
No matter how carefully crafted your code, errors can (and probably will) occur.
Ideally, Visual Basic procedures wouldn't need error-handling code at all.
Unfortunately, sometimes files are mistakenly deleted, disk drives run out of space, or
network drives disconnect unexpectedly. Such possibilities can cause run-time errors
in your code. To handle these errors, you need to add error-handling code to your
procedures.

Sometimes errors can also occur within your code; this type of error is commonly
referred to as a bug. Minor bugs — for example, a cursor that doesn't behave as
expected — can be frustrating or inconvenient. More severe bugs can cause an
application to stop responding to commands, possibly requiring the user to restart the
application, losing whatever work hasn't been saved.

The process of locating and fixing bugs in your application is known as debugging.
Visual Basic provides several tools to help analyze how your application operates.
These debugging tools are particularly useful in locating the source of bugs, but you
can also use the tools to experiment with changes to your application or to learn how
other applications work.

This chapter shows how to use the debugging tools included in Visual Basic and
explains how to handle run-time errors — errors that occur while your code is
running and that result from attempts to complete an invalid operation.

Note If you are using the Control Creation Edition of Visual Basic, some of
the material covered in this document may not be applicable. With the full
editions of Visual Basic you have the ability to create applications, ActiveX
documents, and other types of components. Although some of the
terminology may relate to application specific objects such as forms, in most
cases the underlying concepts also apply to ActiveX control creation.

1

Contents
· How to Handle Errors

· Designing an Error Handler

· The Error Handling Hierarchy

· Testing Error Handling by Generating Errors

· Inline Error Handling

· Centralized Error Handling

· Turning Off Error Handling

· Error Handling with ActiveX Components

· Approaches to Debugging

· Avoiding Bugs

· Design Time, Run Time, and Break Mode

· Using the Debugging Windows

—1

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 1 of 59 Printed:

· Using Break Mode

· Running Selected Portions of Your Application

· Monitoring the Call Stack

· Testing Data and Procedures with the Immediate Window

· Special Debugging Considerations

· Tips for Debugging
2

Sample Application: Errors.vbp
Many of the code samples in this chapter are taken from the Errors.vbp sample
application. If you installed the sample applications, you will find it in the \Errors
subdirectory of the Visual Basic samples directory (\Vb\Pguide\Samples).

How to Handle Errors
Ideally, Visual Basic procedures wouldn't need error-handling code at all. Reality
dictates that hardware problems or unanticipated actions by the user can cause run-
time errors that halt your code, and there's usually nothing the user can do to resume
running the application. Other errors might not interrupt code, but they can cause it to
act unpredictably.

For example, the following procedure returns true if the specified file exists and false
if it does not, but doesn't contain error-handling code:

Function FileExists (filename) As Boolean
FileExists = (Dir(filename) <> "")

End Function
3

The Dir function returns the first file matching the specified file name (given with or
without wildcard characters, drive name, or path); it returns a zero-length string if no
matching file is found.

The code appears to cover either of the possible outcomes of the Dir call. However, if
the drive letter specified in the argument is not a valid drive, the error "Device
unavailable" occurs. If the specified drive is a floppy disk drive, this function will
work correctly only if a disk is in the drive and the drive door is closed. If not, Visual
Basic presents the error "Disk not ready" and halts execution of your code.

To avoid this situation, you can use the error-handling features in Visual Basic to
intercept errors and take corrective action. (Intercepting an error is also known as
trapping an error.) When an error occurs, Visual Basic sets the various properties of
the error object, Err, such as an error number, a description, and so on. You can use
the Err object and its properties in an error-handling routine so that your application
can respond intelligently to an error situation.

For example, device problems, such as an invalid drive or an empty floppy disk drive,
could be handled by the following code:

—2

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 2 of 59 Printed:

Function FileExists (filename) As Boolean
Dim Msg As String
' Turn on error trapping so error handler responds
' if any error is detected.
On Error GoTo CheckError

FileExists = (Dir(filename) <> "")
' Avoid executing error handler if no error
' occurs.
Exit Function

CheckError: ' Branch here if error occurs.
' Define constants to represent intrinsic Visual
' Basic error codes.
Const mnErrDiskNotReady = 71, _
mnErrDeviceUnavailable = 68
' vbExclamation, vbOK, vbCancel, vbCritical, and
' vbOKCancel are constants defined in the VBA type
' library.
If (Err.Number = MnErrDiskNotReady) Then

Msg = "Put a floppy disk in the drive "
Msg = Msg & "and close the door."
' Display message box with an exclamation mark
' icon and with OK and Cancel buttons.
If MsgBox(Msg, vbExclamation & vbOKCancel) = _
vbOK Then

Resume
Else

Resume Next
End If

ElseIf Err.Number = MnErrDeviceUnavailable Then
Msg = "This drive or path does not exist: "
Msg = Msg & filename
MsgBox Msg, vbExclamation
Resume Next

Else
Msg = "Unexpected error #" & Str(Err.Number)
Msg = Msg & " occurred: " & Err.Description
' Display message box with Stop sign icon and
' OK button.
MsgBox Msg, vbCritical
Stop

End If
Resume

End Function
4

In this code, the Err object's Number property contains the number associated with
the run-time error that occurred; the Description property contains a short description
of the error.

When Visual Basic generates the error "Disk not ready," this code presents a message
telling the user to choose one of two buttons — OK or Cancel. If the user chooses
OK, the Resume statement returns control to the statement at which the error occurred

—3

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 3 of 59 Printed:

and attempts to re-execute that statement. This succeeds if the user has corrected the
problem; otherwise, the program returns to the error handler.

If the user chooses Cancel, the Resume Next statement returns control to the
statement following the one at which the error occurred (in this case, the Exit
Function statement).

Should the error "Device unavailable" occur, this code presents a message describing
the problem. The Resume Next statement then causes the function to continue
execution at the statement following the one at which the error occurred.

If an unanticipated error occurs, a short description of the error is displayed and the
code halts at the Stop statement.

The application you create can correct an error or prompt the user to change the
conditions that caused the error. To do this, use techniques such as those shown in the
preceding example. The next section discusses these techniques in detail.

For More Information See "Guidelines for Complex Error Handling" in "The
Error-Handling Hierarchy" later in this chapter for an explanation of how to use the
Stop statement.

5

Designing an Error Handler
An error handler is a routine for trapping and responding to errors in your
application. You'll want to add error handlers to any procedure where you anticipate
the possibility of an error (you should assume that any Basic statement can produce
an error unless you explicitly know otherwise). The process of designing an error
handler involves three steps:

1. Set, or enable, an error trap by telling the application where to branch to (which
error-handling routine to execute) when an error occurs.

1The On Error statement enables the trap and directs the application to the label
marking the beginning of the error-handling routine.

2In the Errors.vpb sample application, the FileExists function contains an error-
handling routine named CheckError.

2. Write an error-handling routine that responds to all errors you can anticipate. If
control actually branches into the trap at some point, the trap is then said to be
active.

3The CheckError routine handles the error using an If...Then...Else statement that
responds to the value in the Err object's Number property, which is a numeric code
corresponding to a Visual Basic error. In the example, if "Disk not ready" is
generated, a message prompts the user to close the drive door. A different message
is displayed if the "Device unavailable" error occurs. If any other error is
generated, the appropriate description is displayed and the program stops.

—4

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 4 of 59 Printed:

3. Exit the error-handling routine.

4In the case of the "Disk not ready" error, the Resume statement makes the code
branch back to the statement where the error occurred. Visual Basic then tries to
re-execute that statement. If the situation has not changed, then another error
occurs and execution branches back to the error-handling routine.

5In the case of the "Device unavailable" error, the Resume Next statement makes
the code branch to the statement following the one at which the error occurred.

1
Details on how to perform these steps are provided in the remainder of this topic.
Refer to the FileExists function example as you read through these steps.

Setting the Error Trap
An error trap is enabled when Visual Basic executes the On Error statement, which
specifies an error handler. The error trap remains enabled while the procedure
containing it is active — that is, until an Exit Sub, Exit Function, Exit Property, End
Sub, End Function, or End Property statement is executed for that procedure. While
only one error trap can be enabled at any one time in any given procedure, you can
create several alternative error traps and enable different ones at different times. You
can also disable an error trap by using a special case of the On Error statement — On
Error GoTo 0.

To set an error trap that jumps to an error-handling routine, use a On Error GoTo line
statement, where line indicates the label identifying the error-handling code. In the
FileExists function example, the label is CheckError. (Although the colon is part of
the label, it isn't used in the On Error GoTo line statement.)

For More Information For more information about disabling error handling, see
the topic, "Turning Off Error Handling," later in this chapter.

6

Writing an Error-Handling Routine
The first step in writing an error-handling routine is adding a line label to mark the
beginning of the error handling routine. The line label should have a descriptive name
and must be followed by a colon. A common convention is to place the error-handling
code at the end of the procedure with an Exit Sub, Exit Function, or Exit Property
statement immediately before the line label. This allows the procedure to avoid
executing the error-handling code if no error occurs.

The body of the error handling routine contains the code that actually handles the
error, usually in the form of a Case or If…Then…Else statement. You need to
determine which errors are likely to occur and provide a course of action for each, for
example, prompting the user to insert a disk in the case of a "Disk not ready" error.
An option should always be provided to handle any unanticipated errors by using the
Else or Case Else clause — in the case of the FileExists function example, this option
warns the user then ends the application.

—5

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 5 of 59 Printed:

The Number property of the Err object contains a numeric code representing the most
recent run-time error. By using the Err object in combination with the Select Case or
If...Then...Else statement, you can take specific action for any error that occurs.

Note The string contained in the Err object's Description property explains
the error associated with the current error number. The exact wording of the
description may vary among different versions of Microsoft Visual Basic.
Therefore, use Err.Number, rather than Err.Description, to identify the specific
error that occurred.

7

Exiting an Error-Handling Routine
The FileExists function example uses the Resume statement within the error handler
to re-execute the statement that originally caused the error, and uses the Resume Next
statement to return execution to the statement following the one at which the error
occurred. There are other ways to exit an error-handling routine. Depending on the
circumstances, you can do this using any of the statements shown in the following
table.

Statement Description

Resume [0] Program execution resumes with the statement that caused the
error or the most recently executed call out of the procedure
containing the error-handling routine. Use it to repeat an
operation after correcting the condition that caused the error.

Resume Next Resumes program execution at the statement immediately
following the one that caused the error. If the error occurred
outside the procedure that contains the error handler, execution
resumes at the statement immediately following the call to the
procedure wherein the error occurred, if the called procedure
does not have an enabled error handler.

Resume line Resumes program execution at the label specified by line,
where line is a line label (or nonzero line number) that must be
in the same procedure as the error handler.

Err.Raise Number:= number Triggers a run-time error. When this statement is executed
within the error-handling routine, Visual Basic searches the
calls list for another error-handling routine. (The calls list is the
chain of procedures invoked to arrive at the current point of
execution. See the section, "The Error-Handling Hierarchy,"
later in this chapter.)

8

The Difference Between Resume and Resume Next
Statements
The difference between Resume and Resume Next is shown in Figure 13.1.

—6

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 6 of 59 Printed:

Figure 13.1 Program flow with Resume and Resume Next

2
Generally, you would use Resume whenever the error handler can correct the error,
and Resume Next when the error handler cannot. You can write an error handler so
that the existence of a run-time error is never revealed to the user or to display error
messages and allow the user to enter corrections.

For example, the Function procedure in the following code example uses error
handling to perform "safe" division on its arguments without revealing errors that
might occur. The errors that can occur when performing division are:

Error Cause

"Division by zero" Numerator is nonzero, but the denominator is zero.

"Overflow" Both numerator and denominator are zero (during floating-point
division).

"Illegal procedure call" Either the numerator or the denominator is a nonnumeric value
(or can't be considered a numeric value).

9
In all three cases, the following Function procedure traps these errors and returns
Null:

Function Divide (numer, denom) as Variant
Dim Msg as String
Const mnErrDivByZero = 11, mnErrOverFlow = 6
Const mnErrBadCall = 5
On Error GoTo MathHandler

Divide = numer / denom
Exit Function

MathHandler:

—7

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 7 of 59 Printed:

If Err.Number = MnErrDivByZero Or _
Err.Number = ErrOverFlow _
Or Err = ErrBadCall Then

Divide = Null ' If error was Division by
' zero, Overflow, or Illegal
' procedure call, return Null.

Else
' Display unanticipated error message.
Msg = "Unanticipated error " & Err.Number
Msg = Msg & ": " & Err.Description
MsgBox Msg, vbExclamation

End If ' In all cases, Resume Next
' continues execution at

Resume Next ' the Exit Function statement.
End Function

10

Resuming Execution at a Specified Line
Resume Next can also be used where an error occurs within a loop, and you need to
restart the operation. Or, you can use Resume line, which returns control to a
specified line label.

The following example illustrates the use of the Resume line statement. A variation
on the FileExists example shown earlier, this function allows the user to enter a file
specification that the function returns if the file exists.

Function VerifyFile As String
Const mnErrBadFileName = 52, _
mnErrDriveDoorOpen = 71
Const mnErrDeviceUnavailable = 68, _
mnErrInvalidFileName = 64
Dim strPrompt As String, strMsg As String, _
strFileSpec As String
strPrompt = "Enter file specification to check:"

StartHere:
strFileSpec = "*.*" ' Start with a default

' specification.
strMsg = strMsg & vbCRLF & strPrompt
' Let the user modify the default.
strFileSpec = InputBox(strMsg, "File Search", _
strFileSpec, 100, 100)
' Exit if user deletes default.
If strFileSpec = "" Then Exit Function
On Error GoTo Handler

VerifyFile = Dir(strFileSpec)
Exit Function

Handler:
Select Case Err.Number ' Analyze error code and

' load message.
Case ErrInvalidFileName, ErrBadFileName

strMsg = "Your file specification was "
strMsg = strMsg & "invalid; try another."

Case MnErrDriveDoorOpen
strMsg = "Close the disk drive door and "

—8

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 8 of 59 Printed:

strMsg = strMsg & "try again."
Case MnErrDeviceUnavailable

strMsg = "The drive you specified was not "
strMsg = strMsg & "found. Try again."

Case Else
Dim intErrNum As Integer
intErrNum = Err.Number
Err.Clear ' Clear the Err object.
Err.Raise Number:= intErrNum ' Regenerate

' the error.
End Select
Resume StartHere ' This jumps back to StartHere

' label so the user can try
' another file name.

End Function
11

If a file matching the specification is found, the function returns the file name. If no
matching file is found, the function returns a zero-length string. If one of the
anticipated errors occurs, a message is assigned to the strMsg variable and execution
jumps back to the label StartHere. This gives the user another chance to enter a valid
path and file specification.

If the error is unanticipated, the Case Else segment regenerates the error so that the
next error handler in the calls list can trap the error. This is necessary because if the
error wasn't regenerated, the code would continue to execute at the Resume StartHere
line. By regenerating the error you are in effect causing the error to occur again; the
new error will be trapped at the next level in the call stack.

For More Information For more details, see the topic, "The Error Handling
Hierarchy" later in this chapter.

Note Although using Resume line is a legitimate way to write code, a
proliferation of jumps to line labels can render code difficult to understand and
debug.

12

The Error Handling Hierarchy
An enabled error handler is one that was activated by executing an On Error
statement and hasn't yet been turned off — either by an On Error GoTo 0 statement or
by exiting the procedure where it was enabled. An active error handler is one in which
execution is currently taking place. To be active, an error handler must first be
enabled, but not all enabled error handlers are active. For example, after a Resume
statement, a handler is deactivated but still enabled.

When an error occurs within a procedure lacking an enabled error-handling routine,
or within an active error-handling routine, Visual Basic searches the calls list for
another enabled error-handling routine. The calls list is the sequence of calls that
leads to the currently executing procedure; it is displayed in the Call Stack dialog box.
You can display the Call Stack dialog box only when in break mode (when you pause

—9

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 9 of 59 Printed:

the execution of your application), by selecting the View, Call Stack menu item or by
pressing CTRL+L.

Searching the Calls List
Suppose the following sequence of calls occurs, as shown in Figure 13.2:

4. An event procedure calls Procedure A.

5. Procedure A calls Procedure B.

6. Procedure B calls Procedure C.
3

Figure 13.2 A sequence of calls

4
While Procedure C is executing, the other procedures are pending, as shown in the
calls list in the Call Stack dialog box.

For More Information For more information, see "Monitoring the Call Stack"
later in this chapter.

13
Figure 13.3 shows the calls list displayed in the Call Stack dialog box.

—10

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 10 of 59 Printed:

Figure 13.3 The calls list when procedures are pending

5
If an error occurs in Procedure C and this procedure doesn't have an enabled error
handler, Visual Basic searches backward through the pending procedures in the calls
list — first Procedure B, then Procedure A, then the initial event procedure (but no
farther) — and executes the first enabled error handler it finds. If it doesn't encounter
an enabled error handler anywhere in the calls list, it presents a default unexpected
error message and halts execution.

If Visual Basic finds an enabled error-handling routine, execution continues in that
routine as if the error had occurred in the same procedure that contains the error
handler. If a Resume or a Resume Next statement is executed in the error-handling
routine, execution continues as shown in the following table.

Statement Result

Resume The call to the procedure that Visual Basic just searched is re-
executed. In the calls list given earlier, if Procedure A has an enabled
error handler that includes a Resume statement, Visual Basic re-
executes the call to Procedure B.

Resume Next Execution returns to the statement following the last statement
executed in that procedure. This is the statement following the call to
the procedure that Visual Basic just searched back through. In the
calls list given earlier, if Procedure A has an enabled error handler
that includes a Resume Next statement, execution returns to the
statement after the call to Procedure B.

14
Notice that the statement executed is in the procedure where the error-handling
procedure is found, not necessarily in the procedure where the error occurred. If you
don't take this into account, your code may perform in ways you don't intend. To
make the code easier to debug, you can simply go into break mode whenever an error
occurs, as explained in the section, "Turning Off Error Handling," later in this chapter.

—11

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 11 of 59 Printed:

If the error handler's range of errors doesn't include the error that actually occurred,
an unanticipated error can occur within the procedure with the enabled error handler.
In such a case, the procedure could execute endlessly, especially if the error handler
executes a Resume statement. To prevent such situations, use the Err object's Raise
method in a Case Else statement in the handler. This actually generates an error
within the error handler, forcing Visual Basic to search through the calls list for a
handler that can deal with the error.

In the VerifyFile procedure example in the Errors.vbp sample application, the number
originally contained in Err.Number is assigned to a variable, intErrNum, which is then
passed as an argument to the Err object's Raise method in a Case Else statement,
thereby generating an error. When such an error occurs within an active error handler,
the search back through the calls list begins.

Allocating Errors to Different Handlers
The effect of the search back through the calls list is hard to predict, because it
depends on whether Resume or Resume Next is executed in the handler that processes
the error successfully. Resume returns control to the most recently executed call out
of the procedure containing the error handler. Resume Next returns control to
whatever statement immediately follows the most recently executed call out of the
procedure containing the error handler.

For example, in the calls list shown in Figure 13.3, if Procedure A has an enabled
error handler and Procedure B and C don't, an error occurring in Procedure C will be
handled by Procedure A's error handler. If that error handler uses a Resume statement,
upon exit, the program continues with a call to Procedure B. However, if Procedure
A's error handler uses a Resume Next statement, upon exit, the program will continue
with whatever statement in Procedure A follows the call to Procedure B. In both cases
the error handler does not return directly to either the procedure or the statement
where the error originally occurred.

Guidelines for Complex Error Handling
When you write large Visual Basic applications that use multiple modules, the error-
handling code can get quite complex. Keep these guidelines in mind:

· While you are debugging your code, use the Err object's Raise method to
regenerate the error in all error handlers for cases where no code in the handler
deals with the specific error. This allows your application to try to correct the
error in other error-handling routines along the calls list. It also ensures that
Visual Basic will display an error message if an error occurs that your code
doesn't handle. When you test your code, this technique helps you uncover the
errors you aren't handling adequately. However, in a stand-alone .exe file, you
should be cautious: If you execute the Raise method and no other procedure
traps the error, your application will terminate execution immediately, without
any QueryUnload or Unload events occurring.

—12

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 12 of 59 Printed:

· Use the Clear method if you need to explicitly clear the Err object after handling
an error. This is necessary when using inline error handling with On Error
Resume Next. Visual Basic calls the Clear method automatically whenever it
executes any type of Resume statement, Exit Sub, Exit Function, Exit Property,
or any On Error statement.

· If you don't want another procedure in the calls list to trap the error, use the Stop
statement to force your code to terminate. Using Stop lets you examine the
context of the error while refining your code in the development environment.

1
1Caution Be sure to remove any Stop statements before you create
an .exe file. If a stand-alone Visual Basic application (.exe) encounters a
Stop statement, it treats it as an End statement and terminates execution
immediately, without any QueryUnload or Unload events occurring.
1

· Write a fail-safe error-handling procedure that all your error handlers can call as a
last resort for errors they cannot handle. This fail-safe procedure can perform an
orderly termination of your application by unloading forms and saving data.

6
For More Information See the "Inline Error Handling," "Design Time, Run Time,
and Break Mode," and "Testing Error Handling by Generating Errors" topics later in
this chapter.

15

Testing Error Handling by Generating
Errors

Simulating errors is useful when you are testing your applications, or when you want
to treat a particular condition as being equivalent to a Visual Basic run-time error. For
example, you might be writing a module that uses an object defined in an external
application, and want errors returned from the object to be handled as actual Visual
Basic errors by the rest of your application.

In order to test for all possible errors, you may need to generate some of the errors in
your code. You can generate an error in your code with the Raise method:

object.Raise argumentlist
16

The object argument is usually Err, Visual Basic's globally defined error object. The
argumentlist argument is a list of named arguments that can be passed with the
method. The VerifyFile procedure in the Errors.vbp sample application uses the
following code to regenerate the current error in an error handler:

Err.Raise Number:=intErrNum
17

In this case, intErrNum is a variable that contains the error number which triggered the
error handler. When the code reaches a Resume statement, the Clear method of the

—13

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 13 of 59 Printed:

Err object is invoked. It is necessary to regenerate the error in order to pass it back to
the previous procedure on the call stack.

You can also simulate any Visual Basic run-time error by supplying the error code for
that error:

Err.Raise Number:=71 ' Simulate "Disk Not Ready"
' error.

18

Defining Your Own Errors
Sometimes you may want to define errors in addition to those defined by Visual
Basic. For example, an application that relies on a modem connection might generate
an error when the carrier signal is dropped. If you want to generate and trap your own
errors, you can add your error numbers to the vbObjectError constant.

The vbObjectError constant reserves the numbers ranging from its own offset to its
offset + 512. Using a number higher than this will ensure that your error numbers will
not conflict with future versions of Visual Basic or other Microsoft Basic products.
ActiveX controls may also define their own error numbers. To avoid conflicts with
them, consult the documentation for controls you use in your application.

To define your own error numbers, you add constants to the Declarations section of
your module:

' Error constants
Const gLostCarrier = 1 + vbObjectError + 512
Const gNoDialTone = 2 + vbObjectError + 512

19
You can then use the Raise method as you would with any of the intrinsic errors. In
this case, the description property of the Err object will return a standard description
— "Application-defined or object defined error." To provide your own error
description, you will need to add it as a parameter to the Raise method.

Inline Error Handling
You may be accustomed to programming in a language that doesn't raise exceptions
— in other words, it doesn't interrupt your code's execution by generating exceptions
when errors occur, but instead records errors for you to check later. The C
programming language works in this manner, and you may sometimes find it
convenient to follow this practice in your Visual Basic code.

When you check for errors immediately after each line that may cause an error, you
are performing inline error handling. This topic explains the different approaches to
inline error handling, including:

· Writing functions and statements that return error numbers when an error occurs.

· Raising a Visual Basic error in a procedure and handling the error in an inline error
handler in the calling procedure.

—14

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 14 of 59 Printed:

· Writing a function to return a Variant data type, and using the Variant to indicate to
the calling procedure that an error occurred.

7

Returning Error Numbers
There are a number of ways to return error numbers. The simplest way is to create
functions and statements that return an error number, instead of a value, if an error
occurs. The following example shows how you can use this approach in the FileExists
function example, which indicates whether or not a particular file exists.

Function FileExists (p As String) As Long
If Dir (p) <> " " Then

FileExists = conSuccess ' Return a constant
' indicating the

Else ' file exists.
FileExists = conFailure ' Return failure

' constant.
End If

End Function

Dim ResultValue As Long
ResultValue = FileExists ("C:\Testfile.txt")
If ResultValue = conFailure Then

.

. ' Handle the error.

.
Else

.

. ' Proceed with the program.

.
End If

20
The key to inline error handling is to test for an error immediately after each
statement or function call. In this manner, you can design a handler that anticipates
exactly the sort of error that might arise and resolve it accordingly. This approach
does not require that an actual run-time error arise. This becomes useful when
working with API and other DLL procedures which do not raise Visual Basic
exceptions. Instead, these procedures indicate an error condition, either in the return
value, or in one of the arguments passed to the procedures; check the documentation
for the procedure you are using to determine how these procedures indicate an error
condition.

Handling Errors in the Calling Procedure
Another way to indicate an error condition is to raise a Visual Basic error in the
procedure itself, and handle the error in an inline error handler in the calling
procedure. The next example shows the same FileExists procedure, raising an error
number if it is not successful. Before calling this function, the On Error Resume Next
statement sets the values of the Err object properties when an error occurs, but
without trying to execute an error-handling routine.

—15

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 15 of 59 Printed:

The On Error Resume Next statement is followed by error-handling code. This code
can check the properties of the Err object to see if an error occurred. If Err.Number
doesn't contain zero, an error has occurred, and the error-handling code can take the
appropriate action based on the values of the Err object's properties.

Function FileExists (p As String)
If Dir (p) <> " " Then

Err.Raise conSuccess ' Return a constant
' indicating the

Else 'file exists.
Err.Raise conFailure' Raise error number

' conFailure.
End If

End Function

Dim ResultValue As Long
On Error Resume Next
ResultValue = FileExists ("C:\Testfile.txt")
If Err.Number = conFailure Then

.

. ' Handle the error.

.
Else

.

. ' Continue program.

.
End If

21
The next example uses both the return value and one of the passed arguments to
indicate whether or not an error condition resulted from the function call.

Function Power (X As Long, P As Integer, _
ByRef Result As Integer)As Long

On Error GoTo ErrorHandler
Result = x^P
Exit Function

ErrorHandler:
Power = conFailure

End Function

' Calls the Power function.
Dim lngReturnValue As Long, lngErrorMaybe As Long
lngErrorMaybe = Power (10, 2, lngReturnValue)
If lngErrorMaybe Then

.

. ' Handle the error.

.
Else

.

. ' Continue program.

.
End If

22

—16

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 16 of 59 Printed:

If the function was written simply to return either the result value or an error code, the
resulting value might be in the range of error codes, and your calling procedure would
not be able to distinguish them. By using both the return value and one of the passed
arguments, your program can determine that the function call failed, and take
appropriate action.

Using Variant Data Types
Another way to return inline error information is to take advantage of the Visual Basic
Variant data type and some related functions. A Variant has a tag that indicates what
type of data is contained in the variable, and it can be tagged as a Visual Basic error
code. You can write a function to return a Variant, and use this tag to indicate to the
calling procedure that an error has occurred.

The following example shows how the Power function can be written to return a
Variant.

Function Power (X As Long, P As Integer) As Variant
On Error GoTo ErrorHandler
Power = x^P
Exit Function

ErrorHandler:
Power = CVErr(Err.Number) ' Convert error code to

' tagged Variant.
End Function

' Calls the Power function.
Dim varReturnValue As Variant
varReturnValue = Power (10, 2)
If IsError (varReturnValue) Then

.

. ' Handle the error.

.
Else

.

. ' Continue program.

.
End If

23

Centralized Error Handling
When you add error-handling code to your applications, you'll quickly discover that
you're handling the same errors over and over. With careful planning, you can reduce
code size by writing a few procedures that your error-handling code can call to handle
common error situations.

The following FileErrors function procedure shows a message appropriate to the error
that occurred and, where possible, allows the user to choose a button to specify what
action the program should take next. It then returns code to the procedure that called

—17

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 17 of 59 Printed:

it. The value of the code indicates which action the program should take. Note that
user-defined constants such as MnErrDeviceUnavailable must be defined somewhere
(either globally, or at the module level of the module containing the procedure, or
within the procedure itself). The constant vbExclamation is defined in the Visual
Basic (VB) object library, and therefore does not need to be declared.

Function FileErrors As Integer
Dim intMsgType As Integer, strMsg As String
Dim intResponse As Integer
' Return Value Meaning
' 0 Resume
' 1 Resume Next
' 2 Unrecoverable error
' 3 Unrecognized error
intMsgType = vbExclamation
Select Case Err.Number

Case MnErrDeviceUnavailable ' Error 68.
strMsg = "That device appears unavailable."
intMsgType = vbExclamation + 4

Case MnErrDiskNotReady ' Error 71.
strMsg = "Insert a disk in the drive "
strMsg = strMsg & "and close the door."
intMsgType = vbExclamation + 4

Case MnErrDeviceIO ' Error 57.
strMsg = "Internal disk error."
intMsgType = vbExclamation + 4

Case MnErrDiskFull ' Error 61.
strMsg = "Disk is full. Continue?"
intMsgType = vbExclamation + 3

' Error 64 & 52.
Case ErrBadFileName, ErrBadFileNameOrNumber

strMsg = "That filename is illegal."
intMsgType = vbExclamation + 4

Case ErrPathDoesNotExi ' Error 76.
strMsg = "That path doesn't exist."
intMsgType = vbExclamation + 4

Case ErrBadFileMode ' Error 54.
strMsg = "Can't open your file for that "
strMsg = strMsg & "type of access."
intMsgType = vbExclamation + 4

Case ErrFileAlreadyOpen ' Error 55.
strMsg = "This file is already open."
intMsgType = vbExclamation + 4

Case ErrInputPastEndOfFile ' Error 62.
strMsg = "This file has a nonstandard "
strMsg = strMsg & "end-of-file marker, "
strMsg = strMsg & "or an attempt was made “
strMsg = strMsg & “to read beyond "
strMsg = strMsg & "the end-of-file marker."
intMsgType = vbExclamation + 4

Case Else
FileErrors = 3
Exit Function

—18

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 18 of 59 Printed:

End Select
intResponse = MsgBox (strMsg, intMsgType, _
"Disk Error")
Select Case intRresponse

Case 1, 4 ' OK, Retry buttons.
FileErrors = 0

Case 5 ' Ignore button.
FileErrors = 1

Case 2, 3 ' Cancel, End buttons.
FileErrors = 2

Case Else
FileErrors = 3

End Select
End Function

24
This procedure handles common file and disk-related errors. If the error is not related
to disk Input/Output, it returns the value 3. The procedure that calls this procedure
should then either handle the error itself, regenerate the error with the Raise method,
or call another procedure to handle it.

Note As you write larger applications, you'll find that you are using the same
constants in several procedures in various forms and modules. Making those
constants public and declaring them in a single standard module may better
organize your code and save you from typing the same declarations
repeatedly.

25
You can simplify error handling by calling the FileErrors procedure wherever you
have a procedure that reads or writes to disk. For example, you've probably used
applications that warn you if you attempt to replace an existing disk file. Conversely,
when you try to open a file that doesn't exist, many applications warn you that the file
does not exist and ask if you want to create it. In both instances, errors can occur
when the application passes the file name to the operating system.

The following checking routine uses the value returned by the FileErrors procedure to
decide what action to take in the event of a disk-related error.

Function ConfirmFile (FName As String, _
Operation As Integer) As Integer
' Parameters:
' Fname: File to be checked for and confirmed.
' Operation: Code for sequential file access mode
' (Output, Input, and so on).
' Note that the procedure works for binary and random
' access because messages are conditioned on Operation
' being <> to certain sequential modes.
' Return values:
' 1 Confirms operation will not cause a problem.
' 0 User decided not to go through with operation.

Const conSaveFile = 1, conLoadFile = 2
Const conReplaceFile = 1, conReadFile = 2
Const conAddToFile = 3, conRandomFile = 4
Const conBinaryFile = 5

—19

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 19 of 59 Printed:

Dim intConfirmation As Integer
Dim intAction As Integer
Dim intErrNum As Integer, varMsg As Variant

On Error GoTo ConfirmFileError ' Turn on the error
' trap.

FName = Dir(FName) ' See if the file exists.
On Error GoTo 0 ' Turn error trap off.
' If user is saving text to a file that already
' exists...
If FName <> "" And Operation = conReplaceFile Then

varMsg = "The file " & FName &
varMsg = varMsg & "already exists on " & vbCRLF
varMsg = varMsg & "disk. Saving the text box "
varMsg = varMsg & & vbCRLF
varMsg = varMsg & "contents to that file will "
varMsg = varMsg & "destroy the file's current "
varMsg = varMsg & "contents, " & vbCRLF _
varMsg = varMsg & "replacing them with the "
varMsg = varMsg & "text from the text box."
varMsg = varMsg & vbCRLF & vbCRLF
varMsg = varMsg & "Choose OK to replace file, "
varMsg = varMsg & "Cancel to stop."
intConfirmation = MsgBox(varMsg, 65, _
"File Message")

' If user wants to load text from a file that
' doesn't exist.
ElseIf FName = "" And Operation = conReadFile Then

varMsg = "The file " & FName
varMsg = varMsg & " doesn't exist." & vbCRLF
varMsg = varMsg & _
"Would you like to create and varMsg = varMsg & "then edit it?" _
& vbCRLF
varMsg = varMsg & vbCRLF & "Choose OK to "
varMsg = varMsg & "create file, Cancel to stop."
intConfirmation = MsgBox(varMsg, 65, _
"File Message")

' If FName doesn't exist, force procedure to return
' 0 by setting
' intConfirmation = 2.
ElseIf FName = "" Then

If Operation = conRandomFile Or _
Operation = conBinaryFile Then

intConfirmation = 2
End If

' If the file exists and operation isn't
' successful,
' intConfirmation = 0 and procedure returns 1.
End If
' If no box was displayed, intConfirmation = 0;
' if user chose OK, in either case,
' intConfirmation = 1 and ConfirmFile should
' return 1 to confirm that the intended operation
' is OK. If intConfirmation > 1, ConfirmFile should

—20

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 20 of 59 Printed:

' return 0, because user doesn't want to go through
' with the operation...
If intConfirmation > 1 Then

ConfirmFile = 0
Else

ConfirmFile = 1
If Confirmation = 1 Then

' User wants to create file.
If Operation = conLoadFile Then

' Assign conReplaceFile so caller will
' understand action that will be taken.
Operation = conReplaceFile

End If
' Return code confirming action to either
' replace existing file or create new one.
End If

End If
Exit Function
ConfirmFileError:
intAction = FileErrors

Select Case intAction
Case 0

Resume
Case 1

Resume Next
Case 2

Exit Function
Case Else

intErrNum = Err.Number
Err.Raise Number:=intErrNum
Err.Clear

End Select
End Function

26
The ConfirmFile procedure receives a specification for the file whose existence will
be confirmed, plus information about which access mode will be used when an
attempt is made to actually open the file. If a sequential file is to be saved
(conReplaceFile), and a file is found that already has that name (and will therefore be
overwritten), the user is prompted to confirm that overwriting the file is acceptable.

If a sequential file is to be opened (conReadFile) and the file is not found, the user is
prompted to confirm that a new file should be created. If the file is being opened for
random or binary access, its existence or nonexistence is either confirmed (return
value 1) or refuted (return value 0). If an error occurs in the call to Dir, the FileErrors
procedure is called to analyze the error and prompt the user for a reasonable course of
action.

Turning Off Error Handling
If an error trap has been enabled in a procedure, it is automatically disabled when the
procedure finishes executing. However, you may want to turn off an error trap in a

—21

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 21 of 59 Printed:

procedure while the code in that procedure is still executing. To turn off an enabled
error trap, use the On Error GoTo 0 statement. Once Visual Basic executes this
statement, errors are detected but not trapped within the procedure. You can use On
Error GoTo 0 to turn off error handling anywhere in a procedure — even within an
error-handling routine itself.

For example, try single stepping, using Step Into, through a procedure such as this:

Sub ErrDemoSub ()
On Error GoTo SubHandler ' Error trapping is

' enabled.
' Errors need to be caught and corrected here.
' The Kill function is used to delete a file.
Kill "Oldfile.xyz"

On Error GoTo 0 ' Error trapping is turned off
' here.

Kill "Oldfile.xyz"
On Error GoTo SubHandler ' Error trapping is

' enabled again.
Kill "Oldfile.xyz"

Exit Sub
SubHandler: ' Error-handling routine goes here.

MsgBox "Caught error."
Resume Next

End Sub
27

For More Information To learn how to use the Step Into feature, see "Running
Selected Portions of Your Application" later in this chapter.

28

Debugging Code with Error Handlers
When you are debugging code, you may find it confusing to analyze its behavior
when it generates errors that are trapped by an error handler. You could comment out
the On Error line in each module in the project, but this is also cumbersome.

Instead, while debugging, you could turn off error handlers so that every time there's
an error, you enter break mode.

 To disable error handlers while debugging

1 From the Tools menu, choose Options and click the General tab.

2 Select the Break on All Errors option, and then choose OK.
8

With this option selected, when an error occurs anywhere in the project, you will
enter break mode and the Code window will display the code where the error
occurred.

If this option is not selected, an error may or may not cause an error message to be
displayed, depending on where the error occurred. For example, it may have been
raised by an external object referenced by your application. If it does display a
message, it may be meaningless, depending on where the error originated.

—22

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 22 of 59 Printed:

Error Handling with ActiveX Components
In applications that use one or more objects, it becomes more difficult to determine
where an error occurs, particularly if it occurs in another application's object. For
example, Figure 13.4 shows an application that consists of a form module, that
references a class module, that in turn references a Microsoft Excel Worksheet object.

Figure 13.4 Regenerating errors between forms, classes, and ActiveX
components

9
If the Worksheet object does not handle a particular error arising in the Worksheet,
but regenerates it instead, Visual Basic will pass the error to the referencing object,
MyClassA. Visual Basic automatically remaps untrapped errors arising in objects
outside of Visual Basic as error code 440.

The MyClassA object can either handle the error (which is preferable), or regenerate
it. The interface specifies that any object regenerating an error that arises in a
referenced object should not simply propagate the error (pass as error code 440), but
should instead remap the error number to something meaningful. When you remap
the error, the number can either be a number defined by Visual Basic that indicates
the error condition, if your handler can determine that the error is similar to a defined
Visual Basic error (for instance, overflow or division by zero), or an undefined error
number. Add the new number to the intrinsic Visual Basic constant vbObjectError to
notify other handlers that this error was raised by your object.

Whenever possible, a class module should try to handle every error that arises within
the module itself, and should also try to handle errors that arise in an object it
references that are not handled by that object. However, there are some errors that it
cannot handle because it cannot anticipate them. There are also cases where it is more

—23

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 23 of 59 Printed:

appropriate for the referencing object to handle the error, rather than the referenced
object.

When an error occurs in the form module, Visual Basic raises one of the predefined
Visual Basic error numbers.

Note If you are creating a public class, be sure to clearly document the
meaning of each non-Visual Basic error-handler you define. (Public classes
cannot be created in the Standard Edition.) Other programmers who
reference your public classes will need to know how to handle errors raised
by your objects.

29
When you regenerate an error, leave the Err object's other properties unchanged. If
the raised error is not trapped, the Source and Description properties can be displayed
to help the user take corrective action.

Handling Errors in Objects
A class module could include the following error handler to accommodate any error it
might trap, regenerating those it is unable to resolve:

MyServerHandler:
Select Case ErrNum

Case 7 ' Handle out-of-memory error.
.
.
.

Case 440 ' Handle external object error.
Err.Raise Number:=vbObjectError + 9999

' Error from another Visual Basic object.
Case Is > vbObjectError and Is < vbObjectError _
+ 65536

ObjectError = ErrNum
Select Case ObjectError

' This object handles the error, based on
' error code documentation for the object.
Case vbObjectError + 10
.
.
.
Case Else

' Remap error as generic object error and
' regenerate.
Err.Raise Number:=vbObjectError + 9999

End Select
Case Else

' Remap error as generic object error and
' regenerate.
Err.Raise Number:=vbObjectError + 9999

End Select
Err.Clear
Resume Next

30

—24

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 24 of 59 Printed:

The Case 440 statement traps errors that arise in a referenced object outside the
Visual Basic application. In this example, the error is simply propagated using the
value 9999, because it is difficult for this type of centralized handler to determine the
cause of the error. When this error is raised, it is generally the result of a fatal
automation error (one that would cause the component to end execution), or because
an object didn't correctly handle a trapped error. Error 440 shouldn't be propagated
unless it is a fatal error. If this trap were written for an inline handler as discussed
previously in the topic, "Inline Error Handling," it might be possible to determine the
cause of the error and correct it.

The statement

Case Is > vbObjectError and Is < vbObjectError + 65536
31

traps errors that originate in an object within the Visual Basic application, or within
the same object that contains this handler. Only errors defined by objects will be in
the range of the vbObjectError offset.

The error code documentation provided for the object should define the possible error
codes and their meaning, so that this portion of the handler can be written to
intelligently resolve anticipated errors. The actual error codes may be documented
without the vbObjectError offset, or they may be documented after being added to the
offset, in which case the Case Else statement should subtract vbObjectError, rather
than add it. On the other hand, object errors may be constants, shown in the type
library for the object, as shown in the Object Browser. In that case, use the error
constant in the Case Else statement, instead of the error code.

Any error not handled should be regenerated with a new number, as shown in the
Case Else statement. Within your application, you can design a handler to anticipate
this new number you've defined. If this were a public class (not available in the
Standard Edition), you would also want to include an explanation of the new error-
handling code in your application's documentation.

The last Case Else statement traps and regenerates any other errors that are not
trapped elsewhere in the handler. Because this part of the trap will catch errors that
may or may not have the vbObjectError constant added, you should simply remap
these errors to a generic "unresolved error" code. That code should be added to
vbObjectError, indicating to any handler that this error originated in the referenced
object.

Debugging Error Handlers in ActiveX
Components
When you are debugging an application that has a reference to an object created in
Visual Basic or a class defined in a class module, you may find it confusing to
determine which object generates an error. To make this easier, you can select the
Break in Class Module option on the General tab of the Options dialog box (available
from the Tools menu). With this option selected, an error in a class module or an

—25

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 25 of 59 Printed:

object in another application or project that is running in Visual Basic will cause that
class to enter the debugger's break mode, allowing you to analyze the error. An error
arising in a compiled object will not display the Immediate window in break mode;
rather, such errors will be handled by the object's error handler, or trapped by the
referencing module.

Approaches to Debugging
The debugging techniques presented in this chapter use the analysis tools provided by
Visual Basic. Visual Basic cannot diagnose or fix errors for you, but it does provide
tools to help you analyze how execution flows from one part of the procedure to
another, and how variables and property settings change as statements are executed.
Debugging tools let you look inside your application to help you determine what
happens and why.

Visual Basic debugging support includes breakpoints, break expressions, watch
expressions, stepping through code one statement or one procedure at a time, and
displaying the values of variables and properties. Visual Basic also includes special
debugging features, such as edit-and-continue capability, setting the next statement to
execute, and procedure testing while the application is in break mode.

For More Information For a quick overview of Visual Basic debugging, see "Tips
for Debugging" later in this chapter.

32

Kinds of Errors
To understand how debugging is useful, consider the three kinds of errors you can
encounter:

· Compile errors

· Run-time errors

· Logic errors
10

Compile Errors
Compile errors result from incorrectly constructed code. If you incorrectly type a
keyword, omit some necessary punctuation, or use a Next statement without a
corresponding For statement at design time, Visual Basic detects these errors when
you compile the application.

Compile errors include errors in syntax. For example, you could have a statement as
follows:

Left
33

Left is a valid word in the Visual Basic language, but without an object, it doesn't
meet the syntax requirements for that word (object.Left). If you have selected the

—26

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 26 of 59 Printed:

Auto Syntax Check option in the Editor tab on the Options dialog box, Visual Basic
will display an error message as soon as you enter a syntax error in the Code window.

 To set the Auto Syntax Check option

3 From the Tools menu, select Options, and click the Editor tab on the Options
dialog box.

4 Select Auto Syntax Check.
11

For More Information See the section "Avoiding Bugs" later in this chapter for
other techniques to use to avoid errors in your code.

34

Run-Time Errors
Run-time errors occur while the application is running (and are detected by Visual
Basic) when a statement attempts an operation that is impossible to carry out. An
example of this is division by zero. Suppose you have this statement:

Speed = Miles / Hours
35

If the variable Hours contains zero, the division is an invalid operation, even though
the statement itself is syntactically correct. The application must run before it can
detect this error.

For More Information You can include code in your application to trap and
handle run-time errors when they occur. For information on dealing with run-time
errors, see "How to Handle Errors" earlier in this chapter.

36

Logic Errors
Logic errors occur when an application doesn't perform the way it was intended. An
application can have syntactically valid code, run without performing any invalid
operations, and yet produce incorrect results. Only by testing the application and
analyzing results can you verify that the application is performing correctly.

How Debugging Tools Help
Debugging tools are designed to help you with:

· Logic and run-time errors.

· Observing the behavior of code that has no errors.
12

For instance, an incorrect result may be produced at the end of a long series of
calculations. In debugging, the task is to determine what and where something went
wrong. Perhaps you forgot to initialize a variable, chose the wrong operator, or used
an incorrect formula.

There are no magic tricks to debugging, and there is no fixed sequence of steps that
works every time. Basically, debugging helps you understand what's going on while

—27

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 27 of 59 Printed:

your application runs. Debugging tools give you a snapshot of the current state of
your application, including:

· Appearance of the user interface (UI).

· Values of variables, expressions, and properties.

· Active procedure calls.
13

The better you understand how your application is working, the faster you can find
bugs.

For More Information For more details on viewing and testing variables,
expressions, properties, and active procedure calls, see "Testing Data and Procedures
with the Immediate Window" and "Monitoring the Call Stack" later in this chapter.

37

The Debug Toolbar
Among its many debugging tools, Visual Basic provides several buttons on the
optional Debug toolbar that are very helpful. Figure 13.5 shows these tools. To
display the Debug toolbar, right-click on the Visual Basic toolbar and select the
Debug option.

Figure 13.5 The Debug toolbar

14
The following table briefly describes each tool's purpose. The topics in this chapter
discuss situations where each of these tools can help you debug or analyze an
application more efficiently.

Debugging tool Purpose

Breakpoint Defines a line in the Code window where Visual Basic suspends
execution of the application.

—28

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 28 of 59 Printed:

Step Into Executes the next executable line of code in the application and steps
into procedures.

Step Over Executes the next executable line of code in the application without
stepping into procedures.

Step Out Executes the remainder of the current procedure and breaks at the
next line in the calling procedure.

Locals Window Displays the current value of local variables.

Immediate Window Allows you to execute code or query values while the application is
in break mode.

Watch window Displays the values of selected expressions.

Quick Watch Lists the current value of an expression while the application is in
break mode.

Call Stack While in break mode, presents a dialog box that shows all procedures
that have been called but not yet run to completion.

38
For More Information The debugging tools are only necessary if there are bugs in
your application. See "Avoiding Bugs" later in this chapter.

Avoiding Bugs
There are several ways to avoid creating bugs in your applications:

· Design your applications carefully by writing down the relevant events and the
way your code will respond to each one. Give each event procedure and each
general procedure a specific, well-defined purpose.

· Include numerous comments. As you go back and analyze your code, you'll
understand it much better if you state the purpose of each procedure in
comments.

· Explicitly reference objects whenever possible. Declare objects as they are listed in
the Classes/Modules box in the Object Browser, rather than using a Variant or
the generic Object data types.

· Develop a consistent naming scheme for the variables and objects in your
application.

· One of the most common sources of errors is incorrectly typing a variable name or
confusing one control with another. You can use Option Explicit to avoid
misspelling variable names. For more information on requiring explicit variable
declaration, see "Introducing Variables, Constants, and Data Types" in
"Programming Fundamentals."

15

Design Time, Run Time, and Break Mode
To test and debug an application, you need to understand which of three modes you
are in at any given time. You use Visual Basic at design time to create an application,

—29

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 29 of 59 Printed:

and at run time to run it. This chapter introduces break mode, which suspends the
execution of the program so you can examine and alter data.

Identifying the Current Mode
The Visual Basic title bar always shows you the current mode. Figure 13.6 shows the
title bar for design time, run time, and break mode.

Figure 13.6 Identifying the current mode with the Visual Basic title bar

16
The characteristics of the three modes are listed in the following table.

Mode Description

Design time Most of the work of creating an application is done at design time. You can
design forms, draw controls, write code, and use the Properties window to
set or view property settings. You cannot execute code or use debugging
tools, except for setting breakpoints and creating watch expressions.

From the Run menu, choose Start, or click the Run button to switch to run
time.

If your application contains code that executes when the application starts,
choose Step Into from the Run menu (or press F8) to place the application in
break mode at the first executable statement.

Run time When an application takes control, you interact with the application the
same way a user would. You can view code, but you cannot change it.

From the Run menu, choose End, or click the End button to switch back to
design time.

Break mode From the Run menu, choose Break, click the Break button, or press

—30

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 30 of 59 Printed:

CTRL+BREAK to switch to break mode.

Execution is suspended while running the application. You can view and edit
code (choose Code from the View menu, or press F7), examine or modify
data, restart the application, end execution, or continue execution from the
same point.

You can set breakpoints and watch expressions at design time, but other
debugging tools work only in break mode. See "Using Break Mode" later in
this chapter.

39
40

Using the Toolbar to Change Modes
The toolbar provides three buttons that let you change quickly from one mode to
another. These buttons appear in Figure 13.7.

Figure 13.7 Start, Break, and End buttons on the toolbar

17
Whether any of these buttons is available depends on whether Visual Basic is in run-
time mode, design-time mode, or break mode. The following table lists the buttons
available for different modes.

Mode Toolbar buttons available

Design time Start

Run time Break, End

Break Continue, End (in break mode, the Start button becomes the Continue
button)

41

Using the Debugging Windows
Sometimes you can find the cause of a problem by executing portions of code. More
often, however, you'll also have to analyze what's happening to the data. You might
isolate a problem in a variable or property with an incorrect value, and then have to
determine how and why that variable or property was assigned an incorrect value.

With the debugging windows, you can monitor the values of expressions and
variables while stepping through the statements in your application. There are three
debugging windows: the Immediate window, the Watch window, and the Locals
window

—31

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 31 of 59 Printed:

· The Immediate window shows information that results from debugging statements
in your code, or that you request by typing commands directly into the window.

1Figure 13.8 The Immediate window

1

18
6For More Information To learn more about the Immediate window, see
"Testing Data and Procedures with the Immediate Window" later in this chapter.

42
· The Watch window shows the current watch expressions, which are expressions

whose values you decide to monitor as the code runs. A break expression is a
watch expression that will cause Visual Basic to enter break mode when a
certain condition you define becomes true. In the Watch window, the Context
column indicates the procedure, module, or modules in which each watch
expression is evaluated. The Watch window can display a value for a watch
expression only if the current statement is in the specified context. Otherwise,
the Value column shows a message indicating the statement is not in context. .
To access the Watch window, select Watch Window from the View menu.
Figure 13.9 shows the Watch window.

—32

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 32 of 59 Printed:

2Figure 13.9 The Watch window

2

19
7For More Information To learn more about the Watch window, see
"Monitoring Data with Watch Expressions" later in this chapter.

43
· The Locals window shows the value of any variables within the scope of the

current procedure. As the execution switches from procedure to procedure, the
contents of the Locals window changes to reflect only the variables applicable
to the current procedure. To access the Locals window, select Locals Window
from the View menu. Figure 13.10 shows the Locals window.

3Figure 13.10 The Locals window

20

—33

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 33 of 59 Printed:

The current procedure and form (or module) determine which variables can be
displayed according to the scoping rules presented in "Understanding the Scope of
Variables" in "Programming Fundamentals." For example, suppose the Immediate
window indicates that Form1 is the current form. In this case, you can display any of
the form-level variables in Form1. You can also use Debug.Print to examine local
variables of the procedure displayed in the Code window. (You can always examine
the value of a public variable.) For more information about printing information in the
Immediate window, see "Testing data and Procedures with the Immediate Window"
later in this chapter.

Using Break Mode
At design time, you can change the design or code of an application, but you cannot
see how your changes affect the way the application runs. At run time, you can watch
how the application behaves, but you cannot directly change the code.

Break mode halts the operation of an application and gives you a snapshot of its
condition at any moment. Variable and property settings are preserved, so you can
analyze the current state of the application and enter changes that affect how the
application runs. When an application is in break mode, you can:

· Modify code in the application.

· Observe the condition of the application's interface.

· Determine which active procedures have been called.

· Watch the values of variables, properties, and statements.

· Change the values of variables and properties.

· View or control which statement the application will run next.

· Run Visual Basic statements immediately.

· Manually control the operation of the application.
21

Note You can set breakpoints and watch expressions at design time, but
other debugging tools work only in break mode.

44

Entering Break Mode at a Problem Statement
When debugging, you may want the application to halt at the place in the code where
you think the problem might have started. This is one reason Visual Basic provides
breakpoints and Stop statements. A breakpoint defines a statement or set of conditions
at which Visual Basic automatically stops execution and puts the application in break
mode without running the statement containing the breakpoint. See "Using Stop
Statements" later in this chapter for a comparison of Stop statements and breakpoints.

You can enter break mode manually if you do any of the following while the
application is running:

—34

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 34 of 59 Printed:

· Press CTRL+BREAK.

· Choose Break from the Run menu.

· Click the Break button on the toolbar.
22

It's possible to break execution when the application is idle (when it is between
processing of events). When this happens, execution does not stop at a specific line,
but Visual Basic switches to break mode anyway.

You can also enter break mode automatically when any of the following occurs:

· A statement generates an untrapped run-time error.

· A statement generates a run-time error and Break on All Errors was selected in the
General tab on the Options dialog box (available from the Tools menu).

· A break expression defined in the Add Watch dialog box changes or becomes true,
depending on how you defined it.

· Execution reaches a line with a breakpoint.

· Execution reaches a Stop statement.
23

Fixing a Run-Time Error and Continuing
Some run-time errors result from simple oversights when entering code; these errors
are easily fixed. Frequent errors include misspelled names and mismatched properties
or methods with objects — for example, trying to use the Clear method on a text box,
or the Text property with a file list box. Figure 13.11 shows a run-time error message.

—35

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 35 of 59 Printed:

Figure 13.11 Run-time errors halt execution

24
Often you can enter a correction and continue program execution with the same line
that halted the application, even though you've changed some of the code. Simply
choose Continue from the Run menu or click the Continue button on the toolbar. As
you continue running the application, you can verify that the problem is fixed.

If you select the Break on All Errors option on the General tab on the Options dialog
box (available from the Tools menu), Visual Basic disables error handlers in code, so
that when a statement generates a run-time error, Visual Basic enters break mode. If
Break on All Errors is not selected, and if an error handler exists, it will intercept code
and take corrective action.

Some changes (most commonly, changing variable declarations or adding new
variables or procedures) require you to restart the application. When this happens,
Visual Basic presents a message that asks if you want to restart the application.

—36

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 36 of 59 Printed:

Monitoring Data with Watch Expressions
As you debug your application, a calculation may not produce the result you want or
problems might occur when a certain variable or property assumes a particular value
or range of values. Many debugging problems aren't immediately traceable to a single
statement, so you may need to observe the behavior of a variable or expression
throughout a procedure.

Visual Basic automatically monitors watch expressions — expressions that you define
— for you. When the application enters break mode, these watch expressions appear
in the Watch window, where you can observe their values.

You can also direct watch expressions to put the application into break mode
whenever the expression's value changes or equals a specified value. For example,
instead of stepping through perhaps tens or hundreds of loops one statement at a time,
you can use a watch expression to put the application in break mode when a loop
counter reaches a specific value. Or you may want the application to enter break
mode each time a flag in a procedure changes value.

Adding a Watch Expression
You can add a watch expression at design time or in break mode. You use the Add
Watch dialog box (shown in Figure 13.12) to add watch expressions.

Figure 13.12 The Add Watch dialog box

25
The following table describes the Add Watch dialog box.

—37

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 37 of 59 Printed:

Component Description

Expression box Where you enter the expression that the watch expression evaluates.
The expression is a variable, a property, a function call, or any other
valid expression.

Context
option group

Sets the scope of variables watched in the expression. Use if you have
variables of the same name with different scope. You can also restrict
the scope of variables in watch expressions to a specific procedure or
to a specific form or module, or you can have it apply to the entire
application by selecting All Procedures and All Modules. Visual Basic
can evaluate a variable in a narrow context more quickly.

Watch Type option
group

Sets how Visual Basic responds to the watch expression. Visual Basic
can watch the expression and display its value in the Watch window
when the application enters break mode. Or you can have the
application enter break mode automatically when the expression
evaluates to a true (nonzero) statement or each time the value of the
expression changes.

45
 To add a watch expression

5 From the Debug menu, choose Add Watch.

6 The current expression (if any) in the Code Editor will appear in the Expression
box on the Add Watch dialog box. If this isn't the expression you want to
watch, enter the expression to evaluate in the Expression box.

7 If necessary, set the scope of the variables to watch.

8If you select the Procedure or Module option under Context, select a procedure,
form, or module name from the appropriate list box.

8 If necessary, select an option button in the Watch Type group to determine how
you want Visual Basic to respond to the watch expression.

9 Choose OK.
26

Note You can also add an expression by dragging and dropping from the
Code Editor to the Watch window.

46

Editing or Deleting a Watch Expression
The Edit Watch dialog box, shown in Figure 13.13, lists all the current watch
expressions. You can edit and delete any watch listed in the Watch window.

—38

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 38 of 59 Printed:

Figure 13.13 The Edit Watch dialog box

27
 To edit a watch expression

10 In the Watch window, double click the watch expression you want to edit.

9– or –

10Select the watch expression you want to edit and choose Edit Watch from the
Debug menu.

11 The Edit Watch dialog box is displayed and is identical to the Add Watch dialog
box except for the title bar and the addition of a Delete button.

12 Make any changes to the expression, the scope for evaluating variables, or the
watch type.

13 Choose OK.
28

 To delete a watch expression

14 In the Watch window, select the watch expression you want to delete.

15 Press the DELETE key.
29

Identifying Watch Types
At the left edge of each watch expression in the Watch window is an icon identifying
the watch type of that expression. Figure 13.14 defines the icon for each of the three
watch types.

—39

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 39 of 59 Printed:

Figure 13.14 Watch type icons

30

Using Quick Watch
While in break mode, you can check the value of a property, variable, or expression
for which you have not defined a watch expression. To check such expressions, use
the Quick Watch dialog box, shown in Figure 13.15.

Figure 13.15 The Quick Watch dialog box

31
The Quick Watch dialog box shows the value of the expression you select from the
Code window. To continue watching this expression, click the Add button; the Watch
window, with relevant information from the Quick Watch dialog box already entered,
is displayed. If Visual Basic cannot evaluate the value of the current expression, the
Add button is disabled.

 To display the Quick Watch dialog box

16 Select a watch expression in the Code window.

17 Click the Quick Watch button on the Debug toolbar. (To display the Debug
toolbar, right-click on the Visual Basic toolbar and select the Debug option.)

11– or –

12Press SHIFT+F9.

13– or –

14From the Debug menu, choose Quick Watch.

18 If you want to add a watch expression based on the expression in the Quick
Watch dialog box, choose the Add button.

32

—40

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 40 of 59 Printed:

Using a Breakpoint to Selectively Halt Execution
At run time, a breakpoint tells Visual Basic to halt just before executing a specific line
of code. When Visual Basic is executing a procedure and it encounters a line of code
with a breakpoint, it switches to break mode.

You can set or remove a breakpoint in break mode or at design time, or at run time
when the application is idle.

 To set or remove a breakpoint

19 In the Code window, move the insertion point to the line of code where you want
to set or remove a breakpoint.

15– or –

16Click in the margin on the left edge of the Code window next to the line where
you want to set or remove a breakpoint.

20 From the Debug menu, choose Toggle Breakpoint.

17– or –

18Click the Toggle Breakpoint button on the Debug toolbar. (To display the
Debug toolbar, right-click on the Visual Basic toolbar and select the Debug
option.)

19– or –

20Press F9.
33

When you set a breakpoint, Visual Basic highlights the selected line in bold, using the
colors that you specified on the Editor Format tab of the Options dialog box, available
from the Tools menu.

For example, Figure 13.16 shows a procedure with a breakpoint on the fifth line. In
the Code window, Visual Basic indicates a breakpoint by displaying the text on that
line in bold and in the colors specified for a breakpoint.

—41

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 41 of 59 Printed:

Figure 13.16 A procedure halted by a breakpoint

34

Identifying the Current Statement
In Figure 13.16, a rectangular highlight surrounds the seventh line of code. This
outline indicates the current statement, or next statement to be executed. When the
current statement also contains a breakpoint, only the rectangular outline highlights
the line of code. Once the current statement moves to another line, the line with the
breakpoint is displayed in bold and in color again.

 To specify the color of text of the current statement

21 From the Tools menu, choose Options and click the Editor Format tab on the
Options dialog box.

22 Under Code Colors, select Execution Point Text, and set the Foreground,
Background, and Indicator colors.

35

Examining the Application at a Breakpoint
Once you reach a breakpoint and the application is halted, you can examine the
application's current state. Checking results of the application is easy, because you
can move the focus among the forms and modules of your application, the Code
window, and the debugging windows.

A breakpoint halts the application just before executing the line that contains the
breakpoint. If you want to observe what happens when the line with the breakpoint
executes, you must execute at least one more statement. To do this, use Step Into or
Step Over.

—42

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 42 of 59 Printed:

For More Information See the section, "Running Selected Portions of Your
Application," later in this chapter.

47
When you are trying to isolate a problem, remember that a statement might be
indirectly at fault because it assigns an incorrect value to a variable. To examine the
values of variables and properties while in break mode, use the Locals window, Quick
Watch, watch expressions, or the Immediate window.

For More Information To learn how to use the Immediate window to test the
values of properties and variables, see "Testing Data and Procedures with the
Immediate Window," later in this chapter. To learn more about watch expressions, see
"Monitoring Data with Watch Expressions."

48

Using Stop Statements
Placing a Stop statement in a procedure is an alternative to setting a breakpoint.
Whenever Visual Basic encounters a Stop statement, it halts execution and switches
to break mode. Although Stop statements act like breakpoints, they aren't set or
cleared the same way.

Caution Be sure to remove any Stop statements before you create an .exe
file. If a stand-alone Visual Basic application (.exe) encounters a Stop
statement, it treats it as an End statement and terminates execution
immediately, without any QueryUnload or Unload events occurring.

Remember that a Stop statement does nothing more than temporarily halt execution,
while an End statement halts execution, resets variables, and returns to design time.
You can always choose Continue from the Run menu to continue running the
application.

For More Information See "How to Handle Errors" earlier in this chapter for an
example that uses the Stop statement.

49

Running Selected Portions of Your
Application

If you can identify the statement that caused an error, a single breakpoint might help
you locate the problem. More often, however, you know only the general area of the
code that caused the error. A breakpoint helps you isolate that problem area. You can
then use Step Into and Step Over to observe the effect of each statement. If necessary,
you can also skip over statements or back up by starting execution at a new line.

—43

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 43 of 59 Printed:

Step Mode Description

Step Into Execute the current statement and break at the next line, even if it's in
another procedure.

Step Over Execute the entire procedure called by the current line and break at
the line following the current line.

Step Out Execute the remainder of the current procedure and break at the
statement following the one that called the procedure.

50
Note You must be in break mode to use these commands. They are not
available at design time or run time.

51

Using Step Into
You can use Step Into to execute code one statement at a time. (This is also known as
single stepping.) After stepping through each statement, you can see its effect by
looking at your application's forms or the debugging windows.

 To step through code one statement at a time

· From the Debug menu, choose Step Into.

21– or –

22Click the Step Into button on the Debug toolbar. (To display the Debug toolbar,
right-click on the Visual Basic toolbar and select the Debug option.)

23– or –

24Press F8.
36

When you use Step Into to step through code one statement at a time, Visual Basic
temporarily switches to run time, executes the current statement, and advances to the
next statement. Then it switches back to break mode.

Note Visual Basic allows you to step into individual statements, even if they
are on the same line. A line of code can contain two or more statements,
separated by a colon (:). Visual Basic uses a rectangular outline to indicate
which of the statements will execute next. Breakpoints apply only to the first
statement of a multiple-statement line.

52

Using Step Over
Step Over is identical to Step Into, except when the current statement contains a call
to a procedure. Unlike Step Into, which steps into the called procedure, Step Over
executes it as a unit and then steps to the next statement in the current procedure.
Suppose, for example, that the statement calls the procedure SetAlarmTime:

SetAlarmTime 11, 30, 0
53

—44

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 44 of 59 Printed:

If you choose Step Into, the Code window shows the SetAlarmTime procedure and
sets the current statement to the beginning of that procedure. This is the better choice
only if you want to analyze the code within SetAlarmTime.

If you use Step Over, the Code window continues to display the current procedure.
Execution advances to the statement immediately after the call to SetAlarmTime,
unless SetAlarmTime contains a breakpoint or a Stop statement. Use Step Over if you
want to stay at the same level of code and don't need to analyze the SetAlarmTime
procedure.

You can alternate freely between Step Into and Step Over. The command you use
depends on which portions of code you want to analyze at any given time.

 To use Step Over

· From the Debug menu, choose Step Over.

25– or –

26Click the Step Over button on the Debug toolbar. (To display the Debug
toolbar, right-click on the Visual Basic toolbar and select the Debug option.)

27– or –

28Press SHIFT+F8.
37

Using Step Out
Step Out is similar to Step Into and Step Over, except it advances past the remainder
of the code in the current procedure. If the procedure was called from another
procedure, it advances to the statement immediately following the one that called the
procedure.

 To use Step Out

· From the Debug menu, choose Step Out.

29– or –

30Click the Step Out button on the Debug toolbar. (To display the Debug toolbar,
right-click on the Visual Basic toolbar and select the Debug option.)

31– or –

32Press CTRL+SHIFT+F8.
38

Bypassing Sections of Code
When your application is in break mode, you can use the Run To Cursor command to
select a statement further down in your code where you want execution to stop. This
lets you "step over" uninteresting sections of code, such as large loops.

 To use Run To Cursor

23 Put your application in break mode.

—45

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 45 of 59 Printed:

24 Place the cursor where you want to stop.

25 Press CTRL+F8.

33– or –

34From the Debug menu, choose Run To Cursor.
39

Setting the Next Statement to Be Executed
While debugging or experimenting with an application, you can use the Set Next
Statement command to skip a certain section of code — for instance, a section that
contains a known bug — so you can continue tracing other problems. Or you may
want to return to an earlier statement to test part of the application using different
values for properties or variables.

With Visual Basic, you can set a different line of code to execute next, provided it
falls within the same procedure. The effect is similar to using Step Into, except Step
Into executes only the next line of code in the procedure. By setting the next
statement to execute, you choose which line executes next.

 To set the next statement to be executed

26 In break mode, move the insertion point (cursor) to the line of code you want to
execute next.

27 From the Debug menu, choose Set Next Statement.

28 To resume execution, from the Run menu, choose Continue.

35 – or –

36 From the Debug menu, choose Run To Cursor, Step Into, Step Over, or Step
Out.

40

Showing the Next Statement to Be Executed
You can use Show Next Statement to place the cursor on the line that will execute
next. This feature is convenient if you've been executing code in an error handler and
aren't sure where execution will resume. Show Next Statement is available only in
break mode.

 To show the next statement to be executed

29 While in break mode, from the Debug menu, choose Show Next Statement.

30 To resume execution, from the Run menu, choose Continue.

37 – or –

38 From the Debug menu, choose Run To Cursor, Step Into, Step Over, or Step
Out.

41

Monitoring the Call Stack
—46

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 46 of 59 Printed:

The Call Stack dialog box shows a list of all active procedure calls. Active procedure
calls are the procedures in the application that were started but not completed.

The Call Stack dialog box helps you trace the operation of an application as it
executes a series of nested procedures. For example, an event procedure can call a
second procedure, which can call a third procedure — all before the event procedure
that started this chain is completed. Such nested procedure calls can be difficult to
follow and can complicate the debugging process. Figure 13.17 shows the Call Stack
dialog box.

Note If you put the application in break mode during an idle loop, no entries
appear in the Call Stack dialog box.

54
Figure 13.17 The Call Stack dialog box

42
You can display the Call Stack dialog box only when the application is in break mode.

 To display the Call Stack dialog box

· From the View menu, choose Call Stack.

39– or –

40Click the Call Stack button on the Debug toolbar. (To display the Debug
toolbar, right-click on the Visual Basic toolbar and select the Debug option.)

41– or –

42Press CTRL+L.

43– or –

44Click the button next to the Procedure box in the Locals window.
43

Tracing Nested Procedures
The Call Stack dialog box lists all the active procedure calls in a series of nested calls.
It places the earliest active procedure call at the bottom of the list and adds
subsequent procedure calls to the top of the list.

—47

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 47 of 59 Printed:

The information given for each procedure begins with the module or form name,
followed by the name of the called procedure. Because the Call Stack dialog box
doesn't indicate the variable assigned to an instance of a form, it does not distinguish
between multiple instances of forms or classes. For more information on multiple
instances of a form, see "Programming with Objects".

You can use the Call Stack dialog box to display the statement in a procedure that
passes control of the application to the next procedure in the list.

 To display the statement that calls another procedure in the Calls
Stack dialog box

31 In the Call Stack dialog box, select the procedure call you want to display.

32 Choose the Show button.

45The dialog box is closed and the procedure appears in the Code window.
44

The cursor location in the Code window indicates the statement that calls the next
procedure in the Call Stack dialog box. If you choose the current procedure in the
Call Stack dialog box, the cursor appears at the current statement.

Checking Recursive Procedures
The Call Stack dialog box can be useful in determining whether "Out of stack space"
errors are caused by recursion. Recursion is the ability of a routine to call itself. You
can test this by adding the following code to a form in a new project:

Sub Main()
Static intX As Integer
intX = intX + 1
Main

End Sub

Private Sub Form_Click()
Main

End Sub
55

Run the application, click the form, and wait for the "Out of stack space” error
message. Choose the Debug button, and then choose Call Stack on the View menu.
You'll see multiple calls to the Main procedure, as shown in Figure 13.18.

—48

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 48 of 59 Printed:

Figure 13.18 The Call Stack dialog box lists a recursive procedure

45
As a double check, highlight intX in the Code window, and choose Quick Watch from
the Debug menu. The value for intX is the number of times the Main procedure
executed before the break.

Testing Data and Procedures with the
Immediate Window

Sometimes when you are debugging or experimenting with an application, you may
want to execute individual procedures, evaluate expressions, or assign new values to
variables or properties. You can use the Immediate window to accomplish these tasks.
You evaluate expressions by printing their values in the Immediate window.

Printing Information in the Immediate Window
There are two ways to print to the Immediate window:

· Include Debug.Print statements in the application code.

· Enter Print methods directly in the Immediate window.
46

These printing techniques offer several advantages over watch expressions:

· You don't have to break execution to get feedback on how the application is
performing. You can see data or other messages displayed as you run the
application.

· Feedback is displayed in a separate area (the Immediate window), so it does not
interfere with output that a user sees.

· Because you can save this code as part of the form, you don't have to redefine
these statements the next time you work on the application.

47

Printing from Application Code

—49

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 49 of 59 Printed:

The Print method sends output to the Immediate window whenever you include the
Debug object prefix:

Debug.Print [items][;]
56

For example, the following statement prints the value of Salary to the Immediate
window every time it is executed:

Debug.Print "Salary = "; Salary
57

This technique works best when there is a particular place in your application code at
which the variable (in this case, Salary) is known to change. For example, you might
put the previous statement in a loop that repeatedly alters Salary.

Note When you compile your application into an .exe file, Debug.Print
statements are removed. Thus, if your application only uses Debug.Print
statements with strings or simple variable types as arguments, it will not have
any Debug.Print statements. However, Visual Basic will not strip out function
calls appearing as arguments to Debug.Print. Thus, any side-effects of those
functions will continue to happen in a compiled .exe file, even though the
function results are not printed.

58

Printing from Within the Immediate Window
Once you're in break mode, you can move the focus to the Immediate window to
examine data.

 To examine data in the Immediate window

33 Click the Immediate window (if visible).

46– or –

47From the View menu, choose Immediate Window.

48Once you have moved focus to the Immediate window, you then can use the
Print method without the Debug object.

34 Type or paste a statement into the Immediate window, and then press ENTER.

49The Immediate window responds by carrying out the statement, as shown in
Figure 13.19.

—50

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 50 of 59 Printed:

4Figure 13.19 Using the Print method to print to the Immediate window

3
48

A question mark (?) is useful shorthand for the Print method. The question mark
means the same as Print, and can be used in any context where Print is used. For
example, the statements in Figure 13.19 could be entered as shown in Figure 13.20.

Figure 13.20 Using a question mark instead of the Print method

49

Printing Values of Properties
You can evaluate any valid expression in the Immediate window, including
expressions involving properties. The currently active form or module determines the
scope. If the execution halts within code that is attached to a form or class, you can
refer to the properties of that form (or one of its controls) and make the reference to
the form implicit with statements like the following:

—51

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 51 of 59 Printed:

? BackColor
? Text1.Height

59
Assuming that Text1 is a control on the currently active form, the first statement
prints the numeric value of the current form's background color to the Immediate
window. The second statement prints the height of Text1.

If execution is suspended in a module or another form, you must explicitly specify the
form name as follows:

? Form1.BackColor
? Form1.Text1.Height

60
Note Referencing an unloaded form in the Immediate window (or anywhere
else) loads that form.

61
For More Information To learn about changing properties and values in the
Immediate window, see "Assigning Values to Variables and Properties" later in this
chapter.

62

Assigning Values to Variables and Properties
As you start to isolate the possible cause of an error, you may want to test the effects
of particular data values. In break mode, you can set values with statements like these
in the Immediate window:

BackColor = 255
VScroll1.Value = 100
MaxRows = 50

63
The first statement alters a property of the currently active form, the second alters a
property of VScroll1, and the third assigns a value to a variable.

After you set the values of one or more properties and variables, you can continue
execution to see the results. Or you can test the effect on procedures, as described in
the next topic, "Testing Procedures with the Immediate Window."

Testing Procedures with the Immediate Window
The Immediate window evaluates any valid Visual Basic executable statement, but it
doesn't accept data declarations. You can enter calls to Sub and Function procedures,
however, which allows you to test the possible effect of a procedure with any given
set of arguments. Simply enter a statement in the Immediate window (while in break
mode) as you would in the Code window. For example:

X = Quadratic(2, 8, 8)
DisplayGraph 50, Arr1
Form_MouseDown 1, 0, 100, 100

64

—52

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 52 of 59 Printed:

When you press the Enter key, Visual Basic switches to run time to execute the
statement, and then returns to break mode. At that point, you can see results and test
any possible effects on variables or property values.

If Option Explicit is in effect (requiring all variable declarations to be explicit), any
variables you enter in the Immediate window must already be declared within the
current scope. Scope applies to procedure calls just as it does to variables. You can
call any procedure within the currently active form. You can always call a procedure
in a module, unless you define the procedure as Private, in which case you can call
the procedure only while executing in the module.

For More Information Scope is discussed in "Introduction to Variables,
Constants, and Data Types" in "Programming Fundamentals."

65

Viewing and Testing Multiple Instances of
Procedures
You can use the Immediate window to run a procedure repeatedly, testing the effect of
different conditions. Each separate call of the procedure is maintained as a separate
instance by Visual Basic. This allows you to separately test variables and property
settings in each instance of the procedure. To see how this works, open a new project
and add the following code to the form module:

Private Sub Form_Click()
AProcedure

End Sub

Sub AProcedure()
Dim intX As Integer
intX = 10
BProcedure

End Sub

Sub BProcedure()
Stop

End Sub
66

Run the application and click the form. The Stop statement puts Visual Basic into
break mode and the Immediate window is displayed. Change the value of intX to 15 in
the procedure "AProcedure," switch to the Immediate window, and type the
following:

AProcedure
67

This calls the procedure "AProcedure" and restarts the application. If you switch to
the Immediate window and run "AProcedure" again, and then open the Call Stack
dialog box, you'll see a listing much like the one in Figure 13.21. Each separate run of
the program is listed, separated by the [<Debug Window>] listing.

—53

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 53 of 59 Printed:

Figure 13.21 The Call Stack dialog box shows multiple instances of procedures

50
Visual Basic maintains a listing of the procedures executed by each command from
the Immediate window. Newer listings are at the top of the list. You can use the Call
Stack dialog box to select any instance of a procedure, and then print the values of
variables from that procedure in the Immediate window.

For example, if you double-click the earliest instance of "AProcedure" and use the
Immediate window to print the value of intX, it will return 10, as shown in Figure
13.22. If you changed the value of intX to 15 for the second run of the "AProcedure,"
that value is stored with the second instance of the procedure.

Figure 13.22 Printing the values of variables in the Immediate window

51

—54

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 54 of 59 Printed:

Note Although most statements are supported in the Immediate window, a
control structure is valid only if it can be completely expressed on one line of
code; use colons to separate the statements that make up the control
structure. The following For loop is valid in the Immediate window:

For I = 1 To 20 : Print 2 * I : Next I
68

Checking Error Numbers
You can use the Immediate window to display the message associated with a specific
error number. For example, enter this statement in the Immediate window:

error 58
69

Press ENTER to execute the statement. The appropriate error message is displayed, as
shown in Figure 13.23.

Figure 13.23 Displaying error messages from the Immediate window

52

Tips for Using the Immediate Window
Here are some shortcuts you can use in the Immediate window:

· Once you enter a statement, you can execute it again by moving the insertion point
back to that statement and pressing ENTER anywhere on the line.

· Before pressing ENTER, you can edit the current statement to alter its effects.

· You can use the mouse or the arrow keys to move around in the Immediate
window. Don't press ENTER unless you are at a statement you want to execute.

· CTRL+HOME will take you to the top of the Immediate window; CTRL+END will take
you to the bottom.

· The HOME and END keys move to the beginning and end of the current line.
53
70

—55

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 55 of 59 Printed:

Special Debugging Considerations
Certain events that are a common part of using Microsoft Windows can pose special
problems for debugging an application. It's important to be aware of these special
problems so they don't confuse or complicate the debugging process.

If you remain aware of how break mode can put events at odds with what your
application expects, you can usually find solutions. In some event procedures, you
may need to use Debug.Print statements to monitor values of variables or properties
instead of using watch expressions or breakpoints. You may also need to change the
values of variables that depend on the sequence of events. This is discussed in the
following topics.

Breaking Execution During MouseDown
If you break execution during a MouseDown event procedure, you may release the
mouse button or use the mouse to do any number of tasks. When you continue
execution, however, the application assumes that the mouse button is still pressed
down. You don't get a MouseUp event until you press the mouse button down again
and then release it.

When you press the mouse button down during run time, you break execution in the
MouseDown event procedure again, assuming you have a breakpoint there. In this
scenario, you never get to the MouseUp event. The solution is usually to remove the
breakpoint in the MouseDown procedure.

Breaking Execution During KeyDown
If you break execution during a KeyDown procedure, similar considerations apply. If
you retain a breakpoint in a KeyDown procedure, you may never get a KeyUp event.
(KeyDown and KeyUp are described in "Responding to Mouse and Keyboard
Events.")

Breaking Execution During GotFocus or
LostFocus
If you break execution during a GotFocus or LostFocus event procedure, the timing
of system messages can cause inconsistent results. Use a Debug.Print statement
instead of a breakpoint in GotFocus or LostFocus event procedures.

Testing and Using Command-Line Arguments
You can choose to have your application use command-line arguments, which provide
data to your application at startup. The user can enter them by choosing the operating
environment's Run command, and then typing arguments after the application name.
You can also use command-line arguments when creating an icon for the application.

—56

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 56 of 59 Printed:

For example, suppose you create an alarm clock application. One of the techniques
for setting the alarm time is to let the user type in the selected time directly. The user
might enter the following string in the Run dialog box:

Alarm 11:00:00
71

The Command function returns all arguments entered after the application name (in
this case, Alarm). The Alarm application has only one argument, so in the application
code, you can assign this argument directly to the string that stores the selected time:

AlarmTime = Command
72

If Command returns an empty string, there are no command-line arguments. The
application must either ask for the information directly or select a default action.

To test code that uses Command, you can specify sample command-line arguments
from within the Visual Basic environment. The application evaluates sample
command-line input the same way it does if the user types the argument.

 To set sample command-line arguments

35 From the Project menu, choose Properties.

36 Click the Make tab on the Project Properties dialog box.

37 Enter the sample arguments in the Command Line Arguments field. (Do not type
the name of the application itself.)

38 Choose OK.

39 Run the application.
54

Removing Debugging Information Before Compiling
If you do not want debugging statements included in the application you distribute to
users, use conditional compilation to conveniently delete these statements when the
Make EXE File command is used.

For example:

Sub Assert(Expr As Boolean, Msg As String)
If Not Expr Then

MsgBox Msg
End If

End Sub

Sub AProcedure(intX As Integer)
If fDebug Then

Assert intX < 10000 and intX > 0, _
"Argument out of range"

End If
' The code can now assume the correct value.

End Sub
73

—57

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 57 of 59 Printed:

Because the call to the Assert procedure is conditionally compiled, it is only included
in the .exe file if fDebug is set to True. When you compile the distribution version of
the application, set fDebug to False. As a result, the .exe file will be as small and fast
as possible.

Note Beginning with Visual Basic version 5.0, it is no longer necessary to
create your own Assert procedures. The Debug.Assert statement performs
the same function and is automatically stripped from the compiled code. See
"Verifying Your Code with Assertions" later in this chapter for more
information.

74

Verifying Your Code with Assertions
Assertions are a convenient way to test for conditions that should exist at specific
points in your code. For instance, you may assume that a certain variable's value will
always be between 1 and 100 within a specific code segment; an assertion will alert
you only if your assumption isn't correct.

In Visual Basic, assertions take the form of a method: the Assert method of the Debug
object. The Assert method takes a single argument of the type Boolean which states
the condition to be evaluated. The syntax for the Assert method is as follows:

Debug.Assert(boolean expression)
75

A Debug.Assert statement will never appear in a compiled application, but when
you're running in the design environment it causes the application to enter break
mode with the line containing the statement highlighted (assuming that the expression
evaluates to False). The following example shows the Debug.Assert statement:

Debug.Assert Trim(CustName) <> "John Doe"
76

In this case, if the CustName is John Doe, the application will enter break mode;
otherwise the execution will continue as usual. Using Debug.Assert is similar to
setting a watch with the Break When Value Is True option selected, except that it will
break when the value is false.

Using Compile on Demand
Compile on Demand and Background Compile are related features that allow your
application to run faster in the development environment. It's possible that using these
features may hide compile errors in your code until you make an exe for your entire
project. Both features are turned on by default, and they can be turned on or off on the
General tab of the Options dialog box available from the Tools menu.

Compile on Demand allows your application, in the development environment, to
compile code only as needed. When Compile on Demand is on and you choose Start
from the Run menu (or press the F5 key), only the code necessary to start the
application is compiled. Then, as you exercise more of your application's capabilities
in the development environment, more code is compiled as needed.

—58

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 58 of 59 Printed:

Background Compile allows Visual Basic at run time in the development environment
to continue compiling code if no other actions are occurring.

With these features turned on, some code may not be compiled when a project is run
in the development environment. Then, when you choose to Make EXE file (or turn
off Compile on Demand), you may see new and unexpected errors as that code is
newly compiled.

There are three techniques you can use at development milestones, or any other time,
to flush out any errors hidden by using Compile on Demand.

· Turn Compile on Demand off and then run the application. This forces Visual
Basic to check the entire application for compile errors.

· Make an executable with your project. This will also force Visual Basic to check
the entire application for compile errors.

· Choose Start With Full Compile from the Run menu.
55

Tips for Debugging
There are several ways to simplify debugging:

· When your application doesn't produce correct results, browse through the code
and try to find statements that may have caused the problem. Set breakpoints at
these statements and restart the application.

· When the program halts, test the values of important variables and properties. Use
Quick Watch or set watch expressions to monitor these values. Use the
Immediate window to examine variables and expressions.

· Select Break on All Errors on the General tab of the Options dialog box (available
from the Tools menu) to determine where an error occurred. Step through your
code, using watch expressions and the Locals window to monitor how values
change as the code runs.

· If an error occurs in a loop, define a break expression to determine where the
problem occurs. Use the Immediate window together with Set Next Statement
to re-execute the loop after making corrections.

· If you determine that a variable or property is causing problems in your
application, use a Debug.Assert statement to halt execution when the wrong
value is assigned to the variable or property.

56
For More Information Breakpoints are described in "Using a Breakpoint to
Selectively Halt Execution" earlier in this chapter. Read more about Watch
expressions in "Monitoring Data with Watch Expressions." The Immediate window is
discussed in "Testing Data and Procedures with the Immediate Window." See
"Verifying Your Code with Assertions" for more about the Assert method of the
Debug object.

77

—59

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 59 of 59 Printed:

	Contents
	Sample Application: Errors.vbp
	How to Handle Errors
	Designing an Error Handler
	Setting the Error Trap
	Writing an Error-Handling Routine
	Exiting an Error-Handling Routine
	The Difference Between Resume and Resume Next Statements
	Resuming Execution at a Specified Line

	The Error Handling Hierarchy
	Searching the Calls List
	Allocating Errors to Different Handlers

	Guidelines for Complex Error Handling

	Testing Error Handling by Generating Errors
	Defining Your Own Errors

	Inline Error Handling
	Returning Error Numbers
	Handling Errors in the Calling Procedure
	Using Variant Data Types

	Centralized Error Handling
	Turning Off Error Handling
	Debugging Code with Error Handlers
	 To disable error handlers while debugging

	Error Handling with ActiveX Components
	Handling Errors in Objects
	Debugging Error Handlers in ActiveX Components

	Approaches to Debugging
	Kinds of Errors
	Compile Errors
	 To set the Auto Syntax Check option

	Run-Time Errors
	Logic Errors
	How Debugging Tools Help
	The Debug Toolbar

	Avoiding Bugs
	Design Time, Run Time, and Break Mode
	Identifying the Current Mode
	Using the Toolbar to Change Modes

	Using the Debugging Windows
	Using Break Mode
	Entering Break Mode at a Problem Statement
	Fixing a Run-Time Error and Continuing
	Monitoring Data with Watch Expressions
	Adding a Watch Expression
	 To add a watch expression

	Editing or Deleting a Watch Expression
	 To edit a watch expression
	 To delete a watch expression

	Identifying Watch Types
	Using Quick Watch
	 To display the Quick Watch dialog box

	Using a Breakpoint to Selectively Halt Execution
	 To set or remove a breakpoint
	Identifying the Current Statement
	 To specify the color of text of the current statement

	Examining the Application at a Breakpoint

	Using Stop Statements

	Running Selected Portions of Your Application
	Using Step Into
	 To step through code one statement at a time

	Using Step Over
	 To use Step Over

	Using Step Out
	 To use Step Out

	Bypassing Sections of Code
	 To use Run To Cursor

	Setting the Next Statement to Be Executed
	 To set the next statement to be executed

	Showing the Next Statement to Be Executed
	 To show the next statement to be executed

	Monitoring the Call Stack
	 To display the Call Stack dialog box
	Tracing Nested Procedures
	 To display the statement that calls another procedure in the Calls Stack dialog box

	Checking Recursive Procedures

	Testing Data and Procedures with the Immediate Window
	Printing Information in the Immediate Window
	Printing from Application Code
	Printing from Within the Immediate Window
	 To examine data in the Immediate window

	Printing Values of Properties

	Assigning Values to Variables and Properties
	Testing Procedures with the Immediate Window
	Viewing and Testing Multiple Instances of Procedures

	Checking Error Numbers
	Tips for Using the Immediate Window

	Special Debugging Considerations
	Breaking Execution During MouseDown
	Breaking Execution During KeyDown
	Breaking Execution During GotFocus or LostFocus
	Testing and Using Command-Line Arguments
	 To set sample command-line arguments

	Removing Debugging Information Before Compiling
	Verifying Your Code with Assertions
	Using Compile on Demand

	Tips for Debugging

