
The JDBC(tm) API Version 1.20
January 3, 1997

Part 2 - Classes and Exceptions

This document contains a paper copy of the JDBC API online documentation that is distributed with the
JDBC package and is also available on http://splash.javasoft.com/jdbc.

It takes the place of the source code comments that were originally included as part of the JDBC
specification.

Java and JDBC are trademarks of Sun Microsystems Inc.

Copyright © 1996 Sun Microsystems, Inc., 2550 Garcia Ave., Mtn. View, CA 94043-1100 USA. All rights reserved.

package java.sql

CallableStatement
Connection
DatabaseMetaData
Driver
PreparedStatement
ResultSet
ResultSetMetaData
Statement

Date
DriverManager
DriverPropertyInfo
Time
Timestamp
Types

DataTruncation
SQLException
SQLWarning

Class java.math.BigDecimal
java.lang.Object
 |
 +----java.lang.Number

 |
 +----java.math.BigDecimal

public class BigDecimal
extends Number

Immutable, arbitrary-precision signed decimal numbers. A BigDecimal consists of an arbitrary precision
integer value and a non-negative integer scale, which represents the number of decimal digits to the right
of the decimal point. (The number represented by the BigDecimal is intVal/10**scale.) BigDecimals
provide operations for basic arithmetic, scale manipulation, comparison, format conversion and hashing.

The BigDecimal class gives its user complete control over rounding behavior, forcing the user to
explicitly specify a rounding behavior for operations capable of discarding precision (divide and
setScale). Eight rounding modes are provided for this purpose. Two types of operations are provided for
manipulating the scale of a BigDecimal: scaling/rounding operations and decimal point motion
operations. Scaling/Rounding operations (SetScale) return a BigDecimal whose value is approximately
(or exactly) equal to that of the operand, but whose scale is the specified value; that is, they increases or
decreases the precision of the number with minimal effect on its value. Decimal point motion operations
(movePointLeft and movePointRight) return a BigDecimal created from the operand by moving the
decimal point a specified distance in the specified direction; they change a number’s value without
affecting its precision.

See Also:
BigInteger

 ROUND_CEILING
If the BigDecimal is positive, behave as for ROUND_UP; if negative, behave as for
ROUND_DOWN.

 ROUND_DOWN
Never increment the digit prior to a discarded fraction (i.e., truncate).

 ROUND_FLOOR
If the BigDecimal is positive, behave as for ROUND_DOWN; if negative behave as for
ROUND_UP.

 ROUND_HALF_DOWN
Behave as for ROUND_UP if the discarded fraction is > .5; otherwise, behave as for
ROUND_DOWN.

 ROUND_HALF_EVEN
Behave as for ROUND_HALF_UP if the digit to the left of the discarded fraction is odd; behave
as for ROUND_HALF_DOWN if it’s even.

 ROUND_HALF_UP
Behave as for ROUND_UP if the discarded fraction is >= .5; otherwise, behave as for

ROUND_DOWN.
 ROUND_UNNECESSARY

This "pseudo-rounding-mode" is actually an assertion that the requested operation has an exact
result, hence no rounding is necessary.

 ROUND_UP
Always increment the digit prior to a non-zero discarded fraction.

 BigDecimal(BigInteger)
Translates a BigInteger into a BigDecimal.

 BigDecimal(BigInteger, int)
Translates a BigInteger and a scale into a BigDecimal.

 BigDecimal(double)
Translates a double into a BigDecimal.

 BigDecimal(String)
Constructs a BigDecimal from a string containing an optional minus sign followed by a sequence
of zero or more decimal digits, optionally followed by a fraction, which consists of a decimal point
followed by zero or more decimal digits.

 abs()
Returns a BigDecimal whose value is the absolute value of this number, and whose scale is
this.scale().

 add(BigDecimal)
Returns a BigDecimal whose value is (this + val), and whose scale is MAX(this.scale(), val.scale).

 compareTo(BigDecimal)
Returns -1, 0 or 1 as this number is less than, equal to, or greater than val.

 divide(BigDecimal, int)
Returns a BigDecimal whose value is (this / val), and whose scale is this.scale().

 divide(BigDecimal, int, int)
Returns a BigDecimal whose value is (this / val), and whose scale is as specified.

 doubleValue()
Converts the number to a double.

 equals(Object)
Returns true iff x is a BigDecimal whose value is equal to this number.

 floatValue()
Converts this number to a float.

 hashCode()
Computes a hash code for this object.

 intValue()
Converts this number to an int.

 longValue()
Converts this number to a long.

 max(BigDecimal)
Returns the BigDecimal whose value is the greater of this and val.

 min(BigDecimal)
Returns the BigDecimal whose value is the lesser of this and val.

 movePointLeft(int)
Returns a BigDecimal which is equivalent to this one with the decimal point moved n places to the
left.

 movePointRight(int)
Moves the decimal point the specified number of places to the right.

 multiply (BigDecimal)
Returns a BigDecimal whose value is (this * val), and whose scale is this.scale() + val.scale.

 negate()
Returns a BigDecimal whose value is -1 * this, and whose scale is this.scale().

 scale()
Returns the scale of this number.

 setScale(int)
Returns a BigDecimal whose scale is the specified value, and whose value is exactly equal to this
number’s.

 setScale(int, int)
Returns a BigDecimal whose scale is the specified value, and whose integer value is determined
by multiplying or dividing this BigDecimal’s integer value by the appropriate power of ten to
maintain the overall value.

 signum()
Returns the signum function of this number (i.e., -1, 0 or 1 as the value of this number is negative,
zero or positive).

 subtract(BigDecimal)
Returns a BigDecimal whose value is (this - val), and whose scale is MAX(this.scale(), val.scale).

 toBigInteger()
Converts this number to a BigInteger.

 toString()
Returns the string representation of this number.

 valueOf(long)
Returns a BigDecimal with the given value and a scale of zero.

 valueOf(long, int)
Returns a BigDecimal with a value of (val/10**scale).

 ROUND_UP

 public final static int ROUND_UP

Always increment the digit prior to a non-zero discarded fraction. Note that this rounding mode
never decreases the magnitude. (Rounds away from zero.)

 ROUND_DOWN

 public final static int ROUND_DOWN

Never increment the digit prior to a discarded fraction (i.e., truncate). Note that this rounding
mode never increases the magnitude. (Rounds towards zero.)

 ROUND_CEILING

 public final static int ROUND_CEILING

If the BigDecimal is positive, behave as for ROUND_UP; if negative, behave as for
ROUND_DOWN. Note that this rounding mode never decreases the value. (Rounds towards
positive infinity.)

 ROUND_FLOOR

 public final static int ROUND_FLOOR

If the BigDecimal is positive, behave as for ROUND_DOWN; if negative behave as for
ROUND_UP. Note that this rounding mode never increases the value. (Rounds towards negative
infinity.)

 ROUND_HALF_UP

 public final static int ROUND_HALF_UP

Behave as for ROUND_UP if the discarded fraction is >= .5; otherwise, behave as for
ROUND_DOWN. (Rounds towards "nearest neighbor" unless both neighbors are equidistant, in
which case rounds up.)

 ROUND_HALF_DOWN

 public final static int ROUND_HALF_DOWN

Behave as for ROUND_UP if the discarded fraction is > .5; otherwise, behave as for
ROUND_DOWN. (Rounds towards "nearest neighbor" unless both neighbors are equidistant, in
which case rounds down.)

 ROUND_HALF_EVEN

 public final static int ROUND_HALF_EVEN

Behave as for ROUND_HALF_UP if the digit to the left of the discarded fraction is odd; behave
as for ROUND_HALF_DOWN if it’s even. (Rounds towards the "nearest neighbor" unless both
neighbors are equidistant, in which case, rounds towards the even neighbor.)

 ROUND_UNNECESSARY

 public final static int ROUND_UNNECESSARY

This "pseudo-rounding-mode" is actually an assertion that the requested operation has an exact
result, hence no rounding is necessary.

 BigDecimal

 public BigDecimal(String val) throws NumberFormatException

Constructs a BigDecimal from a string containing an optional minus sign followed by a sequence
of zero or more decimal digits, optionally followed by a fraction, which consists of a decimal point
followed by zero or more decimal digits. The string must contain at least one digit in the integer or
fractional part. The scale of the resulting BigDecimal will be the number of digits to the right of
the decimal point in the string, or 0 if the string contains no decimal point. The character-to-digit
mapping is provided by Character.digit. Any extraneous characters (including whitespace) will
result in a NumberFormatException.

 BigDecimal

 public BigDecimal(double val) throws NumberFormatException

Translates a double into a BigDecimal. The scale of the BigDecimal is the smallest value such that
(10**scale * val) is an integer. A double whose value is -infinity, +infinity or NaN will result in a
NumberFormatException.

 BigDecimal

 public BigDecimal(BigInteger val)

Translates a BigInteger into a BigDecimal. The scale of the BigDecimal is zero.

 BigDecimal

 public BigDecimal(BigInteger val,
 int scale) throws NumberFormatException

Translates a BigInteger and a scale into a BigDecimal. The value of the BigDecimal is
(BigInteger/10**scale). A negative scale will result in a NumberFormatException.

 valueOf

 public static BigDecimal valueOf(long val,
 int scale) throws NumberFormatException

Returns a BigDecimal with a value of (val/10**scale). This factory is provided in preference to a
(long) constructor because it allows for reuse of frequently used BigDecimals (like 0 and 1),
obviating the need for exported constants. A negative scale will result in a
NumberFormatException.

 valueOf

 public static BigDecimal valueOf(long val)

Returns a BigDecimal with the given value and a scale of zero. This factory is provided in
preference to a (long) constructor because it allows for reuse of frequently used BigDecimals (like
0 and 1), obviating the need for exported constants.

 add

 public BigDecimal add(BigDecimal val)

Returns a BigDecimal whose value is (this + val), and whose scale is MAX(this.scale(), val.scale).

 subtract

 public BigDecimal subtract(BigDecimal val)

Returns a BigDecimal whose value is (this - val), and whose scale is MAX(this.scale(), val.scale).

 multiply

 public BigDecimal multiply(BigDecimal val)

Returns a BigDecimal whose value is (this * val), and whose scale is this.scale() + val.scale.

 divide

 public BigDecimal divide(BigDecimal val,
 int scale,
 int roundingMode) throws ArithmeticException, IllegalArgu m

Returns a BigDecimal whose value is (this / val), and whose scale is as specified. If rounding must
be performed to generate a result with the given scale, the specified rounding mode is applied.
Throws an ArithmeticException if val == 0 or scale <0. Throws an IllegalArgumentException if
roundingMode does not represent a valid rounding mode. dl> divide

 public BigDecimal divide(BigDecimal val,
 int roundingMode) throws ArithmeticException, Illega l

Returns a BigDecimal whose value is (this / val), and whose scale is this.scale(). If rounding
must be performed to generate a result with the given scale, the specified rounding mode is
applied. Throws an ArithmeticException if val == 0. Throws an IllegalArgumentException
if roundingMode does not represent a valid rounding mode.

 abs

 public BigDecimal abs()

Returns a BigDecimal whose value is the absolute value of this number, and whose scale is
this.scale().

 negate

 public BigDecimal negate()

Returns a BigDecimal whose value is -1 * this, and whose scale is this.scale().

 signum

 public int signum()

Returns the signum function of this number (i.e., -1, 0 or 1 as the value of this number is
negative, zero or positive).

 scale

 public int scale()

Returns the scale of this number.

 setScale

 public BigDecimal setScale(int scale,
 int roundingMode) throws ArithmeticException, Ille g

Returns a BigDecimal whose scale is the specified value, and whose integer value is
determined by multiplying or dividing this BigDecimal’s integer value by the appropriate
power of ten to maintain the overall value. If the scale is reduced by the operation, the
integer value must be divided (rather than multiplied), and precision may be lost; in this
case, the specified rounding mode is applied to the division. Throws an ArithmeticException
if scale is negative. Throws an IllegalArgumentException if roundingMode does not
represent a valid rounding mode.

 setScale

 public BigDecimal setScale(int scale) throws ArithmeticException, IllegalArgu m

Returns a BigDecimal whose scale is the specified value, and whose value is exactly equal to
this number’s. Throws an ArithmeticException if this is not possible. This call is typically
used to increase the scale, in which case it is guaranteed that there exists a BigDecimal of the
specified scale and the correct value. The call can also be used to reduce the scale if the
caller knows that the number has sufficiently many zeros at the end of its fractional part (i.e.,
factors of ten in its integer value) to allow for the rescaling without loss of precision. Note
that this call returns the same result as the two argument version of setScale, but saves the
caller the trouble of specifying a rounding mode in cases where it is irrelevant.

 movePointLeft

 public BigDecimal movePointLeft(int n)

Returns a BigDecimal which is equivalent to this one with the decimal point moved n places
to the left. If n is non-negative, the call merely adds n to the scale. If n is negative, the call is

equivalent to movePointRight(-n). (The BigDecimal returned by this call has value (this *
10**-n) and scale MAX(this.scale()+n, 0).)

 movePointRight

 public BigDecimal movePointRight(int n)

Moves the decimal point the specified number of places to the right. If this number’s scale is
>= n, the call merely subtracts n from the scale; otherwise, it sets the scale to zero, and
multiplies the integer value by 10 ** (n - this.scale). If n is negative, the call is equivalent to
movePointLeft(-n). (The BigDecimal returned by this call has value (this * 10**n) and scale
MAX(this.scale()-n, 0).)

 compareTo

 public int compareTo(BigDecimal val)

Returns -1, 0 or 1 as this number is less than, equal to, or greater than val. Two BigDecimals
that are equal in value but have a different scale (e.g., 2.0, 2.00) are considered equal by this
method. This method is provided in preference to individual methods for each of the six
boolean comparison operators (<,>, >=, !=, <=). The suggested idiom for performing these
comparisons is: x.compareTo(y) op> 0), where is one of the six comparison operators.

 equals

 public boolean equals(Object x)

Returns true iff x is a BigDecimal whose value is equal to this number. This method is
provided so that BigDecimals can be used as hash keys. Unlike compareTo, this method
considers two BigDecimals equal only if they are equal in value and scale.
Overrides:

equals in class Object

 min

 public BigDecimal min(BigDecimal val)

Returns the BigDecimal whose value is the lesser of this and val. If the values are equal (as
defined by the compareTo operator), either may be returned.

 max

 public BigDecimal max(BigDecimal val)

Returns the BigDecimal whose value is the greater of this and val. If the values are equal (as
defined by the compareTo operator), either may be returned.

 hashCode

 public int hashCode()

Computes a hash code for this object. Note that two BigDecimals that are numerically equal
but differ in scale (e.g., 2.0, 2.00) will not generally have the same hash code.
Overrides:

hashCode in class Object

 toString

 public String toString()

Returns the string representation of this number. The digit-to- character mapping provided
by Character.forDigit is used. The minus sign and decimal point are used to indicate sign and
scale. (This representation is compatible with the (String, int) constructor.)
Overrides:

toString in class Object

 toBigInteger

 public BigInteger toBigInteger()

Converts this number to a BigInteger. Standard narrowing primitive conversion as per The
Java Language Specification. In particular, note that any fractional part of this number will
be truncated.

 intValue

 public int intValue()

Converts this number to an int. Standard narrowing primitive conversion as per The Java
Language Specification. In particular, note that any fractional part of this number will be
truncated.
Overrides:

intValue in class Number

 longValue

 public long longValue()

Converts this number to a long. Standard narrowing primitive conversion as per The Java
Language Specification. In particular, note that any fractional part of this number will be
truncated.
Overrides:

longValue in class Number

 floatValue

 public float floatValue()

Converts this number to a float. Similar to the double-to-float narrowing primitive
conversion defined in The Java Language Specification: if the number has too great a
magnitude to represent as a float, it will be converted to infinity or negative infinity, as

appropriate.
Overrides:

floatValue in class Number

 doubleValue

 public double doubleValue()

Converts the number to a double. Similar to the double-to-float narrowing primitive
conversion defined in The Java Language Specification: if the number has too great a
magnitude to represent as a double, it will be converted to infinity or negative infinity, as
appropriate.
Overrides:

doubleValue in class Number

Class java.math.BigInteger
java.lang.Object
 |
 +----java.lang.Number
 |
 +----java.math.BigInteger

public class BigInteger
extends Number

This version of BigInteger is just a wrapper class for long and its purpose is to only to support a JDK
1.0.2 version of BigDecimal.

See Also:
BigDecimal

 BigInteger(String)
Translates a string containing an optional minus sign followed by a sequence of one or more
decimal digits into a BigInteger.

 BigInteger(String, int)
Translates a string containing an optional minus sign followed by a sequence of one or more digits
in the specified radix into a BigInteger.

 abs()
Returns a BigInteger whose value is the absolute value of this number.

 add(BigInteger)
Returns a BigInteger whose value is (this + val).

 compareTo(BigInteger)
Returns -1, 0 or 1 as this number is less than, equal to, or greater than val.

 divide(BigInteger)
Returns a BigInteger whose value is (this / val).

 divideAndRemainder(BigInteger)
Returns an array of two BigIntegers.

 doubleValue()
Converts the number to a double.

 equals(Object)
Returns true iff x is a BigInteger whose value is equal to this number.

 floatValue()
Converts this number to a float.

 hashCode()
Computes a hash code for this object.

 intValue()
Converts this number to an int.

 longValue()
Converts this number to a long.

 max(BigInteger)
Returns the BigInteger whose value is the greater of this and val.

 min(BigInteger)
Returns the BigInteger whose value is the lesser of this and val.

 multiply (BigInteger)
Returns a BigInteger whose value is (this * val).

 negate()
Returns a BigInteger whose value is (-1 * this).

 pow(int)
Returns a BigInteger whose value is (this ** exponent).

 remainder(BigInteger)
Returns a BigInteger whose value is (this % val).

 signum()
Returns the signum function of this number (i.e., -1, 0 or 1 as the value of this number is negative,
zero or positive).

 subtract(BigInteger)
Returns a BigInteger whose value is (this - val).

 testBit(int)
Returns true iff the designated bit is set.

 toString()
Returns the string representation of this number, radix 10.

 toString(int)

Returns the string representation of this number in the given radix.
 valueOf(long)

Returns a BigInteger with the specified value.

 BigInteger

 public BigInteger(String val,
 int radix) throws NumberFormatException

Translates a string containing an optional minus sign followed by a sequence of one or more digits
in the specified radix into a BigInteger. The character-to-digit mapping is provided by
Character.digit. Any extraneous characters (including whitespace), or a radix outside the range
from Character.MIN_RADIX(2) to Character.MAX_RADIX(36), inclusive, will result in a
NumberFormatException.

 BigInteger

 public BigInteger(String val) throws NumberFormatException

Translates a string containing an optional minus sign followed by a sequence of one or more
decimal digits into a BigInteger. The character-to-digit mapping is provided by Character.digit.
Any extraneous characters (including whitespace) will result in a NumberFormatException.

 valueOf

 public static BigInteger valueOf(long val)

Returns a BigInteger with the specified value. This factory is provided in preference to a (long)
constructor because it allows for reuse of frequently used BigIntegers (like 0 and 1), obviating the
need for exported constants.

 add

 public BigInteger add(BigInteger val) throws ArithmeticException

Returns a BigInteger whose value is (this + val).

 subtract

 public BigInteger subtract(BigInteger val)

Returns a BigInteger whose value is (this - val).

 multiply

 public BigInteger multiply(BigInteger val) throws ArithmeticException

Returns a BigInteger whose value is (this * val).

 divide

 public BigInteger divide(BigInteger val) throws ArithmeticException

Returns a BigInteger whose value is (this / val). Throws an ArithmeticException if val == 0.

 remainder

 public BigInteger remainder(BigInteger val) throws ArithmeticException

Returns a BigInteger whose value is (this % val). Throws an ArithmeticException if val == 0.

 divideAndRemainder

 public BigInteger[] divideAndRemainder(BigInteger val) throws ArithmeticException

Returns an array of two BigIntegers. The first ([0]) element of the return value is the quotient (this
/ val), and the second ([1]) element is the remainder (this % val). Throws an ArithmeticException
if val == 0.

 testBit

 public boolean testBit(int n) throws ArithmeticException

Returns true iff the designated bit is set. (Computes ((this & (1< pow

 public BigInteger pow(int exponent) throws ArithmeticException

Returns a BigInteger whose value is (this ** exponent). Throws an ArithmeticException if
exponent <0 as the operation would yield a non-integer value). Note that exponent is an
integer rather than a BigInteger. dl> abs

 public BigInteger abs()

Returns a BigInteger whose value is the absolute value of this number.

 negate

 public BigInteger negate()

Returns a BigInteger whose value is (-1 * this).

 signum

 public int signum()

Returns the signum function of this number (i.e., -1, 0 or 1 as the value of this number

is negative, zero or positive).

 compareTo

 public int compareTo(BigInteger val)

Returns -1, 0 or 1 as this number is less than, equal to, or greater than val. This method
is provided in preference to individual methods for each of the six boolean comparison
operators (<,>, >=, !=, <=). The suggested idiom for performing these comparisons is:
x.compareTo(y) op> 0), where is one of the six comparison operators.

 equals

 public boolean equals(Object x)

Returns true iff x is a BigInteger whose value is equal to this number. This method is
provided so that BigIntegers can be used as hash keys.
Overrides:

equals in class Object

 min

 public BigInteger min(BigInteger val)

Returns the BigInteger whose value is the lesser of this and val. If the values are equal,
either may be returned.

 max

 public BigInteger max(BigInteger val)

Returns the BigInteger whose value is the greater of this and val. If the values are
equal, either may be returned.

 hashCode

 public int hashCode()

Computes a hash code for this object.
Overrides:

hashCode in class Object

 toString

 public String toString(int radix)

Returns the string representation of this number in the given radix. If the radix is
outside the range from Character.MIN_RADIX(2) to Character.MAX_RADIX(36)
inclusive, it will default to 10 (as is the case for Integer.toString). The
digit-to-character mapping provided by Character.forDigit is used, and a minus sign is

prepended if appropriate. (This representation is compatible with the (String, int)
constructor.)

 toString

 public String toString()

Returns the string representation of this number, radix 10. The digit-to-character
mapping provided by Character.forDigit is used, and a minus sign is prepended if
appropriate. (This representation is compatible with the (String) constructor, and
allows for string concatenation with Java’s + operator.)
Overrides:

toString in class Object

 intValue

 public int intValue()

Converts this number to an int. Standard narrowing primitive conversion as per The
Java Language Specification.
Overrides:

intValue in class Number

 longValue

 public long longValue()

Converts this number to a long. Standard narrowing primitive conversion as per The
Java Language Specification.
Overrides:

longValue in class Number

 floatValue

 public float floatValue()

Converts this number to a float. Similar to the double-to-float narrowing primitive
conversion defined in The Java Language Specification: if the number has too great a
magnitude to represent as a float, it will be converted to infinity or negative infinity, as
appropriate.
Overrides:

floatValue in class Number

 doubleValue

 public double doubleValue()

Converts the number to a double. Similar to the double-to-float narrowing primitive
conversion defined in The Java Language Specification: if the number has too great a
magnitude to represent as a double, it will be converted to infinity or negative infinity,

as appropriate.
Overrides:

doubleValue in class Number

Class java.sql.Date
java.lang.Object
 |
 +----java.util.Date
 |
 +----java.sql.Date

public class Date
extends Date

This class is a thin wrapper around java.util.Date that allows JDBC to identify this as a SQL DATE
value. It adds formatting and parsing operations to support the JDBC escape syntax for date values.

 Date(int, int, int)
Construct a Date

 Date(long)
Construct a Date using a milliseconds time value

 getHours()

 getMinutes()

 getSeconds()

 setHours(int)

 setMinutes(int)

 setSeconds(int)

 setTime(long)
Set a Date using a milliseconds time value

 toString()
Format a date in JDBC date escape format

 valueOf(String)
Convert a string in JDBC date escape format to a Date value

 Date

 public Date(int year,
 int month,
 int day)

Construct a Date
Parameters:

year - year-1900
month - 0 to 11
day - 1 to 31

 Date

 public Date(long date)

Construct a Date using a milliseconds time value
Parameters:

date - milliseconds since January 1, 1970, 00:00:00 GMT

 setTime

 public void setTime(long date)

Set a Date using a milliseconds time value
Parameters:

date - milliseconds since January 1, 1970, 00:00:00 GMT
Overrides:

setTime in class Date

 valueOf

 public static Date valueOf(String s)

Convert a string in JDBC date escape format to a Date value
Parameters:

s - date in format "yyyy-mm-dd"
Returns:

corresponding Date

 toString

 public String toString()

Format a date in JDBC date escape format
Returns:

a String in yyyy-mm-dd format
Overrides:

toString in class Date

 getHours

 public int getHours()

Overrides:
getHours in class Date

 getMinutes

 public int getMinutes()

Overrides:
getMinutes in class Date

 getSeconds

 public int getSeconds()

Overrides:
getSeconds in class Date

 setHours

 public void setHours(int i)

Overrides:
setHours in class Date

 setMinutes

 public void setMinutes(int i)

Overrides:
setMinutes in class Date

 setSeconds

 public void setSeconds(int i)

Overrides:
setSeconds in class Date

Class java.sql.DriverManager
java.lang.Object
 |
 +----java.sql.DriverManager

public class DriverManager
extends Object

The DriverManager provides a basic service for managing a set of JDBC drivers.

As part of its initialization, the DriverManager class will attempt to load the driver classes referenced in
the "jdbc.drivers" system property. This allows a user to customize the JDBC Drivers used by their
applications. For example in your ~/.hotjava/properties file you might specify:
jdbc.drivers=foo.bah.Driver:wombat.sql.Driver:bad.taste.ourDriver A program can also
explicitly load JDBC drivers at any time. For example, the my.sql.Driver is loaded with the following
statement: Class.forName("my.sql.Driver");

When getConnection is called the DriverManager will attempt to locate a suitable driver from amongst
those loaded at initialization and those loaded explicitly using the same classloader as the current applet
or application.

See Also:
Driver, Connection

 deregisterDriver(Driver)
Drop a Driver from the DriverManager’s list.

 getConnection(String)
Attempt to establish a connection to the given database URL.

 getConnection(String, Properties)
Attempt to establish a connection to the given database URL.

 getConnection(String, String, String)
Attempt to establish a connection to the given database URL.

 getDriver(String)

Attempt to locate a driver that understands the given URL.
 getDrivers()

Return an Enumeration of all the currently loaded JDBC drivers which the current caller has
access to.

 getLoginTimeout()
Get the maximum time in seconds that all drivers can wait when attempting to log in to a database.

 getLogStream()
Get the logging/tracing PrintStream that is used by the DriverManager and all drivers.

 println (String)
Print a message to the current JDBC log stream

 registerDriver(Driver)
A newly loaded driver class should call registerDriver to make itself known to the DriverManager.

 setLoginTimeout(int)
Set the maximum time in seconds that all drivers can wait when attempting to log in to a database.

 setLogStream(PrintStream)
Set the logging/tracing PrintStream that is used by the DriverManager and all drivers.

 getConnection

 public static synchronized Connection getConnection(String url,
 Properties info) throws SQLExc e

Attempt to establish a connection to the given database URL. The DriverManager attempts to
select an appropriate driver from the set of registered JDBC drivers.
Parameters:

url - a database url of the form jdbc:subprotocol:subname
info - a list of arbitrary string tag/value pairs as connection arguments; normally at least a
"user" and "password" property should be included

Returns:
a Connection to the URL

 getConnection

 public static synchronized Connection getConnection(String url,
 String user,
 String password) throws SQLExc e

Attempt to establish a connection to the given database URL. The DriverManager attempts to
select an appropriate driver from the set of registered JDBC drivers.
Parameters:

url - a database url of the form jdbc:subprotocol:subname
user - the database user on whose behalf the Connection is being made
password - the user’s password

Returns:
a Connection to the URL

 getConnection

 public static synchronized Connection getConnection(String url) throws SQLExceptio n

Attempt to establish a connection to the given database URL. The DriverManager attempts to
select an appropriate driver from the set of registered JDBC drivers.
Parameters:

url - a database url of the form jdbc:subprotocol:subname
Returns:

a Connection to the URL

 getDriver

 public static Driver getDriver(String url) throws SQLException

Attempt to locate a driver that understands the given URL. The DriverManager attempts to select
an appropriate driver from the set of registered JDBC drivers.
Parameters:

url - a database url of the form jdbc:subprotocol:subname
Returns:

a Driver that can connect to the URL

 registerDriver

 public static synchronized void registerDriver(Driver driver) throws SQLException

A newly loaded driver class should call registerDriver to make itself known to the DriverManager.
Parameters:

driver - the new JDBC Driver

 deregisterDriver

 public static void deregisterDriver(Driver driver) throws SQLException

Drop a Driver from the DriverManager’s list. Applets can only deregister Drivers from their own
classloader.
Parameters:

driver - the JDBC Driver to drop

 getDrivers

 public static Enumeration getDrivers()

Return an Enumeration of all the currently loaded JDBC drivers which the current caller has
access to.

Note: The classname of a driver can be found using d.getClass().getName()

Returns:
the list of JDBC Drivers loaded by the caller’s class loader

 setLoginTimeout

 public static void setLoginTimeout(int seconds)

Set the maximum time in seconds that all drivers can wait when attempting to log in to a database.
Parameters:

seconds - the driver login time limit

 getLoginTimeout

 public static int getLoginTimeout()

Get the maximum time in seconds that all drivers can wait when attempting to log in to a database.
Returns:

the driver login time limit

 setLogStream

 public static void setLogStream(PrintStream out)

Set the logging/tracing PrintStream that is used by the DriverManager and all drivers.
Parameters:

out - the new logging/tracing PrintStream; to disable, set to null

 getLogStream

 public static PrintStream getLogStream()

Get the logging/tracing PrintStream that is used by the DriverManager and all drivers.
Returns:

the logging/tracing PrintStream; if disabled, is null

 println

 public static void println(String message)

Print a message to the current JDBC log stream
Parameters:

message - a log or tracing message

Class java.sql.DriverPropertyInfo
java.lang.Object
 |
 +----java.sql.DriverPropertyInfo

public class DriverPropertyInfo
extends Object

The DriverPropertyInfo class is only of interest to advanced programmers who need to interact with a
Driver via getDriverProperties to discover and supply properties for connections.

 choices
If the value may be selected from a particular set of values, then this is an array of the possible
values.

 description
A brief description of the property.

 name
The name of the property.

 required
"required" is true if a value must be supplied for this property during Driver.connect.

 value
"value" specifies the current value of the property, based on a combination of the information
supplied to getPropertyInfo, the Java environment, and driver supplied default values.

 DriverPropertyInfo (String, String)
Constructor a DriverPropertyInfo with a name and value; other members default to their initial
values.

 name

 public String name

The name of the property.

 description

 public String description

A brief description of the property. This may be null.

 required

 public boolean required

"required" is true if a value must be supplied for this property during Driver.connect. Otherwise
the property is optional.

 value

 public String value

"value" specifies the current value of the property, based on a combination of the information
supplied to getPropertyInfo, the Java environment, and driver supplied default values. This may be
null if no value is known.

 choices

 public String choices[]

If the value may be selected from a particular set of values, then this is an array of the possible
values. Otherwise it should be null.

 DriverPropertyInfo

 public DriverPropertyInfo(String name,
 String value)

Constructor a DriverPropertyInfo with a name and value; other members default to their initial
values.
Parameters:

name - the name of the property
value - the current value, which may be null

Class java.sql.Time
java.lang.Object
 |
 +----java.util.Date
 |
 +----java.sql.Time

public class Time
extends Date

This class is a thin wrapper around java.util.Date that allows JDBC to identify this as a SQL TIME

value. It adds formatting and parsing operations to support the JDBC escape syntax for time values.

 Time(int, int, int)
Construct a Time Object

 Time(long)
Construct a Time using a milliseconds time value

 getDate()

 getDay()

 getMonth()

 getYear()

 setDate(int)

 setMonth(int)

 setTime(long)
Set a Time using a milliseconds time value

 setYear(int)

 toString()
Format a time in JDBC date escape format

 valueOf(String)
Convert a string in JDBC time escape format to a Time value

 Time

 public Time(int hour,
 int minute,
 int second)

Construct a Time Object
Parameters:

hour - 0 to 23

minute - 0 to 59
second - 0 to 59

 Time

 public Time(long time)

Construct a Time using a milliseconds time value
Parameters:

time - milliseconds since January 1, 1970, 00:00:00 GMT

 setTime

 public void setTime(long time)

Set a Time using a milliseconds time value
Parameters:

time - milliseconds since January 1, 1970, 00:00:00 GMT
Overrides:

setTime in class Date

 valueOf

 public static Time valueOf(String s)

Convert a string in JDBC time escape format to a Time value
Parameters:

s - time in format "hh:mm:ss"
Returns:

corresponding Time

 toString

 public String toString()

Format a time in JDBC date escape format
Returns:

a String in hh:mm:ss format
Overrides:

toString in class Date

 getYear

 public int getYear()

Overrides:
getYear in class Date

 getMonth

 public int getMonth()

Overrides:
getMonth in class Date

 getDay

 public int getDay()

Overrides:
getDay in class Date

 getDate

 public int getDate()

Overrides:
getDate in class Date

 setYear

 public void setYear(int i)

Overrides:
setYear in class Date

 setMonth

 public void setMonth(int i)

Overrides:
setMonth in class Date

 setDate

 public void setDate(int i)

Overrides:
setDate in class Date

Class java.sql.Timestamp
java.lang.Object
 |
 +----java.util.Date

 |
 +----java.sql.Timestamp

public class Timestamp
extends Date

This class is a thin wrapper around java.util.Date that allows JDBC to identify this as a SQL
TIMESTAMP value. It adds the ability to hold the SQL TIMESTAMP nanos value and provides
formatting and parsing operations to support the JDBC escape syntax for timestamp values.

Note: This type is a composite of a java.util.Date and a separate nanos value. Only integral seconds are
stored in the java.util.Date component. The fractional seconds - the nanos - are separate. The getTime
method will only return integral seconds. If a time value that includes the fractional seconds is desired
you must convert nanos to milliseconds (nanos/1000000) and add this to the getTime value. Also note
that the hashcode() method uses the underlying java.util.Data implementation and therefore does not
include nanos in its computation.

 Timestamp(int, int, int, int, int, int, int)
Construct a Timestamp Object

 Timestamp(long)
Construct a Timestamp using a milliseconds time value.

 after(Timestamp)
Is this timestamp later than the timestamp argument?

 before(Timestamp)
Is this timestamp earlier than the timestamp argument?

 equals(Timestamp)
Test Timestamp values for equality

 getNanos()
Get the Timestamp’s nanos value

 setNanos(int)
Set the Timestamp’s nanos value

 toString()
Format a timestamp in JDBC timestamp escape format

 valueOf(String)
Convert a string in JDBC timestamp escape format to a Timestamp value

 Timestamp

 public Timestamp(int year,
 int month,
 int date,
 int hour,
 int minute,
 int second,
 int nano)

Construct a Timestamp Object
Parameters:

year - year-1900
month - 0 to 11
day - 1 to 31
hour - 0 to 23
minute - 0 to 59
second - 0 to 59
nano - 0 to 999,999,999

 Timestamp

 public Timestamp(long time)

Construct a Timestamp using a milliseconds time value. The integral seconds are stored in the
underlying date value; the fractional seconds are stored in the nanos value.
Parameters:

time - milliseconds since January 1, 1970, 00:00:00 GMT

 valueOf

 public static Timestamp valueOf(String s)

Convert a string in JDBC timestamp escape format to a Timestamp value
Parameters:

s - timestamp in format "yyyy-mm-dd hh:mm:ss.fffffffff"
Returns:

corresponding Timestamp

 toString

 public String toString()

Format a timestamp in JDBC timestamp escape format

Returns:
a String in yyyy-mm-dd hh:mm:ss.fffffffff format

Overrides:
toString in class Date

 getNanos

 public int getNanos()

Get the Timestamp’s nanos value
Returns:

the Timestamp’s fractional seconds component

 setNanos

 public void setNanos(int n)

Set the Timestamp’s nanos value
Parameters:

n - the new fractional seconds component

 equals

 public boolean equals(Timestamp ts)

Test Timestamp values for equality
Parameters:

ts - the Timestamp value to compare with

 before

 public boolean before(Timestamp ts)

Is this timestamp earlier than the timestamp argument?
Parameters:

ts - the Timestamp value to compare with

 after

 public boolean after(Timestamp ts)

Is this timestamp later than the timestamp argument?
Parameters:

ts - the Timestamp value to compare with

Class java.sql.Types

java.lang.Object
 |
 +----java.sql.Types

public class Types
extends Object

This class defines constants that are used to identify SQL types. The actual type constant values are
equivalent to those in XOPEN.

 BIGINT

 BINARY

 BIT

 CHAR

 DATE

 DECIMAL

 DOUBLE

 FLOAT

 INTEGER

 LONGVARBINARY

 LONGVARCHAR

 NULL

 NUMERIC

 OTHER
OTHER indicates that the SQL type is database specific and gets mapped to a Java object which
can be accessed via getObject and setObject.

 REAL

 SMALLINT

 TIME

 TIMESTAMP

 TINYINT

 VARBINARY

 VARCHAR

 BIT

 public final static int BIT

 TINYINT

 public final static int TINYINT

 SMALLINT

 public final static int SMALLINT

 INTEGER

 public final static int INTEGER

 BIGINT

 public final static int BIGINT

 FLOAT

 public final static int FLOAT

 REAL

 public final static int REAL

 DOUBLE

 public final static int DOUBLE

 NUMERIC

 public final static int NUMERIC

 DECIMAL

 public final static int DECIMAL

 CHAR

 public final static int CHAR

 VARCHAR

 public final static int VARCHAR

 LONGVARCHAR

 public final static int LONGVARCHAR

 DATE

 public final static int DATE

 TIME

 public final static int TIME

 TIMESTAMP

 public final static int TIMESTAMP

 BINARY

 public final static int BINARY

 VARBINARY

 public final static int VARBINARY

 LONGVARBINARY

 public final static int LONGVARBINARY

 NULL

 public final static int NULL

 OTHER

 public final static int OTHER

OTHER indicates that the SQL type is database specific and gets mapped to a Java object which
can be accessed via getObject and setObject.

Class java.sql.DataTruncation
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----java.sql.SQLException
 |
 +----java.sql.SQLWarning
 |
 +----java.sql.DataTruncation

public class DataTruncation
extends SQLWarning

When JDBC unexpectedly truncates a data value, it reports a DataTruncation warning (on reads) or
throws a DataTruncation exception (on writes).

The SQLstate for a DataTruncation is "01004".

 DataTruncation(int, boolean, boolean, int, int)
Create a DataTruncation object.

 getDataSize()
Get the number of bytes of data that should have been transferred.

 getIndex()
Get the index of the column or parameter that was truncated.

 getParameter()
Is this a truncated parameter value?

 getRead()
Was this a read truncation?

 getTransferSize()
Get the number of bytes of data actually transferred.

 DataTruncation

 public DataTruncation(int index,
 boolean parameter,
 boolean read,
 int dataSize,
 int transferSize)

Create a DataTruncation object. The SQLState is initialized to 01004, the reason is set to "Data
truncation" and the vendorCode is set to the SQLException default.
Parameters:

index - The index of the parameter or column value
parameter - true if a parameter value was truncated
read - true if a read was truncated
dataSize - the original size of the data
transferSize - the size after truncation

 getIndex

 public int getIndex()

Get the index of the column or parameter that was truncated.

This may be -1 if the column or parameter index is unknown, in which case the "parameter" and
"read" fields should be ignored.

Returns:
the index of the truncated paramter or column value.

 getParameter

 public boolean getParameter()

Is this a truncated parameter value?
Returns:

True if the value was a parameter; false if it was a column value.

 getRead

 public boolean getRead()

Was this a read truncation?
Returns:

True if the value was truncated when read from the database; false if the data was truncated
on a write.

 getDataSize

 public int getDataSize()

Get the number of bytes of data that should have been transferred. This number may be
approximate if data conversions were being performed. The value may be "-1" if the size is
unknown.
Returns:

the number of bytes of data that should have been transferred

 getTransferSize

 public int getTransferSize()

Get the number of bytes of data actually transferred. The value may be "-1" if the size is unknown.
Returns:

the number of bytes of data actually transferred

Class java.sql.SQLException
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----java.sql.SQLException

public class SQLException
extends Exception

The SQLException class provides information on a database access error.

Each SQLException provides several kinds of information:

a string describing the error. This is used as the Java Exception message, and is available via the
getMesage() method
A "SQLstate" string which follows the XOPEN SQLstate conventions. The values of the SQLState
string as described in the XOPEN SQL spec.
An integer error code that is vendor specific. Normally this will be the actual error code returned
by the underlying database.
A chain to a next Exception. This can be used to provided additional error information.

 SQLException()
Construct an SQLException; reason defaults to null, SQLState defaults to null and vendorCode
defaults to 0.

 SQLException(String)
Construct an SQLException with a reason; SQLState defaults to null and vendorCode defaults to
0.

 SQLException(String, String)
Construct an SQLException with a reason and SQLState; vendorCode defaults to 0.

 SQLException(String, String, int)
Construct a fully-specified SQLException

 getErrorCode()
Get the vendor specific exception code

 getNextException()
Get the exception chained to this one.

 getSQLState()
Get the SQLState

 setNextException(SQLException)
Add an SQLException to the end of the chain.

 SQLException

 public SQLException(String reason,
 String SQLState,
 int vendorCode)

Construct a fully-specified SQLException
Parameters:

reason - a description of the exception
SQLState - an XOPEN code identifying the exception
vendorCode - a database vendor specific exception code

 SQLException

 public SQLException(String reason,
 String SQLState)

Construct an SQLException with a reason and SQLState; vendorCode defaults to 0.
Parameters:

reason - a description of the exception
SQLState - an XOPEN code identifying the exception

 SQLException

 public SQLException(String reason)

Construct an SQLException with a reason; SQLState defaults to null and vendorCode defaults to
0.
Parameters:

reason - a description of the exception

 SQLException

 public SQLException()

Construct an SQLException; reason defaults to null, SQLState defaults to null and vendorCode
defaults to 0.

 getSQLState

 public String getSQLState()

Get the SQLState
Returns:

the SQLState value

 getErrorCode

 public int getErrorCode()

Get the vendor specific exception code
Returns:

the vendor’s error code

 getNextException

 public SQLException getNextException()

Get the exception chained to this one.
Returns:

the next SQLException in the chain, null if none

 setNextException

 public synchronized void setNextException(SQLException ex)

Add an SQLException to the end of the chain.
Parameters:

ex - the new end of the SQLException chain

Class java.sql.SQLWarning
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----java.sql.SQLException
 |
 +----java.sql.SQLWarning

public class SQLWarning
extends SQLException

The SQLWarning class provides information on a database access warnings. Warnings are silently
chained to the object whose method caused it to be reported.

See Also:
getWarnings, getWarnings, getWarnings

 SQLWarning ()
Construct an SQLWarning ; reason defaults to null, SQLState defaults to null and vendorCode
defaults to 0.

 SQLWarning (String)
Construct an SQLWarning with a reason; SQLState defaults to null and vendorCode defaults to 0.

 SQLWarning (String, String)
Construct an SQLWarning with a reason and SQLState; vendorCode defaults to 0.

 SQLWarning (String, String, int)
Construct a fully specified SQLWarning.

 getNextWarning()
Get the warning chained to this one

 setNextWarning(SQLWarning)
Add an SQLWarning to the end of the chain.

 SQLWarning

 public SQLWarning(String reason,
 String SQLstate,
 int vendorCode)

Construct a fully specified SQLWarning.
Parameters:

reason - a description of the warning
SQLState - an XOPEN code identifying the warning
vendorCode - a database vendor specific warning code

 SQLWarning

 public SQLWarning(String reason,
 String SQLstate)

Construct an SQLWarning with a reason and SQLState; vendorCode defaults to 0.
Parameters:

reason - a description of the warning
SQLState - an XOPEN code identifying the warning

 SQLWarning

 public SQLWarning(String reason)

Construct an SQLWarning with a reason; SQLState defaults to null and vendorCode defaults to 0.
Parameters:

reason - a description of the warning

 SQLWarning

 public SQLWarning()

Construct an SQLWarning ; reason defaults to null, SQLState defaults to null and vendorCode
defaults to 0.

 getNextWarning

 public SQLWarning getNextWarning()

Get the warning chained to this one
Returns:

the next SQLException in the chain, null if none

 setNextWarning

 public void setNextWarning(SQLWarning w)

Add an SQLWarning to the end of the chain.
Parameters:

w - the new end of the SQLException chain

