
The series of step by step procedures in this chapter builds a simple ActiveX control
called ShapeLabel. Although the control itself is not very interesting, building it will
quickly demonstrate the major events in the life of an ActiveX control, introduce you
to the intricacies of running code at design time, and show the basic steps for creating
and hooking up a property page.

All of the subjects introduced in these procedures are covered in greater depth in later
chapters. References to in-depth material will be found in each procedure. In addition,
“Building ActiveX Controls,” shows how you can use the Control Creation Wizard to
make building controls even easier.

The procedures for creating the ShapeLabel control build on each other, so the
sequence in which you perform the procedures is important.

Note If you are using the Control Creation Edition of Visual Basic, some of
the material covered in this document may not be applicable. With the full
editions of Visual Basic you have the ability to create applications, ActiveX
documents, and other types of components. Although some of the
terminology may relate to application specific objects such as forms, in most
cases the underlying concepts also apply to ActiveX control creation.

1

Contents
· Creating the ControlDemo Project

· Adding the TestCtlDemo Project

· Running the ShapeLabel Control at Design Time

· Life and Times of a UserControl Object

· Drawing the ShapeLabel Control

· Saving the ShapeLabel Control's Property Values

· Giving the ShapeLabel Control a Property Page

· Adding an Event to the ShapeLabel Control

· Compiling the ControlDemo Component

· Control Creation Recap

Sample Application: CtlPlus.vbg
Fills in all the properties, methods, and events required to make ShapeLabel a
functional control. Expands on the material in this chapter, showing additional control
creation features, at the expense of some of the basic material covered in the step by
step procedures. If you installed the sample applications, you will find them in the
\CompTool\ActvComp subdirectory of the Visual Basic samples directory
(\Vb\Samples\CompTool\ActvComp).

These procedures will be easier to follow if you set up your Visual Basic development
environment to show the necessary windows.

—1

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 1 of 29 Printed: 06/03/96 08:52 AM

 Before You Begin

1 On the View menu, click Toolbox to open the Toolbox.

2 On the View menu, click Project Explorer to open the Project window. The
Project window will be used extensively to switch between project files.

3 If the Project window is in Folder view, as shown below, click the Toggle Folders
button on the Project window toolbar to turn the folders off.

1
1

4 On the View menu, click Properties window to open the Properties window.

5 On the View menu, click Immediate window to open the Immediate window.
You will need this window open at design time, in order to demonstrate the
control’s code running at design time.

6 On the Tools menu, click Options to open the Options dialog box.

1Select the Editor tab, and make sure the Require Variable Declaration check
box is selected. This makes it much easier to catch typing errors.

2Select the Environment tab. Make sure Prompt To Save Changes is checked,
then click OK. This will make it easy to save the changes to the project as you go
along.

2
2

Creating the ControlDemo Project
ActiveX controls can be added to any project type. When a control is compiled as part
of an .exe file, however, it cannot be shared with other applications. The ShapeLabel
control will be compiled into an .ocx file in a later procedure in this chapter, so it can
be shared. Thus the ControlDemo project will be created as an ActiveX control
project.

An ActiveX control project can contain as many controls as you like. When you build
the project, the resulting .ocx file contains all the controls you’ve added.

2—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 2 of 29 Printed: 06/03/96 08:52 AM

Note This topic is part of a series that walks you through creating a sample
ActiveX control. It begins with the topic, “Creating an ActiveX Control.”

3
 To create the ControlDemo project

7 On the File menu, click New Project to open the New Project dialog box. (This
will close your current project or project group; you will be prompted to save
any changes you have made.) Double-click the ActiveX Control Project icon
to create a new project.

3Visual Basic automatically adds a UserControl designer to the project. The
default name, UserControl1, appears as the caption of the designer.

3
8 On the Project menu, click Project1 Properties to open the Project Properties

dialog box. Select the General tab, fill out the information shown below, and
then click OK.

—3

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 3 of 29 Printed: 06/03/96 08:52 AM

2
4

9 Double-click UserControl1 in the Project window to bring the designer to the
front.

10 In the Properties window, double-click the Name property and change the name
of the user control to ShapeLabel. The new name appears in the caption of the
designer and in the Project window.

4The name you specify becomes the class name of your control, just as
CommandButton is the class name for a command button. “Building ActiveX
Controls” provides guidelines for choosing class names for controls.

5Notice that the Properties window looks much as it would for a Visual Basic
form. Some properties you’re used to seeing are missing, however, and there are
properties not found on ordinary Visual Basic forms. These properties are
discussed in “Building ActiveX Controls.”

11 Within the control designer, resize the control using the drag handle at the lower
right corner of the control, dragging up and left to make the control smaller.

6This sets the default size of the control. For convenience in later procedures, the
ShapeLabel control should be of modest size.

12 On the File menu, click Save Project to save the project files. Name them as
shown in the following table. Visual Basic will provide the indicated extensions
automatically.

5
File Filename Extension

User control ControlDemo_ShapeLabel .ctl

Project ControlDemo .vbp

4—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 4 of 29 Printed: 06/03/96 08:52 AM

6
7Binary information in a control — such as bitmaps — will be saved in a binary
file with the same name and an extension of .ctx.

1Important You must save the control project in order to refer to it from a
test project. An unsaved component project cannot be referenced by
another project.

4
For More Information See “Project Options for Control Components” and
“Debugging Controls,” in “Building ActiveX Controls.”

Adding the TestCtlDemo Project
In order to test the ShapeLabel control, you need a test form. You can’t just add a test
form to ControlDemo and then run the project, because an .ocx project can’t run all
by itself. (This would be like running an .ocx file all by itself.)

To allow debugging of in-process components, Visual Basic allows you to load two or
more projects into a project group. In addition to enabling in-process debugging, the
project group makes it easier to load your .ocx project and test project.

Note This topic is part of a series that walks you through creating a sample ActiveX
control. It begins with the topic, “Creating an ActiveX Control.”

5
 To add a test project to the project group

13 On the File menu, click Add Project to Group to open the Add Project dialog
box.

2Important Do not click Open Project or New Project, as these will
close your control project.

7
14 Double-click the EXE Project icon to add an ordinary .exe project. You can now

see both projects in the Project window, and the caption of the Project window
shows the default project group name.

3
8

—5

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 5 of 29 Printed: 06/03/96 08:52 AM

8The new project immediately becomes the Startup project for the project group.
The Project window identifies the Startup project by displaying its name in bold
type. An ActiveX control project, like ControlDemo, cannot be the Startup project.

15 On the File menu, click Save Project Group to save the test project and the
project group. Name the files as shown below. Visual Basic will provide the
indicated extensions automatically.

9
File Filename Extension

Form TestCtlDemo_Form1 .frm

Project TestCtlDemo .vbp

Project group ControlDemo .vbg
6

For More Information Test projects for ActiveX controls are discussed in more
detail in “Debugging Controls,” in “Building ActiveX Controls.”

10

Running the ShapeLabel Control at Design
Time

Unlike other programmable objects, controls have both design-time and run-time
behavior. That is, some of the code in your control will execute when a developer
places an instance of the control on a form at design time.

For example, the code you place in the UserControl_Resize event procedure will be
executed both at design time and at run time.

In order to debug the design-time behavior of your control, you must be able to
execute code in the control while the test form on which you place the control
remains in design mode.

The following two procedures demonstrate this neat trick. In the first procedure,
you’ll add code to the Resize event of the ShapeLabel control. In the second
procedure, you’ll put part of ControlDemo into run mode — while the test project
remains in design mode — and then add an instance of the ShapeLabel control to a
form in the test project.

Note This topic is part of a series that walks you through creating a sample
ActiveX control. It begins with the topic, “Creating an ActiveX Control.”

7
 To add code to the Resize event

16 In the Project window, double-click ShapeLabel to make it the active designer.

17 Double-click the ShapeLabel control to open the code window.

18 In the Procedure box, click the Resize event to go to its event procedure. Add the
following code:

6—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 6 of 29 Printed: 06/03/96 08:52 AM

1Private Sub UserControl_Resize()
2 Static intCt As Integer
3 intCt = intCt + 1
4 Debug.Print "Resize " & intCt
5End Sub 11
1Note The name of the event procedure has the prefix “UserControl,” just
as the Form_Resize event procedure for an ordinary form has the prefix
“Form.”

8
In developing an ordinary Visual Basic application, you would now click the Start
button on the toolbar, or press F5, to run your application. In order to put a
ShapeLabel control on Form1, however, you have to run just the code for the control,
leaving everything else in design mode.

 To run the ShapeLabel control at design time

19 Click the Close button on the ShapeLabel designer to put the control into run
mode. The default toolbox icon for a user control appears in the toolbox.

4
12

3Important Don’t click the Start button on the toolbar, or press F5,
because this would put the entire project group into run mode, and you
would be unable to add the new control to a form.

4If the default toolbox icon doesn’t appear on the toolbox, repeat Step 3 of
“Adding the Test Project,” making sure ControlDemo is checked in the
Components dialog box.

13
20 In the Project window, double-click Form1 to bring it to the front.

21 Double-click the ShapeLabel icon to add a ShapeLabel control to Form1. The
control appears as a flat gray rectangle with grab handles:

—7

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 7 of 29 Printed: 06/03/96 08:52 AM

5
14

5Important If you get an error message, make sure you saved
ControlDemo at the end of the procedure, “Creating the ControlDemo
Project.” You must save a control project in order to use its controls in a
test project.

15
9In the Properties window you can see the default properties for a new control.
The ShapeLabel control you just added to the form has been given a default name,
ShapeLabel1.

2Note Naming your control when you begin designing it avoids confusion.
Suppose you place a control with a default name, such as UserControl1,
on a form. Automatic numbering of new controls would append a number to
the control name, resulting in a confusing name like UserControl11.

16
22 The ShapeLabel control’s Resize event occurred when it was placed on the form,

as you can see by looking at the Immediate window. Use the grab handles to
resize the control several times. Each time you resize it, the Resize event occurs
again.

10If you simply move the control around the form, the Resize event does not
occur.

23 On Form1, double-click the ShapeLabel control to open the code window for
Form1. The cursor will be on the default event procedure,
ShapeLabel1_GotFocus. You can use the Procedure box to view the other three
events Visual Basic automatically provides for your control. Close the code
window when you are done.

24 In the Project window, double-click ShapeLabel to open the ShapeLabel designer.
Notice that the ShapeLabel control you placed on Form1 is shaded with hatch
marks to indicate that it is inactive.

8—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 8 of 29 Printed: 06/03/96 08:52 AM

6

17
11Opening a control’s designer makes all instances of the control inactive.
Changing the code in the control’s code window may also make control instances
inactive.

25 Code in ShapeLabel’s code module cannot be executed while the designer is open.
Use the grab handles to resize the shaded ShapeLabel control on Form1. The
Resize event doesn’t fire, so no new messages appear in the Immediate
window.

26 On the designer for the ShapeLabel control, click the Close button to reactivate the
control instance. The shading disappears from the control on Form1, indicating
that the instance is active again.

12If the control has become inactive because of changes to its code, you can right-
click the test form to bring up its context menu, and click Update UserControls to
reactivate control instances.

18
Note Due to the number of windows required by these procedures, you may
frequently find that ShapeLabel’s designer has disappeared behind another
form. You can double-click ShapeLabel in the Project window to bring the
designer to the front.

9
For More Information More information about running code at design time can
be found in “Debugging Controls,” in “Building ActiveX Controls.”

Life and Times of a UserControl Object

—9

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 9 of 29 Printed: 06/03/96 08:52 AM

The life of an ordinary Visual Basic form is marked by certain key events, such as
Initialize, Load, QueryUnload, and Unload. In order to create well-behaved
applications, it’s important to know when these events occur in the life cycle of a
form.

The same is true for controls. The key events in the life cycle of a UserControl are
Initialize, InitProperties, ReadProperties, WriteProperties, and Terminate. The
following procedure explores these events.

Note This topic is part of a series that walks you through creating a sample
ActiveX control. It begins with the topic, “Creating an ActiveX Control.”

10
 To observe key events for ShapeLabel

27 In the Project window, double-click ShapeLabel to open its designer.

28 Double-click the designer to open a code window for ShapeLabel, and enter code
in the following event procedures:

6Private Sub UserControl_Initialize()
7 Debug.Print "Initialize"
8End Sub
9
10Private Sub UserControl_InitProperties()
11 Debug.Print "InitProperties"
12End Sub
13
14Private Sub UserControl_ReadProperties(PropBag As _
15 PropertyBag)
16 Debug.Print "ReadProperties"
17End Sub
18
19Private Sub UserControl_WriteProperties(PropBag _
20 As PropertyBag)
21 Debug.Print "WriteProperties"
22End Sub
23
24Private Sub UserControl_Terminate()
25 Debug.Print "Terminate"
26End Sub 19
3Note For UserControl objects, Load and Unload are superseded by the
ReadProperties and WriteProperties events. This is discussed in more
detail in “Understanding Control Lifetime and Key Events,” in “Building
ActiveX Controls.”

20
29 On the ShapeLabel designer, click the Close button to put the control in run mode.

Debug messages will appear in the Immediate window:

10—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 10 of 29 Printed: 06/03/96 08:52 AM

7
21

13What’s going on here? You haven’t put another instance of the ShapeLabel
control on Form1. Where did all these events come from?

14This illustrates an important point about controls. A user puts a control on a
form, and thereafter thinks of the control as a permanent fixture of the form. From
the control developer’s perspective, however, controls are getting destroyed and re-
created all the time.

15When you put ShapeLabel in run mode by closing its designer, the instance of
ShapeLabel on Form1 was destroyed and re-created, at which point it received an
Initialize event. Why didn’t you see a Terminate event first? Because the original
instance of ShapeLabel you placed on Form1 was created before you added the
code in the UserControl_Terminate event procedure! Welcome to the wild and
woolly world of control creation.

4Note Control instances are also destroyed and recreated when you click
Update UserControls on the form’s context menu.

22
30 Press F5, or click the Start button on the toolbar, to run TestCtlDemo. When the

project is running, the grid on Form1 is gone, so you can’t see the ShapeLabel,
but you can see its life flash before your eyes in the Immediate window:

8
23

16After a control instance is created, the ReadProperties event gives you a chance
to obtain the control’s saved property values from the .frm file belonging to the
form that contains the control instance.

17When the design-time instance of the control is destroyed, the WriteProperties
event gives you a chance to save the property values the user set at design time.
Property values are saved in the containing form’s .frm file, as you’ll see in
“Saving the ShapeLabel Control's Property Values,” later in this chapter.

—11

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 11 of 29 Printed: 06/03/96 08:52 AM

18The Terminate event occurs when the control is being destroyed.

31 On Form1, click the Close button to return to design mode. In the Immediate
window, you’ll see a Terminate event (but not WriteProperties—why not?) as
the run-time instance of ShapeLabel is torn down. Then you’ll see the Initialize,
ReadProperties, and Resize events, as the design-time instance of the control is
created.

19The run-time instance of a control never gets a WriteProperties event, because it
doesn’t need to save its property values. To see why not, consider ShapeLabel’s
future. When it’s compiled into an .ocx file, you’ll add it to another project, put an
instance on a form, compile the project into an .exe, and run it. When you close
that .exe, the only place the ShapeLabel instance could save its property values
would be in the .exe file. This sort of behavior is not tolerated by well-behaved
operating systems.

32 Scroll to the top of the Immediate window, click in the top left corner, and drag to
select all the text in the window. Press the DELETE key to clear the window.

33 In the Project window, double-click Form1 to bring Form1 to the front.

34 On the Toolbox, double-click the ShapeLabel icon to add another instance of the
control to Form1. You’ll see a new event this time.

9
24

20When a new instance of your control is placed on a container, it gets an
InitProperties event. In the UserControl_InitProperties event procedure you can
place code to:

· Set the default values for each of the control’s properties values

· Perform tasks whenever a user creates an instance of your control.
25

35 Close the Form1 designer by clicking its Close button. In the Immediate window,
you will see two sets of WriteProperties and Terminate events, one for each
instance of ShapeLabel.

36 In the Project window, double-click Form1 to open its designer again. When the
designer opens, all the controls on Form1 are created, and their Initialize events
are fired. All controls then receive ReadProperties events, which allow them to
retrieve their saved property values. The InitProperties event does not occur,
because both instances of the ShapeLabel control already exist.

26

12—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 12 of 29 Printed: 06/03/96 08:52 AM

For More Information Control lifetime, and key events therein, are discussed in
“Understanding Control Lifetime and Key Events,” in “Building ActiveX Controls.”
“Exposing Properties of Constituent Controls,” in the same chapter, explains how the
ActiveX Control Wizard simplifies the creation of code to save and retrieve property
values.

Drawing the ShapeLabel Control
You can use graphics methods, such as Circle and Line, to draw your control, or you
can create your control’s appearance using existing ActiveX controls and Visual Basic
intrinsic controls. Controls you add to the UserControl to create its appearance are
called constituent controls.

As its name suggests, ShapeLabel’s appearance is created using a Shape control and a
Label control.

Note This topic is part of a series that walks you through creating a sample
ActiveX control. It begins with the topic, “Creating an ActiveX Control.”

11
 To add constituent controls to the ShapeLabel control

37 In the Project window, double-click ShapeLabel to open its designer.

38 In the Toolbox, double-click the Visual Basic Shape control to place a Shape
control on the ShapeLabel designer. If you haven’t used the Shape control
before, hold the mouse over the Toolbox buttons until you find the one whose
ToolTip is “Shape.”

39 In the Properties window, set the following property values for the Shape control:

Property Value

BorderStyle 0 - Transparent

FillColor &H000000FF (Red)

FillStyle 0 - Solid

Name shpBack

Shape 2 - Oval
12

5Note To set color properties such as FillColor and ForeColor to specific
colors, select the Palette tab of the color selection dialog.

27
40 In the Toolbox, double-click the Label control to add a label on top of the Shape

control. In the Properties window, set the following property values for the
Label control:

Property Value

Alignment 2 - Center

BackStyle 0 - Transparent

ForeColor &H00FFFFFF (White)

—13

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 13 of 29 Printed: 06/03/96 08:52 AM

Name lblCaption
13

41 Use the bottom grab handle to change the height of the label so that it is slightly
taller than the text it contains. ShapeLabel should look something like this:

10
28

42 Double-click the ShapeLabel designer to bring the code window to the front, and
replace the code in the UserControl_Resize event procedure with the following:

27Private Sub UserControl_Resize()
28 ' Size the Shape control to fill ShapeLabel's
29 ' visible surface area.
30 shpBack.Move 0, 0, ScaleWidth, ScaleHeight
31 ' Center the Label control vertically, and
32 ' make it the same width as ShapeLabel.
33 lblCaption.Move 0, (ScaleHeight _
34 - lblCaption.Height) / 2, ScaleWidth
35End Sub 29

43 When you’re designing a user control, remember that the area you have to work
with is bounded by the ScaleWidth and ScaleHeight of the control. Nothing
outside this is visible to the user of your control. Furthermore, the size of the
client area will change at the whim of the user. The Resize event is thus one of
the most important events in control design.

44 Close the ShapeLabel designer by clicking its Close button, putting ShapeLabel in
run mode. In the Project window, double-click Form1 to bring it to the front.

45 The two ShapeLabel controls should now appear as red ovals, with centered white
captions that read, “Label1.” Resize the ShapeLabels to test the Resize event
code.

30
For More Information See “Drawing Your Control” in “Building ActiveX
Controls.”

Saving the ShapeLabel Control's Property
Values

14—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 14 of 29 Printed: 06/03/96 08:52 AM

You can add properties and methods to an ActiveX control in the same way you add
them to class modules: by creating Public procedures. Since ShapeLabel is going to
be an enhanced label control, it makes sense for it to have a Caption property.

The following procedure adds a Caption property, and the support code to save and
retrieve the property value. A control’s property values are saved along with the other
data that describes the container—in this case, Form1.

Note This topic is part of a series that walks you through creating a sample
ActiveX control. It begins with the topic, “Creating an ActiveX Control.”

14
 To add a Caption property to the ShapeLabel control

46 In the Project window, double-click ShapeLabel to open its designer, then double-
click on ShapeLabel to bring its code window to the front.

47 On the Tools menu, click Add Procedure to open the Insert Procedure dialog
box. In the Name box, enter the name Caption. Click Property and Public,
then click OK.

48 In the Code window, change the newly created property procedures to appear as
follows:

36Public Property Get Caption() As String
37 Caption = lblCaption.Caption
38End Property
39
40Public Property Let Caption(NewCaption As String)
41 lblCaption.Caption = NewCaption
42End Property 31
6Note Be careful to change both property declaration lines by adding As
String, as shown above. Property Get and Property Let declarations must
match. Using specific type names speeds up execution, and provides type
checking for the user of your control.

32
21The Property Let procedure is executed whenever a new value is assigned to the
Caption property. It stores the new value directly in the Caption property of the
lblCaption label on ShapeLabel.

22The Property Get procedure is executed whenever the property value is
retrieved. It reads the value stored in the Caption property of the lblCaption label.

23Property procedures are discussed in “Adding Properties to a Class,” in
“Programming with Objects.”

49 To initialize the Caption property, add the following code to the
UserControl_InitProperties event procedure:

43Private Sub UserControl_InitProperties()
44 ' Let the starting value for the Caption
45 ' property be the Name given to this
46 ' instance of ShapeLabel.
47 Caption = Extender.Name

—15

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 15 of 29 Printed: 06/03/96 08:52 AM

48 Debug.Print "InitProperties"
49End Sub 33
24What is this Extender object? To the user of a control, extender properties —
such as Name, Top, and Left — appear to be part of your control. However,
extender properties are really provided by the container your control is placed on.
The Extender object of the UserControl gives you, the control designer, access to
these properties from within your control.

11
34

25The read-only Name property of the Extender object returns the name the
container (or the user) gives to a specific instance of your control. Using this name
(for example, ShapeLabel1) as the initial value of the Caption property mimics the
behavior of the Label control.

1Tip If your control imitates the behavior of controls that provide similar
functionality, using it will be more intuitive.

35
26What would happen if you created a Name property for your control? You
would be able to access it from within your control, but the only Name property
your user would see would be the Name property of the Extender object.

27This introduces a recurrent theme for controls: The container determines a large
portion of your control’s behavior and appearance. It’s the container that
determines your control’s Name, and your Top and Left properties are maintained
relative to the container’s coordinates. This theme will be taken up again in
“Building ActiveX Controls.”

28One last item of business: Why put this code in the InitProperties event? Why
not use the Initialize event? As you have seen, Initialize is called every time the
control instance is created, which happens often. InitProperties happens only when
the user places the control on the container. This makes it the appropriate place to
set initial values for a control instance.

29In addition, the UserControl object’s Extender and Ambient objects are not yet
available when the Initialize event occurs. “Understanding Control Lifetime and
Key Events,” in “Building ActiveX Controls,” discusses appropriate uses of the
Initialize event.

50 To save the value of your Caption property, add the following code to the
UserControl_WriteProperties event procedure:

16—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 16 of 29 Printed: 06/03/96 08:52 AM

50Private Sub UserControl_WriteProperties(PropBag As _
51 PropertyBag)
52 Debug.Print "WriteProperties"
53 PropBag.WriteProperty "Caption", Caption, _
54 Extender.Name
55End Sub 36
30The PropertyBag is just what its name implies, a “bag” in which property values
are saved. The bag is provided by the container. You can’t see into it, and you have
no idea where or how the data is saved. All you can do is put values in and take
them out.

31The first argument of the WriteProperty method is the name of the property,
which will be used as the retrieval key. You should use the name of the property
for this argument, because it will appear in the .frm text file (in Visual Basic—
other containers may use other file names to save project data), and may be seen
by the user of the control.

32The second argument is the value. A property value is saved as a Variant.

33The third argument, oddly enough, is a default value. Why provide a default
when saving the property value? Before saving the value, the WriteProperty
method compares the property value with this default. If they are the same, the
property value doesn’t have to be saved, because default values will be set
automatically when the control is reloaded. This keeps the .frm file from being
cluttered with hundreds of default entries, a great favor to your users!

51 Place the following code in the ReadProperties event, to retrieve the persisted
property value for the Caption property:

56Private Sub UserControl_ReadProperties(PropBag As _
57 PropertyBag)
58 Debug.Print "ReadProperties"
59 Caption = PropBag.ReadProperty("Caption", _
60 Extender.Name)
61End Sub 37
34The second argument of the ReadProperty method is a default value to be used
if no value has been saved, if the user has deleted the property from the text file, or
if the value has never been changed from the default, and therefore never saved by
WriteProperty.

52 Click the Close button on the ShapeLabel designer, to put ShapeLabel into run
mode. Like magic, the captions of the ShapeLabel controls change to match the
default names of the two instances, ShapeLabel1 and ShapeLabel2.

35Use the Properties window to change the Caption properties of the two
ShapeLabel controls on Form1, then click the Close button on the Form1 designer.
In the Project window, double-click Form1 to re-open the Form1 designer.

36From the messages in the Immediate window, you can see that the controls
have been destroyed and re-created, but the values of the Caption properties have
been saved and retrieved.

—17

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 17 of 29 Printed: 06/03/96 08:52 AM

53 Press F5 to run TestCtlDemo, the Startup project of the project group, and observe
the run-time behavior of the ShapeLabel control.

54 Click the Close button on Form1 to return to design mode.
38

For More Information Details of saving and retrieving property values can be
found in “Adding Properties to Controls,” in “Building ActiveX Controls.” “Exposing
Properties of Constituent Controls,” in the same chapter, explains how the ActiveX
Control Interface Wizard simplifies the creation of code to save and retrieve property
values.

Giving the ShapeLabel Control a Property
Page

Simple properties that you create using property procedures will be shown
automatically in the Visual Basic Properties window. You can also connect your
control to property pages, which display your control’s properties in an alternate
format.

Each property page you connect to your control becomes one tab on the tabbed
Properties dialog box. Visual Basic handles all the details of presenting the pages as a
tabbed dialog, and manages the OK, Cancel, and Apply buttons. All you have to do is
lay out the controls that will be used to set the property values.

Property pages are useful when a group of properties interact in a complex fashion, as
with the Toolbar control included with Visual Basic. They’re also useful for controls
that will be distributed internationally, because the captions can be localized for
different languages. Property pages also allow your controls to be used with
development tools that don’t have a Properties window.

Note This topic is part of a series that walks you through creating a sample
ActiveX control. It begins with the topic, “Creating an ActiveX Control.”

15
 To add a property page to the project

55 In the Project window, click ControlDemo to select the control project. On the
Project menu, click Add Property Page to add a property page to the project.

56 In the Properties window, double-click the Name property, and change the name
of the property page to SLGeneral. Double-click the Caption property, and
change the caption to General.

37The caption is what will appear on the property page’s tab when it’s in use.

38Why name the page SLGeneral instead of General? You may have several
controls in a project, and each one may have a General page. This is the
ShapeLabel control’s General page.

18—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 18 of 29 Printed: 06/03/96 08:52 AM

57 On the File menu, click Save Project to save the project. Name the property page
as shown in the following table. Visual Basic will provide the indicated
extension automatically.

File Filename Extension

Property page ControlDemo_SLGeneral .pag
16

39Binary information in a property page — such as bitmaps — will be saved in a
binary file with the same name and an extension of .pgx.

39
The designer for a property page looks much like the designer for a control, except
that the caption bar of the designer shows the Caption property of the property page,
instead of the Name property.

 To design the General property page for the ShapeLabel control

58 Place a Label control on the property page, and set the Caption property of the
label to the word Caption.

59 Underneath the label, place a TextBox control, and assign it the following property
values:

Property Value

Name txtCaption

Text <empty>
40

40The property page should appear as shown below.

41
41Placing the property description label above the text box in this fashion makes it
easier to localize your control component for other languages, in which the word
for “Caption” may be longer or shorter. Localization of controls is discussed in
detail in “Building ActiveX Controls.”

60 Double-click the property page, to open a code window. In the Events drop
down, select the SelectionChanged event, and add the following code:

62Private Sub PropertyPage_SelectionChanged()
63 ' Display the caption of the first control in
64 ' the list of currently selected controls.
65 txtCaption.Text = SelectedControls(0).Caption

—19

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 19 of 29 Printed: 06/03/96 08:52 AM

66End Sub 42
42The purpose of this event is to get the existing property values from the
ShapeLabel control or controls that are currently selected. That’s right, there may
be more than one ShapeLabel control selected. Multiple selection is a wonderful
thing for the user of your control, but it means more work for you.

43A property page receives a SelectionChanged event whenever it is opened. It
also receives this event when the list of selected controls changes. This is
necessary because the Property Pages dialog box is modeless, so a user may
select additional controls while the dialog box is open.

44You have to decide how to handle multiple selection on a property-by-property
basis. For example, if your property page displays the Width property of the first
control in the SelectedControls collection—that is, SelectedControls(0), as shown
in the code above—it will be easy for the user to change the widths of all the
selected controls to that value.

45On the other hand, there is very little use in setting the captions of all the
ShapeLabel controls on a form to the same value, so the logical thing to do with
the Caption property is to disable txtCaption if the Count property of the
SelectedControls collection is greater than one.

46However, this procedure doesn’t do the logical thing. For illustration purposes,
the property page will be allowed to set multiple captions. Later, if you want to
enable the behavior described above, you can add the following lines of code to
the PropertyPage_SelectionChanged event procedure:

67 ' Please don't do this yet!
68 If SelectedControls.Count > 1 Then
69 txtCaption.Enabled = False
70 Else
71 txtCaption.Enabled = True
72 End If 43

61 To set the property values for all currently selected controls, add the following
code to the ApplyChanges event:

73Private Sub PropertyPage_ApplyChanges()
74 ' Use a generic Object variable, in case more
75 ' than one kind of control is selected.
76 Dim objControl As Variant
77 For Each objControl In SelectedControls
78 objControl.Caption = txtCaption.Text
79 Next
80End Sub 44
47Your property page receives the ApplyChanges event when the user clicks the
Apply or Cancel buttons of the Property Pages dialog box.

48How do you know that every control in SelectedControls has a Caption
property? As the designer of the control component, you determine which property
pages are connected to any given control. A property page will only appear if all
the currently selected controls have that page in their Property Pages list. The

20—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 20 of 29 Printed: 06/03/96 08:52 AM

easiest thing to do is to make sure that the pages assigned to each control don’t
show properties the control doesn’t have.

49If you wish to use a general-purpose property page for a number of controls, and
some of those controls don’t have all the properties displayed on the page, you can
add code to the ApplyChanges event to test the type of the control, and apply the
property value as appropriate. Alternatively, you can use an On Error statement to
trap and ignore errors from controls that don’t have the property.

50You only need to be concerned with the controls in your component, because
controls that are not part of your component will never use your component’s
property pages.

51“Creating Property Pages for ActiveX Controls” discusses property page layout
and assignment in greater detail.

62 To enable the Apply button of the Property Page dialog box when the Caption
property is changed, add the following code to the Change event of the
txtCaption text box:

81Private Sub txtCaption_Change()
82 ' The Changed property of the property page
83 ' controls the Apply button of the Property
84 ' Pages dialog box.
85 Changed = True
86End Sub 45

63 Click the Close button on the designer for the property page to put the page in run
mode. Like UserControl objects, PropertyPage objects must run while the rest
of the project group is in design mode.

46
 To connect the property page to the ShapeLabel control

64 In the Project window, double-click ShapeLabel to open the designer.

65 In the Properties window, double-click the PropertyPages property to display the
Connect Property Pages dialog box.

—21

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 21 of 29 Printed: 06/03/96 08:52 AM

12

47
52The Connect Property Pages dialog box can be used to connect multiple pages
to a user control, and to control the display order of the tabs in the Property Pages
dialog box for your control.

53Property pages can also be connected at run time. This is discussed in “Creating
Property Pages for ActiveX Controls.”

66 Check SLGeneral, and then click OK.

67 Click the Close button on the ShapeLabel designer to put the ShapeLabel control
in run mode.

68 In the Project window, double-click Form1 to open its designer.

69 Right-click on one of the ShapeLabel controls on Form1, to show the context
menu, and click Properties to show the Property Pages dialog box.

22—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 22 of 29 Printed: 06/03/96 08:52 AM

13

48
70 In the Caption box on the General tab, replace the current caption with a new

value. When you do this, the Apply button is enabled. Click the Apply button to
change the caption of the control.

7Note You could also change the caption by pressing OK, but this would
close the Property Pages dialog box. The dialog box should stay open for
the next step.

17
71 Hold down the CTRL key and click the second ShapeLabel control on Form1, so

that both ShapeLabels are selected. Change the caption and click the Apply
button to set both captions to the same value.

54You may want to try adding other controls, such as command buttons, to Form1,
and observing the effects of different multiple selections on the Property Pages
dialog box.

72 When you’re done experimenting, click OK to close the Property Pages dialog
box.

49
For More Information Property pages are discussed in detail in ”Creating
Property Pages for ActiveX Controls.”

—23

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 23 of 29 Printed: 06/03/96 08:52 AM

Adding an Event to the ShapeLabel Control
It’s important to distinguish between the events received by your UserControl object
(or by the controls it contains) and the events your control raises. Events your control
receives are opportunities for you to do something interesting; events your control
raises provide opportunities for the developer who uses your control to do something
interesting.

Figure 4.1 shows what happens when a control author simply uses the events received
by the UserControl object, and doesn’t raise any events for the developer who buys
the control.

Figure 4.1 An ActiveX control that simply uses events

50
Figure 4.2 shows what happens when the author of ControlDemo.ocx — no doubt
tired of developer complaints — improves the ShapeLabel control by raising a Click
event for the developer to respond to.

Figure 4.2 A control that raises events for the developer to use

24—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 24 of 29 Printed: 06/03/96 08:52 AM

51
There are many events that might be of interest to the user of the ShapeLabel control.
The Visual Basic Label control raises a Click event, and ShapeLabel is just a fancy
label, so the following procedure will add a Click event. To make the event more
interesting, it will be raised only if the user clicks on the oval background.

Being compatible with other controls of the same type is an important reason to add a
particular event to your control. Other criteria for choosing what events to raise can
be found in “Raising Events from Controls,” in “Building ActiveX Controls.”

Note This topic is part of a series that walks you through creating a sample
ActiveX control. It begins with the topic, “Creating an ActiveX Control.”

18
 To add a Click event to the ShapeLabel control

73 In the Project window, click ShapeLabel to select it, then press F7 or click the
Code button on the Project window toolbar, to open the Code window.

74 In the Object box, select (General). In the Procedure box, select (Declarations)
to position yourself at the top of the code module. Add the following code:

87Option Explicit
88' Declare a public Click event with no arguments.
89Public Event Click() 52

75 In the Object box, select lblCaption. In the Procedure box, select the Click event
for the label control. Add the following code to the lblCaption_Click event
procedure:

90Private Sub lblCaption_Click()
91 ' Raise a Click event whenever the user clicks
92 ' on the label.
93 RaiseEvent Click
94End Sub 53
55The code above raises a Click event only if the user clicks on the constituent
control lblCaption. It will seem more natural to users to be able to click anywhere
on ShapeLabel’s oval background, so the next step shows how to raise the click
event if the user clicks on the colored oval.

76 In the Object box, select UserControl. In the Procedure box, select the
UserControl’s MouseUp event. Add the following code to the
UserControl_MouseUp event procedure:

95Private Sub UserControl_MouseUp(Button As Integer, _
96 Shift As Integer, X As Single, Y As Single)
97 ' Raise a Click event only if the color of the
98 ' point that was clicked on matches the color
99 ' of the Shape control. Ignore clicks that are
100 ' outside the oval.
101 If Point(X, Y) = shpBack.FillColor Then
102 RaiseEvent Click
103 End If
104End Sub 54

—25

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 25 of 29 Printed: 06/03/96 08:52 AM

56Determining whether an event occurred in a particular location is called hit
testing.

57You might expect to put the hit test code in the shpBack_Click event procedure,
because shpBack is always resized to cover the entire surface of the ShapeLabel
control. However, Shape controls don’t receive Click events. Instead, the Click
event is received by the object that contains the Shape — in this case, the
UserControl object.

58“Drawing Your Control,” in “Building ActiveX Controls,” discusses the use of
transparent backgrounds to create irregularly shaped controls.

77 In the Project window, click Form1 to select it, then press F7 or click the Code
button on the Project window toolbar, to open the Code window.

78 In the Object box, select one of the ShapeLabel controls you added to Form1. In
the Procedure box, select the Click event.

8Note If the Click event does not appear, make sure the ShapeLabel
designer is closed.

55
59Add the following code to the ShapeLabel1_Click event procedure:

105Private Sub ShapeLabel1_Click()
106 MsgBox "Thanks for clicking! My caption is: " _
107 & ShapeLabel1.Caption
108End Sub 56
9Note If the ShapeLabel you selected is not named ShapeLabel1, use
the appropriate name when entering the code above.

57
60You can click the arrow on the Procedure box to view all of the events for the
ShapeLabel control. In addition to your Click event, there are four events —
DragDrop, DragOver, GotFocus, and LostFocus — that are automatically provided
for you by the container, Form1.

14
58

79 On the toolbar, click the Start button, or press F5 to run TestCtlDemo. Try clicking
various places on the form and on the ShapeLabel control, to verify that the
Click event is being raised only when you click inside the oval background.

80 There’s a subtle bug in the hit testing for ShapeLabel’s click event. To see this,
press the mouse button while the mouse pointer is in the lower half of the red
oval. Holding the mouse button down, carefully move the mouse pointer until
the tip of the arrow is on the white text of ShapeLabel’s caption, then release
the mouse button. The message box doesn’t appear!

26—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 26 of 29 Printed: 06/03/96 08:52 AM

61The lblCaption_Click event procedure doesn’t get executed, because the
MouseDown event occurred over the UserControl. Therefore, when the MouseUp
event occurs, it is received by the UserControl — even if the mouse has been
moved completely off Form1.

62The hit test code in the MouseUp event works if the mouse button is released
over the red background that shows through lblCaption’s transparent background,
but not if the button is released over the white foreground color of the text. (If the
button is released outside ShapeLabel, the Point function returns -1, so releasing
the mouse button over some random red spot will not raise the Click event.)

63Fixing this bug is left as an exercise for the reader. (Hint: Moving the hit test to
the Click event of the UserControl won’t help, because the Click event doesn’t
occur when the MouseUp event is over a different object from the MouseDown.)

59
For More Information See “Adding Events to Controls” in “Building ActiveX
Controls.”

60

Compiling the ControlDemo Component
Once you have created an ActiveX control project containing one or more
UserControl objects, you can compile it into an .ocx file and use the controls in other
applications. The following procedures demonstrate this.

Note This topic is part of a series that walks you through creating a sample
ActiveX control. It begins with the topic, “Creating an ActiveX Control.”

19
 Compiling the ControlDemo project

81 If the TestCtlDemo project is still in run mode, click the Close button on Form1 to
return to design mode.

82 In the Project window, click ControlDemo to select the project.

83 On the File menu, click Make ControlDemo.ocx to open the Make Project
dialog box. Click OK to build the .ocx file.

84 On the File menu, click Remove Project to remove ControlDemo from the project
group, so that Visual Basic will use the compiled binary component (.ocx file)
instead of the project.

64Visual Basic displays a warning message, because the TestCtlDemo project
contains a reference to ControlDemo. Click Yes to remove ControlDemo anyway.

65When you remove ControlDemo from the project group, Visual Basic looks for
ControlDemo.ocx in the Windows Registry. If the .ocx file exists, Visual Basic
automatically updates the reference you set in the procedure “Adding the
TestCtlDemo Project.”

—27

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 27 of 29 Printed: 06/03/96 08:52 AM

66To switch back to using the project instead of the binary component, you can
click Add Project to Group, on the File menu, and add the ControlDemo project
back to the project group.

85 Press F5 to run TestCtlDemo using the .ocx file.
61

When ControlDemo is running from source code, you cannot access the ShapeLabel
control from other applications, or from another copy of Visual Basic. This is because
ActiveX control components must run in process. Once you have compiled a .ocx
component, you can test it from other applications.

 To use ControlDemo.ocx in another copy of Visual Basic

86 Open a new instance of Visual Basic. In the New Project dialog box, double-click
the EXE Project icon to open an .exe project.

87 On the Project menu, click Components to open the Components dialog box. On
the Controls tab, check ActiveX Control Creation Demo, and then click OK.

67The icon for ShapeLabel appears on the Toolbox. You can now add ShapeLabel
controls to the default form, and use the Properties window to set their properties.
You can also right-click on an instance of ShapeLabel, and choose Properties
from the Context menu to edit the control’s properties with the property page.

88 Press F5 to run the project.

68You can also compile the project and run the .exe.
62

For More Information An .ocx file can contain multiple controls and property
pages. “Distributing ActiveX Controls,” in “Building ActiveX Controls,” discusses
control packaging and distribution.

63

Control Creation Recap
In order to introduce new concepts in the most natural order, the procedures in this
chapter have not followed the normal sequence of steps for creating a new control.

Note This topic is part of a series that walks you through creating a sample
ActiveX control. It begins with the topic, “Creating an ActiveX Control.”

20
When you create a new control, the steps you’ll generally follow are these:

1. Determine the features your control will provide.

2. Design the appearance of your control.

3. Design the interface for your control — that is, the properties, methods, and events
your control will expose.

4. Create a project group consisting of your control project and a test project.

5. Implement the appearance of your control by adding controls and/or code to the
UserControl object.

28—

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 28 of 29 Printed: 06/03/96 08:52 AM

6. Implement the interface and features of your control.

7. As you add each interface element or feature, add features to your test project to
exercise the new functionality.

8. Design and implement property pages for your control.

9. Compile your control component (.ocx file) and test it with all potential target
applications.

64
If your control component will provide more than one control, you should begin by
deciding what controls the package will include. Your test project should have
separate test forms for the individual controls, and at least one form that tests the
controls together.

For More Information General design issues for ActiveX components are
discussed in “General Principles of Component Design” and “Debugging, Testing,
and Deploying Components.” Issues exclusive to ActiveX control creation, testing,
packaging, and deployment are discussed in “Building ActiveX Controls” and
“Creating Property Pages for ActiveX Controls”

—29

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 29 of 29 Printed: 06/03/96 08:52 AM

	Contents
	Sample Application: CtlPlus.vbg
	 Before You Begin

	Creating the ControlDemo Project
	 To create the ControlDemo project

	Adding the TestCtlDemo Project
	 To add a test project to the project group

	Running the ShapeLabel Control at Design Time
	 To add code to the Resize event
	 To run the ShapeLabel control at design time

	Life and Times of a UserControl Object
	 To observe key events for ShapeLabel

	Drawing the ShapeLabel Control
	 To add constituent controls to the ShapeLabel control

	Saving the ShapeLabel Control's Property Values
	 To add a Caption property to the ShapeLabel control

	Giving the ShapeLabel Control a Property Page
	 To add a property page to the project
	 To design the General property page for the ShapeLabel control
	 To connect the property page to the ShapeLabel control

	Adding an Event to the ShapeLabel Control
	 To add a Click event to the ShapeLabel control

	Compiling the ControlDemo Component
	 Compiling the ControlDemo project
	 To use ControlDemo.ocx in another copy of Visual Basic

	Control Creation Recap

