
Lab 10.1: Building an Advanced Database Application
Objectives
After completing this lab you will be able to:

 Write an application to extract database information, such as the names of tables, fields, and queries.

 Use CDaoFieldInfo structures to determine field data-type.

 Use CDaoQueryDef to get query information.

 Use parameterized queries.

 Create dynamic queries.

 Determine support for bookmarks, and use bookmarks in a supported recordset.

 Attach a table from a foreign database to a database object.

Prerequisites
You should know how to work with dialog boxes and have completed Chapter 10 before attempting this
lab.

Lab Setup
This demonstration shows what you will accomplish during the lab.

Estimated time to complete this lab: 75 minutes.

Exercises
The following exercises provide practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Extracting Database Table and Query Names

In this exercise, you will populate a tab control and associated list box with database information.

Exercise 2: Creating the Recordset and Extracting Field Names

In this exercise, you will create a recordset and then extract field names from a database table or query
definition.

Exercise 3: Displaying Database Records

In this exercise, you will populate the rows of a list view control with records from a recordset.

Exercise 4: Finding Records and Using Bookmarks

In this exercise, you will write a function that creates and uses bookmarks.

Exercise 5: Attaching to an External Database Table

In this exercise, you will attach the database viewer to an external database table.

Copy the contents of \Labs\C10\Lab01\Xxx\Baseline, where Xxx is the exercise number, to your working
directory.

The completed code for these exercises is in \Labs\C10\Lab01\Xxx, where Xxx is the exercise number.

Exercise 1: Extracting Database Table and Query Names
In this exercise, you will add code to the baseline application to populate a tab control and associated list
box with database information.

2

About the Baseline Application
AppWizard was used to create an MDI Application without Print or Print Preview, and with database
headers only. The view class is derived from CFormView.

Note The baseline application will not build until you have completed Exercise 1.

The completed application consists of an MDI application that opens one or more databases. A separate
document stores each database object. Each open database can display one or more tables, each table
in a separate view. (Each document has one or more views.) The application also displays the results of
stored select Queries. The application prompts the user for Query parameters when appropriate. The
user can click column headers to further refine the display of records from the recordsets. Finally, the
completed application enables the user to attach to an external database table.

This table describes the functions that you will create, modify, or use in one or more of the lab exercises
for Lab 10.1.

Function Description

void
CBrowserView::GetDBNames(int
nInfo)

Helper function to get the definition
count from the database for tables,
queries, and relations.

void CBrowserView::OnViewData() When a user selects a table or query
for display, OnViewData creates a
new view using a template (created in
CBrowserApp::InitInstance) and
then calls CDataView::SetData.

BOOL
CDataView::SetData(CDaoDatabase *
pDB, const CString & name, const int
nType)

Creates a recordset and extracts field
names from a database table or query.
SetData then populates the list view.
Its parameters are the database
pointer, the table or query name, and
whether it is a table or query.

void
CDataView::SetParams(CDaoQueryD
ef * pQDef)

Used with parameterized queries, to
get parameter values from the user
and set the query parameters.

void CDataView::LoadHeaders() Adds a column to the list control for
each field in the recordset and puts the
field name into the column header.

void CDataView::LoadData(CString *
pstrCriteria)

Used to populate the rows of the list
view control.

CString strVARIANT(const
COleVariant & var)

Defined in VarDecoder.Cpp.

void
CDataView::OnColumnclick(NMHDR*
pNMHDR, LRESULT* pResult)

When the user clicks a column header,
posts a message for
CDataView::OnHeadClick to handle.

long CDataView::OnHeadClick(UINT
uP, long)

Builds a query for the field clicked and
then calls CDataView::LoadData.

void
CDataView::FindQueryData(CString
& strCriteria)

Sets a bookmark, if possible.
FindQueryData then finds and
displays queried data. Finally, it returns
to the bookmark, or if there is no
bookmark, to first record.

CBrowserView::OnViewAttach() Attaches the database viewer to an
external database and calls
CDataView::SetData.

CDataView::AttachTable() Prompts the user for a database and

 3

table name. AttachTable then
attaches the table to the current
database and opens a dynaset type
recordset.

CDataView::~CDataView() CDataView destructor closes open
data objects. In Exercise 5, you add
cleanup code to this function to delete
the CDaoTableDef object.

Exercise 1: Extracting Database Table and Query Names
In this exercise, you populate the tab control and associated list box with database information.

 Provide access the database object

1. Add a protected CDaoDatabase variable m_daoDB to the document class.

2. Add a public accessor member-function CDaoDatabase * GetDatabase() that returns a pointer to the
database variable.

CDaoDatabase * CBrowserDoc::GetDatabase()
{

return & m_daoDB;
}

 Extract database table and query names and add to the list

1. In the CBrowserView class, locate the code for the member function GetDBNames.

2. Modify the first switch case within the function’s for loop to extract the table information using the
function CDaoDatabase::GetTableDefInfo. Use the loop counter variable as the first argument and
the structure variable tInfo as the second argument to GetTableDefInfo.

In the TABLE case, before adding the table-name string to the list box, test the constant
dbSystemObject against the attributes returned in the tInfo structure. If the dbSystemObject attribute
is set, do not add the table name to the list box, because system tables are internal tables that do not
interest the user.

case TABLE :db.GetTableDefInfo(i, tInfo);
if (! (dbSystemObject &&

tInfo.m_lAttributes)) //Don't want system tables
m_List.AddString(tInfo.m_strName);
break;

3. Modify the second switch case within the function’s for loop to extract the query information using the
function CDaoDatabase::GetQueryDefInfo. Use the loop counter variable as the first argument and
the structure variable qInfo as the second argument to GetQueryDefInfo. Then add the query name
to the list.

case QUERY : db.GetQueryDefInfo(i, qInfo);
m_List.AddString(qInfo.m_strName);

break;

Notice that the definition count from the database for the appropriate tab (Table, Query, or Relation) is
determined by using pointers to member functions.

 Build and test your application

1. Open an Access-type database, for example Labs\C10\Biblio.Mdb.

2. Click the Tables tab.

The list box should show table names. Click the Queries tab. The list box should show query names.

4

3. Double-click a query or table name.

You should get an empty frame, and a message box stating that the recordset could not be opened.

The completed code for this exercise is in \Labs\C10\Lab01\Ex01.

Exercise 2: Creating the Recordset and Extracting Field Names
In this exercise, you will add code to the baseline application to create a recordset and then extract field
names from a database table or query definition.

You add code to create a recordset and then extract field names from a database table or query
definition to the function CDataView::SetData. (CBrowserView::OnViewData calls
CDataView::SetData with the user-selected table or query name.) You then use the extracted field
names to populate column headers in a CListView derived class.

 Create a recordset

1. Locate the function CDataView::SetData in DataView.Cpp.

2. Remove the opening statement: return FALSE.

The statement enabled you to test your code in Exercise 1.

3. Within the try block, determine whether the parameter nType is equal to the enumerated value
TABLE.

if (TABLE == nType)
{

a. If it is equal to TABLE, create a CDaoRecordset object on the heap. Pass the database pointer as

an initializer. Assign the returned pointer to the member variable, m_pRecordset.

m_pRecordset = new CDaoRecordset(m_pDB);

b. Define a CString object. Create a SQL statement using the CString parameter, name, to choose
all columns from the table. Bracket the table name.

CString sql = "Select * from [" + name + "]";

c. Use the SQL statement to open the CDaoRecordset object as a dynaset type recordset.

m_pRecordset->Open(dbOpenDynaset, sql);
}

4. Otherwise test to see whether the parameter nType is equal to QUERY:

else if (QUERY == nType)

5. If it is a query, do the following:

a. Create a CDaoQueryDef object on the heap. Pass the database pointer as an initializer. Assign the
pointer returned by new to the member variable, m_pQuery.

m_pQuery = new CDaoQueryDef(m_pDB);

b. Use the CString argument, name, to open the CDaoQueryDef object.

m_pQuery->Open(name);

c. Determine the type of query by calling the function CDaoQueryDef::GetType. If the query type is
equal to CDaoQueryDef::dbQSelect, add code to call CDataView::SetParams, passing it the
query pointer, and then create and open a new recordset object:

if (dbQSelect == m_pQuery->GetType())
{

SetParams(m_pQuery);
m_pRecordset = new CDaoRecordset(m_pDB);

 5

m_pRecordset->Open(m_pQuery);
} //End if Select-Query

d. Otherwise, if the query type is not equal to CDaoQueryDef::dbQSelect, use a message box to

inform the user that the query is not a select query. Then return FALSE to indicate no open
recordset.

else
{

AfxMessageBox("Not a Select Query");
return FALSE;

}
} //End Query-type

6. To finish this exercise, complete the function CDataView::LoadHeaders. This function adds a column
to the view’s list control for each field in the recordset. LoadHeaders then places the field name in the
column header.

a. Locate the try block within CDataView::LoadHeaders. Your code goes within this try block. After
the definition of the two integer variables, width and align, define a CDaoFieldInfo structure named
fInfo.

CDaoFieldInfo fInfo; //Structure of field information

b. Define an integer variable, columns, and initialize it to the number of fields in the recordset using
CDaoRecordset::GetFieldCount.

int columns = m_pRecordset->GetFieldCount(); //How many fields

c. Inside the for loop that follows, use CDaoRecordset::GetFieldInfo to fill the CDaoFieldInfo
structure for each column.

m_pRecordset->GetFieldInfo(i, fInfo);

d. If the field type is dbText or dbMemo, set the alignment variable to LVCFMT_LEFT. Otherwise, set
the alignment variable to LVCFMT_RIGHT.

align =
dbText == fInfo.m_nType || dbMemo == fInfo.m_nType
? LVCFMT_LEFT : LVCFMT_RIGHT;

e. Set the width variable with a call to CListCtrl::GetStringWidth. Use the CDaoFieldInfo

m_strName member variable as the string argument.

width = lstctrl.GetStringWidth(fInfo.m_strName);

f. Finally, insert the column by calling CListCtrl::InsertColumn, using the column number, field
name, alignment, and twice the width as the InsertColumn arguments.

//Make the column twice the label width
lstctrl.InsertColumn(i, fInfo.m_strName, align, 2 * width);

 Build and test your application

When you select a table or query from the database (by double-clicking in the list box, or by selecting
and using the menu), your report view should appear with field names in the header control. Names of
numeric fields should align to the right.

The completed code for this exercise is in \Labs\C10\Lab01\Ex02.

Exercise 3: Displaying Database Records

6

In this exercise, you will add code to the baseline application to populate the rows of a list view control
with records from a recordset.

You will add code to populate the rows of the list view control with records from the recordset to the
function CDataView::LoadData. You will add code to a try block within the function framework. The
block contains a nested loop. The outer loop steps through records within the recordset; the inner loop
moves across the fields of the record.

 Display a page of records

1. Locate the try block within CDataView::LoadData. Observe that an integer variable, rows, defined
before the try block, indicates how many rows can display at once. Within the try block, define three
variables: var, a COleVariant to hold field values; str, a CString to convert the field values to text; and
columns, an integer to hold the field count. Initialize the integer variable using
CDaoRecordset::GetFieldCount.

COleVariant var;
CString str;
int columns = m_pRecordset->GetFieldCount(); //How many fields

2. Two nested for loops to move through the records and across the fields have been provided for you.
The outer loop stops if either the row count is equaled, or the recordset IsEOF becomes true. The field
count variable is used to determine when to stop the inner loop. Add a statement at the top of the
inner for loop to set the COleVariant variable for the current field.

m_pRecordset->GetFieldValue(c, var);

The code to convert the COleVariant variable to a CString, to insert the field values into the list view
control, and to close the inner for loop, is provided.

3. Now, following the closing brace of the inner for loop, add code to complete the outer for loop.

a. Test whether the function argument CString * pstrCriteria has a value. If so, there is a criteria
string to locate records. That is, the user clicked on a field header, and provided a search value.

if (pstrCriteria) //We're passed a criteria string *

b. Add an opening brace for the if block and call CDaoRecordset::FindNext with the argument
*pstrCriteria (the string object). You must cast the argument to an LPCTSTR. If this function call
returns FALSE, break out of the (outer) loop, because no further records meet the criteria. Add a
closing brace for the if block

{
//Try to find another record, if not found then
if (! m_pRecordset->FindNext((LPCTSTR) * pstrCriteria))

break; //stop the looping on rows of data
}

c. Otherwise, if pstrCriteria is NULL, we are not using a criterion, so call

CDaoRecordset::MoveNext.

else //No criteria, so we just take the next record
m_pRecordset->MoveNext();

4. Finally, if the recordset is IsEOF, move to the last record. This leaves the recordset on a record.

if (m_pRecordset->IsEOF())
m_pRecordset->MoveLast(); //Leave cursor on a record

 Build and test your application

The provided command handlers to page up and down through the data enable you to browse all the
rows in the recordset. If you click a column header, a dialog box prompts you for a criterion for the

 7

designated field. A CString is built from the dialog box information, and placed in the recordset’s member
variable m_strFilter. A call is made to CDaoRecordset::Requery, and then to CDataView::LoadData.

The completed code for this exercise is in \Labs\C10\Lab01\Ex03.

Exercise 4: Finding Records and Using Bookmarks
In this exercise, you will add code to the baseline application to create and use bookmarks.

You will complete the function CDataView::FindQueryData, which sets and moves to bookmarks.

When the user clicks a list-view column-header, and the recordset is based on a query, the handler,
CDataView::OnHeadClick, calls CDataView::FindQueryData. The function FindQueryData sets a
bookmark at the top of the current page, if possible. If FindQueryData finds one or more records,
starting after the current page, it displays up to one full page. If there is no matching record, the
FindQueryData returns to the bookmark, if any. If there is no bookmark, FindQueryData moves to the
first record in the recordset.

 Add code to CDataView::FindQueryData to set and use bookmarks

1. Locate the try block in CDataView::FindQueryData. Add a statement to define a COleVariant
variable, varBookmark, to use as a recordset bookmark.

COleVariant varBookmark;

2. After the statement that initializes the integer rows to the number of items in the list, add an if
statement using CDaoRecordset::CanBookmark to test whether the recordset supports bookmarks.
Then add an opening brace for the if block.

//If we can, we get a bookmark
if (m_pRecordset->CanBookmark())
{

3. Inside the if block, add code to do the following:

a. Use the value in the integer variable, rows, to move toward the beginning of the recordset.

m_pRecordset->Move(- rows); //Move to top of display

b. If CDaoRecordset::IsBOF is true, move to the first record in the recordset.

if (m_pRecordset->IsBOF()) //Too far for a bookmark?
m_pRecordset->MoveFirst();

c. Get the bookmark for the current record.

varBookmark = m_pRecordset->GetBookmark();

d. Use the integer variable, rows, to move back to the original position (toward the end of the
recordset) and add a closing brace to end the CanBookmark if block.

m_pRecordset->Move(rows); //Return to original location
}

4. Add an if statement that calls CDaoRecordset::FindNext with the FindQueryData function's
parameter, strCriteria, as the argument.

if (m_pRecordset->FindNext(strCriteria)) //Found it!

5. If FindNext indicates success, call the function CDataView::LoadData, passing it the address of
strCriteria as the argument.

LoadData(& strCriteria); //Load a page of found items

6. Otherwise, add an else block.

else//we didn't find a record

8

{

7. Inside the else block, add code to do the following:

a. If the recordset supports bookmarks, use CDaoRecordset::SetBookmark to return to the original
page.

if (m_pRecordset->CanBookmark()) //We have a mark
//return to bookmarked record
m_pRecordset->SetBookmark(varBookmark);

b. Otherwise, if the recordset does not support bookmarks, move to the first record.

else //If no mark, go to first record
m_pRecordset->MoveFirst();

c. Display a message box to tell the user that the data was not found.

MessageBox("Record not found");

d. Call the function CDataView::LoadData without any arguments. This causes the page of records to
reload without using any criterion. Then add a closing brace to complete the failure to find a record
block.

LoadData(); //Bookmark or no, fill the list
}

 Build and test your application

When the user views a table, clicking a column header requeries the recordset with the user-supplied
criteria. The page movements show only records that meet the criteria.

If the report is query-based, only one page of records matching the criteria displays. Any subsequent
page movement within the recordset brings up contiguous records, since the page movement handlers
call CDataView::LoadData with no parameter.

The completed code for this exercise is in \Labs\C10\Lab01\Ex04.

Exercise 5: Attaching to an External Database Table
In this exercise, you will add code to the baseline application to attach the database viewer to an external
database table

You complete functions CBrowserView::OnViewAttach and CDataView::AttachTable to attach the
viewer to an external database table.

A new menu item, Attach, has been added to the View menu. A partially complete handler,
CBrowserView::OnViewAttach, also has been provided for this menu item.

A partially complete function CDataView::AttachTable also has been provided. AttachTable opens a
file dialog to get a Microsoft Access style database name from the user. It then uses a dialog box to
prompt for a table name. You will add code to attach the table to the current database, and open a
dynaset type recordset.

 Attach the database viewer to an external database

1. Open the CDataView class header file. Find the enum statement that has TABLE, QUERY, FIND.
Add the identifier, ATTACH, after the identifier FIND. You will reference this identifier in the next step.

enum{ TABLE = 0, QUERY, FIND, ATTACH };

2. Open the CBrowserView class implementation file near the bottom of the function
CBrowserView::OnViewAttach, just before the call to CDocument::UpdateAllViews, add an if
statement to test for an unsuccessful call to CDataView::SetData, with the parameters:
pDoc->GetDatabase(), "Attached Table", and CDataView::ATTACH.

if (! pDataView->

 9

SetData(pDoc->GetDatabase(), "Attached Table",
 CDataView::ATTACH))

3. Follow the if test with a call to AfxMessageBox to display the literal string "Could not create

recordset."

AfxMessageBox("Could not create recordset");

 Attach the table to the current database and call SetData to open a dynaset type recordset

You will complete the function CDataView::AttachTable. When the thread of execution reaches your
code, the user has entered a valid file name in a CFileDialog object, dlgFile.

1. Open the implementation file for the CDataView class. Locate the function CDataView::AttachTable.
Before the last statement: return true; insert code to create a connect string. Define a CString,
strConnect. Initialize it with the string literal “;DATABASE=” and concatenate the path from the file
dialog to strConnect.

CString strConnect = “;DATABASE=” + dlgFile.GetPathName();

2. Create a new CDaoTableDef object. Use the data member m_pDB as the initializer. Store the
returned pointer in the data member m_pTable.

m_pTable = new CDaoTableDef(m_pDB); //Get a CDaoTableDef object

3. Call CDaoTableDef::Create. Attach the table using the dialog box variable m_strAttached (which
contains the name of the table supplied by the user) for the first and third parameters. Use 0 (zero) for
the second parameter and the connect string from Step 1 as the fourth parameter.

m_pTable->Create(m_strAttached, 0, //Create the tabledef
m_strAttached, strConnect);

4. To open the table and append to the database, call CDaoTableDef::Append.

m_pTable->Append(); //Open and Append to database

5. Finally, call CDataView::SetData, using the parameters: m_pDB, m_strAttached, and TABLE.
SetData will create the recordset as a dynaset.

SetData(m_pDB, m_strAttached, TABLE); //Create a dynaset

 Modify the function CDataView::SetData to work with the new feature of attaching a table

Recall that SetData actually is called twice for an attached table. The first call to SetData is from
CBrowserView::OnViewAttach. On this first call, the enumerated value CDataView::ATTACH is passed
as the third parameter. The second call is in the function CDataView::AttachTable, which you
completed in the previous procedure. In Step 5 of that procedure, SetData is called with the enumerated
value CDataView::TABLE as the third parameter.

It is important to ensure that the body of SetData does not execute twice, since it adds the headers to
the report view. To do this, open CDataView::SetData and add as the first statement in the try block the
following code:

if (ATTACH == nType)
return AttachTable();

Note Since this call to CDataView::AttachTable is contained within a try block, we did not protect the
database functions within AttachTable with try/catch blocks.

 Modify the destructor CDataView::~CDataView to work with the new feature of attaching a table

1. Open the implementation file for the CDataView class. Find the destructor CDataView::~CDataView.
After the statement that closes the query, add code to test whether the data member
CDataView::m_pTable is nonzero and add an opening brace for the if block.

10

if (m_pTable)
{

2. Inside the if block, add code to close the table.

m_pTable->Close();

3. Finally, add code to delete the CDaoTableDef object using the pointer stored in
CDataView::m_strAttached and close the if block.

m_pDB->DeleteTableDef(m_strAttached);
}

 Build and test your application

The code you entered enables you to look at tables in one or more foreign databases by attaching to the
table(s) through your current database connection.

1. Once you have attached to one of the test databases, choose the Attach Table option and select a
database.

2. When you are prompted for a table name:

a. If you enter a valid name, that table temporarily appears as part of your database.

b. If the table name is invalid, you receive the “Could not create recordset” message.

c. If the name is a duplication of a table name in the active database, you are notified that “Object
‘tablename’ already exists.”

The completed code for this exercise is in \Labs\C10\Lab01\Ex05.

	Lab 10.1: Building an Advanced Database Application
	Exercises
	Exercise 1: Extracting Database Table and Query Names

	About the Baseline Application
	Exercise 2: Creating the Recordset and Extracting Field Names
	Exercise 3: Displaying Database Records
	Exercise 4: Finding Records and Using Bookmarks
	Exercise 5: Attaching to an External Database Table

