35 Printed: 08/12/96 09:35 AM

Use Binary Compatibility for New Versions of Existing
Components
Switch to Binary Compatibility mode when you begin work on the second version of
any component, if you want applications compiled using the earlier version to
continue to work using the new version.

Switching to Binary Compatibility is discussed in the related topic “Providing a
Reference Point for Compatibility.”

Don’t Mix Binary Compatibility and Multiple Interfaces
If you use multiple interfaces and the Implements statement to provide backward
compatibility, don’t use Binary Compatibility to modify the abstract interfaces you’ve
defined for use with Implements.

If you enhance any of the interfaces in a component, Visual Basic will change the
interface IDs. The technique of evolving component software by adding interfaces
depends on interface invariance. That is, an interface once defined is never changed
— including the interface ID.

For More Information See “Providing Polymorphism by Implementing
Interfaces” in “General Principles of Component Design” for information about
component software design using multiple interfaces. “Maintaining Binary
Compatibility” describes the versioning system Visual Basic uses to prevent
compatibility problems.

40

Maintaining Binary Compatibility
Visual Basic maintains backward compatibility by preserving class ID and interface
ID information from previous versions of your component, as described in
“Polymorphism, Interfaces, Type Libraries, and GUIDs,” in “General Principles of
Component Design.” This information is not maintained in the type library, but is
stored elsewhere in your component.

When a client application is compiled using a particular version of your component,
the class ID and interface ID of each object it uses will be compiled in. When the
client is run, the class ID is used to create an instance of the class, and the interface
ID is used to verify that it’s safe to make the property and method calls that were
compiled into the client.

If you make a new version of your component, using the Binary Compatibility option,
the new version will contain the class IDs and interface IDs the old client needs to
create objects and use their properties and methods, as well as class IDs and interface
IDs of the enhanced versions of the classes.

New client applications compiled using the new version of your component can make
use of the enhancements, because they compile in the new class IDs and interface
IDs.

—24

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 24 of 35 Printed: 08/12/96 09:35 AM

For example, suppose that in version 1.0 of your component, your Widget object has a
Spin method, and that you’ve compiled a client application that creates a Widget
object and calls the Spin method.

Now suppose you set the Binary Compatibility option and compile a new version of
your component, in which the Widget object also has an Oscillate method. Visual
Basic creates a new class ID and interface ID for the enhanced Widget. Because
adding a method doesn’t break binary compatibility, Visual Basic also maintains the
class ID and interface ID of the old Widget.

When your previously compiled application uses these old IDs, it gets an enhanced
Widget — which is fine, because the new Widget still has the Spin method the old
application needs to call.

Note Binary Compatibility applies only to the default interface of a class —
that is, the Public Sub, Function, and Property procedures you add to the
class module. Interfaces you add using Implements are ignored.

41

Incompatible Interface Changes
Suppose that instead of adding an Oscillate method, you changed the arguments of
the Spin method. For example, you might add a Direction argument.

If you could compile your component using the old class ID and interface ID for the
Widget class, your old client application would be in trouble. It would be able to
create the new Widget, but when it called the Spin method it would put the wrong
arguments on the stack. At the very least, a program error would occur. Even worse,
data could be corrupted.

Preventing Incompatibility
If you’ve selected the Binary Compatibility option, Visual Basic warns you when
you’re about to compile an incompatible version of your component. You can reverse
the edits that would make your component incompatible, or change the file name and
Project Name so that the new version will not replace the old when users run Setup.

If you choose to disregard the warnings, and compile an incompatible version of your
component with the same file name and Project Name, Visual Basic dumps all of the
class IDs and interface IDs from previous versions of your component.

When the incompatible component is installed on a computer that has a client
application compiled using an earlier version, it will overwrite the earlier version.
Subsequently, when the client application attempts to create objects, it will receive
error 429, “OLE Automation server cannot create object.”

This averts more serious and subtle errors that might occur when the application
attempts to invoke the properties and methods of the incompatible interface.

Limited Protection For Late-Bound Client Applications

—25

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 25 of 35 Printed: 08/12/96 09:35 AM

Late binding is used when variables are declared As Object, because the compiler
doesn’t know the class ID of the objects and interfaces that may be assigned to the
variable at run time. Applications that use late binding create instances of your classes
using the CreateObject function and the programmatic ID, as shown here:

Dim obj As Object
Set obj = CreateObject("MyComponent.MyObject")

42
The CreateObject function looks up the class ID in the Windows Registry, and uses it
to create the object. Thus it will always create the most recent version of the object.

As long as you preserve binary compatibility, late-bound clients will continue to work
successfully with your component.

If you make an incompatible version of your component using the same
programmatic IDs for your objects, late-bound clients can still create the objects,
because they’re looking up the class ID instead of having it compiled in. When they
call methods whose arguments have changed, or methods you’ve deleted, program
failure or data corruption may occur.

For More Information See “Levels of Binary Version Compatibility” for a
description of the degrees of compatibility Visual Basic measures. See “Version
Compatibility” for a list of topics related to this feature. See “Polymorphism,
Interfaces, Type Libraries, and GUIDs,” in “General Principles of Component
Design” for background information and concepts.

43

Levels of Binary Version Compatibility
Visual Basic defines three levels of version compatibility for the interfaces you
describe in your class modules.

· Version identical means that the interfaces are all the same, so the new version of
the type library is exactly the same as the old one. The code inside methods or
Property procedures may have been changed or enhanced, but this is transparent
to client applications.

· Version compatible means that objects and/or methods have been added to the type
library, but no changes were made to existing properties or methods. Both old
and new client applications can use the component.

· Version incompatible means that at least one property or method that existed in the
old type library has been changed or removed. Existing client applications that
have references to the component cannot use the new version.

18

Version-Identical Interfaces
Once your component has been distributed as part of an application, there are several
situations that might cause you to release an update. You might want to optimize the
performance of a method that had turned out to be a bottleneck for users. You might

—26

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 26 of 35 Printed: 08/12/96 09:35 AM

also need to change the internal implementation of an object’s method to reflect
changes in the business rule on which the method was based.

You can change the code in existing Property procedures or methods, and still have a
version-identical interface, as long as you do not change the names or data types of
their parameters, the order of the parameters, the name of the property or method, or
the data type of the return value.

When you create the executable for a version-identical upgrade, you can use the same
file name for the executable. Visual Basic uses the same version number for the type
library.

Important When you release a new version of your component with a
version-identical or version-compatible interface, and retain the same file
name for the executable, you should always use the Make tab of the Project
Properties dialog box to increment the file version number. This ensures that
the setup programs for applications that use your component will replace old
versions during setup.

44

Version-Compatible Interfaces
When you enhance your component by adding new classes, or new properties and
methods to existing classes, you can continue to use the same name for your
executable. As long as you make no changes to existing properties and methods,
Visual Basic updates the version number of the type library but keeps it compatible
with the old version number.

Client applications that are built using the new version of your component will
compile with the new version number, and can make use of all the new features. They
cannot be used with earlier versions of your component, however, because type
library versions are only upward-compatible.

As with version-identical releases, remember to increment the file version number of
the executable.

Version-Incompatible Interfaces
Sometimes design decisions made in an earlier version of a component fail to
anticipate future needs. If you want the code in the component to be useful in new
development projects, you have to change the interface.

For example, the CupsPerAnnum parameter of the Coffee method might be
implemented as an Integer in the first version of a component. It may become
apparent, after the component has been in use for some time, that some clients need to
pass a larger value than can be contained in an Integer.

Changing the declaration of a method is only one of several actions that will cause
Visual Basic to make the version number of the type library incompatible, rendering

—27

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 27 of 35 Printed: 08/12/96 09:35 AM

the new version unusable with client applications compiled with earlier versions. The
following changes will cause a version incompatibility:

· Changing the Project Name field on the General tab of the Project Options dialog
box.

· Changing the Name property of any class module whose Public property is True
(controls), or whose Instancing property is not Private (class modules).

· Deleting a public class module, or setting its Instancing property to Private.

· Deleting a public variable, procedure, or Property procedure from a public class
module or control, or changing it to Private or Friend.

· Changing the name or data type of a public variable, procedure, or Property
procedure in a public class module or control.

· Changing the names, data types, or order of the parameters of a public procedure
or Property procedure in a public class module or control.

· Changing the Procedure ID (DispID) or other parameters in the Procedure
Attributes dialog box.

19
Time to Take Stock
When you’ve identified a necessary change that will cause your component to be
incompatible with earlier versions, it’s a good idea to take the time to evaluate the
entire set of interfaces, before plunging ahead and creating an incompatible version of
your component.

Consider Multiple Interfaces
Remember that there are alternatives to using Version Compatibility. Consider
enhancing your component by adding new interfaces with the Implements statement,
as described in “Providing Polymorphism by Implementing Interfaces” in “General
Principles of Component Design.”

Multiple interfaces, a key feature of the Component Object Model (COM) — on
which the ActiveX specification is based — provide a more flexible way to enhance
software components. They allow you to evolve your systems over time, without
breaking existing components.

You don’t have to tackle the daunting task factoring your existing class module
interfaces into small interfaces more suitable for use with Implements — one of the
benefits of using multiple interfaces is that you can start small, adding new interfaces
to the system only where new functionality is required.

Going Ahead with Incompatibility
If you decide to go ahead with an incompatible version, you can minimize future
problems for the users of your component by concentrating in one release all the
changes you can anticipate that might break compatibility again if they have to be
made in later releases.

—28

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 28 of 35 Printed: 08/12/96 09:35 AM

In planning for an incompatible change, treat the project as a fresh start. Devote as
much care to planning as you would if you were creating a brand new component.

Changing the Project Name
The key change you must make, when you need to distribute an incompatible version
of your component, is the project name. The project name, which is set on the
General tab of the Project Properties dialog box, is the first part of the programmatic
ID of each class your component provides.

For example, the SmallMechanicals component might provide a Widgets class. A
client application would create a variable to contain a reference to a Widget object as
follows:

Private wdgDriver As SmallMechanicals.Widget
45

The programmatic ID is the combination of project name and class name, and it must
be unique. If you create a new version of this component, you might give it the
project name SmallMechanicals200. Both versions of the Widget object could then be
registered in the same Windows Registry without confusion.

Note You must also change the file name of an incompatible component.
46

Alternatives to Version-Incompatible Changes
If you prefer not to make the change to multiple interfaces, as described above, you
can take a similar approach with classes.

That is, you can avoid changes that cause version incompatibility by adding new
objects, properties, and methods, instead of changing existing ones. Existing
applications continue using the old methods and objects, while developers of new
applications can use the new objects.

For example, you might discover that to take advantage of enhancements to your
General Ledger system, you need to add a SubAccount parameter to several business
rules in your FinanceRules component.

If each rule is implemented as a method of the GL object, you could avoid creating an
incompatible version of the component by adding a new object named GL97. This
object would have the same methods as the GL object, but with a SubAccount
parameter where appropriate.

If you need to add new versions of existing methods to an object, you can give the
new methods the same name with a version or sequence number added — for
example, ‘Execute2.’

This approach is not as flexible or efficient as implementing multiple interfaces. You
may end up replicating entire classes, and class interfaces may become large and
unwieldy — for example, you might find yourself using a Query class with an
Execute method, an Execute2 method, an Execute3 method, and so on. However, it’s
a step in the right direction.

—29

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 29 of 35 Printed: 08/12/96 09:35 AM

For More Information “Providing a Reference Point for Binary Version
Compatibility” describes when and how to specify a version of your component as a
reference point for version compatibility. See “Version Compatibility” for a list of
topics related to this feature. Software evolution using multiple interfaces is discussed
in “Providing Polymorphism by Implementing Interfaces,” in “General Principles of
Component Design.”

47

Providing a Reference Point for Binary Version
Compatibility

To determine the degree of compatibility between two versions of a component,
Visual Basic needs a reference point. You provide this reference point by entering the
path to a previously compiled version of your component in the Version
Compatibility box on the tab of the Project Properties dialog box.

You need to do this whenever you begin work on a new version of a component you
have shipped, put into production, or used as part of an application.

 To specify a reference version of the component type library

29 Open the project.

30 From the Tools menu, choose Project Properties to open the Project Properties
dialog box, and select the Component tab.

31 Click Binary Compatibility to lock down the class IDs in the project.

6Note As explained in “Project Compatibility: Avoiding MISSING
References,” the Project Compatibility setting actually has nothing to do
with the Version Compatibility feature.

48
32 Update the box at the bottom of the Version Compatibility frame with the full

path and name of the most recent version of your component.
20

Whenever you make a new executable from your component project, Visual Basic
compares the new interfaces of your classes to the ones described in the file you have
specified. Visual Basic updates the type library version number according to the level
of compatibility between the interfaces.

For More Information “Using Binary Version Compatibility” describes when and
how to use the feature, problems you may encounter, and messages you may get from
Visual Basic. See “Version Compatibility” for a list of topics related to this feature.

49

Using Binary Version Compatibility
Whenever you begin work on a new version of an existing component, you need to
specify a type library which Visual Basic can use as a reference point for determining

—30

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 30 of 35 Printed: 08/12/96 09:35 AM

compatibility. In most cases, this will be the type library included in executable
(.exe, .dll, or .ocx file) for the last version of the component you distributed.

Each time you build an interim version of your updated component, Visual Basic
extracts information about the old interfaces from this .exe file and compares it to the
new interfaces of your class modules.

“Providing a Reference Point for Compatibility” explains the procedure for creating a
reference point.

Keeping the Reference Version Separate from
Interim Builds
Important Keep the copy of the .exe file you specify as your reference
version separate from the build copy of the new version.

50
Each time you make an interim build, Visual Basic adds a new set of interface
identifiers to the executable, one identifier for each class module. If you specify your
build copy as the reference version, it will accumulate a complete set of interface
identifiers for every version-compatible interim build you have ever done. (Interface
identifiers do not change for version-identical builds.)

In addition to the sixteen bytes taken up by each interface identifier, having unused
interface identifiers in your executable — only your test applications ever use the
interim versions — can slow down cross-process access to your component in some
situations, and the Windows Registry of any computer your component is installed on
will be cluttered with unused interface identifiers.

If your reference version is a copy of your last released executable, all your interim
builds will have the same interface version number, and your final build will have
only the interface identifiers it needs: all the sets from the reference version (to
provide backward compatibility) plus the set of interface identifiers for all the classes
in your new release.

Note When you’re developing the first version of a component, using Project
Compatibility instead of Binary Compatibility, exactly the opposite is true: The
reference version should be your interim build. This does not bulk up the type
library, because Project Compatibility never saves the interface identifiers.

51

Avoiding Version Trees
Because Visual Basic produces the version number for the new type library by
incrementing the type library version number it finds in the reference version, the
released versions of your component form a chain, each link derived from its
predecessor. As mentioned earlier, each new release contains all the interface
identifiers for preceding versions, so that a client application compiled with any
previous version will still work with the latest.

—31

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 31 of 35 Printed: 08/12/96 09:35 AM

What’s a Version Tree?
Version trees arise when your component’s version history acquires branches — that
is, when you produce two physically distinct components based on the same source
code. It’s important to keep the version history of your component straight, and avoid
such branching.

Figure 7.4 shows some of the problems that can be caused by version trees. (The
version numbers are for illustrative purposes only, and are not intended to represent
actual type library version numbers.)

Figure 7.4 Problems with version trees

21
The long branch at the right shows four successive versions of a component
executable, and a new executable that has been created by adding to the source code
for the executable whose type library version is 1.3.

The correct continuation of this version history is for the latest executable to be
compiled with the version 1.3 executable as its reference version. The new type
library version number is 1.4. The .exe file maintains compatibility with client
applications compiled using any of its predecessors.

Because it’s at the end of a chain of compatible versions, the new executable could
also be compiled with the version 1.0 executable as its reference version. In this case,
its type library version number will be 1.1. This could cause problems for clients
compiled to take advantage of features of the new version. If they’re placed on a
computer with the earlier version 1.1 executable, the new features will not be
available, and the applications will fail.

—32

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 32 of 35 Printed: 08/12/96 09:35 AM

A different problem arises when the new component is installed on computers that
have client applications compiled with type library version numbers 1.1, 1.2, and 1.3.
Standard practice is to increase the file version number of each new executable file, to
ensure that Setup will replace earlier versions of the executable. (Remember that file
version numbers are independent of type library version numbers.)

Thus the new executable, containing interface identifiers for type library versions 1.0
and 1.1, will replace older executables that contained interface identifiers for type
library versions 1.0 through 1.3.

If the computer already has client applications compiled with type library versions 1.2
and 1.3, those clients will be unable to use the new version of the component.

Divergent Versions
The left side of the tree shows divergent versions. This can arise when the source
code for an early version of your component is taken as the basis of a new
component, and classes are added that do not exist in your main version history.

If the executable for your component is used as the reference version for the divergent
version, the type library version numbers of the divergent version and its successors
will overlap the version numbers of your components. The results for client
applications will be disastrous.

Tip You can easily avoid the creation of version trees by always setting
aside a copy of the previous version of your component’s executable file
(.exe, .dll, or .ocx) as the reference version for the next release, as described
earlier in this topic.

52
Tip If you decide to use the source code of an earlier version of your
component as the basis of a new component, give the new component a
different project name and executable name.

53
Version Trees with Project Compatibility
Version trees can also arise when you’re using Project Compatibility, the difference
being that it’s the major version number of the type library that changes (instead of
the minor version number, as shown in Figure 7.4). The consequences to client
applications can be equally disastrous.

As with Binary Compatibility, the best way to avoid this is not to split your source
tree. If you take a copy of your source code at a particular stage of the project as the
basis for another component, use a different project name and executable name for
this new project.

Version Compatibility Messages
For performance reasons, Visual Basic does not fully compare interfaces as you edit.
When you run your component project, Visual Basic will always display a
compatibility warning if the new version is incompatible with the old. (Version-

—33

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 33 of 35 Printed: 08/12/96 09:35 AM

identical and version-compatible interfaces will compile without compatibility
warnings.)

Note Version compatibility is judged on a project-wide basis. A change in the
declaration of just one method in one class module causes the entire project
to be marked as incompatible with the previous version. See “Levels of
Version Compatibility,” earlier in this chapter, for a listing of changes that will
cause a version incompatibility.

54

Version Incompatibility Warnings
Suppose you add a new argument to the Spin method of the Widget object. When you
run the project, you’ll get a warning like that shown in Figure 7.5.

Figure 7.5 Version incompatibility warning

22
You can examine the old declaration by clicking the Declaration button on this
message. If you made the change accidentally, you can click Edit to bring up the code
and fix it.

If the change was intentional, you can click Accept. The new version of your
component is now incompatible with the previous version. If you have many such
changes, you can click Accept All to avoid getting a warning for each one.

If you have not changed the project name, when you use the Make EXE File
command, you will get a warning that your application is incompatible with the .exe
file you specified as your reference version, as shown in Figure 7.6.

—34

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 34 of 35 Printed: 08/12/96 09:35 AM

Figure 7.6 Warning for incompatible .exe file

23
Clicking Continue at this point creates an executable file that could cause existing
client applications to fail. It’s highly recommended that you change the file name as
well as the project name when you create an incompatible version of a component.

For More Information See “Version Compatibility” for a list of topics related to
this feature.

55

—35

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 35 of 35 Printed: 08/12/96 09:35 AM

	Contents
	Testing and Debugging ActiveX Components
	How to Test ActiveX Components
	Make the Test Program Generic for Better Coverage
	Testing Components as Part of an Application
	Creating a Test Project

	Creating a Test Project for an In-Process Component
	 To create a test project for an in-process component

	Using Break on Error in Components
	How to Test Compiled Components
	In-Process Components
	Û To switch from an in-process component project to the compiled .dll or .ocx file
	 To switch back to testing your in-process component project

	Testing Your Component with Other Applications

	Generating and Handling Errors in ActiveX Components
	Deciding How to Generate Error Messages
	Be Consistent

	Guidelines for Raising Errors from Your Component
	Handling Errors in a Component
	Handling Errors Internally
	Passing Errors Back to the Client
	Raising Errors from Error Handlers

	Handling Errors from Another Component
	Encapsulation of Errors
	Bending Encapsulation Rules

	Providing User Assistance for ActiveX Components
	How to Specify a Help File for Your Component
	 To specify a Help file for your component

	Providing Help and Browser Strings for Objects
	 To enter description strings and link your classes and their members to Help topics

	Providing Help and Browser Strings for Properties, Methods, and Events
	 To enter description strings and link Help topics to your properties, methods, and events

	Deploying ActiveX Components
	Ways to Distribute Components
	Distributing a Component as Part of a Visual Basic Application
	Including Type Libraries for Implemented Interfaces

	Standalone Setup for a Component
	Distributing Type Libraries for Implemented Interfaces
	Special Considerations

	Setting Base Addresses for In-Process Components
	Setting the Base Address
	Choosing a Base Address
	Use a Good Random Number Generator

	Version Compatibility in ActiveX Components
	When Should I Use Version Compatibility?
	Version Compatibility
	Using the Implements Statement for Compatibility
	When to Use Version Compatibility Options
	Use No Compatibility to Make a Clean Break
	Use Project Compatibility for New Development
	Use Binary Compatibility for New Versions of Existing Components
	Don’t Mix Binary Compatibility and Multiple Interfaces

	Maintaining Binary Compatibility
	Incompatible Interface Changes
	Preventing Incompatibility
	Limited Protection For Late-Bound Client Applications

	Levels of Binary Version Compatibility
	Version-Identical Interfaces
	Version-Compatible Interfaces
	Version-Incompatible Interfaces
	Time to Take Stock
	Consider Multiple Interfaces
	Going Ahead with Incompatibility
	Changing the Project Name
	Alternatives to Version-Incompatible Changes

	Providing a Reference Point for Binary Version Compatibility
	 To specify a reference version of the component type library

	Using Binary Version Compatibility
	Keeping the Reference Version Separate from Interim Builds
	Avoiding Version Trees
	What’s a Version Tree?
	Divergent Versions
	Version Trees with Project Compatibility

	Version Compatibility Messages
	Version Incompatibility Warnings

