
Visual Basic includes sophisticated text and graphics capabilities for use in your
applications. If you think of text as a visual element, you can see that size, shape and
color can be used to enhance the information presented. Just as a newspaper uses
headlines, columns and bullets to break the words into bite-sized chunks, text
properties can help you emphasize important concepts and interesting details.

Visual Basic also provides graphics capabilities allowing you great flexibility in
design, including the addition of animation by displaying a sequence of images.

This chapter describes ways of placing and manipulating text and graphics. Details on
formatting, fonts, color palettes, and printing are included. By combining these
capabilities with good design concepts, you can optimize the attractiveness and ease
of use of your applications.

Note If you are using the Control Creation Edition of Visual Basic, some of
the material covered in this document may not be applicable. With the full
editions of Visual Basic you have the ability to create applications, ActiveX
documents, and other types of components. Although some of the
terminology may relate to application specific objects such as forms, in most
cases the underlying concepts also apply to ActiveX control creation.

1

Contents
· Working with Fonts

· Displaying Text on Forms and Picture Boxes

· Formatting Numbers, Dates, and Times

· Working with Selected Text

· Transferring Text and Graphics with the Clipboard Object

· Understanding the Coordinate System

· Using Graphical Controls

· Using Graphics Methods

· Working with Color

· Using the Picture Object

· Printing
2

Sample Applications: Blanker.vbp, Palettes.vbp
Some of the code examples in this chapter are taken from the Blanker
(Blanker.vbp)and Palettes (Palettes.vbp) samples. If you installed the sample
applications, you'll find this application in the \Blanker and \Palettes subdirectory of
the Visual Basic samples directory (\Vb\Samples\Pguide).

Working with Fonts
—1

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 1 of 67 Printed: 10/02/96 03:42 PM

Text is displayed using a font — a set of characters of the same typeface, available in
a particular size, style, and weight.

The Windows 95 and Windows NT operating systems provide you and your users
with a complete set of standard fonts. TrueType fonts are scaleable, which means they
can reproduce a character at any size. When you select a TrueType font, it is rendered
into the selected point size and displayed as a bitmap on the screen.

When printing, the selected TrueType font or fonts are rendered into the appropriate
size and then sent to the printer. Therefore, there is no need for separate screen and
printer fonts. Printer fonts will be substituted for TrueType fonts, however, if an
equivalent font is available, which increases print speed.

Choosing Fonts for Your Application
Remember that a user of your application may not have the fonts you used to create
the application. If you select a TrueType font that a user doesn’t have, Windows
selects the closest matching font on the user’s system. Depending on the design of
your application, this may cause problems for the user. For example, the font
Windows selects may enlarge text so that labels overlap on the screen.

One way to avoid font problems is to distribute the necessary fonts with your
application. (You will probably need to obtain permission from the copyright holder
of the font to distribute it with your application.)

You can also program your application to check among the fonts available in the
operating system for the fonts you use. If the font doesn’t reside in the operating
system, you can program the application to choose a different font from the list.

Another way to avoid font problems is to use fonts users are most likely to have on
their systems. If you use fonts from a specific version of Windows, you may have to
specify that version as a system requirement of your application.

Checking Available Fonts
Your program can easily determine whether matching fonts are available on both the
user’s system and printer. The Fonts property applies to the Printer and Screen
objects. An array returned by the Fonts property is a list of all of the fonts available to
a printer or screen. You can iterate through the property array, and then search for
matching name strings. This code example determines whether the system has a
printer font that matches the font of the selected form:

Private Sub Form_Click ()
Dim I As Integer, Flag As Boolean

For I = 0 To Printer.FontCount - 1
Flag = StrComp (Font.Name,Printer.Fonts(I), 1)
If Flag = True Then

Debug.Print "There is a matching font."
Exit For

End If
Next I

—2

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 2 of 67 Printed: 10/02/96 03:42 PM

End Sub
3

For More Information For information about setting font properties, see "Setting
Font Characteristics" later in this chapter. For information about fonts in East Asian
systems, see "Font, Display, and Print Considerations in a DBCS Environment" in
"International Issues."

4

Setting Font Characteristics
Forms, controls that display text (as text or captions), and the Printer object support a
Font property, which determines the visual characteristics of text, including:

· Font name (typeface)

· Font size (in points)

· Special characteristics (bold, italic, underline, or strikethrough)
1

For details on the Printer object, see “Printing from an Application" later in this
chapter.

Setting Font Properties
You can set any of the font properties at design time by double-clicking Font in the
Properties window and setting the properties in the Font dialog box.

At run time, you set font characteristics by setting the Font object’s properties for
each form and control. The following table describes the properties for the Font
object.

Property Type Description

Name String Specifies name of font, such as Arial or Courier.

Size Single Specifies font size in points (72 points to an inch when
printed).

Bold Boolean If True, the text is bold.

Italic Boolean If True, the text is italic.

StrikeThrough Boolean If True, Visual Basic strikes through the text.

Underline Boolean If True, the text is underlined.

Weight Integer Returns or sets the weight of the font. Above a certain
weight, the Bold property is forced to True.

5
For example, the following statements set various font properties for a label named
lblYearToDate:

With lblYearToDate.Font
.Name = "Arial" ' Change the font to Arial.
.Bold = True ' Make the font bold.

End With
6

—3

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 3 of 67 Printed: 10/02/96 03:42 PM

The order in which you select font properties is important, because not all fonts
support all font variations. Set the Name property first. Then you can set any of the
Boolean properties, such as Bold and Italic, to True or False.

You can also store a set of font properties in a Font object. You can declare a Font
object just as you would any other object, using the StdFont class:

Dim MyFont As New StdFont
With MyFont

.Name = "Arial"

.Size = 10

.Bold = True
End With

7
Note Before you can create a new Font object, you must use the
References dialog box (available from the Project menu) to create a reference
to Standard OLE Types.

8
You can then easily switch from one set of font properties to another, by setting the
form or control’s Font object to the new object:

Set lblYearToDate.Font = MyFont
9

Working with Small Fonts
When setting the Size property to sizes smaller than 8 points, Windows automatically
changes to a different font if the selected font isn’t supported in the smaller size. To
avoid unpredictable results, first set the Size property when you use a font size
smaller than 8 points. Set the Name property next. Then set the Size property again,
followed by additional font properties.

Applying Font Properties to Specific Objects
The effect of setting font properties varies depending on the technique used to display
text. If the text is specified by a property (such as Text or Caption), then changing a
font property applies to all the text in that control. Labels, text boxes, frames, buttons,
check boxes, and all the file-system controls use a property to specify text.

If the application shows text with the Print method, then changing a font property
affects all uses of Print after the property change. Text printed before the property
change is not affected. Only forms, picture boxes, and the Debug and Printer objects
support the Print method.

Because changes in font properties apply to all the text in text boxes and labels, you
cannot mix fonts in these controls. If you need to mix fonts (for example, making
some words bold but leaving others in normal font), then create a picture box and use
the Print method to display text. “Displaying Text on Forms and Picture Boxes”
explains how to use the Print method.

—4

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 4 of 67 Printed: 10/02/96 03:42 PM

The FontTransparent Property
Forms and picture boxes have an additional font property, FontTransparent. When
FontTransparent is True, the background shows through any text displayed on the
form or picture box. Figure 12.1 shows the effects of the FontTransparent property.

Figure 12.1 The effects of the FontTransparent property

2

Displaying Text on Forms and Picture
Boxes

To display text on a form or picture box, use the Print method, preceded by the name
of the form or picture box. To send output text to a printer, use the Print method on
the Printer object.

Using the Print Method
The Print method syntax is:

[object.]Print [outputlist] [{ ; | , }]
10

The object argument is optional; if omitted, the Print method applies to the current
form.

For example, the following statements print messages to:

· A form named MyForm:

1MyForm.Print "This is a form."
2 3

· A picture box named picMiniMsg:

3picMiniMsg.Print "This is a picture box."
4 4

· The current form:

5Print "This is the current form."
6

—5

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 5 of 67 Printed: 10/02/96 03:42 PM

5
· The Printer object:

7Printer.Print "This text is going to the printer."
8 6

The outputlist argument is the text that appears on the form or picture box. Multiple
items in the outputlist argument must be separated by commas or semicolons or both,
as explained in “Displaying Different Items on a Single Line" later in this chapter.

Truncated Text
If the form or picture box is too small to display all the text, the text is cut off. Where
the form or picture box cuts off the text depends on the coordinates of the location at
which you began printing the text. You cannot scroll through a form or picture box.

Layering
When you print text to a form, the text appears in a layer behind any controls that
have been placed on the form. So printing to a form usually works best on a form
specifically created to hold the text. For more information about how text and
graphics appear in layers on a form, see “Layering Graphics with AutoRedraw and
ClipControls" later in this chapter

Displaying Different Items on a Single Line
The items you display or print can include property values, constants, and variables
(either string or numeric). The Print method, discussed in "Displaying Text on Forms
and Picture Boxes," prints the value of numeric items. Positive number values have a
leading and a trailing space. Negative numeric values display their sign instead of a
leading space.

Use a semicolon (;) or a comma (,) to separate one item from the next. If you use a
semicolon, Visual Basic prints one item after another, without intervening spaces. If
you use a comma, Visual Basic skips to the next tab column.

For example, the following statement prints to the current form:

Print "The value of X is "; X; "and the value of Y _
is "; Y

11
If X contains the value 2 and Y contains the value 7, the statement produces this
output:

The value of X is 2 and the value of Y is 7
12

By default, each Print method prints the text and moves to the next line. If there are
no items, Print simply skips a line. A series of Print statements (in the following
example, for a picture box named picLineCount) automatically uses separate lines:

picLineCount.Print "This is line 1."
picLineCount.Print "This is line 2."

13

—6

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 6 of 67 Printed: 10/02/96 03:42 PM

By placing a semicolon (or comma) at the end of the first statement, however, you
cause the output of the next Print statement to appear on the same line:

picLineCount.Print "This all appears ";
picLineCount.Print "on the same line."

14

Displaying Print Output at a Specific Location
You can control placement of Print output by specifying the drawing coordinates,
using either or both of these techniques:

· Use the Cls (clear) method to erase a form or picture box and reset the drawing
coordinates to the origin (0,0).

· Set drawing coordinates with the CurrentX and CurrentY properties.
7

The Cls Method
All the text and graphics on the object that were created with Print and graphics
methods can be deleted with the Cls method. The Cls method also resets the drawing
coordinates to the origin (0,0), which is the upper-left corner by default. For example,
these statements clear:

· A picture box named Picture1:

9Picture1.Cls 8
· The current form:

10Cls 9

Setting Drawing Coordinates
You can set the drawing coordinates of forms and picture boxes directly with the
CurrentX and CurrentY properties. For example, these statements reset the drawing
coordinates to the upper-left corner for Picture1 and for the current form:

· A picture box named Picture1:

11Picture1.CurrentX = 0
12Picture1.CurrentY = 0 10

· The current form:

13CurrentX = 0
14CurrentY = 0 11

Any new text you print appears on top of any text and graphics already at that
location. To erase text selectively, draw a box with the Line method and fill it with the
background color. Keep in mind that the drawing coordinates specified by CurrentX
and CurrentY usually change location when you use a graphics method.

By default, forms and picture boxes use a coordinate system where each unit
corresponds to a twip (1,440 twips equal an inch, and approximately 567 twips equal
a centimeter). You may want to change the ScaleMode property of the form, picture
box, or Printer object from twips to points, because text height is measured in points.

—7

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 7 of 67 Printed: 10/02/96 03:42 PM

Using the same unit of measure for the text and for the object where you will print the
text makes it easier to calculate the position of the text.

For More Information For more information about twips and drawing
coordinates, see “Understanding the Coordinate System” later in this chapter.

15

The TextHeight and TextWidth Methods
Before using the Print method, you can use the TextHeight and TextWidth methods to
determine where to position the CurrentX and CurrentY properties. TextHeight
returns the height of a line of text, taking into account the object’s font size and style.
The syntax is:

[object.]TextHeight(string)
16

If the string argument contains embedded carriage-return characters (Chr(13)), then
the text corresponds to multiple lines, and TextHeight returns the height of the
number of lines of text contained in the string. If there are no embedded carriage
returns, TextHeight always returns the height of one line of text.

One way to use the TextHeight method is to set the CurrentY property to a particular
line. For example, the following statements set the drawing coordinates to the
beginning of the fifth line:

CurrentY = TextHeight("sample") * 4
CurrentX = 0

17
Assuming there are no carriage returns in the sample text, you would use this syntax
to set CurrentY to the nth line:

CurrentY = [object.]TextHeight(string) * (n – 1)
18

If object is omitted, the method applies to the current form. The object argument can
be a form, a picture box, or the Printer object.

The TextWidth method returns the width of a string, taking into account the object’s
font size and style. This method is useful because many fonts have proportional-width
characters. The TextWidth method helps you determine whether the width of the
string is larger than the width of the form, picture box, or Printer object.

For example, the following statements use TextWidth and TextHeight to center the
text in a box by positioning CurrentX and CurrentY. The name of the box in this
example is MealCard.

CurrentX = (BoxWidth - TextWidth("MealCard")) / 2
CurrentY = (Boxheight - TextHeight("MealCard")) / 2

19

—8

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 8 of 67 Printed: 10/02/96 03:42 PM

Formatting Numbers, Dates, and Times
Visual Basic provides great flexibility in displaying number formats, as well as date
and time formats. You can easily display international formats for numbers, dates, and
times.

The Format function converts the numeric value to a text string and gives you control
over the string’s appearance. For example, you can specify the number of decimal
places, leading or trailing zeros, and currency formats. The syntax is:

Format(expression[, format]
20

The expression argument specifies a number to convert, and the format argument is a
string made up of symbols that shows how to format the number. The most commonly
used symbols are listed in the following table.

Symbol Description

0 Digit placeholder; prints a trailing or a leading zero in this position, if
appropriate.

Digit placeholder; never prints trailing or leading zeros.

. Decimal placeholder.

, Thousands separator.

– + $ () space Literal character; characters are displayed exactly as typed into the format
string.

21

Named Formats
Visual Basic provides several standard formats to use with the Format function.
Instead of designating symbols in the expression argument, you specify these formats
by name in the format argument of the Format function. Always enclose the format
name in double quotation marks ("").

The following table lists the format names you can use.

Named format Description

General Number Shows numbers as entered.

Currency Shows negative numbers inside parentheses.

Fixed Shows at least one digit.

Standard Uses a thousands separator.

Percent Multiplies the value by 100 with a percent sign at the end.

Scientific Uses standard scientific notation.

General Date Shows date and time if expression contains both. If expression is only a
date or a time, the missing information is not displayed.

Long Date Uses the Long Date format specified in the Regional Settings dialog box
of the Microsoft Windows Control Panel.

—9

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 9 of 67 Printed: 10/02/96 03:42 PM

Medium Date Uses the dd-mmm-yy format (for example, 03-Apr-93).

Short Date Uses the Short Date format specified in the Regional Settings dialog box
of the Windows Control Panel.

Long Time Shows the hour, minute, second, and “AM” or “PM” using the h:mm:ss
format.

Medium Time Shows the hour, minute, and “AM” or “PM” using the “hh:mm AM/PM”
format.

Short Time Shows the hour and minute using the hh:mm format.

Yes/No Any nonzero numeric value (usually – 1) is Yes. Zero is No.

True/False Any nonzero numeric value (usually – 1) is True. Zero is False.

On/Off Any nonzero numeric value (usually – 1) is On. Zero is Off.
22

The Format function supports many other special characters, such as the percentage
placeholder and exponents.

Number Formats
The following number conversions assume that the country in the Windows Control
Panel is set to “English (United States).”

Format syntax Result

Format(8315.4, “00000.00”) 08315.40

Format(8315.4, “#####.##”) 8315.4

Format(8315.4, “##,##0.00”) 8,315.40

Format(315.4,“$##0.00”) $315.40
23

The symbol for the decimal separator is a period (.), and the symbol for the thousands
separator is a comma (,). However, the separator character that is actually displayed
depends on the country specified in the Windows Control Panel.

Printing Formatted Dates and Times
To print formatted dates and times, use the Format function with symbols
representing date and time. These examples use the Now and Format functions to
identify and format the current date and time. The following examples assume that
the Regional Settings dialog box of the Windows Control Panel is set to
“English(United States)”.

Format syntax Result

Format(Now, “m/d/yy”) 1/27/93

Format(Now, “dddd, mmmm dd, yyyy”) Wednesday, January 27, 1993

Format(Now, “d-mmm”) 27-Jan

Format(Now, “mmmm-yy”) January-93

Format(Now, “hh:mm AM/PM”) 07:18 AM

Format(Now, “h:mm:ss a/p”) 7:18:00 a

—10

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 10 of 67 Printed: 10/02/96 03:42 PM

Format(Now, “d-mmmm h:mm”) 3-January 7:18
24

By using the Now function with the format “ddddd” and “ttttt,” you can print the
current date and time in a format appropriate for the selection in the Regional Settings
dialog box of the Windows Control Panel.

Country Format syntax Result

Sweden Format(Now, “ddddd ttttt”) 1992-12-31 18.22.38

United Kingdom Format(Now, “ddddd ttttt”) 31/12/92 18:22:38

Canada (French) Format(Now, “ddddd ttttt”) 92-12-31 18:22:38

United States Format(Now, “ddddd ttttt”) 12/31/92 6:22:38 PM
12

For More Information For more information about international considerations
when using the Format function, see "Locale-Aware Functions" in “International
Issues.” For more information about dates based on system locale, see "Writing
International Code in Visual Basic" in “International Issues.”

25

Working with Selected Text
Text boxes and combo boxes have a series of properties for selected text that are
especially useful when working with the Clipboard. These properties, which refer to
the block of text selected (highlighted) inside the control, allow you to create cut-and-
paste functions for the user. The following properties can all be changed at run time.

Property Description

SelStart A Long integer that specifies the starting position of the selected block of
text. If no text is selected, this property specifies the position of the insertion
point. A setting of 0 indicates the position just before the first character in
the text box or combo box. A setting equal to the length of the text in the
text box or combo box indicates the position just after the last character in
the control.

SelLength A Long integer that specifies the number of characters selected.

SelText The String containing the selected characters (or an empty string, if no
characters are selected).

26
You can control what text is selected by setting the SelStart and SelLength properties.
For example, these statements highlight all the text in a text box:

Text1.SetFocus
' Start highlight before first character.
Text1.SelStart = 0
' Highlight to end of text.
Text1.SelLength = Len(Text1.Text)

27
If you assign a new string to SelText, that string replaces the selected text, and the
insertion point is placed just after the end of the newly inserted text. For example, the

—11

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 11 of 67 Printed: 10/02/96 03:42 PM

following statement replaces the selected text with the string “I’ve just been
inserted!”:

Text1.SelText = "I’ve just been inserted!"
28

If no text was selected, the string is simply pasted into the text box at the insertion
point.

Transferring Text and Graphics with the
Clipboard Object

The Clipboard object has no properties or events, but it has several methods that
allow you to transfer data to and from the environment’s Clipboard. The Clipboard
methods fall into three categories. The GetText and SetText methods are used to
transfer text. The GetData and SetData methods transfer graphics. The GetFormat and
Clear methods work with both text and graphic formats.

For More For information about transferring data within your application or between
applications, see "OLE Drag and Drop" in "Responding to Mouse and Keyboard
Events."

29

Cutting, Copying, and Pasting Text with the Clipboard
Two of the most useful Clipboard methods are SetText and GetText. These two
methods transfer string data to and from the Clipboard, as shown in Figure 12.2.

Figure 12.2 Moving data to and from the Clipboard with SetText and GetText

13
SetText copies text onto the Clipboard, replacing whatever text was stored there
before. You use SetText like a statement. Its syntax is:

Clipboard.SetText data[, format]
30

GetText returns text stored on the Clipboard. You use it like a function:

destination = Clipboard.GetText()
31

—12

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 12 of 67 Printed: 10/02/96 03:42 PM

By combining the SetText and GetText methods with the selection properties
introduced in "Working with Selected Text," you can easily write Copy, Cut, and
Paste commands for a text box. The following event procedures implement these
commands for controls named mnuCopy, mnuCut, and mnuPaste:

Private Sub mnuCopy_Click ()
Clipboard.Clear
Clipboard.SetText Text1.SelText

End Sub

Private Sub mnuCut_Click ()
Clipboard.Clear
Clipboard.SetText Text1.SelText
Text1.SelText = ""

End Sub

Private Sub mnuPaste_Click ()
Text1.SelText = Clipboard.GetText()

End Sub
32

Note The example works best if these are menu controls, because you can
use menus while Text1 has the focus.

33
Notice that both the Copy and Cut procedures first empty the Clipboard with the
Clear method. (The Clipboard is not cleared automatically because you may want to
place data on the Clipboard in several different formats, as described in "Working
with Multiple Formats on the Clipboard" later in this chapter.) Both the Copy and Cut
procedures then copy the selected text in Text1 onto the Clipboard with the following
statement:

Clipboard.SetText Text1.SelText
34

In the Paste command, the GetText method returns the string of text currently on the
Clipboard. An assignment statement then copies this string into the selected portion of
the text box (Text1.SelText). If no text is currently selected, Visual Basic places this
text at the insertion point in the text box:

Text1.SelText = Clipboard.GetText()
35

This code assumes that all text is transferred to and from the text box Text1, but the
user can copy, cut, and paste between Text1 and controls on other forms.

Because the Clipboard is shared by the entire environment, the user can also transfer
text between Text1 and any application using the Clipboard.

Working with the ActiveControl Property
If you want the Copy, Cut, and Paste commands to work with any text box that has
the focus, use the ActiveControl property of the Screen object. The following code
provides a reference to whichever control has the focus:

Screen.ActiveControl
36

—13

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 13 of 67 Printed: 10/02/96 03:42 PM

You can use this fragment just like any other reference to a control. If you know that
the control is a text box, you can refer to any of the properties supported for text
boxes, including Text, SelText, and SelLength. The following code assumes that the
active control is a text box, and uses the SelText property:

Private Sub mnuCopy_Click ()
Clipboard.Clear
Clipboard.SetText Screen.ActiveControl.SelText

End Sub

Private Sub mnuCut_Click ()
Clipboard.Clear
Clipboard.SetText Screen.ActiveControl.SelText
Screen.ActiveControl.SelText = ""

End Sub

Private Sub mnuPaste_Click ()
Screen.ActiveControl.SelText = Clipboard.GetText()

End Sub
37

Working with Multiple Formats on the Clipboard
You can actually place several pieces of data on the Clipboard at the same time, as
long as each piece is in a different format. This is useful because you don’t know
what application will be pasting the data, so supplying the data in several different
formats enhances the chance that you will provide it in a format that the other
application can use. The other Clipboard methods — GetData, SetData, and
GetFormat — allow you to deal with data formats other than text by supplying a
number that specifies the format. These formats are described in the following table,
along with the corresponding number.

Constant
Description

vbCFLink Dynamic data exchange link.

vbCFText Text. Examples earlier in this chapter all use this format.

vbCFBitmap Bitmap.

vbCFMetafile Metafile.

vbCFDIB Device-independent bitmap.

vbCFPalette Color palette.
38

You can use the last four formats when cutting and pasting data from picture box
controls. The following code provides generalized Cut, Copy, and Paste commands
that work with any of the standard controls.

Private Sub mnuCopy_Click ()
Clipboard.Clear
If TypeOf Screen.ActiveControl Is TextBox Then

Clipboard.SetText Screen.ActiveControl.SelText
ElseIf TypeOf Screen.ActiveControl Is ComboBox Then

—14

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 14 of 67 Printed: 10/02/96 03:42 PM

Clipboard.SetText Screen.ActiveControl.Text
ElseIf TypeOf Screen.ActiveControl Is PictureBox _

Then
Clipboard.SetData Screen.ActiveControl.Picture

ElseIf TypeOf Screen.ActiveControl Is ListBox Then
Clipboard.SetText Screen.ActiveControl.Text

Else
' No action makes sense for the other controls.

End If
End Sub

Private Sub mnuCut_Click ()
' First do the same as a copy.
mnuCopy_Click
' Now clear contents of active control.
If TypeOf Screen.ActiveControl Is TextBox Then

Screen.ActiveControl.SelText = ""
ElseIf TypeOf Screen.ActiveControl Is ComboBox Then

Screen.ActiveControl.Text = ""
ElseIf TypeOf Screen.ActiveControl Is PictureBox _

Then
Screen.ActiveControl.Picture = LoadPicture()

ElseIf TypeOf Screen.ActiveControl Is ListBox Then
Screen.ActiveControl.RemoveItem Screen.ActiveControl.ListIndex

Else
' No action makes sense for the other controls.

End If
End Sub

Private Sub mnuPaste_Click ()
If TypeOf Screen.ActiveControl Is TextBox Then

Screen.ActiveControl.SelText = Clipboard.GetText()
ElseIf TypeOf Screen.ActiveControl Is ComboBox Then

Screen.ActiveControl.Text = Clipboard.GetText()
ElseIf TypeOf Screen.ActiveControl Is PictureBox _

Then
Screen.ActiveControl.Picture = _

Clipboard.GetData()
ElseIf TypeOf Screen.ActiveControl Is ListBox Then

Screen.ActiveControl.AddItem Clipboard.GetText()
Else

' No action makes sense for the other controls.
End If

End Sub
39

Checking the Data Formats on the Clipboard
You can use the GetFormat method to determine whether the data on the Clipboard is
in a particular format. For example, you can disable the Paste command depending on
whether the data on the Clipboard is compatible with the currently active control.

Private Sub mnuEdit_Click ()
' Click event for the Edit menu.

mnuCut.Enabled = True

—15

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 15 of 67 Printed: 10/02/96 03:42 PM

mnuCopy.Enabled = True
mnuPaste.Enabled = False
If TypeOf Screen.ActiveControl Is TextBox Then

If Clipboard.GetFormat(vbCFText) Then mnuPaste.Enabled = True
ElseIf TypeOf Screen.ActiveControl Is ComboBox Then

If Clipboard.GetFormat(vbCFText) Then mnuPaste.Enabled = True
ElseIf TypeOf Screen.ActiveControl Is ListBox Then

If Clipboard.GetFormat(vbCFText) Then mnuPaste.Enabled = True
ElseIf TypeOf Screen.ActiveControl Is PictureBox _

Then
If Clipboard.GetFormat(vbCFBitmap) Then mnuPaste.Enabled = True

Else
' Can't cut or copy from the other types
' of controls.
mnuCut.Enabled = False
mnuCopy.Enabled = False

End If
End Sub

40
Note You might also want to check for other data formats with the constants
vbCFPalette, vbCFDIB, and vbCFMetafile. If you want to replace a picture’s
palette using Clipboard operations, you should request vbCFBitmap rather
than vbCFDIB from the Clipboard. See "Working with 256 Colors” later in this
chapter for more information on working with the color palette.

41

Understanding the Coordinate System
Every graphical operation described in this chapter (including resizing, moving, and
drawing) uses the coordinate system of the drawing area or container. Although you
can use the coordinate system to achieve graphical effects, it is also important to
know how to use the coordinate system to define the location of forms and controls in
your application.

The coordinate system is a two-dimensional grid that defines locations on the screen,
in a form, or other container (such as a picture box or Printer object). You define
locations on this grid using coordinates in the form:

(x, y)
42

The value of x is the location of the point along the x-axis, with the default location of
0 at the extreme left. The value of y is the location of the point along the y-axis, with
the default location of 0 at the extreme top. This coordinate system is illustrated in
Figure 12.3.

—16

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 16 of 67 Printed: 10/02/96 03:42 PM

Figure 12.3 The coordinate system of a form

14
The following rules apply to the Visual Basic coordinate system:

· When you move or resize a control, you use the coordinate system of the control’s
container. If you draw the object directly on the form, the form is the container.
If you draw the control inside a frame or picture box, the frame or the control is
the container.

· All graphics and Print methods use the coordinate system of the container. For
example, statements that draw inside a picture box use the coordinate system of
that control.

· Statements that resize or move a form always express the form’s position and size
in twips.

1When you create code to resize or move a form, you should first check the Height
and Width properties of the Screen object to make sure the form will fit on the
screen.

· The upper-left corner of the screen is always (0, 0). The default coordinate system
for any container starts with the (0, 0) coordinate in the upper-left corner of the
container.

15
The units of measure used to define locations along these axes are collectively called
the scale. In Visual Basic, each axis in the coordinate system can have its own scale.

You can change the direction of the axis, the starting point, and the scale of the
coordinate system, but use the default system for now. “Changing an Object’s
Coordinate System" later in this chapter discusses how to make these changes.

Twips Explained
By default, all Visual Basic movement, sizing, and graphical-drawing statements use
a unit of one twip. A twip is 1/20 of a printer’s point (1,440 twips equal one inch, and
567 twips equal one centimeter). These measurements designate the size an object
will be when printed. Actual physical distances on the screen vary according to the

—17

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 17 of 67 Printed: 10/02/96 03:42 PM

monitor size. “Changing an Object’s Coordinate System” describes how to select
units other than twips.

Changing an Object's Coordinate System
You set the coordinate system for a particular object (form or control) using the
object’s scale properties and the Scale method. You can use the coordinate system in
one of three different ways:

· Use the default scale.

· Select one of several standard scales.

· Create a custom scale.
16

Changing the scale of the coordinate system can make it easier to size and position
graphics on a form. For example, an application that creates bar charts in a picture
box can change the coordinate system to divide the control into four columns, each
representing a bar in the chart. The following sections explain how to set default,
standard, and custom scales to change the coordinate system.

Using the Default Scale
Every form and picture box has several scale properties (ScaleLeft, ScaleTop,
ScaleWidth, ScaleHeight, and ScaleMode) and one method (Scale) you can use to
define the coordinate system. The default scale for objects in Visual Basic places the
coordinate (0,0) at the upper-left corner of the object. The default scale uses twips.

If you want to return to the default scale, use the Scale method with no arguments.

Selecting a Standard Scale
Instead of defining units directly, you can define them in terms of a standard scale by
setting the ScaleMode property to one of the settings shown in the following table.

ScaleMode setting Description

0 User-defined. If you set ScaleWidth, ScaleHeight, ScaleTop, or
ScaleLeft directly, the ScaleMode property is automatically set to 0.

1 Twips. This is the default scale. There are 1,440 twips to one inch.

2 Points. There are 72 points to one inch.

3 Pixels. A pixel is the smallest unit of resolution on the monitor or
printer. The number of pixels per inch depends on the resolution of the
device.

4 Characters. When printed, a character is 1/6 of an inch high and 1/12 of
an inch wide.

5 Inches.

6 Millimeters.

7 Centimeters.
43

—18

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 18 of 67 Printed: 10/02/96 03:42 PM

All of the modes in the table, except for 0 and 3, refer to printed lengths. For example,
an item that is two units long when ScaleMode is set to 7 is two centimeters long
when printed.

' Set scale to inches for this form.
ScaleMode = 5
' Set scale to pixels for picPicture1.
picPicture1.ScaleMode = 3

44
Setting a value for ScaleMode causes Visual Basic to redefine ScaleWidth and
ScaleHeight so that they are consistent with the new scale. ScaleTop and ScaleLeft
are then set to 0. Directly setting ScaleWidth, ScaleHeight, ScaleTop, or ScaleLeft
automatically sets ScaleMode to 0.

Creating a Custom Scale
You can use an object’s ScaleLeft, ScaleTop, ScaleWidth, and ScaleHeight properties
to create a custom scale. Unlike the Scale method, these properties can be used either
to set the scale or to get information about the current scale of the coordinate system.

Using ScaleLeft and ScaleTop
The ScaleLeft and ScaleTop properties assign numeric values to the upper-left corner
of an object. For example, these statements set the value of the upper-left corner for
the current form and upper-left corner for a picture box named picArena.

ScaleLeft = 100
ScaleTop = 100
picArena.ScaleLeft = 100
picArena.ScaleTop = 100

45
These scale values are shown in Figure 12.4.

Figure 12.4 The ScaleLeft and ScaleTop properties for a form and a control

17
These statements define the upper-left corner as (100, 100). Although the statements
don’t directly change the size or position of these objects, they alter the effect of

—19

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 19 of 67 Printed: 10/02/96 03:42 PM

subsequent statements. For example, a subsequent statement that sets a control’s Top
property to 100 places the object at the very top of its container.

Using ScaleWidth and ScaleHeight
The ScaleWidth and ScaleHeight properties define units in terms of the current width
and height of the drawing area. For example:

ScaleWidth = 1000
ScaleHeight = 500

46
These statements define a horizontal unit as 1/1,000 of the current internal width of
the form and a vertical unit as 1/500 of the current internal height of the form. If the
form is later resized, the units remain the same.

Note ScaleWidth and ScaleHeight define units in terms of the internal
dimensions of the object; these dimensions do not include the border
thickness or the height of the menu or caption. Thus, ScaleWidth and
ScaleHeight always refer to the amount of room available inside the object.
The distinction between internal and external dimensions (specified by Width
and Height) is particularly important with forms, which can have a thick
border. The units can also differ: Width and Height are always expressed in
terms of the container’s coordinate system; ScaleWidth and ScaleHeight
determine the coordinate system of the object itself.

47

Setting Properties to Change the Coordinate System
All four of these scale properties can include fractions and they can also be negative
numbers. Negative settings for the ScaleWidth and ScaleHeight properties change the
orientation of the coordinate system.

The scale shown in Figure 12.5 has ScaleLeft, ScaleTop, ScaleWidth, and Scale
Height all set to 100.

Figure 12.5 Scale running from (100, 100) to (200, 200)

—20

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 20 of 67 Printed: 10/02/96 03:42 PM

18

Using the Scale Method to Change the
Coordinate System
A more efficient way to change the coordinate system, other than setting individual
properties, is to use the Scale method. You specify a custom scale using this syntax:

[object.]Scale (x1, y1) – (x2, y2)
48

The values of x1 and y1 determine the settings of the ScaleLeft and ScaleTop
properties. The differences between the two x-coordinates and the two y-coordinates
determine the settings of ScaleWidth and ScaleHeight, respectively. For example,
suppose you set the coordinate system for a form by setting end points (100, 100) and
(200, 200):

Scale (100, 100)-(200, 200)
49

This statement defines the form as 100 units wide and 100 units high. With this scale
in place, the following statement moves a shape control one-fifth of the way across
the form:

shpMover.Left = shpMover.Left + 20
50

Specifying a value of x1 > x2 or y1 > y2 has the same effect as setting ScaleWidth or
ScaleHeight to a negative value.

Converting Scales
Use the ScaleX and ScaleY methods to convert from one scale mode to another scale
mode. Those methods have the following syntax:

[object.]ScaleX (value [, fromScale [, toScale]]
[object.]ScaleY (value [, fromScale[,toScale]]

51
The destination object is a form, picture box, or Printer object. The value is expressed
in the coordinate system specified by the scale mode fromScale. The value returned is
expressed in the scale mode specified by toScale, or the scale mode of object if
toScale is omitted. If fromScale is omitted, the scale mode for value is HIMETRIC.

HIMETRIC is the scale mode that specifies physical sizes. For example, the number
of HIMETRIC units in a line of 10 centimeters is 10,000. The resulting line drawn on
the screen is ten centimeters long, regardless of the size of the video display area. For
information on the HIMETRIC scale mode and physical sizes, see the Microsoft
Windows SDK.

The following statement stretches the content of the picture box control MyPic to
twice its width. MyPic.Picture.Width returns the width of the picture contained in the
picture control, which is a HIMETRIC value that needs to be converted into the scale
mode of Form1.

Form1.PaintPicture MyPic.Picture, X, Y, _
Form1.ScaleX(MyPic.Picture.Width) * 2

—21

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 21 of 67 Printed: 10/02/96 03:42 PM

52
The following example illustrates two equivalent ways to specify a form’s Width to
np pixels wide.

' The ScaleMode of the form is set to pixels.
ScaleMode = vbPixels

' Option 1:
' Temporarily set the form’s ScaleMode to twips.
ScaleMode = vbTwips
' ScaleX() returns the value in twips.
Width = Width - ScaleWidth + ScaleX(np, vbPixels)
' Set back the ScaleMode of the form to pixels.
ScaleMode = vbPixels
' Option 2:
' Conversion from pixels to twips without changing
' the ScaleMode of the form.
Width = Width + ScaleX(np - ScaleWidth, vbPixels, _

vbTwips)
53

Using Graphical Controls
Visual Basic provides three controls designed to create graphical effects in an
application:

· The image control

· The line control

· The shape control
19

Advantages of Graphical Controls
The image, line, and shape controls are very useful for creating graphics at design
time. One advantage of graphical controls is that they require fewer system resources
than other Visual Basic controls, which improves the performance of your Visual
Basic application.

Another advantage of graphical controls is that you can create graphics with less code
than with graphics methods. For example, you can use either the Circle method or the
shape control to place a circle on a form. The Circle method requires that you create
the circle with code at run time, while you can simply draw the shape control on the
form and set the appropriate properties at design time.

Limitations of Graphical Controls
While graphical controls are designed to maximize performance with minimal
demands on the application, they accomplish this goal by limiting other features
common to controls in Visual Basic. Graphical controls:

· Cannot appear on top of other controls, unless they are inside a container that can
appear on top of other controls (such as a picture box).

—22

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 22 of 67 Printed: 10/02/96 03:42 PM

· Cannot receive focus at run time.

· Cannot serve as containers for other controls.

· Do not have an hWnd property.
20

For More Information For information about the graphics methods, see "Using
the Graphics Methods" later in this chapter. For information about the graphical
controls, see "Using the Image Control," "Using the Line Control," and "Using the
Shape Control" in "Using Visual Basic's Standard Controls."

54

Adding Pictures to Your Application
Pictures can be displayed in three places in Visual Basic applications:

· On a form

· In a picture box

· In an image control
21

Pictures can come from paint programs, such as those that ship with the various
versions of Microsoft Windows, other graphics applications, or clip-art libraries.
Visual Basic provides a large collection of icons you can use as graphics in
applications. Visual Basic 5.0 allows you to add .jpeg and .gif files, as well
as .bmp, .dib, .ico, .cur, .wmf, and .emf files to your applications. For more
information about the graphics formats supported by Visual Basic, see "Using the
Image Control" and "Using the Picture Box Control" in "Using Visual Basic's
Standard Controls."

You use different techniques to add a picture to a form, a picture box, or an image
control depending on whether you add the picture at design time or run time.

Adding a Picture at Design Time
There are two ways to add a picture at design time:

· Load a picture onto a form, or into a picture box or image control from a picture
file:

2In the Properties window, select Picture from the Properties list and click the
Properties button. Visual Basic displays a dialog box, from which you select a
picture file.

3If you set the Picture property for a form, the picture you select is displayed on
the form, behind any controls you’ve placed on it. Likewise, if you set the Picture
property for a picture box, the picture is displayed in the box, behind any controls
you’ve placed on it.

· Paste a picture onto a form or into a picture box or image control:

—23

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 23 of 67 Printed: 10/02/96 03:42 PM

4Copy a picture from another application (such as Paintbrush) onto the Clipboard.
Return to Visual Basic, select the form, picture box, or image control, and from the
Edit menu, choose Paste.

22
Once you’ve set the Picture property for a form, picture box, or image control —
either by loading or pasting a picture — the word displayed in the Settings box is
“(Bitmap),” “(Icon),” or “(Metafile).” To change the setting, load or paste another
picture. To set the Picture property to “(None)” again, double-click the word
displayed in the Settings box and press the DEL key.

Adding a Picture at Run Time
There are four ways to add a picture at run time:

· Use the LoadPicture function to specify a file name and assign the picture to the
Picture property.

5The following statement loads the file Cars.bmp into a picture box named
picDisplay (you name a control by setting its Name property):

15picDisplay.Picture = LoadPicture("C:\Picts\Cars.bmp") 23
6You can load a new picture file onto a form or into a picture box or image control
whenever you want. Loading a new picture completely replaces the existing
picture, although the source files of the pictures are never affected.

· Use the LoadResPicture function to assign a picture from the project’s .res file into
the Picture property.

7The following statement loads the bitmap resource ID, 10, from the resource file
into a picture box named picResource:

16Set picResource.Picture = LoadResPicture(10, _
17 vbResBitmap) 24

· Copy a picture from one object to another.

8Once a picture is loaded or pasted onto a form or into a picture box or image
control, you can assign it to other forms, picture boxes, or image controls at run
time. For example, this statement copies a picture from a picture box named
picDisplay to an image control named imgDisplay:

18Set imgDisplay.Picture = picDisplay.Picture 25
· Copy a picture from the Clipboard object.

26
For More Information For more information about copying a picture from the
Clipboard, see "Working with Multiple Formats on the Clipboard." For information
on resource files, see "Working with Resource Files" in "More About Programming."

55
Note If you load or paste pictures from files at design time, the pictures are
saved and loaded with the form, and the application copies pictures from one
object to another. Then, when you create an .exe file, you don’t need to give
your users copies of the picture files; the .exe file itself contains the images.

—24

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 24 of 67 Printed: 10/02/96 03:42 PM

Also, consider supplying a .res file and using LoadResPicture. The .res file
gets built into the .exe, and the bitmaps are saved in a standard format that
any resource editor can read. If you load pictures at run time with the
LoadPicture function, you must supply the picture files to your users along
with your application.

56

Removing a Picture at Run Time
You can also use the LoadPicture function to remove a picture at run time without
replacing it with another picture. The following statement removes a picture from an
image control named imgDisplay:

Set imgDisplay.Picture = LoadPicture("")
57

Moving and Sizing Pictures
If a form, picture box, or image control is moved (at design time or run time), its
picture automatically moves with it. If a form, picture box, or image control is resized
so that it is too small to display a picture, the picture gets clipped at the right and
bottom. A picture also gets clipped if you load or copy it onto a form or into a picture
box or image control that is too small to display all of it.

AutoSize Property
If you want a picture box to automatically expand to accommodate a new picture, set
the AutoSize property for the picture box to True. Then when a picture is loaded or
copied into the picture box at run time, Visual Basic automatically expands the
control down and to the right enough to display all of the picture. If the image you
load is larger than the edges of the form, it appears clipped because the form size
doesn’t change.

You can also use the AutoSize property to automatically shrink a picture box to reflect
the size of a new picture.

Note Image controls do not have an AutoSize property, but automatically
size themselves to fit the picture loaded into them. Forms don’t have an
AutoSize property, and they do not automatically enlarge to display all of a
picture.

58

Stretch Property of Image Controls
If you want a picture in an image control to automatically expand to fit a particular
size, use the Stretch property. When the Stretch property is False, the image control
automatically adjusts its size to fit the picture loaded into it. To resize the picture to fit
the image control, set the Stretch property for the image control to True.

Selecting Art for the Picture Control
Where do you get picture files? If you want icons, you can use the Icon Library
included with Visual Basic. You can find the icon files within the subdirectories of the

—25

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 25 of 67 Printed: 10/02/96 03:42 PM

main Visual Basic directory (\VB\Icons). You can create .bmp files with Microsoft PC
Paintbrush, or you can buy a clip-art collection that includes bitmap or icon files, or
metafiles. You can also create a resource (.res) file containing pictures.

For More Information See "Working with Resource Files" in "More About
Programming, for more information on creating a resource file.

59

Introduction to Graphics Properties for Forms and
Controls

Forms and various controls have graphics properties. The following table lists these
properties.

Category Properties

Display processing AutoRedraw, ClipControls

Current drawing location CurrentX, CurrentY

Drawing techniques DrawMode, DrawStyle, DrawWidth, BorderStyle, BorderWidth

Filling techniques FillColor, FillStyle

Colors BackColor, ForeColor, BorderColor, FillColor
60

Forms and picture boxes have additional properties:

· Scale properties, as described in “Changing an Object’s Coordinate System”
earlier in this chapter.

· Font properties, as described in “Setting Font Characteristics” earlier in this
chapter.

27
There are two properties of forms and picture boxes you’ll probably want to use right
away: BackColor and ForeColor. BackColor paints the background of the drawing
area. If BackColor is light blue, then the entire area is light blue when you clear it.
ForeColor (foreground) determines the color of text and graphics drawn on an object,
although some graphics methods give you the option of using a different color. For
more information about color, see "Working with Color" later in this chapter.

Creating Persistent Graphics with AutoRedraw
Each form and picture box has an AutoRedraw property. AutoRedraw is a Boolean
property that, when set to True, causes graphics output to be saved in memory. You
can use the AutoRedraw property to create persistent graphics.

Persistent Graphics
Microsoft Windows manipulates the screen image to create an illusion of overlapping
windows. When one window is moved over another, temporarily hiding it, and is then
moved away again, the window and its contents need to be redisplayed. Windows

—26

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 26 of 67 Printed: 10/02/96 03:42 PM

takes care of redisplaying the window and controls. But your Visual Basic application
must handle redisplaying graphics in a form or picture box.

If you create graphics on the form using graphics methods, you usually want them to
reappear exactly as you placed them (persistent graphics). You can use the
AutoRedraw property to create persistent graphics.

AutoRedraw and Forms
The default setting of AutoRedraw is False. When AutoRedraw is set to False, any
graphics created by graphics methods that appear on the form are lost if another
window temporarily hides them. Also, graphics that extend beyond the edges of the
form are lost if you enlarge the form. The effects of setting AutoRedraw to False are
shown in Figure 12.6.

Figure 12.6 The effects of setting AutoRedraw to False

28
When the AutoRedraw property of a form is set to True, Visual Basic applies graphics
methods to a “canvas” in memory. The application copies the contents of this memory
canvas to redisplay graphics temporarily hidden by another window. In most cases,
the size of this canvas for forms is the size of the screen. If the form’s MaxButton
property is False and the border of the form is not sizable, the size of the canvas is the
size of the form.

This canvas also lets the application save graphics that extend beyond the edges of the
form when the form is resizable. The effects of setting AutoRedraw to True are shown
in Figure 12.7.

—27

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 27 of 67 Printed: 10/02/96 03:42 PM

Figure 12.7 The effects of setting AutoRedraw to True

29

AutoRedraw and Picture Boxes
When the AutoRedraw property of a picture box is set to True, Visual Basic saves
only the visible contents of the picture box in memory. This is because the memory
canvas used to save the contents of the picture box is the same size as the picture box.
Graphics that extend outside the picture box are cropped and never appear later, even
if the size of the picture box changes.

Using Nonpersistent Graphics
You can leave AutoRedraw set to False for the form and all its picture boxes to
conserve memory. But then the graphics are not automatically persistent: You have to
manage redrawing all graphics in code as needed.

You can include code in the Paint event for a form or picture box that redraws all
lines, circles, and points as appropriate. This approach usually works best when you
have a limited amount of graphics that you can reconstruct easily.

A Paint event procedure is called whenever part of a form or picture box needs to be
redrawn — for example, when a window that covered the object moves away, or
when resizing causes graphics to come back into view. If AutoRedraw is set to True,
the object’s Paint procedure is never called unless your application calls it explicitly.
The visible contents of the object are stored in the memory canvas, so the Paint event
isn’t needed.

Keep in mind that the decision to use nonpersistent graphics can affect the way
graphics paint on the form or container. “Clipping Regions with ClipControls” and
“Layering Graphics with AutoRedraw and ClipControls” discuss other factors that
may determine whether or not you should use nonpersistent graphics.

Changing AutoRedraw at Run Time
You can change the setting of AutoRedraw at run time. If AutoRedraw is False,
graphics and output from the Print method are written only to the screen, not to

—28

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 28 of 67 Printed: 10/02/96 03:42 PM

memory. If you clear the object with the Cls method, any output written when
AutoRedraw was set to True does not get cleared. This output is retained in memory,
and you must set AutoRedraw to True again and then use the Cls method to clear it.

Clipping Regions with ClipControls
Each form, picture box, and frame control has a ClipControls property. ClipControls
is a Boolean property that, when set to True, causes the container to define a clipping
region when painting the container around all controls except:

· The shape control

· The line control

· The image control

· Labels

· Any custom graphical controls
30

By setting the ClipControls property to False, you can improve the speed with which
a form paints to the screen. The speed improvement is greatest on forms with many
controls that do not overlap, like dialog boxes.

Clipping Regions
Clipping is the process of determining which parts of a form or container are painted
when the form or container is displayed. The outline used to determine what parts of
the form or container are painted or “clipped” defines the clipping region for that
form or container. Clipping regions are useful when a Windows – based application
needs to save one part of the display and simultaneously repaint the rest.

Clipping Forms and Containers
The default setting of ClipControls is True. When the ClipControls property is True,
Windows defines a clipping region for the background of the form or container before
a Paint event. This clipping region surrounds all nongraphical controls. When using
ClipControls, labels act like graphical controls.

During a Paint event, Windows repaints only the background inside the clipping
region, avoiding the nongraphical controls. Figure 12.8 shows a form with four
controls, a box painted with the Line method, and the clipping region created for that
form by setting ClipControls to True. Notice that the clipping region did not clip
around the label or shape controls on the form. The box drawn in the background with
the Line method paints only in the clipping region.

—29

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 29 of 67 Printed: 10/02/96 03:42 PM

Figure 12.8 The clipping region created when ClipControls is True

31
When ClipControls is False, Windows does not define a clipping region for the
background of the form or container before a Paint event. Also, output from graphics
methods within the Paint event appears only in the parts of the form or container that
need to be repainted. Since calculating and managing a clipping region takes time,
setting ClipControls to False may cause forms with many nonoverlapping controls
(such as complex dialog boxes) to display faster.

Note Avoid nesting controls with ClipControls set to True inside controls with
ClipControls set to False. Doing so may result in the nested controls not
repainting correctly. To fix this, set ClipControls to True for both the containers
and the controls.

61

Layering Graphics with AutoRedraw and ClipControls
Different combinations of AutoRedraw and ClipControls have different effects on the
way graphical controls and graphics methods paint to the screen.

As you create graphics, keep in mind that graphical controls and labels, nongraphical
controls, and graphics methods appear on different layers in a container. The behavior
of these layers depends on three factors:

· The AutoRedraw setting.

· The ClipControls setting.

· Whether graphics methods appear inside or outside the Paint event.
32

Normal Layering
Usually, the layers of a form or other container are, from front to back, as follows:

—30

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 30 of 67 Printed: 10/02/96 03:42 PM

Layer Contents

Front Nongraphical controls like command buttons, check boxes, and file
controls.

Middle Graphical controls and labels.

Back Drawing space for the form or container. This is where the results of
graphics methods appear.

62
Anything in one layer covers anything in the layer behind, so graphics you create with
the graphical controls appear behind the other controls on the form, and all graphics
you create with the graphics methods appear below all graphical and nongraphical
controls. The normal arrangement of layers is shown in Figure 12.9.

Figure 12.9 Normal layering of graphics on a form

33

Effects on Layering
You can produce normal layering using any of several approaches. Combining
settings for AutoRedraw and ClipControls and placing graphics methods inside or
outside the Paint event affects layering and the performance of the application.

The following table lists the effects created by different combinations of AutoRedraw
and ClipControls and placement of graphics methods.

AutoRedraw ClipControls
Graphics methods
in/out of Paint
event

Layering behavior

True True
(default)

Paint event
ignored

Normal layering.

True False Paint event
ignored

Normal layering. Forms with
many controls that do not
overlap may paint faster
because no clipping region is
calculated or created.

—31

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 31 of 67 Printed: 10/02/96 03:42 PM

False
(default)

True
(default)

In Normal layering.

False True Out Nongraphical controls in front.
Graphics methods and
graphical controls appear
mixed in the middle and back
layers. Not recommended.

False False In Normal layering, affecting
only pixels that were
previously covered or that
appear when resizing a form.

False False Out Graphics methods and all
controls appear mixed in the
three layers. Not
recommended.

63

The Effects of AutoRedraw
Setting AutoRedraw to True always produces normal layering. While using
AutoRedraw is the easiest way to layer graphics, applications with large forms may
suffer from reduced performance due to the memory demands of AutoRedraw.

The Effects of ClipControls
When AutoRedraw is True, the setting of ClipControls has no effect on how graphics
layer on a form or in a container. But ClipControls can affect how fast the form
displays. When ClipControls is False, the application doesn’t create a clipping region.
Not having to calculate or paint to avoid holes in a clipping region may cause the
form to display faster.

Also, when AutoRedraw and ClipControls are both False, the application repaints
only the pixels of a form or container that are exposed by:

· Covering the form or container with another window and then moving the window
away.

· Resizing the form or container.
34

The Effects of the Paint Event
When AutoRedraw is False, the best place to use graphics methods is within the Paint
event of the form or container. Confining graphics methods to the Paint event causes
those methods to paint in a predictable sequence.

Using graphics methods outside a Paint event when AutoRedraw is False can produce
unstable graphics. Each time the output of a graphics method appears on the form or
container, it may cover any controls or graphics methods already there (if
ClipControls is False). When an application uses more than a few graphics methods to
create visual effects, managing the resulting output can be extremely difficult unless
the methods are all confined to the Paint event.

—32

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 32 of 67 Printed: 10/02/96 03:42 PM

Moving Controls Dynamically
With Visual Basic, one of the easiest effects to achieve is moving a control at run
time. You can either directly change the properties that define the position of a control
or use the Move method.

Using the Left and Top Properties
The Left property is the distance between the upper-left corner of the control and the
left side of the form. The Top property is the distance between the upper-left corner of
the control and the top of the form. Figure 12.10 shows the Left and Top properties of
a control.

Figure 12.10 The Left and Top properties

35
You can move a control by changing the settings of its Left and Top properties with
statements such as these:

txtField1.Left = txtField1.Left + 200
txtField1.Top = txtField1.Top – 300

64

Moving a Line Control
As mentioned previously, line controls don’t have Left or Top properties. Instead, you
use special properties to control the position of line controls on a form. The following
table lists these properties and how they determine the position of a line control.

Property Description

X1 The x-coordinate of the start of the line. The coordinate is given in
current scale units. The start of the line is the end created when you
start drawing.

Y1 The y-coordinate of the start of the line.

X2 The x-coordinate of the end of the line. The end of the line is the end
created when you stop drawing.

Y2 The y-coordinate of the end of the line.
65

—33

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 33 of 67 Printed: 10/02/96 03:42 PM

The Jumpy Line demo of the Blanker application randomly changes the position of a
line control on the DemoForm using these statements:

' Set random X position for 1st line end.
linLineCtl.X1 = Int(DemoForm.Width * Rnd)
' Set random Y position for 1st line end.
linLineCtl.Y1 = Int(DemoForm.Height * Rnd)
' Set random X position for 2nd line end.
linLineCtl.X2 = Int(DemoForm.Width * Rnd)
' Set random Y position for 2nd line end.
linLineCtl.Y2 = Int(DemoForm.Height * Rnd)
' Clear stray pixels from moving line.
Cls
' Pause display briefly before next move.
Delay

66

Using the Move Method
Changing the Left and Top or X and Y properties produces a jerky effect as the
control first moves horizontally and then vertically. The Move method produces a
smoother diagonal movement.

The syntax for the Move method is:

[object.]Move left [, top[, width[, height]]]
67

The object is the form or control to be moved. If object is omitted, the current form
moves. The left and top arguments are the new settings for the Left and Top properties
of object, while width and height are new settings for its Width and Height properties.
Only left is required, but to specify other arguments, you must include all arguments
that appear in the argument list before the argument you want to specify.

Absolute Movement
Absolute movement occurs when you move an object to specific coordinates in its
container. The following statement uses absolute movement to move a control named
txtField1 to the coordinates (100, 200):

txtField1.Move 100, 200
68

Relative Movement
Relative movement occurs when you move an object by specifying the distance it
should move from its current position. The following statement uses relative
movement to move txtField1 to a position 100 twips down and to the right of its
current position:

txtField1.Move txtField1.Left + 100, txtField1.Top _
+ 100

69
This section shows control movement in the Blanker sample application. The
Rebound demo moves a picture box diagonally around the form, so the picture box
appears to “bounce” off the sides of the form. This demo uses a picture box instead of

—34

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 34 of 67 Printed: 10/02/96 03:42 PM

an image control because the image control flickers as the movement causes it to
repaint.

Figure 12.11 shows the main form of the Blanker application (DemoForm) and the
picture box used in this example.

Figure 12.11 Picture box (picBall) in the Blanker application

36
The name of the picture box is picBall. This control begins moving around the form
after you choose the Rebound command from the Options menu and then click the
Start Demo button. The event procedure for this command button then calls the
CtlMoveDemo procedure.

The CtlMoveDemo procedure randomly selects a starting direction from one of these
four possibilities:

· Left and up

· Right and up

· Left and down

· Right and down
37

The picBall picture box moves along the chosen direction until the control reaches
one of the four edges of the form. Then the picture box changes direction away from
the edge it has reached; the variable Motion controls the direction. For example, when

—35

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 35 of 67 Printed: 10/02/96 03:42 PM

the picture box is moving left and up, this portion of the procedure changes the value
of Motion and directs the code to move picBall in another direction.

The following statements come from the CtlMoveDemo procedure in the Blanker
application:

Select Case Motion
Case 1

' If motion is left and up, move the control
' 20 twips.
picBall.Move picBall.Left - 20, picBall.Top - 20
' If control touches left edge, change motion
' to right and up.
If picBall.Left <= 0 Then

Motion = 2
' If control touches top edge, change motion to
' left and down.
ElseIf picBall.Top <= 0 Then

Motion = 4
End If

70
Notice that the line of code that moves picBall subtracts 20 twips from the current
values of its Left and Top properties to establish the new location of the control. This
ensures that the control always moves relative to its current position.

The speed and smoothness of the control’s movement depend on the number of twips
(or other units) used in the Move method. Increasing the number of twips increases
the speed but decreases the smoothness of motion. Decreasing the number of twips
decreases the speed but improves the smoothness of the control’s motion.

Resizing Controls Dynamically
In a Visual Basic application, you can change the size and shape of a picture box,
image control, or form at run time, just as you can change its position.

The following properties affect size.

Property Applies to Description

Align Picture boxes and
Data controls

If set to align a picture box to the top (1) or bottom (2) of
a form, the width of the picture box always equals the
width of the inside of the form. If set to align a picture
box to the left (3) or the right (4) of a form, the height of
the picture box is the height of the inside of the form.

Height All forms and all
controls except
timers, menus, and
lines

Height of the object expressed in the scale mode of the
form (twips by default).

Width All forms and all
controls except
timers, menus, and

Width of the object expressed in the scale mode of the
form (twips by default).

—36

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 36 of 67 Printed: 10/02/96 03:42 PM

lines

AutoSize Labels and picture
boxes

If True, always causes Visual Basic to adjust the picture
box dimensions to the size of the contents.

Stretch Image controls If True, the bitmap or metafile stretches to fit the size of
the image control. If False, the size of the image control
changes to match the size of the bitmap or metafile it
contains.

71
In this example, a command button named cmdGrow grows larger each time the user
clicks it:

Private Sub cmdGrow_Click ()
cmdGrow.Height = cmdGrow.Height + 300
cmdGrow.Width = cmdGrow.Width + 300

End Sub
72

Creating Simple Animation
You can create simple animation by changing pictures at run time. The easiest way to
do this is to toggle between two images. You can also use a series of pictures to create
animation with several frames. Also, by moving the picture dynamically, you can
create more elaborate effects.

Toggling Between Two Pictures
Some icons can be used in pairs. For instance, there are two matching envelope icons
in the \Icon subdirectory, one with the envelope unopened and one with the envelope
torn open, as shown in Figure 12.12. By switching, or toggling, between the two, you
can create an animation that shows your user the status of mail.

Figure 12.12 Mail icons

38
The following statement changes the Picture property of an image control named
imgMailStatus to toggle its picture from an unopened envelope to an open envelope.

imgMailStatus.Picture = imgMailOpen.Picture
73

—37

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 37 of 67 Printed: 10/02/96 03:42 PM

Rotating Through Several Pictures
You can also rotate through several pictures to make longer animations. This
technique is basically the same as toggling between two pictures, but requires the
application to select which bitmap acts as the current image. One way to control the
individual pictures in an animation is with a control array.

For More Information See "Creating Arrays of Objects" in “Programming with
Objects” for more information about control arrays.

74
The Blanker sample application includes an animation that shows a rotating moon.
The Spinning Moon demo uses an array of nine image controls to create the
animation. To view how the images in a control array work with each other at run
time, choose Spinning Moon from the Options menu, and then choose the Start Demo
button, which calls the ImageDemo procedure.

Using Graphics Methods
In addition to the graphical controls, Visual Basic provides several methods for
creating graphics. The graphics methods, summarized in the following table, apply to
forms and picture boxes.

Method Description

Cls Clears all graphics and Print output.

PSet Sets the color of an individual pixel.

Point Returns the color value of a specified point.

Line Draws a line, rectangle, or filled-in box.

Circle Draws a circle, ellipse, or arc.

PaintPicture Paints graphics at arbitrary locations.
75

Note The Print method can also be considered a graphics method, because
its output is written to the object and is saved in the memory image (if
AutoRedraw is on) just like the PSet, Line, and Circle methods. For more
information about the Print method, see “Displaying Text on Forms and
Picture Boxes” earlier in this chapter.

76

Advantages of Graphics Methods
The graphics methods work well in situations where using graphical controls require
too much work. For example, creating gridlines on a graph would need an array of
line controls but only a small amount of code using the Line method. Tracking the
position of line controls in an array as the form changes size is more work than
simply redrawing lines with the Line method.

—38

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 38 of 67 Printed: 10/02/96 03:42 PM

When you want a visual effect to appear briefly on a form, such as a streak of color
when you display an About dialog, you can write a couple of lines of code for this
temporary effect instead of using another control.

Graphics methods offer some visual effects that are not available in the graphical
controls. For example, you can only create arcs or paint individual pixels using the
graphics methods. Graphics you create with these graphics methods appear on the
form in a layer of their own. This layer is below all other controls on a form, so using
the graphics methods can work well when you want to create graphics that appear
behind everything else in your application.

For More Information See “Layering Graphics with AutoRedraw and
ClipControls" earlier in this chapter.

77

Limitations of Graphics Methods
Creating graphics with the graphics methods takes place in code, which means you
have to run the application to see the effect of a graphics method. Graphics methods
therefore don't work as well as graphical controls for creating simple design elements
of an interface. Changing the appearance of graphical controls at design time is easier
than modifying and testing the code for a graphics method.

For More Information For information about creating graphical applications with
the mouse events and the Line or Move methods, see "The MouseDown Event," "The
MouseMove Event" and "Using Button to Enhance Graphical Mouse Applications" in
"Responding to Mouse and Keyboard Events."

78

The Fundamentals of Drawing with Graphics Methods
Every graphics method draws output on a form, in a picture box, or to the Printer
object. To indicate where you want to draw, precede a graphics method with the name
of a form or picture box control. If you omit the object, Visual Basic assumes you
want to draw on the form to which the code is attached. For example, the following
statements draw a point on:

· A form named MyForm

19MyForm.PSet (500, 500)
20 39

· A picture box named picPicture1

21picPicture1.PSet (500, 500)
22 40

· The current form

23PSet (500, 500) 41
Each drawing area has its own coordinate system that determines what units apply to
the coordinates. In addition, every drawing area has its own complete set of graphics
properties.

—39

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 39 of 67 Printed: 10/02/96 03:42 PM

For More Information See “Printing from an Application” later in this chapter for
more information about the Printer object. See "Understanding the Coordinate
System" for more information about coordinates.

79

Clearing the Drawing Area
Any time you want to clear a drawing area and start over, use the Cls method. The
specified drawing area is repainted in the background color (BackColor):

[object.]Cls
80

Using the Cls method without a specified object clears the form to which the code is
attached.

Plotting Points
Controlling an individual pixel is a simple graphics operation. The PSet method sets
the color of a pixel at a specified point:

[object.]PSet (x, y)[, color]
81

The x and y arguments are single precision, so they can take either integer or
fractional input. The input can be any numeric expression, including variables.

If you don’t include the color argument, PSet sets a pixel to the foreground color
(ForeColor). For example, the following statements set various points on the current
form (the form to which the code is attached), MyForm, and picPicture1:

PSet (300, 100)
PSet (10.75, 50.33)
MyForm.PSet (230, 1000)
picPicture1.PSet (1.5, 3.2)

82
Adding a color argument gives you more control:

' Set 50, 75 to bright blue.
PSet (50, 75), RGB(0, 0, 255)

83
The Blanker application plots points with randomly selected colors to create the
Confetti demo. The PSetDemo procedure creates the confetti:

Sub PSetDemo ()
' Set Red to random value.
R = 255 * Rnd
' Set Green to random value.
G = 255 * Rnd
' Set Blue to random value.
B = 255 * Rnd
' Set horizontal position.
XPos = Rnd * ScaleWidth
' Set vertical position.
YPos = Rnd * ScaleHeight
' Plot point with random color.
PSet (XPos, YPos), RGB(R, G, B)

—40

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 40 of 67 Printed: 10/02/96 03:42 PM

End Sub
84

The resulting confetti display is shown in Figure 12.13.

Figure 12.13 Confetti display in the Blanker application

42
To “erase” a point, set it to the background color:

PSet (50, 75), BackColor
85

As described in "Drawing Lines and Shapes" later in this chapter, you can precede the
(x, y) coordinates by Step, which makes the point relative to the last location drawn.

The Point method is closely related to the PSet method, but it returns the color value
at a particular location:

PointColor = Point (500, 500)
86

Drawing Lines and Shapes
Although clearing the drawing area and plotting individual points can be useful, the
most interesting graphics methods draw complete lines and shapes.

Drawing Lines
To draw a line between two coordinates, use the simple form of the Line method,
which has this syntax:

[object.]Line [(x1, y1)]–(x2, y2)[, color]
87

Object is optional; if omitted, the method draws on the form to which the code is
attached (the current form). The first pair of coordinates is also optional. As with all
coordinate values, the x and y arguments can be either integer or fractional numbers.
For example, this statement draws a slanted line on a form.

—41

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 41 of 67 Printed: 10/02/96 03:42 PM

Line (500, 500)–(2000, 2000)
88

Visual Basic draws a line that includes the first end point, but not the last end point.
This behavior is useful when drawing a closed figure from point to point. To draw the
last point, use this syntax:

PSet Step(0, 0)[, color]
89

The first pair of coordinates (x1, y1) is optional. If you omit these coordinates, Visual
Basic uses the object’s current x, y location (drawing coordinates) as the end point.
The current location can be specified with the CurrentX and CurrentY properties, but
otherwise it is equal to the last point drawn by a previous graphics or Print method. If
you haven’t previously used a graphics or Print method or set CurrentX and CurrentY,
the default location is the object’s upper-left corner.

For example, the following statements draw a triangle by connecting three points.

' Set x-coordinate of starting point.
CurrentX = 1500
' Set y-coordinate of starting point.
CurrentY = 500
' Draw line down and right of starting point.
Line -(3000, 2000)
' Draw line to the left of current point.
Line -(1500, 2000)
' Draw line up and right to starting point.
Line -(1500, 500)

90
The results are shown in Figure 12.14.

Figure 12.14 A triangle drawn with the Line method

43
The Blanker application uses the Line method to create interesting patterns. To view
this, from the Options menu, choose Crossfire, and then choose the Start Demo
button.

The Step Keyword
The PSet, Line, and Circle methods specify one or more points using this syntax:

(x, y)
91

—42

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 42 of 67 Printed: 10/02/96 03:42 PM

You can precede each of these points with the Step keyword, specifying that the
location of the point is relative to the last point drawn. Visual Basic adds the x and y
values to the values of the last point drawn. For example, the statement:

Line (100, 200)–(150, 250)
92

is equivalent to:

Line (100, 200)–Step(50, 50)
93

In many situations, the Step keyword saves you from having to constantly keep track
of the last point drawn. Often you may be more interested in the relative position of
two points than their absolute position.

Using the Color Argument
To vary the color of the line, use the optional color argument with graphics methods.
For example, this statement draws a dark blue line:

Line (500, 500)–(2000, 2000), RGB(0, 0, 255)
94

If you omit the color argument, the ForeColor property for the object where the line is
being drawn determines its color.

Drawing Boxes
You can draw and fill boxes using the Line method. The following example draws a
box with an upper-left corner at (500, 500) and measuring 1,000 twips on each side:

Line (500, 500)–Step(1000, 0)
Line -Step(0, 1000)
Line -Step(–1000, 0)
Line -Step(0, –1000)

95
However, Visual Basic provides a much simpler way to draw a box. When you use
the B option with the Line method, Visual Basic draws a rectangle, treating the
specified points as opposite corners of the rectangle. Thus, you could replace the four
statements of the previous example with the following:

Line (500, 500)–Step(1000, 1000), , B
96

Note that two commas are required before B, to indicate the color argument was
skipped. The syntax of the Line method is covered in "Drawing Lines and Shapes"
earlier in the chapter.

FillStyle and FillColor
As long as you do not change the setting of the FillStyle property, the box appears
empty. (The box does get filled with the default FillStyle and settings, but FillStyle
defaults to 1-Transparent.) You can change the FillStyle property to any of the
settings listed in the following table.

—43

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 43 of 67 Printed: 10/02/96 03:42 PM

Setting Description

0 Solid. Fills in box with the color set for the FillColor property.

1 Transparent (the default). Graphical object appears empty, no matter
what color is used.

2 Horizontal lines.

3 Vertical lines.

4 Upward diagonal lines.

5 Downward diagonal lines.

6 Crosshatch.

7 Diagonal crosshatch.
97

Thus, setting FillStyle to 0 fills the box solidly with the color set for the FillColor
property.

Another way to fill the box is to specify F after the B. (Note that F cannot be used
without B.) When you use the F option, the Line method ignores FillColor and
FillStyle. The box is always filled solid when you use the F option. The following
statement fills the box with a solid pattern, using the ForeColor property:

Line (500, 500)–Step(1000, 1000), , BF
98

The result is shown in Figure 12.15.

Figure 12.15 A box filled with a solid pattern

44

Drawing Circles
The Circle method draws a variety of circular and elliptical (oval) shapes. In addition,
Circle draws arcs (segments of circles) and pie-shaped wedges. You can produce
many kinds of curved lines using variations of the Circle method.

To draw a circle, Visual Basic needs the location of a circle’s center and the length of
its radius. The syntax for a perfect circle is:

[object.]Circle [Step](x, y), radius[, color]
99

The brackets indicate that both object and the Step keyword are optional. If you don’t
specify object, the current form is assumed. The x and y arguments are the coordinates

—44

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 44 of 67 Printed: 10/02/96 03:42 PM

of the center, and radius is the radius of the circle. For example, this statement draws
a circle with a center at (1200, 1000) and radius of 750:

Circle (1200, 1000), 750
100

The exact effect of this statement depends on the size and coordinate system of the
form. Because the size of the form is unknown, you don’t know if the circle will be
visible. Using the drawing area’s scale properties puts the center of the circle at the
center of the form:

Circle ((ScaleWidth + ScaleLeft) / 2, (ScaleHeight + _
ScaleTop) / 2), ScaleWidth / 4

101
For now, all you need to know about ScaleWidth and ScaleHeight is that they help
position graphics in the center of a form.

For More Information “Changing an Object’s Coordinate System" earlier in this
chapter discusses the ScaleWidth and ScaleHeight properties in detail.

102
Note The radius of the circle is always specified in terms of horizontal units.
If your coordinate system uses the same horizontal and vertical units (which it
does by default), you can ignore this fact. However, if you use a custom scale,
horizontal and vertical units may correspond to different distances. In the
preceding examples, the radius is specified in horizontal units, and the actual
height of the circle is guaranteed to be equal to its actual width.

103
The Blanker application creates circles as part of the Rainbow Rug demo. This demo
draws a series of dashed line circles around the center of the form. In time the circles
resemble a woven circular rug. The CircleDemo procedure creates the circles in the
Rainbow Rug demo with the following statements:

Sub CircleDemo ()
Dim Radius

' Set Red to a random value.
R = 255 * Rnd

' Set Green to a random value.
G = 255 * Rnd

' Set Blue to a random value.
B = 255 * Rnd

' Set x-coordinate in middle of form.
XPos = ScaleWidth / 2

' Set y-coordinate in middle of form.
YPos = ScaleHeight / 2
' Set radius between 0 & 50% of form height.
Radius = ((YPos * 0.9) + 1) * Rnd
' Draw the circle using a random color.
Circle (XPos, YPos), Radius, RGB(R, G, B)

End Sub
104

The results of the Rainbow Rug demo are shown in Figure 12.16.

—45

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 45 of 67 Printed: 10/02/96 03:42 PM

Figure 12.16 The Rainbow Rug demo in the Blanker application

45

Drawing Arcs
To draw arcs with the Circle method, you need to give angle arguments in radians to
define the start and the end of the arc. The syntax for drawing an arc is:

[object.]Circle [Step](x, y), radius, [color], start, end[, aspect]
105

If the start or end argument is negative, Visual Basic draws a line connecting the
center of the circle to the negative end point. For example, the following procedure
draws a pie with a slice removed.

Private Sub Form_Click ()
Const PI = 3.14159265
Circle (3500, 1500), 1000, , –PI / 2, –PI / 3

End Sub
106

Note The formula for converting from degrees to radians is to multiply
degrees by Pi/180.

107

Drawing Ellipses
The aspect ratio of a circle controls whether or not it appears perfectly round (a circle)
or elongated (an ellipse). The complete syntax for the Circle method is:

[object.]Circle [Step](x, y), radius, [color], [start], [end] [, aspect]
108

The start and end arguments are optional, but the commas are necessary if you want
to skip arguments. For example, if you include the radius and aspect arguments, but
no color, start, or end argument, you must add four successive commas to indicate
that you’re skipping the three arguments:

Circle (1000, 1000), 500, , , , 2
109

—46

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 46 of 67 Printed: 10/02/96 03:42 PM

The aspect argument specifies the ratio of the vertical to horizontal dimensions. Here,
aspect is a positive floating-point number. This means you can specify integer or
fractional expressions, but not negative values. Large values for aspect produce
ellipses stretched out along the vertical axis, while small values for aspect produce
ellipses stretched out along the horizontal axis. Since an ellipse has two radii — one
horizontal x-radius and one vertical y-radius — Visual Basic applies the single
argument radius in a Circle statement to the longer axis. If aspect is less than one,
radius is the x-radius; if aspect is greater than or equal to one, radius is the y-radius.

Note The aspect argument always specifies the ratio between the vertical
and horizontal dimensions in terms of true physical distance. To ensure that
this happens (even when you use a custom scale), the radius is specified in
terms of horizontal units.

110
The following procedure illustrates how different aspect values determine whether
Circle uses the radius argument as the x-radius or the y-radius of an ellipse:

Private Sub Form_Click ()
' Draw solid ellipse.

FillStyle = 0
Circle (600, 1000), 800, , , , 3

' Draw empty ellipse.
FillStyle = 1
Circle (1800, 1000), 800, , , , 1 / 3

End Sub
111

The output is shown in Figure 12.17.

Figure 12.17 Ellipses drawn with the Circle method

46
For More Information For more information about drawing circles and arcs, see
"Drawing Circles" earlier in this chapter.

112

Painting Graphics at Arbitrary Locations
You can paint graphics at arbitrary locations on a form, on a picture box, and to the
Printer object using the PaintPicture method. The syntax for the PaintPicture method
is:

—47

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 47 of 67 Printed: 10/02/96 03:42 PM

[object.]PaintPicture pic, destX, destY[, destWidth[, destHeight[, srcX _
[, srcY[, srcWidth[, srcHeight[, Op]]]]]]]

113
The destination object is the form, picture box, or Printer object where the pic picture
is rendered. If object is omitted, the current form is assumed. The pic argument must
be a Picture object, as from the Picture property of a form or control.

The destX and destY arguments are the horizontal and vertical locations where the
picture will be rendered in the ScaleMode of object. The destWidth and destHeight
arguments are optional and set the width and height with which the picture will be
rendered in the destination object.

The srcX and srcY arguments are optional and define the x-coordinate and
y-coordinate of the upper-left corner of a clipping region within pic.

The optional Op argument defines a raster operation (such as AND or XOR) that is
performed on the picture as it is being painted on the destination object.

The PaintPicture method can be used in place of the BitBlt Windows API function to
perform a wide variety of bit operations while moving a rectangular block of graphics
from one position to any other position.

For example, you can use the PaintPicture method to create multiple copies of the
same bitmap, and tile them on a form. Using this method is faster than moving picture
controls on a form. The following code tiles 100 copies of a picture control and flips
every picture horizontally by supplying a negative value for destWidth.

For i = 0 To 10
For j = 0 To 10

Form1.PaintPicture picF.Picture, j * _
picF.Width, i * picF.Height, _
picF.Width, -picF.Height

Next j, i
114

Specifying Line Width
The DrawWidth property specifies the width of the line for output from the graphics
methods. The BorderWidth property specifies the outline thickness of line and shape
controls.

The following procedure draws lines of several different widths.

Private Sub Form_Click ()
DrawWidth = 1
Line (100, 1000)–(3000, 1000)
DrawWidth = 5
Line (100, 1500)–(3000, 1500)
DrawWidth = 8
Line (100, 2000)–(3000, 2000)

End Sub
115

The results are shown in Figure 12.18.

—48

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 48 of 67 Printed: 10/02/96 03:42 PM

Figure 12.18 The effects of changing the DrawWidth property

47
Figure 12.19 shows three shape controls with different BorderWidth values.

Figure 12.19 The effects of changing the BorderWidth property

48

Specifying Solid or Broken Lines
The DrawStyle property specifies whether the lines created with graphics methods are
solid or have a broken pattern. The BorderStyle property of a shape control serves the
same function as the DrawStyle property, but applies to a variety of objects.

Note The BorderStyle property of a shape control serves a different purpose
and uses different settings from the BorderStyle property in other controls and
in forms. The BorderStyle property of a shape or line control serves a different
purpose and uses different settings from the BorderStyle property on other
objects. For shape and line controls, the BorderStyle property works like the
DrawStyle property as described in this section. For forms and other controls,
the BorderStyle property determines whether the control or form has a border
and if so, whether the border is fixed or sizable.

116

Solid and Inside Solid Styles
The inside solid style (DrawStyle or BorderStyle = 6) is nearly identical to the solid
style. They both create a solid line. The difference between these settings becomes
apparent when you use a wide line to draw a box or a shape control. In these cases,
the solid style draws the line half inside and half outside the box or shape. The inside

—49

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 49 of 67 Printed: 10/02/96 03:42 PM

solid style draws the line entirely inside the box or shape. See “Drawing Boxes,”
earlier in this chapter, to see how to draw a box.

The following procedure demonstrates all of the supported settings of the DrawStyle
property by creating a loop in which the setting goes from 0 to 6, one step at a time.
The results are shown in Figure 12.20.

Private Sub Form_Click ()
Dim I As Integer, Y As Long
For I = 0 To 6

DrawStyle = I
Y = (200 * I) + 1000
Line (200, Y)–(2400, Y)

Next I
End Sub

117
Figure 12.20 The effects of changing the DrawStyle property

49

Controlling Display Using DrawMode
The DrawMode property determines what happens when you draw one pattern on top
of another. Although changing the DrawMode property usually has some effect
(especially with color systems), it is often not necessary to use this property when you
are drawing on a blank or pure white background, or on a background of
undifferentiated color.

You can set DrawMode to a value from 1 to 16. Common settings appear in the
following table.

Setting Description

4 Not Copy Pen. Draws the inverse of the line pattern, regardless of what is already
there.

7 Xor Pen. Displays the difference between the line pattern and the existing display,
as explained later in this section. Drawing an object twice with this mode restores
the background precisely as it was.

11 No operation. In effect, this turns drawing off.

13 Copy Pen (default). Applies the line’s pattern, regardless of what is already there.
118

—50

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 50 of 67 Printed: 10/02/96 03:42 PM

The Xor Pen
A DrawMode setting of 7 is useful for animation. Drawing a line twice restores the
existing display precisely as it was before the line was drawn. This makes it possible
to create one object that “moves over” a background without corrupting it, because
you can restore the background as you go. Most modes are not guaranteed to preserve
the old background.

For example, the following code moves a circle every time the mouse is clicked. No
matter what pattern was underneath the circle, it gets restored.

Private Sub Form_Click ()
ForeColor = 255 : DrawMode = 7
Circle (CurrentX, CurrentY), 1000
CurrentX = CurrentX + 220
CurrentY = CurrentY + 220
Circle (CurrentX, CurrentY), 1000

End Sub
119

The Xor Pen draw mode (and most of the other DrawMode settings) works by
comparing each individual pixel in the draw pattern (called the “Pen”) and the
corresponding pixel in the existing area (called the “Destination”). On monochrome
systems, the pixel is turned either on or off, and Visual Basic performs a simple
logical comparison: It turns a pixel on if either the Pen or Destination pixel is on, but
not if both are on.

In color systems, each pixel is assigned a color value. For DrawMode settings such as
Xor Pen, Visual Basic compares each corresponding pair of pixels in the Pen and
Destination and performs a binary (bitwise) comparison. The result determines the
color value of the resulting pixel, as shown in Figure 12.21.

Figure 12.21 Using the Xor Pen to set the binary value of a pixel in a line

—51

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 51 of 67 Printed: 10/02/96 03:42 PM

50

Creating Graphics When a Form Loads
When creating graphics that appear on a form when it loads, consider placing the
graphics methods in the Form_Paint event. Form_Paint graphics will get repainted
automatically in every paint event. If you place graphics in the Form_Load event, set
the AutoRedraw property on the form to True. In this case, Form_Load should show
the form, then draw the graphics. Remember, forms are not visible during the
Form_Load event. Because Visual Basic does not process graphics methods on a form
that is not visible, graphics methods in the Form_Load event are ignored unless
AutoRedraw is set to True.

Working with Color
Visual Basic uses a consistent system for all color properties and graphics methods. A
color is represented by a Long integer, and this value has the same meaning in all
contexts that specify a color.

Specifying Colors at Run Time
There are four ways to specify a color value at run time:

· Use the RGB function.

· Use the QBColor function to choose one of 16 Microsoft QuickBasic colors.

· Use one of the intrinsic constants listed in the Object Browser.

· Enter a color value directly.
51

This section discusses how to use the RGB and QBColor functions as simple ways to
specify color. See “Using Color Properties" later in this chapter for information on
using constants to define color or directly entering color values.

Using the RGB Function
You can use the RGB function to specify any color.

 To use the RGB function to specify a color

1 Assign each of the three primary colors (red, green, and blue) a number from 0 to
255, with 0 denoting the least intensity and 255 the greatest.

2 Give these three numbers as input to the RGB function, using the order red-green-
blue.

3 Assign the result to the color property or color argument.
52

Every visible color can be produced by combining one or more of the three primary
colors. For example:

' Set background to green.
Form1.BackColor = RGB(0, 128, 0)

—52

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 52 of 67 Printed: 10/02/96 03:42 PM

' Set background to yellow.
Form2.BackColor = RGB(255, 255, 0)
' Set point to dark blue.
PSet (100, 100), RGB(0, 0, 64)

120

Using Color Properties
Many of the controls in Visual Basic have properties that determine the colors used to
display the control. Keep in mind that some of these properties also apply to controls
that aren't graphical. The following table describes the color properties.

Property Description

BackColor Sets the background color of the form or control used for drawing. If you
change the BackColor property after using graphics methods to draw, the
graphics are erased by the new background color.

ForeColor Sets the color used by graphics methods to create text or graphics in a form or
control. Changing ForeColor does not affect text or graphics already created.

BorderColor Sets the color of the border of a shape control.

FillColor Sets the color that fills circles created with the Circle method and boxes
created with the Line method.

121

Defining Colors
The color properties can use any of several methods to define the color value. The
RGB function described in “Working with Color” is one way to define colors. This
section discusses two more ways to define colors:

· Using defined constants

· Using direct color settings
53

Using Defined Constants
You don’t need to understand how color values are generated if you use the intrinsic
constants listed in the Object Browser. In addition, intrinsic constants do not need to
be declared. For example, you can use the constant vbRed whenever you want to
specify red as a color argument or color property setting:

BackColor = vbRed
122

Using Direct Color Settings
Using the RGB function or the intrinsic constants to define color are indirect
methods. They are indirect because Visual Basic interprets them into the single
approach it uses to represent color. If you understand how colors are represented in
Visual Basic, you can assign numbers to color properties and arguments that specify
color directly. In most cases, it’s much easier to enter these numbers in hexadecimal.

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF&). Each
color setting (property or argument) is a 4-byte integer. The high byte of a number in
this range equals 0. The lower 3 bytes, from least to most significant byte, determine

—53

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 53 of 67 Printed: 10/02/96 03:42 PM

the amount of red, green, and blue, respectively. The red, green, and blue components
are each represented by a number between 0 and 255 (&HFF).

Consequently, you can specify a color as a hexadecimal number using this syntax:

&HBBGGRR&
123

The BB specifies the amount of blue, GG the amount of green, and RR the amount of
red. Each of these fragments is a two-digit hexadecimal number from 00 to FF. The
median value is 80. Thus, the following number specifies gray, which has the median
amount of all three colors:

&H808080&
124

Setting the most significant bit to 1 changes the meaning of the color value: It no
longer represents an RGB color, but an environment-wide color specified through the
Windows Control Panel. The values that correspond to these system-wide colors
range from &H80000000 to &H80000015.

Note Although you can specify over 16 million different colors, not all
systems are capable of displaying them accurately. For more information on
how Windows represents colors, see “Working with 256 Colors” later in this
chapter.

125

Using System Colors
When setting the colors of controls or forms in your application, you can use colors
specified by the operating system instead of specific color values. If you specify
system colors, when users of your application change the values of system colors on
their computers, your application automatically reflects the user-specified color
values.

Each system color has both a defined constant and a direct color setting. The high
byte of direct color settings for system colors differs from those of normal RGB
colors. For RGB colors, the high byte equals 0 whereas for system colors the high
byte equals 8. The rest of the number refers to a particular system color. For example,
the hexadecimal number used to represent the color of an active window caption is
&H80000002&.

When you select color properties at design time with the Properties window, selecting
the System tab lets you choose system settings, which are automatically converted
into the hexadecimal value. You can also find the defined constants for system colors
in the Object Browser.

Working with 256 Colors
Visual Basic supports 256 colors on systems with video adapters and display drivers
that handle 256 or more colors. The ability to display 256 simultaneous colors is
particularly valuable in multimedia applications or applications that need to display
near –photographic-quality images.

—54

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 54 of 67 Printed: 10/02/96 03:42 PM

You can display 256-color images and define up to 256 colors for graphics methods
in:

· Forms

· Picture boxes

· Image controls (display images only)
54

Note Support for 256 colors does not apply to Windows metafiles. Visual
Basic displays metafiles using the default palette of 16 VGA colors.

126

Color Palettes
Color palettes provide the basis for 256-color support in Visual Basic applications. In
discussing palettes, it’s important to understand the relationship between different
palette types. The hardware palette contains 256 entries defining the actual RGB
values that will be displayed on screen. The system halftone palette is a predefined set
of 256 RGB values made available by Windows itself. A logical palette is a set of up
to 256 RGB values contained within a bitmap or other image.

Windows can draw using the 256 colors in the hardware palette. Twenty of these 256
colors, called static colors, are reserved by the system and cannot be changed by an
application. Static colors include the 16 colors in the default VGA palette (the same as
the colors defined by Visual Basic’s QBColor function), plus four additional shades of
gray. The system halftone palette always contains these static colors.

The foreground window (the window with focus) determines the 236 nonstatic colors
in the hardware palette. Each time the hardware palette is changed, all background
windows are redrawn using these colors. If the colors in a background window’s
logical palette don’t perfectly match those currently in the hardware palette, Windows
will assign the closest match.

Displaying 256-Color Images
Forms, picture boxes, and image controls automatically display images in 256 colors
if the user’s display hardware and software can support that many colors on screen. If
the user’s system supports fewer colors than the image, then Visual Basic will map all
colors to the closest available.

On true-color (16-million color) displays, Visual Basic always uses the correct color.
On monochrome or 16-color displays, Visual Basic will dither background colors and
colors set with the FillColor property. Dithering is a process used to simulate colors
not available from the video adapter and display driver.

Drawing with Color Palettes
With 256-color video drivers, you can use up to 256 colors with graphics methods. By
default, the 256 colors available in Visual Basic are those in the system halftone
palette. Although you can specify an exact color using the RGB function, the actual

—55

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 55 of 67 Printed: 10/02/96 03:42 PM

color displayed will be the closest match from the halftone palette, as shown in Figure
12.22.

Figure 12.22 Color matching from a specified color to the display

55
Although the default palette for Visual Basic is the system halftone palette, you can
also control the display of colors with the PaletteMode and Palette properties of
forms, user controls, and user documents. In this case, the color match is much the
same, except that colors will be matched to the closest color in the hardware palette.

For More Information To learn more about the Palette and PaletteMode
properties, see “Managing Multiple Color Palettes” later in this chapter.

127

Managing Multiple Color Palettes
When you work with color palettes, keep in mind that many displays can display only
256 colors simultaneously on the screen.

This limitation becomes important when you use more than one color palette in your
application. For example, on a single form, you might display a 256-color bitmap in
an image control while displaying a second image in a picture box. If the logical
palettes of these two images don’t contain exactly the same 256 colors, Windows
must decide which logical palette places its colors in the hardware palette first.
Remember: The hardware palette determines what actually appears on the screen.

A similar situation occurs when your Visual Basic application has two or more forms
with differing logical palettes. As each form receives focus, its logical palette controls
the hardware palette. This can often result in a less than optimal display on 256-color
systems. As a Visual Basic programmer, you can control the hardware palette by
using the PaletteMode property.

The PaletteMode Property

—56

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 56 of 67 Printed: 10/02/96 03:42 PM

When designing applications that may run on 256-color systems, you can control the
way that Windows chooses the display colors by setting the PaletteMode property of a
form, user control, or user document. (User controls and user documents are only
available in the Professional and Enterprise editions.) All controls contained on the
form, user control, or user document will be displayed based on the PaletteMode. The
following table shows the available PaletteMode settings:

Mode Constant Applies to

Halftone vbPaletteModeHalftone Forms, User Controls, User
Documents

UseZOrder vbPaletteModeUseZOrder Forms, User Controls, User
Documents

Custom vbPaletteModeCustom Forms, User Controls, User
Documents

Container vbPaletteModeContainer User Controls

None vbPaletteModeNone User Controls
128

The PaletteMode property only applies to 256-color displays. On high-color or true-
color displays, color selection is handled by the video driver using a palette of 32,000
or 16 million colors respectively. Even if you’re programming on a system with a
high-color or true-color display, you still may want to set the PaletteMode, because
many of your users may be using 256-color displays.

The PaletteMode property can be set at design time through the Properties window, or
changed at run time via code. The Palettes sample application demonstrates the
effects of displaying images with different palettes using several different
PaletteMode settings.

Halftone PaletteMode
The default mode for forms and user documents is Halftone. In this mode, any
controls, images contained on the form, or graphics methods draw using the system
halftone palette.

Halftone mode is a good choice in most cases because it provides a compromise
between the images in your form, and colors used in other forms or images. It may,
however, result in a degradation of quality for some images. For example, an image
with a palette containing 256 shades of gray may lose detail or display unexpected
traces of other colors.

UseZOrder PaletteMode
Z-order is a relative ordering that determines how controls overlap each other on a
form. When the PaletteMode of the form with the focus is set to UseZOrder, the
palette of the topmost control always has precedence. This means that each time a
new control becomes topmost (for instance, when you load a new image into a picture
box), the hardware palette will be remapped. This will often cause a side effect known

—57

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 57 of 67 Printed: 10/02/96 03:42 PM

as palette flash: The display appears to flash as the new colors are displayed, both in
the current form and in any other visible forms or applications.

Although the UseZOrder setting provides the most accurate color rendition, it comes
at the expense of speed. Additionally, this method can cause the background color of
the form or of controls that have no image to appear dithered. Setting the PaletteMode
to UseZOrder is the best choice when accurate display of the topmost image
outweighs the annoyance of palette flash, or when you need to maintain backward
compatibility with earlier versions of Visual Basic.

Custom PaletteMode
If you need more precise control over the actual display of colors, you can use a 256-
color bitmap to define a custom palette. To do this, assign a 256-color bitmap (.bmp)
to the Palette property of the form and set the PaletteMode property to Custom. The
bitmap doesn’t have to be very large; even a single pixel can define up to 256 colors
for the form or picture box. This is because the logical palette of a bitmap can list up
to 256 colors, regardless of whether all those colors appear in the bitmap.

Visual Basic ships three bitmaps with color palettes you can load into forms and
picture boxes, or you can use any 256-color bitmap. The following table describes
these bitmaps.

Device-independent bitmap (.dib) file Palette description

Rainbow.dib Standard range of all hues.

Pastel.dib Lighter hues, primarily blues.

Bright.dib Bright shades of all hues.
129

As with the default method, colors that you define using the RGB function must also
exist in the bitmap. If the color doesn’t match, it will be mapped to the closest match
in the logical palette of the bitmap assigned to the Palette property.

To set the Custom PaletteMode at run time, add the following code to the Form_Load
event (assuming that the image containing your chosen palette has been assigned to a
Image control named Image1):

' Assign the palette from Image1 to the form.
Form1.Palette = Image1.Picture
' Use the Custom mode.
Form1.PaletteMode = vbPaletteModeCustom

130
Alternatively, you can use the Picture object to achieve the same effect without the
extra Image control:

Dim objPic As Picture
Set objPic = LoadPicture(App.Path & "\Pastel.dib")
' Assign picture object's palette to the form.
Form1.Palette = objPic
' Use the Custom mode.
Form1.PaletteMode = vbPaletteModeCustom

131

—58

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 58 of 67 Printed: 10/02/96 03:42 PM

The Custom PaletteMode is your best choice when you want to maintain a uniform
palette throughout your application.

Note Using the Custom PaletteMode can also improve the performance of
your application in cases where you aren’t using any 256-color graphics. If
you set the PaletteMode of a form to Custom and leave the Palette property
blank, your form will load faster because no palette matching will occur.

132
For More Information To learn more about the Picture object, see “Using the
Picture Object” later in this chapter.

133

Other Palette Modes
Two additional PaletteMode settings are available when creating user controls:
Container and None. The Container mode maps the palette of the user control and any
contained controls to the ambient palette of the container (form or user document) at
run time. If the container doesn’t supply an ambient palette, the Halftone mode will
be invoked. Because you may not know in advance where your user control may be
deployed, this mode can prevent your control from conflicting with other palette
handling methods.

The None mode does just what you might expect: It eliminates palette handling
altogether. When creating a user control that doesn’t display images or graphics,
setting PaletteMode to None improves performance by eliminating the added
overhead of handling palette messages.

Using the Picture Object
The Picture object is similar in some respects to the Printer object — you can’t see it,
but it’s useful nonetheless. You could think of the Picture object as a invisible picture
box that you can use as a staging area for images. For example, the following code
loads a Picture object with a bitmap and uses that bitmap to set the Picture property of
a picture box control:

Private Sub Command1_Click()
Dim objPic As Picture
Set objPic = LoadPicture("Butterfly.bmp")
Set Picture1.Picture = objPic

End Sub
134

The Picture object supports bitmaps, GIF images, JPEG images, metafiles, and icons.

Using Arrays of Picture Objects
You can also use an array of Picture objects to keep a series of graphics in memory
without using a form that contains multiple picture box or image controls. This is
convenient for creating animation sequences or other applications where rapid image
changes are required. Declare the array at the module level:

Dim objPics(1) As Picture

—59

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 59 of 67 Printed: 10/02/96 03:42 PM

135
Add the following code to the Form_Load event:

' Load bitmaps int the Picture object array.
Set objPics(0) = LoadPicture("Butterfly1.bmp")
Set objPics(1) = LoadPicture("Butterfly2.bmp")

136
Then in Timer event you can cycle the images:

Static intCount As Integer
If intCount = 0 Then

intCount = 1
Else

intCount = 0
End If
' Use the PaintPicture method to display the bitmaps
' on the form.
PaintPicture objPics(intCount), 0, 0

137
By adding a loop to increment the x and y coordinates, you could easily make the
butterfly bitmaps “fly” across the form.

Using the Picture Object Instead of the Windows API
There are lots of things you can do with bitmaps, icons, or metafiles in the Windows
API, but the Picture object already does most of them for you. This means that you
are better off using the Picture object instead of the Windows API whenever possible.
The Picture object also allows you to use .jpeg and .gif files, whereas the Windows
API does not.

There is no direct relationship between a Picture.Handle and a PictureBox.hDC. The
hDC property of the picture box is the handle provided by the operating system to the
device context of the picture box control. The Handle property of the Picture object is
actually the handle of the GDI object that is contained in the Picture object.

There are now two completely different ways to paint graphics on a window (or blit).
You can use BitBlt or StretchBlt on the hDC of an object, or you can use the
PaintPicture method on the Picture object or property. If you have an Image control,
you can only use PaintPicture because Image controls do not have an hDC.

For More Information For more information about the Windows API, see
"Accessing DLLs and the Windows API."

138

Printing
Printing is one of the most complex tasks a Windows – based application performs.
Good results depend on all parts of the process working together. Poor results can
arise from problems in your application, variations in printer drivers, or limited
printer capabilities. Although it is a good idea to test your application with commonly
used printers and printer drivers, you can’t test all the possible combinations users
may have.

—60

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 60 of 67 Printed: 10/02/96 03:42 PM

Printing from your application involves these three components:

· The code in your application that starts the printing process.

· The printer drivers installed on both your system and the systems of users of your
application.

· The capabilities of the printers available to users of your application.
56

The code in your application determines the type and quality of print output available
from your application. But the users’ printer drivers and printers also impact print
quality. This section deals with enabling printing from a Visual Basic application. For
information on printing from the Visual Basic development environment, see
"Printing Information in the Immediate Window" in “Debugging Your Code and
Handling Errors.”

Printing from an Application
Visual Basic provides three techniques for printing text and graphics.

· You can produce the output you want on a form and then print the form using the
PrintForm method.

· You can send text and graphics to a printer by setting the default printer to a
member of the Printers collection.

· You can send text and graphics to the Printer object and then print them using the
NewPage and EndDoc methods.

57
This section examines the advantages and disadvantages of these three approaches.

Using the PrintForm Method
The PrintForm method sends an image of the specified form to the printer. To print
information from your application with PrintForm, you must first display that
information on a form and then print that form with the PrintForm method. The
syntax is as follows:

[form.]PrintForm
139

If you omit the form name, Visual Basic prints the current form. PrintForm prints the
entire form, even if part of the form is not visible on the screen. If a form contains
graphics, however, the graphics print only if the form’s AutoRedraw property is set to
True. When printing is complete, PrintForm calls the EndDoc method to clear the
printer.

For example, you could send text to a printer by printing it on a form and then calling
PrintForm with the following statements:

Print "Here is some text."
PrintForm

140

—61

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 61 of 67 Printed: 10/02/96 03:42 PM

The PrintForm method is by far the easiest way to print from your application.
Because it may send information to the printer at the resolution of the user’s screen
(typically 96 dots per inch), results can be disappointing on printers with much higher
resolutions (typically 300 dots per inch for laser printers). The results may vary
depending on objects on your form.

Using the Printers Collection
The Printers collection is an object that contains all the printers that are available on
the operating system. The list of Printers are the same as those available in the Print
Setup dialog box or the Windows Control Panel. Each printer in the collection has a
unique index for identification. Starting with 0, each printer in the collection can be
referenced by its number.

Regardless of which printing method you use, all printed output from a Visual Basic
application is directed to the Printer object, which initially represents the default
printer specified in the Windows Control Panel. However, you can set the default
printer to any one member in the Printers collection.

To select the printer from the collection, use the following syntax:

Set Printer = Printers(n)
141

The following statements print the device names of all the printers on the operating
system to the Debug window:

Private Sub Command1_Click()
Dim x As Printer

For Each x In Printers
Debug.Print x.DeviceName

Next
End Sub

142
Note You cannot create new instances of the Printer object in code, and you
cannot directly add or remove printers from the Printers collection. To add or
remove printers on your system, use the Windows Control Panel.

143

Using the Printer Object
The Printer object is a device-independent drawing space that supports the Print,
PSet, Line, PaintPicture, and Circle methods to create text and graphics. You use
these methods on the Printer object just as you would on a form or picture box. The
Printer object also has all the font properties described earlier in this chapter. When
you finish placing the information on the Printer object, you use the EndDoc method
to send the output to the printer. When applications close, they automatically use the
EndDoc method to send any pending information on the Printer object.

The Printer object provides the best print quality across a variety of printers because
Windows translates text and graphics from the device-independent drawing space of

—62

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 62 of 67 Printed: 10/02/96 03:42 PM

the Printer object to best match the resolution and abilities of the printer. You can also
print multiple-page documents by using the NewPage method on the Printer object.

The main drawback to using the Printer object is the amount of code required to get
the best results. Printing bitmaps on the Printer object also takes time and can
therefore slow the performance of the application.

Printing with the Printer Object
There are several ways to place text and graphics on the Printer object. To print with
the Printer object, do any of the following:

· Assign the specific member of the Printers collection to the Printer object if you
want to print to a printer other than the default printer.

· Put text and graphics on the Printer object.

· Print the contents of the Printer object with the NewPage or EndDoc method.
58

Printer Object Properties
The properties of the Printer object initially match those of the default printer set in
the Windows Control Panel. At run time, you can set any of the Printer object
properties, which include: PaperSize, Height, Width, Orientation, ColorMode,
Duplex, TrackDefault, Zoom, DriverName, DeviceName, Port, Copies, PaperBin, and
PrintQuality. For more details and syntax for these methods, see the Language
Reference in Books Online.

If the TrackDefault property is True and you change the default printer in the
Windows Control Panel, the Printer object property values will reflect the properties
of the new default printer.

You cannot change some properties in the middle of a page once a property has been
set. Changes to these properties will only affect subsequent pages. The following
statements show how you can print each page using a different print quality:

For pageno = 1 To 4
Printer.PrintQuality = -1 * pageno
Printer.Print "The quality of this page is"; pageno
Printer.NewPage

Next
144

Print quality values can range from – 4 to – 1, or a positive integer corresponding to
the print resolution in dots per inch (DPI). For example, the following code would set
the printer’s resolution to 300 DPI:

Printer.PrintQuality = 300
145

Note The effect of Printer property values depends on the driver supplied by
the printer manufacturer. Some property settings may have no effect, or
several different property settings may all have the same effect. Settings

—63

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 63 of 67 Printed: 10/02/96 03:42 PM

outside the accepted range may or may not produce an error. For more
information on specific drivers, see the manufacturer’s documentation.

146

Scale Properties
The Printer object has these scale properties:

· ScaleMode

· ScaleLeft and ScaleTop

· ScaleWidth and ScaleHeight

· Zoom
59

The ScaleLeft and ScaleTop properties define the x- and y-coordinates, respectively,
of the upper-left corner of a printable page. By changing the values of ScaleLeft and
ScaleTop, you can create left and top margins on the printed page. For example, you
can use ScaleLeft and ScaleTop to center a printed form (PFrm) on the page using
these statements:

Printer.ScaleLeft = -((Printer.Width - PFrm.Width) / 2)
Printer.ScaleTop = -((Printer.Height - PFrm.Height) _

/ 2)
147

Many printers support the Zoom property. This property defines the percentage by
which output is scaled. The default value of the Zoom property is 100, indicating that
output will be printed at 100 percent of its size (actual size). You can use the Zoom
property to make the page you print smaller or larger than the actual paper page. For
example, setting Zoom to 50 makes your printed page appear half as wide and half as
long as the paper page. The following syntax sets the Zoom property to half the size
of the default Printer object:

Printer.Zoom = 50
148

Positioning Text and Graphics
You can set CurrentX and CurrentY properties for the Printer object, just as you can
for forms and picture boxes. With the Printer object, these properties determine where
to position output on the current page. The following statements set drawing
coordinates to the upper-left corner of the current page:

Printer.CurrentX = 0
Printer.CurrentY = 0

149
You can also use the TextHeight and TextWidth methods to position text on the
Printer object. For more information on using these text methods, see “Displaying
Print Output at a Specific Location” earlier in this chapter.

Printing Forms on the Printer Object
You may want your application to print one or more forms along with information on
those forms, especially if the design of the form corresponds to a printed document
like an invoice or a time card. For the easiest way to do this, use the PrintForm

—64

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 64 of 67 Printed: 10/02/96 03:42 PM

method. For the best quality on a laser printer use the Print and graphics methods with
the Printer object. Keep in mind that using the Printer object takes more planning,
because you must recreate the form on the Printer object before you print.

Recreating a form on the Printer object may also require recreating:

· The outline of the form, including title and menu bars.

· The controls and their contents, including text and graphics.

· The output of graphics methods applied directly to the form, including the Print
method.

60
The extent to which you recreate these elements on the Printer object depends on your
application and how much of the form you need to print.

Recreating Text and Graphics on a Form
When creating text and graphics on a form using the Print, Line, Circle, PaintPicture,
or PSet methods, you may also want a copy of this output to appear on the Printer
object. The easiest way to accomplish this is to write a device-independent procedure
to recreate the text and graphics.

For example, the following procedure uses the PaintPicture method to print a form or
control’s Picture property to any output object, such as a printer or another form:

Sub PrintAnywhere (Src As Object, Dest As Object)
Dest.PaintPicture Src.Picture, Dest.Width / 2, _

Dest.Height / 2
If Dest Is Printer Then

Printer.EndDoc
End If

End Sub
150

You then call this procedure and pass it the source and destination objects:

PrintAnywhere MyForm, Printer
PrintAnywhere MyForm, YourForm

151

Printing Controls on a Form
The Printer object can receive the output of the Print method and the graphics
methods (such as the Line or PSet method). But you cannot place controls directly on
the Printer object. If your application needs to print controls, you must either write
procedures that redraw each type of control you use on the Printer object, or use the
PrintForm method.

Printing the Contents of the Printer Object
Once you have placed text and graphics on the Printer object, use the EndDoc method
to print the contents. The EndDoc method advances the page and sends all pending
output to the spooler. A spooler intercepts a print job on its way to the printer and
sends it to disk or memory, where the print job is held until the printer is ready for it.
For example:

—65

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 65 of 67 Printed: 10/02/96 03:42 PM

Printer.Print "This is the first line of text in _
a pair."

Printer.Print "This is the second line of text in _
a pair."

Printer.EndDoc
152

Note Visual Basic automatically calls EndDoc if your application ends
without explicitly calling it.

153

Creating Multiple-Page Documents
When printing longer documents, you can specify in code where you want a new page
to begin by using the NewPage method. For example:

Printer.Print "This is page 1."
Printer.NewPage
Printer.Print "This is page 2."
Printer.EndDoc

154

Canceling a Print Job
You can terminate the current print job by using the KillDoc method. For example,
you can query the user with a dialog box to determine whether to print or terminate a
document:

Sub PrintOrNot()
Printer.Print "This is the first line to _

illustrate KillDoc method"
Printer.Print "This is the second line to _

illustrate KillDoc method"
Printer.Print "This is the third line to _

illustrate KillDoc method"
If vbNo = MsgBox("Print this fine document?", _

vbYesNo) Then
Printer.KillDoc

Else
Printer.EndDoc

End If
End Sub

155
If the operating system’s Print Manager is handling the print job, the KillDoc method
deletes the entire job you sent to the printer. However, if the Print Manager is not
controlling the print job, page one may have already been sent to the printer, and will
be unaffected by KillDoc. The amount of data sent to the printer varies slightly
among printer drivers.

Note You cannot use the KillDoc method to terminate a print job that was
initiated with the PrintForm method.

156

Trapping Printer Errors
Trappable run-time errors may occur while printing. The following table lists some
examples that may be reported:

—66

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 66 of 67 Printed: 10/02/96 03:42 PM

Error number Error message

396 Property cannot be set within a page.
This error occurs when the same property is set differently on
the same page.

482 Printer Error.
Visual Basic reports the error whenever the printer driver returns
an error code.

483 Printer driver does not support the property.
This error occurs when attempting to use a property that is not
supported by the current printer driver.

484 Printer driver unavailable.
This error occurs when the WIN.INI printer information is
missing or insufficient.

157
Note Printer errors do not always occur immediately. If a statement causes a
printer error, the error may not be raised until execution of the next statement
that addresses that printer.

158
operations in you

For More Information For a detailed discussion on run-time errors, see
"Debugging Your Code and Handling Errors.”

159

—67

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 67 of 67 Printed: 10/02/96 03:42 PM

	Contents
	Sample Applications: Blanker.vbp, Palettes.vbp
	Working with Fonts
	Choosing Fonts for Your Application
	Checking Available Fonts
	Setting Font Characteristics
	Setting Font Properties
	Working with Small Fonts

	Applying Font Properties to Specific Objects
	The FontTransparent Property

	Displaying Text on Forms and Picture Boxes
	Using the Print Method
	Truncated Text
	Layering
	Displaying Different Items on a Single Line
	Displaying Print Output at a Specific Location
	The Cls Method
	Setting Drawing Coordinates
	The TextHeight and TextWidth Methods

	Formatting Numbers, Dates, and Times
	Named Formats
	Number Formats
	Printing Formatted Dates and Times

	Working with Selected Text
	Transferring Text and Graphics with the Clipboard Object
	Cutting, Copying, and Pasting Text with the Clipboard
	Working with the ActiveControl Property

	Working with Multiple Formats on the Clipboard
	Checking the Data Formats on the Clipboard

	Understanding the Coordinate System
	Twips Explained
	Changing an Object's Coordinate System
	Using the Default Scale
	Selecting a Standard Scale
	Creating a Custom Scale
	Using ScaleLeft and ScaleTop
	Using ScaleWidth and ScaleHeight
	Setting Properties to Change the Coordinate System

	Using the Scale Method to Change the Coordinate System

	Converting Scales

	Using Graphical Controls
	Advantages of Graphical Controls
	Limitations of Graphical Controls
	Adding Pictures to Your Application
	Adding a Picture at Design Time
	Adding a Picture at Run Time
	Removing a Picture at Run Time
	Moving and Sizing Pictures
	AutoSize Property
	Stretch Property of Image Controls

	Selecting Art for the Picture Control

	Introduction to Graphics Properties for Forms and Controls
	Creating Persistent Graphics with AutoRedraw
	Persistent Graphics
	AutoRedraw and Forms
	AutoRedraw and Picture Boxes
	Using Nonpersistent Graphics
	Changing AutoRedraw at Run Time

	Clipping Regions with ClipControls
	Clipping Regions
	Clipping Forms and Containers

	Layering Graphics with AutoRedraw and ClipControls
	Normal Layering
	Effects on Layering
	The Effects of AutoRedraw
	The Effects of ClipControls
	The Effects of the Paint Event

	Moving Controls Dynamically
	Using the Left and Top Properties
	Moving a Line Control
	Using the Move Method
	Absolute Movement
	Relative Movement

	Resizing Controls Dynamically
	Creating Simple Animation
	Toggling Between Two Pictures
	Rotating Through Several Pictures

	Using Graphics Methods
	Advantages of Graphics Methods
	Limitations of Graphics Methods
	The Fundamentals of Drawing with Graphics Methods
	Clearing the Drawing Area

	Plotting Points
	Drawing Lines and Shapes
	Drawing Lines
	The Step Keyword
	Using the Color Argument

	Drawing Boxes
	FillStyle and FillColor

	Drawing Circles
	Drawing Arcs

	Drawing Ellipses
	Painting Graphics at Arbitrary Locations
	Specifying Line Width
	Specifying Solid or Broken Lines
	Solid and Inside Solid Styles

	Controlling Display Using DrawMode
	The Xor Pen

	Creating Graphics When a Form Loads

	Working with Color
	Specifying Colors at Run Time
	Using the RGB Function
	 To use the RGB function to specify a color

	Using Color Properties
	Defining Colors
	Using Defined Constants
	Using Direct Color Settings
	Using System Colors

	Working with 256 Colors
	Color Palettes
	Displaying 256-Color Images
	Drawing with Color Palettes

	Managing Multiple Color Palettes
	The PaletteMode Property
	Halftone PaletteMode
	UseZOrder PaletteMode
	Custom PaletteMode
	Other Palette Modes

	Using the Picture Object
	Using Arrays of Picture Objects
	Using the Picture Object Instead of the Windows API

	Printing
	Printing from an Application
	Using the PrintForm Method
	Using the Printers Collection
	Using the Printer Object

	Printing with the Printer Object
	Printer Object Properties
	Scale Properties
	Positioning Text and Graphics

	Printing Forms on the Printer Object
	Recreating Text and Graphics on a Form
	Printing Controls on a Form

	Printing the Contents of the Printer Object
	Creating Multiple-Page Documents
	Canceling a Print Job

	Trapping Printer Errors

