
This chapter and “Debugging, Testing, and Deploying Components” contain those
topics that apply to all types of ActiveX components. These chapters provide
necessary background for the in-depth treatment of component types in subsequent
chapters.

Note If you are using the Control Creation Edition of Visual Basic, some of
the material covered in this document may not be applicable. With the full
editions of Visual Basic you have the ability to create applications, ActiveX
documents, and other types of components. Although some of the
terminology may relate to application specific objects such as forms, in most
cases the underlying concepts also apply to ActiveX control creation.

1
This chapter begins with “Component Basics,” a group of topics that explain key
terminology and concepts of component design.

The rest of the topics in "General Principles of Component Design" and “Debugging,
Testing, and Deploying Components” are organized according to the general
sequence of development tasks for components:

1. Determine the features your component will provide.

2. Determine what objects are required to divide the functionality of the component
in a logical fashion.

1See “Adding Classes to Components.”

3. Design any forms your component will display.

4. Design the interface — that is, the properties, methods, and events — for each
class provided by your component.

2See “Adding Properties and Methods to Classes,” “Adding Events to Classes,”
“Providing Named Constants for Your Component,” “Providing Polymorphism by
Implementing Interfaces,” and “Organizing Objects: The Object Model.”

3The remainder of the task-oriented topics are contained in “Debugging, Testing,
and Deploying Components.” In addition to the following development tasks, they
cover distribution, version compatibility, and creating international versions of
your component.

5. Create the component project and test project.

6. Implement the forms required by your component.

7. Implement the interface of each class, provide browser strings for interface
members, and add links to Help topics.

8. As you add each interface element or feature, add code to your test project to
exercise the new functionality.

9. Compile your component and test it with all potential target applications.
1

—1

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 1 of 44 Printed: 08/27/96 08:48 PM

Contents
· Component Basics

· Adding Classes to Components

· Adding Properties and Methods to Classes

· Adding Events to Classes

· Providing Named Constants for Your Component

· Private Communications Between Your Objects

· Providing Polymorphism by Implementing Interfaces

· Organizing Objects: The Object Model
2

Component Basics
A software component created with Visual Basic is a file containing executable code
— an .exe, .dll, or .ocx file — that provides objects other applications and
components can use.

An application or component that uses objects provided by other software
components is referred to as a client. A client uses the services of a software
component by creating instances of classes the component provides, and calling their
properties and methods.

In earlier versions of Visual Basic, you could create components called OLE servers.
The features of components created with Visual Basic are greatly expanded, including
the ability to raise events, improved support for asynchronous call-backs, and the
ability to provide ActiveX controls and documents.

In-Process and Out-of-Process Components
An application or component that uses objects provided by another component is
called a client.

Components are characterized by their location relative to clients. An out-of-process
component is an .exe file that runs in its own process, with its own thread of
execution. Communication between a client and an out-of-process component is
therefore called cross-process or out-of-process communication.

An in-process component, such as a .dll or .ocx file, runs in the same process as the
client. It provides the fastest way of accessing objects, because property and method
calls don’t have to be marshaled across process boundaries. However, an in-process
component must use the client’s thread of execution.

What’s in a Name?
—2

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 2 of 44 Printed: 08/27/96 08:48 PM

The names you select for your class modules and for their properties, methods, and
events make up the interface(s) by which your component will be accessed. When
naming these elements, and their named parameters, you can help the user of your
component by following a few simple rules.

· Use complete words whenever possible, as for example "SpellCheck."
Abbreviations can take many forms, and hence can be confusing. If whole
words are too long, use complete first syllables.

· Use mixed case for your identifiers, capitalizing each word or syllable, as for
example ShortcutMenus, or AsyncReadComplete.

· Use the same word your users would use to describe a concept. For example, use
Name rather than Lbl.

· Use the correct plural for collection class names, as for example Worksheets,
Forms, or Widgets. If the collection holds objects with a name that ends in “s,”
append the word Collection, as for example SeriesCollection.

· Use a prefix for the named constants in Enums, as discussed in “Providing Named
Constants for Your Component,” later in this chapter.

· Use either the verb/object or object/verb order consistently for your method names.
That is, use InsertWidget, InsertSprocket, and so on, or always place the object
first, as in WidgetInsert and SprocketInsert.

2

Choosing a Project Type and Setting Project
Properties

When you open a new project, you have three choices for project type: ActiveX EXE,
ActiveX DLL, and ActiveX Control. The type you choose determines what kinds of
objects your component can provide.

The following list may assist you in selecting the correct project type for your
component.

10.If your component is going to provide ActiveX controls, open a new ActiveX
control project. Controls can only be provided by control components (.ocx
files), which must be compiled from ActiveX control projects. Control
components always run in process.

1Note Control components are limited in their ability to provide other
kinds of objects because class modules in ActiveX control projects can only
have two Instancing settings, PublicNotCreatable or Private. Objects in
control components are best used to enhance the features of controls; put
objects with other uses in a separate ActiveX DLL project.

11.If you’re creating an out-of-process component, open a new ActiveX EXE project.
Reasons to create an out-of-process component include:

—3

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 3 of 44 Printed: 08/27/96 08:48 PM

· The component can run as a standalone desktop application, like Microsoft
Excel or Microsoft Word, in addition to providing objects.

12.If you’re creating an in-process component, open a new ActiveX DLL project.
Reasons to create an in-process component include:

· An in-process component shares its client’s address space, so property and
method calls don’t have to be marshaled. This results in much faster
performance.

3
Once you’ve opened a project for your new component, there are some project
properties you should always set.

 To set properties for a new component project

1 On the Project menu, click Project1 Properties to open the Project Properties
dialog box.

2 On the General tab, set the Project Name.

4This is the most important property of any new component. It identifies your
component in the Windows registry and the Object Browser; its uniqueness is
therefore important.

5It’s also the default name of the compiled component, and the name of the type
library that contains descriptions of the objects and interfaces provided by your
component. See “Polymorphism, Interfaces, Type Libraries, and GUIDs,” later in
this chapter.

3 On the General tab, set the Project Description.

6Project description is the text string a developer or user will see when setting a
reference to your component, or when selecting your control component in the
Components dialog box.

4 On the General tab, set the Startup Object.

7Click None if there is no code you need to execute to initialize your component.
If your component requires initialization, click Sub Main, add a module to your
project, and in that module declare a Public Sub named Main. Place your
initialization code in this Sub procedure.

1Important See “Starting and Ending a Component” later in this chapter
for an explanation of the need to keep the processing in Sub Main to a
minimum.

4
2Note Do not place Sub Main in a class module. Placing Sub Main in a
class module turns it into a method named Main, rather than a startup
procedure.

5

Setting Other Properties
Depending on the type of component you’re creating, other project properties may be
of interest to you.

—4

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 4 of 44 Printed: 08/27/96 08:48 PM

Help File Name and Project Help Context ID
Providing a Help file for your component is highly recommended. See “Providing
User Assistance for ActiveX Components” in “Debugging, Testing, and Deploying
Components” for information on linking help topics to the properties and methods of
the classes your component provides.

Make Tab Properties
Properties on the Make tab allow you to control file version numbers and version
information about your component. Use of this tab to provide such information is
highly recommended.

Important Incrementing file version numbers is extremely important for
components, as it helps ensure that Setup for your component will never
overwrite a newer version with an older one.

3

Version Compatibility
On the Component tab, you can select a Version Compatibility mode. For new
projects, this option is automatically set to Project Compatibility the first time you
compile your component, as discussed in “How to Test ActiveX Components” in
“Debugging, Testing, and Deploying Components.”

For successive versions of your component, you can select Binary Compatibility to
ensure that programs compiled with old versions continue to work with the new
version. See “Version Compatibility” in “Debugging, Testing, and Deploying
Components.”

Polymorphism, Interfaces, Type Libraries, and GUIDs
Components deliver services by providing classes from which clients can create
objects. Clients use services by creating objects and calling their properties and
methods.

Information about the classes provided by your component is contained in a type
library. In Visual Basic, the type library is included as a resource in the compiled
component. Clients access the type library by setting references to it.

Setting the Type Library Name
Project Name, on the General tab of the Project Properties dialog box, sets the name
of your component’s type library, and is used to qualify the names of classes. For
example, the following code fragment declares a variable that will hold a reference to
an object of the Widget class, provided by a component whose project name is
SmallMechanicals:

Public gwdgDriveLink As SmallMechanicals.Widget
4

Some applications can manipulate objects, but cannot declare variables of a specific
object type. Such applications declare generic object variables As Object, and use the

—5

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 5 of 44 Printed: 08/27/96 08:48 PM

project name in the projectname argument of the CreateObject function to get a new
object reference, as shown in the following syntax:

Set objectvariable = CreateObject(“projectname.class”)
5

The combination of project name and class name is sometimes referred to as a fully
qualified class name, or as a programmatic ID. The fully qualified class name may be
required to correctly identify an object as belonging to your component. For example,
you might implement a Window class in your component. Microsoft Excel also
provides a Window object, which could lead to the following confusion for client
applications:

' A variable of the Microsoft Excel Window class.
Dim xlWindow As Excel.Window
' A variable of the ProgramX component's Window class.
Dim pxWindow As ProgramX.Window
' A variable of the Window class that belongs to the
' component - Microsoft Excel or ProgramX - that
' appears first in the client application's
' References dialog box!
Dim xWindow As Window

6

Default Interfaces
An interface is a set of properties and methods, or events. Every class provided by
your component has at least one interface, called the default interface, which is
composed of all the properties and methods you declare in the class module.

The default interface is usually referred to by the same name as the class, though its
actual name is the class name preceded by an underscore. The underscore prefix is a
convention, signifying that the name is hidden in the type library.

If the class raises events, it also has an IConnectionPointContainer interface that
enumerates those events. Events are outgoing interfaces, as opposed to the incoming
interfaces composed of properties and methods. In other words, clients make requests
by calling into your class’s properties and methods, while the events raised by your
class call out to event handlers in clients.

Incoming and outgoing interfaces are symbolized differently in interface diagrams, as
shown in Figure 6.1.

—6

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 6 of 44 Printed: 08/27/96 08:48 PM

Figure 6.1 Incoming and outgoing interfaces

6
Important You should consider interfaces as contracts between you and the
user of your component, because changing an interface may cause
applications compiled against your component to fail.

7
Visual Basic provides two mechanisms for enhancing components without affecting
compiled applications: version compatibility for interfaces, and multiple interfaces. In
order to discuss these mechanisms, however, you have to learn to dig GUIDs.

Type Libraries, Interfaces, and GUIDs
GUID (pronounced goo-id) stands for Globally Unique IDentifier, a 128-bit (16-byte)
number generated by an algorithm designed to ensure its uniqueness. This algorithm
is part of the Open Software Foundation (OSF) Distributed Computing Environment
(DCE), a set of standards for distributed computing.

GUIDs are used to uniquely identify entries in the Windows registry. For example,
Visual Basic automatically generates a GUID that identifies your type library in the
Windows registry.

Visual Basic also automatically generates a GUID for each public class and interface
in your component. These are usually referred to as class IDs (CLSID) and interface
IDs (IID). Class IDs and interface IDs are the keys to version compatibility for
components authored using Visual Basic.

Note You may also see GUIDs referred to as UUIDs, or Universally Unique
IDentifiers.

8

—7

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 7 of 44 Printed: 08/27/96 08:48 PM

What If Visual Basic Runs Out of GUIDs?
This is not a problem we need to worry about in our lifetimes. The algorithm that
generates GUIDs would allow you to compile several new versions of your
component every second for centuries — without repeating or colliding with GUIDs
generated by other developers.

Version Compatibility for Interfaces
When a developer compiles a program that uses your component, the class IDs and
interface IDs of any objects the program creates are included in the executable.

The program uses the class ID to request that your component create an object, and
then queries the object for the interface ID. An error occurs if the interface ID no
longer exists.

During development of a new component Visual Basic generates new CLSIDs and
IIDs every time you compile, as long as either Project Compatibility or No
Compatibility is selected on the Component tab of the Project Properties dialog box.
Once you’ve released a component, however, and begin working on an enhanced
version of it, you can use the Binary Version Compatibility feature of Visual Basic to
change this behavior.

As described in detail in “Version Compatibility” in “Debugging, Testing, and
Deploying Components,” binary version compatibility preserves the class IDs and
interface IDs from previous versions of your component. This allows applications
compiled using previous versions to work with the new version.

To ensure compatibility, Visual Basic places certain restrictions on changes you make
to default interfaces. Visual Basic allows you to add new classes, and to enhance the
default interface of any existing class by adding properties and methods. Removing
classes, properties, or methods, or changing the arguments of existing properties or
methods, will cause Visual Basic to issue incompatibility warnings.

If you decide to ship an incompatible interface, Visual Basic changes the major
version number of the type library and suggests that you change the executable name
and Project Name, so that the new version of your component will not over-write the
old on your users’ hard disks.

Multiple Interfaces: Polymorphism and
Compatibility
The Implements statement, discussed in “Polymorphism,” in “Programming with
Objects”, allows your classes to implement additional interfaces.

When two classes implement the same secondary interface, they are said to be
polymorphic with respect to that interface. That is, a client can make early-bound
calls to the properties and methods of the interface without having to know the class
of the object it’s using.

—8

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 8 of 44 Printed: 08/27/96 08:48 PM

By creating standard interfaces and implementing them in multiple classes, provided
by one or more components, you can take advantage of polymorphism in your
applications, or across your entire organization.

For More Information “Creating Standard Interfaces with Visual Basic,” later in
this chapter, explains how to create interfaces by defining class modules that have no
implementation code.

Interfaces and Compatibility
Multiple interfaces provide an alternate means of enhancing and evolving your
components while maintaining compatibility with older applications compiled against
earlier versions.

The ActiveX rule you must follow to ensure compatibility with multiple interfaces is
simple: once an interface is in use, it can never be changed. The interface ID of a
standard interface is fixed by the type library that defines the interface.

The way to enhance standard interfaces is to create a new standard interface,
embodying the enhancements. Future components, or future versions of existing
components, can implement the old interface, the new interface, or both, as shown in
Figure 6.2.

Figure 6.2 Providing compatibility with multiple interfaces

7
The IFinance and IFinance2 interfaces are defined in separate type libraries, which
are referenced by the components that implement the interfaces (in this case, versions
1.0 and 2.0 of Finance.dll), and by the applications that use the interfaces (Payroll and
GeneralLedger).

System evolution is possible because future applications can take advantage of new
interfaces. Existing applications will continue to work with new versions of

—9

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 9 of 44 Printed: 08/27/96 08:48 PM

components, as long as the components continue to implement the old interfaces as
well as the new.

Applications that Work With Multiple Versions of
Components
You can write applications that can use any of several versions of a component. For
example, version 2.0 of GeneralLedger.exe could be written to use IFinance2 if that
interface was available, and to use IFinance otherwise.

Obviously, GeneralLedger would be able to provide only a limited set of features in
the latter case. This ability to provide limited functionality in the absence of the
preferred interface is often referred to as degrading gracefully.

To work with either interface, GeneralLedger might contain code like the following:

Dim fnr As FinanceRules
Dim ifin As IFinance
Dim ifin2 As IFinance2

On Error Resume Next
Set fnr = New FinanceRules
' (Error handling code omitted.)
' Attempt to access the preferred interface.
Set ifin2 = fnr
If Err.Number <> 0 Then

' Access the more limited interface.
Set ifin = fnr
' (Code to provide limited functionality,
' using the object variable ifin.)

Else
' (Code to provide full functionality,
' using the object variable ifin2.)

End If
9

For More Information “Providing Polymorphism by Implementing Interfaces,”
later in this chapter, discusses the use and naming of standard interfaces.

Adding Classes to Components
Only one thing distinguishes a component from other applications you author using
Visual Basic: A component project has at least one public class from which client
applications can create objects.

Like any other Visual Basic application, your component may have numerous class
modules that encapsulate its internal functionality. When you allow clients to create
instances of a class, objects created from that class can be manipulated by clients, and
your application becomes a component.

Creating New Classes

—10

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 10 of 44 Printed: 08/27/96 08:48 PM

From the Project menu, you can choose Add Class Module, Add User Control, or Add
User Document to define a new public class. Other choices on the Project menu allow
you to add objects that can be used within your application, but only UserControls,
UserDocuments, and class modules can define public classes.

Each public class you add will be the blueprint for one kind of public object in your
object model. You can provide a class name, define interfaces for the class, and set the
Instancing property (or the Public property, in some cases) to determine how objects
will be created from the class.

Name Property
Choose class names carefully. They should be short but descriptive, and formed from
whole words with individual words capitalized — for example, BusinessRule.

The class name is combined with the name of the component to produce a fully
qualified class name, also referred to as a programmatic ID or ProgID. For example,
the fully qualified class name of a BusinessRule class provided by the Finance
component, is Finance.BusinessRule.

The topic “What’s in a Name?” earlier in this chapter, outlines the rules for naming
classes, properties, and methods.

Defining Interfaces
The default interface for a class is composed of the properties and methods you define
for it, as discussed in “Adding Properties and Methods to Classes,” later in this
chapter.

The default interface of a class is an incoming interface, as explained in
“Polymorphism, Interfaces, Type Libraries, and GUIDs.” You can also add outgoing
interfaces, or events, as described in “Adding Events to Classes.”

Visual Basic includes information about the class module’s default interface and
outgoing interfaces in the type library it creates when your component is compiled.

For More Information You can implement additional incoming interfaces on a
class, as described in “Providing Polymorphism by Implementing Interfaces.”

Public or Instancing Property
UserControl classes have a Public property that determines whether the class is public
or private. UserDocument classes are always public. This is discussed in the in-depth
chapters on ActiveX controls, “Building ActiveX Controls.”

Class modules have a more complex public life, controlled by the Instancing property.
For each class your component will provide to other applications, set the Instancing
property of the class module to any value except Private, as discussed in the related
topic “Instancing for Classes Provided by ActiveX Components.”

—11

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 11 of 44 Printed: 08/27/96 08:48 PM

You don’t have to make all your classes public; if there are objects you want to use
only within your component, set the Instancing properties of the class modules that
define them to Private. (For a UserControl, set the Public property to False.)

For More Information Class modules in Visual Basic are introduced in
“Programming with Objects.” Topics specific to classes defined in class modules and
ActiveX controls are discussed in depth in “Building Code Components” and
“Building ActiveX Controls.” Object models are discussed in “Organizing Objects:
The Object Model,” later in this chapter.

Instancing for Classes Provided by ActiveX Components
The value of the Instancing property determines whether your class is private — that
is, for use only within your component — or available for other applications to use.

As its name suggests, the Instancing property also determines how other applications
create instances of the class. The property values have the following meanings.

· Private means that other applications aren’t allowed access to type library
information about the class, and cannot create instances of it. Private objects are
only for use within your component.

· PublicNotCreatable means that other applications can use objects of this class only
if your component creates the objects first. Other applications cannot use the
CreateObject function or the New operator to create objects from the class.

· MultiUse allows other applications to create objects from the class. One instance
of your component can provide any number of objects created in this fashion.

8An out-of-process component can supply multiple objects to multiple clients; an
in-process component can supply multiple objects to the client and to any other
components in its process.

· SingleUse allows other applications to create objects from the class, but every
object of this class that a client creates starts a new instance of your component.
Not allowed in ActiveX DLL projects.

8
The following table shows how values of the Instancing property in Visual Basic 5.0
were formerly expressed by the combination of the Public and Instancing properties
in Visual Basic 4.0.

5.0 Instancing 4.0 Public 4.0 Instancing

Private False (Any value)

PublicNotCreatable True Not Createable

MultiUse True Createable MultiUse

SingleUse True Createable SingleUse
10

Class Modules and Project Types

—12

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 12 of 44 Printed: 08/27/96 08:48 PM

The value of the Instancing property is restricted in certain project types. Allowed
values are shown in the following table:

Instancing Value ActiveX EXE ActiveX DLL ActiveX Control

Private Yes Yes Yes

PublicNotCreatable Yes Yes Yes

MultiUse Yes Yes

SingleUse Yes
11

Dependent Objects (PublicNotCreatable)
The value of the Instancing property determines the part an object plays in your
component’s object model, as discussed in “Organizing Objects: The Object Model.”

If the Instancing property of a class is PublicNotCreatable, objects of that class are
called dependent objects. Dependent objects are typically parts of more complex
objects.

For example, you might allow a client application to create multiple Library objects,
but you might want Book objects to exist only as parts of a Library. You can make the
Book class PublicNotCreateable, and let the user add new books to a Library object
by giving the Library class a Books collection with an Add method that creates new
books only within the collection.

Your component can support as many dependent objects as necessary. You can write
code in the Add method of a collection class to limit the number of objects in the
collection, or you can allow the number to be limited by available memory.

For More Information Dependent objects are discussed in detail in “Dependent
Objects,” later in this chapter.

12

Externally Creatable Objects
All values of the Instancing property besides PublicNotCreatable and Private define
externally creatable objects — that is, objects that clients can create using the New
operator or the CreateObject function. ActiveX control projects cannot provide
externally creatable objects.

Coding Robust Initialize and Terminate Events
Classes you define in Visual Basic, whether class modules, UserControls, or
UserDocuments, have built-in Initialize and Terminate events. The code you place in
the Initialize event will be the first code executed when an object is created.

For example, in the first part of the following code fragment the Widget class of the
SmallMechanicals component sets the value of its read-only Created property at the
moment an object is created.

' Code for the component's Widget class module.

—13

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 13 of 44 Printed: 08/27/96 08:48 PM

' Storage for the read-only Created property.
Private mdatCreated As Date

' Implementation of the read-only Created property.
Public Property Get Created() As Date

Created = mdatCreated
End Property

' Set the value for the read-only Created property when
' the object is created.
Private Sub Class_Initialize()

mdatCreated = Now
End Sub

' Code for the client application.
Private Sub cmdOK_Click()

Dim wdgX As New SmallMechanicals.Widget
' Display date/time object was created.
MsgBox wdgX.Created

End Sub
13

In the last part of the code fragment, the client creates a Widget object. The variable
wdgX will contain the reference to the Widget object; it is declared As New, so the
Widget is created at the first use of wdgX in code. When the MsgBox function is
executed, the Widget is created, and the very first code it executes is its
Class_Initialize event procedure. When the read-only Created property of the newly
created Widget is evaluated, its value has already been set, and therefore MsgBox
correctly displays the time the Widget was created.

Errors that occur in the Class_Initialize event procedure are returned to the point in
the client at which the object was requested. Thus, adding the following line to the
Widget’s Class_Initialize event procedure will cause error 31013 to occur on the
client’s MsgBox statement.

Err.Raise Number:=31013
14

Handling Errors in the Terminate Event
The Terminate event is the last event in an object’s life. You can place cleanup code in
the Class_Terminate event procedure, and this code will be executed when the last
reference to the object has been released, and the object is about to be destroyed.
Complex objects that contain dependent objects should release references to their
dependent objects in the Terminate event.

Errors in the Terminate event require careful handling. Because the Terminate event is
not called by the client application, there is no procedure above it on the call stack.
This means that an unhandled error in a Terminate event will cause a fatal error in
the component.

Important For in-process components, your fatal error is your client’s fatal
error. Because the component is running in the client’s process, the client
application will be terminated by a component’s fatal error.

—14

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 14 of 44 Printed: 08/27/96 08:48 PM

15

Standard Modules vs. Class Modules
Classes differ from standard modules in the way their data is stored. There is never
more than one copy of a standard module’s data. This means that when one part of
your program changes a public variable in a standard module, and another part of
your program subsequently reads that variable, it will get the same value.

Class module data, on the other hand, exists separately for each instance of the class.

Avoid making the code in your classes dependent on global data — that is, public
variables in standard modules. Many instances of a class can exist simultaneously,
and all of these objects share the global data in your component.

Static Class Data
Using global variables in class module code violates the object-oriented programming
concept of encapsulation, because objects created from such a class do not contain all
their data. However, there may be occasions when you want a data member to be
shared among all objects created from a class module. For example, you might want
all objects created from a class to share a property value, such as the name or version
number of your component.

This deliberate violation of encapsulation is sometimes referred to as static class data.
You can implement static class data in a Visual Basic class module by using Property
procedures to set and return the value of a Public data member in a standard module,
as in the following code fragment:

' Read-only property returning application name.
Property Get ComponentName() As String

' The variable gstrComponentName is stored in a
' standard module, and declared Public.
ComponentName = gstrComponentName

End Property
16

You can implement static class data that is not read-only by providing a
corresponding Property Let procedure — or Property Set for a property that contains
an object reference — to assign a new value to the standard module data member.

Important When designing a class that uses static data, remember that your
component may be providing objects simultaneously to several client
applications (if it’s an out-of-process component) or to a client and several in-
process components (if it’s an in-process component). All the objects created
from the class will share the static data, even if they’re being used by different
clients.

17

—15

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 15 of 44 Printed: 08/27/96 08:48 PM

Adding Properties and Methods to Classes
The default interface of a class in your component is simply the set of all public
properties, methods, and events in the class module, UserControl, or UserDocument
that defines the class.

Adding properties and methods is easy — a method is any Public Sub or Public
Function procedure you declare in the module that defines your class; a property is
any public property procedure or public variable you declare.

For More Information The mechanics of property and method declaration are
discussed in “Adding Properties to a Class” and “Adding Methods to a Class,” in
“Programming with Objects.”

18

Implementing Properties in Components
Adding Properties to a Class,” in “Programming with Objects,” discusses in detail the
many kinds of properties you can add to your classes, including simple data values,
read-only properties, and property arrays.

“Adding Properties to a Class” also describes the two ways you can declare
properties: as public variables, or as property procedures.

In general, properties of objects provided by components should be implemented as
property procedures. Property procedures are more robust than data members. A
property whose type is an enumeration, for example, cannot be validated unless
implemented as a Property Get and Property Let.

The only exception to this rule is a simple numeric or string property which requires
no validation and which, when changed, does not immediately affect other properties
of the object.

An object property — that is, any property that contains an object reference instead of
an ordinary data type — should almost always be implemented with property
procedures. An object property implemented as a public object variable can be set to
Nothing accidentally, possibly destroying the object. This is discussed in “Organizing
Objects: The Object Model,” later in this chapter.

Note Internally, Visual Basic generates a pair of property procedures for
every public variable you declare. For this reason, declaring public variables
doesn’t provide any size or performance benefits.

19
For More Information See “Adding Properties to a Class,” in “Programming with
Objects.”

20

—16

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 16 of 44 Printed: 08/27/96 08:48 PM

Implementing Methods in Components
When you declare a method, declare all of its arguments as explicit data types
whenever possible. Arguments that take object references should be declared as
specific class types — for example, As Widget instead of As Object or As Variant.

Strongly typed arguments allow many user errors to be caught by the compiler, rather
than occurring only under run-time conditions. The compiler always catches errors,
while run-time testing is only as good as the test suite coverage.

This is as true of optional parameters as it is of the method’s fixed parameters. For
example, the Spin method of a hypothetical Widget object might allow either direct
specification of spin direction and speed, or specification of another Widget object
from which angular momentum is to be absorbed:

Public Sub Spin(_
Optional ByVal SpinDirection As Boolean = True, _
Optional ByVal Torque As Double = 0, _
Optional ByVal ReactingWidget As Widget = Nothing)
' (Code to ensure that a valid combination of
' arguments was supplied.)
' (Implementation code.)

End Sub
21

For More Information See “Adding Methods to a Class,” in “Programming with
Objects.”

22

Data Types Allowed in Properties and Methods
Classes can have properties and methods of any public data type supported by
Automation. This includes all arguments of properties and methods, as well their
return values. The allowed data types include:

· Public objects provided by another component, such as DAO or a component
authored using Visual Basic.

· Public objects provided by Visual Basic for applications, such as the Error and
Collection objects.

· Objects defined in public classes in the component.

· Public enumerations declared in public class modules.

· Standard system data types defined by Automation, such as OLE_COLOR and
OLE_TRISTATE.

· The intrinsic data types provided by Visual Basic.
9

On the Evils of Returning Private Objects
The following data types are not allowed, and references to them should never be
returned to client applications:

—17

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 17 of 44 Printed: 08/27/96 08:48 PM

· All of the objects provided in the Visual Basic (VB) object library — for example,
controls. Use the Object Browser to view the entire list.

· All forms.

· All class modules whose Instancing property is set to Private.

· References to ActiveX controls.

· User-defined types.
10

It is possible to trick Visual Basic and pass private objects to client programs. Don’t
do this. References to private objects will not keep a component running.

If your component shuts down, because all references to your public objects have
been released, any remaining private objects will be destroyed, even if clients still
hold references to them.

Subsequent calls to the properties and methods of these objects will cause errors, in
the case of out-of-process components. In the case of in-process components, a fatal
program fault may occur in the client.

Important Private objects are private for a reason, usually because they
were not designed to be used outside your project. Passing them to a client
may decrease program stability and cause incompatibility with future versions
of Visual Basic. If you need to pass a private class of your own to a client, set
the Instancing property to a value other than Private.

23

Choosing a Default Property or Method for a Class
You can mark the most commonly used property or method of a class as the default
method. This allows the user of a class to invoke the member without naming it.

 To set a property or method as the default

5 On the Tools menu, click Procedure Attributes to open the Procedure Attributes
dialog box.

6 Click Advanced to expand the Procedure Attributes dialog box.

7 In the Name box, select the property or method that is currently the default for the
class. If the class does not currently have a default member, skip to step 5.

3Note You can use the Object Browser to find out what the current default
member of a class is. When you select the class in the Class list, you can
scroll through the members in the Members list; the default member will be
marked with a small blue circle beside its icon.

24
8 In the Procedure ID box, select None to remove the default status of the property

or method.

9 In the Name box, select the property or method you want to be the new default.

10 In the Procedure ID box, select (Default), then click OK.

—18

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 18 of 44 Printed: 08/27/96 08:48 PM

11
Important A class can have only one default member. If a property or
method is already marked as the default, you must reset its procedure ID to
None before making another property or method the default. No compile
errors will occur if two members are marked as default, but there is no way to
predict which one Visual Basic will pick as the default.

25

Adding Events to Classes
You can add events to any class in your component. Events declared in classes
provided by your component can be handled by clients regardless of whether your
component is running in process or out of process. All events are public.

You declare an event using the Event keyword:

Event SomethingHappened(ByVal HowMuch As Double, _
ByVal When As Date)

26
You raise the event from within your class module’s code, whenever the
circumstances that define the event occur.

If blnSomethingHappened Then
RaiseEvent SomethingHappened(dblPriceIncrease, _

Now)
End If

27
When the event is raised in an instance of the class, code in the SomethingHappened
event procedures of any clients that are handling the event for that particular object
will be executed. Events must be handled on an object-by-object basis; a client cannot
elect to handle an event for all currently existing objects of a particular class.

If multiple clients have references to the same object, and are handling an event it
raises, control will not return to your component until all clients have processed the
event.

You can allow clients to respond to events by declaring a parameter ByRef instead of
ByVal. This allows any client to change the value of the argument. When execution
resumes, on the line after RaiseEvent, you can examine the value of this argument
and take appropriate action.

This capability is frequently used for Cancel arguments, as with the QueryUnload
event of Visual Basic forms.

Note Visual Basic raises a separate QueryUnload event for each form; if one
form cancels the event, events for subsequent forms are not raised.

28
Events cannot be handled within the class that declared them.

For More Information Raising events in controls is discussed in detail in
“Building ActiveX Controls.” The syntax for raising and handling events is covered
in “Adding Events to Classes” in ”Programming with Objects.”

—19

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 19 of 44 Printed: 08/27/96 08:48 PM

29

Providing Named Constants for Your
Component

Enumerations provide an easy way to define a set of related named constants. For
example, the built-in enumeration VbDayOfWeek contains numeric constants with
the names vbMonday, vbTuesday, and so on.

You can use an enumeration as the data type of a property or method argument, as in
the following example:

Private mdowDayOfWeek As VbDayOfWeek

Property Get DayOfWeek() As VbDayOfWeek
DayOfWeek = mdowDayOfWeek

End Property

Property Let DayOfWeek(ByVal NewDay As VbDayOfWeek)
If (NewDay < vbUseSystemDayOfWeek) _

Or (NewDay < vbSaturday) Then
Err.Raise Number:=31013, _

Description:="Invalid day of week"
Else

DayOfWeek = mdowDayOfWeek
End If

End Property
30

When users of your component enter code that assigns a value to this property, the
Auto List Members feature will offer a drop down containing the members of the
enumeration, as shown in Figure 6.3.

—20

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 20 of 44 Printed: 08/27/96 08:48 PM

Figure 6.3 Auto List Members displays enumerations

12
Tip You might think that you could save space by declaring the internal
variable mdowDayOfWeek As Byte instead of As VbDayOfWeek — since the
latter effectively makes the variable a Long. However, on 32-bit operating
systems the code to load a Long is faster and more compact than the code to
load shorter data types. Not only could the extra code exceed the space
saved, but there might not be any space saved to begin with — because of
alignment requirements for modules and data.

31
You can make the members of an enumeration available to users of your component
by marking the enumeration Public and including it in any public module that defines
a class — that is, a class module, UserControl, or UserDocument.

When you compile your component, the enumeration will be added to the type
library. Object browsers will show both the enumeration and its individual members.

Note Although an enumeration must appear in a module that defines a
class, it always has global scope in the type library. It is not limited to, or
associated in any other way with the class in which you declared it.

32

General Purpose Enumerations
The members of an enumeration need not be sequential or contiguous. Thus, if you
have some general-purpose numeric constants you wish to define for your
component, you can put them into a catch-all Enum.

Public Enum General
levsFeetInAMile = 5280
levsIgnitionTemp = 451

—21

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 21 of 44 Printed: 08/27/96 08:48 PM

levsAnswer = 42
End Enum

33

Avoiding Enumeration Name Conflicts
In the preceding code example, both the Enum and its members were prefixed with
four lowercase characters chosen to identify the component they belong to, and to
reduce the chance that users of the component will encounter name conflicts. This is
one of the general naming rules discussed in “What’s in a Name?” earlier in this
chapter.

For More Information Enumerations are discussed in detail in “More About
Programming” and ”Programming with Objects.”

34

Providing Non-Numeric and Non-Integer
Constants
The members of an Enum can have any value that fits in a Long. That is, they can
assume any integer value from -2,147,483,648 to 2,147,483,647. When you declare a
variable using the name of an Enum as the data type, you’re effectively declaring the
variable As Long.

Occasionally you may need to provide a string constant, or a constant that isn’t an
integer value. Visual Basic doesn’t provide a mechanism for adding such values to
your type library as public constants, but you can get a similar effect using a global
object with read-only properties.

If your component doesn’t contain a global object, such as Application, add a public
class module named GlobalConstants to your project. Set the Instancing property to
GlobalMultiUse.

For each constant you want to provide, add to the GlobalConstants class module a
Property Get procedure that returns the desired value. For example, the following
code provides Avogadro’s Number as a constant, and mimics the vbCrLf constant in
Visual Basic.

Public Property Get Avogadro() As Double
Avogadro = 6.02E+23

End Property

Public Property Get vbCrLf() As String
vbCrLf = Chr$(13) & Chr$(10)

End Property
35

Because the Instancing property is GlobalMultiUse, a user of the component doesn’t
have to explicitly create an instance of the GlobalConstants class in order to use the
constants. The constants can be used as if they were part of Visual Basic:

strNewText = "Line1" & vbCrLf & "Line2"
36

—22

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 22 of 44 Printed: 08/27/96 08:48 PM

Note A user of Visual Basic, Microsoft Excel, or any other application that
hosts Visual Basic for Applications would never see this version of the vbCrLf
constant, because the VBA type library is always higher in the References
dialog than the type library of any component.

37

Private Communications Between Your
Objects

There may be circumstances in which you want your component’s objects to be able
to communicate with each other, without interference from users of your component.
For example, you might want your Widgets collection class to set the Parent property
of a newly created Widget, and thereafter to have Parent be read-only.

Public methods on a class can be called by other objects, but they can also be called
by clients. Private methods cannot be called from outside the component, but neither
are they visible to other objects within your component.

The solution is to use Friend methods. In the following code fragment, the
hypothetical Widget object exposes a public read-only Parent property, and a Friend
method (called SetParent) that the Widgets collection can use to set the value of the
Parent property after creating a new Widget.

' A Widget is always part of a mechanism.
Private mmchParent As Mechanism

Public Property Get Parent() As Mechanism
Set Parent = mmchParent

End Property

Friend Sub SetParent(ByVal NewParent As Mechanism)
Set mmchParent = NewParent

End Sub
38

When a method is declared with the Friend keyword, it’s visible to other objects in
your component, but is not added to the type library or the public interface. This is
illustrated in Figure 6.4.

—23

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 23 of 44 Printed: 08/27/96 08:48 PM

Figure 6.4 Friend methods have project scope

13
At run time, the Widgets collection class (within the project) sees a different interface
from that seen by clients. The view of the Widget’s interface within the project (and
the compiled DLL) includes the Friend method SetParent, which the Widgets
collection calls.

The client only sees the public properties and methods of the Widget’s interface,
because Friend methods are not added to the type library.

Using the Friend Keyword with Properties
You can also declare property procedures with the Friend keyword. In fact, the
different property procedures that make up a property can have different scope. Thus
the earlier code example can be rewritten as a pair of property procedures:

' A Widget is always part of a mechanism.
Private mmchParent As Mechanism

Public Property Get Parent() As Mechanism
Set Parent = mmchParent

End Property

Friend Property Set Parent(ByVal NewParent As _
Mechanism)

Set mmchParent = NewParent
End Sub

39
From within the component, Parent is a read/write property. To clients, it’s a read-
only property, because only the Property Get appears in the component’s type library.

You can think of Friend as a different scope, halfway between Public and Private.

Important In order to invoke Friend methods and properties, you must use
strongly typed object variables. In the example above, the Widgets collection

—24

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 24 of 44 Printed: 08/27/96 08:48 PM

must use a variable declared As Widget in order to access the SetParent
method or the Property Set Parent. You cannot invoke Friend methods from
variables declared As Object.

40

Hiding Object Properties that Return Private Objects
“Using Properties and Collections to Create Object Models” describes the use of
private objects in object models. When linking such objects to the public objects in
the object model, you can declare all parts of the property procedure using the Friend
keyword.

For example, each Widget object might have Socket object, which for some reason
you don’t want to expose to users of your component. You could add the following
object property to the Widget object, so that from inside your component you could
access the Socket, without adding the property to the type library or the public
interface:

' Create the Socket object on demand (As New).
Private msoc As New Socket

Friend Property Get Socket() As Socket
Set Socket = msoc

End Property
41

For More Information Friend methods are introduced in “Programming with
Objects.”

42

Providing Polymorphism by Implementing
Interfaces

One of the most striking features of the Component Object Model (COM) is the
ability of an object to implement multiple interfaces. In addition to enabling
polymorphism, multiple interfaces provide a mechanism for incremental or
evolutionary development, without the need to recompile all the components in the
system when changes occur.

By defining features in terms of interfaces, composed of small groups of closely-
related functions, you can implement component features as needed, knowing that
you can expand them later by implementing additional interfaces.

Maintaining compatibility is simplified, because new versions of a component can
continue to provide existing interfaces, while adding new or enhanced interfaces.
Succeeding versions of client applications can take advantage of these when it makes
sense for them to do so.

—25

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 25 of 44 Printed: 08/27/96 08:48 PM

Inheritance and Polymorphism
As explained in “Polymorphism” in “Programming with Objects”, most object-
oriented programming tools provide polymorphism through inheritance. This is a
powerful mechanism for small-scale development tasks, but has generally proven to
be problematic for large-scale systems.

In part, these difficulties arise as a result of necessary changes to classes deep in the
inheritance tree. Recompilation is required in order to take advantage of such
changes, and failure to recompile may lead to unpleasant surprises when the time
finally arrives for a new version.

More seriously, an over-emphasis on inheritance-driven polymorphism typically
results in a massive shift of resources from development tasks to up-front design
tasks, doing nothing to address development backlogs or to shorten the time before
the end user can discover — through hands-on experience — whether the system
actually fulfills the intended purpose.

As a consequence, tools for rapid prototyping and Rapid Application Development
(RAD) have gained wider acceptance than OOP tools.

Visual Basic and COM
Visual Basic follows the COM example, emphasizing multiple interfaces as a more
flexible way to provide polymorphism. Software can evolve interface by interface,
rather than having to be derived from all necessary antecedents during a lengthy
design process.

Objects can begin small, with minimal functionality, and over time acquire additional
features, as it becomes clear from actual use what those features should be. Legacy
code is protected by continuing to support old interfaces while implementing new
ones.

The Implements Feature
Visual Basic provides the Implements keyword as the means for incorporating a
secondary interface. For example, if your project had a reference to a type library that
described the IFinance interface, you could place the following code in a class
module:

Implements IFinance
43

Because type libraries contain only interfaces, and no implementation, you would
then add code for each of the properties and methods of the IFinance interface, as
described in “Implementing and Using Standard Interfaces.”

An Interface is a Contract
When you create an interface for use with Implements, you’re casting it in concrete
for all time. This interface invariance is an important principle of component design,
because it protects existing systems that have been written to an interface.

—26

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 26 of 44 Printed: 08/27/96 08:48 PM

When an interface is clearly in need of enhancement, a new interface should be
created. This interface might be called Interface2, to show its relationship to the
existing interface.

While generating new interfaces too frequently can bulk up your components with
unused interfaces, well-designed interfaces tend to be small and independent of each
other, reducing the potential for performance problems.

Factoring Interfaces
The process of determining what properties and methods belong on an interface is
called factoring.

In general, you should group a few closely-related functions on an interface. Too
many functions make the interface unwieldy, while dividing the parts of a feature too
finely results in extra overhead. For example, the following code calls methods on
three different interfaces of the Velociraptor class:

Public Sub CretaceousToDoList(ByVal vcr1 As _
Velociraptor, ByVal vcr2 As Velociraptor)

Dim dnr As IDinosaur
Dim prd As IPredator
vcr1.Mate vcr2
Set dnr = vcr1
dnr.LayEggs
Set prd = vcr1
prd.KillSomethingAndEatIt

End Sub
44

In order to use methods on the IDinosaur and IPredator interfaces, you must assign
the object to a variable of the correct interface type.

Where possible, interfaces designed to use flexible data structures will outlast
interfaces based on fixed data types.

As noted above, it’s much harder to go wrong in designing interfaces than in creating
large inheritance trees. If you start small, you can have parts of a system running
relatively quickly. The ability to evolve the system by adding interfaces allows you to
gain the advantages object-oriented programming was intended to provide.

For More Information The Implements feature is discussed in detail in
“Polymorphism” in ”Programming with Objects.”

45

Creating Standard Interfaces with Visual Basic
You can create standard interfaces for your organization by compiling abstract classes
in Visual Basic ActiveX DLLs or EXEs, or with the MkTypLib utility, included in the
Tools directory.

The MkTypLib utility may be more comfortable for you if you’re an experienced user
of Microsoft Visual C++.

—27

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 27 of 44 Printed: 08/27/96 08:48 PM

Basic programmers may find it easier to create an interface using a Visual Basic class
module. Open a new ActiveX DLL or EXE project, and add the desired properties and
methods to a class module. Don’t put any code in the procedures. Give the class the
name you want the interface to have, for example IFinance, and make the project.

Note The capital “I” in front of interface names is an ActiveX convention. It is
not strictly necessary to follow this convention. However, it provides an easy
way to distinguish between abstract interfaces you’ve implemented and the
default interfaces of classes. The latter are usually referred to by the class
name in Visual Basic.

46
The type library in the resulting .dll or .exe file will contain the information required
by the Implements statement. To use it in another project, use the Browse button on
the References dialog box to locate the .dll or .exe file and set a reference. You can
use the Object Browser to see what interfaces a type library contains.

Important The Implements feature does not support outgoing interfaces.
Thus, any events you declare in the class module will be ignored.

47
As explained in “Providing Polymorphism by Implementing Interfaces,” an interface
once defined and accepted must remain invariant, to protect applications written to
use it. DO NOT use the Version Compatibility feature of Visual Basic to alter standard
interfaces.

For More Information The related topic “Providing Polymorphism by
Implementing Interfaces” discusses such important concepts as interface invariance
and factoring. “Implementing and Using Standard Interfaces” explains how interfaces
are implemented and used in components.

48

Implementing and Using Standard Interfaces
Once you’ve defined a standard interface, either by creating a type library with the
MkTypLib utilityor by compiling a Visual Basic project containing abstract classes
(that is, class modules with properties and methods that don’t contain any code), you
can implement that interface in classes your components provide.

Suppose you had a LateCretaceous system that included a number of components,
each of which provided objects representing flora, fauna, and business rules of that
era. For example, one component might provide a Velociraptor class, while another
provided a Tyrannosaur class.

You might create a standard interface named IPredator, which included Hunt and
Attack methods:

' Code for the abstract IPredator class module.
Public Sub Hunt()

End Sub

—28

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 28 of 44 Printed: 08/27/96 08:48 PM

Public Sub Attack(ByVal Victim As IDinosaur)

End Sub
49

Notice that the argument of the Attack method uses another interface, IDinosaur. One
would expect this interface to contain methods describing general dinosaur behavior,
such as laying eggs, and that it would be implemented by many classes —
Velociraptor, Tyrannosaur, Brontosaur, Triceratops, and so on.

Notice also that there’s no code in these methods. IPredator is an abstract class that
simply defines the interface (referred to as an abstract interface). Implementation
details will vary according to the object that implements the interface.

For example, the Tyrannosaur class might implement IPredator as follows:

Implements IPredator

Private Sub IPredator_Hunt()
' Code to stalk around the landscape roaring, until
' you encounter a dinosaur large enough to
' qualify as a meal.

End Sub

Private Sub IPredator_Attack(ByVal Victim As IDinosaur)
' Code to charge, roaring and taking huge bites.

End Sub
50

Important As noted in “Providing Polymorphism by Implementing
Interfaces,” an interface is a contract. You must implement all of the properties
and methods in the interface.

51
By contrast, the Velociraptor class might implement IPredator as shown here:

Implements IPredator

Private Sub IPredator_Hunt()
' Fan out and hunt with a pack, running down
' small dinosaurs or surrounding large ones.

End Sub

Private Sub IPredator_Attack(ByVal Victim As IDinosaur)
' Code to dart in from all sides, slashing the
' victim and wearing it down.

End Sub
52

Using Implemented Interfaces
Once you have classes that implement IPredator, you can upgrade your existing
applications one by one to use the new, more competitive interface. You can access
the Hunt and Attack methods by assigning a Velociraptor or Tyrannosaur object to a
variable of type IPredator, as shown here:

Dim tyr As New Tyrannosaur
Dim prd As IPredator

—29

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 29 of 44 Printed: 08/27/96 08:48 PM

Set prd = tyr
prd.Hunt

53
You can also declare procedure arguments As IPredator, and pass the procedure any
object that implements the IPredator interface, as here:

Public Sub DevourTheCompetition(ByVal Agent As _
IPredator, ByVal Target As IDinosaur)

Agent.Hunt
Agent.Attack Target

End Sub
54

The Sub procedure shown above could be called with any predatory dinosaur as the
first argument, and any dinosaur at all as the second. The caller of the procedure can
use whatever predatory dinosaur is most appropriate for the occasion. This kind of
flexibility is important in maintaining a business advantage.

Setting References to Type Libraries
A type library containing abstract interfaces provides a reference point for both
implementing and using interfaces.

In order to implement an interface, you must use the References dialog box to set a
reference to the type library. This is because the type library contains the information
required to specify the arguments and return types of the interface’s members.

In similar fashion, any application that uses objects which have implemented an
abstract interface must also have a reference to the type library that describes the
interface. Information about implemented interfaces cannot be included in the type
libraries of components, because there is no way to resolve naming conflicts.

Important In order to marshal data between processes or between remote
computers, out-of-process components must include in their Setup programs
any type libraries that describe abstract interfaces. In-process components
should also include these type libraries, because a developer may want to
pass its objects to other applications, either on the local computer or on a
remote computer. See “Deploying Components,” in “Debugging, Testing, and
Deploying Components.”

55

Summary
The following list provides an outline for implementing multiple interfaces:

13.Define a set of interfaces, each containing a small group of related properties and
methods that describe a service or feature your system requires. This factoring
process is discussed in “Providing Polymorphism by Implementing Interfaces.”

14.Create a type library containing abstract interfaces — abstract classes, if you
create the type library by compiling a Visual Basic project — that specify the
arguments and return types of the properties and methods. Use the MkTypLib
utilityor Visual Basic to generate the type library, as described in “Creating
Standard Interfaces with Visual Basic.”

—30

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 30 of 44 Printed: 08/27/96 08:48 PM

15.Develop a component that uses the interfaces, by adding a reference to the type
library and then using the Implements statement to give classes secondary
interfaces as appropriate.

16.For every interface you’ve added to a class, select each property or method in turn,
and add code to implement the functionality in a manner appropriate for that
class. See “Polymorphism” in “Programming with Objects.”

17.Compile the component and create a Setup program, making sure you include the
type library that describes the abstract interfaces.

18.Develop an application that uses the component by adding references to the
component and to the type library that describes the abstract interfaces.

19.Compile the application and create a Setup program, including the component (and
the abstract type library, if the component runs out of process or — with the
Enterprise Edition — on a remote computer).

14
The next section discusses how the process outlined here can be used to gradually
enhance a system.

Systems that Evolve Over Time
The observant reader will no doubt have noticed a bug in the code given earlier in this
topic. If predatory dinosaurs only ate other dinosaurs, how did they keep the
Mammals down? A more general IPredator interface might accept as a victim any
object that implemented IAnimal.

This illustrates a key advantage of component software development using multiple
interfaces: As the LateCretaceous system evolves into, say, the Pliestocene system,
components that provide predatory dinosaur objects can be replaced by components
that provide SaberTooth and DireWolf objects.

A legacy application compiled to use dinosaurs may be still be able to function quite
nicely using the new predator classes, as long as it doesn’t include code specific to
dinosaurs.

The key points to remember when using multiple interfaces in this fashion are:

· Once an interface is defined and in use, it must never change. This concept of
interface invariance is discussed in “Providing Polymorphism by Implementing
Interfaces,” in this chapter, and in “Polymorphism” in “Programming with
Objects.”

· If an interface needs to be expanded, create a new interface. This is discussed in
“Polymorphism, Interfaces, Type Libraries, and GUIDs,” earlier in this chapter.

· New versions of components can provide new features by implementing new and
expanded interfaces.

· New versions of components can support legacy code by continuing to provide old
interfaces.

—31

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 31 of 44 Printed: 08/27/96 08:48 PM

· New versions of applications can take advantage of new features (that is, new and
expanded interfaces), and if necessary can be written so as to degrade gracefully
when only older interfaces are available. (See “Polymorphism, Interfaces, Type
Libraries, and GUIDs.”)

Implements and Code Reuse
The Implements statement also allows you to reuse code in existing objects. In this
form of code reuse, the new object (referred to as an outer object) creates an instance
of the existing object (or inner object) during its Initialize event.

In addition to any abstract interfaces it implements, the outer object implements the
default interface of the inner object. (To do this, use the References dialog box to add
a reference to the component that provides the inner object.)

When adding code to the outer object’s implementations of the properties and
methods of the inner object, you can delegate to the inner object whenever the
functionality it provides meets the needs of the outer object.

For example, the Tyrannosaur class might implement the interface of a Dinosaur
object (instead of an abstract IDinosaur interface). The Dinosaur object might have a
LayEggs method, which the Tyrannosaur class could implement by simple delegation:

Private dnoInner As Dinosaur

Private Sub Class_Initialize()
Set dnoInner = New Dinosaur

End Sub

Private Sub Dinosaur_LayEggs()
' Delegate to the inner object.
dnoInner.LayEggs

End Sub
56

This is an extremely powerful and flexible way to reuse code, because the outer
object can choose to execute its own code before, after, or instead of delegating to the
inner object.

For More Information Code reuse with the Implements statement is discussed in
more detail in “Polymorphism” in “Programming with Objects.”

Organizing Objects: The Object Model
An object model defines a hierarchy of objects that gives structure to an object-based
program. By defining the relationships between objects that are part of the program,
an object model organizes the objects in a way that makes programming easier.

The public object model of a component is especially important because it’s used by
all the programmers who employ the component as part of their applications.

—32

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 32 of 44 Printed: 08/27/96 08:48 PM

Note Users of C++ or other object-oriented programming languages are
used to seeing class hierarchies. A class hierarchy describes inheritance.
That is, it shows how objects are derived from simpler objects, inheriting their
behavior. By contrast, object models are hierarchies that describe
containment. That is, they show how complex objects like Worksheets contain
collections of other objects, such as Button, Picture, and PivotTable objects.
Object models can be created with Visual Basic, Visual C++, and other tools
that support COM and ActiveX.

57
· “Programming with Objects” includes an introduction to object models and a

discussion of design considerations for collection classes.

Do I Need an Object Model?
You don’t have to create an elaborate object model for your component. A control
component (.ocx file) might contain three UserControl objects, and no class modules
at all. A code component meant to be used as a simple library of functions might have
one global object with a zillion methods.

Again, you might create a code component named Finance with three classes in it,
each class representing a self-contained business rule. If the rules are independent of
each other, there’s no reason to link them into a hierarchy. A client application that
uses these rules simply creates one or more objects of each class, as needed.

Each class module in such a component would have its Instancing property set to
MultiUse, so that client applications could create objects from the class, and so that
the component could handle multiple objects from each class. Figure 6.5 shows such
an object model.

Figure 6.5 A flat object model with several externally creatable objects

15

Object Models and Interfaces
As the functionality of an object increases, so does the complexity of its interface.
This can make the object hard to use.

You can reduce the complexity of an object’s default interface by factoring out groups
of related functions, and defining an interface for each group. A client can work with
only those interfaces that provide needed features.

By defining standard interfaces in this fashion, you can implement interfaces on other
objects, gaining the benefits of polymorphism. This approach to software design in

—33

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 33 of 44 Printed: 08/27/96 08:48 PM

discussed in “Providing Polymorphism by Implementing Interfaces,” earlier in this
chapter.

Sometimes an object is too large even when its features are factored into separate
interfaces. When an object becomes very complex, as for example the TreeView and
Toolbar controls, breaking pieces of it off as separate objects may make sense.

Once the whole is divided, you need a way of organizing its constituent parts.
Splitting the Node object off from the TreeView control gains you nothing if you
can’t show the relationship between them. Object models make it easy to provide this
organization to the user of your component.

For More Information Topics relating to object models are listed in “Organizing
Objects: The Object Model.” The use of multiple interfaces is covered in “Providing
Polymorphism by Implementing Interfaces.”

58

Externally Creatable Objects
Part of the additional importance of object models in components comes from the fact
that components can provide objects in two different ways—as externally creatable
objects or as dependent objects.

In an ordinary program that uses private objects, you can create objects from any
class the program defines. A client application, however, can only create objects from
some of the classes a component provides. Externally creatable objects are those that
a client application can create using the New operator with the Set statement, by
declaring a variable As New, or by calling the CreateObject function.

When a client uses one of these mechanisms to request an externally creatable object,
the component returns a reference the client can use to manipulate the object. When
the client sets the last variable containing this reference to Nothing, or allows it to go
out of scope, the component destroys the object.

You can make a public object externally creatable by setting the Instancing property
of the class module to any value except Private or PublicNotCreatable.

For More Information A discussion of the Instancing property can be found in
“Instancing for Classes Provided by ActiveX Components.” Dependent objects are
discussed in “Dependent Objects.”

59

Dependent Objects
Sometimes there is a clear relationship between two objects, such that one object is a
part of the other. In Microsoft Excel, for example, a Button object is always part of
another object, such as a Worksheet.

An object that’s contained in another object is called a dependent object. Client
applications can manipulate dependent objects, just as they can manipulate externally

—34

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 34 of 44 Printed: 08/27/96 08:48 PM

creatable objects, but they cannot create dependent objects using CreateObject or
New.

Set the Instancing property of a class module to PublicNotCreatable to make the
objects created from that class dependent objects.

Note Dependent objects are also referred to as nested objects.
60

Getting References to Dependent Objects
If a client application can use dependent objects but can’t create them, how are they
created?

A component can provide dependent objects in several ways. Most commonly an
externally creatable object will have a collection with an Add method which the client
can invoke. The component creates the dependent object in the code for the Add
method, and returns a reference to the new object, which the client can then use.

For example, a Microsoft Excel Worksheet object has a collection of Button objects.
A client application can add a new button to the worksheet by calling the Add method
of the Buttons collection, as shown in the following code fragment:

' Note: The variable wsBudget contains a reference to
' a Worksheet object.
Dim btnOK As Excel.Button
' Parameters of the Add method specify the top, left,
' width, and height of the new button. The return value
' is a reference to the new Button object.
Set btnOK = wsBudget.Buttons.Add(100, 100, 150, 125)
' Set the caption of the new Button object.
btnOK.Caption = "OK"

61
It’s important to remember that the variable btnOK contains a reference to the object,
not the object itself.

Note The distinction between externally creatable objects and dependent
objects is made for the benefit of the client applications that manipulate a
component’s objects. From within a component, you can always create
objects from any of the component’s classes, regardless of the value of the
Instancing property.

62
For More Information “Combining Externally Creatable and Dependent Objects”
discusses the process of identifying the types of objects needed for each part of an
object model.

63

Combining Externally Creatable and Dependent Objects
The relationships between the externally creatable objects a component provides and
the dependent objects they contain are expressed in the component’s object model.
Once you’ve analyzed the functionality your component will provide, you can:

—35

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 35 of 44 Printed: 08/27/96 08:48 PM

20.Determine what objects you need to implement that functionality.

21.List the properties and methods each object will require.

22.Determine the relationships between the objects.

23.Identify the top-level objects that need to be created by client applications.
16

Visual Basic gives you the flexibility to implement many possible object models. A
component can provide several unrelated creatable objects, each containing one or
more dependent objects; it can also provide a single hierarchy containing a number of
objects, only one or two of which are externally creatable.

One characteristic common to all of these implementations is that they require more
design time. It’s important to spend adequate time and effort determining how your
objects will interact and how they will be used designing your object model to avoid
having to redefine objects, or split one object into two, in a future version of your
component.

Such changes make it much more difficult for applications that use your component
to migrate to newer versions. Adding new objects, or exposing objects that were
formerly private, does not cause such problems.

For More Information “Using Properties and Collections to Create Object
Models” discusses techniques for linking dependent and externally creatable objects
in an object model.

64

Using Properties and Collections to Create Object
Models

Objects in a hierarchy are linked together by object properties, that is, properties that
return references to objects. An object that contains other objects will have properties
that return either references to the objects themselves, or references to collections of
objects.

For example, consider a Bicycle object that contains two Wheel objects; each Wheel
object might in turn contain a Rim object and a collection of Spoke objects.Figure 6.6
shows a possible object model for the externally creatable Bicycle object and its
dependent objects.

—36

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 36 of 44 Printed: 08/27/96 08:48 PM

Figure 6.6 An externally creatable object with a hierarchy of dependent objects

17
The Bicycle object would have a Frame property that returned a reference to its
Frame object. The Frame object would have a FrontWheel and BackWheel property,
each of which would return a Wheel object. The Wheel object would have a Spokes
property that would return a Spokes collection object. The Spokes collection would
contain the Spoke objects.

You may also have dependent objects that are used internally by classes in your
component, and which you do not want to provide to users of your component. You
can set the Instancing properties of the class modules that define these objects to
Private, so they won’t appear when users browse your type library.

For example, both the Frame and Wheel objects might have collections of Bearing
objects, but there may be no reason to expose the Bearings object, or the collections
containing it, for manipulation by client applications.

Important In order to keep the Bearings property from appearing in the type
library, you must declare it using the Friend keyword, as described in “Private
Communications Between Your Objects,” earlier in this chapter.

65

The Simple Way to Link Dependent Objects
Frequently it makes sense for a complex object to have only one instance of a
dependent object. For example, a Bicycle object only needs one Frame object. In this
case, you can implement the linkage as a simple property of the complex object:

Private mFrame As Frame

Public Property Get Frame() As Frame
Set Frame = mFrame

End Property

Private Sub Class_Initialize()
' Create the Frame when the Bicycle is initialized.

—37

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 37 of 44 Printed: 08/27/96 08:48 PM

Set mFrame = New Frame
End Sub

66
It’s important to implement such properties as shown above, using a read-only
property procedure, rather than simply declaring a public module-level variable, as
shown below.

Public Frame As Frame 'Bad idea.
67

With the second implementation, a user of your component might set the Frame
property to Nothing. If there are no other references to the Frame object, it will be
destroyed. The effect of this on the Bicycle object is left to the reader’s imagination.

Linking a Fixed Number of Objects
Even when a complex object contains more than one instance of a dependent object, it
may make more sense to implement the linkage with properties instead of with a
collection. For example, a Bicycle object always has two wheels:

' Create the Wheel objects on demand (As New), instead
' of in the Bicycle object's Initialize event.
Private mwhlFront As New Wheel
Private mwhlRear As New Wheel

Public Property Get FrontWheel() As Wheel
Set FrontWheel = mwhlFront

End Property

Public Property Get RearWheel() As Wheel
Set RearWheel = mwhlRear

End Property
68

Using Collections in Your Object Model
When the relationship between two objects in a hierarchy is such that the first object
contains an indeterminate number of the second, the easiest way to implement the
link is with a collection. A collection is an object that contains a set of related objects.

For example, the linkage between the FrontWheel object and its Spoke objects in
Figure 6.6 is a collection class. A collection class is a class module that exists solely
to group all the objects of another class. In this case, the collection class is named
Spokes, the plural of the name of the class of objects it contains. (See “What’s In a
Name?”, earlier in this chapter, for more information on naming classes.)

Implementing this part of the object model example requires three class modules.
From the bottom up, these are:

· The Spoke class module, which defines the properties and methods of a single
spoke.

· The Spokes class module, which defines a collection object to contain Spoke
objects.

—38

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 38 of 44 Printed: 08/27/96 08:48 PM

· The Wheel class module, which defines an entire wheel, with a collection of
spokes.

18

Dependent Class: Spoke
The Spoke class module is the simplest of the three. It could consist of as little as two
Public variables, as in the following code fragment:

' Properties for Spoke
Public PartNumber As Integer
Public Alloy As Integer

69
The Instancing property of the Spoke class is set to PublicNotCreatable. The only way
for a client application to create a Spoke object is with the Add method of the Spokes
collection, as discussed in the next section.

Note This is not a very robust implementation. In practice you would
probably implement both of these properties as Property procedures, with
code to validate the values that are assigned to them.

70
For More Information For details on using Property procedures, see
“Programming with Objects.”

71

Dependent Collection Class: LineItems
The Spokes class module is the template for a collection Spoke objects. It contains a
Private variable declared as a Collection object:

Private mcolSpokes As Collection
72

The collection object is created in the Initialize method for the class:

Private Sub Class_Initialize()
Set mcolSpokes = New Collection

End Sub
73

The methods of the Spokes class module delegate to the default methods of the Visual
Basic Collection object. That is, the actual work is done by the methods of the
Collection object. The Spokes class might include the following properties and
methods:

' Read-only Count property.
Public Property Get Count() As Integer

Count = mcolSpokes.Count
End Property

' Add method for creating new Spoke objects.
Public Function Add(ByVal PartNumber As Integer, _

ByVal Alloy As Integer)
Dim spkNew As New Spoke
spkNew.PartNumber = PartNumber
spkNew.Alloy = Alloy
mcolSpokes.Add spkNew
Set Add = spkNew

—39

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 39 of 44 Printed: 08/27/96 08:48 PM

End Function
74

As with the Spoke class, the Instancing property of the Spokes class is set to
PublicNotCreatable. The only way to get a Spokes collection object is as part of a
Wheel object, as shown in the following section describing the Wheel class.

For More Information See “Object Models” in “Programming with Objects” for a
discussion of collections, including a more detailed explanation of delegation, a list of
methods you need to implement, and instructions for creating a collection that works
with For Each.

75

Externally Creatable Class: Wheel
The Wheel class module has Instancing set to MultiUse, so that any client application
can create a Wheel object. The Wheel class module contains a Private variable of the
Spokes class:

' Create the Spokes collection object on demand.
Private mSpokes As New Spokes

Public Property Get Spokes() As Spokes
Set Spokes = mSpokes

End Property
76

Every Wheel object a client creates will have its own Spokes collection. The
collection is protected against accidentally being set to Nothing by making it a read-
only property (Property Get). A developer can access the methods and properties of
the Spokes collection as shown in the following code fragment:

Dim whl As Wheel
Dim spk As Spoke
Set whl = New Wheel
Set spk = whl.Spokes.Add PartNumber:=3222223, Alloy:=7
' Call a method of the Spoke object.
spk.Adjust
MsgBox whl.Spokes.Count ' Displays 1 (one item).

77
The Add method is used to create a new spoke in the Spokes collection of the Wheel
object. The Add method returns a reference to the new Spoke object, so that its
properties and methods can be called. A spoke can only be created as a member of the
Spokes collection.

The difference between the Wheel object, which can be created by any client, and its
dependent objects is the value of the Instancing properties of the classes.

For More Information The Spokes object is created on demand, while the
Collection object mcolSpokes was explicitly created. “Programming with Objects”
discusses the use of As New for creating variables on demand, including performance
implications.

78

—40

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 40 of 44 Printed: 08/27/96 08:48 PM

Considerations for Linking Objects in an Object
Model
Generally speaking, a simpler implementation will be faster. Accessing an item in a
collection involves a series of nested references and function calls. Whenever you
know that there will always be a fixed number of a dependent object type, you can
implement the linkage as a property.

Regardless of how the object model is linked, the key difference between externally
creatable objects and dependent objects is the value of the Instancing property of the
class module. An object that can be created by other applications will have its
Instancing property set to any value except Private or PublicNotCreatable.

All dependent objects, whether they are contained in other dependent objects or in
objects that can be created by other applications, will have their Instancing properties
set to PublicNotCreatable.

Using Externally Creatable Objects as Dependent Objects
At times you may want to use objects in both ways. That is, you may want the user to
be able to create a Widget object independent of the object model, while at the same
time providing a Widgets collection as a property of the Mechanism object.

In fact, you may even want to allow the user to create independent instances of the
Widgets collection, to move independent Widgets into and out of any Widgets
collection, and to copy or move Widgets between collections.

You can make the objects externally creatable by setting the Instancing property of
the Widget class and the Widgets collection class to MultiUse.

Important If the Widget object can be created directly by client applications,
you cannot depend on all Widget objects getting initialized by the code in the
Add method of the Widgets collection. Objects that will be both creatable and
dependent should be designed to require no initialization beyond their
Initialize events.

79
Allowing free movement of Widgets requires implementation of Insert, Copy, and
Move methods for your collection. Insert and Move are fairly straightforward,
because moving or inserting a reference to an object is as good as moving the object.
Implementing Copy, however, requires more work.

This is because client application never actually has the object in its possession. All
the client application has is a reference to an object the component has created on its
behalf. Thus, when you implement Copy, you must create a duplicate object,
including duplicates of any dependent objects it contains.

For More Information See “Dealing with Circular References” for a discussion of
problems that may arise when linking objects together.

80

—41

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 41 of 44 Printed: 08/27/96 08:48 PM

Dealing with Circular References
Containment relationships allow you to navigate through a hierarchy from a high-
level object to any of the objects it contains.

Object models that strictly express containment are like trees. Any given branch
(object) may divide into smaller branches (dependent objects), but the smaller
branches do not loop around and rejoin the trunk or lower branches.

Object models with loops, or circular references, result when a dependent object has a
property or variable that holds a reference to one of the objects that contains it.

For example, an Order object might have a Contact property that contains a reference
to a Contact object, representing the individual who placed the order. The Contact
object might in turn have a Company property that contains a reference to a Company
object.

Up to this point, the hierarchy is a tree. However, if the Company object has a
MostRecentOrder property that contains a reference to the Order object, a circular
reference has been created.

Note You could avoid the circular reference in this case by making the
MostRecentOrder property a text key that could be used to retrieve the Order
object from the component’s Orders collection.

81

Circular References in Visual Basic
Components
Consider the simplest form of circular reference, a Parent property. The Parent
property of a dependent object contains a reference to the object that contains it.

For example, in the Microsoft Excel object model, a Button object is contained by a
Worksheet object. If you have a reference to a Button object, you can print the name
of the Worksheet that contains it using code like the following:

' If the variable btnCurrent contains a reference to a
' Microsoft Excel Button object, the following line of
' code displays the Name property of the Worksheet
' object that contains the button.
MsgBox btnCurrent.Parent.Name

82
Microsoft Excel is written using C++ and low level COM interfaces, and it maintains
the Parent properties of its objects without creating circular references. If you
implement such a relationship in Visual Basic, you have to take into account the way
Visual Basic handles the creation and destruction of objects.

Visual Basic destroys an object when there are no longer any references to it. If an
object’s parent has a collection that contains a reference to the object, that’s enough to
keep the object from being destroyed. In the same way, an object continues to exist if
the parent has an object property that contains a reference to the object.

—42

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 42 of 44 Printed: 08/27/96 08:48 PM

When a parent object is destroyed, the variables that implement its properties go out
of scope, and the object references are released. This allows the dependent objects to
terminate. If a dependent object has a Parent property, however, Visual Basic cannot
not destroy the parent object in the first place, because the dependent object has a
reference to it.

The dependent object cannot be destroyed, either, because the parent has a reference
to it. This situation is illustrated for an out-of-process component in Figure 6.7.

Figure 6.7 Circular reference prevents objects from being destroyed.

19
Client application B has released its reference to its Widget object. The Widget object
has a reference to a Knob object, whose Parent property refers back to the Widget
object, keeping both objects from terminating.

A similar problem occurs if the Widget object contains a collection of Knob objects,
instead of a single Knob. The Widget object keeps a reference to the Knobs collection
object, which contains a reference to each Knob. The Parent property of each Knob

—43

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 43 of 44 Printed: 08/27/96 08:48 PM

contains a reference to the Widget, forming a loop that keeps the Widget object,
Knobs collection, and Knob object alive.

The objects client B was using will not be destroyed until the component closes. For
example, if client A releases its Widget object, there will be no external references to
the component. If the component does not have any forms loaded, and there is no
code executing in any procedure, then the component will unload, and the Terminate
events for all the objects will be executed. However, in the meantime, large numbers
of orphaned objects may continue to exist, taking up memory.

Note If a circular reference exists between objects in two out-of-process
components, the components will never terminate.

83

Circular References and In-Process Components
If you implement your component as a DLL, so that it runs in the process of the client
application, it’s even more important to avoid circular references. Because an in-
process component shares the process space of the client application, there is no
distinction between ‘external’ and ‘internal’ references to a public object. As long as
there’s a reference to an object provided by the component, it stays loaded.

This means that a circular reference keeps an in-process component loaded
indefinitely, and the memory taken up by orphaned objects cannot be reclaimed until
the client application closes.

For More Information Circular references and some techniques for dealing with
them are demonstrated in the ObjModel.Vbg sample application.

84

—44

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 6 Page: 44 of 44 Printed: 08/27/96 08:48 PM

	Contents
	Component Basics
	In-Process and Out-of-Process Components
	What’s in a Name?
	Choosing a Project Type and Setting Project Properties
	 To set properties for a new component project
	Setting Other Properties
	Help File Name and Project Help Context ID
	Make Tab Properties
	Version Compatibility

	Polymorphism, Interfaces, Type Libraries, and GUIDs
	Setting the Type Library Name
	Default Interfaces
	Type Libraries, Interfaces, and GUIDs
	What If Visual Basic Runs Out of GUIDs?

	Version Compatibility for Interfaces
	Multiple Interfaces: Polymorphism and Compatibility
	Interfaces and Compatibility
	Applications that Work With Multiple Versions of Components

	Adding Classes to Components
	Creating New Classes
	Name Property
	Defining Interfaces
	Public or Instancing Property

	Instancing for Classes Provided by ActiveX Components
	Class Modules and Project Types
	Dependent Objects (PublicNotCreatable)
	Externally Creatable Objects

	Coding Robust Initialize and Terminate Events
	Handling Errors in the Terminate Event

	Standard Modules vs. Class Modules
	Static Class Data

	Adding Properties and Methods to Classes
	Implementing Properties in Components
	Implementing Methods in Components
	Data Types Allowed in Properties and Methods
	On the Evils of Returning Private Objects

	Choosing a Default Property or Method for a Class
	 To set a property or method as the default

	Adding Events to Classes
	Providing Named Constants for Your Component
	General Purpose Enumerations
	Avoiding Enumeration Name Conflicts
	Providing Non-Numeric and Non-Integer Constants

	Private Communications Between Your Objects
	Using the Friend Keyword with Properties
	Hiding Object Properties that Return Private Objects

	Providing Polymorphism by Implementing Interfaces
	Inheritance and Polymorphism
	Visual Basic and COM
	The Implements Feature

	An Interface is a Contract
	Factoring Interfaces
	Creating Standard Interfaces with Visual Basic
	Implementing and Using Standard Interfaces
	Using Implemented Interfaces
	Setting References to Type Libraries
	Summary

	Systems that Evolve Over Time
	Implements and Code Reuse

	Organizing Objects: The Object Model
	Do I Need an Object Model?
	Object Models and Interfaces

	Externally Creatable Objects
	Dependent Objects
	Getting References to Dependent Objects

	Combining Externally Creatable and Dependent Objects
	Using Properties and Collections to Create Object Models
	The Simple Way to Link Dependent Objects
	Linking a Fixed Number of Objects

	Using Collections in Your Object Model
	Dependent Class: Spoke
	Dependent Collection Class: LineItems
	Externally Creatable Class: Wheel

	Considerations for Linking Objects in an Object Model
	Using Externally Creatable Objects as Dependent Objects

	Dealing with Circular References
	Circular References in Visual Basic Components
	Circular References and In-Process Components

