
The first step to creating an application with Visual Basic is to create the interface, the
visual part of the application with which the user will interact. Forms and controls are
the basic building blocks used to create the interface; they are the objects that you will
work with to build your application.

Forms are objects that expose properties which define their appearance, methods
which define their behavior, and events which define their interaction with the user.
By setting the properties of the form and writing Visual Basic code to respond to its
events, you customize the object to meet the requirements of your application.

Controls are objects that are contained within form objects. Each type of control has
its own set of properties, methods and events that make it suitable for a particular
purpose. Some of the controls you can use in your applications are best suited for
entering or displaying text. Other controls let you access other applications and
process data as if the remote application was part of your code.

This chapter introduces the basic concepts of working with forms and controls and
their associated properties, methods, and events. Many of the standard controls are
discussed, as well as form-specific items such as menus and dialog boxes.

Note If you are using the Control Creation Edition of Visual Basic, some of
the material covered in this document may not be applicable. With the full
editions of Visual Basic you have the ability to create applications, ActiveX
documents, and other types of components. Although some of the
terminology may relate to application specific objects such as forms, in most
cases the underlying concepts also apply to ActiveX control creation.

1

Contents
· Understanding Properties, Methods and Events

· Designing a Form

· Clicking Buttons to Perform Actions

· Controls for Displaying and Entering Text

· Controls That Present Choices to Users

· Controls That Display Pictures and Graphics

· Additional Controls

· Understanding Focus

· Setting the Tab Order

· Menu Basics

· Prompting the User with Dialog Boxes
2

Sample Application: Controls.vbp
The code examples in this chapter are taken from the Controls.vbp sample
application. If you installed the sample applications, you will find them in the
\Controls subdirectory of the Visual Basic samples directory
(\Vb\Samples\Pguide\Controls).

Understanding Properties, Methods and
Events

Visual Basic forms and controls are objects which expose their own properties,
methods and events. Properties can be thought of as an object’s attributes, methods as
its actions, and events as its responses.

An everyday object like a child’s helium balloon also has properties, methods and
events. A balloon’s properties include visible attributes such as its height, diameter
and color. Other properties describe its state (inflated or not inflated), or attributes that
aren’t visible such as its age. By definition, all balloons have these properties; the
settings of these properties may differ from one balloon to another.

A balloon also has inherent methods or actions that it might perform. It has an inflate
method (the action of filling it with helium), a deflate method (expelling its contents)
and a rise method (if you were to let go of it). Again, all balloons are capable of these
methods.

Balloons also have predefined responses to certain external events. For instance, a
balloon would respond to the event of being punctured by deflating itself, or to the
event of being released by rising into the air.

Figure 3.1 Objects have properties, respond to events, and perform methods

1
If you were able to program a balloon, the Visual Basic code might look like the
following. To set the balloon’s properties:

Balloon.Color = Red
Balloon.Diameter = 10
Balloon.Inflated = True

3
Note the syntax of the code — the object (Balloon) followed by the property (.Color)
followed by the assignment of the value (Red). You could change the color of the
balloon from code by repeating this statement and substituting a different value.
Properties can also be set in the Properties window while you are designing your
application.

A balloon’s methods are invoked like this:

Balloon.Inflate
Balloon.Deflate
Balloon.Rise 5

4
The syntax is similar to the property — the object (a noun) followed by the method (a
verb). In the third example, there is an additional item, called an argument, which
denotes the distance to rise. Some methods will have one or more arguments to
further describe the action to be performed.

The balloon might respond to an event as follows:

Sub Balloon_Puncture()
Balloon.Deflate
Balloon.MakeNoise “Bang”
Balloon.Inflated = False
Balloon.Diameter = 1

End Sub
5

In this case, the code describes the balloon’s behavior when a puncture event occurs:
invoke the Deflate method, then invoke the MakeNoise method with an argument of
“Bang” (the type of noise to make). Since the balloon is no longer inflated, the
Inflated property is set to False and the Diameter property is set to a new value.

While you can’t actually program a balloon, you can program a Visual Basic form or
control. As the programmer, you are in control. You decide which properties should
be changed, methods invoked or events responded to in order to achieve the desired
appearance and behavior.

Designing a Form
Form objects are the basic building blocks of a Visual Basic application, the actual
windows with which a user interacts when they run the application. Forms have their
own properties, events, and methods with which you can control their appearance and
behavior.

Figure 3.2 Forms and controls have their own properties, events, and methods

2
The first step in designing a form is to set its properties. You can set a form’s
properties at design time in the Properties window, or at run time by writing code.

Note You work with forms and controls, set their properties, and write code
for their events at design time, which is any time you’re building an application
in the Visual Basic environment. Run time is any time you are actually running
the application and interacting with the application as the user would.

6

Setting Form Properties
Many of a form’s properties affect its physical appearance. The Caption property
determines the text that is shown in the form’s title bar; the Icon property sets the icon
that is displayed when a form is minimized. The MaxButton and MinButton
properties determine whether the form can be maximized or minimized. By changing
the BorderStyle property, you can control the resizing behavior of the form.

Height and Width properties determine the initial size of a form; Left and Top
properties determine the form’s location in relation to the upper left-hand corner of
the screen. The WindowState property can be set to start the form in a maximized,
minimized, or normal state.

The Name property sets the name by which you will refer to the form in code. By
default, when a form is first added to a project, its name is set to Form1, Form2, and
so forth. It's a good idea to set the Name property to something more meaningful,
such as “frmEntry” for an order entry form.

The best way to familiarize yourself with the many form properties is to experiment.
Change some of the properties of a form in the Properties window (Figure 3.3), then
run the application to see their effect. You can learn more about each property by
searching for the property topic in online Help.

Figure 3.3 The Properties window

3

Form Events and Methods
As objects, forms can perform methods and respond to events.

The Resize event of a form is triggered whenever a form is resized, either by user
interaction or through code. This allows you to perform actions such as moving or
resizing controls on a form when its dimensions have changed.

The Activate event occurs whenever a form becomes the active form; the Deactivate
event occurs when another form or application becomes active. These events are
convenient for initializing or finalizing the form’s behavior. For example, in the
Activate event you might write code to highlight the text in a particular text box; in
the Deactivate event you might save changes to a file or database.

To make a form visible, you would invoke the Show method:

Form2.Show
7

Invoking the Show method has the same effect as setting a form’s Visible property to
True.

Many of a form’s methods involve text or graphics. The Print, Line, Circle, and
Refresh methods are useful for printing or drawing directly onto a form’s surface.
These methods and more are discussed in “Working with Text and Graphics."

8

Clicking Buttons to Perform Actions
The easiest way to allow the user to interact with an application is to provide a button
to click. You can use the command button control provided by Visual Basic, or you
can create your own “button” using an image control containing a graphic, such as an
icon.

Using Command Buttons
Most Visual Basic applications have command buttons that allow the user to simply
click them to perform actions. When the user chooses the button, it not only carries
out the appropriate action, it also looks as if it's being pushed in and released.
Whenever the user clicks a button, the Click event procedure is invoked. You place
code in the Click event procedure to perform any action you choose.

There are many ways to choose a command button at run time:

· Use a mouse to click the button.

· Move the focus to the button by pressing the TAB key, and then choose the button
by pressing the SPACEBAR or ENTER. (See “Understanding Focus” later in this
chapter.)

· Press an access key (ALT+ the underlined letter) for a command button.

· Set the command button’s Value property to True in code:

1cmdClose.Value = True 4
· Invoke the command button’s Click event in code:

2cmdClose_Click 5
· If the command button is the default command button for the form, pressing ENTER

chooses the button, even if you change the focus to a different control. At
design time, you specify a default command button by setting that button’s
Default property to True.

· If the command button is the default Cancel button for the form, then pressing ESC
chooses the button, even if you change the focus to another control. At design
time, you specify a default Cancel button by setting that button’s Cancel
property to True.

6
All these actions cause Visual Basic to invoke the Click event procedure.

The Test Buttons Application
You use the Caption property to display text on the button to tell the user what the
button does. In Figure 3.4, the Test Buttons example from the Controls sample
application contains a command button with its Caption property set to “Change
Signal." (For a working version of this example, see Button.frm in the Controls.vbp
sample application.)

Notice that ‘S’ is the access key for this button, denoted by an underline. Inserting an
ampersand (&) in the text of the Caption property makes the character following it the
access key for that button (for example, Change &Signal).

Figure 3.4 Command button with a caption

7
When a user clicks the command button, the code in the command button’s Click
event procedure is executed. In the example, a different traffic light icon is displayed
each time the button is clicked.

For More Information For information on additional properties of the command
button, see "Using Visual Basic’s Standard Controls.”

Controls for Displaying and Entering Text
Label and text box controls are used to display or enter text. Use labels when you
want your application to display text on a form, and text boxes when you want to
allow the user to enter text. Labels contain text that can only be read, while text boxes
contain text that can be edited.

To provide this feature Use this control

Text that can be edited by the user, for example an
order entry field or a password box

Text box

Text that is displayed only, for example to identify a
field on a form or display instructions to the user

Label

9

Using Labels to Display Text
A label control displays text that the user cannot directly change. You can use labels
to identify controls, such as text boxes and scroll bars, that do not have their own
Caption property. The actual text displayed in a label is controlled by the Caption

property, which can be set at design time in the Properties window or at run time by
assigning it in code.

By default, the caption is the only visible part of the label control. However, if you set
the BorderStyle property to 1 (which you can do at design time), the label appears
with a border — giving it a look similar to a text box. You can also change the
appearance of the label by setting the BackColor, BackStyle, ForeColor, and Font
properties.

Sizing a Label to Fit Its Contents
Single-line label captions can be specified at design time in the Properties window.
But what if you want to enter a longer caption, or a caption that will change at run
time? Labels have two properties that help you size the controls to fit larger or smaller
captions: AutoSize and WordWrap.

The AutoSize property determines if a control should be automatically resized to fit
its contents. If set to True, the label grows horizontally to fit its contents, as shown in
Figure 3.5.

Figure 3.5 AutoSize example

8
The WordWrap property causes the label to grow vertically to fit its contents, while
retaining the same width, as shown in Figure 3.6. For a working version of this
example, see Wordwrap.frm in the Controls.vbp sample application.

Figure 3.6 WordWrap example

9
Note If you run the AutoSize example from Controls.vbp, you’ll notice that for
the WordWrap example to actually work, both check boxes must be selected.
This is because, for the label’s WordWrap property to take effect, AutoSize
must be set to True. The width of the label is increased only if the width of a
single word exceeds the current width of the control.

10
For More Information For additional information on the label control’s
properties, see “Using Visual Basic’s Standard Controls.”

Working with Text Boxes
Text boxes are versatile controls that can be used to get input from the user or to
display text. Text boxes should not be used to display text that you don’t want the
user to change, unless you’ve set the Locked property to True.

The actual text displayed in a text box is controlled by the Text property. It can be set
in three different ways: at design time in the Property window, at run time by setting
it in code, or by input from the user at run time. The current contents of a text box can
be retrieved at run time by reading the Text property.

Multiple-Line Text Boxes and Word Wrap
By default, a text box displays a single line of text and does not display scroll bars. If
the text is longer than the available space, only part of the text will be visible. The

look and behavior of a text box can be changed by setting two properties, MultiLine
and ScrollBars, which are available only at design time.

Note The ScrollBars property should not be confused with scroll bar
controls, which are not attached to text boxes and have their own set of
properties.

11
Setting MultiLine to True enables a text box to accept or display multiple lines of text
at run time. A multiple-line text box automatically manages word wrap as long as
there is no horizontal scroll bar. The ScrollBars property is set to 0-None by default.
Automatic word wrap saves the user the trouble of inserting line breaks at the end of
lines. When a line of text is longer than what can be displayed on a line, the text box
wraps the text to the next line.

Line breaks cannot be entered in the Properties window at design time. Within a
procedure, you create a line break by inserting a carriage return followed by a
linefeed (ANSI characters 13 and 10). You can also use the constant vbCrLf to insert
a carriage return/linefeed combination. For example, the following event procedure
puts two lines of text into a multiple-line text box (Text1) when the form is loaded:

Sub Form_Load ()
Text1.Text = "Here are two lines" & vbCrLf & "in a text box"

End Sub
12

Working with Text in a Text Box
You can control the insertion point and selection behavior in a text box with the
SelStart, SelLength and SelText properties. These properties are only available at run
time.

When a text box first receives the focus, the default insertion point or cursor position
within the text box is to the left of any existing text. It can be moved by the user from
the keyboard or with the mouse. If the text box loses and then regains the focus, the
insertion point will be wherever the user last placed it.

In some cases, this behavior can be disconcerting to the user. In a word processing
application, the user might expect new characters to appear after any existing text. In
a data entry application, the user might expect their typing to replace any existing
entry. The SelStart and SelLength properties allow you to modify the behavior to suit
your purpose.

The SelStart property is a number that indicates the insertion point within the string of
text, with 0 being the left-most position. If the SelStart property is set to a value equal
to or greater than the number of characters in the text box, the insertion point will be
placed after the last character, as shown in Figure 3.7. For a working version of this
example, see Text.frm in the Controls.vbp sample application.

Figure 3.7 Insertion point example

10
The SelLength property is a numeric value that sets the width of the insertion point.
Setting the SelLength to a number greater than 0 causes that number of characters to
be selected and highlighted, starting from the current insertion point. Figure 3.8
shows the selection behavior.

Figure 3.8 Selection example

11
If the user starts typing while a block of text is selected, the selected text will be
replaced. In some cases, you might want to replace a text selection with new text by
using a paste command. The SelText property is a string of text that you can assign at
run time to replace the current selection. If no text is selected, SelText will insert its
text at the current insertion point.

For More Information For additional information on the text box control’s
properties, see “Using Visual Basic’s Standard Controls.”

Controls That Present Choices to Users
Most applications need to present choices to their users, ranging from a simple yes/no
option to selecting from a list containing hundreds of possibilities. Visual Basic
includes several standard controls that are useful for presenting choices. The
following table summarizes these controls and their appropriate uses.

To provide this feature Use this control

A small set of choices from which a user
can choose one or more options.

Check boxes

A small set of options from which a user
can choose just one.

Option buttons (use frames if additional
groups are needed)

A scrollable list of choices from which the List box

user can choose.

A scrollable list of choices along with a text
edit field. The user can either choose from
the list or type a choice in the edit field.

Combo box

13

Selecting Individual Options with Check Boxes
A check box indicates whether a particular condition is on or off. You use check
boxes in an application to give users true/false or yes/no options. Because check
boxes work independently of each other, a user can select any number of check boxes
at the same time. For example in Figure 3.9, Bold and Italic can both be checked.

Figure 3.9 Check boxes

12

The Check Box Application
The Check Box example uses a check box to determine whether the text is displayed
in regular or italic font. For a working version of this example, see Check.frm in the
Controls.vbp sample application.

The application has a text box, a label, a command button, and two check boxes, as
shown in Figure 3.10.

Figure 3.10 Check box example

13
The following table lists the property settings for the objects in the application.

Object Property Setting

Form Name
Caption

frmCheck
Check Box Example

Text box Name
Text

txtDisplay
Some sample text

First Check box Name
Caption

chkBold
&Bold

Second Check box Name
Caption

chkItalic
&Italic

Command button Name
Caption

cmdClose
&Close

14
When you check Bold or Italic, the check box’s Value property is set to 1; when
unchecked, its Value property is set to 0. The default Value is 0, so unless you change
Value, the check box will be unchecked when it is first displayed. You can use the
constants vbChecked and vbUnchecked to represent the values 1 and 0.

Events in the Check Box Application
The Click event for the check box occurs as soon as you click the box. This event
procedure tests to see whether the check box has been selected (that is, if its Value =
vbChecked). If so, the text is converted to bold or italic by setting the Bold or Italic
properties of the Font object returned by the Font property of the text box.

Private Sub chkBold_Click ()
If ChkBold.Value = vbChecked Then ' If checked.

txtDisplay.Font.Bold = True
Else ' If not checked.

txtDisplay.Font.Bold = False
End If

End Sub

Private Sub chkItalic_Click ()
If ChkItalic.Value = vbChecked Then ' If checked.

txtDisplay.Font.Italic = True
Else ' If not checked.

txtDisplay.Font.Italic = False
End If

End Sub
15

Grouping Options with Option Buttons
Option buttons present a set of two or more choices to the user. Unlike check boxes,
however, option buttons should always work as part of a group; selecting one option
button immediately clears all the other buttons in the group. Defining an option
button group tells the user, “Here is a set of choices from which you can choose one
and only one.”

For example, in the option button group shown in Figure 3.11, the user can select one
of three option buttons.

Figure 3.11 Selecting an option button

14

Creating Option Button Groups
All of the option buttons placed directly on a form (that is, not in a frame or picture
box) constitute one group. If you want to create additional option button groups, you
must place some of them inside frames or picture boxes.

All the option buttons inside any given frame constitute a separate group, as do all the
option buttons inside a picture box. When you create a separate group this way,
always draw the frame or picture box first, and then draw the option buttons on top of
it. Figure 3.12 shows a form with two option button groups.

Figure 3.12 Option button groups

15
A user can select only one option button in the group when you draw option buttons
in a frame.

 To group controls in a frame

1 Select the frame control from the toolbox and draw the frame on the form.

2 Select the option button control from the toolbox and draw the control within the
frame.

3 Repeat step 2 for each additional option button you wish to add to the frame.
16

Drawing the frame first and then drawing each control on the frame allows you to
move the frame and controls together. If you try to move existing controls onto a
frame, the controls will not move with the frame.

Note If you have existing controls that you want to group in a frame, you can
select all the controls and cut and paste them into a frame or picture control.

16

Containers for Controls
While controls are independent objects, a certain parent and child relationship exists
between forms and controls. Figure 3.12 demonstrates how option buttons can be
contained within a form or within a frame control.

To understand the concept of containers, you need to understand that all controls are
children of the form on which they are drawn. In fact, most controls support the read-
only Parent property, which returns the form on which a control is located. Being a
child affects the placement of a control on the parent form. The Left and Top
properties of a control are relative to the parent form, and controls cannot be moved
outside the boundaries of the parent. Moving a container moves the controls as well,
and the control’s position relative to the container’s Left and Top properties does not
change because the control moves with the container.

Selecting or Disabling Option Buttons
An option button can be selected by:

· Clicking it at run time with the mouse.

· Tabbing to the option button group and then using the arrow keys to select an
option button within the group.

· Assigning its Value property to True in code:

3optChoice.Value = True 17
· Using a shortcut key specified in the caption of a label.

18
To make a button the default in an option button group, set its Value property to True
at design time. It remains selected until a user selects a different option button or code
changes it.

To disable an option button, set its Enabled property to False. When the program is
run it will appear dimmed, meaning that it is unavailable.

The Options Application
The form shown in Figure 3.13 uses option buttons to determine the processor type
and operating system for a fictional computer. When the user selects a option button
in either group, the caption of the label is changed to reflect the current choices. For a
working version of this example, see Options.frm in the Controls.vbp sample
application.

Figure 3.13 Option button example

19
The following table lists the property settings for the objects in the application.

Object Property Setting

Label Name
Caption

lblDisplay
(Empty)

Command button Name
Caption

cmdClose
&Close

First option button Name
Caption

opt486
&486

Second option button Name
Caption

Value

opt586
&Pentium

True

Third option button Name
Caption

opt686
P&entium Pro

Frame Name
Caption

fraSystem
&Operating System

Fourth option button Name
Caption

optWin95
Windows 95

Fifth option button Name
Caption

Value

optWinNT
Windows NT

True
17

Events in the Options Application

The Options application responds to events as follows:

· The Click events for the first three option buttons assign a corresponding
description to a form-level string variable, strComputer.

· The Click events for the last two option buttons assign a corresponding description
to a second form-level variable, strSystem.

20
The key to this approach is the use of these two form-level variables, strComputer and
strSystem. These variables contain different string values, depending on which option
buttons were last selected.

Each time a new option button is selected, the code in its Click event updates the
appropriate variable:

Private Sub opt586_Click()
strComputer = "Pentium"
Call DisplayCaption

End Sub
18

It then calls a sub procedure, called DisplayCaption, that concatenates the two
variables and updates the label’s Caption property:

Sub DisplayCaption()
lblDisplay.Caption = "You selected a " & _

strComputer & " running " & strSystem
End Sub

19
A sub procedure is used because the procedure of updating the Caption property is
essentially the same for all five option buttons, only the value of the variables change
from one instance to the next. This saves you from having to repeat the same code in
each of the Click events.

For More Information Variables and sub procedures are discussed in detail in
“Programming Fundamentals.”

Using List Boxes and Combo Boxes
List boxes and combo boxes present a list of choices to the user. By default, the
choices are displayed vertically in a single column, although you can set up multiple
columns as well. If the number of items exceeds what can be displayed in the combo
box or list box, scroll bars automatically appear on the control. The user can then
scroll up and down or left to right through the list. Figure 3.14 shows a single-column
list box.

Figure 3.14 Single-column list box

21
A combo box control combines the features of a text box and a list box. This control
allows the user to select either by typing text into the combo box or by selecting an
item from its list. Figure 3.15 shows a combo box.

Figure 3.15 Combo box

22
In contrast to some other controls that contain a single value; for example the label’s
Caption property or the text box’s Text property, list boxes and combo boxes contain
multiple values or a collection of values. They have built-in methods for adding,
removing and retrieving values from their collections at run time. To add several
items to a list box named List1, the code would look like this:

List1.AddItem "Paris"
List1.AddItem "New York"
List1.AddItem "San Francisco"

20
List boxes and combo boxes are an effective way to present a large number of choices
to the user in a limited amount of space.

For More Information For additional information on the list box and combo box
controls, see “Using Visual Basic’s Standard Controls.”

Using Scroll Bars as Input Devices
Although scroll bars are often tied to text boxes or windows, you’ll sometimes see
them used as input devices. Because these controls can indicate the current position
on a scale, scroll bar controls can be used individually to control program input — for
example, to control the sound volume or to adjust the colors in a picture. The
HScrollBar (horizontal) and VScrollBar (vertical) controls operate independently

from other controls and have their own set of events, properties, and methods. Scroll
bar controls are not the same as the built-in scroll bars that are attached to text boxes,
list boxes, combo boxes, or MDI forms (text boxes and MDI forms have a ScrollBars
property to add or remove scroll bars that are attached to the control).

Windows interface guidelines now suggest using slider controls as input devices
instead of scroll bars. Examples of slider controls can be seen in the Windows 95
control panel. A Windows 95 style slider control is included in the Professional and
Enterprise editions of Visual Basic.

For More Information For additional information on scroll bar controls, see
“Using Visual Basic’s Standard Controls.”

Controls That Display Pictures and
Graphics

Because Windows is a graphical user interface, it’s important to have a way to display
graphical images in your application’s interface. Visual Basic includes four controls
that make it easy to work with graphics: the picture box control, the image control,
the shape control, and the line control.

The image, shape and line controls are sometimes referred to as “lightweight”
graphical controls. They require less system resources and consequently display
somewhat faster than the picture box control; they contain a subset of the properties,
methods and events available in the picture box. Each is best suited for a particular
purpose.

To provide this feature Use this control

A container for other controls. Picture box

Printing or graphics methods. Picture box

Displaying a picture. Image control or picture box

Displaying a simple graphical element Shape or line control
21

Working With the Picture Box Control
The primary use for the picture box control is to display a picture to the user. The
actual picture that is displayed is determined by the Picture property. The Picture
property contains the file name (and optional path) for the picture file that you wish to
display.

Note Form objects also have a Picture property that can be set to display a
picture directly on the form’s background.

22

To display or replace a picture at run time, you can use the LoadPicture function to set
the Picture property. You supply the name (and optional path) for the picture and the
LoadPicture function handles the details of loading and displaying it:

picMain.Picture = LoadPicture(“VANGOGH.BMP”)
23

The picture box control has an AutoSize property that, when set to True, causes the
picture box to resize automatically to match the dimensions of its contents. Take extra
care in designing your form if you plan on using a picture box with the AutoSize
enabled. The picture will resize without regard to other controls on the form, possibly
causing unexpected results, such as covering up other controls. It’s a good idea to test
this by loading each of the pictures at design time.

Using the Picture Box as a Container
The picture box control can also be used as a container for other controls. Like the
frame control, you can draw other controls on top of the picture box. The contained
controls move with the picture box and their Top and Left properties will be relative
to the picture box rather than the form.

A common use for the picture box container is as a toolbar or status bar. You can
place image controls on it to act as buttons, or add labels to display status messages.
By setting the Align property to Top, Bottom, Left, or Right, the picture box will
“stick” to the edge of the form. Figure 3.16 shows a picture box with its Align
property set to Bottom. It contains two label controls which could be used to display
status messages.

Figure 3.16 Picture box used as a status bar

23

Other Uses for the Picture Box
The picture box control has several methods that make it useful for other purposes.
Think of the picture box as a blank canvas upon which you can paint, draw or print. A
single control can be used to display text, graphics or even simple animation.

The Print method allows you to output text to the picture box control just as you
would to a printer. Several font properties are available to control the characteristics
of text output by the Print method; the Cls method can be used to erase the output.

Circle, Line, Point and Pset methods may be used to draw graphics on the picture
box. Properties such as DrawWidth, FillColor, and FillStyle allow you to customize
the appearance of the graphics.

Animation can be created using the PaintPicture method by moving images within the
picture control and rapidly changing between several different images.

For More Information For additional information on the picture box control, see
“Using Visual Basic’s Standard Controls.”

Lightweight Graphical Controls
The image, shape and line controls are considered to be lightweight controls; that is,
they support only a subset of the properties, methods, and events found in the picture
box. Because of this, they typically require less system resources and load faster than
the picture box control.

Using Image Controls Instead of Picture Boxes
The image control is similar to the picture box control but is used only for displaying
pictures. It doesn’t have the ability to act as a container for other controls, and it
doesn’t support the advanced methods of the picture box.

Pictures are loaded into the image control just as they are in the picture box: at design
time, set the Picture property to a file name and path; at run time, use the LoadPicture
function.

The sizing behavior of the image control differs from that of the picture box. It has a
Stretch property while the picture box has an AutoSize property. Setting the AutoSize
property to True causes a picture box to resize to the dimensions of the picture; setting
it to False causes the picture to be cropped (only a portion of the picture is visible).
When set to False (the default), the Stretch property of the image control causes it to
resize to the dimensions of the picture. Setting the Stretch property to True causes the
picture to resize to the size of the image control, which may cause the picture to
appear distorted.

For More Information For additional information on the image control, see
“Using Visual Basic’s Standard Controls.”

Using an Image Control to Create Your Own
Buttons
An image control also recognizes the Click event, so you can use this control
anywhere you’d use a command button. This is a convenient way to create a button
with a picture instead of a caption. Grouping several image controls together

horizontally across the top of the screen — usually within a picture box — allows you
to create a toolbar in your application.

For instance, the Test Buttons example shows an image control that users can choose
like they choose a command button. When the form is first displayed, the control
displays one of three traffic icons from the Icon Library included with Visual Basic.
Each time the image control is clicked, a different icon is displayed. (For a working
version of this example, see Button.frm in the Controls.vbp sample application.)

If you inspect the form at design time, you will see that it actually contains all three
icons “stacked” on top of each other. By changing the Visible property of the top
image control to False, you allow the next image (with its Visible property set to
True) to appear on top.

Figure 3.17 shows the image control with one of the traffic icons (Trffc10a.ico).

Figure 3.17 Image control with a traffic icon

24
To create a border around the image control, set the BorderStyle property to 1-Fixed
Single.

Note Unlike command buttons, image controls do not appear pushed in
when clicked. This means that unless you change the bitmap in the
MouseDown event, there is no visual cue to the user that the “button” is being
pushed.

24
For More Information For information on displaying a graphic image in an image
control, see “Using Visual Basic’s Standard Controls.”

Using Shape and Line Controls
Shape and line controls are useful for drawing graphical elements on the surface of a
form. These controls don’t support any events; they are strictly for decorative
purposes.

Several properties are provided to control the appearance of the shape control. By
setting the Shape property, it can be displayed as a rectangle, square, oval, circle,
rounded rectangle, or rounded square. The BorderColor and FillColor properties can
be set to change the color; the BorderStyle, BorderWidth, FillStyle, and DrawMode
properties control how the shape is drawn.

The line control is similar to the shape control but can only be used to draw straight
lines.

For More Information For additional information on the shape and line controls,
see “Using Visual Basic’s Standard Controls.”

The Images Application
The form shown in Figure 3.18 uses four image controls, a shape control, a picture
box, and a command button. When the user selects a playing card symbol, the shape
control highlights the symbol and a description is displayed in the picture box. For a
working version of this example, see Images.frm in the Controls.vbp sample
application.

Figure 3.18 Image and shape control example

25
The following table lists the property settings for the objects in the application.

Object Property Setting

Picture box Name
Align

picStatus
Bottom

First image control Name
Picture

imgClub
Spade.ico

Second image control Name
Picture

imgDiamond
Diamond.ico

Third image control Name
Picture

imgHeart
Heart.ico

Fourth image control Name
Caption

imgSpade
Spade.ico

Shape control Name
Shape
BorderWidth

Height

shpCard
4 - Rounded Rectangle
2

735

Width 495

Command button Name
Caption

cmdClose
&Close

25

Events in the Images Application
The Images application responds to events as follows:

· The Click event in each of the image controls sets the Left property of the shape
control equal to its own Left property, moving the shape on top of the image.

· The Cls method of the picture box is invoked, clearing the current caption from the
status bar.

· The Print method of the picture box is invoked, printing the new caption on the
status bar.

26
The code in the image control Click event looks like this:

Private Sub imgHeart_Click()
shpCard.Left = imgClub.Left
picStatus.Cls
picStatus.Print "Selected: Club"
shpCard.Visible = True

End Sub
26

Note that the first line in the Click event code assigns a value (the Left property of the
image control) to the Left property of the shape control using the = operator. The next
two lines invoke methods, so no operator is needed. In the third line, the value
(“Selected: Club”) is an argument to the Print method.

There is one more line of code in the application that is of interest; it is in the Form
Load event.

shpCard.Visible = False
27

By setting the Visible property of the shape control to False, the shape control is
hidden until the first image is clicked. The Visible property is set to True as the last
step in the image control Click event.

For More Information For additional information on properties, methods, and
events see “Programming Fundamentals.”

Additional Controls
Several other standard controls are included in the Visual Basic toolbox. Some
controls are useful for working with large amounts of data contained in an external
database. Other controls can be used to access the Windows file system. Still other
controls defy categorization, but are useful nonetheless.

You can also use ActiveX controls, previously called custom or OLE controls, in a
Visual Basic application in the same way that you use the standard controls. The

Professional and Enterprise editions of Visual Basic include several ActiveX controls
as well as the capability to build your own controls. Additional ActiveX controls for
just about any purpose imaginable are available for purchase from numerous vendors.

For More Information For additional information on using ActiveX controls, see
“Managing Projects.”

28

Data Access Controls
In today’s business, most information is stored in one or more central databases.
Visual Basic includes several data access controls for accessing most popular
databases, including Microsoft Access and SQL Server.

· The data control is used to connect to a database. Think of it as a pipeline between
the database and the other controls on your form. Its properties, methods, and
events allow you to navigate and manipulate external data from within your
own application.

· The DBList control is similar to the list box control. When used in conjunction
with a data control, it can be automatically filled with a list of data from a field
in an external database.

· The DBCombo control is like a combination of the DBList and a text box. The
selected text in the text box portion can be edited, with the changes appearing in
the underlying database.

· The DBGrid control displays data in a grid or table. When used in conjunction
with a data control, it presents fully editable data from multiple fields in an
external database.

· The MSFlexGrid control is a unique control for presenting multiple views of data.
Think of it as a combination of a grid and a tree or outline control. At run time,
the user can rearrange columns and rows to provide different views of the data.

27
For More Information For additional information on data access controls, see
“Using Visual Basic’s Standard Controls.”

File System Controls
Visual Basic includes three controls for adding file handling capabilities to your
application. These controls are normally used together to provide a view of drives,
directories and files; they have special properties and events that tie them together.

· The DriveListBox control looks like a combo box. It provides a drop-down list of
drives from which the user can select.

· The DirListBox is similar to a list box control, but with the built-in capability of
displaying a list of directories in the currently selected drive.

· The FileListBox control also looks like a list box with a list of file names in a
selected directory.

28

Note These controls are provided primarily for backward compatibility with
applications created in earlier versions of Visual Basic. The common dialog control
provides an easier method of working with file access. For more information on
common dialog control, see “Miscellaneous Controls” later in this chapter.

29

Miscellaneous Controls
Several other standard controls are included in Visual Basic. Each serves a unique
purpose.

· The timer control can be used to create an event in your application at a recurring
interval. This is useful for executing code without the need for user interaction.

· The OLE container control is an easy way to add capabilities like linking and
embedding to your application. Through the OLE container control, you can
provide access to the functionality of any OLE-enabled application such as
Microsoft Excel, Word and many others.

· The common dialog control adds built-in dialog boxes to your application for the
selection of files, colors, fonts, and printing functions.

29
For More Information For additional information on any of the standard controls,
see “Using Visual Basic’s Standard Controls.”

Understanding Focus
Focus is the ability to receive user input through the mouse or keyboard. When an
object has the focus, it can receive input from a user. In the Microsoft Windows
interface, several applications can be running at any time, but only the application
with the focus will have an active title bar and can receive user input. On a Visual
Basic form with several text boxes, only the text box with the focus will display text
entered by means of the keyboard.

The GotFocus and LostFocus events occur when an object receives or loses focus.
Forms and most controls support these events.

Event Description

GotFocus Occurs when an object receives focus.

LostFocus Occurs when an object loses focus. A LostFocus event
procedure is primarily used for verification and validation
updates, or for reversing or changing conditions you set up in
the object’s GotFocus procedure.

30
You can give focus to an object by:

· Selecting the object at run time.

· Using an access key to select the object at run time.

· Using the SetFocus method in code.

30
You can see when some objects have the focus. For example, when command buttons
have the focus, they appear with a highlighted border around the caption (see Figure
3.19).

Figure 3.19 A command button showing focus

31
An object can receive focus only if its Enabled and Visible properties are set to True.
The Enabled property allows the object to respond to user-generated events such as
keyboard and mouse events. The Visible property determines whether an object is
visible on the screen.

Note Frames, labels, menus, lines, shapes, images, and timers cannot
receive focus. A form can receive focus only if it doesn’t contain any controls
that can receive the focus.

31

Setting the Tab Order
The tab order is the order in which a user moves from one control to another by
pressing the TAB key. Each form has its own tab order. Usually, the tab order is the
same as the order in which you created the controls.

For example, assume you create two text boxes, Text1 and Text2, and then a
command button, Command1. When the application starts, Text1 has the focus.
Pressing TAB moves the focus between controls in the order they were created, as
shown in Figure 3.20.

Figure 3.20 Tab example

32

To change the tab order for a control, set the TabIndex property. The TabIndex
property of a control determines where it is positioned in the tab order. By default, the
first control drawn has a TabIndex value of 0, the second has a TabIndex of 1, and so
on. When you change a control’s tab order position, Visual Basic automatically
renumbers the tab order positions of the other controls to reflect insertions and
deletions. For example, if you make Command1 first in the tab order, the TabIndex
values for the other controls are automatically adjusted upward, as shown in the
following table.

Control TabIndex before it is changed TabIndex after it is changed

Text1 0 1

Text2 1 2

Command1 2 0
32

The highest TabIndex setting is always one less than the number of controls in the tab
order (because numbering starts at 0). Even if you set the TabIndex property to a
number higher than the number of controls, Visual Basic converts the value back to
the number of controls minus 1.

Note Controls that cannot get the focus, as well as disabled and invisible
controls, don’t have a TabIndex property and are not included in the tab order.
As a user presses the TAB key, these controls are skipped.

33

Removing a Control from the Tab Order
Usually, pressing TAB at run time selects each control in the tab order. You can
remove a control from the tab order by setting its TabStop property to False (0).

A control whose TabStop property has been set to False still maintains its position in
the actual tab order, even though the control is skipped when you cycle through the
controls with the TAB key.

Note An option button group has a single tab stop. The selected button (that
is, the button with its Value set to True) has its TabStop property automatically
set to True, while the other buttons have their TabStop property set to False.

34

Menu Basics
If you want your application to provide a set of commands to users, menus offer a
convenient and consistent way to group commands and an easy way for users to
access them.

Figure 3.21 Illustrates the elements of a menu interface on an untitled form.

Figure 3.21 The elements of a menu interface on a Visual Basic form

33
The menu bar appears immediately below the title bar on the form and contains one
or more menu titles. When you click a menu title (such as File), a menu containing a
list of menu items drops down. Menu items can include commands (such as New and
Exit), separator bars, and submenu titles. Each menu item the user sees corresponds to
a menu control you define in the Menu Editor (described later in this chapter).

To make your application easier to use, you should group menu items according to
their function. In Figure 3.21, for example, the file-related commands New, Open,
and Save As… are all found on the File menu.

Some menu items perform an action directly; for example, the Exit menu item on the
File menu closes the application. Other menu items display a dialog box — a window
that requires the user to supply information needed by the application to perform the
action. These menu items should be followed by an ellipsis (…). For example, when
you choose Save As… from the File menu, the Save File As dialog box appears.

A menu control is an object; like other objects it has properties that can be used to
define its appearance and behavior. You can set the Caption property, the Enabled and
Visible properties, the Checked property, and others at design time or at run time.
Menu controls contain only one event, the Click event, which is invoked when the
menu control is selected with the mouse or using the keyboard.

Pop-up Menus
A pop-up menu is a floating menu that is displayed over a form, independent of the
menu bar, as shown in Figure 3.22. The items displayed on the pop-up menu depend
on the location of the pointer when the right mouse button is pressed; therefore, pop-
up menus are also called context menus. (In Windows 95, you activate context menus
by clicking the right mouse button.) You should use pop-up menus to provide an
efficient method for accessing common, contextual commands. For example, if you
click a text box with the right mouse button, a contextual menu would appear, as
shown in Figure 3.22.

Figure 3.22 A pop-up menu

34
Any menu that has at least one menu item can be displayed at run time as a pop-up
menu. To display a pop-up menu, use the PopupMenu method.

Creating Menus with the Menu Editor
With the Menu Editor, you can add new commands to existing menus, replace
existing menu commands with your own commands, create new menus and menu
bars, and change and delete existing menus and menu bars. The main advantage of
the Menu Editor is its ease of use. You can customize menus in a completely
interactive manner that involves very little programming.

 To display the Menu Editor

· From the Tools menu, choose Menu Editor.
35

This opens the Menu Editor, shown in Figure 3.23

Figure 3.23 The Menu Editor

36
While most menu control properties can be set using the Menu Editor; all menu
properties are also available in the Properties window. You would normally create a
menu in the Menu Editor; however, to quickly change a single property, you could
use the Properties window.

Prompting the User with Dialog Boxes
In Windows-based applications, dialog boxes are used to prompt the user for data
needed by the application to continue or to display information to the user. Dialog
boxes are a specialized type of form object that can be created in one of three ways:

· Predefined dialog boxes can be created from code using the MsgBox or
InputBox functions.

· Customized dialog boxes can be created using a standard form or by
customizing an existing dialog box.

· Standard dialog boxes, such as Print and File Open, can be created using the
common dialog control.

37

Figure 3.24 shows an example of a predefined dialog box created using the MsgBox
function.

Figure 3.24 A predefined dialog box

38
This dialog is displayed when you invoke the MsgBox function in code. The code for
displaying the dialog box shown in Figure 3.24 looks like this:

MsgBox "Error encountered while trying to open file, please retry.",_
bExclamation, "Text Editor"

35
You supply three pieces of information, or arguments, to the MsgBox function: the
message text, a constant (numeric value) to determine the style of the dialog box, and
a title. Styles are available with various combinations of buttons and icons to make
creating dialog boxes easy.

Because most dialog boxes require user interaction, they are usually displayed as
modal dialog boxes. A modal dialog box must be closed (hidden or unloaded) before
you can continue working with the rest of the application. For example, a dialog box
is modal if it requires you to click OK or Cancel before you can switch to another
form or dialog box.

Modeless dialog boxes let you shift the focus between the dialog box and another
form without having to close the dialog box. You can continue to work elsewhere in
the current application while the dialog box is displayed. Modeless dialog boxes are
rare; you will usually display a dialog because a response is needed before the
application can continue. From the Edit menu, the Find dialog box in Visual Basic is
an example of a modeless dialog box. Use modeless dialog boxes to display
frequently used commands or information.

	Contents
	Sample Application: Controls.vbp
	Understanding Properties, Methods and Events
	Designing a Form
	Setting Form Properties
	Form Events and Methods

	Clicking Buttons to Perform Actions
	Using Command Buttons
	The Test Buttons Application

	Controls for Displaying and Entering Text
	Using Labels to Display Text
	Sizing a Label to Fit Its Contents

	Working with Text Boxes
	Multiple-Line Text Boxes and Word Wrap
	Working with Text in a Text Box

	Controls That Present Choices to Users
	Selecting Individual Options with Check Boxes
	The Check Box Application
	Events in the Check Box Application

	Grouping Options with Option Buttons
	Creating Option Button Groups
	 To group controls in a frame

	Containers for Controls
	Selecting or Disabling Option Buttons
	The Options Application
	Events in the Options Application

	Using List Boxes and Combo Boxes
	Using Scroll Bars as Input Devices

	Controls That Display Pictures and Graphics
	Working With the Picture Box Control
	Using the Picture Box as a Container
	Other Uses for the Picture Box

	Lightweight Graphical Controls
	Using Image Controls Instead of Picture Boxes
	Using an Image Control to Create Your Own Buttons
	Using Shape and Line Controls

	The Images Application
	Events in the Images Application

	Additional Controls
	Data Access Controls
	File System Controls
	Miscellaneous Controls

	Understanding Focus
	Setting the Tab Order
	Removing a Control from the Tab Order

	Menu Basics
	Pop-up Menus
	Creating Menus with the Menu Editor
	 To display the Menu Editor

	Prompting the User with Dialog Boxes

