
The JDBC(tm) API Version 1.20
January 3, 1997

Part 1 - Interfaces

This document contains a paper copy of the JDBC API online documentation that is distributed with the
JDBC package and is also available on http://splash.javasoft.com/jdbc.

It takes the place of the source code comments that were originally included as part of the JDBC
specification.

Java and JDBC are trademarks of Sun Microsystems Inc.

Copyright © 1996 Sun Microsystems, Inc., 2550 Garcia Ave., Mtn. View, CA 94043-1100 USA. All rights reserved.

package java.sql

CallableStatement
Connection
DatabaseMetaData
Driver
PreparedStatement
ResultSet
ResultSetMetaData
Statement

Date
DriverManager
DriverPropertyInfo
Time
Timestamp
Types

DataTruncation
SQLException
SQLWarning

Interface java.sql.CallableStatement
public interface CallableStatement
extends Object

extends PreparedStatement

CallableStatement is used to execute SQL stored procedures.

JDBC provides a stored procedure SQL escape that allows stored procedures to be called in a standard
way for all RDBMS’s. This escape syntax has one form that includes a result parameter and one that
does not. If used, the result parameter must be registered as an OUT parameter. The other parameters
may be used for input, output or both. Parameters are refered to sequentially, by number. The first
parameter is 1.

{?= call [,, ...]}
{call [,, ...]}

IN parameter values are set using the set methods inherited from PreparedStatement. The type of all
OUT parameters must be registered prior to executing the stored procedure; their values are retrieved
after execution via the get methods provided here.

A Callable statement may return a ResultSet or multiple ResultSets. Multiple ResultSets are handled
using operations inherited from Statement.

For maximum portability, a call’s ResultSets and update counts should be processed prior to getting the
values of output parameters.

See Also:
prepareCall, ResultSet

 getBigDecimal(int, int)
Get the value of a NUMERIC parameter as a java.math.BigDecimal object.

 getBoolean(int)
Get the value of a BIT parameter as a Java boolean.

 getByte(int)
Get the value of a TINYINT parameter as a Java byte.

 getBytes(int)
Get the value of a SQL BINARY or VARBINARY parameter as a Java byte[]

 getDate(int)
Get the value of a SQL DATE parameter as a java.sql.Date object

 getDouble(int)
Get the value of a DOUBLE parameter as a Java double.

 getFloat(int)
Get the value of a FLOAT parameter as a Java float.

 getInt(int)
Get the value of an INTEGER parameter as a Java int.

 getLong(int)

Get the value of a BIGINT parameter as a Java long.
 getObject(int)

Get the value of a parameter as a Java object.
 getShort(int)

Get the value of a SMALLINT parameter as a Java short.
 getString(int)

Get the value of a CHAR, VARCHAR, or LONGVARCHAR parameter as a Java String.
 getTime(int)

Get the value of a SQL TIME parameter as a java.sql.Time object.
 getTimestamp(int)

Get the value of a SQL TIMESTAMP parameter as a java.sql.Timestamp object.
 registerOutParameter(int, int)

Before executing a stored procedure call, you must explicitly call registerOutParameter to register
the java.sql.Type of each out parameter.

 registerOutParameter(int, int, int)
Use this version of registerOutParameter for registering Numeric or Decimal out parameters.

 wasNull()
An OUT parameter may have the value of SQL NULL; wasNull reports whether the last value
read has this special value.

 registerOutParameter

 public abstract void registerOutParameter(int parameterIndex,
 int sqlType) throws SQLException

Before executing a stored procedure call, you must explicitly call registerOutParameter to register
the java.sql.Type of each out parameter.

Note: When reading the value of an out parameter, you must use the getXXX method whose Java
type XXX corresponds to the parameter’s registered SQL type.

Parameters:
parameterIndex - the first parameter is 1, the second is 2,...
sqlType - SQL type code defined by java.sql.Types; for parameters of type Numeric or
Decimal use the version of registerOutParameter that accepts a scale value

See Also:
Type

 registerOutParameter

 public abstract void registerOutParameter(int parameterIndex,
 int sqlType,
 int scale) throws SQLException

Use this version of registerOutParameter for registering Numeric or Decimal out parameters.

Note: When reading the value of an out parameter, you must use the getXXX method whose Java
type XXX corresponds to the parameter’s registered SQL type.

Parameters:
parameterIndex - the first parameter is 1, the second is 2, ...
sqlType - use either java.sql.Type.NUMERIC or java.sql.Type.DECIMAL
scale - a value greater than or equal to zero representing the desired number of digits to the
right of the decimal point

See Also:
Type

 wasNull

 public abstract boolean wasNull() throws SQLException

An OUT parameter may have the value of SQL NULL; wasNull reports whether the last value
read has this special value.

Note: You must first call getXXX on a parameter to read its value and then call wasNull() to see if
the value was SQL NULL.

Returns:
true if the last parameter read was SQL NULL

 getString

 public abstract String getString(int parameterIndex) throws SQLException

Get the value of a CHAR, VARCHAR, or LONGVARCHAR parameter as a Java String.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
Returns:

the parameter value; if the value is SQL NULL, the result is null

 getBoolean

 public abstract boolean getBoolean(int parameterIndex) throws SQLException

Get the value of a BIT parameter as a Java boolean.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
Returns:

the parameter value; if the value is SQL NULL, the result is false

 getByte

 public abstract byte getByte(int parameterIndex) throws SQLException

Get the value of a TINYINT parameter as a Java byte.

Parameters:
parameterIndex - the first parameter is 1, the second is 2, ...

Returns:
the parameter value; if the value is SQL NULL, the result is 0

 getShort

 public abstract short getShort(int parameterIndex) throws SQLException

Get the value of a SMALLINT parameter as a Java short.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
Returns:

the parameter value; if the value is SQL NULL, the result is 0

 getInt

 public abstract int getInt(int parameterIndex) throws SQLException

Get the value of an INTEGER parameter as a Java int.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
Returns:

the parameter value; if the value is SQL NULL, the result is 0

 getLong

 public abstract long getLong(int parameterIndex) throws SQLException

Get the value of a BIGINT parameter as a Java long.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
Returns:

the parameter value; if the value is SQL NULL, the result is 0

 getFloat

 public abstract float getFloat(int parameterIndex) throws SQLException

Get the value of a FLOAT parameter as a Java float.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
Returns:

the parameter value; if the value is SQL NULL, the result is 0

 getDouble

 public abstract double getDouble(int parameterIndex) throws SQLException

Get the value of a DOUBLE parameter as a Java double.

Parameters:
parameterIndex - the first parameter is 1, the second is 2, ...

Returns:
the parameter value; if the value is SQL NULL, the result is 0

 getBigDecimal

 public abstract BigDecimal getBigDecimal(int parameterIndex,
 int scale) throws SQLException

Get the value of a NUMERIC parameter as a java.math.BigDecimal object.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
scale - a value greater than or equal to zero representing the desired number of digits to the
right of the decimal point

Returns:
the parameter value; if the value is SQL NULL, the result is null

 getBytes

 public abstract byte[] getBytes(int parameterIndex) throws SQLException

Get the value of a SQL BINARY or VARBINARY parameter as a Java byte[]
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
Returns:

the parameter value; if the value is SQL NULL, the result is null

 getDate

 public abstract Date getDate(int parameterIndex) throws SQLException

Get the value of a SQL DATE parameter as a java.sql.Date object
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
Returns:

the parameter value; if the value is SQL NULL, the result is null

 getTime

 public abstract Time getTime(int parameterIndex) throws SQLException

Get the value of a SQL TIME parameter as a java.sql.Time object.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
Returns:

the parameter value; if the value is SQL NULL, the result is null

 getTimestamp

 public abstract Timestamp getTimestamp(int parameterIndex) throws SQLException

Get the value of a SQL TIMESTAMP parameter as a java.sql.Timestamp object.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
Returns:

the parameter value; if the value is SQL NULL, the result is null

 getObject

 public abstract Object getObject(int parameterIndex) throws SQLException

Get the value of a parameter as a Java object.

This method returns a Java object whose type coresponds to the SQL type that was registered for
this parameter using registerOutParameter.

Note that this method may be used to read datatabase-specific, abstract data types. This is done by
specifying a targetSqlType of java.sql.types.OTHER, which allows the driver to return a
database-specific Java type.

Parameters:
parameterIndex - The first parameter is 1, the second is 2, ...

Returns:
A java.lang.Object holding the OUT parameter value.

See Also:
Types

Interface java.sql.Connection
public interface Connection
extends Object

A Connection represents a session with a specific database. Within the context of a Connection, SQL
statements are executed and results are returned.

A Connection’s database is able to provide information describing its tables, its supported SQL
grammar, its stored procedures, the capabilities of this connection, etc. This information is obtained with
the getMetaData method.

Note: By default the Connection automatically commits changes after executing each statement. If auto
commit has been disabled, an explicit commit must be done or database changes will not be saved.

See Also:
getConnection, Statement, ResultSet, DatabaseMetaData

 TRANSACTION_NONE
Transactions are not supported.

 TRANSACTION_READ_COMMITTED
Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

 TRANSACTION_READ_UNCOMMITTED
Dirty reads, non-repeatable reads and phantom reads can occur.

 TRANSACTION_REPEATABLE_READ
Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

 TRANSACTION_SERIALIZABLE
Dirty reads, non-repeatable reads and phantom reads are prevented.

 clearWarnings()
After this call, getWarnings returns null until a new warning is reported for this Connection.

 close()
In some cases, it is desirable to immediately release a Connection’s database and JDBC resources
instead of waiting for them to be automatically released; the close method provides this immediate
release.

 commit()
Commit makes all changes made since the previous commit/rollback permanent and releases any
database locks currently held by the Connection.

 createStatement()
SQL statements without parameters are normally executed using Statement objects.

 getAutoCommit()
Get the current auto-commit state.

 getCatalog()
Return the Connection’s current catalog name.

 getMetaData()
A Connection’s database is able to provide information describing its tables, its supported SQL
grammar, its stored procedures, the capabilities of this connection, etc.

 getTransactionIsolation()
Get this Connection’s current transaction isolation mode.

 getWarnings()
The first warning reported by calls on this Connection is returned.

 isClosed()
Tests to see if a Connection is closed.

 isReadOnly()
Tests to see if the connection is in read-only mode.

 nativeSQL(String)
A driver may convert the JDBC sql grammar into its system’s native SQL grammar prior to

sending it; nativeSQL returns the native form of the statement that the driver would have sent.
 prepareCall(String)

A SQL stored procedure call statement is handled by creating a CallableStatement for it.
 prepareStatement(String)

A SQL statement with or without IN parameters can be pre-compiled and stored in a
PreparedStatement object.

 rollback ()
Rollback drops all changes made since the previous commit/rollback and releases any database
locks currently held by the Connection.

 setAutoCommit(boolean)
If a connection is in auto-commit mode, then all its SQL statements will be executed and
committed as individual transactions.

 setCatalog(String)
A sub-space of this Connection’s database may be selected by setting a catalog name.

 setReadOnly(boolean)
You can put a connection in read-only mode as a hint to enable database optimizations.

 setTransactionIsolation(int)
You can call this method to try to change the transaction isolation level using one of the
TRANSACTION_* values.

 TRANSACTION_NONE

 public final static int TRANSACTION_NONE

Transactions are not supported.

 TRANSACTION_READ_UNCOMMITTED

 public final static int TRANSACTION_READ_UNCOMMITTED

Dirty reads, non-repeatable reads and phantom reads can occur.

 TRANSACTION_READ_COMMITTED

 public final static int TRANSACTION_READ_COMMITTED

Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

 TRANSACTION_REPEATABLE_READ

 public final static int TRANSACTION_REPEATABLE_READ

Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

 TRANSACTION_SERIALIZABLE

 public final static int TRANSACTION_SERIALIZABLE

Dirty reads, non-repeatable reads and phantom reads are prevented.

 createStatement

 public abstract Statement createStatement() throws SQLException

SQL statements without parameters are normally executed using Statement objects. If the same
SQL statement is executed many times, it is more efficient to use a PreparedStatement
Returns:

a new Statement object

 prepareStatement

 public abstract PreparedStatement prepareStatement(String sql) throws SQLException

A SQL statement with or without IN parameters can be pre-compiled and stored in a
PreparedStatement object. This object can then be used to efficiently execute this statement
multiple times.

Note: This method is optimized for handling parametric SQL statements that benefit from
precompilation. If the driver supports precompilation, prepareStatement will send the statement to
the database for precompilation. Some drivers may not support precompilation. In this case, the
statement may not be sent to the database until the PreparedStatement is executed. This has no
direct affect on users; however, it does affect which method throws certain SQLExceptions.

Parameters:
sql - a SQL statement that may contain one or more ’?’ IN parameter placeholders

Returns:
a new PreparedStatement object containing the pre-compiled statement

 prepareCall

 public abstract CallableStatement prepareCall(String sql) throws SQLException

A SQL stored procedure call statement is handled by creating a CallableStatement for it. The
CallableStatement provides methods for setting up its IN and OUT parameters, and methods for
executing it.

Note: This method is optimized for handling stored procedure call statements. Some drivers may
send the call statement to the database when the prepareCall is done; others may wait until the
CallableStatement is executed. This has no direct affect on users; however, it does affect which
method throws certain SQLExceptions.

Parameters:

sql - a SQL statement that may contain one or more ’?’ parameter placeholders. Typically
this statement is a JDBC function call escape string.

Returns:
a new CallableStatement object containing the pre-compiled SQL statement

 nativeSQL

 public abstract String nativeSQL(String sql) throws SQLException

A driver may convert the JDBC sql grammar into its system’s native SQL grammar prior to
sending it; nativeSQL returns the native form of the statement that the driver would have sent.
Parameters:

sql - a SQL statement that may contain one or more ’?’ parameter placeholders
Returns:

the native form of this statement

 setAutoCommit

 public abstract void setAutoCommit(boolean autoCommit) throws SQLException

If a connection is in auto-commit mode, then all its SQL statements will be executed and
committed as individual transactions. Otherwise, its SQL statements are grouped into transactions
that are terminated by either commit() or rollback(). By default, new connections are in
auto-commit mode. The commit occurs when the statement completes or the next execute occurs,
whichever comes first. In the case of statements returning a ResultSet, the statement completes
when the last row of the ResultSet has been retrieved or the ResultSet has been closed. In
advanced cases, a single statement may return multiple results as well as output parameter values.
Here the commit occurs when all results and output param values have been retrieved.
Parameters:

autoCommit - true enables auto-commit; false disables auto-commit.

 getAutoCommit

 public abstract boolean getAutoCommit() throws SQLException

Get the current auto-commit state.
Returns:

Current state of auto-commit mode.
See Also:

setAutoCommit

 commit

 public abstract void commit() throws SQLException

Commit makes all changes made since the previous commit/rollback permanent and releases any
database locks currently held by the Connection. This method should only be used when auto
commit has been disabled.
See Also:

setAutoCommit

 rollback

 public abstract void rollback() throws SQLException

Rollback drops all changes made since the previous commit/rollback and releases any database
locks currently held by the Connection. This method should only be used when auto commit has
been disabled.
See Also:

setAutoCommit

 close

 public abstract void close() throws SQLException

In some cases, it is desirable to immediately release a Connection’s database and JDBC resources
instead of waiting for them to be automatically released; the close method provides this immediate
release.

Note: A Connection is automatically closed when it is garbage collected. Certain fatal errors also
result in a closed Connection.

 isClosed

 public abstract boolean isClosed() throws SQLException

Tests to see if a Connection is closed.
Returns:

true if the connection is closed; false if it’s still open

 getMetaData

 public abstract DatabaseMetaData getMetaData() throws SQLException

A Connection’s database is able to provide information describing its tables, its supported SQL
grammar, its stored procedures, the capabilities of this connection, etc. This information is made
available through a DatabaseMetaData object.
Returns:

a DatabaseMetaData object for this Connection

 setReadOnly

 public abstract void setReadOnly(boolean readOnly) throws SQLException

You can put a connection in read-only mode as a hint to enable database optimizations.

Note: setReadOnly cannot be called while in the middle of a transaction.

Parameters:

readOnly - true enables read-only mode; false disables read-only mode.

 isReadOnly

 public abstract boolean isReadOnly() throws SQLException

Tests to see if the connection is in read-only mode.
Returns:

true if connection is read-only

 setCatalog

 public abstract void setCatalog(String catalog) throws SQLException

A sub-space of this Connection’s database may be selected by setting a catalog name. If the driver
does not support catalogs it will silently ignore this request.

 getCatalog

 public abstract String getCatalog() throws SQLException

Return the Connection’s current catalog name.
Returns:

the current catalog name or null

 setTransactionIsolation

 public abstract void setTransactionIsolation(int level) throws SQLException

You can call this method to try to change the transaction isolation level using one of the
TRANSACTION_* values.

Note: setTransactionIsolation cannot be called while in the middle of a transaction.

Parameters:
level - one of the TRANSACTION_* isolation values with the exception of
TRANSACTION_NONE; some databases may not support other values

See Also:
supportsTransactionIsolationLevel

 getTransactionIsolation

 public abstract int getTransactionIsolation() throws SQLException

Get this Connection’s current transaction isolation mode.
Returns:

the current TRANSACTION_* mode value

 getWarnings

 public abstract SQLWarning getWarnings() throws SQLException

The first warning reported by calls on this Connection is returned.

Note: Subsequent warnings will be chained to this SQLWarning.

Returns:
the first SQLWarning or null

 clearWarnings

 public abstract void clearWarnings() throws SQLException

After this call, getWarnings returns null until a new warning is reported for this Connection.

Interface java.sql.DatabaseMetaData
public interface DatabaseMetaData
extends Object

This class provides information about the database as a whole.

Many of the methods here return lists of information in ResultSets. You can use the normal ResultSet
methods such as getString and getInt to retrieve the data from these ResultSets. If a given form of
metadata is not available, these methods should throw a SQLException.

Some of these methods take arguments that are String patterns. These arguments all have names such as
fooPattern. Within a pattern String, "%" means match any substring of 0 or more characters, and "_"
means match any one character. Only metadata entries matching the search pattern are returned. If a
search pattern argument is set to a null ref, it means that argument’s criteria should be dropped from the
search.

A SQLException will be thrown if a driver does not support a meta data method. In the case of methods
that return a ResultSet, either a ResultSet (which may be empty) is returned or a SQLException is
thrown.

 bestRowNotPseudo
BEST ROW PSEUDO_COLUMN - is NOT a pseudo column.

 bestRowPseudo
BEST ROW PSEUDO_COLUMN - is a pseudo column.

 bestRowSession
BEST ROW SCOPE - valid for remainder of current session.

 bestRowTemporary
BEST ROW SCOPE - very temporary, while using row.

 bestRowTransaction
BEST ROW SCOPE - valid for remainder of current transaction.

 bestRowUnknown
BEST ROW PSEUDO_COLUMN - may or may not be pseudo column.

 columnNoNulls
COLUMN NULLABLE - might not allow NULL values.

 columnNullable
COLUMN NULLABLE - definitely allows NULL values.

 columnNullableUnknown
COLUMN NULLABLE - nullability unknown.

 importedKeyCascade
IMPORT KEY UPDATE_RULE and DELETE_RULE - for update, change imported key to agree
with primary key update; for delete, delete rows that import a deleted key.

 importedKeyInitiallyDeferred
IMPORT KEY DEFERRABILITY - see SQL92 for definition

 importedKeyInitiallyImmediate
IMPORT KEY DEFERRABILITY - see SQL92 for definition

 importedKeyNoAction
IMPORT KEY UPDATE_RULE and DELETE_RULE - do not allow update or delete of primary
key if it has been imported.

 importedKeyNotDeferrable
IMPORT KEY DEFERRABILITY - see SQL92 for definition

 importedKeyRestrict
IMPORT KEY UPDATE_RULE and DELETE_RULE - do not allow update or delete of primary
key if it has been imported.

 importedKeySetDefault
IMPORT KEY UPDATE_RULE and DELETE_RULE - change imported key to default values if
its primary key has been updated or deleted.

 importedKeySetNull
IMPORT KEY UPDATE_RULE and DELETE_RULE - change imported key to NULL if its
primary key has been updated or deleted.

 procedureColumnIn
COLUMN_TYPE - IN parameter.

 procedureColumnInOut
COLUMN_TYPE - INOUT parameter.

 procedureColumnOut
COLUMN_TYPE - OUT parameter.

 procedureColumnResult
COLUMN_TYPE - result column in ResultSet.

 procedureColumnReturn
COLUMN_TYPE - procedure return value.

 procedureColumnUnknown
COLUMN_TYPE - nobody knows.

 procedureNoNulls
TYPE NULLABLE - does not allow NULL values.

 procedureNoResult
PROCEDURE_TYPE - Does not return a result.

 procedureNullable
TYPE NULLABLE - allows NULL values.

 procedureNullableUnknown
TYPE NULLABLE - nullability unknown.

 procedureResultUnknown
PROCEDURE_TYPE - May return a result.

 procedureReturnsResult
PROCEDURE_TYPE - Returns a result.

 tableIndexClustered
INDEX INFO TYPE - this identifies a clustered index

 tableIndexHashed
INDEX INFO TYPE - this identifies a hashed index

 tableIndexOther
INDEX INFO TYPE - this identifies some other form of index

 tableIndexStatistic
INDEX INFO TYPE - this identifies table statistics that are returned in conjuction with a table’s
index descriptions

 typeNoNulls
TYPE NULLABLE - does not allow NULL values.

 typeNullable
TYPE NULLABLE - allows NULL values.

 typeNullableUnknown
TYPE NULLABLE - nullability unknown.

 typePredBasic
TYPE INFO SEARCHABLE - Supported except for WHERE ..

 typePredChar
TYPE INFO SEARCHABLE - Only supported with WHERE ..

 typePredNone
TYPE INFO SEARCHABLE - No support.

 typeSearchable
TYPE INFO SEARCHABLE - Supported for all WHERE ...

 versionColumnNotPseudo
VERSION COLUMNS PSEUDO_COLUMN - is NOT a pseudo column.

 versionColumnPseudo
VERSION COLUMNS PSEUDO_COLUMN - is a pseudo column.

 versionColumnUnknown
VERSION COLUMNS PSEUDO_COLUMN - may or may not be pseudo column.

 allProceduresAreCallable()
Can all the procedures returned by getProcedures be called by the current user?

 allTablesAreSelectable()
Can all the tables returned by getTable be SELECTed by the current user?

 dataDefinitionCausesTransactionCommit()
Does a data definition statement within a transaction force the transaction to commit?

 dataDefinitionIgnoredInTransactions()
Is a data definition statement within a transaction ignored?

 doesMaxRowSizeIncludeBlobs()
Did getMaxRowSize() include LONGVARCHAR and LONGVARBINARY blobs?

 getBestRowIdentifier(String, String, String, int, boolean)
Get a description of a table’s optimal set of columns that uniquely identifies a row.

 getCatalogs()
Get the catalog names available in this database.

 getCatalogSeparator()
What’s the separator between catalog and table name?

 getCatalogTerm()
What’s the database vendor’s preferred term for "catalog"?

 getColumnPrivileges(String, String, String, String)
Get a description of the access rights for a table’s columns.

 getColumns(String, String, String, String)
Get a description of table columns available in a catalog.

 getCrossReference(String, String, String, String, String, String)
Get a description of the foreign key columns in the foreign key table that reference the primary
key columns of the primary key table (describe how one table imports another’s key.) This should
normally return a single foreign key/primary key pair (most tables only import a foreign key from
a table once.) They are ordered by FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME,
and KEY_SEQ.

 getDatabaseProductName()
What’s the name of this database product?

 getDatabaseProductVersion()
What’s the version of this database product?

 getDefaultTransactionIsolation()
What’s the database’s default transaction isolation level? The values are defined in
java.sql.Connection.

 getDriverMajorVersion ()
What’s this JDBC driver’s major version number?

 getDriverMinorVersion ()
What’s this JDBC driver’s minor version number?

 getDriverName()
What’s the name of this JDBC driver?

 getDriverVersion()
What’s the version of this JDBC driver?

 getExportedKeys(String, String, String)
Get a description of the foreign key columns that reference a table’s primary key columns (the
foreign keys exported by a table).

 getExtraNameCharacters()
Get all the "extra" characters that can be used in unquoted identifier names (those beyond a-z,
A-Z, 0-9 and _).

 getIdentifierQuoteString()
What’s the string used to quote SQL identifiers? This returns a space " " if identifier quoting isn’t
supported.

 getImportedKeys(String, String, String)
Get a description of the primary key columns that are referenced by a table’s foreign key columns
(the primary keys imported by a table).

 getIndexInfo(String, String, String, boolean, boolean)
Get a description of a table’s indices and statistics.

 getMaxBinaryLiteralLength ()
How many hex characters can you have in an inline binary literal?

 getMaxCatalogNameLength()
What’s the maximum length of a catalog name?

 getMaxCharLiteralLength ()
What’s the max length for a character literal?

 getMaxColumnNameLength()
What’s the limit on column name length?

 getMaxColumnsInGroupBy()
What’s the maximum number of columns in a "GROUP BY" clause?

 getMaxColumnsInIndex()
What’s the maximum number of columns allowed in an index?

 getMaxColumnsInOrderBy()
What’s the maximum number of columns in an "ORDER BY" clause?

 getMaxColumnsInSelect()
What’s the maximum number of columns in a "SELECT" list?

 getMaxColumnsInTable()
What’s the maximum number of columns in a table?

 getMaxConnections()
How many active connections can we have at a time to this database?

 getMaxCursorNameLength()
What’s the maximum cursor name length?

 getMaxIndexLength()
What’s the maximum length of an index (in bytes)?

 getMaxProcedureNameLength()
What’s the maximum length of a procedure name?

 getMaxRowSize()
What’s the maximum length of a single row?

 getMaxSchemaNameLength()
What’s the maximum length allowed for a schema name?

 getMaxStatementLength()
What’s the maximum length of a SQL statement?

 getMaxStatements()
How many active statements can we have open at one time to this database?

 getMaxTableNameLength()
What’s the maximum length of a table name?

 getMaxTablesInSelect()
What’s the maximum number of tables in a SELECT?

 getMaxUserNameLength()

What’s the maximum length of a user name?
 getNumericFunctions()

Get a comma separated list of math functions.
 getPrimaryKeys(String, String, String)

Get a description of a table’s primary key columns.
 getProcedureColumns(String, String, String, String)

Get a description of a catalog’s stored procedure parameters and result columns.
 getProcedures(String, String, String)

Get a description of stored procedures available in a catalog.
 getProcedureTerm()

What’s the database vendor’s preferred term for "procedure"?
 getSchemas()

Get the schema names available in this database.
 getSchemaTerm()

What’s the database vendor’s preferred term for "schema"?
 getSearchStringEscape()

This is the string that can be used to escape ’_’ or ’%’ in the string pattern style catalog search
parameters.

 getSQLKeywords()
Get a comma separated list of all a database’s SQL keywords that are NOT also SQL92 keywords.

 getStringFunctions()
Get a comma separated list of string functions.

 getSystemFunctions()
Get a comma separated list of system functions.

 getTablePrivileges(String, String, String)
Get a description of the access rights for each table available in a catalog.

 getTables(String, String, String, String[])
Get a description of tables available in a catalog.

 getTableTypes()
Get the table types available in this database.

 getTimeDateFunctions()
Get a comma separated list of time and date functions.

 getTypeInfo()
Get a description of all the standard SQL types supported by this database.

 getURL()
What’s the url for this database?

 getUserName()
What’s our user name as known to the database?

 getVersionColumns(String, String, String)
Get a description of a table’s columns that are automatically updated when any value in a row is
updated.

 isCatalogAtStart()
Does a catalog appear at the start of a qualified table name? (Otherwise it appears at the end)

 isReadOnly()
Is the database in read-only mode?

 nullPlusNonNullIsNull ()
Are concatenations between NULL and non-NULL values NULL? A JDBC-Compliant driver

always returns true.
 nullsAreSortedAtEnd()

Are NULL values sorted at the end regardless of sort order?
 nullsAreSortedAtStart ()

Are NULL values sorted at the start regardless of sort order?
 nullsAreSortedHigh()

Are NULL values sorted high?
 nullsAreSortedLow()

Are NULL values sorted low?
 storesLowerCaseIdentifiers()

Does the database treat mixed case unquoted SQL identifiers as case insensitive and store them in
lower case?

 storesLowerCaseQuotedIdentifiers()
Does the database treat mixed case quoted SQL identifiers as case insensitive and store them in
lower case?

 storesMixedCaseIdentifiers()
Does the database treat mixed case unquoted SQL identifiers as case insensitive and store them in
mixed case?

 storesMixedCaseQuotedIdentifiers()
Does the database treat mixed case quoted SQL identifiers as case insensitive and store them in
mixed case?

 storesUpperCaseIdentifiers()
Does the database treat mixed case unquoted SQL identifiers as case insensitive and store them in
upper case?

 storesUpperCaseQuotedIdentifiers()
Does the database treat mixed case quoted SQL identifiers as case insensitive and store them in
upper case?

 supportsAlterTableWithAddColumn ()
Is "ALTER TABLE" with add column supported?

 supportsAlterTableWithDropColumn ()
Is "ALTER TABLE" with drop column supported?

 supportsANSI92EntryLevelSQL()
Is the ANSI92 entry level SQL grammar supported? All JDBC-Compliant drivers must return true.

 supportsANSI92FullSQL()
Is the ANSI92 full SQL grammar supported?

 supportsANSI92IntermediateSQL()
Is the ANSI92 intermediate SQL grammar supported?

 supportsCatalogsInDataManipulation()
Can a catalog name be used in a data manipulation statement?

 supportsCatalogsInIndexDefinitions()
Can a catalog name be used in an index definition statement?

 supportsCatalogsInPrivilegeDefinitions()
Can a catalog name be used in a privilege definition statement?

 supportsCatalogsInProcedureCalls()
Can a catalog name be used in a procedure call statement?

 supportsCatalogsInTableDefinitions()
Can a catalog name be used in a table definition statement?

 supportsColumnAliasing()
Is column aliasing supported?

If so, the SQL AS clause can be used to provide names for computed columns or to provide alias
names for columns as required.

 supportsConvert()
Is the CONVERT function between SQL types supported?

 supportsConvert(int, int)
Is CONVERT between the given SQL types supported?

 supportsCoreSQLGrammar()
Is the ODBC Core SQL grammar supported?

 supportsCorrelatedSubqueries()
Are correlated subqueries supported? A JDBC-Compliant driver always returns true.

 supportsDataDefinitionAndDataManipulationTransactions()
Are both data definition and data manipulation statements within a transaction supported?

 supportsDataManipulationTransactionsOnly()
Are only data manipulation statements within a transaction supported?

 supportsDifferentTableCorrelationNames()
If table correlation names are supported, are they restricted to be different from the names of the
tables?

 supportsExpressionsInOrderBy()
Are expressions in "ORDER BY" lists supported?

 supportsExtendedSQLGrammar()
Is the ODBC Extended SQL grammar supported?

 supportsFullOuterJoins()
Are full nested outer joins supported?

 supportsGroupBy()
Is some form of "GROUP BY" clause supported?

 supportsGroupByBeyondSelect()
Can a "GROUP BY" clause add columns not in the SELECT provided it specifies all the columns
in the SELECT?

 supportsGroupByUnrelated()
Can a "GROUP BY" clause use columns not in the SELECT?

 supportsIntegrityEnhancementFacility()
Is the SQL Integrity Enhancement Facility supported?

 supportsLikeEscapeClause()
Is the escape character in "LIKE" clauses supported? A JDBC-Compliant driver always returns
true.

 supportsLimitedOuterJoins()
Is there limited support for outer joins? (This will be true if supportFullOuterJoins is true.)

 supportsMinimumSQLGrammar ()
Is the ODBC Minimum SQL grammar supported? All JDBC-Compliant drivers must return true.

 supportsMixedCaseIdentifiers()
Does the database treat mixed case unquoted SQL identifiers as case sensitive and as a result store
them in mixed case? A JDBC-Compliant driver will always return false.

 supportsMixedCaseQuotedIdentifiers()

Does the database treat mixed case quoted SQL identifiers as case sensitive and as a result store
them in mixed case? A JDBC-Compliant driver will always return true.

 supportsMultipleResultSets()
Are multiple ResultSets from a single execute supported?

 supportsMultipleTransactions()
Can we have multiple transactions open at once (on different connections)?

 supportsNonNullableColumns()
Can columns be defined as non-nullable? A JDBC-Compliant driver always returns true.

 supportsOpenCursorsAcrossCommit()
Can cursors remain open across commits?

 supportsOpenCursorsAcrossRollback()
Can cursors remain open across rollbacks?

 supportsOpenStatementsAcrossCommit()
Can statements remain open across commits?

 supportsOpenStatementsAcrossRollback()
Can statements remain open across rollbacks?

 supportsOrderByUnrelated()
Can an "ORDER BY" clause use columns not in the SELECT?

 supportsOuterJoins()
Is some form of outer join supported?

 supportsPositionedDelete()
Is positioned DELETE supported?

 supportsPositionedUpdate()
Is positioned UPDATE supported?

 supportsSchemasInDataManipulation()
Can a schema name be used in a data manipulation statement?

 supportsSchemasInIndexDefinitions()
Can a schema name be used in an index definition statement?

 supportsSchemasInPrivilegeDefinitions()
Can a schema name be used in a privilege definition statement?

 supportsSchemasInProcedureCalls()
Can a schema name be used in a procedure call statement?

 supportsSchemasInTableDefinitions()
Can a schema name be used in a table definition statement?

 supportsSelectForUpdate()
Is SELECT for UPDATE supported?

 supportsStoredProcedures()
Are stored procedure calls using the stored procedure escape syntax supported?

 supportsSubqueriesInComparisons()
Are subqueries in comparison expressions supported? A JDBC-Compliant driver always returns
true.

 supportsSubqueriesInExists()
Are subqueries in ’exists’ expressions supported? A JDBC-Compliant driver always returns true.

 supportsSubqueriesInIns()
Are subqueries in ’in’ statements supported? A JDBC-Compliant driver always returns true.

 supportsSubqueriesInQuantifieds()
Are subqueries in quantified expressions supported? A JDBC-Compliant driver always returns

true.
 supportsTableCorrelationNames()

Are table correlation names supported? A JDBC-Compliant driver always returns true.
 supportsTransactionIsolationLevel(int)

Does the database support the given transaction isolation level?
 supportsTransactions()

Are transactions supported? If not, commit is a noop and the isolation level is
TRANSACTION_NONE.

 supportsUnion()
Is SQL UNION supported?

 supportsUnionAll()
Is SQL UNION ALL supported?

 usesLocalFilePerTable()
Does the database use a file for each table?

 usesLocalFiles()
Does the database store tables in a local file?

 procedureResultUnknown

 public final static int procedureResultUnknown

PROCEDURE_TYPE - May return a result.

 procedureNoResult

 public final static int procedureNoResult

PROCEDURE_TYPE - Does not return a result.

 procedureReturnsResult

 public final static int procedureReturnsResult

PROCEDURE_TYPE - Returns a result.

 procedureColumnUnknown

 public final static int procedureColumnUnknown

COLUMN_TYPE - nobody knows.

 procedureColumnIn

 public final static int procedureColumnIn

COLUMN_TYPE - IN parameter.

 procedureColumnInOut

 public final static int procedureColumnInOut

COLUMN_TYPE - INOUT parameter.

 procedureColumnOut

 public final static int procedureColumnOut

COLUMN_TYPE - OUT parameter.

 procedureColumnReturn

 public final static int procedureColumnReturn

COLUMN_TYPE - procedure return value.

 procedureColumnResult

 public final static int procedureColumnResult

COLUMN_TYPE - result column in ResultSet.

 procedureNoNulls

 public final static int procedureNoNulls

TYPE NULLABLE - does not allow NULL values.

 procedureNullable

 public final static int procedureNullable

TYPE NULLABLE - allows NULL values.

 procedureNullableUnknown

 public final static int procedureNullableUnknown

TYPE NULLABLE - nullability unknown.

 columnNoNulls

 public final static int columnNoNulls

COLUMN NULLABLE - might not allow NULL values.

 columnNullable

 public final static int columnNullable

COLUMN NULLABLE - definitely allows NULL values.

 columnNullableUnknown

 public final static int columnNullableUnknown

COLUMN NULLABLE - nullability unknown.

 bestRowTemporary

 public final static int bestRowTemporary

BEST ROW SCOPE - very temporary, while using row.

 bestRowTransaction

 public final static int bestRowTransaction

BEST ROW SCOPE - valid for remainder of current transaction.

 bestRowSession

 public final static int bestRowSession

BEST ROW SCOPE - valid for remainder of current session.

 bestRowUnknown

 public final static int bestRowUnknown

BEST ROW PSEUDO_COLUMN - may or may not be pseudo column.

 bestRowNotPseudo

 public final static int bestRowNotPseudo

BEST ROW PSEUDO_COLUMN - is NOT a pseudo column.

 bestRowPseudo

 public final static int bestRowPseudo

BEST ROW PSEUDO_COLUMN - is a pseudo column.

 versionColumnUnknown

 public final static int versionColumnUnknown

VERSION COLUMNS PSEUDO_COLUMN - may or may not be pseudo column.

 versionColumnNotPseudo

 public final static int versionColumnNotPseudo

VERSION COLUMNS PSEUDO_COLUMN - is NOT a pseudo column.

 versionColumnPseudo

 public final static int versionColumnPseudo

VERSION COLUMNS PSEUDO_COLUMN - is a pseudo column.

 importedKeyCascade

 public final static int importedKeyCascade

IMPORT KEY UPDATE_RULE and DELETE_RULE - for update, change imported key to agree
with primary key update; for delete, delete rows that import a deleted key.

 importedKeyRestrict

 public final static int importedKeyRestrict

IMPORT KEY UPDATE_RULE and DELETE_RULE - do not allow update or delete of primary
key if it has been imported.

 importedKeySetNull

 public final static int importedKeySetNull

IMPORT KEY UPDATE_RULE and DELETE_RULE - change imported key to NULL if its
primary key has been updated or deleted.

 importedKeyNoAction

 public final static int importedKeyNoAction

IMPORT KEY UPDATE_RULE and DELETE_RULE - do not allow update or delete of primary
key if it has been imported.

 importedKeySetDefault

 public final static int importedKeySetDefault

IMPORT KEY UPDATE_RULE and DELETE_RULE - change imported key to default values if
its primary key has been updated or deleted.

 importedKeyInitiallyDeferred

 public final static int importedKeyInitiallyDeferred

IMPORT KEY DEFERRABILITY - see SQL92 for definition

 importedKeyInitiallyImmediate

 public final static int importedKeyInitiallyImmediate

IMPORT KEY DEFERRABILITY - see SQL92 for definition

 importedKeyNotDeferrable

 public final static int importedKeyNotDeferrable

IMPORT KEY DEFERRABILITY - see SQL92 for definition

 typeNoNulls

 public final static int typeNoNulls

TYPE NULLABLE - does not allow NULL values.

 typeNullable

 public final static int typeNullable

TYPE NULLABLE - allows NULL values.

 typeNullableUnknown

 public final static int typeNullableUnknown

TYPE NULLABLE - nullability unknown.

 typePredNone

 public final static int typePredNone

TYPE INFO SEARCHABLE - No support.

 typePredChar

 public final static int typePredChar

TYPE INFO SEARCHABLE - Only supported with WHERE .. LIKE.

 typePredBasic

 public final static int typePredBasic

TYPE INFO SEARCHABLE - Supported except for WHERE .. LIKE.

 typeSearchable

 public final static int typeSearchable

TYPE INFO SEARCHABLE - Supported for all WHERE ...

 tableIndexStatistic

 public final static short tableIndexStatistic

INDEX INFO TYPE - this identifies table statistics that are returned in conjuction with a table’s
index descriptions

 tableIndexClustered

 public final static short tableIndexClustered

INDEX INFO TYPE - this identifies a clustered index

 tableIndexHashed

 public final static short tableIndexHashed

INDEX INFO TYPE - this identifies a hashed index

 tableIndexOther

 public final static short tableIndexOther

INDEX INFO TYPE - this identifies some other form of index

 allProceduresAreCallable

 public abstract boolean allProceduresAreCallable() throws SQLException

Can all the procedures returned by getProcedures be called by the current user?
Returns:

true if so

 allTablesAreSelectable

 public abstract boolean allTablesAreSelectable() throws SQLException

Can all the tables returned by getTable be SELECTed by the current user?
Returns:

true if so

 getURL

 public abstract String getURL() throws SQLException

What’s the url for this database?

Returns:
the url or null if it can’t be generated

 getUserName

 public abstract String getUserName() throws SQLException

What’s our user name as known to the database?
Returns:

our database user name

 isReadOnly

 public abstract boolean isReadOnly() throws SQLException

Is the database in read-only mode?
Returns:

true if so

 nullsAreSortedHigh

 public abstract boolean nullsAreSortedHigh() throws SQLException

Are NULL values sorted high?
Returns:

true if so

 nullsAreSortedLow

 public abstract boolean nullsAreSortedLow() throws SQLException

Are NULL values sorted low?
Returns:

true if so

 nullsAreSortedAtStart

 public abstract boolean nullsAreSortedAtStart() throws SQLException

Are NULL values sorted at the start regardless of sort order?
Returns:

true if so

 nullsAreSortedAtEnd

 public abstract boolean nullsAreSortedAtEnd() throws SQLException

Are NULL values sorted at the end regardless of sort order?
Returns:

true if so

 getDatabaseProductName

 public abstract String getDatabaseProductName() throws SQLException

What’s the name of this database product?
Returns:

database product name

 getDatabaseProductVersion

 public abstract String getDatabaseProductVersion() throws SQLException

What’s the version of this database product?
Returns:

database version

 getDriverName

 public abstract String getDriverName() throws SQLException

What’s the name of this JDBC driver?
Returns:

JDBC driver name

 getDriverVersion

 public abstract String getDriverVersion() throws SQLException

What’s the version of this JDBC driver?
Returns:

JDBC driver version

 getDriverMajorVersion

 public abstract int getDriverMajorVersion()

What’s this JDBC driver’s major version number?
Returns:

JDBC driver major version

 getDriverMinorVersion

 public abstract int getDriverMinorVersion()

What’s this JDBC driver’s minor version number?
Returns:

JDBC driver minor version number

 usesLocalFiles

 public abstract boolean usesLocalFiles() throws SQLException

Does the database store tables in a local file?
Returns:

true if so

 usesLocalFilePerTable

 public abstract boolean usesLocalFilePerTable() throws SQLException

Does the database use a file for each table?
Returns:

true if the database uses a local file for each table

 supportsMixedCaseIdentifiers

 public abstract boolean supportsMixedCaseIdentifiers() throws SQLException

Does the database treat mixed case unquoted SQL identifiers as case sensitive and as a result store
them in mixed case? A JDBC-Compliant driver will always return false.
Returns:

true if so

 storesUpperCaseIdentifiers

 public abstract boolean storesUpperCaseIdentifiers() throws SQLException

Does the database treat mixed case unquoted SQL identifiers as case insensitive and store them in
upper case?
Returns:

true if so

 storesLowerCaseIdentifiers

 public abstract boolean storesLowerCaseIdentifiers() throws SQLException

Does the database treat mixed case unquoted SQL identifiers as case insensitive and store them in
lower case?
Returns:

true if so

 storesMixedCaseIdentifiers

 public abstract boolean storesMixedCaseIdentifiers() throws SQLException

Does the database treat mixed case unquoted SQL identifiers as case insensitive and store them in
mixed case?
Returns:

true if so

 supportsMixedCaseQuotedIdentifiers

 public abstract boolean supportsMixedCaseQuotedIdentifiers() throws SQLException

Does the database treat mixed case quoted SQL identifiers as case sensitive and as a result store
them in mixed case? A JDBC-Compliant driver will always return true.
Returns:

true if so

 storesUpperCaseQuotedIdentifiers

 public abstract boolean storesUpperCaseQuotedIdentifiers() throws SQLException

Does the database treat mixed case quoted SQL identifiers as case insensitive and store them in
upper case?
Returns:

true if so

 storesLowerCaseQuotedIdentifiers

 public abstract boolean storesLowerCaseQuotedIdentifiers() throws SQLException

Does the database treat mixed case quoted SQL identifiers as case insensitive and store them in
lower case?
Returns:

true if so

 storesMixedCaseQuotedIdentifiers

 public abstract boolean storesMixedCaseQuotedIdentifiers() throws SQLException

Does the database treat mixed case quoted SQL identifiers as case insensitive and store them in
mixed case?
Returns:

true if so

 getIdentifierQuoteString

 public abstract String getIdentifierQuoteString() throws SQLException

What’s the string used to quote SQL identifiers? This returns a space " " if identifier quoting isn’t
supported. A JDBC-Compliant driver always uses a double quote character.
Returns:

the quoting string

 getSQLKeywords

 public abstract String getSQLKeywords() throws SQLException

Get a comma separated list of all a database’s SQL keywords that are NOT also SQL92 keywords.

Returns:
the list

 getNumericFunctions

 public abstract String getNumericFunctions() throws SQLException

Get a comma separated list of math functions.
Returns:

the list

 getStringFunctions

 public abstract String getStringFunctions() throws SQLException

Get a comma separated list of string functions.
Returns:

the list

 getSystemFunctions

 public abstract String getSystemFunctions() throws SQLException

Get a comma separated list of system functions.
Returns:

the list

 getTimeDateFunctions

 public abstract String getTimeDateFunctions() throws SQLException

Get a comma separated list of time and date functions.
Returns:

the list

 getSearchStringEscape

 public abstract String getSearchStringEscape() throws SQLException

This is the string that can be used to escape ’_’ or ’%’ in the string pattern style catalog search
parameters.

The ’_’ character represents any single character.

The ’%’ character represents any sequence of zero or more characters.

Returns:
the string used to escape wildcard characters

 getExtraNameCharacters

 public abstract String getExtraNameCharacters() throws SQLException

Get all the "extra" characters that can be used in unquoted identifier names (those beyond a-z,
A-Z, 0-9 and _).
Returns:

the string containing the extra characters

 supportsAlterTableWithAddColumn

 public abstract boolean supportsAlterTableWithAddColumn() throws SQLException

Is "ALTER TABLE" with add column supported?
Returns:

true if so

 supportsAlterTableWithDropColumn

 public abstract boolean supportsAlterTableWithDropColumn() throws SQLException

Is "ALTER TABLE" with drop column supported?
Returns:

true if so

 supportsColumnAliasing

 public abstract boolean supportsColumnAliasing() throws SQLException

Is column aliasing supported?

If so, the SQL AS clause can be used to provide names for computed columns or to provide alias
names for columns as required. A JDBC-Compliant driver always returns true.

Returns:
true if so

 nullPlusNonNullIsNull

 public abstract boolean nullPlusNonNullIsNull() throws SQLException

Are concatenations between NULL and non-NULL values NULL? A JDBC-Compliant driver
always returns true.
Returns:

true if so

 supportsConvert

 public abstract boolean supportsConvert() throws SQLException

Is the CONVERT function between SQL types supported?
Returns:

true if so

 supportsConvert

 public abstract boolean supportsConvert(int fromType,
 int toType) throws SQLException

Is CONVERT between the given SQL types supported?
Parameters:

fromType - the type to convert from
toType - the type to convert to

Returns:
true if so

See Also:
Types

 supportsTableCorrelationNames

 public abstract boolean supportsTableCorrelationNames() throws SQLException

Are table correlation names supported? A JDBC-Compliant driver always returns true.
Returns:

true if so

 supportsDifferentTableCorrelationNames

 public abstract boolean supportsDifferentTableCorrelationNames() throws SQLExcepti o

If table correlation names are supported, are they restricted to be different from the names of the
tables?
Returns:

true if so

 supportsExpressionsInOrderBy

 public abstract boolean supportsExpressionsInOrderBy() throws SQLException

Are expressions in "ORDER BY" lists supported?
Returns:

true if so

 supportsOrderByUnrelated

 public abstract boolean supportsOrderByUnrelated() throws SQLException

Can an "ORDER BY" clause use columns not in the SELECT?
Returns:

true if so

 supportsGroupBy

 public abstract boolean supportsGroupBy() throws SQLException

Is some form of "GROUP BY" clause supported?
Returns:

true if so

 supportsGroupByUnrelated

 public abstract boolean supportsGroupByUnrelated() throws SQLException

Can a "GROUP BY" clause use columns not in the SELECT?
Returns:

true if so

 supportsGroupByBeyondSelect

 public abstract boolean supportsGroupByBeyondSelect() throws SQLException

Can a "GROUP BY" clause add columns not in the SELECT provided it specifies all the columns
in the SELECT?
Returns:

true if so

 supportsLikeEscapeClause

 public abstract boolean supportsLikeEscapeClause() throws SQLException

Is the escape character in "LIKE" clauses supported? A JDBC-Compliant driver always returns
true.
Returns:

true if so

 supportsMultipleResultSets

 public abstract boolean supportsMultipleResultSets() throws SQLException

Are multiple ResultSets from a single execute supported?
Returns:

true if so

 supportsMultipleTransactions

 public abstract boolean supportsMultipleTransactions() throws SQLException

Can we have multiple transactions open at once (on different connections)?
Returns:

true if so

 supportsNonNullableColumns

 public abstract boolean supportsNonNullableColumns() throws SQLException

Can columns be defined as non-nullable? A JDBC-Compliant driver always returns true.
Returns:

true if so

 supportsMinimumSQLGrammar

 public abstract boolean supportsMinimumSQLGrammar() throws SQLException

Is the ODBC Minimum SQL grammar supported? All JDBC-Compliant drivers must return true.
Returns:

true if so

 supportsCoreSQLGrammar

 public abstract boolean supportsCoreSQLGrammar() throws SQLException

Is the ODBC Core SQL grammar supported?
Returns:

true if so

 supportsExtendedSQLGrammar

 public abstract boolean supportsExtendedSQLGrammar() throws SQLException

Is the ODBC Extended SQL grammar supported?
Returns:

true if so

 supportsANSI92EntryLevelSQL

 public abstract boolean supportsANSI92EntryLevelSQL() throws SQLException

Is the ANSI92 entry level SQL grammar supported? All JDBC-Compliant drivers must return true.
Returns:

true if so

 supportsANSI92IntermediateSQL

 public abstract boolean supportsANSI92IntermediateSQL() throws SQLException

Is the ANSI92 intermediate SQL grammar supported?
Returns:

true if so

 supportsANSI92FullSQL

 public abstract boolean supportsANSI92FullSQL() throws SQLException

Is the ANSI92 full SQL grammar supported?

Returns:
true if so

 supportsIntegrityEnhancementFacility

 public abstract boolean supportsIntegrityEnhancementFacility() throws SQLException

Is the SQL Integrity Enhancement Facility supported?
Returns:

true if so

 supportsOuterJoins

 public abstract boolean supportsOuterJoins() throws SQLException

Is some form of outer join supported?
Returns:

true if so

 supportsFullOuterJoins

 public abstract boolean supportsFullOuterJoins() throws SQLException

Are full nested outer joins supported?
Returns:

true if so

 supportsLimitedOuterJoins

 public abstract boolean supportsLimitedOuterJoins() throws SQLException

Is there limited support for outer joins? (This will be true if supportFullOuterJoins is true.)
Returns:

true if so

 getSchemaTerm

 public abstract String getSchemaTerm() throws SQLException

What’s the database vendor’s preferred term for "schema"?
Returns:

the vendor term

 getProcedureTerm

 public abstract String getProcedureTerm() throws SQLException

What’s the database vendor’s preferred term for "procedure"?
Returns:

the vendor term

 getCatalogTerm

 public abstract String getCatalogTerm() throws SQLException

What’s the database vendor’s preferred term for "catalog"?
Returns:

the vendor term

 isCatalogAtStart

 public abstract boolean isCatalogAtStart() throws SQLException

Does a catalog appear at the start of a qualified table name? (Otherwise it appears at the end)
Returns:

true if it appears at the start

 getCatalogSeparator

 public abstract String getCatalogSeparator() throws SQLException

What’s the separator between catalog and table name?
Returns:

the separator string

 supportsSchemasInDataManipulation

 public abstract boolean supportsSchemasInDataManipulation() throws SQLException

Can a schema name be used in a data manipulation statement?
Returns:

true if so

 supportsSchemasInProcedureCalls

 public abstract boolean supportsSchemasInProcedureCalls() throws SQLException

Can a schema name be used in a procedure call statement?
Returns:

true if so

 supportsSchemasInTableDefinitions

 public abstract boolean supportsSchemasInTableDefinitions() throws SQLException

Can a schema name be used in a table definition statement?
Returns:

true if so

 supportsSchemasInIndexDefinitions

 public abstract boolean supportsSchemasInIndexDefinitions() throws SQLException

Can a schema name be used in an index definition statement?
Returns:

true if so

 supportsSchemasInPrivilegeDefinitions

 public abstract boolean supportsSchemasInPrivilegeDefinitions() throws SQLExceptio n

Can a schema name be used in a privilege definition statement?
Returns:

true if so

 supportsCatalogsInDataManipulation

 public abstract boolean supportsCatalogsInDataManipulation() throws SQLException

Can a catalog name be used in a data manipulation statement?
Returns:

true if so

 supportsCatalogsInProcedureCalls

 public abstract boolean supportsCatalogsInProcedureCalls() throws SQLException

Can a catalog name be used in a procedure call statement?
Returns:

true if so

 supportsCatalogsInTableDefinitions

 public abstract boolean supportsCatalogsInTableDefinitions() throws SQLException

Can a catalog name be used in a table definition statement?
Returns:

true if so

 supportsCatalogsInIndexDefinitions

 public abstract boolean supportsCatalogsInIndexDefinitions() throws SQLException

Can a catalog name be used in an index definition statement?
Returns:

true if so

 supportsCatalogsInPrivilegeDefinitions

 public abstract boolean supportsCatalogsInPrivilegeDefinitions() throws SQLExcepti o

Can a catalog name be used in a privilege definition statement?

Returns:
true if so

 supportsPositionedDelete

 public abstract boolean supportsPositionedDelete() throws SQLException

Is positioned DELETE supported?
Returns:

true if so

 supportsPositionedUpdate

 public abstract boolean supportsPositionedUpdate() throws SQLException

Is positioned UPDATE supported?
Returns:

true if so

 supportsSelectForUpdate

 public abstract boolean supportsSelectForUpdate() throws SQLException

Is SELECT for UPDATE supported?
Returns:

true if so

 supportsStoredProcedures

 public abstract boolean supportsStoredProcedures() throws SQLException

Are stored procedure calls using the stored procedure escape syntax supported?
Returns:

true if so

 supportsSubqueriesInComparisons

 public abstract boolean supportsSubqueriesInComparisons() throws SQLException

Are subqueries in comparison expressions supported? A JDBC-Compliant driver always returns
true.
Returns:

true if so

 supportsSubqueriesInExists

 public abstract boolean supportsSubqueriesInExists() throws SQLException

Are subqueries in ’exists’ expressions supported? A JDBC-Compliant driver always returns true.
Returns:

true if so

 supportsSubqueriesInIns

 public abstract boolean supportsSubqueriesInIns() throws SQLException

Are subqueries in ’in’ statements supported? A JDBC-Compliant driver always returns true.
Returns:

true if so

 supportsSubqueriesInQuantifieds

 public abstract boolean supportsSubqueriesInQuantifieds() throws SQLException

Are subqueries in quantified expressions supported? A JDBC-Compliant driver always returns
true.
Returns:

true if so

 supportsCorrelatedSubqueries

 public abstract boolean supportsCorrelatedSubqueries() throws SQLException

Are correlated subqueries supported? A JDBC-Compliant driver always returns true.
Returns:

true if so

 supportsUnion

 public abstract boolean supportsUnion() throws SQLException

Is SQL UNION supported?
Returns:

true if so

 supportsUnionAll

 public abstract boolean supportsUnionAll() throws SQLException

Is SQL UNION ALL supported?
Returns:

true if so

 supportsOpenCursorsAcrossCommit

 public abstract boolean supportsOpenCursorsAcrossCommit() throws SQLException

Can cursors remain open across commits?
Returns:

true if cursors always remain open; false if they might not remain open

 supportsOpenCursorsAcrossRollback

 public abstract boolean supportsOpenCursorsAcrossRollback() throws SQLException

Can cursors remain open across rollbacks?
Returns:

true if cursors always remain open; false if they might not remain open

 supportsOpenStatementsAcrossCommit

 public abstract boolean supportsOpenStatementsAcrossCommit() throws SQLException

Can statements remain open across commits?
Returns:

true if statements always remain open; false if they might not remain open

 supportsOpenStatementsAcrossRollback

 public abstract boolean supportsOpenStatementsAcrossRollback() throws SQLException

Can statements remain open across rollbacks?
Returns:

true if statements always remain open; false if they might not remain open

 getMaxBinaryLiteralLength

 public abstract int getMaxBinaryLiteralLength() throws SQLException

How many hex characters can you have in an inline binary literal?
Returns:

max literal length

 getMaxCharLiteralLength

 public abstract int getMaxCharLiteralLength() throws SQLException

What’s the max length for a character literal?
Returns:

max literal length

 getMaxColumnNameLength

 public abstract int getMaxColumnNameLength() throws SQLException

What’s the limit on column name length?
Returns:

max literal length

 getMaxColumnsInGroupBy

 public abstract int getMaxColumnsInGroupBy() throws SQLException

What’s the maximum number of columns in a "GROUP BY" clause?
Returns:

max number of columns

 getMaxColumnsInIndex

 public abstract int getMaxColumnsInIndex() throws SQLException

What’s the maximum number of columns allowed in an index?
Returns:

max columns

 getMaxColumnsInOrderBy

 public abstract int getMaxColumnsInOrderBy() throws SQLException

What’s the maximum number of columns in an "ORDER BY" clause?
Returns:

max columns

 getMaxColumnsInSelect

 public abstract int getMaxColumnsInSelect() throws SQLException

What’s the maximum number of columns in a "SELECT" list?
Returns:

max columns

 getMaxColumnsInTable

 public abstract int getMaxColumnsInTable() throws SQLException

What’s the maximum number of columns in a table?
Returns:

max columns

 getMaxConnections

 public abstract int getMaxConnections() throws SQLException

How many active connections can we have at a time to this database?
Returns:

max connections

 getMaxCursorNameLength

 public abstract int getMaxCursorNameLength() throws SQLException

What’s the maximum cursor name length?

Returns:
max cursor name length in bytes

 getMaxIndexLength

 public abstract int getMaxIndexLength() throws SQLException

What’s the maximum length of an index (in bytes)?
Returns:

max index length in bytes

 getMaxSchemaNameLength

 public abstract int getMaxSchemaNameLength() throws SQLException

What’s the maximum length allowed for a schema name?
Returns:

max name length in bytes

 getMaxProcedureNameLength

 public abstract int getMaxProcedureNameLength() throws SQLException

What’s the maximum length of a procedure name?
Returns:

max name length in bytes

 getMaxCatalogNameLength

 public abstract int getMaxCatalogNameLength() throws SQLException

What’s the maximum length of a catalog name?
Returns:

max name length in bytes

 getMaxRowSize

 public abstract int getMaxRowSize() throws SQLException

What’s the maximum length of a single row?
Returns:

max row size in bytes

 doesMaxRowSizeIncludeBlobs

 public abstract boolean doesMaxRowSizeIncludeBlobs() throws SQLException

Did getMaxRowSize() include LONGVARCHAR and LONGVARBINARY blobs?
Returns:

true if so

 getMaxStatementLength

 public abstract int getMaxStatementLength() throws SQLException

What’s the maximum length of a SQL statement?
Returns:

max length in bytes

 getMaxStatements

 public abstract int getMaxStatements() throws SQLException

How many active statements can we have open at one time to this database?
Returns:

the maximum

 getMaxTableNameLength

 public abstract int getMaxTableNameLength() throws SQLException

What’s the maximum length of a table name?
Returns:

max name length in bytes

 getMaxTablesInSelect

 public abstract int getMaxTablesInSelect() throws SQLException

What’s the maximum number of tables in a SELECT?
Returns:

the maximum

 getMaxUserNameLength

 public abstract int getMaxUserNameLength() throws SQLException

What’s the maximum length of a user name?
Returns:

max name length in bytes

 getDefaultTransactionIsolation

 public abstract int getDefaultTransactionIsolation() throws SQLException

What’s the database’s default transaction isolation level? The values are defined in
java.sql.Connection.
Returns:

the default isolation level
See Also:

Connection

 supportsTransactions

 public abstract boolean supportsTransactions() throws SQLException

Are transactions supported? If not, commit is a noop and the isolation level is
TRANSACTION_NONE.
Returns:

true if transactions are supported

 supportsTransactionIsolationLevel

 public abstract boolean supportsTransactionIsolationLevel(int level) throws SQLExc e

Does the database support the given transaction isolation level?
Parameters:

level - the values are defined in java.sql.Connection
Returns:

true if so
See Also:

Connection

 supportsDataDefinitionAndDataManipulationTransactions

 public abstract boolean supportsDataDefinitionAndDataManipulationTransactions() th r

Are both data definition and data manipulation statements within a transaction supported?
Returns:

true if so

 supportsDataManipulationTransactionsOnly

 public abstract boolean supportsDataManipulationTransactionsOnly() throws SQLExcep t

Are only data manipulation statements within a transaction supported?
Returns:

true if so

 dataDefinitionCausesTransactionCommit

 public abstract boolean dataDefinitionCausesTransactionCommit() throws SQLExceptio n

Does a data definition statement within a transaction force the transaction to commit?
Returns:

true if so

 dataDefinitionIgnoredInTransactions

 public abstract boolean dataDefinitionIgnoredInTransactions() throws SQLException

Is a data definition statement within a transaction ignored?

Returns:
true if so

 getProcedures

 public abstract ResultSet getProcedures(String catalog,
 String schemaPattern,
 String procedureNamePattern) throws SQLExc e

Get a description of stored procedures available in a catalog.

Only procedure descriptions matching the schema and procedure name criteria are returned. They
are ordered by PROCEDURE_SCHEM, and PROCEDURE_NAME.

Each procedure description has the the following columns:

1. PROCEDURE_CAT String => procedure catalog (may be null)
2. PROCEDURE_SCHEM String => procedure schema (may be null)
3. PROCEDURE_NAME String => procedure name
4. reserved for future use
5. reserved for future use
6. reserved for future use
7. REMARKS String => explanatory comment on the procedure
8. PROCEDURE_TYPE short => kind of procedure:

procedureResultUnknown - May return a result
procedureNoResult - Does not return a result
procedureReturnsResult - Returns a result

Parameters:
catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schemaPattern - a schema name pattern; "" retrieves those without a schema
procedureNamePattern - a procedure name pattern

Returns:
ResultSet - each row is a procedure description

See Also:
getSearchStringEscape

 getProcedureColumns

 public abstract ResultSet getProcedureColumns(String catalog,
 String schemaPattern,
 String procedureNamePattern,
 String columnNamePattern) throws SQL E

Get a description of a catalog’s stored procedure parameters and result columns.

Only descriptions matching the schema, procedure and parameter name criteria are returned. They
are ordered by PROCEDURE_SCHEM and PROCEDURE_NAME. Within this, the return value,
if any, is first. Next are the parameter descriptions in call order. The column descriptions follow in
column number order.

Each row in the ResultSet is a parameter description or column description with the following
fields:

1. PROCEDURE_CAT String => procedure catalog (may be null)
2. PROCEDURE_SCHEM String => procedure schema (may be null)
3. PROCEDURE_NAME String => procedure name
4. COLUMN_NAME String => column/parameter name
5. COLUMN_TYPE Short => kind of column/parameter:

procedureColumnUnknown - nobody knows
procedureColumnIn - IN parameter
procedureColumnInOut - INOUT parameter
procedureColumnOut - OUT parameter
procedureColumnReturn - procedure return value
procedureColumnResult - result column in ResultSet

6. DATA_TYPE short => SQL type from java.sql.Types
7. TYPE_NAME String => SQL type name
8. PRECISION int => precision
9. LENGTH int => length in bytes of data

10. SCALE short => scale
11. RADIX short => radix
12. NULLABLE short => can it contain NULL?

procedureNoNulls - does not allow NULL values
procedureNullable - allows NULL values
procedureNullableUnknown - nullability unknown

13. REMARKS String => comment describing parameter/column

Note: Some databases may not return the column descriptions for a procedure. Additional columns
beyond REMARKS can be defined by the database.

Parameters:
catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schemaPattern - a schema name pattern; "" retrieves those without a schema
procedureNamePattern - a procedure name pattern
columnNamePattern - a column name pattern

Returns:
ResultSet - each row is a stored procedure parameter or column description

See Also:
getSearchStringEscape

 getTables

 public abstract ResultSet getTables(String catalog,
 String schemaPattern,
 String tableNamePattern,
 String types[]) throws SQLException

Get a description of tables available in a catalog.

Only table descriptions matching the catalog, schema, table name and type criteria are returned.
They are ordered by TABLE_TYPE, TABLE_SCHEM and TABLE_NAME.

Each table description has the following columns:

1. TABLE_CAT String => table catalog (may be null)
2. TABLE_SCHEM String => table schema (may be null)
3. TABLE_NAME String => table name
4. TABLE_TYPE String => table type. Typical types are "TABLE", "VIEW", "SYSTEM

TABLE", "GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS",
"SYNONYM".

5. REMARKS String => explanatory comment on the table

Note: Some databases may not return information for all tables.

Parameters:
catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schemaPattern - a schema name pattern; "" retrieves those without a schema
tableNamePattern - a table name pattern
types - a list of table types to include; null returns all types

Returns:
ResultSet - each row is a table description

See Also:
getSearchStringEscape

 getSchemas

 public abstract ResultSet getSchemas() throws SQLException

Get the schema names available in this database. The results are ordered by schema name.

The schema column is:

1. TABLE_SCHEM String => schema name
Returns:

ResultSet - each row has a single String column that is a schema name

 getCatalogs

 public abstract ResultSet getCatalogs() throws SQLException

Get the catalog names available in this database. The results are ordered by catalog name.

The catalog column is:

1. TABLE_CAT String => catalog name
Returns:

ResultSet - each row has a single String column that is a catalog name

 getTableTypes

 public abstract ResultSet getTableTypes() throws SQLException

Get the table types available in this database. The results are ordered by table type.

The table type is:

1. TABLE_TYPE String => table type. Typical types are "TABLE", "VIEW", "SYSTEM
TABLE", "GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS",
"SYNONYM".

Returns:
ResultSet - each row has a single String column that is a table type

 getColumns

 public abstract ResultSet getColumns(String catalog,
 String schemaPattern,
 String tableNamePattern,
 String columnNamePattern) throws SQLException

Get a description of table columns available in a catalog.

Only column descriptions matching the catalog, schema, table and column name criteria are
returned. They are ordered by TABLE_SCHEM, TABLE_NAME and ORDINAL_POSITION.

Each column description has the following columns:

1. TABLE_CAT String => table catalog (may be null)
2. TABLE_SCHEM String => table schema (may be null)
3. TABLE_NAME String => table name
4. COLUMN_NAME String => column name
5. DATA_TYPE short => SQL type from java.sql.Types
6. TYPE_NAME String => Data source dependent type name
7. COLUMN_SIZE int => column size. For char or date types this is the maximum number of

characters, for numeric or decimal types this is precision.
8. BUFFER_LENGTH is not used.
9. DECIMAL_DIGITS int => the number of fractional digits

10. NUM_PREC_RADIX int => Radix (typically either 10 or 2)
11. NULLABLE int => is NULL allowed?

columnNoNulls - might not allow NULL values
columnNullable - definitely allows NULL values
columnNullableUnknown - nullability unknown

12. REMARKS String => comment describing column (may be null)
13. COLUMN_DEF String => default value (may be null)
14. SQL_DATA_TYPE int => unused
15. SQL_DATETIME_SUB int => unused

16. CHAR_OCTET_LENGTH int => for char types the maximum number of bytes in the
column

17. ORDINAL_POSITION int => index of column in table (starting at 1)
18. IS_NULLABLE String => "NO" means column definitely does not allow NULL values;

"YES" means the column might allow NULL values. An empty string means nobody knows.
Parameters:

catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schemaPattern - a schema name pattern; "" retrieves those without a schema
tableNamePattern - a table name pattern
columnNamePattern - a column name pattern

Returns:
ResultSet - each row is a column description

See Also:
getSearchStringEscape

 getColumnPrivileges

 public abstract ResultSet getColumnPrivileges(String catalog,
 String schema,
 String table,
 String columnNamePattern) throws SQL E

Get a description of the access rights for a table’s columns.

Only privileges matching the column name criteria are returned. They are ordered by
COLUMN_NAME and PRIVILEGE.

Each privilige description has the following columns:

1. TABLE_CAT String => table catalog (may be null)
2. TABLE_SCHEM String => table schema (may be null)
3. TABLE_NAME String => table name
4. COLUMN_NAME String => column name
5. GRANTOR => grantor of access (may be null)
6. GRANTEE String => grantee of access
7. PRIVILEGE String => name of access (SELECT, INSERT, UPDATE, REFRENCES, ...)
8. IS_GRANTABLE String => "YES" if grantee is permitted to grant to others; "NO" if not;

null if unknown
Parameters:

catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schema - a schema name; "" retrieves those without a schema
table - a table name
columnNamePattern - a column name pattern

Returns:
ResultSet - each row is a column privilege description

See Also:
getSearchStringEscape

 getTablePrivileges

 public abstract ResultSet getTablePrivileges(String catalog,
 String schemaPattern,
 String tableNamePattern) throws SQLEx c

Get a description of the access rights for each table available in a catalog. Note that a table
privilege applies to one or more columns in the table. It would be wrong to assume that this
priviledge applies to all columns (this may be true for some systems but is not true for all.)

Only privileges matching the schema and table name criteria are returned. They are ordered by
TABLE_SCHEM, TABLE_NAME, and PRIVILEGE.

Each privilige description has the following columns:

1. TABLE_CAT String => table catalog (may be null)
2. TABLE_SCHEM String => table schema (may be null)
3. TABLE_NAME String => table name
4. GRANTOR => grantor of access (may be null)
5. GRANTEE String => grantee of access
6. PRIVILEGE String => name of access (SELECT, INSERT, UPDATE, REFRENCES, ...)
7. IS_GRANTABLE String => "YES" if grantee is permitted to grant to others; "NO" if not;

null if unknown
Parameters:

catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schemaPattern - a schema name pattern; "" retrieves those without a schema
tableNamePattern - a table name pattern

Returns:
ResultSet - each row is a table privilege description

See Also:
getSearchStringEscape

 getBestRowIdentifier

 public abstract ResultSet getBestRowIdentifier(String catalog,
 String schema,
 String table,
 int scope,
 boolean nullable) throws SQLExcepti o

Get a description of a table’s optimal set of columns that uniquely identifies a row. They are
ordered by SCOPE.

Each column description has the following columns:

1. SCOPE short => actual scope of result
bestRowTemporary - very temporary, while using row
bestRowTransaction - valid for remainder of current transaction

bestRowSession - valid for remainder of current session
2. COLUMN_NAME String => column name
3. DATA_TYPE short => SQL data type from java.sql.Types
4. TYPE_NAME String => Data source dependent type name
5. COLUMN_SIZE int => precision
6. BUFFER_LENGTH int => not used
7. DECIMAL_DIGITS short => scale
8. PSEUDO_COLUMN short => is this a pseudo column like an Oracle ROWID

bestRowUnknown - may or may not be pseudo column
bestRowNotPseudo - is NOT a pseudo column
bestRowPseudo - is a pseudo column

Parameters:
catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schema - a schema name; "" retrieves those without a schema
table - a table name
scope - the scope of interest; use same values as SCOPE
nullable - include columns that are nullable?

Returns:
ResultSet - each row is a column description

 getVersionColumns

 public abstract ResultSet getVersionColumns(String catalog,
 String schema,
 String table) throws SQLException

Get a description of a table’s columns that are automatically updated when any value in a row is
updated. They are unordered.

Each column description has the following columns:

1. SCOPE short => is not used
2. COLUMN_NAME String => column name
3. DATA_TYPE short => SQL data type from java.sql.Types
4. TYPE_NAME String => Data source dependent type name
5. COLUMN_SIZE int => precision
6. BUFFER_LENGTH int => length of column value in bytes
7. DECIMAL_DIGITS short => scale
8. PSEUDO_COLUMN short => is this a pseudo column like an Oracle ROWID

versionColumnUnknown - may or may not be pseudo column
versionColumnNotPseudo - is NOT a pseudo column
versionColumnPseudo - is a pseudo column

Parameters:
catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schema - a schema name; "" retrieves those without a schema
table - a table name

Returns:
ResultSet - each row is a column description

 getPrimaryKeys

 public abstract ResultSet getPrimaryKeys(String catalog,
 String schema,
 String table) throws SQLException

Get a description of a table’s primary key columns. They are ordered by COLUMN_NAME.

Each primary key column description has the following columns:

1. TABLE_CAT String => table catalog (may be null)
2. TABLE_SCHEM String => table schema (may be null)
3. TABLE_NAME String => table name
4. COLUMN_NAME String => column name
5. KEY_SEQ short => sequence number within primary key
6. PK_NAME String => primary key name (may be null)

Parameters:
catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schema - a schema name pattern; "" retrieves those without a schema
table - a table name

Returns:
ResultSet - each row is a primary key column description

 getImportedKeys

 public abstract ResultSet getImportedKeys(String catalog,
 String schema,
 String table) throws SQLException

Get a description of the primary key columns that are referenced by a table’s foreign key columns
(the primary keys imported by a table). They are ordered by PKTABLE_CAT,
PKTABLE_SCHEM, PKTABLE_NAME, and KEY_SEQ.

Each primary key column description has the following columns:

1. PKTABLE_CAT String => primary key table catalog being imported (may be null)
2. PKTABLE_SCHEM String => primary key table schema being imported (may be null)
3. PKTABLE_NAME String => primary key table name being imported
4. PKCOLUMN_NAME String => primary key column name being imported
5. FKTABLE_CAT String => foreign key table catalog (may be null)
6. FKTABLE_SCHEM String => foreign key table schema (may be null)
7. FKTABLE_NAME String => foreign key table name
8. FKCOLUMN_NAME String => foreign key column name
9. KEY_SEQ short => sequence number within foreign key

10. UPDATE_RULE short => What happens to foreign key when primary is updated:

importedNoAction - do not allow update of primary key if it has been imported
importedKeyCascade - change imported key to agree with primary key update
importedKeySetNull - change imported key to NULL if its primary key has been
updated
importedKeySetDefault - change imported key to default values if its primary key has
been updated
importedKeyRestrict - same as importedKeyNoAction (for ODBC 2.x compatibility)

11. DELETE_RULE short => What happens to the foreign key when primary is deleted.
importedKeyNoAction - do not allow delete of primary key if it has been imported
importedKeyCascade - delete rows that import a deleted key
importedKeySetNull - change imported key to NULL if its primary key has been
deleted
importedKeyRestrict - same as importedKeyNoAction (for ODBC 2.x compatibility)
importedKeySetDefault - change imported key to default if its primary key has been
deleted

12. FK_NAME String => foreign key name (may be null)
13. PK_NAME String => primary key name (may be null)
14. DEFERRABILITY short => can the evaluation of foreign key constraints be deferred until

commit
importedKeyInitiallyDeferred - see SQL92 for definition
importedKeyInitiallyImmediate - see SQL92 for definition
importedKeyNotDeferrable - see SQL92 for definition

Parameters:
catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schema - a schema name pattern; "" retrieves those without a schema
table - a table name

Returns:
ResultSet - each row is a primary key column description

See Also:
getExportedKeys

 getExportedKeys

 public abstract ResultSet getExportedKeys(String catalog,
 String schema,
 String table) throws SQLException

Get a description of the foreign key columns that reference a table’s primary key columns (the
foreign keys exported by a table). They are ordered by FKTABLE_CAT, FKTABLE_SCHEM,
FKTABLE_NAME, and KEY_SEQ.

Each foreign key column description has the following columns:

1. PKTABLE_CAT String => primary key table catalog (may be null)
2. PKTABLE_SCHEM String => primary key table schema (may be null)
3. PKTABLE_NAME String => primary key table name
4. PKCOLUMN_NAME String => primary key column name
5. FKTABLE_CAT String => foreign key table catalog (may be null) being exported (may be

null)
6. FKTABLE_SCHEM String => foreign key table schema (may be null) being exported

(may be null)
7. FKTABLE_NAME String => foreign key table name being exported
8. FKCOLUMN_NAME String => foreign key column name being exported
9. KEY_SEQ short => sequence number within foreign key

10. UPDATE_RULE short => What happens to foreign key when primary is updated:
importedNoAction - do not allow update of primary key if it has been imported
importedKeyCascade - change imported key to agree with primary key update
importedKeySetNull - change imported key to NULL if its primary key has been
updated
importedKeySetDefault - change imported key to default values if its primary key has
been updated
importedKeyRestrict - same as importedKeyNoAction (for ODBC 2.x compatibility)

11. DELETE_RULE short => What happens to the foreign key when primary is deleted.
importedKeyNoAction - do not allow delete of primary key if it has been imported
importedKeyCascade - delete rows that import a deleted key
importedKeySetNull - change imported key to NULL if its primary key has been
deleted
importedKeyRestrict - same as importedKeyNoAction (for ODBC 2.x compatibility)
importedKeySetDefault - change imported key to default if its primary key has been
deleted

12. FK_NAME String => foreign key name (may be null)
13. PK_NAME String => primary key name (may be null)
14. DEFERRABILITY short => can the evaluation of foreign key constraints be deferred until

commit
importedKeyInitiallyDeferred - see SQL92 for definition
importedKeyInitiallyImmediate - see SQL92 for definition
importedKeyNotDeferrable - see SQL92 for definition

Parameters:
catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schema - a schema name pattern; "" retrieves those without a schema
table - a table name

Returns:
ResultSet - each row is a foreign key column description

See Also:
getImportedKeys

 getCrossReference

 public abstract ResultSet getCrossReference(String primaryCatalog,
 String primarySchema,
 String primaryTable,
 String foreignCatalog,
 String foreignSchema,
 String foreignTable) throws SQLExcepti o

Get a description of the foreign key columns in the foreign key table that reference the primary

key columns of the primary key table (describe how one table imports another’s key.) This should
normally return a single foreign key/primary key pair (most tables only import a foreign key from
a table once.) They are ordered by FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME,
and KEY_SEQ.

Each foreign key column description has the following columns:

1. PKTABLE_CAT String => primary key table catalog (may be null)
2. PKTABLE_SCHEM String => primary key table schema (may be null)
3. PKTABLE_NAME String => primary key table name
4. PKCOLUMN_NAME String => primary key column name
5. FKTABLE_CAT String => foreign key table catalog (may be null) being exported (may be

null)
6. FKTABLE_SCHEM String => foreign key table schema (may be null) being exported

(may be null)
7. FKTABLE_NAME String => foreign key table name being exported
8. FKCOLUMN_NAME String => foreign key column name being exported
9. KEY_SEQ short => sequence number within foreign key

10. UPDATE_RULE short => What happens to foreign key when primary is updated:
importedNoAction - do not allow update of primary key if it has been imported
importedKeyCascade - change imported key to agree with primary key update
importedKeySetNull - change imported key to NULL if its primary key has been
updated
importedKeySetDefault - change imported key to default values if its primary key has
been updated
importedKeyRestrict - same as importedKeyNoAction (for ODBC 2.x compatibility)

11. DELETE_RULE short => What happens to the foreign key when primary is deleted.
importedKeyNoAction - do not allow delete of primary key if it has been imported
importedKeyCascade - delete rows that import a deleted key
importedKeySetNull - change imported key to NULL if its primary key has been
deleted
importedKeyRestrict - same as importedKeyNoAction (for ODBC 2.x compatibility)
importedKeySetDefault - change imported key to default if its primary key has been
deleted

12. FK_NAME String => foreign key name (may be null)
13. PK_NAME String => primary key name (may be null)
14. DEFERRABILITY short => can the evaluation of foreign key constraints be deferred until

commit
importedKeyInitiallyDeferred - see SQL92 for definition
importedKeyInitiallyImmediate - see SQL92 for definition
importedKeyNotDeferrable - see SQL92 for definition

Parameters:
primaryCatalog - a catalog name; "" retrieves those without a catalog; null means drop
catalog name from the selection criteria
primarySchema - a schema name pattern; "" retrieves those without a schema
primaryTable - the table name that exports the key
foreignCatalog - a catalog name; "" retrieves those without a catalog; null means drop
catalog name from the selection criteria

foreignSchema - a schema name pattern; "" retrieves those without a schema
foreignTable - the table name that imports the key

Returns:
ResultSet - each row is a foreign key column description

See Also:
getImportedKeys

 getTypeInfo

 public abstract ResultSet getTypeInfo() throws SQLException

Get a description of all the standard SQL types supported by this database. They are ordered by
DATA_TYPE and then by how closely the data type maps to the corresponding JDBC SQL type.

Each type description has the following columns:

1. TYPE_NAME String => Type name
2. DATA_TYPE short => SQL data type from java.sql.Types
3. PRECISION int => maximum precision
4. LITERAL_PREFIX String => prefix used to quote a literal (may be null)
5. LITERAL_SUFFIX String => suffix used to quote a literal (may be null)
6. CREATE_PARAMS String => parameters used in creating the type (may be null)
7. NULLABLE short => can you use NULL for this type?

typeNoNulls - does not allow NULL values
typeNullable - allows NULL values
typeNullableUnknown - nullability unknown

8. CASE_SENSITIVE boolean=> is it case sensitive?
9. SEARCHABLE short => can you use "WHERE" based on this type:

typePredNone - No support
typePredChar - Only supported with WHERE .. LIKE
typePredBasic - Supported except for WHERE .. LIKE
typeSearchable - Supported for all WHERE ..

10. UNSIGNED_ATTRIBUTE boolean => is it unsigned?
11. FIXED_PREC_SCALE boolean => can it be a money value?
12. AUTO_INCREMENT boolean => can it be used for an auto-increment value?
13. LOCAL_TYPE_NAME String => localized version of type name (may be null)
14. MINIMUM_SCALE short => minimum scale supported
15. MAXIMUM_SCALE short => maximum scale supported
16. SQL_DATA_TYPE int => unused
17. SQL_DATETIME_SUB int => unused
18. NUM_PREC_RADIX int => usually 2 or 10

Returns:
ResultSet - each row is a SQL type description

 getIndexInfo

 public abstract ResultSet getIndexInfo(String catalog,
 String schema,

 String table,
 boolean unique,
 boolean approximate) throws SQLException

Get a description of a table’s indices and statistics. They are ordered by NON_UNIQUE, TYPE,
INDEX_NAME, and ORDINAL_POSITION.

Each index column description has the following columns:

1. TABLE_CAT String => table catalog (may be null)
2. TABLE_SCHEM String => table schema (may be null)
3. TABLE_NAME String => table name
4. NON_UNIQUE boolean => Can index values be non-unique? false when TYPE is

tableIndexStatistic
5. INDEX_QUALIFIER String => index catalog (may be null); null when TYPE is

tableIndexStatistic
6. INDEX_NAME String => index name; null when TYPE is tableIndexStatistic
7. TYPE short => index type:

tableIndexStatistic - this identifies table statistics that are returned in conjuction with a
table’s index descriptions
tableIndexClustered - this is a clustered index
tableIndexHashed - this is a hashed index
tableIndexOther - this is some other style of index

8. ORDINAL_POSITION short => column sequence number within index; zero when TYPE
is tableIndexStatistic

9. COLUMN_NAME String => column name; null when TYPE is tableIndexStatistic
10. ASC_OR_DESC String => column sort sequence, "A" => ascending, "D" => descending,

may be null if sort sequence is not supported; null when TYPE is tableIndexStatistic
11. CARDINALITY int => When TYPE is tableIndexStatistic, then this is the number of rows

in the table; otherwise, it is the number of unique values in the index.
12. PAGES int => When TYPE is tableIndexStatisic then this is the number of pages used for

the table, otherwise it is the number of pages used for the current index.
13. FILTER_CONDITION String => Filter condition, if any. (may be null)

Parameters:
catalog - a catalog name; "" retrieves those without a catalog; null means drop catalog name
from the selection criteria
schema - a schema name pattern; "" retrieves those without a schema
table - a table name
unique - when true, return only indices for unique values; when false, return indices
regardless of whether unique or not
approximate - when true, result is allowed to reflect approximate or out of data values; when
false, results are requested to be accurate

Returns:
ResultSet - each row is an index column description

Interface java.sql.Driver
public interface Driver
extends Object

The Java SQL framework allows for multiple database drivers.

Each driver should supply a class that implements the Driver interface.

The DriverManager will try to load as many drivers as it can find and then for any given connection
request, it will ask each driver in turn to try to connect to the target URL.

It is strongly recommended that each Driver class should be small and standalone so that the Driver
class can be loaded and queried without bringing in vast quantities of supporting code.

When a Driver class is loaded, it should create an instance of itself and register it with the
DriverManager. This means that a user can load and register a driver by doing
Class.forName("foo.bah.Driver").

See Also:
DriverManager, Connection

 acceptsURL(String)
Returns true if the driver thinks that it can open a connection to the given URL.

 connect(String, Properties)
Try to make a database connection to the given URL.

 getMajorVersion()
Get the driver’s major version number.

 getMinorVersion()
Get the driver’s minor version number.

 getPropertyInfo(String, Properties)
The getPropertyInfo method is intended to allow a generic GUI tool to discover what properties it
should prompt a human for in order to get enough information to connect to a database.

 jdbcCompliant ()
Report whether the Driver is a genuine JDBC COMPLIANT (tm) driver.

 connect

 public abstract Connection connect(String url,
 Properties info) throws SQLException

Try to make a database connection to the given URL. The driver should return "null" if it realizes
it is the wrong kind of driver to connect to the given URL. This will be common, as when the
JDBC driver manager is asked to connect to a given URL it passes the URL to each loaded driver
in turn.

The driver should raise a SQLException if it is the right driver to connect to the given URL, but
has trouble connecting to the database.

The java.util.Properties argument can be used to passed arbitrary string tag/value pairs as
connection arguments. Normally at least "user" and "password" properties should be included in
the Properties.

Parameters:
url - The URL of the database to connect to
info - a list of arbitrary string tag/value pairs as connection arguments; normally at least a
"user" and "password" property should be included

Returns:
a Connection to the URL

 acceptsURL

 public abstract boolean acceptsURL(String url) throws SQLException

Returns true if the driver thinks that it can open a connection to the given URL. Typically drivers
will return true if they understand the subprotocol specified in the URL and false if they don’t.
Parameters:

url - The URL of the database.
Returns:

True if this driver can connect to the given URL.

 getPropertyInfo

 public abstract DriverPropertyInfo[] getPropertyInfo(String url,
 Properties info) throws SQLEx c

The getPropertyInfo method is intended to allow a generic GUI tool to discover what properties it
should prompt a human for in order to get enough information to connect to a database. Note that
depending on the values the human has supplied so far, additional values may become necessary,
so it may be necessary to iterate though several calls to getPropertyInfo.
Parameters:

url - The URL of the database to connect to.
info - A proposed list of tag/value pairs that will be sent on connect open.

Returns:
An array of DriverPropertyInfo objects describing possible properties. This array may be an
empty array if no properties are required.

 getMajorVersion

 public abstract int getMajorVersion()

Get the driver’s major version number. Initially this should be 1.

 getMinorVersion

 public abstract int getMinorVersion()

Get the driver’s minor version number. Initially this should be 0.

 jdbcCompliant

 public abstract boolean jdbcCompliant()

Report whether the Driver is a genuine JDBC COMPLIANT (tm) driver. A driver may only report
"true" here if it passes the JDBC compliance tests, otherwise it is required to return false. JDBC
compliance requires full support for the JDBC API and full support for SQL 92 Entry Level. It is
expected that JDBC compliant drivers will be available for all the major commercial databases.
This method is not intended to encourage the development of non-JDBC compliant drivers, but is
a recognition of the fact that some vendors are interested in using the JDBC API and framework
for lightweight databases that do not support full database functionality, or for special databases
such as document information retrieval where a SQL implementation may not be feasible.

Interface java.sql.PreparedStatement
public interface PreparedStatement
extends Object
extends Statement

A SQL statement is pre-compiled and stored in a PreparedStatement object. This object can then be used
to efficiently execute this statement multiple times.

Note: The setXXX methods for setting IN parameter values must specify types that are compatible with
the defined SQL type of the input parameter. For instance, if the IN parameter has SQL type Integer then
setInt should be used.

If arbitrary parameter type conversions are required then the setObject method should be used with a
target SQL type.

See Also:
prepareStatement, ResultSet

 clearParameters()
In general, parameter values remain in force for repeated use of a Statement.

 execute()
Some prepared statements return multiple results; the execute method handles these complex
statements as well as the simpler form of statements handled by executeQuery and executeUpdate.

 executeQuery()
A prepared SQL query is executed and its ResultSet is returned.

 executeUpdate()
Execute a SQL INSERT, UPDATE or DELETE statement.

 setAsciiStream(int, InputStream, int)
When a very large ASCII value is input to a LONGVARCHAR parameter, it may be more
practical to send it via a java.io.InputStream.

 setBigDecimal(int, BigDecimal)
Set a parameter to a java.lang.BigDecimal value.

 setBinaryStream(int, InputStream, int)
When a very large binary value is input to a LONGVARBINARY parameter, it may be more
practical to send it via a java.io.InputStream.

 setBoolean(int, boolean)
Set a parameter to a Java boolean value.

 setByte(int, byte)
Set a parameter to a Java byte value.

 setBytes(int, byte[])
Set a parameter to a Java array of bytes.

 setDate(int, Date)
Set a parameter to a java.sql.Date value.

 setDouble(int, double)
Set a parameter to a Java double value.

 setFloat(int, float)
Set a parameter to a Java float value.

 setInt(int, int)
Set a parameter to a Java int value.

 setLong(int, long)
Set a parameter to a Java long value.

 setNull(int, int)
Set a parameter to SQL NULL.

 setObject(int, Object)
Set the value of a parameter using an object; use the java.lang equivalent objects for integral
values.

 setObject(int, Object, int)
This method is like setObject above, but assumes a scale of zero.

 setObject(int, Object, int, int)
Set the value of a parameter using an object; use the java.lang equivalent objects for integral
values.

 setShort(int, short)

Set a parameter to a Java short value.
 setString(int, String)

Set a parameter to a Java String value.
 setTime(int, Time)

Set a parameter to a java.sql.Time value.
 setTimestamp(int, Timestamp)

Set a parameter to a java.sql.Timestamp value.
 setUnicodeStream(int, InputStream, int)

When a very large UNICODE value is input to a LONGVARCHAR parameter, it may be more
practical to send it via a java.io.InputStream.

 executeQuery

 public abstract ResultSet executeQuery() throws SQLException

A prepared SQL query is executed and its ResultSet is returned.
Returns:

a ResultSet that contains the data produced by the query; never null

 executeUpdate

 public abstract int executeUpdate() throws SQLException

Execute a SQL INSERT, UPDATE or DELETE statement. In addition, SQL statements that return
nothing such as SQL DDL statements can be executed.
Returns:

either the row count for INSERT, UPDATE or DELETE; or 0 for SQL statements that return
nothing

 setNull

 public abstract void setNull(int parameterIndex,
 int sqlType) throws SQLException

Set a parameter to SQL NULL.

Note: You must specify the parameter’s SQL type.

Parameters:
parameterIndex - the first parameter is 1, the second is 2, ...
sqlType - SQL type code defined by java.sql.Types

 setBoolean

 public abstract void setBoolean(int parameterIndex,
 boolean x) throws SQLException

Set a parameter to a Java boolean value. The driver converts this to a SQL BIT value when it sends
it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setByte

 public abstract void setByte(int parameterIndex,
 byte x) throws SQLException

Set a parameter to a Java byte value. The driver converts this to a SQL TINYINT value when it
sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setShort

 public abstract void setShort(int parameterIndex,
 short x) throws SQLException

Set a parameter to a Java short value. The driver converts this to a SQL SMALLINT value when it
sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setInt

 public abstract void setInt(int parameterIndex,
 int x) throws SQLException

Set a parameter to a Java int value. The driver converts this to a SQL INTEGER value when it
sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setLong

 public abstract void setLong(int parameterIndex,
 long x) throws SQLException

Set a parameter to a Java long value. The driver converts this to a SQL BIGINT value when it
sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setFloat

 public abstract void setFloat(int parameterIndex,
 float x) throws SQLException

Set a parameter to a Java float value. The driver converts this to a SQL FLOAT value when it
sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setDouble

 public abstract void setDouble(int parameterIndex,
 double x) throws SQLException

Set a parameter to a Java double value. The driver converts this to a SQL DOUBLE value when it
sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setBigDecimal

 public abstract void setBigDecimal(int parameterIndex,
 BigDecimal x) throws SQLException

Set a parameter to a java.lang.BigDecimal value. The driver converts this to a SQL NUMERIC
value when it sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setString

 public abstract void setString(int parameterIndex,
 String x) throws SQLException

Set a parameter to a Java String value. The driver converts this to a SQL VARCHAR or
LONGVARCHAR value (depending on the arguments size relative to the driver’s limits on
VARCHARs) when it sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setBytes

 public abstract void setBytes(int parameterIndex,
 byte x[]) throws SQLException

Set a parameter to a Java array of bytes. The driver converts this to a SQL VARBINARY or

LONGVARBINARY (depending on the argument’s size relative to the driver’s limits on
VARBINARYs) when it sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setDate

 public abstract void setDate(int parameterIndex,
 Date x) throws SQLException

Set a parameter to a java.sql.Date value. The driver converts this to a SQL DATE value when it
sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setTime

 public abstract void setTime(int parameterIndex,
 Time x) throws SQLException

Set a parameter to a java.sql.Time value. The driver converts this to a SQL TIME value when it
sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setTimestamp

 public abstract void setTimestamp(int parameterIndex,
 Timestamp x) throws SQLException

Set a parameter to a java.sql.Timestamp value. The driver converts this to a SQL TIMESTAMP
value when it sends it to the database.
Parameters:

parameterIndex - the first parameter is 1, the second is 2, ...
x - the parameter value

 setAsciiStream

 public abstract void setAsciiStream(int parameterIndex,
 InputStream x,
 int length) throws SQLException

When a very large ASCII value is input to a LONGVARCHAR parameter, it may be more
practical to send it via a java.io.InputStream. JDBC will read the data from the stream as needed,
until it reaches end-of-file. The JDBC driver will do any necessary conversion from ASCII to the
database char format.

Note: This stream object can either be a standard Java stream object or your own subclass that

implements the standard interface.

Parameters:
parameterIndex - the first parameter is 1, the second is 2, ...
x - the java input stream which contains the ASCII parameter value
length - the number of bytes in the stream

 setUnicodeStream

 public abstract void setUnicodeStream(int parameterIndex,
 InputStream x,
 int length) throws SQLException

When a very large UNICODE value is input to a LONGVARCHAR parameter, it may be more
practical to send it via a java.io.InputStream. JDBC will read the data from the stream as needed,
until it reaches end-of-file. The JDBC driver will do any necessary conversion from UNICODE to
the database char format.

Note: This stream object can either be a standard Java stream object or your own subclass that
implements the standard interface.

Parameters:
parameterIndex - the first parameter is 1, the second is 2, ...
x - the java input stream which contains the UNICODE parameter value
length - the number of bytes in the stream

 setBinaryStream

 public abstract void setBinaryStream(int parameterIndex,
 InputStream x,
 int length) throws SQLException

When a very large binary value is input to a LONGVARBINARY parameter, it may be more
practical to send it via a java.io.InputStream. JDBC will read the data from the stream as needed,
until it reaches end-of-file.

Note: This stream object can either be a standard Java stream object or your own subclass that
implements the standard interface.

Parameters:
parameterIndex - the first parameter is 1, the second is 2, ...
x - the java input stream which contains the binary parameter value
length - the number of bytes in the stream

 clearParameters

 public abstract void clearParameters() throws SQLException

In general, parameter values remain in force for repeated use of a Statement. Setting a parameter
value automatically clears its previous value. However, in some cases it is useful to immediately

release the resources used by the current parameter values; this can be done by calling
clearParameters.

 setObject

 public abstract void setObject(int parameterIndex,
 Object x,
 int targetSqlType,
 int scale) throws SQLException

Set the value of a parameter using an object; use the java.lang equivalent objects for integral
values.

The given Java object will be converted to the targetSqlType before being sent to the database.

Note that this method may be used to pass datatabase- specific abstract data types. This is done by
using a Driver- specific Java type and using a targetSqlType of java.sql.types.OTHER.

Parameters:
parameterIndex - The first parameter is 1, the second is 2, ...
x - The object containing the input parameter value
targetSqlType - The SQL type (as defined in java.sql.Types) to be sent to the database. The
scale argument may further qualify this type.
scale - For java.sql.Types.DECIMAL or java.sql.Types.NUMERIC types this is the number
of digits after the decimal. For all other types this value will be ignored,

See Also:
Types

 setObject

 public abstract void setObject(int parameterIndex,
 Object x,
 int targetSqlType) throws SQLException

This method is like setObject above, but assumes a scale of zero.

 setObject

 public abstract void setObject(int parameterIndex,
 Object x) throws SQLException

Set the value of a parameter using an object; use the java.lang equivalent objects for integral
values.

The JDBC specification specifies a standard mapping from Java Object types to SQL types. The
given argument java object will be converted to the corresponding SQL type before being sent to
the database.

Note that this method may be used to pass datatabase specific abstract data types, by using a
Driver specific Java type.

Parameters:
parameterIndex - The first parameter is 1, the second is 2, ...
x - The object containing the input parameter value

 execute

 public abstract boolean execute() throws SQLException

Some prepared statements return multiple results; the execute method handles these complex
statements as well as the simpler form of statements handled by executeQuery and executeUpdate.
See Also:

execute

Interface java.sql.ResultSet
public interface ResultSet
extends Object

A ResultSet provides access to a table of data generated by executing a Statement. The table rows are
retrieved in sequence. Within a row its column values can be accessed in any order.

A ResultSet maintains a cursor pointing to its current row of data. Initially the cursor is positioned
before the first row. The ’next’ method moves the cursor to the next row.

The getXXX methods retrieve column values for the current row. You can retrieve values either using
the index number of the column, or by using the name of the column. In general using the column index
will be more efficient. Columns are numbered from 1.

For maximum portability, ResultSet columns within each row should be read in left-to-right order and
each column should be read only once.

For the getXXX methods, the JDBC driver attempts to convert the underlying data to the specified Java
type and returns a suitable Java value. See the JDBC specification for allowable mappings from SQL
types to Java types with the ResultSet.getXXX methods.

Column names used as input to getXXX methods are case insensitive. When performing a getXXX
using a column name, if several columns have the same name, then the value of the first matching
column will be returned. The column name option is designed to be used when column names are used
in the SQL query. For columns that are NOT explicitly named in the query, it is best to use column
numbers. If column names were used there is no way for the programmer to guarantee that they actually
refer to the intended columns.

A ResultSet is automatically closed by the Statement that generated it when that Statement is closed,
re-executed, or is used to retrieve the next result from a sequence of multiple results.

The number, types and properties of a ResultSet’s columns are provided by the ResulSetMetaData
object returned by the getMetaData method.

See Also:
executeQuery, getResultSet, ResultSetMetaData

 clearWarnings()
After this call getWarnings returns null until a new warning is reported for this ResultSet.

 close()
In some cases, it is desirable to immediately release a ResultSet’s database and JDBC resources
instead of waiting for this to happen when it is automatically closed; the close method provides
this immediate release.

 findColumn (String)
Map a Resultset column name to a ResultSet column index.

 getAsciiStream(int)
A column value can be retrieved as a stream of ASCII characters and then read in chunks from the
stream.

 getAsciiStream(String)
A column value can be retrieved as a stream of ASCII characters and then read in chunks from the
stream.

 getBigDecimal(int, int)
Get the value of a column in the current row as a java.lang.BigDecimal object.

 getBigDecimal(String, int)
Get the value of a column in the current row as a java.lang.BigDecimal object.

 getBinaryStream(int)
A column value can be retrieved as a stream of uninterpreted bytes and then read in chunks from
the stream.

 getBinaryStream(String)
A column value can be retrieved as a stream of uninterpreted bytes and then read in chunks from
the stream.

 getBoolean(int)
Get the value of a column in the current row as a Java boolean.

 getBoolean(String)
Get the value of a column in the current row as a Java boolean.

 getByte(int)
Get the value of a column in the current row as a Java byte.

 getByte(String)
Get the value of a column in the current row as a Java byte.

 getBytes(int)
Get the value of a column in the current row as a Java byte array.

 getBytes(String)
Get the value of a column in the current row as a Java byte array.

 getCursorName()
Get the name of the SQL cursor used by this ResultSet.

 getDate(int)
Get the value of a column in the current row as a java.sql.Date object.

 getDate(String)
Get the value of a column in the current row as a java.sql.Date object.

 getDouble(int)
Get the value of a column in the current row as a Java double.

 getDouble(String)
Get the value of a column in the current row as a Java double.

 getFloat(int)
Get the value of a column in the current row as a Java float.

 getFloat(String)
Get the value of a column in the current row as a Java float.

 getInt(int)
Get the value of a column in the current row as a Java int.

 getInt(String)
Get the value of a column in the current row as a Java int.

 getLong(int)
Get the value of a column in the current row as a Java long.

 getLong(String)
Get the value of a column in the current row as a Java long.

 getMetaData()
The number, types and properties of a ResultSet’s columns are provided by the getMetaData
method.

 getObject(int)
Get the value of a column in the current row as a Java object.

 getObject(String)
Get the value of a column in the current row as a Java object.

 getShort(int)
Get the value of a column in the current row as a Java short.

 getShort(String)
Get the value of a column in the current row as a Java short.

 getString(int)
Get the value of a column in the current row as a Java String.

 getString(String)
Get the value of a column in the current row as a Java String.

 getTime(int)
Get the value of a column in the current row as a java.sql.Time object.

 getTime(String)
Get the value of a column in the current row as a java.sql.Time object.

 getTimestamp(int)
Get the value of a column in the current row as a java.sql.Timestamp object.

 getTimestamp(String)
Get the value of a column in the current row as a java.sql.Timestamp object.

 getUnicodeStream(int)
A column value can be retrieved as a stream of Unicode characters and then read in chunks from

the stream.
 getUnicodeStream(String)

A column value can be retrieved as a stream of Unicode characters and then read in chunks from
the stream.

 getWarnings()
The first warning reported by calls on this ResultSet is returned.

 next()
A ResultSet is initially positioned before its first row; the first call to next makes the first row the
current row; the second call makes the second row the current row, etc.

 wasNull()
A column may have the value of SQL NULL; wasNull reports whether the last column read had
this special value.

 next

 public abstract boolean next() throws SQLException

A ResultSet is initially positioned before its first row; the first call to next makes the first row the
current row; the second call makes the second row the current row, etc.

If an input stream from the previous row is open, it is implicitly closed. The ResultSet’s warning
chain is cleared when a new row is read.

Returns:
true if the new current row is valid; false if there are no more rows

 close

 public abstract void close() throws SQLException

In some cases, it is desirable to immediately release a ResultSet’s database and JDBC resources
instead of waiting for this to happen when it is automatically closed; the close method provides
this immediate release.

Note: A ResultSet is automatically closed by the Statement that generated it when that Statement
is closed, re-executed, or is used to retrieve the next result from a sequence of multiple results. A
ResultSet is also automatically closed when it is garbage collected.

 wasNull

 public abstract boolean wasNull() throws SQLException

A column may have the value of SQL NULL; wasNull reports whether the last column read had
this special value. Note that you must first call getXXX on a column to try to read its value and
then call wasNull() to find if the value was the SQL NULL.
Returns:

true if last column read was SQL NULL

 getString

 public abstract String getString(int columnIndex) throws SQLException

Get the value of a column in the current row as a Java String.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is null

 getBoolean

 public abstract boolean getBoolean(int columnIndex) throws SQLException

Get the value of a column in the current row as a Java boolean.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is false

 getByte

 public abstract byte getByte(int columnIndex) throws SQLException

Get the value of a column in the current row as a Java byte.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is 0

 getShort

 public abstract short getShort(int columnIndex) throws SQLException

Get the value of a column in the current row as a Java short.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is 0

 getInt

 public abstract int getInt(int columnIndex) throws SQLException

Get the value of a column in the current row as a Java int.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is 0

 getLong

 public abstract long getLong(int columnIndex) throws SQLException

Get the value of a column in the current row as a Java long.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is 0

 getFloat

 public abstract float getFloat(int columnIndex) throws SQLException

Get the value of a column in the current row as a Java float.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is 0

 getDouble

 public abstract double getDouble(int columnIndex) throws SQLException

Get the value of a column in the current row as a Java double.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is 0

 getBigDecimal

 public abstract BigDecimal getBigDecimal(int columnIndex,
 int scale) throws SQLException

Get the value of a column in the current row as a java.lang.BigDecimal object.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
scale - the number of digits to the right of the decimal

Returns:
the column value; if the value is SQL NULL, the result is null

 getBytes

 public abstract byte[] getBytes(int columnIndex) throws SQLException

Get the value of a column in the current row as a Java byte array. The bytes represent the raw
values returned by the driver.

Parameters:
columnIndex - the first column is 1, the second is 2, ...

Returns:
the column value; if the value is SQL NULL, the result is null

 getDate

 public abstract Date getDate(int columnIndex) throws SQLException

Get the value of a column in the current row as a java.sql.Date object.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is null

 getTime

 public abstract Time getTime(int columnIndex) throws SQLException

Get the value of a column in the current row as a java.sql.Time object.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is null

 getTimestamp

 public abstract Timestamp getTimestamp(int columnIndex) throws SQLException

Get the value of a column in the current row as a java.sql.Timestamp object.
Parameters:

columnIndex - the first column is 1, the second is 2, ...
Returns:

the column value; if the value is SQL NULL, the result is null

 getAsciiStream

 public abstract InputStream getAsciiStream(int columnIndex) throws SQLException

A column value can be retrieved as a stream of ASCII characters and then read in chunks from the
stream. This method is particularly suitable for retrieving large LONGVARCHAR values. The
JDBC driver will do any necessary conversion from the database format into ASCII.

Note: All the data in the returned stream must be read prior to getting the value of any other
column. The next call to a get method implicitly closes the stream. . Also, a stream may return 0
for available() whether there is data available or not.

Parameters:
columnIndex - the first column is 1, the second is 2, ...

Returns:
a Java input stream that delivers the database column value as a stream of one byte ASCII
characters. If the value is SQL NULL then the result is null.

 getUnicodeStream

 public abstract InputStream getUnicodeStream(int columnIndex) throws SQLException

A column value can be retrieved as a stream of Unicode characters and then read in chunks from
the stream. This method is particularly suitable for retrieving large LONGVARCHAR values. The
JDBC driver will do any necessary conversion from the database format into Unicode.

Note: All the data in the returned stream must be read prior to getting the value of any other
column. The next call to a get method implicitly closes the stream. . Also, a stream may return 0
for available() whether there is data available or not.

Parameters:
columnIndex - the first column is 1, the second is 2, ...

Returns:
a Java input stream that delivers the database column value as a stream of two byte Unicode
characters. If the value is SQL NULL then the result is null.

 getBinaryStream

 public abstract InputStream getBinaryStream(int columnIndex) throws SQLException

A column value can be retrieved as a stream of uninterpreted bytes and then read in chunks from
the stream. This method is particularly suitable for retrieving large LONGVARBINARY values.

Note: All the data in the returned stream must be read prior to getting the value of any other
column. The next call to a get method implicitly closes the stream. Also, a stream may return 0 for
available() whether there is data available or not.

Parameters:
columnIndex - the first column is 1, the second is 2, ...

Returns:
a Java input stream that delivers the database column value as a stream of uninterpreted
bytes. If the value is SQL NULL then the result is null.

 getString

 public abstract String getString(String columnName) throws SQLException

Get the value of a column in the current row as a Java String.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is null

 getBoolean

 public abstract boolean getBoolean(String columnName) throws SQLException

Get the value of a column in the current row as a Java boolean.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is false

 getByte

 public abstract byte getByte(String columnName) throws SQLException

Get the value of a column in the current row as a Java byte.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is 0

 getShort

 public abstract short getShort(String columnName) throws SQLException

Get the value of a column in the current row as a Java short.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is 0

 getInt

 public abstract int getInt(String columnName) throws SQLException

Get the value of a column in the current row as a Java int.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is 0

 getLong

 public abstract long getLong(String columnName) throws SQLException

Get the value of a column in the current row as a Java long.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is 0

 getFloat

 public abstract float getFloat(String columnName) throws SQLException

Get the value of a column in the current row as a Java float.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is 0

 getDouble

 public abstract double getDouble(String columnName) throws SQLException

Get the value of a column in the current row as a Java double.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is 0

 getBigDecimal

 public abstract BigDecimal getBigDecimal(String columnName,
 int scale) throws SQLException

Get the value of a column in the current row as a java.lang.BigDecimal object.
Parameters:

columnName - is the SQL name of the column
scale - the number of digits to the right of the decimal

Returns:
the column value; if the value is SQL NULL, the result is null

 getBytes

 public abstract byte[] getBytes(String columnName) throws SQLException

Get the value of a column in the current row as a Java byte array. The bytes represent the raw
values returned by the driver.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is null

 getDate

 public abstract Date getDate(String columnName) throws SQLException

Get the value of a column in the current row as a java.sql.Date object.
Parameters:

columnName - is the SQL name of the column

Returns:
the column value; if the value is SQL NULL, the result is null

 getTime

 public abstract Time getTime(String columnName) throws SQLException

Get the value of a column in the current row as a java.sql.Time object.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is null

 getTimestamp

 public abstract Timestamp getTimestamp(String columnName) throws SQLException

Get the value of a column in the current row as a java.sql.Timestamp object.
Parameters:

columnName - is the SQL name of the column
Returns:

the column value; if the value is SQL NULL, the result is null

 getAsciiStream

 public abstract InputStream getAsciiStream(String columnName) throws SQLException

A column value can be retrieved as a stream of ASCII characters and then read in chunks from the
stream. This method is particularly suitable for retrieving large LONGVARCHAR values. The
JDBC driver will do any necessary conversion from the database format into ASCII.

Note: All the data in the returned stream must be read prior to getting the value of any other
column. The next call to a get method implicitly closes the stream.

Parameters:
columnName - is the SQL name of the column

Returns:
a Java input stream that delivers the database column value as a stream of one byte ASCII
characters. If the value is SQL NULL then the result is null.

 getUnicodeStream

 public abstract InputStream getUnicodeStream(String columnName) throws SQLExceptio n

A column value can be retrieved as a stream of Unicode characters and then read in chunks from
the stream. This method is particularly suitable for retrieving large LONGVARCHAR values. The
JDBC driver will do any necessary conversion from the database format into Unicode.

Note: All the data in the returned stream must be read prior to getting the value of any other

column. The next call to a get method implicitly closes the stream.

Parameters:
columnName - is the SQL name of the column

Returns:
a Java input stream that delivers the database column value as a stream of two byte Unicode
characters. If the value is SQL NULL then the result is null.

 getBinaryStream

 public abstract InputStream getBinaryStream(String columnName) throws SQLException

A column value can be retrieved as a stream of uninterpreted bytes and then read in chunks from
the stream. This method is particularly suitable for retrieving large LONGVARBINARY values.

Note: All the data in the returned stream must be read prior to getting the value of any other
column. The next call to a get method implicitly closes the stream.

Parameters:
columnName - is the SQL name of the column

Returns:
a Java input stream that delivers the database column value as a stream of uninterpreted
bytes. If the value is SQL NULL then the result is null.

 getWarnings

 public abstract SQLWarning getWarnings() throws SQLException

The first warning reported by calls on this ResultSet is returned. Subsequent ResultSet warnings
will be chained to this SQLWarning.

The warning chain is automatically cleared each time a new row is read.

Note: This warning chain only covers warnings caused by ResultSet methods. Any warning
caused by statement methods (such as reading OUT parameters) will be chained on the Statement
object.

Returns:
the first SQLWarning or null

 clearWarnings

 public abstract void clearWarnings() throws SQLException

After this call getWarnings returns null until a new warning is reported for this ResultSet.

 getCursorName

 public abstract String getCursorName() throws SQLException

Get the name of the SQL cursor used by this ResultSet.

In SQL, a result table is retrieved through a cursor that is named. The current row of a result can
be updated or deleted using a positioned update/delete statement that references the cursor name.

JDBC supports this SQL feature by providing the name of the SQL cursor used by a ResultSet.
The current row of a ResultSet is also the current row of this SQL cursor.

Note: If positioned update is not supported a SQLException is thrown

Returns:
the ResultSet’s SQL cursor name

 getMetaData

 public abstract ResultSetMetaData getMetaData() throws SQLException

The number, types and properties of a ResultSet’s columns are provided by the getMetaData
method.
Returns:

the description of a ResultSet’s columns

 getObject

 public abstract Object getObject(int columnIndex) throws SQLException

Get the value of a column in the current row as a Java object.

This method will return the value of the given column as a Java object. The type of the Java object
will be the default Java Object type corresponding to the column’s SQL type, following the
mapping specified in the JDBC spec.

This method may also be used to read datatabase specific abstract data types.

Parameters:
columnIndex - the first column is 1, the second is 2, ...

Returns:
A java.lang.Object holding the column value.

 getObject

 public abstract Object getObject(String columnName) throws SQLException

Get the value of a column in the current row as a Java object.

This method will return the value of the given column as a Java object. The type of the Java object
will be the default Java Object type corresponding to the column’s SQL type, following the
mapping specified in the JDBC spec.

This method may also be used to read datatabase specific abstract data types.

Parameters:
columnName - is the SQL name of the column

Returns:
A java.lang.Object holding the column value.

 findColumn

 public abstract int findColumn(String columnName) throws SQLException

Map a Resultset column name to a ResultSet column index.
Parameters:

columnName - the name of the column
Returns:

the column index

Interface java.sql.ResultSetMetaData
public interface ResultSetMetaData
extends Object

A ResultSetMetaData object can be used to find out about the types and properties of the columns in a
ResultSet.

 columnNoNulls
Does not allow NULL values.

 columnNullable
Allows NULL values.

 columnNullableUnknown
Nullability unknown.

 getCatalogName(int)
What’s a column’s table’s catalog name?

 getColumnCount()
What’s the number of columns in the ResultSet?

 getColumnDisplaySize(int)

What’s the column’s normal max width in chars?
 getColumnLabel(int)

What’s the suggested column title for use in printouts and displays?
 getColumnName(int)

What’s a column’s name?
 getColumnType(int)

What’s a column’s SQL type?
 getColumnTypeName(int)

What’s a column’s data source specific type name?
 getPrecision(int)

What’s a column’s number of decimal digits?
 getScale(int)

What’s a column’s number of digits to right of the decimal point?
 getSchemaName(int)

What’s a column’s table’s schema?
 getTableName(int)

What’s a column’s table name?
 isAutoIncrement(int)

Is the column automatically numbered, thus read-only?
 isCaseSensitive(int)

Does a column’s case matter?
 isCurrency(int)

Is the column a cash value?
 isDefinitelyWritable (int)

Will a write on the column definitely succeed?
 isNullable(int)

Can you put a NULL in this column?
 isReadOnly(int)

Is a column definitely not writable?
 isSearchable(int)

Can the column be used in a where clause?
 isSigned(int)

Is the column a signed number?
 isWritable (int)

Is it possible for a write on the column to succeed?

 columnNoNulls

 public final static int columnNoNulls

Does not allow NULL values.

 columnNullable

 public final static int columnNullable

Allows NULL values.

 columnNullableUnknown

 public final static int columnNullableUnknown

Nullability unknown.

 getColumnCount

 public abstract int getColumnCount() throws SQLException

What’s the number of columns in the ResultSet?
Returns:

the number

 isAutoIncrement

 public abstract boolean isAutoIncrement(int column) throws SQLException

Is the column automatically numbered, thus read-only?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

true if so

 isCaseSensitive

 public abstract boolean isCaseSensitive(int column) throws SQLException

Does a column’s case matter?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

true if so

 isSearchable

 public abstract boolean isSearchable(int column) throws SQLException

Can the column be used in a where clause?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

true if so

 isCurrency

 public abstract boolean isCurrency(int column) throws SQLException

Is the column a cash value?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

true if so

 isNullable

 public abstract int isNullable(int column) throws SQLException

Can you put a NULL in this column?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

columnNoNulls, columnNullable or columnNullableUnknown

 isSigned

 public abstract boolean isSigned(int column) throws SQLException

Is the column a signed number?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

true if so

 getColumnDisplaySize

 public abstract int getColumnDisplaySize(int column) throws SQLException

What’s the column’s normal max width in chars?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

max width

 getColumnLabel

 public abstract String getColumnLabel(int column) throws SQLException

What’s the suggested column title for use in printouts and displays?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

true if so

 getColumnName

 public abstract String getColumnName(int column) throws SQLException

What’s a column’s name?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

column name

 getSchemaName

 public abstract String getSchemaName(int column) throws SQLException

What’s a column’s table’s schema?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

schema name or "" if not applicable

 getPrecision

 public abstract int getPrecision(int column) throws SQLException

What’s a column’s number of decimal digits?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

precision

 getScale

 public abstract int getScale(int column) throws SQLException

What’s a column’s number of digits to right of the decimal point?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

scale

 getTableName

 public abstract String getTableName(int column) throws SQLException

What’s a column’s table name?
Returns:

table name or "" if not applicable

 getCatalogName

 public abstract String getCatalogName(int column) throws SQLException

What’s a column’s table’s catalog name?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

column name or "" if not applicable.

 getColumnType

 public abstract int getColumnType(int column) throws SQLException

What’s a column’s SQL type?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

SQL type
See Also:

Types

 getColumnTypeName

 public abstract String getColumnTypeName(int column) throws SQLException

What’s a column’s data source specific type name?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

type name

 isReadOnly

 public abstract boolean isReadOnly(int column) throws SQLException

Is a column definitely not writable?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

true if so

 isWritable

 public abstract boolean isWritable(int column) throws SQLException

Is it possible for a write on the column to succeed?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

true if so

 isDefinitelyWritable

 public abstract boolean isDefinitelyWritable(int column) throws SQLException

Will a write on the column definitely succeed?
Parameters:

column - the first column is 1, the second is 2, ...
Returns:

true if so

Interface java.sql.Statement
public interface Statement
extends Object

A Statement object is used for executing a static SQL statement and obtaining the results produced by it.

Only one ResultSet per Statement can be open at any point in time. Therefore, if the reading of one
ResultSet is interleaved with the reading of another, each must have been generated by different
Statements. All statement execute methods implicitly close a statment’s current ResultSet if an open one
exists.

See Also:
createStatement, ResultSet

 cancel()
Cancel can be used by one thread to cancel a statement that is being executed by another thread.

 clearWarnings()
After this call, getWarnings returns null until a new warning is reported for this Statement.

 close()
In many cases, it is desirable to immediately release a Statements’s database and JDBC resources
instead of waiting for this to happen when it is automatically closed; the close method provides
this immediate release.

 execute(String)
Execute a SQL statement that may return multiple results.

 executeQuery(String)
Execute a SQL statement that returns a single ResultSet.

 executeUpdate(String)
Execute a SQL INSERT, UPDATE or DELETE statement.

 getMaxFieldSize()

The maxFieldSize limit (in bytes) is the maximum amount of data returned for any column value;
it only applies to BINARY, VARBINARY, LONGVARBINARY, CHAR, VARCHAR, and
LONGVARCHAR columns.

 getMaxRows()
The maxRows limit is the maximum number of rows that a ResultSet can contain.

 getMoreResults()
getMoreResults moves to a Statement’s next result.

 getQueryTimeout()
The queryTimeout limit is the number of seconds the driver will wait for a Statement to execute.

 getResultSet()
getResultSet returns the current result as a ResultSet.

 getUpdateCount()
getUpdateCount returns the current result as an update count; if the result is a ResultSet or there
are no more results, -1 is returned.

 getWarnings()
The first warning reported by calls on this Statement is returned.

 setCursorName(String)
setCursorname defines the SQL cursor name that will be used by subsequent Statement execute
methods.

 setEscapeProcessing(boolean)
If escape scanning is on (the default), the driver will do escape substitution before sending the
SQL to the database.

 setMaxFieldSize(int)
The maxFieldSize limit (in bytes) is set to limit the size of data that can be returned for any
column value; it only applies to BINARY, VARBINARY, LONGVARBINARY, CHAR,
VARCHAR, and LONGVARCHAR fields.

 setMaxRows(int)
The maxRows limit is set to limit the number of rows that any ResultSet can contain.

 setQueryTimeout(int)
The queryTimeout limit is the number of seconds the driver will wait for a Statement to execute.

 executeQuery

 public abstract ResultSet executeQuery(String sql) throws SQLException

Execute a SQL statement that returns a single ResultSet.
Parameters:

sql - typically this is a static SQL SELECT statement
Returns:

a ResultSet that contains the data produced by the query; never null

 executeUpdate

 public abstract int executeUpdate(String sql) throws SQLException

Execute a SQL INSERT, UPDATE or DELETE statement. In addition, SQL statements that return
nothing such as SQL DDL statements can be executed.
Parameters:

sql - a SQL INSERT, UPDATE or DELETE statement or a SQL statement that returns
nothing

Returns:
either the row count for INSERT, UPDATE or DELETE or 0 for SQL statements that return
nothing

 close

 public abstract void close() throws SQLException

In many cases, it is desirable to immediately release a Statements’s database and JDBC resources
instead of waiting for this to happen when it is automatically closed; the close method provides
this immediate release.

Note: A Statement is automatically closed when it is garbage collected. When a Statement is
closed, its current ResultSet, if one exists, is also closed.

 getMaxFieldSize

 public abstract int getMaxFieldSize() throws SQLException

The maxFieldSize limit (in bytes) is the maximum amount of data returned for any column value;
it only applies to BINARY, VARBINARY, LONGVARBINARY, CHAR, VARCHAR, and
LONGVARCHAR columns. If the limit is exceeded, the excess data is silently discarded.
Returns:

the current max column size limit; zero means unlimited

 setMaxFieldSize

 public abstract void setMaxFieldSize(int max) throws SQLException

The maxFieldSize limit (in bytes) is set to limit the size of data that can be returned for any
column value; it only applies to BINARY, VARBINARY, LONGVARBINARY, CHAR,
VARCHAR, and LONGVARCHAR fields. If the limit is exceeded, the excess data is silently
discarded. For maximum portability use values greater than 256.
Parameters:

max - the new max column size limit; zero means unlimited

 getMaxRows

 public abstract int getMaxRows() throws SQLException

The maxRows limit is the maximum number of rows that a ResultSet can contain. If the limit is
exceeded, the excess rows are silently dropped.
Returns:

the current max row limit; zero means unlimited

 setMaxRows

 public abstract void setMaxRows(int max) throws SQLException

The maxRows limit is set to limit the number of rows that any ResultSet can contain. If the limit is
exceeded, the excess rows are silently dropped.
Parameters:

max - the new max rows limit; zero means unlimited

 setEscapeProcessing

 public abstract void setEscapeProcessing(boolean enable) throws SQLException

If escape scanning is on (the default), the driver will do escape substitution before sending the
SQL to the database. Note: Since prepared statements have usually been parsed prior to making
this call, disabling escape processing for prepared statements will like have no affect.
Parameters:

enable - true to enable; false to disable

 getQueryTimeout

 public abstract int getQueryTimeout() throws SQLException

The queryTimeout limit is the number of seconds the driver will wait for a Statement to execute. If
the limit is exceeded, a SQLException is thrown.
Returns:

the current query timeout limit in seconds; zero means unlimited

 setQueryTimeout

 public abstract void setQueryTimeout(int seconds) throws SQLException

The queryTimeout limit is the number of seconds the driver will wait for a Statement to execute. If
the limit is exceeded, a SQLException is thrown.
Parameters:

seconds - the new query timeout limit in seconds; zero means unlimited

 cancel

 public abstract void cancel() throws SQLException

Cancel can be used by one thread to cancel a statement that is being executed by another thread.

 getWarnings

 public abstract SQLWarning getWarnings() throws SQLException

The first warning reported by calls on this Statement is returned. A Statment’s execute methods
clear its SQLWarning chain. Subsequent Statement warnings will be chained to this SQLWarning.

The warning chain is automatically cleared each time a statement is (re)executed.

Note: If you are processing a ResultSet then any warnings associated with ResultSet reads will be
chained on the ResultSet object.

Returns:
the first SQLWarning or null

 clearWarnings

 public abstract void clearWarnings() throws SQLException

After this call, getWarnings returns null until a new warning is reported for this Statement.

 setCursorName

 public abstract void setCursorName(String name) throws SQLException

setCursorname defines the SQL cursor name that will be used by subsequent Statement execute
methods. This name can then be used in SQL positioned update/delete statements to identify the
current row in the ResultSet generated by this statement. If the database doesn’t support positioned
update/delete, this method is a noop.

Note: By definition, positioned update/delete execution must be done by a different Statement
than the one which generated the ResultSet being used for positioning. Also, cursor names must be
unique within a Connection.

Parameters:
name - the new cursor name.

 execute

 public abstract boolean execute(String sql) throws SQLException

Execute a SQL statement that may return multiple results. Under some (uncommon) situations a
single SQL statement may return multiple result sets and/or update counts. Normally you can
ignore this, unless you’re executing a stored procedure that you know may return multiple results,
or unless you’re dynamically executing an unknown SQL string. The "execute",
"getMoreResults", "getResultSet" and "getUpdateCount" methods let you navigate through
multiple results. The "execute" method executes a SQL statement and indicates the form of the
first result. You can then use getResultSet or getUpdateCount to retrieve the result, and
getMoreResults to move to any subsequent result(s).
Parameters:

sql - any SQL statement
Returns:

true if the next result is a ResultSet; false if it is an update count or there are no more results
See Also:

getResultSet, getUpdateCount, getMoreResults

 getResultSet

 public abstract ResultSet getResultSet() throws SQLException

getResultSet returns the current result as a ResultSet. It should only be called once per result.
Returns:

the current result as a ResultSet; null if the result is an update count or there are no more
results

See Also:
execute

 getUpdateCount

 public abstract int getUpdateCount() throws SQLException

getUpdateCount returns the current result as an update count; if the result is a ResultSet or there
are no more results, -1 is returned. It should only be called once per result.
Returns:

the current result as an update count; -1 if it is a ResultSet or there are no more results
See Also:

execute

 getMoreResults

 public abstract boolean getMoreResults() throws SQLException

getMoreResults moves to a Statement’s next result. It returns true if this result is a ResultSet.
getMoreResults also implicitly closes any current ResultSet obtained with getResultSet. There are
no more results when (!getMoreResults() && (getUpdateCount() == -1)
Returns:

true if the next result is a ResultSet; false if it is an update count or there are no more results
See Also:

execute

