
This chapter introduces the essential components of the Visual Basic language. After
creating the interface for your application using forms and controls, you will need to
write the code that defines the application's behavior. As with any modern
programming language, Visual Basic supports a number of common programming
constructs and language elements.

Visual Basic is an object-based programming language. The mere mention of objects
may cause undue anxiety in many programmers. Don't worry: whether you realize it
or not, you've been dealing with objects most of your life. Once you understand a few
basic concepts, objects actually help to make programming easier than ever before.

If you've programmed in other languages, much of the material covered in this
chapter will seem familiar. While most of the constructs are similar to other
languages, the event-driven nature of Visual Basic introduces some subtle differences.
Try and approach this material with an open mind; once you understand the
differences you can use them to your advantage.

If you're new to programming, the material in this chapter will serve as an
introduction to the basic building blocks for writing code. Once you understand the
basics, you will be able to create powerful applications using Visual Basic.

Note If you are using the Control Creation Edition of Visual Basic, some of
the material covered in this document may not be applicable. With the full
editions of Visual Basic you have the ability to create applications, ActiveX
documents, and other types of components. Although some of the
terminology may relate to application specific objects such as forms, in most
cases the underlying concepts also apply to ActiveX control creation.

1

Contents
· The Structure of a Visual Basic Application

· Before You Start Coding

· Code Writing Mechanics

· Introduction to Variables, Constants and Data Types

· Introduction to Procedures

· Introduction to Control Structures

· Working with Objects
2

Sample Application: Vcr.vbp
Many of the code samples in this chapter are taken from the Vcr.vbp sample
application. If you installed the sample applications, you will find it in the \Vcr
subdirectory of the Visual Basic samples directory (\Vb\Samples\Pguide\Vcr).

—1

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 1 of 73 Printed:

The Structure of a Visual Basic Application
An application is really nothing more than a set of instructions directing the computer
to perform a task or tasks. The structure of an application is the way in which the
instructions are organized; that is, where the instructions are stored and the order in
which instructions are executed.

Simple applications such as the classic "hello world" example have a simple
structure; organization isn't very important with a single line of code. As applications
become more complex, the need for organization or structure becomes obvious.
Imagine the chaos that would result if your application's code was allowed to execute
in random order. In addition to controlling the execution of an application, the
structure is important to the programmer: how easily can you find specific
instructions within your application?

Because a Visual Basic application is based on objects, the structure of its code
closely models its physical representation on screen. By definition, objects contain
data and code. The form that you see on screen is a representation of the properties
that define its appearance and intrinsic behavior. For each form in an application,
there is a related form module (with file name extension .FRM) that contains its code.

—2

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 2 of 73 Printed:

Figure 5.1 A form and its related form module

1
Each form module contains event procedures — sections of code where you place the
instructions that will execute in response to specific events. Forms can contain
controls. For each control on a form, there is a corresponding set of event procedures
in the form module. In addition to event procedures, form modules can contain
general procedures that are executed in response to a call from any event procedure.

Code that isn't related to a specific form or control can be placed in a different type of
module, a standard module (.BAS). A procedure that might be used in response to
events in several different objects should be placed in a standard module, rather than
duplicating the code in the event procedures for each object.

A class module (.CLS) is used to create objects that can be called from procedures
within your application. Whereas a standard module contains only code, a class
module contains both code and data — you can think of it as a control without a
physical representation.

While "Managing Projects" describes which components you can add to an
application, this chapter explains how to write code in the various components that

—3

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 3 of 73 Printed:

make up an application. By default, your project contains a single form module. You
can add additional form, class, and standard modules, as needed. Class modules are
discussed in "Programming with Objects."

How an Event-Driven Application Works
An event is an action recognized by a form or control. Event-driven applications
execute Basic code in response to an event. Each form and control in Visual Basic has
a predefined set of events. If one of these events occurs and there is code in the
associated event procedure, Visual Basic invokes that code.

Although objects in Visual Basic automatically recognize a predefined set of events, it
is up to you to decide if and how they will respond to a particular event. A section of
code — an event procedure — corresponds to each event. When you want a control to
respond to an event, you write code in the event procedure for that event.

The types of events recognized by an object vary, but many types are common to
most controls. For example, most objects recognize a Click event — if a user clicks a
form, code in the form's Click event procedure is executed; if a user clicks a
command button, code in the button's Click event procedure is executed. The actual
code in each case will most likely be quite different.

Here's a typical sequence of events in an event-driven application:

1. The application starts and a form is loaded and displayed.

2. The form (or a control on the form) receives an event. The event might be caused
by the user (for example, a keystroke), by the system (for example, a timer
event), or indirectly by your code (for example, a Load event when your code
loads a form).

3. If there is code in the corresponding event procedure, it executes.

4. The application waits for the next event.
2

Note Many events occur in conjunction with other events. For example,
when the DblClick event occurs, the MouseDown, MouseUp, and Click events
also occur.

3

Before You Start Coding
Perhaps the most important (and often overlooked) part of creating an application in
Visual Basic is the design phase. While it's obvious that you need to design a user
interface for your application, it may not be as obvious that you need to design the
structure of the code. The way you structure your application can make a difference in
its performance as well as in the maintainability and usability of your code.

The code in a Visual Basic application is organized in a hierarchical fashion. A typical
application consists of one or more modules: a form module for each form in the

—4

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 4 of 73 Printed:

application, optional standard modules for shared code, and optional class modules.
Each module contains one or more procedures that contain the code: event
procedures, Sub or Function procedures, and Property procedures.

Determining which procedures belong in which module depends somewhat on the
type of application that you are creating. Because Visual Basic is based on objects, it
helps to think of your application in terms of the objects that it represents. The design
of the sample application for this chapter, Vcr.vbp, is based on the objects that
comprise a video cassette recorder and a television. The VCR application consists of
two form modules, a standard module, and two class modules. You can use the Object
Browser to examine the structure of the project (Figure 5.2).

Figure 5.2 The structure of the VCR project is shown in the Object Browser

3
The main form for the VCR application (frmVCR) is a visual representation of a
combination VCR and television screen (Figure 5.3). It is composed of several
objects that model those found in the real world version. A group of Command
buttons (cmdPlay, cmdRecord, and so on) mimic the buttons used to operate a VCR.
The software VCR also contains a clock (lblTime), a channel indicator (lblChannel),
function indicators (shpPlay, shpRecord, and so on), and a "picture tube" (picTV).
The event procedures for all of these objects are contained in the Vcr.frm form
module.

—5

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 5 of 73 Printed:

Figure 5.3 The main form for the VCR application

4
In many cases there are repetitive procedures that are shared by more than one object.
For example, when the Play, Rewind, or Record buttons are "pushed," the Pause and
Stop buttons need to be enabled. Rather than repeat this code in each button's Click
event procedure, it's better to create a shared Sub procedure that can be called by any
button. If these routines need to be modified in the future, all of the modifications can
be done in one place. This and other shared procedures are contained in the standard
module, Vcr.bas.

Some parts of a VCR aren't visible, such as the tape transport mechanism or the logic
for recording a television program. Likewise, some of the functions of the software
VCR have no visual representation. These are implemented as two class modules:
Recorder.cls and Tape.cls. Code to initiate the "recording" process is contained in the
clsRecorder module; code to control the direction and speed of the "tape" is contained
in the clsTape module. The classes defined in these modules have no direct references

—6

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 6 of 73 Printed:

to any of the objects in the forms. Because they are independent code modules, they
could easily be reused to build an audio recorder without any modifications.

In addition to designing the structure of your code, it's important to establish naming
conventions. By default, Visual Basic names the first form in a project Form1, the
second Form2, and so on. If you have several forms in an application, it's a good idea
to give them meaningful names to avoid confusion when writing or editing your code.

As you learn more about objects and writing code, you can refer to the VCR sample
application for examples of various different coding techniques.

Code Writing Mechanics
Before you begin, it's important to understand the mechanics of writing code in Visual
Basic. Like any programming language, Visual Basic has its own rules for organizing,
editing, and formatting code.

Code Modules
Code in Visual Basic is stored in modules. There are three kinds of modules: form,
standard, and class.

Simple applications can consist of just a single form, and all of the code in the
application resides in that form module. As your applications get larger and more
sophisticated, you add additional forms. Eventually you might find that there is
common code you want to execute in several forms. You don't want to duplicate the
code in both forms, so you create a separate module containing a procedure that
implements the common code. This separate module should be a standard module.
Over time, you can build up a library of modules containing shared procedures.

Each standard, class, and form module can contain:

· Declarations. You can place constant, type, variable, and dynamic-link library
(DLL) procedure declarations at the module level of form, class or standard
modules.

· Procedures. A Sub, Function, or Property procedure contains pieces of code that
can be executed as a unit. These are discussed in the section "Procedures" later
in this chapter.

5

Form Modules
Form modules (.FRM file name extension) are the foundation of most Visual Basic
applications. They can contain procedures that handle events, general procedures, and
form-level declarations of variables, constants, types, and external procedures. If you
were to look at a form module in a text editor, you would also see descriptions of the
form and its controls, including their property settings. The code that you write in a

—7

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 7 of 73 Printed:

form module is specific to the particular application to which the form belongs; it
might also reference other forms or objects within that application.

Standard Modules
Standard modules (.BAS file name extension) are containers for procedures and
declarations commonly accessed by other modules within the application. They can
contain global (available to the whole application) or module-level declarations of
variables, constants, types, external procedures, and global procedures. The code that
you write in a standard module isn't necessarily tied to a particular application; if
you're careful not to reference forms or controls by name, a standard module can be
reused in many different applications.

Class Modules
Class modules (.CLS file name extension) are the foundation of object-oriented
programming in Visual Basic. You can write code in class modules to create new
objects. These new objects can include your own customized properties and methods.
Actually, forms are just class modules that can have controls placed on them and can
display form windows.

For More Information For information about writing code in class modules, see
"Programming with Objects."

4
Note The Professional and Enterprise editions of Visual Basic also include
ActiveX Documents, ActiveX Designers, and User Controls. These introduce
new types of modules with different file name extensions. From the standpoint
of writing code, these modules should be considered the same as form
modules.

5

Using the Code Editor
The Visual Basic Code Editor is a window where you write most of your code. It is
like a highly specialized word processor with a number of features that make writing
Visual Basic code a lot easier. The Code Editor window is shown in Figure 5.4.

—8

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 8 of 73 Printed:

Figure 5.4 The Code Editor window

6
Because you work with Visual Basic code in modules, a separate Code Editor
window is opened for each module you select from the Project Explorer. Code within
each module is subdivided into separate sections for each object contained in the
module. Switching between sections is accomplished using the Object Listbox. In a
form module, the list includes a general section, a section for the form itself, and a
section for each control contained on the form. For a class module, the list includes a
general section and a class section; for a standard module only a general section is
shown.

Each section of code can contain several different procedures, accessed using the
Procedure Listbox. The procedure list for a form module contains a separate section

—9

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 9 of 73 Printed:

for each event procedure for the form or control. For example, the procedure list for a
Label control includes sections for the Change, Click, and DblClick events, among
others. Class modules list only the event procedures for the class itself — Initialize
and Terminate. Standard modules don't list any event procedures, because a standard
module doesn't support events.

The procedure list for a general section of a module contains a single selection — the
Declarations section, where you place module-level variable, constant, and DLL
declarations. As you add Sub or Function procedures to a module, those procedures
are added in the Procedure Listbox below the Declarations section.

Two different views of your code are available in the Code Editor window. You can
choose to view a single procedure at a time, or to view all of the procedures in the
module with each procedure separated from the next by a line (as shown in Figure
5.4). To switch between the two views, use the View Selection buttons in the lower
left-hand corner of the editor window.

Automatic Code Completion
Visual Basic makes writing code much easier with features that can automatically fill
in statements, properties, and arguments for you. As you enter code, the editor
displays lists of appropriate choices, statement or function prototypes, or values.
Options for enabling or disabling these and other code settings are available on the
Editor tab of the Options dialog, accessed through the Options command on the Tools
menu.

When you enter the name of a control in your code, the Auto List Members feature
presents a drop-down list of properties available for that control (Figure 5.5). Type in
the first few letters of the property name and the name will be selected from the list;
the Tab key will complete the typing for you. This option is also helpful when you
aren't sure which properties are available for a given control. Even if you choose to
disable the Auto List Members feature, you can still access it with the CTRL+J key
combination.

—10

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 10 of 73 Printed:

Figure 5.5 The Auto List Members feature

7
The Auto Quick Info feature displays the syntax for statements and functions (Figure
5.6). When you enter the name of a valid Visual Basic statement or function the
syntax is shown immediately below the current line, with the first argument in bold.
After you enter the first argument value, the second argument appears in bold. Auto
Quick Info can also be accessed with the CTRL+I key combination.

Figure 5.6 Auto Quick Info

8

—11

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 11 of 73 Printed:

Code Basics
This section presents information on code writing mechanics, including breaking and
combining lines of code, adding comments to your code, using numbers in code, and
following naming conventions in Visual Basic.

Breaking a Single Statement Into Multiple Lines
You can break a long statement into multiple lines in the Code window using the line-
continuation character (a space followed by an underscore). Using this character can
make your code easier to read, both online and when printed. The following code is
broken into three lines with line-continuation characters (_):

Data1.RecordSource = _
"SELECT * FROM Titles, Publishers" & _
" WHERE Publishers.PubId = Titles.PubID" _
& "AND Publishers.State = 'CA'"

6
You can't follow a line-continuation character with a comment on the same line.
There are also some limitations as to where the line-continuation character can be
used.

Combining Statements on One Line
There is usually one Visual Basic statement to a line, and there is no statement
terminator. However, you can place two or more statements on a line if you use a
colon (:) to separate them:

Text1.Text = "Hello" : Red = 255 : Text1.BackColor = _
Red

7
In order to make your code more readable, however, it's better to place each statement
on a separate line.

8

Adding Comments to Your Code
As you read through the examples in this guide, you'll often come across the
comment symbol ('). This symbol tells Visual Basic to ignore the words that follow it.
Such words are remarks placed in the code for the benefit of the developer, and other
programmers who might examine the code later. For example:

' This is a comment beginning at the left edge of the
' screen.
Text1.Text = "Hi!" ' Place friendly greeting in text

' box.
9

Comments can follow a statement on the same line or can occupy an entire line. Both
are illustrated in the preceding code. Remember that comments can't follow a line-
continuation character on the same line.

Understanding Numbering Systems

—12

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 12 of 73 Printed:

Most numbers in this documentation are decimal (base 10). But occasionally it's
convenient to use hexadecimal numbers (base 16) or octal numbers (base 8). Visual
Basic represents numbers in hexadecimal with the prefix &H and in octal with &O.
The following table shows the same numbers in decimal, octal, and hexadecimal.

Decimal Octal Hexadecimal

9 &O11 &H9

15 &O17 &HF

16 &O20 &H10

20 &O24 &H14

255 &O377 &HFF
10

You generally don't have to learn the hexadecimal or octal number system yourself
because the computer can work with numbers entered in any system. However, some
number systems lend themselves to certain tasks, such as using hexadecimals to set
the screen and control colors.

Naming Conventions in Visual Basic
While you are writing Visual Basic code, you declare and name many elements (Sub
and Function procedures, variables, constants, and so on). The names of the
procedures, variables, and constants that you declare in your Visual Basic code must
follow these guidelines:

· They must begin with a letter.

· They can't contain embedded periods or type-declaration characters (special
characters that specify a data type.

· They can be no longer than 255 characters. The names of controls, forms, classes,
and modules must not exceed 40 characters.

· They can't be the same as restricted keywords.
9

A restricted keyword is a word that Visual Basic uses as part of its language. This
includes predefined statements (such as If and Loop), functions (such as Len and
Abs), and operators (such as Or and Mod).

Your forms and controls can have the same name as a restricted keyword. For
example, you can have a control named Loop. In your code you cannot refer to that
control in the usual way, however, because Visual Basic assumes you mean the Loop
keyword. For example, this code causes an error:

Loop.Visible = True ' Causes an error.
11

To refer to a form or control that has the same name as a restricted keyword, you must
either qualify it or surround it with square brackets: []. For example, this code does
not cause an error:

MyForm.Loop.Visible = True ' Qualified with the form
' name.

—13

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 13 of 73 Printed:

[Loop].Visible = True ' Square brackets also
' work.

12
You can use square brackets in this way when referring to forms and controls, but not
when declaring a variable or defining a procedure with the same name as a restricted
keyword. Square brackets can also be used to force Visual Basic to accept names
provided by other type libraries that conflict with restricted keywords.

Note Because typing square brackets can get tedious, you might want to
refrain from using restricted keywords as the name of forms and controls.
However, you can use this technique if a future version of Visual Basic
defines a new keyword that conflicts with an existing form or control name
when you update your code to work with the new version.

13

Introduction to Variables, Constants and
Data Types

You often need to store values temporarily when performing calculations with Visual
Basic. For example, you might want to calculate several values, compare them, and
perform different operations on them, depending on the result of the comparison. You
need to retain the values if you want to compare them, but you don't need to store
them in a property.

Visual Basic, like most programming languages, uses variables for storing values.
Variables have a name (the word you use to refer to the value the variable contains)
and a data type (which determines the kind of data the variable can store). Arrays can
be used to store indexed collections of related variables.

Constants also store values, but as the name implies, those values remain constant
throughout the execution of an application. Using constants can make your code more
readable by providing meaningful names instead of numbers. There are a number of
built-in constants in Visual Basic, but you can also create your own.

Data types control the internal storage of data in Visual Basic. By default, Visual
Basic uses the Variant data type. There are a number of other available data types that
allow you to optimize your code for speed and size when you don't need the
flexibility that Variant provides.

Variables
In Visual Basic, you use variables to temporarily store values during the execution of
an application. Variables have a name (the word you use to refer to the value the
variable contains) and a data type (which determines the kind of data the variable can
store).

—14

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 14 of 73 Printed:

You can think of a variable as a placeholder in memory for an unknown value. For
example, imagine you are creating a program for a fruit stand to track the sales of
apples. You don't know the price of an apple or the quantity sold until the sale actually
occurs. You can use two variables to hold the unknown values — let's name them
ApplePrice and ApplesSold. Each time the program is run, the user supplies the
values for the two variables. To calculate the total sales and display it in a Textbox
named txtSales, your code would look like this:

txtSales.txt = ApplePrice * ApplesSold
14

The expression returns a different total each time, depending on what values the user
provides. The variables allow you to make a calculation without having to know in
advance what the actual inputs are.

In this example, the data type of ApplePrice is Currency; the data type of ApplesSold
is an integer. Variables can represent many other values as well: text values, dates,
various numeric types, even objects.

Storing and Retrieving Data in Variables
You use assignment statements to perform calculations and assign the result to a
variable:

ApplesSold = 10 ' The value 10 is passed to the
' variable.

ApplesSold = ApplesSold + 1 ' The variable is
' incremented.

15
Note that the equal sign in this example is an assignment operator, not an equality
operator; the value (10) is being assigned to the variable (ApplesSold).

Declaring Variables
To declare a variable is to tell the program about it in advance. You declare a variable
with the Dim statement, supplying a name for the variable:

Dim variablename [As type]
16

Variables declared with the Dim statement within a procedure exist only as long as
the procedure is executing. When the procedure finishes, the value of the variable
disappears. In addition, the value of a variable in a procedure is local to that
procedure — that is, you can't access a variable in one procedure from another
procedure. These characteristics allow you to use the same variable names in different
procedures without worrying about conflicts or accidental changes.

A variable name:

· Must begin with a letter.

· Can't contain an embedded period or embedded type-declaration character.

· Must not exceed 255 characters.

—15

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 15 of 73 Printed:

· Must be unique within the same scope, which is the range from which the variable
can be referenced — a procedure, a form, and so on.

10
The optional As type clause in the Dim statement allows you to define the data type or
object type of the variable you are declaring. Data types define the type of
information the variable stores. Some examples of data types include String, Integer,
and Currency. Variables can also contain objects from Visual Basic or other
applications. Examples of Visual Basic object types, or classes, include Object,
Form1, and TextBox.

For More Information For more information on objects, see "Programming with
Objects." Data types are discussed in detail in the section, "Data Types," later in this
chapter.

There are other ways to declare variables:

· Declaring a variable in the Declarations section of a form, standard, or class
module, rather than within a procedure, makes the variable available to all the
procedures in the module.

· Declaring a variable using the Public keyword makes it available throughout your
application.

· Declaring a local variable using the Static keyword preserves its value even when
a procedure ends.

11

Implicit Declaration
You don't have to declare a variable before using it. For example, you could write a
function where you don't need to declare TempVal before using it:

Function SafeSqr(num)
TempVal = Abs(num)
SafeSqr = Sqr(TempVal)

End Function
17

Visual Basic automatically creates a variable with that name, which you can use as if
you had explicitly declared it. While this is convenient, it can lead to subtle errors in
your code if you misspell a variable name. For example, suppose that this was the
function you wrote:

Function SafeSqr(num)
TempVal = Abs(num)
SafeSqr = Sqr(TemVal)

End Function
18

At first glance, this looks the same. But because the TempVal variable was misspelled
on the next-to-last line, this function will always return zero. When Visual Basic
encounters a new name, it can't determine whether you actually meant to implicitly
declare a new variable or you just misspelled an existing variable name, so it creates a
new variable with that name.

—16

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 16 of 73 Printed:

Explicit Declaration
To avoid the problem of misnaming variables, you can stipulate that Visual Basic
always warn you whenever it encounters a name not declared explicitly as a variable.

 To explicitly declare variables

· Place this statement in the Declarations section of a class, form, or standard
module:

1Option Explicit

1– or –

2From the Tools menu, choose Options, click the Editor tab and check the
Require Variable Declaration option. This automatically inserts the Option
Explicit statement in any new modules, but not in modules already created;
therefore, you must manually add Option Explicit to any existing modules within a
project.

12
Had this statement been in effect for the form or standard module containing the
SafeSqr function, Visual Basic would have recognized TempVal and TemVal as
undeclared variables and generated errors for both of them. You could then explicitly
declare TempVal:

Function SafeSqr(num)
Dim TempVal
TempVal = Abs(num)
SafeSqr = Sqr(TemVal)

End Function
19

Now you'd understand the problem immediately because Visual Basic would display
an error message for the incorrectly spelled TemVal. Because the Option Explicit
statement helps you catch these kinds of errors, it's a good idea to use it with all your
code.

Note The Option Explicit statement operates on a per-module basis; it must
be placed in the Declarations section of every form, standard, and class
module for which you want Visual Basic to enforce explicit variable
declarations. If you select Require Variable Declaration, Visual Basic inserts
Option Explicit in all subsequent form, standard, and class modules, but does
not add it to existing code. You must manually add Option Explicit to any
existing modules within a project.

20

Understanding the Scope of Variables
The scope of a variable defines which parts of your code are aware of its existence.
When you declare a variable within a procedure, only code within that procedure can
access or change the value of that variable; it has a scope that is local to that
procedure. Sometimes, however, you need to use a variable with a broader scope,
such as one whose value is available to all the procedures within the same module, or

—17

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 17 of 73 Printed:

even to all the procedures in your entire application. Visual Basic allows you to
specify the scope of a variable when you declare it.

Scoping Variables
Depending on how it is declared, a variable is scoped as either a procedure-level
(local) or module-level variable.

Scope Private Public

Procedure-level Variables are private to the procedure
in which they appear.

Not applicable. You cannot declare
public variables within a procedure.

Module-level Variables are private to the module in
which they appear.

Variables are available to all
modules.

21

Variables Used Within a Procedure
Procedure-level variables are recognized only in the procedure in which they're
declared. These are also known as local variables. You declare them with the Dim or
Static keywords. For example:

Dim intTemp As Integer

3– or –

Static intPermanent As Integer
22

Values in local variables declared with Static exist the entire time your application is
running while variables declared with Dim exist only as long as the procedure is
executing.

Local variables are a good choice for any kind of temporary calculation. For example,
you can create a dozen different procedures containing a variable called intTemp. As
long as each intTemp is declared as a local variable, each procedure recognizes only
its own version of intTemp. Any one procedure can alter the value in its local intTemp
without affecting intTemp variables in other procedures.

Variables Used Within a Module
By default, a module-level variable is available to all the procedures in that module,
but not to code in other modules. You create module-level variables by declaring them
with the Private keyword in the Declarations section at the top of the module. For
example:

Private intTemp As Integer
23

At the module level, there is no difference between Private and Dim, but Private is
preferred because it readily contrasts with Public and makes your code easier to
understand.

Variables Used by All Modules

—18

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 18 of 73 Printed:

To make a module-level variable available to other modules, use the Public keyword
to declare the variable. The values in public variables are available to all procedures
in your application. Like all module-level variables, public variables are declared in
the Declarations section at the top of the module. For example:

Public intTemp As Integer
24

Note You can't declare public variables within a procedure, only within the
Declarations section of a module.

25
For More Information For additional information about variables, see "Advanced
Variable Topics."

Advanced Variable Topics
Using Multiple Variables with the Same Name
If public variables in different modules share the same name, it's possible to
differentiate between them in code by referring to both the module and variable
names. For example, if there is a public Integer variable intX declared in both Form1
and in Module1, you can refer to them as Module1.intX and Form1.intX to get the
correct values.

To see how this works, insert two standard modules in a new project and draw three
command buttons on a form.

One variable, intX, is declared in the first standard module, Module1. The Test
procedure sets its value:

Public intX As Integer ' Declare Module1's intX.
Sub Test()

' Set the value for the intX variable in Module1.
intX = 1

End Sub
26

The second variable, which has the same name, intX, is declared in the second
standard module, Module2. Again, a procedure named Test sets its value:

Public intX As Integer ' Declare Module2's intX.
Sub Test()

' Set the value for the intX variable in Module2.
intX = 2

End Sub
27

The third intX variable is declared in the form module. And again, a procedure named
Test sets its value.

Public intX As Integer ' Declare the form's intX
' variable.

Sub Test()
' Set the value for the intX variable in the form.
intX = 3

End Sub

—19

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 19 of 73 Printed:

28
Each of the three command buttons' Click event procedures calls the appropriate Test
procedure and uses MsgBox to display the values of the three variables.

Private Sub Command1_Click()
Module1.Test ' Calls Test in Module1.
MsgBox Module1.intX ' Displays Module1's intX.

End Sub

Private Sub Command2_Click()
Module2.Test ' Calls Test in Module2.
MsgBox Module2.intX ' Displays Module2's intX.

End Sub

Private Sub Command3_Click()
Test ' Calls Test in Form1.
MsgBox intX ' Displays Form1's intX.

End Sub
29

Run the application and click each of the three command buttons. You'll see the
separate references to the three public variables. Notice in the third command button's
Click event procedure, you don't need to specify Form1.Test when calling the form's
Test procedure, or Form1.intX when calling the value of the form's Integer variable. If
there are multiple procedures and variables with the same name, Visual Basic takes
the value of the more local variable, which in this case, is the Form1 variable.

Public vs. Local Variables
You can also have a variable with the same name at a different scope. For example,
you could have a public variable named Temp and then, within a procedure, declare a
local variable named Temp. References to the name Temp within the procedure would
access the local variable; references to Temp outside the procedure would access the
public variable. The module-level variable can be accessed from within the procedure
by qualifying the variable with the module name.

Public Temp As Integer
Sub Test()

Dim Temp As Integer
Temp = 2 ' Temp has a value of 2.
MsgBox Form1.Temp ' Form1.Temp has a value of 1.

End Sub

Private Sub Form_Load()
Temp = 1 ' Set Form1.Temp to 1.

End Sub
Private Sub Command1_Click()

Test
End Sub

30
In general, when variables have the same name but different scope, the more local
variable always shadows (that is, it is accessed in preference to) less local variables.
So if you also had a procedure-level variable named Temp, it would shadow the
public variable Temp within that module.

—20

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 20 of 73 Printed:

Shadowing Form Properties and Controls
Due to the effect of shadowing, form properties, controls, constants, and procedures
are treated as module-level variables in the form module. It is not legal to have a form
property or control with the same name as a module-level variable, constant, user-
defined type, or procedure because both are in the same scope.

Within the form module, local variables with the same names as controls on the form
shadow the controls. You must qualify the control with a reference to the form or the
Me keyword to set or get its value or any of its properties. For example:

Private Sub Form_Click ()
Dim Text1, BackColor
' Assume there is also a control on the form called
' Text1.

Text1 = "Variable" ' Variable shadows control.
Me.Text1 = "Control" ' Must qualify with Me to get

' control.
Text1.Top = 0 ' This causes an error!
Me.Text1.Top = 0 ' Must qualify with Me to get

' control.
BackColor = 0 ' Variable shadows property.
Me.BackColor = 0 ' Must qualify with Me to get

' form property.
End Sub

31

Using Variables and Procedures with the Same
Name
The names of your private module-level and public module-level variables can also
conflict with the names of your procedures. A variable in the module cannot have the
same name as any procedures or types defined in the module. It can, however, have
the same name as public procedures, types, or variables defined in other modules. In
this case, when the variable is accessed from another module, it must be qualified
with the module name.

While the shadowing rules described above are not complex, shadowing can be
confusing and lead to subtle bugs in your code; it is good programming practice to
keep the names of your variables distinct from each other. In form modules, try to use
variables names that are different from names of controls on those forms.

Static Variables
In addition to scope, variables have a lifetime, the period of time during which they
retain their value. The values in module-level and public variables are preserved for
the lifetime of your application. However, local variables declared with Dim exist
only while the procedure in which they are declared is executing. Usually, when a
procedure is finished executing, the values of its local variables are not preserved and
the memory used by the local variables is reclaimed. The next time the procedure is
executed, all its local variables are reinitialized.

—21

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 21 of 73 Printed:

However, you can preserve the value of a local variable by making the variable static.
Use the Static keyword to declare one or more variables inside a procedure, exactly as
you would with the Dim statement:

Static Depth
32

For example, the following function calculates a running total by adding a new value
to the total of previous values stored in the static variable Accumulate:

Function RunningTotal(num)
Static ApplesSold
ApplesSold = ApplesSold + num
RunningTotal = ApplesSold

End Function
33

If ApplesSold was declared with Dim instead of Static, the previous accumulated
values would not be preserved across calls to the function, and the function would
simply return the same value with which it was called.

You can produce the same result by declaring ApplesSold in the Declarations section
of the module, making it a module-level variable. Once you change the scope of a
variable this way, however, the procedure no longer has exclusive access to it.
Because other procedures can access and change the value of the variable, the running
totals might be unreliable and the code would be more difficult to maintain.

Declaring All Local Variables as Static
To make all local variables in a procedure static, place the Static keyword at the
beginning of a procedure heading. For example:

Static Function RunningTotal(num)
34

This makes all the local variables in the procedure static regardless of whether they
are declared with Static, Dim, Private, or declared implicitly. You can place Static in
front of any Sub or Function procedure heading, including event procedures and those
declared as Private.

Constants
Often you'll find that your code contains constant values that reappear over and over.
Or you may find that the code depends on certain numbers that are difficult to
remember — numbers that, in and of themselves, have no obvious meaning.

In these cases, you can greatly improve the readability of your code — and make it
easier to maintain — by using constants. A constant is a meaningful name that takes
the place of a number or string that does not change. Although a constant somewhat
resembles a variable, you can't modify a constant or assign a new value to it as you
can to a variable. There are two sources for constants:

· Intrinsic or system-defined constants are provided by applications and controls.
Visual Basic constants are listed in the Visual Basic (VB), Visual Basic for
applications (VBA), and data access (DAO) object libraries in the Object

—22

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 22 of 73 Printed:

Browser. Other applications that provide object libraries, such as Microsoft
Excel and Microsoft Project, also provide a list of constants you can use with
their objects, methods, and properties. Constants are also defined in the object
library for each ActiveX control. For details on using the Object Browser, see
"Programming with Objects."

· Symbolic or user-defined constants are declared using the Const statement. User-
defined constants are described in the next section, "Creating Your Own
Constants."

13
In Visual Basic, constant names are in a mixed-case format, with a prefix indicating
the object library that defines the constant. Constants from the Visual Basic and
Visual Basic for applications object libraries are prefaced with "vb" — for instance,
vbTileHorizontal. Constants from the data access object library are prefaced with
"db" — for instance, dbRelationUnique.

The prefixes are intended to prevent accidental collisions in cases where constants
have identical names and represent different values. Even with prefixes, it's still
possible that two object libraries may contain identical constants representing
different values. Which constant is referenced in this case depends on which object
library has the higher priority.

To be absolutely sure you avoid constant name collisions, you can qualify references
to constants with the following syntax:

[libname.][modulename.]constname
35

Libname is usually the class name of the control or library. Modulename is the name
of the module that defines the constant. Constname is the name of the constant. Each
of these elements is defined in the object library, and can be viewed in the Object
Browser.

Creating Your Own Constants
The syntax for declaring a constant is:

[Public|Private] Const constantname[As type] = expression
36

The argument constantname is a valid symbolic name (the rules are the same as those
for creating variable names), and expression is composed of numeric or string
constants and operators; however, you can't use function calls in expression.

A Const statement can represent a mathematical or date/time quantity:

Const conPi = 3.14159265358979
Public Const conMaxPlanets As Integer = 9
Const conReleaseDate = #1/1/95#

37
The Const statement can also be used to define string constants:

Public Const conVersion = "07.10.A"
Const conCodeName = "Enigma"

38

—23

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 23 of 73 Printed:

You can place more than one constant declaration on a single line if you separate
them with commas:

Public Const conPi = 3.14, conMaxPlanets = 9, _
conWorldPop = 6E+09

39
The expression on the right side of the equal sign (=) is often a number or literal
string, but it can also be an expression that results in a number or string (although that
expression can't contain calls to functions). You can even define constants in terms of
previously defined constants:

Const conPi2 = conPi * 2
40

Once you define constants, you can place them in your code to make it more readable.
For example:

Static SolarSystem(1 To conMaxPlanets)
If numPeople > conWorldPop Then Exit Sub

41

Scoping User-Defined Constants
A Const statement has scope like a variable declaration, and the same rules apply:

· To create a constant that exists only within a procedure, declare it within that
procedure.

· To create a constant available to all procedures within a module, but not to any
code outside that module, declare it in the Declarations section of the module.

· To create a constant available throughout the application, declare the constant in
the Declarations section of a standard module, and place the Public keyword
before Const. Public constants cannot be declared in a form or class module.

14
For More Information For more information regarding scope, see "Understanding
the Scope of Variables" earlier in this chapter.

Avoiding Circular References
Because constants can be defined in terms of other constants, you must be careful not
to set up a cycle, or circular reference between two or more constants. A cycle occurs
when you have two or more public constants, each of which is defined in terms of the
other.

For example:

' In Module 1:
Public Const conA = conB * 2 ' Available throughout

' application.
' In Module 2:
Public Const conB = conA / 2 ' Available throughout

' application.
42

If a cycle occurs, Visual Basic generates an error when you attempt to run your
application. You cannot run your code until you resolve the circular reference. To

—24

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 24 of 73 Printed:

avoid creating a cycle, restrict all your public constants to a single module or, at most,
a small number of modules.

Data Types
Variables are placeholders used to store values; they have names and data types. The
data type of a variable determines how the bits representing those values are stored in
the computer's memory. When you declare a variable, you can also supply a data type
for it. All variables have a data type that determines what kind of data they can store.

By default, if you don't supply a data type, the variable is given the Variant data type.
The Variant data type is like a chameleon — it can represent many different data
types in different situations. You don't have to convert between these types of data
when assigning them to a Variant variable: Visual Basic automatically performs any
necessary conversion.

If you know that a variable will always store data of a particular type, however, Visual
Basic can handle that data more efficiently if you declare a variable of that type. For
example, a variable to store a person's name is best represented as a string data type,
because a name is always composed of characters.

Data types apply to other things besides variables. When you assign a value to a
property, that value has a data type; arguments to functions also have data types. In
fact, just about anything in Visual Basic that involves data also involves data types.

You can also declare arrays of any of the fundamental types.

For More Information For more information, see the section, "Arrays," later in
this chapter.

Declaring Variables with Data Types
Before using a non-Variant variable, you must use the Private, Public, Dim or Static
statement to declare it As type. For example, the following statements declare an
Integer, Double, String, and Currency type, respectively:

Private I As Integer
Dim Amt As Double
Static YourName As String
Public BillsPaid As Currency

43
A Declaration statement can combine multiple declarations, as in these statements:

Private I As Integer, Amt As Double
Private YourName As String, BillsPaid As Currency
Private Test, Amount, J As Integer

44
Note If you do not supply a data type, the variable is given the default type.
In the preceding example, the variables Test and Amount are of the Variant
data type. This may surprise you if your experience with other programming
languages leads you to expect all variables in the same declaration statement
to have the same specified type (in this case, Integer).

—25

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 25 of 73 Printed:

45

Numeric Data Types
Visual Basic supplies several numeric data types — Integer, Long (long integer),
Single (single-precision floating point), Double (double-precision floating point), and
Currency. Using a numeric data type generally uses less storage space than a variant.

If you know that a variable will always store whole numbers (such as 12) rather than
numbers with a fractional amount (such as 3.57), declare it as an Integer or Long
type. Operations are faster with integers, and these types consume less memory than
other data types. They are especially useful as the counter variables in For...Next
loops.

For More Information To read more about control structures, see "Introduction to
Control Structures" later in this chapter.

If the variable contains a fraction, declare it as a Single, Double, or Currency variable.
The Currency data type supports up to four digits to the right of the decimal separator
and fifteen digits to the left; it is an accurate fixed-point data type suitable for
monetary calculations. Floating-point (Single and Double) numbers have much larger
ranges than Currency, but can be subject to small rounding errors.

Note Floating-point values can be expressed as mmmEeee or mmmDeee,
in which mmm is the mantissa and eee is the exponent (a power of 10). The
highest positive value of a Single data type is 3.402823E+38, or 3.4 times 10
to the 38th power; the highest positive value of a Double data type is
1.79769313486232D+308, or about 1.8 times 10 to the 308 th power. Using D
to separate the mantissa and exponent in a numeric literal causes the value
to be treated as a Double data type. Likewise, using E in the same fashion
treats the value as a Single data type.

46

The Byte Data Type
If the variable contains binary data, declare it as an array of the Byte data type.
(Arrays are discussed in "Arrays" later in this chapter). Using Byte variables to store
binary data preserves it during format conversions. When String variables are
converted between ANSI and Unicode formats, any binary data in the variable is
corrupted. Visual Basic may automatically convert between ANSI and Unicode when:

· Reading from files

· Writing to files

· Calling DLLs

· Calling methods and properties on objects
15

All operators that work on integers work with the Byte data type except unary minus.
Since Byte is an unsigned type with the range 0 - 255, it cannot represent a negative
number. So for unary minus, Visual Basic coerces the Byte to a signed integer first.

—26

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 26 of 73 Printed:

All numeric variables can be assigned to each other and to variables of the Variant
type. Visual Basic rounds off rather than truncates the fractional part of a floating-
point number before assigning it to an integer.

For More Information For details on Unicode and ANSI conversions, see
"International Issues."

The String Data Type
If you have a variable that will always contain a string and never a numeric value, you
can declare it to be of type String:

Private S As String
47

You can then assign strings to this variable and manipulate it using string functions:

S = "Database"
S = Left(S, 4)

48
By default, a string variable or argument is a variable-length string; the string grows
or shrinks as you assign new data to it. You can also declare strings that have a fixed
length. You specify a fixed-length string with this syntax:

String * size
49

For example, to declare a string that is always 50 characters long, use code like this:

Dim EmpName As String * 50
50

If you assign a string of fewer than 50 characters, EmpName is padded with enough
trailing spaces to total 50 characters. If you assign a string that is too long for the
fixed-length string, Visual Basic simply truncates the characters.

Because fixed-length strings are padded with trailing spaces, you may find the Trim
and RTrim functions, which remove the spaces, useful when working with them.

Fixed-length strings in standard modules can be declared as Public or Private. In
forms and class modules, fixed-length strings must be declared Private.

51

Exchanging Strings and Numbers
You can assign a string to a numeric variable if the string represents a numeric value.
It's also possible to assign a numeric value to a string variable. For example, place a
command button, text box, and list box on a form. Enter the following code in the
command button's Click event. Run the application, and click the command button.

Private Sub Command1_Click()
Dim intX As Integer
Dim strY As String
strY = "100.23"
intX = strY ' Passes the string to a numeric

' variable.
List1.AddItem Cos(strY) ' Adds cosine of number in

' the string to the listbox.

—27

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 27 of 73 Printed:

strY = Cos(strY) ' Passes cosine to the
' string variable.

Text1.Text = strY ' String variable prints in
' the text box.

End Sub
52

Visual Basic will automatically coerce the variables to the appropriate data type. You
should use caution when exchanging strings and numbers; passing a non-numeric
value in the string will cause a run-time error to occur.

The Boolean Data Type
If you have a variable that will contain simple true/false, yes/no, or on/off
information, you can declare it to be of type Boolean. The default value of Boolean is
False. In the following example, blnRunning is a Boolean variable which stores a
simple yes/no setting.

Dim blnRunning As Boolean
' Check to see if the tape is running.
If Recorder.Direction = 1 Then
blnRunning = True

End if
53

The Date Data Type
Date and time values can be contained both in the specific Date data type and in
Variant variables. The same general characteristics apply to dates in both types.

For More Information See the section, "Date/Time Values Stored in Variants," in
"Advanced Variant Topics.".

When other numeric data types are converted to Date, values to the left of the decimal
represent date information, while values to the right of the decimal represent time.
Midnight is 0, and midday is 0.5. Negative whole numbers represent dates before
December 30, 1899.

The Object Data Type
Object variables are stored as 32-bit (4-byte) addresses that refer to objects within an
application or within some other application. A variable declared as Object is one that
can subsequently be assigned (using the Set statement) to refer to any actual object
recognized by the application.

Dim objDb As Object
Set objDb = OpenDatabase("c:\Vb5\Biblio.mdb")

54
When declaring object variables, try to use specific classes (such as TextBox instead
of Control or, in the preceding case, Database instead of Object) rather than the
generic Object. Visual Basic can resolve references to the properties and methods of
objects with specific types before you run an application. This allows the application
to perform faster at run time. Specific classes are listed in the Object Browser.

—28

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 28 of 73 Printed:

When working with other applications' objects, instead of using a Variant or the
generic Object, declare objects as they are listed in the Classes list in the Object
Browser. This ensures that Visual Basic recognizes the specific type of object you're
referencing, allowing the reference to be resolved at run time.

For More Information For more information on creating and assigning objects
and object variables, see "Creating Objects" later in this chapter.

55

Converting Data Types
Visual Basic provides several conversion functions you can use to convert values into
a specific data type. To convert a value to Currency, for example, you use the CCur
function:

PayPerWeek = CCur(hours * hourlyPay)
56

Conversion
function Converts an expression to

CBool Boolean

CByte Byte

CCur Currency

CDate Date

CDbl Double

CInt Integer

CLng Long

CSng Single

CStr String

CVar Variant

CVErr Error
57

Note Values passed to a conversion function must be valid for the
destination data type or an error occurs. For example, if you attempt to
convert a Long to an Integer, the Long must be within the valid range for the
Integer data type.

58

The Variant Data Type
A Variant variable is capable of storing all system-defined types of data. You don't
have to convert between these types of data if you assign them to a Variant variable;
Visual Basic automatically performs any necessary conversion. For example:

Dim SomeValue ' Variant by default.
SomeValue = "17" ' SomeValue contains "17" (a two-

' character string).
SomeValue = SomeValue - 15 ' SomeValue now contains

' the numeric value 2.
SomeValue = "U" & SomeValue ' SomeValue now contains

—29

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 29 of 73 Printed:

' "U2" (a two- character string).
59

While you can perform operations on Variant variables without much concern for the
kind of data they contain, there are some traps you must avoid.

· If you perform arithmetic operations or functions on a Variant, the Variant must
contain something that is a number. For details, see the section, "Numeric
Values Stored in Variants," in "Advanced Variant Topics.”

· If you are concatenating strings, use the & operator instead of the + operator. For
details, see the section, "Strings Stored in Variants," in "Advanced Variant
Topics.”

16
In addition to being able to act like the other standard data types, Variants can also
contain three special values: Empty, Null, and Error.

The Empty Value
Sometimes you need to know if a value has ever been assigned to a created variable.
A Variant variable has the Empty value before it is assigned a value. The Empty value
is a special value different from 0, a zero-length string (""), or the Null value. You can
test for the Empty value with the IsEmpty function:

If IsEmpty(Z) Then Z = 0
60

When a Variant contains the Empty value, you can use it in expressions; it is treated
as either 0 or a zero-length string, depending on the expression.

The Empty value disappears as soon as any value (including 0, a zero-length string, or
Null) is assigned to a Variant variable. You can set a Variant variable back to Empty
by assigning the keyword Empty to the Variant.

The Null Value
The Variant data type can contain another special value: Null. Null is commonly used
in database applications to indicate unknown or missing data. Because of the way it is
used in databases, Null has some unique characteristics:

· Expressions involving Null always result in Null. Thus, Null is said to "propagate"
through expressions; if any part of the expression evaluates to Null, the entire
expression evaluates to Null.

· Passing Null, a Variant containing Null, or an expression that evaluates to Null as
an argument to most functions causes the function to return Null.

· Null values propagate through intrinsic functions that return Variant data types.
17

You can also assign Null with the Null keyword:

Z = Null
61

You can use the IsNull function to test if a Variant variable contains Null:

If IsNull(X) And IsNull(Y) Then

—30

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 30 of 73 Printed:

Z = Null
Else

Z = 0
End If

62
If you assign Null to a variable of any type other than Variant, a trappable error
occurs. Assigning Null to a Variant variable doesn't cause an error, and Null will
propagate through expressions involving Variant variables (though Null does not
propagate through certain functions). You can return Null from any Function
procedure with a Variant return value.

Variables are not set to Null unless you explicitly assign Null to them, so if you don't
use Null in your application, you don't have to write code that tests for and handles it.

63

The Error Value
In a Variant, Error is a special value used to indicate that an error condition has
occurred in a procedure. However, unlike for other kinds of errors, normal
application-level error handling does not occur. This allows you, or the application
itself, to take some alternative based on the error value. Error values are created by
converting real numbers to error values using the CVErr function.

For More Information For information on error handling, see "Debugging Your
Code and Handling Errors." For additional information about the Variant data type,
see "Advanced Variant Topics."

Advanced Variant Topics
Internal Representation of Values in Variants
Variant variables maintain an internal representation of the values that they store. This
representation determines how Visual Basic treats these values when performing
comparisons and other operations. When you assign a value to a Variant variable,
Visual Basic uses the most compact representation that accurately records the value.
Later operations may cause Visual Basic to change the representation it is using for a
particular variable. (A Variant variable is not a variable with no type; rather, it is a
variable that can freely change its type.) These internal representations correspond to
the explicit data types discussed in "Data Types" earlier in this chapter.

Most of the time, you don't have to be concerned with what internal representation
Visual Basic is using for a particular variable; Visual Basic handles conversions
automatically. If you want to know what value Visual Basic is using, however, you
can use the VarType function.

For example, if you store values with decimal fractions in a Variant variable, Visual
Basic always uses the Double internal representation. If you know that your
application does not need the high accuracy (and slower speed) that a Double value
supplies, you can speed your calculations by converting the values to Single, or even
to Currency:

—31

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 31 of 73 Printed:

If VarType(X) = 5 Then X = CSng(X) ' Convert to Single.
64

With an array variable, the value of VarType is the sum of the array and data type
return values. For example, this array contains Double values:

Private Sub Form_Click()
Dim dblSample(2) As Double
MsgBox VarType(dblSample)

End Sub
65

Future versions of Visual Basic may add additional Variant representations, so any
code you write that makes decisions based on the return value of the VarType function
should gracefully handle return values that are not currently defined.

For More Information To read more about arrays, see "Arrays" later in this
chapter. For details on converting data types, see "Data Types" earlier in this chapter.

Numeric Values Stored in Variants
When you store numbers in Variant variables, Visual Basic uses the most compact
representation possible. For example, if you store a small number without a decimal
fraction, the Variant uses an Integer representation for the value. If you then assign a
larger number, Visual Basic will use a Long value or, if it is very large or has a
fractional component, a Double value.

Sometimes you want to use a specific representation for a number. For example, you
might want a Variant variable to store a numeric value as Currency to avoid round-off
errors in later calculations. Visual Basic provides several conversion functions that
you can use to convert values into a specific type (see "Converting Data Types"
earlier in this chapter). To convert a value to Currency, for example, you use the CCur
function:

PayPerWeek = CCur(hours * hourlyPay)
66

An error occurs if you attempt to perform a mathematical operation or function on a
Variant that does not contain a number or something that can be interpreted as a
number. For example, you cannot perform any arithmetic operations on the value U2
even though it contains a numeric character, because the entire value is not a valid
number. Likewise, you cannot perform any calculations on the value 1040EZ;
however, you can perform calculations on the values +10 or -1.7E6 because they are
valid numbers. For this reason, you often want to determine if a Variant variable
contains a value that can be used as a number. The IsNumeric function performs this
task:

Do
anyNumber = InputBox("Enter a number")

Loop Until IsNumeric(anyNumber)
MsgBox "The square root is: " & Sqr(anyNumber)

67
When Visual Basic converts a representation that is not numeric (such as a string
containing a number) to a numeric value, it uses the Regional settings (specified in

—32

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 32 of 73 Printed:

the Windows Control Panel) to interpret the thousands separator, decimal separator,
and currency symbol.

Thus, if the country setting in the Windows Control Panel is set to United States,
Canada, or Australia, these two statements would return true:

IsNumeric("$100")
IsNumeric("1,560.50")

68
While these two statements would return false:

IsNumeric("DM100")
IsNumeric("1.560,50")

69
However, the reverse would be the case — the first two would return false and the
second two true — if the country setting in the Windows Control Panel was set to
Germany.

If you assign a Variant containing a number to a string variable or property, Visual
Basic converts the representation of the number to a string automatically. If you want
to explicitly convert a number to a string, use the CStr function. You can also use the
Format function to convert a number to a string that includes formatting such as
currency, thousands separator, and decimal separator symbols. The Format function
automatically uses the appropriate symbols according to the Regional Settings
Properties dialog box in the Windows Control Panel.

For More Information For information on writing code for applications that will
be distributed in foreign markets, see Chapter 16, "International Issues."

Strings Stored in Variants
Generally, storing and using strings in Variant variables poses few problems. As
mentioned earlier, however, sometimes the result of the + operator can be ambiguous
when used with two Variant values. If both of the Variants contain numbers, the +
operator performs addition. If both of the Variants contain strings, then the + operator
performs string concatenation. But if one of the values is represented as a number and
the other is represented as a string, the situation becomes more complicated. Visual
Basic first attempts to convert the string into a number. If the conversion is
successful, the + operator adds the two values; if unsuccessful, it generates a Type
mismatch error.

To make sure that concatenation occurs, regardless of the representation of the value
in the variables, use the & operator. For example, the following code:

Sub Form_Click ()
Dim X, Y
X = "6"
Y = "7"
Print X + Y, X & Y
X = 6
Print X + Y, X & Y

End Sub
70

—33

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 33 of 73 Printed:

produces this result on the form:

67 67
13 67

71
Note Visual Basic stores strings internally as Unicode. For more information on
Unicode, see Chapter 16, "International Issues."

72

Date/Time Values Stored in Variants
Variant variables can also contain date/time values. Several functions return date/time
values. For example, DateSerial returns the number of days left in the year:

Private Sub Form_Click ()
Dim rightnow, daysleft, hoursleft, minutesleft
rightnow = Now ' Now returns the current date/time.
daysleft = Int(DateSerial(Year(rightnow) _
+ 1, 1, 1) - rightnow)
hoursleft = 24 - Hour(rightnow)
minutesleft = 60 - Minute(rightnow)
Print daysleft & " days left in the year."
Print hoursleft & " hours left in the day."
Print minutesleft & " minutes left in the hour."

End Sub
73

You can also perform math on date/time values. Adding or subtracting integers adds
or subtracts days; adding or subtracting fractions adds or subtracts time. Therefore,
adding 20 adds 20 days, while subtracting 1/24 subtracts one hour.

The range for dates stored in Variant variables is January 1, 0100, to December 31,
9999. Calculations on dates don't take into account the calendar revisions prior to the
switch to the Gregorian calendar, however, so calculations producing date values
earlier than the year in which the Gregorian calendar was adopted (1752 in Britain
and its colonies at that time; earlier or later in other countries) will be incorrect.

You can use date/time literals in your code by enclosing them with the number sign
(#), in the same way you enclose string literals with double quotation marks (""). For
example, you can compare a Variant containing a date/time value with a literal date:

If SomeDate > #3/6/93# Then
74

Similarly, you can compare a date/time value with a complete date/time literal:

If SomeDate > #3/6/93 1:20pm# Then
75

If you do not include a time in a date/time literal, Visual Basic sets the time part of the
value to midnight (the start of the day). If you do not include a date in a date/time
literal, Visual Basic sets the date part of the value to December 30, 1899.

Visual Basic accepts a wide variety of date and time formats in literals. These are all
valid date/time values:

SomeDate = #3-6-93 13:20#
SomeDate = #March 27, 1993 1:20am#

—34

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 34 of 73 Printed:

SomeDate = #Apr-2-93#
SomeDate = #4 April 1993#

76
For More Information For information on handling dates in international formats,
see Chapter 16, "International Issues."

In the same way that you can use the IsNumeric function to determine if a Variant
variable contains a value that can be considered a valid numeric value, you can use
the IsDate function to determine if a Variant contains a value that can be considered a
valid date/time value. You can then use the CDate function to convert the value into a
date/time value.

For example, the following code tests the Text property of a text box with IsDate. If
the property contains text that can be considered a valid date, Visual Basic converts
the text into a date and computes the days left until the end of the year:

Dim SomeDate, daysleft
If IsDate(Text1.Text) Then

SomeDate = CDate(Text1.Text)
daysleft = DateSerial(Year(SomeDate) + _
1, 1, 1) - SomeDate
Text2.Text = daysleft & " days left in the year."

Else
MsgBox Text1.Text & " is not a valid date."

End If
77

Objects Stored in Variants
Objects can be stored in Variant variables. This can be useful when you need to
gracefully handle a variety of data types, including objects. For example, all the
elements in an array must have the same data type. Setting the data type of an array to
Variant allows you to store objects alongside other data types in an array.

Arrays
If you have programmed in other languages, you're probably familiar with the
concept of arrays. Arrays allow you to refer to a series of variables by the same name
and to use a number (an index) to tell them apart. This helps you create smaller and
simpler code in many situations, because you can set up loops that deal efficiently
with any number of cases by using the index number. Arrays have both upper and
lower bounds, and the elements of the array are contiguous within those bounds.
Because Visual Basic allocates space for each index number, avoid declaring an array
larger than necessary.

Note The arrays discussed in this section are arrays of variables, declared in
code. They are different from the control arrays you specify by setting the
Index property of controls at design time. Arrays of variables are always
contiguous; unlike control arrays, you cannot load and unload elements from
the middle of the array.

78

—35

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 35 of 73 Printed:

All the elements in an array have the same data type. Of course, when the data type is
Variant, the individual elements may contain different kinds of data (objects, strings,
numbers, and so on). You can declare an array of any of the fundamental data types,
including user-defined types (described in the section, "Creating Your Own Data
Types," in "More About Programming") and object variables (described in
"Programming with Objects").

In Visual Basic there are two types of arrays: a fixed-size array which always remains
the same size, and a dynamic array whose size can change at run-time. Dynamic
arrays are discussed in more detail in the section "Dynamic Arrays" later in this
chapter.

Declaring Fixed-Size Arrays
There are three ways to declare a fixed-size array, depending on the scope you want
the array to have:

· To create a public array, use the Public statement in the Declarations section of a
module to declare the array.

· To create a module-level array, use the Private statement in the Declarations
section of a module to declare the array.

· To create a local array, use the Private statement in a procedure to declare the
array.

18

Setting Upper and Lower Bounds
When declaring an array, follow the array name by the upper bound in parentheses.
The upper bound cannot exceed the range of a Long data type (-2,147,483,648 to
2,147,483,647). For example, these array declarations can appear in the Declarations
section of a module:

Dim Counters(14) As Integer ' 15 elements.
Dim Sums(20) As Double ' 21 elements.

79
To create a public array, you simply use Public in place of Dim:

Public Counters(14) As Integer
Public Sums(20) As Double

80
The same declarations within a procedure use Dim:

Dim Counters(14) As Integer
Dim Sums(20) As Double

81
The first declaration creates an array with 15 elements, with index numbers running
from 0 to 14. The second creates an array with 21 elements, with index numbers
running from 0 to 20. The default lower bound is 0.

To specify a lower bound, provide it explicitly (as a Long data type) using the To
keyword:

Dim Counters(1 To 15) As Integer

—36

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 36 of 73 Printed:

Dim Sums(100 To 120) As String
82

In the preceding declarations, the index numbers of Counters range from 1 to 15, and
the index numbers of Sums range from 100 to 120.

Arrays that Contain Other Arrays
It's possible to create a Variant array, and populate it with other arrays of different
data types. The following code creates two arrays, one containing integers and the
other strings. It then declares a third Variant array and populates it with the integer
and string arrays.

Private Sub Command1_Click()
Dim intX As Integer ' Declare counter variable.
' Declare and populate an integer array.
Dim countersA(5) As Integer

For intX = 0 To 4
countersA(intX) = 5

Next intX
' Declare and populate a string array.

Dim countersB(5) As String
For intX = 0 To 4

countersB(intX) = "hello"
Next intX

Dim arrX(2) As Variant ' Declare a new two-member
' array.

arrX(1) = countersA() ' Populate the array with
' other arrays.

arrX(2) = countersB()
MsgBox arrX(1)(2) ' Display a member of each

' array.
MsgBox arrX(2)(3)

End Sub
83

Multidimensional Arrays
Sometimes you need to keep track of related information in an array. For example, to
keep track of each pixel on your computer screen, you need to refer to its X and Y
coordinates. This can be done using a multidimensional array to store the values.

With Visual Basic, you can declare arrays of multiple dimensions. For example, the
following statement declares a two-dimensional 10-by-10 array within a procedure:

Static MatrixA(9, 9) As Double
84

Either or both dimensions can be declared with explicit lower bounds:

Static MatrixA(1 To 10, 1 To 10) As Double
85

You can extend this to more than two dimensions. For example:

Dim MultiD(3, 1 To 10, 1 To 15)
86

This declaration creates an array that has three dimensions with sizes 4 by 10 by 15.
The total number of elements is the product of these three dimensions, or 600.

—37

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 37 of 73 Printed:

Note When you start adding dimensions to an array, the total storage
needed by the array increases dramatically, so use multidimensional arrays
with care. Be especially careful with Variant arrays, because they are larger
than other data types.

87

Using Loops to Manipulate Arrays
You can efficiently process a multidimensional array by using nested For loops. For
example, these statements initialize every element in MatrixA to a value based on its
location in the array:

Dim I As Integer, J As Integer
Static MatrixA(1 To 10, 1 To 10) As Double
For I = 1 To 10

For J = 1 To 10
MatrixA(I, J) = I * 10 + J

Next J
Next I

88
For More Information For information about loops, see "Loop Structures" later in
this chapter.

Dynamic Arrays
Sometimes you may not know exactly how large to make an array. You may want to
have the capability of changing the size of the array at run time.

A dynamic array can be resized at any time. Dynamic arrays are among the most
flexible and convenient features in Visual Basic, and they help you to manage
memory efficiently. For example, you can use a large array for a short time and then
free up memory to the system when you're no longer using the array.

The alternative is to declare an array with the largest possible size and then ignore
array elements you don't need. However, this approach, if overused, might cause the
operating environment to run low on memory.

 To create a dynamic array

1 Declare the array with a Public statement (if you want the array to be public) or
Dim statement at the module level (if you want the array to be module level), or
a Static or Dim statement in a procedure (if you want the array to be local). You
declare the array as dynamic by giving it an empty dimension list.

2Dim DynArray() 19
2 Allocate the actual number of elements with a ReDim statement.

3ReDim DynArray(X + 1) 20
The ReDim statement can appear only in a procedure. Unlike the Dim and Static
statements, ReDim is an executable statement — it makes the application carry out an
action at run time.

—38

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 38 of 73 Printed:

The ReDim statement supports the same syntax used for fixed arrays. Each ReDim
can change the number of elements, as well as the lower and upper bounds, for each
dimension. However, the number of dimensions in the array cannot change.

ReDim DynArray(4 to 12)
89

For example, the dynamic array Matrix1 is created by first declaring it at the module
level:

Dim Matrix1() As Integer
90

A procedure then allocates space for the array:

Sub CalcValuesNow ()
.
.
.
ReDim Matrix1(19, 29)

End Sub
91

The ReDim statement shown here allocates a matrix of 20 by 30 integers (at a total
size of 600 elements). Alternatively, the bounds of a dynamic array can be set using
variables:

ReDim Matrix1(X, Y)
92

Preserving the Contents of Dynamic Arrays
Each time you execute the ReDim statement, all the values currently stored in the
array are lost. Visual Basic resets the values to the Empty value (for Variant arrays), to
zero (for numeric arrays), to a zero-length string (for string arrays), or to Nothing (for
arrays of objects).

This is useful when you want to prepare the array for new data, or when you want to
shrink the size of the array to take up minimal memory. Sometimes you may want to
change the size of the array without losing the data in the array. You can do this by
using ReDim with the Preserve keyword. For example, you can enlarge an array by
one element without losing the values of the existing elements using the UBound
function to refer to the upper bound:

ReDim Preserve DynArray(UBound(DynArray) + 1)
93

Only the upper bound of the last dimension in a multidimensional array can be
changed when you use the Preserve keyword; if you change any of the other
dimensions, or the lower bound of the last dimension, a run-time error occurs. Thus,
you can use code like this:

ReDim Preserve Matrix(10, UBound(Matrix, 2) + 1)
94

But you cannot use this code:

ReDim Preserve Matrix(UBound(Matrix, 1) + 1, 10)
95

For More Information To learn more about object arrays, see "Programming with
Objects."

—39

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 39 of 73 Printed:

Introduction to Procedures
You can simplify programming tasks by breaking programs into smaller logical
components. These components — called procedures — can then become building
blocks that let you enhance and extend Visual Basic.

Procedures are useful for condensing repeated or shared tasks, such as frequently used
calculations, text and control manipulation, and database operations.

There are two major benefits of programming with procedures:

· Procedures allow you to break your programs into discrete logical units, each of
which you can debug more easily than an entire program without procedures.

· Procedures used in one program can act as building blocks for other programs,
usually with little or no modification.

21
There are several types of procedures used in Visual Basic:

· Sub procedures do not return a value.

· Function procedures return a value.

· Property procedures can return and assign values, and set references to objects.
22

For More Information Property procedures are discussed in "Programming with
Objects."

Sub Procedures
A Sub procedure is a block of code that is executed in response to an event. By
breaking the code in a module into Sub procedures, it becomes much easier to find or
modify the code in your application.

The syntax for a Sub procedure is:

[Private|Public][Static]Sub procedurename (arguments)
statements

End Sub
96

Each time the procedure is called, the statements between Sub and End Sub are
executed. Sub procedures can be placed in standard modules, class modules, and form
modules. Sub procedures are by default Public in all modules, which means they can
be called from anywhere in the application.

The arguments for a procedure are like a variable declaration, declaring values that
are passed in from the calling procedure.

In Visual Basic, it's useful to distinguish between two types of Sub procedures,
general procedures and event procedures.

General Procedures
—40

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 40 of 73 Printed:

A general procedure tells the application how to perform a specific task. Once a
general procedure is defined, it must be specifically invoked by the application. By
contrast, an event procedure remains idle until called upon to respond to events
caused by the user or triggered by the system.

Why create general procedures? One reason is that several different event procedures
might need the same actions performed. A good programming strategy is to put
common statements in a separate procedure (a general procedure) and have your
event procedures call it. This eliminates the need to duplicate code and also makes the
application easier to maintain. For example, the VCR sample application uses a
general procedure called by the click events for several different scroll buttons. Figure
5.7 illustrates the use of a general procedure. Code in the Click events calls the
ButtonManager Sub procedure, which runs its own code, and then returns control to
the Click event procedure.

Figure 5.7 How general procedures are called by event procedures

23

Event Procedures
When an object in Visual Basic recognizes that an event has occurred, it automatically
invokes the event procedure using the name corresponding to the event. Because the
name establishes an association between the object and the code, event procedures are
said to be attached to forms and controls.

· An event procedure for a control combines the control's actual name (specified in
the Name property), an underscore (_), and the event name. For instance, if you
want a command button named cmdPlay to invoke an event procedure when it
is clicked, use the procedure cmdPlay_Click.

· An event procedure for a form combines the word "Form," an underscore, and the
event name. If you want a form to invoke an event procedure when it is clicked,
use the procedure Form_Click. (Like controls, forms do have unique names, but
they are not used in the names of event procedures.) If you are using the MDI
form, the event procedure combines the word "MDIForm," an underscore, and
the event name, as in MDIForm_Load.

24

—41

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 41 of 73 Printed:

All event procedures use the same general syntax.

Syntax for a control event Syntax for a form event

Private Sub controlname_eventname
(arguments)
 statements

End Sub

Private Sub Form_eventname (arguments)
 statements
End Sub

97
Although you can write event procedures from scratch, it's easier to use the code
procedures provided by Visual Basic, which automatically include the correct
procedure names. You can select a template in the Code Editor window by selecting
an object from the Object box and then selecting a procedure from the Procedure box.

It's also a good idea to set the Name property of your controls before you start writing
event procedures for them. If you change the name of a control after attaching a
procedure to it, you must also change the name of the procedure to match the new
name of the control. Otherwise, Visual Basic won't be able to match the control to the
procedure. When a procedure name does not match a control name, it becomes a
general procedure.

98

Function Procedures
Visual Basic includes built-in, or intrinsic functions, like Sqr, Cos or Chr. In addition,
you can use the Function statement to write your own Function procedures.

The syntax for a Function procedure is:

[Private|Public][Static]Function procedurename (arguments) [As type]
statements

End Function
99

Like a Sub procedure, a Function procedure is a separate procedure that can take
arguments, perform a series of statements, and change the value of its arguments.
Unlike a Sub procedure, a Function procedure can return a value to the calling
procedure. There are three differences between Sub and Function procedures:

· Generally, you call a function by including the function procedure name and
arguments on the right side of a larger statement or expression (returnvalue =
function()).

· Function procedures have data types, just as variables do. This determines the type
of the return value. (In the absence of an As clause, the type is the default
Variant type.)

· You return a value by assigning it to the procedurename itself. When the Function
procedure returns a value, this value can then become part of a larger
expression.

25

—42

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 42 of 73 Printed:

For example, you could write a function that calculates the third side, or hypotenuse,
of a right triangle, given the values for the other two sides:

Function Hypotenuse (A As Integer, B As Integer) _
As String

Hypotenuse = Sqr(A ^ 2 + B ^ 2)
End Function

100
You call a Function procedure the same way you call any of the built-in functions in
Visual Basic:

Label1.Caption = Hypotenuse(CInt(Text1.Text), _
CInt(Text2.Text))
strX = Hypotenuse(Width, Height)

101
For More Information The techniques for calling all types of procedures are
discussed in the section, "Calling Procedures," later in this chapter.

Working with Procedures
Creating New Procedures
 To create a new general procedure

· Type a procedure heading in the Code window and press ENTER. The procedure
heading can be as simple as Sub or Function followed by a name. For example,
you can enter either of the following:

4Sub UpdateForm ()
5Function GetCoord () 26
4Visual Basic responds by completing the template for the new procedure.

Selecting Existing Procedures
 To view a procedure in the current module

· To view an existing general procedure, select "(General)" from the Object box in
the Code window, and then select the procedure in the Procedure box.

5– or –

6To view an event procedure, select the appropriate object from the Object box in
the Code window, and then select the event in the Procedure box.

27
 To view a procedure in another module

3 From the View menu, choose Object Browser.

4 Select the project from the Project/Library box.

5 Select the module from the Classes list, and the procedure from the Members of
list.

6 Choose View Definition.
28

—43

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 43 of 73 Printed:

Calling Procedures
The techniques for calling procedures vary, depending on the type of procedure,
where it's located, and how it's used in your application. The following sections
describe how to call Sub and Function procedures.

Calling Sub Procedures
A Sub procedure differs from a Function procedure in that a Sub procedure cannot be
called by using its name within an expression. A call to a Sub is a stand-alone
statement. Also, a Sub does not return a value in its name as does a function.
However, like a Function, a Sub can modify the values of any variables passed to it.

There are two ways to call a Sub procedure:

' Both of these statements call a Sub named MyProc.
Call MyProc (FirstArgument, SecondArgument)
MyProc FirstArgument, SecondArgument

102
Note that when you use the Call syntax, arguments must be enclosed in parentheses.
If you omit the Call keyword, you must also omit the parentheses around the
arguments.

Calling Function Procedures
Usually, you call a function procedure you've written yourself the same way you call
an intrinsic Visual Basic function like Abs; that is, by using its name in an expression:

' All of the following statements would call a function
' named ToDec.
Print 10 * ToDec
X = ToDec
If ToDec = 10 Then Debug.Print "Out of Range"
X = AnotherFunction(10 * ToDec)

103
It's also possible to call a function just like you would call a Sub procedure. The
following statements both call the same function:

Call Year(Now)
Year Now

104
When you call a function this way, Visual Basic throws away the return value.

Calling Procedures in Other Modules
Public procedures in other modules can be called from anywhere in the project. You
might need to specify the module that contains the procedure you're calling. The
techniques for doing this vary, depending on whether the procedure is located in a
form, class, or standard module.

Procedures in Forms

—44

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 44 of 73 Printed:

All calls from outside the form module must point to the form module containing the
procedure. If a procedure named SomeSub is in a form module called Form1, then
you can call the procedure in Form1 by using this statement:

Call Form1.SomeSub(arguments)

Procedures in Class Modules
Like calling a procedure in a form, calling a procedure in a class module requires that
the call to the procedure be qualified with a variable that points to an instance of the
class. For example, DemoClass is an instance of a class named Class1:

Dim DemoClass as New Class1
DemoClass.SomeSub

105
However, unlike a form, the class name cannot be used as the qualifier when
referencing an instance of the class. The instance of the class must be first be declared
as an object variable (in this case, DemoClass) and referenced by the variable name.

For More Information You can find details on object variables and class modules
in "Programming with Objects."

Procedures in Standard Modules
If a procedure name is unique, you don't need to include the module name in the call.
A call from inside or outside the module will refer to that unique procedure. A
procedure is unique if it appears only in one place.

If two or more modules contain a procedure with the same name, you may need to
qualify it with the module name. A call to a common procedure from the same
module runs the procedure in that module. For example, with a procedure named
CommonName in Module1 and Module2, a call to CommonName from Module2 will
run the CommonName procedure in Module2, not the CommonName procedure in
Module1.

A call to a common procedure name from another module must specify the intended
module. For example, if you want to call the CommonName procedure in Module2
from Module1, use:

Module2.CommonName(arguments)
106

Passing Arguments to Procedures
Usually the code in a procedure needs some information about the state of the
program to do its job. This information consists of variables passed to the procedure
when it is called. When a variable is passed to a procedure, it is called an argument.

Argument Data Types
The arguments for procedures you write have the Variant data type by default.
However, you can declare other data types for arguments. For example, the following
function accepts a string and an integer:

—45

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 45 of 73 Printed:

Function WhatsForLunch(WeekDay As String, Hour _
As Integer) As String

' Returns a lunch menu based on the day and time.
If WeekDay = "Friday" then

WhatsForLunch = "Fish"
Else

WhatsForLunch = "Chicken"
End If
If Hour > 4 Then WhatsForLunch = "Too late"

End Function
107

For More Information Details on Visual Basic data types are presented earlier in
this chapter.

Passing Arguments By Value
Only a copy of a variable is passed when an argument is passed by value. If the
procedure changes the value, the change affects only the copy and not the variable
itself. Use the ByVal keyword to indicate an argument passed by value.

For example:

Sub PostAccounts(ByVal intAcctNum as Integer)
.
. ' Place statements here.
.

End Sub
108

Passing Arguments By Reference
Passing arguments by reference gives the procedure access to the actual variable
contents in its memory address location. As a result, the variable's value can be
permanently changed by the procedure to which it is passed. Passing by reference is
the default in Visual Basic.

If you specify a data type for an argument passed by reference, you must pass a value
of that type for the argument. You can work around this by passing an expression,
rather than a data type, for an argument. Visual Basic evaluates an expression and
passes it as the required type if it can.

The simplest way to turn a variable into an expression is to enclose it in parentheses.
For example, to pass a variable declared as an integer to a procedure expecting a
string as an argument, you would do the following:

Sub CallingProcedure()
Dim intX As Integer
intX = 12 * 3
Foo(intX)

End Sub

Sub Foo(Bar As String)
MsgBox Bar'The value of Bar is the string "36".

End Sub
109

—46

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 46 of 73 Printed:

Using Optional Arguments
You can specify arguments to a procedure as optional by placing the Optional
keyword in the argument list. If you specify an optional argument, all subsequent
arguments in the argument list must also be optional and declared with the Optional
keyword. The two pieces of sample code below assume there is a form with a
command button and list box.

For example, this code provides all optional arguments:

Dim strName As String
Dim varAddress As Variant

Sub ListText(Optional x As String, Optional y _
As Variant)

List1.AddItem x
List1.AddItem y

End Sub

Private Sub Command1_Click()
strName = "yourname"
varAddress = 12345 ' Both arguments are provided.
Call ListText(strName, varAddress)

End Sub
110

This code, however, does not provide all optional arguments:

Dim strName As String
Dim varAddress As Variant

Sub ListText(x As String, Optional y As Variant)
List1.AddItem x
If Not IsMissing(y) Then

List1.AddItem y
End If

End Sub

Private Sub Command1_Click()
strName = "yourname" ' Second argument is not

' provided.
Call ListText(strName)

End Sub
111

In the case where an optional argument is not provided, the argument is actually
assigned as a variant with the value of Empty. The example above shows how to test
for missing optional arguments using the IsMissing function.

Providing a Default for an Optional Argument
It's also possible to specify a default value for an optional argument. The following
example returns a default value if the optional argument isn't passed to the function
procedure:

Sub ListText(x As String, Optional y As _

—47

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 47 of 73 Printed:

Variant = 12345)
List1.AddItem x
List1.AddItem y

End Sub

Private Sub Command1_Click()
strName = "yourname" ' Second argument is not

' provided.
Call ListText(strName) ' Adds "yourname" and

' "12345".
End Sub

112

Using an Indefinite Number of Arguments
Generally, the number of arguments in the procedure call must be the same as in the
procedure specification. Using the ParamArray keyword allows you to specify that a
procedure will accept an arbitrary number of arguments. This allows you to write
functions like Sum:

Dim x As Variant
Dim y As Integer
Dim intSum As Integer

Sub Sum(ParamArray intNums())
For Each x In intNums

y = y + x
Next x
intSum = y

End Sub

Private Sub Command1_Click()
Sum 1, 3, 5, 7, 8
List1.AddItem intSum

End Sub
113

Creating Simpler Statements with Named
Arguments
For many built-in functions, statements, and methods, Visual Basic provides the
option of using named arguments as a shortcut for typing argument values. With
named arguments, you can provide any or all of the arguments, in any order, by
assigning a value to the named argument. You do this by typing the argument name
plus a colon followed by an equal sign and the value (MyArgument:= "SomeValue")
and placing that assignment in any sequence delimited by commas. Notice that the
arguments in the following example are in the reverse order of the expected
arguments:

Function ListText(strName As String, Optional varAddress As Variant)
List1.AddItem strName
List2.AddItem varAddress

End Sub

—48

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 48 of 73 Printed:

Private Sub Command1_Click()
ListText varAddress:=12345, strName:="Your Name"

End Sub
114

This is especially useful if your procedures have several optional arguments that you
do not always need to specify.

Determining Support for Named Arguments
To determine which functions, statements, and methods support named arguments,
use the AutoQuickInfo feature in the Code window, check the Object Browser.
Consider the following when working with named arguments:

· Named arguments are not supported by methods on objects in the Visual Basic
(VB) object library. They are supported by all language keywords in the Visual
Basic for applications (VBA) object library, and by methods in the data access
(DAO) object library.

· In syntax, named arguments are shown as bold and italic. All other arguments are
shown in italic only.

29
Important You cannot use named arguments to avoid entering required
arguments. You can omit only the optional arguments. For Visual Basic (VB)
and Visual Basic for applications (VBA) object libraries, the Object Browser
encloses optional arguments with square brackets [].

115

Introduction to Control Structures
Control structures allow you to control the flow of your program's execution. If left
unchecked by control-flow statements, a program's logic will flow through statements
from left to right, and top to bottom. While some very simple programs can be written
with only this unidirectional flow, and while some flow can be controlled by using
operators to regulate precedence of operations, most of the power and utility of any
programming language comes from its ability to change statement order with
structures and loops.

Decision Structures
Visual Basic procedures can test conditions and then, depending on the results of that
test, perform different operations. The decision structures that Visual Basic supports
include:

· If...Then

· If...Then...Else

· Select Case
30

—49

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 49 of 73 Printed:

If...Then
Use an If...Then structure to execute one or more statements conditionally. You can
use either a single-line syntax or a multiple-line block syntax:

If condition Then statement
If condition Then

statements
End If

116
The condition is usually a comparison, but it can be any expression that evaluates to a
numeric value. Visual Basic interprets this value as True or False; a zero numeric
value is False, and any nonzero numeric value is considered True. If condition is True,
Visual Basic executes all the statements following the Then keyword. You can use
either single-line or multiple-line syntax to execute just one statement conditionally
(these two examples are equivalent):

If anyDate < Now Then anyDate = Now

If anyDate < Now Then
anyDate = Now

End If
117

Notice that the single-line form of If...Then does not use an End If statement. If you
want to execute more than one line of code when condition is True, you must use the
multiple-line block If...Then...End If syntax.

If anyDate < Now Then
anyDate = Now
Timer1.Enabled = False ' Disable timer control.

End If
118

If...Then...Else
Use an If...Then...Else block to define several blocks of statements, one of which will
execute:

If condition1 Then
[statementblock-1]

[ElseIf condition2 Then
[statementblock-2]] ...

[Else
[statementblock-n]]

End If
119

Visual Basic first tests condition1. If it's False, Visual Basic proceeds to test
condition2, and so on, until it finds a True condition. When it finds a True condition,
Visual Basic executes the corresponding statement block and then executes the code
following the End If. As an option, you can include an Else statement block, which
Visual Basic executes if none of the conditions are True.

—50

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 50 of 73 Printed:

If...Then ElseIf is really just a special case of If...Then...Else. Notice that you can
have any number of ElseIf clauses, or none at all. You can include an Else clause
regardless of whether you have ElseIf clauses.

For example, your application could perform different actions depending on which
control in a menu control array was clicked:

Private Sub mnuCut_Click (Index As Integer)
If Index = 0 Then ' Cut command.

CopyActiveControl ' Call general procedures.
ClearActiveControl

ElseIf Index = 1 Then ' Copy command.
CopyActiveControl

ElseIf Index = 2 Then ' Clear command.
ClearActiveControl

Else ' Paste command.
PasteActiveControl

End If
End Sub

120
Notice that you can always add more ElseIf parts to your If...Then structure.
However, this syntax can get tedious to write when each ElseIf compares the same
expression to a different value. For this situation, you can use a Select Case decision
structure.

121

Select Case
Visual Basic provides the Select Case structure as an alternative to If...Then...Else for
selectively executing one block of statements from among multiple blocks of
statements. A Select Case statement provides capability similar to the If...Then...Else
statement, but it makes code more readable when there are several choices.

A Select Case structure works with a single test expression that is evaluated once, at
the top of the structure. Visual Basic then compares the result of this expression with
the values for each Case in the structure. If there is a match, it executes the block of
statements associated with that Case:

Select Case testexpression
[Case expressionlist1

[statementblock-1]]
[Case expressionlist2

[statementblock-2]]
.
.
.

[Case Else
[statementblock-n]]

End Select
122

—51

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 51 of 73 Printed:

Each expressionlist is a list of one or more values. If there is more than one value in a
single list, the values are separated by commas. Each statementblock contains zero or
more statements. If more than one Case matches the test expression, only the
statement block associated with the first matching Case will execute. Visual Basic
executes statements in the Case Else clause (which is optional) if none of the values
in the expression lists matches the test expression.

For example, suppose you added another command to the Edit menu in the
If...Then...Else example. You could add another ElseIf clause, or you could write the
function with Select Case:

Private Sub mnuCut_Click (Index As Integer)
Select Case Index

Case 0 ' Cut command.
CopyActiveControl ' Call general procedures.
ClearActiveControl

Case 1 ' Copy command.
CopyActiveControl

Case 2 ' Clear command.
ClearActiveControl

Case 3 ' Paste command.
PasteActiveControl

Case Else
frmFind.Show ' Show Find dialog box.

End Select
End Sub

123
Notice that the Select Case structure evaluates an expression once at the top of the
structure. In contrast, the If...Then...Else structure can evaluate a different expression
for each ElseIf statement. You can replace an If...Then...Else structure with a Select
Case structure only if the If statement and each ElseIf statement evaluates the same
expression.

Loop Structures
Loop structures allow you to execute one or more lines of code repetitively. The loop
structures that Visual Basic supports include:

· Do...Loop

· For...Next

· For Each...Next
31

Do...Loop
Use a Do loop to execute a block of statements an indefinite number of times. There
are several variations of the Do...Loop statement, but each evaluates a numeric
condition to determine whether to continue execution. As with If...Then, the condition
must be a value or expression that evaluates to False (zero) or to True (nonzero).

In the following Do...Loop, the statements execute as long as the condition is True:

—52

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 52 of 73 Printed:

Do While condition
statements

Loop
124

When Visual Basic executes this Do loop, it first tests condition. If condition is False
(zero), it skips past all the statements. If it's True (nonzero), Visual Basic executes the
statements and then goes back to the Do While statement and tests the condition
again.

Consequently, the loop can execute any number of times, as long as condition is
nonzero or True. The statements never execute if condition is initially False. For
example, this procedure counts the occurrences of a target string within another string
by looping as long as the target string is found:

Function CountStrings (longstring, target)
Dim position, count
position = 1
Do While InStr(position, longstring, target)

position = InStr(position, longstring, target)_
 + 1
count = count + 1

Loop
CountStrings = count

End Function
125

If the target string doesn't occur in the other string, then InStr returns 0, and the loop
doesn't execute.

Another variation of the Do...Loop statement executes the statements first and then
tests condition after each execution. This variation guarantees at least one execution
of statements:

Do
statements

Loop While condition
126

Two other variations are analogous to the previous two, except that they loop as long
as condition is False rather than True.

Loop zero or more times Loop at least once

Do Until condition
 statements
Loop

Do
 statements
Loop Until condition

127

For...Next
Do loops work well when you don't know how many times you need to execute the
statements in the loop. When you know you must execute the statements a specific
number of times, however, a For…Next loop is a better choice. Unlike a Do loop, a
For loop uses a variable called a counter that increases or decreases in value during
each repetition of the loop. The syntax is:

—53

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 53 of 73 Printed:

For counter = start To end [Step increment]
statements

Next [counter]
128

The arguments counter, start, end, and increment are all numeric.

Note The increment argument can be either positive or negative. If
increment is positive, start must be less than or equal to end or the
statements in the loop will not execute. If increment is negative, start must be
greater than or equal to end for the body of the loop to execute. If Step isn't
set, then increment defaults to 1.

129
In executing the For loop, Visual Basic:

5. Sets counter equal to start.

6. Tests to see if counter is greater than end. If so, Visual Basic exits the loop.

7(If increment is negative, Visual Basic tests to see if counter is less than end.)

7. Executes the statements.

8. Increments counter by 1 or by increment, if it's specified.

9. Repeats steps 2 through 4.
32

This code prints the names of all the available Screen fonts:

Private Sub Form_Click ()
Dim I As Integer
For i = 0 To Screen.FontCount

Print Screen.Fonts(i)
Next

End Sub
130

In the VCR sample application, the HighlightButton procedure uses a For...Next loop
to step through the controls collection of the VCR form and show the appropriate
Shape control:

Sub HighlightButton(MyControl As Variant)
Dim i As Integer
For i = 0 To frmVCR.Controls.Count - 1

If TypeOf frmVCR.Controls(i) Is Shape Then
If frmVCR.Controls(i).Name = MyControl Then

frmVCR.Controls(i).Visible = True
Else

frmVCR.Controls(i).Visible = False
End If

End If
Next

End Sub
131

For Each...Next

—54

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 54 of 73 Printed:

A For Each...Next loop is similar to a For...Next loop, but it repeats a group of
statements for each element in a collection of objects or in an array instead of
repeating the statements a specified number of times. This is especially helpful if you
don't know how many elements are in a collection.

Here is the syntax for the For Each...Next loop:

For Each element In group
statements

Next element
132

For example, the following Sub procedure opens Biblio.mdb and adds the name of
each table to a list box.

Sub ListTableDefs()
Dim objDb As Database
Set objDb = OpenDatabase("c:\vb\biblio.mdb", _
True, False)
For Each TableDef In objDb.TableDefs()

List1.AddItem TableDef.Name
Next TableDef

End Sub
133

Keep the following restrictions in mind when using For Each...Next:

· For collections, element can only be a Variant variable, a generic Object variable,
or an object listed in the Object Browser.

· For arrays, element can only be a Variant variable.

· You cannot use For Each...Next with an array of user-defined types because a
Variant cannot contain a user-defined type.

33

Working with Control Structures
Nested Control Structures
You can place control structures inside other control structures (such as an If...Then
block within a For...Next loop). A control structure placed inside another control
structure is said to be nested.

Control structures in Visual Basic can be nested to as many levels as you want. It's
common practice to make nested decision structures and loop structures more
readable by indenting the body of the decision structure or loop.

For example, this procedure prints all the font names that are common to both the
Printer and Screen:

Private Sub Form_Click()
Dim SFont, PFont
For Each SFont In Screen.Fonts()

For Each PFont In Printer.Fonts()
If SFont = PFont Then

—55

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 55 of 73 Printed:

Print SFont
End If

Next PFont
Next SFont

End Sub
134

Notice that the first Next closes the inner For loop and the last For closes the outer
For loop. Likewise, in nested If statements, the End If statements automatically apply
to the nearest prior If statement. Nested Do...Loop structures work in a similar
fashion, with the innermost Loop statement matching the innermost Do statement.

Exiting a Control Structure
The Exit statement allows you to exit directly from a For loop, Do loop, Sub
procedure, or Function procedure. The syntax for the Exit statement is simple: Exit
For can appear as many times as needed inside a For loop, and Exit Do can appear as
many times as needed inside a Do loop:

For counter = start To end [Step increment]
[statementblock]
[Exit For]
[statementblock]

Next [counter[, counter] [,...]]
135

Do [{While | Until} condition]
[statementblock]
[Exit Do]
[statementblock]

Loop
136

The Exit Do statement works with all versions of the Do loop syntax.

Exit For and Exit Do are useful because sometimes it's appropriate to quit a loop
immediately, without performing any further iterations or statements within the loop.
For example, in the previous example that printed the fonts common to both the
Screen and Printer, the code continues to compare Printer fonts against a given Screen
font even when a match has already been found with an earlier Printer font. A more
efficient version of the function would exit the loop as soon as a match is found:

Private Sub Form_Click()
Dim SFont, PFont
For Each SFont In Screen.Fonts()

For Each PFont In Printer.Fonts()
If SFont = PFont Then

Print Sfont
Exit For ' Exit inner loop.

End If
Next PFont

Next SFont
End Sub

137

—56

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 56 of 73 Printed:

As this example illustrates, an Exit statement almost always appears inside an If
statement or Select Case statement nested inside the loop.

When you use an Exit statement to break out of a loop, the value of the counter
variable differs, depending on how you leave the loop:

· When you complete a loop, the counter variable contains the value of the upper
bound plus the step.

· When you exit a loop prematurely, the counter variable retains its value subject to
the usual rules on scope.

· When you iterate off the end of a collection, the counter variable contains Nothing
if it's an Object data type, and contains Empty if it's a Variant data type.

34

Exiting a Sub or Function Procedure
You can also exit a procedure from within a control structure. The syntax of Exit Sub
and Exit Function is similar to that of Exit For and Exit Do in the previous section,
"Exiting a Control Structure." Exit Sub can appear as many times as needed,
anywhere within the body of a Sub procedure. Exit Function can appear as many
times as needed, anywhere within the body of a Function procedure.

Exit Sub and Exit Function are useful when the procedure has done everything it
needs to do and can return immediately. For example, if you want to change the
previous example so it prints only the first common Printer and Screen font it finds,
you would use Exit Sub:

Private Sub Form_Click()
Dim SFont, PFont
For Each SFont In Screen.Fonts()

For Each PFont In Printer.Fonts()
If SFont = PFont Then

Print Sfont
Exit Sub ' Exit the procedure.

End If
Next PFont

Next SFont
End Sub

138

Working with Objects
When you create an application in Visual Basic, you work with objects. You can use
objects provided by Visual Basic — such as controls, forms, and data access objects.
You can also control other applications' objects from within your Visual Basic
application. You can even create your own objects, and define additional properties
and methods for them.

What is an Object?

—57

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 57 of 73 Printed:

An object is a combination of code and data that can be treated as a unit. An object
can be a piece of an application, like a control or a form. An entire application can
also be an object. The following table describes examples of the types of objects you
can use in Visual Basic.

Example Description

Command button Controls on a form, such as command buttons and frames, are
objects.

Form Each form in a Visual Basic project is a separate object.

Database Databases are objects, and contain other objects, like fields and
indexes.

Chart A chart in Microsoft Excel is an object.
139

Where do Objects Come From?
Each object in Visual Basic is defined by a class. To understand the relationship
between an object and its class, think of cookie cutters and cookies. The cookie cutter
is the class. It defines the characteristics of each cookie — for instance, size and
shape. The class is used to create objects. The objects are the cookies.

Two examples of the relationship between classes and objects in Visual Basic may
make this clearer.

· The controls on the Toolbox in Visual Basic represent classes. The object known as
a control doesn't exist until you draw it on a form. When you create a control,
you're creating a copy or instance of the control class. That instance of the class
is the object you refer to in your application.

· The form you work with at design time is a class. At run time, Visual Basic creates
an instance of the form's class.

35
The Properties window displays the class and Name property of objects in your
Visual Basic application, as shown in Figure 5.8.

—58

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 58 of 73 Printed:

Figure 5.8 Object and class names shown in the Properties window

36
All objects are created as identical copies of their class. Once they exist as individual
objects, their properties can be changed. For example, if you draw three command
buttons on a form, each command button object is an instance of the CommandButton
class. Each object shares a common set of characteristics and capabilities (properties,
methods, and events), defined by the class. However, each has its own name, can be
separately enabled and disabled, can be placed in a different location on the form, and
so on.

For simplicity, most of the material outside of this chapter won't make many
references to an object's class. Just remember that the term "list box control," for
example, means "an instance of the ListBox class."

What Can You Do with Objects?
An object provides code you don't have to write. For example, you could create your
own File Open and File Save dialog boxes, but you don't have to. Instead, you can use
the common dialog control (an object) provided by Visual Basic. You could write
your own scheduling and resource management code, but you don't have to. Instead,
you can use the Calendar, Resources, and Task objects provided by Microsoft Project.

Visual Basic Can Combine Objects from Other
Sources

—59

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 59 of 73 Printed:

Visual Basic provides the tools to allow you to combine objects from different
sources. You can now build custom solutions combining the most powerful features
of Visual Basic and applications that support Automation (formerly known as OLE
Automation). Automation is a feature of the Component Object Model (COM), an
industry standard used by applications to expose objects to development tools and
other applications.

You can build applications by tying together intrinsic Visual Basic controls, and you
can also use objects provided by other applications. Consider placing these objects on
a Visual Basic form:

· A Microsoft Excel Chart object

· A Microsoft Excel Worksheet object

· A Microsoft Word Document object
37

You could use these objects to create a checkbook application like the one shown in
Figure 5.9. This saves you time because you don't have to write the code to reproduce
the functionality provided by the Microsoft Excel and Word objects.

Figure 5.9 Using objects from other applications

38

—60

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 60 of 73 Printed:

The Basics of Working with Objects
Visual Basic objects support properties, methods, and events. In Visual Basic, an
object's data (settings or attributes) are called properties, while the various procedures
that can operate on the object are called its methods. An event is an action recognized
by an object, such as clicking a mouse or pressing a key, and you can write code to
respond to that event.

You can change an object's characteristics by changing its properties. Consider a
radio: One property of a radio is its volume. In Visual Basic, you might say that a
radio has a "Volume" property that you can adjust by changing its value. Assume you
can set the volume of the radio from 0 to 10. If you could control a radio with Visual
Basic, you might write code in a procedure that changes the value of the "Volume"
property from 3 to 5 to make the radio play louder:

Radio.Volume = 5
140

In addition to properties, objects have methods. Methods are a part of objects just as
properties are. Generally, methods are actions you want to perform, while properties
are the attributes you set or retrieve. For example, you dial a telephone to make a call.
You might say that telephones have a "Dial" method, and you could use this syntax to
dial the seven-digit number 5551111:

Phone.Dial 5551111
141

Objects also have events. Events are triggered when some aspect of the object is
changed. For example, a radio might have a "VolumeChange" event. A telephone
might have a "Ring" event.

Controlling Objects with Their Properties
Individual properties vary as to when you can set or get their values. Some properties
can be set at design time. You can use the Properties window to set the value of these
properties without writing any code at all. Some properties are not available at design
time; therefore, you must write code to set those properties at run time.

Properties that you can set and get at run time are called read-write properties.
Properties you can only read at run time are called read-only properties.

Setting Property Values
You set the value of a property when you want to change the appearance or behavior
of an object. For example, you change the Text property of a text box control to
change the contents of the text box.

To set the value of a property, use the following syntax:

object.property = expression
142

The following statements demonstrate how you set properties:

Text1.Top = 200' Sets the Top property to 200 twips.

—61

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 61 of 73 Printed:

Text1.Visible = True ' Displays the text box.
Text1.Text = "hello" ' Displays 'hello' in the text

' box.
143

Getting Property Values
You get the value of a property when you want to find the state of an object before
your code performs additional actions (such as assigning the value to another object).
For example, you can return the Text property of a text box control to determine the
contents of the text box before running code that might change the value.

In most cases, to get the value of a property, you use the following syntax:

variable = object.property
144

You can also get a property value as part of a more complex expression, without
assigning the property to a variable. In the following code example, the Top property
of the new member of a control array is calculated as the Top property of the previous
member, plus 400:

Private Sub cmdAdd_Click()
' [statements]
optButton(n).Top = optButton(n-1).Top + 400
' [statements]

End Sub
145

Tip If you're going to use the value of a property more than once, your code
will run faster if you store the value in a variable.

146

Performing Actions with Methods
Methods can affect the values of properties. For example, in the radio analogy, the
SetVolume method changes the Volume property. Similarly, in Visual Basic, list boxes
have a List property, which can be changed with the Clear and AddItem methods.

Using Methods in Code
When you use a method in code, how you write the statement depends on how many
arguments the method requires, and whether the method returns a value. When a
method doesn't take arguments, you write the code using the following syntax:

object.method
147

In this example, the Refresh method repaints the picture box:

Picture1.Refresh ' Forces a repaint of the control.
148

Some methods, such as the Refresh method, don't have arguments and don't return
values.

If the method takes more than one argument, you separate the arguments with a
comma. For example, the Circle method uses arguments specifying the location,
radius, and color of a circle on a form:

—62

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 62 of 73 Printed:

' Draw a blue circle with a 1200-twip radius.
Form1.Circle (1600, 1800), 1200, vbBlue

149
If you keep the return value of a method, you must enclose the arguments in
parentheses. For example, the GetData method returns a picture from the Clipboard:

Picture = Clipboard.GetData (vbCFBitmap)
150

If there is no return value, the arguments appear without parentheses. For example,
the AddItem method doesn't return a value:

List1.AddItem "yourname" ' Adds the text 'yourname'
' to a list box.

151

How are Objects Related to Each Other?
When you put two command buttons on a form, they are separate objects with distinct
Name property settings (Command1 and Command2), but they share the same
class — CommandButton.

They also share the characteristic that they're on the same form. You've seen earlier in
this chapter that a control on a form is also contained by the form. This puts controls
in a hierarchy. To reference a control you may have to reference the form first, in the
same way you may have to dial a country code or area code before you can reach a
particular phone number.

The two command buttons also share the characteristic that they're controls. All
controls have common characteristics that make them different from forms and other
objects in the Visual Basic environment. The following sections explain how Visual
Basic uses collections to group objects that are related.

Object Hierarchies
An object hierarchy provides the organization that determines how objects are related
to each other, and how you can access them. In most cases, you don't need to concern
yourself with the Visual Basic object hierarchy. However:

· When manipulating another application's objects, you should be familiar with that
application's object hierarchy.

· When working with data access objects, you should be familiar with the Data
Access Object hierarchy, as described in the Guide to Data Access Objects in
the Professional Features book, included with the Visual Basic, Professional
and Enterprise Editions.

39
There are some common cases in Visual Basic where one object contains others.
These are described in the following sections.

Working with Collections of Objects
Collection objects have their own properties and methods. The objects in a collection
object are referred to as members of the collection. Each member of the collection is

—63

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 63 of 73 Printed:

numbered sequentially beginning at 0; this is the member's index number. For
example, the Controls collection contains all the controls on a given form, as shown
in Figure 5.10. You can use collections to simplify code if you need to perform the
same operation on all the objects in a collection.

Figure 5.10 Controls collection

40
For example, the following code scrolls through the Controls collection and lists each
member's name in a list box.

For Each Control In Form1.Controls
' For each control, add its name to a list box.
List1.AddItem Control.Name

Next Control
152

Applying Properties and Methods to Collection Members
There are two general techniques you can use to address a member of a collection
object:

· Specify the name of the member. The following expressions are equivalent:

6Controls("List1")
7Controls!List1 41

· Use the index number of the member:

8Controls(3) 42
Once you're able to address all the members collectively, and single members
individually, you can apply properties and methods using either approach:

' Set the Top property of the list box control to 200.
Controls!List1.Top = 200

8– or –

For Each Control In Form1.Controls()
' Set the Top property of each member to 200.
Control.Top = 200

—64

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 64 of 73 Printed:

Next Control
153

Objects That Contain Other Objects
Some objects in Visual Basic contain other objects. For example, a form usually
contains one or more controls. The advantage of having objects as containers for
other objects is that you can refer to the container in your code to make it clear which
object you want to use. For example, Figure 5.11 illustrates two different forms you
could have in an application — one for entering accounts payable transactions, and
the other for entering accounts receivable transactions.

Figure 5.11 Two different forms can contain controls that have the same name

43
Both forms can have a list box named lstAcctNo. You can specify exactly which one
you want to use by referring to the form containing the list box:

frmReceivable.lstAcctNo.AddItem 1201

9– or –

frmPayable.lstAcctNo.AddItem 1201
154

Common Collections in Visual Basic
There are some common cases in Visual Basic where one object contains other
objects. The following table briefly describes the most commonly used collections in
Visual Basic.

Collection Description

Forms Contains loaded forms.

Controls Contains controls on a form.

Printers Contains the available Printer objects.
155

You can also implement object containment in Visual Basic.

—65

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 65 of 73 Printed:

For More Information "For information about object containment, see "Using
Collections" in "More About Programming." For information on the Printers
collection, see "Working with Text and Graphics.”

The Container Property
You can use the Container property to change an object's container within a form. The
following controls can contain other controls:

· Frame control

· Picture box control

· Toolbar control (Professional and Enterprise editions only)
44

This example demonstrates moving a command button around from container to
container on a form. Open a new project, and draw a frame control, picture box
control and a command button on the form.

The following code in the form's click event increments a counter variable, and uses a
Select Case loop to rotate the command button from container to container.

Private Sub Form_Click()
Static intX as Integer
Select Case intX

Case 0
Set Command1.Container = Picture1
Command1.Top= 0
Command1.Left= 0

Case 1
Set Command1.Container = Frame1
Command1.Top= 0
Command1.Left= 0

Case 2
Set Command1.Container = Form1
Command1.Top= 0
Command1.Left= 0

End Select
intX = intX + 1

End Sub
156

Communicating Between Objects
In addition to using and creating objects within Visual Basic, you can communicate
with other applications and manipulate their objects from within your application.
The ability to share data between applications is one of the key features of the
Microsoft Windows operating system. With Visual Basic, you have great flexibility in
how you can communicate with other applications.

—66

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 66 of 73 Printed:

Creating Objects
The easiest way to create an object is to double-click a control in the Toolbox.
However, to realize the full benefit of all the objects available in Visual Basic and
from other applications, you can use Visual Basic's programmability features to create
objects at run time.

· You can create references to an object with object variables.

· You can create your own objects "from scratch" with class modules.

· You can create your own collections with the Collection object.
45

For More Information There are a number of functions used to manipulate data
access objects, which are discussed in the Guide to Data Access Objects, included
with the Visual Basic, Professional and Enterprise Editions.

Using Object Variables
In addition to storing values, a variable can refer to an object. You assign an object to
a variable for the same reasons you assign any value to a variable:

· Variable names are often shorter and easier to remember than the values they
contain (or, in this case, the objects they refer to).

· Variables can be changed to refer to other objects while your code is running.

· Referring to a variable that contains an object is more efficient than repeatedly
referring to the object itself.

46
Using an object variable is similar to using a conventional variable, but with one
additional step — assigning an object to the variable:

· First you declare it:

Dim variable As class
47

· Then you assign an object to it:

Set variable = object
48

Declaring Object Variables
You declare an object variable in the same way you declare other variables, with Dim,
ReDim, Static, Private, or Public. The only differences are the optional New keyword
and the class argument; both of these are discussed later in this chapter. The syntax is:

{Dim | ReDim | Static | Private | Public} variable As [New] class
157

For example, you can declare an object variable that refers to a form in the
application called frmMain:

Dim FormVar As New frmMain ' Declare an object
' variable of type frmMain.

158
You can also declare an object variable that can refer to any form in the application:

—67

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 67 of 73 Printed:

Dim anyForm As Form ' Generic form variable.
159

Similarly, you can declare an object variable that can refer to any text box in your
application:

Dim anyText As TextBox ' Can refer to any text box
' (but only a text box).

160
You can also declare an object variable that can refer to a control of any type:

Dim anyControl As Control ' Generic control variable.
161

Notice that you can declare a form variable that refers to a specific form in the
application, but you cannot declare a control variable that refers to a particular
control. You can declare a control variable that can refer to a specific type of control
(such as TextBox or ListBox), but not to one particular control of that type (such as
txtEntry or List1). However, you can assign a particular control to a variable of that
type. For example, for a form with a list box called lstSample, you could write:

Dim objDemo As ListBox
Set objDemo = lstSample

162

Assigning Object Variables
You assign an object to an object variable with the Set statement:

Set variable = object
163

Use the Set statement whenever you want an object variable to refer to an object.

Sometimes you may use object variables, and particularly control variables, simply to
shorten the code you have to type. For example, you might write code like this:

If frmAccountDisplay!txtAccountBalance.Text < 0 Then
frmAccountDisplay!txtAccountBalance.BackColor = 0 frmAccountDisplay!txtAccountBalance.ForeColor = 255

End If
164

You can shorten this code significantly if you use a control variable:

Dim Bal As TextBox
Set Bal = frmAccountDisplay!txtAccountBalance
If Bal.Text < 0 Then

Bal.BackColor = 0
Bal.ForeColor = 255

End If
165

Specific and Generic Object Types
Specific object variables must refer to one specific type of object or class. A specific
form variable can refer to only one form in the application (though it can refer to one
of many instances of that form). Similarly, a specific control variable can refer to only
one particular type of control in your application, such as TextBox or ListBox. To see
an example, open a new project and place a text box on a form. Add the following
code to the form:

—68

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 68 of 73 Printed:

Private Sub Form_Click()
Dim anyText As TextBox
Set anyText = Text1
anyText.Text = "Hello"

End Sub
166

Run the application, and click the form. The Text property of the text box will be
changed to "Hello."

Generic object variables can refer to one of many specific types of objects. A generic
form variable, for example, can refer to any form in an application; a generic control
variable can refer to any control on any form in an application. To see an example,
open a new project and place several frame, label, and command button controls on a
form, in any order. Add the following code to the form:

Private Sub Form_Click()
Dim anyControl As Control
Set anyControl = Form1.Controls(3)
anyControl.Caption = "Hello"

End Sub
167

Run the application, and click the form. The caption of the control you placed third in
sequence on the form will be changed to "Hello."

There are four generic object types in Visual Basic:

Generic Object
Type Object referenced

Form Any form in the application (including MDI children and the MDI
form).

Control Any control in your application.

MDIForm The MDI form in the application (if your application has one).

Object Any object.
168

Generic object variables are useful when you don't know the specific type of object a
variable will refer to at run time. For example, if you want to write code that can
operate on any form in the application, you must use a generic form variable.

Note Because there can be only one MDI form in the application, there is no
need to use the generic MDIForm type. Instead, you can use the specific
MDIForm type (MDIForm1, or whatever you specified for the Name property of
the MDI form) whenever you need to declare a form variable that refers to the
MDI form. In fact, because Visual Basic can resolve references to properties
and methods of specific form types before you run your application, you
should always use the specific MDIForm type.

169
The generic MDIForm type is provided only for completeness; should a future
version of Visual Basic allow multiple MDI forms in a single application, it
might become useful.

—69

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 69 of 73 Printed:

Forms as Objects
Forms are most often used to make up the interface of an application, but they're also
objects that can be called by other modules in your application. Forms are closely
related to class modules. The major difference between the two is that forms can be
visible objects, whereas class modules have no visible interface.

Adding Custom Methods and Properties
You can add custom methods and properties to forms and access them from other
modules in your application. To create a new method for a form, add a procedure
declared using Public.

' Custom method on Form1
Public Sub LateJobsCount()

.
. ' <statements>

.
End Sub

170
You can call the LateJobsCount procedure from another module using this statement:

Form1.LateJobsCount
171

Creating a new property for a form can be as simple as declaring a public variable in
the form module:

Public IDNumber As Integer
172

You can set and return the value of IDNumber on Form1 from another module using
these two statements:

Form1.IDNumber = 3
Text1.Text = Form1.IDNumber

173
You can also use Property procedures to add custom properties to a form.

For More Information Details on Property procedures are provided in
"Programming with Objects."

Note You can call a variable, a custom method, or set a custom property on
a form without loading the form. This allows you to run code on a form without
loading it into memory. Also, referencing a control without referencing one of
its properties or methods does not load the form.

174

Using the New Keyword
Use the New keyword to create a new object as defined by its class. New can be used
to create instances of forms, classes defined in class modules, and collections.

Using the New Keyword with Forms
Each form you create at design time is a class. The New keyword can be used to
create new instances of that class. To see how this works, draw a command button
and several other controls on a form. Set the form's Name property to Sample in the

—70

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 70 of 73 Printed:

Properties window. Add the following code to your command button's Click event
procedure:

Dim x As New Sample
x.Show

175
Run the application, and click the command button several times. Move the front-
most form aside. Because a form is a class with a visible interface, you can see the
additional copies. Each form has the same controls, in the same positions as on the
form at design time.

Note To make a form variable and an instance of the loaded form persist,
use a Static or Public variable instead of a local variable.

176
You can also use New with the Set statement. Try the following code in a command
button's Click event procedure:

Dim f As Form1
Set f = New Form1
f.Caption = "hello"
f.Show

177
Using New with the Set statement is faster and is the recommended method.

Using the New Keyword with Other Objects
The New keyword can be used to create collections and objects from the classes you
define in class modules. To see how this works, try the following example.

This example demonstrates how the New keyword creates instances of a class. Open
a new project, and draw a command button on Form1. From the Project menu, choose
Add Class Module to add a class module to the project. Set the class module's Name
property to ShowMe.

The following code in the Form1 module creates a new instance of the class ShowMe,
and calls the procedure contained in the class module.

Public clsNew As ShowMe
Private Sub Command1_Click()

Set clsNew = New ShowMe
clsNew.ShowFrm

End Sub
178

The ShowFrm procedure in the class module creates a new instance of the class
Form1, shows the form, and then minimizes it.

Sub ShowFrm()
Dim frmNew As Form1
Set frmNew = New Form1

frmNew.Show
frmNew.WindowState = 1

End Sub
179

—71

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 71 of 73 Printed:

To use the example, run the application, and click the command button several times.
You'll see a minimized form icon appear on your desktop as each new instance of the
ShowMe class is created.

New Keyword Restrictions
The following table describes what you cannot do with the New keyword.

You can't use New to create Example of code not allowed

Variables of fundamental data types. Dim X As New Integer

A variable of any generic object type. Dim X As New Control

A variable of any specific control type. Dim X As New ListBox

A variable of any specific control. Dim X As New lstNames
180

Freeing References to Objects
Each object uses memory and system resources. It is good programming practice to
release these resources when you are no longer using an object.

· Use Unload to unload a form or control from memory.

· Use Nothing to release resources used by an object variable. Assign Nothing to an
object variable with the Set statement.

49

Passing Objects to Procedures
You can pass objects to procedures in Visual Basic. In the following code example,
it's assumed that there is a command button on a form:

Private Sub Command1_Click()
' Calls the Demo sub, and passes the form to it.
Demo Form1

End Sub

Private Sub Demo(x As Form1)
' Centers the form on the screen.
x.Left = (Screen.Width - x.Width) / 2

End Sub
181

It's also possible to pass an object to an argument by reference and then, inside the
procedure, set the argument to a new object. To see how this works, open a project,
and insert a second form. Place a picture box control on each form. The following
table shows the property settings that need changes:

Object Property Setting

Picture box on Form2 Name
Picture

Picture2
c:\vb\icons\arrows\arw01dn.ico

182
The Form1_Click event procedure calls the GetPicture procedure in Form2, and
passes the empty picture box to it.

—72

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 72 of 73 Printed:

Private Sub Form_Click()
Form2.GetPicture Picture1
End Sub

183
The GetPicture procedure in Form2 assigns the Picture property of the picture box on
Form2 to the empty picture box on Form1.

Private objX As PictureBox
Public Sub GetPicture(x As PictureBox)

' Assign the passed-in picture box to an object
' variable.
Set objX = x
' Assign the value of the Picture property to Form1
' picture box.
objX.Picture = picture2.Picture

End Sub
184

To use the example, run the application, and click Form1. You'll see the icon from
Form2 appear in the picture box on Form1.

For More Information The previous topics are intended to serve as an
introduction to objects. To learn more, see "Programming with Objects" and
"Programming with Components."

—73

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 73 of 73 Printed:

	Contents
	Sample Application: Vcr.vbp
	The Structure of a Visual Basic Application
	How an Event-Driven Application Works

	Before You Start Coding
	Code Writing Mechanics
	Code Modules
	Form Modules
	Standard Modules
	Class Modules

	Using the Code Editor
	Automatic Code Completion

	Code Basics
	Breaking a Single Statement Into Multiple Lines
	Combining Statements on One Line
	Adding Comments to Your Code
	Understanding Numbering Systems
	Naming Conventions in Visual Basic

	Introduction to Variables, Constants and Data Types
	Variables
	Storing and Retrieving Data in Variables
	Declaring Variables
	Implicit Declaration
	Explicit Declaration
	 To explicitly declare variables

	Understanding the Scope of Variables
	Scoping Variables
	Variables Used Within a Procedure
	Variables Used Within a Module
	Variables Used by All Modules

	Advanced Variable Topics
	Using Multiple Variables with the Same Name
	Public vs. Local Variables
	Shadowing Form Properties and Controls
	Using Variables and Procedures with the Same Name

	Static Variables
	Declaring All Local Variables as Static

	Constants
	Creating Your Own Constants
	Scoping User-Defined Constants
	Avoiding Circular References

	Data Types
	Declaring Variables with Data Typesx@06p0057
	Numeric Data Types
	The Byte Data Type
	The String Data Type
	Exchanging Strings and Numbers
	The Boolean Data Type
	The Date Data Type
	The Object Data Type
	Converting Data Types
	The Variant Data Type
	The Empty Value
	The Null Value
	The Error Value

	Advanced Variant Topics
	Internal Representation of Values in Variants
	Numeric Values Stored in Variants
	Strings Stored in Variants
	Date/Time Values Stored in Variants
	Objects Stored in Variants

	Arrays
	Declaring Fixed-Size Arrays
	Setting Upper and Lower Bounds
	Arrays that Contain Other Arrays
	Multidimensional Arrays
	Using Loops to Manipulate Arrays

	Dynamic Arrays
	 To create a dynamic array
	Preserving the Contents of Dynamic Arrays

	Introduction to Procedures
	Sub Procedures
	General Procedures
	Event Procedures

	Function Procedures
	Working with Procedures
	Creating New Procedures
	 To create a new general procedurex@05p0058

	Selecting Existing Procedures
	 To view a procedure in the current modulex@05p0059
	 To view a procedure in another modulex@05p0060

	Calling Procedures
	Calling Sub Procedures
	Calling Function Procedures
	Calling Procedures in Other Modules
	Procedures in Forms
	Procedures in Class Modules
	Procedures in Standard Modules

	Passing Arguments to Procedures
	Argument Data Types
	Passing Arguments By Value
	Passing Arguments By Reference
	Using Optional Arguments
	Providing a Default for an Optional Argument
	Using an Indefinite Number of Arguments
	Creating Simpler Statements with Named Arguments
	Determining Support for Named Arguments

	Introduction to Control Structures
	Decision Structures
	If...Then
	If...Then...Else
	Select Case

	Loop Structures
	Do...Loop
	For...Next
	For Each...Next

	Working with Control Structures
	Nested Control Structures
	Exiting a Control Structure
	Exiting a Sub or Function Procedure

	Working with Objects
	What is an Object?
	Where do Objects Come From?

	What Can You Do with Objects?
	Visual Basic Can Combine Objects from Other Sources

	The Basics of Working with Objects
	Controlling Objects with Their Properties
	Setting Property Values
	Getting Property Values
	Performing Actions with Methods
	Using Methods in Code

	How are Objects Related to Each Other?
	Object Hierarchies
	Working with Collections of Objects
	Applying Properties and Methods to Collection Members

	Objects That Contain Other Objects
	Common Collections in Visual Basic
	The Container Property
	Communicating Between Objects

	Creating Objects
	Using Object Variables
	Declaring Object Variables
	Assigning Object Variables
	Specific and Generic Object Types
	Forms as Objects
	Adding Custom Methods and Properties

	Using the New Keyword
	Using the New Keyword with Forms
	Using the New Keyword with Other Objects
	New Keyword Restrictions

	Freeing References to Objects
	Passing Objects to Procedures

