
Your Visual Basic applications can respond to a variety of mouse events and keyboard
events. For example, forms, picture boxes, and image controls can detect the position
of the mouse pointer, can determine whether a left or right mouse button is being
pressed, and can respond to different combinations of mouse buttons and SHIFT, CTRL,
or ALT keys. Using the key events, you can program controls and forms to respond to
various key actions or interpret and process ASCII characters.

In addition, Visual Basic applications can support both event-driven drag-and-drop
and OLE drag-and-drop features. You can use the Drag method with certain
properties and events to enable operations such as dragging and dropping controls.
OLE drag and drop gives your applications all the power you need to exchange data
throughout the Windows environment — and much of this technology is available to
your application without writing code.

You can also use the mouse or keyboard to manage the processing of long
background tasks, which allows your users to switch to other applications or interrupt
background processing.

Note If you are using the Control Creation Edition of Visual Basic, some of
the material covered in this document may not be applicable. With the full
editions of Visual Basic you have the ability to create applications, ActiveX
documents, and other types of components. Although some of the
terminology may relate to application specific objects such as forms, in most
cases the underlying concepts also apply to ActiveX control creation.

1
For More Information Other actions and events that involve the mouse or
keyboard (the Click and DblClick events, the Focus events, and the Scroll event) are
not covered in this chapter. For more information on the Click, DblClick, and Focus
events, see the topics "Clicking Buttons to Perform Actions" and "Understanding
Focus" in "Forms, Controls, and Menus."

2

Contents
· Responding to Mouse Events

· Detecting Mouse Buttons

· Detecting SHIFT, CTRL, and ALT States

· Dragging and Dropping

· OLE Drag and Drop

· Customizing the Mouse Pointer

· Responding to Keyboard Events

· Interrupting Background Processing
3

Sample Application: Mouse.vbp

—1

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 1 of 51 Printed: 09/17/96 10:18 AM

Many of the code examples in this chapter are taken from the Mouse.vbp sample
application. If you installed the sample applications, you'll find this application in the
\Mouse subdirectory of the Visual Basic samples directory (\Vb\Samples\Pguide).

4

Responding to Mouse Events
You can use the MouseDown, MouseUp, and MouseMove events to enable your
applications to respond to both the location and the state of the mouse. (This list
excludes drag events, which are introduced in "Dragging and Dropping" later in this
chapter.) These mouse events are recognized by most controls.

Event Description

MouseDown Occurs when the user presses any mouse button.

MouseUp Occurs when the user releases any mouse button.

MouseMove Occurs each time the mouse pointer is moved to a new point on the
screen.

5
A form can recognize a mouse event when the pointer is over a part of the form where
there are no controls. A control can recognize a mouse event when the pointer is over
the control.

When the user holds down a mouse button, the object continues to recognize all
mouse events until the user releases the button. This is true even when the pointer is
moved off the object.

The three mouse events use the following arguments.

Argument Description

button A bit-field argument in which the three least-significant bits give the
status of the mouse buttons.

Shift A bit-field argument in which the three least-significant bits give the
status of the SHIFT, CTRL, and ALT keys.

x, y Location of the mouse pointer, using the coordinate system of the
object that receives the mouse event.

6
A bit-field argument returns information in individual bits, each indicating whether a
certain condition is on or off. Using binary notation, the three leftmost bits are
referred to as most-significant and the three rightmost bits as least-significant.
Techniques for programming with these arguments are described in "Detecting Mouse
Buttons" and "Detecting SHIFT, CTRL, and ALT States" later in this chapter.

The MouseDown Event
MouseDown is the most frequently used of the three mouse events. It can be used to
reposition controls on a form at run time or to create graphical effects, for instance.
The MouseDown event is triggered when a mouse button is pressed.

—2

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 2 of 51 Printed: 09/17/96 10:18 AM

Note The mouse events are used to recognize and respond to the various
mouse states as separate events and should not be confused with the Click
and DblClick events. The Click event recognizes when a mouse button has
been pressed and released, but only as a single action — a click. The mouse
events also differ from the Click and DblClick events in that they enable you to
distinguish between the left, right, and middle mouse buttons and the SHIFT,
CTRL, and ALT keys.

7

Using MouseDown with the Move Method
The MouseDown event is combined with the Move method to move a command
button to a different location on a form. The new location is determined by the
position of the mouse pointer: When the user clicks anywhere on the form (except on
the control), the control moves to the cursor location.

A single procedure, Form_MouseDown, performs this action:

Private Sub Form_MouseDown (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

Command1.Move X, Y
End Sub

8
The Move method places the command button control's upper-left corner at the
location of the mouse pointer, indicated by the x and y arguments. You can revise this
procedure to place the center of the control at the mouse location:

Private Sub Form_MouseDown (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

Command1.Move (X - Command1.Width / 2), _
(Y - Command1.Height / 2)

End Sub
9

Using MouseDown with the Line Method
The Click-A-Line sample application responds to a mouse click by drawing a line
from the previous drawing location to the new position of the mouse pointer. This
application uses the MouseDown event and the Line method. Using the following
syntax, the Line method will draw a line from the last point drawn to the point (x2,
y2):

Line – (x2, y2)
10

Click-A-Line uses a blank form with one procedure, Form_MouseDown:

Private Sub Form_MouseDown (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

Line -(X, Y)
End Sub

11
The first line starts at the upper-left corner, which is the default origin. Thereafter,
whenever the mouse button is pressed, the application draws a straight line extending

—3

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 3 of 51 Printed: 09/17/96 10:18 AM

from the previous line to the present location of the mouse pointer. The result is a
series of connected lines, as shown in Figure 11.1.

Figure 11.1 Connecting lines are drawn whenever MouseDown is invoked

1

The MouseMove Event
The MouseMove event occurs when the mouse pointer is moved across the screen.
Both forms and controls recognize the MouseMove event while the mouse pointer is
within their borders.

Using MouseMove with the Line Method
Graphics methods can produce very different effects when used in a MouseMove
procedure instead of in a MouseDown procedure. For example, in the topic "The
MouseDown Event" earlier in this chapter, the Line method drew connected line
segments. In the Scribble application described below, the same method is used in a
Form_MouseMove procedure to produce a continuous curved line instead of
connected segments.

In the Scribble application, the MouseMove event is recognized whenever the mouse
pointer changes position. The following code draws a line between the current and
previous location.

Private Sub Form_MouseMove (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

Line -(X, Y)
End Sub

12
Like the MouseDown procedure, the line created by the MouseMove procedure starts
at the upper-left corner, as shown in Figure 11.2.

—4

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 4 of 51 Printed: 09/17/96 10:18 AM

Figure 11.2 The MouseMove event and the Line method create a simple sketch
program

2

How MouseMove Works
How many times does the MouseMove event get called as the user moves the pointer
across the screen? Or, to put it another way, when you move the pointer from the top
of the screen to the bottom, how many locations are involved?

Visual Basic doesn't necessarily generate a MouseMove event for every pixel the
mouse moves over. The operating environment generates a limited number of mouse
messages per second. To see how often MouseMove events are actually recognized,
you can enhance the Scribble application with the following code so that it draws a
small circle at each location where a MouseMove event is recognized. The results are
shown in Figure 11.3.

Private Sub Form_MouseMove (Button As Integer,_
Shift As Integer, X As Single, Y As Single)

Line -(X, Y)
Circle (X, Y), 50

End Sub
13

Figure 11.3 A demonstration of where MouseMove events occur

—5

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 5 of 51 Printed: 09/17/96 10:18 AM

3
Note that the faster the user moves the pointer, the fewer MouseMove events are
recognized between any two points. Many circles close together indicate that the user
moved the mouse slowly.

Your application can recognize many MouseMove events in quick succession.
Therefore, a MouseMove event procedure shouldn't do anything that requires large
amounts of computing time.

The MouseUp Event
The MouseUp event occurs when the user releases the mouse button. MouseUp is a
useful companion to the MouseDown and MouseMove events. The example below
illustrates how all three events can be used together.

The Scribble application is more useful if it allows drawing only while the mouse
button is held down and stops drawing when the button is released. To do this, the
application would have to respond to three actions:

· The user presses the mouse button (MouseDown).

· The user moves the mouse pointer (MouseMove).

· The user releases the mouse button (MouseUp).
4

MouseDown and MouseUp will tell the application to turn drawing on and off. You
specify this by creating a form-level variable that represents the drawing state. Type
the following statement in the Declarations section of the form code module:

Dim DrawNow As Boolean
14

DrawNow will represent two values: True will mean "draw a line," and False will
mean "do not draw a line."

Because variables are initialized to 0 (False) by default, the application starts with
drawing off. Then the first line in the MouseDown and MouseUp procedures turns
drawing on or off by setting the value of the form-level variable DrawNow:

—6

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 6 of 51 Printed: 09/17/96 10:18 AM

Private Sub Form_MouseDown (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

DrawNow = True
CurrentX = X
CurrentY = Y

End Sub

Private Sub Form_MouseUp (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

DrawNow = False
End Sub

15
The MouseMove procedure draws a line only if DrawNow is True. Otherwise, it takes
no action:

Private Sub Form_MouseMove (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If DrawNow Then Line -(X, Y)
End Sub

16
Each time the user presses a mouse button, the MouseDown event procedure is
executed and turns drawing on. Then as the user holds the Mouse button down, the
MouseMove event procedure is executed repeatedly as the pointer is dragged across
the screen.

Note that the Line method omits the first endpoint, causing Visual Basic to start
drawing at the mouse pointer's current coordinates. By default, the drawing
coordinates correspond to the last point drawn; the form's CurrentX and CurrentY
properties were reset in the Form_MouseDown procedure.

17

Detecting Mouse Buttons
You can make your applications more powerful by writing code that responds
differently to mouse events, depending on which mouse button is used or whether the
SHIFT, CTRL, or ALT key is pressed. To provide these options, you use the arguments
button and shift with the MouseDown, MouseUp, and MouseMove event procedures.
Techniques for using the shift argument are described in "Detecting SHIFT, CTRL , and
ALT States" later in this chapter.

The MouseDown, MouseUp, and MouseMove events use the button argument to
determine which mouse button or buttons are pressed. The button argument is a bit-
field argument — a value in which each bit represents a state or condition. These
values are expressed as integers. The three least-significant (lowest) bits represent the
left, right, and middle mouse buttons, as shown in Figure 11.4.

—7

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 7 of 51 Printed: 09/17/96 10:18 AM

Figure 11.4 How bits represent the state of the mouse

5
The default value of each bit is 0 (False). If no buttons are pressed, the binary value of
the three bits is 000. If you press the left button, the binary value, or pattern, changes
to 001. The left-button bit-value changes from 0 (False) to 1 (True).

The button argument uses either a decimal value or an constant to represent these
binary patterns. The following table lists the binary value of the bits, the decimal
equivalent, and the Visual Basic constant:

Binary Value Decimal Value Constant Meaning

001 1 vbLeftButton The left button is
pressed.

010 2 vbRightButton The right button is
pressed.

100 4 vbMiddleButton The middle button is
pressed.

18
Note Visual Basic provides constants that represent the binary values of the
button and shift arguments. These constants can be used interchangeably
with their equivalent decimal values. Not all values have corresponding
constants, however. The values for some button and/or shift combinations are
derived by simply adding decimal values.

19
The middle button is assigned to decimal value 4. Pressing the left and right buttons
simultaneously produces a single digit value of 3 (1+2). On a three-button mouse,
pressing all three buttons simultaneously produces the decimal value of 7 (4+2+1).
The following table lists the remaining button values derived from the possible button
combinations:

Binary Value Decimal Value Constant Meaning

000 0 No buttons are pressed.

011 3 vbLeftButton +
vbRightButton

The left and right
buttons are pressed.

101 5 vbLeftButton + The left and middle

—8

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 8 of 51 Printed: 09/17/96 10:18 AM

vbMiddleButton buttons are pressed.

110 6 vbRightButton +
vbMiddleButton

The right and middle
buttons are pressed.

111 7 vbRightButton +
vbMiddleButton +
vbLeftButton

All three buttons are
pressed.

20

Using Button with MouseDown and MouseUp
You use the button argument with MouseDown to determine which button is being
pressed and with MouseUp to determine which button has been released. Because
only one bit is set for each event, you can't test for whether two or more buttons are
being used at the same time. In other words, MouseDown and MouseUp only
recognize one button press at a time.

Note In contrast, you can use the MouseMove event to test for whether two
or more buttons are being pressed simultaneously. You can also use
MouseMove to test for whether a particular button is being pressed,
regardless of whether or not another button is being pressed at the same
time. For more information, see "Using Button with MouseMove" later in this
chapter.

21
You can specify which button causes a MouseDown or MouseUp event with simple
code. The following procedure tests whether button equals 1, 2, or 4:

Private Sub Form_MouseDown (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If Button = 1 Then Print "You pressed _
the left button."

If Button = 2 Then Print "You pressed _
the right button."

If Button = 4 Then Print "You pressed _
the middle button."

End Sub
22

If the user presses more than one button, Visual Basic interprets that action as two or
more separate MouseDown events. It sets the bit for the first button pressed, prints the
message for that button, and then does the same for the next button. Similarly, Visual
Basic interprets the release of two or more buttons as separate MouseUp events.

The following procedure prints a message when a pressed button is released:

Private Sub Form_MouseUp(Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If Button = 1 Then Print "You released _
the left button."

If Button = 2 Then Print "You released _
the right button."

If Button = 4 Then Print "You released _
the middle button."

End Sub

—9

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 9 of 51 Printed: 09/17/96 10:18 AM

23

Using Button with MouseMove
For the MouseMove event, button indicates the complete state of the mouse buttons
— not just which button caused the event, as with MouseDown and MouseUp. This
additional information is provided because all, some, or none of the bits might be set.
This compares with just one bit per event in the MouseDown and MouseUp
procedures.

Testing for a Single Button
If you test MouseMove for equality to 001 (decimal 1), you're testing to see if only
the left mouse button is being held down while the mouse is moved. If another button
is held down with the left button, the following code doesn't print anything:

Private Sub Form_MouseMove (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If Button = 1 Then Print "You're pressing _
only the left button."

End Sub
24

To test for whether a particular button is down, use the And operator. The following
code prints the message for each button pressed, regardless of whether another button
is pressed:

Private Sub Form_MouseMove (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If Button And 1 Then Print "You're pressing _
the left button."

If Button And 2 Then Print "You're pressing _
the right button."

End Sub
25

Pressing both buttons simultaneously prints both messages to the form. The
MouseMove event recognizes multiple button states.

Testing for Multiple Buttons
In most cases, to isolate which button or buttons are being pressed, you use the
MouseMove event.

Building on the previous examples, you can use the If…Then…Else statement to
determine whether the left, right, or both buttons are being pressed. The following
example tests for the three button states (left button pressed, right button pressed, and
both buttons pressed) and prints the corresponding message.

Add the following code to the form's MouseMove event:

Private Sub Form_MouseMove(Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If Button = 1 Then
Print "You're pressing the left button."

ElseIf Button = 2 Then

—10

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 10 of 51 Printed: 09/17/96 10:18 AM

Print "You're pressing the right button."
ElseIf Button = 3 Then

Print "You're pressing both buttons."
End If

End Sub
26

You could also use the And operator with the Select Case statement to determine
button and shift states. The And operator combined with the Select Case statement
isolates the possible button states of a three-button mouse and then prints the
corresponding message.

Create a variable called ButtonTest in the Declarations section of the form:

Dim ButtonTest as Integer
27

Add the following code to the form's MouseMove event:

Private Sub Form_MouseMove(Button As Integer, _
Shift As Integer, X As Single, Y As Single)

ButtonTest = Button And 7
Select Case ButtonTest

Case 1 ' or vbLeftButton
Print "You're pressing the left button."

Case 2 ' or vbRightButton
Print "You're pressing the right button."

Case 4 ' or vbMiddleButton
Print "You're pressing the middle button."

Case 7
Print "You're pressing all three buttons."

End Select
End Sub

28

Using Button to Enhance Graphical Mouse Applications
You can use the button argument to enhance the Scribble application described in
"The MouseMove Event" earlier in this chapter. In addition to drawing a continuous
line when the left mouse button is pressed and stopping when the button is released,
the application can draw a straight line from the last point drawn when the user
presses the right button.

When writing code, it is often helpful to note each relevant event and the desired
response. The three relevant events here are the mouse events:

· Form_MouseDown: This event takes a different action depending on the state of
the mouse buttons: If the left button is down, set DrawNow to True and reset
drawing coordinates; If the right button is down, draw a line.

· Form_MouseUp: If the left button is up, set DrawNow to False.

· Form_MouseMove: If DrawNow is True, draw a line.
6

The variable DrawNow is declared in the Declarations section of the form:

Dim DrawNow As Boolean
29

—11

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 11 of 51 Printed: 09/17/96 10:18 AM

The MouseDown procedure has to take a different action, depending on whether the
left or right mouse button caused the event:

Private Sub Form_MouseDown (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If Button = vbLeftButton Then
DrawNow = True
CurrentX = X
CurrentY = Y

ElseIf Button = vbRightButton Then
Line -(X, Y)

End If
End Sub

30
The following MouseUp procedure turns off drawing only when the left button is
released:

Private Sub Form_MouseUp (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If Button = vbLeftButton Then DrawNow = False
End Sub

31
Note that within the MouseUp procedure, a bit set to 1 (vbLeftButton) indicates that
the corresponding mouse button is released and drawing is turned off.

The following MouseMove procedure is identical to the one in the version of the
Scribble application found in "The MouseMove Event" earlier in this chapter.

Private Sub Form_MouseMove (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If DrawNow Then Line -(X, Y)
End Sub

32

Detecting SHIFT, CTRL, and ALT States
The mouse and keyboard events use the shift argument to determine whether the
SHIFT, CTRL, and ALT keys are pressed and in what, if any, combination. If the SHIFT
key is pressed, shift is 1; if the CTRL key is pressed, shift is 2; and if the ALT key is
pressed, shift is 4. To determine combinations of these keys, use the total of their
values. For example, if SHIFT and ALT are pressed, shift equals 5 (1 + 4).

The three least-significant bits in shift correspond to the state of the SHIFT, CTRL, and
ALT keys, as shown in Figure 11.5.

—12

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 12 of 51 Printed: 09/17/96 10:18 AM

Figure 11.5 How bits represent the state of the SHIFT, CTRL, and ALT keys

7
Any or all of the bits in shift can be set, depending on the state of the SHIFT, CTRL, and
ALT keys. These values and constants are listed in the following table:

Binary
Value

Decimal
Value

Constant Meaning

001 1 vbShiftMask The SHIFT key is pressed.

010 2 vbCtrlMask The CTRL key is pressed.

100 4 vbAltMask The ALT key is pressed.

011 3 vbShiftMask +
vbCtrlMask

The SHIFT and CTRL keys are pressed.

101 5 vbShiftMask +
vbAltMask

The SHIFT and ALT keys are pressed.

110 6 vbCtrlMask +
vbAltMask

The CTRL and ALT keys are pressed.

111 7 vbCtrlMask +
vbAltMask +
vbShiftMask

The SHIFT, CTRL, and ALT keys are pressed.

33
As with the mouse events' button argument, you can use the If…Then…Else
statement or the And operator combined with the Select Case statement to determine
whether the SHIFT, CTRL, or ALT keys are being pressed and in what, if any,
combination.

Open a new project and add the variable ShiftTest to the Declarations section of the
form:

Dim ShiftTest as Integer
34

Add the following code to the form's MouseDown event:

Private Sub Form_MouseDown(Button As Integer, _
Shift As Integer, X As Single, Y As Single)

ShiftTest = Shift And 7
Select Case ShiftTest

Case 1 ' or vbShiftMask

—13

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 13 of 51 Printed: 09/17/96 10:18 AM

Print "You pressed the SHIFT key."
Case 2 ' or vbCtrlMask

Print "You pressed the CTRL key."
Case 4 ' or vbAltMask

Print "You pressed the ALT key."
Case 3

Print "You pressed both SHIFT and CTRL."
Case 5

Print "You pressed both SHIFT and ALT."
Case 6

Print "You pressed both CTRL and ALT."
Case 7

Print "You pressed SHIFT, CTRL, and ALT."
End Select

End Sub
35

Dragging and Dropping
When you design Visual Basic applications, you often drag controls around on the
form. The drag-and-drop features in Visual Basic allow you to extend this ability to
the user at run time. The action of holding a mouse button down and moving a control
is called dragging, and the action of releasing the button is called dropping.

Note Dragging a control at run time doesn't automatically change its location
— you must program the relocation yourself, as described in "Changing the
Position of a Control." Often, dragging is used only to indicate that some
action should be performed; the control retains its original position after the
user releases the mouse button.

36
Using the following drag-and-drop properties, events, and method, you can specify
both the meaning of a drag operation and how dragging can be initiated (if at all) for a
given control.

Category Item Description

Properties DragMode Enables automatic or manual dragging of a control.

DragIcon Specifies what icon is displayed when the control is
dragged.

Events DragDrop Recognizes when a control is dropped onto the
object.

DragOver Recognizes when a control is dragged over the
object.

Methods Drag Starts or stops manual dragging.
37

All controls except menus, timers, lines, and shapes support the DragMode and
DragIcon properties and the Drag method. Forms recognize the DragDrop and
DragOver events, but they don't support the DragMode and DragIcon properties or
the Drag method.

—14

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 14 of 51 Printed: 09/17/96 10:18 AM

Note Controls can only be dragged when they do not have the focus. To
prevent a control from getting the focus, set its TabStop property to False.

38

Enabling Automatic Drag Mode
To allow the user to drag a control, set its DragMode property to 1-Automatic.

When you set dragging to Automatic, dragging is always "on." For more control over
dragging operations, use the 0-Manual setting described in "Controlling When
Dragging Starts or Stops" later in this chapter.

Note While an automatic drag operation is taking place, the control being
dragged doesn't recognize other mouse events.

39

Changing the Drag Icon
When dragging a control, Visual Basic uses a gray outline of the control as the default
drag icon. You can substitute other images for the outline by setting the DragIcon
property. This property contains a Picture object that corresponds to a graphic image.

The easiest way to set the DragIcon property is to use the Properties window. Select
the DragIcon property, and then click the Properties button to select a file containing a
graphic image from the Load Icon dialog box.

You can assign icons to the DragIcon property from the Icon Library included with
Visual Basic. (The icons are located in the \Program files\Microsoft Visual
Basic\Icons directory.) You can also create your own drag icons with a graphics
program.

At run time, you can select a drag icon image by assigning the DragIcon property of
one control to the same property of another:

Set Image1.DragIcon = Image2.DragIcon
40

You can also set the DragIcon property at run time by assigning the Picture property
of one control to the DragIcon property of another:

Set Image1.DragIcon = Image3.Picture
41

Or, you can use the LoadPicture function:

Set Image1.DragIcon = LoadPicture("c:\Program _
files\Microsoft Visual Basic\Icons\Disk04.ico")

42
For More Information For information on the Picture property and the
LoadPicture function, see "Working with Text and Graphics.”

43

Responding When the User Drops the Object
When the user releases the mouse button after dragging a control, Visual Basic
generates a DragDrop event. You can respond to this event in many ways. Remember

—15

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 15 of 51 Printed: 09/17/96 10:18 AM

that the control doesn't automatically move to the new location, but you can write
code to relocate the control to the new location (indicated by the last position of the
gray outline). See "Changing the Position of a Control" for more information.

Two terms are important when discussing drag-and-drop operations: source and
target.

Term Meaning

Source The control being dragged. This control can be any object except a
menu, timer, line, or shape.

Target The object onto which the user drops the control. This object, which
can be a form or control, recognizes the DragDrop event.

44
A control becomes the target if the mouse position is within its borders when the
button is released. A form is the target if the pointer is in a blank portion of the form.

The DragDrop event provides three arguments: source, x, and y. The source argument
is a reference to the control that was dropped onto the target.

Because source is declared As Control, you use it just as you would a control — you
can refer to its properties or call one of its methods.

The following example illustrates how the source and target interact. The source is an
Image control with its Picture property set to load a sample icon file representing a
few file folders. Its DragMode property has been set to 1-Automatic and its DragIcon
property to a sample drag-and-drop icon file. The target, also an image control,
contains a picture of an open file cabinet.

Add the following procedure to the second image control's DragDrop event:

Private Sub Image2_DragDrop(Source As Control, _
X As Single, Y As Single)

Source.Visible = False
Image2.Picture = LoadPicture("c:\Program _

Files\Microsoft Visual _
Basic\Icons\Office\Files03a.ico")

End Sub
45

Dragging and dropping Image1 onto Image2 causes Image1 to vanish and Image2 to
change its picture to that of a closed file cabinet. Using the source argument, the
Visible property of Image1 was changed to False.

Note You should use the source argument carefully. Although you know that
it always refers to a control, you don't necessarily know which type of control.
For example, if the control is a text box and you attempt to refer to
Source.Value, the result is a run-time error because text boxes have no Value
property.

46
You can use the If...Then...Else statement with the TypeOf keyword to determine
what kind of control was dropped.

—16

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 16 of 51 Printed: 09/17/96 10:18 AM

For More Information See "If…Then…Else" in "Programming with Objects."
47

Controlling When Dragging Starts or Stops
Visual Basic has a Manual setting for the DragMode property that gives you more
control than the Automatic setting. The Manual setting allows you to specify when a
control can and cannot be dragged. (When DragMode is set to Automatic, you can
always drag the control as long as the setting isn't changed.)

For instance, you may want to enable dragging in response to MouseDown and
MouseUp events, or in response to a keyboard or menu command. The Manual
setting also allows you to recognize a MouseDown event before dragging starts, so
that you can record the mouse position.

To enable dragging from code, leave DragMode in its default setting (0-Manual).
Then use the Drag method whenever you want to begin or stop dragging an object.
Use the following Visual Basic constants to specify the action of the Drag argument.

Constant Value Meaning

vbCancel 0 Cancel drag operation

vbBeginDrag 1 Begin drag operation

vbEndDrag 2 End drag operation
48

The syntax for the Drag method is as follows:

[object.]Drag action
49

If action is set to vbBeginDrag, the Drag method initiates dragging of the control. If
action is set to vbEndDrag, the control is dropped, causing a DragDrop event. If
action is set to vbCancel, the drag is canceled. The effect is similar to giving the value
vbEndDrag, except that no DragDrop event occurs.

Building on the example given in "Responding When the User Drops the Object"
earlier in this chapter, you can add a MouseDown event for Image1 that illustrates the
Drag method. Set the Image1 DragMode property to 0-Manual, then add the
following procedure:

Private Sub Image1_MouseDown(Button As Integer, _
Shift As Integer, X As Single, Y As Single)

Image1.Drag vbBeginDrag
Set Image1.DragIcon = LoadPicture("c:\Program _

files\ Microsoft Visual _
Basic\Icons\Dragdrop\Dragfldr.ico")

End Sub
50

Adding a DragOver event procedure to Image2 allows you to terminate dragging
when the source enters the target. This example closes the file cabinet when Image1 is
passed over Image2.

Private Sub Image2_DragOver(Source As Control, _

—17

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 17 of 51 Printed: 09/17/96 10:18 AM

X As Single, Y As Single, State As Integer)
Source.Drag vbEndDrag
Source.Visible = False
Image2.Picture = LoadPicture("c:\Program _

files\Microsoft Visual _
Basic\Icons\Office\Files03a.ico")

End Sub
51

Adding a third Image control to the form demonstrates canceling a drag operation. In
this example the Image3 Picture property contains an icon of a trash can. Using the
DragOver event and the source argument, dragging the files over Image3 cancels the
drag operation.

Private Sub Image3_DragOver(Source As Control, _
X As Single, Y As Single, State As Integer)

Source.Drag vbCancel
End Sub

52

Changing the Position of a Control
You may want the source control to change position after the user releases the mouse
button. To move a control to the new mouse location, use the Move method with any
control that has been drag-enabled.

You can reposition a control when it is dragged and dropped to any location on the
form not occupied by another control. To illustrate this, start a new Visual Basic
project, add an Image control to the form and assign it any icon or bitmap by setting
the Picture property, and then change the Image control's DragMode property to 1-
Automatic.

Add the following procedure to the form's DragDrop event:

Private Sub Form_DragDrop (Source As Control, _
X As Single, Y As Single)

Source.Move X, Y
End Sub

53
This code may not produce precisely the effects you want, because the upper-left
corner of the control is positioned at the mouse location. This code positions the
center of the control at the mouse location:

Private Sub Form_DragDrop (Source As Control, _
X As Single, Y As Single)

Source.Move (X - Source.Width / 2), _
(Y - Source.Height / 2)

End Sub
54

The code works best when the DragIcon property is set to a value other than the
default (the gray rectangle). When the gray rectangle is being used, the user usually
wants the control to move precisely into the final position of the gray rectangle. To do
this, record the initial mouse position within the source control. Then use this position
as an offset when the control is moved.

—18

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 18 of 51 Printed: 09/17/96 10:18 AM

 To record the initial mouse position

1 Specify manual dragging of the control.

2 Declare two form-level variables, DragX and DragY.

3 Turn on dragging when a MouseDown event occurs.

4 Store the value of x and y in the form-level variables in this event.
8

The following example illustrates how to cause drag movement for an image control
named Image1. The control's DragMode property should be set to 0-Manual at design
time. The Declarations section contains the form-level variables DragX and DragY,
which record the initial mouse position within the Image control:

Dim DragX As Single, DragY As Single
55

The MouseDown and MouseUp procedures for the control turn dragging on and drop
the control, respectively. In addition, the MouseDown procedure records the mouse
position inside the control at the time dragging begins:

Private Sub Image1_MouseDown (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

Image1.Drag 1
DragX = X
DragY = Y

End Sub
56

The Form_DragDrop procedure actually moves the control. To simplify this example,
assume that Image1 is the only control on the form. The target can therefore only be
the form itself. The Form_DragDrop procedure repositions the control, using DragX
and DragY as offsets:

Private Sub Form_DragDrop (Source As Control, _
X As Single, Y As Single)

Source.Move (X - DragX), (Y - DragY)
End Sub

57
Note that this example assumes that Image1 and the form use the same units in their
respective coordinate systems. If they don't, then you'll have to convert between units.

For More Information For information on coordinate systems, see "Working with
Text and Graphics.”

58

OLE Drag and Drop
One of the most powerful and useful features you can add to your Visual Basic
applications is the ability to drag text or graphics from one control to another, or from
a control to another Windows application, and vice versa. OLE drag-and-drop allows
you to add this functionality to your applications.

With OLE drag and drop, you’re not dragging one control to another control to
invoke some code (as with the drag and drop discussed earlier in this chapter); you’re

—19

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 19 of 51 Printed: 09/17/96 10:18 AM

moving data from one control or application to another control or application. For
example, the user selects and drags a range of cells in Excel, then drops the range of
cells into the Data-Bound Grid control in your application.

Almost all Visual Basic controls support OLE drag-and-drop to some degree. The
following standard and ActiveX controls (those provided in the Professional and
Enterprise editions of Visual Basic) provide automatic support for OLE drag-and-
drop, which means that no code needs to be written to either drag from or drop to the
control:

Apex Data-Bound Grid Picture box Rich text box

Image Text box Masked edit box
59

To enable automatic OLE dragging and dropping for these controls, you set the
OLEDragMode and OLEDropMode properties to Automatic.

Some controls only provide automatic support for the OLE drag operation. To enable
automatic dragging from these controls, set the OLEDragMode property to
Automatic.

Combo box Data-Bound list box File list box

Data-Bound Combo box Directory list box List box

Tree View List View
60

The following controls only support the OLE drag-and-drop events, meaning that you
can program them with code to act either as the source or target of the OLE drag-and-
drop operations.

Check box Frame Option button

Command button Label Drive list box

Data
61

Note To determine if other ActiveX controls support OLE drag and drop, load
the control into Visual Basic and check for the existence of the OLEDragMode
and OLEDropMode properties, or for the OLEDrag method. (A control that
does not have automatic support for OLE drag will not have the
OLEDragMode property, but it will have an OLEDrag method if it supports
OLE drag through code.)

62
Note Forms, MDI forms, Document Objects, User Controls, and Property
Pages contain the OLEDropMode property and provide support for manual
dragging and dropping only.

63
Using the following OLE drag-and-drop properties, events, and method, you can
specify how a given control responds to dragging and dropping.

Category Item Description

Properties OLEDragMode Enables automatic or manual dragging of a

—20

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 20 of 51 Printed: 09/17/96 10:18 AM

control (if the control supports manual but not
automatic OLE drag, it will not have this
property but it will support the OLEDrag method
and the OLE drag-and-drop events).

OLEDropMode Specifies how the control will respond to a drop.

Events OLEDragDrop Recognizes when a source object is dropped onto
a control.

OLEDragOver Recognizes when a source object is dragged over
a control.

OLEGiveFeedback Provides customized drag icon feedback to the
user, based on the source object.

OLEStartDrag Specifies which data formats and drop effects
(copy, move, or refuse data) the source supports
when dragging is initiated.

OLESetData Provides data when the source object is dropped.

OLECompleteDrag Informs the source of the action that was
performed when the object was dropped into the
target.

Method OLEDrag Starts manual dragging.
64

Automatic vs. Manual Dragging and Dropping
It is helpful to think of OLE drag-and-drop implementation as either automatic or
manual.

Automatic dragging and dropping means that, for example, you can drag text from
one text box control to another by simply setting the OLEDragMode and
OLEDropMode properties of these controls to Automatic: You don’t need to write any
code to respond to any of the OLE drag-and-drop events. When you drag a range of
cells from Excel into a Word document, you’ve performed an automatic drag-and-
drop operation. Depending upon how a given control or application supports OLE
drag and drop and what type of data is being dragged, automatically dragging and
dropping data may be the best and simplest method.

Manual dragging and dropping means that you have chosen (or have been forced to)
manually handle one or more of the OLE drag-and-drop events. Manual
implementation of OLE drag and drop may be the better method when you want to
gain greater control over each step in the process, to provide the user with customized
visual feedback, to create your own data format. Manual implementation is the only
option when a control does not support automatic dragging and dropping.

It is also helpful to define the overall model of the OLE drag-and-drop operation. In a
drag and drop operation, the object from which data is dragged is referred to as the
source. The object into which the data is dropped is referred to as the target. Visual
Basic provides the properties, events, and method to control and respond to actions
affecting both the source and the target. It is also helpful to recognize that the source
and the target may be in different applications, in the same application, or even in the

—21

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 21 of 51 Printed: 09/17/96 10:18 AM

same control. Depending upon the scenario, you may need to write code for either the
source or target, or both.

Enabling Automatic OLE Drag and Drop
If your controls support automatic dragging and dropping, you can drag data from
and/or drop data into a Visual Basic control by setting the control’s OLEDragMode
and/or OLEDropMode properties to Automatic. For instance, you may want to drag
text from a text box control into a Word for Windows document, or allow the text box
control to accept data dragged from the Word for Windows document.

To allow dragging from the text box control, set the OLEDragMode property to
Automatic. At run time, you can select text typed into the text box control and drag it
into the open Word for Windows document.

When you drag text from the text box control into a Word for Windows document, it
is, by default, moved rather than copied into the document. If you hold the CTRL key
down while dropping text, it will be copied rather than moved. This is the default
behavior for all objects or applications that support OLE drag-and-drop. To restrict
this operation by allowing data to only be moved or only be copied, you need to
modify the automatic behavior by using the manual dragging and dropping
techniques. For more information, see "Using the Mouse and Keyboard to Modify
Drop Effects and User Feedback."

To allow the text box control to automatically retrieve data in a OLE drag-and-drop
operation, set its OLEDropMode property to Automatic. At run time, data dragged
from an OLE-enabled application into the text box control will be moved rather than
copied unless you hold down the CTRL key during the drop, or alter the default
behavior through code.

Automatic support for dragging and dropping data has its limitations; some of these
limitations are derived from the functionality of the controls themselves. For instance,
if you move text from a Word for Windows document into a text box control, all the
rich text formatting in the Word document will be stripped out because the text box
control doesn’t support this formatting. Similar limitations exist for most controls.
Another limitation of automatic operations is that you don't have complete control
over what kind of data is dragged and/or dropped.

Note When dragging data, you may notice that the mouse pointer indicates if the
object that it is passing over supports OLE drag and drop for the type of data that you
are dragging. If the object supports OLE drag and drop for the type of data, the
“drop” pointer is displayed. If the object does not, a "no drop" pointer is displayed.

65

The OLE Drag and Drop DataObject Object
OLE drag-and-drop uses the same source and target model as the simple event-driven
drag-and-drop techniques discussed in “Dragging and Dropping.” In this case,

—22

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 22 of 51 Printed: 09/17/96 10:18 AM

however, you’re not dragging one control to another control to invoke some code;
you’re moving data from one control or application to another control or application.
For example, the user selects and drags a range of cells in Excel (source) then drops
the range of cells into the DBGrid control (target) in your application.

In Visual Basic, the vehicle, or repository, of this data is the DataObject object — it is
the means by which data is moved from the source to the target. It does this by
providing the methods needed to store, retrieve, and analyze the data. The following
table lists the property and methods used by the DataObject object:

Category Item Description

Property Files Holds the names of files dragged to or from the
Windows Explorer.

Methods Clear Clears the content of the DataObject object.

GetData Retrieves data from the DataObject object.

GetFormat Determines if a specified data format is
available in the DataObject object.

SetData Places data into the DataObject object, or
indicates that a specified format is available
upon request.

66
Used with the OLE drag-and-drop events, these methods allow you to manage data in
the DataObject object on both the source and target sides (if both are within your
Visual Basic application). For instance, you can place data into the DataObject object
on the source side using the SetData method, and then use the GetData method to
accept the data on the target side.

The Clear method is used to clear the content of the DataObject object on the source
side when the OLEStartDrag event is triggered. When data from a control is dragged
in an automatic drag operation, its data formats are placed into the DataObject object
before the OLEStartDrag event is triggered. If you don’t want to use the default
formats, you use the Clear method. If you want to add to the default data formats, you
do not use the Clear method.

The Files property allows you to store the names of a range of files that can be then
dragged into a drop target. See “Dragging Files from the Windows Explorer” for
more information on this property.

You can also specify the format of the data being transferred. The SetData and
GetData methods use the following arguments to place or retrieve data in the
DataObject object:

Argument Description

data Allows you to specify the type of data that is placed into the DataObject
object (optional argument if the format argument has been set;
otherwise, it's required).

format Allows you to set several different formats that the source can support,

—23

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 23 of 51 Printed: 09/17/96 10:18 AM

without having to load the data for each (optional argument if the data
argument has been set or if Visual Basic understands the format;
otherwise, it's required).

67
Note When data is dropped onto the target and no format has been
specified, Visual Basic is able to detect if it is a bitmap, metafile, enhanced
metafile, or text. All other formats must be specified explicitly or an error will
be generated.

68
The format argument uses the following constants or values to specify the format of
the data:

Constant Value Meaning

vbCFText 1 Text

vbCFBitmap 2 Bitmap (.bmp)

vbCFMetafile 3 Metafile (.wmf)

vbCFEMetafile 14 Enhanced metafile (.emf)

vbCFDIB 8 Device-independent bitmap (.dib or .bmp)

vbCFPalette 9 Color palette

vbCFFiles 15 List of files

vbCFRTF -16639 Rich text format (.rtf)
69

The SetData, GetData, and GetFormat methods use the data and format arguments to
return either the type of data in the DataObject object or to retrieve the data itself if
the format is compatible with the target. For example:

Private Sub txtSource_OLEStartDrag(Data As _
VB.DataObject, AllowedEffects As Long)

Data.SetData txtSource.SelText, vbCFText
End Sub

70
In this example, data is the text selected in a textbox and format has been specified as
text (vbCFText).

Note You should use the vbCFDIB data format instead of vbCFBitmap and
vbCFPalette, in most cases. The vbCFDIB format contains both the bitmap
and palette and is therefore the preferred method of transferring a bitmap
image. You can, however, also specify the vbCFBitmap and vbCFPalette for
completeness. If you chose not to use the vbCFDIB format, you must specify
both the vbCFBitmap and vbCFPalette formats so that the bitmap and the
palette are correctly placed into the DataObject object.

71
For More Information See “Creating a Custom Data Format” for information on
defining your own data format.

72

How OLE Drag and Drop Works

—24

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 24 of 51 Printed: 09/17/96 10:18 AM

When an OLE drag-and-drop operation is performed, certain events are generated on
the source and target sides. The events associated with the source object are always
generated, whether the drag-and-drop operation is automatic or manual. The target-
side events, however, are only generated in a manual drop operation. The following
illustration shows which events occur and can be responded to on the drag source, and
which occur and can be responded to on the drop target.

Figure 11.6 Source-side and target-side events

9
Which events you’ll need to respond to depends upon how you’ve chosen to
implement the drag-and-drop functionality. For example, you may have created an
application with a text box that you want to allow to automatically accept dragged
data from another application. In this case, you simply set the control’s
OLEDropMode property to Automatic. If you want to allow data to be automatically
dragged from the text box control as well, you set its OLEDragMode property to
Automatic.

If, however, you want to change the default mouse cursors or enhance the
functionality for button states and shift keys, you need to manually respond to the
source- and target-side events. Likewise, if you want to analyze the data before it is
dropped into a control (to verify that the data is compatible, for instance), or delay
when the data is loaded into the DataObject object (so that multiple formats don't
need to be loaded at the beginning), you'll need to use manual OLE drag-and-drop
operations.

Because you can drag and drop data into numerous Visual Basic controls and
Windows applications — with varying limitations and requirements — implementing
OLE drag and drop can range from straightforward to fairly complex. The simplest
implementation, of course, would be dragging and dropping between two automatic
objects, whether the object is a Word document, an Excel spreadsheet, or a control in

—25

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 25 of 51 Printed: 09/17/96 10:18 AM

your application that has been set to Automatic. Specifying multiple data formats that
would be acceptable to your drop target would be more complicated.

Starting the Drag
What happens in a basic manual OLE drag-and-drop operation within your Visual
Basic application? When the user drags data from an OLE drag source (a text box
control, for example) by selecting and then holding down the left mouse button, the
OLEStartDrag event is triggered and you can then either store the data or simply
specify the formats that the source supports. You also need to specify whether
copying or moving the data, or both, is allowed by the source.

For More Information See “Starting the OLE Drag Operation” for more
information on the OLEDrag method, the OLEstartDrag event, using the SetData
method to specify the supported data formats, and placing data into the DataObject.

73

Dragging Over the Target
As the user drags over the target, the target’s OLEDragOver event is triggered,
indicating that the source is within its boundaries. You then specify what the target
would do if the data were dropped there — either copy, move, or refuse the data. By
convention, the default is usually move, but it may be copy.

When the target specifies which drop effect will be performed if the source is dropped
there, the OLEGiveFeedback event is triggered. The OLEGiveFeedback event is used
to provide visual feedback to the user on what action will be taken when the selection
is dropped — i.e., the mouse pointer will be changed to indicate a copy, move, or "no
drop" action.

As the source is moved around within the boundaries of the target — or if the user
presses the SHIFT, CTRL, or ALT keys while holding down the mouse button — the drop
effect may be changed. For example, instead of allowing a copy or a move, the data
may be refused.

If the user passes beyond the target or presses the ESC key, for example, then the drag
operation may be canceled or modified (the mouse pointer may be changed to
indicate that the object it is currently passing over will not accept the data).

For More Information See “Providing the User with Visual Feedback” and
“Dragging the OLE Drag Source over the OLE Drop Target” for more information on
the OLEDragOver and OLEGiveFeedback events.

74

Completing the Drag
When the user drops the source onto the target, the target’s OLEDragDrop event is
triggered. The target queries the source for the format of the data it contains (or
supports, if the data wasn’t placed into the source when the drag was started) and then
either retrieves or rejects the data.

—26

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 26 of 51 Printed: 09/17/96 10:18 AM

If the data was stored when the drag started, the target retrieves the data by using the
GetData method. If the data wasn’t stored when the drag started, the data is retrieved
by triggering the source’s OLESetData event and then using the SetData method.

When the data is accepted or rejected, the OLECompleteDrag event is triggered and
the source can then take the appropriate action: if the data is accepted and a move is
specified, the source deletes the data, for example.

For More Information See “Dropping the OLE Drag Source onto the OLE Drop
Target” for more information on the OLEDragDrop event, the OLECompleteDrag
event, and using the GetFormat and GetData methods to retrieve data from the
DataObject object.

75

Starting the OLE Drag Operation
If you want to be able to specify which data formats or drop effects (copy, move, or
no drop) are supported, or if the control you want to drag from doesn't support
automatic dragging, you need to make your OLE drag operation manual.

The first phase of a manual drag-and-drop operation is calling the OLEDrag method,
setting the allowed drop effects, specifying the supported data formats, and,
optionally, placing data into the DataObject object.

You use the OLEDrag method to manually start the drag operation and the
OLEStartDrag event to specify the allowed drop-action effects and the supported data
formats.

The OLEDrag Method
Generally, the OLEDrag method is called from an object’s MouseMove event when
data has been selected, the left mouse button is pressed and held, and the mouse is
moved.

The OLEDrag method does not provide any arguments. Its primary purpose is to
initiate a manual drag and then allow the OLEStartDrag event to set the conditions of
the drag operation (for example, specifying what will happen when the data is
dragged into another control).

If the source control supports the OLEDragMode property, to have manual control
over the drag operation you must set the property to Manual and then use the
OLEDrag method on the control. If the control supports manual but not automatic
OLE drag, it will not have the OLEDragMode property, but it will support the
OLEDrag method and the OLE drag-and-drop events.

Note The OLEDrag method will also work if the source control’s
OLEDragMode property is set to Automatic.

76

Specifying Drop Effects and Data Formats

—27

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 27 of 51 Printed: 09/17/96 10:18 AM

In a manual OLE drag operation, when the user begins dragging the source and the
OLEDrag method is called, the control's OLEStartDrag event fires. Use this event to
specify what drop effects and data formats the source supports.

The OLEStartDrag event uses two arguments to specify supported data formats and
whether the data can be copied or moved when the data is dropped (drop effects).

Note If no drop effects or data formats are specified in the OLEStartDrag
event, the manual drag will not be started.

77

The AllowedEffects Argument
The allowedeffects argument specifies which drop effects the drag source supports.
For example:

Private Sub txtSource_OLEStartDrag(Data As _
VB.DataObject, AllowedEffects As Long)

AllowedEffects = vbDropEffectMove Or _
vbDropEffectCopy

End Sub
78

The target can then query the drag source for this information and respond
accordingly.

The allowedeffects argument uses the following values to specify drop effects:

Constant Value Description

vbDropEffectNone 0 Drop target cannot accept the data.

vbDropEffectCopy 1 Drop results in a copy. The original data is
untouched by the drag source.

VbDropEffectMove 2 Drag source removes the data.
79

The Format Argument
You specify which data formats the object supports by setting the format argument of
the OLEStartDrag event. To do this, you use the SetData method. For example, in a
scenario using a rich text box control as a source and a text box control as a target,
you might specify the following supported formats:

Private Sub rtbSource_OLEStartDrag(Data As _
VB.DataObject, AllowedEffects As Long)

AllowedEffects = vbDropEffectMove Or _
vbDropEffectCopy

Data.SetData , vbCFText
Data.SetData , vbCFRTF

End Sub
80

The target can query the source to determine which data formats are supported and
then respond accordingly — e.g., if the format of the dropped data is not supported by
the target, reject the dropped data. In this case, the only data formats that are
supported by the source are the text and rich-text formats.

—28

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 28 of 51 Printed: 09/17/96 10:18 AM

For More Information See “The OLE Drag and Drop Data Object" for more
information on format values for the SetData method.

81

Placing Data into the DataObject object
In many cases, especially if the source supports more than one format, or if it is time-
consuming to create the data, you may want to place data into the DataObject object
only when it is requested by the target. You can, however, place the data into the
DataObject object when you begin a drag operation by using the SetData method in
the OLEStartDrag event. For example:

Private Sub txtSource_OLEStartDrag(Data As _
VB.DataObject, AllowedEffects As Long)

Data.Clear
Data.SetData txtSource.SelText, vbCFText

End Sub
82

This example clears the default data formats from the DataObject object using the
Clear method, specifies the data format (text) of the selected data, and then places the
data into the DataObject object with the SetData method.

Dragging the OLE Drag Source over the OLE Drop
Target

With a manual target, you can determine and respond to the position of the source
data within the target and respond to the state of the mouse buttons and the SHIFT,
CTRL, and ALT keys. Where both the source and the target are manual, you can modify
the default visual behavior of the mouse.

To . . . Use the . . .

Determine and respond to the position of the
source object

state argument of the OLEDragOver event

Respond to the state of the mouse buttons button argument of the OLEDragDrop and
OLEDragOver events

Respond to the state of the SHIFT, CTRL, and ALT
keys

shift arguments of the OLEDragDrop and
OLEDragOver events

Modify the default visual behavior of the mouse effect argument of the OLEDragOver event and
the effect argument of the OLEGiveFeedback

83
For More Information For more information about changing the mouse cursor,
see "Providing the User with Customized Visual Feedback." For more information
about using the button and shift arguments, see "Using the Mouse and Keyboard to
Modify Drop Effects and User Feedback."

84

The OLEDragOver Event State Argument

—29

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 29 of 51 Printed: 09/17/96 10:18 AM

Depending upon its position, the effect argument may be changed to indicate the
currently acceptable drop effect.

The state argument of the OLEDragOver event allows you to respond to the source
data entering, passing over, and leaving the target control. For example, when the
source data enters the target control, the state argument is set to vbEnter.

When the drag source is moved around within the boundaries of the drop target, the
state argument is set to vbOver. Depending upon the position (the x and y arguments)
of the mouse pointer, you may want to change the drag effect. Notice that the
OLEDragOver event is generated several times a second, even when the mouse is
stationary.

The state argument of the OLEDragOver event specifies when the data enters, passes
over, and leaves the target control by using the following constants:

Constant Value Meaning

vbEnter 0 Data has been dragged within the range of a target.

vbLeave 1 Data has been dragged out of the range of a target.

vbOver 2 Data is still within the range of a target, and either the
mouse has moved, a mouse or keyboard button has
changed, or a certain system-determined amount of time
has elapsed.

Providing the User with Customized Visual
Feedback
If you want to modify the default visual behavior of the mouse in an OLE drag-and-
drop operation, you can manipulate the OLEDragOver event on the target side and
the OLEGiveFeedback event on the source side.

OLE drag and drop provides automatic visual feedback during a drag-and-drop
operation. For example, when you start a drag, the mouse pointer is changed to
indicate that a drag has been initiated. When you pass over objects that do not support
OLE drop, the mouse pointer is changed to the "no drop" cursor.

Modifying the mouse pointer to indicate how a control will respond if the data is
dropped onto it involves two steps: determining what type of data is in the DataObject
object using the GetFormat method, and then setting the effect argument of the
OLEDragOver event to inform the source what drop effects are allowed for this
control.

The OLEDragOver Event
When a target control’s OLEDropMode property is set to Manual, the OLEDragOver
event is triggered whenever dragged data passes over the control.

The effect argument of the OLEDragOver event is used to specify what action would
be taken if the object were dropped. When this value is set, the source’s

—30

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 30 of 51 Printed: 09/17/96 10:18 AM

OLEGiveFeedback event is triggered. The OLEGiveFeedback event contains its own
effect argument, which is used to provide visual feedback to the user on what action
will be taken when the selection is dragged — i.e., the mouse pointer is changed to
indicate a copy, move, or "no drop" action.

The effect argument of the OLEDragOver event uses the following constants to
indicate the drop action:

Constant Value Description

vbDropEffectNone 0 Drop target cannot accept the data.

vbDropEffectCopy 1 Drop results in a copy. The original
data is untouched by the drag source.

VbDropEffectMove 2 Drag source removes the data.
85

Note The effect argument of the OLEDragOver and OLEGiveFeedback
events express the same drop effects (copy, move, no drop) as the
allowedeffects argument of the OLEStartDrag event. They differ only in that
the OLEStartDrag event specifies which effects are allowed, and the
OLEDragOver and OLEGiveFeedback use the effect argument to indicate to
the source which of these actions will be taken.

86
The following code example queries the DataObject object for a compatible data
format for the target control. If the data is compatible, the effect argument informs the
source that a move will be performed if the data is dropped. If the data is not
compatible, the source will be informed and a "‘no drop” mouse pointer will be
displayed.

Private Sub txtTarget_OLEDragOver(Data As _
VB.DataObject, Effect As Long, Button As _
Integer, Shift As Integer, X As Single, _
Y As Single, State As Integer)

If Data.GetFormat(vbCFText) Then
Effect = vbDropEffectMove And Effect

Else
Effect = vbDropEffectNone

End If
End Sub

87
When the source data is dragged over the target, and the OLEDragOver event is
triggered, the source tells the target which effects it allows (move, copy, no drop).
You must then chose which single effect will occur if the data is dropped. The effect
argument of the OLEDragOver event informs the source which drop action it
supports, and the source then informs the user by using the OLEGiveFeedback event
to modify the mouse pointer.

The OLEGiveFeedback Event
To change the default behavior of the mouse pointer based on the effect argument of
the OLEDragOver event, you need to manually specify new mouse pointer values

—31

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 31 of 51 Printed: 09/17/96 10:18 AM

using the OLEGiveFeedback event. The source’s OLEGiveFeedback event is
triggered automatically when the effect argument of the OLEDragOver event is set.

The OLEGiveFeedback event contains two arguments (effect and defaultcursors) that
allow you to modify the default mouse pointers in an OLE drag-and-drop operation.

The effect argument, like the other OLE drag-and-drop events, specifies whether data
is to be copied, moved, or rejected. The purpose of this argument in the
OLEGiveFeedback event, however, is to allow you to provide customized visual
feedback to the user by changing the mouse pointer to indicate these actions.

Constant Value Description

vbDropEffectNone 0 Drop target cannot accept the data.

vbDropEffectCopy 1 Drop results in a copy. The original
data is untouched by the drag source.

vbDropEffectMove 2 Drag source removes the data.

VbDropEffectScroll &H80000000& Scrolling is about to start or is
currently occuring in the target. The
value is used in addition to the other
values.

88
Note The vbDropEffectScroll value can be used by some applications or
controls to indicate that the user is causing scrolling by moving the mouse
pointer near the edge of an application’s window. Scrolling is automatically
supported by some but not all of the Visual Basic standard controls. You may
need to program for the scroll effect if you drag data into a program that
contains scroll bars — Word for Windows, for example.

89
The defaultcursors argument specifies whether the default OLE cursor set is used.
Setting this argument to False allows you to specify your own cursors using the
Screen.MousePointer property of the Screen object.

In most cases, specifying custom mouse pointers is unnecessary because the default
behavior of the mouse is handled by OLE. If you decide to specify custom mouse
pointers using the OLEGiveFeedback event, you need to account for every possible
effect, including scrolling. It is also a good idea to program for effects that may be
added later by creating an option that gives the control of the mouse pointer back to
OLE if an unknown effect is encountered.

The following code example sets the effect and defaultcursors arguments and
specifies custom cursors (.ico or .cur files) for the copy, move, and scroll effects by
setting the MousePointer and MouseIcon properties of the Screen object. It also
returns control of the mouse pointer back to OLE if an unknown effect is
encountered.

Private Sub TxtSource_OLEGiveFeedback(Effect As Long, _
DefaultCursors As Boolean)

DefaultCursors = False
If Effect = vbDropEffectNone Then

—32

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 32 of 51 Printed: 09/17/96 10:18 AM

Screen.MousePointer = vbNoDrop
ElseIf Effect = vbDropEffectCopy Then

Screen.MousePointer = vbCustom
Screen.MouseIcon = LoadPicture("c:\copy.ico")

ElseIf Effect = (vbDropEffectCopy Or _
vbDropEffectScroll) Then

Screen.MousePointer = vbCustom
Screen.MouseIcon = _

LoadPicture("c:\copyscrl.ico")
ElseIf Effect = vbDropEffectMove Then

Screen.MousePointer = vbCustom
Screen.MouseIcon = LoadPicture("c:\move.ico")
ElseIf Effect = (vbDropEffectMove Or _

vbDropEffectScroll) Then
Screen.MousePointer = vbCustom
Screen.MouseIcon = _

LoadPicture("c:\movescrl.ico")
Else

' If some new format is added that we do not
' understand, allow OLE to handle it with
' correct defaults.
DefaultCursors = True

End If
End Sub

90
Note You should always reset the mouse pointer in the OLECompleteDrag
event if you specify a custom mouse pointer in the OLEGiveFeedback event.
See “Informing the Source When Data is Dropped” for more information.

91
For More Information See “Customizing the Mouse Pointer” for information on
setting the MousePointer and MouseIcon properties.

92

Dropping the OLE Drag Source onto the OLE Drop
Target

If your target supports manual OLE drag-and-drop operations, you can control what
happens when the cursor is moved within the target and can specify what kind of data
the target will accept. When the user drops the source object onto the target control,
the OLEDragDrop event is used to query the DataObject object for a compatible data
format, and then retrieve the data.

The OLEDragDrop event also informs the source of the drop action, allowing it to
delete the original data if a move has been specified, for example.

Retrieving the Data
The OLEDragDrop event is triggered when the user drops the source onto the target.
If data was placed into the DataObject object when the drag operation was initiated, it
can be retrieved when the OLEDragDrop event is triggered, by using the GetData
method. If, however, only the supported source formats were declared when the drag

—33

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 33 of 51 Printed: 09/17/96 10:18 AM

operation was initiated, then the GetData method will automatically trigger the
OLESetData event on the source to place the data into, and then retrieve the data
from, the DataObject object.

The following example retrieves data that was placed into the DataObject object
when the drag operation was initiated. The drag operation may have been initiated
manually (using the OLEDrag method on the source) or automatically (by setting the
OLEDragMode property of the source to Automatic). The dragged data is retrieved
using the DataObject object’s GetData method. The GetData method provides you
with constants that represent the data types that the DataObject object supports. In
this case, we are retrieving the data as text.

Private Sub txtTarget_OLEDragDrop(Data As _
VB.DataObject, Effect As Long, Button As _
Integer, Shift As Integer, X As Single, _
Y As Single)

txtTarget.Text = Data.GetData(vbCFText)
End Sub

93
For More Information For a complete list of GetData format constants, see “The
OLE Drag and Drop DataObject Object” earlier in this chapter.

94

Querying the DataObject Object
You may need to query the DataObject object for the types of data that are being
dropped onto the target. You use the GetFormat method in an If…Then statement to
specify which types of data the target control can accept. If the data within the
DataObject object is compatible, the drop action will be completed.

Private Sub txtTarget_OLEDragDrop(Data As _
VB.DataObject, Effect As Long, Button As _
Integer, Shift As Integer, X As Single, _
Y As Single)

If Data.GetFormat(vbCFText) Then
txtTarget.Text = Data.GetData(vbCFText)

End If
End Sub

Placing Data into the DataObject Object
When the target uses the GetData method to retrieve data from the source, the
OLESetData event is only triggered if the data was not placed into the source when
the drag operation was initiated.

In many cases, especially if the source supports more than one format, or if it is time-
consuming to create the data, you may want to place data into the DataObject object
only when it is requested by the target. The OLESetData event allows the source to
respond to only one request for a given format of data.

For example, if the supported data formats were specified using the OLEStartDrag
event when the drag operation was initiated, but data was not placed into the

—34

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 34 of 51 Printed: 09/17/96 10:18 AM

DataObject object, the OLESetData event is used to place a specific format of data
into the DataObject object.

Private Sub txtSource_OLESetData(Data As _
VB.DataObject, DataFormat As Integer)

If DataFormat = vbCFText Then
Data.SetData txtSource.SelText, vbCfText

End If
End Sub

95

Informing the Source When Data is Dropped
The effect argument of the OLEDragDrop event specifies how the data was
incorporated into the target when the data was dropped. When this argument is set,
the OLECompleteDrag event is triggered on the source with its effect argument set to
this value. The source can then take the appropriate action: If a move is specified, the
source deletes the data, for example.

The effect argument of the OLEDragDrop event uses the same constants as the effect
argument of the OLEDragOver event to indicate the drop action. The following table
lists these constants:

Constant Value Description

vbDropEffectNone 0 Drop target cannot accept the data.

vbDropEffectCopy 1 Drop results in a copy. The original
data is untouched by the drag source.

VbDropEffectMove 2 Drag source removes the data.
96

The following example sets the effect argument to indicate the drop action.

Private Sub txtTarget_OLEDragDrop(Data As _
VB.DataObject, Effect As Long, Button As _
Integer, Shift As Integer, X As Single, _
Y As Single)

If Data.GetFormat(vbCFText) Then
txtTarget.Text = Data.GetData(vbCFText)

End If
Effect = vbDropEffectMove

End Sub
97

On the source side, the OLECompleteDrag event is triggered when the source is
dropped onto the target, or when the OLE drag-and-drop operation is canceled.
OLECompleteDrag is the last event in the drag-and-drop operation.

The OLECompleteDrag event contains only one argument (effect), which is used to
inform the source of the action that was taken when the data is dropped onto the
target.

The effect argument returns the same values that are used by the effect argument of
the other OLE drag-and-drop events: vbDropEffectNone, vbDropEffectCopy, and
vbDropEffectMove.

—35

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 35 of 51 Printed: 09/17/96 10:18 AM

By setting this argument after a move has been specified by the target and the source
has been dropped into the target, for example, the source will delete the original data
in the control. You should also use the OLECompleteDrag event to reset the mouse
pointer if you specified a custom mouse pointer in the OLEGiveFeedback event. For
example:

Private Sub txtSource_OLECompleteDrag(Effect As Long)
If Effect = vbDropEffectMove Then

txtSource.SelText = ""
End If
Screen.MousePointer = vbDefault

End Sub
98

Using the Mouse and Keyboard to Modify Drop Effects
and User Feedback

You can enhance the OLEDragDrop and OLEDragOver events by using the button
and shift arguments to respond to the state of the mouse buttons and the SHIFT, CTRL,
and ALT keys. For instance, when dragging data into a control, you can allow the user
to perform a copy operation by pressing the CTRL key, or a move operation by
pressing the SHIFT key.

In the following example, the shift argument of the OLEDragDrop event is used to
determine if the SHIFT key is pressed when the data is dropped. If it is, a move is
performed. If it is not, a copy is performed.

Private Sub txtTarget_OLEDragDrop(Data As _
VB.DataObject, Effect As Long, Button As _
Integer, Shift As Integer, X As Single, _
Y As Single)

If Shift And vbCtrlMask Then
txtTarget.Text = Data.GetData(vbCFText)
Effect = vbDropEffectCopy

Else
txtTarget.Text = Data.GetData(vbCFText)
Effect = vbDropEffectMove

End If
End Sub

99
The button argument can be used to isolate and respond to the various mouse button
states. For instance, you may want to allow the user to move the data by pressing both
the right and left mouse buttons simultaneously.

To indicate to the user what action will be taken when the source object is dragged
over the target when a mouse button or the SHIFT, CTRL, and ALT keys are pressed, you
can set the shift and button arguments of the OLEDragOver event. For example, to
inform the user what action will be taken when the SHIFT button is pressed during a
drag operation, you can add the followinng code to the OLEDragOver event:

Private Sub txtTarget_OLEDragOver(Data As _
VB.DataObject, Effect As Long, Button As _

—36

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 36 of 51 Printed: 09/17/96 10:18 AM

Integer, Shift As Integer, X As Single, _
Y As Single, State As Integer)

If Shift And vbCtrlMask Then
Effect = vbDropEffectCopy

Else
Effect = vbDropEffectMove

End If
End Sub

100
For More Information See “Detecting Mouse Buttons” and “Detecting SHIFT,
CTRL, and ALT States” for more information on responding to mouse and keyboard
states.

101

Creating a Custom Data Format
If the formats supplied in Visual Basic are insufficient for some specific purpose, you
can create a custom data format for use in an OLE drag-and-drop operation. For
example, a custom data format is useful if your application defines a unique data
format that you need to drag between two instances of your application, or just within
the application itself.

To create a custom data format, you have to call the Windows API
RegisterClipboardFormat function. For example:

Private Declare Function RegisterClipboardFormat Lib _
"user32.dll" Alias "RegisterClipboardFormatA" _
(ByVal lpszFormat$) As Integer

Dim MyFormat As Integer
102

Once defined, you can use your custom format as you would any other DataObject
object data format. For example:

Dim a() As Byte
a = Data.GetData(MyFormat)

103
To use this functionality, you have to place data into and retrieve data from the
DataObject object as a Byte array. You can then assign your custom data format to a
string variable because it is automatically converted.

Caution Retrieving your custom data format with the GetData method may
yield unpredictable results.

Because Visual Basic doesn’t understand your custom data format (because you
defined it), it doesn’t have a way to determine the size of the data. Visual Basic can
determine the memory size of the Byte array because it has been allocated by
Windows, but the operating system usually assigns more memory than is needed.

Therefore, when you retrieve a custom data format, you get back a Byte array
containing at least, and possibly more than, the number of bytes that the source
actually placed into the DataObject object. You must then correctly interpret your

—37

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 37 of 51 Printed: 09/17/96 10:18 AM

custom data format when it is retrieved from the DataObject object. For example, in a
simple string, you have to search for the NULL character and then truncate the string
to that length.

Dragging Files From the Windows Explorer
You can use OLE drag-and-drop to drag files from the Windows Explorer into an
appropriate Visual Basic control, or vice versa. For example, you can select a range of
text files in the Windows Explorer and then open them all in a single text box control
by dragging and dropping them onto the control.

To illustrate this, the following procedure uses a text box control and the
OLEDragOver and OLEDragDrop events to open a range of text files using the Files
property and the vbCFFiles data format of the DataObject object.

 To drag text files into a text box control from the Windows Explorer

5 Start a new project in Visual Basic.

6 Add a text box control to the form. Set its OLEDropMode property to Manual. Set
its MultiLine property to True and clear the Text property.

7 Add a function to select and index a range of files. For example:

1Sub DropFile(ByVal txt As TextBox, ByVal strFN$)
2 Dim iFile As Integer
3 iFile = FreeFile

4
5 Open strFN For Input Access Read Lock Read _
6Write As #iFile
7 Dim Str$, strLine$
8 While Not EOF(iFile) And Len(Str) <= 32000
9 Line Input #iFile, strLine$
10 If Str <> "" Then Str = Str & vbCrLf
11 Str = Str & strLine
12 Wend
13 Close #iFile

14
15 txt.SelStart = Len(txt)
16 txt.SelLength = 0
17 txt.SelText = Str

18
19End Sub

104
8 Add the following procedure to the OLEDragOver event. The GetFormat method

is used to test for a compatible data format (vbCFFiles).

20Private Sub Text1_OLEDragOver(Data As _
21VB.DataObject, Effect As Long, Button As Integer, _
22Shift As Integer, X As Single, Y As Single, State _
23As Integer)
24 If Data.GetFormat(vbCFFiles) Then
25 'If the data is in the proper format, _
26inform the source of the action to be taken

—38

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 38 of 51 Printed: 09/17/96 10:18 AM

27 Effect = vbDropEffectCopy And Effect
28 Exit Sub
29 End If
30 'If the data is not desired format, no drop
31 Effect = vbDropEffectNone

32
33End Sub

105
9 Finally, add the following procedure to the OLEDragDrop event.

34Private Sub Text1_OLEDragDrop(Data As _
35VB.DataObject, Effect As Long, Button As Integer, _
36Shift As Integer, X As Single, Y As Single)
37 If Data.GetFormat(vbCFFiles) Then
38 Dim vFN
39
40 For Each vFN In Data.Files
41 DropFile Text1, vFN
42 Next vFN
43 End If
44End Sub

106
10 Run the application, open the Windows Explorer, highlight several text files, and

drag them into the text box control. Each of the text files will be opened in the
text box.

10

Customizing the Mouse Pointer
You can use the MousePointer and MouseIcon properties to display a custom icon,
cursor, or any one of a variety of predefined mouse pointers. Changing the mouse
pointer gives you a way to inform the user that long background tasks are processing,
that a control or window can be resized, or that a given control doesn't support drag-
and-drop, for instance. Using custom icons or mouse pointers, you can express an
endless range of visual information about the state and functionality of your
application.

With the MousePointer property you can select any one of sixteen predefined
pointers. These pointers represent various system events and procedures. The
following table describes several of these pointers and their possible uses in your
application.

Mouse pointerConstant Description

vbHourglass Alerts the user to changes in the state of the program.
For example, displaying an hourglass tells the user to
wait.

 vbSizePointer Notifies the user of changes in function. For example,
the double arrow sizing pointers tell users they can
resize a window.

vbNoDrop Warns the user an action can't be performed. For
example, the no drop pointer tells users they can't drop

—39

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 39 of 51 Printed: 09/17/96 10:18 AM

a file at this location.
107

Each pointer option is represented by an integer value setting. The default setting is 0-
Default and is usually displayed as the standard Windows arrow pointer. However,
this setting is controlled by the operating system and can change if the system mouse
settings have been changed by the user. To control the mouse pointer in your
application, you set the MousePointer property to an appropriate value.

A complete list of mouse pointers is available by selecting the MousePointer property
of a control or form and scanning the pull-down settings list or by using the Object
Browser and searching for MousePointerConstants.

When you set the MousePointer property for a control, the pointer appears when the
mouse is over the corresponding control. When you set the MousePointer property for
a form, the selected pointer appears both when the mouse is over blank areas of the
form and when the mouse is over controls with the MousePointer property set to 0-
Default.

At run time you can set the value of the mouse pointer either by using the integer
values or the Visual Basic mouse pointer constants. For example:

Form1.MousePointer = 11 'or vbHourglass
108

Icons and Cursors
You can set the mouse pointer to display a custom icon or cursor. Using custom icons
or cursors allows you to further modify the look or functionality of your application.
Icons are simply .ico files, like those shipped with Visual Basic. Cursors are .cur files
and, like icons, are essentially bitmaps. Cursors, however, are created specifically to
show the user where actions initiated by the mouse will take place — they can
represent the state of the mouse and the current input location.

Cursors also contain hot spot information. The hot spot is a pixel which tracks the
location of the cursor — the x and y coordinates. Typically, the hot spot is located at
the center of the cursor. Icons, when loaded into Visual Basic through the MouseIcon
property, are converted to the cursor format and the hot spot is set to the center pixel.
The two differ in that the hot spot location of a .cur file can be changed, whereas that
of an .ico file cannot. Cursor files can be edited in Image Editor, which is available in
the Windows SDK.

Note Visual Basic does not support color cursors; they are displayed in
black and white. Therefore, when using the MouseIcon property to create a
custom mouse pointer, consider which is the more important need: color or
location tracking. If color, use a color icon. If precise tracking is needed, use a
cursor.

109
To use a custom icon or cursor, you set both the MousePointer and MouseIcon
properties.

—40

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 40 of 51 Printed: 09/17/96 10:18 AM

 To use an .ico file as a mouse pointer

1. Select a form or control and set the MousePointer property to 99-Custom.

2. Load an .ico file into the MouseIcon property. For example, for a form:

45Form1.MouseIcon = LoadPicture("c:\Program _
46Files\Microsoft Visual _
47Basic\Icons\Computer\Disk04.ico") 11

Both properties must be set appropriately for an icon to appear as a mouse pointer. If
no icon is loaded into MouseIcon when the MousePointer property is set to 99-
Custom, the default mouse pointer is used. Likewise, if the MousePointer property is
not set to 99-Custom, the setting of MouseIcon is ignored.

Note Visual Basic does not support animated cursor (.ani) files.
110

Responding to Keyboard Events
Keyboard events, along with mouse events, are the primary elements of a user's
interaction with your program. Clicks and key presses trigger events and provide the
means of data input and the basic forms of window and menu navigation.

Although the operating system provides the seamless back-end for all these actions,
it's sometimes useful or necessary to modify or enhance them. The KeyPress, KeyUp,
and KeyDown events allow you to make these modifications and enhancements.

Programming your application to respond to key events is referred to as writing a
keyboard handler. A keyboard handler can work on two levels: at the control level and
at the form level. The control level (low-level) handler allows you to program a
specific control. For instance, you might want to convert all the typed text in a
Textbox control to uppercase. A form-level handler allows the form to react to the key
events first. The focus can then be shifted to a control or controls on the form, and the
events can either be repeated or initiated.

With these key events you can write code to handle most of the keys on a standard
keyboard. For information on dealing with international character sets and keyboards,
see "International Issues."

Writing Low-Level Keyboard Handlers
Visual Basic provides three events that are recognized by forms and by any control
that accepts keyboard input. They are described in the following table.

Keyboard event Occurs

KeyPress When a key corresponding to an ASCII character is pressed

KeyDown As any key on the keyboard is pressed

KeyUp As any key on the keyboard is released
111

—41

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 41 of 51 Printed: 09/17/96 10:18 AM

Only the object that has the focus can receive a keyboard event. For keyboard events,
a form has the focus only if it is active and no control on that form has the focus. This
happens only on blank forms and forms on which all controls have been disabled.
However, if you set the KeyPreview property on a form to True, the form receives all
keyboard events for every control on the form before the control recognizes them.
This is extremely useful when you want to perform the same action whenever a
certain key is pressed, regardless of which control has the focus at the time.

The KeyDown and KeyUp events provide the lowest level of keyboard response. Use
these events to detect a condition that the KeyPress event is unable to detect, for
instance:

· Special combinations of SHIFT, CTRL, and ALT keys.

· Arrow keys. Note that some controls (command buttons, option buttons, and check
boxes) do not receive arrow-key events: Instead, arrow keys cause movement to
another control.

· PAGEUP and PAGEDOWN.

· Distinguishing the numeric keypad from numbers on the typewriter keys.

· Responding to a key being released as well as pressed (KeyPress responds only to
a key being pressed).

· Function keys not attached to menu commands.
12

The keyboard events are not mutually exclusive. When the user presses a key, both
the KeyDown and KeyPress events are generated, followed by a KeyUp event when
the user releases the key. When the user presses one of the keys that KeyPress does
not detect, only a KeyDown event occurs, followed by a KeyUp event.

Before using the KeyUp and KeyDown events, make sure that the KeyPress event
isn't sufficient. This event detects keys that correspond to all the standard ASCII
characters: letters, digits, and punctuation on a standard keyboard, as well as the
ENTER, TAB, and BACKSPACE keys. It's generally easier to write code for the KeyPress
event.

You also should consider using shortcut and access keys, which are described in
"Menu Basics" in "Forms, Controls, and Menus." Shortcut keys must be attached to
menu commands, but they can include function keys (including some function-key –
shift-key combinations). You can assign shortcut keys without writing additional
code.

Note The Windows ANSI (American National Standards Institute) character
set corresponds to the 256 characters that include the standard Latin
alphabet, publishing marks (such as copyright symbol, em dash, ellipsis), as
well as many alternate and accented letters. These characters are
represented by a unique 1-byte numeric value (0-255). ASCII (American
Standard Code for Information Interchange) is essentially a subset (0-127) of
the ANSI character set and represents the standard letters, digits, and

—42

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 42 of 51 Printed: 09/17/96 10:18 AM

punctuation on a standard keyboard. The two character sets are often
referred to interchangeably.

112

The KeyPress Event
The KeyPress event occurs when any key that corresponds to an ASCII character is
pressed. The ASCII character set represents not only the letters, digits, and
punctuation on a standard keyboard but also most of the control keys. The KeyPress
event only recognizes the ENTER, TAB, and BACKSPACE keys, however. The other
function, editing, and navigation keys can be detected by the KeyDown and KeyUp
events.

Use the KeyPress event whenever you want to process the standard ASCII characters.
For example, if you want to force all the characters in a text box to be uppercase, you
can use this event to change the case of the keys as they are typed:

Private Sub Text1_KeyPress (KeyAscii As Integer)
KeyAscii = Asc(UCase(Chr(KeyAscii)))

End Sub
113

The keyascii argument returns an integer value corresponding to an ASCII character
code. The procedure above uses Chr to convert the ASCII character code into the
corresponding character, UCase to make the character uppercase, and Asc to turn the
result back into a character code.

Using the same ASCII character codes, you can test whether a key recognized by the
KeyPress event is pressed. For instance, the following event procedure uses KeyPress
to detect if the user is pressing the BACKSPACE key:

Private Sub Text1_KeyPress (KeyAscii As Integer)
If KeyAscii = 8 Then MsgBox "You pressed the _

BACKSPACE key."
End Sub

114
You can also use the Visual Basic key-code constants in place of the character codes.
The BACKSPACE key in the example above has an ASCII value of 8. The constant
value for the BACKSPACE key is vbKeyBack.

For More Information A complete list of key code constants with corresponding
ASCII values can be found by using the Object Browser and searching for
KeyCodeConstants.

115
You can also use the KeyPress event to alter the default behavior of certain keys. For
example, pressing ENTER when there is no Default button on the form causes a beep.
You can avoid this beep by intercepting the ENTER key (character code 13) in the
KeyPress event.

Private Sub Text1_KeyPress (KeyAscii As Integer)
If KeyAscii = 13 Then KeyAscii = 0

End Sub
116

—43

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 43 of 51 Printed: 09/17/96 10:18 AM

The KeyDown and KeyUp Events
The KeyUp and KeyDown events report the exact physical state of the keyboard
itself: A key is pressed down (KeyDown) and a key is released (KeyUp). In contrast,
the KeyPress event does not report the state of the keyboard directly — it doesn't
recognize the up or down state of the key, it simply supplies the character that the key
represents.

A further example helps to illustrate the difference. When the user types uppercase
"A," the KeyDown event gets the ASCII code for "A." The KeyDown event gets the
same code when the user types lowercase "a." To determine whether the character
pressed is uppercase or lowercase, these events use the shift argument. In contrast, the
KeyPress event treats the uppercase and lowercase forms of a letter as two separate
ASCII characters.

The KeyDown and KeyUp events return information on the character typed by
providing the following two arguments.

Argument Description

keycode Indicates the physical key pressed. In this case, "A" and "a" are returned as
the same key. They have the identical keycode value. But note that "1" on
the typewriter keys and "1" on the numeric keypad are returned as different
keys, even though they generate the same character.

shift Indicates the state of the SHIFT, CTRL, and ALT keys. Only by examining
this argument can you determine whether an uppercase or lowercase letter
was typed.

117

The Keycode Argument
The keycode argument identifies a key by the ASCII value or by the key-code
constant. Key codes for letter keys are the same as the ASCII codes of the uppercase
character of the letter. So the keycode for both "A" and "a" is the value returned by
Asc("A"). The following example uses the KeyDown event to determine if the "A"
key has been pressed:

Private Sub Text1_KeyDown(KeyCode As Integer, _
Shift As Integer)

If KeyCode = vbKeyA Then MsgBox "You pressed _
the A key."

End Sub
118

Pressing SHIFT + "A" or "A" without the SHIFT key displays the message box — that
is, the argument is true in each case. To determine if the uppercase or lowercase form
of the letter has been pressed you need to use the shift argument. See the topic, "The
Shift Argument" later in this chapter.

Key codes for the number and punctuation keys are the same as the ASCII code of the
number on the key. So the keycode for both "1" and "!" is the value returned by
Asc("1"). Again, to test for the "!" character you need to use the shift argument.

—44

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 44 of 51 Printed: 09/17/96 10:18 AM

The KeyDown and KeyUp events can recognize most of the control keys on a
standard keyboard. This includes the function keys (F1-F16), the editing keys (HOME,
PAGE UP, DELETE, etc), the navigation keys (RIGHT, LEFT, UP, and DOWN ARROW), and
the keypad. These keys can be tested for by using either the key-code constant or the
equivalent ASCII value. For example:

Private Sub Text1_KeyDown(KeyCode As Integer, _
Shift As Integer)

If KeyCode = vbKeyHome Then MsgBox "You _
pressed the HOME key."

End Sub
119

For More Information A complete list of key code constants with corresponding
ASCII can be found by using the Object Browser and searching for
KeyCodeConstants.

120

The Shift Argument
The key events use the shift argument in the same way that the mouse events do — as
integer and constant values that represent the SHIFT, CTRL, and ALT keys. You can use
the shift argument with KeyDown and KeyUp events to distinguish between
uppercase and lowercase characters, or to test for the various mouse states.

Building on the previous example, you can use the shift argument to determine
whether the uppercase form of a letter is pressed.

Private Sub Text1_KeyDown(KeyCode As Integer, _
Shift As Integer)

If KeyCode = vbKeyA And Shift = 1 _
Then MsgBox "You pressed the uppercase A key."

End Sub
121

Like the mouse events, the KeyUp and KeyDown events can detect the SHIFT, CTRL,
and ALT individually or as combinations. The following example tests for specific
shift-key states.

Open a new project and add the variable ShiftKey to the Declarations section of the
form:

Dim ShiftKey as Integer
122

Add a Textbox control to the form and this procedure in the KeyDown event:

Private Sub Text1_KeyDown(KeyCode As Integer, _
Shift As Integer)

ShiftKey = Shift And 7
Select Case ShiftKey

Case 1 ' or vbShiftMask
Print "You pressed the SHIFT key."

Case 2 ' or vbCtrlMask
Print "You pressed the CTRL key."

Case 4 ' or vbAltMask
Print "You pressed the ALT key."

—45

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 45 of 51 Printed: 09/17/96 10:18 AM

Case 3
Print "You pressed both SHIFT and CTRL."

Case 5
Print "You pressed both SHIFT and ALT."

Case 6
Print "You pressed both CTRL and ALT."

Case 7
Print "You pressed SHIFT, CTRL, and ALT."

End Select
End Sub

123
As long as the Textbox control has the focus, each key or combination of keys prints a
corresponding message to the form when pressed.

For More Information See "Detecting SHIFT, CTRL, and ALT States" earlier in
this chapter.

124

Writing Form-Level Keyboard Handlers
Each KeyDown and KeyUp event is attached to a specific object. To write a keyboard
handler that applies to all objects on the form, set the KeyPreview property of the
form to True. When the KeyPreview property is set to True, the form recognizes the
KeyPress, KeyUp, and KeyDown events for all controls on the form before the
controls themselves recognize the events. This makes it very easy to provide a
common response to a particular keystroke.

You can set the KeyPreview property of the form to True in the Properties window or
through code in the Form_Load procedure:

Private Sub Form_Load
Form1.KeyPreview = True

End Sub
125

You can test for the various key states on a form by declaring a ShiftKey variable and
using the Select Case statement. The following procedure will print the message to
the form regardless of which control has the focus.

Open a new project and add the variable ShiftKey to the Declarations section of the
form:

Dim ShiftKey as Integer
126

Add a Textbox and a CommandButton control to the form. Add the following
procedure to the form's KeyDown event:

Private Sub Form_KeyDown(KeyCode As Integer, _
Shift As Integer)

ShiftKey = Shift And 7
Select Case ShiftKey

Case 1 ' or vbShiftMask
Print "You pressed the SHIFT key."

Case 2 ' or vbCtrlMask
Print "You pressed the CTRL key."

—46

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 46 of 51 Printed: 09/17/96 10:18 AM

Case 4 ' or vbAltMask
Print "You pressed the ALT key."

End Select
End Sub

127
If you have defined a shortcut key for a menu control, the Click event for that menu
control occurs automatically when the user types that key, and no key event occurs.

Similarly, if there is a command button on the form with the Default property set to
True, the ENTER key causes the Click event for that command button to occur instead
of a key event. If there is a command button with the Cancel property set to True, the
ESC key causes the Click event for that command button to occur instead of a key
event.

For example, if you add a Click event procedure to the CommandButton and then set
either the Default or Cancel properties to True, pressing the RETURN or ESC keys will
override the KeyDown event. This procedure closes the application:

Private Sub Command1_Click()
End

End Sub
128

Notice that the TAB key moves the focus from control to control and does not cause a
key event unless every control on the form is disabled or has TabStop set to False.

When the KeyPreview property of the form is set to True, the form recognizes the
keyboard events before the controls, but the events still occur for the controls. To
prevent this, you can set the keyascii or keycode arguments in the form key-event
procedures to 0. For example, if there is no default button on the form, you can use
the ENTER key to move the focus from control to control:

Private Sub Form_KeyPress (KeyAscii As Integer)
Dim NextTabIndex As Integer, i As Integer

If KeyAscii = 13 Then
If Screen.ActiveControl.TabIndex = _
Count - 1 Then

NextTabIndex = 0
Else

NextTabIndex = Screen.ActiveControl._
TabIndex + 1

End If
For i = 0 To Count - 1

If Me.Controls(i).TabIndex = _
NextTabIndex Then

Me.Controls(i).SetFocus
Exit For

End If
Next i
KeyAscii = 0

End If
End Sub

129

—47

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 47 of 51 Printed: 09/17/96 10:18 AM

Because this code sets keyascii to 0 when it is 13, the controls never recognize the
ENTER key being pressed, and their key-event procedures are never called.

Interrupting Background Processing
Your application may utilize long background processing to accomplish certain tasks.
If this is the case, it is helpful to provide the user with a way to either switch to
another application or interrupt or cancel the background task. The Windows
operating environment gives users the first option: switching to another application by
using the ALT+TAB key combination, for instance. You can provide the other options
by writing code that responds when a user either clicks a cancel button or presses the
ESC key.

In considering how to implement this in your application, it's important to understand
how tasks from various applications are handled by the operating system. Windows is
a preemptively multitasking operating system, which means that idle processor time
is efficiently shared among background tasks. These background tasks can originate
from the application the user is working with, from another application, or perhaps
from some system-controlled events. Priority is always given to the application that
the user is working with, however. This ensures that the mouse and keyboard always
respond immediately.

Background processing can be placed into two categories: constant and intermittent.
An example of a constant task would be copying a file from a server. Periodically
updating a value would be an example of an intermittent task. Both types of tasks can
be interrupted or canceled by the user. However, because background processing is
usually a complex matter, it is important to consider how these tasks are initiated in
the first place. The topic "Allowing Users to Interrupt Tasks" later in this chapter
describes these considerations and techniques.

Allowing Users to Interrupt Tasks
During long background tasks, your application cannot respond to user input.
Therefore, you should provide the user with a way to interrupt or cancel the
background processing by writing code for either the mouse or keyboard events. For
example, when a long background task is running, you can display a dialog box that
contains a Cancel button that the user can initiate by clicking the ENTER key (if the
focus is on the Cancel button) or by clicking on it with the mouse.

Note You may also want to give the user a visual cue when a long task is
processing. For example, you might show the user how the task is
progressing (using a Label or Gauge control, for instance), or by changing the
mouse pointer to an hourglass.

130
There are several techniques, but no one way, to write code to handle background
processing. One way to allow users to interrupt a task is to display a Cancel button

—48

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 48 of 51 Printed: 09/17/96 10:18 AM

and allow its Click event to be processed. You can do this by placing the code for
your background task in a timer event, using the following guidelines.

· Use static variables for information that must persist between occurrences of the
Timer event procedure.

· When the Timer event gets control, allow it to run slightly longer than the time you
specified for the Interval property. This ensures that your background task will
use every bit of processor time the system can give it. The next Timer event will
simply wait in the message queue until the last one is done.

· Use a fairly large value — five to ten seconds — for the timer's Interval property,
as this makes for more efficient processing. Preemptive multitasking prevents
other applications from being blocked, and users are generally tolerant of a
slight delay in canceling a long task.

· Use the Enabled property of the Timer as a flag to prevent the background task
from being initiated when it is already running.

13
For More Information See "The Timer Control" in "Using Visual Basic's Standard
Controls."

131

Using DoEvents
Although Timer events are the best tool for background processing, particularly for
very long tasks, the DoEvents function provides a convenient way to allow a task to
be canceled. For example, the following code shows a "Process" button that changes
to a "Cancel" button when it is clicked. Clicking it again interrupts the task it is
performing.

' The original caption for this button is "Process".
Private Sub Command1_Click()

' Static variables are shared by all instances
' of a procedure.
Static blnProcessing As Boolean
Dim lngCt As Long
Dim intYieldCt As Integer
Dim dblDummy As Double
' When the button is clicked, test whether it's
 'already processing.
If blnProcessing Then

' If processing is in progress, cancel it.
blnProcessing = False

Else
Command1.Caption = "Cancel"
blnProcessing = True
lngCt = 0
' Perform a million floating-point
' multiplications. After every
' thousand, check for cancellation.
Do While blnProcessing And (lngCt < 1000000)

For intYieldCt = 1 To 1000

—49

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 49 of 51 Printed: 09/17/96 10:18 AM

lngCt = lngCt + 1
dblDummy = lngCt * 3.14159

Next intYieldCt
' The DoEvents statement allows other
' events to occur, including pressing this
' button a second time.
DoEvents

Loop
blnProcessing = False
Command1.Caption = "Process"
MsgBox lngCt & " multiplications were performed"

End If
End Sub

132
DoEvents switches control to the operating-environment kernel. Control returns to
your application as soon as all other applications in the environment have had a
chance to respond to pending events. This doesn't cause the current application to
give up the focus, but it does enable background events to be processed.

The results of this yielding may not always be what you expect. For example, the
following Click-event code waits until ten seconds after the button was clicked and
then displays a message. If the button is clicked while it is already waiting, the clicks
will be finished in reverse order.

Private Sub Command2_Click()
Static intClick As Integer
Dim intClickNumber As Integer
Dim dblEndTime As Double

' Each time the button is clicked,
' give it a unique number.

intClick = intClick + 1
intClickNumber = intClick

' Wait for ten seconds.
dblEndTime = Timer + 10#
Do While dblEndTime > Timer

' Do nothing but allow other
' applications to process
' their events.
DoEvents

Loop
MsgBox "Click " & intClickNumber & " is finished"

End Sub
133

You may want to prevent an event procedure that gives up control with DoEvents
from being called again before DoEvents returns. Otherwise, the procedure might end
up being called endlessly, until system resources are exhausted. You can prevent this
from happening either by temporarily disabling the control or by setting a static "flag"
variable, as in the earlier example.

Avoiding DoEvents When Using Global Data

—50

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 50 of 51 Printed: 09/17/96 10:18 AM

It may be perfectly safe for a function to be called again while it has yielded control
with DoEvents. For example, this procedure tests for prime numbers and uses
DoEvents to periodically enable other applications to process events:

Function PrimeStatus (TestVal As Long) As Integer
Dim Lim As Integer
PrimeStatus = True
Lim = Sqr(TestVal)
For I = 2 To Lim

If TestVal Mod I = 0 Then
PrimeStatus = False
Exit For

End If
If I Mod 200 = 0 Then DoEvents

Next I
End Function

134
This code calls the DoEvents statement once every 200 iterations. This allows the
PrimeStatus procedure to continue calculations as long as needed while the rest of the
environment responds to events.

Consider what happens during a DoEvents call. Execution of application code is
suspended while other forms and applications process events. One of these events
might be a button click that launches the PrimeStatus procedure again.

This causes PrimeStatus to be re-entered, but since each occurrence of the function
has space on the stack for its parameters and local variables, there is no conflict. Of
course, if PrimeStatus gets called too many times, an Out of Stack Space error could
occur.

The situation would be very different if PrimeStatus used or changed module-level
variables or global data. In that case, executing another instance of PrimeStatus
before DoEvents could return might result in the values of the module data or global
data being different than they were before DoEvents was called. The results of
PrimeStatus would then be unpredictable.

—51

Filename: in.doc Project: A Traditional User's Guide Template
Template: Author: Ruth Silverio Last Saved By: Christine
Revision #: 5 Page: 51 of 51 Printed: 09/17/96 10:18 AM

	Contents
	Sample Application: Mouse.vbp
	Responding to Mouse Events
	The MouseDown Event
	Using MouseDown with the Move Method
	Using MouseDown with the Line Method

	The MouseMove Event
	Using MouseMove with the Line Method
	How MouseMove Works

	The MouseUp Event

	Detecting Mouse Buttons
	Using Button with MouseDown and MouseUp
	Using Button with MouseMove
	Testing for a Single Button
	Testing for Multiple Buttons

	Using Button to Enhance Graphical Mouse Applications

	Detecting SHIFT, CTRL, and ALT States
	Dragging and Dropping
	Enabling Automatic Drag Mode
	Changing the Drag Icon
	Responding When the User Drops the Object
	Controlling When Dragging Starts or Stops
	Changing the Position of a Control
	 To record the initial mouse position

	OLE Drag and Drop
	Automatic vs. Manual Dragging and Dropping
	Enabling Automatic OLE Drag and Drop
	The OLE Drag and Drop DataObject Object
	How OLE Drag and Drop Works
	Starting the Drag
	Dragging Over the Target
	Completing the Drag

	Starting the OLE Drag Operation
	The OLEDrag Method
	Specifying Drop Effects and Data Formats
	The AllowedEffects Argument
	The Format Argument

	Placing Data into the DataObject object

	Dragging the OLE Drag Source over the OLE Drop Target
	The OLEDragOver Event State Argument
	Providing the User with Customized Visual Feedback
	The OLEDragOver Event
	The OLEGiveFeedback Event

	Dropping the OLE Drag Source onto the OLE Drop Target
	Retrieving the Data
	Querying the DataObject Object
	Placing Data into the DataObject Object
	Informing the Source When Data is Dropped

	Using the Mouse and Keyboard to Modify Drop Effects and User Feedback
	Creating a Custom Data Format
	Dragging Files From the Windows Explorer
	 To drag text files into a text box control from the Windows Explorer

	Customizing the Mouse Pointer
	Icons and Cursors
	 To use an .ico file as a mouse pointer

	Responding to Keyboard Events
	Writing Low-Level Keyboard Handlers
	The KeyPress Event
	The KeyDown and KeyUp Events
	The Keycode Argument
	The Shift Argument

	Writing Form-Level Keyboard Handlers

	Interrupting Background Processing
	Allowing Users to Interrupt Tasks
	Using DoEvents
	Avoiding DoEvents When Using Global Data

