Fonts in XFree86

Juliusz Chroboczek, Juliusz.Chroboczek@ens. fr

5 March 2000

XFree86 contains a number of improvements related to fonts, including
« inclusion of new fonts;
- internationalisation of the scalable font backends (Type 1, Speedo, and TrueType);
« support for TrueType fonts;
« support for CID-keyed fonts.

This document describes these improvements. It does not attempt to describe the standard sup-
port for fonts in X11; the reader is referred to the X(1), Xserver(l), and mkfontdir(l) man-

pages.

1. Background and terminology
1.1 Characters and glyphs

A character is an abstract unit of a writing system. Examples of characters include the Latin capital
letter A, the Arabic letter jim, and the dingbat black scissors.

A glyph is a shape that may represent one or many characters when displayed by a window sys-
tem or printed by a printer.

While glyphs roughly correspond to characters in most cases, this correspondence is not, in gen-
eral, one to one. For example, a font may have many variant forms of the capital letter A; a single
fi ligature may correspond to the letters f and i.

A coded character set is a set of characters together with a mapping from integer codes -- known as
codepoints -- to characters. Examples of coded character sets include US-ASCII, ISO 8859-1,
KOI8-R, and JIS X 0208(1990).

A coded character set need not use 8-bit integers to index characters. Many early mainframes
used 6-bit character sets, while 16-bit (or more) character sets are necessary for ideographic writ-
ing systems.

1.2 Font files, fonts, and XLFD

Traditionally, typographers speak about typefaces and founts (we use the traditional British
spelling to distinguish founts from digital fonts). A typeface is a particular style or design, such
as Times Italic, while a fount is a molten-lead incarnation of a given typeface at a given size.

Digital fonts come in font files. A font file contains all the information necessary for generating
glyphs of a given typeface, and applications using font files may access glyph information in arbi-
trary order.

Fonts in XFree86 1

Fonts in XFree86 2

Digital fonts may consist of bitmap data, in which case they are said to be bitmap fonts. They may
also consist of a mathematical description of glyph shapes, in which case they are said to be scal-
able fonts. Common formats for scalable font files are Type 1 (sometimes incorrectly called ATM
fonts or PostScript fonts), Speedo and TrueType.

The glyph data in a digital font needs to be indexed somehow. How this is done depends on the
font file format. In the case of Type 1 fonts, glyphs are identified by glyph names. In the case of
TrueType fonts, glyphs are indexed by integers corresponding to one of a number of indexing
schemes (usually Unicode --- see below).

The X11 system uses the data in font file to generate font instances, which are collections of glyphs
at a given size indexed according to a given encoding. X11 font instances are specified using a
notation known as the X Logical Font Description (XLFD). An XLFD starts with a dash ‘~’, and
consists of fourteen fields separated by dashes, for example

—adobe-courier-medium-r-normal--0-0-0-0-m-0-iso8859-1

Or particular interest are the last two fields ‘is08859-1’, which specify the font instance’s
encoding.

1.3 Unicode

Unicode (<URL:http://www.unicode.org>) is a coded character set with the goal of
uniquely identifying all characters for all scripts, current and historical. While Unicode was
explicitly not designed as a glyph encoding scheme, it is often possible to use it as such.

Unicode is an open character set, in that codepoint assignments may be added to Unicode at any
time (once specified, though, an assignment can never be changed). For this reason, a Unicode
font will be sparse, and only define glyphs for a subset of the character registry of Unicode.

The Unicode standard is defined in parallel with ISO 10646. Assignments in the two standards
are always equivalent, and this document uses the terms “Unicode” and “ISO 10646” inter-
changeably.

When used in X11, Unicode-encoded fonts should have the last two fields of their XLFD set to
‘is0l10646-1".

2. New fonts
2.1 Bitmap fonts

XFree86 includes two new Unicode-encoded fonts with a large collection of non-ideographic
glyphs. While it is possible to use these fonts as main fonts, applications may also use them as
fallbacks when a given glyph is not available in the current font.

2.1.1 The Unicode ‘fixed’ font
The font file

/usr/X11/1ib/X11/fonts/misc/6x13.pcf.gz

with XLFD

-misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-is0l10646-1

is a Unicode-encoded version of the standard ‘fixed’ font with added support for the Latin,
Greek, Cyrillic, Georgian, Armenian, IPA and other scripts plus numerous technical symbols. It
contains over 2800 characters, covering all characters of ISO 8859 parts 1-5, 7-10, 13-15, as well as
all European IBM and Microsoft code pages, KOI8, WGL4, and the repertoires of many other

Fonts in XFree86 3

character sets. This font is compatible with the standard 8-bit fixed font and therefore also
includes the DEC line-drawing glyphs in the range 0x00 to 0x1F, which are not part of Unicode or
ISO 10646-1.

An ISO 8859-1 version of this font is still available in file

/usr/X11/1ib/X11/fonts/misc/6x13-IS08859-1.pcf.gz

with XLFD

-misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-is08859-1

The standard aliases ‘fixed’ and ‘6x13’ still point at the ISO 8859-1 versions of the font.

2.1.2 The ClearlyU Unicode font

The ClearlyU font set of fonts provides a set of 12pt, 100dpi proportional fonts with many of the
glyphs needed for Unicode text. Together, the fonts contain over 4000 glyphs.

The main ClearlyU font has XLFD name

-mutt-ClearlyU-medium-r-normal--17-120-100-100-p-101-is0l0646-1

and resides in the font file

/usr/X11/1ib/X11/fonts/misc/cul2.pcf.gz

Additional ClearlyU fonts include
-mutt-ClearlyU Alternate Glyphs-medium-r-normal--17-120-100-100-p-91-is0l0646-1
-mutt-ClearlyU Arabic Extra-medium-r-normal--17-120-100-100-p-103-fontspecific-0
-mutt-ClearlyU Ligature-medium-r-normal--17-120-100-100-p-141-fontspecific-0

-mutt-ClearlyU PUA-medium-r-normal--17-120-100-100-p-111-is0l0646-1

2.2 Scalable fonts

XFree86 includes the “Lucidux”” family of Type 1 fonts. This family consists of the fonts “Lucidux
Serif”’, with XLFD

-b&h-lucidux serif-medium—*-normal—-—*—*—*—*—p—*_*_x*

“Lucidux Sans”’, with XLFD

-b&h-lucidux sans-medium-*-normal-——*—*—*—*_p—*_*_x*

and “Lucidux Mono”’, with XLFD

-b&h-lucidux mono-medium—*-normal-——*—*—*—*_m—*—*_*

Each of these fonts currently comes in Roman and oblique variants (bold variants will be
included in a future release) and has 337 glyphs covering the basic “ASCII"” glyph set, the Latin 1
glyph set, as well as the “Extended Latin” glyph set. In particular, these fonts include all the
glyphs needed for ISO 8859 parts 1, 2, 3, 4, 9 and 15.

The Lucidux fonts are original designs by Charles Bigelow and Kris Holmes. Lucidux fonts
include seriffed, sans-serif, and monospaced styles which share the same stem weight, x-height,
capital height, ascent and descent. Lucidux fonts harmonise with Lucida (R) fonts of the same
vertical proportions and weights. The character width metrics of Lucidux roman fonts match

Fonts in XFree86 4

those of core fonts bundled with several window systems.

Each PFA file has a copy of the license terms in PS comment lines. The license terms are also
included in the file COPYRIGHT . BH for convenience, and in the License document.

The design and font outlines were donated by Charles Bigelow and Kris Holmes from Bigelow
and Holmes Inc., and the hinting was donated by Berthold Horn and Blenda Horn from Y&Y, Inc.
For more information, please contact <design@bigelowandholmes.com> or <sales@yandy.com>,
or consult Y&Y’s web site <URL:http://www.yandy.com>.

3. Internationalisation of scalable font backends.

The scalable font backends (Type 1, Speedo, TrueType) can now automatically re-encode fonts to
the encoding specified in the XLFD in ‘fonts.dir’. For example, a “fonts.dir’ file can now
contain entries for the Type 1 Courier font such as

cour.pfa -adobe-courier-medium-r-normal--0-0-0-0-m-0-iso08859-1

cour.pfa -adobe-courier-medium-r-normal--0-0-0-0-m-0-iso08859-2

which will lead to the font being recoded to ISO 8859-1 and ISO 8859-2 respectively.

3.1 The ‘fontenc’ layer

Three of the scalable backends (Type 1, Speedo, and the ‘freetype’ TrueType backend) use a com-
mon ‘fontenc’ layer for font re-encoding. This allows those backends to share their encoding
data, and allows simple configuration of new locales independently of font type.

Please note: the X-TrueType (X-TT) backend does not use the ‘fontenc’ layer, but instead uses its
own method for font reencoding. Readers only interested in X-TT may want to skip to Using
Symbol Fonts (section , page), as the intervening information does not apply to X-TT. X-TT itself
is described in more detail in X-TrueType (section , page).

In the ‘fontenc’ layer, an encoding is defined by a name (such as ‘is08859-1’), eventually a
number of aliases (alternate names), and an ordered collection of mappings. A mapping defines
the way the encoding can be mapped into one of the “target” encodings known to the ‘fontenc’
layer; currently, those consist of Unicode, Adobe glyph names, and arbitrary TrueType ‘cmap’s.

A number of encodings are hardwired into ‘fontenc’, and are therefore always available; the hard-
coded encodings cannot easily be redefined. These include:
+ ‘15010646-1": Unicode;
+ “1s508859-1": 150 Latin-1 (Western Europe);
+ ‘1s08859-2":ISO Latin-2 (Eastern Europe);

+ “1s508859-3": IS0 Latin-3 (Southern Europe);

o~ o~ o~ o~

+ ‘1s508859-4":ISO Latin-4 (Northern Europe);
+ 1s508859-5": ISO Cyrillic;

+ ‘i508859-6": ISO Arabic;

+ "i508859-7":1SO Greek;

+ “is508859-8": ISO Hebrew;

+ ‘1508859-9": ISO Latin-5 (Turkish);

+ ‘1508859-10": ISO Latin-6 (Nordic);

Fonts in XFree86 5

+ “1508859-15": 150 Latin-9, or Latin-0 (Revised Western-European);

+ ‘koi8-r’": KOI8 Russian;

+ ‘koi8-u’: KOI8 Ukrainian (see RFC 2319);

+ ‘koi8-ru’: KOI8 Russian/Ukrainian

+ ‘koi8-uni’: KOI8 “Unified” (Russian, Ukrainian, and Byelorussian);
+ ‘koi8-e’: KOI8 ‘European’, ISO-IR-111, or ECMA-Cyrillic;

+ ‘microsoft-symbol’ and ‘apple-roman’: these are only likely to be useful with True-
Type symbol fonts.

New encodings can be added by defining encoding files. When a font encoding is requested that
the ‘fontenc’ layer doesn’t know about, the backend checks the directory in which the font file
resides (not the directory with ‘fonts.dir’!) for a file named ‘encodings.dir’. If found, this
file is scanned for the unknown encoding, and the requested encoding definition file is read in.
The mkfontdir(1) utility, when invoked with the ‘~e” option followed by the name of a directory
containing encoding files, can be used to automatically build ‘encodings.dir’ files. See the
mk fontdir(l) manpage for more details.

A number of predefined encoding files have been included with the distribution. Information on
writing new encoding files can be found in Format of encodings directory files (section , page) and
Format of encodings files (section , page).

3.2 Backend-specific notes about fontenc

3.2.1 Type 1

The Type 1 backend first searches for a mapping with a target of PostScript. If one is found, it is
used. If none is found, the backend searches for a mapping with target Unicode, which is then
composed with a built-in table mapping codes to glyph names. Note that this table only covers
part of the Unicode code points that have been assigned names by Adobe.

If neither a PostScript or Unicode mapping is found, the backend defaults to ISO 8859-1.

Specifying an encoding value of ‘adobe-fontspecific’ disables the encoding mechanism.
This is useful with symbol and wrongly encoded fonts (see below).

The Type 1 backend currently limits all encodings to 8-bit codes.
3.2.2 Speedo

The Speedo backend searches for a mapping with a target of Unicode, and uses it if found. If
none is found, the backend defaults to ISO 8859-1.

The Speedo backend limits all encodings to 8-bit codes.

3.2.3 The ‘freetype’ TrueType backend

The TrueType backend scans the mappings in order. Mappings with a target of PostScript are
ignored; mappings with a TrueType or Unicode target are checked against all the cmaps in the
file. The first applicable mapping is used.

Authors of encoding files to be used with the TrueType backend should ensure that mappings are
mentioned in decreasing order of preference.

3.3 Format of encodings directory files

In order to use a font in an encoding that the font backend does not know about, you need to
have a ‘encodings.dir’ file in the same directory as the font file used. ‘encodings.dir’ has
the same format as ‘fonts.dir’. Its first line specifies the number of encodings, while every

Fonts in XFree86 6

successive line has two columns, the name of the encoding, and the name of the encoding file;
this can be relative to the current directory, or absolute. Every encoding name should agree with
the encoding name defined in the encoding file. For example,

3
mulearabic—-0 encodings/mulearabic-0.enc
mulearabic-1 encodings/mulearabic-1.enc

mulearabic-2 encodings/mulearabic-2.enc

Note that the name of an encoding must be specified in the encoding file’s STARTENCODING or
ALIAS line. Itis not enough to create an ‘encodings.dir’ entry.

If your platform supports it (it probably does), encoding files may be compressed or gzipped.

‘encoding.dir’ files are best maintained by the mkfontdir(l) utility. Please see the mkfont-
dir(1l) manpage for more information.

3.4 Format of encoding files

The encoding files are “free form,” i.e. any string of whitespace is equivalent to a single space.
Keywords are parsed in a non-case-sensitive manner, meaning that ‘size’, “SIZE’, and ‘SiZE’ all
parse as the same keyword; on the other hand, case is significant in glyph names.

Numbers can be written in decimal, as in ‘256, in hexadecimal, as in “0x100’, or in octal, as in
‘0400,

Comments are introduced by a hash sign ‘#’. A ‘#” may appear at any point in a line, and all
characters following the “#” are ignored, up to the end of the line.

The encoding file starts with the definition of the name of the encoding, and eventually its alter-
nate names (aliases):

STARTENCODING mulearabic-0
ALIAS arabic-0

ALIAS something-else

The names of the encoding should be suitable for use in an XLFD font name, and therefore con-
tain exactly one dash ‘~’.

The encoding file may then optionally declare the size of the encoding. For a linear encoding
(such as Mule Arabic, or ISO 8859-1), the SIZE line specifies the maximum code plus one:

SIZE 0x2B

For a matrix encoding, it should specify two numbers. The first is the number of the last row plus
one, the other, the highest column number plus one. For example, in the case of
"3Jisx0208.1990-0" (JIS X 0208(1990), double-byte encoding, high bit clear), it should be

SIZE 0x75 0x80

Codes outside the region defined by the size line are supposed to be undefined. Encodings
default to linear encoding with a size of 256 (0x100). This means that you must declare the size of
all 16 bit encodings.

What follows is one or more mapping sections. A mapping section starts with a “STARTMAP -
PING’ line stating the target of the mapping. The target may be one of:

Fonts in XFree86 7

+ Unicode (ISO 10646):
STARTMAPPING unicode
+ agiven Truelype ‘cmap”:
STARTMAPPING cmap 3 1
« PostScript glyph names

STARTMAPPING postscript

Every line in a mapping section maps one from the encoding being defined to the target of the
mapping. In mappings with a Unicode or TrueType mapping, codes are mapped to codes:

0x21 0x0660

0x22 0x0661

As an abbreviation, it is possible to map a contiguous range of codes in a single line. A line con-
sisting of three integers

start end target

is an abbreviation for the range of lines
start target

start+1l target+1l

end target+end-start

For example, the line

0x2121 Ox215F 0x8140

is an abbreviation for
0x2121 0x8140

0x2122 0x8141

0x215F 0x817E

Codes not listed are assumed to map through the identity (i.e. to the same numerical value). In
order to override this default mapping, you may specify a range of codes to be undefined by
using an ‘UNDEF INE’ line:

UNDEFINE 0x00 0x2A

or, for a single code

UNDEFINE 0x1234

This works because later values override earlier one.

PostScript mappings are different. Every line in a PostScript mapping maps a code to a glyph
name

Fonts in XFree86 8

0x41 A

0x42 B

and codes not explicitly listed are undefined.

A mapping section ends with an ENDMAPPING line

ENDMAPPING

After all the mappings have been defined, the file ends with an ENDENCODING line

ENDENCODING

Lines of the form

UNASSIGNED 0x00 Ox1F

or

UNASSIGNED 0x1234

are ignored by the server, but may be used by supporting utilities.

In order to make future extensions to the format possible, lines starting with an unknown key-
word are ignored, as are mapping sections with an unknown target.

3.5 Using symbol fonts
Type 1 symbol fonts should be installed using the ‘adobe-fontspecific’ encoding.

In an ideal world, all TrueType symbol fonts would be installed using one of the ‘microsoft—
symbol’ and ‘apple-roman’ encodings. A number of symbol fonts, however, are not marked as
such; such fonts should be installed using ‘microsoft-cpl252’, or, for older fonts,
‘microsoft-win3.1".

In order to guarantee consistent results (especially between Type 1 and TrueType versions of the
same font), it is possible to define a special encoding for a given font. This has already been done
for the ‘ZapfDingbats’ font; see the file ‘encodings/adobe-dingbats.enc’.

3.6 Using badly encoded font files

A number of text fonts are incorrectly encoded. Incorrect encoding is sometimes done by design,
in order to make a font for an exotic script appear like an ordinary Western text font. It is often
due to the font designer’s laziness or incompetence; in particular, most people seem to find it eas-
ier to invent idiosyncratic glyph names rather than follow the Adobe glyph list.

There are two ways of dealing with such fonts: using them with the encoding they were designed
for, and creating an ad hoc encoding file.

Of course, most of the time the proper fix would be to hit the font designer very hard on the head
with the PLRM (preferably the first edition, as it was published in hardcover).

3.6.1 Using fonts with the designer’s encoding

In the case of Type 1 fonts, the font designer can specify a default encoding; this encoding is
requested by using the ‘adobe-fontspecific’ encoding in the XLFD name. Sometimes, the
font designer omitted to specify a reasonable default encoding; in this case, you should experi-
ment with ‘adobe-standard’, ‘iso08859-1’, ‘microsoft-cpl252’, and ‘microsoft-

Fonts in XFree86 9

win3.1l’, microsoft-symbol’ doesn’t make sense for Type 1 fonts).

TrueType fonts do not have a default encoding, and use of the Microsoft Symbol encoding yields
strange results with text fonts on some (non-X11) platforms. However, most TrueType fonts are
designed with either Microsoft or Apple platforms in mind, so one of ‘microsoft-cpl252’,
‘microsoft-win3.1’, or ‘apple-roman’ should yield reasonable results.

3.6.2 Specifying an ad hoc encoding file

It is always possible to define an encoding file to put the glyphs in a font in any desired order.
Again, see the ‘encodingsadobe-dingbats.enc/’ file to see how this is done.

3.6.3 Specifying font aliases

By following the directions above, you will find yourself with a number of fonts with unusual
names -- specifying encodings such as ‘adobe-fontspecific’, ‘microsoft-win3.1 efc. In
order to use these fonts with standard applications, it may be useful to remap them to their
proper names.

This is done by writing a ‘fonts.alias’ file. The format of this file is similar to the format of the
‘fonts.dir’ file, except that it maps XLFD names to XLFD names. A ‘fonts.alias’ file might
look as follows:

1
"-ogonki-alamakota-medium-r-normal--0-0-0-0-p-0-iso08859-2" \

"—-ogonki-alamakota-medium-r-normal--0-0-0-0-p-0-adobe-fontspecific"

(both XLFD names on a single line). The syntax of the ‘fonts.alias’ file is described in the
mkfontdir(1) manual page.

4. New font backends
4.1 New TrueType backends

This version of XFree86 comes with two TrueType backends, known as ‘freetype’ (formerly “xfsft’)
and X-TrueType’ (‘X-TT’ for short). Those two backends are incompatible, in that only one can
be used at any one time. Users are invited to chose whichever backend they find more useful and
stick to it.

The ‘freetype’ backend resides in the module ‘freetype’. Before using it, please check that the
‘Module’ section of your ‘XF86Config’ file contains a line that reads

Load "freetype"

The ‘X-TrueType’ backend resides in module ‘xtt’. In order to use it, replace the line in your
‘XF86Config’ file that loads the “freetype’ module with a line reading

Load "xtt"

Both TrueType backends delay glyph rasterisation to the time at which a glyph is first used. For
this reason, they only provide an approximate value for the ‘average width’ font property. Users
are warned not to rely on the average width of a font having an accurate value.

Both backends also support an optimisation for character-cell fonts (fonts with all glyph metrics
equal, or terminal fonts). A font with an XLFD specifying a character-cell spacing ‘c’, as in

-misc-mincho-medium-r-normal--0-0-0-0-c-0-jisx0208.1990-0

will not rasterise glyphs at metrics computation time, but instead trust the font really to be a char-
acter-cell font. Users are encouraged to make use of this optimisation when useful, but be

Fonts in XFree86 10

warned that not all monospaced fonts are character-cell fonts.

4.1.1 The ‘freetype’ TrueType backend

The ‘freetype’ backend (formerly ‘xfsft’) is a backend based on the FreeType library (see
www. freetype.org) with support for the ‘fontenc” style of internationalisation (see The fontenc
layer (section , page)). This backend supports TrueType Font files (* . tt £) and TrueType Collec-
tions (*.ttc).

In order to access the faces in a TrueType Collection file, the face number must be specified in the
fonts.dir file before the filename within colons. For example,

:2:mincho.ttc -misc-mincho-medium-r-normal--0-0-0-0-c-0-3jisx0208.1990-0

refers to face 2 in the ‘mincho. ttc’ TrueType Collection file.

4.1.2 The ‘X-TrueType’ TrueType backend

The ‘X-TrueType’ backend is another backend based on the FreeType library. X-TrueType doesn’t
use the ‘fontenc’ layer for managing font encodings, but instead uses its own database of encod-
ings. However, X-TrueType includes a large number of encodings, and any encoding you need is
likely to be present in X-TrueType.

X-TrueType extends the ‘fonts.dir’ syntax with a number of options, known as “TTCap’. A
‘TTCap’ entry follows the general syntax

:option=value:

and should be specified before the filename.

The most useful TTCap option is used to specify the face number to use with TTCs; it carries the
name ‘fn’. This means that face 2 of font file ‘mincho. ttc’ is specified using:

:fn=2:mincho.ttc -misc-mincho-medium-r-normal--0-0-0-0-c-0-3jisx0208.1990-0

More information on the TTCap syntax, and on X-TrueType in general, may be found on

<URL:http://hawk.ise.chuo-u.ac. jp/student/person/tshiozak/x-tt/index—-eng.html>

4.2 Support for CID-keyed fonts

The CID-keyed font format was designed by Adobe Systems for fonts with large character sets. It
is described in the Adobe Technical Notes nr. 5092, "Overview of the CID-Keyed Font Technol-
ogy," nr. 5014, "CMap and CIDFont File Format Specification," and others, available from

<URL:http://partners.adobe.com/supportservice/devrelations/typeforum/cidfonts.html>
Sample CID-keyed fonts can be found at:

<URL:ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/>

Support for CID-keyed fonts in XFree86 is controlled by the two switches ‘BuildCID’ and
BuildCIDFonts. Make sure that those switches are turned on (in the directory xc/config/cf)
when XFree86 is built. By default, they should be set to YES, unless you are building XFree86 for
a small memory footprint, in which case they should be set to NO.

The CID-keyed font backend does not use the ‘fontenc” layer, but instead uses the standard
‘CMap’ method of recoding CID-keyed fonts.

Fonts in XFree86 11

4.2.1 Using CID-keyed fonts

As shown in the sample install file /usr/X11R6/1ib/X11/XF86Config.egq, the font directory
CID should be specified as part of the XFree86 font path:

FontPath "/usr/X11R6/1ib/X11/fonts/CID/"

in the ‘XF86Config’ file. When the CID font directory is on the font path it must contain at least
the empty files fonts.dir and fonts.scale. Sample ‘fonts.dir’ and ‘fonts.scale’ files, with 0
entries, are installed by default.

A sample CID-keyed font is provided in the file:

test/xsuite/xtest/CID

The test directory was given the same name as the CID font directory, because it shows how a
CID-keyed font should be installed. It contains a number of subdirectories, and any CID font
directory should have the same directory structure.

When installing CID-keyed fonts, the empty fonts.scale and fonts.dir files in the directory:

xc/fonts/scaled/CID

should be replaced by fonts.scale and fonts.dir files with a number of entries of the form:
1
Adobe-Koreal/Munhwa-Regular--Adobe-Koreal-0.cid \

—adobe-munhwa-medium-r-normal--0-0-0-0-p-0-adobe.koreal-0

(the font file name and the XLFD name should be on the same line). Note that the first column
does not specify an actual filename; instead, it specifies the PostScript name of the CID-keyed
font, followed by the extension “.cid’. The actual names of the files used will be derived from
this PostScript name.

CID-keyed fonts are divided in groups by character collection. For example, the Korean font:

Munhwa-Regular--Adobe-Koreal-0

is in a subdirectory ‘Adobe-Koreal’.

The PostScript name of a CID-keyed font consists of two parts, the CIDFontName and the CMap-
Name, separated by two dashes. For instance, in the case of the font name

Munhwa-Regular--Adobe-Koreal-0

the CIDFontName is ‘Munhwa-Regular’ while the CMapName is ‘Adobe-Koreal’.

Each CID-keyed font consist of a CIDFont file and one or more CMap files. The CIDFont file con-
tains the description of each character in a font. It is stored in the subdirectory CIDFont of the
Adobe-Koreal directory. The directory structure looks as following:

Fonts in XFree86 12

CID/Adobe-Koreal/CIDFont/Munhwa-Regular
CID/Adobe-Koreal/CMap/Adobe-Koreal-0
CID/Adobe-Koreal/AFM/Munhwa-Regular.afm
CID/Adobe-Koreal/CFM

CID/fonts.dir

CID/fonts.scale

The file ‘Munhwa-Regular.afm’ is an Adobe Font Metric File (AFM). The directory ‘CFM" will
be used for summaries of that font metric file, which will be computed later.

When the CID-keyed files are installed you can run the utility

/usr/X11R6/bin/mkcfm

to create the summaries of font metric file (* . cfm), and to put them in appropriate subdirecto-
ries. By default, the program works on the directory:

/usr/X11R6/1ib/X11/fonts/CID

A different directory can be specified on the command line of ‘mkcfm.’

‘mkcfm’ should be run as root, as it needs to write its output to a system directory. If the program
determines that it cannot write in the designated ‘CFM’ subdirectories, it will display a message,
and switch to current directory.

Unless ‘mkcfm’ is run, opening large CID-keyed fonts will take a significant amount of time.
‘mkcfm’ should be run again whenever a change is made to any of the CID-keyed fonts, or when
the CID-keyed fonts are copied to a machine with a different architecture.

4.2.2 Limitations

The current version of the CID-keyed fonts backend only supports the CMaps used for horizontal
text (e.g. the CMap ‘KSC-EUC-H’ will be used, but not ‘KSC-EUC-V’). This limitation is due to
the fact that the core X11 protocol only provides support for horizontal writing.

Fonts in XFree86

13

CONTENTS

Background and terminology oooiiiiii s 1
1.1 Characters and glyphs ... 1
1.2 Font files, fonts, and XLED cciooiiiiiieeeeeeceee ettt ettt et eete e eveete e eareeveeeanas 1
1.3 UNICOAE et 2
INEW fONS oo 2
2.1 Bitmap fONTS oo s 2
2.2 Scalable fONtS ..o 3
Internationalisation of scalable font backends. ... 4
3.1 The fontenc’ layer ... s 4
3.2 Backend-specific notes about fontenc ... 5
3.3 Format of encodings directory files ... 5
3.4 Format of encoding files ... 6
3.5 Using symbol fONts ..o 8
3.6 Using badly encoded font filescccooiiiiiii 8
New font backends ... 9
41 New TrueType backends ... 9
4.2 Support for CID-keyed fONntsccooiiiiiii 10

$XFree86: xc/programs/Xserver/hw/xfree86/doc/sgml/fonts.sgml,v 1.7 2000/03/06 22:59:25 dawes Exp

