
Lab 5.4: Adding a Shortcut Menu
Objectives
After completing this lab, you will be able to:

 Add a generic shortcut menu handler from the Component Gallery.

 Modify the menu resources associated with a shortcut menu.

 Process right-click messages to trigger a shortcut menu.

 Process messages sent from a shortcut menu.

Prerequisites
Familiarity with the topics covered in this chapter.

Lab Setup
To run the solution to this lab, click this icon.

To see a demonstration of the solution to this lab, click this icon.

Estimated time to complete this lab: 30 minutes.

Exercises
The following exercise provides practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Adding a Shortcut Menu Component

In this exercise, you will add a shortcut menu to an application using the Component Gallery.

Copy the starting point for this project from \Labs\C05\Lab04\Baseline. The completed code for these
exercises is in \Labs\C05\Lab04\Xxx, where Xxx is the exercise number.

Exercise 1: Adding a Shortcut Menu Component
If you do not have a starting point for this exercise, the code that forms the basis for this exercise is in
\Labs\C05\Lab04\Baseline.

In this exercise, you will add a shortcut menu and its associated test handlers to an application. When a
user clicks the right mouse button in either pane of the ShowDiff application, it displays a menu at the
location of the mouse click. Usually, displaying a menu in this manner is a very simple task. However,
since ShowDiff uses CRichEditView based on the Rich Edit Control, the DefWindowProc will not
translate WM_RBUTTONUP to WM_CONTEXTMENU automatically; you must do that translation
yourself.

2

 Insert the Popup Menu Component into CDiffView

1. From the Project menu, choose Add to Project, and then choose Components and Controls. In the
Gallery dialog box, choose Developer Studio Components.

 3

2. Select the Popup Menu component, choose Insert and click OK. You will then be asked whether you
want to create a Popup Menu or a Wizard. Choose Popup Menu and click Next.

3. The Popup Menu dialog box will be displayed. Add the popup menu to the CDiffView class. Leave the
menu resource ID at its default CG_IDR_POPUP_DIFF_VIEW, and click OK. This screen shot shows
the completed Popup Menu dialog box.

4. The Component Gallery will insert an OnContextMenu handler into the implementation of CDiffView,
DiffView.Cpp, as shown in this code:

void CDiffView::OnContextMenu(CWnd*, CPoint point)
{
 // CG: This block was added by the Popup Menu component

{

4

if (point.x == -1 && point.y == -1){
//keystroke invocation
CRect rect;
GetClientRect(rect);
ClientToScreen(rect);

point = rect.TopLeft();
point.Offset(5, 5);

}

CMenu menu;
VERIFY(menu.LoadMenu(CG_IDR_POPUP_DIFF_VIEW));

CMenu* pPopup = menu.GetSubMenu(0);
ASSERT(pPopup != NULL);
CWnd* pWndPopupOwner = this;

while (pWndPopupOwner->GetStyle() & WS_CHILD)
pWndPopupOwner = pWndPopupOwner->GetParent();

pPopup->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON, point.x,
point.y,

pWndPopupOwner);
}

}

 Change the Default Menu to Support ShowDiff

1. The Component Gallery will also add a menu resource to the project. Open the Menu Editor to edit
CG_IDR_POPUP_DIFF_VIEW.

2. Delete all the items in the menu except for Copy.

3. Add the menu items shown in this table. The items and their IDs are included.

Menu Item ID

Copy ID_EDIT_COPY

Separator

Find... ID_EDIT_FIND

Separator

Font... ID_EDIT_FONT

Color (popup)

Foreground IDC_EDIT_COLOR_FOREGROUND

Deletions... IDC_EDIT_COLOR_BACKGROUND

Your completed menu will be displayed in the menu editor, as shown in this illustration.

 5

4. Save Diff.Rc.

 Add a Handler for WM_RBUTTONUP

1. Open ClassWizard from the View menu, or press CTRL+W.

2. Choose the CDiffView class and CDiffView object ID.

3. Select the WM_RBUTTONUP message and click the Add Function button.

4. Click the Edit Code button.

5. Insert this code into DiffView.Cpp:

void CDiffView::OnRButtonUp(UINT nFlags, CPoint point)
{

CRichEditView::OnRButtonUp(nFlags, point);
}

6. You will not use the default WM_RBUTTONUP handler in CRichEditView. Comment it out.

7. CView::OnRButtonup is passed a CPoint relative to the client window. If you explore
OnContextMenu, you will discover that CMenu::TrackPopupMenu requires a CPoint relative to the
screen. Use CWnd::ClientToScreen to do this conversion, as shown in this code:

ClientToScreen (&point);

8. Call CDiffView::OnContextMenu with this point.

OnContextMenu ((CWnd *)NULL, point);
9. Save DiffView.Cpp. The complete function follows.

void CDiffView::OnRButtonUp(UINT nFlags, CPoint point)
{

//CRichEditView::OnRButtonUp(nFlags, point);
ClientToScreen (&point);
OnContextMenu ((CWnd *)NULL, point);

}

 Add Dummy Handlers for the Menu Messages

1. Open ClassWizard from the View menu or press CTRL+W.

2. Choose the CDiffView class.

6

3. Choose the menu object IDs, adding a function for each and accepting their default function names,
as detailed in this table.

Object ID Function Name

ID_EDIT_FONT OnEditFont

IDC_EDIT_COLOR_FOREGROUND OnEditColorForeground

IDC_EDIT_COLOR_BACKGROUND OnEditColorBackground

4. Choose one of these functions and press the Edit Code button to navigate to the handlers.

5. In each of the function bodies, add a message box to show that the handler has been called, as
shown in this code:

void CDiffView::OnEditFont()
{

AfxMessageBox ("In OnEditFont()");

}

void CDiffView::OnEditColorForeground()
{

AfxMessageBox ("In OnEditColorForeground()");

}

void CDiffView::OnEditColorBackground()
{

AfxMessageBox ("In OnEditColorBackground()");

}

6. Save DiffView.Cpp. Build ShowDiff and run it.

 Compile and Run the ShowDiff Application

The completed code for this exercise is in \Labs\C05\Lab04\Ex01.

	Lab 5.4: Adding a Shortcut Menu
	Exercise 1: Adding a Shortcut Menu Component

