This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van
Oorschot, and S. Vanstone, CRC Press, 1996.
For further information, see www.cacr.math.uwaterloo.ca/hac

CRC Press has granted the following specific permissions for the electronic version of this
book:

Permission is granted to retrieve, print and store a single copy of this chapter for
personal use. This permission does not extend to binding multiple chapters of
the book, photocopying or producing copies for other than personal use of the
person creating the copy, or making electronic copies available for retrieval by
others without prior permission in writing from CRC Press.

Except where over-ridden by the specific permission above, the standard copyright notice
from CRC Press applies to this electronic version:

Neither this book nor any part may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, microfilming,
and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution,
for promotion, for creating new works, or for resale. Specific permission must be
obtained in writing from CRC Press for such copying.

©1997 by CRC Press, Inc.

Chapter

Public-Key Parameters

Contentsin Brief

41 Introduction. 133
4.2 Probabilisticprimalitytests. 135
43 (True)Primalitytests 142
44 Primenumber generation. 145
45 Irreduciblepolynomialsover Z, 154
4.6 Generatorsand elementsof highorder 160
4.7 Notesand furtherreferences 165

4.1 Introduction

The efficient generation of public-key parametersis a prerequisite in public-key systems.
A specific example is the requirement of a prime number p to define a finite field Z,, for
use in the Diffie-Hellman key agreement protocol and its derivatives (§12.6). In this case,
an element of high order in Z; is also required. Another example is the requirement of
primes p and ¢ for an RSA modulus n = pq (§8.2). In this case, the prime must be of
sufficient size, and be “random” in the sense that the probability of any particular prime
being selected must be sufficiently small to preclude an adversary from gaining advantage
through optimizing a search strategy based on such probability. Prime numbers may be
required to have certain additional properties, in order that they do not make the associated
cryptosystems susceptible to specialized attacks. A third example isthe requirement of an
irreducible polynomial f(z) of degree m over thefinitefield Z,, for constructing the finite
field Fpm. Inthis case, an element of high order in ... isalso required.

Chapter outline

The remainder of §4.1 introduces basic concepts relevant to prime number generation and
summarizes someresultson thedistribution of primenumbers. Probabilistic primality tests,
the most important of which isthe Miller-Rabin test, are presented in §4.2. True primality
testsby which arbitrary integers can be proven to be prime are the topic of §4.3; sincethese
tests are generally more computationally intensive than probabilistic primality tests, they
are not described in detail. §4.4 presents four algorithms for generating prime numbers,
strong primes, and provable primes. §4.5 describes techniques for constructing irreducible
and primitive polynomials, while §4.6 considers the production of generators and elements
of high ordersin groups. §4.7 concludes with chapter notes and references.

133

134 Ch. 4 Public-Key Parameters

4.1.1 Approaches to generating large prime numbers

To motivate the organization of this chapter and introduce many of the relevant concepts,
the problem of generating large prime numbersisfirst considered. The most natural method
is to generate a random number n of appropriate size, and check if it is prime. This can
be done by checking whether n is divisible by any of the prime numbers < “n. While
more efficient methods are required in practice, to motivate further discussion consider the
following approach:

1. Generate as candidate arandom odd number n of appropriate size.
2. Test n for primality.
3. If n iscomposite, return to the first step.

A slight modificationisto consider candidatesrestricted to some search sequence start-
ing from n; atrivia search sequencewhichmay beusedisn,n+2,n+4,n+6,.... Us
ing specific search sequences may allow one to increase the expectation that acandidateis
prime, and to find primes possessing certain additional desirable propertiesa priori.

In step 2, the test for primality might be either a test which proves that the candidate
is prime (in which case the outcome of the generator is called a provable prime), or a test
which establishesaweaker result, such asthat n is*probably prime” (in which casethe out-
come of the generator is called a probable prime). In the latter case, careful consideration
must be given to the exact meaning of thisexpression. Most so-called probabilistic primal-
ity tests are absolutely correct when they declare candidates » to be composite, but do not
provide amathematical proof that n is primein the case when such anumber is declared to
be“probably” so. Inthe latter case, however, when used properly one may often be ableto
draw conclusions morethan adequatefor the purposeat hand. For thisreason, suchtestsare
more properly called compositeness tests than probabilistic primality tests. True primality
tests, which allow one to conclude with mathematical certainty that a number isprime, also
exist, but generally require considerably greater computational resources.

While (true) primality tests can determine (with mathematical certainty) whether atyp-
ically random candidate number is prime, other techniques exist whereby candidatesn are
specially constructed such that it can be established by mathematical reasoning whether a
candidate actually is prime. These are called constructive prime generation techniques.

A final distinction between different techniquesfor prime number generationisthe use
of randomness. Candidates are typically generated as a function of a random input. The
technique used to judge the primality of the candidate, however, may or may not itself use
random numbers. If it doesnot, thetechniqueisdeterministic, and theresultisreproducible;
if it does, the techniqueis said to be randomized. Both deterministic and randomized prob-
abilistic primality tests exist.

In some cases, prime numbers are required which have additional properties. For ex-
ample, to make the extraction of discrete logarithmsin Z; resistant to an algorithm dueto
Pohlig and Hellman (§3.6.4), itisarequirement that p — 1 have alarge primedivisor. Thus
techniques for generating public-key parameters, such as prime numbers, of special form
need to be considered.

4.1.2 Distribution of prime numbers

Let r(x) denote the number of primesin the interval [2,z]. The prime number theorem
(Fact 2.95) states that m(x) ~ 2.1 In other words, the number of primesin the interval

Inxz*

Lf f(x) and g(x) aretwo functions, then f(z) ~ g(z) meansthat limz—s oo géi; =1

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.2 Probabilistic primality tests 135

4.1

4.2

4.3

2, x] is approximately equal to . The prime numbersare quite uniformly distributed, as
the following three resultsillustrate.

Fact (Dirichlettheorem) If ged(a,n) = 1, thenthereareinfinitely many primes congruent
to a modulo n.

A more explicit version of Dirichlet’s theorem is the following.

Fact Letm(x,n,a) denotethe number of primesintheinterval [2, z] which are congruent
to a modulo n, where ged(a, n) = 1. Then

Xz
¢(n)lnzx’
In other words, the prime numbers are roughly uniformly distributed among the ¢(n) con-
gruence classesin Z;,, for any value of n.

m(z,n,a) ~

Fact (approximationfor thenth primenumber) Let p,, denotethe nth prime number. Then
Pn ~ nlnn. More explicitly,

nlnn < p, < n(lnn+Inlnn) forn > 6.

4.2 Probabilistic primality tests

4.4

The algorithmsin this section are methods by which arbitrary positive integers are tested to
provide partial information regarding their primality. More specifically, probabilistic pri-
mality tests have the following framework. For each odd positive integer n, aset W(n) C
Z,, is defined such that the following properties hold:

(i) givena € Z,, it canbecheckedin deterministic polynomial timewhether a € W (n);
(ii) if nisprime, then W (n) = 0 (the empty set); and
(iii) if n is composite, then #W (n) > %.

Definition If n is composite, the elements of W (n) are called witnesses to the compos-
iteness of n, and the elements of the complementary set L(n) = Z,, — W(n) are caled
liars.

A probabilistic primality test utilizesthese properties of the sets W (n) inthefollowing
manner. Suppose that n is an integer whose primality isto be determined. An integer a €
Z, is chosen at random, and it is checked if a € W (n). The test outputs “composite” if
a € W(n), andoutputs“prime” if a & W(n). If indeeda € W (n), thenn issaidtofail the
primality test for the base a; inthiscase, n issurely composite. If a ¢ W (n), thennissaid
to passthe primality test for the base a; in this case, no conclusion with absolute certainty
can be drawn about the primality of n, and the declaration “prime” may be incorrect.?

Any single execution of thistest which declares“composite” establishesthiswith cer-
tainty. On the other hand, successiveindependent runs of thetest all of which returnthe an-
swer “prime” alow the confidencethat theinput isindeed primeto beincreased to whatever
level isdesired — the cumulative probability of error ismultiplicative over independent tri-
als. If thetest isrun ¢ timesindependently on the composite number n, the probability that
n isdeclared “prime” al ¢ times (i.e., the probability of error) is at most (%)t.

2This discussion illustrates why a probabilistic primality test is more properly called a compositeness test.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

136

Ch. 4 Public-Key Parameters

4.5

Definition Aninteger n which isbelieved to be prime on the basis of a probabilistic pri-
mality test is called a probable prime.

Two probabilistic primality tests are covered in this section: the Solovay-Strassen test
(84.2.2) and the Miller-Rabin test (§4.2.3). For historical reasons, the Fermat test is first
discussed in §4.2.1; thistest is not truly a probabilistic primality test since it usually fails
to distinguish between prime numbers and special composite integers called Carmichael
numbers.

4.2.1 Fermat’s test

4.6

4.7

4.8

4.9

Fermat’stheorem (Fact 2.127) assertsthat if nisaprimeandaisanyinteger,1 < a < n-—1,
thena™ ! =1 (mod n). Therefore, given an integer n whose primality is under question,
finding any integer a in thisinterval such that this equivalence is not true sufficesto prove
that n is composite.

Definition Letn be an odd composite integer. Aninteger a, 1 < a < n — 1, such that
a" ! # 1 (mod n) iscaled a Fermat witness (to compositeness) for n.

Conversely, finding an integer a between 1 and n — 1 suchthat a® ! = 1 (mod n)
makes n appear to be a prime in the sense that it satisfies Fermat’s theorem for the base a.
This motivates the following definition and Algorithm 4.9.

Definition Let n be an odd composite integer and let a be aninteger, 1 < a < n — 1.
Then n is said to be a pseudoprimeto the base a if a® ! = 1 (mod n). Theinteger a is
called aFermat liar (to primality) for n.

Example (pseudoprime) The composite integer n = 341 (= 11 x 31) isa pseudoprime
tothebase 2 since 234 = 1 (mod 341). O

Algorithm Fermat primality test

FERMAT (n,t)
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?’

1. For i from 1 to ¢ do the following:

1.1 Choosearandomintegera,2 < a <n — 2.
1.2 Computer = o™~ ! mod n using Algorithm 2.143.
1.3 If r # 1 then return(“ composite”).

2. Return(“prime”).

If Algorithm 4.9 declares “composite”, then n is certainly composite. On the other
hand, if the algorithm declares “prime” then no proof is provided that » is indeed prime.
Nonetheless, since pseudoprimes for a given base a are known to be rare, Fermat’s test
provides a correct answer on most inputs; this, however, is quite distinct from providing
a correct answer most of thetime (e.g., if run with different bases) on every input. In fact,
it does not do the latter because there are (even rarer) composite numbers which are pseu-
doprimesto every base a for which ged(a,n) = 1.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.2 Probabilistic primality tests 137

4.10 Definition A Carmichael number n isacompositeinteger suchthat ™! =1 (mod n)

411

412

4.13

for all integers a which satisfy ged(a,n) = 1.

If n isa Carmichael number, then the only Fermat witnesses for n are those integers
a,1 < a < n-—1,forwhichged(a,n) > 1. Thus, if the prime factors of n are dl large,
then with high probability the Fermat test declaresthat n is“prime”, even if the number of
iterations ¢ is large. This deficiency in the Fermat test is removed in the Solovay-Strassen
and Miller-Rabin probabilistic primality tests by relying on criteriawhich are stronger than
Fermat’s theorem.

This subsection is concluded with some facts about Carmichael numbers. If the prime
factorization of n is known, then Fact 4.11 can be used to easily determine whether n is a
Carmichael number.

Fact (necessary and sufficient conditions for Carmichael numbers) A composite integer
n isa Carmichael number if and only if the following two conditions are satisfied:

(i) nissguare-freg, i.e., nisnot divisible by the square of any prime; and
(if) p — 1 dividesn — 1 for every primedivisor p of n.

A consequence of Fact 4.11 isthe following.
Fact Every Carmichael number isthe product of at least three distinct primes.

Fact (bounds for the number of Carmichael numbers)

(i) There are an infinite number of Carmichael numbers. In fact, there are more than
n?/T Carmichael numbersin the interval [2, n], once n is sufficiently large.
(i) The best upper bound known for C(n), the number of Carmichael numbers < n, is:

C(’I’L) S n1*{1+0(1)}lnlnlnn/ Inlnn for n — oo,

The smallest Carmichael number isn = 561 = 3 x 11 x 17. Carmichael numbers are
relatively scarce; there are only 105212 Carmichael numbers < 1015,

4.2.2 Solovay-Strassen test

4.14

4.15

The Solovay-Strassen probabilistic primality test was the first such test popularized by the
advent of public-key cryptography, in particular the RSA cryptosystem. Thereisno longer
any reason to use thistest, because an aternativeis available (the Miller-Rabin test) which
is both more efficient and always at least as correct (see Note 4.33). Discussion is nonethe-
lessincluded for historical completeness and to clarify this exact point, since many people
continue to reference this test.

Recall (§2.4.5) that (%) denotes the Jacobi symbol, and is equivalent to the Legendre
symbol if n isprime. The Solovay-Strassen test is based on the following fact.

Fact (Euler'scriterion) Let n be an odd prime. Then a("=1/2 = (£) (mod n) for all
integers a which satisfy ged(a,n) = 1.

Fact 4.14 motivates the following definitions.

Definition Letn bean odd compositeinteger and let a beaninteger, 1 < a <n — 1.

(i) If either ged(a,n) > 1ora" /2 # (%) (mod n), thenaiscaled an Euler witness
(to compositeness) for n.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

138 Ch. 4 Public-Key Parameters

(i) Otherwise,i.e, if ged(a,n) = 1 anda™~1/2 = (%) (mod n), then n is said to be
an Euler pseudoprimeto the base a. (That is, n actslike aprimein that it satisfies
Euler’s criterion for the particular base a.) The integer a is caled an Euler liar (to
primality) for n.

4.16 Example (Euler pseudoprime) The compositeinteger 91 (= 7 x 13) isan Euler pseudo-
primeto the base 9 since 9*° = 1 (mod 91) and (g5) = 1. O

Euler’s criterion (Fact 4.14) can be used as abasis for aprobabilistic primality test be-
cause of the following result.

4.17 Fact Let n be an odd composite integer. Then at most ¢(n)/2 of all the numbersa, 1 <
a < n —1,areEuler liarsfor n (Definition 4.15). Here, ¢ isthe Euler phi function (Defi-
nition 2.100).

4.18 Algorithm Solovay-Strassen probabilistic primality test

SOLOVAY-STRASSEN(n,t)
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?’
1. For i from 1 to ¢ do the following:
1.1 Choosearandomintegera,2 < a <n — 2.
1.2 Computer = a(®~1/2 mod n using Algorithm 2.143.
1.3 If r # 1 andr # n — 1 then return(* composite”).
1.4 Compute the Jacobi symbol s = (%) using Algorithm 2.149.
15 If r £ s (mod n) then return (“composite”).

2. Return(“prime”).

If ged(a,n) = d, thend isadivisor of » = a(®~1/2 mod n. Hence, testing whether
r # 1isstep 1.3, eiminates the necessity of testing whether ged(a,n) # 1. If Algo-
rithm 4.18 declares *“ composite”, then n is certainly composite because prime numbers do
not violate Euler’s criterion (Fact 4.14). Equivalently, if n is actually prime, then the algo-
rithm always declares“ prime”. On the other hand, if n isactually composite, then sincethe
basesa in step 1.1 are chosen independently during eachiteration of step 1, Fact 4.17 can be
used to deduce the following probability of the algorithm erroneously declaring “prime”.

4.19 Fact (Solovay-Strassen error-probability bound) Let » be an odd composite integer. The
probability that SOLOVAY-STRASSEN(n,t) declaresn to be “prime” islessthan (1)°.

4.2.3 Miller-Rabin test

The probabilistic primality test used most in practice is the Miller-Rabin test, also known
asthe strong pseudoprimetest. Thetest is based on the following fact.

4.20 Fact Let n bean odd prime, and let n — 1 = 2°r wherer isodd. Let a be any integer
such that ged(a,n) = 1. Then either a” = 1 (mod n) or a*” = —1 (mod n) for some
J,0<j<s-—-1.

Fact 4.20 motivates the following definitions.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.2 Probabilistic primality tests 139

421

4.22

4.23

4.24

Definition Letn bean odd compositeinteger and let n — 1 = 2%r wherer isodd. Let a
be aninteger in theinterval [1,n — 1].

(i) Ifa” # 1 (mod n) andif a*" # —1 (mod n)foral j,0 < j < s— 1,thenais
called a strong witness (to compositeness) for n.

(ii) Otherwise, i.e., if either a” = 1 (mod n) or a®>’” = —1 (mod n) for some j, 0 <
j < s—1,thennissaidto be astrong pseudoprime to the base a. (That is, n acts
like aprimein that it satisfies Fact 4.20 for the particular base a.) The integer a is
called astrong liar (to primality) for n.

Example (strong pseudoprime) Consider the compositeinteger n = 91 (= 7 x 13). Since
91-1=90=2x45,s=1andr =45. Since9” = 9% =1 (mod 91), 91 isastrong
pseudoprime to the base 9. The set of all strong liarsfor 91 is:

{1,9,10,12, 16,17, 22,29, 38, 53, 62, 69, 74, 75, 79, 81, 82, 90}..

Notice that the number of strong liars for 91 is 18 = ¢(91)/4, where ¢ is the Euler phi
function (cf. Fact 4.23). |

Fact 4.20 can be used as abasisfor a probabilistic primality test due to the following result.
Fact If n isan odd composite integer, then at most % of al thenumbersa,1 < a <n-—1,

are strong liarsfor n. Infact, if n # 9, the number of strong liarsfor n isat most ¢(n)/4,
where ¢ isthe Euler phi function (Definition 2.100).

Algorithm Miller-Rabin probabilistic primality test

MILLER-RABIN(n,t)
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?’
1. Writen — 1 = 2°r such that r is odd.
2. For i from 1 to ¢ do the following:
2.1 Choosearandominteger a,2 < a <n — 2.
2.2 Computey = a” mod n using Algorithm 2.143.
23 If y # 1 andy # n — 1 then do the following:
j+1.
Whilej < s —1andy # n — 1 do thefollowing:
Compute y<+y? mod n.
If y = 1 then return(“ composite”).
j7+ 1
If y # n — 1 then return (“composite’).
3. Return(“prime”).

Algorithm 4.24 tests whether each base a satisfies the conditions of Definition 4.21(i).
Inthefifth line of step 2.3, if y = 1, then a®’” = 1 (mod n). Sinceit isalso the case that
a? " # £1 (mod n), it followsfrom Fact 3.18 that n is composite (in fact ged(a2’ " —
1,n) isanon-trivia factor of n). Inthe seventh lineof step 2.3,if y # n — 1, thena isa
strong witness for n. If Algorithm 4.24 declares “composite”, then n is certainly compos-
ite because prime numbers do not violate Fact 4.20. Equivaently, if n is actually prime,
then the algorithm always declares “prime”’. On the other hand, if n is actually composite,
then Fact 4.23 can be used to deduce the foll owing probability of the algorithm erroneously
declaring “prime”.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

140 Ch. 4 Public-Key Parameters

4.25 Fact (Miller-Rabin error-probability bound) For any odd composite integer n, the proba-
bility that MILLER-RABIN(n,t) declaresn to be “prime” islessthan (1)?.

4.26 Remark (number of strong liars) For most composite integers n, the number of strong
liars for n is actually much smaller than the upper bound of ¢(n)/4 given in Fact 4.23.
Consequently, the Miller-Rabin error-probability bound is much smaller than (i)t for most
positive integersn.

4.27 Example (some composite integers have very few strong liars) The only strong liars for
the compositeinteger n = 105 (= 3 x 5 x 7) are 1 and 104. More generally, if £ > 2 and
n isthe product of thefirst £ odd primes, there are only 2 strong liars for n, namely 1 and
n—1. (I

4.28 Remark (fixed bases in Miller-Rabin) If a; and as are strong liars for n, their product
aias isvery likely, but not certain, to also be a strong liar for n. A strategy that is some-
times employed isto fix the bases a in the Miller-Rabin algorithm to be thefirst few primes
(compositebases areignored because of the preceding statement), instead of choosing them
at random.

4.29 Definition Letp,ps,... ,p; denotethefirst ¢ primes. Then v, isdefined to be the small-
est positive compositeinteger which isastrong pseudoprimeto al thebasespy, po, . .. , p:-

The numbers v; can be interpreted as follows: to determine the primality of any integer
n < 1y, it issufficient to apply the Miller-Rabin algorithm to n with the bases a being the
first ¢ prime numbers. With this choice of bases, the answer returned by Miller-Rabin is
always correct. Table 4.1 givesthevaueof ¢, for 1 <¢ < 8.

[¥ |
2047

1373653
25326001
3215031751
2152302898747
3474749660383
341550071728321
341550071728321

O O O W N

Table 4.1: Smallest strong pseudoprimes. Thetablelistsvaluesof v, the smallest positive composite
integer that is a strong pseudoprime to each of thefirst ¢ prime bases, for 1 < ¢ < 8.

4.2.4 Comparison: Fermat, Solovay-Strassen, and Miller-Rabin
Fact 4.30 describes the rel ationshi ps between Fermat liars, Euler liars, and strong liars (see
Definitions 4.7, 4.15, and 4.21).

4.30 Fact Letn bean odd composite integer.

(i) If aisan Euler liar for n, thenit isalso a Fermat liar for n.
(i) If a isastrongliar for n, then it isalso an Euler liar for n.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.2 Probabilistic primality tests 141

4.31 Example (Fermat, Euler, strong liars) Consider the composite integer n = 65 (= 5 X
13). The Fermat liars for 65 are {1,8,12,14,18,21,27,31, 34, 38, 44, 47,51, 53,57, 64}.
The Euler liars for 65 are {1, 8,14, 18,47,51,57,64}, while the strong liars for 65 are
{1,8,18,47,57,64}. a

For a fixed composite candidate n, the situation is depicted in Figure 4.1. This set-

Fermat liars for n

Euler liars for n

strong liars for n

Figure 4.1: Relationships between Fermat, Euler, and strong liars for a composite integer n.

tlesthe question of therelative accuracy of the Fermat, Solovay-Strassen, and Miller-Rabin
tests, not only in the sense of therelative correctness of each test on afixed candidaten, but
also in the sense that given n, the specified containments hold for each randomly chosen
basea. Thus, from acorrectness point of view, the Miller-Rabin test is never worsethan the
Solovay-Strassen test, which in turn is never worse than the Fermat test. Asthe following
result shows, thereare, however, some compositeintegersn for which the Solovay-Strassen
and Miller-Rabin tests are equally good.

4.32 Fact If n =3 (mod 4), thena isan Euler liar for n if and only if it isastrong liar for n.

What remainsis a comparison of the computational costs. Whilethe Miller-Rabin test
may appear more complex, it actually requires, at worst, the same amount of computation
as Fermat’stest in terms of modular multiplications; thusthe Miller-Rabin test is better than
Fermat’'stest in all regards. At worgt, the sequence of computations defined in MILLER-
RABIN(n,1) requires the equivalent of computing a("~1/2 mod n. It isaso the case that
MILLER-RABIN(n,1) requires less computation than SOLOVAY-STRASSEN(n,1), the
latter requiring the computation of a(*~1/2 mod n and possibly a further Jacobi symbol
computation. For this reason, the Solovay-Strassen test is both computationally and con-
ceptually more complex.

4.33 Note (Miller-Rabin is better than Solovay-Strassen) In summary, both the Miller-Rabin
and Solovay-Strassen tests are correct in the event that either their input is actually prime,
or that they declare their input composite. Thereis, however, no reason to use the Solovay-
Strassen test (nor the Fermat test) over the Miller-Rabin test. The reasonsfor this are sum-
marized below.

(i) The Solovay-Strassen test is computationally more expensive.
(ii) The Solovay-Strassentest isharder toimplement sinceit also involves Jacobi symbol
computations.
(iii) Theerror probability for Solovay-Strassen is bounded above by (%)t, whiletheerror
probability for Miller-Rabin is bounded above by (1)*.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

142 Ch. 4 Public-Key Parameters
(iv) Any strong liar for n isaso an Euler liar for n. Hence, from a correctness point of
view, the Miller-Rabin test is never worse than the Solovay-Strassen test.
|

4.3 (True) Primality tests

4.34

The primality tests in this section are methods by which positive integers can be proven
to be prime, and are often referred to as primality proving algorithms. These primality
tests are generally more computationally intensive than the probabilistic primality tests of
§4.2. Conseguently, before applying one of theseteststo a candidate prime n, the candidate
should be subjected to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).

Definition Aninteger n which isdetermined to be prime on the basis of a primality prov-
ing algorithm is called a provable prime.

4.3.1 Testing Mersenne numbers

4.35

4.36

4.37

Efficient algorithms are known for testing primality of some specia classes of numbers,
such as Mersenne numbers and Fermat numbers. Mersenne primes n are useful because
the arithmetic in thefield Z,, for such n can be implemented very efficiently (see §14.3.4).
The Lucas-Lehmer test for Mersenne numbers (Algorithm 4.37) is such an agorithm.

Definition Lets > 2 beaninteger. A Mersenne number is an integer of theform 25 — 1.
If 25 — 1 isprime, thenit is called a Mersenne prime.

Thefollowing are necessary and sufficient conditions for a Mersenne number to be prime.

Fact Let s > 3. The Mersenne number n = 25 — 1 isprimeif and only if the following
two conditions are satisfied:
(i) sisprime; and
(i) the sequence of integers defined by ug = 4 and ug+1 = (u? — 2) mod n for k > 0
satisfiesus—o = 0.

Fact 4.36 |eads to the following deterministic polynomial-time algorithm for determin-
ing (with certainty) whether a Mersenne number is prime.

Algorithm Lucas-Lehmer primality test for Mersenne numbers

INPUT: aMersenne number n = 25 — 1 with s > 3.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?’
1. Usetrial division to check if s has any factors between 2 and | ‘s|. If it does, then
return(“ composite”).
2. Setu+4.
3. For k from 1 to s — 2 do the following: compute u<+(u? — 2) mod n.
4. If u = 0 then return(“prime”). Otherwise, return(“composite”).

It is unknown whether there are infinitely many Mersenne primes. Table 4.2 lists the
33 known Mersenne primes.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.3 (True) Primality tests 143

Index M; | decimal Index M; | decimal
j digits J digits
1 2 1 18 3217 969
2 3 1 19 4253 1281
3 5 2 20 4423 1332
4 7 3 21 9689 2917
5 13 4 22 9941 2993
6 17 6 23 11213 3376
7 19 6 24 19937 6002
8 31 10 25 21701 6533
9 61 19 26 23209 6987
10 89 27 27 44497 13395
11 107 33 28 86243 25962
12 127 39 29 110503 33265
13 521 157 30 132049 39751
14 607 183 31 216091 65050
15 1279 386 327 | 756839 | 227832
16 2203 664 337 859433 | 258716
17 2281 687

Table 4.2: Known Mersenne primes. The table showsthe 33 known exponents M, 1 < j < 33, for
which 2Mi — 1 isa Mersenne prime, and also the number of decimal digitsin 2™ — 1. The question
marks after j = 32 and j = 33 indicatethat it is not known whether there are any other exponents s
between Ms3; and these numbers for which 25 — 1 is prime.

4.3.2 Primality testing using the factorization of n — 1

4.38

4.39

This section presents results which can be used to prove that an integer n is prime, provided
that thefactorization or apartial factorization of n—1 isknown. It may seem odd to consider
atechnique which requires the factorization of n — 1 as a subproblem — if integers of this
size can befactored, the primality of n itself could be determined by factoring n. However,
thefactorization of n— 1 may be easier to computeif n hasaspecia form, such asaFermat
number n = 22° + 1. Another situation where the factorization of n — 1 may be easy to
compute is when the candidate n is “ constructed” by specific methods (see §4.4.4).

Fact Let n > 3 beaninteger. Then n is primeif and only if there exists an integer a
satisfying:

(i) @ '=1 (mod n); and

(i) a»Y/9 21 (mod n) for each prime divisor g of n — 1.

This result follows from the fact that Z;, has an element of order n — 1 (Definition 2.128)
if and only if n is prime; an element a satisfying conditions (i) and (ii) has order n — 1.

Note (primality test based on Fact 4.38) If n is a prime, the number of elements of order
n — lisprecisely ¢(n — 1). Hence, to prove acandidate n prime, one may simply choose
an integer a € Z,, at random and uses Fact 4.38 to check if a hasorder n — 1. If thisis
the case, then n is certainly prime. Otherwise, another a € Z,, is selected and the test is
repeated. If n isindeed prime, the expected number of iterations before an element a of
order n — 1 isselected isO(InInn); thisfollows since (n — 1)/¢(n — 1) < 61nlnn for

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

144

Ch. 4 Public-Key Parameters

4.40

4.41

4.42

n > 5 (Fact 2.102). Thus, if such an a is not found after a “reasonable” number (for ex-
ample, 12 In1n n) of iterations, then n isprobably composite and should again be subjected
to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).2 Thismethod is, in
effect, a probabilistic compositenesstest.

The next result givesamethod for proving primality which requires knowledge of only
apartial factorization of n — 1.

Fact (Pocklington’stheorem) Letn > 3 beaninteger, andletn = RF + 1 (i.e. F' divides
n — 1) where the prime factorization of F'is F' =]'[E.:1 q;fj. If there exists an integer a
satisfying:

(i) a» 1 =1 (mod n); and

(ii) ged(a»1/% —1,n) =1foreachj,1 <j <t,
then every primedivisor p of n iscongruent to 1 modulo F'. It followsthat if F' >
thenn isprime.

n—1,

If n isindeed prime, then the following result establishes that most integers a satisfy
conditions (i) and (ii) of Fact 4.40, provided that the primedivisorsof F > n — 1 are
sufficiently large.

Fact Letn = RF + 1 beanodd primewith F > ‘n— 1 and ged(R, F) = 1. Let the
distinct primefactorsof F' beqi, g2, ... ,q;. Then the probability that arandomly selected
basea, 1 < a < n — 1, satisfiesboth: (i) a”~! = 1 (mod n); and (ii) gcd(a(”*l)/‘“ -
1,n) =1foreachj,1<j<tis[[j_,(1—1/g;) >1—3_,1/g;.

Thus, if thefactorization of adivisor FF > ‘n— 1 of n — 1 isknown thento test n for
primality, one may simply choose random integers a in the interval [2,n — 2] until oneis
found satisfying conditions (i) and (ii) of Fact 4.40, implying that n is prime. If such an a
is not found after a“reasonable’ number of iterations,* then n is probably composite and
this could be established by subjecting it to a probabilistic primality test (footnote 3 also
applies here). This method is, in effect, a probabilistic compositeness test.

The next result givesamethod for proving primality which only requiresthefactoriza-
tion of adivisor F' of n — 1 that isgreater than 2'n. For an example of the use of Fact 4.42,
see Note 4.63.

Fact Letn > 3 beanoddinteger. Let n = 2RF + 1, and suppose that there exists an
integer a satisfying both: (i) a®~! = 1 (mod n); and (i) ged(a(»~1/? — 1,n) = 1 for
each primedivisor g of F'. Letz > 0 andy bedefinedby 2R = 2F +yand0 < y < F.
If F> *nandif y? — 4z isneither 0 nor a perfect square, then n is prime.

4.3.3 Jacobi sum test

The Jacobi sum test is another true primality test. The basic ideais to test a set of con-
gruences which are analogues of Fermat’s theorem (Fact 2.127(i)) in certain cyclotomic
rings. The running time of the Jacobi sum test for determining the primality of an integer
nisO((Inn)cnininn) pit operations for some constant c. Thisis“amost” a polynomial-
time algorithm since the exponent In In In n acts like a constant for the range of valuesfor

3 Another approach isto run both algorithmsin parallel (with an unlimited number of iterations), until one of
them stops with a definite conclusion “prime” or “composite”.
#The number of iterationsmay betaken to be T where P < (£)!°, andwhere P = 1—[T}_, (1 —1/g;).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.4 Prime number generation 145

n of interest. For example, if n < 25!2, thenInlnlnn < 1.78. The version of the Ja-
cobi sum primality test used in practice is arandomized algorithm which terminateswithin
O(k(Inn)e!nintnny steps with probability at least 1 — (3)* for every k£ > 1, and always
givesacorrect answer. One drawback of the algorithmisthat it does not produce a* certifi-
cate” which would enable the answer to be verified in much shorter time than running the
algorithm itself.

The Jacobi sum test is, indeed, practical in the sense that the primality of numbers that
are several hundred decimal digits long can be handled in just a few minutes on a com-
puter. However, the test is not as easy to program as the probabilistic Miller-Rabin test
(Algorithm 4.24), and the resulting codeis not as compact. The details of the algorithm are
complicated and are not given here; pointersto the literature are given in the chapter notes
on page 166.

4.3.4 Tests using elliptic curves

Elliptic curve primality proving algorithmsare based on an €lliptic curve anal ogue of Pock-
lington’s theorem (Fact 4.40). The version of the algorithm used in practice is usually re-
ferred to as Atkin's test or the Elliptic Curve Primality Proving algorithm (ECPP). Under
heuristic arguments, the expected running time of this algorithm for proving the primality
of an integer n has been shown to be O((Inn)®*<) bit operations for any e > 0. Atkin's
test has the advantage over the Jacobi sum test (§4.3.3) that it produces a short certificate of
primality which can be used to efficiently verify the primality of the number. Atkin's test
has been used to prove the primality of nhumbers more than 1000 decimal digits long.

The details of the algorithm are complicated and are not presented here; pointersto the
literature are given in the chapter notes on page 166.

4.4 Prime number generation

This section considers algorithms for the generation of prime numbers for cryptographic
purposes. Four algorithms are presented: Algorithm 4.44 for generating probable primes
(see Definition 4.5), Algorithm 4.53 for generating strong primes (see Definition 4.52), Al-
gorithm 4.56 for generating probable primesp and ¢ suitablefor useinthe Digital Signature
Algorithm (DSA), and Algorithm 4.62 for generating provabl e primes (see Definition 4.34).

4.43 Note (prime generation vs. primality testing) Prime number generation differs from pri-
mality testing as described in §4.2 and §4.3, but may and typically does involve the latter.
The former alows the construction of candidates of afixed form which may lead to more
efficient testing than possible for random candidates.

4.4.1 Random search for probable primes

By the prime number theorem (Fact 2.95), the proportion of (positive) integers < x that
are primeis approximately 1/ In z. Since haf of al integers < z are even, the proportion
of odd integers < z that are prime is approximately 2/ In z. For instance, the proportion
of all odd integers < 252 that are prime is approximately 2/(512 - In(2)) ~ 1/177. This
suggests that a reasonable strategy for selecting a random k-bit (probable) primeisto re-
peatedly pick random k-bit odd integers n until oneisfound that is declared to be “prime”

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

146

Ch. 4 Public-Key Parameters

4.44

4.45

4.46

4.47

by MILLER-RABIN(n,t) (Algorithm 4.24) for an appropriate value of the security param-
eter ¢ (discussed below).

If arandom k-bit odd integer n isdivisible by asmall prime, it isless computationally
expensive to rule out the candidate n by trial division than by using the Miller-Rabin test.
Since the probability that a random integer n has a small prime divisor isrelatively large,
before applying the Miller-Rabin test, the candidate n should be tested for small divisors
below a pre-determined bound B. This can be done by dividing n by all the primes below
B, or by computing greatest common divisors of n and (pre-computed) products of several
of the primes < B. The proportion of candidate odd integers » not ruled out by this trial
divisionis[[, p(1— %) which, by Mertens'stheorem, isapproximately 1.12/ In B (here
p ranges over prime values). For example, if B = 256, then only 20% of candidate odd
integersn passthetrial division stage, i.e., 80% are discarded before the more costly Miller-
Rabin test is performed.

Algorithm Random search for a prime using the Miller-Rabin test

RANDOM-SEARCH(k,t)
INPUT: aninteger &, and a security parameter ¢ (cf. Note 4.49).
OUTPUT: arandom k-bit probable prime.
1. Generate an odd k-bit integer n at random.
2. Usetria division to determine whether n is divisible by any odd prime < B (see
Note 4.45 for guidance on selecting B). If it isthen go to step 1.
3. If MILLER-RABIN(n,t) (Algorithm 4.24) outputs “prime” then return(n).
Otherwise, go to step 1.

Note (optimal trial division bound B) Let E denote the time for afull k-bit modular ex-
ponentiation, and let D denote the time required for ruling out one small prime as divisor
of ak-bit integer. (Thevalues E and D depend on the particular implementation of long-
integer arithmetic.) Then the trial division bound B that minimizes the expected running
time of Algorithm 4.44 for generating ak-bit primeisroughly B = E/D. A more accurate
estimate of the optimum choice for B can be obtained experimentally. The odd primes up
to B can be precomputed and stored in atable. If memory is scarce, avalue of B that is
smaller than the optimum value may be used.

Since the Miller-Rabin test does not provide a mathematical proof that a number isin-
deed prime, the number » returned by Algorithm 4.44 is a probable prime (Definition 4.5).
It isimportant, therefore, to have an estimate of the probability that n isin fact composite.

Definition The probability that RANDOM-SEARCH(k,t) (Algorithm 4.44) returns a
composite number is denoted by py ;.

Note (remarks on estimating p ;) It is tempting to conclude directly from Fact 4.25 that
Dret < (%)t. Thisreasoning is flawed (although typically the conclusion will be correct in
practice) since it does not take into account the distribution of the primes. (For example, if
all candidatesn were chosen from aset .S of composite numbers, the probability of error is
1.) Thefollowing discussion elaborates on this point. Let X represent the event that n is
composite, and let Y; denote the event than MILLER-RABIN(n,t) declares n to be prime.
Then Fact 4.25 statesthat P(Y;|X) < (4)*. What isrelevant, however, to the estimation of
Pk, isthequantity P(X|Y;). Supposethat candidatesn are drawn uniformly and randomly

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.4 Prime number generation 147

4.48

fromaset S of odd numbers, and suppose p isthe probability that » is prime (this depends
on the candidate set S). Assumeasothat 0 < p < 1. Then by Bayes' theorem (Fact 2.10):
t
pxlv) — PEPOIY) _ POIX) 1 (1) |
P(Y;) P(Y;) p
since P(Y;) > p. Thusthe probability P(X |Y;) may beconsiderably larger than (1) if pis
small. However, the error-probability of Miller-Rabin is usually far smaller than (%)t (see
Remark 4.26). Using better estimates for P(Y;|X) and estimates on the number of k-bit
prime numbers, it has been shown that py ; is, in fact, smaller than (%)t for al sufficiently
large k. A more concrete result isthefollowing: if candidatesn are chosen at random from
the set of odd numbersin theinterval [3,z], then P(X|Y;) < (3)* for all 2 > 10%.

4

Further refinementsfor P(Y;| X') allow thefollowing explicit upper bounds on py, ; for
variousvauesof k and ¢. °

Fact (some upper bounds on py, ; in Algorithm4.44)
(i) pr1 < k242~ % for k > 2.
(ii) pr, < k3/220471/242= " for (t = 2,k > 88) or (3 < t < k/9, k > 21).
(i) pry < 55k275 + LE15/427k/272t 4 12k2-k/4=3t for /9 < t < k/4,k > 21.
(V) iy < 2E'5/427F/2"2t fort > k /4, k > 21.

For example, if k = 512 and ¢ = 6, then Fact 4.48(ii) gives ps12,6 < ()3, Inother
words, the probability that RANDOM-SEARCH(512,6) returnsa512-bit compositeinteger
is less than (%)88. Using more advanced techniques, the upper bounds on py, ; given by
Fact 4.48 have beenimproved. These upper boundsarisefrom complicated formulagwhich
are not given here. Table 4.3 lists some improved upper bounds on py, ; for some sample
valuesof k and t. Asan example, the probability that RANDOM-SEARCH(500,6) returns
a composite number is < (%)92. Notice that the values of p; ; implied by the table are

considerably smaller than ()" = (3)2".

t
k 1 2 3 4 5 6 7 8 9 10

100 5 14 20 25 29 33 36 39 41 44
150 8 20 28 34 39 43 47 51 54 57
200 | 11 25 34 41 47 52 57 61 65 69
250 | 14 29 39 47 54 60 65 70 75 79
300 | 19 33 44 53 60 67 73 78 83 88
350 | 28 38 48 58 66 73 80 86 91 97
400 | 37 46 55 63 72 80 87 93 99 105
450 | 46 54 62 70 78 85 93 100 106 112
500 | 56 63 T0 78 85 92 99 106 113 119
550 | 65 72 79 86 93 100 107 113 119 126
600 | 75 82 88 95 102 108 115 121 127 133

Table 4.3: Upper bounds on py,+ for sample values of k£ and ¢. An entry j corresponding to & and ¢
impliespx+ < (3)7.

5The estimates of Pk, Presented in the remainder of this subsection were derived for the situation where Al-
gorithm 4.44 does not use trial division by small primes to rule out some candidates . Sincetrial division never
rules out a prime, it can only give a better chance of rejecting composites. Thus the error probability py, . might
actually be even smaller than the estimates given here.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

148

Ch. 4 Public-Key Parameters

4.49

4.50

451

Note (controllingtheerror probability) In practice, oneisusually willing to tolerate an er-
ror probability of (%)80 when using Algorithm 4.44 to generate probable primes. For sam-
ple values of k, Table 4.4 lists the smallest value of ¢ that can be derived from Fact 4.48
for which p;, ; < (%)80. For example, when generating 1000-bit probable primes, Miller-
Rabin with ¢ = 3 repetitions suffices. Algorithm 4.44 rules out most candidates n either
by tria division (in step 2) or by performing just one iteration of the Miller-Rabin test (in
step 3). For thisreason, the only effect of selecting alarger security parameter ¢ on the run-
ning time of the algorithmwill likely beto increase thetimerequired in thefinal stagewhen
the (probable) primeis chosen.

Lkl e] [k[e] [k]
100 [27| [500]6 900
150 | 18 | | 550 950
200 | 15 | | 600 1000
250 | 12 | | 650 1050
300 | 9 700 1100
350 | 8 750 1150
400 | 7| | 800 1200
150 | 6| | 850 1250

k]
1300
1350
1400
1450
1500
1550
1600
1650

k]
1700
1750
1800
1850
1900
1950
2000
2050

SCRN NGNS
W W W W W W w W=
DN NN DN N~
NN NN N~

Table 4.4: For sample k, the smallest ¢ from Fact 4.48 is given for which py, . < (%)%.

Remark (Miller-Rabin test with base a = 2) The Miller-Rabin test involves exponenti-
ating the base a; this may be performed using the repeated square-and-multiply algorithm
(Algorithm 2.143). If a = 2, then multiplication by a isasimple procedure relative to mul-
tiplying by a in general. One optimization of Algorithm 4.44 is, therefore, to fix the base
a = 2 whenfirst performing the Miller-Rabin test in step 3. Since most composite numbers
will fail the Miller-Rabin test with base a = 2, this modification will lower the expected
running time of Algorithm 4.44.

Note (incremental search)

(i) An alternative technique to generating candidates n at random in step 1 of Algo-
rithm4.44 istofirst select arandom k-bit odd number nq, and then test the s numbers
n =mng,ng+2,n0+4,...,n9+2(s— 1) for primality. If all these s candidatesare
found to be composite, thealgorithmissaid to havefailed. If s = ¢-In 2% wherecisa
constant, the probability g, ; s that thisincremental search variant of Algorithm 4.44

returns a composite number has been shown to be less than §&32~ * for some con-
stant §. Table4.5 givessomeexplicit boundson thiserror probability for & = 500 and
t < 10. Under reasonable number-theoretic assumptions, the probability of the algo-
rithm failing has been shown to be less than 2e~2¢ for large k (here, e ~ 2.71828).

(i) Incremental search has the advantage that fewer random bits are required. Further-
more, the trial division by small primesin step 2 of Algorithm 4.44 can be accom-
plished very efficiently as follows. First the values R[p] = ng mod p are computed
for each odd prime p < B. Each time2 is added to the current candidate, the values
inthetable R are updated as R[p]+(R[p] + 2) mod p. The candidate passesthetrial
division stageif and only if none of the R[p] values equal 0.

(iii) If B islarge, an aternative method for doing thetrial divisionisto initialize atable
S[i]«0for 0 < i < (s — 1); theentry S[¢] corresponds to the candidate ng + 2i.
For each odd primep < B, ng mod p is computed. Let j be the smallest index for

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.4 Prime number generation 149

t

c 1 2 3 4 5 6 7 8 9 10

17 37 51 63 72 81 89 96 103 110
5113 32 46 58 68 77 85 92 99 105

10| 11 30 44 56 66 75 83 90 97 103

Table 4.5: Upper bounds on the error probability of incremental search (Note 4.51) for £ = 500
and sample values of ¢ and ¢. An entry j corresponding to ¢ and ¢ implies gsoo,t,s < (%)J, where
s=c-1n2%0,

which (ng + 27) =0 (mod p). Then S[j] and each p*" entry after it aresetto 1. A
candidate ny + 2¢ then passes the trial division stage if and only if S[i] = 0. Note
that the estimate for the optimal trial division bound B given in Note 4.45 does not
apply here (nor in (ii)) since the cost of division is amortized over all candidates.

4.4.2 Strong primes

The RSA cryptosystem (§8.2) uses amodulus of the form n = pq, where p and ¢ are dis-
tinct odd primes. The primes p and ¢ must be of sufficient size that factorization of their
product is beyond computational reach. Moreover, they should be random primes in the
sensethat they be chosen as afunction of arandom input through a process defining a pool
of candidates of sufficient cardinality that an exhaustive attack isinfeasible. In practice, the
resulting primes must also be of a pre-determined bitlength, to meet system specifications.
The discovery of the RSA cryptosystem led to the consideration of several additional con-
straintson the choi ce of p and g which are necessary to ensure theresulting RSA system safe
from cryptanalytic attack, and the notion of a strong prime (Definition 4.52) was defined.
These attacks are described at length in Note 8.8(iii); as noted there, it is now believed that
strong primes offer little protection beyond that offered by random primes, since randomly
selected primes of the sizestypically used in RSA moduli today will satisfy the constraints
with high probability. On the other hand, they are no less secure, and require only minimal
additional running time to compute; thus, there is little real additional cost in using them.

4.52 Definition A prime number p issaid to be astrong primeif integersr, s, and ¢ exist such
that the following three conditions are satisfied:
(i) p — 1 hasalarge prime factor, denoted r;
(ii) p + 1 hasalarge prime factor, denoted s; and
(iii) » — 1 hasalarge prime factor, denoted ¢.

In Definition 4.52, a precise qualification of “large” depends on specific attacksthat should
be guarded against; for further details, see Note 8.8(iii).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

150 Ch. 4 Public-Key Parameters

4.53 Algorithm Gordon’s algorithm for generating a strong prime

SUMMARY: astrong prime p is generated.

1. Generatetwo largerandom primes s and ¢ of roughly equal bitlength (see Note 4.54).

2. Select an integer . Find the first prime in the sequence 2it + 1, for ¢ = ig,49 +
1,79 + 2, ... (see Note 4.54). Denctethisprimeby r = 2it + 1.

3. Compute pg = 2(s" 2 mod r)s — 1.

4. Select aninteger jo. Find thefirst primein the sequence pg + 2j7s, for j = jg, jo +
1,70 + 2,... (see Note 4.54). Denote this primeby p = pg + 2jrs.

5. Return(p).

Justification. To see that the prime p returned by Gordon’s algorithm is indeed a strong
prime, observefirst (assuming » # s) that s"~! =1 (mod r); thisfollows from Fermat's
theorem (Fact 2.127). Hence, pp = 1 (mod r) and pg = —1 (mod s). Finaly (cf. Defi-
nition 4.52),

(i) p—1=po+2jrs—1=0 (mod r), and hencep — 1 hasthe prime factor r;
(i) p+1=po+2jrs+1=0 (mod s), and hencep + 1 hasthe prime factor s; and
(iii) » —1=2it =0 (mod t), and hencer — 1 has the prime factor ¢.

4.54 Note (implementing Gordon's algorithm)

(i) The primes s and ¢ required in step 1 can be probable primes generated by Algo-
rithm 4.44. The Miller-Rabin test (Algorithm 4.24) can be used to test each candidate
for primality in steps 2 and 4, after ruling out candidates that are divisible by asmall
primelessthan somebound B. See Note 4.45 for guidance on selecting B. Sincethe
Miller-Rabin test is a probabilistic primality test, the output of this implementation
of Gordon’'sagorithm is a probable prime.

(i) By carefully choosing the sizes of primes s, ¢ and parameters i, jo, one can control
the exact bitlength of the resulting prime p. Note that the bitlengths of » and s will
be about half that of p, while the bitlength of ¢ will be slightly less than that of r.

4.55 Fact (runningtimeof Gordon'salgorithm) If the Miller-Rabintest isthe primality test used
insteps1, 2, and 4, the expected time Gordon’ sal gorithmtakesto find astrong primeisonly
about 19% more than the expected time Algorithm 4.44 takes to find arandom prime.

4.4.3 NIST method for generating DSA primes

Some public-key schemes require primes satisfying various specific conditions. For exam-
ple, the NIST Digital Signature Algorithm (DSA of §11.5.1) requires two primes p and ¢
satisfying the following three conditions:
(i) 21 < q < 2190 that is, ¢ is a160-bit prime;

(i) 271 < p < 2F for aspecified L, where L = 512 + 641 for some 0 < [< 8; and

(iii) ¢ dividesp — 1.
This section presents an algorithm for generating such primes p and ¢. In the following,
H denotes the SHA-1 hash function (Algorithm 9.53) which maps bitstrings of bitlength
< 254 to 160-bit hash-codes. Where required, an integer x intherange 0 < = < 29 whose
binary representationisz = z, 129" 4+ z, 22972 + -+ - + 2222 + 712 + z should be
converted to the g-bit sequence (z,—1x4—2 - - - 22120), and vice versa

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.4 Prime number generation 151

4.56 Algorithm NIST method for generating DSA primes
INPUT: aninteger 7,0 <1 < 8.
OUTPUT: a160-bit prime ¢ and an L-bit prime p, where L = 512 4 64/ and ¢|(p — 1).

1. Compute L = 512 + 641. Using long division of (L — 1) by 160, find n, b such that
L —1=160n+ b, where0 < b < 160.
2. Repeat the following:
2.1 Choose arandom seed s (not necessarily secret) of bitlength g > 160.
2.2 ComputeU = H(s)®H ((s+ 1) mod 29).
2.3 Form ¢ from U by setting to 1 the most significant and least significant bits of
U. (Notethat ¢ isa 160-bit odd integer.)
2.4 Test ¢ for primality using MILLER-RABIN(g,t) for ¢ > 18 (see Note 4.57).
Until ¢ isfound to be a (probable) prime.
3. Seti«0, j«2.
4. While ¢ < 4096 do the following:
4.1 For k from 0 to » do the following: set Vi< H ((s + j + k) mod 29).
4.2 For theinteger W defined below, let X = W + 21, (X isan L-bit integer.)

W = Vi + V32160 4 15,2320 4 ...y, ,2160(n-1) | (V;, mod 26)216071.
4.3 Computec = X mod 2gandsetp = X —(c—1). (Notethatp =1 (mod 2q).)
4.4 1f p > 21 then do the following:
Test p for primality using MILLER-RABIN(p,t) for t > 5 (seeNote 4.57).
If p isa(probable) prime then return(q,p).
45 Seti<—i+1,jj+n+1.
5. Goto step 2.

4.57 Note (choice of primality test in Algorithm 4.56)

(i) The FIPS 186 document where Algorithm 4.56 was originally described only speci-
fiesthat arobust primality test be usedin steps 2.4 and 4.4, i.e., aprimality test where
the probability of a composite integer being declared prime is at most (%)80. If the
heuristic assumption is made that ¢ isarandomly chosen 160-hbit integer then, by Ta-
ble4.4, MILLER-RABIN(g,18) isarobust test for the primality of ¢. If p isassumed
to be arandomly chosen L-bit integer, then by Table 4.4, MILLER-RABIN(p,5) is
arobust test for the primality of p. Since the Miller-Rabin test is a probabilistic pri-
mality test, the output of Algorithm 4.56 is a probable prime.

(if) To improve performance, candidate primes ¢ and p should be subjected to trial divi-
sion by all odd primeslessthan some bound B beforeinvoking the Miller-Rabin test.
See Note 4.45 for guidance on selecting B.

4.58 Note (“weak’ primescannot beintentionally constructed) Algorithm 4.56 hasthe feature
that the random seed s is not input to the prime number generation portion of the algorithm
itself, but rather to an unpredictable and uncontrollable randomization process (steps 2.2
and 4.1), the output of whichisused asthe actual random seed. This precludesmanipulation
of theinput seed to the primenumber generation. If the seed s and counter : aremade public,
then anyone can verify that ¢ and p were generated using the approved method. Thisfeature
preventsacentral authority who generatesp and g as system-wide parametersfor useinthe
DSA from intentionally constructing “weak” primes ¢ and p which it could subsequently
exploit to recover other entities' private keys.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

152

Ch. 4 Public-Key Parameters

4.4.4 Constructive techniques for provable primes

4.59

4.60

461

Maurer’s algorithm (Algorithm 4.62) generates random provable primes that are almost
uniformly distributed over the set of all primes of a specified size. The expected time for
generatingaprimeisonly dightly greater than that for generating a probabl e prime of equal
size using Algorithm 4.44 with security parameter ¢ = 1. (In practice, one may wish to
chooset > 1 in Algorithm 4.44; cf. Note 4.49.)

The main idea behind Algorithm 4.62 is Fact 4.59, which is a dlight modification of
Pocklington’stheorem (Fact 4.40) and Fact 4.41.

Fact Letn > 3 beanodd integer, and supposethat n = 1+ 2Rq where ¢ isan odd prime.
Suppose further that ¢ > R.
(i) If there exists an integer a satisfyinga™ ! =1 (mod n) and ged(a?? — 1,n) = 1,
then n is prime.
(i) If nisprime, the probability that arandomly selected basea, 1 < a < n—1, satisfies
a"!'=1 (mod n) and ged(a?®2 — 1,n) = 1is(1 — 1/q).

Algorithm 4.62 recursively generates an odd prime ¢, and then choosesrandom integers R,
R < ¢, until n = 2Rq + 1 can be proven prime using Fact 4.59(i) for some base a. By
Fact 4.59(ii) the proportion of such basesis1 — 1/¢ for primen. On the other hand, if . is
composite, then most bases a will fail to satisfy the conditiona™ ! =1 (mod n).

Note (description of constants ¢ and m in Algorithm 4.62)

(i) The optimal value of the constant ¢ defining the trial division bound B = ck? in
step 2 depends on the implementation of long-integer arithmetic, and is best deter-
mined experimentally (cf. Note 4.45).

(ii) The constant m = 20 ensuresthat I is at least 20 bits long and hence the interval
fromwhich R is selected, namely [I + 1, 21], is sufficiently large (for the values of
k of practical interest) that it most likely contains at least onevalue R for whichn =
2Rq + lisprime.

Note (relativesizer of ¢ with respect to n in Algorithm 4.62) The relative size r of g with
respect to n isdefined to be r = 1g ¢/ lg n. In order to assure that the generated prime n is
chosen randomly with essentially uniform distribution from the set of all £-bit primes, the
size of the prime factor ¢ of n — 1 must be chosen according to the probability distribution
of thelargest primefactor of arandomly selected k-bit integer. Since ¢ must be greater than
Rinorder for Fact 4.59 to apply, therelative size r of g isrestricted to being in the interval
[2,1]. It can be deduced from Fact 3.7(i) that the cumulative probability distribution of the
relative size r of the largest prime factor of alarge random integer, given that r is at least
2.is(1+1gr) for 2 <r < 1. Instep 4 of Algorithm 4.62, the relative size r is generated
according to this distribution by selecting arandom number s € [0, 1] and then setting r =
25~1 If k < 2m then r is chosen to be the smallest permissible value, namely % in order
to ensure that the interval from which R is selected is sufficiently large (cf. Note 4.60(ii)).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.4 Prime number generation 153

4.62 Algorithm Maurer’s algorithm for generating provable primes

PROVABLE_PRIME(k)
INPUT: apositive integer k.
OUTPUT: a k-bit prime number n.
1. (If kissmall, then test randomintegersby trial division. Atable of small primesmay
be precomputed for this purpose.)
If &£ < 20 then repeatedly do the following:
1.1 Select arandom k-bit odd integer n.
1.2 Usetria division by al primeslessthan n to determine whether n is prime.
1.3 If n isprime then return(n).
2. Set c«+—0.1 and m<«—20 (see Note 4.60).
(Trial division bound) Set B+c - k2 (see Note 4.60).
4. (Generater, the size of g relative to n — see Note 4.61) If £ > 2m then repeatedly
do the following: select arandom number s in the interval [0, 1], set 7«21, until
(k —rk) > m. Otherwise (i.e. k < 2m), set r<0.5.

w

5. Compute ¢+~ PROVABLE PRIME(|r - k| + 1).
6. Set I+[2F1/(2q)].
7. success«—0.
8. While (success = 0) do the following:
8.1 (select a candidate integer n) Select arandom integer R in the interval [I +
1,21 and set n«2Rq + 1.
8.2 Usetria divisionto determinewhether n isdivisibleby any primenumber < B.
If it is not then do the following:
Select arandom integer a in theinterval [2,n — 2].
Compute b<—a™ ! mod n.
If b = 1 then do the following:
Compute b<—a*? mod n and d<+ ged(b — 1,n).
If d = 1 then success«1.
9. Return(n).

4.63 Note (improvementsto Algorithm 4.62)

(i) A speedup can be achieved by using Fact 4.42 instead of Fact 4.59(i) for proving
n = 2Rq+ 1 primein step 8.2 of Maurer’salgorithm — Fact 4.42 only requiresthat
q be greater than 2'n.

(i) If acandidaten passesthetria division (in step 8.2), then aMiller-Rabin test (Algo-
rithm 4.24) with the single base a = 2 should be performed on n; only if n passes
thistest should the attempt to proveits primality (the remainder of step 8.2) be under-
taken. Thisleadsto afaster implementation due to the efficiency of the Miller-Rabin
test with asingle base a = 2 (cf. Remark 4.50).

(iii) Step 4 requires the use of real number arithmetic when computing 2°~!. To avoid
these computations, one can precompute and storealist of such valuesfor aselection
of random numbers s € [0, 1].

4.64 Note (provableprimesvs. probable primes) Probable primes are advantageous over prov-

able primes in that Algorithm 4.44 for generating probable primes with ¢ = 1 is dightly
faster than Maurer’s algorithm. Moreover, the latter requires more run-time memory due

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

154 Ch. 4 Public-Key Parameters

to itsrecursive nature. Provable primes are preferable to probable primes in the sense that
the former have zero error probability. In any cryptographic application, however, there
is always a non-zero error probability of some catastrophic failure, such as the adversary
guessing a secret key or hardware failure. Since the error probability of probable primes
can be efficiently brought down to acceptably low levels (see Note 4.49 but note the depen-
dence on t), there appears to be no reason for mandating the use of provable primes over
probable primes.

4.5 Irreducible polynomials over Z,

Recall (Definition 2.190) that a polynomial f(z) € Zp[x] of degreem > 1 issaid to be
irreducible over Z,, if it cannot be written as a product of two polynomiasin Z,[x] each
having degree less than m. Such apolynomial f(z) can be used to represent the elements
of thefinite field Fpm asF,m = Z,[z]/(f(z)), the set of all polynomialsin Z,|[x] of de-
greelessthan m wherethe addition and multiplication of polynomialsis performed modulo
f(z) (see§2.6.3). Thissection presentstechniquesfor constructing irreducible polynomials
over Z,, wherep isaprime. The characteristic two finite fieldsF2- are of particular inter-
est for cryptographic applications because the arithmetic in these fields can be efficiently
performed both in software and in hardware. For this reason, additional attention is given
to the special case of irreducible polynomials over Z.

The arithmetic in finite fields can usually be implemented more efficiently if theirre-
ducible polynomial chosen hasfew non-zero terms. Irreducibletrinomials, i.e., irreducible
polynomials having exactly three non-zero terms, are considered in §4.5.2. Primitive poly-
nomials, i.e., irreducible polynomials f () of degreem in Z,,[x] for which x isagenerator
of)., the multiplicative group of thefinitefield F),» = Z,[z]/(f(z)) (Definition 2.228),
arethetopic of §4.5.3. Primitive polynomialsare also used in the generation of linear feed-
back shift register sequences having the maximum possible period (Fact 6.12).

4.5.1 Irreducible polynomials

If f(z) € Zy[z] isirreducibleover Z, and a isanon-zeroelementinZ,,, thena- f () isalso
irreducible over Z,,. Hence it suffices to restrict attention to monic polynomiasin Zy|[z],
i.e., polynomials whose leading coefficient is 1. Observe also that if f(z) isanirreducible
polynomial, then its constant term must be non-zero. In particular, if f(z) € Z2[z], then
its constant term must be 1.

Thereisaformulafor computing exactly the number of monic irreducible polynomi-
asin Z,[z] of afixed degree. The Mdbius function, which is defined next, is used in this
formula

4.65 Definition Let m be apositive integer. The Mobius function . is defined by

1, ifm=1,
u(im) =< 0, if m isdivisible by the square of aprime,
(—=1)F, if misthe product of & distinct primes.

4.66 Example (Mobiusfunction) The following table gives the values of the Mdbius function
w(m) for thefirst 10 values of m:

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.5 Irreducible polynomials over Z,, 155

pm) [T -1] —-1]0] —1|1]-1]0[0] 1

O

4.67 Fact (number of monicirreducible polynomials) Let p beaprimeand m apositiveinteger.

(i) Thenumber IV,(m) of monicirreducible polynomials of degreem inZ,[z] isgiven
by the following formula:

Np(m) = %Zu(d)pm/ 9,
dl

where the summation ranges over al positive divisors d of m.
(ii) Theprobability of arandom monic polynomial of degreem inZ,[x] beingirreducible
over Z, isroughly . More specifically, the number N,,(m) satisfies

1 < Ny(m) 1
2m — p™ T m
Testing irreducibility of polynomiasin Z,[x] is significantly simpler than testing pri-
mality of integers. A polynomial can be tested for irreducibility by verifying that it has no
irreducible factors of degree < | 2t |. Thefollowing result leadsto an efficient method (Al-
gorithm 4.69) for accomplishing this.

4.68 Fact Letpbeaprimeand let k& be apositive integer.
(i) The product of al monic irreducible polynomias in Z,[x] of degree dividing k is
equal to 2" — 1.
(i) Let f(z) beapolynomial of degreem in Z,[xz]. Then f(z) isirreducible over Z,, if
and only if gcd(f(:v),xpi —x)=1foreachi, 1 <i < [%F].

4.69 Algorithm Testing a polynomial for irreducibility

INPUT: aprime p and amonic polynomia f(x) of degreem in Z|[z].
OUTPUT: an answer to the question: “Is f(z) irreducible over Z,?’
1. Setu(z)+=z.
2. Forifrom1to | 4| do thefollowing:
2.1 Computeu(z)+u(z)? mod f(x) using Algorithm 2.227. (Notethat u(z) isa
polynomial in Z,[z] of degree less than m.)
2.2 Computed(z) = ged(f(x), u(z) — z) (using Algorithm 2.218).
2.3 If d(z) # 1 then return(“reducible”).
3. Return(“irreducible”).

Fact 4.67 suggests that one method for finding an irreducible polynomial of degree m
in Zy[z] is to generate a random monic polynomial of degree m in Zy|[z], test it for irre-
ducibility, and continue until an irreducible one is found (Algorithm 4.70). The expected
number of polynomialsto be tried before an irreducible one is found is approximately m.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

156 Ch. 4 Public-Key Parameters

4.70 Algorithm Generating a random monic irreducible polynomial over Z,,

INPUT: aprime p and a positive integer m.
OUTPUT: amonic irreducible polynomial f(x) of degreem in Zy|[z].
1. Repeat the following:

1.1 (Generate a random monic polynomial of degree m in Z,,[x])
Randomly select integersag, a1, as, . . . , a1 between 0 and p — 1 with ay #
0. Let f(z) bethepolynomia f(z) = 2™ +a,, _12™ 1+ - +ax®+aiz+aq.
1.2 Use Algorithm 4.69 to test whether f(x) isirreducible over Z,.
Until f(z) isirreducible.
2. Return(f(z)).

Itisknownthat the expected degree of theirreduciblefactor of |east degree of arandom
polynomial of degreem inZ,[x] is O(lg m). Hence for each choice of f(x), the expected
number of times steps 2.1 — 2.3 of Algorithm 4.69 are iterated is O(1g m). Each iteration
takes O((lg p)m?) Z,-operations. These observations, together with Fact 4.67(ii), deter-
mine the running time for Algorithm 4.70.

4.71 Fact Algorithm 4.70 has an expected running time of O(m?(lg m)(lg p)) Z,-operations.

Given oneirreducible polynomial of degreem over Z,, Note 4.74 describes amethod,
which ismore efficient than Algorithm 4.70, for randomly generating additional such poly-
nomials.

4.72 Definition LetF, beafinitefield of characteristic p, and let oo € F,;. A minimum polyno-
mial of o over Z, isamonic polynomial of least degreein Zj,[z] having « as aroot.

4.73 Fact LetF, beafinitefield of order ¢ = p™, andlet a € F,.

(i) Theminimum polynomial of a over Z,, denoted m,, (x), is unique.
(ii) mq(z) isirreducible over Z,.
(iii) The degree of m(x) isadivisor of m.
(iv) Let ¢ be the smallest positive integer such that o?' = a. (Note that such at exists
since, by Fact 2.213, o?™ = a.) Then
t—1

me(z) = H(a: - api). 4.1

=0

4.74 Note (generating new irreducible polynomials from a given one) Suppose that f(y) isa
given irreducible polynomial of degree m over Z,,. Thefinitefield F,~ can then be repre-
sented asFp,m = Zy[y]/(f(y)). A random monic irreducible polynomial of degreem over
Z,, can be efficiently generated as follows. First generate arandom element o € F,» and
then, by repeated exponentiation by p, determine the smallest positive integer ¢ for which
of' = . Ift < m, then generate anew random element « € Fp- and repest; the probabil-
ity that ¢ < m isknown to be at most (1gm)/q"™/2. If indeed t = m, then compute m,, ()
using the formula (4.1). Then m,(z) isarandom monic irreducible polynomial of degree
minZy,[z]. Thismethod hasan expected runningtime of O(m?3(lg p)) Z,-operations (com-
pare with Fact 4.71).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.5 Irreducible polynomials over Z,, 157

4.5.2 Irreducible trinomials

If apolynomial f(z) inZz[x] hasan even number of non-zeroterms, then f(1) = 0, whence
(x + 1) isafactor of f(x). Hence, the smallest number of non-zero terms an irreducible
polynomial of degree > 2 in Z2[z] can haveisthree. Anirreducibletrinomial of degree m
in Zy [z] must be of theform 2™ + 2 + 1, where 1 < k < m — 1. Choosing anirreducible
trinomia f(z) € Zz[z] of degree m to represent the elements of the finite field Fom =
Zs[z]/(f(x)) can lead to a faster implementation of the field arithmetic. The following
facts are sometimes of use when searching for irreducible trinomials.

4.75 Fact Let m beapositiveinteger, and let £ denote an integer in theinterval [1,m — 1].
(i) If thetrinomial ™ + z* + 1 isirreducible over Z, then soisa™ + 2™ % + 1.
(ii) If m =0 (mod 8), thereisnoirreducible trinomial of degree m in Zy[x].
(iii) Supposethat eitherm = 3 (mod 8) orm =5 (mod 8). Thenanecessary condition
for z™ + z* + 1 to be irreducible over Z, isthat either k or m — k must be of the
form 2d for some positive divisor d of m.

Tables4.6 and 4.7 list anirreducible trinomial of degreem over Z, for eachm < 1478
for which such atrinomial exists.

4.5.3 Primitive polynomials

Primitive polynomials were introduced at the beginning of §4.5. Let f(z) € Z,[z] be an
irreduciblepolynomial of degreem. If thefactorization of theinteger p™ —1 isknown, then
Fact 4.76 yields an efficient algorithm (Algorithm 4.77) for testing whether or not f(z) is
a primitive polynomial. If the factorization of p™ — 1 is unknown, there is no efficient
algorithm known for performing thistest.

4.76 Fact Letp beaprimeand let the distinct prime factorsof p™ — 1 bery,rs,... ,r:. Then
anirreducible polynomia f(z) € Z,[x] is primitiveif and only if for each i, 1 < i < ¢
2P VM £ 1 (mod f(x)).
(That is, z isan element of order p™ — 1 inthefield Z,[z]/(f(x)).)

4.77 Algorithm Testing whether an irreducible polynomial is primitive

INPUT: aprime p, apositiveinteger m, the distinct prime factorsry, ra, ... ,r; of p™ — 1,
and amonic irreducible polynomial f(x) of degreem inZ,|x].
OUTPUT: an answer to the question: “Is f(x) a primitive polynomia?’
1. For ¢ from 1to ¢ do the following:
1.1 Computel(z) = " ~1/m mod f(z) (using Algorithm 2.227).
1.2 If I(z) = 1 then return(“ not primitive”).
2. Return(“primitive”).

There are precisely ¢(p™ — 1)/m monic primitive polynomials of degreem inZ,,[x]
(Fact 2.230), where ¢ is the Euler phi function (Definition 2.100). Since the number of
monic irreducible polynomialsof degreem inZ,[x] isroughly p™ /m (Fact 4.67(ii)), it fol-
lows that the probability of a random monic irreducible polynomial of degree m in Z,,[x]

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

158 Ch. 4 Public-Key Parameters

[m] k[m[k]| m] K[m[k]| m] K[m[k]| m][k|
2 1 93 2 193 15 || 295 48 || 402 | 171 || 508 9 || 618 | 295
3 1 94 | 21 194 87 || 297 5 || 404 65 || 510 69 || 620 9
4 1 9% | 1 196 3 || 300 5 || 406 | 141 || 511 10 || 622 | 297
5 2 97 6 198 9 || 302 41 || 407 71 || 513 26 || 623 68
6 1 98 | 11 199 34 || 303 1 || 409 87 || 514 67 || 625 | 133
7 1 100 | 15 || 201 14 || 305 | 102 || 412 | 147 || 516 21 || 626 | 251
9 1 102 | 29 || 202 55 || 308 15 || 414 13 || 518 33 || 628 | 223
10 3 103 9 || 204 27 || 310 93 || 415 | 102 || 519 79 || 631 | 307
1 2 105 4 || 207 43 || 313 79 || 417 | 107 || 521 32 || 633 | 101
12 3 106 | 15 || 209 6 || 314 15 || 418 | 199 || 522 39 || 634 39
14 5 108 | 17 || 210 7 || 316 63 || 420 7 || 524 | 167 || 636 | 217
15 1 110 | 33 || 212 | 105 || 318 45 || 422 | 149 || 526 97 || 639 16
17 3 111 | 10 || 214 73 || 319 36 || 423 25 || 527 47 || 641 1
18 3 113 9 || 215 23 || 321 31 || 425 12 || 529 42 || 642 | 119
20 3 118 | 33 || 217 45 || 322 67 || 426 63 || 532 1 || 646 | 249
21 2 119 8 || 218 11 || 324 51 || 428 | 105 || 534 | 161 || 647 5
22 1 121 | 18 || 220 7 || 327 34 || 431 | 120 || 537 94 || 649 37
23 5 123 2 || 223 33 || 329 50 || 433 33 || 538 | 195 || 650 3
25 3 124 | 19 || 225 32 || 330 99 || 436 | 165 || 540 9 || 651 14
28 1 126 | 21 || 228 | 113 || 332 89 || 438 65 || 543 16 || 652 93
29 2 127 1| 231 26 || 333 2 || 439 49 || 545 | 122 || 654 33
30 1 129 5 || 233 74 || 337 55 || 441 7 || 550 | 193 || 655 88
31 3 130 3 || 234 31 || 340 45 || 444 81 || 551 | 135 || 657 38
33 | 10 132 | 17 || 236 5 || 342 | 125 || 446 | 105 || 553 39 || 658 55
34 7 134 | 57 || 238 73 || 343 75 || 447 73 || 556 | 153 || 660 11
35 2 135 | 11 || 239 36 || 345 22 || 449 | 134 || 558 73 || 662 21
36 9 137 | 21 || 241 70 || 346 63 || 450 47 || 559 34 || 663 | 107
39 4 || 140 | 15 || 242 95 || 348 | 103 || 455 38 || 561 71 || 665 33
41 3 142 | 21 || 244 | 111 || 350 53 || 457 16 || 564 | 163 || 668 | 147
42 7 145 | 52 || 247 82 || 351 34 || 458 | 203 || 566 | 153 || 670 | 153
44 5 146 | 71 || 249 35 || 353 69 || 460 19 || 567 28 || 671 15
46 1 147 | 14 || 250 | 103 || 354 99 || 462 73 || 569 77 || 673 28
47 5 148 | 27 || 252 15 || 358 57 || 463 93 || 570 67 || 676 31
49 9 150 | 53 || 253 46 || 359 68 || 465 31 || 574 13 || 679 66
52 3 151 3 || 255 52 || 362 63 || 468 27 || 575 | 146 || 682 | 171
54 9 153 1| 257 12 || 364 9 || 470 9 || 577 25 || 684 | 209
55 7 154 | 15 || 258 71 || 366 29 || 471 1 || 580 | 237 || 686 | 197
57 4 || 155 | 62 || 260 15 || 367 21 || 473 | 200 || 582 85 || 687 13
58 | 19 156 9 || 263 93 || 369 91 || 474 | 191 || 583 | 130 || 689 14
60 1 159 | 31 || 265 42 || 370 | 139 || 476 9 || 585 88 || 690 79
62 | 29 161 | 18 || 266 47 || 372 | 111 || 478 | 121 || 588 35 || 692 | 299
63 1 162 | 27 || 268 25 || 375 16 || 479 | 104 || 590 93 || 694 | 169
65 | 18 166 | 37 || 270 53 || 377 41 || 481 | 138 || 593 86 || 695 | 177
66 3 167 6 || 271 58 || 378 43 || 484 | 105 || 594 19 || 697 | 267
68 9 169 | 34 || 273 23 || 380 47 || 486 81 || 596 | 273 || 698 | 215
71 6 170 | 11 || 274 67 || 382 81 || 487 94 || 599 30 || 700 75

73 | 25 172 1| 276 63 || 383 90 || 489 83 || 601 | 201 || 702 37
74 | 35 174 | 13 || 278 5]| 385 6 || 490 | 219 || 602 | 215 || 705 17
76 | 21 175 6 || 279 5 || 386 83 || 492 7 || 604 | 105 || 708 15
79 9 177 8 || 281 93 (| 388 | 159 || 494 17 || 606 | 165 711 92
81 4 || 178 | 31 || 282 35 || 390 9 || 495 76 || 607 | 105 || 713 41
84 5 180 3 || 284 53 || 391 28 || 497 78 || 609 31 || 714 23
86 | 21 182 | 81 || 286 69 || 393 7 || 498 | 155 || 610 | 127 || 716 | 183
87 | 13 183 | 56 || 287 71 || 394 | 135 || 500 27 || 612 81 || 718 | 165
89 | 38 185 | 24 || 289 21 || 396 25 || 503 3 || 614 45 || 719 | 150
90 | 27 186 | 11 || 292 37 || 399 26 || 505 | 156 || 615 | 211 || 721 9
92 | 21 191 9 || 294 33 || 401 | 152 || 506 23 || 617 | 200 || 722 | 231

Table 4.6: Irreducible trinomialsz™ + z* + 1 over Z. For eachm, 1 < m < 722, for which an
irreducibletrinomial of degree m in Z»[z] exists, the tableliststhe smallest & for which 2™ 4 2% 4-1
isirreducible over Z,.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.5 Irreducible polynomials over Z,, 159

[m] Rl m[k]| m] kK[| m[k]| m] kK[| m[k]| m] k|
724 | 207 || 831 | 49 937 | 217 || 1050 | 159 || 1159 | 66 || 1265 | 119 || 1374 | 609
726 5| 833 | 149 938 | 207 || 1052 | 291 || 1161 | 365 || 1266 7 || 1375 | 52
727 | 180 || 834 | 15 942 | 45 || 1054 | 105 || 1164 | 19 || 1268 | 345 || 1377 | 100
729 | 58 || 838 | 61 943 | 24 || 1055 | 24 || 1166 | 189 || 1270 | 333 || 1380 | 183
730 | 147 || 839 | 54 945 | 77 || 1057 | 198 || 1167 | 133 || 1271 | 17 || 1383 | 130
732 | 343 || 841 | 144 948 | 189 || 1058 | 27 || 1169 | 114 || 1273 | 168 || 1385 | 12
735 | 44 || 842 | 47 951 | 260 || 1060 | 439 || 1170 | 27 || 1276 | 217 || 1386 | 219
737 5 || 844 | 105 953 | 168 || 1062 | 49 || 1174 | 133 || 1278 | 189 || 1388 | 11
738 | 347 || 845 2 954 | 131 || 1063 | 168 || 1175 | 476 || 1279 | 216 || 1390 | 129
740 | 135 || 846 | 105 956 | 305 || 1065 | 463 || 1177 | 16 || 1281 | 229 || 1391 3
742 | 85 || 847 | 136 959 | 143 || 1071 7 || 1178 | 375 || 1282 | 231 || 1393 | 300
743 | 90 || 849 | 253 961 | 18 || 1078 | 361 || 1180 | 25 || 1284 | 223 || 139% | 97
745 | 258 || 850 | 111 964 | 103 || 1079 | 230 || 1182 | 77 || 1286 | 153 || 1398 | 601
746 | 351 || 852 | 159 966 | 201 || 1081 | 24 || 1183 | 87 || 1287 | 470 || 1399 | 55
748 | 19 || 855 | 29 967 | 36 || 1082 | 407 || 1185 | 134 || 1289 | 99 || 1401 | 92
750 | 309 || 857 | 119 969 | 31 || 1084 | 189 || 1186 | 171 || 1294 | 201 || 1402 | 127
751 | 18 || 858 | 207 972 71 1085 | 62 || 1188 | 75 || 1295 | 38 || 1404 | 81
753 | 158 || 860 | 35 975 | 19 || 1086 | 189 || 1190 | 233 || 1297 | 198 || 1407 | 47
754 | 19| 81| 14 977 | 15 || 1087 | 112 || 1191 | 196 || 1298 | 399 || 1409 | 194
756 | 45 || 862 | 349 979 | 178 || 1089 | 91 || 1193 | 173 || 1300 | 75 || 1410 | 383
758 | 233 || 865 1 982 | 177 || 1090 | 79 || 1196 | 281 || 1302 | 77 || 1412 | 125
759 | 98 || 866 | 75 983 | 230 || 1092 | 23 || 1198 | 405 || 1305 | 326 || 1414 | 429
761 3 || 868 | 145 985 | 222 || 1094 | 57 || 1199 | 114 || 1306 | 39 || 1415 | 282
762 | 83 || 870 | 301 986 3 (| 1095 | 139 || 1201 | 171 || 1308 | 495 || 1417 | 342
767 | 168 || 871 | 378 988 | 121 || 1097 | 14 || 1202 | 287 || 1310 | 333 || 1420 | 33
769 | 120 || 873 | 352 990 | 161 || 1098 | 83 || 1204 | 43 || 1311 | 476 || 1422 | 49
772 7 || 876 | 149 991 | 39 || 1100 | 35 || 1206 | 513 || 1313 | 164 || 1423 | 15
774 | 185 || 879 | 11 993 | 62 || 1102 | 117 || 1207 | 273 || 1314 | 19 || 1425 | 28
775 | 93 || 881 | 78 994 | 223 || 1103 | 65 || 1209 | 118 || 1319 | 129 || 1426 | 103
777 | 29 || 882 | 99 996 | 65 || 1105 | 21 || 1210 | 243 || 1321 | 52 || 1428 | 27
778 | 375 || 884 | 173 998 | 101 || 1106 | 195 || 1212 | 203 || 1324 | 337 || 1430 | 33
780 | 13 || 887 | 147 999 | 59 || 1108 | 327 || 1214 | 257 || 1326 | 397 || 1431 | 17
782 | 329 || 889 | 127 || 1001 | 17 || 1110 | 417 || 1215 | 302 || 1327 | 277 || 1433 | 387
783 | 68 || 890 | 183 || 1007 | 75 || 1111 | 13 (| 1217 | 393 || 1329 | 73 || 1434 | 363
785 | 92 || 892 | 31 || 1009 | 55| 1113 | 107 || 1218 | 91 || 1332 | 95 || 1436 | 83
791 | 30 || 894 | 173 || 1010 | 99 || 1116 | 59 (| 1220 | 413 || 1334 | 617 || 1438 | 357
793 | 253 || 895 | 12 || 1012 | 115 || 1119 | 283 || 1223 | 255 || 1335 | 392 || 1441 | 322
794 | 143 || 897 | 113 || 1014 | 385 || 1121 | 62 || 1225 | 234 || 1337 | 75 || 1442 | 395
798 | 53 || 898 | 207 || 1015 | 186 || 1122 | 427 || 1226 | 167 || 1338 | 315 || 1444 | 595
799 | 25 || 900 1| 1020 | 135 || 1126 | 105 || 1228 | 27 || 1340 | 125 || 1446 | 421
801 | 217 || 902 | 21 || 1022 | 317 || 1127 | 27 || 1230 | 433 || 1343 | 348 || 1447 | 195
804 | 75| 903 | 35| 1023 7 || 1129 | 103 || 1231 | 105 || 1345 | 553 || 1449 | 13
806 | 21 || 905 | 117 || 1025 | 294 || 1130 | 551 || 1233 | 151 || 1348 | 553 || 1452 | 315
807 7 || 906 | 123 || 1026 | 35 || 1134 | 129 || 1234 | 427 || 1350 | 237 || 1454 | 297
809 | 15 || 908 | 143 || 1028 | 119 || 1135 9| 1236 | 49 || 1351 | 39 || 1455 | 52
810 | 159 || 911 | 204 || 1029 | 98 || 1137 | 277 || 1238 | 153 || 1353 | 371 || 1457 | 314
812 | 29| 913 | 91 || 1030 | 93 || 1138 | 31 || 1239 4 || 1354 | 255 || 1458 | 243
814 | 21| 916 | 183 || 1031 | 68 || 1140 | 141 || 1241 | 54 || 1356 | 131 || 1460 | 185
815 | 333 || 918 | 77 || 1033 | 108 || 1142 | 357 || 1242 | 203 || 1358 | 117 || 1463 | 575
817 | 52| 919 | 36 || 1034 | 75 || 1145 | 227 || 1246 | 25 || 1359 | 98 || 1465 | 39
818 | 119 || 921 | 221 || 1036 | 411 || 1146 | 131 || 1247 | 14 || 1361 | 56 || 1466 | 311
820 | 123 || 924 | 31 || 1039 | 21 || 1148 | 23 || 1249 | 187 || 1362 | 655 || 1468 | 181
822 | 17 || 926 | 365 || 1041 | 412 || 1151 | 90 || 1252 | 97 || 1364 | 239 || 1470 | 49
823 9 || 927 | 403 || 1042 | 439 || 1153 | 241 || 1255 | 589 || 1366 1) 1471 | 25
825 | 38| 930 | 31| 1044 | 41 || 1154 | 75 || 1257 | 289 || 1367 | 134 || 1473 | 77
826 | 255 || 932 | 177 || 1047 | 10 || 1156 | 307 || 1260 | 21 || 1369 | 88 || 1476 | 21
828 | 189 || 935 | 417 || 1049 | 141 || 1158 | 245 || 1263 | 77 || 1372 | 181 || 1478 | 69

Table 4.7: Irreducibletrinomialsz™ +x* +1 over Z,. For eachm, 723 < m < 1478, for whichan
irreducibletrinomial of degree m in Z»[z] exists, thetable givesthe smallest k for which 2™ +z* +1
isirreducible over Z,.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

160 Ch. 4 Public-Key Parameters

being primitiveis approximately ¢(p™ — 1)/p™. Using the lower bound for the Euler phi
function (Fact 2.102), this probability can be seento be at least 1/(6 lnlnp™). This sug-
gests the following algorithm for generating primitive polynomials.

4.78 Algorithm Generating a random monic primitive polynomial over Z,

INPUT: aprime p, integer m > 1, and the distinct prime factorsry, 7o, . .. ,r; Of p™ — 1.
OUTPUT: amonic primitive polynomid f(z) of degreem inZ,[x].
1. Repeat the following:
1.1 Use Algorithm 4.70 to generate a random monic irreducible polynomial f(z)
of degreem inZy[z].
1.2 Use Algorithm 4.77 to test whether f(z) is primitive.
Until f(z) isprimitive.
2. Return(f(z)).

For eachm, 1 < m < 229, Table 4.8 lists a polynomial of degree m that is primitive
over Zo. If there exists aprimitive trinomia f(x) = ™ + z* + 1, then the trinomial with
thesmallest k islisted. If no primitivetrinomial exists, then a primitive pentanomial of the
form f(z) = 2™ + 2F + %2 + 2 4 1islisted.

If p™ — 1 is prime, then Fact 4.76 implies that every irreducible polynomial of de-
greem inZ,[x] isalso primitive. Table4.9 giveseither aprimitivetrinomial or aprimitive
pentanomial of degree m over Z, where m isan exponent of one of the first 27 Mersenne
primes (Definition 4.35).

4.6 Generators and elements of high order

Recall (Definition 2.169) that if G isa(multiplicative) finite group, the order of an element
a € G istheleast positive integer ¢ such that a® = 1. If there are n elementsin G, and if
a € G isan element of order n, then G is said to be cyclic and a is called a generator or a
primitiveelement of G (Definition 2.167). Of special interest for cryptographic applications
are the multiplicative group Z,, of the integers modulo a prime p, and the multiplicative
group IF5,.. of thefinitefield Fom of characteristic two; these groups are cyclic (Fact 2.213).
Also of interest is the group Z;, (Definition 2.124), where n is the product of two distinct
odd primes. This section deals with the problem of finding generators and other elements
of high order in Z, F5.., and Z,,. See §2.5.1 for background in group theory and §2.6 for
background in finite fields.

Algorithm 4.79 is an efficient method for determining the order of a group element,
given the primefactorization of the group order n. The correctness of the algorithmfollows
from the fact that the order of an element must divide n (Fact 2.171).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.6 Generators and elements of high order 161

k or k or k or k or

m | (k1,k2,k3) m | (ki,k2,k3) m | (ki1,k2,k3) m | (ki,k2,k3)
2 1 59 22,21,1 116 71,70, 1 173 100, 99, 1
3 1 60 1 117 20, 18, 2 174 13
4 1 61 16, 15,1 118 33 175 6
5 2 62 57,56, 1 119 8 176 119, 118, 1
6 1 63 1 120 118, 111, 7 177 8
7 1 64 4,31 121 18 178 87
8 6,51 65 18 122 60, 59, 1 179 34,33, 1
9 4 66 10,9,1 123 2 180 37,36, 1
10 3 67 10,9, 1 124 37 181 7,6,1
11 2 68 9 125 108, 107, 1 182 128, 127,1
12 7,4,3 69 29, 27,2 126 37,36, 1 183 56
13 4,31 70 16, 15,1 127 1 184 102,101, 1
14 12,11, 1 71 6 128 29,27,2 185 24
15 1 72 53,47,6 129 5 186 23,22, 1
16 532 73 25 130 3 187 58,57, 1
17 3 74 16, 15,1 131 48,47, 1 188 74,73, 1
18 7 75 11,10, 1 132 29 189 127,126, 1
19 6,51 76 36, 35,1 133 52,51, 1 190 18,17, 1
20 3 e 31,30, 1 134 57 191 9
21 2 78 20,19,1 135 11 192 28,27, 1
22 1 79 9 136 126, 125, 1 193 15
23 5 80 38,37, 1 137 21 194 87
24 4,31 81 4 138 8,71 195 10,9, 1
25 3 82 38, 35,3 139 8,5 3 196 66, 65, 1
26 8,71 83 46, 45, 1 140 29 197 62,61, 1
27 8,71 84 13 141 32,31,1 198 65
28 3 85 28,27, 1 142 21 199 34
29 2 86 13,12, 1 143 21,20, 1 200 42,41, 1
30 16, 15,1 87 13 144 70, 69, 1 201 14
31 3 88 72,71, 1 145 52 202 55
32 28,27, 1 89 38 146 60, 59, 1 203 8,71
33 13 920 19,18, 1 147 38,37, 1 204 74,73, 1
34 15,14, 1 91 84,83, 1 148 27 205 30,29, 1
35 2 92 13,12, 1 149 110, 109, 1 206 29,28, 1
36 11 93 2 150 53 207 43
37 12, 10, 2 94 21 151 3 208 62,59, 3
38 6,51 95 11 152 66, 65, 1 209 6
39 4 96 49, 47, 2 153 1 210 35,32, 3
40 21,19, 2 97 6 154 129, 127, 2 211 46, 45,1
41 3 98 11 155 32,31, 1 212 105
42 23,22, 1 99 47,45, 2 156 116, 115, 1 213 8,71
43 6,5 1 100 37 157 27,26, 1 214 49,48, 1
44 27,26, 1 101 7,6, 1 158 27,26, 1 215 23
45 4,31 102 77,76, 1 159 31 216 196, 195, 1
46 21,20, 1 103 9 160 19,18, 1 217 45
47 5 104 11,10, 1 161 18 218 11
48 28,27, 1 105 16 162 88,87, 1 219 19,18, 1
49 9 106 15 163 60, 59, 1 220 15,14, 1
50 27,26, 1 107 65, 63, 2 164 14,13, 1 221 35,34, 1
51 16, 15,1 108 31 165 31,30, 1 222 92,91,1
52 3 109 7,6,1 166 39,38, 1 223 33
53 16, 15,1 110 13,12, 1 167 6 224 31,30, 1
54 37,36, 1 111 10 168 17,15, 2 225 32
55 24 112 45, 43, 2 169 34 226 58,57, 1
56 22,21, 1 113 9 170 23 227 46, 45,1
57 7 114 82,81, 1 171 19,18, 1 228 148, 147, 1
58 19 115 15,14, 1 172 7 229 64, 63, 1

Table 4.8: Primitive polynomials over Zz. For eachm, 1 < m < 229, an exponent k is given for
whichthetrinomial 2™ +z* + 1 isprimitiveover Z,. If no such trinomial exists, a triple of exponents
(K1, k2, k3) isgiven for which the pentanomial z™ + z*1 + z*2 4 %3 4 1 is primitive over Z..

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

162 Ch. 4 Public-Key Parameters
| i | m | k (k1, k2, k3) |

1 2 1

2 3 1

3 5 2

4 7 1,3

5 13 none (4,3,1)

6 17 3,56

7 19 none (5,2,1)

8 31 3,6,7,13

9 61 none (43,26,14)

10 89 38

1 107 none (82,57,31)

12 | 127 | 1,7,15,30,63

13 | 521 | 32,48, 158, 168

14 | 607 | 105, 147,273

15 | 1279 | 216,418

16 | 2203 | none (1656,1197,585)

17 | 2281 | 715, 915, 1029

18 | 3217 | 67,576

19 | 4253 | none (3297,2254,1093)

20 | 4423 | 271, 369, 370, 649, 1393, 1419, 2098

21 | 9689 | 84,471, 1836, 2444, 4187

22 | 9941 | none (7449,4964,2475)

23 | 11213 | none (8218,6181,2304)

24 | 19937 | 881, 7083, 9842

25 | 21701 | none (15986,11393,5073)

26 | 23209 | 1530, 6619, 9739

27 | 44497 | 8575, 21034
Table 4.9: Primitive polynomialsof degreem over Z2, 2™ —1 aMersenneprime. For each exponent
m = M; of thefirst 27 Mersenne primes, the table lists all valuesof k, 1 < k < m/2, for which
the trinomial 2™ + z* + 1 isirreducible over Zs. If no such trinomial exists, a triple of exponents
(K1, k2, ks) islisted such that the pentanomial =™ + z*1 + 2*2 4 z*2 4 1 isirreducible over Z,.

4.79 Algorithm Determining the order of a group element

INPUT: a (multiplicative) finite group G of order n, an element a € G, and the prime fac-
torization n = pi'ps? - - - pit.
OUTPUT: the order ¢ of a.
1. Sett<n.
2. For i from 1 to k do the following:
2.1 Sett<t/p;".
2.2 Compute a; +a'.
2.3 Whilea; # 1 do the following: compute a; +—a}* and set t«t - p;.

3. Return(t).

Supposenow that G isacyclic group of order n. Thenfor any divisor d of n the number
of elementsof order d in G isexactly ¢(d) (Fact 2.173(ii)), where ¢ isthe Euler phi function
(Definition 2.100). In particular, G has exactly ¢(n) generators, and hence the probability
of arandom element in G being a generator is ¢(n) /n. Using the lower bound for the Eu-
ler phi function (Fact 2.102), this probability can be seento beat least 1/(6lnlnn). This

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.6 Generators and elements of high order 163

4.80

481

4.82

4.83

suggests the following efficient randomized algorithm for finding a generator of a cyclic
group.

Algorithm Finding a generator of a cyclic group

INPUT: acyclic group G of order n, and the prime factorization n = p{*p5? - - - pi.
OUTPUT: agenerator o of G.

1. Choose arandom element o in G.
2. For i from 1 to & do the following:

2.1 Compute b«—a™/Pi.
22 If b=1thengotostep 1.

3. Return(a).

Note (group elements of high order) In some situations it may be desirable to have an el-
ement of high order, and not a generator. Given a generator « in acyclic group G of order
n, and given adivisor d of n, an element 3 of order d in G can be efficiently obtained as
follows: 8 = o/, If g isaprime divisor of the order n. of acyclic group G, then the fol-
lowing method finds an element 5 € G of order ¢ without first having to find a generator
of G: select arandom element g € G and compute 3 = ¢™/; repeat until 5 # 1.

Note (generatorsof F3..) There are two basic approachesto finding a generator of F... .
Both techniques require the factorization of the order of F5..., namely 2™ — 1.

(i) Generate amonic primitive polynomial f(z) of degree m over Z, (Algorithm 4.78).
Thefinite field Fom can then be represented as Zs[z]/(f (x)), the set of al polyno-
mials over Z, modulo f(z), and the element o = x is a generator.

(if) Select the method for representing elements of Fom first. Then use Algorithm 4.80
with G = F;.. andn = 2™ — 1 to find agenerator o of F5n.

If n = pq, wherep and ¢ aredistinct odd primes, then Z; isanon-cyclic group of order
#(n) = (p — 1)(¢ — 1). The maximum order of an element in Z* islem(p — 1,q — 1).
Algorithm 4.83 isamethod for generating such an element which requiresthe factorizations
ofp—1landg—1.

Algorithm Selecting an element of maximum order in Z;,, where n = pq

INPUT: two distinct odd primes, p, ¢, and the factorizationsof p — 1 and ¢ — 1.
OUTPUT: an element o of maximum order lem(p — 1,¢ — 1) in Z;, wheren = pq.

1. UseAlgorithm 4.80 with G = Z; andn = p — 1 to find agenerator a of Z.

2. Use Algorithm 4.80 with G = Z; and n = ¢ — 1 to find agenerator b of Z.

3. Use Gauss's algorithm (Algorithm 2.121) to find aninteger o, 1 < o < n — 1,
satisfying o = a (mod p) anda = b (mod q).

4. Return(c).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

164

Ch. 4 Public-Key Parameters

4.6.1 Selecting a prime p and generator of Z,

4.84

4.85

4.86

In cryptographic applications for which a generator of Z;, is required, one usually has the
flexibility of selecting the primep. To guard against the Pohlig-Hellman algorithm for com-
puting discretelogarithms (Algorithm 3.63), asecurity requirement isthat p— 1 should con-
taina“large’ primefactor ¢. Inthiscontext, “large’ meansthat the quantity ‘g represents
an infeasible amount of computation; for example, ¢ > 29, This suggests the following
algorithm for selecting appropriate parameters (p, a).

Algorithm Selecting a k-bit prime p and a generator « of Z;

INPUT: the required bitlength & of the prime and a security parameter ¢.
OUTPUT: ak-bit prime p such that p — 1 has a prime factor > ¢, and agenerator a of Z;,.
1. Repeat the following:
1.1 Select arandom k-bit prime p (for example, using Algorithm 4.44).
1.2 Factorp — 1.
Until p — 1 hasaprime factor > ¢.
2. Use Algorithm 4.80 with G = Z,, and n = p — 1 to find agenerator o of Z,.
3. Return(p,a).

Algorithm 4.84 isrelatively inefficient as it requires the use of an integer factorization
algorithmin step 1.2. An alternative approach is to generate the prime p by first choosing
alarge prime ¢ and then selecting relatively small integers R at random until p = 2Rg + 1
isprime. Sincep — 1 = 2Rgq, thefactorization of p — 1 can be obtained by factoring R. A
particularly convenient situation occurs by imposing the condition R = 1. In this case the
factorization of p — 1 issimply 2¢. Furthermore, since ¢(p — 1) = ¢(2q) = #(2)¢(q) =
q — 1, the probability that arandomly selected element o € Z,, isagenerator is ‘12;(11 = %

Definition A safeprimepisaprimeof theformp = 2¢ + 1 where ¢ isprime.

Algorithm 4.86 generates a safe (probable) prime p and a generator of Z,.

Algorithm Selecting a k-bit safe prime p and a generator « of Z;,

INPUT: the required bitlength & of the prime.
OUTPUT: ak-bit safe prime p and a generator a of Z,,.

1. Do thefollowing:
1.1 Select arandom (k — 1)-bit prime ¢ (for example, using Algorithm 4.44).
1.2 Compute p+2g + 1, and test whether p is prime (for example, using tria divi-
sion by small primes and Algorithm 4.24).
Until p isprime.
2. Use Algorithm 4.80 to find a generator « of Z;.
3. Return(p,a).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.7 Notes and further references 165

4.7 Notes and further references

§4.1

§4.2

Several books provide extensive treatments of primality testing including those by Bres-
soud [198], Bach and Shallit [70], and Koblitz [697]. The book by Kranakis[710] offers
amoretheoretical approach. Cohen [263] gives acomprehensive treatment of modern pri-
mality tests. See also the survey articlesby A. Lenstra[747] and A. Lenstraand H. Lenstra
[748]. Facts 4.1 and 4.2 were proven in 1837 by Dirichlet. For proofs of these results, see
Chapter 16 of Ireland and Rosen [572]. Fact 4.3 is due to Rosser and Schoenfeld [1070].
Bach and Shallit [70] have further results on the distribution of prime numbers.

Fact 4.13(i) wasproven by Alford, Granville, and Pomerance[24]; seealso Granville[521].
Fact 4.13(ii) is due to Pomerance, Selfridge, and Wagstaff [996]. Pinch [974] showed that
there are 105212 Carmichael numbers up to 101°.

The Solovay-Strassen probabilistic primality test (Algorithm 4.18) is due to Solovay and
Strassen [1163], as modified by Atkin and Larson [57].

Fact 4.23 was proven independently by Monier [892] and Rabin [1024]. The Miller-Rabin
test (Algorithm 4.24) originated in the work of Miller [876] who presented it as a non-
probabilistic polynomial-timealgorithm assuming the correctness of the Extended Riemann
Hypothesis (ERH). Rabin [1021, 1024] rephrased Miller’s algorithm as a probabilistic pri-
mality test. Rabin’s algorithm required a small nhumber of ged computations. The Miller-
Rabintest (Algorithm 4.24) isasimplification of Rabin’s algorithm which does not require
any gcd computations, and is due to Knuth [692, p.379]. Arazi [55], making use of Mont-
gomery modular multiplication (§14.3.2), showed how the Miller-Rabin test can be imple-
mented by “divisionless modular exponentiations’ only, yielding a probabilistic primality
test which does not use any division operations.

Miller [876], appealing to the work of Ankeny [32], proved under assumption of the Ex-
tended Riemann Hypothesisthat, if n isan odd composite integer, then itsleast strong wit-
nessis less than c(Inn)?, where c is some constant. Bach [63] proved that this constant
may be taken to be ¢ = 2; see also Bach [64]. As a conseguence, one can test n for pri-
mality in O((Ign)®) bit operations by executing the Miller-Rabin algorithm for all bases
a < 2(Inn)?. Thisgives a deterministic polynomial-time algorithm for primality testing,
under the assumption that the ERH istrue.

Table 4.1 is from Jaeschke [630], building on earlier work of Pomerance, Selfridge, and
Wagstaff [996]. Arnault [56] found the following 46-digit composite integer

n = 1195068768795265792518361315725116351898245581

that is a strong pseudoprimeto all the 11 prime bases up to 31. Arnault also found a 337-
digit composite integer which is a strong pseudoprimeto all 46 prime bases up to 199.

The Miller-Rabin test (Algorithm 4.24) randomly generates¢ independent bases a and tests
to see if each is a strong witness for n. Let n be an odd composite integer and let ¢ =
(% lgn]. In situations where random bits are scarce, one may choose instead to generate
asingle random base a and usethe basesa,a + 1,... ,a + t — 1. Bach [66] proved that
for arandomly chosen integer a, the probability that a,a +1,... ,a + ¢t — 1 are all strong
liars for n is bounded above by n—1/4+°(1): in other words, the probability that the Miller-
Rabin algorithm using these bases mistakenly declares an odd composite integer “prime”
isat most n—1/4t°(1) | Peraltaand Shoup [969] later improved this bound to n—1/2+0(1),

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

166

Ch. 4 Public-Key Parameters

§4.3

Monier [892] gave exact formulas for the number of Fermat liars, Euler liars, and strong
liars for composite integers. One consequence of Monier’s formulas is the following im-
provement (in the case where n is not a prime power) of Fact 4.17 (see Kranakis [710,
p.68]). If n > 3 isan odd composite integer having r distinct prime factors, and if n = 3

(mod 4), then there are at most ¢(n)/2"~* Euler liarsfor n. Another consequenceis the
following improvement (in the case where n has at least three distinct prime factors) of
Fact 4.23. If n > 3 isan odd composite integer having r distinct prime factors, then there
areat most ¢(n) /27! strong liarsfor n. Erdosand Pomerance[373] estimated the average
number of Fermat liars, Euler liars, and strong liarsfor compositeintegers. Fact 4.30(ii) was
proven independently by Atkin and Larson [57], Monier [892], and Pomerance, Selfridge,
and Wagstaff [996].

Pinch [975] reviewed the probabilistic primality tests used in the Mathematica, Maple V,
Axiom, and Pari/GP computer algebra systems. Some of these systems use a probabilistic
primality test known as the Lucastest; a description of thistest is provided by Pomerance,
Selfridge, and Wagstaff [996].

If anumber n iscomposite, providing anon-trivial divisor of n isevidence of itscomposite-
nessthat can be verified in polynomial time (by long division). In other words, the decision
problem “is n composite?’ belongs to the complexity class NP (cf. Example 2.65). Pratt
[1000] used Fact 4.38 to show that this decision problem isalso in co-NP. That is, if n is
prime there exists some evidence of this (called a certificate of primality) that can be veri-
fied in polynomial time. Note that theissue here is not in finding such evidence, but rather
in determining whether such evidence exists which, if found, allows efficient verification.
Pomerance [992] improved Pratt’s results and showed that every prime n has a certificate
of primality which requires O(In n) multiplications modulo n for its verification.

Primality of the Fermat number Fj, = 22" 4 1 can be determined in deterministic polyno-
mial time by Pepin'stest: for k > 2, F isprimeif andonly if 5(Fx~1/2 = —1 (mod F},).
For the history behind Pepin’s test and the L ucas-Lehmer test (Algorithm 4.37), see Bach
and Shallit [70].

In Fact 4.38, the integer a does not have to be the samefor al g. More precisely, Brillhart
and Selfridge [212] showed that Fact 4.38 can be refined as follows: an integer n > 3 is
primeif and only if for each prime divisor ¢ of n — 1, there exists an integer a, such that

a?~' =1 (mod n) and al" /% £ 1 (mod n). The sameistrue of Fact 4.40, which is
due to Pocklington [981]. For a proof of Fact 4.41, see Maurer [818]. Fact 4.42 isdue to
Brillhart, Lehmer, and Selfridge [210]; asimplified proof is given by Maurer [818].

The original Jacobi sum test was discovered by Adleman, Pomerance, and Rumely [16].
The agorithm was simplified, both theoretically and algorithmically, by Cohen and H.
Lenstra [265]. Cohen and A. Lenstra [264] give an implementation report of the Cohen-
Lenstra Jacobi sum test; see also Chapter 9 of Cohen [263]. Further improvements of the
Jacobi sum test are reported by Bosma and van der Hulst [174].

Elliptic curves werefirst used for primality proving by Goldwasser and Kilian [477], who
presented a randomized algorithm which has an expected running time of O((Inn)*!) bit
operationsfor most inputsn. Subsequently, Adleman and Huang [13] designed a primality
proving algorithm using hyperélliptic curves of genus two whose expected running time
is polynomial for all inputs n. This established that the decision problem “is n prime?”’
isin the complexity class RP (Definition 2.77(ii)). The Goldwasser-Kilian and Adleman-
Huang algorithms are inefficient in practice. Atkin’s test, and an implementation of it, is
extensively described by Atkin and Morain [58]; see also Chapter 9 of Cohen [263]. The

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.7 Notes and further references 167

§4.4

§4.5

largest number proven prime as of 1996 by ageneral purpose primality proving algorithmis
a 1505-decimal digit number, accomplished by Morain [903] using Atkin’s test. The total
time for the computation was estimated to be 4 years of CPU time distributed among 21
SUN 3/60 workstations. See also Morain [902] for an implementation report on Atkin's
test which was used to prove the primality of the 1065-decimal digit number (233° +1)/3.

A proof of Mertens's theorem can be found in Hardy and Wright [540]. The optimal trial
division bound (Note 4.45) wasderived by Maurer [818]. Thediscussion (Note4.47) onthe
probability P(X|Y;) isfrom Beauchemin et a. [81]; the result mentioned in the last sen-
tence of this note is due to Kim and Pomerance [673]. Fact 4.48 was derived by Damgard,
Landrock, and Pomerance [300], building on earlier work of Erdds and Pomerance [373],
Kim and Pomerance[673], and Damgéard and Landrock [299]. Table4.3is Table 2 of Dam-
gard, Landrock, and Pomerance [300]. The suggestionsto first do a Miller-Rabin test with
base a = 2 (Remark 4.50) and to do an incremental search (Note 4.51) in Algorithm 4.44
were made by Brandt, Damgérd, and Landrock [187]. The error and failure probabilities
for incremental search (Note 4.51(i)) were obtained by Brandt and Damgérd [186]; consult
this paper for more concrete estimates of these probabilities.

Algorithm 4.53 for generating strong primesisdueto Gordon [514, 513]. Gordon originally
proposed computing po = (s”* — 1) mod rs instep 3. Kaliski (personal communica-
tion, April 1996) proposed the modified formulapy = (25”2 mod r)s — 1 which can be
computed more efficiently. Williams and Schmid [1249] proposed an algorithm for gener-
ating strong primes p with the additional constraint that p — 1 = 2¢ where ¢ is prime; this
algorithmis not as efficient as Gordon’ salgorithm. Hellman and Bach [550] recommended
an additional constraint on strong primes, specifying that s — 1 (where s isalarge prime
factor of p+ 1) must have alarge primefactor (see §15.2.3(v)); thisthwarts cycling attacks
based on L ucas sequences.

The NIST method for prime generation (Algorithm 4.56) isthat recommended by the NIST
Federal Information Processing Standards Publication (FIPS) 186 [406].

Fact 4.59 and Algorithm 4.62 for provabl e prime generation are derived from Maurer [818].
Algorithm 4.62 is based on that of Shawe-Taylor [1123]. Maurer notes that the total diver-
sity of reachable primes using the original version of his algorithm is roughly 10% of all
primes. Maurer also presents amore complicated algorithm for generating provable primes
with abetter diversity than Algorithm 4.62, and provides extensive implementation details
and analysis of the expected runningtime. Maurer [812] provides heuristicjustification that
Algorithm 4.62 generates primes with virtually uniform distribution. Mihailescu [870] ob-
served that Maurer’s algorithm can be improved by using the Eratosthenes sieve method
for trial division (in step 8.2 of Algorithm 4.62) and by searching for aprimen in an appro-
priateinterval of thearithmetic progression2¢+1,4q+1,6g+1,. .. instead of generating
R'sat random until n = 2Rq + 1 isprime. The second improvement comes at the expense
of areduction of the set of primes which may be produced by the algorithm. Mihailescu’s
paper includes extensive analysis and an implementation report.

Lidl and Niederreiter [764] provide acomprehensivetreatment of irreducible polynomials;
proofs of Facts 4.67 and 4.68 can be found there.

Algorithm 4.69 for testing a polynomial for irreducibility isdueto Ben-Or [109]. Thefast-
est algorithm known for generating irreducible polynomialsis dueto Shoup [1131] and has
an expected running time of O(m? lg m + m? 1g p) Z,-operations. Thereisno determinis-
tic polynomial-time algorithm known for finding an irreducible polynomial of a specified

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

168

Ch. 4 Public-Key Parameters

§4.6

degree m in Z,[x]. Adleman and Lenstra[14] give a deterministic algorithm that runsin
polynomial time under the assumption that the ERH is true. The best deterministic algo-
rithm known is due to Shoup [1129] and takes O(m* p) Z,-operations, ignoring powers
of logm and log p. Gordon [512] presents an improved method for computing minimum
polynomials of elementsin Fom.

Zierler and Brillhart [1271] provide atable of al irreducible trinomials of degree < 1000
in Zz[x]. Blake, Gao, and Lambert [146] extended this list to all irreducible trinomials of
degree < 2000 in Z»[x]. Fact 4.75 isfrom their paper.

Table 4.8 extends a similar table by Stahnke [1168]. The primitive pentanomials z™ +
xF1 k2 4 zks 4 1 listed in Table 4.8 have the following properties: (i) &k = ko + ks;
(i) ko > ks; and (iii) ks is as small as possible, and for this particular value of ks, ko is
as small as possible. The rational behind this form is explained in Stahnke's paper. For
each m < 5000 for which the factorization of 2™ — 1 is known, Zivkovi¢ [1275, 1276]
gives a primitive trinomial in Zy[z], one primitive polynomial in Z[z] having five non-
zero terms, and one primitive polynomia in Zs[z] having seven non-zero terms, provided
that such polynomials exist. The factorizations of 2™ — 1 are known for all m < 510 and
for some additional m < 5000. A list of such factorizations can be found in Brillhart et
al. [211] and updates of the list are available by anonymous ftp from sabl e. ox. ac. uk
inthe/ pub/ nmat h/ cunni nghant directory. Hansen and Mullen [538] describe some
improvementsto Algorithm 4.78 for generating primitive polynomials. They also give ta-
bles of primitive polynomials of degree m in Z,[z] for each prime power p™ < 105? with
p < 97. Moreover, for each such p and m, the primitive polynomial of degree m over Z,
listed has the smallest number of non-zero coefficients among all such polynomials.

The entries of Table 4.9 were obtained from Zierler [1270] for Mersenne exponents MM ;,
1 < j < 23, and from Kuritaand Matsumoto [719] for Mersenne exponents A/, 24 < j <
27.

Let f(x) € Zp[z] be anirreducible polynomial of degree m, and consider the finite field
Fym = Zylx]/(f(z)). Then f(z) is called anormal polynomial if the set {z, a
z#" '} forms a basis for F,~ over Z,; such a basis is called a normal basis. Mullin et
al. [911] introduced the concept of an optimal normal basisin order to reduce the hardware
complexity of multiplying field elementsin thefinitefield Fo. A VLS| implementation of
the arithmeticin Fy» which usesoptimal normal basesis described by Agnew et al. [18]. A
normal polynomial which is also primitiveis called a primitive normal polynomial. Dav-
enport [301] proved that for any prime p and positive integer m there exists a primitive
normal polynomial of degreem in Z,,[z]. See also Lenstraand Schoof [760] who general-
ized this result from prime fields Z,, to prime power fields F,. Morgan and Mullen [905]
give aprimitive normal polynomial of degree m over Z,, for each prime power p™ < 10°°
with p < 97. Moreover, each polynomial has the smallest number of non-zero coefficients
among all primitive normal polynomialsof degreem over Z,; infact, each polynomial has
at most five non-zero terms.

No polynomial-time algorithm is known for finding generators, or even for testing whether
an element isagenerator, of afinitefield F,, if thefactorization of ¢ — 1 isunknown. Shoup
[1130] considered the problem of deterministically generating in polynomial time a subset
of I, that contains a generator, and presented a sol ution to the problem for the case where
the characteristic p of I, issmall (e.g. p = 2). Maurer [818] discusses how his agorithm
(Algorithm 4.62) can be used to generate the parameters (p,), wherep isaprovableprime
and o is agenerator of Z,.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

