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7.1 Introduction and overview

Symmetric-key block ciphersare the most prominent and important el ementsin many cryp-
tographic systems. Individually, they provide confidentiality. As afundamental building
block, their versatility allows construction of pseudorandom number generators, stream ci-
phers, MACs, and hash functions. They may furthermore serve as a central component in
message authentication techniques, dataintegrity mechanisms, entity authentication proto-
cols, and (symmetric-key) digital signatureschemes. Thischapter examinessymmetric-key
block ciphers, including both general concepts and details of specific algorithms. Public-
key block ciphers are discussed in Chapter 8.

No block cipher isideally suited for all applications, even one offering ahigh level of
security. Thisisaresult of inevitabletradeoffsrequired in practical applications, including
those arising from, for example, speed requirements and memory limitations (e.g., code
size, data size, cache memory), constraints imposed by implementation platforms (e.g.,
hardware, software, chipcards), and differing tolerancesof applicationsto propertiesof var-
iousmodesof operation. Inaddition, efficiency must typically betraded off against security.
Thusit is beneficial to have a number of candidate ciphers from which to draw.

Of the many block ciphers currently available, focusin this chapter is given to a sub-
set of high profile and/or well-studied algorithms. While not guaranteed to be more secure
than other published candidate ciphers (indeed, this status changes as new attacks become
known), emphasis is given to those of greatest practical interest. Among these, DES is
paramount; FEAL has received both serious commercial backing and alarge amount of in-
dependent cryptographic analysis; and IDEA (originally proposed asaDES replacement) is
widely known and highly regarded. Other recently proposed ciphers of both high promise
and high profile (in part due to the reputation of their designers) are SAFER and RC5. Ad-
ditional ciphers are presented in less detail.
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Chapter outline

Basic background on block ciphers and algorithm-independent concepts are presented in
§7.2, including modes of operation, multiple encryption, and exhaustive search techniques.
Classical ciphersand cryptanalysisthereof areaddressedin §7.3, including historical details
on cipher machines. Modern block ciphers covered in chronological order are DES (§7.4),
FEAL (§7.5), and IDEA (§7.6), followed by SAFER, RC5, and other ciphersin §7.7, col-
lectively illustrating awide range of modern block cipher design approaches. Further notes,
including details on additional ciphers(e.g., Lucifer) and referencesfor the chapter, may be
foundin §7.8.

7.2 Background and general concepts

Introductory material on block ciphersis followed by subsections addressing modes of op-
eration, and discussion of exhaustive key search attacks and multiple encryption.

7.2.1 Introduction to block ciphers

7.1

Block ciphers can be either symmetric-key or public-key. The main focus of this chapter is
symmetric-key block ciphers; public-key encryption is addressed in Chapter 8.

(i) Block cipher definitions

A block cipher isafunction (see §1.3.1) which maps n-bit plaintext blocksto n-bit cipher-
text blocks; n is called the blocklength. It may be viewed as a simple substitution cipher
with large character size. The function is parameterized by a k-bit key K,! taking values
from a subset K (the key space) of the set of all k-bit vectors V.. It is generally assumed
that thekey ischosen at random. Use of plaintext and ciphertext blocks of equal sizeavoids
data expansion.

To alow unique decryption, the encryption function must be one-to-one (i.e,, invert-
ible). For n-bit plaintext and ciphertext blocks and a fixed key, the encryption function is
a bijection, defining a permutation on n-bit vectors. Each key potentially defines a differ-
ent bijection. The number of keysis|K|, and the effective key sizeislg |K|; thisequalsthe
key length if al k-bit vectors are valid keys (I = V). If keys are equiprobable and each
defines a different bijection, the entropy of the key spaceisalso lg|X|.

Definition An n-bit block cipher is a function E : V,, x K — V,,, such that for each
key K € K, E(P, K) is an invertible mapping (the encryption function for K) from V,,
to V,,, written Ex (P). The inverse mapping is the decryption function, denoted Dx (C).
C = Ek(P) denotes that ciphertext C results from encrypting plaintext P under K.

Whereas block ciphers generally process plaintext in relatively large blocks (e.g., n >
64), stream cipherstypically process smaller units (see Note 6.1); the distinction, however,
is not definitive (see Remark 7.25). For plaintext messages exceeding one block in length,
various modes of operation for block ciphers are used (see §7.2.2).

The most general block cipher implements every possible substitution, as per Defini-
tion 7.2. To represent the key of such an n-bit (true) random block cipher would require

LThis use of symbols k and K may differ from other chapters.
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7.2

7.3

7.4

lg(2™!) ~ (n — 1.44)2™ bits, or roughly 2™ times the number of bits in a message block.
This excessive hitsize makes (true) random ciphers impractical. Nonetheless, it is an ac-
cepted design principle that the encryption function corresponding to a randomly selected
key should appear to be arandomly chosen invertible function.

Definition A (true) randomcipher isann-hit block cipher implementingall 2™! bijections
on 2" elements. Each of the 2™! keys specifies one such permutation.

A block cipher whose block size n istoo small may be vulnerable to attacks based on
statistical analysis. Onesuch attack involves simplefrequency analysisof ciphertext blocks
(see Note 7.74). Thismay be thwarted by appropriate use of modes of operation (e.g., Al-
gorithm 7.13). Other such attacks are considered in Note 7.8. However, choosing too large
avalue for the blocksize n may create difficulties as the complexity of implementation of
many ciphers grows rapidly with block size. In practice, consequently, for larger n, easily-
implementabl e functions are necessary which appear to be random (without knowledge of
the key).

An encryption function per Definition 7.1 is a deterministic mapping. Each pairing of
plaintext block P and key K mapsto auniqueciphertext block. Incontrast, inarandomized
encryption technique (Definition 7.3; see also Remark 8.22), each (P, K) pair isassociated
withaset C(p k) of eligible ciphertext blocks; each time P is encrypted under K, an out-
put R from arandom source non-deterministically selects one of these eligible blocks. To
ensureinvertibility, for every fixed key K, the subsets C' p, ) over al plaintexts P must be
digoint. Since the encryption function is essentially one-to-many involving an additional
parameter R (cf. homophonic substitution, §7.3.2), the requirement for invertibility implies
data expansion, which is a disadvantage of randomized encryption and is often unaccept-
able.

Definition A randomized encryption mapping is a function E from a plaintext space V,,
to a ciphertext space V,,,, m > n, drawing elements from a space of random numbers R
=V;. Eisdefinedby E : V,, x K xR — V,,,, suchthat foreachkey K ¢ Kand R € R,
E(P,K,R), dso written EE(P), maps P € V,, to V,,,; and an inverse (corresponding
decryption) function exists, mapping V,,, x K — V.

(if) Practical security and complexity of attacks

The objective of ablock cipher is to provide confidentiality. The corresponding objective
of an adversary isto recover plaintext from ciphertext. A block cipher istotally brokenif a
key can befound, and partially broken if an adversary isableto recover part of the plaintext
(but not the key) from ciphertext.

Note (standard assumptions) To evaluate block cipher security, it is customary to always
assume that an adversary (i) has accessto all datatransmitted over the ciphertext channel;
and (ii) (Kerckhoffs assumption) knows all details of the encryption function except the
secret key (which security consequently rests entirely upon).

Under the assumptions of Note 7.4, attacks are classified based on what information
a cryptanalyst has access to in addition to intercepted ciphertext (cf. §1.13.1). The most
prominent classes of attack for symmetric-key ciphers are (for afixed key):
1. ciphertext-only —no additional information is available.
2. known-plaintext — plaintext-ciphertext pairs are available.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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7.5

7.6

7.7

7.8

3. chosen-plaintext — ciphertexts are avail able corresponding to plaintexts of the adver-
sary’schoice. A variation isan adaptive chosen-plaintext attack, where the choice of
plaintexts may depend on previous plaintext-ciphertext pairs.

Additional classes of attacks are given in Note 7.6; while somewhat more hypothetical,
these are nonethel ess of interest for the purposes of analysis and comparison of ciphers.

Remark (chosen-plaintext principle) It is customary to use ciphers resistant to chosen-
plaintext attack even when mounting such an attack isnot feasible. A cipher secure against
chosen-plaintext attack is secure against known-plaintext and ciphertext-only attacks.

Note (chosen-ciphertext and related-key attacks) A chosen-ciphertext attack operates un-
der the following model: an adversary is allowed access to plaintext-ciphertext pairs for
some number of ciphertexts of his choice, and thereafter attempts to use this information
to recover the key (or plaintext corresponding to some new ciphertext). In arelated-key at-
tack, an adversary is assumed to have access to the encryption of plaintexts under both an
unknown key and (unknown) keys chosen to have or known to have certain relationships
with this key.

With few exceptions (e.g., the one-time pad), the best available measure of security for
practical ciphersisthe complexity of the best (currently) known attack. Various aspects of
such complexity may be distinguished as follows:

1. data complexity — expected number of input data units required (e.g., ciphertext).

2. storage complexity — expected number of storage units required.

3. processing complexity —expected number of operationsrequired to processinput data
and/or fill storage with data (at least one time unit per storage unit).

Theattack complexity isthe dominant of these (e.g., for linear cryptanalysison DES, essen-
tially the datacomplexity). When parallelizationis possible, processing complexity may be
divided across many processors (but not reduced), reducing attack time.

Given a data complexity of 27, an attack is always possible; this many different n-
bit blocks completely characterize the encryption function for a fixed k-bit key. Similarly,
given aprocessing complexity of 2, an attack is possible by exhaustivekey search (§7.2.3).
Thus as a minimum, the effective key size should be sufficiently large to preclude exhaus-
tive key search, and the block size sufficiently large to preclude exhaustive data analysis.
A block cipher is considered computationally secure if these conditions hold and no known
attack has both data and processing compl exity significantly less than, respectively, 2™ and
2%, However, see Note 7.8 for additional concerns related to block size.

Remark (passivevs. active complexity) For symmetric-key block ciphers, data complex-
ity is beyond the control of the adversary, and is passive complexity (plaintext-ciphertext
pairs cannot be generated by the adversary itself). Processing complexity is active com-
plexity which typically benefits from increased resources (e.g., parallelization).

Note (attacks based on small block size) Security concerns which arise if the block size
n istoo small include the feasibility of text dictionary attacks and matching ciphertext at-
tacks. A text dictionary may be assembled if plaintext-ciphertext pairs become known for
afixed key. Themore pairsavailable, the larger the dictionary and the greater the chance of
locating a random ciphertext block therein. A complete dictionary results if 2™ plaintext-
ciphertext pairs become known, and fewer suffice if plaintexts contain redundancy and a
non-chaining mode of encryption (such asECB) isused. Moreover, if about 2/2 such pairs

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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7.9

7.10

are known, and about 2"/2 ciphertexts are subsequently created, then by the birthday para-
dox one expects to locate a ciphertext in the dictionary. Relatedly, from ciphertext blocks
alone, as the number of available blocks approaches 2™/2, one expects to find matching ci-
phertext blocks. These may reveal partial information about the corresponding plaintexts,
depending on the mode of operation of the block cipher, and the amount of redundancy in
the plaintext.

Computational and unconditional security are discussed in §1.13.3. Unconditional se-
curity is both unnecessary in many applications and impractical; for example, it requires
as many bits of secret key as plaintext, and cannot be provided by a block cipher used to
encrypt more than one block (due to Fact 7.9, since identical ciphertext implies matching
plaintext). Nonetheless, results on unconditional security provide insight for the design of
practical ciphers, and has motivated many of the principles of cryptographic practice cur-
rently in use (see Remark 7.10).

Fact A cipher provides perfect secrecy (unconditional security) if the ciphertext and plain-
text blocks are statistically independent.

Remark (theoretically-motivated principles) The unconditional security of the one-time-
pad motivates both additive stream ciphers (Chapter 6) and the frequent changing of cryp-
tographic keys (§13.3.1). Theoretical results regarding the effect of redundancy on unicity
distance (Fact 7.71) motivate the principle that for plaintext confidentiality, the plaintext
data should be as random as possible, e.g., via data-compression prior to encryption, use of
random-bit fields in message blocks, or randomized encryption (Definition 7.3). The latter
two techniques may, however, increase the data length or allow covert channels.

(iii) Criteria for evaluating block ciphers and modes of operation
Many criteriamay be used for evaluating block ciphersin practice, including:

1. estimated security level. Confidencein the (historical) security of acipher growsif it
has been subjected to and withstood expert cryptanalysis over a substantial time pe-
riod, e.g., severa years or more; such ciphers are certainly considered more secure
than those which have not. Thismay include the performance of selected cipher com-
ponents relative to various design criteriawhich have been proposed or gained favor
in recent years. The amount of ciphertext required to mount practical attacks often
vastly exceeds a cipher’s unicity distance (Definition 7.69), which provides a theo-
retical estimate of the amount of ciphertext required to recover the unique encryption
key.

2. keysize. Theeffectivebitlength of thekey, or more specifically, the entropy of thekey
space, defines an upper bound on the security of acipher (by considering exhaustive
search). Longer keys typically impose additional costs (e.g., generation, transmis-
sion, storage, difficulty to remember passwords).

3. throughput. Throughput is related to the complexity of the cryptographic mapping
(see below), and the degree to which the mapping is tailored to a particular imple-
mentation medium or platform.

4. block size. Block size impacts both security (larger is desirable) and complexity
(larger is more costly to implement). Block size may also affect performance, for
example, if padding is required.

5. complexity of cryptographic mapping. Algorithmic complexity affects the imple-
mentation costs both in terms of development and fixed resources (hardware gate
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count or software code/datasize), aswell asreal-time performancefor fixed resources
(throughput). Some ciphersspecifically favor hardware or softwareimplementations.

6. data expansion. Itis generally desirable, and often mandatory, that encryption does
not increase the size of plaintext data. Homophonic substitution and randomized en-
cryption techniques result in data expansion.

7. error propagation. Decryption of ciphertext containing bit errors may result in vari-
ous effects on the recovered plaintext, including propagation of errorsto subsequent
plaintext blocks. Different error characteristics are acceptable in various applica-
tions. Block size (above) typically affects error propagation.

7.2.2 Modes of operation

7.11

7.12

A block cipher encrypts plaintext in fixed-size n-bit blocks (often n = 64). For messages
exceeding n bits, the ssimplest approach is to partition the message into n-bit blocks and
encrypt each separately. This electronic-codebook (ECB) mode has disadvantages in most
applications, motivating other methods of employing block ciphers (modes of operation)
on larger messages. The four most common modes are ECB, CBC, CFB, and OFB. These
are summarized in Figure 7.1 and discussed bel ow.

In what follows, Fx denotes the encryption function of the block cipher E parame-
terized by key K, while El}l denotes decryption (cf. Definition 7.1). A plaintext message
r = x1...2; iISassumed to consist of n-bit blocks for ECB and CBC modes (see Algo-
rithm 9.58 regarding padding), and r-bit blocks for CFB and OFB modes for appropriate
fixedr < n.

(i) ECB mode

Theelectronic codebook (ECB) mode of operationisgivenin Algorithm 7.11 andillustrated
in Figure 7.1(a).

Algorithm ECB mode of operation

INPUT: k-bit key K; n-bit plaintext blocks x4, . .. , z;.

SUMMARY: produce ciphertext blocks cy, . . . , ¢;; decrypt to recover plaintext.
1. Encryption: for 1 < j <t, ¢; « Ex(z;).
2. Decryption: for 1 < j < t, x; + Eg'(c;).

Properties of the ECB mode of operation:

1. Identical plaintext blocks (under the same key) result inidentical ciphertext.

2. Chaining dependencies. blocks are enciphered independently of other blocks. Re-
ordering ciphertext blocks resultsin correspondingly re-ordered plaintext blocks.

3. Error propagation: oneor more hit errorsin asingle ciphertext block affect decipher-
ment of that block only. For typical ciphers E, decryption of such ablock isthen ran-
dom (with about 50% of the recovered plaintext bitsin error). Regarding bits being
deleted, see Remark 7.15.

Remark (use of ECB mode) Since ciphertext blocks are independent, malicious substi-
tution of ECB blocks (e.g., insertion of a frequently occurring block) does not affect the
decryption of adjacent blocks. Furthermore, block ciphers do not hide data patterns— iden-
tical ciphertext blocks imply identical plaintext blocks. For this reason, the ECB modeis
not recommended for messages longer than one block, or if keys are reused for more than
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a) Electronic Codebook (ECB)
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Figure 7.1: Common modes of operation for an n-bit block cipher.
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7.13

7.14

7.15

7.16

asingle one-block message. Security may be improved somewhat by inclusion of random
padding bitsin each block.

(i) CBC mode

The cipher-block chaining (CBC) mode of operation, specified in Algorithm 7.13 and il-
lustrated in Figure 7.1(b), involves use of an n-bit initialization vector, denoted I'V'.

Algorithm CBC mode of operation

INPUT: k-bit key K; n-bit IV; n-bit plaintext blocks z1, . .. , ;.

SUMMARY: produce ciphertext blocks ¢y, . .. , ¢;; decrypt to recover plaintext.
1. Encryption: ¢g < IV. Forl1 < j <t, ¢; < Ex(cj—1®x;).
2. Decryption: co <+~ IV. For1 < j <t, x; < c¢; 1®Ex" (c;).

Properties of the CBC mode of operation:

1. Identical plaintexts: identical ciphertext blocks result when the same plaintext is en-
ciphered under the same key and I'V. Changing the IV, key, or first plaintext block
(e.g., using a counter or random field) resultsin different ciphertext.

2. Chaining dependencies: the chaining mechanism causes ciphertext c¢; to depend on
x; and all preceding plaintext blocks (the entire dependency on preceding blocksis,
however, contained in the value of the previous ciphertext block). Consequently, re-
arranging the order of ciphertext blocks affects decryption. Proper decryption of a
correct ciphertext block requires a correct preceding ciphertext block.

3. Error propagation: asingle bit error in ciphertext block c; affects decipherment of
blocks ¢; and c¢;+1 (since z; depends on c¢; and ¢;—1). Block z; recovered from c;
istypically totally random (50% in error), while the recovered plaintext xs 41 hashit
errors precisely where ¢; did. Thus an adversary may cause predictable bit changes
inz;11 by atering corresponding bits of ¢;. See also Remark 7.14.

4. Error recovery: the CBC mode is self-synchronizing or ciphertext autokey (see Re-
mark 7.15) in the sense that if an error (including loss of one or more entire blocks)
occursin block ¢; but not ¢; 41, ¢;2 iscorrectly decrypted to ;1 ».

Remark (error propagationin encryption) Although CBC modedecryption recoversfrom
errorsin ciphertext blocks, modificationsto a plaintext block «; during encryption alter all
subsequent ciphertext blocks. Thisimpactsthe usability of chaining modesfor applications
requiring random read/write access to encrypted data. The ECB modeisan aternative (but
see Remark 7.12).

Remark (self-synchronizing vs. framing errors) Although self-synchronizing in the sense
of recovery from bit errors, recovery from “lost” bits causing errors in block boundaries
(framing integrity errors) is not possible in the CBC or other modes.

Remark (integrity of IV in CBC) While the IV in the CBC mode need not be secret, its
integrity should be protected, since malicious modification thereof alows an adversary to
make predictable bit changes to the first plaintext block recovered. Using a secret IV is
one method for preventing this. However, if message integrity is required, an appropriate
mechanism should be used (see §9.6.5); encryption mechanismstypically guarantee confi-
dentiality only.
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7.17

7.18

7.19

(iii) CFB mode

Whilethe CBC mode processes plaintext n bitsat atime (using an n-bit block cipher), some
applicationsrequirethat r-bit plaintext unitsbe encrypted and transmitted without delay, for
somefixed r < n (oftenr = 1 or » = 8). In this case, the cipher feedback (CFB) mode
may be used, as specified in Algorithm 7.17 and illustrated in Figure 7.1(c).

Algorithm CFB mode of operation (CFB-r)

INPUT: k-bit key K; n-bit IV; r-bit plaintext blocks z1, ... ,z, (1 < r < n).
SUMMARY: produce r-bit ciphertext blocks ¢y, . . . , ¢, ; decrypt to recover plaintext.
1. Encryption: I; < IV. (I; istheinput value in ashift register.) For 1 < j < u:
(@ O; < Ex(I;). (Computethe block cipher output.)
(b) t; < ther leftmost bits of O;. (Assume the leftmost isidentified as bit 1.)
(©) ¢j  z;®t;. (Transmit the r-bit ciphertext block c;.)
(d) Ijy1 + 2" - I; 4+ ¢; mod 2. (Shift ¢; into right end of shift register.)
2. Decryption: I; <~ IV. For1 < j < u, upon receiving c;:
x; + c;®t;, wheret;, O; and I; are computed as above.

Properties of the CFB mode of operation:

1. Identical plaintexts: as per CBC encryption, changing the IV results in the same
plaintext input being enciphered to a different output. The IV need not be secret
(although an unpredictable IV may be desired in some applications).

2. Chaining dependencies: similar to CBC encryption, the chaining mechanism causes
ciphertext block ¢; to depend on both «; and preceding plaintext blocks; consequent-
ly, re-ordering ciphertext blocks affects decryption. Proper decryption of a correct
ciphertext block reguiresthe preceding [n/r] ciphertext blocksto be correct (so that
the shift register contains the proper value).

3. Error propagation: one or more bit errorsin any single r-bit ciphertext block ¢; af-
fects the decipherment of that and the next [n/r] ciphertext blocks (i.e., until » bits
of ciphertext are processed, after which the error block c; has shifted entirely out of
the shift register). The recovered plaintext z; will differ from z; precisely in the bit
positions c; was in error; the other incorrectly recovered plaintext blocks will typi-
cally berandom vectors, i.e., have 50% of bitsin error. Thusan adversary may cause
predictable bit changesin «; by altering corresponding bits of ¢;.

4. Error recovery: the CFB mode is self-synchronizing similar to CBC, but requires
[n/r] ciphertext blocks to recover.

5. Throughput: for r < n, throughput is decreased by afactor of n/r (vs. CBC) in that
each execution of E yieldsonly r bits of ciphertext output.

Remark (CFB use of encryption only) Since the encryption function E is used for both
CFB encryption and decryption, the CFB mode must not be used if the block cipher E isa
public-key algorithm; instead, the CBC mode should be used.

Example (1SO variant of CFB) The CFB mode of Algorithm 7.17 may be modified as
follows, to alow processing of plaintext blocks (characters) whose bitsize s islessthan the
bitsize r of the feedback variable (e.g., 7-bit characters using 8-bit feedback; s < r). The
leftmost s (rather than r) bits of O; are assigned to t;; the s-bit ciphertext character ¢; is
computed; the feedback variable is computed from ¢; by pre-prepending (on the left) r — s
1-bits; the resulting r-bit feedback variable is shifted into the least significant (LS) end of
the shift register as before. O
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7.20

7.21

7.22

(iv)

OFB mode

The output feedback (OFB) mode of operation may be used for applications in which all
error propagation must be avoided. It is similar to CFB, and allows encryption of various
block sizes (characters), but differsin that the output of the encryption block function £
(rather than the ciphertext) serves as the feedback.

Two versions of OFB using an n-bit block cipher are common. The SO version (Fig-
ure 7.1(d) and Algorithm 7.20) requires an n-bit feedback, and is more secure (Note 7.24).
The earlier FIPS version (Algorithm 7.21) allows r < n bits of feedback.

Algorithm OFB mode with full feedback (per ISO 10116)

INPUT: k-bit key K; n-bit IV; r-bit plaintext blocks z1, ... ,z, (1 <r < n).
SUMMARY: produce r-bit ciphertext blocks ¢y, .. . , ¢,; decrypt to recover plaintext.

1

2

. Encryption: I < IV. For 1 < j < u, given plaintext block x;:

(@ O; < Ek(I;). (Computethe block cipher output.)

(b) t; < ther leftmost bits of O;. (Assume the leftmost is identified as bit 1.)
(€) ¢j + x;®t;. (Transmit the r-bit ciphertext block c;.)

(d) Ijy1 + Oj;. (Update the block cipher input for the next block.)

. Decryption: I; + I'V. For 1 < j < u, upon receiving c;:

x; <+ c;®t;, wheret;, O;, and I; are computed as above.

Algorithm OFB mode with r-bit feedback (per FIPS 81)

INPUT: k-bit key K; n-bit IV; r-bit plaintext blocks z1, ... ,z, (1 < r < n).
SUMMARY: produce r-bit ciphertext blocks ¢y, .. . , ¢, ; decrypt to recover plaintext.
As per Algorithm 7.20, but with “I; 1 + O;" replaced by:

Ijtq < 2" I; +t; mod 2™. (Shift output ¢; into right end of shift register.)

Properties of the OFB mode of operation:

1

2.
3.

. ldentical plaintexts: asper CBC and CFB modes, changingthe IV resultsin the same

plaintext being enciphered to a different output.

Chaining dependencies. the keystream is plaintext-independent (see Remark 7.22).
Error propagation: one or more bit errors in any ciphertext character ¢; affects the
decipherment of only that character, inthe precisebit position(s) ¢; isinerror, causing
the corresponding recovered plaintext bit(s) to be complemented.

Error recovery: the OFB mode recovers from ciphertext bit errors, but cannot self-
synchronize after loss of ciphertext bits, which destroys alignment of the decrypting
keystream (in which case explicit re-synchronization is required).

Throughput: for » < n, throughput is decreased as per the CFB mode. However,
in all cases, since the keystream is independent of plaintext or ciphertext, it may be
pre-computed (given the key and IV).

Remark (changing IV in OFB) The I'V, which need not be secret, must be changed if an
OFB key K isre-used. Otherwise an identical keystream results, and by XORing corre-
sponding ciphertexts an adversary may reduce cryptanalysisto that of arunning-key cipher
with one plaintext as the running key (cf. Example 7.58 ff.).

Remark 7.18 on public-key block ciphers appliesto the OFB mode as well as CFB.
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7.23

7.24

7.25

Example (counter mode) A simplification of OFB involves updating the input block asa
counter, I;,1 = I; + 1, rather than using feedback. This both avoids the short-cycle prob-
lem of Note 7.24, and allowsrecovery from errorsin computing E. Moreover, it providesa
random-access property: ciphertext block ¢ need not be decrypted in order to decrypt block
i+ 1. U

Note (OFB feedback size) In OFB with full n-bit feedback (Algorithm 7.20), the keystre-
am is generated by the iterated function O; = Ex(0O;_1). Since Ei is a permutation,
and under the assumption that for random K, E iseffectively arandom choice among all
(2™)! permutationson n elements, it can be shown that for afixed (random) key and starting
value, the expected cycle length before repeating any value O; isabout 2. On the other
hand, if the number of feedback bitsisr < n asalowed in Algorithm 7.21, the keystream
is generated by theiteration O; = f(O,_1) for some non-permutation f which, assuming
it behaves as arandom function, has an expected cycle length of about 2™/2. Consequently,
it is strongly recommended to use the OFB mode with full n-bit feedback.

Remark (modesas stream ciphers) Itis clear that both the OFB mode with full feedback
(Algorithm 7.20) and the counter mode (Example 7.23) employ ablock cipher asakeystre-
am generator for astream cipher. Similarly the CFB mode encryptsacharacter stream using
the block cipher as a (plaintext-dependent) keystream generator. The CBC mode may also
be considered a stream cipher with n-bit blocks playing the role of very large characters.
Thus modes of operation allow one to define stream ciphers from block ciphers.

7.2.3 Exhaustive key search and multiple encryption

7.26

7.27

A fixed-size key definesan upper bound on the security of ablock cipher, dueto exhaustive
key search (Fact 7.26). While this requires either known-plaintext or plaintext containing
redundancy, it has widespread applicability since cipher operations (including decryption)
are generally designed to be computationally efficient.

A design technique which complicates exhaustive key search is to make the task of
changing cipher keys computationally expensive, while alowing encryption with a fixed
key to remainrelatively efficient. Examples of cipherswith this property include the block
cipher Khufu and the stream cipher SEAL.

Fact (exhaustive key search) For an n-bit block cipher with k-bit key, given asmall num-
ber (e.g., [(k + 4)/n]) of plaintext-ciphertext pairs encrypted under key K, K can bere-
covered by exhaustive key search in an expected time on the order of 21 operations.

Justification: Progress through the entire key space, decrypting a fixed ciphertext C' with
each trial key, and discarding those keys which do not yield the known plaintext P. The
target key isamong the undiscarded keys. The number of false alarms expected (non-target
keyswhich map C to P) depends on the relative size of k£ and n, and follows from unicity
distance arguments; additional (P’, C") pairs suffice to discard false alarms. One expects
to find the correct key after searching half the key space.

Example (exhaustive DESkey search) For DES, k = 56, n = 64, and the expected re-
quirement by Fact 7.26 is 25° decryptions and a single plaintext-ciphertext pair. O

If the underlying plaintext is known to contain redundancy as in Example 7.28, then
ciphertext-only exhaustive key search is possible with arelatively small number of cipher-
texts.
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7.28

7.29

7.30

7.31

Example (ciphertext-only DESkey search) Suppose DESis used to encrypt 64-bit blocks
of 8 ASCII characters each, with one bit per character serving as an even parity bit. Trial
decryption with anincorrect key K yieldsall 8 parity bitscorrect with probability 2—2, and
correct parity for ¢ different blocks (each encrypted by K) with probability 25, If thisis
used asafilter over all 256 keys, the expected number of unfiltered incorrect keysis256 /28,
For most practical purposes, t = 10 suffices. |

(i) Cascades of ciphers and multiple encryption

If ablock cipher is susceptible to exhaustive key search (due to inadequate keylength), en-
cipherment of the same message block more than once may increase security. Various such
techniques for multiple encryption of n-bit messages are considered here. Once defined,
they may be extended to messages exceeding one block by using standard modes of oper-
ation (§7.2.2), with E denoting multiple rather than single encryption.

Definition A cascade cipher isthe concatenation of L > 2 block ciphers (called stages),
each with independent keys. Plaintext isinput to first stage; the output of stage s isinput to
stage ¢ + 1; and the output of stage L is the cascade's ciphertext output.

In the simplest case, all stages in a cascade cipher have k-bit keys, and the stage in-
puts and outputs are all n-bit quantities. The stage ciphers may differ (general cascade of
ciphers), or all beidentical (cascade of identical ciphers).

Definition Multipleencryptionissimilar to acascade of L identical ciphers, but the stage
keys need not be independent, and the stage ciphers may be either a block cipher E or its
corresponding decryption function D = E—1.

Two important cases of multiple encryption are double and triple encryption, asillus-
trated in Figure 7.2 and defined below.

(a) double encryption

oy o= X
gj»«—g

M

plaintext _____ 5|
P

. n ciphertext
C

(b) triple encryption (K1 = K3 for two-key variant)

K K3 Ks

i i i

plailr;textH B - p® - 3 4>ciphecstext

Figure 7.2: Multiple encryption.

Definition Double encryptionisdefined as E(z) = Ek,(Ek, (z)), where Ex denotesa
block cipher £ with key K.
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7.32

7.33

7.34

7.35

7.36

Definition Triple encryptionisdefined as E(z) = Eg’s) (E}?2 (Egl) (2))), WhereEg) de-
notes either Exc or Dy = Ex'. Thecase E(z) = Ex,(Dxk,(Ex,(x))) iscaled E-D-E
triple-encryption; the subcase K; = K3 isoften called two-key triple-encryption.

Independent stage keys K, and K, are typically used in double encryption. Intriple
encryption (Definition 7.32), to save on key management and storage costs, dependent stage
keys are often used. E-D-E triple-encryption with Ky = K, = K3 is backwards compati-
blewith (i.e., equivalent to) single encryption.

(i) Meet-in-the-middle attacks on multiple encryption

A naive exhaustivekey search attack on double encryptiontriesall 22% key pairs. Theattack
of Fact 7.33 reduces time from 22*, at the cost of substantial space.

Fact For ablock cipher with a k-bit key, a known-plaintext meet-in-the-middle attack de-
feats double encryption using on the order of 2* operations and 2* storage.

Justification (basic meet-in-the-middle): Noting Figure 7.2(a), given a (P, C) pair, com-
pute M; = E;(P) under all 2* possible key values K; = 4; store all pairs (M;, i), sorted
or indexed on M; (e.g., using conventional hashing). Decipher C under all 2% possibleval-
ues K, = j, and for each pair (M, j) where M; = D;(C), check for hits M; = M;
against entries M; in the first table. (This can be done creating a second sorted table, or
simply checking each M entry as generated.) Each hit identifies a candidate solution key
pair (4, j), since E;(P) = M = D;(C). Using asecond known-plaintext pair (P’, C") (cf.
Fact 7.35), discard candidate key pairs which do not map P’ to C".

A concept anal ogousto unicity distancefor ciphertext-only attack (Definition 7.69) can
be defined for known-plaintext key search, based on the following strategy. Select a key;
check if it is consistent with a given set (history) of plaintext-ciphertext pairs; if so, label
the key ahit. A hit that is not the target key is afalse key hit.

Definition Thenumber of plaintext-ciphertext pairs required to uniquely determine akey
under a known-plaintext key search is the known-plaintext unicity distance. Thisis the
smallest integer ¢ such that a history of length ¢ makes false key hits improbable.

Using Fact 7.35, the (known-plaintext) unicity distance of a cascade of L random ci-
phers can be estimated. Less than onefalse hit is expected whent > Lk /n.

Fact For an L-stage cascade of random block cipherswith n-bit blocks and k-bit keys, the
expected number of false key hitsfor a history of length ¢ is about 27+~

Fact 7.35 holds with respect to random block ciphers defined as follows (cf. Defini-
tions 7.2 and 7.70): given n and k, of the possible (2™)! permutations on 2" elements,
choose 2* randomly and with equal probabilities, and associate these with the 2% keys.

Example (meet-in-the-middie — double-DES) Applying Fact 7.33t0 DES (n = 64, k =
56), the number of candidate key pairs expected for one (P, C) pair is 248 = 2F . 2k /on,
and thelikelihood of afalsekey pair satisfyingasecond (P’, C') sampleis2~16 = 248 /21,
Thuswith high probability, two (P, C) pairssufficefor key determination. Thisagreeswith
the unicity distance estimate of Fact 7.35: for L = 2, ahistory of lengtht = 2 yields 216
expected false key hits. O
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7.37

7.38

7.39

A naive exhaustive attack on all key pairs in double-DES uses 2112 time and negligi-
ble space, while the meet-in-the-middle attack (Fact 7.33) requires 2°6 time and 2°¢ space.
Note 7.37 illustrates that the latter can be modified to yield atime-memory trade-off at any
point between these two extremes, with the time-memory product essentially constant at
2112 (e.g., 272 time, 24° space).

Note (time-memory tradeoff — double-encryption) In the attack of Example 7.36, memory
may be reduced (from tables of 2°¢ entries) by independently guessing s bits of each of K7,
K> (for any fixed s, 0 < s < k). The tables then each have 2%~ entries (fixing s key bits
eliminates2° entries), but the attack must be run over 2¢ - 2¢ pairsof suchtablesto allow all
possiblekey pairs. Thememory requirement is2- 25— entries (each n+ k — s bits, omitting

s fixed key bits), whiletimeison theorder of 225.2k—s = 2k+5_Thetime-memory product
is 22/~:+1.

Note (generalized meet-in-the-middletrade-off ) Variations of Note 7.37 allow time-space
tradeoffsfor meet-in-the-middle key search on any concatenation of L > 2 ciphers. For L
even, meeting between the first and last L /2 stages results in requirements on the order of
2 . 2(kL/2)=s gpace and 2(FL/2)+5 time, 0 < s < kL/2. For L odd, meeting after the
first (L —1)/2 and beforethelast (L + 1)/2 stages resultsin requirements on the order of
2. 2K(L=1)/2 = s gpace and 2F(E+H1)/2+ s time, 1 < s < k(L — 1)/2.

For ablock cipher with k-bit key, a naive attack on two-key triple encryption (Defini-
tion 7.32) involvestrying all 22* key pairs. Fact 7.39 notes a chosen-plaintext alternative.

Fact For an n-bit block cipher with k-bit key, two-key triple encryption may be defeated
by a chosen-plaintext attack requiring on the order of 2* of each of the following: cipher
operations, words of (n + k)-bit storage, and plaintext-ciphertext pairs with plaintexts cho-
sen.

Justification (chosen-plaintext attack on two-key triple-encryption): Using 2* chosen plain-
texts, two-key triple encryption may be reduced to double-encryption as follows. Noting
Figure 7.2(b), focus on the case where the result after the first encryption stage is the all-
zero vector A = 0. For al 2¥ values K| = 4, compute P; = E;l(A). Submit each result-
ing P; asachosen plaintext, obtaining the corresponding ciphertext C;. For each, compute
B; =E; L(C;), representing an intermediate result B after the second of three encryption
stages. Notethat the values P; also represent candidate values B. Sort thevalues P; and B;
in atable (using standard hashing for efficiency). Identify the keys corresponding to pairs
P; = B; ascandidate solution key pairs K; = i, K, = j to the given problem. Confirm
these by testing each key pair on a small number of additional known plaintext-ciphertext
pairs as required.

While generally impractical due to the storage requirement, the attack of Fact 7.39 is
referred to as a certificational attack on two-key triple encryption, demonstrating it to be
weaker than triple encryption. This motivates consideration of triple-encryption with three
independent keys, although a penalty is athird key to manage.

Fact 7.40, stated specifically for DES (n = 64, k = 56), indicates that for the price
of additional computation, the memory requirement in Fact 7.39 may be reduced and the
chosen-plaintext condition relaxed to known-plaintext. The attack, however, appears im-
practical even with extreme parall€elization; for example, for 1g¢ = 40, the number of op-
erationsis still 289,
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7.40

7.41

7.42

Fact If t known plaintext-ciphertext pairs are available, an attack on two-key triple-DES
requires O(t) space and 2129~'&* operations.

(iii) Multiple-encryption modes of operation

In contrast to the single modes of operation in Figure 7.1, multiple modes are variants of
multiple encryption constructed by concatenating selected single modes. For example, the
combination of three single-mode CBC operations provides triple-inner-CBC; an alterna-
tiveistriple-outer-CBC, the composite operation of triple encryption (per Definition 7.32)
with one outer ciphertext feedback after the sequential application of three single-ECB op-
erations. With replicated hardware, multiple modes such astriple-inner-CBC may be pipe-
lined allowing performance comparable to single encryption, offering an advantage over
triple-outer-CBC. Unfortunately (Note 7.41), they are often less secure.

Note (security of triple-inner-CBC) Many multiple modes of operation are weaker than
the corresponding multiple-ECB mode (i.e., multiple encryption operating as a black box
with only outer feedbacks), and in some cases multiple modes (e.g., ECB-CBC-CBC) are
not significantly stronger than single encryption. In particular, under some attacks triple-
inner-CBC issignificantly weaker than triple-outer-CBC; against other attacks based onthe
block size (e.g., Note 7.8), it appears stronger.

(iv) Cascade ciphers

Counter-intuitively, it is possible to devise examples whereby cascading of ciphers (Def-
inition 7.29) actually reduces security. However, Fact 7.42 holds under a wide variety of
attack models and meaningful definitions of “breaking”.

Fact A cascade of n (independently keyed) ciphersis at least as difficult to break as the
first component cipher. Corollary: for stage ciphers which commute (e.g., additive stream
ciphers), acascadeis at least as strong as the strongest component cipher.

Fact 7.42 doesnot apply to product ciphers consisting of component cipherswhich may
have dependent keys (e.g., two-key triple-encryption); indeed, keying dependencies across
stages may compromise security entirely, asillustrated by a two-stage cascade wherein the
components are two binary additive stream ciphers using an identical keystream —in this
case, the cascade output isthe original plaintext.

Fact 7.42 may suggest the following practical design strategy: cascade a set of key-
stream generators each of which relies on one or more different design principles. It isnot
clear, however, if thisis preferableto onelarge keystream generator which relieson asingle
principle. The cascade may turn out to be less secure for afixed set of parameters (number
of key bits, block size), since ciphers built piecewise may often be attacked piecewise.

7.3 Classical ciphers and historical development

Theterm classical ciphersrefersto encryption techniques which have become well-known
over time, and generally created prior to the second half of the twentieth century (in some
cases, many hundreds of years earlier). Many classical techniques are variations of sim-
ple substitution and simple transposition. Some techniques that are not technically block
ciphers are also included here for convenience and context.
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Classical ciphersand techniques are presented under §7.3 for historical and pedagogi-
cal reasonsonly. They illustrate important basi c principles and common pitfalls. However,
since these techniques are neither sophisticated nor secure against current cryptanalytic ca-
pabilities, they are not generally suitable for practical use.

7.3.1 Transposition ciphers (background)

7.43

7.44

7.45

7.46

7.47

For a simple transposition cipher with fixed period ¢, encryption involves grouping the
plaintext into blocks of ¢ characters, and applying to each block a single permutation e on
the numbers 1 through ¢. More precisely, the ciphertext corresponding to plaintext block
m=my...myisc = E.(m) = me)... M. Theencryptionkey ise, which implic-
itly defines ¢; the key space KC has cardinality ¢! for a given value t. Decryption involves
use of the permutation d which inverts e. The above correspondsto Definition 1.32.

The mathematical notation obscures the simplicity of the encryption procedure, asis
evident from Example 7.43.

Example (simple transposition) Consider a simple transposition cipher with¢ = 6 and
e=(641352). Themessagem = CAESAR isencrypted to c = RSCEAA. Decryption
uses the inverse permutationd = (3 6 4 2 5 1). The transposition may be represented by
atwo-row matrix with the second indicating the position to which the element indexed by
the corresponding number of the first is mapped to: (3225 2 %). Encryption may be done
by writing a block of plaintext under headings“3 6 4 2 5 17, and then reading off the

characters under the headingsin numerical order. |

Note (terminology: transposition vs. permutation) While the term “transposition” is tra-
ditionally used to describe a transposition cipher, the mapping of Example 7.43 may alter-
nately be called a permutation on the set {1, 2, ... ,6}. Thelatter terminology is used, for
exampl e, in substitution-permutation networks, and in DES (§7.4).

A mnemonic keyword may be used in place of akey, although this may seriously de-
crease the key space entropy. For example, for n = 6, the keyword “CIPHER” could be
used to specify the column ordering 1, 5, 4, 2, 3, 6 (by aphabetic priority).

Definition Sequential composition of two or more simple transpositions with respective
periodsty,to,... ,t; iscaled acompound transposition.

Fact Thecompound transposition of Definition 7.45is equival ent to asimpletransposition
of period ¢t = lem(¢1, ... , ;).

Note (recognizing simple transposition) Although simple transposition ciphers alter de-
pendencies between consecutive characters, they are easily recognized because they pre-
serve the frequency distribution of each character.

7.3.2 Substitution ciphers (background)

Thissection considersthe following typesof classical ciphers: simple(or mono-al phabetic)
substitution, polygram substitution, and homophonic substitution. The difference between
codesand ciphersisalso noted. Polyal phabetic substitution ciphersareconsideredin §7.3.3.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§7.3 Classical ciphers and historical development 239

7.48

7.49

7.50

7.51

(i) Mono-alphabetic substitution

Suppose the ciphertext and plaintext character sets are the same. Let m = mimaomsg ...

be a plaintext message consisting of juxtaposed charactersm; € A, where A is somefixed
character alphabet suchas A = {A,B,...,Z}. A simple substitution cipher or mono-
alphabetic substitution cipher employs a permutation e over A, with encryption mapping
E.(m) = e(m1)e(ms)e(ms) . ... Here juxtaposition indicates concatenation (rather than
multiplication), and e(m;) isthe character to which m; is mapped by e. This corresponds
to Definition 1.27.

Example (trivial shift cipher/Caesar cipher) A shift cipher isasimple substitution cipher
with the permutation e constrained to an al phabetic shift through & charactersfor somefixed
k. More precisely, if | A| = s, and m; is associated with the integer value, 0 < i < s —1,
then ¢; = e(m;) = m; + k mod s. The decryption mapping is defined by d(c;) = ¢; —
k mod s. For Englishtext, s = 26, and characters A through Z are associated with integers
0 through 25. For & = 1, the message m = HAL is encrypted to ¢ = IBM. According to
folklore, Julius Caesar used the key k£ = 3. (]

The shift cipher can betrivially broken becausethereareonly s = | A| keys(e.g., s =
26) to exhaustively search. A similar comment holds for affine ciphers (Example 7.49).
More generally, see Fact 7.68.

Example (affinecipher —historical) The affine cipher on a26-letter al phabet is defined by
ex(z) = ax+b mod 26, where0 < a,b < 25. Thekey is(a,b). Ciphertextc = ex () is
decrypted using d (¢) = (¢ — b)a—! mod 26, with the necessary and sufficient condition
for invertibility that ged(a, 26) = 1. Shift ciphers are a subclass defined by a = 1. O

Note (recognizing simple substitution) Mono-al phabetic substitution alters the frequency
of individual plaintext characters, but does not alter the frequency distribution of the overall
character set. Thus, comparing ciphertext character frequenciesto atable of expected | etter
frequencies (unigram statistics) in the plaintext language allows associations between ci-
phertext and plaintext characters. (E.g., if the most frequent plaintext character X occurred
twelve times, then the ciphertext character that X mapsto will occur twelve times).

(if) Polygram substitution

A simple substitution cipher substitutes for single plaintext letters. In contrast, polygram
substitution ciphersinvolve groups of characters being substituted by other groups of char-
acters. For example, sequences of two plaintext characters (digrams) may be replaced by
other digrams. The same may be done with sequences of three plaintext characters (tri-
grams), or more generally using n-grams.

In full digram substitution over an alphabet of 26 characters, the key may be any of the
262 digrams, arranged in atable with row and column indices corresponding to thefirst and
second charactersin the digram, and the table entries being the ciphertext digrams substi-
tuted for the plaintext pairs. There are then (262)! keys.

Example (Playfair cipher — historical) A digram substitution may be defined by arrang-
ing the characters of a 25-letter alphabet (I and J are equated) ina b x 5 matrix M. Adja
cent plaintext characters are paired. The pair (p1, p2) isreplaced by the digram (cs, c4) as
follows. If p; and ps arein distinct rows and columns, they define the corners of a subma-
trix (possibly M itself), with the remaining corners cs and c4; c3 is defined asthe character
in the same column as p;. If p; and p, arein a common row, cs is defined as the charac-
ter immediately to the right of p; and ¢, that immediately right of ps (the first column is
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7.52

viewed as being to the right of the last). If p; and p, are in the same column, the charac-
tersimmediately (circularly) below them are c3 and c4. If p1 = ps, aninfrequent plaintext
character (e.g., X) isinserted between them and the plaintext is re-grouped. While crypt-
analysis based on single character frequenciesfailsfor the Playfair cipher (each letter may
be replaced by any other), cryptanalysis employing digram frequencies succeeds. |

The key for a Playfair cipher isthe 5 x 5 square. A mnemonic aid may be used to
more easily remember the square. An exampleis the use of a meaningful keyphrase, with
repeated | etters del eted and the remaining al phabet charactersincluded alphabetically at the
end. The keyphrase “PLAYFAIR IS A DIGRAM CIPHER” would define a square with
rowsPLAYF, IRSDG, MCHEB, KNOQT, VWXY Z. To avoid thetrailing charactersalways
being from the end of the al phabet, a further shift cipher (Example 7.48) could be applied
to the resulting 25-character string.

Use of keyphrases may seriously reduce the key space entropy. This effect is reduced
if the keyphraseis not directly written into the square. For example, the non-repeated key-
phrase characters might be written into an 8-column rectangle (followed by the remaining
alphabet letters), the trailing columns being incomplete. The 25-character string obtained
by reading the columns vertically isthen used to fill the 5 x 5 square row by row.

Example (Hill cipher — historical) An n-gram substitution may be defined using an in-
vertiblen x n matrix A = a;; as the key to map an n-character plaintext m; ...m, toa
ciphertext n-grame; = 37, aijm;, i = 1,... ,n. Decryptioninvolvesusing A~'. Here
characters A—Z, for example, are associated with integers 0-25. This polygram substitution
cipher isalinear transformation, and falls under known-plaintext attack. |

(i) Homophonic substitution

The idea of homophonic substitution, introduced in §1.5, is for each fixed key & to asso-
ciate with each plaintext unit (e.g., character) m a set S(k, m) of potential corresponding
ciphertext units (generally al of common size). To encrypt m under k, randomly choose
one element from this set as the ciphertext. To allow decryption, for each fixed key this
one-to-many encryption function must be injective on ciphertext space. Homophonic sub-
gtitution resultsin ciphertext data expansion.

In homophonic substitution, |S(k, m)| should be proportional to the frequency of m in
the message space. The mativation isto smooth out obviousirregularitiesin the frequency
distribution of ciphertext characters, which result from irregularities in the plaintext fre-
guency distribution when simple substitution is used.

While homophonic substitution complicates cryptanalysis based on simple frequency
distribution statistics, sufficient ciphertext may nonetheless allow frequency anaysis, in
conjunction with additional statistical properties of plaintext manifested in the ciphertext.
For example, inlong ciphertextseach element of S(k, m) will occur roughly the same num-
ber of times. Digram distributions may also provide information.

(iv) Codes vs. ciphers

A technical distinction is made between ciphers and codes. Ciphers are encryption tech-
niques which are applied to plaintext units (bits, characters, or blocks) independent of their
semantic or linguistic meaning; the result is called ciphertext. In contrast, cryptographic
codes operate on linguistic units such as words, groups of words, or phrases, and substitute
(replace) these by designated words, letter groups, or number groups called codegroups.
Thekey is a dictionary-like codebook listing plaintext units and their corresponding code-
groups, indexed by the former; a corresponding codebook for decoding is reverse-indexed.
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When there is potential ambiguity, codesin this context (vs. ciphers) may be qualified
as cryptographic codebooks, to avoid confusion with error-correcting codes (EC-codes)
used to detect and/or correct non-malicious errors and authentication codes (A-codes, or
MACs as per Definition 9.7) which provide data origin authentication.

Several factors suggest that codes may be more difficult to break than ciphers: the key
(codebook) isvastly larger than typical cipher keys,; codes may result in data compression
(cf. Fact 7.71); and statistical analysisis complicated by the large plaintext unit block size
(cf. Note 7.74). Opposing this are several major disadvantages: the coding operation not
being easily automated (rel ative to an algorithmic mapping); and identical encryption of re-
peated occurrences of plaintext unitsimplies susceptibility to known-plaintext attacks, and
allowsfrequency analysisbased on observed traffic. Thisimpliesaneed for frequent rekey-
ing (changing the codebook), which is both more costly and inconvenient. Consequently,
codes are not commonly used to secure modern telecommunications.

7.3.3

7.53

7.54

7.55

Polyalphabetic substitutions and Vigenere ciphers
(historical)

A simple substitution cipher involves a single mapping of the plaintext alphabet onto ci-
phertext characters. A more complex aternativeis to use different substitution mappings
(called multiple alphabets) on various portions of the plaintext. This resultsin so-called
polyal phabetic substitution (also introduced in Definition 1.30). In the ssimplest case, the
different alphabets are used sequentially and then repeated, so the position of each plain-
text character in the source string determineswhich mappingisapplied toit. Under different
alphabets, the same plaintext character is thus encrypted to different ciphertext characters,
precluding simple frequency analysis as per mono-al phabetic substitution (§7.3.5).

The simple Vigeneére cipher is a polyal phabetic substitution cipher, introduced in Ex-
ample 1.31. The definition is repeated here for convenience.

Definition A simple Vigenére cipher of period ¢, over an s-character alphabet, involves
at-character key k1ks ... k;. The mapping of plaintext m = mymaoms ... to ciphertext
¢ = cicacs - . . isdefined onindividual charactersby ¢; = m; + k; mod s, where subscript
iink; istaken modulo ¢ (the key isre-used).

The simple Vigenere uses ¢ shift ciphers (see Example 7.48), defined by ¢ shift values
k;, each specifying one of s (mono-alphabetic) substitutions; &; is used on the characters
in position ¢, i + s, 7 + 2s, ... . In general, each of the ¢ substitutionsis different; thisis
referred to as using ¢ alphabets rather than a single substitution mapping. The shift cipher
(Example 7.48) isasimple Vigenére with period ¢ = 1.

Example (Beaufortvariantsof Vigenére) Compared to the simpleVigenéremappingc; =
m; + k; mod s, the Beaufort cipher hasc¢; = k; — m; mod s, and isitsown inverse. The
variant Beaufort has encryption mapping ¢; = m; — k; mod s. O

Example (compound Vigenére) The compound Vigenére has encryption mapping ¢; =
m; + (k} + k2 + -+ + k7') mod s, wherein general thekeysk’, 1 < j < r, havedistinct
periods ¢;, and the subscript 7 in kf indicating the ith character of &7, is taken modulo ¢;.
This corresponds to the sequential application of » simple Vigenéres, and isequivalentto a
simple Vigenere of period lem(t4, ... ,t,). d
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7.62

Example (single mixed alphabet Vigenere) A simple substitution mapping defined by a
general permutation e (not restricted to an a phabetic shift), followed by asimple Vigenére,
isdefined by the mapping ¢; = e(m;) +k; mod s, withinversem; = e~!(c; — k;) mod s.
Analternativeisasimple Vigenerefollowed by asimple substitution: ¢; = e(m; + k; mod
s), withinversem; = e~!(¢;) — k; mod s. O

Example (full Vigenére) Inasimple Vigenere of period ¢, replace the mapping defined by
theshift value k; (for shifting character m;) by ageneral permutation e; of theal phabet. The
result is the substitution mapping ¢; = e;(m;), where the subscript 7 in e; istaken modulo
t. Thekey consists of ¢ permutationses, . .. , e;. O

Example (running-key Vigenere) If the keystream k; of a simple Vigenéereis aslong as
the plaintext, the cipher is called arunning-key cipher. For example, the key may be mean-
ingful text from a book. O

Whilerunning-key ciphers prevent cryptanalysis by the Kasiski method (§7.3.5), if the
key has redundancy, cryptanalysis exploiting statistical imbalances may nonetheless suc-
ceed. For example, when encrypting plaintext English characters using a meaningful text
as arunning key, cryptanalysis is possible based on the observation that a significant pro-
portion of ciphertext characters results from the encryption of high-frequency running text
characters with high-frequency plaintext characters.

Fact A running-key cipher can be strengthened by successively enciphering plaintext un-
der two or more distinct running keys. For typical English plaintext and running keys, it
can be shown that iterating four such encipherments appears unbreakable.

Definition An auto-key cipher is a cipher wherein the plaintext itself serves as the key
(typically subsequent to the use of an initial priming key).

Example (auto-key Vigenere) In arunning-key Vigenére (Example 7.58) with an s-char-
acter alphabet, defineapriming key k = k1ks . . . k;. Plaintext characters m; are encrypted
asc; = m; + k;modsforl < i < ¢t(simplestcase: ¢t = 1). Fori > t,¢; = (m; +
m,;_.) mod s. An aternative involving more keying material is to replace the simple shift
by afull Vigenerewith permutationse;, 1 < i < s, defined by the key k; or character m;;:
forl <i<t, ¢ =eg(m;),andfori >t c; =enm, ,(m;). O

An aternative to Example 7.61 is to auto-key a cipher using the resulting ciphertext
as the key: for example, for i > t, ¢; = (m; + ¢;—¢) mod s. This, however, is far less
desirable, asit provides an eavesdropping cryptanalyst the key itself.

Example (Mernam viewed as a Vigenere) Consider a simple Vigenére defined by ¢; =
m; + k; mod s. If the keystream is truly random and independent — as long as the plain-
text and never repeated (cf. Example 7.58) —this yields the unconditionally secure Vernam
cipher (Definition 1.39; §6.1.1), generalized from a binary to an arbitrary al phabet. |

7.3.4 Polyalphabetic cipher machines and rotors (historical)

The Jefferson cylinder is a deceptively simple device which implements a polyal phabetic
substitution cipher; conceived in the late 18th century, it had remarkable cryptographic
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strength for its time. Polyal phabetic substitution ciphers implemented by a class of rotor-
based machines were the dominant cryptographic tool in World War 11. Such machines, in-
cluding the Enigma machine and those of Hagelin, have an alphabet which changes con-
tinuously for avery long period before repeating; this provides protection against Kasi ski
analysis and methods based on the index of coincidence (§7.3.5).

(i) Jefferson cylinder

The Jefferson cylinder (Figure 7.3) implements a polyal phabetic substitution cipher while
avoiding complex machinery, extensive user computations, and Vigenére tableaus. A solid
cylinder 6incheslongisdliced into 36 disks. A rod inserted through the cylinder axisallows
the disks to rotate. The periphery of each disk is divided into 26 parts. On each disk, the
lettersA—Z areinscribed ina(different) random ordering. Plaintext messagesare encrypted
in 36-character blocks. A reference bar is placed along the cylinder’s length. Each of the
36 wheelsisindividually rotated to bring the appropriate character (matching the plaintext
block) into position along the reference line. The 25 other parallel reference positions then
each define a ciphertext, from which (in an early instance of randomized encryption) oneis
selected as the ciphertext to transmit.

SEEE L
ARG N

Figure 7.3: The Jefferson cylinder.

The second party possesses a cylinder with identically marked and ordered disks (1—
36). The ciphertext is decrypted by rotating each of the 36 disksto obtain characters along
afixed reference line matching the ciphertext. The other 25 reference positions are exam-
ined for arecognizable plaintext. If the original message is not recognizable (e.g., random
data), both parties agree beforehand on an index 1 through 25 specifying the offset between
plaintext and ciphertext lines.

To accommodate plaintext digits 0—9 without extra disk sections, each digit is per-
manently assigned to one of 10 letters (a,e,i,0,u,y and f,l,r,s) which is encrypted as above
but annotated with an overhead dot, identifying that the procedure must be reversed. Re-
ordering disks (1 through 36) altersthe polyal phabetic substitution key. The number of pos-
sible orderingsis 36! ~ 3.72 x 10%!. Changing the ordering of letters on each disk affords
25! further mappings (per disk), but is more difficult in practice.

(i) Rotor-based machines —technical overview

A simplified generic rotor machine (Figure 7.4) consists of anumber of rotors (wired code-
wheels) each implementing adifferent fixed mono-al phabetic substitution, mapping achar-
acter at itsinput face to one on its output face. A plaintext character input to the first rotor
generates an output which isinput to the second rotor, and so on, until the final ciphertext
character emerges from the last. For fixed rotor positions, the bank of rotors collectively
implements a mono-al phabetic substitution which is the composition of the substitutions
defined by the individua rotors.

To provide polyal phabetic substitution, the encipherment of each plaintext character
causes various rotors to move. The simplest case is an odometer-like movement, with a
single rotor stepped until it completes a full revolution, at which time it steps the adjacent
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rotor one position, and so on. Stepping a rotor changes the mono-al phabetic substitution
it defines (the active mapping). More precisely, each rotor R; effects a mono-al phabetic
substitution f;. R; can rotateinto ¢; positions (e.g., t; = 26). When offset j placesfrom a
reference setting, R; mapsinput a to f;(a — j) + j, where both theinput to f; and the final
output are reduced mod 26.

The cipher key is defined by the mono-al phabeti ¢ substitutions determined by the fixed
wheel wirings and initial rotor positions. Re-arranging the order of rotors provides addi-
tional variability. Providing a machine with more rotors than necessary for operation at
any one time allows further keying variation (by changing the active rotors).

Fact Two properties of rotor machines desirable for security-related reasons are: (1) long
periods; and (2) state changeswhich are almost al “large”.

The second property concerns the motion of rotors relative to each other, so that the
sub-mappings between rotor faces change when the state changes. Rotor machines with
odometer-like state changes fail to achieve this second property.

Note (rotor machine output methods) Rotor machineswere categorized by their method of
providing ciphertext output. In indicating machines, ciphertext output characters are indi-
cated by means such as lighted lamps or displayed charactersin output apertures. In print-
ing machines, ciphertext is printed or typewritten onto an output medium such as paper.
With on-line machines, output characters are produced in electronic form suitable for di-
rect transmission over telecommunications media.

(iii) Rotor-based machines — historical notes

A number of individualsare responsiblefor the devel opment of early machinesbased onro-
tor principles. In 1918, the American E.H. Hebern built thefirst rotor apparatus, based onan
earlier typewriting machine modified with wired connectionsto generateamono-al phabetic
substitution. The output wasoriginally by lighted indicators. Thefirst rotor patent wasfiled
in 1921, theyear Hebern Electric Code, Inc. becamethefirst U.S. cipher machine company
(and first to bankrupt in 1926). The U.S. Navy (circa1929-1930 and some years thereafter)
used a number of Hebern'sfive-rotor machines.

In October 1919, H.A. Koch filed Netherlands patent no.10,700 (“ Geheimschrijfma-
chine” — secret writing machine), demonstrating a deep understanding of rotor principles;
no machinewas built. In 1927, the patent rights were assigned to A. Scherbius.

The German inventor Scherbiusbuilt arotor machine called the Enigma. Model A was
replaced by Model B with typewriter output, and a portable Model C with indicator lamps.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§7.3 Classical ciphers and historical development 245

7.65

7.66

Thecompany set up in 1923 dissolved in 1934, but thereafter the Germansused the portable
battery-powered Enigma, including for critical World War 11 operations.

In October 1919, threedaysafter Koch, A.G. Damm filed Swedish patent no.52,279 de-
scribing adouble-rotor device. Hisfirm wasjoined by the Swede, B. Hagelin, whose 1925
modification yielded the B-21 rotor machine (with indicating lamps) used by the Swedish
army. The B-21 had keywheels with varying number of teeth or gears, each of which was
associated with a settable two-state pin. The period of the resulting polyal phabetic substi-
tution was the product of the numbers of keywheel pins; the key was defined by the state of
each pin and theinitial keywheel positions. Hagelin later produced other models: B-211 (a
printing machine); a more compact (phone-sized) model C-36 for the French in 1934; and
based on alterations suggested by Friedman and others, model C-48 (of which over 140 000
were produced) which was called M-209 when used by the U.S. Army as a World War 11
field cipher. His 1948 Swissfactory later produced: model C-52, a strengthened version of
M-209 (C-48) with period exceeding 2.75 x 10° (with keywheels of 47, 43, 41, 37, 31, 29
pins); CD-55, a pocket-size version of the C-52; and T-55, an on-line version of the same,
modifiable to use aone-time tape. A further model was CD-57.

Note (Enigma details) The Enigmainitially had three rotors R;, each with 26 positions.
R; stepped R, which stepped R3 odometer-like, with R, a so steppingitself; the period was
26 - 25 - 26 ~ 17 000. The key consisted of the initial positions of these rotors (=~ 17 000
choices), their order (3! = 6 choices), and the state of a plugboard, which implemented
afixed but easily changed (e.g., manually, every hour) mono-alphabetic substitution (26!
choices), in addition to that carried out by rotor combinations.

Note (Hagelin M-209 details) The Hagelin M-209 rotor machineimplementsapolyal pha-
betic substitution using 6 keywheels — more specifically, a self-decrypting Beaufort cipher
(Example7.54), Ey, (m;) = k;—m; mod 26, of period 101 405 850 = 26-25-23-21-19-17
letters. Thusfor afixed ordered set of 6 keywheels, the cipher period exceeds 108. k; may
be viewed as the ith character in the key stream, as determined by a particular ordering of
keywheels, their pin settings, and starting positions. All keywheels rotate one position for-
ward after each character is enciphered. The wheels simultaneoudly return to their initial
position only after a period equal to the least-common-multiple of their gear-counts, which
(since these are co-prime) istheir product. A ciphertext-only attack is possible with 1000-
2000 characters, using knowledge of the machine'sinternal mechanical details, and assum-
ing natural language redundancy in the plaintext; a known-plaintext attack is possible with
50-100 characters.

7.3.5 Cryptanalysis of classical ciphers (historical)

This section presents background material on redundancy and unicity distance, and tech-
niquesfor cryptanalysis of classical ciphers,

() Redundancy

All natural languages are redundant. This redundancy resultsfrom linguistic structure. For
example, in English the letter “E” appears far more frequently than “Z”, “Q” isamost a-
ways followed by “U”, and “TH” isa common digram.

An alphabet with 26 characters (e.g., Roman alphabet) can theoretically carry up to
lg 26 = 4.7 bits of information per character. Fact 7.67 indicates that, on average, far less
information is actually conveyed by a natural language.
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Fact Theestimated average amount of information carried per character (per-character en-
tropy) in meaningful English alphabetic text is 1.5 hits.

The per-character redundancy of Englishisthusabout 4.7 — 1.5 = 3.2 hits.

Fact Empirical evidence suggests that, for essentially any simple substitution cipher on a
meaningful message (e.g., with redundancy comparableto English), asfew as 25 ciphertext
characters sufficesto allow a skilled cryptanalyst to recover the plaintext.

(if) Unicity distance and random cipher model

Definition The unicity distance of a cipher isthe minimum amount of ciphertext (number
of characters) required to allow acomputational ly unlimited adversary to recover the unique
encryption key.

The unicity distance is primarily a theoretical measure, useful in relation to uncondi-
tional security. A small unicity distance does not necessarily imply that a block cipher is
insecure in practice. For example, consider a 64-bit block cipher with a unicity distance
of two ciphertext blocks. It may still be computationally infeasible for a cryptanalyst (of
reasonable but bounded computing power) to recover the key, although theoretically there
is sufficient information to allow this.

Therandom cipher model (Definition 7.70) isasimplified model of ablock cipher pro-
viding a reasonabl e approximation for many purposes, facilitating results on block cipher
properties not otherwise easily established (e.g., Fact 7.71).

Definition Let C and K be random variables, respectively, denoting the ciphertext block
and the key, and let D denote the decryption function. Under the random cipher model,
Dk (C) isarandomvariableuniformly distributed over all possible pre-imagesof C (mean-
ingful messages and otherwise, with and without redundancy).

In an intuitive sense, a random cipher as per the model of Definition 7.70 is arandom
mapping. (A more precise approximation would be as a random permutation.)

Fact Under the random cipher model, the expected unicity distance Ny of acipheris Ny =
H(K)/D, where H(K) isthe entropy of the key space (e.g., 64 bits for 264 equiprobable
keys), and D isthe plaintext redundancy (in bits/character).

For aone-time pad, the unbounded entropy of the key spaceimplies, by Fact 7.71, that
the unicity distanceis likewise unbounded. Thisis consistent with the one-time pad being
theoretically unbreakable.

Data compression reduces redundancy. Fact 7.71 implies that data compression prior
to encryption increases the unicity distance, thus increasing security. If the plaintext con-
tains no redundancy whatsoever, then the unicity distance is infinite; that is, the system is
theoretically unbreakable under a ciphertext-only attack.

Example (unicity distance—transposition cipher) The unicity distance of asimpletrans-
position cipher of period ¢ can be estimated under the random cipher model using Fact 7.71,
and the assumption of plaintext redundancy of D = 3.2 bits/character. In this case,
H(K)/D = lg(t!)/3.2 and for ¢ = 12 the estimated unicity distance is 9 characters,
which is very crude, this being less than one 12-character block. For t = 27, the esti-
mated unicity distance is a more plausible 29 characters; this can be computed using Stir-
ling's approximation of Fact 2.57(iii) (! ~ "2xt(t/e)’, for larget and e = 2.718) as
H(K)/D =1g(t")/3.2 ~ (0.3t) - lg(t/e). O
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7.73 Example (unicity distance— simple substitution) The number of keysfor a mono-al phab-

7.74

etic substitution cipher over alphabet A is || = s!, where s = |A|. For example, s = 26
(Roman alphabet) yields 26! ~ 4 x 1026 keys. Assuming equiprobablekeys, an estimate of
the entropy of the key spaceisthen (cf. Example 7.72) H(K) = 1g(26!) ~ 88.4 bits. As-
suming Englishtext with D = 3.2 bitsof redundancy per character (Fact 7.67), atheoretical
estimate of the unicity distance of a simple substitution cipher is H(K)/D = 88.4/3.2 ~
28 characters. This agrees closely with empirical evidence (Fact 7.68). |
(iif) Language statistics

Cryptanalysis of classical ciphers typically relies on redundancy in the source language
(plaintext). In many casesadivide-and-conguer approach ispossible, whereby the plaintext
or key is recovered piece by piece, each facilitating further recovery.

Mono-alphabetic substitution on short plaintext blocks (e.g., Roman alphabet char-
acters) is easily defeated by associating ciphertext characters with plaintext characters
(Note7.50). Thefrequency distribution of individual ciphertext characterscan be compared
to that of single charactersin the source language, as given by Figure 7.5 (estimated from
1964 English text). Thisisfacilitated by grouping plaintext letters by frequency into high,
medium, low, and rare classes; focussing on the high-frequency class, evidence support-
ing trial letter assignments can be obtained by examining how closely hypothesized assign-
ments match those of the plaintext language. Further evidenceis available by examination
of digram and trigram frequencies. Figure 7.6 gives the most common English digrams as
apercentage of all digrams; notethat of 262 = 676 possibledigrams, the top 15 account for
27% of al occurrences. Other examples of plaintext redundancy appearing in the cipher-
text include associations of vowels with consonants, and repeated |etters in pattern words
(e.g., “that”, “soon”, “three”).
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Figure 7.5: Frequency of single charactersin English text.

Note (large blocks preclude statistical analysis) An n-bit block size implies 2™ plaintext
units (“characters’). Compilation of frequency statistics on plaintext units thus becomes
infeasible as the block size of the simple substitution increases; for example, thisis clearly
infeasible for DES (§7.4), wheren = 64.
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Cryptanalysisof simpletransposition ciphersissimilarly facilitated by sourcelanguage
statistics (see Note 7.47). Cryptanalyzing transposed bl ocksresembles solving an anagram.
Attempts to reconstruct common digrams and trigrams are facilitated by frequency statis-
tics. Solutions may be constructed piecewise, with the appearance of digramsand trigrams
intrial decryptions confirming (partial) success.

%

3.05 3-21

2.30
213
o> lis1 e 1.83 1.90
151 435 1 1.36 1.28 1.22 1.30 1.28

AN AT ED EN ER ES HE IN ON OR RE ST TE TH TI
Figure 7.6: Frequency of 15 common digrams in English text.

Cryptanalysis of polyal phabetic ciphersis possible by various methods, including Ka-
siski’'s method and methods based on the index of coincidence, as discussed bel ow.

(iv) Method of Kasiski (vs. polyalphabetic substitution)

Kasiski’'s method provides a general technique for cryptanalyzing polyalphabetic ciphers
with repeated keywords, such as the simple Vigenére cipher (Definition 7.53), based on the
following observation: repeated portions of plaintext encrypted with the same portion of
the keyword result in identical ciphertext segments. Consequently one expects the num-
ber of characters between the beginning of repeated ciphertext ssgmentsto be amultiple of
the keyword length. I1deally, it sufficesto compute the greatest common divisor of the var-
ious distances between such repeated segments, but coincidental repeated ciphertext seg-
ments may also occur. Nonetheless, an analysis (Kasiski examination) of the common fac-
tors among all such distancesis possible; the largest factor which occurs most commonly
isthe most likely keyword length. Repeated ciphertext segments of length 4 or longer are
most useful, as coincidental repetitions are then less probable.

The number of lettersin the keyword indicates the number of a phabetst in the polyal-
phabetic substitution. Ciphertext characters can then be partitioned into ¢ sets, each of
which isthen the result of a mono-al phabetic substitution. Trial valuesfor ¢ are confirmed
if the frequency distribution of the (candidate) mono-alphabetic groups matches the fre-
guency distribution of the plaintext language. For example, the profile for plaintext English
(Figure 7.5) exhibits a long trough characterizing vvwzyz, followed by a spike at a, and
preceded by thetriple-peak of rst. Theresulting mono-al phabetic portionscan besolvedin-
dividually, with additional information available by combining their solution (based on di-
grams, probablewords, etc.). If the source language is unknown, comparing the frequency
distribution of ciphertext charactersto that of candidatelanguages may allow determination
of the source language itself.

(v) Index of coincidence (vs. polyalphabetic substitution)

Theindex of coincidence (IC) is a measure of the relative frequency of lettersin a cipher-
text sample, which facilitates cryptanalysis of polyal phabetic ciphers by allowing determi-
nation of the period ¢ (as an alternative to Kasiski’s method). For concreteness, consider a
Vigenere cipher and assume natural language English plaintext.
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Let theciphertext alphabetbe {ag, a1, . .. , an—1}, andlet p; bethe unknown probabil -
ity that an arbitrarily chosen character in arandom ciphertext is a;. The measure of rough-
ness measures the deviation of ciphertext characters from a flat frequency distribution as
follows:

n—1 1 2 n—1 1
MR = Z; (pz n) = Z;p, - (7.1)

The minimum valueis MR, = 0, corresponding to aflat distribution (for equiprobable
a;, p; = 1/m). Themaximum value occurs when the frequency distribution of p; has great-
est variability, corresponding to amono-al phabetic substitution (the plai ntext frequency dis-
tribution is then manifested). Define this maximum value MR,,..x = £, — 1/n, wherex,
correspondsto > p;? when p; are plaintext frequencies. For English as per Figure 7.5, the
maximumvalueisMR = k, — 1/n ~ 0.0658 —0.0385 = 0.0273. (Thisvarieswith letter
frequency estimates; x, = 0.0667, yielding x, — 1/n = 0.0282 is commonly cited, and is
usedin Table 7.1.) While MR cannot be computed directly from a ciphertext sample (since
the period ¢ is unknown, the mono-al phabetic substitutions cannot be separated), it may be
estimated from the frequency distribution of ciphertext characters as follows.

Let f; denotethe number of appearancesof a; inan L-character ciphertext sample (thus
> fi = L). Thenumber of pairs of lettersamong these L is L(L — 1) /2, of which f;(f; —
1)/2 are the pair (a;, a;) for any fixed character a;. Define IC as the probability that two
characters arbitrarily chosen from the given ciphertext sample are equal:

IC = Yo (5) | X flfi—Y) (72)

(’;) L(L-1)

Independent of this given ciphertext sample, the probability that two randomly chosen ci-
phertext charactersareequal is Z;.L_Ol p;2. Thus (comparing word definitions) IC isan esti-
mate of 3" p;2, and by equation (7.1), thereby an estimate of MR + 1/n. Moreover, IC can
be directly computed from a ciphertext sample, allowing estimation of MR itself. Since
MR variesfrom0to k, — 1/n, oneexpects|C to rangefrom 1/n (for polyal phabetic sub-
stitution with infinite period) to , (for mono-alphabetic substitution). More precisely, the
following result may be established.

Fact For a polyalphabetic cipher of period ¢, E(IC) as given below is the expected value
of the index of coincidence for a ciphertext string of length L, where n is the number of
aphabet characters, . = 1/n, and k,, isgivenin Table 7.1:
1 L—t t—1 L

BlO =3T3t % 1
(pin K, isintended to denote a plaintext frequency distribution, whilether in «,. denotesa
distribution for random characters.) For Roman-al phabet languages, n = 26 implies x,. =
0.03846; for the Russian Cyrillic alphabet, n = 30.

Koy (7.3

Example (estimating polyal phabetic period using | C) Tabulating the expected valuesfor
IC for periodst = 1,2,... using Equation (7.3) (which is essentially independent of L
for large L and small t), and comparing this to that obtained from a particular ciphertext
using Equation (7.2) allows a crude estimate of the period ¢ of the cipher, e.g., whether it is
mono-al phabetic or polyal phabetic with small period. Candidate valuest in the range thus
determined may be tested for correctness by partitioning ciphertext charactersinto groups
of letters separated by ¢ ciphertext positions, and in one or more such groups, comparing
the character frequency distribution to that of plaintext. O
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| Language | K, |
French 0.0778
Spanish 0.0775
German 0.0762
Italian 0.0738
English 0.0667
Russian 0.0529

Table 7.1: Estimated roughness constant «,, for various languages (see Fact 7.75).

A polyal phabetic period ¢ may be determined either by Example 7.76 or the alternative
of Example 7.77, based on the same underlying ideas. Once ¢ is determined, the situation
isas per after successful completion of the Kasiski method.

Example (determining period by ciphertext auto-correlation) Given a sample of polyal-
phabetic ciphertext, the unknown period ¢ may be determined by examining the number of
coincidences when the ciphertext is auto-correlated. More specifically, given a ciphertext
samplecics . .. cp, startingwith ¢ = 1, count the total number of occurrencesc; = ¢, for
1<i<L-—t Repeatfort=2,3,... and tabulate the counts (or plot abar graph). The
actual period t* isrevealed asfollows: for valuest that are amultiple of +*, the counts will
be noticeably higher (easily recognized as spikes on the bar graph). In fact, for L appro-
priately large, one expects approximately L - x,, coincidencesin this case, and significantly
fewer in other cases. O

In the auto-correlation method of coincidences of Example 7.77, the spikes on the bar
graph reveal the period, independent of the sourcelanguage. Oncethe period isdetermined,
ciphertext charactersfrom like al phabets can be grouped, and the profile of single-character
letter frequencies among these, which differsfor each language, may be used to determine
the plaintext language.

7.4 DES

The Data Encryption Standard (DES) is the most well-known symmetric-key block cipher.
Recognized world-wide, it set a precedent in the mid 1970s as the first commercial-grade
modern algorithm with openly and fully specified implementation details. It is defined by
the American standard FIPS 46-2.

7.4.1 Product ciphers and Feistel ciphers

The design of DESisrelated to two general concepts: product ciphers and Feistel ciphers.
Each involves iterating a common sequence or round of operations.

The basic idea of a product cipher (see §1.5.3) isto build a complex encryption func-
tion by composing several simple operations which offer complementary, but individually
insufficient, protection (note cascade ciphers per Definition 7.29 useindependent keys). Ba-
sic operations include transpositions, tranglations (e.g., XOR) and linear transformations,
arithmetic operations, modular multiplication, and simple substitutions.
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7.78

7.79

7.80

7.81

Definition A product cipher combinestwo or moretransformationsin amanner intending
that the resulting cipher is more secure than the individual components.

Definition A substitution-permutation (SP) network is a product cipher composed of a
number of stages each involving substitutions and permutations (Figure 7.7).

plaintext

H‘ H‘ H‘ H""ciphertext

Figure 7.7: Substitution-permutation (SP) network.

Many SP networks are iterated ciphers as per Definition 7.80.

Definition Aniterated block cipher isablock cipher involving the sequential repetition of
aninternal function called around function. Parametersinclude the number of roundsr, the
block bitsize n, and the bitsize k of theinput key K from which r subkeys K; (round keys)
are derived. For invertibility (allowing unique decryption), for each value K; the round
function is a bijection on the round input.

Definition A Feistel cipher is an iterated cipher mapping a 2¢-bit plaintext (Lg, Ry), for
t-bit blocks Lo and Ry, to aciphertext (R,., L,.), through an r-round processwherer > 1.
Forl < i < r,round i maps (L;—1,R;_1) K (L;, R;) asfollows: L; = R;_1, R; =
L;_1&®f(R;—1, K;), where each subkey K; is derived from the cipher key K.

Typically inaFeistel cipher, » > 3 and ofteniseven. The Feistel structure specifically
orders the ciphertext output as (R,., L,.) rather than (L.., R,.); the blocks are exchanged
from their usual order after the last round. Decryption is thereby achieved using the same
r-round process but with subkeys used in reverse order, K, through K ; for example, the
last round is undone by simply repeating it (see Note 7.84). The f function of the Feistel
cipher may be a product cipher, though f itself need not be invertible to alow inversion of
the Feistel cipher.

Figure 7.9(b) illustrates that successive rounds of a Feistel cipher operate on alternat-
ing halves of the ciphertext, while the other remains constant. Note the round function of
Definition 7.81 may also be re-written to eliminate L;: R; = R;_2®f(R;-1, K;). Inthis
case, thefinal ciphertext output is (R,., R.—1), with input labeled (R_1, Ro).
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7.4.2 DES algorithm

DESisaFeistel cipher which processes plaintext blocks of n = 64 bits, producing 64-bit
ciphertext blocks (Figure 7.8). The effective size of the secret key K isk = 56 bits; more
precisely, the input key K is specified as a 64-bit key, 8 bits of which (bits 8, 16, ... ,64)
may be used as parity bits. The 256 keysimplement (at most) 2°¢ of the 264! possible bijec-
tionson 64-hit blocks. A widely held belief isthat the parity bits wereintroduced to reduce
the effective key size from 64 to 56 hits, to intentionally reduce the cost of exhaustive key
search by afactor of 256.

64

K K
56 plaintext P 56
ciphertext C
= key K 64 -
DES ES

Figure 7.8: DESinput-output.

Full detailsof DES are givenin Algorithm 7.82 and Figures 7.9 and 7.10. An overview
follows. Encryption proceedsin 16 stages or rounds. From the input key K, sixteen 48-bit
subkeys K; are generated, onefor eachround. Withineach round, 8fixed, carefully selected
6-to-4 bit substitution mappings (S-boxes) S;, collectively denoted S, are used. The 64-bit
plaintext is divided into 32-bit halves L, and R,. Each round is functionally equivalent,
taking 32-bit inputs L;_; and R;_; from the previous round and producing 32-bit outputs
L;and R; for1 < i < 16, asfollows:

L; = R;; (7.4)
Ri = Li 16 f(Ri 1, K;), where f(R; 1, K;) = P(S(E(R;_1) ® K;))(7.5)

Here FE isafixed expansion permutation mapping R;_1 from 32 to 48 hits (all bitsare used
once; some are used twice). P is another fixed permutation on 32 bits. Aninitial bit per-
mutation (IP) precedesthefirst round; following the last round, the left and right halves are
exchanged and, finally, the resulting string is bit-permuted by the inverse of IP. Decryption
involvesthe same key and al gorithm, but with subkeys applied to the internal roundsin the
reverse order (Note 7.84).

A simplified view isthat the right half of each round (after expanding the 32-bit input
to 8 characters of 6 bits each) carries out a key-dependent substitution on each of 8 charac-
ters, then uses a fixed bit transposition to redistribute the bits of the resulting charactersto
produce 32 output bits.

Algorithm 7.83 specifies how to compute the DES round keys K;, each of which con-
tains 48 bits of K. These operations make use of tables PC1 and PC2 of Table 7.4, which
are called permuted choice 1 and permuted choice 2. To begin, 8 bits (ks, k16, - - - , kea) Of
K arediscarded (by PC1). The remaining 56 bits are permuted and assigned to two 28-hit
variables C' and D; and then for 16 iterations, both C and D are rotated either 1 or 2 bits,
and 48 hits (K;) are selected from the concatenated resullt.
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7.82 Algorithm Data Encryption Standard (DES)

INPUT: plaintext m; ... mg4; 64-bitkey K = k1 ... kgq (includes 8 parity bits).
OUTPUT: 64-bit ciphertext block C = ¢; . . . cg4. (For decryption, see Note 7.84.)
1. (key schedule) Compute sixteen 48-bit round keys K; from K using Algorithm 7.83.
2. (Lo, Ry) < IP(mima...mga). (UseIP from Table 7.2 to permute hits; split the
result into left and rlght 32-hit halveSLo = msgMsg . .. Mg, Rg = msrmyg . .. m7.)
3. (16 rounds) for 7 from 1 to 16, compute L; and R; using Equations (7.4) and (7.5)
above, computing f(R;—1, K;) = P(S(E(R;—1) ® K;)) asfollows:
(8 Expand R;_1 = 72 ...732 from 320 48 bitsusing £ per Table 7.3:
T «+ E(Rifl). (ThUST = T32T1T2 ... 7‘327‘1.)
(b) T" + To®K,;. Represent T’ as eight 6-bit character strings: (By, ... ,Bs) =
T'.
(C) T" (Sl(Bl), SQ(BQ), . Sg(Bg)) (Here SL<BL) maps B; = bybs...bg
to the 4-bit entry in row r and column ¢ of .S; in Table 7.8, page 260 where
r = 2-by + bg, and babsb4bs isthe radix-2 representation of 0 < ¢ < 15. Thus
51(011011) yieldsr = 1, ¢ = 13, and output 5, i.e.,, binary 0101.)
(d) T « P(T"). (Use P per Teble7.3to permutethe 32 bitsof 7" = t1t . . . t3a,
yleldl ng tiet7 - - - t25.)
4. biby...bgy (R16; LlG)- (EXChangeflnaI blOCkSLlG, R16.)
5 C « IPfl(blbg ... bea). (Transposeusing IP~! from Table 7.2; C = bygbs . . . bas.)

IP P!
58 |50 (42|34 |2 |18 | 10| 2 40 | 8 | 48| 16 | 56 | 24 | 64 | 32
60 |52 |44 | 36| 28| 20|12 | 4 39| 7|47 | 15|55 |23|63|31
62 | 54|46 |38 |30|22|14|6 38| 6|46 |14 | 54| 22|62 30
64 | 56 | 48| 40| 32 | 24|16 | 8 37 | 5|45 13|53 |21 |61]| 29
57149 41|33 25|17 | 9|1 36 |4 |44 |12 | 52| 20| 60| 28
50 |51 (43|35 |27|19| 11 |3 35|13 |43 |11 (51|19]|59| 27
61 | 53 45| 37|29 | 21|13 |5 341 2|42|10| 50 | 18 | 58 | 26
63 | 55|47 |39 |31|23|15|7 331141 9149 |17 | 57 | 25

Table 7.2: DESinitial permutation and inverse (IP and IP™1).

E P
32 1 2 3| 4 5 16 7120 | 21
4| 5 6 7 8 9 29 | 12| 28 | 17
8 9|10 11| 12 | 13 1|15 23| 26
12 1 13| 14 | 15| 16 | 17 5118 | 31| 10
16| 17|18 19| 20| 21 2 8|24 |14
2021|122 |23 |24 | 25 32| 27 3 9
24 | 25 |1 26| 27 | 28 | 29 19| 13| 30 6
2829|130 |31 32 1 2|11 4|25

Table 7.3: DESper-round functions: expansion E and permutation P.
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(a) twisted ladder (b) untwisted ladder
‘ input ‘ input
mimze- - 64 mea
initial
Ip permutation P
64
Y
Lo Ro
48
—— K1
32 v 32
Y 32
fa f >
L = [ = |
— Ko
Y Y
o= 7~
Y Y
‘ Lis ‘ Ri5 ‘
— Kis

irregular swap

‘ Rie Lie ‘
64
Y Y
= inverse =
permutation
64
output output
CiC2 - -+ Ce4a
Li =R; 1

Ri=Li—1® f(Ri—1, K:)

Figure 7.9: DEScomputation path.
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f(Ri—1, K;) = P(S(E(Ri-1) ® K;))

Figure 7.10: DESinner function f.

7.83 Algorithm DES key schedule

INPUT: 64-bit key K = k; ... kg4 (including 8 odd-parity bits).
OUTPUT: sixteen 48-bit keys K;, 1 < i < 16.

1. Definewv;, 1 < ¢ < 16 asfollows: v; = 1fori € {1,2,9,16}; v; = 2 otherwise.

(These are | eft-shift values for 28-hit circular rotations below.)

2. T + PCL(K); represent T' as 28-bit halves (Cy, Dg). (Use PClin Table 7.4 to select

bits from K: Co = ksrkag . . . k3, Do = kgskss - . . k4)

3. For i from 1 to 16, compute K; asfallows: C; + (C;—1 <> v;), D; + (D;—1 ¢
v;), K; + PC2(C;, D;). (Use PC2in Table 7.4 to select 48 bits from the concatena-
tion b1bs . .. bseg Of C; and D;: K; = b14b17 - .. bsa. ‘<" denotesleft circular shift.)

If decryptionisdesigned asasimplevariation of the encryption function, savingsresult

in hardware or software code size. DES achieves this as outlined in Note 7.84.

7.84 Note (DESdecryption) DESdecryption consistsof theencryptionagorithmwith the same
key but reversed key schedule, using in order Kig, K15,... , K1 (See Note 7.85). This
works as follows (refer to Figure 7.9). The effect of IP~! is cancelled by IP in decryp-
tion, leaving (R4, L16); consider applying round 1 to thisinput. The operation on the left
half yields, rather than Lo® f (Ro, K1), now R16P f(L1s, K16) Which, since Lig = Ris
and Rig = L15€Bf(R15,K16), isequal to L15@f(R15, K16)€Bf(R15, KIG) = Ly5. Thus
round 1 decryption yields (R;5, L15), i.e., inverting round 16. Note that the cancellation
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7.85

7.86

PC1 PC2
57149 | 41| 33| 25| 17 9 14 (17| 11 | 24 1 5
1|58 |50 (42|34 |2 | 18 3|28 15 6| 21| 10
10 2159|5143 ]| 35| 27 231 19| 12 4 | 26
19| 11 3|60 |52]| 44| 36 16 7|27 1|20 13 2
abovefor C;; below for D; 41 | 52 | 31 | 37 | 47 | 55
63 | 55|47 |39 (3123|115 30| 40| 51| 45| 33 | 48
7162 | 54|46 | 38| 30| 22 441 49 | 39 | 56 | 34 | 53
14 6|61 |53|45]| 37| 29 46 | 42 | 50 | 36 | 29 | 32
21 | 13 5128|200 | 12 4

oo

Table 7.4: DESkey schedule hit selections (PC1 and PC2).

of each round is independent of the definition of f and the specific value of K;; the swap-
ping of halves combined with the XOR processisinverted by the second application. The
remaining 15 rounds are likewise cancelled one by one in reverse order of application, due
to the reversed key schedule.

Note (DES decryption key schedule) Subkeys K1, ... , K1 may be generated by Algo-
rithm 7.83 and used in reverse order, or generated in reverse order directly asfollows. Note
that after K14 is generated, the original values of the 28-hit registers C' and D are restored
(each has rotated 28 hits). Consequently, and due to the choice of shift-values, modifying
Algorithm 7.83 as follows generates subkeysin order K, . .. , K1: replace the left-shifts
by right-shift rotates; change the shift value v, to 0.

Example (DEStest vectors) The plaintext “Now is the time for al ", represented as a
string of 8-bit hex characters (7-bit ASCII characters plus leading O-bit), and encrypted us-
ing the DES key specified by the hex string K = 0123456789ABCDEF results in the
following plaintext/ciphertext:

P =4E6F772069732074 68652074696D6520 666F7220616C6C20

C = 3FA40E8A984D4815 6A271787AB8883F9 893D51EC4B563B53. 0

7.4.3 DES properties and strength

7.87

There are many desirable characteristics for block ciphers. These include: each bit of the
ciphertext should depend on all bitsof thekey and all bitsof the plaintext; there should be no
statistical relationship evident between plaintext and ciphertext; altering any single plain-
text or key bit should alter each ciphertext bit with probability %; and altering a ciphertext
bit should result in an unpredictable change to the recovered plaintext block. Empirically,
DES satisfies these basic objectives. Some known properties and anomalies of DES are
given below.

(i) Complementation property

Fact Let E denote DES, and Z the bitwise complement of z. Theny = Ex(z) implies
y = Ex(T). That is, bitwise complementing both the key K and the plaintext « resultsin
complemented DES ciphertext.

Justification: Compare the first round output (see Figure 7.10) to (Lo, Ry) for the uncom-
plemented case. The combined effect of the plaintext and key being complemented results
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7.88

7.89

7.90

in the inputs to the XOR preceding the S-boxes (the expanded R;_; and subkey K;) both
being complemented; this double complementation cancels out in the XOR operation, re-
sulting in S-box inputs, and thus an overall result f(R, K1), as before. This quantity is
then XORed (Figure 7.9) to L (previously L), resulting in L; (rather than L,). The same
effect follows in the remaining rounds.

The complementation property isnormally of no helpto acryptanalystin known-plain-
text exhaustive key search. If an adversary has, for a fixed unknown key K, a chosen-
plaintext set of (x,y) data (P, Cy), (P1,C2),then Cy = Ex (P;) impliesCy = E#(Py).
Checking if the key K with plaintext P; yields either C; or Cy now rules out two keys
with one encryption operation, thus reducing the expected number of keys required before
success from 255 to 254. Thisis not a practical concern.

(i) Weak keys, semi-weak keys, and fixed points

If subkeys K; to K4 are equal, then the reversed and original schedules create identical
subkeys: Ky = K16, K2 = K35, and so on. Consequently, the encryption and decryption
functions coincide. These are called weak keys (and also: palindromic keys).

Definition A DESweakkeyisakey K suchthat Ex (Ex (z)) = z foral z, i.e., defining
aninvolution. A pair of DES semi-weak keysisapair (K1, K2) with Ex, (Ek, (7)) = .

Encryption with one key of a semi-weak pair operates as does decryption with the other.

Fact DES hasfour weak keys and six pairs of semi-weak keys.

The four DES weak keys arelisted in Table 7.5, along with corresponding 28-bit vari-
ables Cy and D, of Algorithm 7.83; here {0}/ represents j repetitions of bit 0. Since Cy
and D are all-zero or all-one bit vectors, and rotation of these has no effect, it follows that
all subkeys K; are equal and an involution results as noted above.

Thesix pairs of DES semi-weak keysarelisted in Table 7.6. Note their defining prop-
erty (Definition 7.88) occurs when subkeys K; through K4 of the first key, respectively,
equal subkeys K¢ through K of the second. Thisrequiresthat a 1-bit circular | eft-shift of
each of Cyy and D, for the first 56-bit key resultsin the (Cy, D) pair for the second 56-bit
key (see Note 7.84), and thereafter |eft-rotating C; and D; one or two bits for the first re-
sultsin the same value as right-rotating those for the second the same number of positions.
The valuesin Table 7.6 satisfy these conditions. Given any one 64-bit semi-weak key, its
paired semi-weak key may be obtained by splitting it into two halves and rotating each hal f
through 8 bits.

Fact Let E denote DES. For each of thefour DESweak keys K, thereexist 232 fixed points
of Ex,i.e, plantextsz suchthat Ex () = x. Similarly, four of thetwelve semi-weak keys
K each have 232 anti-fixed points, i.e., x such that Ex (z) = 7.

The four semi-weak keys of Fact 7.90 are in the upper portion of Table 7.6. These are
called anti-palindromic keys, since for these K; = K1, K2 = K15, and soon.

(iii) DESis not a group

For afixed DES key K, DES defines a permutation from {0, 1}5% to {0, 1}54. The set of
DES keys defines 256 such (potentially different) permutations. If this set of permutations
was closed under composition (i.e., given any two keys K1, K, thereexistsathird key K
suchthat Ex, (z) = Ek, (Ek, (x)) for al ) then multiple encryption would be equivalent
to single encryption. Fact 7.91 states that thisis not the case for DES.
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7.91

7.92

wesk key (hexadecimal) | Co | Do |
0101 0101 0101 0101 | {0}*® | {0}*®
FEFE FEFE FEFE FEFE | {1}*® | {1}*®
1F1F 1F1F OEOE OEOE | {0}*® | {1}*®
EOE0 EOEO F1F1 F1F1 | {1}*® | {0}*®

Table 7.5: Four DESweak keys.

| Co | Do | semi-weak key pair (hexadecimal) | G | Do |
{01}**]|{01}** |01FE O1FE O1FE O1FE, FEO1 FEO1 FEO1 FEO1|{10}**|{10}**
{01}**|{10}** |1FEO 1FEO0 OEF1 OEF1, EO1F EO1lF F1O0E F10E|{10}**|{01}**
{01}**| {0}*® |01E0 01EO0 O1F1 O1F1, EO01 E001 F101 F101|{10}'*| {0}*®
{01}**| {1}*® |1FFE 1FFE OEFE OEFE, FE1F FE1F FEOE FEOE|{10}'*| {1}*®
{0}*® | {01}** | 011F 011F 010E 010E, 1F01 1F01 OEO1 OEO1| {0}*®|{10}*
{1}*® | {01}** | EOFE EOFE F1FE F1FE, FEEO FEEO FEF1 FEF1| {1}*®|{10}*

Table 7.6: Sx pairs of DES semi-weak keys (one pair per line).

Fact The set of 2°6 permutations defined by the 2°6 DES keys is not closed under func-
tional composition. Moreover, alower bound on the size of the group generated by com-
posing this set of permutationsis 10249,

The lower bound in Fact 7.91 is important with respect to using DES for multiple en-
cryption. If the group generated by functional composition was too small, then multiple
encryption would be less secure than otherwise believed.

(iv) Linear and differential cryptanalysis of DES

Assuming that obtaining enormous numbers of known-plaintext pairs is feasible, linear
cryptanalysis provides the most powerful attack on DES to date; it is not, however, con-
sidered athreat to DESin practical environments. Linear cryptanalysisisalso possibleina
ciphertext-only environment if some underlying plaintext redundancy isknown (e.g., parity
bits or high-order O-bitsin ASCII characters).

Differential cryptanalysisis one of the most general cryptanalytic toolsto date against
modern iterated block ciphers, including DES, Lucifer, and FEAL among many others. Itis,
however, primarily achosen-plaintext attack. Further information on linear and differential
cryptanalysisis givenin §7.8.

Note (strength of DES) The complexity (see §7.2.1) of the best attacks currently known
against DESisgivenin Table 7.7; percentagesindicate successrate for specified attack pa-
rameters. The ‘processing complexity’ column provides only an estimate of the expected
cost (operation costs differ across the various attacks); for exhaustive search, the cost isin
DES operations. Regarding storage complexity, both linear and differential cryptanalysis
require only negligible storage in the sense that known or chosen texts can be processed
individually and discarded, but in a practical attack, storage for accumulated texts would
be required if ciphertext was acquired prior to commencing the attack.
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attack method data complexity storage processing
known | chosen | complexity complexity
exhaustive precomputation | — 1 256 1 (table lookup)
exhaustive search 1 — negligible 258
linear cryptanalysis 243 (85%) — for texts 243
238 (10%) — for texts 250
differential cryptanalysis | — 247 for texts 247
255 — for texts 255

Table 7.7: DESstrength against various attacks.

7.93 Remark (practicality of attack models) To be meaningful, attack comparisons based on
different models (e.g., Table 7.7) must appropriately weigh the feasibility of extracting (ac-
quiring) enormous amounts of chosen (known) plaintexts, which is considerably more dif-
ficult to arrange than a comparable number of computing cycleson an adversary’sown ma-
chine. Exhaustive search with one known plaintext-ciphertext pair (for ciphertext-only, see
Example 7.28) and 2°° DES operationsis significantly morefeasiblein practice (e.g., using
highly parallelized custom hardware) than linear cryptanalysis (LC) requiring 243 known
pairs.

While exhaustive search, linear, and differential cryptanalysisallow recovery of aDES
key and, therefore, the entire plaintext, the attacks of Note 7.8, which becomefeasible once
about 232 ciphertexts are available, may be more efficient if the goal isto recover only part
of the text.

7.5 FEAL

The Fast Data Encipherment Algorithm (FEAL) isafamily of a gorithmswhich has played
acritical role in the development and refinement of various advanced cryptanalytic tech-
niques, including linear and differential cryptanalysis. FEAL-N maps 64-bit plaintext to
64-bit ciphertext blocks under a 64-bit secret key. It isan N-round Feistel cipher similar to
DES (cf. Equations(7.4), (7.5)), but with afar simpler f-function, and augmented by initial
and final stages which XOR the two data halves as well as XOR subkeys directly onto the
data halves.

FEAL was designed for speed and simplicity, especially for software on 8-bit micro-
processors (e.g., chipcards). It uses byte-oriented operations (8-bit addition mod 256, 2-bit
left rotation, and XOR), avoids bit-permutations and table look-ups, and offers small code
size. Theinitial commercialy proposed version with 4 rounds (FEAL-4), positioned as a
fast alternative to DES, was found to be considerably less secure than expected (see Ta-
ble 7.10). FEAL-8 was similarly found to offer less security than planned. FEAL-16 or
FEAL-32 may yet offer security comparableto DES, but throughput decreases asthe num-
ber of roundsrises. Moreover, whereasthe speed of DESimplementationscan beimproved
through very large lookup tables, this appears more difficult for FEAL.

Algorithm 7.94 specifiesFEAL-8. The f-function f(A,Y") mapsaninput pair of 32 x
16 bits to a 32-bit output. Within the f function, two byte-oriented data substitutions (S-
boxes) S, and S; are each used twice; each maps a pair of 8-bit inputs to an 8-bit output
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row column number
O [ [T [ B[ ]BI] 6] 7] [ BI]Or] o] [ i) ][ [12] [ [13] ] [14] | [15]
1
0] ||14| 4|13| 1 2115|111 8 3|10 6| 12 5 9 0 7
1] 0|15| 7| 41|/ 14| 2|13| 1|/10| 6| 12| 11 9 5 3 8
2] 4| 1|14| 8|/ 13| 6| 2|11| 15|12 9 7 3| 10 5 0
3] || 15112 8| 2 41 9| 1| 7 5|11 3| 14 10 0 6| 13
Sa
0] |15 1| 8| 14| 6| 11| 3| 4| 9| 7 2| 13 12 0 5| 10
1] 3|113| 4| 7|/ 15| 2| 8|14} 12| O 1| 10 6 9| 11 5
2] 0|14| 7| 11|/ 10| 4|13| 1 5| 8] 12 6 9 3 2| 15
3] || 13] 8(10| 1 3/15| 4| 2|l11| 6 7| 12 0 5| 14 9
Ss3
0] 10 0| 9|14l 6] 3|15| 5 113 12 7 11 4 2 8
1] |13} 7| 0] 9 3| 4| 6|10|l 2| 8 5| 14 12| 11| 15 1
2] || 13| 6| 4| 9 8|15 3| Ofl11]| 1 2| 12 5| 10| 14 7
3] 1/10(13| O 6| 9| 8| 7| 4|15 14 3 11 5 2| 12
Sy
[0] 711314 3| 0| 6| 9|10 1| 2 8 5 1| 12 4| 15
1] || 13| 8|11| 5 6|15 0| 3| 4| 7 2| 12 1| 10| 14 9
2] |10 6| 9| Ol 12| 12| 7|13| 15| 1 3| 14 5 2 8 4
3] 3|15 0| 6/ 10| 1|13| 8 9| 4 5| 11 12 7 2| 14
Ss
[0] 2112 4| 1 7110(11| 6 8| 5 3| 15 13 0| 14 9
(14 11| 2|12 4| 7(13| 1 5/ 0] 15| 10 3 9 8 6
2] 4| 2| 1|11|10|13| 7| 8|/ 15| 9| 12 5 6 3 0| 14
3] || 11| 8|12| 7 1114 2|13 6|15 0 9 10 4 5 3
Se
0] [[12] 1|10] 15 9| 2| 6| 8 0|13 3 4 14 7 5| 11
1] |10} 15| 4| 2 7112 9| 5 6| 1| 13| 14 o 11 3 8
2] 9|14 15| 5 2| 8(12| 3 71 0 4| 10 1| 13| 11 6
3] 4| 3| 2|12 9| 5(15|10(l 11|14 1 7 6 0 8| 13
Sy
[0] 4111 2|141|{ 15| 0| 8|13 3|12 9 7 5| 10 6 1
1] |13} 0of11| 7 4| 9| 1|10} 14| 3 5 12 2| 15 8 6
2] 1| 411|213 12| 3| 7|14 10| 15 6 8 0 5 9 2
3] 6|11(13| 8 1| 4|10 7 9| 5 0| 15 14 2 3| 12
Sg
0] [|13] 2| 8| 4 6|15(11| 14/ 10| 9 3| 14 5 0| 12 7
1] 1{15(13| 8| 10| 3| 7| 4| 12| 5 6| 11 0| 14 9 2
2] 7111 4| 1 9|12 14| 2 0| 6| 10| 13 15 3 5 8
3] 21 1114 7 4110| 8| 13| 15|12 9 0 3 5 6| 11

Table 7.8: DES S-boxes.
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7.94

7.95

7.96

(see Table 7.9). Sy and Sy add asinglebitd € {0, 1} to 8-bit arguments = and y, ignore
the carry out of the top bit, and left rotate the result 2 bits (ROT2):

Sa(z,y) = ROT2(x + y + d mod 256) (7.6)

The key schedule uses a function fx (A, B) similar to the f-function (see Table 7.9; A;,
B;, Y;, t;, and U; are 8-bit variables), mapping two 32-bit inputs to a 32-bit output.

| [ U« f(AY) [ U« fx(AB) |

t1 = (Ao®A1)BY, | AoDA;

la = (A20As)®Y1 | A2PAs

Ui = || Si(t1,t2) S1(t1,t2@Bo)
Us = || So(tz,Ur) So(t2, U1®B1)
Uo = || So(Ao,Tn) So(Ao, U1®Bs)
Us = || S1(As,Us) S1(Az, U2®Bs)

Table 7.9: Output U = (Uyp, Ui, Uz, Us) for FEAL functions f, fx (Algorithm 7.94).

Asthe operations of 2-bit rotation and XOR are both linear, the only nonlinear el emen-
tary operation in FEAL is addition mod 256.

Algorithm Fast Data Encipherment Algorithm (FEAL-8)

INPUT: 64-bit plaintext M = my ... mgq; 64-bitkey K = k; ... kga.
OUTPUT: 64-hit ciphertext block C = ¢; . . . cg4. (For decryption, see Note 7.96.)
1. (key schedule) Compute sixteen 16-bit subkeys K; from K using Algorithm 7.95.
2. DeﬁneML =1mq--*MmM32, MR =1ma33 - Mga-
3. (L(),RU) — (ML,MR) 57 ((Kg,Kg), (Klo,Kn)). (XOR initial subkeys)
4. Ry + Ry Ly.
5. Forifrom1lto8do: L; + R;—1, R; < Li—1®f(R;—1,K;_1). (Use Table 7.9 for
f(A, Y) with A = R1',71 = (A(),Al,AQ,Ag) andY = K7171 = (Y(), Yi))
Lg < Ls®Rs.
(Rg,Lg) — (Rg,Lg) (&) ((Klg,Klg), (K14,K15)). (XOR final SUka/S)
8. C + (Rs, Lg). (Notethe order of the final blocksis exchanged.)

N

Algorithm FEAL-8 key schedule

INPUT: 64-bit key K=Fki... kga.
OUTPUT: 256-hit extended key (16-bit subkeys K;, 0 < i < 15).
1. (initiaize) U2 « 0, UCY kg .. k3o, U  ks3... key.
2. Uy (U, U1, Us, Us) for 8-hit U;. Compute Ky, ... , K15 asi runsfrom 1to 8:
(@ U « fr(U2 uti-Dgut-3)). (fx isdefined in Table 7.9, where A and
B denote 4-byte vectors (Ay, A1, Az, As), (Bg, B1, B2, B3).)
(b) Kai_o = (Up,U1), Koi_1 = (Us,Us), U «U.

Note (FEAL decryption) Decryption may be achieved using Algorithm 7.94 with the same
key K and ciphertext C = (Rs, Ls) asthe plaintext input M, but with the key schedule
reversed. Morespecifically, subkeys (( K2, K13), (K14, K15)) areusedfor theinitial XOR
(step 3), ((Ks, Ky), (K10, K11)) for the final XOR (step 7), and the round keys are used
from K, back to K (step 5). Thisisdirectly analogousto decryption for DES (Note 7.84).
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7.97

7.98

7.99

7.100

Note (FEAL-N) FEAL with 64-bit key can be generalizedto N-rounds, N even. N = 2*
isrecommended; z = 3 yields FEAL-8 (Algorithm 7.94). FEAL-N uses NV + 8 sixteen-bit
subkeys: Ky, ..., Kn_1, respectively, in round ¢; Ky, ... ,Kxy3 for the initial XOR,;
and K4, ... Ky7 for the final XOR. The key schedule of Algorithm 7.95 is directly
generalized to compute keys K through K7 asi runsfrom 1 to (N/2) + 4.

Note (FEAL-NX) Extending FEAL-N to use a 128-hit key results in FEAL-NX, with al-
tered key schedule as follows. The key is split into 64-bit halves (K1, Kg). Kg is parti-
tioned into 32-bit halves (K g1, Kgo). For 1 < i < (N/2) + 4, define Q; = Kr1®Krgo
fori = 1mod3; Q; = Kryfori = 2mod 3; and Q; = Kpgs fori = 0 mod 3.
The second argument (U~ D aU(—3)) to fx in step 2aof Algorithm 7.95 is replaced by
UGDgUi-3)aQ,. For Kr = 0, FEAL-NX matches FEAL-N with K7, as the 64-bit
FEAL-N key K.

Example (FEAL test vectors) For hex plaintext A/ = 00000000 00000000 and hex
key K = 01234567 89ABCDEF, Algorithm 7.95 generates subkeys (K, ... ,K;) =
DF3BCA36 F17CLAEC 45A5B9C7 26EBAD25, (Kg,...,Ki5) = 8B2AECB7
AC509D4C22CD479B ABD50CB5. Algorithm 7.94 generates FEAL-8 ciphertext C' =
CEEF2C86 F2490752. For FEAL-16, the corresponding ciphertext isC’ = 3ADEOD2A
D84DOB6F; for FEAL-32, C” = 69BOFAE6 DDED6BOB. For 128-hit key (K, Kr)
with K;, = Kr = K as above, M has corresponding FEAL-8X ciphertext C"" =
92BEB65D0E9382FB. O

Note (strengthof FEAL) Table 7.10 givesvarious published attackson FEAL ; LCand DC
denote linear and differential cryptanalysis, and times are on common personal computers
or workstations.

attack data complexity storage processing
method known | chosen complexity complexity
FEAL-4—-LC 5 — 30K bytes 6 minutes
FEAL-6-LC 100 — 100K bytes 40 minutes
FEAL-8—LC | 2* 10 minutes
FEAL-8-DC 27 pairs | 280K bytes 2 minutes
FEAL-16—-DC — 229 pairs 230 operations
FEAL-24—DC — 245 pairs 246 operations
FEAL-32—-DC — 26 pairs 267 operations

Table 7.10: FEAL strength against various attacks.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§7.6 IDEA 263

7.6 IDEA

The cipher named IDEA (International Data Encryption Algorithm) encrypts 64-bit plain-
text to 64-hit ciphertext blocks, using a 128-bit input key K. Based in part on a novel
generalization of the Feistel structure, it consists of 8 computationally identical roundsfol-
lowed by an output transformation (see Figure 7.11). Round r usessix 16-bit subkeys K i(” ,
1 < i < 6, totransform a64-bit input X into an output of four 16-bit blocks, which arein-
put to the next round. The round 8 output enters the output transformation, employing four
additional subkeys Ki(g), 1 < i < 4 toproducethefinal ciphertextY = (Y1,Y5,Ys,Ys).
All subkeys are derived from K.

A dominant design concept in IDEA is mixing operations from three different alge-
braic groups of 2™ elements. The corresponding group operations on sub-blocksa and b of
bitlengthn = 16 are bitwise XOR: a®b; additionmod 2™: (a+ b) AND Ox FFFF, denoted
aHb; and (modified) multiplication mod 2™+ 1, with 0 € Zsr associated with 2™ € Zon y1:

a®b (see Note 7.104).
pIaintext (Xl, Xo, X3, X4)
X, Xo subkeys KZ(T) for round r X3 X4
16 16 16 16
KD EVH KD ) EVH HO
L ] L]
D) 6 ° T 16 |
round 1
| >< "
® ° ° . round r
L ] L] L] L]
L4 ° [ ° (2 S r S 8)
output
K9 K K | transformation
16 16

Yi Y ciphertext (Y1, Y2, Y3, Y1) Ys Y,
P bitwise XOR
FH addition mod 216
(® multiplication mod 21 + 1 (with 0 interpreted as 2°)

Figure 7.11: IDEA computation path.
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7.101 Algorithm IDEA encryption

INPUT: 64-bit plaintext M =mq...mea; 128-hit key K =F ... kis.
OUTPUT: 64-bit ciphertext block Y = (Y71, Y, Y3, Yy). (For decryption, see Note 7.103.)
1. (key schedule) Compute 16-bit subkeys KY), . ,Ké”) for rounds1 < r < 8, and
ng), e ,Kﬁg) for the output transformation, using Algorithm 7.102.
2. (X17X27X37X4) — (ml ..M, M7 - ..1732, N33 ... 148, TMN49 . . .m64),
where X; is a16-bit data store.
3. For round r from 1 to 8 do:
@ X1+ X10K", X4 « X40K, Xy « Xo B, Xy« XsBEK.
(b) to KéT)Q(Xl@Xg), t1 Ké”@(to H (XQ@X4)), to < tg H tq.
() X1+ X10t1, Xy « Xy®to, a + Xodty, Xo +— X3dt1, X3 < a.
4. (output transformation) Y7 <+ X1®K59), Y, X4®K£9), Yo +— X3 EEK%Q), Y3
(9)
X, BKy.

7.102 Algorithm IDEA key schedule (encryption)

INPUT: 128-hit key K =kFki...ki2s.

OUTPUT: 52 16-bit key sub-blocks K. f"”) for 8 rounds r and the output transformation.
1. Order thesubkeys KV ... k(" k@ . k... k® . k® K® . K.
2. Partition K into eight 16-bit blocks; assign these directly to the first 8 subkeys.

3. Do thefollowing until all 52 subkeys are assigned: cyclic shift K left 25 bits; parti-
tion the result into 8 blocks; assign these blocks to the next 8 subkeys.

The key schedule of Algorithm 7.102 may be converted into a table which lists, for
each of the 52 keys blocks, which 16 (consecutive) bits of the input key K formiit.

7.103 Note (IDEA decryption) Decryption is achieved using Algorithm 7.101 with the cipher-
text Y provided as input M, and the same encryption key K, but the following change
to the key schedule. First use K to derive al encryption subkeys K i(r); from these com-
pute the decryption subkeys K ’Y) per Table 7.11; thenuse K ’E”) inplaceof K i(r) in Algo-
rithm 7.101. In Table 7.11, — K; denotes the additive inverse (mod 21°) of K;: the integer
u = (2'® — K;) AND OXFFFF,0 < u < 21 — 1. K; ! denotesthe multiplicativeinverse
(mod 216 + 1) of K;, dsoin {0, 1,...,2'6 — 1}, derivable by the Extended Euclidean al-
gorithm (Algorithm 2.107), which on inputsa > b > 0 returns integers x and y such that
ar + by = ged(a,b). Usinga = 26 + 1and b = K, the gcd is always 1 (except for
K; = 0, addressed separately) and thus K; ' = y, or 216 41 + yif y < 0. When K, = 0,
thisinput is mapped to 216 (sincetheinverseisdefined by K;,0K,; ' = 1; see Note 7.104)
and (21¢)~! = 216 jsthen defined to give K, ' = 0.

7.104 Note (definition of ®) In IDEA, a®b corresponds to a (modified) multiplication, modulo
216+1, of unsigned 16-hitintegersa and b, where0 € Zy:s isassociated with 216 € Z3:6 4
asfollows:? if a = 0 or b = 0, replaceit by 216 (whichis= —1 mod 26 + 1) prior to
modular multiplication; and if the result is 21, replace this by 0. Thus, ® maps two 16-
bit inputs to a 16-bit output. Pseudo-codefor ® is asfollows (cf. Note 7.105, for ordinary

2Thus the operands of © are from a set of cardinality 216 (Z16.,,) asarethose of & and .
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7.105

7.106

7.107

ondr | &0 [ &Y | &Y | K0 [ &ED [ K7

R K§1ofr)),1 7K2(1077‘) 7K?()1077’) (Kilofr)),l Kégfr) K((ngr)
2 << | (0) 1 | 00| 00| (o) | k| R
r—9 Kglofr))_l _K2(107r) _Kél(]fr) (Kilofr))_l L L

Table 7.11: IDEA decryption subkeys K’E” derived from encryption subkeys KZ.(T).

multiplication mod 21¢ + 1), for ¢ a 32-hit unsigned integer: if (a = 0) r + (0x10001
— b) (since 216b = —b), elseif (b = 0) r + (0x10001 — a) (by similar reasoning), else
{c < ab;r + ((c AND OXFFFF) — (c >> 16));if (r < 0) r + (0x10001 +r)}, with
return value (r AND OxFFFF) in all 3 cases.

Note (implementingab mod 2™+ 1) Multiplication mod 216 + 1 may be efficiently imple-
mented asfollows, for 0 < a,b < 216 (cf. §14.3.4). Letc = ab = ¢ - 2% 4+ cg - 216 + ¢,
wherecg € {0,1} and 0 < cr,, ey < 2. To compute ¢ = ¢ mod (21¢ + 1), first obtain
cr, and cx by standard multiplication. For a = b = 26, notethat ¢y = 1, ¢, = cx = 0,
andc = (—1)(—1) = 1,since2'® = —1 mod (26 +1); otherwise, ¢, = 0. Consequently,
d=cp—cyg+coifer > cy,whiled =cp —cyg + (216 + 1) if ¢r < cy (sincethen
—216 < ¢, —cg < 0).

Example (IDEAtest vectors) Sampledatafor IDEA encryption of 64-bit plaintext M us-
ing 128-bitkey K isgivenin Table7.12. All entriesare 16-bit valuesdisplayed in hexadeci-
mal. Table 7.13 details the corresponding decryption of the resulting 64-bit ciphertext C

under the samekey K. O

128-bitkey K = (1, 2,3,4,5,6,7,8) 64-bit plaintext M = (0, 1,2, 3)
r]] kK9] k7] k7] K7 ] K] K X X| X3 Xu
1]/ 0001 [ 0002 | 0003 | 0004 | 0005 | 0006 || OOFO | 00F5 | 010a | 0105
2 || 0007 | 0008 | 0400 | 0600 | 0800 | 0200 || 222f | 21b5 | f 45e | €959
3 || 0c00 | 0e00 | 1000 | 0200 | 0010 | 0014 || Of 86 | 39be | 8ee8 | 1173
4 || 0018 | 001c | 0020 | 0004 | 0008 | 000c || 57df | ac58 | c65b | basd
5 || 2800 | 3000 | 3800 | 4000 | 0800 | 1000 || 8e81 | ba9c | f 77f | 3ada
6 || 1800 | 2000 | 0070 | 0080 | 0010 | 0020 || 6942 | 9409 | e21b | 1c64
7 || 0030 | 0040 | 0050 | 0060 | 0000 | 2000 || 99d0 | c7f6 | 5331 | 620e
8 || 4000 | 6000 | 8000 | a000 | cO00 | €001 || 0a24 | 0098 | ec6b | 4925
9 || 0080 | 00cO | 0100 | 0140 — | — || 112fb | ed2b | 0198 | 6de5

Table 7.12: IDEA encryption sample: round subkeys and ciphertext (X1, X2, X3, X4).

Note (security of IDEA) For the full 8-round IDEA, other than attacks on weak keys (see
page 279), no published attack is better than exhaustive search on the 128-hit key space.
The security of IDEA currently appears bounded only by the weaknesses arising from the
relatively small (compared to its keylength) blocklength of 64 bits.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



266

Ch. 7 Block Ciphers

K =(1,2,3,4,5,6,7,8) C =(11f b,ed2b,0198,6de5)
K/Y) K/g") K/gr) K/ir) K/ér) K/ér) X, X5 X;3 X,
feOl | ff40 | ff00 | 659a | cO00 | e001 || d98d | d331 | 27f6 | 82b8
fffd | 8000 | a000 | cccc | 0000 | 2000 || bc4d | e26b | 9449 | a576
ab56 | ffbO | ffcO | 52ab | 0010 | 0020 || 0aa4 | f 7ef | da9c | 24e3
554b | ff90 | e000 | feO1 | 0800 | 1000 || cad46 | fe5b | dc58 | 116d
332d | ¢800 | dOOO | fffd | 0008 | 000c || 748f | 808 | 39da | 45cc
4aab | ffeO | ffe4 | cOO1 | 0010 | 0014 || 3266 | 045e | 2f b5 | b02e
aa96 | f000 | f200 | ff81 | 0800 | 0a00 || 0690 | 050a | 00fd | 1dfa
4925 | fc00 | fff8 | 552b | 0005 | 0006 || 0000 | 0005 | 0003 | 000c
0001 |fffe | fffd | cO01 — — || 0000 | 0001 | 0002 | 0003

© oO~NOOULHAWNBRT

Table 7.13: IDEA decryption sample: round subkeys and variables (X1, X2, X3, X4).

7.7 SAFER, RC5, and other block ciphers

7.7.1 SAFER

SAFER K-64 (Secure And Fast Encryption Routine, with 64-bit key) is an iterated block
cipher with 64-bit plaintext and ciphertext blocks. It consistsof  identical roundsfollowed
by an output transformation. The original recommendation of 6 rounds was followed by a
recommendation to adopt adlightly modified key schedule (yielding SAFER SK-64, which
should be used rather than SAFER K-64 — see Note 7.110) and to use 8 rounds (maximum
r = 10). Both key schedul es expand the 64-bit external key into 2r 4 1 subkeyseach of 64-
bits (two for each round plus one for the output transformation). SAFER consists entirely
of simple byte operations, aside from byte-rotationsin the key schedule; it is thus suitable
for processors with small word size such as chipcards (cf. FEAL).

Details of SAFER K-64 are given in Algorithm 7.108 and Figure 7.12 (see also page
280 regarding SAFER K-128 and SAFER SK-128). The XOR-addition stage beginning
each round (identical to the output transformation) XORs bytes 1, 4, 5, and 8 of the (first)
round subkey with the respective round input bytes, and respectively adds (mod 256) there-
maining 4 subkey bytesto the others. The X OR and addition (mod 256) operationsareinter-
changed in the subsequent addition-X OR stage. The S-boxes are an invertible byte-to-byte
substitution using one fixed 8-bit bijection (see Note 7.111). A linear transformation f (the
Pseudo-Hadamard Transform) used in the 3-level linear layer was specially constructed for
rapid diffusion. Theintroduction of additive key biasesin thekey schedul e eliminatesweak
keys(cf. DES, IDEA). In contrast to Feistel-like and many other ciphers, in SAFER the op-
erations used for encryption differ from thosefor decryption (see Note 7.113). SAFER may
be viewed as an SP network (Definition 7.79).

Algorithm 7.108 uses the following definitions (L, R denote left, right 8-bit inputs):

1. f(L,R) = (2L + R, L + R). Addition hereismod 256 (also denoted by H);
2. tables S and Si,y, and the constant table for key biases B;[;] as per Note 7.111.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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X1 Xo X3 X4 X5 Xe X7 Xg 64-bit plaintext

= KalL..8]

Y !
round 1 25 ©® ©® =8 25

eee w—
o000 «—

round 4
(2<i<r)

— 8
output
transformation s

Y1 Yo Y3 Yy Ys

Y
% —-— Ko,-41[1,...,8]
Ys

64-bit ciphertext

§<—Bﬂ<7 000 |

P bitwise XOR
FH addition mod 28
flz,y)=(2zBHy,zHBy)

Figure 7.12: SAFER K-64 computation path (r rounds).
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7.108 Algorithm SAFER K-64 encryption (r rounds)

INPUT: r, 6 < r < 10; 64-bit plaintext M = my ---mgq and key K = ky - - - kg4.
OUTPUT: 64-bit ciphertext block Y = (Y7, ... ,Ys). (For decryption, see Note 7.113.)
1. Compute 64-bit subkeys K, ... , Ko,.11 by Algorithm 7.109 with inputs K and r.
2. (X1,X2,...,Xg) « (my---mg, mg---Mig, ..., Ms7-"-Mg4).
3. For i from 1to r do: (XOR-addition, S-box, addition-XOR, and 3 linear layers)
(@ Forj=1,4,5,8: X; + X; & Ko 1[j].
Forj=2,3,6,7: Xj — Xj H Kgifl[j].
(b) Forj=1,4,5,8 X; «+ S[X;]. Forj =2,3,6,7: X; < Sinv[X;].
(c) Forj =1,4,5,8: X; + X; B Ky[j]. Forj =2,3,6,7: X; « X; & Kylj].
(d) Forj = 1,3,5,7: (Xj,Xj+1) — f(Xj,Xj+1).
(e) (1/1’}/2) «— f(XlaX?)): (Y37Y4) «— f(X57X7)1
(Ys,Ys)  f(X2,X4), (Y7,Y3) < f(X6, Xg).
For j from1to8do: X; «+ Yj.
(f) (1,Y2) « f(X1,X3), (Y3,Ys) < f(Xs, X7),
(YVE)’Y'ﬁ) «— f(X27X4): (Y77Y8) «— f(XﬁaXS)-
For j from1to8do: X; < Y;. (Thismimicsthe previous step.)
4. (output transformation):
Forj=1,4,5,8Y; < X; & Ko,11[j]. Forj =2,3,6,7: Y; « X; B Kory1[j].

7.109 Algorithm SAFER K-64 key schedule

INPUT: 64-bit key K = ky - - - kg4; number of rounds .
OUTPUT: 64-hit subkeys K1, . .., Ka,+1. K;[j] isbyte j of K; (numbered left to right).
1. Let RJ¢] denote an 8-bit data store and let B;[j] denote byte j of B; (Note 7.111).
2. (R[1],R[2],... ,R[8]) < (k1---ks, kg~ ki, ---, k7" kea)-
3. (Ki[1], K1[2],...,K1[8]) « (R[1], R[2],-... , R[8]).
4. For ¢ from 2 to 2r + 1 do: (rotate key bytes|eft 3 bits, then add in the bias)
(@ Forjfrom1lto8do: R[j] «+ (R[j] < 3).
(b) For j from 1to 8 do: K;[j] + R[j] B B;[j]. (See Note 7.110.)

7.110 Note (SAFER SK-64 — strengthened key schedule) An improved key schedule for Algo-
rithm 7.108, resulting in SAFER SK-64, involves three changes as follows. (i) After ini-
tializing the R[] in step 1 of Algorithm 7.109, set R[9] < R[1]®&R[2]® - -- ®R[8]. (ii)
Change the upper bound on theloop index in step 4afrom 8o 9. (iii) Replace the iterated
lineinstep 4bby: K;[j] < R[((i +j — 2) mod 9) + 1] H B;[j]. Thus, key bytes1,...,8
of R[-] areused for K1; bytes2,... ,9 for K»; bytes3,...9,1 for K3, etc. Hereand origi-
nally, Fi denotes addition mod 256. No attack against SAFER SK-64 better than exhaustive
key search is known.

7.111 Note (Shoxesand key biasesin SAFER) The S-box, inverse S-box, and key biasesfor Al-
gorithm 7.108 are constant tables asfollows. g < 45. S[0] < 1, Sinv[1] < 0. for ¢ from
1to255do: ¢ « g - S[i — 1] mod 257, S[i] < t, Sinv[t] < ¢. Findly, S[128] « 0,
Sinv[0] < 128. (Since g generates Zs;,, S[i] isabijectionon {0, 1,... ,255}. (Note that
g'?® = 256 (mod 257), and associating 256 with 0 makes S a mapping with 8-bit input
and output.) The additive key biases are 8-bit constants used in the key schedule (Algo-
rithm 7.109), intended to behave as random numbers, and defined B;[j] = S[S[9i+ ]| for i
from2to2r+1andj from1to8. For example: B = (22,115, 59, 30,142,112,189,134)
and B3 = (143,41,221,4,128, 222,231, 49).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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7.112 Remark (Sbox mapping) The S-box of Note 7.111 is based on the function S(z) = ¢*
mod 257 usingaprimitiveelement g = 45 € Zos7. Thismappingisnonlinear with respect
to both Zy57 arithmetic and the vector space of 8-tuples over Fy under the XOR operation.
Theinverse S-box is based on the base-g logarithm function.

7.113 Note (SAFER K-64 decryption) For decryption of Algorithm 7.108, the ssme key K and
subkeys K; are used as for encryption. Each encryption step is undone in reverse order,
from last to first. Begin with an input transformation (XOR-subtraction stage) with key
K4,41 toundo the output transformation, replacing modul ar addition with subtraction. Fol-
low with r decryption rounds using keys Ks,. through K; (two-per-round), inverting each
round in turn. Each starts with a 3-stage inverse linear layer using finy(L,R) = (L —
R, 2R — L), with subtraction here mod 256, in a 3-step sequence defined as follows (to
invert the byte-permutati ons between encryption stages):

Level 1 (forj =1,3,5, 7) (Xj, Xj+1) — finv(Xj7 Xj+1).

Levels2 and 3 (each): (Y1,Y2) < finv(X1, X5), (Y3,Y1) < finv(X2, X6),

(Ys,Ys) « finv(Xs, X7), (Y7,Y3) < finv(X4, X3); for j from 1 to 8 do: X; « ;.

A subtraction-X OR stage follows (replace modular addition with subtraction), then an in-
verse substitution stage (exchange S and S 1), and an X OR-subtraction stage.

7.114 Example (SAFERtest vectors) Using 6-round SAFER K-64 (Algorithm 7.108) on the 64-
bit plaintext M = (1,2,3,4,5,6,7,8) withthekey K = (8,7,6,5,4,3,2,1) resultsin
the ciphertext C' = (200, 242, 156, 221, 135,120, 62, 217), written as 8 bytes in decimal.
Using 6-round SAFER SK-64 (Note 7.110) on the plaintext M above with the key K =
(1,2,3,4,5,6,7,8) resultsin the ciphertext C' = (95, 206, 155,162, 5, 132,56,199). O

7.7.2 RC5

The RC5 block cipher has aword-oriented architecturefor variableword sizesw = 16, 32,
or 64 bits. It hasan extremely compact description, and issuitablefor hardware or software.
The number of roundsr and the key byte-length b are also variable. It is successively more
completely identified as RC5—w, RC5—w/r, and RC5—w/r/b. RC5-32/12/16 is considered
acommon choice of parameters; » = 12 rounds are recommended for RC5-32, and r = 16
for RC5-64.

Algorithm 7.115 specifies RC5. Plaintext and ciphertext are blocks of bitlength 2w.
Each of » rounds updates both w-bit datahalves, using 2 subkeysin an input transformation
and 2 more for each round. The only operations used, all on w-bit words, are addition mod
2" (H), XOR (&), and rotations (left <— and right —). The XOR operation islinear, while
the addition may be considered nonlinear depending on the metric for linearity. The data-
dependent rotations featured in RC5 are the main nonlinear operation used: x «+— y denotes
cyclically shifting aw-bit word left y bits; the rotation-count y may be reduced mod w (the
low-order lg(w) bits of y suffice). The key schedule expands akey of b bytesinto 2r + 2
subkeys K; of w bits each. Regarding packing/unpacking bytes into words, the byte-order
islittle-endian: for w = 32, the first plaintext byte goes in the low-order end of A, the
fourth in A’s high-order end, the fifth in B’slow order end, and so on.
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7.115 Algorithm RC5 encryption (w-bit wordsize, r rounds, b-byte key)

INPUT: 2w-bit plaintext M = (A, B); r; key K = K[0]...K[b — 1].

OUTPUT: 2w-bit ciphertext C. (For decryption, see Note 7.117.)
1. Compute 2r + 2 subkeys Ky, . . . , Ko,11 by Algorithm 7.116 from inputs K and r.
2. A+ AHK,, B+« BH K;. (Useaddition modulo 2%.)
3. Forifromltordo: A<« ((A®B) < B)HKy;, B+ ((B®A) «+ A)HE Koi1.
4. TheoutputisC + (A, B).

7.116 Algorithm RCS5 key schedule

INPUT: word bitsize w; number of rounds r; b-bytekey K0] ... K[b— 1].
OUTPUT: subkeys Ko, ... , Kor+1 (Where K; isw bits).

1. Letu = w/8 (number of bytes per word) and ¢ = [b/w] (number of words K fills).
Pad K on theright with zero-bytesif necessary to achieve a byte-count divisible by
u(ie, K[j] < 0forb<j<c-u—1). ForifromOtoc—1do: L; + > %) 2%
K[i-u+j] (i.e,fill L; low-order to high-order byte using each byte of K [-]7 once).

2. Koy «+ P,; forifrom1to2r+1do: K; + K; 1 HQ,. (UseTable7.14.)

3.1+ 0,7+ 0,A+0,B <+ 0,t«+ max(c,2r + 2). For s from 1 to 3¢ do:

(@ K;+ (K;BABB) <3, A« K;, i < i+ 1mod (2r + 2).
() L; + (L,BAEB)«+ (ABB), B+ Lj, j<+ j+1modec
4. Theoutputis Ko, K1,... ,K2r+1. (The L; are not used.)

7.117 Note (RCS5 decryption) Decryption uses the Algorithm 7.115 subkeys, operating on ci-
phertext C = (A, B) asfollows (subtraction is mod 2%, denoted H). For i from r down
(AB Ky, BHK,).

w: 16 32 64
Py : B7E1 | B7E15163 | B7E15162 8AED2A6B
Quw: || 9E37 | 9E3779B9 | 9E3779B9 7F4A7Cl5

Table 7.14: RC5 magic constants (given as hex strings).

7.118 Example (RC5-32/12/16 test vectors) For the hexadecimal plaintext M = 65C178B2
84D197CCand key K = 5269F149 D41BA015 2497574D 7F153125, RC5 with
w = 32, r =12, and b = 16 generates ciphertext C = EB44E415 DA319824. O

7.7.3 Other block ciphers

LOKI'91 (and earlier, LOKI’ 89) was proposed asa DES alternativewith alarger 64-bit key,
amatching 64-bit blocksize, and 16 rounds. It differsfrom DES mainly in key-scheduling
and the f-function. The f-function of each round uses four identical 12-to-8 bit S-boxes,
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4 input bits of which select one of 16 functions, each of which implements exponentia-
tion with a fixed exponent in a different representation of GF(28). While no significant ex-
ploitable weaknesses have been found in LOKI’ 91 when used for encryption, related-key
attacks (see page 281) are viewed as a certificational weakness.

Khufu and Khafre are DES-like ciphers which were proposed asfast software-oriented
alternatives to DES. They have 64-hit blocks, 8 x 32 bit S-boxes, and a variable number
of rounds (typicaly 16, 24, or 32). Khufu keys may be up to 512 hits. Khafre keys have
bitlength that is a multiple of 64 (64 and 128-bit keys are typical); 64 key bits are XORed
onto the data block before thefirst and thereafter following every 8 rounds. WhereasaDES
round involves eight 6-to-4 bit S-boxes, one round of Khufu involves a single 8-to-32 bit
table look-up, with adifferent S-box for every 8 rounds. The S-boxes are generated pseu-
dorandomly from the user key. Khafre uses fixed S-boxes generated pseudorandomly from
aninitial S-box constructed from random numbers published by the RAND corporationin
1955. Under the best currently known attacks, 16-round Khufu and 24-round Khafre are
each more difficult to break than DES.

7.8 Notes and further references

§7.1

§7.2

The extensive and particularly readable survey by Diffie and Hellman [347], providing a
broad introduction to cryptography especially noteworthy for its treatment of Hagelin and
rotor machines and the valuable annotated bibliography circa 1979, is a source for much
of the material in §7.2, §7.3, and §7.4 herein. Aside from the appearance of DES [396] in
the mid 1970s and FEAL [884] later in the 1980s, prior to 1990 few fully-specified seri-
ous symmetric block cipher proposals were widely available or discussed. (See Chapter 15
for Pohlig and Hellman's 1978 discrete exponentiation cipher.) With the increasing feasi-
bility of exhaustive search on 56-bit DES keys, the period 1990-1995 resulted in a large
number of proposals, beginning with PES [728], the preliminary version of IDEA [730].
The Fast Software Encryption workshops (Cambridge, U.K., Dec. 1993; L euven, Belgium,
Dec. 1994; and again Cambridge, Feb. 1996) were amajor stimulusand forum for new pro-
posals.

Themost significant cryptanal ytic advancesover the 1990-1995 period were Matsui’slinear
cryptanalysis[796, 795], and the differential cryptanalysisof Biham and Shamir [138] (see
also [134, 139]). Extensions of these included the differential-linear analysis by Langford
and Hellman [741], and thetruncated differential analysisof Knudsen [686]. For additional
background on linear cryptanalysis, see Biham [132]; see also Matsui and Yamagishi [798]
for apreliminary version of the method. Additional background on differential cryptanal-
ysisis provided by many authorsincluding Lai [726], Lai, Massey, and Murphy [730], and
Coppersmith [271]; although more efficient 6-round attacks are known, Stinson [1178] pro-
vides detailed exampl es of attacks on 3-round and 6-round DES. Regarding both linear and
differential cryptanalysis, see also Knudsen [684] and Kaliski and Yin [656].

Lai [726, Chapter 2] providesan excellent conciseintroductionto block ciphers, includinga
lucid discussion of design principles(recommendedfor all block cipher designers). Regard-
ing text dictionary and matching ciphertext attacks (Note 7.8), see Coppersmith, Johnson,
and Matyas [278]. Rivest and Sherman [1061] provide a unified framework for random-
ized encryption (Definition 7.3); acommon example is the use of random “salt” appended

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



272

Ch. 7 Block Ciphers

to passwords prior to password encryption in some operating systems (§10.2.3). Fact 7.91is
due to Shannon [1121], whose contributions are many (see below).

Thefour basic modes of operation (including k-bit OFB feedback) were originally defined
specifically for DESin 1980 by FIPS81[398] and in 1983 by ANSI X3.106[34], while| SO
8732 [578] and ISO/IEC 10116 [604], respectively, defined these modes for general 64-bit
and general n-bit block ciphers, mandating n-bit OFB feedback (see also Chapter 15). Bras-
sard [192] givesaconcise summary of modesof operation; Daviesand Price[308] providea
comprehensivediscussion, including OFB cycling (Note 7.24; see also Jueneman [643] and
Davies and Parkin [307]), and amethod for encrypting incomplete CBC final blocks with-
out data expansion, which isimportant if plaintext must be encrypted and returned into its
original store. See Voydock and Kent [1225] for additional requirementson IV's. Recom-
mending r = s for maximum strength, | SO/IEC 10116 [604] specifiesthe CFB variation of
Example 7.19, and provides extensive discussion of properties of the various modes. The
counter mode (Example 7.23) was suggested by Diffie and Hellman [347].

The 1977 exhaustive DES key search machine (Example 7.27) proposed by Diffieand Hell-
man [346] contained 106 DES chips, with estimated cost US$20 million (1977 technology)
and 12-hour expected search time; Diffie later revised the estimate upwards one order of
magnitudein aBNR Inc. report (US$50 million machine, 2-day expected search time, 1980
technology). Diffie and Hellman noted the feasibility of a ciphertext-only attack (Exam-
ple 7.28), and that attempting to preclude exhaustive search by changing DES keys more
frequently, at best, doubles the expected search time before success.

Subsequently Wiener [1241] provided agate-level design for aUS$1 million machine (1993
technology) using 57 600 DES chips with expected success in 3.5 hours. Each chip con-
tains 16 pipelined stages, each stage completing in one clock tick at 50 MHz; a chip with
full pipeline completes akey test every 20 nanoseconds, providing amachine 57 600 x 50
times faster than the 1142 years noted in FIPS 74 [397] as the time required to check 2°°
keysif onekey can betested each microsecond. Comparablekey search machines of equiv-
alent cost by Eberle [362] and Wayner [1231] are, respectively, 55 and 200 times slower,
although the former does not require a chip design, and the latter uses a general-purpose
machine. Wiener also noted adaptations of the ECB known-plaintext attack to other 64-bit
modes (CBC, OFB, CFB) and 1-hit and 8-bit CFB.

Even and Goldreich [376] discuss the unicity distance of cascade ciphers under known-
plaintext attack (Fact 7.35), present a generalized time-memory meet-in-the-middle trade-
off (Note 7.38), and give severa other concise results on cascades, including that under
reasonable assumptions, the number of permutations realizable by a cascade of L random
cipher stages s, with high probability, 2%,

Diffie and Hellman [346] noted the meet-in-the-middle attack on double encryption (Fact
7.33), motivating their recommendation that multiple encipherment, if used, should be at
least three-fold; Hoffman [558] credits them with suggesting E-E-E triple encryption with
three independent keys. Merkle's June 1979 thesis [850] explains the attack on two-key
triple-encryption of Fact 7.39 (see a'so Merkle and Hellman [858]), and after noting Tuch-
man’sproposal of two-key E-D-E triple encryptionin aJune 1978 conferencetalk (National
Computer Conference, Anaheim, CA; see also [1199]), recommended that E-D-E be used
with three independent keys: Ex3(Ex5(Ex1(z))). Thetwo-key E-D-E idea, adopted in
ANSI X9.17[37] and SO 8732 [578], was reportedly conceived circaApril 1977 by Tuch-
man'’s colleagues, Matyas and Meyer. The attack of Fact 7.40 is due to van Oorschot and
Wiener [1206]. See Coppersmith, Johnson, and Matyas [278] for a proposed construction
for atriple-DES algorithm. Other techniques intended to extend the strength of DES in-
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§7.3

cludethe DESX proposal of Rivest asanalyzed by Kilian and Rogaway [672], and the work
of Biham and Biryukov [133].

Hellman [549] proposes atime-memory tradeoff for exhaustive key search on acipher with
N = 2™ ciphertextsrequiring achosen-plaintext attack, O(N2/3) timeand O(N?/3) space
after an O(NN) precomputation; search time can be reduced somewhat by use of Rivest's
suggestion of distinguished points (see Denning [326, p.100]). Kusuda and Matsumoto
[722] recently extended this analysis. Fiat and Naor [393] pursue time-memory tradeoffs
for more general functions. Amirazizi and Hellman [25] note that time-memory tradeoff
with constant time-memory product offers no asymptotic cost advantage over exhaustive
search; they examine tradeoffs between time, memory, and parallel processing, and using
standard parall€elization techniques, propose under asimplified model a search machine ar-
chitecture for which doubling the machine budget (cost) increases the solution rate four-
fold. Thisapproach may be applied to exhaustive key search on double-encryption, as can
the parallel collision search technique of van Oorschot and Wiener [1207, 1208]; see also
Quisguater and Delescaille [1017, 1018].

Regarding Note 7.41, see Biham [131] (and earlier [130]) as well as Coppersmith, John-
son, and Matyas[278]. Biham’sanalysison DES and FEAL showsthat, in many cases, the
use of intermediate data as feedback into an intermediate stage reduces security. 15 years
earlier, reflecting on his chosen-plaintext attack on two-key triple-encryption, Merkle[850,
p.149] noted “multiple encryption with any cryptographic system is liable to be much less
secure than a system designed originally for the longer key”.

Maurer and Massey [822] formalize Fact 7.42, where “break” means recovering plaintext
from ciphertext (under aknown-plaintext attack) or recovering the key; theresultshold also
for chosen-plaintext and chosen-ciphertext attack. They illustrate, however, that the ear-
lier result and commonly-held belief proven by Even and Goldreich [376] — that a cascade
is as strong as any of its component ciphers — requires the important qualifying (and non-
practical) assumption that an adversary will not exploit statistics of the underlying plaintext;
thus, the intuitive result is untrue for most practical ciphertext-only attacks.

Kahn [648] is the definitive historical reference for classical ciphers and machines up to
1967, including much of §7.3 and the notes below. The selection of classical ciphers pre-
sented largely follows Shannon’slucid 1949 paper [1121]. Standard referencesfor classical
cryptanalysisinclude Friedman [423], Gaines[436], and Sinkov [1152]. Morerecent books
providing expository material on classical ciphers, machines, and cryptanalytic examples
include Beker and Piper [84], Meyer and Matyas [859], Denning [326], and Davies and
Price[308].

Polyal phabetic ciphers were invented circa 1467 by the Florentine architect Alberti, who
devised a cipher disk with alarger outer and smaller inner wheel, respectively indexed by
plaintext and ciphertext characters. Letter alignments defined a simple substitution, modi-
fied by rotating the disk after enciphering afew words. Thefirst printed book on cryptogra-
phy, Polygraphia, written in 1508 by the German monk Trithemius and published in 1518,
containsthe first tableau — a square table on 24 characterslisting all shift substitutionsfor a
fixed ordering of plaintext alphabet characters. Tableau rowswere used sequentially to sub-
gtitute one plaintext character each for 24 letters, where-after the same tableau or one based
on adifferent alphabet ordering was used. In 1553 Belaso (from Lombardy) suggested us-
ing an easily changed key (and key-phrases as memory aids) to define the fixed al phabetic
(shift) substitutionsin a polyal phabetic substitution. The 1563 book of Porta (from Naples)
noted the ordering of tableau letters may define arbitrary substitutions (vs. simply shifted
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alphabets).

Various polyal phabetic auto-key ciphers, wherein the key changes with each message (the
alteration depending on the message), were explored in the 16th century, most significantly
by the Frenchman B. de Vigenere. His 1586 book Traicté des Chiffres proposed the com-
bined use of amixed tableau (mixed al phabet on both the tableau top and side) and an auto-
keying technique (cf. Example 7.61). A single character served as a priming key to select
the tableau row for the first character substitution, where-after the ith plaintext character
determined the alphabet (tableau row) for substituting the next. The far less secure simple
Vigenére cipher (Definition 7.53) isincorrectly attributed to Vigenere.

The Playfair cipher (Example 7.51), popularized by L. Playfair in England circa 1854 and
invented by the British scientist C. Wheatstone, was used asaBritish field cipher [648, p.6].
J. Mauborgne (see a so the Vernam and PURPLE ciphers below) is credited in 1914 with
the first known solution of this digram cipher.

The Jefferson cylinder was designed by American statesman T. Jefferson, circa 1790-1800.
In 1817, fellow American D. Wadsworth introduced the principle of plaintext and cipher-
text alphabetsof different lengths. Hisdisk (cf. Alberti above) implemented acipher similar
to Trithemius' polyal phabetic substitution, but wherein the various al phabets were brought
into play irregularly in a plaintext-dependent manner, foreshadowing both the polyal pha-
betic ciphers of later 20th century rotor machines, and the concept of chaining. The inner
disk had 26 |etterswhilethe outer had an additional 7 digits; onefull revolution of thelarger
caused the smaller to advance 7 charactersinto its second revolution. Thedriving disk was
alwaysturned in the same clockwi se sense; when the character reveal ed through an aperture
inthe plaintext disk matched the next plaintext character, that visible through a correspond-
ing ciphertext aperture indicated the resulting ciphertext. In 1867, Wheatstone displayed
an independently devised similar device thereafter called the Wheatstone disc, receiving
greater attention although less secure (having disks of respectively 26 and 27 characters,
the extra character a plaintext space).

Vernam [1222] recorded hisideafor telegraph encryptionin 1917; apatent filed in Septem-
ber 1918 wasissued July 1919. Vernam’sdevice combined a stream of plaintext (5-bit Bau-
dot coded) characters, viaX OR, with akeystream of 5-bit (key) values, resulting in the Ver-
nam cipher (aterm often used for related techniques). This, thefirst polyal phabetic substi-
tution automated using electrical impulses, had period equal to the length of the key stream;
each 5-bit key value determined one of 32 fixed mono-al phabetic substitutions. Credit for
the actual one-time system goes to J. Mauborgne (U.S. Army) who, after seeing Vernam's
device with arepeated tape, realized that use of arandom, non-repeated key improved se-
curity. While Vernam'’s device was a commercial failure, a related German system engi-
neered by W. Kunze, R. Schauffler, and E. Langlotz was put into practice circa 1921-1923
for German diplomatic communications; their encryption system, which involved manu-
ally adding a key string to decimal-coded plaintext, was secured by using as the numerical
key a random non-repeating decimal digit stream — the original one-time pad. Pads of 50
numbered sheetswere used, each with 48 five-digit groups; no padswere repeated aside for
one identical pad for a communicating partner, and no sheet was to be used twice; sheets
were destroyed once used. The Vernam cipher proper, when used as aone-time system, in-
volvesonly 32 aphabets, but provides more security than rotor machineswith afar greater
number of al phabets becausethe latter eventually repeat, whereasthereistotal randomness
(for each plaintext character) in selecting among the 32 Vernam alphabets.

The matrix cipher of Example 7.52 was proposed in 1929 by Hill [557], providing a practi-
cal method for polygraphic substitution, albeit alinear transf ormation susceptibleto known-
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plaintext attack. Hill also recognized that using an involution asthe encryption mapping al-
lowed the same function to provide decryption. Recent contributions on homophonic sub-
gtitution include Guinther [529] and Jendal, Kuhn, and Massey [636].

Among the unrivalled cryptanalytic contributions of the Russian-born American Friedman
is his 1920 Riverbank Publication no.22 [426] on cryptanalysis using the index of coinci-
dence. Friedman coined the term cryptanalysisin 1920, using it in his 1923 book Elements
of Cryptanalysis[425], a 1944 expansion of which, Military Cryptanalysis [423], remains
highly recommended. The method of Kasiski (from West Prussia) was originally published
in 1863; see Kahn [648, pp.208-213] for adetailed example. Thediscussion on IC and MR
followsthat of Denning [326], itself based on Sinkov [1152]. Fact 7.75 followsfrom astan-
dard expectation computation weighted by «,, or «, depending on whether the second of a
pair of randomly selected ciphertext charactersis from the same ciphertext al phabet or one
of thet — 1 remaining aphabets. The valuesin Table 7.1 are from Kahn [648], and vary
somewhat over time as languages evolve.

Friedman teaches how to cryptanalyze running-key ciphersin his (circa 1918) Riverbank
Publication no.16, Methods for the Solution of Running-Key Ciphers; the two basic tech-
niquesare outlined by Diffieand Hellman[347]. Thefirstisaprobableword attack wherein
an attacker guesses an (e.g., 10 character) word hopefully present in underlying text, and
subtracts that word (mod 26) from all possible starting locationsin the ciphertext in hopes
of finding a recognizable 10-character result, where-after the guessed word (as either par-
tial running-key or plaintext) might be extended using context. Probable-word attacks also
apply to polyalphabetic substitution. The second technique is based on the fact that each
ciphertext letter ¢ resultsfrom apair of plaintext/running-key letters (m;, m}), and is most
likely to result from such pairswherein both m; and m;, are high-frequency characters; one
isolates the highest-probability pairs for each such ciphertext character value ¢, makestria
assumptions, and attemptsto extend apparently successful guesses by similarly decrypting
adjacent ciphertext characters; see Denning [326, p.83] for a partial example. Diffie and
Hellman [347] note Fact 7.59 as an obvious method that is little-used (modern ciphers be-
ing more convenient); their suggestion that use of four iterative running keysisunbreakable
follows from English being 75% redundant. They also briefly summarize various scram-
bling techniques (encryption via analog rather than digital methods), noting that analog
scramblers are sometimes used in practice due to lower bandwidth and cost requirements,
although such known techniques appear relatively insecure (possibly an inherent character-
istic) and their useis waning as digital networks become prevalent.

Denning [326] tabulates digramsinto high, medium, low, and rare classes. Konheim [ 705,
p.24] provides transition probabilities p(t|s), the probability that the next letter is ¢ given
that the current character is s in English text, in a table also presented by H. van Tilborg
[1210]. Single-letter distributions in plaintext languages other than English are given by
Davies and Price [308]. The letter frequenciesin Figure 7.5, which should be interpreted
only asan estimate, were derived by Meyer and Matyas[859] using excerptstotaling 4 mil-
lion characters from the 1964 publication: W. Francis, A Sandard Sample of Present-Day
Edited American English for Use with Digital Computers, Linguistics Dept., Brown Uni-
versity, Providence, Rhode Island, USA. Figure 7.6 is based on data from Konheim [705,
p.19] giving an estimated probability distribution of 2-grams in English, derived from a
sample of size 67 320 digrams.

See Shannon [1122] and Cover and King [285] regarding redundancy and Fact 7.67. While
not proven in any concrete manner, Fact 7.68 is noted by Friedman [424] and generally
accepted. Unicity distance was defined by Shannon [1121]. Related issuesare discussed in
detail in various appendices of Meyer and Matyas [859]. Fact 7.71 and the random cipher
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§7.4

model are due to Shannon [1121]; see also Hellman [548].

Diffieand Hellman [347] give an instructive overview of rotor machines (see also Denning
[326]), and notetheir usein World War |1 by the Americansin their highest level system, the
British, and the Germans (Enigma); they also give Fact 7.63 and the number of characters
required under ciphertext-only and known-plaintext attacks (Note 7.66). Beker and Piper
[84] provide technical details of the Hagelin M-209, as does Kahn [648, pp.427-431] who
notes its remarkable compactness and weight: 3.25 x 5.5 x 7 inches and 6 Ib. (including
case); seealso Barker [74], Morris[906], and Rivest [1053]. Daviesand Price [308] briefly
discussthe Enigma, noting it was cryptanalyzed during World War 11 in Poland, France, and
then in the U.K. (Bletchley Park); see also Konheim [705].

The Japanese PURPLE cipher, used during World War 11, wasapolyal phabetic cipher crypt-
analyzed August 1940 [648, p.18-23] by Friedman’s team in the U.S. Signal Intelligence
Service, under (Chief Signal Officer) Mauborgne. The earlier RED cipher used two rotor
arrays, preceding it, the ORANGE system implemented a vowels-to-vowels, consonants-
to-consonants cipher using sets of rotors.

The concept of fractionation, related to product ciphers, isnoted by Feistel [387], Shannon
[1121], and Kahn [648, p.344] who identifiesthisideain an early product cipher, the WWI
German ADFGVX field cipher. As an example, an encryption function might operate on
ablock of ¢ = 8 plaintext characters in three stages as follows: the first substitutes two
symbolsfor each individual character; the second transposes (mixes) the substituted sym-
bolsamong themselves; the third re-groups adjacent resulting symbol s and maps them back
to the plaintext alphabet. The action of the transposition on partia (rather than complete)
characters contributes to the strength of the principle.

Shannon [1121, §5 and §23-26] explored the idea of the product of two ciphers, noted the
principles of confusion and diffusion (Remark 1.36), and introduced the idea of a mixing
transformation F' (suggesting a preliminary transposition followed by a sequence of ater-
nating substitution and simple linear operations), and combining ciphersin aproduct using
an intervening transformation F'. Transposition and substitution, respectively, rest on the
principlesof diffusion and confusion. Harpes, Kramer, and Massey [541] discussagenera
model for iterated block ciphers (cf. Definition 7.80).

The name Lucifer is associated with two very different algorithms. The first is an SP net-
work described by Feistel [387], which employs (bitwise nonlinear) 4 x 4 invertible S-
boxes; the second, closely related to DES (albeit significantly weaker), is described by
Smith [1160] (see also Sorkin [1165]). Principles related to both are discussed by Feis-
tel, Notz, and Smith [388]; both are analyzed by Biham and Shamir [138], and the latter in
greater detail by Ben-Aroya and Biham [108] whose extension of differential cryptanaly-
sis allows, using 236 chosen plaintexts and complexity, attack on 55% of the key spacein
Smith’s Lucifer — till infeasible in practice, but illustrating inferiority to DES despite the
longer 128-hit key.

Feistel’s product cipher Lucifer [387], instantiated by a blocksize n = 128, consists of an
unspecified number of alternating substitution and permutation (transposition) stages, using
afixed (unpublished) n-bit permutation P and 32 parallel identical S-boxes each effecting
amapping Sy or S; (fixed but unpublished bijections on {0, 1}4), depending on the value
of one key bit; the unpublished key schedule requires 32-bits per S-box stage. Each stage
operates on all n bits; decryption is by stage-wiseinversion of P and S;.

The structure of so-called Feistel ciphers (Definition 7.81) was first introduced in the Lu-
cifer agorithm of Smith [1160], the direct predecessor of DES. This 16-round algorithm
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with 128-hit key operates on aternating half-blocks of a 128-bit message block with asim-
plified f function based on two published invertible 4 x 4 bit S-boxes Sy and S (cf. above).
Feistel, Notz, and Smith [388] discuss both the abstract Feistel cipher structure (suggesting
itsuse with non-invertible S-boxes) and SP networksbased on invertible (distinct) S-boxes.
Suggestions for SP networks include the use of single key bits to select one of two map-
pings (afixed bijection or itsinverse) from both S-boxesand permutation boxes; decryption
then usesareversed key schedulewith complemented key. They also noted the multi-round
avalanche effect of changing a single input bit, subsequently pursued by Kam and Davida
[659] inrelation to SP networksand S-boxes having acompl eteness property: for every pair
of bit positions, j, there must exist at least two input blocks x, y which differ only in bit 4
and whose outputsdifferin at least bit 5. Moresimply, afunctioniscompleteif each output
bit dependson al input bits. Webster and Tavares[1233] proposed the more stringent strict
avalanche criterion: whenever one input bit is changed, every output bit must change with
probability 1/2.

DESresulted from IBM’ssubmissionto the 1974 U.S. National Bureau of Standards(NBS)
solicitation for encryption algorithms for the protection of computer data. The original
specification is the 1977 U.S. Federal Information Processing Standards Publication 46
[396], reprinted initsentirety as Appendix A in Meyer and Matyas[859]. DESisnhow spec-
ified in FIPS 462, which succeeded FI PS 46—1; the same cipher isdefined in the American
standard ANSI X3.92[33] and referred to asthe Data Encryption Algorithm (DEA). Differ-
ences between FIPS 46/46—1 and ANSI X3.92 included the following: these earlier FIPS
required that DES be implemented in hardware and that the parity bits be used for parity;
ANSI X3.92 specifiesthat the parity bits may be used for parity. Although no purpose was
stated by the DES designersfor the permutationsIPand |P~!, Preneel et al. [1008] provided
some evidence of their cryptographic value in the CFB mode.

FIPS 81[398] specifies the common modes of operation. Davies and Price [308] provide a
comprehensivediscussion of both DES and modesof operation; seealso Diffieand Hellman
[347], and the extensive treatment of Meyer and Matyas [859]. The survey of Smid and
Branstad [1156] discusses DES, itshistory, and itsusein the U.S. government. Test vectors
for various modes of DES, including the ECB vectors of Example 7.86, may be found in
ANSI X3.106 [34]. Regarding exhaustive cryptanalysisof DES and related issues, see also
the notes under §7.2.

The 1981 publication FIPS 74 [397] notes that DES is not (generally) commutative under
two keys, and summarizes weak and semi-weak keys using the term dual keys to include
both (weak keys being self-dual); see aso Davies[303] and Davies and Price [308]. Cop-
persmith [268] noted Fact 7.90; Moore and Simmons [900] pursue weak and semi-weak
DES keys and related phenomenamore rigorously.

The 56-bit keylength of DES was criticized from the outset as being too small (e.g., see
Diffieand Hellman [346], and p.272 above). Claimswhich have repeatedly arisen and been
denied (e.g., see Tuchman [1199]) over the past 20 years regarding built-in weaknesses of
DES (e.g., trap-door S-boxes) remain un-substantiated. Fact 7.91issignificantinthat if the
permutation group were closed under composition, DES would fall to a known-plaintext
attack requiring 228 steps — see Kaliski, Rivest, and Sherman [654], whose cycling exper-
iments provided strong evidence against this. Campbell and Wiener [229] prove the fact
conclusively (and give the stated lower bound), through their own cycling experiments uti-
lizing collision key search and an idea outlined earlier by Coppersmith [268] for establish-
ing alower bound on the group size; they attribute to Coppersmith the same result (in un-
published work), which may also be deduced from the cycle lengths published by Moore
and Simmons [901].
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Countless papers have analyzed various properties of DES; Davies and Price [308, pp.73-
75] provide a partial summary to 1987. Subsequent to the discovery of differential crypt-
analysis(DC) by Biham and Shamir, Coppersmith [271] explainshow DESwas specifically
designed 15 years earlier to counter DC, citing national security concernsregarding the de-
sign team publishing neither the attack nor design criteria; then gives the (relevant) design
criteria— some already noted by others, e.g., see Hellman et al. [552] — for DES S-boxes
and the permutation P, explaining how these preclude DC. Coppersmith notes elements of
DC were present in the work of den Boer [322], followed shortly by Murphy [913]. DES
was not, however, specifically designed to precludelinear cryptanalysis (L C); Matsui [797]
illustrates the order of the 8 DES S-boxes, while a strong (but not optimal) choice against
DC, isrelatively weak against LC, and that DES can be strengthened (vs. DC and LC) by
carefully re-arranging these. Despite Remark 7.93, a DES key has actually been recovered
by Matsui [795] using L C under experimental conditions (using 243 known-plaintext pairs
from randomly generated plaintexts, and 243 complexity running twelve 99 MHz machines
over 50 days); such aresult remains to be published for exhaustive search or DC.

Ben-Aroyaand Biham [108] notethat often suggestionsto redesign DES, some based on de-
sign criteriaand attemptsto specifically resist DC, have resulted in (sometimesfar) weaker
systems, including the RDES (randomized DES) proposal of Koyama and Terada [709],
which fall to variant attacks. Thelessonisthat inisolation, individual design principlesdo
not guarantee security.

DES alternatives are sought not only due to the desire for a keylength exceeding 56 hits,
but also because its bit-oriented operations are inconvenient in conventional software im-
plementations, often resulting in poor performance; this makes triple-DES less attractive.
Regarding fast software implementations of DES, see Shepherd [1124], Pfitzmann and A3
mann [970], and Feldmeier and Karn [391].

FEAL stimulated the development of a sequence of advanced cryptanal ytic techniques of
unparalleled richness and utility. While it appearsto remain relatively secure when iterated
asufficient number of rounds (e.g., 24 or more), this defeatsits original objective of speed.
FEAL-4 aspresented at Eurocrypt’ 87 (Abstracts of Eurocrypt’ 87, April 1987) wasfound to
have certain vulnerabilities by den Boer (unpublished Eurocrypt’ 87 rump session talk), re-
sulting in Shimizu and Miyaguchi [1126] (or see Miyaguchi, Shiraishi, and Shimizu [887])
increasing FEAL to 8 rounds in the final proceedings. In 1988 den Boer [322] showed
FEAL-4 vulnerableto an adaptive chosen plaintext attack with 100 to 10 000 plaintexts. In
1990, Gilbert and Chassé [455] devised a chosen-plaintext attack (called a statistical meet-
in-the-middle attack) on FEAL-8 requiring 10 000 pairs of plaintexts, the bitwise XOR of
each pair being selected to be an appropriate constant (thus another early variant of differ-
ential cryptanalysis).

FEAL-N with N rounds, and its extension FEAL-NX with 128-bit key (Notes 7.97 and
7.98) werethen published by Miyaguchi [884] (or see Miyaguchi et al. [885]), who nonethe-
less opined that chosen-plaintext attacks on FEAL-8 were not practical threats. However,
improved chosen-plaintext attacks were subsequently devised, as well as known-plaintext
attacks. Employing den Boer’s G function expressing linearity in the FEAL f-function,
Murphy [913] defeated FEAL-4 with 20 chosen plaintexts in under 4 hours (under 1 hour
for most keys) onaSun 3/60 workstation. A statistical method of Tardy-Corfdir and Gilbert
[1187] then alowed a known-plaintext attack on FEAL-4 (1000 texts; or 200 in an an-
nounced improvement) and FEAL-6 (2 x 10 000 texts), involving linear approximation of
FEAL S-boxes. Thereafter, thefirst version of linear cryptanalysis (L C) introduced by Mat-
sui and Yamagishi [798] allowed known-plaintext attack of FEAL-4 (5 texts, 6 minutes on
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a 25MHz 68040 processor), FEAL-6 (100 texts, 40 minutes), and FEAL-8 (222 texts, in
time equival ent to exhaustive search on 50-bit keys); the latter bettersthe 232 textsrequired
for FEAL-8 by Biham and Shamir [136] in their known-plaintext conversion of differen-
tial cryptanalysis (DC). Biham and Shamir [138, p.101] later implemented a DC chosen-
plaintext attack recovering FEAL-8 keys in two minutes on a PC using 128 chosen pairs,
the program requiring 280K bytes of storage. Biham [132] subsequently used L C to defeat
FEAL-8 with 224 known-plaintextsin 10 minutes on a personal computer. Ohta and Aoki
[943] suggest that FEAL-32 is as secure as DES against DC, while FEAL-16 is as secure
as DES against certain restricted forms of LC.

Differential-linear cryptanalysiswas introduced by Langford and Hellman [741], combin-
ing linear and differential cryptanalysisto allow a reduced 8-round version of DES to be
attacked with fewer chosen-plaintexts than previous attacks. Aoki and Ohta [53] refined
these ideas for FEAL-8 yielding a differential-linear attack requiring only 12 chosen texts
and 35 days of computer time (cf. Table 7.10).

Test vectors for FEAL-N and FEAL-NX (Example 7.99) are given by Miyaguchi [884].
The DC attack of Biham and Shamir [137], which finds FEAL-N subkeys themselves, is
equally as effectiveon FEAL-NX. Biham[132] notesthat an L C attack on FEAL-N is pos-
siblewith lessthan 264 known plaintexts (and complexity) for upto N = 20. For additional
discussion of properties of FEAL, see Biham and Shamir [138, §6.3].

The primary reference for IDEA isLai [726]. A preliminary versionintroduced by Lai and
Massey [728] was named PES (Proposed Encryption Standard). Lai, Massey, and Murphy
[730] showed that a generalization (see below) of differential cryptanalysis (DC) allowed
recovery of PES keys, abeit requiring all 264 possible ciphertexts (cf. exhaustive search
of 2128 operations). Minor modifications resulted in IPES (Improved PES): instager, 1 <
r < 9, thegroup operationskeyed by K 2(’") and K y) (Hand @ inFigure7.11) werereversed
from PES; the permutation on 16-bit blocks after stage r, 1 < r < 9, was altered; and
necessary changes were made in the decryption (but not encryption) key schedule. IPES
was commerciaized under the name IDEA, and is patented (see Chapter 15).

Theingeniousdesign of IDEA issupported by acareful analysisof theinteraction and alge-
braicincompatibilities of operationsacrossthegroups (F2", @), (Zz», H), and (Z3n_, 1, ©).
The design of the MA structure (see Figure 7.11) resultsin IDEA being “complete” after a
singleround; for other security properties, seeLai [ 726]. Regarding mixing operationsfrom
different algebraic systems, see also the 1974 examination by Grossman [522] of transfor-
mations arising by alternating mod 2" and mod 2 addition (&), and the use of arithmetic
modulo 232 — 1 and 232 — 2 in MAA (Algorithm 9.68).

Daemen [292, 289] identifies several classes of so-called weak keys for IDEA, and notes a
small modification to the key schedule to eliminate them. The largest isaclass of 25! keys
for which membership can be tested in two encryptions plus a small number of computa-
tions, whereafter the key itself can be recovered using 16 chosen plaintext-difference en-
cryptions, on the order of 2'¢ group operations, plus2'” key search encryptions. The prob-
ability of arandomly chosen key beingin thisclassis 2! /2128 = 277 A smaller number
of weak key blocks were observed earlier by Lai [726], and dismissed as inconsequential.
The analysis of Meier [832] revealed no attacks feasible against full 8-round IDEA, and
supports the conclusion of Lai [726] that IDEA appears to be secure against DC after 4 of
its 8 rounds (cf. Note 7.107). Daemen [289] also references attacks on reduced-round vari-
ants of IDEA. Whilelinear cryptanalysis (LC) can be applied to any iterated block cipher,
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Harpes, Kramer, and Massey [541] provide a generalization thereof; IDEA and SAFER K-
64 are argued to be secure against this particular generalization.

Lai, Massey, and Murphy [730] (see also Lai [726]) generalized DC to apply to Markov
ciphers (which they introduced for this purpose; DES, FEAL, and LOKI are all examples
under the assumption of independent round keys) including IDEA; broadened the notion of
adifference from that based on @ to: AX = X ® (X*) ! where ® is a specified group
operationand (X *) ! isthe group inverse of an element X *; and defined an i-round differ-
ential (as opposed to an i-round characteristic used by Biham and Shamir [138] on DES) to
beapair (o, 3) such that two distinct plaintexts with difference AX = « resultsin apair
of round 7 outputs with difference 3.

Decimal values corresponding to Tables 7.12 and 7.13 may befoundin Lai [726]. A table-
based aternative for multiplication mod 26 + 1 (cf. Note 7.104) isto look up the anti-log
of log, (a) + log,(b) mod 26, relative to a generator a of Z3:s, ; the required tables,
however, are quite large.

Massey [787] introduced SAFER K-64 with a 64-bit key and initially recommended 6
rounds, giving a reference implementation and test vectors (cf. Example 7.114). It is not
patented. Massey [788] then published SAFER K-128 (with a reference implementation),
differing only inits use of a non-proprietary (and backwards compatible) key schedule ac-
commodating 128-bit keys, proposed by a Singapore group; 10 rounds were recommended
(12 maximum). Massey [788] gave further justification for design components of SAFER
K-64. Vaudenay [1215] showed SAFER K-64 is weakened if the S-box mapping (Re-
mark 7.112) is replaced by a random permutation.

Knudsen [685] proposed the modified key schedule of Note 7.110 after finding aweakness
in 6-round SAFER K -64 that, while not of practical concern for encryption (with 245 chosen
plaintexts, it finds 8 bits of the key), permitted collisionswhen using the cipher for hashing.
Thisand asubsequent certificational attack on SAFER K-64 by S. Murphy (to be published)
lead Massey (“ Strengthened key schedule for the cipher SAFER”, posted to the USENET
newsgroup sci.crypt, September 9 1995) to advise adoption of the new key schedule, with
the resulting algorithm distinguished as SAFER SK-64 with 8 rounds recommended (min-
imum 6, maximum 10); an analogous change to the 128-bit key schedule yields SAFER
SK-128 for which 10 rounds remain recommended (maximum 12). A new variant of DC
by Knudsen and Berson [687] using truncated differentials (building on Knudsen [686])
yields a certificational attack on 5-round SAFER K-64 with 24° chosen plaintexts; the at-
tack, which doesnot extend to 6 rounds, indi catesthat security islessthan argued by Massey
[788], who a so notes that preliminary attempts at linear cryptanalysis of SAFER were un-
successful.

RC5 wasdesigned by Rivest [1056], and published along with areference implementation.
Themagic constants of Table 7.14 are based on the golden ratio and the base of natural log-
arithms. The data-dependent rotations (which vary across rounds) distinguish RC5 from
iterated ciphers which have identical operations each round; Madryga [779] proposed an
earlier (lesselegant) cipher involving data-dependent rotations. A preliminary examination
by Kaliski and Yin [656] suggested that, while variations remain to be explored, standard
linear and differential cryptanalysis appear impractical for RC5-32 (64-bit blocksize) for
r = 12: their differential attacks on 9 and 12 round RC5 require, respectively, 24°, 262
chosen-plaintext pairs, while their linear attacks on 4, 5, and 6-round RC5-32 require, re-
spectively, 237, 247, 257 known plaintexts. Both attacks depend on the number of rounds
and the blocksize, but not the byte-length of theinput key (since subkeys are recovered di-
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rectly). Knudsenand Meier [689] subsequently presented differential attackson RC5which
improved on those of Kaliski and Yin by afactor up to 512, and showed that RC5 has so-
called weak keys (independent of the key schedule) for which these differential attacks per-
form even better.

LOKI wasintroduced by Brown, Pieprzyk, and Seberry [215] and renamed LOK I’ 89 after
the discovery of weaknesses lead to the introduction of LOKI’91 by Brown et al. [214].
Knudsen [682] noted each LOKI’89 key fell into a class of 16 equivalent keys, and the
differential cryptanalysis of Biham and Shamir [137] was shown to be effective against
reduced-round versions. LOKI'91 failed to succumb to differential analysis by Knudsen
[683]; Tokitaet al. [1193] later confirmed the optimality of Knudsen's characteristics, sug-
gesting that LOKI’89 and LOKI’ 91 were resistant to both ordinary linear and differential
cryptanalysis. However, neither should be used for hashing as originally proposed (see
Knudsen [682]) or in other modes (see Preneel [1003]). Moreover, both are susceptible
to related-key attacks (Note 7.6), popularized by Biham [128, 129]; but see also the ear-
lier ideas of Knudsen [683]. Distinct from these are key clustering attacks (see Diffie and
Hellman [347, p.410]), wherein a cryptanalyst first finds a key “close” to the correct key,
and then searches a cluster of “nearby” keys to find the correct one.

8 x 32 hit S-boxes first appeared in the Snefru hash function of Merkle [854]; here such
fixed S-boxes created from random numbers were used in itsinternal encryption mapping.
Regarding large S-boxes, see also Gordon and Retkin [517], Adams and Tavares[7], and
Biham [132]. Merkle [856] again used 8 x 32 S-boxes in Khufu and Khafre (see also
§15.2.3(viii)). In this 1990 paper, Merkle gives a chosen-plaintext differential attack de-
feating 8 rounds of Khufu (with secret S-box). Regarding 16-round Khafre, aDC attack by
Biham and Shamir [138, 137] requires somewhat over 1500 chosen plaintexts and one hour
on a personal computer, and their known-plaintext differential attack requires 237-> plain-
texts; for 24-round Khafre, they require 253 chosen plaintexts or 2°8-5 known plaintexts.
Khufu with 16 rounds was examined by Gilbert and Chauvaud [456], who gave an attack
using 23 chosen plaintexts and about 243 operations.

CAST isadesign procedure for afamily of DES-like ciphers, featuring fixed m x n bit
S-boxes (m < n) based on bent functions. Adams and Tavares [7] examine the construc-
tion of large S-boxesresistant to differential cryptanalysis, and give apartial example (with
64-bit blocklength and 8 x 32 bit S-boxes) of aCAST cipher. CAST ciphershavevariable
keysize and numbers of rounds. Rijmen and Preneel [1049] presented a cryptanal ytic tech-
nique applicableto Feistel cipherswith non-surjective round functions (e.g., LOKI’91 and
an example CAST cipher), noting cases where 6 to 8 rounds is insufficient.

Blowfishisa16-round DES-like cipher dueto Schneier [1093], with 64-bit blocksand keys
of length up to 448 bits. The computationally intensive key expansion phase creates eigh-
teen 32-bit subkeys plus four 8 x 32 bit S-boxes derived from the input key (cf. Khafre
above), for atotal of 4168 bytes. See Vaudenay [1216] for a preliminary analysis of Blow-
fish.

3-WAY isablock cipher with 96-bit blocksize and keysize, due to Daemen [289] and intro-
duced by Daemen, Govaerts, and Vandewalle [290] along with a reference C implementa-
tion and test vectors. It was designed for speed in both hardware and software, and to resist
differential and linear attacks. Its coreisa3-hit nonlinear S-box and a linear mapping rep-
resentable as polynomial multiplicationin Z32.

SHARK isan SP-network block cipher dueto Rijmen et a. [1048] (coordinates for arefer-
ence implementation are given) which may be viewed as a generalization of SAFER, em-
ploying highly nonlinear S-boxes and the idea of MDS codes (cf. Note 12.36) for diffusion
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to allow a small number of rounds to suffice. The block ciphers BEAR and LION of An-
derson and Biham [30] are 3-round unbalanced Feistel networks, motivated by the earlier
construction of Luby and Rackoff [776] (see also Maurer [816] and Lucks [777]) which
provides a provably secure (under suitable assumptions) block cipher from pseudorandom
functions using a 3-round Feistel structure. SHARK, BEAR, and LION all remain to be
subjected to independent analysisin order to substantiate their conjectured security levels.

SKIPJACK isaclassified block cipher whose specification is maintained by the U.S. Na-
tional Security Agency (NSA). FIPS 185 [405] notes that its specification is available to
organi zations entering into a Memorandum of Agreement with the NSA, and includesin-
terface details (e.g., it has an 80-bit secret key). A public report contains results of a pre-
liminary security evaluation of this 64-bit block cipher (“SKIPJACK Review, Interim Re-
port, The SKIPJACK Algorithm”, 1993 July 28, by E.F. Brickell, D.E. Denning, S.T. Kent,
D.P. Maher, and W. Tuchman). See also Roe[1064, p.312] regarding curious results on the
cyclic closure tests on SKIPJACK, which give evidence related to the size of the cipher
keyspace.

GOST 28147-89isaSoviet government encryption algorithm with a32-round Feistel struc-
ture and unspecified S-boxes; see Charnes et al. [241].

RC2 isablock cipher proprietary to RSA Data Security Inc. (asisthe stream cipher RC4).
WAKE isablock cipher dueto Wheeler [1237] employing akey-dependent table, intended
for fast encryption of bulk data on processors with 32-bit words. TEA (Tiny Encryption
Algorithm) isablock cipher proposed by Wheeler and Needham [1238].
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