
XFree86 X server ‘‘New Design’’ (DRAFT)
The XFree86 Project, Inc

Last modified 15 February 2000

NOTE: This is a DRAFT document, and the interfaces described here are subject to change with-
out notice.

1. Preface
The broad design principles are:

• keep it reasonable

• We cannot rewrite the complete server

• We don’t want to re-invent the wheel

• keep it modular

• As many things as possible should go into modules

• The basic loader binary should be minimal

• A clean design with well defined layering is important

• DDX specific global variables are a nono

• The structure should be flexible enough to allow future extensions

• The structure should minimize duplication of common code

• keep important features in mind

• multiple screens, including multiple instances of drivers

• mixing different color depths and visuals on different and ideally even on the same
screen

• better control of the PCI device used

• better config file parser

• get rid of all VGA compatibility assumptions

Unless we find major deficiencies in the DIX layer, we should avoid making changes there.

2. The XF86Config File
The XF86Config file format is similar to the old format, with the following changes:

XFree86 X server ‘‘New Design’’ (DRAFT) 1

XFree86 X server ‘‘New Design’’ (DRAFT) 2

2.1 Device section

The Device sections are similar to what they used to be, and describe hardware-specific informa-
tion for a single video card. Device Some new keywords are added:

Driver "drivername"
Specifies the name of the driver to be used for the card. This is mandatory.

BusID "busslot"
Specifies uniquely the location of the card on the bus. The purpose is to identify
particular cards in a multi-headed configuration. The format of the argument is
intentionally vague, and may be architecture dependent. For a PCI bus, it is some-
thing like "bus:slot:func".

A Device section is considered ‘‘active’’ if there is a reference to it in an active Screen section.

2.2 Screen section

The Screen sections are similar to what they used to be. They no longer have a Driver keyword,
but an Identifier keyword is added. (The Driver keyword may be accepted in place of the Iden-
tifier keyword for compatibility purposes.) The identifier can be used to identify which screen is
to be active when multiple Screen sections are present. It is possible to specify the active screen
from the command line. A default is chosen in the absence of one being specified. A Screen sec-
tion is considered ‘‘active’’ if there is a reference to it either from the command line, or from an
active ServerLayout section.

2.3 InputDevice section

The InputDevice section is a new section that describes configuration information for input
devices. It replaces the old Keyboard, Pointer and XInput sections. Like the Device section, it
has two mandatory keywords: Identifier and Driver. For compatibility purposes the old Key-
board and Pointer sections are converted by the parser into InputDevice sections as follows:

Keyboard
Identifier "Implicit Core Keyboard"

Driver "keyboard"

Pointer
Identifier "Implicit Core Pointer"

Driver "mouse"

An InputDevice section is considered active if there is a reference to it in an active ServerLayout
section. An InputDevice section may also be referenced implicitly if there is no ServerLayout
section, if the -screen command line options is used, or if the ServerLayout section doesn’t ref-
erence any InputDevice sections. In this case, the first sections with drivers "keyboard" and
"mouse" are used as the core keyboard and pointer respectively.

2.4 ServerLayout section

The ServerLayout section is a new section that is used to identify which Screen sections are to be
used in a multi-headed configuration, and the relative layout of those screens. It also identifies
which InputDevice sections are to be used. Each ServerLayout section has an identifier, a list of
Screen section identifiers, and a list of InputDevice section identifiers. ServerFlags options may
also be included in a ServerLayout section, making it possible to override the global values in the
ServerFlags section.

A ServerLayout section can be made active by being referenced on the command line. In the
absence of this, a default will be chosen (the first one found). The screen names may optionally

XFree86 X server ‘‘New Design’’ (DRAFT) 3

be followed by a number specifying the preferred screen number, and optionally by information
specifying the physical positioning of the screen, either in absolute terms or relative to another
screen (or screens). When no screen number is specified, they are numbered according to the
order in which they are listed. The old (now obsolete) method of providing the positioning infor-
mation is to give the names of the four adjacent screens. The order of these is top, bottom, left,
right. Here is an example of a ServerLayout section for two screens using the old method, with
the second located to the right of the first:

Section "ServerLayout"
Identifier "Main Layout"
Screen "Screen 1" 0 "" "" "" "Screen 2"
Screen "Screen 2" 1
Screen "Screen 3"

EndSection

The preferred way of specifying the layout is to explicitly specify the screen’s location in absolute
terms or relative to another screen.

In the absolute case, the upper left corner’s coordinates are given after the Absolute keyword. If
the coordinates are omitted, a value of (0,0) is assumed. An example of absolute positioning
follows:

Section "ServerLayout"
Identifier "Main Layout"
Screen "Screen 1" 0 Absolute 0 0
Screen "Screen 2" 1 Absolute 1024 0
Screen "Screen 3" Absolute 2048 0

EndSection

In the relative case, the position is specified by either using one of the following keywords fol-
lowed by the name of the reference screen:

RightOf

LeftOf

Above

Below

Relative

When the Relative keyword is used, the reference screen name is followed by the coordinates of
the new screen’s origin relative to reference screen. The following example shows how to use
some of the relative positioning options.

Section "ServerLayout"
Identifier "Main Layout"
Screen "Screen 1" 0
Screen "Screen 2" 1 RightOf "Screen 1"
Screen "Screen 3" Relative "Screen 1" 2048 0

EndSection

2.5 Options

Options are used more extensively. They may appear in most sections now. Options related to
drivers can be present in the Screen, Device and Monitor sections and the Display subsections.
The order of precedence is Display, Screen, Monitor, Device. Options have been extended to
allow an optional value to be specified in addition to the option name. For more details about
options, see the Options (section , page) section for details.

XFree86 X server ‘‘New Design’’ (DRAFT) 4

3. Driver Interface
The driver interface consists of a minimal set of entry points that are required based on the exter-
nal events that the driver must react to. No non-essential structure is imposed on the way they
are used beyond that. This is a significant difference compared with the old design.

The entry points for drawing operations are already taken care of by the framebuffer code
(including, XAA). Extensions and enhancements to framebuffer code are outside the scope of this
document.

This approach to the driver interface provides good flexibility, but does increase the complexity of
drivers. To help address this, the XFree86 common layer provides a set of ‘‘helper’’ functions to
take care of things that most drivers need. These helpers help minimise the amount of code
duplication between drivers. The use of helper functions by drivers is however optional, though
encouraged. The basic philosophy behind the helper functions is that they should be useful to
many drivers, that they should balance this against the complexity of their interface. It is
inevitable that some drivers may find some helpers unsuitable and need to provide their own
code.

Events that a driver needs to react to are:

ScreenInit
An initialisation function is called from the DIX layer for each screen at the start of
each server generation.

Enter VT
The server takes control of the console.

Leave VT
The server releases control of the console.

Mode Switch
Change video mode.

ViewPort change
Change the origin of the physical view port.

ScreenSaver state change
Screen saver activation/deactivation.

CloseScreen
A close screen function is called from the DIX layer for each screen at the end of
each server generation.

In addition to these events, the following functions are required by the XFree86 common layer:

Identify
Print a driver identifying message.

Probe
This is how a driver identifies if there is any hardware present that it knows how to
drive.

PreInit
Process information from the XF86Config file, determine the full characteristics of
the hardware, and determine if a valid configuration is present.

The VidMode extension also requires:

ValidMode
Identify if a new mode is usable with the current configuration. The PreInit func-
tion (and/or helpers it calls) may also make use of the ValidMode function or

XFree86 X server ‘‘New Design’’ (DRAFT) 5

something similar.

Other extensions may require other entry points. The drivers will inform the common layer of
these in such cases.

4. Resource Access Control Introduction
Graphics devices are accessed through ranges in I/O or memory space. While most modern
graphics devices allow relocation of such ranges many of them still require the use of well estab-
lished interfaces such as VGA memory and IO ranges or 8514/A IO ranges. With modern buses
(like PCI) it is possible for multiple video devices to share access to these resources. The RAC
(Resource Access Control) subsystem provides a mechanism for this.

4.1 Terms and Definitions

4.1.1 Bus

‘‘Bus’’ is ambiguous as it is used for different things: it may refer to physical incompatible exten-
sion connectors in a computer system. The RAC system knows two such systems: The ISA bus
and the PCI bus. (On the software level EISA, MCA and VL buses are currently treated like ISA
buses). ‘‘Bus’’ may also refer to logically different entities on a single bus system which are con-
nected via bridges. A PCI system may have several distinct PCI buses connecting each other by
PCI-PCI bridges or to the host CPU by HOST-PCI bridges.

Systems that host more than one bus system link these together using bridges. Bridges are a con-
cern to RAC as they might block or pass specific resources. PCI-PCI bridges may be set up to
pass VGA resources to the secondary bus. PCI-ISA buses pass any resources not decoded on the
primary PCI bus to the ISA bus. This way VGA resources (although exclusive on the ISA bus)
can be shared by ISA and PCI cards. Currently HOST-PCI bridges are not yet handled by RAC as
they require specific drivers.

4.1.2 Entity

The smallest independently addressable unit on a system bus is referred to as an entity. So far we
know ISA and PCI entities. PCI entities can be located on the PCI bus by an unique ID consisting
of the bus, card and function number.

4.1.3 Resource

‘‘Resource’’ refers to a range of memory or I/O addresses an entity can decode.

If a device is capable of disabling this decoding the resource is called sharable. For PCI devices a
generic method is provided to control resource decoding. Other devices will have to provide a
device specific function to control decoding.

If the entity is capable of decoding this range at a different location this resource is considered
relocatable.

Resources which start at a specific address and occupy a single continuous range are called block
resources.

Alternatively resource addresses can be decoded in a way that they satisfy the conditions:

address & mask == base

and

XFree86 X server ‘‘New Design’’ (DRAFT) 6

base & mask == base

Resources addressed in such a way are called sparse resources.

4.1.4 Server States

The resource access control system knows two server states: the SETUP and the OPERATING
state. The SETUP state is entered whenever a mode change takes place or the server exits or does
VT switching. During this state all entity resources are under resource access control. During
OPERATING state only those entities are controlled which actually have shared resources that
conflict with others.

5. Control Flow in the Server and Mandatory Driver
Functions
At the start of each server generation, main() (dix/main.c) calls the DDX function InitOut-
put(). This is the first place that the DDX gets control. InitOutput() is expected to fill in the
global screenInfo struct, and one screenInfo.screen[] entry for each screen present.
Here is what InitOutput() does:

5.1 Parse the XF86Config file

This is done at the start of the first server generation only.

The XF86Config file is read in full, and the resulting information stored in data structures. None
of the parsed information is processed at this point. The parser data structures are opaque to the
video drivers and to most of the common layer code.

The entire file is parsed first to remove any section ordering requirements.

5.2 Initial processing of parsed information and command line
options

This is done at the start of the first server generation only.

The initial processing is to determine paths like the ModulePath, etc, and to determine which
ServerLayout, Screen and Device sections are active.

5.3 Enable port I/O access

Port I/O access is controlled from the XFree86 common layer, and is ‘‘all or nothing’’. It is
enabled prior to calling driver probes, at the start of subsequent server generations, and when VT
switching back to the Xserver. It is disabled at the end of server generations, and when VT
switching away from the Xserver.

The implementation details of this may vary on different platforms.

5.4 General bus probe

This is done at the start of the first server generation only.

In the case of ix86 machines, this will be a general PCI probe. The full information obtained here
will be available to the drivers. This information persists for the life of the Xserver. In the PCI
case, the PCI information for all video cards found is available by calling xf86GetP-
ciVideoInfo().

XFree86 X server ‘‘New Design’’ (DRAFT) 7

pciVideoPtr *xf86GetPciVideoInfo(void)

returns a pointer to a list of pointers to pciVideoRec
entries, of which there is one for each detected PCI
video card. The list is terminated with a NULL
pointer. If no PCI video cards were detected, the
return value is NULL.

After the bus probe, the resource broker is initialised.

5.5 Load initial set of modules

This is done at the start of the first server generation only.

The core server contains a list of mandatory modules. These are loaded first. Currently the only
module on this list is the bitmap font module.

The next set of modules loaded are those specified explicitly in the Module section of the config
file.

The final set of initial modules are the driver modules referenced by the active Device and Input-
Device sections in the config file. Each of these modules is loaded exactly once.

5.6 Register Video and Input Drivers

This is done at the start of the first server generation only.

When a driver module is loaded, the loader calls its Setup function. For video drivers, this func-
tion calls xf86AddDriver() to register the driver’s DriverRec, which contains a small set of
essential details and driver entry points required during the early phase of InitOutput().
xf86AddDriver() adds it to the global xf86DriverList[] array.

The DriverRec contains the driver’s version, a short descriptive message, the Identify() and
Probe() function entry points as well as a pointer to the driver’s module (as returned from the
loader when the driver was loaded) and a reference count which keeps track of how many
screens are using the driver. The entry driver entry points are those required prior to the driver
allocating and filling in its ScrnInfoRec.

For a static server, the xf86DriverList[] array is initialised at build time, and the loading of
modules is not done.

A similar procedure is used for input drivers. The input driver’s Setup function calls
xf86AddInputDriver() to register the driver’s InputDriverRec, which contains a small set
of essential details and driver entry points required during the early phase of InitInput().
xf86AddInputDriver() adds it to the global xf86InputDriverList[] array. For a static
server, the xf86InputDriverList[] array is initialised at build time.

Both the xf86DriverList[] and xf86InputDriverList[] arrays have been initialised by
the end of this stage.

Once all the drivers are registered, their ChipIdentify() functions are called.

void ChipIdentify(int flags)

This is expected to print a message indicating the
driver name, a short summary of what it supports, and a
list of the chipset names that it supports. It may use
the xf86PrintChipsets() helper to do this.

XFree86 X server ‘‘New Design’’ (DRAFT) 8

void xf86PrintChipsets(const char *drvname, const char *drvmsg,

SymTabPtr chips)

This function provides an easy way for a driver’s
ChipIdentify function to format the identification mes-
sage.

5.7 Initialise Access Control

This is done at the start of the first server generation only.

The Resource Access Control (RAC) subsystem is initialised before calling any driver functions
that may access hardware. All generic bus information is probed and saved (for restoration
later). All (shared resource) video devices are disabled at the generic bus level, and a probe is
done to find the ‘‘primary’’ video device. These devices remain disabled for the next step.

5.8 Video Driver Probe

This is done at the start of the first server generation only. The ChipProbe() function of each
registered video driver is called.

Bool ChipProbe(DriverPtr drv, int flags)

The purpose of this is to identify all instances of
hardware supported by the driver. The flags value is
currently not used, and should be ignored by the
driver.

The probe must find the active device sections that
match the driver by calling xf86MatchDevice(). The
number of matches found limits the maximum number of
instances for this driver. If no matches are found,
the problem should return FALSE immediately.

Devices that cannot be identified by using device-inde-
pendent methods should be probed at this stage (keeping
in mind that access to all resources that can be dis-
abled in a device-independent way are disabled during
this phase). The probe must be a minimal probe. It
should just determine if there is a card present that
the driver can drive. It should use the least intru-
sive probe methods possible. It must not do anything
that is not essential, like probing for other details
such as the amount of memory installed, etc. It is
recommended that the xf86MatchPciInstances() helper
function be used for identifying matching PCI devices,
and similarly the xf86MatchIsaInstances() for ISA (non-
PCI) devices (see the RAC (section , page) section).
These helpers also checks and claims the appropriate
entity. When not using the helper, that should be done
with xf86CheckPciSlot() and xf86ClaimPciSlot() for PCI
devices and xf86ClaimIsaSlot() for ISA devices (see the
RAC (section , page) section).

The probe must register all non-relocatable resources
at this stage. If a resource conflict is found between
exclusive resources the driver will fail immediately.

XFree86 X server ‘‘New Design’’ (DRAFT) 9

This is usually best done with the xf86ConfigActivePci-
Entity() helper function for PCI and xf86ConfigAc-
tiveIsaEntity() for ISA (see the RAC (section , page)
section). It is possible to register some entity spe-
cific functions with those helpers. When not using the
helpers, the xf86AddEntityToScreen() xf86ClaimFixe-
dResources() and xf86SetEntityFuncs() should be used
instead (see the RAC (section , page) section).

If a chipset is specified in an active device section
which the driver considers relevant (ie it has no
driver specified, or the driver specified matches the
driver doing the probe), the Probe must return FALSE if
the chipset doesn’t match one supported by the driver.

If there are no active device sections that the driver
considers relevant, it must return FALSE.

Allocate a ScrnInfoRec for each instance of the hard-
ware found, and fill in the basic information, includ-
ing the other driver entry points. The xf86Allocate-
Screen() function must be used to allocate the ScrnIn-
foRec, and it takes care of initialising fields to
defined ‘‘unused’’ values.

Claim the entities for each instance of the hardware
found. This prevents other drivers from claiming the
same hardware.

Must leave hardware in the same state it found it in,
and must not do any hardware initialisation.

All detection can be overridden via the config file,
and that parsed information is available to the driver
at this stage.

Returns TRUE if one or more instances are found, and
FALSE otherwise.

int xf86MatchDevice(const char *drivername,

GDevPtr **driversectlist)

This function takes the name of the driver and returns
via driversectlist a list of device sections that match
the driver name. The function return value is the num-
ber of matches found. If a fatal error is encountered
the return value is -1.

The caller should use xfree() to free *driversectlist
when it is no longer needed.

ScrnInfoPtr xf86AllocateScreen(DriverPtr drv, int flags)

This function allocates a new ScrnInfoRec in the
xf86Screens[] array. This function is normally called
by the video driver ChipProbe() functions. The return
value is a pointer to the newly allocated ScrnInfoRec.
The scrnIndex, origIndex, module and drv fields are

XFree86 X server ‘‘New Design’’ (DRAFT) 10

initialised. The reference count in drv is incre-
mented. The storage for any currently allocated ‘‘pri-
vates’’ pointers is also allocated and the privates
field initialised (the privates data is of course not
allocated or initialised). This function never returns
on failure. If the allocation fails, the server exits
with a fatal error. The flags value is not currently
used, and should be set to zero.

At the completion of this, a list of ScrnInfoRecs have been allocated in the xf86Screens[]
array, and the associated entities and fixed resources have been claimed. The following ScrnIn-
foRec fields must be initialised at this point:

driverVersion
driverName
scrnIndex(*)
origIndex(*)
drv(*)
module(*)
name
Probe
PreInit
ScreenInit
EnterVT
LeaveVT
numEntities
entityList
access

(*) These are initialised when the ScrnInfoRec is allocated, and not explicitly by the driver.

The following ScrnInfoRec fields must be initialised if the driver is going to use them:

SwitchMode
AdjustFrame
FreeScreen
ValidMode

5.9 Matching Screens

This is done at the start of the first server generation only.

After the Probe phase is finished, there will be some number of ScrnInfoRecs. These are then
matched with the active Screen sections in the XF86Config, and those not having an active
Screen section are deleted. If the number of remaining screens is 0, InitOutput() sets
screenInfo.numScreens to 0 and returns.

At this point the following fields of the ScrnInfoRecs must be initialised:

confScreen

5.10 Allocate non-conflicting resources

This is done at the start of the first server generation only.

Before calling the drivers again, the resource information collected from the Probe phase is pro-
cessed. This includes checking the extent of PCI resources for the probed devices, and resolving
any conflicts in the relocatable PCI resources. It also reports conflicts, checks bus routing issues,

XFree86 X server ‘‘New Design’’ (DRAFT) 11

and anything else that is needed to enable the entities for the next phase.

If any drivers registered an EntityInit() function during the Probe phase, then they are called
here.

5.11 Sort the Screens and pre-check Monitor Information

This is done at the start of the first server generation only.

The list of screens is sorted to match the ordering requested in the config file.

The list of modes for each active monitor is checked against the monitor’s parameters. Invalid
modes are pruned.

5.12 PreInit

This is done at the start of the first server generation only.

For each ScrnInfoRec, enable access to the screens entities and call the ChipPreInit() func-
tion.

Bool ChipPreInit(ScrnInfoRec screen, int flags)

The purpose of this function is to find out all the
information required to determine if the configuration
is usable, and to initialise those parts of the ScrnIn-
foRec that can be set once at the beginning of the
first server generation.

The number of entities registered for the screen should
be checked against the expected number (most drivers
expect only one). The entity information for each of
them should be retrieved (with xf86GetEntityInfo()) and
checked for the correct bus type and that none of the
sharable resources registered during the Probe phase
was rejected.

Access to resources for the entities that can be con-
trolled in a device-independent way are enabled before
this function is called. If the driver needs to access
any resources that it has disabled in an EntityInit()
function that it registered, then it may enable them
here providing that it disables them before this func-
tion returns.

This includes probing for video memory, clocks, ramdac,
and all other HW info that is needed. It includes
determining the depth/bpp/visual and related info. It
includes validating and determining the set of video
modes that will be used (and anything that is required
to determine that).

This information should be determined in the least
intrusive way possible. The state of the HW must
remain unchanged by this function. Although video mem-
ory (including MMIO) may be mapped within this func-
tion, it must be unmapped before returning. Driver
specific information should be stored in a structure
hooked into the ScrnInfoRec’s driverPrivate field. Any
other modules which require persistent data (ie data

XFree86 X server ‘‘New Design’’ (DRAFT) 12

that persists across server generations) should be ini-
tialised in this function, and they should allocate a
‘‘privates’’ index to hook their data into by calling
xf86AllocateScrnInfoPrivateIndex(). The ‘‘privates’’
data is persistent.

Helper functions for some of these things are provided
at the XFree86 common level, and the driver can choose
to make use of them.

All additional resources that the screen needs must be
registered here. This should be done with xf86Regis-
terResources(). If some of the fixed resources regis-
tered in the Probe phase are not needed or not decoded
by the hardware when in the OPERATING server state,
their status should be updated with xf86SetOperat-
ingState().

Modules may be loaded at any point in this function,
and all modules that the driver will need must be
loaded before the end of this function. The
xf86LoadSubModule() function should be used to load
modules. A driver may unload a module within this
function if it was only needed temporarily, and the
UnloadSubModule() function should be used to do that.
Otherwise there is no need to explicitly unload modules
because the loader takes care of module dependencies
and will unload submodules automatically if/when the
driver module is unloaded.

The bulk of the ScrnInfoRec fields should be filled out
in this function.

ChipPreInit() returns FALSE when the configuration is
unusable in some way (unsupported depth, no valid
modes, not enough video memory, etc), and TRUE if it is
usable.

It is expected that if the ChipPreInit() function
returns TRUE, then the only reasons that subsequent
stages in the driver might fail are lack or resources
(like xalloc failures). All other possible reasons for
failure should be determined by the ChipPreInit() func-
tion.

The ScrnInfoRecs for screens where the ChipPreInit() fails are removed. If none remain,
InitOutput() sets screenInfo.numScreens to 0 and returns.

At this point, further fields of the ScrnInfoRecs would normally be filled in. Most are not
strictly mandatory, but many are required by other layers and/or helper functions that the driver
may choose to use. The documentation for those layers and helper functions indicates which
they require.

The following fields of the ScrnInfoRecs should be filled in if the driver is going to use them:

XFree86 X server ‘‘New Design’’ (DRAFT) 13

monitor
display
depth
pixmapBPP
bitsPerPixel
weight (>8bpp only)
mask (>8bpp only)
offset (>8bpp only)
rgbBits (8bpp only)
gamma
defaultVisual
maxHValue
maxVValue
virtualX
virtualY
displayWidth
frameX0
frameY0
frameX1
frameY1
zoomLocked
modePool
modes
currentMode
progClock (TRUE if clock is programmable)
chipset
ramdac
clockchip
numClocks (if not programmable)
clock[] (if not programmable)
videoRam
biosBase
memBase
memClk
driverPrivate
chipID
chipRev

pointer xf86LoadSubModule(ScrnInfoPtr pScrn, const char *name):

Load a module that a driver depends on. This function
loads the module name as a sub module of the driver.
The return value is a handle identifying the new mod-
ule. If the load fails, the return value will be NULL.
If a driver needs to explicitly unload a module it has
loaded in this way, the return value must be saved and
passed to UnloadSubModule() when unloading.

void UnloadSubModule(pointer module)

Unloads the module referenced by module. module should
be a pointer returned previously by xf86LoadSubMod-
ule().

5.13 Cleaning up Unused Drivers

At this point it is known which screens will be in use, and which drivers are being used. Unrefer-
enced drivers (and modules they may have loaded) are unloaded here.

XFree86 X server ‘‘New Design’’ (DRAFT) 14

5.14 Consistency Checks

The parameters that must be global to the server, like pixmap formats, bitmap bit order, bitmap
scanline unit and image byte order are compared for each of the screens. If a mismatch is found,
the server exits with an appropriate message.

5.15 Check if Resource Control is Needed

Determine if resource access control is needed. This is the case if more than one screen is used. If
necessary the RAC wrapper module is loaded.

5.16 AddScreen (ScreenInit)

At this point, the valid screens are known. AddScreen() is called for each of them, passing
ChipScreenInit() as the argument. AddScreen() is a DIX function that allocates a new
screenInfo.screen[] entry (aka pScreen), and does some basic initialisation of it. It then
calls the ChipScreenInit() function, with pScreen as one of its arguments. If Chip-
ScreenInit() returns FALSE, AddScreen() returns -1. Otherwise it returns the index of the
screen. AddScreen() should only fail because of programming errors or failure to allocate
resources (like memory). All configuration problems should be detected BEFORE this point.

Bool ChipScreenInit(int index, ScreenPtr pScreen,

int argc, char **argv)

This is called at the start of each server generation.

Fill in all of pScreen, possibly doing some of this by
calling ScreenInit functions from other layers like mi,
framebuffers (cfb, etc), and extensions.

Decide which operations need to be placed under
resource access control. The classes of operations are
the frame buffer operations (RAC_FB), the pointer oper-
ations (RAC_CURSOR), the viewport change operations
(RAC_VIEWPORT) and the colormap operations (RAC_COL-
ORMAP). Any operation that requires resources which
might be disabled during OPERATING state should be set
to use RAC. This can be specified separately for mem-
ory and IO resources (the racMemFlags and racIoFlags
fields of the ScrnInfoRec respectively).

Map any video memory or other memory regions.

Save the video card state. Enough state must be saved
so that the original state can later be restored.

Initialise the initial video mode. The ScrnInfoRec’s
vtSema field should be set to TRUE just prior to chang-
ing the video hardware’s state.

The ChipScreenInit() function (or functions from other layers that it calls) should allocate
entries in the ScreenRec’s devPrivates area by calling AllocateScreenPrivateIndex()
if it needs per-generation storage. Since the ScreenRec’s devPrivates information is cleared
for each server generation, this is the correct place to initialise it.

After AddScreen() has successfully returned, the following ScrnInfoRec fields are initialised:

XFree86 X server ‘‘New Design’’ (DRAFT) 15

pScreen
racMemFlags
racIoFlags

The ChipScreenInit() function should initialise the CloseScreen and SaveScreen fields
of pScreen. The old value of pScreen->CloseScreen should be saved as part of the driver’s
per-screen private data, allowing it to be called from ChipCloseScreen(). This means that the
existing CloseScreen() function is wrapped.

5.17 Finalising RAC Initialisation

After all the ChipScreenInit() functions have been called, each screen has registered its RAC
requirements. This information is used to determine which shared resources are requested by
more than one driver and set the access functions accordingly. This is done following these rules:

1. The sharable resources registered by each entity are compared. If a resource is registered
by more than one entity the entity will be marked to indicate that it needs to share this
resources type (IO or MEM).

2. A resource marked ‘‘disabled’’ during OPERATING state will be ignored entirely.

3. A resource marked ‘‘unused’’ will only conflict with an overlapping resource of an other
entity if the second is actually in use during OPERATING state.

4. If an ‘‘unused’’ resource was found to conflict but the entity does not use any other
resource of this type the entire resource type will be disabled for that entity.

5.18 Finishing InitOutput()

At this point InitOutput() is finished, and all the screens have been setup in their initial video
mode.

5.19 Mode Switching

When a SwitchMode event is received, ChipSwitchMode() is called (when it exists):

Bool ChipSwitchMode(int index, DisplayModePtr mode, int flags)

Initialises the new mode for the screen identified by
index;. The viewport may need to be adjusted also.

5.20 Changing Viewpor t

When a Change Viewport event is received, ChipAdjustFrame() is called (when it exists):

void ChipAdjustFrame(int index, int x, int y, int flags)

Changes the viewport for the screen identified by
index;.

5.21 VT Switching

When a VT switch event is received, xf86VTSwitch() is called. xf86VTSwitch() does the
following:

On ENTER:

• enable port I/O access

XFree86 X server ‘‘New Design’’ (DRAFT) 16

• save and initialise the bus/resource state

• enter the SETUP server state

• calls ChipEnterVT() for each screen

• enter the OPERATING server state

• validate GCs

• Restore fb from saved pixmap for each screen

• Enable all input devices

On LEAVE:

• Save fb to pixmap for each screen

• validate GCs

• enter the SETUP server state

• calls ChipLeaveVT() for each screen

• disable all input devices

• restore bus/resource state

• disables port I/O access

XFree86 X server ‘‘New Design’’ (DRAFT) 17

Bool ChipEnterVT(int index, int flags)

This function should initialise the current video mode
and initialise the viewport, turn on the HW cursor if
appropriate, etc.

Should it re-save the video state before initialising
the video mode?

void ChipLeaveVT(int index, int flags)

This function should restore the saved video state. If
appropriate it should also turn off the HW cursor, and
invalidate any pixmap/font caches.

Optionally, ChipLeaveVT() may also unmap memory regions. If
so, ChipEnterVT() will need to remap them. Additionally, if an
aperture used to access video memory is unmapped and remapped
in this fashion, ChipEnterVT() will also need to notify the
framebuffer layers of the aperture’s new location in virtual
memory. This is done with a call to the screen’s ModifyPixmap-
Header() function, as follows

(*pScreen->ModifyPixmapHeader)(pScrn->ppix,

-1, -1, -1, -1, -1, NewApertureAddress);

where the ‘‘ppix’’ field in a ScrnInfoRec points to the pixmap

used by the screen’s SaveRestoreImage() function to hold the

screen’s contents while switched out.

Currently, aperture remapping, as described here, should not be
attempted if the driver uses the xf8_16bpp or xf8_32bpp frame-
buffer layers. A pending restructuring of VT switching will
address this restriction in the near future.

Other layers may wrap the ChipEnterVT() and ChipLeaveVT() functions if they need to take
some action when these events are received.

5.22 End of server generation

At the end of each server generation, the DIX layer calls ChipCloseScreen() for each screen:

XFree86 X server ‘‘New Design’’ (DRAFT) 18

Bool ChipCloseScreen(int index, ScreenPtr pScreen)

This function should restore the saved video state and
unmap the memory regions.

It should also free per-screen data structures allo-
cated by the driver. Note that the persistent data
held in the ScrnInfoRec’s driverPrivate field should
not be freed here because it is needed by subsequent
server generations.

The ScrnInfoRec’s vtSema field should be set to FALSE
once the video HW state has been restored.

Before freeing the per-screen driver data the saved
CloseScreen value should be restored to pScreen->Clos-
eScreen, and that function should be called after free-
ing the data.

6. Optional Driver Functions
The functions outlined here can be called from the XFree86 common layer, but their presence is
optional.

6.1 Mode Validation

When a mode validation helper supplied by the XFree86-common layer is being used, it can be
useful to provide a function to check for hw specific mode constraints:

ModeStatus ChipValidMode(int index, DisplayModePtr mode,

Bool verbose, int flags)

Check the passed mode for hw-specific constraints, and
return the appropriate status value.

This function may also modify the effective timings and clock of the passed mode. These have
been stored in the mode’s Crtc* and SynthClock elements, and have already been adjusted for
interlacing, doublescanning, multiscanning and clock multipliers and dividers. The function
should not modify any other mode field, unless it wants to modify the mode timings reported to
the user by xf86PrintModes().

The function is called once for every mode in the XF86Config Monitor section assigned to the
screen, with flags set to MODECHECK_INITIAL. It is subsequently called for every mode in the
XF86Config Display subsection assigned to the screen, with flags set to MODECHECK_FINAL. In
the second case, the mode will have successfully passed all other tests. In addition, the ScrnIn-
foRec’s virtualX, virtualY and displayWidth fields will have been set as if the mode to be
validated were to be the last mode accepted.

In effect, calls with MODECHECK_INITIAL are intended for checks that do not depend on any
mode other than the one being validated, while calls with MODECHECK_FINAL are intended
for checks that may involve more than one mode.

6.2 Free screen data

When a screen is deleted prior to the completion of the ScreenInit phase the ChipFreeScreen()
function is called when defined.

XFree86 X server ‘‘New Design’’ (DRAFT) 19

void ChipFreeScreen(int scrnindex, int flags)

Free any driver-allocated data that may have been allo-
cated up to and including an unsuccessful Chip-
ScreenInit() call. This would predominantly be data
allocated by ChipPreInit() that persists across server
generations. It would include the driverPrivate, and
any ‘‘privates’’ entries that modules may have allo-
cated.

7. Recommended driver functions
The functions outlined here are for internal use by the driver only. They are entirely optional,
and are never accessed directly from higher layers. The sample function declarations shown here
are just examples. The interface (if any) used is up to the driver.

7.1 Save

Save the video state. This could be called from ChipScreenInit() and (possibly) ChipEn-
terVT().

void ChipSave(ScrnInfoPtr pScrn)

Saves the current state. This will only be saving pre-
server states or states before returning to the server.
There is only one current saved state per screen and it
is stored in private storage in the screen.

7.2 Restore

Restore the original video state. This could be called from the ChipLeaveVT() and ChipClos-
eScreen() functions.

void ChipRestore(ScrnInfoPtr pScrn)

Restores the saved state from the private storage.
Usually only used for restoring text modes.

7.3 Initialise Mode

Initialise a video mode. This could be called from the ChipScreenInit(), ChipSwitch-
Mode() and ChipEnterVT() functions.

Bool ChipModeInit(ScrnInfoPtr pScrn, DisplayModePtr mode)

Programs the hardware for the given video mode.

8. Data and Data Structures

8.1 Command line data

Command line options are typically global, and are stored in global variables. These variables
are read-only and are available to drivers via a function call interface. Most of these command
line values are processed via helper functions to ensure that they are treated consistently by all
drivers. The other means of access is provided for cases where the supplied helper functions

XFree86 X server ‘‘New Design’’ (DRAFT) 20

might not be appropriate.

Some of them are:

xf86Verbose verbosity level
xf86Bpp -bpp from the command line
xf86Depth -depth from the command line
xf86Weight -weight from the command line
xf86Gamma -{r,g,b,}gamma from the command line
xf86FlipPixels -flippixels from the command line
xf86ProbeOnly -probeonly from the command line
defaultColorVisualClass -cc from the command line

If we ever do allow for screen-specific command line options, we may need to rethink this.

These can be accessed in a read-only manner by drivers with the following functions:

int xf86GetVerbosity()

Returns the value of xf86Verbose.

int xf86GetDepth()

Returns the -depth command line setting. If not set on
the command line, -1 is returned.

rgb xf86GetWeight()

Returns the -weight command line setting. If not set
on the command line, {0, 0, 0} is returned.

Gamma xf86GetGamma()

Returns the -gamma or -rgamma, -ggamma, -bgamma command
line settings. If not set on the command line, {0.0,
0.0, 0.0} is returned.

Bool xf86GetFlipPixels()

Returns TRUE if -flippixels is present on the command
line, and FALSE otherwise.

const char *xf86GetServerName()

Returns the name of the X server from the command line.

8.2 Data handling

Config file data contains parts that are global, and parts that are Screen specific. All of it is parsed
into data structures that neither the drivers or most other parts of the server need to know about.

The global data is typically not required by drivers, and as such, most of it is stored in the private
xf86InfoRec.

The screen-specific data collected from the config file is stored in screen, device, display, monitor-
specific data structures that are separate from the ScrnInfoRecs, with the appropriate ele-
ments/fields hooked into the ScrnInfoRecs as required. The screen config data is held in con-
fScreenRec, device data in the GDevRec, monitor data in the MonRec, and display data in the
DispRec.

The XFree86 common layer’s screen specific data (the actual data in use for each screen) is held in

XFree86 X server ‘‘New Design’’ (DRAFT) 21

the ScrnInfoRecs. As has been outlined above, the ScrnInfoRecs are allocated at probe
time, and it is the responsibility of the Drivers’ Probe() and PreInit() functions to finish fill-
ing them in based on both data provided on the command line and data provided from the Con-
fig file. The precedence for this is:

command line -> config file -> probed/default data

For most things in this category there are helper functions that the drivers can use to ensure that
the above precedence is consistently used.

As well as containing screen-specific data that the XFree86 common layer (including essential
parts of the server infrastructure as well as helper functions) needs to access, it also contains some
data that drivers use internally. When considering whether to add a new field to the ScrnIn-
foRec, consider the balance between the convenience of things that lots of drivers need and the
size/obscurity of the ScrnInfoRec.

Per-screen driver specific data that cannot be accommodated with the static ScrnInfoRec fields
is held in a driver-defined data structure, a pointer to which is assigned to the ScrnInfoRec’s
driverPrivate field. This is per-screen data that persists across server generations (as does the
bulk of the static ScrnInfoRec data). It would typically also include the video card’s saved
state.

Per-screen data for other modules that the driver uses (for example, the XAA module) that is
reset for each server generation is hooked into the ScrnInfoRec through it’s privates field.

Once it has stabilised, the data structures and variables accessible to video drivers will be docu-
mented here. In the meantime, those things defined in the xf86.h and xf86str.h files are visi-
ble to video drivers. Things defined in xf86Priv.h and xf86Privstr.h are NOT intended to
be visible to video drivers, and it is an error for a driver to include those files.

8.3 Accessing global data

Some other global state information that the drivers may access via functions is as follows:

XFree86 X server ‘‘New Design’’ (DRAFT) 22

Bool xf86ServerIsExiting()

Returns TRUE if the server is at the end of a genera-
tion and is in the process of exiting, and FALSE other-
wise.

Bool xf86ServerIsResetting()

Returns TRUE if the server is at the end of a genera-
tion and is in the process of resetting, and FALSE oth-
erwise.

Bool xf86ServerIsInitialising()

Returns TRUE if the server is at the beginning of a
generation and is in the process of initialising, and
FALSE otherwise.

Bool xf86ServerIsOnlyProbing()

Returns TRUE if the -probeonly command line flag was
specified, and FALSE otherwise.

Bool xf86CaughtSignal()

Returns TRUE if the server has caught a signal, and
FALSE otherwise.

8.4 Allocating private data

A driver and any module it uses may allocate per-screen private storage in either the ScreenRec
(DIX level) or ScrnInfoRec (XFree86 common layer level). ScreenRec storage persists only
for a single server generation, and ScrnInfoRec storage persists across generations for the life-
time of the server.

The ScreenRec devPrivates data must be reallocated/initialised at the start of each new gen-
eration. This is normally done from the ChipScreenInit() function, and Init functions for
other modules that it calls. Data allocated in this way should be freed by the driver’s ChipClos-
eScreen() functions, and Close functions for other modules that it calls. A new devPrivates
entry is allocated by calling the AllocateScreenPrivateIndex() function.

XFree86 X server ‘‘New Design’’ (DRAFT) 23

int AllocateScreenPrivateIndex()

This function allocates a new element in the devPri-
vates field of all currently existing ScreenRecs. The
return value is the index of this new element in the
devPrivates array. The devPrivates field is of type
DevUnion:

typedef union _DevUnion {
pointer ptr;
long val;
unsigned long uval;
pointer (*fptr)(void);

} DevUnion;

which allows the element to be used for any of the
above types. It is commonly used as a pointer to data
that the caller allocates after the new index has been
allocated.

This function will return -1 when there is an error
allocating the new index.

The ScrnInfoRec privates data persists for the life of the server, so only needs to be allocated
once. This should be done from the ChipPreInit() function, and Init functions for other mod-
ules that it calls. Data allocated in this way should be freed by the driver’s ChipFreeScreen()
functions, and Free functions for other modules that it calls. A new privates entry is allocated
by calling the xf86AllocateScrnInfoPrivateIndex() function.

int xf86AllocateScrnInfoPrivateIndex()

This function allocates a new element in the privates
field of all currently existing ScrnInfoRecs. The
return value is the index of this new element in the
privates array. The privates field is of type DevU-
nion:

typedef union _DevUnion {
pointer ptr;
long val;
unsigned long uval;
pointer (*fptr)(void);

} DevUnion;

which allows the element to be used for any of the
above types. It is commonly used as a pointer to data
that the caller allocates after the new index has been
allocated.

This function will not return when there is an error
allocating the new index. When there is an error it
will cause the server to exit with a fatal error. The
similar function for allocation privates in the Screen-
Rec (AllocateScreenPrivateIndex()) differs in this
respect by returning -1 when the allocation fails.

XFree86 X server ‘‘New Design’’ (DRAFT) 24

9. Keeping Track of Bus Resources

9.1 Theory of Operation

The XFree86 common layer has knowledge of generic access control mechanisms for devices on
certain bus systems (currently the PCI bus) as well as of methods to enable or disable access to
the buses itself. Furthermore it can access information on resources decoded by these devices
and if necessary modify it.

When first starting the Xserver collects all this information, saves it for restoration, checks it for
consistency, and if necessary, corrects it. Finally it disables all resources on a generic level prior to
calling any driver function.

When the Probe() function of each driver is called the device sections are matched against the
devices found in the system. The driver may probe devices at this stage that cannot be identified
by using device independent methods. Access to all resources that can be controlled in a device
independent way is disabled. The Probe() function should register all non-relocatable
resources at this stage. If a resource conflict is found between exclusive resources the driver will
fail immediately. Optionally the driver might specify an EntityInit(), EntityLeave() and
EntityEnter() function.

EntityInit() can be used to disable any shared resources that are not controlled by the generic
access control functions. It is called prior to the PreInit phase regardless if an entity is active or
not. When calling the EntityInit(), EntityEnter() and EntityLeave() functions the
common level will disable access to all other entities on a generic level. Since the common level
has no knowledge of device specific methods to disable access to resources it cannot be guaran-
teed that certain resources are not decoded by any other entity until the EntityInit() or
EntityEnter() phase is finished. Device drivers should therefore register all those resources
which they are going to disable. If these resources are never to be used by any driver function
they may be flagged ResInit so that they can be removed from the resource list after processing
all EntityInit() functions. EntityEnter() should disable decoding of all resources which
are not registered as exclusive and which are not handled by the generic access control in the
common level. The difference to EntityInit() is that the latter one is only called once during
lifetime of the server. It can therefore be used to set up variables prior to disabling resources.
EntityLeave() should restore the original state when exiting the server or switching to a dif-
ferent VT. It also needs to disable device specific access functions if they need to be disabled on
server exit or VT switch. The default state is to enable them before giving up the VT.

In PreInit() phase each driver should check if any sharable resources it has registered during
Probe() has been denied and take appropriate action which could simply be to fail. If it needs
to access resources it has disabled during EntitySetup() it can do so provided it has registered
these and will disable them before returning from PreInit(). This also applies to all other
driver functions. Several functions are provided to request resource ranges, register these, correct
PCI config space and add replacements for the generic access functions. Resources may be
marked ‘‘disabled’’ or ‘‘unused’’ during OPERATING stage. Although these steps could also be
performed in ScreenInit(), this is not desirable.

Following PreInit() phase the common level determines if resource access control is needed.
This is the case if more than one screen is used. If necessary the RAC wrapper module is loaded.
In ScreenInit() the drivers can decide which operations need to be placed under RAC. Avail-
able are the frame buffer operations, the pointer operations and the colormap operations. Any
operation that requires resources which might be disabled during OPERATING state should be
set to use RAC. This can be specified separately for memory and IO resources.

When ScreenInit() phase is done the common level will determine which shared resources
are requested by more than one driver and set the access functions accordingly. This is done fol-
lowing these rules:

XFree86 X server ‘‘New Design’’ (DRAFT) 25

1. The sharable resources registered by each entity are compared. If a resource is registered
by more than one entity the entity will be marked to need to share this resources type (IO
or MEM).

2. A resource marked ‘‘disabled’’ during OPERATING state will be ignored entirely.

3. A resource marked ‘‘unused’’ will only conflicts with an overlapping resource of an other
entity if the second is actually in use during OPERATING state.

4. If an ‘‘unused’’ resource was found to conflict however the entity does not use any other
resource of this type the entire resource type will be disabled for that entity.

The driver has the choice among different ways to control access to certain resources:

1. It can rely on the generic access functions. This is probably the most common case. Here
the driver only needs to register any resource it is going to use.

2. It can replace the generic access functions by driver specific ones. This will mostly be used
in cases where no generic access functions are available. In this case the driver has to
make sure these resources are disabled when entering the PreInit() stage. Since the
replacement functions are registered in PreInit() the driver will have to enable these
resources itself if it needs to access them during this state. The driver can specify if the
replacement functions can control memory and/or I/O resources separately.

3. The driver can enable resources itself when it needs them. Each driver function enabling
them needs to disable them before it will return. This should be used if a resource which
can be controlled in a device dependent way is only required during SETUP state. This
way it can be marked ‘‘unused’’ during OPERATING state.

A resource which is decoded during OPERATING state however never accessed by the driver
should be marked unused.

Since access switching latencies are an issue during Xserver operation, the common level
attempts to minimize the number of entities that need to be placed under RAC control. When a
wrapped operation is called, the EnableAccess() function is called before control is passed on.
EnableAccess() checks if a screen is under access control. If not it just establishes bus routing
and returns. If the screen needs to be under access control, EnableAccess() determines which
resource types (MEM, IO) are required. Then it tests if this access is already established. If so it
simply returns. If not it disables the currently established access, fixes bus routing and enables
access to all entities registered for this screen.

Whenever a mode switch or a VT-switch is performed the common level will return to SETUP
state.

9.2 Resource Types

Resource have certain properties. When registering resources each range is accompanied by a
flag consisting of the ORed flags of the different properties the resource has. Each resource range
may be classified according to

• its physical properties i.e., if it addresses memory (ResMem) or I/O space (ResIo),

• if it addresses a block (ResBlock) or sparse (ResSparse) range,

• its access properties.

There are two known access properties:

• ResExclusive for resources which may not be shared with any other device and

• ResShared for resources which can be disabled and therefore can be shared.

If it is necessary to test a resource against any type a generic access type ResAny is provided. If
this is set the resource will conflict with any resource of a different entity intersecting its range.

XFree86 X server ‘‘New Design’’ (DRAFT) 26

Further it can be specified that a resource is decoded however never used during any stage
(ResUnused) or during OPERATING state (ResUnusedOpr). A resource only visible during the
init functions (ie. EntityInit(), EntityEnter() and EntityLeave() should be registered
with the flag ResInit. A resource that might conflict with background resource ranges may be
flagged with ResBios. This might be useful when registering resources ranges that were
assigned by the system Bios.

Several predefined resource lists are available for VGA and 8514/A resources in com-
mon/xf86Resources.h.

9.3 Available Functions

The functions provided for resource management are listed in their order of use in the driver.

9.3.1 Probe Phase

In this phase each driver detects those resources it is able to drive, creates an entity record for
each of them, registers non-relocatable resources and allocates screens and adds the resources to
screens.

Two helper functions are provided for matching device sections in the XF86Config file to the
devices:

int xf86MatchPciInstances(const char *driverName, int vendorID,

SymTabPtr chipsets, PciChipsets *PCIchipsets,

GDevPtr *devList, int numDevs,

GDevPtr *devList, int numDevs, DriverPtr drvp,

int **foundEntities)

This function finds matches between PCI cards that a
driver supports and config file device sections. It is
intended for use in the ChipProbe() function of drivers
for PCI cards. Only probed PCI devices with a vendor
ID matching vendorID are considered. devList and
numDevs are typically those found from calling
xf86MatchDevice(), and represent the active config file
device sections relevant to the driver. PCIchipsets is
a table that provides a mapping between the PCI device
IDs, the driver’s internal chipset tokens and a list of
fixed resources.

When a device section doesn’t have a BusID entry it can
only match the primary video device. Secondary devices
are only matched with device sections that have a
matching BusID entry.

Once the preliminary matches have been found, a final
match is confirmed by checking if the chipset override,
ChipID override or probed PCI chipset type match one of
those given in the chipsets and PCIchipsets lists. The
PCIchipsets list includes a list of the PCI device IDs
supported by the driver. The list should be terminated
with an entry with PCI ID -1". The chipsets list is a
table mapping the driver’s internal chipset tokens to

XFree86 X server ‘‘New Design’’ (DRAFT) 27

names, and should be terminated with a NULL entry.
Only those entries with a corresponding entry in the
PCIchipsets list are considered. The order of prece-
dence is: config file chipset, config file ChipID,
probed PCI device ID.

In cases where a driver handles PCI chipsets with more
than one vendor ID, it may set vendorID to 0, and OR
each devID in the list with (the vendor ID << 16).

Entity index numbers for confirmed matches are returned
as an array via foundEntities. The PCI information,
chipset token and device section for each match are
found in the EntityInfoRec referenced by the indices.

The function return value is the number of confirmed
matches. A return value of -1 indicates an internal
error. The returned foundEntities array should be
freed by the driver with xfree() when it is no longer
needed in cases where the return value is greater than
zero.

int xf86MatchIsaInstances(const char *driverName,

SymTabPtr chipsets, IsaChipsets *ISAchipsets,

DriverPtr drvp, FindIsaDevProc FindIsaDevice,

GDevPtr *devList, int numDevs, int **foundEntities)

This function finds matches between ISA cards that a
driver supports and config file device sections. It is
intended for use in the ChipProbe() function of drivers
for ISA cards. devList and numDevs are typically those
found from calling xf86MatchDevice(), and represent the
active config file device sections relevant to the
driver. ISAchipsets is a table that provides a mapping
between the driver’s internal chipset tokens and the
resource classes. FindIsaDevice is a driver-provided
function that probes the hardware and returns the
chipset token corresponding to what was detected, and
-1 if nothing was detected.

If the config file device section contains a chipset
entry, then it is checked against the chipsets list.
When no chipset entry is present, the FindIsaDevice
function is called instead.

Entity index numbers for confirmed matches are returned
as an array via foundEntities. The chipset token and
device section for each match are found in the Entity-
InfoRec referenced by the indices.

The function return value is the number of confirmed
matches. A return value of -1 indicates an internal
error. The returned foundEntities array should be
freed by the driver with xfree() when it is no longer
needed in cases where the return value is greater than

XFree86 X server ‘‘New Design’’ (DRAFT) 28

zero.

These two helper functions make use of several core functions that are available at the driver
level:

Bool xf86ParsePciBusString(const char *busID, int *bus,

int *device, int *func)

Takes a BusID string, and if it is in the correct for-
mat, returns the PCI bus, device, func values that it
indicates. The format of the string is expected to be
"PCI:bus:device:func" where each of ‘bus’, ‘device’ and
‘func’ are decimal integers. The ":func" part may be
omitted, and the func value assumed to be zero, but
this isn’t encouraged. The "PCI" prefix may also be
omitted. The prefix "AGP" is currently equivalent to
the "PCI" prefix. If the string isn’t a valid PCI
BusID, the return value is FALSE.

Bool xf86ComparePciBusString(const char *busID, int bus,

int device, int func)

Compares a BusID string with PCI bus, device, func val-
ues. If they match TRUE is returned, and FALSE if they
don’t.

Bool xf86ParseIsaBusString(const char *busID)

Compares a BusID string with the ISA bus ID string
("ISA" or "ISA:"). If they match TRUE is returned, and
FALSE if they don’t.

Bool xf86CheckPciSlot(int bus, int device, int func)

Checks if the PCI slot bus:device:func has been
claimed. If so, it returns FALSE, and otherwise TRUE.

int xf86ClaimPciSlot(int bus, int device, int func, DriverPtr
drvp,

int chipset, GDevPtr dev, Bool active)

This function is used to claim a PCI slot, allocate the
associated entity record and initialise their data
structures. The return value is the index of the newly
allocated entity record, or -1 if the claim fails.
This function should always succeed if xf86CheckPciS-
lot() returned TRUE for the same PCI slot.

Bool xf86IsPrimaryPci(void)

This function returns TRUE if the primary card is a PCI
device, and FALSE otherwise.

int xf86ClaimIsaSlot(DriverPtr drvp, int chipset,

XFree86 X server ‘‘New Design’’ (DRAFT) 29

GDevPtr dev, Bool active)

This allocates an entity record entity and initialise
the data structures. The return value is the index of
the newly allocated entity record.

Bool xf86IsPrimaryIsa(void)

This function returns TRUE if the primary card is an
ISA (non-PCI) device, and FALSE otherwise.

Two helper functions are provided to aid configuring entities:

Bool xf86ConfigActivePciEntity(ScrnInfoPtr pScrn, int entityIn-
dex,

PciChipsets *p_chip, resList res,

EntityProc init, EntityProc enter,

EntityProc leave, pointer private)

Bool xf86ConfigActiveIsaEntity(ScrnInfoPtr pScrn, int entityIn-
dex,

IsaChipsets *i_chip, resList res,

EntityProc init, EntityProc enter,

EntityProc leave, pointer private)

These functions are used to register the non-relocat-
able resources for an entity, and the optional entity-
specific Init, Enter and Leave functions. Usually the
list of fixed resources is obtained from the Isa/Pci-
Chipsets lists. However an additional list of
resources may be passed. Generally this is not
required. The return value is TRUE when successful.
The init, enter, leave functions are defined as fol-
lows:

typedef void (*EntityProc)(int entityIndex,

pointer private)

They are passed the entity index and a pointer to a
private scratch area. This are can be set up during
Probe() and its address can be passed to xf86ConfigAc-
tiveIsaEntity() xf86ConfigActivePciEntity() as the last
argument.

These two helper functions make use of several core functions that are available at the driver
level:

XFree86 X server ‘‘New Design’’ (DRAFT) 30

void xf86ClaimFixedResources(resList list, int entityIndex)

This function registers the non-relocatable resources
which cannot be disabled and which therefore would
cause the server to fail immediately if they were found
to conflict. It also records non-relocatable but
sharable resources for processing after the Probe()
phase.

Bool xf86SetEntityFuncs(int entityIndex, EntityProc init,

EntityProc enter, EntityProc leave, pointer)

This function registers with an entity the init, enter,
leave functions along with the pointer to their private
area.

void xf86AddEntityToScreen(ScrnInfoPtr pScrn, int entityIndex)

This function associates the entity referenced by enti-
tyIndex with the screen.

9.3.2 PreInit Phase

During this phase the remaining resource should be registered. PreInit() should call
xf86GetEntityInfo() To obtain a pointer to an EntityInfoRec for each entity it is able to
drive and check if any resource are listed in its resources field. If resources registered in the
Probe phase have been rejected in the post-Probe phase (resources == NULL), then the driver
should decide if it can continue without using these or if it should fail.

EntityInfoPtr xf86GetEntityInfo(int entityIndex)

This function returns a pointer to the EntityInfoRec
referenced by entityIndex. The returned EntityInfoRec
should be freed with xfree() when no longer needed.

Several functions are provided to simplify resource registration:

Bool xf86IsEntityPrimary(int entityIndex)

This function returns TRUE if the entity referenced by
entityIndex is the display device that primary display
device (i.e., the one initialised at boot time and used
in text mode).

Bool xf86IsScreenPrimary(int scrnIndex)

This function returns TRUE if the primary entity is
registered with the screen referenced by scrnIndex.

pciVideoPtr xf86GetPciInfoForEntity(int entityIndex)

This function returns a pointer to the pciVideoRec for
the specified entity. If the entity is not a PCI
device, NULL is returned.

XFree86 X server ‘‘New Design’’ (DRAFT) 31

The primary function for registration of resources is:

resPtr xf86RegisterResources(int entityIndex, resList list,

int access)

This function tries to register the resources in list.
If list is NULL it tries to determine the resources
automatically. This only works for entities that pro-
vide a generic way to read out the resource ranges they
decode. So far this is only the case for PCI devices.
By default the PCI resources are registered as shared
(ResShared) if the driver wants to set a different
access type it can do so by specifying the access flags
in the third argument. A value of 0 means to use the
default settings. If for any reason the resource bro-
ker is not able to register some of the requested
resources the function will return a pointer to a list
of the failed ones. In this case the driver may be
able to move the resource to different locations. In
case of PCI bus entities this is done by passing the
list of failed resources to xf86ReallocatePciRe-
sources(). When the registration succeeds, the return
value is NULL.

resPtr xf86ReallocatePciResources(int entityIndex, resPtr pRes)

This function takes a list of PCI resources that need
to be reallocated and returns a list of the reallocated
resource. This list needs to be passed to xf86Regis-
terResources() again to be registered with the broker.
If the reallocation fails, NULL is returned.

Two functions are provided to obtain a resource range of a given type:

XFree86 X server ‘‘New Design’’ (DRAFT) 32

resRange xf86GetBlock(long type, memType size,

memType window_start, memType window_end,

memType align_mask, resPtr avoid)

This function tries to find a block range of size size
and type type in a window bound by window_start and
window_end with the alignment specified in align_mask.
Optionally a list of resource ranges which should be
avoided within the window can be supplied. On failure
a zero-length range of type ResEnd will be returned.

resRange xf86GetSparse(long type, memType fixed_bits,

memType decode_mask, memType address_mask,

resPtr avoid)

This function is like the previous one, but attempts to
find a sparse range instead of a block range. Here
three values have to be specified: the address_mask
which marks all bits of the mask part of the address,
the decode_mask which masks out the bits which are
hardcoded and are therefore not available for reloca-
tion and the values of the fixed bits. The function
tries to find a base that satisfies the given condi-
tion. If the function fails it will return a zero
range of type ResEnd. Optionally it might be passed a
list of resource ranges to avoid.

Some PCI devices are broken in the sense that they return invalid size information for a certain
resource. In this case the driver can supply the correct size and make sure that the resource range
allocated for the card is large enough to hold the address range decoded by the card. The func-
tion xf86FixPciResource() can be used to do this:

XFree86 X server ‘‘New Design’’ (DRAFT) 33

Bool xf86FixPciResource(int entityIndex, unsigned int prt,

CARD32 alignment, long type)

This function fixes a PCI resource allocation. The prt
parameter contains the number of the PCI base register
that needs to be fixed (0-5, and 6 for the BIOS base
register). The size is specified by the alignment.
Since PCI resources need to span an integral range of
the size 2^n the alignment also specifies the number of
addresses that will be decoded. If the driver speci-
fies a type mask it can override the default type for
PCI resources which is ResShared. The resource broker
needs to know that to find a matching resource range.
This function should be called before calling xf86Reg-
isterResources(). The return value is TRUE when the
function succeeds.

Bool xf86CheckPciMemBase(pciVideoPtr pPci, memType base)

This function checks that the memory base address spec-
ified matches one of the PCI base address register val-
ues for the given PCI device. This is mostly used to
check that an externally provided base address (e.g.,
from a config file) matches an actual value allocated
to a device.

The driver may replace the generic access control functions for an entity by it’s own ones. This is
done with the xf86SetAccessFuncs():

XFree86 X server ‘‘New Design’’ (DRAFT) 34

void xf86SetAccessFuncs(EntityInfoPtr pEnt, xf86AccessPtr p_io,

xf86AccessPtr p_mem, xf86AccessPtr p_io_mem,

xf86AccessPtr *ppAccessOld)

The driver can pass three functions: one for I/O
access, one for memory access and one for combined mem-
ory and I/O access. If the memory access and combined
access functions are identical the common level assumes
that the memory access cannot be controlled indepen-
dently of I/O access, if the I/O access function and
the combined access functions are the same it is
assumed that I/O can not be controlled independently.
If memory and I/O have to be controlled together all
three values should be the same. If a non NULL value
is passed as fifth argument it is interpreted as an
address where to store the old access record. If the
fifth argument is NULL it will be assumed that the
generic access should be enabled before replacing the
access functions. Otherwise it will be disabled. The
driver may enable them itself using the returned val-
ues. It should do this from his replacement access
functions as the generic access may be disabled by the
common level on certain occasions. If replacement
functions are specified they must control all resources
of the specific type registered for the entity.

To find out if specific resource range is conflicting with another resource the xf86ChkCon-
flict() function may be used:

memType xf86ChkConflict(resRange *rgp, int entityIndex)

This function checks if the resource range rgp of for
the specified entity conflicts with with another
resource. If it a conflict is found, the address of
the start of the conflict is returned. The return
value is zero when there is no conflict.

The OPERATING state properties of previously registered fixed resources can be set with the
xf86SetOperatingState() function:

XFree86 X server ‘‘New Design’’ (DRAFT) 35

resPtr xf86SetOperatingState(resList list, int entityIndex,

int mask)

This function is used to set the status of a resource
during OPERATING state. list holds a list to which
mask is to be applied. The parameter mask may have the
value ResUnusedOpr and ResDisableOpr. The first one
should be used if a resource isn’t used by the driver
during OPERATING state although it is decoded by the
device, while the latter one indicates that the
resource is not decoded during OPERATING state. Note
that the resource ranges have to match those specified
during registration. If a range has been specified
starting at A and ending at B and suppose C us a value
satisfying A < C < B one may not specify the resource
range (A,B) by splitting it into two ranges (A,C) and
(C,B).

The following two functions are provided for special cases:

void xf86RemoveEntityFromScreen(ScrnInfoPtr pScrn, int enti-
tyIndex)

This function may be used to remove an entity from a
screen. This only makes sense if a screen has more
than one entity assigned or the screen is to be
deleted. No test is made if the screen has any enti-
ties left.

void xf86DeallocateResourcesForEntity(int entityIndex, long
type)

This function deallocates all resources of a given type
registered for a certain entity from the resource bro-
ker list.

9.3.3 ScreenInit Phase

All that is required in this phase is to setup the RAC flags. Note that it is also permissible to set
these flags up in the PreInit phase. The RAC flags are held in the racIoFlags and racMem-
Flags fields of the ScrnInfoRec for each screen. They specify which graphics operations
might require the use of shared resources. This can be specified separately for memory and I/O
resources. The available flags are defined in rac/xf86RAC.h. They are:

RAC_FB

for framebuffer operations (including hw acceleration)

RAC_CURSOR

for Cursor operations (??? I’m not sure if we need this for SW
cursor it depends on which level the sw cursor is drawn)

RAC_COLORMAP

XFree86 X server ‘‘New Design’’ (DRAFT) 36

for colormap operations

RAC_VIEWPORT

for the call to ChipAdjustFrame()

The flags are ORed together.

10. Config file ‘‘Option’’ entries
Option entries are permitted in most sections and subsections of the config file. There are two
forms of option entries:

Option "option-name"
A boolean option.

Option "option-name" "option-value"
An option with an arbitrary value.

The option entries are handled by the parser, and a list of the parsed options is included with
each of the appropriate data structures that the drivers have access to. The data structures used
to hold the option information are opaque to the driver, and a driver must not access the option
data directly. Instead, the common layer provides a set of functions that may be used to access,
check and manipulate the option data.

First, the low level option handling functions. In most cases drivers would not need to use these
directly.

pointer xf86FindOption(pointer options, const char *name)

Takes a list of options and an option name, and returns
a handle for the first option entry in the list match-
ing the name. Returns NULL if no match is found.

char *xf86FindOptionValue(pointer options, const char *name)

Takes a list of options and an option name, and returns
the value associated with the first option entry in the
list matching the name. If the matching option has no
value, an empty string ("") is returned. Returns NULL
if no match is found.

void xf86MarkOptionUsed(pointer option)

Takes a handle for an option, and marks that option as
used.

void xf86MarkOptionUsedByName(pointer options, const char
*name)

Takes a list of options and an option name and marks
the first option entry in the list matching the name as
used.

Next, the higher level functions that most drivers would use.

XFree86 X server ‘‘New Design’’ (DRAFT) 37

void xf86CollectOptions(ScrnInfoPtr pScrn, pointer extraOpts)

Collect the options from each of the config file sec-
tions used by the screen (pScrn) and return the merged
list as pScrn->options. This function requires that
pScrn->confScreen, pScrn->display, pScrn->monitor,
pScrn->numEntities, and pScrn->entityList are ini-
tialised. extraOpts may optionally be set to an addi-
tional list of options to be combined with the others.
The order of precedence for options is extraOpts, dis-
play, confScreen, monitor, device.

void xf86ProcessOptions(int scrnIndex, pointer options,

OptionInfoPtr optinfo)

Processes a list of options according to the informa-
tion in the array of OptionInfoRecs (optinfo). The
resulting information is stored in the value fields of
the appropriate optinfo entries. The found fields are
set to TRUE when an option with a value of the correct
type if found, and FALSE otherwise. The type field is
used to determine the expected value type for each
option. Each option in the list of options for which
there is a name match (but not necessarily a value type
match) is marked as used. Warning messages are printed
when option values don’t match the types specified in
the optinfo data.

NOTE: If this function is called before a driver’s
screen number is known (e.g., from the ChipProbe()
function) a scrnIndex value of -1 should be used.

The OptionInfoRec is defined as follows:

typedef struct {
double freq;
int units;

} OptFrequency;

typedef union {
unsigned long num;
char * str;
double realnum;
Bool bool;
OptFrequency freq;

} ValueUnion;

typedef enum {
OPTV_NONE = 0,
OPTV_INTEGER,
OPTV_STRING, /* a non-empty string */
OPTV_ANYSTR, /* Any string, including an empty one */
OPTV_REAL,
OPTV_BOOLEAN,
OPTV_FREQ

} OptionValueType;

typedef enum {
OPTUNITS_HZ = 1,
OPTUNITS_KHZ,

XFree86 X server ‘‘New Design’’ (DRAFT) 38

OPTUNITS_MHZ
} OptFreqUnits;

typedef struct {
int token;
const char* name;
OptionValueType type;
ValueUnion value;
Bool found;

} OptionInfoRec, *OptionInfoPtr;

OPTV_FREQ can be used for options values that are fre-
quencies. These values are a floating point number
with an optional unit name appended. The unit name can
be one of "Hz", "kHz", "k", "MHz", "M". The multiplier
associated with the unit is stored in freq.units, and
the scaled frequency is stored in freq.freq. When no
unit is specified, freq.units is set to 0, and
freq.freq is unscaled.

Typical usage is to setup a static array of OptionIn-
foRecs with the token, name, and type fields ini-
tialised. The value and found fields get set by
xf86ProcessOptions(). For cases where the value pars-
ing is more complex, the driver should specify
OPTV_STRING, and parse the string itself. An example
of using this option handling is included in the Sample

Driver (section , page) section.

void xf86ShowUnusedOptions(int scrnIndex, pointer options)

Prints out warning messages for each option in the list
of options that isn’t marked as used. This is intended
to show options that the driver hasn’t recognised. It
would normally be called near the end of the Chip-
ScreenInit() function, but only when
serverGeneration == 1.

OptionInfoPtr xf86TokenToOptinfo(OptionInfoPtr table, int
token)

Returns a pointer to the OptionInfoRec in table with a
token field matching token. Returns NULL if no match
is found.

Bool xf86IsOptionSet(OptionInfoPtr table, int token)

Returns the found field of the OptionInfoRec in table
with a token field matching token. This can be used
for options of all types. Note that for options of
type OPTV_BOOLEAN, it isn’t sufficient to check this to
determine the value of the option. Returns FALSE if no
match is found.

char *xf86GetOptValString(OptionInfoPtr table, int token)

Returns the value.str field of the OptionInfoRec in
table with a token field matching token. Returns NULL

XFree86 X server ‘‘New Design’’ (DRAFT) 39

if no match is found.

Bool xf86GetOptValInteger(OptionInfoPtr table, int token,

int *value)

Returns via *value the value.num field of the OptionIn-
foRec in table with a token field matching token.
*value is only changed when a match is found so it can
be safely initialised with a default prior to calling
this function. The function return value is as for
xf86IsOptionSet().

Bool xf86GetOptValULong(OptionInfoPtr table, int token,

unsigned long *value)

Like xf86GetOptValInteger(), except the value is
treated as an unsigned long.

Bool xf86GetOptValReal(OptionInfoPtr table, int token,

double *value)

Like xf86GetOptValInteger(), except that value.realnum
is used.

Bool xf86GetOptValFreq(OptionInfoPtr table, int token,

OptFreqUnits expectedUnits, double *value)

Like xf86GetOptValInteger(), except that the value.freq
data is returned. The frequency value is scaled to the
units indicated by expectedUnits. The scaling is exact
when the units were specified explicitly in the
option’s value. Otherwise, the expectedUnits field is
used as a hint when doing the scaling. In this case,
values larger than 1000 are assumed to have be speci-
fied in the next smallest units. For example, if the
Option value is "10000" and expectedUnits is OPTU-
NITS_MHZ, the value returned is 10.

Bool xf86GetOptValBool(OptionInfoPtr table, int token, Bool
*value)

This function is used to check boolean options
(OPTV_BOOLEAN). If the function return value is FALSE,
it means the option wasn’t set. Otherwise *value is
set to the boolean value indicated by the option’s
value. No option value is interpreted as TRUE. Option
values meaning TRUE are "1", "yes", "on", "true", and
option values meaning FALSE are "0", "no", "off",
"false". Option names both with the "no" prefix in
their names, and with that prefix removed are also
checked and handled in the obvious way. *value is not
changed when the option isn’t present. It should nor-
mally be set to a default value before calling this

XFree86 X server ‘‘New Design’’ (DRAFT) 40

function.

Bool xf86ReturnOptValBool(OptionInfoPtr table, int token, Bool
def)

This function is used to check boolean options
(OPTV_BOOLEAN). If the option is set, its value is
returned. If the options is not set, the default value
specified by def is returned. The option interpreta-
tion is the same as for xf86GetOptValBool().

int xf86NameCmp(const char *s1, const char *s2)

This function should be used when comparing strings
from the config file with expected values. It works
like strcmp(), but is not case sensitive and space,
tab, and ‘_’ characters are ignored in the comparison.
The use of this function isn’t restricted to parsing
option values. It may be used anywhere where this
functionality required.

11. Modules, Drivers, Include Files and Interface Issues
NOTE: this section is incomplete.

11.1 Include files

The following include files are typically required by video drivers:

XFree86 X server ‘‘New Design’’ (DRAFT) 41

All drivers should include these:

"xf86.h"

"xf86_OSproc.h"

"xf86_ansic.h"

"xf86Resources.h"

Wherever inb/outb (and related things) are used the following
should be included:

"compiler.h"

Drivers that need to access PCI vendor/device definitions need
this:

"xf86PciInfo.h"

Drivers that need to access the PCI config space need this:

"xf86Pci.h"

Drivers that initialise a SW cursor need this:

"mipointer.h"

All drivers implementing backing store need this:

"mibstore.h"

All drivers using the mi colourmap code need this:

"micmap.h"

If a driver uses the vgahw module, it needs this:

"vgaHW.h"

Drivers supporting VGA or Hercules monochrome screens need:

"xf1bpp.h"

Drivers supporting VGA or EGC 16-colour screens need:

"xf4bpp.h"

Drivers using cfb need:

#define PSZ 8

#include "cfb.h"

#undef PSZ

Drivers supporting bpp 16, 24 or 32 with cfb need one or more
of:

"cfb16.h"

"cfb24.h"

"cfb32.h"

XFree86 X server ‘‘New Design’’ (DRAFT) 42

If a driver uses XAA, it needs these:

"xaa.h"

"xaalocal.h"

If a driver uses the fb manager, it needs this:

"xf86fbman.h"

Non-driver modules should include "xf86_ansic.h" to get the correct wrapping of ANSI
C/libc functions.

All modules must NOT include any system include files, or the following:

"xf86Priv.h"

"xf86Privstr.h"

"xf86_OSlib.h"

"Xos.h"

In addition, "xf86_libc.h" must not be included explicitly. It is included implicitly by
"xf86_ansic.h".

12. Offscreen Memor y Manager
Management of offscreen video memory may be handled by the XFree86 framebuffer manager.
Once the offscreen memory manager is running, drivers or extensions may allocate, free or resize
areas of offscreen video memory using the following functions (definitions taken from
xf86fbman.h):

typedef struct _FBArea {
ScreenPtr pScreen;
BoxRec box;
int granularity;
void (*MoveAreaCallback)(struct _FBArea*, struct _FBArea*)
void (*RemoveAreaCallback)(struct _FBArea*)
DevUnion devPrivate;

} FBArea, *FBAreaPtr;

typedef void (*MoveAreaCallbackProcPtr)(FBAreaPtr from, FBAreaPtr to)
typedef void (*RemoveAreaCallbackProcPtr)(FBAreaPtr)

FBAreaPtr xf86AllocateOffscreenArea (
ScreenPtr pScreen,
int width, int height,
int granularity,
MoveAreaCallbackProcPtr MoveAreaCallback,
RemoveAreaCallbackProcPtr RemoveAreaCallback,
pointer privData

)

void xf86FreeOffscreenArea (FBAreaPtr area)

Bool xf86ResizeOffscreenArea (
FBAreaPtr area
int w, int h

)

The function:

XFree86 X server ‘‘New Design’’ (DRAFT) 43

Bool xf86FBManagerRunning(ScreenPtr pScreen)

can be used by an extension to check if the driver has initialized the memory manager. The man-
ager is not available if this returns FALSE and the functions above will all fail.

xf86AllocateOffscreenArea() can be used to request a rectangle of dimensions width x
height (in pixels) from unused offscreen memory. granularity specifies that the leftmost
edge of the rectangle must lie on some multiple of granularity pixels. A granularity of zero
means the same thing as a granularity of one - no alignment preference. A MoveAreaCallback
can be provided to notify the requester when the offscreen area is moved. If no MoveAreaCall-
back is supplied then the area is considered to be immovable. The privData field will be stored
in the manager’s internal structure for that allocated area and will be returned to the requester in
the FBArea passed via the MoveAreaCallback. An optional RemoveAreaCallback is pro-
vided. If the driver provides this it indicates that the area should be allocated with a lower prior-
ity. Such an area may be removed when a higher priority request (one that doesn’t have a
RemoveAreaCallback) is made. When this function is called, the driver will have an opportu-
nity to do whatever cleanup it needs to do to deal with the loss of the area, but it must finish its
cleanup before the function exits since the offscreen memory manager will free the area immedi-
ately after.

xf86AllocateOffscreenArea() returns NULL if it was unable to allocate the requested area.
When no longer needed, areas should be freed with xf86FreeOffscreenArea().

xf86ResizeOffscreenArea() resizes an existing FBArea. xf86ResizeOffscreenArea()
returns TRUE if the resize was successful. If xf86ResizeOffscreenArea() returns FALSE, the
original FBArea is left unmodified. Resizing an area maintains the area’s original granular-
ity, devPrivate, and MoveAreaCallback. xf86ResizeOffscreenArea() has consider-
ably less overhead than freeing the old area then reallocating the new size, so it should be used
whenever possible.

The function:

Bool xf86QueryLargestOffscreenArea(

ScreenPtr pScreen,

int *width, int *height,

int granularity,

int preferences,

int priority

)

is provided to query the width and height of the largest single FBArea allocatable given a partic-
ular priority. preferences can be one of the following to indicate whether width, height or
area should be considered when determining which is the largest single FBArea available.

FAVOR_AREA_THEN_WIDTH

FAVOR_AREA_THEN_HEIGHT

FAVOR_WIDTH_THEN_AREA

FAVOR_HEIGHT_THEN_AREA

priority is one of the following:

XFree86 X server ‘‘New Design’’ (DRAFT) 44

PRIORITY_LOW

Return the largest block available without stealing
anyone else’s space. This corresponds to the priority
of allocating a FBArea when a RemoveAreaCallback is
provided.

PRIORITY_NORMAL

Return the largest block available if it is acceptable
to steal a lower priority area from someone. This cor-
responds to the priority of allocating a FBArea without
providing a RemoveAreaCallback.

PRIORITY_EXTREME

Return the largest block available if all FBAreas that
aren’t locked down were expunged from memory first.
This corresponds to any allocation made directly after
a call to xf86PurgeUnlockedOffscreenAreas().

The function:

Bool xf86PurgeUnlockedOffscreenAreas(ScreenPtr pScreen)

is provided as an extreme method to free up offscreen memory. This will remove all removable
FBArea allocations.

Initialization of the XFree86 framebuffer manager is done via

Bool xf86InitFBManager(ScreenPtr pScreen, BoxPtr FullBox)

FullBox represents the area of the framebuffer that the manager is allowed to manage. This is
typically a box with a width of pScrn->displayWidth and a height of as many lines as can be
fit within the total video memory, however, the driver can reserve areas at the extremities by
passing a smaller area to the manager.

xf86InitFBManager() must be called before XAA is initialized since XAA uses the manager
for it’s pixmap cache.

An alternative function is provided to allow the driver to initialize the framebuffer manager with
a Region rather than a box.

Bool xf86InitFBManagerRegion(ScreenPtr pScreen,

RegionPtr FullRegion)

xf86InitFBManagerRegion(), unlike xf86InitFBManager(), does not remove the area
used for the visible screen so that area should not be included in the region passed to the func-
tion. xf86InitFBManagerRegion() is useful when non-contiguous areas are available to be
managed, and is required when multiple framebuffers are stored in video memory (as in the case
where an overlay of a different depth is stored as a second framebuffer in offscreen memory).

13. Colormap Handling
A generic colormap handling layer is provided within the XFree86 common layer. This layer
takes care of most of the details, and only requires a function from the driver that loads the hard-
ware palette when required. To use the colormap layer, a driver calls the

XFree86 X server ‘‘New Design’’ (DRAFT) 45

xf86HandleColormaps() function.

Bool xf86HandleColormaps(ScreenPtr pScreen, int maxColors,

int sigRGBbits, LoadPaletteFuncPtr loadPalette,

SetOverscanFuncPtr setOverscan, unsigned int flags)

This function must be called after the default colormap
has been initialised. The pScrn->gamma field must also
be initialised, preferably by calling xf86SetGamma().
maxColors is the number of entries in the palette.
sigRGBbits is the number of significant bits in each
colour component. This would normally be the same as
pScrn->rgbBits. loadPalette is a driver-provided func-
tion for loading a colormap into the hardware, and is
described below. setOverscan is an optional function
that may be provided when the overscan color is an
index from the standard LUT and when it needs to be
adjusted to keep it as close to black as possible. The
setOverscan function programs the overscan index. It
shouldn’t normally be used for depths other than 8.
setOverscan should be set to NULL when it isn’t needed.
flags may be set to the following (which may be ORed
together):

CMAP_PALETTED_TRUECOLOR

the TrueColor visual is paletted and is just a
special case of DirectColor. This flag is only
valid for bpp > 8.

CMAP_RELOAD_ON_MODE_SWITCH

reload the colormap automatically after mode
switches. This is useful for when the driver
is resetting the hardware during mode switches
and corrupting or erasing the hardware palette.

CMAP_LOAD_EVEN_IF_OFFSCREEN

reload the colormap even if the screen is
switched out of the server’s VC. The palette
is not reloaded when the screen is switched
back in, nor after mode switches. This is use-
ful when the driver needs to keep track of
palette changes.

The colormap layer normally reloads the palette after
VT enters so it is not necessary for the driver to save
and restore the palette when switching VTs. The driver
must, however, still save the initial palette during
server start up and restore it during server exit.

void LoadPalette(ScrnInfoPtr pScrn, int numColors, int
*indices,

XFree86 X server ‘‘New Design’’ (DRAFT) 46

LOCO *colors, VisualPtr pVisual)

LoadPalette() is a driver-provide function for loading
a colormap into hardware. colors is the array of RGB
values that represent the full colormap. indices is a
list of index values into the colors array. These
indices indicate the entries that need to be updated.
numColors is the number of the indices to be updated.

void SetOverscan(ScrnInfoPtr pScrn, int overscan)

SetOverscan() is a driver-provided function for pro-
gramming the overscan index. As described above, it is
normally only appropriate for LUT modes where all col-
ormap entries are available for the display, but where
one of them is also used for the overscan (typically
8bpp for VGA compatible LUTs). It isn’t required in
cases where the overscan area is never visible.

14. DPMS Extension
Support code for the DPMS extension is included in the XFree86 common layer. This code pro-
vides an interface between the main extension code, and a means for drivers to initialise DPMS
when they support it. One function is available to drivers to do this initialisation, and it is always
available, even when the DPMS extension is not supported by the core server (in which case it
returns a failure result).

Bool xf86DPMSInit(ScreenPtr pScreen, DPMSSetProcPtr set, int
flags)

This function registers a driver’s DPMS level program-
ming function set. It also checks pScrn->options for
the "dpms" option, and when present marks DPMS as being
enabled for that screen. The set function is called
whenever the DPMS level changes, and is used to program
the requested level. flags is currently not used, and
should be 0. If the initialisation fails for any rea-
son, including when there is no DPMS support in the
core server, the function returns FALSE.

Drivers that implement DPMS support must provide the following function, that gets called
when the DPMS level is changed:

void ChipDPMSSet(ScrnInfoPtr pScrn, int level, int flags)

Program the DPMS level specified by level. Valid val-
ues of level are DPMSModeOn, DPMSModeStandby, DPMSMod-
eSuspend, DPMSModeOff. These values are defined in
"extensions/dpms.h".

15. DGA Extension
Drivers can support the XFree86 Direct Graphics Architecture (DGA) by filling out a structure of
function pointers and a list of modes and passing them to DGAInit.

XFree86 X server ‘‘New Design’’ (DRAFT) 47

Bool DGAInit(ScreenPtr pScreen, DGAFunctionPtr funcs,

DGAModePtr modes, int num)

/** The DGAModeRec **/

typedef struct {
int num;
DisplayModePtr mode;
int flags;
int imageWidth;
int imageHeight;
int pixmapWidth;
int pixmapHeight;
int bytesPerScanline;
int byteOrder;
int depth;
int bitsPerPixel;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int viewportWidth;
int viewportHeight;
int xViewportStep;
int yViewportStep;
int maxViewportX;
int maxViewportY;
int viewportFlags;
int offset;
unsigned char *address;
int reserved1;
int reserved2;

} DGAModeRec, *DGAModePtr;

num

Can be ignored. The DGA DDX will assign these
numbers.

mode

A pointer to the DisplayModeRec for this mode.

flags

The following flags are defined and may be OR’d
together:

DGA_CONCURRENT_ACCESS

Indicates that the driver supports concurrent graphics

accelerator and linear framebuffer access.

DGA_FILL_RECT

DGA_BLIT_RECT

DGA_BLIT_RECT_TRANS

Indicates that the driver supports the FillRect, BlitRect or

BlitTransRect functions in this mode.

DGA_PIXMAP_AVAILABLE

XFree86 X server ‘‘New Design’’ (DRAFT) 48

Indicates that Xlib may be used on the framebuffer. This

flag will usually be set unless the driver wishes to pro-

hibit this for some reason.

DGA_INTERLACED

DGA_DOUBLESCAN

Indicates that these are interlaced or double scan modes.

imageWidth

imageHeight

These are the dimensions of the linear frame-
buffer accessible by the client.

pixmapWidth

pixmapHeight

These are the dimensions of the area of the
framebuffer accessible by the graphics acceler-
ator.

bytesPerScanline

Pitch of the framebuffer in bytes.

byteOrder

Usually the same as pScrn->imageByteOrder.

depth

The depth of the framebuffer in this mode.

bitsPerPixel

The number of bits per pixel in this mode.

red_mask

green_mask

blue_mask

The RGB masks for this mode, if applicable.

viewportWidth

viewportHeight

Dimensions of the visible part of the frame-
buffer. Usually mode->HDisplay and mode->VDis-
play.

xViewportStep

XFree86 X server ‘‘New Design’’ (DRAFT) 49

yViewportStep

The granularity of x and y viewport positions
that the driver supports in this mode.

maxViewportX

maxViewportY

The maximum viewport position supported by the
driver in this mode.

viewportFlags

The following may be OR’d together:

DGA_FLIP_IMMEDIATE

The driver supports immediate viewport changes.

DGA_FLIP_RETRACE

The driver supports viewport changes at retrace.

offset

The offset into the linear framebuffer that
corresponds to pixel (0,0) for this mode.

/** The DGAFunctionRec **/

typedef struct {
Bool (*OpenFramebuffer)(

ScrnInfoPtr pScrn,
char **name,
unsigned char **mem,
int *size,
int *offset,
int *extra

);
void (*CloseFramebuffer)(ScrnInfoPtr pScrn);
Bool (*SetMode)(ScrnInfoPtr pScrn, DGAModePtr pMode);
void (*SetViewport)(ScrnInfoPtr pScrn, int x, int y, int flags);
int (*GetViewport)(ScrnInfoPtr pScrn);
void (*Flush)(ScrnInfoPtr);
void (*FillRect)(

ScrnInfoPtr pScrn,
int x, int y, int w, int h,
unsigned long color

);
void (*BlitRect)(

ScrnInfoPtr pScrn,
int srcx, int srcy,
int w, int h,
int dstx, int dsty

);
void (*BlitTransRect)(

ScrnInfoPtr pScrn,
int srcx, int srcy,
int w, int h,
int dstx, int dsty,

XFree86 X server ‘‘New Design’’ (DRAFT) 50

unsigned long color
);

} DGAFunctionRec, *DGAFunctionPtr;

Bool OpenFramebuffer (pScrn, name, mem, size, offset, extra)

OpenFramebuffer() should pass the client everything it
needs to know to be able to open the framebuffer.
These parameters are OS specific and their meanings are
to be interpreted by an OS specific client library.

name

The name of the device to open or NULL if there
is no special device to open. A NULL name
tells the client that it should open whatever
device one would usually open to access physi-
cal memory.

mem

The physical address of the start of the frame-
buffer.

size

The size of the framebuffer in bytes.

offset

Any offset into the device, if applicable.

flags

Any additional information that the client may
need. Currently, only the DGA_NEED_ROOT flag
is defined.

void CloseFramebuffer (pScrn)

CloseFramebuffer() merely informs the driver (if it
even cares) that client no longer needs to access the
framebuffer directly. This function is optional.

Bool SetMode (pScrn, pMode)

SetMode() tells the driver to initialize the mode
passed to it. If pMode is NULL, then the driver should
restore the original pre-DGA mode.

void SetViewport (pScrn, x, y, flags)

SetViewport() tells the driver to make the upper left-
hand corner of the visible screen correspond to coordi-

XFree86 X server ‘‘New Design’’ (DRAFT) 51

nate (x,y) on the framebuffer. Flags currently defined
are:

DGA_FLIP_IMMEDIATE

The viewport change should occur immediately.

DGA_FLIP_RETRACE

The viewport change should occur at the verti-
cal retrace, but this function should return
sooner if possible.

The (x,y) locations will be passed as the client speci-
fied them, however, the driver is expected to round
these locations down to the next supported location as
specified by the xViewportStep and yViewportStep for
the current mode.

int GetViewport (pScrn)

GetViewport() gets the current page flip status. Set
bits in the returned int correspond to viewport change
requests still pending. For instance, set bit zero if
the last SetViewport request is still pending, bit one
if the one before that is still pending, etc.

void Flush (pScrn)

This function should ensure that any graphics accelera-
tor operations have finished. This function should not
return until the graphics accelerator is idle.

void FillRect (pScrn, x, y, w, h, color)

This optional function should fill a rectangle w × h
located at (x,y) in the given color.

void BlitRect (pScrn, srcx, srcy, w, h, dstx, dsty)

This optional function should copy an area w × h
located at (srcx,srcy) to location (dstx,dsty). This
function will need to handle copy directions as appro-
priate.

void BlitTransRect (pScrn, srcx, srcy, w, h, dstx, dsty, color)

This optional function is the same as BlitRect except
that pixels in the source corresponding to the color
key color should be skipped.

16. The XFree86 X Video Extension (Xv) Device Depen-
dent Layer
XFree86 offers the X Video Extension which allows clients to treat video as any another primitive

XFree86 X server ‘‘New Design’’ (DRAFT) 52

and ‘‘Put’’ video into drawables. By default, the extension reports no video adaptors as being
available since the DDX layer has not been initialized. The driver can initialize the DDX layer by
filling out one or more XF86VideoAdaptorRecs as described later in this document and pass-
ing a list of XF86VideoAdaptorPtr pointers to the following function:

Bool xf86XVScreenInit(

ScreenPtr pScreen,
XF86VideoAdaptorPtr *adaptPtrs,

int num)

After doing this, the extension will report video adaptors as being available, providing the data in
their respective XF86VideoAdaptorRecs was valid. xf86XVScreenInit() copies data from
the structure passed to it so the driver may free it after the initialization. At the moment, the
DDX only supports rendering into Window drawables. Pixmap rendering will be supported
after a sufficient survey of suitable hardware is completed.

The XF86VideoAdaptorRec:

typedef struct {
unsigned int type;
int flags;
char *name;
int nEncodings;
XF86VideoEncodingPtr pEncodings;
int nFormats;
XF86VideoFormatPtr pFormats;
int nPorts;
DevUnion *pPortPrivates;
int nAttributes;
XF86AttributePtr pAttributes;
int nImages;
XF86ImagePtr pImages;
PutVideoFuncPtr PutVideo;
PutStillFuncPtr PutStill;
GetVideoFuncPtr GetVideo;
GetStillFuncPtr GetStill;
StopVideoFuncPtr StopVideo;
SetPortAttributeFuncPtr SetPortAttribute;
GetPortAttributeFuncPtr GetPortAttribute;
QueryBestSizeFuncPtr QueryBestSize;
PutImageFuncPtr PutImage;
QueryImageAttributesFuncPtr QueryImageAttributes;

} XF86VideoAdaptorRec, *XF86VideoAdaptorPtr;

Each adaptor will have its own XF86VideoAdaptorRec. The fields
are as follows:

type

This can be any of the following flags OR’d together.

XvInputMask XvOutputMask

These refer to the target drawable and are sim-
ilar to a Window’s class. XvInputMask indicates
that the adaptor can put video into a drawable.
XvOutputMask indicates that the adaptor can get
video from a drawable.

XvVideoMask XvStillMask XvImageMask

XFree86 X server ‘‘New Design’’ (DRAFT) 53

These indicate that the adaptor supports video,
still or image primitives respectively.

XvWindowMask XvPixmapMask

These indicate the types of drawables the adap-
tor is capable of rendering into. At the
moment, Pixmap rendering is not supported and
the XvPixmapMask flag is ignored.

flags

Currently, the following flags are defined:

VIDEO_NO_CLIPPING

This indicates that the video adaptor does not
support clipping. The driver will never
receive ‘‘Put’’ requests where less than the
entire area determined by drw_x, drw_y, drw_w
and drw_h is visible. This flag does not apply
to ‘‘Get’’ requests. Hardware that is inca-
pable of clipping ‘‘Gets’’ may punt or get the
extents of the clipping region passed to it.

VIDEO_INVERT_CLIPLIST

This indicates that the video driver requires
the clip list to contain the regions which are
obscured rather than the regions which are are
visible.

VIDEO_OVERLAID_STILLS

Implementing PutStill for hardware that does
video as an overlay can be awkward since it’s
unclear how long to leave the video up for.
When this flag is set, StopVideo will be called
whenever the destination gets clipped or moved
so that the still can be left up until then.

VIDEO_OVERLAID_IMAGES

Same as VIDEO_OVERLAID_STILLS but for images.

VIDEO_CLIP_TO_VIEWPORT

Indicates that the clip region passed to the
driver functions should be clipped to the visi-
ble portion of the screen in the case where the
viewport is smaller than the virtual desktop.

name

The name of the adaptor.

nEncodings

XFree86 X server ‘‘New Design’’ (DRAFT) 54

pEncodings

The number of encodings the adaptor is capable of and
pointer to the XF86VideoEncodingRec array. The
XF86VideoEncodingRec is described later on. For
drivers that only support XvImages there should be an
encoding named "XV_IMAGE" and the width and height
should specify the maximum size source image supported.

nFormats

pFormats

The number of formats the adaptor is capable of and
pointer to the XF86VideoFormatRec array. The XF86Vide-
oFormatRec is described later on.

nPorts

pPortPrivates

The number of ports is the number of separate data
streams which the adaptor can handle simultaneously.
If you have more than one port, the adaptor is expected
to be able to render into more than one window at a
time. pPortPrivates is an array of pointers or ints -
one for each port. A port’s private data will be
passed to the driver any time the port is requested to
do something like put the video or stop the video. In
the case where there may be many ports, this enables
the driver to know which port the request is intended
for. Most commonly, this will contain a pointer to the
data structure containing information about the port.
In Xv, all ports on a particular adaptor are expected
to be identical in their functionality.

nAttributes

pAttributes

The number of attributes recognized by the adaptor and
a pointer to the array of XF86AttributeRecs. The
XF86AttributeRec is described later on.

nImages

pImages

The number of XF86ImageRecs supported by the adaptor
and a pointer to the array of XF86ImageRecs. The
XF86ImageRec is described later on.

PutVideo PutStill GetVideo GetStill StopVideo SetPortAttribute
GetPortAttribute QueryBestSize PutImage QueryImageAttributes

These functions define the DDX->driver interface. In
each case, the pointer data is passed to the driver.

XFree86 X server ‘‘New Design’’ (DRAFT) 55

This is the port private for that port as described
above. All fields are required except under the fol-
lowing conditions:

1. PutVideo, PutStill and the image routines PutImage
and QueryImageAttributes are not required when the
adaptor type does not contain XvInputMask.

2. GetVideo and GetStill are not required when the
adaptor type does not contain XvOutputMask.

3. GetVideo and PutVideo are not required when the
adaptor type does not contain XvVideoMask.

4. GetStill and PutStill are not required when the
adaptor type does not contain XvStillMask.

5. PutImage and QueryImageAttributes are not required
when the adaptor type does not contain XvImage-
Mask.

With the exception of QueryImageAttributes, these func-
tions should return Success if the operation was com-
pleted successfully. They can return XvBadAlloc other-
wise. QueryImageAttributes returns the size of the
XvImage queried.

If the VIDEO_NO_CLIPPING flag is set, the clipBoxes may
be ignored by the driver. ClipBoxes is an X-Y banded
region identical to those used throughout the server.
The clipBoxes represent the visible portions of the
area determined by drw_x, drw_y, drw_w and drw_h in the
Get/Put function. The boxes are in screen coordinates,
are guaranteed not to overlap and an empty region will
never be passed. If the driver has specified
VIDEO_INVERT_CLIPLIST, clipBoxes will indicate the
areas of the primitive which are obscured rather than
the areas visible.

typedef int (* PutVideoFuncPtr)(ScrnInfoPtr pScrn,
short vid_x, short vid_y, short drw_x, short drw_y,

short vid_w, short vid_h, short drw_w, short drw_h,

RegionPtr clipBoxes, pointer data)

This indicates that the driver should take a subsection
vid_w by vid_h at location (vid_x,vid_y) from the video
stream and direct it into the rectangle drw_w by drw_h
at location (drw_x,drw_y) on the screen, scaling as
necessary. Due to the large variations in capabilities
of the various hardware expected to be used with this
extension, it is not expected that all hardware will be
able to do this exactly as described. In that case the
driver should just do ‘‘the best it can,’’ scaling as
closely to the target rectangle as it can without ren-
dering outside of it. In the worst case, the driver
can opt to just not turn on the video.

XFree86 X server ‘‘New Design’’ (DRAFT) 56

typedef int (* PutStillFuncPtr)(ScrnInfoPtr pScrn,
short vid_x, short vid_y, short drw_x, short drw_y,

short vid_w, short vid_h, short drw_w, short drw_h,

RegionPtr clipBoxes, pointer data)

This is same as PutVideo except that the driver should
place only one frame from the stream on the screen.

typedef int (* GetVideoFuncPtr)(ScrnInfoPtr pScrn,
short vid_x, short vid_y, short drw_x, short drw_y,

short vid_w, short vid_h, short drw_w, short drw_h,

RegionPtr clipBoxes, pointer data)

This is same as PutVideo except that the driver gets
video from the screen and outputs it. The driver
should do the best it can to get the requested dimen-
sions correct without reading from an area larger than
requested.

typedef int (* GetStillFuncPtr)(ScrnInfoPtr pScrn,
short vid_x, short vid_y, short drw_x, short drw_y,

short vid_w, short vid_h, short drw_w, short drw_h,

RegionPtr clipBoxes, pointer data)

This is the same as GetVideo except that the driver
should place only one frame from the screen into the
output stream.

typedef void (* StopVideoFuncPtr)(ScrnInfoPtr pScrn,
pointer data, Bool cleanup)

This indicates the the driver should stop displaying
the video. This is used to stop both input and output
video. The cleanup field indicates that the video is
being stopped because the client requested it to stop
or because the server is exiting the current VT. In
that case the driver should deallocate any offscreen
memory areas (if there are any) being used to put the
video to the screen. If cleanup is not set, the video
is being stopped temporarily due to clipping or moving
of the window, etc... and video will likely be
restarted soon so the driver should not deallocate any
offscreen areas associated with that port.

typedef int (* SetPortAttributeFuncPtr)(ScrnInfoPtr pScrn,

Atom attribute,INT32 value, pointer data)

typedef int (* GetPortAttributeFuncPtr)(ScrnInfoPtr pScrn,
Atom attribute,INT32 *value, pointer data)

XFree86 X server ‘‘New Design’’ (DRAFT) 57

A port may have particular attributes such as hue, sat-
uration, brightness or contrast. Xv clients set and
get these attribute values by sending attribute strings
(Atoms) to the server. Such requests end up at these
driver functions. It is recommended that the driver
provide at least the following attributes mentioned in
the Xv client library docs:

XV_ENCODING

XV_HUE

XV_SATURATION

XV_BRIGHTNESS

XV_CONTRAST

but the driver may recognize as many atoms as it
wishes. If a requested attribute is unknown by the
driver it should return BadMatch. XV_ENCODING is the
attribute intended to let the client specify which
video encoding the particular port should be using (see
the description of XF86VideoEncodingRec below). If the
requested encoding is unsupported, the driver should
return XvBadEncoding. If the value lies outside the
advertised range BadValue may be returned. Success
should be returned otherwise.

typedef void (* QueryBestSizeFuncPtr)(ScrnInfoPtr pScrn,

Bool motion, short vid_w, short vid_h,

short drw_w, short drw_h,
unsigned int *p_w, unsigned int *p_h, pointer data)

QueryBestSize provides the client with a way to query
what the destination dimensions would end up being if
they were to request that an area vid_w by vid_h from
the video stream be scaled to rectangle of drw_w by
drw_h on the screen. Since it is not expected that all
hardware will be able to get the target dimensions
exactly, it is important that the driver provide this
function. The returned dimensions must be less than or
equal to the requested dimension.

typedef int (* PutImageFuncPtr)(ScrnInfoPtr pScrn,
short src_x, short src_y, short drw_x, short drw_y,

short src_w, short src_h, short drw_w, short drw_h,

int image, char *buf, short width, short height,

Bool sync, RegionPtr clipBoxes, pointer data)

XFree86 X server ‘‘New Design’’ (DRAFT) 58

This is similar to PutStill except that the source of
the video is not a port but the data stored in a system
memory buffer at buf. The data is in the format indi-
cated by the image descriptor and represents a source
of size width by height. If sync is TRUE the driver
should not return from this function until it is
through reading the data from buf. Returning when sync
is TRUE indicates that it is safe for the data at buf
to be replaced, freed, or modified.

typedef int (* QueryImageAttributesFuncPtr)(ScrnInfoPtr
pScrn,

int image, short *width, short *height,

int *pitches, int *offsets)

This function is called to let the driver specify how
data for a particular image of size width by height
should be stored. Sometimes only the size and cor-
rected width and height are needed. In that case
pitches and offsets are NULL. The size of the memory
required for the image is returned by this function.
The width and height of the requested image can be
altered by the driver to reflect format limitations
(such as component sampling periods that are larger
than one). If pitches and offsets are not NULL, these
will be arrays with as many elements in them as there
are planes in the image format. The driver should
specify the pitch (in bytes) of each scanline in the
particular plane as well as the offset to that plane
(in bytes) from the beginning of the image.

The XF86VideoEncodingRec:

typedef struct {
int id;
char *name;
unsigned short width, height;
XvRationalRec rate;

} XF86VideoEncodingRec, *XF86VideoEncodingPtr;

The XF86VideoEncodingRec specifies what encodings the adaptor
can support. Most of this data is just informational and for
the client’s benefit, and is what will be reported by
XvQueryEncodings. The id field is expected to be a unique
identifier to allow the client to request a certain encoding
via the XV_ENCODING attribute string.

The XF86VideoFormatRec:

XFree86 X server ‘‘New Design’’ (DRAFT) 59

typedef struct {
char depth;
short class;

} XF86VideoFormatRec, *XF86VideoFormatPtr;

This specifies what visuals the video is viewable in. depth is
the depth of the visual (not bpp). class is the visual class
such as TrueColor, DirectColor or PseudoColor. Initialization
of an adaptor will fail if none of the visuals on that screen
are supported.

The XF86AttributeRec:

typedef struct {
int flags;
int min_value;
int max_value;
char *name;

} XF86AttributeListRec, *XF86AttributeListPtr;

Each adaptor may have an array of these advertising the
attributes for its ports. Currently defined flags are XvGet-
table and XvSettable which may be OR’d together indicating that
attribute is ‘‘gettable’’ or ‘‘settable’’ by the client. The
min and max field specify the valid range for the value. Name
is a text string describing the attribute by name.

The XF86ImageRec:

typedef struct {
int id;
int type;
int byte_order;
char guid[16];
int bits_per_pixel;
int format;
int num_planes;

/* for RGB formats */
int depth;
unsigned int red_mask;
unsigned int green_mask;
unsigned int blue_mask;

/* for YUV formats */
unsigned int y_sample_bits;
unsigned int u_sample_bits;
unsigned int v_sample_bits;
unsigned int horz_y_period;
unsigned int horz_u_period;
unsigned int horz_v_period;
unsigned int vert_y_period;
unsigned int vert_u_period;
unsigned int vert_v_period;
char component_order[32];
int scanline_order;

} XF86ImageRec, *XF86ImagePtr;

XF86ImageRec describes how video source data is laid out in
memory. The fields are as follows:

id

This is a unique descriptor for the format. It is

XFree86 X server ‘‘New Design’’ (DRAFT) 60

often good to set this value to the FOURCC for the for-
mat when applicable.

type

This is XvRGB or XvYUV.

byte_order

This is LSBFirst or MSBFirst.

guid

This is the Globally Unique IDentifier for the format.
When not applicable, all characters should be NULL.

bits_per_pixel

The number of bits taken up (but not necessarily used)
by each pixel. Note that for some planar formats which
have fractional bits per pixel (such as IF09) this num-
ber may be rounded _down_.

format

This is XvPlanar or XvPacked.

num_planes

The number of planes in planar formats. This should be
set to one for packed formats.

depth

The significant bits per pixel in RGB formats (analgous
to the depth of a pixmap format).

red_mask green_mask blue_mask

The red, green and blue bitmasks for packed RGB for-
mats.

y_sample_bits u_sample_bits v_sample_bits

The y, u and v sample sizes (in bits).

horz_y_period horz_u_period horz_v_period

The y, u and v sampling periods in the horizontal
direction.

vert_y_period vert_u_period vert_v_period

The y, u and v sampling periods in the vertical direc-
tion.

component_order

Uppercase ascii characters representing the order that
samples are stored within packed formats. For planar

XFree86 X server ‘‘New Design’’ (DRAFT) 61

formats this represents the ordering of the planes.
Unused characters in the 32 byte string should be set
to NULL.

scanline_order

This is XvTopToBottom or XvBottomToTop.

Since some formats (particular some planar YUV formats) may not
be completely defined by the parameters above, the guid, when
available, should provide the most accurate description of the
format.

17. The Loader
This section describes the interfaces to the module loader. The loader interfaces can be divided
into two groups: those that are only available to the XFree86 common layer, and those that are
also available to modules.

17.1 Loader Over view

The loader is capable of loading modules in a range of object formats, and knowledge of these
formats is built in to the loader. Knowledge of new object formats can be added to the loader in a
straightforward manner. This makes it possible to provide OS-independent modules (for a given
CPU architecture type). In addition to this, the loader can load modules via the OS-provided
dlopen(3) service where available. Such modules are not platform independent, and the
semantics of dlopen() on most systems results in significant limitations in the use of modules of
this type. Support for dlopen() modules in the loader is primarily for experimental and devel-
opment purposes.

Symbols exported by the loader (on behalf of the core X server) to modules are determined at
compile time. Only those symbols explicitly exported are available to modules. All external
symbols of loaded modules are exported to other modules, and to the core X server. The loader
can be requested to check for unresolved symbols at any time, and the action to be taken for unre-
solved symbols can be controlled by the caller of the loader. Typically the caller identifies which
symbols can safely remain unresolved and which cannot.

17.2 Semi-private Loader Interface

The following is the semi-private loader interface that is available to the XFree86 common layer.

XFree86 X server ‘‘New Design’’ (DRAFT) 62

void LoaderInit(void)

The LoaderInit() function initialises the loader, and
it must be called once before calling any other loader
functions. This function initialises the tables of
exported symbols, and anything else that might need to
be initialised.

void LoaderSetPath(const char *path)

The LoaderSetPath() function initialises a default mod-
ule search path. This must be called if calls to other
functions are to be made without explicitly specifying
a module search path. The search path path must be a
string of one or more comma separated absolute paths.
Modules are expected to be located below these paths,
possibly in subdirectories of these paths.

pointer LoadModule(const char *module, const char *path,

const char **subdirlist, const char **patternlist,

pointer options, const XF86ModReqInfo * modreq,

int *errmaj, int *errmin)

The LoadModule() function loads the module called mod-
ule. The return value is a module handle, and may be
used in future calls to the loader that require a ref-
erence to a loaded module. The module name module is
normally the module’s canonical name, which doesn’t
contain any directory path information, or any
object/library file prefixes of suffixes. Currently a
full pathname and/or filename is also accepted. This
might change. The other parameters are:

path

An optional comma-separated list of module
search paths. When NULL, the default search
path is used.

subdirlist

An optional NULL terminated list of subdirecto-
ries to search. When NULL, the default built-
in list is used (refer to stdSubdirs in load-
mod.c). The default list is also substituted
for entries in subdirlist with the value
DEFAULT_LIST. This makes is possible to aug-
ment the default list instead of replacing it.
Subdir elements must be relative, and must not
contain "..". If any violate this requirement,
the load fails.

patternlist

XFree86 X server ‘‘New Design’’ (DRAFT) 63

An optional NULL terminated list of POSIX regu-
lar expressions used to connect module file-
names with canonical module names. Each regex
should contain exactly one subexpression that
corresponds to the canonical module name. When
NULL, the default built-in list is used (refer
to stdPatterns in loadmod.c). The default list
is also substituted for entries in patternlist
with the value DEFAULT_LIST. This makes it
possible to augment the default list instead of
replacing it.

options

An optional parameter that is passed to the
newly loaded module’s SetupProc function (if it
has one). This argument is normally a NULL
terminated list of Options, and must be inter-
preted that way by modules loaded directly by
the XFree86 common layer. However, it may be
used for application-specific parameter passing
in other situations.

When loading ‘‘external’’ modules (modules that
don’t have the the standard entry point, for
example a special shared library) the options
parameter can be set to EXTERN_MODULE to tell
the loader not to reject the module when it
doesn’t find the standard entry point.

modreq

An optional XF86ModReqInfo* containing ver-
sion/ABI/vendor information to requirements to
check the newly loaded module against. The
main purpose of this is to allow the loader to
verify that a module of the correct type/ver-
sion before running its SetupProc function.

The XF86ModReqInfo struct is defined as fol-
lows:

typedef struct {
CARD8 majorversion; /* MAJOR_UNSPEC */
CARD8 minorversion; /* MINOR_UNSPEC */
CARD16 patchlevel; /* PATCH_UNSPEC */
const char * abiclass; /* ABI_CLASS_NONE */
CARD32 abiversion; /* ABI_VERS_UNSPEC */
const char * moduleclass; /* MOD_CLASS_NONE */

} XF86ModReqInfo;

The information here is compared against the
equivalent information in the module’s XF86Mod-
uleVersionInfo record (which is described
below). The values in comments above indicate
‘‘don’t care’’ settings for each of the fields.
The comparisons made are as follows:

majorversion

XFree86 X server ‘‘New Design’’ (DRAFT) 64

Must match the module’s majorversion
exactly.

minorversion

The module’s minor version must be no
less than this value. This comparison
is only made if majorversion is speci-
fied and matches.

patchlevel

The module’s patchlevel must be no
less than this value. This comparison
is only made if minorversion is speci-
fied and matches.

abiclass

String must match the module’s abi-
class string.

abiversion

Must be consistent with the module’s
abiversion (major equal, minor no
older).

moduleclass

String must match the module’s module-
class string.

errmaj

An optional pointer to a variable holding the
major part or the error code. When provided,
it *errmaj is filled in when LoadModule()
fails.

errmin

Like errmaj, but for the minor part of the
error code.

void UnloadModule(pointer mod)

This function unloads the module referred to by the
handle mod. All child modules are also unloaded recur-
sively. This function must not be used to directly
unload modules that are child modules (i.e., those that
have been loaded with LoadSubModule()).

XFree86 X server ‘‘New Design’’ (DRAFT) 65

17.3 Module Requirements

Modules must provide information about themselves to the loader, and may optionally provide
entry points for "setup" and "teardown" functions (those two functions are referred to here as
SetupProc and TearDownProc).

The module information is contained in the XF86ModuleVersionInfo struct, which is defined
as follows:

typedef struct {
const char * modname; /* name of module, e.g. "foo" */
const char * vendor; /* vendor specific string */
CARD32 _modinfo1_; /* constant MODINFOSTRING1/2 to find */
CARD32 _modinfo2_; /* infoarea with a binary editor/sign tool */
CARD32 xf86version; /* contains XF86_VERSION_CURRENT */
CARD8 majorversion; /* module-specific major version */
CARD8 minorversion; /* module-specific minor version */
CARD16 patchlevel; /* module-specific patch level */
const char * abiclass; /* ABI class that the module uses */
CARD32 abiversion; /* ABI version */
const char * moduleclass; /* module class */
CARD32 checksum[4]; /* contains a digital signature of the */

/* version info structure */
} XF86ModuleVersionInfo;

The fields are used as follows:

modname

The module’s name. This field is currently only for
informational purposes, but the loader may be modified
in future to require it to match the module’s canonical
name.

vendor

The module vendor. This field is for informational
purposes only.

modinfo1

This field holds the first part of a signature that can
be used to locate this structure in the binary. It
should always be initialised to MODINFOSTRING1.

modinfo2

This field holds the second part of a signature that
can be used to locate this structure in the binary. It
should always be initialised to MODINFOSTRING2.

xf86version

The XFree86 version against which the module was com-
piled. This is mostly for informational/diagnostic
purposes. It should be initialised to XF86_VER-
SION_CURRENT, which is defined in xf86Version.h.

majorversion

The module-specific major version. For modules where

XFree86 X server ‘‘New Design’’ (DRAFT) 66

this version is used for more than simply informational
purposes, the major version should only change (be
incremented) when ABI incompatibilities are introduced,
or ABI components are removed.

minorversion

The module-specific minor version. For modules where
this version is used for more than simply informational
purposes, the minor version should only change (be
incremented) when ABI additions are made in a backward
compatible way. It should be reset to zero when the
major version is increased.

patchlevel

The module-specific patch level. The patch level
should increase with new revisions of the module where
there are no ABI changes, and it should be reset to
zero when the minor version is increased.

abiclass

The ABI class that the module requires. The class is
specified as a string for easy extensibility. It
should indicate which (if any) of the X server’s built-
in ABI classes that the module relies on, or a third-
party ABI if appropriate. Built-in ABI classes cur-
rently defined are:

ABI_CLASS_NONE

no class

ABI_CLASS_ANSIC

only requires the ANSI C interfaces

ABI_CLASS_VIDEODRV

requires the video driver ABI

ABI_CLASS_XINPUT

requires the XInput driver ABI

ABI_CLASS_EXTENSION

requires the extension module ABI

ABI_CLASS_FONT

requires the font module ABI

abiversion

XFree86 X server ‘‘New Design’’ (DRAFT) 67

The version of abiclass that the module requires. The
version consists of major and minor components. The
major version must match and the minor version must be
no newer than that provided by the server or parent
module. Version identifiers for the built-in classes
currently defined are:

ABI_ANSIC_VERSION

ABI_VIDEODRV_VERSION

ABI_XINPUT_VERSION

ABI_EXTENSION_VERSION

ABI_FONT_VERSION

moduleclass

This is similar to the abiclass field, except that it
defines the type of module rather than the ABI it
requires. For example, although all video drivers
require the video driver ABI, not all modules that
require the video driver ABI are video drivers. This
distinction can be made with the moduleclass. Cur-
rently pre-defined module classes are:

MOD_CLASS_NONE

MOD_CLASS_VIDEODRV

MOD_CLASS_XINPUT

MOD_CLASS_FONT

MOD_CLASS_EXTENSION

checksum

Not currently used.

The module version information, and the optional SetupProc and TearDownProc entry points
are found by the loader by locating a data object in the module called "modnameModuleData",
where "modname" is the canonical name of the module. Modules must contain such a data
object, and it must be declared with global scope, be compile-time initialised, and is of the follow-
ing type:

typedef struct {
XF86ModuleVersionInfo * vers;
ModuleSetupProc setup;
ModuleTearDownProc teardown;

} XF86ModuleData;

The vers parameter must be initialised to a pointer to a correctly initialised XF86ModuleVer-
sionInfo struct. The other two parameter are optional, and should be initialised to NULL when
not required. The other parameters are defined as

XFree86 X server ‘‘New Design’’ (DRAFT) 68

typedef pointer (*ModuleSetupProc)(pointer, pointer, int *, int
*)

typedef void (*ModuleTearDownProc)(pointer)

pointer SetupProc(pointer module, pointer options,

int *errmaj, int *errmin)

When defined, this function is called by the loader
after successfully loading a module. module is a han-
dle for the newly loaded module, and maybe used by the
SetupProc if it calls other loader functions that
require a reference to it. The remaining arguments
are those that were passed to the LoadModule() (or
LoadSubModule()), and are described above. When the
SetupProc is successful it must return a non-NULL
value. The loader checks this, and if it is NULL it
unloads the module and reports the failure to the
caller of LoadModule(). If the SetupProc does things
that need to be undone when the module is unloaded, it
should define a TearDownProc, and return a pointer that
the TearDownProc can use to undo what has been done.

When a module is loaded multiple times, the SetupProc
is called once for each time it is loaded.

void TearDownProc(pointer tearDownData)

When defined, this function is called when the loader
unloads a module. The tearDownData parameter is the
return value of the SetupProc() that was called when
the module was loaded. The purpose of this function is
to clean up before the module is unloaded (for example,
by freeing allocated resources).

17.4 Public Loader Interface

The following is the Loader interface that is available to any part of the server, and may also be
used from within modules.

XFree86 X server ‘‘New Design’’ (DRAFT) 69

pointer LoadSubModule(pointer parent, const char *module,

const char **subdirlist, const char **patternlist,

pointer options, const XF86ModReqInfo * modreq,

int *errmaj, int *errmin)

This function is like the LoadModule() function
described above, except that the module loaded is reg-
istered as a child of the calling module. The parent
parameter is the calling module’s handle. Modules
loaded with this function are automatically unloaded
when the parent module is unloaded. The other differ-
ence is that the path parameter may not be specified.
The module search path used for modules loaded with
this function is the default search path as initialised
with LoaderSetPath().

void UnloadSubModule(pointer module)

This function unloads the module with handle module.
If that module itself has children, they are also
unloaded. It is like LoadModule(), except that it is
safe to use for unloading child modules.

pointer LoaderSymbol(const char *symbol)

This function returns the address of the symbol with
name symbol. This may be used to locate a module entry
point with a known name.

char **LoaderlistDirs(const char **subdirlist,

const char **patternlist)

This function returns a NULL terminated list of canoni-
cal modules names for modules found in the default mod-
ule search path. The subdirlist and patternlist param-
eters are as described above, and can be used to con-
trol the locations and names that are searched. If no
modules are found, the return value is NULL. The
returned list should be freed by calling Loader-
FreeDirList() when it is no longer needed.

void LoaderFreeDirList(char **list)

This function frees a module list created by Load-
erlistDirs().

void LoaderReqSymLists(const char **list0, ...)

This function allows the registration of required sym-
bols with the loader. It is normally used by a caller
of LoadSubModule(). If any symbols registered in this
way are found to be unresolved when LoaderCheckUnre-
solved() is called then LoaderCheckUnresolved() will

XFree86 X server ‘‘New Design’’ (DRAFT) 70

report a failure. The function takes one or more NULL
terminated lists of symbols. The end of the argument
list is indicated by a NULL argument.

void LoaderReqSymbols(const char *sym0, ...)

This function is like LoaderReqSymLists() except that
its arguments are symbols rather than lists of symbols.
This function is more convenient when single functions
are to be registered, especially when the single func-
tion might depend on runtime factors. The end of the
argument list is indicated by a NULL argument.

void LoaderRefSymLists(const char **list0, ...)

This function allows the registration of possibly unre-
solved symbols with the loader. When LoaderCheckUnre-
solved() is run it won’t generate warnings for symbols
registered in this way unless they were also registered
as required symbols.

void LoaderRefSymbols(const char *sym0, ...)

This function is like LoaderRefSymLists() except that
its arguments are symbols rather than lists of symbols.
This function is more convenient when single functions
are to be registered, especially when the single func-
tion might depend on runtime factors. The end of the
argument list is indicated by a NULL argument.

int LoaderCheckUnresolved(int delayflag)

This function checks for unresolved symbols. It gener-
ates warnings for unresolved symbols that have not been
registered with LoaderRefSymLists(), and maps them to a
dummy function. This behaviour may change in future.
If unresolved symbols are found that have been regis-
tered with LoaderReqSymLists() or LoaderReqSymbols()
then this function returns a non-zero value. If none
of these symbols are unresolved the return value is
zero, indicating success.

The delayflag parameter should normally be set to
LD_RESOLV_IFDONE.

LoaderErrorMsg(const char *name, const char *modname,

int errmaj, int errmin)

This function prints an error message that includes the
text ‘‘Failed to load module’’, the module name mod-
name, a message specific to the errmaj value, and the
value if errmin. If name is non-NULL, it is printed as
an identifying prefix to the message (followed by a
‘:’).

XFree86 X server ‘‘New Design’’ (DRAFT) 71

17.5 Special Registration Functions

The loader contains some functions for registering some classes of modules. These may be
moved out of the loader at some point.

void LoadExtension(ExtensionModule *ext)

This registers the entry points for the extension iden-
tified by ext. The ExtensionModule struct is defined
as:

typedef struct {
InitExtension initFunc;
char * name;
Bool *disablePtr;
InitExtension setupFunc;

} ExtensionModule;

void LoadFont(FontModule *font)

This registers the entry points for the font rasteriser
module identified by font. The FontModule struct is
defined as:

typedef struct {
InitFont initFunc;
char * name;
pointer module;

} FontModule;

18. Helper Functions
This section describe ‘‘helper’’ functions that video driver might find useful. While video drivers
are not required to use any of these to be considered ‘‘compliant’’, the use of appropriate helpers
is strongly encouraged to improve the consistency of driver behaviour.

18.1 Functions for printing messages

XFree86 X server ‘‘New Design’’ (DRAFT) 72

ErrorF(const char *format, ...)

This is the basic function for writing to the error log
(typically stderr and/or a log file). Video drivers
should usually avoid using this directly in favour of
the more specialised functions described below. This
function is useful for printing messages while debug-
ging a driver.

FatalError(const char *format, ...)

This prints a message and causes the Xserver to abort.
It should rarely be used within a video driver, as most
error conditions should be flagged by the return values
of the driver functions. This allows the higher layers
to decide how to proceed. In rare cases, this can be
used within a driver if a fatal unexpected condition is
found.

xf86ErrorF(const char *format, ...)

This is like ErrorF(), except that the message is only
printed when the Xserver’s verbosity level is set to
the default (1) or higher. It means that the messages
are not printed when the server is started with the
-quiet flag. Typically this function would only be
used for continuing messages started with one of the
more specialised functions described below.

xf86ErrorFVerb(int verb, const char *format, ...)

Like xf86ErrorF(), except the minimum verbosity level
for which the message is to be printed is given explic-
itly. Passing a verb value of zero means the message
is always printed. A value higher than 1 can be used
for information would normally not be needed, but which
might be useful when diagnosing problems.

xf86Msg(MessageType type, const char *format, ...)

This is like xf86ErrorF(), except that the message is
prefixed with a marker determined by the value of type.
The marker is used to indicate the type of message
(warning, error, probed value, config value, etc).
Note the xf86Verbose value is ignored for messages of
type X_ERROR.

The marker values are:

X_PROBED

Value was probed.

X_CONFIG

Value was given in the config file.

X_DEFAULT

Value is a default.

XFree86 X server ‘‘New Design’’ (DRAFT) 73

X_CMDLINE

Value was given on the command line.

X_NOTICE

Notice.

X_ERROR

Error message.

X_WARNING

Warning message.

X_INFO

Informational message.

X_NONE

No prefix.

xf86MsgVerb(MessageType type, int verb, const char *format,
...)

Like xf86Msg(), but with the verbosity level given
explicitly.

xf86DrvMsg(int scrnIndex, MessageType type, const char *format,
...)

This is like xf86Msg() except that the driver’s name
(the name field of the ScrnInfoRec) followed by the
scrnIndex in parentheses is printed following the pre-
fix. This should be used by video drivers in most
cases as it clearly indicates which driver/screen the
message is for. If scrnIndex is negative, this func-
tion behaves exactly like xf86Msg().
NOTE: This function can only be used after the ScrnIn-
foRec and its name field have been allocated. That
means that it can not be used before the END of the
ChipProbe() function. Prior to that, use xf86Msg(),
providing the driver’s name explicitly. No screen num-
ber can be supplied at that point.

xf86DrvMsgVerb(int scrnIndex, MessageType type, int verb,

const char *format, ...)

Like xf86DrvMsg(), but with the verbosity level given
explicitly.

XFree86 X server ‘‘New Design’’ (DRAFT) 74

18.2 Functions for setting values based on command line and
config file

Bool xf86SetDepthBpp(ScrnInfoPtr scrp, int depth, int bpp,

int fbbpp, int depth24flags)

This function sets the depth, pixmapBPP and bitsPer-
Pixel fields of the ScrnInfoRec. It also determines
the defaults for display-wide attributes and pixmap
formats the screen will support, and finds the Display
subsection that matches the depth/bpp. This function
should normally be called very early from the Chip-
PreInit() function.
It requires that the confScreen field of the ScrnIn-
foRec be initialised prior to calling it. This is done
by the XFree86 common layer prior to calling Chip-
PreInit().

The parameters passed are:

depth

driver’s preferred default depth if no other is
given. If zero, use the overall server
default.

bpp

Same, but for the pixmap bpp.

fbbpp

Same, but for the framebuffer bpp.

depth24flags

Flags that indicate the level of 24/32bpp sup-
port and whether conversion between different
framebuffer and pixmap formats is supported.
The flags for this argument are defined as fol-
lows, and multiple flags may be ORed together:

NoDepth24Support

No depth 24 formats supported

Support24bppFb

24bpp framebuffer supported

Support32bppFb

32bpp framebuffer supported

SupportConvert24to32

XFree86 X server ‘‘New Design’’ (DRAFT) 75

Can convert 24bpp pixmap to 32bpp fb

SupportConvert32to24

Can convert 32bpp pixmap to 24bpp fb

ForceConvert24to32

Force 24bpp pixmap to 32bpp fb conver-
sion

ForceConvert32to24

Force 32bpp pixmap to 24bpp fb conver-
sion

It uses the command line, config file, and default val-
ues in the correct order of precedence to determine the
depth and bpp values. It is up to the driver to check
the results to see that it supports them. If not the
ChipPreInit() function should return FALSE.

If only one of depth/bpp is given, the other is set to
a reasonable (and consistent) default.

If a driver finds that the initial depth24flags it uses
later results in a fb format that requires more video
memory than is available it may call this function a
second time with a different depth24flags setting.

On success, the return value is TRUE. On failure it
prints an error message and returns FALSE.

The following fields of the ScrnInfoRec are initialised
by this function:

depth, bitsPerPixel, display, imageByteOrder,
bitmapScanlinePad, bitmapScanlineUnit, bitmap-
BitOrder, numFormats, formats, fbFormat.

void xf86PrintDepthBpp(scrnInfoPtr scrp)

This function can be used to print out the depth and
bpp settings. It should be called after the final call
to xf86SetDepthBpp().

Bool xf86SetWeight(ScrnInfoPtr scrp, rgb weight, rgb mask)

This function sets the weight, mask, offset and rgbBits
fields of the ScrnInfoRec. It would normally be called
fairly early in the ChipPreInit() function for
depths > 8bpp.

It requires that the depth and display fields of the
ScrnInfoRec be initialised prior to calling it.

The parameters passed are:

weight

XFree86 X server ‘‘New Design’’ (DRAFT) 76

driver’s preferred default weight if no other
is given. If zero, use the overall server
default.

mask

Same, but for mask.

It uses the command line, config file, and default val-
ues in the correct order of precedence to determine the
weight value. It derives the mask and offset values
from the weight and the defaults. It is up to the
driver to check the results to see that it supports
them. If not the ChipPreInit() function should return
FALSE.

On success, this function prints a message showing the
weight values selected, and returns TRUE.

On failure it prints an error message and returns
FALSE.

The following fields of the ScrnInfoRec are initialised
by this function:

weight, mask, offset.

Bool xf86SetDefaultVisual(ScrnInfoPtr scrp, int visual)

This function sets the defaultVisual field of the Scrn-
InfoRec. It would normally be called fairly early from
the ChipPreInit() function.

It requires that the depth and display fields of the
ScrnInfoRec be initialised prior to calling it.

The parameters passed are:
visual

driver’s preferred default visual if no other
is given. If -1, use the overall server
default.

It uses the command line, config file, and default val-
ues in the correct order of precedence to determine the
default visual value. It is up to the driver to check
the result to see that it supports it. If not the
ChipPreInit() function should return FALSE.

On success, this function prints a message showing the
default visual selected, and returns TRUE.

On failure it prints an error message and returns
FALSE.

Bool xf86SetGamma(ScrnInfoPtr scrp, Gamma gamma)

This function sets the gamma field of the ScrnInfoRec.
It would normally be called fairly early from the Chip-
PreInit() function in cases where the driver supports
gamma correction.

It requires that the monitor field of the ScrnInfoRec

XFree86 X server ‘‘New Design’’ (DRAFT) 77

be initialised prior to calling it.

The parameters passed are:

gamma

driver’s preferred default gamma if no other is
given. If zero (< 0.01), use the overall
server default.

It uses the command line, config file, and default val-
ues in the correct order of precedence to determine the
gamma value. It is up to the driver to check the
results to see that it supports them. If not the Chip-
PreInit() function should return FALSE.

On success, this function prints a message showing the
gamma value selected, and returns TRUE.

On failure it prints an error message and returns
FALSE.

void xf86SetDpi(ScrnInfoPtr pScrn, int x, int y)

This function sets the xDpi and yDpi fields of the
ScrnInfoRec. The driver can specify preferred defaults
by setting x and y to non-zero values. The -dpi com-
mand line option overrides all other settings. Other-
wise, if the DisplaySize entry is present in the
screen’s Monitor config file section, it is used
together with the virtual size to calculate the dpi
values. This function should be called after all the
mode resolution has been done.

void xf86SetBlackWhitePixels(ScrnInfoPtr pScrn)

This functions sets the blackPixel and whitePixel
fields of the ScrnInfoRec according to whether or not
the -flipPixels command line options is present.

const char *xf86GetVisualName(int visual)

Returns a printable string with the visual name match-
ing the numerical visual class provided. If the value
is outside the range of valid visual classes, NULL is
returned.

18.3 Primary Mode functions

The primary mode helper functions are those which would normally be used by a driver, unless
it has unusual requirements which cannot be catered for the by the helpers.

XFree86 X server ‘‘New Design’’ (DRAFT) 78

int xf86ValidateModes(ScrnInfoPtr scrp, DisplayModePtr
availModes,

char **modeNames, ClockRangePtr clockRanges,

int *linePitches, int minPitch, int maxPitch,

int pitchInc, int minHeight, int maxHeight,

int virtualX, int virtualY,

unsigned long apertureSize,

LookupModeFlags strategy)

This function basically selects the set of modes to use
based on those available and the various constraints.
It also sets some other related parameters. It is nor-
mally called near the end of the ChipPreInit() func-
tion.

The parameters passed to the function are:
availModes

List of modes available for the monitor.

modeNames

List of mode names that the screen is request-
ing.

clockRanges

A list of clock ranges allowed by the driver.
Each range includes whether interlaced or mul-
tiscan modes are supported for that range. See
below for more on clockRanges.

linePitches

List of supported line pitches supported by the
driver. This is optional and should be NULL
when not used.

minPitch

Minimum line pitch supported by the driver.
This must be supplied when linePitches is NULL,
and is ignored otherwise.

maxPitch

XFree86 X server ‘‘New Design’’ (DRAFT) 79

Maximum line pitch supported by the driver.
This is required when minPitch is required.

pitchInc

Granularity of horizontal pitch values as sup-
ported by the chipset. This is expressed in
bits. This must be supplied.

minHeight

minimum virtual height allowed. If zero, no
limit is imposed.

maxHeight

maximum virtual height allowed. If zero, no
limit is imposed.

virtualX

If greater than zero, this is the virtual width
value that will be used. Otherwise, the vir-
tual width is chosen to be the smallest that
can accommodate the modes selected.

virtualY

If greater than zero, this is the virtual
height value that will be used. Otherwise, the
virtual height is chosen to be the smallest
that can accommodate the modes selected.

apertureSize

The size (in bytes) of the aperture used to
access video memory.

strategy

The strategy to use when choosing from multiple
modes with the same name. The options are:

LOOKUP_DEFAULT

???

LOOKUP_BEST_REFRESH

mode with best refresh rate

XFree86 X server ‘‘New Design’’ (DRAFT) 80

LOOKUP_CLOSEST_CLOCK

mode with closest matching clock

LOOKUP_LIST_ORDER

first usable mode in list

The following options can also be combined
(OR’ed) with one of the above:

LOOKUP_CLKDIV2

Allow halved clocks

LOOKUP_OPTIONAL_TOLERANCES

Allow missing horizontal sync and/or
vertical refresh ranges in the
XF86Config Monitor section

LOOKUP_OPTIONAL_TOLERANCES should only be spec-
ified when the driver can ensure all modes it
generates can sync on, or at least not damage,
the monitor or digital flat panel. Horizontal
sync and/or vertical refresh ranges specified
by the user will still be honoured (and acted
upon).

This function requires that the following fields of the
ScrnInfoRec are initialised prior to calling it:

clock[]

List of discrete clocks (when non-programmable)

numClocks

Number of discrete clocks (when non-pro-
grammable)

progClock

Whether the clock is programmable or not

monitor

Pointer to the applicable XF86Config monitor
section

fdFormat

Format of the screen buffer

videoRam

total video memory size (in bytes)

XFree86 X server ‘‘New Design’’ (DRAFT) 81

maxHValue

Maximum horizontal timing value allowed

maxVValue

Maximum vertical timing value allowed

xInc

Horizontal timing increment in pixels (defaults
to 8)

This function fills in the following ScrnInfoRec
fields:

modePool

A subset of the modes available to the monitor
which are compatible with the driver.

modes

One mode entry for each of the requested modes,
with the status field of each filled in to
indicate if the mode has been accepted or not.
This list of modes is a circular list.

virtualX

The resulting virtual width.

virtualY

The resulting virtual height.

displayWidth

The resulting line pitch.

virtualFrom

Where the virtual size was determined from.

The first stage of this function checks that the virtu-
alX and virtualY values supplied (if greater than zero)
are consistent with the line pitch and maxHeight limi-
tations. If not, an error message is printed, and the
return value is -1.

The second stage sets up the mode pool, eliminating
immediately any modes that exceed the driver’s line
pitch limits, and also the virtual width and height
limits (if greater than zero). For each mode removed

XFree86 X server ‘‘New Design’’ (DRAFT) 82

an informational message is printed at verbosity level
2. If the mode pool ends up being empty, a warning
message is printed, and the return value is 0.

The final stage is to lookup each mode name, and fill
in the remaining parameters. If an error condition is
encountered, a message is printed, and the return value
is -1. Otherwise, the return value is the number of
valid modes found (0 if none are found).

Even if the supplied mode names include duplicates, no
two names will ever match the same mode. Furthermore,
if the supplied mode names do not yield a valid mode
(including the case where no names are passed at all),
the function will continue looking through the mode
pool until it finds a mode that survives all checks, or
until the mode pool is exhausted.

A message is only printed by this function when a fun-
damental problem is found. It is intended that this
function may be called more than once if there is more
than one set of constraints that the driver can work
within.

If this function returns -1, the ChipPreInit() function
should return FALSE.

clockRanges is a linked list of clock ranges allowed by
the driver. If a mode doesn’t fit in any of the
defined clockRanges, it is rejected. The first clock-
Range that matches all requirements is used.

clockRanges contains the following fields:

minClock

maxClock

The lower and upper mode clock bounds for which
the rest of the clockRange parameters apply.
Since these are the mode clocks, they are not
scaled with the ClockMulFactor and ClockDivFac-
tor. It is up to the driver to adjust these
values if they depend on the clock scaling fac-
tors.

clockIndex

(not used yet) -1 for programmable clocks

interlaceAllowed

TRUE if interlacing is allowed for this range

doubleScanAllowed

XFree86 X server ‘‘New Design’’ (DRAFT) 83

TRUE if doublescan or multiscan is allowed for
this range

ClockMulFactor

ClockDivFactor

Scaling factors that are applied to the mode
clocks ONLY before selecting a clock index
(when there is no programmable clock) or a Syn-
thClock value. This is useful for drivers that
support pixel multiplexing or that need to
scale the clocks because of hardware restric-
tions (like sending 24bpp data to an 8 bit RAM-
DAC using a tripled clock).

Note that these parameters describe what must
be done to the mode clock to achieve the data
transport clock between graphics controller and
RAMDAC. For example for 2:1 pixel multiplex-
ing, two pixels are sent to the RAMDAC on each
clock. This allows the RAMDAC clock to be half
of the actual pixel clock. Hence, ClockMulFac-
tor=1 and ClockDivFactor=2. This means that
the clock used for clock selection (ie, deter-
mining the correct clock index from the list of
discrete clocks) or for the SynthClock field in
case of a programmable clock is: (mode->Clock
* ClockMulFactor) / ClockDivFactor.

PrivFlags

This field is copied into the mode->PrivFlags
field when this clockRange is selected by
xf86ValidateModes(). It allows the driver to
find out what clock range was selected, so it
knows it needs to set up pixel multiplexing or
any other range-dependent feature. This field
is purely driver-defined: it may contain flag
bits, an index or anything else (as long as it
is an INT).

Note that the mode->SynthClock field is always filled
in by xf86ValidateModes(): it will contain the ‘‘data
transport clock’’, which is the clock that will have to
be programmed in the chip when it has a programmable
clock, or the clock that will be picked from the clocks
list when it is not a programmable one. Thus:

mode->SynthClock =

(mode->Clock * ClockMulFactor) / ClockDivFac-
tor

void xf86PruneDriverModes(ScrnInfoPtr scrp)

XFree86 X server ‘‘New Design’’ (DRAFT) 84

This function deletes modes in the modes field of the
ScrnInfoRec that have been marked as invalid. This is
normally run after having run xf86ValidateModes() for
the last time. For each mode that is deleted, a warn-
ing message is printed out indicating the reason for it
being deleted.

void xf86SetCrtcForModes(ScrnInfoPtr scrp, int adjustFlags)

This function fills in the Crtc* fields for all the
modes in the modes field of the ScrnInfoRec. The
adjustFlags parameter determines how the vertical CRTC
values are scaled for interlaced modes. They are
halved if it is INTERLACE_HALVE_V. The vertical CRTC
values are doubled for doublescan modes, and are fur-
ther multiplied by the VScan value.

This function is normally called after calling
xf86PruneDriverModes().

void xf86PrintModes(ScrnInfoPtr scrp)

This function prints out the virtual size setting, and
the line pitch being used. It also prints out one line
for each mode being used, including its pixel clock,
horizontal sync rate, refresh rate, and whether it is
interlaced or multiscan.

This function is normally called after calling
xf86SetCrtcForModes().

18.4 Secondary Mode functions

The secondary mode helper functions are functions which are normally used by the primary
mode helper functions, and which are not normally called directly by a driver. If a driver has
unusual requirements and needs to do its own mode validation, it might be able to make use of
some of these secondary mode helper functions.

XFree86 X server ‘‘New Design’’ (DRAFT) 85

int xf86GetNearestClock(ScrnInfoPtr scrp, int freq, Bool allow-
Div2,

int *divider)

This function returns the index of the closest clock to
the frequency freq given (in kHz). It assumes that the
number of clocks is greater than zero. It requires
that the numClocks and clock fields of the ScrnInfoRec
are initialised. The allowDiv2 field determines if the
clocks can be halved. The *divider return value indi-
cates whether clock division is used when determining
the clock returned.

This function is only for non-programmable clocks.

const char *xf86ModeStatusToString(ModeStatus status)

This function converts the status value to a descrip-
tive printable string.

ModeStatus xf86LookupMode(ScrnInfoPtr scrp, DisplayModePtr
modep,

ClockRangePtr clockRanges, LookupModeFlags strategy)

This function takes a pointer to a mode with the name
filled in, and looks for a mode in the modePool list
which matches. The parameters of the matching mode are
filled in to *modep. The clockRanges and strategy
parameters are as for the xf86ValidateModes() function
above.

This function requires the modePool, clock[], numClocks
and progClock fields of the ScrnInfoRec to be ini-
tialised before being called.

The return value is MODE_OK if a mode was found. Oth-
erwise it indicates why a matching mode could not be
found.

ModeStatus xf86InitialCheckModeForDriver(ScrnInfoPtr scrp,

DisplayModePtr mode, ClockRangePtr clockRanges,

LookupModeFlags strategy, int maxPitch,

int virtualX, int virtualY)

This function checks the passed mode against some basic
driver constraints. Apart from the ones passed explic-
itly, the maxHValue and maxVValue fields of the ScrnIn-
foRec are also used. If the ValidMode field of the
ScrnInfoRec is set, that function is also called to
check the mode. Next, the mode is checked against the
monitor’s constraints.

If the mode is consistent with all constraints, the

XFree86 X server ‘‘New Design’’ (DRAFT) 86

return value is MODE_OK. Otherwise the return value
indicates which constraint wasn’t met.

void xf86DeleteMode(DisplayModePtr *modeList, DisplayModePtr
mode)

This function deletes the mode given from the modeList.
It never prints any messages, so it is up to the caller
to print a message if required.

18.5 Functions for handling strings and tokens

Tables associating strings and numerical tokens combined with the following functions provide a
compact way of handling strings from the config file, and for converting tokens into printable
strings. The table data structure is:

typedef struct {
int token;
const char * name;

} SymTabRec, *SymTabPtr;

A table is an initialised array of SymTabRec. The tokens must be non-negative integers. Multi-
ple names may be mapped to a single token. The table is terminated with an element with a
token value of -1 and NULL for the name.

const char *xf86TokenToString(SymTabPtr table, int token)

This function returns the first string in table that
matches token. If no match is found, NULL is returned
(NOTE, older versions of this function would return the
string "unknown" when no match is found).

int xf86StringToToken(SymTabPtr table, const char *string)

This function returns the first token in table that
matches string. The xf86NameCmp() function is used to
determine the match. If no match is found, -1 is
returned.

18.6 Functions for finding which config file entries to use

These functions can be used to select the appropriate config file entries that match the detected
hardware. They are described above in the Probe (section , page) and Available Functions (section ,
page) sections.

18.7 Probing discrete clocks on old hardware

The xf86GetClocks() function may be used to assist in finding the discrete pixel clock values
on older hardware.

XFree86 X server ‘‘New Design’’ (DRAFT) 87

void xf86GetClocks(ScrnInfoPtr pScrn, int num,

Bool (*ClockFunc)(ScrnInfoPtr, int),

void (*ProtectRegs)(ScrnInfoPtr, Bool),

void (*BlankScreen)(ScrnInfoPtr, Bool),

int vertsyncreg, int maskval, int knownclkindex,

int knownclkvalue)

This function uses a comparative sampling method to
measure the discrete pixel clock values. The number of
discrete clocks to measure is given by num. clockFunc
is a function that selects the n’th clock. It should
also save or restore any state affected by programming
the clocks when the index passed is CLK_REG_SAVE or
CLK_REG_RESTORE. ProtectRegs is a function that does
whatever is required to protect the hardware state
while selecting a new clock. BlankScreen is a function
that blanks the screen. vertsyncreg and maskval are
the register and bitmask to check for the presence of
vertical sync pulses. knownclkindex and knownclkvalue
are the index and value of a known clock. These are
the known references on which the comparative measure-
ments are based. The number of clocks probed is set in
pScrn->numClocks, and the probed clocks are set in the
pScrn->clock[] array. All of the clock values are in
units of kHz.

void xf86ShowClocks(ScrnInfoPtr scrp, MessageType from)

Print out the pixel clocks scrp->clock[]. from indi-
cates whether the clocks were probed or from the config
file.

18.8 Other helper functions

Bool xf86IsUnblank(int mode)

Returns FALSE when the screen saver mode specified by
mode requires the screen be unblanked, and TRUE other-
wise. The screen saver modes that require blanking are
SCREEN_SAVER_ON and SCREEN_SAVER_CYCLE, and the screen
saver modes that require unblanking are
SCREEN_SAVER_OFF and SCREEN_SAVER_FORCER. Drivers may
call this helper from their SaveScreen() function to
interpret the screen saver modes.

19. The vgahw module
The vgahw modules provides an interface for saving, restoring and programming the standard
VGA registers, and for handling VGA colourmaps.

XFree86 X server ‘‘New Design’’ (DRAFT) 88

19.1 Data Structures

The public data structures used by the vgahw module are vgaRegRec and vgaHWRec. They are
defined in vgaHW.h.

19.2 General vgahw Functions

Bool vgaHWGetHWRec(ScrnInfoPtr pScrn)

This function allocates a vgaHWRec structure, and hooks
it into the ScrnInfoRec’s privates. Like all informa-
tion hooked into the privates, it is persistent, and
only needs to be allocated once per screen. This func-
tion should normally be called from the driver’s Chip-
PreInit() function. The vgaHWRec is zero-allocated,
and the following fields are explicitly initialised:
ModeReg.DAC[]

initialised with a default colourmap

ModeReg.Attribute[0x11]

initialised with the default overscan index

ShowOverscan

initialised according to the "ShowOverscan"
option

paletteEnabled

initialised to FALSE

cmapSaved

initialised to FALSE

pScrn

initialised to pScrn

In addition to the above, vgaHWSetStdFuncs() is called
to initialise the register access function fields with
the standard VGA set of functions.

Once allocated, a pointer to the vgaHWRec can be
obtained from the ScrnInfoPtr with the VGAHWPTR(pScrn)
macro.

void vgaHWFreeHWRec(ScrnInfoPtr pScrn)

This function frees a vgaHWRec structure. It should be
called from a driver’s ChipFreeScreen() function.

Bool vgaHWSetRegCounts(ScrnInfoPtr pScrn, int numCRTC,

int numSequencer, int numGraphics, int numAttribute)

This function allows the number of CRTC, Sequencer,

XFree86 X server ‘‘New Design’’ (DRAFT) 89

Graphics and Attribute registers to be changed. This
makes it possible for extended registers to be saved
and restored with vgaHWSave() and vgaHWRestore(). This
function should be called after a vgaHWRec has been
allocated with vgaHWGetHWRec(). The default values are
defined in vgaHW.h as follows:

#define VGA_NUM_CRTC 25
#define VGA_NUM_SEQ 5
#define VGA_NUM_GFX 9
#define VGA_NUM_ATTR 21

Bool vgaHWCopyReg(vgaRegPtr dst, vgaRegPtr src)

This function copies the contents of the VGA saved reg-
isters in src to dst. Note that it isn’t possible to
simply do this with memcpy() (or similar). This func-
tion returns TRUE unless there is a problem allocating
space for the CRTC and related fields in dst.

void vgaHWSetStdFuncs(vgaHWPtr hwp)

This function initialises the register access function
fields of hwp with the standard VGA set of functions.
This is called by vgaHWGetHWRec(), so there is usually
no need to call this explicitly. The register access
functions are described below.

void vgaHWSetMmioFuncs(vgaHWPtr hwp, CARD8 *base, int offset)

This function initialised the register access function
fields of hwp with a generic MMIO set of functions.
hwp->MMIOBase is initialised with base, which must be
the virtual address that the start of MMIO area is
mapped to. hwp->MMIOOffset is initialised with offset,
which must be calculated in such a way that when the
standard VGA I/O port value is added to it the correct
offset into the MMIO area results. That means that
these functions are only suitable when the VGA I/O
ports are made available in a direct mapping to the
MMIO space. If that is not the case, the driver will
need to provide its own register access functions. The
register access functions are described below.

Bool vgaHWMapMem(ScrnInfoPtr pScrn)

This function maps the VGA memory window. It requires
that the vgaHWRec be allocated. If a driver requires
non-default MapPhys or MapSize settings (the physical
location and size of the VGA memory window) then those
fields of the vgaHWRec must be initialised before call-
ing this function. Otherwise, this function ini-
tialiases the default values of 0xA0000 for MapPhys and
(64 * 1024) for MapSize. This function must be called
before attempting to save or restore the VGA state. If
the driver doesn’t call it explicitly, the vgaHWSave()
and vgaHWRestore() functions may call it if they need
to access the VGA memory (in which case they will also

XFree86 X server ‘‘New Design’’ (DRAFT) 90

call vgaHWUnmapMem() to unmap the VGA memory before
exiting).

void vgaHWUnmapMem(ScrnInfoPtr pScrn)

This function unmaps the VGA memory window. It must
only be called after the memory has been mapped. The
Base field of the vgaHWRec field is set to NULL to
indicate that the memory is no longer mapped.

void vgaHWGetIOBase(vgaHWPtr hwp)

This function initialises the IOBase field of the vgaH-
WRec. This function must be called before using any
other functions that access the video hardware.

A macro VGAHW_GET_IOBASE() is also available in vgaHW.h
that returns the I/O base, and this may be used when
the vgahw module is not loaded (for example, in the
ChipProbe() function).

void vgaHWUnlock(vgaHWPtr hwp)

This function unlocks the VGA CRTC[0-7] registers, and
must be called before attempting to write to those reg-
isters.

A macro VGAHW_UNLOCK(base) is also available in vgaHW.h
that does the same thing, and this may be used when the
vgahw module is not loaded (for example, in the Chip-
Probe() function).

void vgaHWLock(vgaHWPtr hwp)

This function locks the VGA CRTC[0-7] registers.

A macro VGAHW_LOCK(base) is also available in vgaHW.h
that does the same thing, and this may be used when the
vgahw module is not loaded (for example, in the Chip-
Probe() function).

void vgaHWSave(ScrnInfoPtr pScrn, vgaRegPtr save, int flags)

This function saves the VGA state. The state is writ-
ten to the vgaRegRec pointed to by save. flags is set
to one or more of the following flags ORed together:

VGA_SR_MODE

the mode setting registers are saved

VGA_SR_FONTS

the text mode font/text data is saved

VGA_SR_CMAP

the colourmap (LUT) is saved

VGA_SR_ALL

all of the above are saved

XFree86 X server ‘‘New Design’’ (DRAFT) 91

The vgaHWRec and its IOBase fields must be initialised
before this function is called. If VGA_SR_FONTS is set
in flags, the VGA memory window must be mapped. If it
isn’t then vgaHWMapMem() will be called to map it, and
vgaHWUnmapMem() will be called to unmap it afterwards.
vgaHWSave() uses the three functions below in the order
vgaHWSaveColormap(), vgaHWSaveMode(), vgaHWSaveFonts()
to carry out the different save phases. It is unde-
cided at this stage whether they will be part of the
vgahw module’s public interface or not.

void vgaHWSaveMode(ScrnInfoPtr pScrn, vgaRegPtr save)

This functions saves the VGA mode registers. They are
saved to the vgaRegRec pointed to by save. The regis-
ters saved are:

MiscOut

CRTC[0-0x18]

Attribute[0-0x14]

Graphics[0-8]

Sequencer[0-4]

void vgaHWSaveFonts(ScrnInfoPtr pScrn, vgaRegPtr save)

This functions saves the text mode font and text data
held in the video memory. If called while in a graph-
ics mode, no save is done. The VGA memory window must
be mapped with vgaHWMapMem() before to calling this
function.

On some platforms, one or more of the font/text plane
saves may be no-ops. This is the case when the plat-
form’s VC driver already takes care of this.

void vgaHWSaveColormap(ScrnInfoPtr pScrn, vgaRegPtr save)

This function saves the VGA colourmap (LUT). Before
saving it, it attempts to verify that the colourmap is
readable. In rare cases where it isn’t readable, a
default colourmap is saved instead.

void vgaHWRestore(ScrnInfoPtr pScrn, vgaRegPtr restore, int
flags)

This function programs the VGA state. The state pro-
grammed is that contained in the vgaRegRec pointed to
by restore. flags is the same as described above for
the vgaHWSave() function.

The vgaHWRec and its IOBase fields must be initialised
before this function is called. If VGA_SR_FONTS is set
in flags, the VGA memory window must be mapped. If it
isn’t then vgaHWMapMem() will be called to map it, and
vgaHWUnmapMem() will be called to unmap it afterwards.

XFree86 X server ‘‘New Design’’ (DRAFT) 92

vgaHWRestore() uses the three functions below in the
order vgaHWRestoreFonts(), vgaHWRestoreMode(), vgaHWRe-
storeColormap() to carry out the different restore
phases. It is undecided at this stage whether they
will be part of the vgahw module’s public interface or
not.

void vgaHWRestoreMode(ScrnInfoPtr pScrn, vgaRegPtr restore)

This functions restores the VGA mode registers. They
are restore from the data in the vgaRegRec pointed to
by restore. The registers restored are:

MiscOut

CRTC[0-0x18]

Attribute[0-0x14]

Graphics[0-8]

Sequencer[0-4]

void vgaHWRestoreFonts(ScrnInfoPtr pScrn, vgaRegPtr restore)

This functions restores the text mode font and text
data to the video memory. The VGA memory window must
be mapped with vgaHWMapMem() before to calling this
function.

On some platforms, one or more of the font/text plane
restores may be no-ops. This is the case when the
platform’s VC driver already takes care of this.

void vgaHWRestoreColormap(ScrnInfoPtr pScrn, vgaRegPtr restore)

This function restores the VGA colourmap (LUT).

void vgaHWInit(ScrnInfoPtr pScrn, DisplayModePtr mode)

This function fills in the vgaHWRec’s ModeReg field
with the values appropriate for programming the given
video mode. It requires that the ScrnInfoRec’s depth
field is initialised, which determines how the regis-
ters are programmed.

void vgaHWSeqReset(vgaHWPtr hwp, Bool start)

Do a VGA sequencer reset. If start is TRUE, the reset
is started. If start is FALSE, the reset is ended.

void vgaHWProtect(ScrnInfoPtr pScrn, Bool on)

This function protects VGA registers and memory from
corruption during loads. It is typically called with
on set to TRUE before programming, and with on set to
FALSE after programming.

Bool vgaHWSaveScreen(ScreenPtr pScreen, int mode)

This function blanks and unblanks the screen. It is
blanked when mode is SCREEN_SAVER_ON or

XFree86 X server ‘‘New Design’’ (DRAFT) 93

SCREEN_SAVER_CYCLE, and unblanked when mode is
SCREEN_SAVER_OFF or SCREEN_SAVER_FORCER.

void vgaHWBlankScreen(ScrnInfoPtr pScrn, Bool on)

This function blanks and unblanks the screen. It is
blanked when on is FALSE, and unblanked when on is
TRUE. This function is provided for use in cases where
the ScrnInfoRec can’t be derived from the ScreenRec,
like probing for clocks.

19.3 VGA Colormap Functions

The vgahw modules uses the standard colormap support (see the Colormap Handling (section ,
page) section. This is initialised with the following function:

Bool vgaHWHandleColormaps(ScreenPtr pScreen)

19.4 VGA Register Access Functions

The vgahw module abstracts access to the standard VGA registers by using a set of functions
held in the vgaHWRec. When the vgaHWRec is created these function pointers are initialised with
the set of standard VGA I/O register access functions. In addition to these, the vgahw module
includes a basic set of MMIO register access functions, and the vgaHWRec function pointers can
be initialised to these by calling the vgaHWSetMmioFuncs() function described above. Some
drivers/platforms may require a different set of functions for VGA access. The access functions
are described here.

void writeCrtc(vgaHWPtr hwp, CARD8 index, CARD8 value)

Write value to CRTC register index.

CARD8 readCrtc(vgaHWPtr hwp, CARD8 index)

Return the value read from CRTC register index.
void writeGr(vgaHWPtr hwp, CARD8 index, CARD8 value)

Write value to Graphics Controller register index.

CARD8 readGR(vgaHWPtr hwp, CARD8 index)

Return the value read from Graphics Controller register
index.

void writeSeq(vgaHWPtr hwp, CARD8 index, CARD8, value)

Write value to Sequencer register index.

CARD8 readSeq(vgaHWPtr hwp, CARD8 index)

Return the value read from Sequencer register index.

void writeAttr(vgaHWPtr hwp, CARD8 index, CARD8, value)

Write value to Attribute Controller register index.
When writing out the index value this function should
set bit 5 (0x20) according to the setting of
hwp->paletteEnabled in order to preserve the palette
access state. It should be cleared when hwp->palet-

XFree86 X server ‘‘New Design’’ (DRAFT) 94

teEnabled is TRUE and set when it is FALSE.

CARD8 readAttr(vgaHWPtr hwp, CARD8 index)

Return the value read from Attribute Controller regis-
ter index. When writing out the index value this func-
tion should set bit 5 (0x20) according to the setting
of hwp->paletteEnabled in order to preserve the palette
access state. It should be cleared when hwp->palet-
teEnabled is TRUE and set when it is FALSE.

void writeMiscOut(vgaHWPtr hwp, CARD8 value)

Write ‘value’ to the Miscellaneous Output register.

CARD8 readMiscOut(vgwHWPtr hwp)

Return the value read from the Miscellaneous Output
register.

void enablePalette(vgaHWPtr hwp)

Clear the palette address source bit in the Attribute
Controller index register and set hwp->paletteEnabled
to TRUE.

void disablePalette(vgaHWPtr hwp)

Set the palette address source bit in the Attribute
Controller index register and set hwp->paletteEnabled
to FALSE.

void writeDacMask(vgaHWPtr hwp, CARD8 value)

Write value to the DAC Mask register.

CARD8 readDacMask(vgaHWptr hwp)

Return the value read from the DAC Mask register.

void writeDacReadAddress(vgaHWPtr hwp, CARD8 value)

Write value to the DAC Read Address register.

void writeDacWriteAddress(vgaHWPtr hwp, CARD8 value)

Write value to the DAC Write Address register.

void writeDacData(vgaHWPtr hwp, CARD8 value)

Write value to the DAC Data register.

CARD8 readDacData(vgaHWptr hwp)

Return the value read from the DAC Data register.

XFree86 X server ‘‘New Design’’ (DRAFT) 95

20. Some notes about writing a driver
NOTE: some parts of this are not up to date

The following is an outline for writing a basic unaccelerated driver for a PCI video card with a
linear mapped framebuffer, and which has a VGA core. It is includes some general information
that is relevant to most drivers (even those which don’t fit that basic description).

The information here is based on the initial conversion of the Matrox Millennium driver to the
‘‘new design’’. For a fleshing out and sample implementation of some of the bits outlined here,
refer to that driver. Note that this is an example only. The approach used here will not be appro-
priate for all drivers.

Each driver must reserve a unique driver name, and a string that is used to prefix all of its exter-
nally visible symbols. This is to avoid name space clashes when loading multiple drivers. The
examples here are for the ‘‘ZZZ’’ driver, which uses the ‘‘ZZZ’’ or ‘‘zzz’’ prefix for its externally
visible symbols.

20.1 Include files

All drivers normally include the following headers:

"xf86.h"

"xf86_OSproc.h"

"xf86_ansic.h"

"xf86Resources.h"

Wherever inb/outb (and related things) are used the following should be included:

"compiler.h"

Drivers that need to access PCI vendor/device definitions need this:

"xf86PciInfo.h"

Drivers that need to access the PCI config space need this:

"xf86Pci.h"

Drivers using the mi banking wrapper need:

"mibank.h"

Drivers that initialise a SW cursor need this:

"mipointer.h"

All drivers implementing backing store need this:

"mibstore.h"

All drivers using the mi colourmap code need this:

"micmap.h"

If a driver uses the vgahw module, it needs this:

"vgaHW.h"

Drivers supporting VGA or Hercules monochrome screens need:

"xf1bpp.h"

XFree86 X server ‘‘New Design’’ (DRAFT) 96

Drivers supporting VGA or EGC 16-colour screens need:

"xf4bpp.h"

Drivers using cfb need:

#define PSZ 8

#include "cfb.h"

#undef PSZ

Drivers supporting bpp 16, 24 or 32 with cfb need one or more of:

"cfb16.h"

"cfb24.h"

"cfb32.h"

The driver’s own header file:

"zzz.h"

Drivers must NOT include the following:

"xf86Priv.h"

"xf86Privstr.h"

"xf86_libc.h"

"xf86_OSlib.h"

"Xos.h"

any OS header

20.2 Data structures and initialisation

• The following macros should be defined:

#define VERSION <version-as-an-int>
#define ZZZ_NAME "ZZZ" /* the name used to prefix messages */
#define ZZZ_DRIVER_NAME "zzz" /* the driver name as used in config file */
#define ZZZ_MAJOR_VERSION <int>
#define ZZZ_MINOR_VERSION <int>
#define ZZZ_PATCHLEVEL <int>

XXX Probably want to remove one of these version.

NOTE: ZZZ_DRIVER_NAME should match the name of the driver module without things
like the "lib" prefix, the "_drv" suffix or filename extensions.

• A DriverRec must be defined, which includes the functions required at the pre-probe phase.
The name of this DriverRec must be an upper-case version of ZZZ_DRIVER_NAME (for the
purposes of static linking).

XFree86 X server ‘‘New Design’’ (DRAFT) 97

DriverRec ZZZ = {
VERSION,
"unaccelerated driver for ZZZ Zzzzzy cards",
ZZZIdentify,
ZZZProbe,
ZZZAvailableOptions,
NULL,
0

};

• Define list of supported chips and their matching ID:

static SymTabRec ZZZChipsets[] = {
{ PCI_CHIP_ZZZ1234, "zzz1234a" },
{ PCI_CHIP_ZZZ5678, "zzz5678a" },
{ -1, NULL }

};

The token field may be any integer value that the driver may use to uniquely identify the
supported chipsets. For drivers that support only PCI devices using the PCI device IDs
might be a natural choice, but this isn’t mandatory. For drivers that support both PCI and
other devices (like ISA), some other ID should probably used. When other IDs are used as
the tokens it is recommended that the names be defined as an enum type.

• If the driver uses the xf86MatchPciInstances() helper (recommended for drivers that
support PCI cards) a list that maps PCI IDs to chip IDs and fixed resources must be defined:

static PciChipsets ZZZPciChipsets[] = {
{ PCI_CHIP_ZZZ1234, PCI_CHIP_ZZZ1234, RES_SHARED_VGA },
{ PCI_CHIP_ZZZ5678, PCI_CHIP_ZZZ5678, RES_SHARED_VGA },
{ -1, -1, RES_UNDEFINED }

}

• Define the XF86ModuleVersionInfo struct for the driver. This is required for the
dynamically loaded version:

#ifdef XFree86LOADER
static XF86ModuleVersionInfo zzzVersRec =
{

"zzz",
MODULEVENDORSTRING,
MODINFOSTRING1,
MODINFOSTRING2,
XF86_VERSION_CURRENT,
ZZZ_MAJOR_VERSION, ZZZ_MINOR_VERSION, ZZZ_PATCHLEVEL,
ABI_CLASS_VIDEODRV,
ABI_VIDEODRV_VERSION,
MOD_CLASS_VIDEODRV,
{0,0,0,0}

};
#endif

• Define a data structure to hold the driver’s screen-specific data. This must be used instead
of global variables. This would be defined in the "zzz.h" file, something like:

XFree86 X server ‘‘New Design’’ (DRAFT) 98

typedef struct {
type1 field1;
type2 field2;
int fooHack;
Bool pciRetry;
Bool noAccel;
Bool hwCursor;
CloseScreenProcPtr CloseScreen;
...

} ZZZRec, *ZZZPtr;

• Define the list of config file Options that the driver accepts. For consistency between
drivers those in the list of ‘‘standard’’ options should be used where appropriate before
inventing new options.

typedef enum {
OPTION_FOO_HACK,
OPTION_PCI_RETRY,
OPTION_HW_CURSOR,
OPTION_NOACCEL

} ZZZOpts;

static OptionInfoRec ZZZOptions[] = {
{ OPTION_FOO_HACK, "FooHack", OPTV_INTEGER, {0}, FALSE },
{ OPTION_PCI_RETRY, "PciRetry", OPTV_BOOLEAN, {0}, FALSE },
{ OPTION_HW_CURSOR, "HWcursor", OPTV_BOOLEAN, {0}, FALSE },
{ OPTION_NOACCEL, "NoAccel", OPTV_BOOLEAN, {0}, FALSE },
{ -1, NULL, OPTV_NONE, {0}, FALSE }

};

20.3 Functions

20.3.1 SetupProc

For dynamically loaded modules, a ModuleData variable is required. It is should be the name of
the driver prepended to "ModuleData". A Setup() function is also required, which calls
xf86AddDriver() to add the driver to the main list of drivers.

XFree86 X server ‘‘New Design’’ (DRAFT) 99

#ifdef XFree86LOADER

static MODULESETUPPROTO(mgaSetup);

XF86ModuleData zzzModuleData = { &zzzVersRec, zzzSetup, NULL };

static pointer
zzzSetup(pointer module, pointer opts, int *errmaj, int *errmin)
{

static Bool setupDone = FALSE;

/* This module should be loaded only once, but check to be sure. */

if (!setupDone) {
/*
* Modules that this driver always requires may be loaded
* here by calling LoadSubModule().
*/

setupDone = TRUE;
xf86AddDriver(&MGA, module, 0);

/*
* The return value must be non-NULL on success even though
* there is no TearDownProc.
*/

return (pointer)1;
} else {

if (errmaj) *errmaj = LDR_ONCEONLY;
return NULL;

}
}
#endif

20.3.2 GetRec, FreeRec

A function is usually required to allocate the driver’s screen-specific data structure and hook it
into the ScrnInfoRec’s driverPrivate field. The ScrnInfoRec’s driverPrivate is ini-
tialised to NULL, so it is easy to check if the initialisation has already been done. After allocating
it, initialise the fields. By using xnfcalloc() to do the allocation it is zeroed, and if the alloca-
tion fails the server exits.

static Bool
ZZZGetRec(ScrnInfoPtr pScrn)
{

if (pScrn->driverPrivate != NULL)
return TRUE;

pScrn->driverPrivate = xnfcalloc(sizeof(ZZZRec), 1);
/* Initialise as required */
...
return TRUE;

}

Define a macro in "zzz.h" which gets a pointer to the ZZZRec when given pScrn:

#define ZZZPTR(p) ((ZZZPtr)((p)->driverPrivate))

Define a function to free the above, setting it to NULL once it has been freed:

XFree86 X server ‘‘New Design’’ (DRAFT) 100

static void
ZZZFreeRec(ScrnInfoPtr pScrn)
{

if (pScrn->driverPrivate == NULL)
return;

xfree(pScrn->driverPrivate);
pScrn->driverPrivate = NULL;

}

20.3.3 Identify

Define the Identify() function. It is run before the Probe, and typically prints out an identify-
ing message, which might include the chipsets it supports. This function is mandatory:

static void
ZZZIdentify(int flags)
{

xf86PrintChipsets(ZZZ_NAME, "driver for ZZZ Tech chipsets",
ZZZChipsets);

}

20.3.4 Probe

Define the Probe() function. The purpose of this is to find all instances of the hardware that the
driver supports, and for the ones not already claimed by another driver, claim the slot, and allo-
cate a ScrnInfoRec. This should be a minimal probe, and it should under no circumstances
leave the state of the hardware changed. Because a device is found, don’t assume that it will be
used. Don’t do any initialisations other than the required ScrnInfoRec initialisations. Don’t
allocate any new data structures.

This function is mandatory.

NOTE: The xf86DrvMsg() functions cannot be used from the Probe.

XFree86 X server ‘‘New Design’’ (DRAFT) 101

static Bool
ZZZProbe(DriverPtr drv, int flags)
{

Bool foundScreen = FALSE;
int numDevSections, numUsed;
GDevPtr *devSections;
int *usedChips;
int i;

/*
* Find the config file Device sections that match this
* driver, and return if there are none.
*/

if ((numDevSections = xf86MatchDevice(ZZZ_DRIVER_NAME,
&devSections)) <= 0) {

return FALSE;
}

/*
* Since this is a PCI card, "probing" just amounts to checking
* the PCI data that the server has already collected. If there
* is none, return.
*
* Although the config file is allowed to override things, it
* is reasonable to not allow it to override the detection
* of no PCI video cards.
*
* The provided xf86MatchPciInstances() helper takes care of
* the details.
*/

/* test if PCI bus present */
if (xf86GetPciVideoInfo()) {

numUsed = xf86MatchPciInstances(ZZZ_NAME, PCI_VENDOR_ZZZ,
ZZZChipsets, ZZZPciChipsets, devSections,
numDevSections, drv, &usedChips);

for (i = 0; i < numUsed; i++) {
ScrnInfoPtr pScrn;

/* Allocate a ScrnInfoRec */
pScrn = xf86AllocateScreen(drv, 0);
pScrn->driverVersion = VERSION;
pScrn->driverName = ZZZ_DRIVER_NAME;
pScrn->name = ZZZ_NAME;
pScrn->Probe = ZZZProbe;
pScrn->PreInit = ZZZPreInit;
pScrn->ScreenInit = ZZZScreenInit;
pScrn->SwitchMode = ZZZSwitchMode;
pScrn->AdjustFrame = ZZZAdjustFrame;
pScrn->EnterVT = ZZZEnterVT;
pScrn->LeaveVT = ZZZLeaveVT;
pScrn->FreeScreen = ZZZFreeScreen;
pScrn->ValidMode = ZZZValidMode;
foundScreen = TRUE;
/* add screen to entity */
xf86ConfigActivePciEntity(pScrn, usedChips[i],

ZZZPciChipsets, NULL, NULL, NULL, NULL, NULL);

}
if (numUsed > 0)

xfree(usedChips);
}

#ifdef HAS_ISA_DEVS

XFree86 X server ‘‘New Design’’ (DRAFT) 102

/*
* If the driver supports ISA hardware, the following block
* can be included too.
*/

numUsed = xf86MatchIsaInstances(ZZZ_NAME, ZZZChipsets,
ZZZIsaChipsets, drv, ZZZFindIsaDevice,
devSections, numDevSections, &usedChips);

for (i = 0; i < numUsed; i++) {
ScrnInfoPtr pScrn = xf86AllocateScreen(drv,0);

pScrn->driverVersion = VERSION;
pScrn->driverName = ZZZ_DRIVER_NAME;
pScrn->name = ZZZ_NAME;
pScrn->Probe = ZZZProbe;
pScrn->PreInit = ZZZPreInit;
pScrn->ScreenInit = ZZZScreenInit;
pScrn->SwitchMode = ZZZSwitchMode;
pScrn->AdjustFrame = ZZZAdjustFrame;
pScrn->EnterVT = ZZZEnterVT;
pScrn->LeaveVT = ZZZLeaveVT;
pScrn->FreeScreen = ZZZFreeScreen;
pScrn->ValidMode = ZZZValidMode;
foundScreen = TRUE;
xf86ConfigActiveIsaEntity(pScrn, usedChips[i], ZZZIsaChipsets,

NULL, NULL, NULL, NULL, NULL);
}
if (numUsed > 0)

xfree(usedChips);
#endif /* HAS_ISA_DEVS */

xfree(devSections);
return foundScreen;

20.3.5 AvailableOptions

Define the AvailableOptions() function. The purpose of this is to return the available driver
options back to the -configure option, so that an XF86Config file can be built and the user can see
which options are available for them to use.

20.3.6 PreInit

Define the PreInit() function. The purpose of this is to find all the information required to
determine if the configuration is usable, and to initialise those parts of the ScrnInfoRec that can
be set once at the beginning of the first server generation. The information should be found in
the least intrusive way possible.

This function is mandatory.

NOTES:

1. The PreInit() function is only called once during the life of the X server (at the start of
the first generation).

2. Data allocated here must be of the type that persists for the life of the X server. This means
that data that hooks into the ScrnInfoRec’s privates field should be allocated here,
but data that hooks into the ScreenRec’s devPrivates field should not be allocated
here. The driverPrivate field should also be allocated here.

3. Although the ScrnInfoRec has been allocated before this function is called, the Screen-
Rec has not been allocated. That means that things requiring it cannot be used in this
function.

XFree86 X server ‘‘New Design’’ (DRAFT) 103

4. Very little of the ScrnInfoRec has been initialised when this function is called. It is
important to get the order of doing things right in this function.

static Bool
ZZZPreInit(ScrnInfoPtr pScrn, int flags)
{

/* Fill in the monitor field */
pScrn->monitor = pScrn->confScreen->monitor;

/*
* If using the vgahw module, it will typically be loaded
* here by calling xf86LoadSubModule(pScrn, "vgahw");
*/

/*
* Set the depth/bpp. Our preferred default depth/bpp is 8, and
* we support both 24bpp and 32bpp framebuffer layouts.
* This sets pScrn->display also.
*/

if (!xf86SetDepthBpp(pScrn, 8, 8, 8,
Support24bppFb | Support32bppFb)) {

return FALSE;
} else {

if (depth/bpp isn’t one we support) {
print error message;
return FALSE;

}
}
/* Print out the depth/bpp that was set */
xf86PrintDepthBpp(pScrn);

/* Set bits per RGB for 8bpp */
if (pScrn->depth <= 8) {

/* Take into account a dac_6_bit option here */
pScrn->rgbBits = 6 or 8;

}

/*
* xf86SetWeight() and xf86SetDefaultVisual() must be called
* after pScrn->display is initialised.
*/

/* Set weight/mask/offset for depth > 8 */
if (pScrn->depth > 8) {

if (!xf86SetWeight(pScrn, defaultWeight, defaultMask)) {
return FALSE;

} else {
if (weight isn’t one we support) {

print error message;
return FALSE;

}
}

}

/* Set the default visual. */
if (!xf86SetDefaultVisual(pScrn, -1)) {

return FALSE;
} else {

if (visual isn’t one we support) {
print error message;
return FALSE;

}
}

/* If the driver supports gamma correction, set the gamma. */

XFree86 X server ‘‘New Design’’ (DRAFT) 104

if (!xf86SetGamma(pScrn, default_gamma)) {
return FALSE;

}

/* This driver uses a programmable clock */
pScrn->progClock = TRUE;

/* Allocate the ZZZRec driverPrivate */
if (!ZZZGetRec(pScrn)) {

return FALSE;
}

pZzz = ZZZPTR(pScrn);

/* Collect all of the option flags (fill in pScrn->options) */
xf86CollectOptions(pScrn, NULL);

/*
* Process the options based on the information in ZZZOptions.
* The results are written to ZZZOptions.
*/

xf86ProcessOptions(pScrn->scrnIndex, pScrn->options, ZZZOptions);

/*
* Set various fields of ScrnInfoRec and/or ZZZRec based on
* the options found.
*/

from = X_DEFAULT;
pZzz->hwCursor = FALSE;
if (xf86IsOptionSet(ZZZOptions, OPTION_HW_CURSOR)) {

from = X_CONFIG;
pZzz->hwCursor = TRUE;

}
xf86DrvMsg(pScrn->scrnIndex, from, "Using %s cursor\n",

pZzz->hwCursor ? "HW" : "SW");
if (xf86IsOptionSet(ZZZOptions, OPTION_NOACCEL)) {

pZzz->noAccel = TRUE;
xf86DrvMsg(pScrn->scrnIndex, X_CONFIG,

"Acceleration disabled\n");
} else {

pZzz->noAccel = FALSE;
}
if (xf86IsOptionSet(ZZZOptions, OPTION_PCI_RETRY)) {

pZzz->UsePCIRetry = TRUE;
xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "PCI retry enabled\n");

}
pZzz->fooHack = 0;
if (xf86GetOptValInteger(ZZZOptions, OPTION_FOO_HACK,

&pZzz->fooHack)) {
xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Foo Hack set to %d\n",

pZzz->fooHack);
}

/*
* Find the PCI slot(s) that this screen claimed in the probe.
* In this case, exactly one is expected, so complain otherwise.
* Note in this case we’re not interested in the card types so
* that parameter is set to NULL.
*/

if ((i = xf86GetPciInfoForScreen(pScrn->scrnIndex, &pciList, NULL))
!= 1) {
print error message;
ZZZFreeRec(pScrn);
if (i > 0)

xfree(pciList);

XFree86 X server ‘‘New Design’’ (DRAFT) 105

return FALSE;
}
/* Note that pciList should be freed below when no longer needed */

/*
* Determine the chipset, allowing config file chipset and
* chipid values to override the probed information. The config
* chipset value has precedence over its chipid value if both
* are present.
*
* It isn’t necessary to fill in pScrn->chipset if the driver
* keeps track of the chipset in its ZZZRec.
*/

...

/*
* Determine video memory, fb base address, I/O addresses, etc,
* allowing the config file to override probed values.
*
* Set the appropriate pScrn fields (videoRam is probably the
* most important one that other code might require), and
* print out the settings.
*/

...

/* Initialise a clockRanges list. */

...

/* Set any other chipset specific things in the ZZZRec */

...

/* Select valid modes from those available */

i = xf86ValidateModes(pScrn, pScrn->monitor->Modes,
pScrn->display->modes, clockRanges,
NULL, minPitch, maxPitch, rounding,
minHeight, maxHeight,
pScrn->display->virtualX,
pScrn->display->virtualY,
pScrn->videoRam * 1024,
LOOKUP_BEST_REFRESH);

if (i == -1) {
ZZZFreeRec(pScrn);
return FALSE;

}

/* Prune the modes marked as invalid */

xf86PruneDriverModes(pScrn);

/* If no valid modes, return */

if (i == 0 || pScrn->modes == NULL) {
print error message;
ZZZFreeRec(pScrn);
return FALSE;

}

/*
* Initialise the CRTC fields for the modes. This driver expects
* vertical values to be halved for interlaced modes.

XFree86 X server ‘‘New Design’’ (DRAFT) 106

*/
xf86SetCrtcForModes(pScrn, INTERLACE_HALVE_V);

/* Set the current mode to the first in the list. */
pScrn->currentMode = pScrn->modes;

/* Print the list of modes being used. */
xf86PrintModes(pScrn);

/* Set the DPI */
xf86SetDpi(pScrn, 0, 0);

/* Load bpp-specific modules */
switch (pScrn->bitsPerPixel) {
case 1:

mod = "xf1bpp";
break;

case 4:
mod = "xf4bpp";
break;

case 8:
mod = "cfb";
break;

case 16:
mod = "cfb16";
break;

case 24:
mod = "cfb24";
break;

case 32:
mod = "cfb32";
break;

}
if (mod && !xf86LoadSubModule(pScrn, mod))

ZZZFreeRec(pScrn);
return FALSE;

/* Load XAA if needed */
if (!pZzz->noAccel || pZzz->hwCursor)

if (!xf86LoadSubModule(pScrn, "xaa")) {
ZZZFreeRec(pScrn);
return FALSE;

}

/* Done */
return TRUE;

}

20.3.7 MapMem, UnmapMem

Define functions to map and unmap the video memory and any other memory apertures
required. These functions are not mandatory, but it is often useful to have such functions.

XFree86 X server ‘‘New Design’’ (DRAFT) 107

static Bool
ZZZMapMem(ScrnInfoPtr pScrn)
{

/* Call xf86MapPciMem() to map each PCI memory area */
...
return TRUE or FALSE;

}

static Bool
ZZZUnmapMem(ScrnInfoPtr pScrn)
{

/* Call xf86UnMapVidMem() to unmap each memory area */
...
return TRUE or FALSE;

}

20.3.8 Save , Restore

Define functions to save and restore the original video state. These functions are not mandatory,
but are often useful.

static void
ZZZSave(ScrnInfoPtr pScrn)
{

/*
* Save state into per-screen data structures.
* If using the vgahw module, vgaHWSave will typically be
* called here.
*/

...
}

static void
ZZZRestore(ScrnInfoPtr pScrn)
{

/*
* Restore state from per-screen data structures.
* If using the vgahw module, vgaHWRestore will typically be
* called here.
*/

...
}

20.3.9 ModeInit

Define a function to initialise a new video mode. This function isn’t mandatory, but is often use-
ful.

static Bool
ZZZModeInit(ScrnInfoPtr pScrn, DisplayModePtr mode)
{

/*
* Program a video mode. If using the vgahw module,
* vgaHWInit and vgaRestore will typically be called here.
* Once up to the point where there can’t be a failure
* set pScrn->vtSema to TRUE.
*/

...
}

XFree86 X server ‘‘New Design’’ (DRAFT) 108

20.3.10 ScreenInit

Define the ScreenInit() function. This is called at the start of each server generation, and
should fill in as much of the ScreenRec as possible as well as any other data that is initialised
once per generation. It should initialise the framebuffer layers it is using, and initialise the initial
video mode.

This function is mandatory.

NOTE: The ScreenRec (pScreen) is passed to this driver, but it and the ScrnInfoRecs are not
yet hooked into each other. This means that in this function, and functions it calls, one cannot be
found from the other.

static Bool
ZZZScreenInit(int scrnIndex, ScreenPtr pScreen, int argc, char **argv)
{

/* Get the ScrnInfoRec */
pScrn = xf86Screens[pScreen->myNum];

/*
* If using the vgahw module, its data structures and related
* things are typically initialised/mapped here.
*/

/* Save the current video state */
ZZZSave(pScrn);

/* Initialise the first mode */
ZZZModeInit(pScrn, pScrn->currentMode);

/* Set the viewport if supported */

ZZZAdjustFrame(scrnIndex, pScrn->frameX0, pScrn->frameY0, 0);

/*
* Setup the screen’s visuals, and initialise the framebuffer
* code.
*/

/* Reset the visual list */
miClearVisualTypes();

/*
* Setup the visuals supported. This driver only supports
* TrueColor for bpp > 8, so the default set of visuals isn’t
* acceptable. To deal with this, call miSetVisualTypes with
* the appropriate visual mask.
*/

if (pScrn->bitsPerPixel > 8) {
if (!miSetVisualTypes(pScrn->depth, TrueColorMask,

pScrn->rgbBits, pScrn->defaultVisual))
return FALSE;

} else {
if (!miSetVisualTypes(pScrn->depth,

miGetDefaultVisualMask(pScrn->depth),
pScrn->rgbBits, pScrn->defaultVisual))

return FALSE;
}

/*
* Initialise the framebuffer.
*/

switch (pScrn->bitsPerPixel) {

XFree86 X server ‘‘New Design’’ (DRAFT) 109

case 1:
ret = xf1bppScreenInit(pScreen, FbBase,

pScrn->virtualX, pScrn->virtualY,
pScrn->xDpi, pScrn->yDpi,
pScrn->displayWidth);

break;
case 4:

ret = xf4bppScreenInit(pScreen, FbBase,
pScrn->virtualX, pScrn->virtualY,
pScrn->xDpi, pScrn->yDpi,
pScrn->displayWidth);

break;
case 8:

ret = cfbScreenInit(pScreen, FbBase,
pScrn->virtualX, pScrn->virtualY,
pScrn->xDpi, pScrn->yDpi,
pScrn->displayWidth);

break;
case 16:

ret = cfb16ScreenInit(pScreen, FbBase,
pScrn->virtualX, pScrn->virtualY,
pScrn->xDpi, pScrn->yDpi,
pScrn->displayWidth);

break;
case 24:

ret = cfb24ScreenInit(pScreen, FbBase,
pScrn->virtualX, pScrn->virtualY,
pScrn->xDpi, pScrn->yDpi,
pScrn->displayWidth);

break;
case 32:

ret = cfb32ScreenInit(pScreen, FbBase,
pScrn->virtualX, pScrn->virtualY,
pScrn->xDpi, pScrn->yDpi,
pScrn->displayWidth);

break;
default:

print a message about an internal error;
ret = FALSE;
break;

}

if (!ret)
return FALSE;

/* Override the default mask/offset settings */
if (pScrn->bitsPerPixel > 8) {

for (i = 0, visual = pScreen->visuals;
i < pScreen->numVisuals; i++, visual++) {

if ((visual->class | DynamicClass) == DirectColor) {
visual->offsetRed = pScrn->offset.red;
visual->offsetGreen = pScrn->offset.green;
visual->offsetBlue = pScrn->offset.blue;
visual->redMask = pScrn->mask.red;
visual->greenMask = pScrn->mask.green;
visual->blueMask = pScrn->mask.blue;

}
}

}

/*
* If banking is needed, initialise an miBankInfoRec (defined in
* "mibank.h"), and call miInitializeBanking().
*/

if (!miInitializeBanking(pScreen, pScrn->virtualX, pScrn->virtualY,

XFree86 X server ‘‘New Design’’ (DRAFT) 110

pScrn->displayWidth, pBankInfo))
return FALSE;

/*
* If backing store is to be supported (as is usually the case),
* initialise it.
*/

miInitializeBackingStore(pScreen);

/*
* Set initial black & white colourmap indices.
*/

xf86SetBlackWhitePixels(pScreen);

/*
* Install colourmap functions. If using the vgahw module,
* vgaHandleColormaps would usually be called here.
*/

...

/*
* Initialise cursor functions. This example is for the mi
* software cursor.
*/

miDCInitialize(pScreen, xf86GetPointerScreenFuncs());

/* Initialise the default colourmap */
switch (pScrn->depth) {
case 1:

if (!xf1bppCreateDefColormap(pScreen))
return FALSE;

break;
case 4:

if (!xf4bppCreateDefColormap(pScreen))
return FALSE;

break;
default:

if (!cfbCreateDefColormap(pScreen))
return FALSE;

break;
}

/*
* Wrap the CloseScreen vector and set SaveScreen.
*/

ZZZPTR(pScrn)->CloseScreen = pScreen->CloseScreen;
pScreen->CloseScreen = ZZZCloseScreen;
pScreen->SaveScreen = ZZZSaveScreen;

/* Report any unused options (only for the first generation) */
if (serverGeneration == 1) {

xf86ShowUnusedOptions(pScrn->scrnIndex, pScrn->options);
}

/* Done */
return TRUE;

}

20.3.11 SwitchMode

Define the SwitchMode() function if mode switching is supported by the driver.

XFree86 X server ‘‘New Design’’ (DRAFT) 111

static Bool
ZZZSwitchMode(int scrnIndex, DisplayModePtr mode, int flags)
{

return ZZZModeInit(xf86Screens[scrnIndex], mode);
}

20.3.12 AdjustFrame

Define the AdjustFrame() function if the driver supports this.

static void
ZZZAdjustFrame(int scrnIndex, int x, int y, int flags)
{

/* Adjust the viewport */
}

20.3.13 EnterVT, LeaveVT

Define the EnterVT() and LeaveVT() functions.

These functions are mandatory.

static Bool
ZZZEnterVT(int scrnIndex, int flags)
{

ScrnInfoPtr pScrn = xf86Screens[scrnIndex];
return ZZZModeInit(pScrn, pScrn->currentMode);

}

static void
ZZZLeaveVT(int scrnIndex, int flags)
{

ScrnInfoPtr pScrn = xf86Screens[scrnIndex];
ZZZRestore(pScrn);

}

20.3.14 CloseScreen

Define the CloseScreen() function:

This function is mandatory. Note that it unwraps the previously wrapped pScreen->Clos-
eScreen, and finishes by calling it.

static Bool
ZZZCloseScreen(int scrnIndex, ScreenPtr pScreen)
{

ScrnInfoPtr pScrn = xf86Screens[scrnIndex];
ZZZRestore(pScrn);
ZZZUnmapMem(pScrn);
pScrn->vtSema = FALSE;
pScreen->CloseScreen = ZZZPTR(pScrn)->CloseScreen;
return (*pScreen->CloseScreen)(scrnIndex, pScreen);

}

20.3.15 SaveScreen

Define the SaveScreen() function (the screen blanking function). When using the vgahw mod-
ule, this will typically be:

This function is mandatory.

XFree86 X server ‘‘New Design’’ (DRAFT) 112

static Bool
ZZZSaveScreen(ScreenPtr pScreen, int mode)
{

return vgaHWSaveScreen(pScreen, mode);
}

20.3.16 FreeScreen

Define the FreeScreen() function. This function is optional. It should be defined if the Scrn-
InfoRec driverPrivate field is used so that it can be freed when a screen is deleted by the
common layer for reasons possibly beyond the driver’s control. This function is not used in dur-
ing normal (error free) operation. The per-generation data is freed by the CloseScreen() func-
tion.

static void
ZZZFreeScreen(int scrnIndex, int flags)
{

/*
* If the vgahw module is used vgaHWFreeHWRec() would be called
* here.
*/

ZZZFreeRec(xf86Screens[scrnIndex]);
}

XFree86 X server ‘‘New Design’’ (DRAFT) 113

CONTENTS

1. Preface .. 1

2. The XF86Config File ... 1
2.1 Device section ... 2
2.2 Screen section ... 2
2.3 InputDevice section ... 2
2.4 ServerLayout section ... 2
2.5 Options .. 3

3. Driver Interface ... 4

4. Resource Access Control Introduction .. 5
4.1 Terms and Definitions ... 5

5. Control Flow in the Server and Mandatory Driver Functions ... 6
5.1 Parse the XF86Config file .. 6
5.2 Initial processing of parsed information and command line options 6
5.3 Enable port I/O access .. 6
5.4 General bus probe .. 6
5.5 Load initial set of modules ... 7
5.6 Register Video and Input Drivers .. 7
5.7 Initialise Access Control .. 8
5.8 Video Driver Probe .. 8
5.9 Matching Screens ... 10
5.10 Allocate non-conflicting resources .. 10
5.11 Sort the Screens and pre-check Monitor Information ... 11
5.12 PreInit ... 11
5.13 Cleaning up Unused Drivers ... 13
5.14 Consistency Checks ... 14
5.15 Check if Resource Control is Needed ... 14
5.16 AddScreen (ScreenInit) ... 14
5.17 Finalising RAC Initialisation .. 15
5.18 Finishing InitOutput() ... 15
5.19 Mode Switching ... 15
5.20 Changing Viewport ... 15
5.21 VT Switching .. 15
5.22 End of server generation ... 17

6. Optional Driver Functions ... 18
6.1 Mode Validation ... 18
6.2 Free screen data .. 18

7. Recommended driver functions ... 19
7.1 Save .. 19
7.2 Restore ... 19
7.3 Initialise Mode .. 19

8. Data and Data Structures ... 19
8.1 Command line data ... 19
8.2 Data handling ... 20
8.3 Accessing global data .. 21
8.4 Allocating private data .. 22

i

9. Keeping Track of Bus Resources ... 24
9.1 Theory of Operation .. 24
9.2 Resource Types ... 25
9.3 Available Functions ... 26

10. Config file ‘‘Option’’ entries .. 36

11. Modules, Drivers, Include Files and Interface Issues .. 40
11.1 Include files ... 40

12. Offscreen Memory Manager ... 42

13. Colormap Handling ... 44

14. DPMS Extension ... 46

15. DGA Extension .. 46

16. The XFree86 X Video Extension (Xv) Device Dependent Layer .. 51

17. The Loader ... 61
17.1 Loader Overview ... 61
17.2 Semi-private Loader Interface .. 61
17.3 Module Requirements ... 65
17.4 Public Loader Interface ... 68
17.5 Special Registration Functions ... 71

18. Helper Functions ... 71
18.1 Functions for printing messages .. 71
18.2 Functions for setting values based on command line and config file 74
18.3 Primary Mode functions ... 77
18.4 Secondary Mode functions ... 84
18.5 Functions for handling strings and tokens .. 86
18.6 Functions for finding which config file entries to use .. 86
18.7 Probing discrete clocks on old hardware ... 86
18.8 Other helper functions .. 87

19. The vgahw module ... 87
19.1 Data Structures ... 88
19.2 General vgahw Functions ... 88
19.3 VGA Colormap Functions .. 93
19.4 VGA Register Access Functions .. 93

20. Some notes about writing a driver ... 95
20.1 Include files ... 95
20.2 Data structures and initialisation .. 96
20.3 Functions ... 98

$XFree86: xc/programs/Xserver/hw/xfree86/doc/sgml/DESIGN.sgml,v 1.23 2000/02/15 18:00:57 dawes Exp $

ii

