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48 Ch. 1 Overview of Cryptography

§
1.11

One approach to distributing public-keys is the so-called Merkle channel (see Simmons
[1144, p.387]). Merkle proposed that public keys be distributed over so many independent
public channels (newspaper, radio, television, etc.) that it would be improbable for an ad-
versary to compromise all of them.

In 1979 Kohnfelder [702] suggested the idea of using public-key certificates to facilitate
the distribution of public keys over unsecured channels, such that their authenticity can be
verified. Essentially the same idea, but by on-line requests, was proposed by Needham and
Schroeder (ses Wilkes [1244]).

A provably secure key agreement protocol has been proposed whose security is based on the
Heisenberg uncertainty principle of quantum physics. The security of so-called quantum
cryptography does not rely upon any complexity-theoretic assumptions. For further details
on quantum cryptography, consult Chapter 6 of Brassard [192], and Bennett, Brassard, and
Ekert [115].§

1.12
For an introduction and detailed treatment of many pseudorandom sequence generators, see
Knuth [692]. Knuth cites an example of a complex scheme to generate random numbers
which on closer analysis is shown to produce numbers which are far from random, and con-
cludes: ...random numbers should not be generated with a method chosen at random.§

1.13
The seminal work of Shannon [1121] on secure communications, published in 1949, re-
mains as one of the best introductions to both practice and theory, clearly presenting many
of the fundamental ideas including redundancy, entropy, and unicity distance. Various mod-
els under which security may be examined are considered by Rueppel [1081], Simmons
[1144], and Preneel [1003], among others; see also Goldwasser [476].

c
¨
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This chapter is a collection of basic material on probability theory, information the-
ory, complexity theory, number theory, abstract algebra, and finite fields that will be used
throughout this book. Further background and proofs of the facts presented here can be
found in the references given in

§
2.7. The following standard notation will be used through-

out:

1. ª denotes the set of integers; that is, the set «­¬U¬�¬¯®�°�±�®U°�²K®�³K®�²�®�±�®U¬�¬�¬µ´ .
2. ¶ denotes the set of rational numbers; that is, the set «�·¸h¹�º�®U»&¼wªA®�»�½¾ ³K´ .
3. ¿ denotes the set of real numbers.
4. À is the mathematical constant; À7ÁxÂ�¬Ã²`Ä�²`Å`Æ .
5. Ç is the base of the natural logarithm; Ç�Áx±K¬ÉÈ�²`Ê`±�Ê .
6. Ë ºK®U»ÍÌ denotes the integers Î satisfying º^Ï�Î�ÏD» .
7. ÐÃÎQÑ is the largest integer less than or equal to Î . For example, ÐÒÅ�¬Ã±�Ñ ¾ Å andÐ�°�ÅK¬É±UÑ ¾ °�Ó .
8. ÔÃÎQÕ is the smallest integer greater than or equal to Î . For example, ÔÍÅ�¬Ã±�Õ ¾ Ó andÔ�°�ÅK¬É±UÕ ¾ °�Å .
9. If Ö is a finite set, then ¹ÃÖ.¹ denotes the number of elements in Ö , called the cardinality

of Ö .
10. º�¼�Ö means that element º is a member of the set Ö .
11. ÖD×DØ means that Ö is a subset of Ø .
12. ÖDÙDØ means that Ö is a proper subset of Ø ; that is Öx×DØ and Ö)½¾ Ø .
13. The intersection of sets Ö and Ø is the set Ö~ÚeØ ¾ «ÛÎ�¹�Î�¼�Ö and Î�¼�Ø�´ .
14. The union of sets Ö and Ø is the set Ö~ÜeØ ¾ «ÛÎ�¹VÎ�¼�Ö or Î�¼�Ø�´ .
15. The difference of sets Ö and Ø is the set Ö~°~Ø ¾ «ÛÎ�¹�Î�¼�Ö and Î-½¼�Ø�´ .
16. The Cartesian product of sets Ö and Ø is the set ÖIÝ{Ø ¾ «­Þßº�®�»�à&¹Qºh¼�Ö and »"¼Ø�´ . For example, «`º�á�®�º�â�´�Ýx«­»�á�®�»�âK®�»�ãK´ ¾ «­Þßº�á�®U»�áÛàµ®�Þßº�áU®�»�â�àß®�Þßº�á�®U»�ã`àµ®�Þßº�â�®�»�á�à ,Þßº�â�®�»�â�àß®�Þßº�â�®U»�ã`àÛ´ .
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50 Ch. 2 Mathematical Background

17. A function or mapping äwåfÖ�°3æuØ is a rule which assigns to each element º in Ö
precisely one element » in Ø . If º�¼�Ö is mapped to »?¼{Ø then » is called the image
of º , º is called a preimage of » , and this is written ä�ÞµºKà ¾ » . The set Ö is called the
domain of ä , and the set Ø is called the codomain of ä .

18. A function äFå<Öx°fæçØ is ²O°�² (one-to-one) or injective if each element in Ø is the
image of at most one element in Ö . Hence ä�Þßº�á�à ¾ ä�ÞµºUâ�à implies º�á ¾ º�â .

19. A function ä�å�Ö�°fæèØ is onto or surjective if each »	¼�Ø is the image of at least
one º^¼{Ö .

20. A function ä|å�Ö¡°fæéØ is a bijection if it is both one-to-one and onto. If ä is a
bijection between finite sets Ö and Ø , then ¹ÉÖ�¹ ¾ ¹ÃØ�¹ . If ä is a bijection between a
set Ö and itself, then ä is called a permutation on Ö .

21. êìë�Î is the natural logarithm of Î ; that is, the logarithm of Î to the base Ç .
22. êìífÎ is the logarithm of Î to the base ± .
23. î�ïfð9Þ�ÎRà is the exponential function Ç¦ñ .
24. òó�ô á º ó denotes the sum º á�õ º â�õ�öUö�ö�õ º ò .
25. òó�ô á º ó denotes the product º�á ö º�â ö`ö�öUö­ö º ò .
26. For a positive integer ÷ , the factorial function is ÷(ø ¾ ÷(Þù÷�°|²`àßÞù÷~°|±`à öUö�ö ² . By

convention, ³�ø ¾ ² .

2.1 Probability theory

2.1.1 Basic definitions

2.1 Definition An experiment is a procedure that yields one of a given set of outcomes. The
individual possible outcomes are called simple events. The set of all possible outcomes is
called the sample space.

This chapter only considers discrete sample spaces; that is, sample spaces with only
finitely many possible outcomes. Let the simple events of a sample space ú be labeledû á ® û â ®U¬�¬U¬¯® û ò .

2.2 Definition A probability distribution ü on ú is a sequence of numbers ý á ®�ý â ®U¬�¬�¬¯®1ý ò that
are all non-negative and sum to 1. The number ý ó is interpreted as the probability of û ó being
the outcome of the experiment.

2.3 Definition An event þ is a subset of the sample space ú . The probability that event þ
occurs, denoted üsÞßþ%à , is the sum of the probabilities ý ó of all simple events û ó which belong
to þ . If û ó ¼�ú , üsÞµ« û ó ´Và is simply denoted by üsÞ û ó à .

2.4 Definition If þ is an event, the complementary event is the set of simple events not be-
longing to þ , denoted þ .

2.5 Fact Let þ�×xú be an event.

(i) ³�Ï|üsÞßþ%àAÏD² . Furthermore, üsÞßú(à ¾ ² and üsÞµÿ­à ¾ ³ . ( ÿ is the empty set.)
(ii) üsÞ þ�à ¾ ²"°�üsÞßþ%à .

c
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(iii) If the outcomes in ú are equally likely, then üsÞµþ%à ¾�� ���� ��� .
2.6 Definition Two events þ á and þ â are called mutually exclusive if üsÞßþ á Ú�þ â à ¾ ³ . That

is, the occurrence of one of the two events excludes the possibility that the other occurs.

2.7 Fact Let þ"á and þHâ be two events.
(i) If þ"á"×DþHâ , then üsÞßþ"á�àAÏ|üsÞßþHâKà .

(ii) üsÞßþ.áAÜeþHâ`à õ üsÞµþ"áAÚeþHâ�à ¾ üsÞµþ"á�à õ üsÞµþHâKà . Hence, if þ"á and þHâ are mutually
exclusive, then üsÞßþ"áAÜFþ(â�à ¾ üsÞßþ"á�à õ üsÞßþHâKà .

2.1.2 Conditional probability

2.8 Definition Let þ á and þ â be two events with üsÞßþ â à��|³ . The conditional probability ofþ á given þ â , denoted üsÞµþ á ¹Ãþ â à , is

üsÞµþ"áU¹ÃþHâ�à ¾ üsÞµþ"á(ÚeþHâKà
üsÞµþ â à ¬

üsÞµþ"á�¹ÉþHâ�à measures the probability of event þ"á occurring, given that þHâ has occurred.

2.9 Definition Events þ á and þ â are said to be independent if üsÞßþ á Ú^þ â à ¾ üsÞßþ á àµüsÞßþ â à .
Observe that if þ á and þ â are independent, then üsÞßþ á ¹Éþ â à ¾ üsÞßþ á à and üsÞßþ â ¹Ãþ á à ¾üsÞßþ â à . That is, the occurrence of one event does not influence the likelihood of occurrence

of the other.

2.10 Fact (Bayes’ theorem) If þ"á and þHâ are events with üsÞßþHâ�à	�x³ , then

üsÞµþ á ¹Ãþ â à ¾ üsÞµþ á àßüsÞßþ â ¹Ãþ á à
üsÞµþHâ`à ¬

2.1.3 Random variables

Let ú be a sample space with probability distribution ü .

2.11 Definition A random variable 
 is a function from the sample space ú to the set of real
numbers; to each simple event û ó ¼{ú , 
 assigns a real number 
~Þ û ó à .

Since ú is assumed to be finite, 
 can only take on a finite number of values.

2.12 Definition Let 
 be a random variable on ú . The expected value or mean of 
 is þ%Þ�
~à ¾��
�� � 
~Þ û ó àßüsÞ û ó à .
2.13 Fact Let 
 be a random variable on ú . Then þ%Þ�
�à ¾ ñ � ¿ Î ö üsÞ�
 ¾ ÎRà .
2.14 Fact If 
{á�®�
�âK®�¬�¬U¬f®�
�� are random variables on ú , and º�á�®�º�â�®U¬�¬U¬¯®�º�� are real numbers,

then þ%Þ �óÍô á º ó 
 ó à ¾ �óÍô á º ó þ%Þ�
 ó à .
2.15 Definition The variance of a random variable 
 of mean � is a non-negative number de-

fined by ����� Þ�
�à ¾ þ%ÞßÞ�
¡°��(à â àß¬
The standard deviation of 
 is the non-negative square root of

����� Þ�
�à .
Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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If a random variable has small variance then large deviations from the mean are un-
likely to be observed. This statement is made more precise below.

2.16 Fact (Chebyshev’s inequality) Let 
 be a random variable with mean � ¾ þ%Þ�
~à and
variance � â ¾ ����� Þ�
~à . Then for any � �D³ ,

üsÞµ¹ 
¡°!�O¹#"$��àAÏ � â� â ¬

2.1.4 Binomial distribution

2.17 Definition Let ÷ and % be non-negative integers. The binomial coefficient ò & is the num-
ber of different ways of choosing % distinct objects from a set of ÷ distinct objects, where
the order of choice is not important.

2.18 Fact (properties of binomial coefficients) Let ÷ and % be non-negative integers.

(i) ò & ¾ ò('& ' ) ò#* &�+ ' .
(ii) ò & ¾ òò#* & .

(iii) ò(, á& , á ¾ ò & õ ò& , á .

2.19 Fact (binomial theorem) For any real numbers º , » , and non-negative integer ÷ , Þµº õ »¦à ò ¾ò& ô.- ò & º & » ò/* & .
2.20 Definition A Bernoulli trial is an experiment with exactly two possible outcomes, called

success and failure.

2.21 Fact Suppose that the probability of success on a particular Bernoulli trial is ý . Then the
probability of exactly % successes in a sequence of ÷ such independent trials is

÷ % ý & Þ�²"°wý�à ò/* & ® for each ³�Ï0%�Ï7÷A¬ (2.1)

2.22 Definition The probability distribution (2.1) is called the binomial distribution.

2.23 Fact The expected number of successes in a sequence of ÷ independent Bernoulli trials,
with probability ý of success in each trial, is ÷¯ý . The variance of the number of successes
is ÷¯ý�Þß²"°�ýQà .

2.24 Fact (law of large numbers) Let 
 be the random variable denoting the fraction of suc-
cesses in ÷ independent Bernoulli trials, with probability ý of success in each trial. Then
for any 12�x³ ,

üsÞÛ¹ 
 °�ý¯¹3�41ßàA°3æ\³�® as ÷�°fæ65~¬
In other words, as ÷ gets larger, the proportion of successes should be close to ý , the

probability of success in each trial.

c
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2.1.5 Birthday problems

2.25 Definition
(i) For positive integers 7 , ÷ with 78"�÷ , the number 7 ) ò + is defined as follows:

7 ) ò + ¾ 7�Þ�7�°~²`àßÞ�7�°~±`à ö�ö�ö Þ�7�°w÷ õ ²�àß¬
(ii) Let 7�®1÷ be non-negative integers with 79"�÷ . The Stirling number of the second

kind, denoted
�
ò , is

7
÷ ¾ ²

÷(ø
ò
& ô.- Þµ°�²�à ò#*

& ÷ % % � ®
with the exception that

-- ¾ ² .
The symbol

�
ò counts the number of ways of partitioning a set of 7 objects into ÷

non-empty subsets.

2.26 Fact (classical occupancy problem) An urn has 7 balls numbered ² to 7 . Suppose that ÷
balls are drawn from the urn one at a time, with replacement, and their numbers are listed.
The probability that exactly � different balls have been drawn is

ü�á¦Þ�7�®1÷A®���à ¾ ÷ � 7 );: +7 ò ® ²%Ï<��Ï�÷A¬
The birthday problem is a special case of the classical occupancy problem.

2.27 Fact (birthday problem) An urn has 7 balls numbered ² to 7 . Suppose that ÷ balls are
drawn from the urn one at a time, with replacement, and their numbers are listed.

(i) The probability of at least one coincidence (i.e., a ball drawn at least twice) is

ü â Þ�7�®1÷(à ¾ ²"°�ü á Þ�7�®1÷A®�÷(à ¾ ²"° 7
) ò +7 ò ®ç²�Ï7÷�Ï<7�¬ (2.2)

If ÷ ¾4= Þ<> 7�à (see Definition 2.55) and 7¤°3æ?5 , then

ü â Þ�7�®1÷(àA°fæ\²"°~î�ïfð ° ÷(Þù÷w°~²`à±@7 õ = ²> 7 Áx²"°7î1ïfð ° ÷ â±A7 ¬
(ii) As 7¤°fæ?5 , the expected number of draws before a coincidence is B �â .

The following explains why probability distribution (2.2) is referred to as the birthday
surprise or birthday paradox. The probability that at least ± people in a room of ±�Â people
have the same birthday is ü�â�ÞßÂ`Ó`ÅK®�±�Â`à?Á�³K¬ÉÅ�³`È , which is surprisingly large. The quantityü<â�Þ�Â`Ó�Å�®1÷(à also increases rapidly as ÷ increases; for example, ü<âKÞ�Â�Ó`ÅK®�Â`³�à�ÁD³�¬ÃÈ`³�Ó .

A different kind of problem is considered in Facts 2.28, 2.29, and 2.30 below. Suppose
that there are two urns, one containing 7 white balls numbered ² to 7 , and the other con-
taining 7 red balls numbered ² to 7 . First, ÷Oá balls are selected from the first urn and their
numbers listed. Then ÷fâ balls are selected from the second urn and their numbers listed.
Finally, the number of coincidences between the two lists is counted.

2.28 Fact (model A) If the balls from both urns are drawn one at a time, with replacement, then
the probability of at least one coincidence is

ü ã Þ�7�®�÷ á ®�÷ â à ¾ ²"° ²7 ò/CD,9ò(E : CGF : E
7 );: C , : E + ÷ á�Uá ÷ â�1â ®

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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where the summation is over all ³�Ï<�Uá?Ï�÷Oá , ³	Ï$�1â�Ï7÷fâ . If ÷ ¾ ÷Oá ¾ ÷fâ , ÷ ¾4= Þ$> 7�à
and 7¤°fæ?5 , then

ü ã Þ�7�®�÷ á ®�÷ â àA°fæ\²"°~î�ïfð ° ÷ â7 ² õ = ²> 7 Áx²"°~î�ïfð ° ÷ â7 ¬
2.29 Fact (model B) If the balls from both urns are drawn without replacement, then the prob-

ability of at least one coincidence is

ü#HKÞ�7�®�÷ á ®�÷ â à ¾ ²"° 7 ) ò/CD,9ò(E +7 ) òIC + 7 ) ò(E + ¬
If ÷Oá ¾4= Þ<> 7�à , ÷fâ ¾4= Þ$> 7�à , and 7¤°¯æ?5 , then

ü#HKÞ�7�®�÷ á ®�÷ â àA°fæ\²"°~î�ïfð ° ÷OáÍ÷fâ7 ² õ ÷Oá õ ÷fâ�°7²±@7 õ = ²7 ¬
2.30 Fact (model C) If the ÷Oá white balls are drawn one at a time, with replacement, and the ÷fâ

red balls are drawn without replacement, then the probability of at least one coincidence is

ü/J`Þ�7�®1÷Oá�®�÷fâ�à ¾ ²"° ²"° ÷ â7 ò C ¬
If ÷Oá ¾4= Þ<> 7�à , ÷fâ ¾4= Þ$> 7�à , and 7¤°¯æ?5 , then

ü J Þ�7�®�÷ á ®�÷ â àA°3æ\²"°7î1ïfð ° ÷OáÒ÷fâ7 ² õ = ²> 7 ÁD²"°7î1ï¯ð ° ÷OáÍ÷fâ7 ¬

2.1.6 Random mappings

2.31 Definition Let K ò denote the collection of all functions (mappings) from a finite domain
of size ÷ to a finite codomain of size ÷ .

Models where random elements of K ò are considered are called random mappings
models. In this section the only random mappings model considered is where every function
from K ò is equally likely to be chosen; such models arise frequently in cryptography and
algorithmic number theory. Note that ¹ K ò ¹ ¾ ÷ ò , whence the probability that a particular
function from K ò is chosen is ²ML¦÷ ò .

2.32 Definition Let ä be a function in K ò with domain and codomain equal to «V²K®�±K®�¬�¬U¬�®�÷O´ .
The functional graph of ä is a directed graph whose points (or vertices) are the elements«V²�®�±�®U¬�¬�¬�®1÷O´ and whose edges are the ordered pairs ÞùÎ�®�ä�ÞùÎ�à�à for all Î�¼�«V²K®�±K®�¬�¬U¬�®�÷O´ .

2.33 Example (functional graph) Consider the function äZåQ«V²�®�±�®U¬�¬�¬�®�²`ÂK´�°fæ «­²�®�±�®�¬U¬�¬�®�²�ÂK´
defined by ä�Þß²`à ¾ Ä , ä�Þ�±`à ¾ ²`² , ä�ÞßÂ`à ¾ ² , ä�ÞßÄ`à ¾ Ó , ä�Þ�Å`à ¾ Â , ä�Þ�Ó�à ¾ Æ , ä�Þ�È�à ¾ Â ,ä�Þ�Ê`à ¾ ²`² , ä�ÞßÆ`à ¾ ² , ä�Þ�²�³`à ¾ ± , ä�Þ�²�²`à ¾ ²`³ , ä�Þß²`±`à ¾ Ä , ä�Þ�²�Â`à ¾ È . The functional
graph of ä is shown in Figure 2.1. N

As Figure 2.1 illustrates, a functional graph may have several components (maximal
connected subgraphs), each component consisting of a directed cycle and some directed
trees attached to the cycle.

2.34 Fact As ÷ tends to infinity, the following statements regarding the functional digraph of a
random function ä from K ò are true:

(i) The expected number of components is áâ êìë�÷ .
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Figure 2.1: A functional graph (see Example 2.33).

(ii) The expected number of points which are on the cycles is À¯÷	L­± .
(iii) The expected number of terminal points (points which have no preimages) is ÷	L`Ç .
(iv) The expected number of % -th iterate image points (Î is a % -th iterate image point ifÎ ¾ ä�Þßä�Þ öUö�ö ä& times

Þ�O¯à ö�öUö à�à for some O ) is Þ�²A°QP & àù÷ , where the P & satisfy the recurrence

P - ¾ ³ , P & , á ¾ Ç * á ,(R@S for %T"D³ .
2.35 Definition Let ä be a random function from «V²K®�±�®U¬�¬U¬�®1÷O´ to «V²�®�±�®U¬�¬�¬Q®�÷O´ and let UI¼«V²�®�±�®U¬�¬�¬�®1÷O´ . Consider the sequence of points U - ®�U á ®�U â ®U¬�¬�¬ defined by U - ¾ U , U ó ¾ä�Þ�U ó * á à for V�"D² . In terms of the functional graph of ä , this sequence describes a path that

connects to a cycle.

(i) The number of edges in the path is called the tail length of U , denoted W�Þ�U�à .
(ii) The number of edges in the cycle is called the cycle length of U , denoted �(Þ�U�à .

(iii) The rho-length of U is the quantity XQÞ�U�à ¾ W�Þ�U�à õ �(Þ�U�à .
(iv) The tree size of U is the number of edges in the maximal tree rooted on a cycle in the

component that contains U .
(v) The component size of U is the number of edges in the component that contains U .

(vi) The predecessors size of U is the number of iterated preimages of U .

2.36 Example The functional graph in Figure 2.1 has ± components and Ä terminal points. The
point U ¾ Â has parameters W�Þ�U�à ¾ ² , �(Þ�U�à ¾ Ä , X�Þ�U�à ¾ Å . The tree, component, and
predecessors sizes of U ¾ Â are Ä , Æ , and Â , respectively. N

2.37 Fact As ÷ tends to infinity, the following are the expectations of some parameters associ-
ated with a random point in «V²K®�±K®�¬�¬U¬�®�÷O´ and a random function from K ò : (i) tail length:À¯÷	L`Ê (ii) cycle length: À¯÷	L­Ê (iii) rho-length: À¯÷	L­± (iv) tree size: ÷	L­Â (v) compo-
nent size: ±�÷	L­Â (vi) predecessors size: À¯÷	L­Ê .

2.38 Fact As ÷ tends to infinity, the expectations of the maximum tail, cycle, and rho lengths in
a random function from K ò are Y�áZ> ÷ , Y�â[> ÷ , and Y1ã\> ÷ , respectively, where Y�á?ÁD³�¬ÃÈ`Ê�±`Ä`Ê ,Y â Áx²K¬ÉÈ�Â`È�Ä`Ó , and Y ã ÁD±�¬ÃÄ`²�Ä`Æ .

Facts 2.37 and 2.38 indicate that in the functional graph of a random function, most
points are grouped together in one giant component, and there is a small number of large
trees. Also, almost unavoidably, a cycle of length about > ÷ arises after following a path of
length > ÷ edges.
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2.2 Information theory

2.2.1 Entropy

Let 
 be a random variable which takes on a finite set of values Î�áU®�ÎQâ�®U¬�¬�¬3®�Î ò , with prob-
ability üsÞ�
 ¾ Î ó à ¾ ý ó , where ³�Ï�ý ó ÏD² for each V , ²�Ï]V?Ï�÷ , and where òó�ô á ý ó ¾ ² .
Also, let ^ and _ be random variables which take on finite sets of values.

The entropy of 
 is a mathematical measure of the amount of information provided by
an observation of 
 . Equivalently, it is the uncertainity about the outcome before an obser-
vation of 
 . Entropy is also useful for approximating the average number of bits required
to encode the elements of 
 .

2.39 Definition The entropy or uncertainty of 
 is defined to be `�Þ�
~à ¾ ° òóÍô á ý ó êÃí3ý ó ¾
òóÍô á ý ó êÃí áab
 where, by convention, ý ó ö êìífý ó ¾ ý ó ö êìí áac
 ¾ ³ if ý ó ¾ ³ .

2.40 Fact (properties of entropy) Let 
 be a random variable which takes on ÷ values.

(i) ³�Ïd`�Þ�
~à(ÏDêÃíf÷ .
(ii) `�Þ�
~à ¾ ³ if and only if ý ó ¾ ² for some V , and ý.e ¾ ³ for all f{½¾ V (that is, there is

no uncertainty of the outcome).
(iii) `�Þ�
~à ¾ êìí¯÷ if and only if ý ó ¾ ²ML¦÷ for each V , ²	Ï<V&Ï�÷ (that is, all outcomes are

equally likely).

2.41 Definition The joint entropy of 
 and ^ is defined to be

`�Þ�
�®@^%à ¾ °
ñ F g
üsÞ�
 ¾ Î�®b^ ¾ O¯à9êìí�ÞµüsÞ�
 ¾ Î�®@^ ¾ O¯à�àß®

where the summation indices Î and O range over all values of 
 and ^ , respectively. The
definition can be extended to any number of random variables.

2.42 Fact If 
 and ^ are random variables, then `�Þ�
�®@^	àAÏd`�Þ�
~à õ `�Þh^�à , with equality if
and only if 
 and ^ are independent.

2.43 Definition If 
 , ^ are random variables, the conditional entropy of 
 given ^ ¾ O is

`�Þ�
�¹i^ ¾ O¯à ¾ °
ñ
üsÞ�
 ¾ ÎH¹i^ ¾ O¯à9êÃí�ÞßüsÞ�
 ¾ Î�¹j^ ¾ O�àßàß®

where the summation index Î ranges over all values of 
 . The conditional entropy of 

given ^ , also called the equivocation of ^ about 
 , is

`�Þ�
�¹j^%à ¾
g
üsÞh^ ¾ O¯àh`�Þ�
�¹j^ ¾ O¯àß®

where the summation index O ranges over all values of ^ .

2.44 Fact (properties of conditional entropy) Let 
 and ^ be random variables.

(i) The quantity `wÞ�
�¹j^%à measures the amount of uncertainty remaining about 
 after^ has been observed.
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(ii) `�Þ�
�¹i^	à2"-³ and `�Þ�
�¹ 
~à ¾ ³ .
(iii) `�Þ�
�®@^�à ¾ `�Þ�
~à õ `�Þh^�¹ 
~à ¾ `�Þh^	à õ `wÞ�
�¹j^%à .
(iv) `�Þ�
�¹i^	àOÏ0`�Þ�
~à , with equality if and only if 
 and ^ are independent.

2.2.2 Mutual information

2.45 Definition The mutual information or transinformation of random variables 
 and ^ isk Þ�
mlb^%à ¾ `�Þ�
~à�°n`�Þ�
�¹j^%à . Similarly, the transinformation of 
 and the pair ^ , _ is
defined to be

k Þ�
olb^�®@_.à ¾ `�Þ�
~à3°m`wÞ�
�¹j^R®b_"à .
2.46 Fact (properties of mutual transinformation)

(i) The quantity
k Þ�
mlc^%à can be thought of as the amount of information that ^ reveals

about 
 . Similarly, the quantity
k Þ�
mlc^R®b_"à can be thought of as the amount of in-

formation that ^ and _ together reveal about 
 .
(ii)

k Þ�
mlc^%à2"-³ .
(iii)

k Þ�
mlc^%à ¾ ³ if and only if 
 and ^ are independent (that is, ^ contributes no in-
formation about 
 ).

(iv)
k Þ�
mlc^%à ¾ k Þh^plD
~à .

2.47 Definition The conditional transinformation of the pair 
 , ^ given _ is defined to bekcq Þ�
mlc^%à ¾ `wÞ�
�¹j_"à3°o`�Þ�
�¹i^�®@_.à .
2.48 Fact (properties of conditional transinformation)

(i) The quantity
k q Þ�
olb^%à can be interpreted as the amount of information that ^ pro-

vides about 
 , given that _ has already been observed.
(ii)

k Þ�
mlc^R®b_"à ¾ k Þ�
mlb^%à õ kcr Þ�
olb_.à .
(iii)

k q Þ�
olb^%à ¾ k q Þh^plD
~à .

2.3 Complexity theory

2.3.1 Basic definitions

The main goal of complexity theory is to provide mechanisms for classifying computational
problems according to the resources needed to solve them. The classification should not
depend on a particular computational model, but rather should measure the intrinsic dif-
ficulty of the problem. The resources measured may include time, storage space, random
bits, number of processors, etc., but typically the main focus is time, and sometimes space.

2.49 Definition An algorithm is a well-defined computational procedure that takes a variable
input and halts with an output.
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Of course, the term “well-defined computational procedure” is not mathematically pre-
cise. It can be made so by using formal computational models such as Turing machines,
random-access machines, or boolean circuits. Rather than get involved with the technical
intricacies of these models, it is simpler to think of an algorithm as a computer program
written in some specific programming language for a specific computer that takes a vari-
able input and halts with an output.

It is usually of interest to find the most efficient (i.e., fastest) algorithm for solving a
given computational problem. The time that an algorithm takes to halt depends on the “size”
of the problem instance. Also, the unit of time used should be made precise, especially when
comparing the performance of two algorithms.

2.50 Definition The size of the input is the total number of bits needed to represent the input
in ordinary binary notation using an appropriate encoding scheme. Occasionally, the size
of the input will be the number of items in the input.

2.51 Example (sizes of some objects)

(i) The number of bits in the binary representation of a positive integer ÷ is ² õ ÐÍêìíf÷fÑ
bits. For simplicity, the size of ÷ will be approximated by êìí¯÷ .

(ii) If ä is a polynomial of degree at most % , each coefficient being a non-negative integer
at most ÷ , then the size of ä is ÞG% õ ²�à9êÃí3÷ bits.

(iii) If Ö is a matrix with s rows, û columns, and with non-negative integer entries each
at most ÷ , then the size of Ö is s û êìí3÷ bits. N

2.52 Definition The running time of an algorithm on a particular input is the number of prim-
itive operations or “steps” executed.

Often a step is taken to mean a bit operation. For some algorithms it will be more con-
venient to take step to mean something else such as a comparison, a machine instruction, a
machine clock cycle, a modular multiplication, etc.

2.53 Definition The worst-case running time of an algorithm is an upper bound on the running
time for any input, expressed as a function of the input size.

2.54 Definition The average-case running time of an algorithm is the average running time
over all inputs of a fixed size, expressed as a function of the input size.

2.3.2 Asymptotic notation

It is often difficult to derive the exact running time of an algorithm. In such situations one
is forced to settle for approximations of the running time, and usually may only derive the
asymptotic running time. That is, one studies how the running time of the algorithm in-
creases as the size of the input increases without bound.

In what follows, the only functions considered are those which are defined on the posi-
tive integers and take on real values that are always positive from some point onwards. Letä and t be two such functions.

2.55 Definition (order notation)

(i) (asymptotic upper bound) ä�Þù÷(à ¾u= Þ�t�Þù÷(àßà if there exists a positive constant Y and a
positive integer ÷ - such that ³�Ï|ä�Þù÷(àAÏvY�tQÞ�÷(à for all ÷$"7÷ - .
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(ii) (asymptotic lower bound) ä�Þù÷(à ¾4w Þ�t�Þù÷(à�à if there exists a positive constant Y and a
positive integer ÷ - such that ³�ÏdY�t�Þù÷(àAÏxä�Þ�÷(à for all ÷$"7÷ - .

(iii) (asymptotic tight bound) ä�Þù÷(à ¾dx Þ�t�Þù÷(àßà if there exist positive constants Y�á and Y�â ,
and a positive integer ÷ - such that Y�á�tQÞ�÷(àAÏxä�Þù÷(àNÏ0Y�â@tQÞ�÷(à for all ÷<"7÷ - .

(iv) ( y -notation) ä�Þ�÷(à ¾ y�Þ�tQÞ�÷(à�à if for any positive constant Yz�D³ there exists a constant÷ - �|³ such that ³	ÏDä�Þ�÷(à�{vY�t�Þù÷(à for all ÷<"�÷ - .
Intuitively, ä�Þù÷(à ¾d= Þ�tQÞ�÷(à�à means that ä grows no faster asymptotically than t�Þù÷(à to

within a constant multiple, while ä�Þù÷(à ¾|w Þ�t�Þù÷(àßà means that ä�Þ�÷(à grows at least as fast
asymptotically as tQÞ�÷(à to within a constant multiple. ä�Þ�÷(à ¾ y�Þ�tQÞ�÷(à�à means that tQÞ�÷(à is an
upper bound for ä�Þù÷(à that is not asymptotically tight, or in other words, the function ä�Þù÷(à
becomes insignificant relative to t�Þù÷(à as ÷ gets larger. The expression y�Þ�²�à is often used to
signify a function ä�Þù÷(à whose limit as ÷ approaches 5 is ³ .

2.56 Fact (properties of order notation) For any functions ä�Þù÷(à , tQÞ�÷(à , }<Þ�÷(à , and ~�Þù÷(à , the fol-
lowing are true.

(i) ä�Þù÷(à ¾u= Þ�t�Þù÷(àßà if and only if t�Þù÷(à ¾4w Þßä�Þù÷(àßà .
(ii) ä�Þù÷(à ¾4x Þ�t�Þù÷(àßà if and only if ä�Þù÷(à ¾u= Þ�t�Þù÷(àßà and ä�Þ�÷(à ¾dw Þ�tQÞ�÷(à�à .

(iii) If ä�Þ�÷(à ¾4= ÞG}<Þ�÷(à�à and t�Þù÷(à ¾u= Þh}�Þù÷(à�à , then Þßä õ tQàßÞù÷(à ¾u= Þh}�Þù÷(àßà .
(iv) If ä�Þ�÷(à ¾4= ÞG}<Þ�÷(à�à and t�Þù÷(à ¾u= Þh~ùÞ�÷(à�à , then Þßä ö t�à�Þ�÷(à ¾4= ÞG}<Þ�÷(àh~ùÞ�÷(à�à .
(v) (reflexivity) ä�Þ�÷(à ¾d= Þßä�Þ�÷(à�à .

(vi) (transitivity) If ä�Þ�÷(à ¾4= Þ�tQÞ�÷(à�à and t�Þù÷(à ¾4= Þh}�Þù÷(à�à , then ä�Þ�÷(à ¾4= ÞG}<Þ�÷(à�à .
2.57 Fact (approximations of some commonly occurring functions)

(i) (polynomial function) If ä�Þù÷(à is a polynomial of degree % with positive leading term,
then ä�Þù÷(à ¾4x Þù÷ & à .

(ii) For any constant Yz�D³ , êj��íc�9÷ ¾4x Þ�êìí¯÷(à .
(iii) (Stirling’s formula) For all integers ÷<"-² ,

> ±�À¯÷ ÷
Ç ò Ï�÷(ø�Ï > ±�À¯÷ ÷

Ç ò#, ) á�� ) áùâ ò +�+ ¬
Thus ÷(ø ¾ > ±�À¯÷ ò � ò ² õ x Þ áò à . Also, ÷(ø ¾ y�Þ�÷ ò à and ÷(ø ¾dw Þß± ò à .

(iv) êìí�Þ�÷(øÃà ¾dx Þù÷�êìí¯÷(à .
2.58 Example (comparative growth rates of some functions) Let 1 and Y be arbitrary constants

with ³�{41�{D²�{4Y . The following functions are listed in increasing order of their asymp-
totic growth rates:

²�{Dêìë?êÃë�÷${|êÃë�÷${xî1ï¯ð<Þ > êìë�÷�êìë&êÃë�÷(à�{~÷��z{�÷ � {7÷�� � ò {dY ò {�÷ ò {dY ��� ¬ N

2.3.3 Complexity classes

2.59 Definition A polynomial-time algorithm is an algorithm whose worst-case running time
function is of the form = Þ�÷ & à , where ÷ is the input size and % is a constant. Any algorithm
whose running time cannot be so bounded is called an exponential-time algorithm.

Roughly speaking, polynomial-time algorithms can be equated with good or efficient
algorithms, while exponential-time algorithms are considered inefficient. There are, how-
ever, some practical situations when this distinction is not appropriate. When considering
polynomial-time complexity, the degree of the polynomial is significant. For example, even
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though an algorithm with a running time of = Þù÷ � �I� � ò à , ÷ being the input size, is asymptot-
ically slower that an algorithm with a running time of = Þù÷ á -h- à , the former algorithm may
be faster in practice for smaller values of ÷ , especially if the constants hidden by the big- =
notation are smaller. Furthermore, in cryptography, average-case complexity is more im-
portant than worst-case complexity — a necessary condition for an encryption scheme to
be considered secure is that the corresponding cryptanalysis problem is difficult on average
(or more precisely, almost always difficult), and not just for some isolated cases.

2.60 Definition A subexponential-time algorithm is an algorithm whose worst-case running
time function is of the form Ç�� ) ò + , where ÷ is the input size.

A subexponential-time algorithm is asymptotically faster than an algorithm whose run-
ning time is fully exponential in the input size, while it is asymptotically slower than a
polynomial-time algorithm.

2.61 Example (subexponential running time) Let Ö be an algorithm whose inputs are either
elements of a finite field ��� (see

§
2.6), or an integer � . If the expected running time of Ö is

of the form �
� Ë ��®@YÒÌ ¾u= î�ïfð ÞhY õ y�Þ�²`àßà�ÞßêÃë���à��fÞßêÃë?êìë���à á * � ® (2.3)

where Y is a positive constant, and � is a constant satisfying ³[{���{ ² , then Ö is a
subexponential-time algorithm. Observe that for � ¾ ³ ,

�
� Ë ³�®@YÒÌ is a polynomial in êÃë�� ,

while for � ¾ ² ,
�
� Ë ²�®bYÍÌ is a polynomial in � , and thus fully exponential in êÃë�� . N

For simplicity, the theory of computational complexity restricts its attention to deci-
sion problems, i.e., problems which have either YES or NO as an answer. This is not too
restrictive in practice, as all the computational problems that will be encountered here can
be phrased as decision problems in such a way that an efficient algorithm for the decision
problem yields an efficient algorithm for the computational problem, and vice versa.

2.62 Definition The complexity class P is the set of all decision problems that are solvable in
polynomial time.

2.63 Definition The complexity class NP is the set of all decision problems for which a YES
answer can be verified in polynomial time given some extra information, called a certificate.

2.64 Definition The complexity class co-NP is the set of all decision problems for which a NO
answer can be verified in polynomial time using an appropriate certificate.

It must be emphasized that if a decision problem is in NP, it may not be the case that the
certificate of a YES answer can be easily obtained; what is asserted is that such a certificate
does exist, and, if known, can be used to efficiently verify the YES answer. The same is
true of the NO answers for problems in co-NP.

2.65 Example (problem in NP) Consider the following decision problem:
COMPOSITES
INSTANCE: A positive integer ÷ .
QUESTION: Is ÷ composite? That is, are there integers º�®�»��|² such that ÷ ¾ º�» ?

COMPOSITES belongs to NP because if an integer ÷ is composite, then this fact can be
verified in polynomial time if one is given a divisor º of ÷ , where ²�{Dº�{7÷ (the certificate
in this case consists of the divisor º ). It is in fact also the case that COMPOSITES belongs
to co-NP. It is still unknown whether or not COMPOSITES belongs to P. N
c
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2.66 Fact P × NP and P × co-NP.

The following are among the outstanding unresolved questions in the subject of com-
plexity theory:

1. Is P ¾ NP?
2. Is NP ¾ co-NP?
3. Is P ¾ NP Ú co-NP?

Most experts are of the opinion that the answer to each of the three questions is NO, although
nothing along these lines has been proven.

The notion of reducibility is useful when comparing the relative difficulties of prob-
lems.

2.67 Definition Let

�
á and

�
â be two decision problems.

�
á is said to polytime reduce to

�
â ,

written

�
á�Ï �

�
â , if there is an algorithm that solves

�
á which uses, as a subroutine, an

algorithm for solving

�
â , and which runs in polynomial time if the algorithm for

�
â does.

Informally, if

�
á Ï �

�
â , then

�
â is at least as difficult as

�
á , or, equivalently,

�
á is

no harder than

�
â .

2.68 Definition Let

�
á and

�
â be two decision problems. If

�
á%Ï �

�
â and

�
âhÏ �

�
á , then

�
á and

�
â are said to be computationally equivalent.

2.69 Fact Let

�
á ,
�
â , and

�
ã be three decision problems.

(i) (transitivity) If

�
á?Ï �

�
â and

�
â�Ï �

�
ã , then

�
á?Ï �

�
ã .

(ii) If

�
á?Ï �

�
â and

�
â�¼ P, then

�
á?¼ P.

2.70 Definition A decision problem

�
is said to be NP-complete if

(i)

�
¼ NP, and

(ii)

�
á Ï �

�
for every

�
á ¼ NP.

The class of all NP-complete problems is denoted by NPC.

NP-complete problems are the hardest problems in NP in the sense that they are at
least as difficult as every other problem in NP. There are thousands of problems drawn from
diverse fields such as combinatorics, number theory, and logic, that are known to be NP-
complete.

2.71 Example (subset sum problem) The subset sum problem is the following: given a set of
positive integers «­º�á�®Uº�â�®�¬U¬�¬¯®Uº ò ´ and a positive integer û , determine whether or not there
is a subset of the º ó that sum to û . The subset sum problem is NP-complete. N

2.72 Fact Let

�
á and

�
â be two decision problems.

(i) If

�
á is NP-complete and

�
á?¼ P, then P = NP.

(ii) If

�
á?¼ NP,

�
â is NP-complete, and

�
â�Ï �

�
á , then

�
á is also NP-complete.

(iii) If

�
á is NP-complete and

�
á ¼ co-NP, then NP = co-NP.

By Fact 2.72(i), if a polynomial-time algorithm is found for any single NP-complete
problem, then it is the case that P = NP, a result that would be extremely surprising. Hence,
a proof that a problem is NP-complete provides strong evidence for its intractability. Fig-
ure 2.2 illustrates what is widely believed to be the relationship between the complexity
classes P, NP, co-NP, and NPC.

Fact 2.72(ii) suggests the following procedure for proving that a decision problem

�
á

is NP-complete:
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co-NP
NPC

NP

P

NP � co-NP

Figure 2.2: Conjectured relationship between the complexity classes P, NP, co-NP, and NPC.

1. Prove that

�
á?¼ NP.

2. Select a problem

�
â that is known to be NP-complete.

3. Prove that

�
â�Ï �

�
á .

2.73 Definition A problem is NP-hard if there exists some NP-complete problem that polytime
reduces to it.

Note that the NP-hard classification is not restricted to only decision problems. Ob-
serve also that an NP-complete problem is also NP-hard.

2.74 Example (NP-hard problem) Given positive integers º�á�®UºUâK®�¬U¬�¬f®Uº ò and a positive inte-
ger û , the computational version of the subset sum problem would ask to actually find a
subset of the º ó which sums to û , provided that such a subset exists. This problem is NP-
hard. N

2.3.4 Randomized algorithms

The algorithms studied so far in this section have been deterministic; such algorithms fol-
low the same execution path (sequence of operations) each time they execute with the same
input. By contrast, a randomized algorithm makes random decisions at certain points in
the execution; hence their execution paths may differ each time they are invoked with the
same input. The random decisions are based upon the outcome of a random number gen-
erator. Remarkably, there are many problems for which randomized algorithms are known
that are more efficient, both in terms of time and space, than the best known deterministic
algorithms.

Randomized algorithms for decision problems can be classified according to the prob-
ability that they return the correct answer.

2.75 Definition Let Ö be a randomized algorithm for a decision problem

�
, and let

k
denote

an arbitrary instance of

�
.

(i) Ö has 0-sided error if üsÞßÖ outputs YES ¹ k ’s answer is YES à ¾ ² , andüsÞßÖ outputs YES ¹ k ’s answer is NO à ¾ ³ .
(ii) Ö has 1-sided error if üsÞßÖ outputs YES ¹ k ’s answer is YES à	" áâ , andüsÞßÖ outputs YES ¹ k ’s answer is NO à ¾ ³ .
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(iii) Ö has 2-sided error if üsÞßÖ outputs YES ¹ k ’s answer is YES à	" âã , andüsÞßÖ outputs YES ¹ k ’s answer is NO àAÏ áã .

The number áâ in the definition of 1-sided error is somewhat arbitrary and can be re-
placed by any positive constant. Similarly, the numbers âã and áã in the definition of 2-sided
error, can be replaced by áâ õ 1 and áâ °m1 , respectively, for any constant 1 , ³�{41�{ áâ .

2.76 Definition The expected running time of a randomized algorithm is an upper bound on the
expected running time for each input (the expectation being over all outputs of the random
number generator used by the algorithm), expressed as a function of the input size.

The important randomized complexity classes are defined next.

2.77 Definition (randomized complexity classes)

(i) The complexity class ZPP (“zero-sided probabilistic polynomial time”) is the set of
all decision problems for which there is a randomized algorithm with 0-sided error
which runs in expected polynomial time.

(ii) The complexity class RP (“randomized polynomial time”) is the set of all decision
problems for which there is a randomized algorithm with 1-sided error which runs in
(worst-case) polynomial time.

(iii) The complexity class BPP (“bounded error probabilistic polynomial time”) is the set
of all decision problems for which there is a randomized algorithm with 2-sided error
which runs in (worst-case) polynomial time.

2.78 Fact P × ZPP × RP × BPP and RP × NP.

2.4 Number theory

2.4.1 The integers

The set of integers «­¬U¬�¬¯®U°�ÂK®U°�±K®U°�²�®�³�®�²�®�±K®�ÂK®�¬�¬U¬�´ is denoted by the symbol ª .

2.79 Definition Let º , » be integers. Then º divides » (equivalently: º is a divisor of » , or º is
a factor of » ) if there exists an integer Y such that » ¾ º.Y . If º divides » , then this is denoted
by º�¹Ã» .

2.80 Example (i) °�ÂK¹É²`Ê , since ²`Ê ¾ Þµ°�Â�à�Þµ°�Ó�à . (ii) ²�È`ÂK¹É³ , since ³ ¾ Þ�²�È`Â�à�Þ�³�à . N
The following are some elementary properties of divisibility.

2.81 Fact (properties of divisibility) For all º , » , Y?¼wª , the following are true:

(i) º�¹Éº .
(ii) If º�¹Ã» and »�¹jY , then º�¹iY .

(iii) If º�¹Ã» and º�¹iY , then º�¹ÉÞß»�Î õ Y�O�à for all Î�®�O�¼{ª .
(iv) If º�¹Ã» and »�¹Ãº , then º ¾\� » .

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



64 Ch. 2 Mathematical Background

2.82 Definition (division algorithm for integers) If º and » are integers with »�"�² , then or-
dinary long division of º by » yields integers � (the quotient) and s (the remainder) such
that

º ¾ �V» õ s`® where ³	Ï$s�{D»�¬
Moreover, � and s are unique. The remainder of the division is denoted º��T�.�h» , and the
quotient is denoted º��(  ¡e» .

2.83 Fact Let º�®�»&¼{ª with »�½¾ ³ . Then º¢�(  ¡e» ¾ Ð�ºML�»�Ñ and ºp�T�M��» ¾ ºs°�»KÐÒº.L`»1Ñ .
2.84 Example If º ¾ È�Â , » ¾ ²`È , then � ¾ Ä and s ¾ Å . Hence È�Â��£�.��²`È ¾ Å andÈ`Â��#  ¡Z²�È ¾ Ä . N
2.85 Definition An integer Y is a common divisor of º and » if Y�¹Éº and YU¹É» .
2.86 Definition A non-negative integer ¤ is the greatest common divisor of integers º and » ,

denoted ¤ ¾ í�¥b�9Þßº�®U»¦à , if

(i) ¤ is a common divisor of º and » ; and
(ii) whenever Y�¹Ãº and Y�¹É» , then Y�¹i¤ .

Equivalently, í�¥@��ÞµºK®U»¦à is the largest positive integer that divides both º and » , with the ex-
ception that í�¥@�<Þ�³�®�³`à ¾ ³ .

2.87 Example The common divisors of ²`± and ²`Ê are « � ²�® � ±�® � Â�® � Ó�´ , and í�¥@��Þß²`±�®�²`Ê�à ¾ Ó .N
2.88 Definition A non-negative integer ¤ is the least common multiple of integers º and » , de-

noted ¤ ¾ ê¦¥@��ÞµºK®U»¦à , if

(i) º�¹i¤ and »U¹i¤ ; and
(ii) whenever º�¹iY and »�¹iY , then ¤K¹jY .

Equivalently, êj¥b�^Þµº�®�»¦à is the smallest non-negative integer divisible by both º and » .
2.89 Fact If º and » are positive integers, then ê¦¥@��Þßº�®�»�à ¾ º ö »ALHí�¥@��Þßº�®U»¦à .
2.90 Example Since í�¥@��Þ�²�±�®�²`Ê`à ¾ Ó , it follows that êj¥b��Þ�²`±K®�²�Ê`à ¾ ²�± ö ²`ÊML­Ó ¾ Â�Ó . N
2.91 Definition Two integers º and » are said to be relatively prime or coprime if í�¥@�<Þßº�®�»¦à ¾ ² .
2.92 Definition An integer ý<"�± is said to be prime if its only positive divisors are 1 and ý .

Otherwise, ý is called composite.

The following are some well known facts about prime numbers.

2.93 Fact If ý is prime and ý�¹ÃºK» , then either ý¯¹Éº or ý¯¹É» (or both).

2.94 Fact There are an infinite number of prime numbers.

2.95 Fact (prime number theorem) Let À(ÞùÎ�à denote the number of prime numbers Ï7Î . Then

êj ¦�ñb§�¨
À(ÞùÎ�à
Î©L(êÃë�Î ¾ ²�¬
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This means that for large values of Î , À(ÞùÎ�à is closely approximated by the expres-
sion Î©L(êÃë�Î . For instance, when Î ¾ ²`³ á - , À(ÞùÎ�à ¾ Ä�Å`Å�®�³`Å�±�®�Å�²`² , whereas ÐÃÎªLHêìë�Î�Ñ ¾Ä`Â`ÄK®�±�Æ`Ä�®�Ä`Ê�² . A more explicit estimate for À(ÞùÎ�à is given below.

2.96 Fact Let À(ÞùÎ�à denote the number of primes Ï�Î . Then for Î«"D²`È
À(ÞùÎ�à2� Î

êÃë�Î
and for Î¬�|²

À(ÞùÎRà2{D²K¬É±�Å`Å`³�Ó ÎêìëfÎ ¬
2.97 Fact (fundamental theorem of arithmetic) Every integer ÷�"ç± has a factorization as a

product of prime powers:

÷ ¾ ý � Cá ý � Eâ ö�öUö ý � S& ®
where the ý ó are distinct primes, and the Ç ó are positive integers. Furthermore, the factor-
ization is unique up to rearrangement of factors.

2.98 Fact If º ¾ ý � Cá ý � Eâ öUö�ö ý � S& , » ¾ ý.­ Cá ý.­ Eâ ö�öUö ý3­ S& , where each Ç ó "D³ and ä ó "x³ , then

í�¥b��Þßº�®�»¦à ¾ ý�®�¯ � ) � C F ­ C +á ýM®�¯ � ) � E F ­ E +â öUö�ö ýM®�¯ � ) � S@F ­ S +&
and

ê¦¥@��Þßº�®U»¦à ¾ ý ®�°h± ) � ChF ­ C +á ý ®�°h± ) � E�F ­ E +â ö�ö�ö ý ®�°G± ) � S F ­ S +& ¬
2.99 Example Let º ¾ Ä`Ê�Ó`Ä ¾ ±b² ö ²`Æ , » ¾ Â�Ä`Å`Ê ¾ ± ö È ö ²�Â ö ²�Æ . Then í�¥@��ÞßÄ`Ê�Ó`Ä�®�Â`Ä�Å`Ê`à ¾± ö ²`Æ ¾ Â`Ê and ê¦¥@��ÞßÄ`Ê�Ó`Ä�®�Â`Ä�Å`Ê`à ¾ ±b² ö È ö ²�Â ö ²`Æ ¾ Ä`Ä`±�Ó`±�Ä . N

2.100 Definition For ÷<"D² , let ³�Þ�÷(à denote the number of integers in the interval Ë ²K®�÷�Ì which
are relatively prime to ÷ . The function ³ is called the Euler phi function (or the Euler totient
function).

2.101 Fact (properties of Euler phi function)

(i) If ý is a prime, then ³QÞ�ý�à ¾ ý�°7² .
(ii) The Euler phi function is multiplicative. That is, if í�¥@�<Þ�7�®�÷(à ¾ ² , then ³QÞ�7e÷(à ¾³QÞ�7�à ö ³QÞ�÷(à .

(iii) If ÷ ¾ ý � Cá ý � Eâ ö�öUö ý � S& is the prime factorization of ÷ , then

³QÞù÷(à ¾ ÷ ²�° ²
ý á ²"° ²

ý â ö�öUö ²"° ²
ý & ¬

Fact 2.102 gives an explicit lower bound for ³QÞù÷(à .
2.102 Fact For all integers ÷<"-Å ,

³�Þ�÷(à	� ÷
ÓAêÃë?êìë�÷ ¬
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2.4.2 Algorithms in

Let º and » be non-negative integers, each less than or equal to ÷ . Recall (Example 2.51)
that the number of bits in the binary representation of ÷ is ÐÍêìí¯÷fÑ õ ² , and this number is
approximated by êÃí3÷ . The number of bit operations for the four basic integer operations of
addition, subtraction, multiplication, and division using the classical algorithms is summa-
rized in Table 2.1. These algorithms are studied in more detail in

§
14.2. More sophisticated

techniques for multiplication and division have smaller complexities.

Operation Bit complexity

Addition º õ » = ÞßêÃí&º õ êÃíN»¦à ¾d= ÞßêÃíR÷(à
Subtraction º.°�» = ÞßêÃí&º õ êÃíN»¦à ¾d= ÞßêÃíR÷(à
Multiplication º ö » = ÞßÞ�êìíOºKà�ÞßêÃíN»¦à�à ¾d= Þ�ÞßêÃíR÷(à â à
Division º ¾ �V» õ s = Þ�ÞßêÃí���à�Þ�êìí&»¦à�à ¾4= Þ�Þ�êìíR÷(à â à

Table 2.1: Bit complexity of basic operations in ´ .

The greatest common divisor of two integers º and » can be computed via Fact 2.98.
However, computing a gcd by first obtaining prime-power factorizations does not result in
an efficient algorithm, as the problem of factoring integers appears to be relatively diffi-
cult. The Euclidean algorithm (Algorithm 2.104) is an efficient algorithm for computing
the greatest common divisor of two integers that does not require the factorization of the
integers. It is based on the following simple fact.

2.103 Fact If º and » are positive integers with ºp�|» , then í�¥b�9Þßº�®�»�à ¾ í�¥b�9Þß»�®�º��T�.��»¦à .
2.104 Algorithm Euclidean algorithm for computing the greatest common divisor of two integers

INPUT: two non-negative integers º and » with º�"|» .
OUTPUT: the greatest common divisor of º and » .

1. While »�½¾ ³ do the following:

1.1 Set s#µ�º��T�.��» , º3µ�» , »@µ�s .

2. Return( º ).

2.105 Fact Algorithm 2.104 has a running time of = Þ�ÞßêÃíR÷(à â à bit operations.

2.106 Example (Euclidean algorithm) The following are the division steps of Algorithm 2.104
for computing í�¥@�9ÞßÄ`Ê`Ó�Ä�®�Â`Ä`Å�Ê`à ¾ Â`Ê :

Ä�Ê`Ó`Ä ¾ ² ö Â`Ä�Å`Ê õ ²�Ä`³�Ó
Â�Ä`Å`Ê ¾ ± ö ²`Ä�³`Ó õ Ó�Ä`Ó
²�Ä`³`Ó ¾ ± ö Ó`Ä�Ó õ ²`²�Ä
Ó`Ä`Ó ¾ Å ö ²`²�Ä õ È`Ó
²`²`Ä ¾ ² ö È`Ó õ Â`Ê
È`Ó ¾ ± ö Â`Ê õ ³�¬ N
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The Euclidean algorithm can be extended so that it not only yields the greatest common
divisor ¤ of two integers º and » , but also integers Î and O satisfying ºUÎ õ »�O ¾ ¤ .

2.107 Algorithm Extended Euclidean algorithm

INPUT: two non-negative integers º and » with º�"|» .
OUTPUT: ¤ ¾ í�¥b��Þßº�®�»¦à and integers Î , O satisfying ºUÎ õ »�O ¾ ¤ .

1. If » ¾ ³ then set ¤.µ�º , Î�µ~² , O�µ~³ , and return( ¤ ,Î ,O ).
2. Set ÎQâ.µ~² , ÎHábµ~³ , O`â.µ7³ , O�á@µ~² .
3. While »z�x³ do the following:

3.1 �¶µIÐ�ºML�»�Ñ , s#µ�º�°o�V» , ÎªµwÎ â °o�µÎ á , O·µ¸O â °m�GO á .
3.2 º.µ�» , »@µ�s , Î�â3µ�ÎHá , Î�ácµwÎ , O`â.µ!OQá , and OQá@µ�O .

4. Set ¤.µ�º , Î�µ�ÎQâ , O·µ!O`â , and return( ¤ ,Î ,O ).

2.108 Fact Algorithm 2.107 has a running time of = Þ�ÞßêÃíR÷(à â à bit operations.

2.109 Example (extended Euclidean algorithm) Table 2.2 shows the steps of Algorithm 2.107
with inputs º ¾ Ä`Ê�Ó`Ä and » ¾ Â`Ä�Å`Ê . Hence í�¥b�9Þ�Ä�Ê`Ó�Ä�®�Â�Ä`Å�Ê`à ¾ Â`Ê and Þ�Ä�Ê`Ó`Ä�à�ÞßÂ`±`à õÞ�Â`Ä�Å`Ê�à�Þµ°�Ä�Å`à ¾ Â�Ê . N

¹ º » ¼ ½ ¾ »�¿ »·À ¼M¿ ¼(À
Á Á Á Á Â3ÃcÄDÂ ÅDÂ3ÆcÃ Ç È È ÇÇ ÇÉÂ3ÈbÄ Ç ÁzÇ ÅÉÂ3ÆbÃ ÇDÂ3ÈcÄ È Ç Ç ÁzÇÊ ÄÉÂ.Ä Á Ê Å ÇÉÂ3ÈbÄ ÄÉÂ3Ä Ç Á Ê ÁzÇ ÅÊ ÇcÇDÂ Æ ÁzË ÄÉÂ.Ä ÇcÇÉÂ Á Ê Æ Å ÁzËÆ ËbÄ Á Ê Ë ÅcÃ ÇcÇDÂ ËcÄ Æ Á Ê Ë ÁzË ÅbÃÇ ÅbÃ Å Ê Á�Â.Æ ËbÄ ÅcÃ Á Ê Ë Å Ê ÅbÃ Á�Â.ÆÊ È ÁzÌbÇ Ç Ê Ã ÅbÃ È Å Ê ÁzÌcÇ Á�Â.Æ Ç Ê Ã

Table 2.2: Extended Euclidean algorithm (Algorithm 2.107) with inputs ½£Í Â3ÃbÄÉÂ , ¾ Í ÅÉÂ3ÆbÃ .
Efficient algorithms for gcd and extended gcd computations are further studied in

§
14.4.

2.4.3 The integers modulo
 

Let ÷ be a positive integer.

2.110 Definition If º and » are integers, then º is said to be congruent to » modulo ÷ , writtenº�Îx»FÞÉ�T�.�^÷(à , if ÷ divides Þßºf°�»¦à . The integer ÷ is called the modulus of the congruence.

2.111 Example (i) ±`Ä�ÎDÆ�Þh�T�M��Å�à since ±�Ä�°7Æ ¾ Â ö Å .
(ii) °�²`²�Îx²`È�ÞÉ�T�.�eÈ�à since °�²`²�°7²�È ¾ °�Ä ö È . N

2.112 Fact (properties of congruences) For all º , º á , » , » á , Y&¼wª , the following are true.

(i) º�Î|»hÞh�T�M��÷(à if and only if º and » leave the same remainder when divided by ÷ .
(ii) (reflexivity) º£Îxº�Þh�£�.�^÷(à .

(iii) (symmetry) If ºpÎ|»FÞÉ�T�.��÷(à then »zÎ|º�ÞÉ�T�.��÷(à .
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(iv) (transitivity) If º£ÎD»ZÞÉ�T�.�^÷(à and » ÎvYZÞh�£�.�^÷(à , then ºpÎvYFÞÉ�T�.�^÷(à .
(v) If ºdÎ º á ÞÉ�T�.��÷(à and »]Î » á Þh�T�M�^÷(à , then º õ »ÏÎ º á.õ » á ÞÉ�T�.�^÷(à andº�» ÎDº á » á Þh�£�.��÷(à .

The equivalence class of an integer º is the set of all integers congruent to º modulo÷ . From properties (ii), (iii), and (iv) above, it can be seen that for a fixed ÷ the relation of
congruence modulo ÷ partitions ª into equivalence classes. Now, if º ¾ �µ÷ õ s , where³%Ï<s�{�÷ , then º�Î<s�ÞÉ�T�.�^÷(à . Hence each integer º is congruent modulo ÷ to a unique
integer between ³ and ÷^°�² , called the least residue of º modulo ÷ . Thus º and s are in the
same equivalence class, and so s may simply be used to represent this equivalence class.

2.113 Definition The integers modulo ÷ , denoted ª ò , is the set of (equivalence classes of) in-
tegers «­³�®�²�®�±K®�¬U¬�¬Q®�÷w°7²�´ . Addition, subtraction, and multiplication in ª ò are performed
modulo ÷ .

2.114 Example ªfâGJ ¾ «­³�®�²�®�±K®�¬U¬�¬Q®�±`Ä�´ . In ªfâGJ , ²�Â õ ²�Ó ¾ Ä , since ²`Â õ ²`Ó ¾ ±�Æ0ÎçÄÞÉ�T�.��±`Å�à . Similarly, ²`Â ö ²�Ó ¾ Ê in ªfâGJ . N
2.115 Definition Let º{¼xª ò . The multiplicative inverse of º modulo ÷ is an integer ÎD¼-ª òsuch that º�Î]Î-²�ÞÉ�T�.�^÷(à . If such an Î exists, then it is unique, and º is said to be invert-

ible, or a unit; the inverse of º is denoted by º * á .
2.116 Definition Let º�®�»?¼�ª ò . Division of º by » modulo ÷ is the product of º and » * á modulo÷ , and is only defined if » is invertible modulo ÷ .

2.117 Fact Let º�¼wª ò . Then º is invertible if and only if í�¥@�9Þµº�®�÷(à ¾ ² .
2.118 Example The invertible elements in ª�Ð are ² , ± , Ä , Å , È , and Ê . For example, Ä * á ¾ È

because Ä ö È�ÎD²�ÞÉ�T�.�eÆ�à . N
The following is a generalization of Fact 2.117.

2.119 Fact Let ¤ ¾ í�¥b�9Þßº�®1÷(à . The congruence equation ºUÎvÎ »ZÞÉ�T�.�^÷(à has a solution Î if
and only if ¤ divides » , in which case there are exactly ¤ solutions between ³ and ÷7°-² ;
these solutions are all congruent modulo ÷	L�¤ .

2.120 Fact (Chinese remainder theorem, CRT) If the integers ÷ á ®�÷ â ®�¬U¬�¬f®1÷ & are pairwise rela-
tively prime, then the system of simultaneous congruences

Î Î º á ÞÉ�T�.��÷ á à
Î Î º â ÞÉ�T�.��÷ â à

...

Î Î º & ÞÉ�T�.�^÷ & à
has a unique solution modulo ÷ ¾ ÷Oá�÷fâ ö�öUö ÷ & .

2.121 Algorithm (Gauss’s algorithm) The solution Î to the simultaneous congruences in the
Chinese remainder theorem (Fact 2.120) may be computed as Î ¾ &óÍô á º óÉÑ.óhÒ{ó �T�M��÷ ,
where Ñ.ó ¾ ÷	L�÷ ó and Ò{ó ¾ Ñ * áó �T�.��÷ ó . These computations can be performed in= Þ�Þ�êìíR÷(à â à bit operations.
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Another efficient practical algorithm for solving simultaneous congruences in the Chinese
remainder theorem is presented in

§
14.5.

2.122 Example The pair of congruences Î$Î�Â�ÞÉ�T�.��È`à , Î<Î�È�Þh�T�M��²�Â`à has a unique solu-
tion Î«ÎxÅ�Æ�Þh�£�.��Æ`²�à . N

2.123 Fact If í�¥@��Þ�÷ á ®1÷ â à ¾ ² , then the pair of congruences ÎÏÎ|º�ÞÉ�T�.�^÷ á à , ÎÏÎxº7ÞÉ�T�.��÷ â à
has a unique solution Î«Î|º�Þh�£�.�^÷ á ÷ â à .

2.124 Definition The multiplicative group of ª ò is ª�Óò ¾ «­º�¼ ª ò ¹~í�¥b��Þßº�®�÷(à ¾ ²K´`¬ In
particular, if ÷ is a prime, then ª Óò ¾ «­º^¹�²	ÏDº^Ï�÷{°~²K´ .

2.125 Definition The order of ªzÓò is defined to be the number of elements in ª�Óò , namely ¹�ªzÓò ¹ .
It follows from the definition of the Euler phi function (Definition 2.100) that ¹�ª�Óò ¹ ¾³�Þ�÷(à . Note also that if º�¼|ª Óò and »�¼|ª Óò , then º ö »h¼|ª Óò , and so ª Óò is closed under

multiplication.

2.126 Fact Let ÷<"-± be an integer.

(i) (Euler’s theorem) If º�¼wª Óò , then º�Ô ) ò + Îx²�ÞÉ�T�.�^÷(à .
(ii) If ÷ is a product of distinct primes, and if sQÎ û Þh�T�M�!³QÞù÷(àßà , then ºÖÕ�Î|º � ÞÉ�T�.�^÷(à

for all integers º . In other words, when working modulo such an ÷ , exponents can
be reduced modulo ³QÞ�÷(à .

A special case of Euler’s theorem is Fermat’s (little) theorem.

2.127 Fact Let ý be a prime.

(i) (Fermat’s theorem) If í�¥@��Þßº�®1ý�à ¾ ² , then º a * á ÎD²�Þh�£�.�^ý�à .
(ii) If snÎ û ÞÉ�T�.�^ýF°D²�à , then º�Õ«Î º � ÞÉ�T�.�^ý�à for all integers º . In other words,

when working modulo a prime ý , exponents can be reduced modulo ý�°7² .
(iii) In particular, º a Î|º�ÞÉ�T�.�^ý�à for all integers º .

2.128 Definition Let º�¼{ª Óò . The order of º , denoted � � �9ÞßºKà , is the least positive integer � such
that º : Îx²�ÞÉ�T�.�^÷(à .

2.129 Fact If the order of º�¼�ª Óò is � , and º � Î¡²�Þh�T�M�^÷(à , then � divides û . In particular,�U¹i³QÞù÷(à .
2.130 Example Let ÷ ¾ ±`² . Then ª ÓâVá ¾ «­²�®�±�®�ÄK®�ÅK®�Ê�®�²`³K®�²`²K®�²�Â`®�²�Ó`®�²�È`®�²�Æ`®�±�³�´ . Note that³�Þß±`²�à ¾ ³QÞ�È�àh³QÞ�Â�à ¾ ²�± ¾ ¹�ª Óâ�á ¹ . The orders of elements in ª Óâ�á are listed in Table 2.3. N

º�¼wª�ÓâVá ² ± Ä Å Ê ²`³ ²�² ²�Â ²`Ó ²`È ²`Æ ±�³
order of º ² Ó Â Ó ± Ó Ó ± Â Ó Ó ±

Table 2.3: Orders of elements in ´/× ¿hÀ .
2.131 Definition Let ��¼Iª Óò . If the order of � is ³QÞù÷(à , then � is said to be a generator or a

primitive element of ª�Óò . If ª�Óò has a generator, then ª�Óò is said to be cyclic.
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2.132 Fact (properties of generators of ª Óò )

(i) ªzÓò has a generator if and only if ÷ ¾ ±�®�Ä�®�ý & or ±�ý & , where ý is an odd prime and%�"x² . In particular, if ý is a prime, then ª�Óa has a generator.
(ii) If � is a generator of ª Óò , then ª Óò ¾ «¶� ó �T�.��÷�¹�³�Ï$V&Ïd³QÞù÷(àR°~²K´ .(iii) Suppose that � is a generator of ªzÓò . Then » ¾ � ó �T�M�s÷ is also a generator of ª�Óòif and only if í�¥@��Þ�V¦®b³QÞù÷(à�à ¾ ² . It follows that if ª�Óò is cyclic, then the number of

generators is ³�ÞG³QÞù÷(à�à .
(iv) �)¼�ª Óò is a generator of ª Óò if and only if � Ô ) ò + � a ½Î ²�Þh�T�M�^÷(à for each prime

divisor ý of ³QÞù÷(à .
2.133 Example ª ÓâVá is not cyclic since it does not contain an element of order ³QÞ�±�²`à ¾ ²`± (see

Table 2.3); note that ±`² does not satisfy the condition of Fact 2.132(i). On the other hand,ª�ÓâhJ is cyclic, and has a generator � ¾ ± . N
2.134 Definition Let º^¼{ª Óò . º is said to be a quadratic residue modulo ÷ , or a square modulo÷ , if there exists an Î�¼{ª Óò such that Î â Îxº�Þh�T�M�^÷(à . If no such Î exists, then º is called

a quadratic non-residue modulo ÷ . The set of all quadratic residues modulo ÷ is denoted
by Ø ò and the set of all quadratic non-residues is denoted by Ø ò .

Note that by definition ³e½¼wªzÓò , whence ³F½¼ÏØ ò and ³e½¼ Ø ò .

2.135 Fact Let ý be an odd prime and let � be a generator of ª Óa . Then º�¼|ª Óa is a quadratic
residue modulo ý if and only if º ¾ � ó �£�.��ý , where V is an even integer. It follows that¹iØ a ¹ ¾ Þùýh°�²`àhL`± and ¹ Ø a ¹ ¾ Þùý�°�²`àGL­± ; that is, half of the elements in ª�Óa are quadratic
residues and the other half are quadratic non-residues.

2.136 Example � ¾ Ó is a generator of ª Óá�ã . The powers of � are listed in the following table.

V ³ ² ± Â Ä Å Ó È Ê Æ ²`³ ²`²
� ó �T�.��²`Â ² Ó ²`³ Ê Æ ± ²`± È Â Å Ä ²`²

Hence Ø�á�ã ¾ «­²�®�Â�®�ÄK®�ÆK®�²`³K®�²�±K´ and Ø áùã ¾ «V±K®�ÅK®�Ó�®�È�®�Ê�®�²�²K´ . N
2.137 Fact Let ÷ be a product of two distinct odd primes ý and � , ÷ ¾ ýI� . Then º�¼|ª Óò is a

quadratic residue modulo ÷ if and only if º-¼ÙØ a and º-¼ÙØ � . It follows that ¹jØ ò ¹ ¾¹iØ a ¹ ö ¹iØ � ¹ ¾ Þ�ý�°7²�à�ÞG�&°~²`àGL­Ä and ¹ Ø ò ¹ ¾ Â�Þùý�°~²`à�ÞG�?°7²�àhL­Ä .
2.138 Example Let ÷ ¾ ±�² . Then Ø âVá ¾ «V²�®�Ä�®�²`ÓK´ and Ø â�á ¾ «V±K®�ÅK®�Ê�®�²`³K®�²`²K®�²�Â�®�²�È`®�²�Æ`®�±�³�´ .N
2.139 Definition Let º�¼nØ ò . If Î-¼�ª Óò satisfies Î â Î�º7ÞÉ�T�.��÷(à , then Î is called a square

root of º modulo ÷ .

2.140 Fact (number of square roots)

(i) If ý is an odd prime and º�¼ÏØ a , then º has exactly two square roots modulo ý .
(ii) More generally, let ÷ ¾ ý � Cá ý � Eâ ö�öUö ý � S& where the ý ó are distinct odd primes and Ç ó "² . If º^¼«Ø ò , then º has precisely ± & distinct square roots modulo ÷ .

2.141 Example The square roots of ²`± modulo Â`È are È and Â`³ . The square roots of ²�±`² moduloÂ`²`Å are ²`² , È`Ä , ²`³�² , ²`Å�² , ²�Ó`Ä , ±�²`Ä , ±`Ä`² , and Â`³�Ä . N
c
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2.4.4 Algorithms in Ú
Let ÷ be a positive integer. As before, the elements of ª ò will be represented by the integers«V³�®�²�®�±�®�¬U¬�¬Q®�÷w°7²�´ .

Observe that if º�®�»?¼wª ò , then

Þßº õ »�à��£�.�s÷ ¾ º õ »�® if º õ »z{�÷A®º õ »H°�÷A® if º õ » "�÷A¬
Hence modular addition (and subtraction) can be performed without the need of a long di-
vision. Modular multiplication of º and » may be accomplished by simply multiplying º
and » as integers, and then taking the remainder of the result after division by ÷ . Inverses
in ª ò can be computed using the extended Euclidean algorithm as next described.

2.142 Algorithm Computing multiplicative inverses in ´�Û
INPUT: º^¼�ª ò .
OUTPUT: º * á �T�.��÷ , provided that it exists.

1. Use the extended Euclidean algorithm (Algorithm 2.107) to find integers Î and O such
that ºUÎ õ ÷�O ¾ ¤ , where ¤ ¾ í�¥b��Þßº�®�÷(à .

2. If ¤��x² , then º * á �£�.��÷ does not exist. Otherwise, return(Î ).

Modular exponentiation can be performed efficiently with the repeated square-and-
multiply algorithm (Algorithm 2.143), which is crucial for many cryptographic protocols.
One version of this algorithm is based on the following observation. Let the binary repre-
sentation of % be

:óÍô.-	% ó ± ó , where each % ó ¼�«­³�®�²K´ . Then

º & ¾
:
óÍô.- º

& 
 â 
 ¾ Þµº âbÜ à & Ü Þµº â C à & C ö�öUö Þµº âÖÝ à & Ý ¬

2.143 Algorithm Repeated square-and-multiply algorithm for exponentiation in ´�Û
INPUT: º^¼�ª ò , and integer ³�Ïv%£{~÷ whose binary representation is % ¾ :ó�ô.-2% ó ± ó .
OUTPUT: º & �£�.��÷ .

1. Set »bµ7² . If % ¾ ³ then return( » ).
2. Set Ö¢µ~º .
3. If % - ¾ ² then set »@µ�º .
4. For V from 1 to � do the following:

4.1 Set ÖÞµ�Ö â �£�.��÷ .
4.2 If % ó ¾ ² then set »@µ~Ö ö »��T�M��÷ .

5. Return( » ).

2.144 Example (modular exponentiation)Table 2.4 shows the steps involved in the computation
of Å JGÐhß �T�.��²`±`Â�Ä ¾ ²`³�²`Â . N

The number of bit operations for the basic operations in ª ò is summarized in Table 2.5.
Efficient algorithms for performing modular multiplication and exponentiation are further
examined in

§
14.3 and

§
14.6.
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à È Ç Ê Å Â Æ Ä Ë Ã Ìácâ È È Ç È Ç È Ç È È Çã Æ Ê Æ Ä Ê Æ ÄbÃcÇ ÇcÈcÇbÇ ÅbÄcÌ Â Ê Ç ËcËbÌ ÌDÂ3Ë Ì Ê Æ¾ Ç Ç Ä Ê Æ Ä Ê Æ ÄbË ÄcË ÇcÈbÆcÌ ÇbÈcÆbÌ ÇbÈcÆcÌ ÇcÈbÇcÅ
Table 2.4: Computation of Æbä�å�æ·ç�è�é�Ç Ê ÅDÂ .

Operation Bit complexity

Modular addition Þµº õ »¦à��T�.��÷ = Þ�êìíf÷(à
Modular subtraction Þµº�°�»¦à��T�.��÷ = Þ�êìíf÷(à
Modular multiplication Þßº ö »¦à��T�.�.÷ = ÞßÞ�êìíf÷(à â à
Modular inversion º * á �T�.�.÷ = ÞßÞ�êìíf÷(à â à
Modular exponentiation º & �T�.��÷ , %T{7÷ = ÞßÞ�êìíf÷(à ã à

Table 2.5: Bit complexity of basic operations in ´ Û .

2.4.5 The Legendre and Jacobi symbols

The Legendre symbol is a useful tool for keeping track of whether or not an integer º is a
quadratic residue modulo a prime ý .

2.145 Definition Let ý be an odd prime and º an integer. The Legendre symbol · a is defined
to be

º
ý ¾ ³K® if ý¯¹Éº�®²K® if º^¼«Ø a ®

°�²�® if º^¼ Ø a ¬
2.146 Fact (properties of Legendre symbol) Let ý be an odd prime and º�®�»�¼{ª . Then the Leg-

endre symbol has the following properties:

(i) · a Î5º ) a * á + �ßâ ÞÉ�T�.�^ý�à . In particular, áa ¾ ² and * áa ¾ Þµ°�²�à ) a * á + �ßâ . Hence

°�²	¼ÏØ a if ýêÎx²�ÞÉ�T�.��Ä`à , and °�²	¼ Ø a if ýêÎ-Â�ÞÉ�T�.��Ä`à .
(ii) · ¸a ¾ · a ¸a . Hence if º^¼{ª Óa , then · Ea ¾ ² .

(iii) If º£ÎD»ZÞÉ�T�.��ý�à , then · a ¾ ¸a .

(iv) â a ¾ ÞÛ°�²`à ) a E * á + � ² . Hence â a ¾ ² if ýêÎD² or È�ÞÉ�T�.��Ê`à , and â a ¾ °�² if ýëÎDÂ
or Å�ÞÉ�T�.��Ê`à .

(v) (law of quadratic reciprocity) If � is an odd prime distinct from ý , then

ý � ¾ �
ý Þµ°�²`à ) a * á + ) � * á + � H ¬

In other words,
a � ¾ �a unless both ý and � are congruent to Â modulo Ä , in which

case
a � ¾ ° �a .

The Jacobi symbol is a generalization of the Legendre symbol to integers ÷ which are
odd but not necessarily prime.

c
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2.147 Definition Let ÷<"DÂ be odd with prime factorization ÷ ¾ ý � Cá ý � Eâ ö�öUö ý � S& . Then the Jacobi
symbol ·ò is defined to be

º
÷ ¾ º

ý�á
� C º
ýKâ

� E ö�öUö º
ý &

� S ¬
Observe that if ÷ is prime, then the Jacobi symbol is just the Legendre symbol.

2.148 Fact (properties of Jacobi symbol) Let 78"xÂ , ÷<"DÂ be odd integers, and º�®�»&¼{ª . Then
the Jacobi symbol has the following properties:

(i) ·ò ¾ ³�®�²K® or °7² . Moreover, ·ò ¾ ³ if and only if í�¥b��Þßº�®�÷(à�½¾ ² .
(ii) · ¸ò ¾ ·ò

¸
ò . Hence if º�¼{ª Óò , then · Eò ¾ ² .

(iii) ·� ò ¾ ·� ·ò .

(iv) If º£ÎD»ZÞÉ�T�.��÷(à , then ·ò ¾ ¸
ò .

(v) á
ò ¾ ² .

(vi) * áò ¾ Þµ°�²�à ) ò/* á + �ßâ . Hence * áò ¾ ² if ÷mÎ|²�ÞÉ�T�.�eÄ�à , and * áò ¾ °�² if ÷mÎ|ÂÞh�T�M��Ä�à .
(vii) â

ò ¾ Þµ°�²`à ) ò E * á + � ² . Hence â
ò ¾ ² if ÷ìÎ¤² or È�ÞÉ�T�.��Ê`à , and â

ò ¾ °�² if÷<ÎxÂ or Å�Þh�£�.��Ê�à .
(viii) �

ò ¾ ò� Þµ°�²`à ) � * á + ) ò#* á + � H . In other words, � ò ¾ ò� unless both 7 and ÷ are
congruent to Â modulo Ä , in which case �

ò ¾ ° ò� .

By properties of the Jacobi symbol it follows that if ÷ is odd and º ¾ ± � º�á where º�á
is odd, then

º
÷ ¾ ± �

÷
º�á
÷ ¾ ±

÷
� ÷]�T�.��º�á

º á Þµ°�²�à ) · CÉ* á + ) ò#* á + � H ¬
This observation yields the following recursive algorithm for computing ·ò , which does
not require the prime factorization of ÷ .

2.149 Algorithm Jacobi symbol (and Legendre symbol) computation

JACOBI( º ,÷ )
INPUT: an odd integer ÷]"DÂ , and an integer º , ³%Ï|ºp{7÷ .
OUTPUT: the Jacobi symbol ·ò (and hence the Legendre symbol when ÷ is prime).

1. If º ¾ ³ then return(0).
2. If º ¾ ² then return(1).
3. Write º ¾ ± � º á , where º á is odd.
4. If Ç is even then set û µ7² . Otherwise set û µ7² if ÷<ÎD² or È�ÞÉ�T�.�eÊ�à , or set û µ�°�²

if ÷<Î-Â or Å�ÞÉ�T�.�eÊ�à .
5. If ÷<ÎxÂ�ÞÉ�T�.��Ä`à and º á Î-Â�ÞÉ�T�.��Ä`à then set û µ¡° û .
6. Set ÷Oábµ�÷]�T�.��º�á .
7. If º á ¾ ² then return( û ); otherwise return( û ö JACOBI(÷ á , º á )).

2.150 Fact Algorithm 2.149 has a running time of = Þ�ÞßêÃíR÷(à â à bit operations.
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2.151 Remark (finding quadratic non-residues modulo a prime ý ) Let ý denote an odd prime.
Even though it is known that half of the elements in ª Óa are quadratic non-residues moduloý (see Fact 2.135), there is no deterministic polynomial-time algorithm known for finding
one. A randomized algorithm for finding a quadratic non-residue is to simply select random
integers º{¼�ª Óa until one is found satisfying · a ¾ °�² . The expected number iterations
before a non-residue is found is ± , and hence the procedure takes expected polynomial-time.

2.152 Example (Jacobi symbol computation) For º ¾ ²�Å`Ê and ÷ ¾ ±�Â`Å , Algorithm 2.149 com-
putes the Jacobi symbol á�J ²âµãGJ as follows:

²�Å`Ê
±�Â`Å ¾ ±

±`Â�Å
È�Æ
±�Â`Å ¾ Þµ°�²`à ±`Â�ÅÈ`Æ Þµ°�²�àGí ²�î âµã H � H ¾ È`È

È`Æ
¾ È`Æ

È`È Þµ°�²�à í ß î í ² � H ¾ ±
È`È ¾ °�²�¬ N

Unlike the Legendre symbol, the Jacobi symbol ·ò does not reveal whether or not º
is a quadratic residue modulo ÷ . It is indeed true that if ºh¼mØ ò , then ·ò ¾ ² . However,
·ò ¾ ² does not imply that º^¼ÏØ ò .

2.153 Example (quadratic residues and non-residues) Table 2.6 lists the elements in ª ÓâVá and
their Jacobi symbols. Recall from Example 2.138 that Ø â�á ¾ «­²�®�Ä�®�²�ÓK´ . Observe thatJâVá ¾ ² but ÅF½¼ÏØ â�á . N

½Tï ´/× ¿hÀ Ç Ê Â Æ Ã ÇcÈ ÇcÇ ÇbÅ ÇbÄ ÇbË ÇcÌ Ê È½ ¿ ç¢è�é�ð Ç Â ÇbÄ Â Ç ÇcÄ ÇcÄ Ç Â ÇbÄ Â Çñ ò Ç ÁzÇ Ç ÁzÇ ÁzÇ Ç ÁzÇ Ç Ç ÁzÇ Ç ÁzÇñ ó Ç Ç Ç ÁzÇ Ç ÁzÇ Ç ÁzÇ Ç ÁzÇ ÁzÇ ÁzÇñ¿hÀ Ç ÁzÇ Ç Ç ÁzÇ ÁzÇ ÁzÇ ÁzÇ Ç Ç ÁzÇ Ç
Table 2.6: Jacobi symbols of elements in ´ × ¿hÀ .

2.154 Definition Let ÷d"�Â be an odd integer, and let ô ò ¾ «­º�¼�ª Óò ¹ ·ò ¾ ²�´ . The set of

pseudosquares modulo ÷ , denoted Ø ò , is defined to be the set ô ò °oØ ò .

2.155 Fact Let ÷ ¾ ýI� be a product of two distinct odd primes. Then ¹jØ ò ¹ ¾ ¹ Ø ò ¹ ¾ Þùýe°²`à�ÞG�(°�²`àhL`Ä ; that is, half of the elements in ô ò are quadratic residues and the other half are
pseudosquares.

2.4.6 Blum integers

2.156 Definition A Blum integer is a composite integer of the form ÷ ¾ ýI� , where ý and � are
distinct primes each congruent to Â modulo Ä .

2.157 Fact Let ÷ ¾ ýõ� be a Blum integer, and let º7¼[Ø ò . Then º has precisely four square
roots modulo ÷ , exactly one of which is also in Ø ò .

2.158 Definition Let ÷ be a Blum integer and let º�¼ÏØ ò . The unique square root of º in Ø ò is
called the principal square root of º modulo ÷ .

c
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2.159 Example (Blum integer) For the Blum integer ÷ ¾ ±�² , ô ò ¾ «V²K®�Ä�®�Å�®�²`Ó�®�²`ÈK®�±`³�´ andØ ò ¾ «VÅK®�²`ÈK®�±�³K´ . The four square roots of º ¾ Ä are ± , Å , ²`Ó , and ²�Æ , of which only ²`Ó is
also in Ø?â�á . Thus ²`Ó is the principal square root of Ä modulo ±`² . N

2.160 Fact If ÷ ¾ ýI� is a Blum integer, then the function ä�å�Ø ò °fæ�Ø ò defined by ä�ÞùÎ�à ¾Î â �T�.��÷ is a permutation. The inverse function of ä is:

ä * á ÞùÎ�à ¾ Î )�) a * á + ) � * á + , H + � ² �T�.�s÷A¬

2.5 Abstract algebra

This section provides an overview of basic algebraic objects and their properties, for refer-
ence in the remainder of this handbook. Several of the definitions in

§
2.5.1 and

§
2.5.2 were

presented earlier in
§
2.4.3 in the more concrete setting of the algebraic structure ª Óò .

2.161 Definition A binary operation ö on a set ú is a mapping from ú~Ý�ú to ú . That is, ö is a
rule which assigns to each ordered pair of elements from ú an element of ú .

2.5.1 Groups

2.162 Definition A group Þh÷%®cöVà consists of a set ÷ with a binary operation ö on ÷ satisfying
the following three axioms.

(i) The group operation is associative. That is, º�ö3Þß»/ö�Y¦à ¾ Þßº�öR»¦à3ö·Y for all º�®�»�®bYN¼Ï÷ .
(ii) There is an element ²�¼<÷ , called the identity element, such that º�ö&² ¾ ²Þö?º ¾ º

for all º^¼¬÷ .
(iii) For each ºF¼ø÷ there exists an element º * á ¼ø÷ , called the inverse of º , such thatº�ö&º * á ¾ º * á ö&º ¾ ² .

A group ÷ is abelian (or commutative) if, furthermore,

(iv) º�ö&» ¾ »�ö&º for all º�®�»&¼«÷ .

Note that multiplicative group notation has been used for the group operation. If the
group operation is addition, then the group is said to be an additive group, the identity ele-
ment is denoted by ³ , and the inverse of º is denoted °sº .

Henceforth, unless otherwise stated, the symbol ö will be omitted and the group oper-
ation will simply be denoted by juxtaposition.

2.163 Definition A group ÷ is finite if ¹i÷	¹ is finite. The number of elements in a finite group is
called its order.

2.164 Example The set of integers ª with the operation of addition forms a group. The identity
element is ³ and the inverse of an integer º is the integer °sº . N

2.165 Example The set ª ò , with the operation of addition modulo ÷ , forms a group of order÷ . The set ª ò with the operation of multiplication modulo ÷ is not a group, since not all
elements have multiplicative inverses. However, the set ª�Óò (see Definition 2.124) is a group
of order ³QÞù÷(à under the operation of multiplication modulo ÷ , with identity element ² . N
Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



76 Ch. 2 Mathematical Background

2.166 Definition A non-empty subset ` of a group ÷ is a subgroup of ÷ if ` is itself a group
with respect to the operation of ÷ . If ` is a subgroup of ÷ and ` ½¾ ÷ , then ` is called a
proper subgroup of ÷ .

2.167 Definition A group ÷ is cyclic if there is an element ��¼¬÷ such that for each »?¼«÷ there
is an integer V with » ¾ � ó . Such an element � is called a generator of ÷ .

2.168 Fact If ÷ is a group and º^¼¬÷ , then the set of all powers of º forms a cyclic subgroup of÷ , called the subgroup generated by º , and denoted by ù�º.ú .
2.169 Definition Let ÷ be a group and º^¼¬÷ . The order of º is defined to be the least positive

integer � such that º : ¾ ² , provided that such an integer exists. If such a � does not exist,
then the order of º is defined to be 5 .

2.170 Fact Let ÷ be a group, and let º�¼]÷ be an element of finite order � . Then ¹jù�º.úß¹ , the size
of the subgroup generated by º , is equal to � .

2.171 Fact (Lagrange’s theorem) If ÷ is a finite group and ` is a subgroup of ÷ , then ¹j`{¹ divides¹i÷	¹ . Hence, if º�¼«÷ , the order of º divides ¹i÷	¹ .
2.172 Fact Every subgroup of a cyclic group ÷ is also cyclic. In fact, if ÷ is a cyclic group of

order ÷ , then for each positive divisor ¤ of ÷ , ÷ contains exactly one subgroup of order ¤ .
2.173 Fact Let ÷ be a group.

(i) If the order of º�¼Ï÷ is � , then the order of º & is �@L(í�¥@��Þ���®@%�à .
(ii) If ÷ is a cyclic group of order ÷ and ¤�¹ ÷ , then ÷ has exactly ³�ÞG¤`à elements of order¤ . In particular, ÷ has ³QÞù÷(à generators.

2.174 Example Consider the multiplicative group ª�Óá�Ð ¾ «V²K®�±�®U¬�¬U¬Q®�²`Ê�´ of order ²�Ê . The group
is cyclic (Fact 2.132(i)), and a generator is � ¾ ± . The subgroups of ª Óá�Ð , and their gener-
ators, are listed in Table 2.7. N

Subgroup Generators Orderû ÇÖü Ç Çû ÇÖý�ÇbÃÖü ÇcÃ Êû Çcý�ËÖý�ÇbÇÖü ËÖýGÇbÇ Åû ÇÖý�Ëcý�ÃÖýGÇbÇÖý�Ç Ê ý�ÇcÃcü ÃÖýGÇ Ê Äû ÇÖýþÂ(ý�ÆcýGÄÖý�Ëcý�ÌÖýGÇbÇÖý�ÇbÄÖý�ÇcËcü Â(ý�ÆcýGÄÖý�Ìcý�ÇcÄÖýhÇcË Ìû Çcý Ê ý�Åcý ©Û©Û© ýGÇcÃcü Ê ý�ÅÖýGÇbÈÖý�ÇbÅÖý�ÇÉÂ3ý�ÇcÆ ÇbÃ
Table 2.7: The subgroups of ´/× À å .

2.5.2 Rings

2.175 Definition A ring Þhÿs® õ ®�ÝAà consists of a set ÿ with two binary operations arbitrarily de-
noted õ (addition) and Ý (multiplication) on ÿ , satisfying the following axioms.

(i) Þhÿs® õ à is an abelian group with identity denoted ³ .
c
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(ii) The operation Ý is associative. That is, º�ÝhÞß»NÝêY¦à ¾ Þßº�ÝZ»¦à(ÝQY for all º�®�»�®@Y?¼¬ÿ .
(iii) There is a multiplicative identity denoted ² , with ²e½¾ ³ , such that ²"Ý�º ¾ º�Ý^² ¾ º

for all º^¼¬ÿ .
(iv) The operation Ý is distributive over õ . That is, º�ÝZÞµ» õ Y¦à ¾ Þßº�ÝF»¦à õ Þµº�ÝêY¦à andÞß» õ Y¦àNÝwº ¾ Þß»"Ýwº�à õ ÞGY.Ý�ºKà for all º�®�»�®bYN¼Ïÿ .

The ring is a commutative ring if ºhÝ�» ¾ »�Ýwº for all º�®�»?¼«ÿ .

2.176 Example The set of integers ª with the usual operations of addition and multiplication is
a commutative ring. N

2.177 Example The set ª ò with addition and multiplication performed modulo ÷ is a commu-
tative ring. N

2.178 Definition An element º of a ring ÿ is called a unit or an invertible element if there is an
element »?¼«ÿ such that º�Ý�» ¾ ² .

2.179 Fact The set of units in a ring ÿ forms a group under multiplication, called the group of
units of ÿ .

2.180 Example The group of units of the ring ª ò is ªzÓò (see Definition 2.124). N

2.5.3 Fields

2.181 Definition A field is a commutative ring in which all non-zero elements have multiplica-
tive inverses.

2.182 Definition The characteristic of a field is ³ if

��� ¯ ® ���² õ ² õ�öUö�ö�õ ² is never equal to ³ for any7�"�² . Otherwise, the characteristic of the field is the least positive integer 7 such that�óÍô á ² equals ³ .
2.183 Example The set of integers under the usual operations of addition and multiplication is

not a field, since the only non-zero integers with multiplicative inverses are ² and °�² . How-
ever, the rational numbers ¶ , the real numbers ¿ , and the complex numbers

�
form fields

of characteristic ³ under the usual operations. N
2.184 Fact ª ò is a field (under the usual operations of addition and multiplication modulo ÷ ) if

and only if ÷ is a prime number. If ÷ is prime, then ª ò has characteristic ÷ .

2.185 Fact If the characteristic 7 of a field is not ³ , then 7 is a prime number.

2.186 Definition A subset � of a field þ is a subfield of þ if � is itself a field with respect to
the operations of þ . If this is the case, þ is said to be an extension field of � .
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2.5.4 Polynomial rings

2.187 Definition If ÿ is a commutative ring, then a polynomial in the indeterminate Î over the
ring ÿ is an expression of the form

ä�Þ�ÎRà ¾ º ò Î ò õ�öUö�öVõ º�â�Î â õ º�á�Î õ º -
where each º ó ¼ ÿ and ÷�" ³ . The element º ó is called the coefficient of Î ó in ä�ÞùÎ�à .
The largest integer 7 for which º�� ½¾ ³ is called the degree of ä�ÞùÎRà , denoted �<î�íOä�Þ�ÎRà ;º � is called the leading coefficient of ä�ÞùÎRà . If ä�ÞùÎRà ¾ º - (a constant polynomial) andº - ½¾ ³ , then ä�ÞùÎ�à has degree ³ . If all the coefficients of ä�ÞùÎ�à are ³ , then ä�Þ�ÎRà is called the
zero polynomial and its degree, for mathematical convenience, is defined to be °�5 . The
polynomial ä�Þ�ÎRà is said to be monic if its leading coefficient is equal to ² .

2.188 Definition If ÿ is a commutative ring, the polynomial ring ÿ�Ë Î9Ì is the ring formed by the
set of all polynomials in the indeterminate Î having coefficients from ÿ . The two opera-
tions are the standard polynomial addition and multiplication, with coefficient arithmetic
performed in the ring ÿ .

2.189 Example (polynomial ring) Let ä�Þ�ÎRà ¾ Î ã õ Î õ ² and t�ÞùÎ�à ¾ Î â õ Î be elements of
the polynomial ring ª3âQË Î9Ì . Working in ªfâQË Î9Ì ,

ä�Þ�ÎRà õ tQÞ�ÎRà ¾ Î ã õ Î â õ ²
and

ä�ÞùÎ�à ö t�ÞùÎ�à ¾ Î J õ Î H õ Î ã õ Î�¬ N
For the remainder of this section, � will denote an arbitrary field. The polynomial ring

�hË Î<Ì has many properties in common with the integers (more precisely, �hË Î9Ì and ª are both
Euclidean domains, however, this generalization will not be pursued here). These similar-
ities are investigated further.

2.190 Definition Let ä�ÞùÎRàN¼��hË Î9Ì be a polynomial of degree at least ² . Then ä�Þ�ÎRà is said to be
irreducible over � if it cannot be written as the product of two polynomials in �hË Î<Ì , each
of positive degree.

2.191 Definition (division algorithm for polynomials) If t�ÞùÎRàµ®@}�ÞùÎ�à�¼��hË Î9Ì , with }�ÞùÎRà~½¾ ³ ,
then ordinary polynomial long division of tQÞ�ÎRà by }�ÞùÎ�à yields polynomials ��ÞùÎ�à and s�ÞùÎ�àN¼
�hË Î<Ì such that

tQÞ�ÎRà ¾ ��ÞùÎ�àh}�ÞùÎRà õ s�Þ�ÎRàµ® where �9îUí�s�ÞùÎ�à2{d�9î�í	}�ÞùÎ�àµ¬
Moreover, ��Þ�ÎRà and s�Þ�ÎRà are unique. The polynomial ��ÞùÎRà is called the quotient, whiles�Þ�ÎRà is called the remainder. The remainder of the division is sometimes denoted t�ÞùÎRà��T�.�}�ÞùÎ�à , and the quotient is sometimes denoted tQÞ�ÎRà©�(  ¡ë}<Þ�ÎRà (cf. Definition 2.82).

2.192 Example (polynomial division) Consider the polynomials t�ÞùÎ�à ¾ Î ß õ Î J õ Î ã õ Î â õ Î õ ²
and }<Þ�ÎRà ¾ Î H õ Î ã õ ² in ª â Ë Î9Ì . Polynomial long division of tQÞ�ÎRà by }<Þ�ÎRà yields

tQÞ�ÎRà ¾ Î â }<Þ�ÎRà õ Þ�Î ã õ Î õ ²`àß¬
Hence t�ÞùÎ�à��£�.��}�ÞùÎRà ¾ Î ã õ Î õ ² and tQÞ�ÎRà©�(  ¡ë}<Þ�ÎRà ¾ Î â . N
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2.193 Definition If tQÞ�ÎRàµ®@}�ÞùÎRà"¼	�hË Î<Ì then }<Þ�ÎRà divides tQÞ�ÎRà , written }�ÞùÎ�àµ¹ tQÞ�ÎRà , if t�ÞùÎRà��T�.�}�ÞùÎ�à ¾ ³ .
Let ä�Þ�ÎRà be a fixed polynomial in �hË Î<Ì . As with the integers (Definition 2.110), one

can define congruences of polynomials in �hË Î9Ì based on division by ä�ÞùÎ�à .
2.194 Definition If t�ÞùÎRàµ®@}�ÞùÎ�à.¼	�hË Î9Ì , then tQÞ�ÎRà is said to be congruent to }�ÞùÎ�à modulo ä�ÞùÎ�à

if ä�ÞùÎ�à divides t�ÞùÎ�àR°o}<Þ�ÎRà . This is denoted by tQÞ�ÎRà2Îd}<Þ�ÎRà�ÞÉ�T�.�wä�ÞùÎ�à�à .
2.195 Fact (properties of congruences) For all tQÞ�ÎRàß®b}<Þ�ÎRàµ®�t á ÞùÎRàµ®@} á Þ�ÎRàµ® û ÞùÎ�àF¼
�hË Î9Ì , the fol-

lowing are true.

(i) t�ÞùÎRà!Î8}�ÞùÎRà�Þh�T�M��ä�Þ�ÎRà�à if and only if tQÞ�ÎRà and }<Þ�ÎRà leave the same remainder
upon division by ä�ÞùÎ�à .

(ii) (reflexivity) t�ÞùÎ�à	Î$t�ÞùÎ�à^Þh�T�M�wä�Þ�ÎRàßà .
(iii) (symmetry) If t�ÞùÎ�à	Îv}�ÞùÎ�à�ÞÉ�T�.��ä�Þ�ÎRàßà , then }�ÞùÎ�à2Î]t�ÞùÎ�à�ÞÉ�T�.��ä�Þ�ÎRàßà .
(iv) (transitivity) If t�ÞùÎ�à2Îd}<Þ�ÎRà�ÞÉ�T�.��ä�ÞùÎRàßà and }<Þ�ÎRà2Î û ÞùÎRà�Þh�T�M��ä�Þ�ÎRà�à , thent�ÞùÎRà�Î û ÞùÎ�à�ÞÉ�T�.�wä�ÞùÎRàßà .
(v) If t�ÞùÎ�à�Îot�á�ÞùÎRà�Þh�T�M��ä�Þ�ÎRà�à and }�ÞùÎ�àzÎ4}�á¦Þ�ÎRà�ÞÉ�T�.��ä�ÞùÎ�à�à , then t�ÞùÎRà õ }�ÞùÎ�àzÎt á Þ�ÎRà õ } á Þ�ÎRà�ÞÉ�T�.��ä�ÞùÎ�à�à and tQÞ�ÎRàG}<Þ�ÎRà�Î$t á Þ�ÎRàh} á ÞùÎRà�Þh�T�M��ä�Þ�ÎRà�à .

Let ä�ÞùÎ�à be a fixed polynomial in �hË Î9Ì . The equivalence class of a polynomial tQÞ�ÎRàA¼
�hË Î<Ì is the set of all polynomials in �hË Î9Ì congruent to tQÞ�ÎRà modulo ä�Þ�ÎRà . From properties
(ii), (iii), and (iv) above, it can be seen that the relation of congruence modulo ä�ÞùÎRà par-
titions �hË Î9Ì into equivalence classes. If t�ÞùÎRàe¼��hË Î9Ì , then long division by ä�Þ�ÎRà yields
unique polynomials ��ÞùÎRàµ®�s�ÞùÎ�à&¼��hË Î9Ì such that tQÞ�ÎRà ¾ ��ÞùÎ�àßä�ÞùÎ�à õ s�ÞùÎ�à , where �9îUí�s�ÞùÎ�à{v�9îUíOä�Þ�ÎRà . Hence every polynomial t�ÞùÎRà is congruent modulo ä�ÞùÎ�à to a unique polyno-
mial of degree less than �9îUíAä�ÞùÎ�à . The polynomial s�ÞùÎ�à will be used as representative of
the equivalence class of polynomials containing t�ÞùÎ�à .

2.196 Definition �hË Î9ÌDL­Þµä�ÞùÎ�à�à denotes the set of (equivalence classes of) polynomials in �hË Î<Ì
of degree less than ÷ ¾ �9î�íNä�ÞùÎ�à . Addition and multiplication are performed modulo ä�ÞùÎ�à .

2.197 Fact �hË Î<Ì�L`Þßä�ÞùÎ�à�à is a commutative ring.

2.198 Fact If ä�ÞùÎ�à is irreducible over � , then �hË Î9ÌDL­Þµä�ÞùÎ�à�à is a field.

2.5.5 Vector spaces

2.199 Definition A vector space � over a field � is an abelian group Þ
��® õ à , together with a
multiplication operation ��å��|Ý���°3æ�� (usually denoted by juxtaposition) such that for
all º�®U»N¼�� and �¯®��)¼�� , the following axioms are satisfied.

(i) ºKÞ�� õ ��à ¾ º�� õ º�� .
(ii) Þßº õ »¦à�� ¾ º�� õ »�� .

(iii) Þßº�»¦à�� ¾ º�Þµ»���à .
(iv) ²�� ¾ � .

The elements of � are called vectors, while the elements of � are called scalars. The group
operation õ is called vector addition, while the multiplication operation is called scalar
multiplication.
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2.200 Definition Let � be a vector space over a field � . A subspace of � is an additive subgroup�
of � which is closed under scalar multiplication, i.e., º��e¼ � for all º�¼�� and ��¼ � .

2.201 Fact A subspace of a vector space is also a vector space.

2.202 Definition Let ú ¾ «�� á ®�� â ®U¬�¬�¬¯®�� ò ´ be a finite subset of a vector space � over a field � .

(i) A linear combination of ú is an expression of the form º á � áAõ º â � â.õxö�öUö­õ º ò � ò ,
where each º ó ¼�� .

(ii) The span of ú , denoted ù�ú	ú , is the set of all linear combinations of ú . The span of ú
is a subspace of � .

(iii) If
�

is a subspace of � , then ú is said to span
�

if ù�ú	ú ¾ �
.

(iv) The set ú is linearly dependent over � if there exist scalars º�á�®Uº�â�®�¬U¬�¬¯®Uº ò , not all
zero, such that º�á���á õ º�â��­â õ�öUö�ö�õ º ò � ò ¾ ³ . If no such scalars exist, then ú is
linearly independent over � .

(v) A linearly independent set of vectors that spans � is called a basis for � .

2.203 Fact Let � be a vector space.

(i) If � has a finite spanning set, then it has a basis.
(ii) If � has a basis, then in fact all bases have the same number of elements.

2.204 Definition If a vector space � has a basis, then the number of elements in a basis is called
the dimension of � , denoted �( ¦��� .

2.205 Example If � is any field, then the ÷ -fold Cartesian product � ¾ ��Ý���Ý ö�öUö Ý�� is a
vector space over � of dimension ÷ . The standard basis for � is «`Ç á ®�Ç â ®�¬�¬U¬¯®�Ç ò ´ , whereÇ ó is a vector with a ² in the V �� coordinate and ³ ’s elsewhere. N

2.206 Definition Let þ be an extension field of � . Then þ can be viewed as a vector space
over the subfield � , where vector addition and scalar multiplication are simply the field
operations of addition and multiplication in þ . The dimension of this vector space is called
the degree of þ over � , and denoted by Ë þ�å!�OÌ . If this degree is finite, then þ is called a
finite extension of � .

2.207 Fact Let � , þ , and

�
be fields. If

�
is a finite extension of þ and þ is a finite extension

of � , then

�
is also a finite extension of � and

Ë
�
å!�OÌ ¾ Ë

�
å<þNÌ�Ë þ|å"�OÌ�¬

2.6 Finite fields

2.6.1 Basic properties

2.208 Definition A finite field is a field � which contains a finite number of elements. The order
of � is the number of elements in � .

c
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2.209 Fact (existence and uniqueness of finite fields)

(i) If � is a finite field, then � contains ý � elements for some prime ý and integer 7 "x² .
(ii) For every prime power order ý � , there is a unique (up to isomorphism) finite field of

order ý � . This field is denoted by � a$# , or sometimes by ÷%�sÞùý � à .
Informally speaking, two fields are isomorphic if they are structurally the same, al-

though the representation of their field elements may be different. Note that if ý is a prime
then ª a is a field, and hence every field of order ý is isomorphic to ª a . Unless otherwise
stated, the finite field � a will henceforth be identified with ª a .

2.210 Fact If � � is a finite field of order � ¾ ý � , ý a prime, then the characteristic of � � is ý .
Moreover, � � contains a copy of ª a as a subfield. Hence � � can be viewed as an extension
field of ª a of degree 7 .

2.211 Fact (subfields of a finite field) Let � � be a finite field of order � ¾ ý � . Then every subfield
of � � has order ý ò , for some ÷ that is a positive divisor of 7 . Conversely, if ÷ is a positive
divisor of 7 , then there is exactly one subfield of � � of order ý ò ; an element ºF¼ê� � is in
the subfield � a � if and only if º a � ¾ º .

2.212 Definition The non-zero elements of ��� form a group under multiplication called the mul-
tiplicative group of �ª� , denoted by ��Ó� .

2.213 Fact ��Ó� is a cyclic group of order �&°�² . Hence º � ¾ º for all º^¼���� .
2.214 Definition A generator of the cyclic group � Ó� is called a primitive element or generator

of � � .
2.215 Fact If º�®�»?¼£� � , a finite field of characteristic ý , then

Þßº õ »¦à a : ¾ º a : õ » a : for all ��"-³K¬

2.6.2 The Euclidean algorithm for polynomials

Let ª a be the finite field of order ý . The theory of greatest common divisors and the Eu-
clidean algorithm for integers carries over in a straightforward manner to the polynomial
ring ª a Ë Î9Ì (and more generally to the polynomial ring �hË Î9Ì , where � is any field).

2.216 Definition Let t�ÞùÎRàµ®@}�ÞùÎ�àN¼wª a Ë Î9Ì , where not both are ³ . Then the greatest common divi-
sor of t�ÞùÎ�à and }�ÞùÎ�à , denoted í�¥@�<Þ�t�ÞùÎRàµ®@}�ÞùÎ�à�à , is the monic polynomial of greatest degree
in ª a Ë Î9Ì which divides both tQÞ�ÎRà and }�ÞùÎRà . By definition, í�¥b�9Þ�³K®�³�à ¾ ³ .

2.217 Fact ª a Ë Î9Ì is a unique factorization domain. That is, every non-zero polynomial ä�ÞùÎRà�¼ª a Ë Î9Ì has a factorization

ä�ÞùÎ�à ¾ º�ä á ÞùÎ�à � C ä â Þ�ÎRà � E öUö�ö ä & ÞùÎRà � S ®
where the ä ó Þ�ÎRà are distinct monic irreducible polynomials in ª a Ë Î9Ì , the Ç ó are positive in-
tegers, and º�¼{ª a . Furthermore, the factorization is unique up to rearrangement of factors.

The following is the polynomial version of the Euclidean algorithm (cf. Algorithm 2.104).
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2.218 Algorithm Euclidean algorithm for ´'&$( »*)
INPUT: two polynomials tQÞ�ÎRàß®b}<Þ�ÎRà&¼�ª a Ë Î9Ì .
OUTPUT: the greatest common divisor of tQÞ�ÎRà and }�ÞùÎRà .

1. While }<Þ�ÎRàs½¾ ³ do the following:

1.1 Set s�ÞùÎ�àGµ«t�ÞùÎRà��T�.��}<Þ�ÎRà , tQÞ�ÎRà�µo}�ÞùÎ�à , }�ÞùÎ�àGµ¬s�ÞùÎRà .
2. Return(t�ÞùÎRà ).

2.219 Definition A ª a -operation means either an addition, subtraction, multiplication, inver-
sion, or division in ª a .

2.220 Fact Suppose that �9î�í·tQÞ�ÎRàOÏ$7 and �<î�í2}�ÞùÎ�àOÏ]7 . Then Algorithm 2.218 has a running
time of = Þ�7 â à3ª a -operations, or equivalently, = Þ�7 â Þ�êìífýQà â à bit operations.

As with the case of the integers (cf. Algorithm 2.107), the Euclidean algorithm can be
extended so that it also yields two polynomials û ÞùÎ�à and ��Þ�ÎRà satisfying

û ÞùÎ�à�t�ÞùÎ�à õ ��ÞùÎRàG}<Þ�ÎRà ¾ í�¥b�9Þ�t�ÞùÎ�àß®b}<Þ�ÎRà�àµ¬
2.221 Algorithm Extended Euclidean algorithm for ´'&$( »*)

INPUT: two polynomials tQÞ�ÎRàß®b}<Þ�ÎRà&¼�ª a Ë Î9Ì .
OUTPUT: ¤�ÞùÎ�à ¾ í�¥@�9Þ�tQÞ�ÎRàµ®@}�ÞùÎRàßà and polynomials û ÞùÎ�à , ��Þ�ÎRà7¼�ª a Ë Î<Ì which satisfyû Þ�ÎRà�tQÞ�ÎRà õ ��ÞùÎ�àh}�ÞùÎ�à ¾ ¤�ÞùÎ�à .

1. If }�ÞùÎ�à ¾ ³ then set ¤�ÞùÎ�àGµ¬tQÞ�ÎRà , û ÞùÎ�àGµ�² , ��Þ�ÎRà�µ~³ , and return( ¤`Þ�ÎRà , û ÞùÎRà ,��ÞùÎ�à ).
2. Set û â�ÞùÎRà�µ�² , û á�Þ�ÎRàGµ�³ , �1â�ÞùÎ�àGµ�³ , �Uá¦Þ�ÎRà�µ~² .
3. While }<Þ�ÎRàs½¾ ³ do the following:

3.1 ��ÞùÎRà�µ¬tQÞ�ÎRà©�(  ¡¸}<Þ�ÎRà , s�Þ�ÎRà�µ«tQÞ�ÎRàR°o}<Þ�ÎRàG��ÞùÎRà .
3.2 û Þ�ÎRà�µ û â�ÞùÎRà�°m��Þ�ÎRà û á�ÞùÎ�à , ��Þ�ÎRàGµ¬�1âKÞùÎ�àR°m��Þ�ÎRà��Uá�Þ�ÎRà .
3.3 tQÞ�ÎRàGµø}�ÞùÎ�à , }�ÞùÎRà�µ¬s�Þ�ÎRà .
3.4 û â�ÞùÎ�àGµ û á¦ÞùÎ�à , û á�ÞùÎRà�µ û Þ�ÎRà , �1â`Þ�ÎRàGµ¬�Uá�ÞùÎRà , and �Uá�ÞùÎRà�µ¬��ÞùÎRà .

4. Set ¤�ÞùÎ�àGµ¬t�ÞùÎRà , û ÞùÎ�àGµ û â`ÞùÎ�à , ��Þ�ÎRàGµ¬�1âKÞùÎ�à .
5. Return( ¤�ÞùÎRà , û ÞùÎ�à ,��Þ�ÎRà ).

2.222 Fact (running time of Algorithm 2.221)

(i) The polynomials û Þ�ÎRà and ��Þ�ÎRà given by Algorithm 2.221 have small degree; that is,
they satisfy �<î�í û ÞùÎ�à	{d�9î�í	}�ÞùÎ�à and �9î�í·��ÞùÎRà2{v�9îUí�t�ÞùÎRà .

(ii) Suppose that �<î�í�t�ÞùÎ�àAÏ$7 and �9îUí	}�ÞùÎRàNÏ$7 . Then Algorithm 2.221 has a running
time of = Þ�7 â àRª a -operations, or equivalently, = Þ�7 â Þ�êìífý�à â à bit operations.

2.223 Example (extended Euclidean algorithm for polynomials) The following are the steps of
Algorithm 2.221 with inputs tQÞ�ÎRà ¾ Î á - õ Î Ð õ Î/² õ Î ß õ Î J õ Î H õ ² and }<Þ�ÎRà ¾Î Ð õ Î ß õ Î J õ Î ã õ Î â õ ² in ª â Ë Î<Ì .
Initializationû â`Þ�ÎRàGµ�² , û á�ÞùÎ�àGµ�³ , �1âKÞùÎ�àGµ�³ , �Uá�ÞùÎRà�µ�² .
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Iteration 1��ÞùÎ�àGµ{Î õ ² , s�ÞùÎ�àGµ�Î ² õ Î í õ Î ß õ Î â õ Î ,û ÞùÎ�àGµ�² , ��Þ�ÎRàGµ{Î õ ² ,t�ÞùÎRà�µ{Î Ð õ Î ß õ Î J õ Î ã õ Î â õ ² , }�ÞùÎ�àGµwÎ/² õ Î í õ Î ß õ Î â õ ² ,û â Þ�ÎRàGµ�³ , û á ÞùÎ�àGµ�² , � â ÞùÎ�àGµ�² , � á ÞùÎRà�µ{Î õ ² .
Iteration 2��ÞùÎ�àGµ{Î õ ² , s�ÞùÎ�àGµ�Î J õ Î â õ Î õ ² ,û ÞùÎ�àGµ{Î õ ² , ��ÞùÎ�àGµ{Î â ,t�ÞùÎRà�µ{Î/² õ Î í õ Î ß õ Î â õ ² , }<Þ�ÎRà�µwÎ J õ Î â õ Î õ ² ,û â Þ�ÎRàGµ�² , û á ÞùÎ�àGµ{Î õ ² , � â ÞùÎRà�µ{Î õ ² , � á Þ�ÎRàGµ{Î â .
Iteration 3��ÞùÎ�àGµ{Î ã õ Î â õ Î õ ² , s�ÞùÎRà�µ{Î ã õ Î õ ² ,û ÞùÎ�àGµ{Î H , ��ÞùÎ�àGµ{Î J õ Î H õ Î ã õ Î â õ Î õ ² ,t�ÞùÎRà�µ{Î J õ Î â õ Î õ ² , }�ÞùÎ�àGµ{Î ã õ Î õ ² ,û â Þ�ÎRàGµ�Î õ ² , û á ÞùÎRà�µ�Î H , � â Þ�ÎRàGµ{Î â , � á ÞùÎRà�µ{Î J õ Î H õ Î ã õ Î â õ Î õ ² .
Iteration 4��ÞùÎ�àGµ{Î â õ ² , s�Þ�ÎRà�µ�³ ,û ÞùÎ�àGµ{Î ß õ Î H õ Î õ ² , ��Þ�ÎRà�µwÎ í õ Î ß õ Î â õ Î õ ² ,t�ÞùÎRà�µ{Î ã õ Î õ ² , }�ÞùÎRà�µ�³ ,û â Þ�ÎRàGµ�Î H , û á ÞùÎRà�µ{Î ß õ Î H õ Î õ ² ,�1âKÞùÎRà�µ{Î J õ Î H õ Î ã õ Î â õ Î õ ² , �Uá¦ÞùÎ�àGµ{Î í õ Î ß õ Î â õ Î õ ² .
Hence í�¥@��Þ�t�ÞùÎ�àß®b}<Þ�ÎRà�à ¾ Î ã õ Î õ ² and

ÞùÎ H à�tQÞ�ÎRà õ ÞùÎ J õ Î H õ Î ã õ Î â õ Î õ ²�àh}�ÞùÎRà ¾ Î ã õ Î õ ²�¬ N

2.6.3 Arithmetic of polynomials

A commonly used representation for the elements of a finite field ��� , where � ¾ ý � and ý
is a prime, is a polynomial basis representation. If 7 ¾ ² , then ��� is just ª a and arithmetic
is performed modulo ý . Since these operations have already been studied in Section 2.4.2,
it is henceforth assumed that 7 "x± . The representation is based on Fact 2.198.

2.224 Fact Let ä�Þ�ÎRà�¼�ª a Ë Î9Ì be an irreducible polynomial of degree 7 . Then ª a Ë Î<Ì�L`Þßä�ÞùÎ�à�à is
a finite field of order ý � . Addition and multiplication of polynomials is performed moduloä�ÞùÎRà .

The following fact assures that all finite fields can be represented in this manner.

2.225 Fact For each 7 "�² , there exists a monic irreducible polynomial of degree 7 over ª a .
Hence, every finite field has a polynomial basis representation.

An efficient algorithm for finding irreducible polynomials over finite fields is presented
in
§
4.5.1. Tables 4.6 and 4.7 list some irreducible polynomials over the finite field ªfâ .
Henceforth, the elements of the finite field � a # will be represented by polynomials inª a Ë Î9Ì of degree {07 . If t�ÞùÎ�àß®@}�ÞùÎ�à.¼¸� a # , then addition is the usual addition of polyno-

mials in ª a Ë Î9Ì . The product tQÞ�ÎRàG}<Þ�ÎRà can be formed by first multiplying tQÞ�ÎRà and }<Þ�ÎRà as
polynomials by the ordinary method, and then taking the remainder after polynomial divi-
sion by ä�ÞùÎ�à . Multiplicative inverses in � a$# can be computed by using the extended Eu-
clidean algorithm for the polynomial ring ª a Ë Î<Ì .
Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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2.226 Algorithm Computing multiplicative inverses in +,& #
INPUT: a non-zero polynomial tQÞ�ÎRàO¼T� a$# . (The elements of the field � a�# are represented
as ª a Ë Î9ÌDL­Þµä�ÞùÎRàßà , where ä�ÞùÎRàA¼{ª a Ë Î9Ì is an irreducible polynomial of degree 7 over ª a .)
OUTPUT: t�ÞùÎRà * á ¼T� a # .

1. Use the extended Euclidean algorithm for polynomials (Algorithm 2.221) to find two
polynomials û Þ�ÎRà and ��ÞùÎ�àO¼�ª a Ë Î9Ì such that û ÞùÎRà�tQÞ�ÎRà õ ��Þ�ÎRàßä�Þ�ÎRà ¾ ² .

2. Return( û ÞùÎ�à ).
Exponentiation in � a # can be done efficiently by the repeated square-and-multiply al-

gorithm (cf. Algorithm 2.143).

2.227 Algorithm Repeated square-and-multiply algorithm for exponentiation in + & #
INPUT: tQÞ�ÎRà�¼[� a # and an integer ³|Ï %\{�ý � °�² whose binary representation is% ¾ :ó�ô.-�% ó ± ó . (The field � a # is represented as ª a Ë Î<Ì�L`Þßä�ÞùÎ�à�à , where ä�ÞùÎ�àN¼{ª a Ë Î9Ì is an
irreducible polynomial of degree 7 over ª a .)
OUTPUT: t�ÞùÎRà & �£�.�hä�Þ�ÎRà .

1. Set û Þ�ÎRàGµ�² . If % ¾ ³ then return( û Þ�ÎRà ).
2. Set ÷sÞ�ÎRà�µ�t�ÞùÎ�à .
3. If % - ¾ ² then set û ÞùÎ�àGµ¬t�ÞùÎRà .
4. For V from ² to � do the following:

4.1 Set ÷sÞùÎ�àGµø÷sÞùÎ�à â �£�.��ä�ÞùÎ�à .
4.2 If % ó ¾ ² then set û ÞùÎ�àGµø÷sÞùÎ�à ö û ÞùÎ�à��T�.��ä�Þ�ÎRà .

5. Return( û ÞùÎ�à ).
The number of ª a -operations for the basic operations in � a # is summarized in Ta-

ble 2.8.

Operation Number of ª a -operations

Addition t�ÞùÎ�à õ }�ÞùÎ�à = Þ�7�à
Subtraction t�ÞùÎ�àR°m}�ÞùÎ�à = Þ�7�à
Multiplication t�ÞùÎ�à ö }�ÞùÎ�à = Þ�7 â à
Inversion t�ÞùÎ�à * á = Þ�7 â à
Exponentiation t�ÞùÎRà & , %T{~ý � = Þ�Þ�êìíRý�à�7 ã à

Table 2.8: Complexity of basic operations in + & # .

In some applications (cf.
§
4.5.3), it may be preferable to use a primitive polynomial to define

a finite field.

2.228 Definition An irreducible polynomial ä�ÞùÎ�à�¼�ª a Ë Î9Ì of degree 7 is called a primitive
polynomial if Î is a generator of � Óa # , the multiplicative group of all the non-zero elements
in � a # ¾ ª a Ë Î9ÌDL­Þµä�ÞùÎ�à�à .

2.229 Fact The irreducible polynomial ä�ÞùÎ�à	¼�ª a Ë Î<Ì of degree 7 is a primitive polynomial if
and only if ä�ÞùÎRà divides Î & °7² for % ¾ ý � °~² and for no smaller positive integer % .

c
¨
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2.230 Fact For each 7 "x² , there exists a monic primitive polynomial of degree 7 over ª a . In
fact, there are precisely ³�Þ�ý � °7²�àhL�7 such polynomials.

2.231 Example (the finite field � â�- of order ²`Ó ) It can be verified (Algorithm 4.69) that the poly-
nomial ä�ÞùÎ�à ¾ Î H õ Î õ ² is irreducible over ªfâ . Hence the finite field � â - can be repre-
sented as the set of all polynomials over ��â of degree less than Ä . That is,

� â - ¾ «`º�ã�Î ã õ º�â�Î â õ º�á�Î õ º - ¹�º ó ¼�«­³�®�²K´`´`¬
For convenience, the polynomial º�ã�Î ã õ º�â�Î â õ º�áÒÎ õ º - is represented by the vectorÞßº�ã�º�â�º�á�º - à of length Ä , and

� â - ¾ «­Þßº�ã�º�â�º�á�º - àA¹�º ó ¼�«V³�®�²K´�´­¬
The following are some examples of field arithmetic.

(i) Field elements are simply added componentwise: for example, Þß²`³�²`²`à õ Þ�²`³�³`²�à ¾Þ�³�³`²�³`à .
(ii) To multiply the field elements Þ�²�²`³`²�à and Þß²`³`³�²`à , multiply them as polynomials and

then take the remainder when this product is divided by ä�ÞùÎRà :
ÞùÎ ã õ Î â õ ²`à ö ÞùÎ ã õ ²�à ¾ Î ß õ Î J õ Î â õ ²

Î Î ã õ Î â õ Î õ ² Þh�£�.�wä�Þ�ÎRà�àµ¬
Hence Þ�²`²�³`²�à ö Þ�²�³`³`²�à ¾ Þ�²�²`²�²`à .

(iii) The multiplicative identity of � â$- is Þ�³�³`³`²�à .
(iv) The inverse of Þß²`³`²�²`à is Þ�³`²�³`²�à . To verify this, observe that

ÞùÎ ã õ Î õ ²`à ö ÞùÎ â õ ²�à ¾ Î J õ Î â õ Î õ ²
Î ² Þh�£�.��ä�ÞùÎ�à�àµ®

whence Þ�²�³`²�²`à ö Þ�³�²`³�²`à ¾ Þß³`³�³`²`à .
ä�ÞùÎRà is a primitive polynomial, or, equivalently, the field element Î ¾ Þß³`³`²�³`à is a genera-
tor of ��Óâ - . This may be checked by verifying that all the non-zero elements in � â - can be
obtained as a powers of Î . The computations are summarized in Table 2.9. N

A list of some primitive polynomials over finite fields of characteristic two is given in
Table 4.8.

2.7 Notes and further references
§
2.1

A classic introduction to probability theory is the first volume of the book by Feller [392].
The material on the birthday problem (

§
2.1.5) is summarized from Nishimura and Sibuya

[931]. See also Girault, Cohen, and Campana [460]. The material on random mappings
(
§
2.1.6) is summarized from the excellent article by Flajolet and Odlyzko [413].§

2.2
The concept of entropy was introduced in the seminal paper of Shannon [1120]. These ideas
were then applied to develop a mathematical theory of secrecy systems by Shannon [1121].
Hellman [548] extended the Shannon theory approach to cryptography, and this work was
further generalized by Beauchemin and Brassard [80]. For an introduction to information
theory see the books by Welsh [1235] and Goldie and Pinch [464]. For more complete treat-
ments, consult Blahut [144] and McEliece [829].
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à » â ç¢è�é »'.0/Q»1/ Ç vector notationÈ Ç 2�ÈcÈbÈcÇ$3Ç » 2�ÈcÈbÇcÈ$3Ê » ¿ 2�ÈcÇbÈcÈ$3Å » ò 2�ÇcÈbÈcÈ$3Â »4/ Ç 2�ÈcÈbÇcÇ$3Æ » ¿ /Q» 2�ÈcÇbÇcÈ$3Ä » ò /�» ¿ 2�ÇcÇbÈcÈ$3Ë » ò /Q»1/ Ç 2�ÇcÈbÇcÇ$3Ã » ¿ / Ç 2�ÈcÇbÈcÇ$3Ì » ò /Q» 2�ÇcÈbÇcÈ$3ÇcÈ » ¿ /Q»1/ Ç 2�ÈcÇbÇcÇ$3ÇcÇ » ò /�» ¿ /Q» 2�ÇcÇbÇcÈ$3Ç Ê » ò /�» ¿ /�»1/ Ç 2�ÇcÇbÇcÇ$3ÇcÅ » ò /Q» ¿ / Ç 2�ÇcÇbÈcÇ$3ÇÉÂ » ò / Ç 2�ÇcÈbÈcÇ$3
Table 2.9: The powers of » modulo 5 2 » 3 Í!» . /�»1/ Ç .

§
2.3

Among the many introductory-level books on algorithms are those of Cormen, Leiserson,
and Rivest [282], Rawlins [1030], and Sedgewick [1105]. A recent book on complexity
theory is Papadimitriou [963]. Example 2.58 is from Graham, Knuth, and Patashnik [520,
p.441]. For an extensive list of NP-complete problems, see Garey and Johnson [441].§

2.4
Two introductory-level books in number theory are Giblin [449] and Rosen [1069]. Good
number theory books at a more advanced level include Koblitz [697], Hardy and Wright
[540], Ireland and Rosen [572], and Niven and Zuckerman [932]. The most comprehensive
works on the design and analysis of algorithms, including number theoretic algorithms, are
the first two volumes of Knuth [691, 692]. Two more recent books exclusively devoted to
this subject are Bach and Shallit [70] and Cohen [263]. Facts 2.96 and 2.102 are due to
Rosser and Schoenfeld [1070]. Shallit [1108] describes and analyzes three algorithms for
computing the Jacobi symbol.§

2.5
Among standard references in abstract algebra are the books by Herstein [556] and Hunger-
ford [565].§

2.6
An excellent introduction to finite fields is provided in McEliece [830]. An encyclopedic
treatment of the theory and applications of finite fields is given by Lidl and Niederreitter
[764]. Two books which discuss various methods of representing the elements of a finite
field are those of Jungnickel [646] and Menezes et al. [841].
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