
This chapter goes beyond the fundamentals of Visual Basic programming and
introduces a variety of features that make it easier for you to create powerful, flexible
applications.

For example, you can load multiple projects into a single session of the programming
environment, work with Windows registry settings, or selectively compile certain
parts of your program.

Beyond the fundamentals of writing code, Visual Basic provides a variety of language
elements that enhance your code. The last three topics in this chapter discuss three of
these language elements: user-defined types, enumerated constants, and collections.

Note If you are using the Control Creation Edition of Visual Basic, some of
the material covered in this document may not be applicable. With the full
editions of Visual Basic you have the ability to create applications, ActiveX
documents, and other types of components. Although some of the
terminology may relate to application specific objects such as forms, in most
cases the underlying concepts also apply to ActiveX control creation.

1

Contents
· Working with Resource Files

· Working with Templates

· Creating Your Own Data Types

· Using Enumerations to Work with Sets of Constants

· Using Collections as an Alternative to Arrays
2

Working with Resource Files
A resource file allows you to collect all of the version-specific text and bitmaps for an
application in one place. This can include constant declarations, icons, screen text,
and other material that may change between localized versions or between revisions
or specific configurations.

Adding Resources to a Project
You create a resource file using a text editor and resource compiler, such as those
provided with Microsoft Visual C++. The compiled resource file will have a .res file
name extension.

The actual file consists of a series of individual strings, bitmaps, or other items, each
of which has a unique identifier. The identifier is either a Long or a String, depending
on the type of data represented by the resource. Strings, for example, have a Long
identifier, while bitmaps have a Long or String identifier. To retrieve resources in
your code, learn the identifier for each resource. The function parameters referring to
the resources can use the Variant data type.

—1

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 1 of 11 Printed: 08/15/96 02:20 PM

For More Information For more information on resource files, see "Using
Resource Files for Localization" in "International Issues."

3
Note Windows resource files are specific to 16-bit or 32-bit applications.
Visual Basic will generate an error message if you try to add a 16-bit resource
file to a project.

4
To add the resource file to your project, from the Project menu, choose the Add File
command, just as you would when adding any other file to the project. A single
project can have only one resource file; if you add a second file with a .res extension,
an error occurs.

Using Resources in Code
Visual Basic provides three functions for retrieving data from the resource file for use
in code.

Function Description

LoadResString Returns a text string.

LoadResPicture Returns a Picture object, such as a bitmap, icon, or cursor.

LoadResData Returns a Byte array. This is used for .wav files, for example.
5

Working with Templates
Visual Basic provides a variety of templates for creating common application
components. Rather than creating all the pieces of your application from scratch, you
can customize an existing template. You can also reuse custom components in
multiple applications by creating your own templates.

You can open an existing template by selecting its icon in the Add Object dialog box
when you create a new form, module, control, property page, or document. For
example, Visual Basic provides built-in form templates for creating an About dialog
box, Options dialog box, or splash screen.

—2

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 2 of 11 Printed: 08/15/96 02:20 PM

Figure 8.3 The Add Form dialog box

1
When you open a template, Visual Basic displays the object with placeholders that
you can customize. For example, to create an About dialog box, open the About
Dialog template and replace the Application Title, Version, and App Description
placeholders with information specific to your application.

Figure 8.4 The About Dialog form template

2

—3

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 3 of 11 Printed: 08/15/96 02:20 PM

To create your own template, save the object that you want to use as a template, then
copy it to the appropriate subdirectory of the Visual Basic Template directory. For
example, to create a custom MyForm form template, save a form named MyForm,
then copy the MyForm.frm file to the \VB\Template\Forms directory. When you
select the Add Form command from the Project menu, Visual Basic displays the
MyForm template in the Add Form dialog box, as shown in Figure 8.3.

You can disable display of templates in the Add object dialog box by selecting the
Options command on the Tools menu and clearing the Show Templates options on the
Environment tab of the Options dialog box. For example, to disable the display of
form templates, clear the Forms option in the dialog box.

Figure 8.5 The Environment tab of the Options dialog box

3

Creating Your Own Data Types
You can combine variables of several different types to create user-defined types
(known as structs in the C programming language). User-defined types are useful
when you want to create a single variable that records several related pieces of
information.

You create a user-defined type with the Type statement, which must be placed in the
Declarations section of a module. User-defined types can be declared as Private or
Public with the appropriate keyword. For example:

—4

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 4 of 11 Printed: 08/15/96 02:20 PM

Private Type MyDataType

1– or –

Public Type MyDataType
6

For example, you could create a user-defined type that records information about a
computer system:

' Declarations (of a standard module).
Private Type SystemInfo

CPU As Variant
Memory As Long
VideoColors As Integer
Cost As Currency
PurchaseDate As Variant

End Type
7

Declaring Variables of a User-Defined Type
You can declare local, private module-level, or public module-level variables of the
same user-defined type:

Dim MySystem As SystemInfo, YourSystem As SystemInfo
8

The following table illustrates where, and with what scope, you can declare user-
defined types and their variables.

Procedure/Module
You can create a user-
defined type as...

Variables of a user-defined
type can be declared...

Procedures Not applicable Local only

Standard modules Private or public Private or public

Form modules Private only Private only

Class modules Private only Private only
9

Assigning and Retrieving Values
Assigning and retrieving values from the elements of this variable is similar to setting
and getting properties:

MySystem.CPU = "486"
If MySystem.PurchaseDate > #1/1/92# Then

10
You can also assign one variable to another if they are both of the same user-defined
type. This assigns all the elements of one variable to the same elements in the other
variable.

YourSystem = MySystem
11

User-Defined Types that Contain Arrays
A user-defined type can contain an ordinary (fixed-size) array. For example:

Type SystemInfo
CPU As Variant

—5

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 5 of 11 Printed: 08/15/96 02:20 PM

Memory As Long
DiskDrives(25) As String' Fixed-size array.
VideoColors As Integer
Cost As Currency
PurchaseDate As Variant

End Type
12

It can also contain a dynamic array.

Type SystemInfo
CPU As Variant
Memory As Long
DiskDrives() As String ' Dynamic array.
VideoColors As Integer
Cost As Currency
PurchaseDate As Variant

End Type
13

You can access the values in an array within a user-defined type in the same way that
you access the property of an object.

Dim MySystem As SystemInfo
ReDim MySystem.DiskDrives(3)
MySystem.DiskDrives(0) = "1.44 MB"

14
You can also declare an array of user-defined types:

Dim AllSystems(100) As SystemInfo
15

Follow the same rules to access the components of this data structure.

AllSystems(5).CPU = "386SX"
AllSystems(X).DiskDrives(2) = "100M SCSI"

16

Passing User-Defined Types to Proecedures
You can pass procedure arguments using a user-defined type.

Sub FillSystem (SomeSystem As SystemInfo)
SomeSystem.CPU = lstCPU.Text
SomeSystem.Memory = txtMemory.Text
SomeSystem.Cost = txtCost.Text
SomeSystem.PurchaseDate = Now

End Sub
17

Note If you want to pass a user-defined type in a form or class module, the
procedure must be private.

18
You can return user-defined types from functions, and you can pass a user-defined
type variable to a procedure as one of the arguments. User-defined types are always
passed by reference, so the procedure can modify the argument and return it to the
calling procedure, as illustrated in the previous example.

For More Information To read more about passing by reference, see "Passing
Arguments to Procedures" in "Programming Fundamentals."

19

—6

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 6 of 11 Printed: 08/15/96 02:20 PM

User-Defined Types that Contain Objects
User-defined types can also contain objects.

Private Type AccountPack
frmInput as Form
dbPayRollAccount as Database

End Type
20

Tip Because the Variant data type can store many different types of data, a
Variant array can be used in many situations where you might expect to use a
user-defined type. A Variant array is actually more flexible than a user-defined
type, because you can change the type of data you store in each element at
any time, and you can make the array dynamic so that you can change its
size as necessary. However, a Variant array always uses more memory than
an equivalent user-defined type.

21

Nesting Data Structures
Nesting data structures can get as complex as you like. In fact, user-defined types can
contain other user-defined types, as shown in the following example. To make your
code more readable and easier to debug, try to keep all the code that defines user-
defined data types in one module.

Type DriveInfo
Type As String
Size As Long

End Type

Type SystemInfo
CPU As Variant
Memory As Long
DiskDrives(26) As DriveInfo
Cost As Currency
PurchaseDate As Variant

End Type

Dim AllSystems(100) As SystemInfo
AllSystems(1).DiskDrives(0).Type = "Floppy"

22

Using Enumerations to Work with Sets of
Constants

Enumerations provide a convenient way to work with sets of related constants and to
associate constant values with names. For example, you can declare an enumeration
for a set of integer constants associated with the days of the week, then use the names
of the days in code rather than their integer values.

—7

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 7 of 11 Printed: 08/15/96 02:20 PM

You create an enumeration by declaring an enumeration type with the Enum
statement in the Declarations section of a standard module or a public class module.
Enumeration types can be declared as Private or Public with the appropriate keyword.
For example:

Private Enum MyEnum

2– or –

Public Enum MyEnum
23

By default, the first constant in an enumeration is initialized to the value 0, and
subsequent constants are initialized to the value of one more that the previous
constant. For example the following enumeration, Days, contains a constant named
Sunday with the value 0, a constant named Monday with the value 1, a constant
named Tuesday with the value of 2, and so on.

Public Enum Days
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

End Enum
24

Tip Visual Basic provides a built-in enumeration, vbDayOfWeek, containing
constants for the days of the week. To view the enumeration's predefined
constants, type vbDayOfWeek in the code window, followed by a period.
Visual Basic automatically displays a list of the enumeration's constants.

25
You can explicitly assign values to constants in an enumeration by using an
assignment statement. You can assign any long integer value, including negative
numbers. For example you may want constants with values less than 0 to represent
error conditions.

In the following enumeration, the constant Invalid is explicitly assigned the value –1,
and the constant Sunday is assigned the value 0. Because it is the first constant in the
enumeration, Saturday is also initialized to the value 0. Monday's value is 1 (one
more than the value of Sunday), Tuesday's value is 2, and so on.

Public Enum WorkDays
Saturday
Sunday = 0
Monday
Tuesday
Wednesday
Thursday
Friday
Invalid = -1

End Enum
26

—8

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 8 of 11 Printed: 08/15/96 02:20 PM

Note Visual Basic treats constant values in an enumeration as long integers.
If you assign a floating-point value to a constant in an enumeration, Visual
Basic rounds the value to the nearest long integer.

27
By organizing sets of related constants in enumerations, you can use the same
constant names in different contexts. For example, you can use the same names for
the weekday constants in the Days and WorkDays enumerations.

To avoid ambiguous references when you refer to an individual constant, qualify the
constant name with its enumeration. The following code refers to the Saturday
constants in the Days and WorkDays enumerations, displaying their different values
in the Immediate window.

Debug.Print "Days.Saturday = " & Days.Saturday
Debug.Print "WorkDays.Saturday = " & WorkDays.Saturday

28
You can also use the value of a constant in one enumeration when you assign the
value of a constant in a second enumeration. For example, the following declaration
for the WorkDays enumeration is equivalent to the previous declaration.

Public Enum WorkDays
Sunday = 0
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday = Days.Saturday - 6
Invalid = -1

End Enum
29

After you declare an enumeration type, you can declare a variable of that type, then
use the variable to store the values of enumeration's constants. The following code
uses a variable of the WorkDays type to store integer values associated with the
constants in the WorkDays enumeration.

Dim MyDay As WorkDays
MyDay = Saturday ' Saturday evaluates to 0.
If MyDay < Monday Then ' Monday evaluates to 1,

' so Visual Basic displays
' a message box.

MsgBox "It's the weekend. Invalid work day!"
End If

30
Note that when you type the second line of code in the example in the code window,
Visual Basic automatically displays the WorkDays enumeration's constants in the
Auto List Members list.

—9

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 9 of 11 Printed: 08/15/96 02:20 PM

Figure 8.7 Visual Basic automatically displays an enumeration's constants

4
Because the constant Sunday also evaluates to 0, Visual Basic also displays the
message box if you replace "Saturday" with "Sunday" in the second line of the
example:

MyDay = Sunday ' Sunday also evaluates to 0.
31

Note Although you normally assign only enumeration constant values to a
variable declared as an enumeration type, you can assign any long integer
value to the variable. Visual Basic will not generate an error if you assign a
value to the variable that isn't associated with one of the enumeration's
constants.

32
For More Information See "Providing Named Constants for Your Component" in
"General Principals of Component Design."

33

Using Collections as an Alternative to
Arrays

Although collections are most often used for working with objects, you can use a
collection to work with any data type. In some circumstances, it may be more
efficient to store items in a collection rather than an array.

You may want to use a collection if you're working with a small, dynamic set of
items. The following code fragment shows how you might use a collection to save
and display a list of URL addresses.

' Module-level collection.

—10

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 10 of 11 Printed: 08/15/96 02:20 PM

Public colURLHistory As New Collection

' Code for adding a specified URL address
' to the collection.
Private Sub SaveURLHistory(URLAddress As String)

colURLHistory.Add URLAddress
End Sub

' Code for displaying the list of URL addresses
' in the Immediate window.
Private Sub PrintURLHistory()

Dim URLAddress As Variant
For Each URLAddress in colURLHistory

Debug.Print URLAddress
Next URLAddress

End Sub
34

For More Information For more information on using collections, see
"Programming With Your Own Objects" in "Programming with Objects." To learn
more about using arrays, see "Arrays" in "Programming Fundamentals."

35

—11

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 11 of 11 Printed: 08/15/96 02:20 PM

	Contents
	Working with Resource Files
	Adding Resources to a Project
	Using Resources in Code

	Working with Templates
	Creating Your Own Data Types
	Declaring Variables of a User-Defined Type
	Assigning and Retrieving Values
	User-Defined Types that Contain Arrays
	Passing User-Defined Types to Proecedures
	User-Defined Types that Contain Objects
	Nesting Data Structures

	Using Enumerations to Work with Sets of Constants
	Using Collections as an Alternative to Arrays

