
The topics in this chapter provide introductions to ActiveX controls provided with
Visual Basic (also see "Using the ActiveX Controls – 2). For many of these, you will
also find scenarios — along with code — featuring the controls in sample
applications.

Contents
· Using the ImageList Control

· Using the ListView Control

· Using the ProgressBar Control
1

Using the ImageList Control
An ImageList control contains a collection of images that can be used by other
Windows Common Controls — specifically, the ListView, TreeView, TabStrip, and
Toolbar controls. For example, the ImageList control can store all the images that
appear on a Toolbar control's buttons.

The ImageList control can also be used with controls that assign a Picture object to a
Picture property, such as the PictureBox, Image, and CommandButton controls.

Using the ImageList control as a single repository saves you development time by
allowing you to write code that refers to a single, consistent catalog of images.
Instead of writing code that loads bitmaps or icons (using the LoadPicture function),
you can populate the ImageList once, assign Key values if you wish, and write code
that uses the Key or Index properties to refer to images.

The control uses bitmap (.bmp) or icon (.ico) files in a collection of ListImage
objects. You can add and remove images at design time or run time. The ListImage
object has the standard collection object properties: Key, Index, and Count. It also has
standard methods, such as Add, Remove, and Clear.

For More Information "Programming with Objects” offers introductory
information about working with objects and collections.

2
Finally, the control features the Overlay, Draw, and ExtractIcon methods, which allow
you to create composite images, draw images on objects with an hDC property (such
as the Form and Printer objects), and create an icon from a bitmap stored in the
control.

Possible Uses
· Storing the images that represent open folders, closed folders, and documents.

These images can then be dynamically assigned to the TreeView control's Node
object to represent its different states as it expands or collapses, or whether or
not it is a document or a folder.

—1

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 1 of 21 Printed: 08/29/96 12:40 PM

· Storing images that represent common computer operations, such as saving,
opening, and printing files. These images can then be assigned to Button objects
on a Toolbar control used by your application.

· Storing images for drag-and-drop operations, such as MousePointer icons, and
DragIcons.

1

Managing ListImage Objects and ListImages
Collections
The ImageList control contains the ListImages collection of ListImage objects, each
of which can be referred to by its Index or Key property value. You can add or
remove images to the control at design time or run time.

Adding ListImage Objects at Design Time
To add an image to at design time, use the ImageList control's Property Pages dialog
box.

 To add ListImage objects at design time

1 Right-click the ImageList control and click Properties.

2 Click the Images tab to display the ImageList control's Property Pages, as shown
in Figure 2.1.

2
Figure 2.1 ImageList control Property Pages dialog box

3

—2

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 2 of 21 Printed: 08/29/96 12:40 PM

3 Click Insert Picture to display the Select Picture dialog box.

4 Use the dialog box to find either bitmap or icon files, and click Open.

1Note You can select multiple bitmap or icon files.
4

5 Assign a unique Key property setting by clicking in the Key box and typing a
string.

6 Optional. Assign a Tag property setting by clicking in the Tag box and typing a
string. The Tag property doesn't have to be unique.

7 Repeat steps 3 through 6 until you have populated the control with the desired
images.

5

Adding ListImage Objects at Run Time
To add an image at run time, use the Add method for the ListImages collection in
conjunction with the LoadPicture function. The following example occurs in a form's
Load event; an ImageList control named "imlImages" is loaded with a single bitmap:

Private Sub Form_Load()
' Assuming the path is correct, the open.bmp
' picture will be added to the ListImages
' collection. The Key property will also be
' assigned the value "open"
imlImages.ListImages. _
Add ,"open", LoadPicture("c:\bitmaps\open.bmp")

End Sub
3

Assigning a unique Key property value to the ListImage object allows you to create
code that is easier to read. When assigning the image to a property, you can use its
Key value instead of its Index value. Thus, assigning an image to a property might
result in code like the following:

' Assign an image to a TreeView control Node object.
' The unique key of the image is "open".
TreeView1.Nodes.Add , , ,"Folder1","open"

4

Determining Image Sizes
The control can also contain any size .bmp or .ico image, and the images can differ in
file size, although their display size will be the same. Generally, the display size of
the first image inserted into the control determines the display size of images that are
inserted afterwards. For example, if you first insert an icon that is 32 X 32 pixels, all
images that you insert after it will also be displayed at that size in other controls.

Note An exception is when you use an image from the ImageList control with the
Image control. Setting the Image control's Stretch property to True will cause the
image to resize to fit the control.

5
At design time, you can specify the height and width, in pixels, of images in the
control by choosing a size from the General tab of the ImageList control's Property

—3

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 3 of 21 Printed: 08/29/96 12:40 PM

Pages dialog box. You can choose a predetermined size, or click Custom and set the
image size by typing the size you desire in the Height and Width boxes. This can only
be done when the ImageList contains no images. Attempting to change the size after
the control contains images will result in an error.

Methods That Allow You to Create Composite
Images
You can use the ImageList control to create a composite image (a picture object) from
two images by using the Overlay method in conjunction with the MaskColor property.
For example, if you have an "international no" image (a circle with a diagonal bar
inside it), you can lay that image over any other image, as shown:

6
The syntax for the Overlay method requires two arguments. The first argument
specifies the underlying image; the second argument specifies the image that overlays
the first. Both arguments can be either the Index or the Key property of a ListImage
object.

Thus the code to achieve the effect above is as follows:

' The composite image appears in a PictureBox
' control named "picOver". The Index value of
' the cigarette image is 2; the index value of the
' "no" symbol is 1.
ImageList1.MaskColor = vbGreen
Set picOver.Picture = ImageList1.Overlay(2, 1)

6
You could also use the Key property of the images, resulting in this code:

' Assuming the first image's Key is "smokes", and the
' second is "no".
Set picOver.Picture = ImageList1.Overlay("smokes","no")

7
The code example above also illustrates how the MaskColor property works. In brief,
the MaskColor property specifies the color which will become transparent when an
image is overlaid over another. The "no" image has a green background color. Thus,
when the code specifies that the MaskColor will be vbGreen (an intrinsic constant),
the green in the image becomes transparent in the composite image.

Using the ImageList with Other Controls
You can use the ImageList control as a repository of images for use by other Windows
Common Controls and by controls with a Picture property.

—4

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 4 of 21 Printed: 08/29/96 12:40 PM

Using the ImageList with Other Windows
Common Controls
The ImageList control can be used to supply images for the following controls using
certain of their properties, as listed in the following table.

Windows Common
Control

Control Object Properties Settable with ImageList
Images

ListView control ListItem SmallIcon and Icon properties

TreeView control Node Image and SelectedImage properties

Toolbar control Button Image property

TabStrip control Tab Image property
8

For More Information For examples of using the ImageList with the TreeView,
ListView, Toolbar, and TabStrip controls, see the scenario topics for those controls.
(For example, see "TreeView Control Scenario: Bind the TreeView to the Biblio.mdb
Database.")

9
To use the ImageList with these controls, you must first associate the ImageList with
the other control, and then assign either the Key or Index property to one of the
properties listed in the table above. This can be done at design time or run time. All of
the Windows Common controls, except the ListView control (discussed in this topic),
have an ImageList property that can be set with the name of the ImageList control
you are using.

Important You should populate the ImageList control with images before
you associate it with another control. Once you have associated an ImageList
with a control, and assigned any image to a property of the control, the
ImageList control will not allow you to add any more images.

10
 To associate the ImageList control with the TreeView, TabStrip, or
Toolbar control at design time

8 Right-click on the control using images from the ImageList control and click
Properties to display the Property Pages dialog box

9 On the General tab, select the name of the ImageList control from the ImageList
box.

7
To associate the ImageList control at run time, you might use the following code:

' Associate an ImageList named "imlImages" with a
' TreeView control named "tvwDB."
Set tvwDB.ImageList = imlImages

11
Once you have associated an ImageList control with another control, you can set
properties for various objects using either the Key or Index property of an image in
the ImageList control. For example, the following code sets the Image property of a
TreeView control's Node object to an ImageList image with the Key property "leaf."

—5

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 5 of 21 Printed: 08/29/96 12:40 PM

Private Sub Form_Load()
' The TreeView is named "tvwData."
' Add a node and set its Image property.
' The Key value of the image is "leaf."
tvwData.Nodes.Add , ,"1 node","Top","leaf"

End Sub
12

Using the ImageList Control with the ListView Control
The ListView control can use two ImageList controls simultaneously. Instead of
having a single ImageList property, the ListView control has an Icons and a
SmallIcons property, each of which can be associated with an ImageList control. This
can be done at design time or at run time.

 To associate two ImageList controls with the ListView control at
design time

10 Right-click on the ListView control and click Properties to display the Property
Pages.

11 Click the ImageLists tab.

12 In the Normal box, select the name of an ImageList control

13 In the Small box, select the name of another ImageList control.
8

You can also assign the ImageList controls at run time with code like that shown in
the following example:

' Assuming the ListView control is named "lvwDB", the
' first ImageList is named "imlSmallImages," and the
' second is named "imlImages."
Set lvwDB.SmallIcons = imlSmallImages
Set lvwDB.Icons = imlImages

13
The ImageList control used depends on the display mode determined in the View
property of the ListView control. When the ListView control is in Icon view, it uses
the images supplied by the ImageList named in the Icons property. In any of the other
views (List, Report, or SmallIcon), the ListView uses the images from the ImageList
named in the SmallIcons property.

For More Information For details about the ListView control see "Using the
ListView Control" later in this chapter.

14

Assigning ListImage Objects By Index or Key Property
After you have associated the ImageList control with one of the Windows Common
Controls, you can specify a particular image using the image's Index or Key property.

For example, if you are using the ImageList with a TreeView control, the following
code will assign the third ListImage object (which has an Index value of 3) to a new
Node object's Image property:

' The TreeView control is named "tvwDB."
' The fifth argument of the Add method

—6

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 6 of 21 Printed: 08/29/96 12:40 PM

' specifies an image by either the ListImage
' object's Index or Key property.
tvwDB.Nodes.Add , , ,"node x", 3

15
On the other hand, you could use the Key property to achieve the same end:

' Assuming the Key property is "open."
tvwDB.Nodes.Add , , ,"node x", "open"

16
Because the ListImage object's Key property must be a unique string, at run time, you
can then use the Key property instead of the Index property to reference the image.
This results in code that is easier to read.

Tip Because the Key must be a unique string, using a descriptive name for
each ListImage object will make your code easier to read and debug.

17

Using the ImageList Control with Controls Not
Part of the Windows Common Controls
You can also use the ImageList as an image repository for objects which have a
Picture property. These include the following:

· CommandButton control

· OptionButton control

· Image control

· PictureBox control

· CheckBox control

· Form object

· Panel object (StatusBar control)
9

The ListImage object's Picture property returns a Picture object, which can be
assigned to another control's Picture property. For example, the following code will
display the third ListImage object in a PictureBox control named "picBox":

Set picBox.Picture = ImageList1.ListImages(3).Picture
18

ImageList Scenario: Add Open, Save, and Print Images
to a Toolbar Control

Toolbars typically contain a row of buttons where each button performs a frequently
used operation when pressed. Toolbar buttons often save screen space by using
images to represent the operation. In this scenario, three common functions —
opening, saving, and printing a file — are represented by images assigned to Button
objects of a Toolbar control. The images and buttons commonly used to represent
these functions are shown here:

—7

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 7 of 21 Printed: 08/29/96 12:40 PM

10
These objects are used in the following example:

· ImageList control named "imlTool"

· Toolbar control named "tbrStandard"
11

 To add images to a Toolbar control

14 Add images to the ImageList and assign unique Key property values to each
object.

15 Associate the ImageList with the Toolbar control.

16 Assign images to Button objects using the Buttons tab.
12

Add Images to the ImageList and Assign Unique
Key Property Values
 To add ListImage objects at design time

17 Right-click the ImageList control and click Properties to display the Property
Pages dialog box.

18 Click the Images tab.

19 Click Insert Picture to display the Select Picture dialog box.

20 Use the dialog box to find the bitmap files in the following table. The bitmaps can
be found in the \Tools\Bitmaps\Tlbr_w95 directory of your Visual Basic CD-
ROM.

21 After finding a file, click the file, and click Open, or double-click the file to open
insert it into the ImageList control.

22 In the Images tab, click the Key box and type the Key property value, as found in
the following table. The Images tab should resemble Figure 2.2.

13
File Key

open.bmp open

save.bmp save

print.bmp print
19

—8

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 8 of 21 Printed: 08/29/96 12:40 PM

Figure 2.2 Images tab with three ListImage objects

14

Associate the ImageList with the Toolbar
Control
Before you can assign the images to Button objects, you must first associate the
ImageList with the Toolbar control.

 To associate an ImageList with a Toolbar control

23 Right-click on the Toolbar control and click Properties to display the control's
Property Pages, as shown in Figure 2.3.

24 On the General tab, select the name of the ImageList control from the ImageList
box

15

—9

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 9 of 21 Printed: 08/29/96 12:40 PM

Figure 2.3 Associate an ImageList with a Toolbar control

16

Assign Images to Button Objects Using the
Buttons Tab
 To assign an image to a Button object

25 Click the Buttons tab (on the Toolbar control's Property Pages dialog box) to
display the Buttons tab, shown in Figure 2.4.

26 Click Insert Button to insert a new Button object.

27 Click the Image box and type the Key value of a ListImage object.

28 Click Apply

29 Repeat steps 2 to 4 to add more buttons, and assign images to the new Button
objects.

17

—10

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 10 of 21 Printed: 08/29/96 12:40 PM

Figure 2.4 Add Button objects and assign Images using the Buttons tab

18

Using the ListView Control
The ListView control displays data as ListItem objects. Each ListItem object can have
an optional icon associated with the label of the object. The control excels at
representing subsets of data (such as members of a database) or discrete objects (such
as document templates).

Possible Uses
· To display the results of a query on a database.

· To display all the records in a database table.

· In tandem with a Treeview control, to give users an expanded view of a TreeView
control node.

19

Four Different Views Available
The ListView control can display data in four different view modes (as shown in
Figures 2.5 to 2.8). How you program the control may depend on which of the
different views you allow the end user to see (or select).

Each of these views has a particular advantage over the others. Some of these are
listed in the following table:

—11

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 11 of 21 Printed: 08/29/96 12:40 PM

View Advantage

Icon Can be manipulated with the mouse, allowing the user to drag and drop the
object and rearrange the objects.

SmallIcon Allows more ListItem objects to be viewed. Like Icon view, objects can be
rearranged by the user.

List Presents a sorted view of ListItems object.

Report Presents a sorted view, with SubItems allowing extra information to be
displayed.

20
Figure 2.5 ListView in Icon view

20

—12

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 12 of 21 Printed: 08/29/96 12:40 PM

Figure 2.6 ListView in SmallIcon view

21
Figure 2.7 ListView in List view

22

—13

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 13 of 21 Printed: 08/29/96 12:40 PM

Figure 2.8 ListView in Report view

23

Change the View with the View Property
To change the display mode, use the View property. The following code sets the View
property to the Report view (3), using the intrinsic constant lvwReport:

' The name of the control is "ListView1"
ListView1.View = lvwReport

21
Using the View property, you can allow the end user to dynamically change the view.
In the Form's Load event, the ComboBox is populated with View choices:

Private Sub Form_Load()
' Populate the ComboBox control. The
' ComboBox control is named "cmbChooseView."
With cmbChooseView

. AddItem "Icon" '0

. AddItem "Small Icon" ' 1

. AddItem "List" ' 2

. AddItem "Report" ' 3
End With

End Sub
22

In the ComboBox control's Click event, the View of the control can then be reset, as
shown:

Private Sub cmbChooseView_Click()
' The name of the ListView control is "lvwDB."
lvwDB.View = cmbChooseView.ListIndex

End Sub
23

—14

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 14 of 21 Printed: 08/29/96 12:40 PM

Two ImageList Controls for Icons and SmallIcons
A ListItem object consists of a label (the Text property) and an optional image which
is supplied by an ImageList control. However, the ListView control, unlike other
controls, can use two ImageList controls, which you set using the Icons and
SmallIcons properties. Whether or not you use one or both ImageList controls
depends on the intended display mode, as determined by the View property.

In the List, SmallIcon, and Report views, you can use a small icon to represent the
ListItem object. One ImageList control (specified by the SmallIcons property)
supplies the images for use in any of these three views. At design time or run time, set
the SmallIcons property to the ImageList control that will supply these images. At
design time, use the ListView control's Property Pages dialog box to set the ImageList
for the SmallIcons. At run time, use the following code:

ListView1.SmallIcons = imlSmallIcons
24

In contrast, when the control is in Icon view, the control uses a different set of images
supplied by a second ImageList control. Set the Icons property to this second
ImageList control at design time using the Property Pages dialog box, or use the
following code at run time:

ListView1.Icons = imlIcons
25

Note The size of the icons you use is determined by the ImageList control.
The available sizes are 16 x 16, 32 x 32, 48 x 48, and Custom.

26
If you are planning to use more than one view, and you wish to display images, you
must set the SmallIcon and Icon properties for each ListItem object. The following
code first declares an object variable of type ListItem, then sets the object variable to
a single ListItem object added to the collection using the Add method. The SmallIcon
and Icon images are then set with the object variable reference:

Dim itmX as ListItem
Set itmX = ListView1.ListItems.Add()
' Assuming an image named "smallBook" exists in the
' ImageList set to the SmallIcons property.
itmX.SmallIcon = "smallBook"
' Assuming an image named "BigBook" exists in the
' ImageList that is set to the Icons property.
itmX.Icon = "BigBook"

27
After setting an image with the SmallIcon and Icon properties, the correct image will
be displayed automatically when switching views using the View property.

ColumnHeaders Are Displayed in Report View
A unique feature of the Report view is ColumnHeader objects. The ListView control
contains a collection of ColumnHeader objects in the ColumnHeaders collection.
Figure 2.9 shows a ColumnHeader:

—15

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 15 of 21 Printed: 08/29/96 12:40 PM

Figure 2.9 A ColumnHeader

24
The ColumnHeader object has a Text property that displays text when the control is in
Report view. You can also set the Width property of each ColumnHeader, as well as
the Alignment property (which sets the alignment of the text displayed in the
ColumnHeader object). The following example code creates four ColumnHeader
objects and sets their Text and Width properties:

Dim colX As ColumnHeader ' Declare variable.
Dim intX as Integer ' Counter variable.
For intX = 1 to 4

Set colX = ListView1.ColumnHeaders.Add()
colX.Text = "Field " & intX
colX.Width = ListView1.Width / 4

Next intX
28

Set Column Text with the SubItems Property
Notice that in any of the views except Report view, the ListItem object displays only
one label — the Text property. But in Report view, every ListItem object can have
several other text items. For example, in Figure 2.11, the "Hitchhiker's Guide to
Visual Basic…" also has an author ("Vaughn, William R."), year (1996), and ISBN
number associated with it. Each of these text items are properties of the ListItem
object, specifically, its SubItems property. Further, because there can be any number
of these text items, the SubItems property is in fact an array of strings. Thus, to set
the author, year and ISBN number of a ListItem object, the code might look like this:

' The control is named lvwAuthors.
lvwAuthor.ListItems(23).Text = _
"Hitchhiker's Guide to Visual Basic and SQL Server"
lvwAuthor.ListItems(23).SubItems(1)= _
"Vaughn, William R."
lvwAuthor.ListItems(23).SubItems(2)= "1996"
lvwAuthor.ListItems(23).SubItems(3)= " 1-55615-906-4"

29

SubItems Depend on ColumnHeaders Presence
Both the presence and number of SubItems depends on the presence and number of
ColumnHeader objects. That is, you cannot set any SubItems if there are no
ColumnHeader objects present. Further, the number of ColumnHeader objects
determines the number of SubItems you can set for the ListItem object. And the
number of SubItems is always one less than the number of ColumnHeader objects.
This is because the first ColumnHeader object is always associated with the Text
property of the ListItem object, as shown in figure 2.10:

—16

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 16 of 21 Printed: 08/29/96 12:40 PM

Figure 2.10 First ColumnHeader and SubItems

25
Thus, if the number of ColumnHeader objects in the above example is 4, then the
maximum possible number of SubItems you can set is 3.

Using the ProgressBar Control
A ProgressBar control allows you to graphically represent the progress of a
transaction. The control consists of a frame that is filled as the transaction occurs. The
Value property determines how much of the control has been filled. The Min and Max
properties set the limits of the control.

Use the ProgressBar whenever an operation will take more than a few seconds to
complete. You must also know how long the process will take by using a known end
point and setting it as the Max property of the control.

Tip Giving the user visual feedback on how much time remains on a lengthy
operation gives the perception of improved performance.

30

Possible Uses
· To inform the user of progress as a file transfer occurs over a network.

· To reflect the state of a process that takes more than a few seconds.

· To inform the user of progress as a complex algorithm is being calculated.
26

Use the Value Property With the Min and Max Properties to
Show Progress
To show progress in an operation, the Value property is continually incremented until
a maximum — defined by the Max property — is reached. Thus the number of
chunks displayed by the controls is always a ratio of the Value property to the Min
and Max properties. For example, if the Min property is set to 1, and the Max
property is set to 100, a Value property of 50 will cause the control to display 50
percent of the chunks, as shown:

27

—17

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 17 of 21 Printed: 08/29/96 12:40 PM

Set the Max Property to a Known Limit
To program the ProgressBar, you must have a limit to which the Value property will
climb. For example, if you are performing downloading a file, and your application
can determine how large the files is in kilobytes, you can set the Max property to that
number. As the file is downloaded, your application must also have some way of
determining how many kilobytes have been downloaded; set the Value property to
that number.

In cases where a Max property can't be determined in advance, you may want to use
the Animation control to continuously show an animation until a Stop method is
invoked in a terminate event.

Hide the ProgressBar with the Visible Property
A progress bar usually doesn't appear until an operation has begun, and disappears
again after the operation ends. Set the Visible property to True to show the control at
the start of an operation, and reset the property to False to hide the control when the
operation finishes.

ProgressBar Control Scenario 2: Using the ProgressBar
to Show a TimeOut Interval

Applications that create processes over networks often have a "TimeOut" interval.
This is a predetermined period of time after which the user will be presented with the
choice of canceling a process, or continuing to wait. One way of graphically
representing the TimeOut interval is with the ProgressBar control.

The following example uses the following objects:

· Form Object named "frmTimer"

· ProgressBar control named "prgBar1"

· Timer control named "tmrTimer"

· CommandButton control named "cmdBegin"
28

 To create a progress bar that reflects a TimeOut interval

30 In the Form's Load event, set a Timer control's Interval property to 1000.

31 Set the ProgressBar control's Max property to the TimeOut Interval.

32 Begin the Timer with the Enabled property

33 In the Timer control's Timer event, declare a Static variable to count the number of
intervals.

34 Set the ProgressBar's value to the variable.

35 Test to see if the ProgressBar's value is the Max property.
29

—18

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 18 of 21 Printed: 08/29/96 12:40 PM

In the Form's Load event, Set the Timer Control's Interval
Property to 1000
In the Form object's Load event, configure the Timer control's Interval property.
Because it's more useful to time a process in seconds, set the Interval to 1000
(milliseconds, or 1 second). Thus, at one second intervals, the ProgressBar control's
Value property is updated.

tmrTimer.Interval = 1000
31

In the Form Load event, Set the ProgressBar Control's Max
Property to the TimeOut Interval
The Load event is also where you set the Max property of the ProgressBar. The value
of the Max property should be the number of seconds you want the Timer to continue
before being disabled. However, to accurately reflect the number of seconds that must
elapse, the ProgressBar's Min property should be set to 1.

The Load event can also be used to hide the ProgressBar by setting its Visible
property to False. The following code shows the entire Load event with the previous
code included.

Private Sub Form_Load()
prgBar1.Visible = False
tmrTimer.Interval = 1000
prgBar1.Max = 10 ' Timer will go for 10 seconds.

End Sub
32

Begin the Timer with the Enabled Property
To start the timer, you must use the Enabled property. When you begin to time any
process, you should also show the ProgressBar, as shown:

Private Sub cmdBegin_Click()
prgBar1.Visible = True
tmrTimer.Enabled = True

End Sub
33

In the Timer Event, Declare a Static Variable and Set it to 1
In the Timer event, declare a static variable. This allows you to efficiently increment
the variable every time the Timer event occurs. But as we don't wish to count from 0,
we must also set the variable to 1, using the IsEmpty function, as shown:

Static intTime
If IsEmpty(intTime) Then intTime = 1

34

Set the ProgressBar's Value to the Variable
Each time the Timer event occurs, the ProgressBar's Value property must be set to the
value of the static variable:

prgBar1.Value = intTime
35

Test to See If the ProgressBar's Value is the Max Property

—19

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 19 of 21 Printed: 08/29/96 12:40 PM

After the ProgressBar's Value property has been updated, the variable must be tested
to see if the TimeOut limit has occurred. If it has been reached, the variable must be
reset to 1, the ProgressBar control hidden and its Value property reset to 1, and the
Timer control disabled. If the limit hasn't been reached, then the variable is
incremented by one. These steps are all implemented with an If statement, in the
Timer event, as shown:

Private Sub tmrTimer_Timer()
Static intTime ' Declare the static variable.
' The first time, the variable will be empty.
' Set it to 1 if it is an empty variable.
If IsEmpty(intTime) Then intTime = 1

prgBar1.Value = intTime ' Update the ProgressBar.

If intTime = prgBar1.Max Then

Timer1.Enabled = False
prgBar1.Visible = False
intTime = 1
prgBar1.Value = prgBar1.Min

Else
intTime = intTime + 1

End If
End Sub

36

The Complete Code
Here is the complete code for the example described in this topic:

Private Sub Form_Load()
prgBar1.Visible = False
tmrTimer.Interval = 1000
prgBar1.Max = 10 ' Timer will go for 10 seconds.

End Sub

Private Sub cmdBegin_Click()
prgBar1.Visible = True
tmrTimer.Enabled = True

End Sub

Private Sub tmrTimer_Timer()
Static intTime ' Declare the static variable.
' The first time, the variable will be empty.
' Set it to 1 if it is an empty variable.
If IsEmpty(intTime) Then intTime = 1

prgBar1.Value = intTime ' Update the ProgressBar.

If intTime = prgBar1.Max Then

Timer1.Enabled = False
prgBar1.Visible = False
intTime = 1
prgBar1.Value = prgBar1.Min

Else

—20

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 20 of 21 Printed: 08/29/96 12:40 PM

intTime = intTime + 1
End If

End Sub
37

—21

Filename: in.doc Project: A Reference Template
Template: Author: Ruth Silverio Last Saved By: .
Revision #: 10 Page: 21 of 21 Printed: 08/29/96 12:40 PM

	Contents
	Using the ImageList Control
	Possible Uses
	Managing ListImage Objects and ListImages Collections
	Adding ListImage Objects at Design Time
	 To add ListImage objects at design time

	Adding ListImage Objects at Run Time

	Determining Image Sizes
	Methods That Allow You to Create Composite Images
	Using the ImageList with Other Controls
	Using the ImageList with Other Windows Common Controls
	 To associate the ImageList control with the TreeView, TabStrip, or Toolbar control at design time
	Using the ImageList Control with the ListView Control
	 To associate two ImageList controls with the ListView control at design time

	Assigning ListImage Objects By Index or Key Property

	Using the ImageList Control with Controls Not Part of the Windows Common Controls

	ImageList Scenario: Add Open, Save, and Print Images to a Toolbar Control
	 To add images to a Toolbar control
	Add Images to the ImageList and Assign Unique Key Property Values
	 To add ListImage objects at design time

	Associate the ImageList with the Toolbar Control
	 To associate an ImageList with a Toolbar control

	Assign Images to Button Objects Using the Buttons Tab
	 To assign an image to a Button object

	Using the ListView Control
	Possible Uses
	Four Different Views Available
	Change the View with the View Property
	Two ImageList Controls for Icons and SmallIcons
	ColumnHeaders Are Displayed in Report View
	Set Column Text with the SubItems Property

	SubItems Depend on ColumnHeaders Presence

	Using the ProgressBar Control
	Possible Uses
	Use the Value Property With the Min and Max Properties to Show Progress
	Set the Max Property to a Known Limit
	Hide the ProgressBar with the Visible Property

	ProgressBar Control Scenario 2: Using the ProgressBar to Show a TimeOut Interval
	 To create a progress bar that reflects a TimeOut interval
	In the Form's Load event, Set the Timer Control's Interval Property to 1000
	In the Form Load event, Set the ProgressBar Control's Max Property to the TimeOut Interval
	Begin the Timer with the Enabled Property
	In the Timer Event, Declare a Static Variable and Set it to 1
	Set the ProgressBar's Value to the Variable
	Test to See If the ProgressBar's Value is the Max Property
	The Complete Code

