
Lab 7.1: Adding a Splitter Bar
Objectives
After completing this lab, you will be able to:

 Add a class to an application by using the ClassWizard.

 Add a static splitter bar to a window to create a split pane.

Prerequisites
Familiarity with the topics covered in this chapter.

Lab Setup
To run the solution to this lab, click this icon.

To see a demonstration of the solution for this lab, click this icon.

Estimated time to complete this lab: 20 minutes.

Exercises
The following exercises provide practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Adding a Splitter Window

In this exercise, you will add a splitter bar to an SDI window.

For this lab, you will use the project from Chapter 3, Lab 1. You can copy this from
\Labs\C07\Lab01\Baseline. The completed code for these exercises is in \Labs\C07\Lab01\Xxx, where
Xxx is the exercise number.

Exercise 1: Adding the Splitter Window
If you do not have a starting point for this exercise, the code that forms the basis for this exercise is in
\Labs\C07\Lab01\Baseline.

 Create a new CSplitter class

1. Open the Diff project.

2. From the View menu, choose the ClassWizard, or press CTRL+W.

3. Click Add Class, and then click New.

4. Set the name of the class to CSplitter, and base the class on the generic CWnd class. Accept the
defaults for the other fields. Click OK.

2

Note The ClassWizard does not present CSplitterWnd as a base class. You can change the base
class directly.

5. Edit Splitter.H. Click CSplitter in FileView, then choose Go to Definition.

Change the declaration line of CSplitter from:

class CSplitter : public CWnd
to:

class CSplitter : public CSplitterWnd

6. Add a method to get the protected width of the splitter window to the public attributes section of the
CSplitter definition:

int GetSplitterWidth() const { return m_cxSplitter; }

7. Open Splitter.Cpp and update the message map declaration. It reads:

BEGIN_MESSAGE_MAP(CSplitter, CWnd)
//{{AFX_MSG_MAP(CSplitter)

8. Change the first line to reference CSplitterWnd instead of CWnd.

BEGIN_MESSAGE_MAP(CSplitter, CSplitterWnd)

 Add a reference to the splitter in the MainFrame object

 3

1. Open MainFrm.H.

2. Add a protected CSplitter member to the class definition.

// splitter bar embedded members
CSplitter m_wndSplitter;

3. Use the ClassWizard to add an OnCreateClient handler; using the Message Map tab in the

ClassWizard, choose the CMainFrame class and object ID, and the OnCreateClient message. Click
Add Function, and then click OK in the ClassWizard. The ClassWizard creates a reference to the
OnCreateClient handler in MainFrm.H. and a blank implementation in MainFrm.Cpp.

The major implementation task in adding a Splitter Bar to an application is to create the split window
itself. Because you allow only two files to be active, you use static splitter windows. Put the bar in the
middle of the frame. For more information, see "Working with Frame Windows, Documents and Views” in
the Visual C++ online documentation.

 Add code to the OnCreateClient handler to create the splitter window

1. Create the static splitter by adding a call to CSplitterWnd::CreateStatic.

m_wndSplitter.CreateStatic (this, 1, 2, WS_CHILD);

2. CSplitterWnd::CreateStatic sets up a constant number and arrangement of splitter panes.

3. Size the splitter windows to two equal panes.

SIZEsize;
CRect rect;
GetClientRect(&rect);

size.cx = (rect.right - m_wndSplitter.GetSplitterWidth())/2;
size.cy = rect.bottom;

4. Attach the views to the windows.

4

m_wndSplitter.CreateView(0,0,RUNTIME_CLASS(CDiffView), size, pContext);
m_wndSplitter.CreateView(0,1,RUNTIME_CLASS(CDiffView), size, pContext);
SetActiveView((CView *)m_wndSplitter.GetPane(0,1));

5. Show the splitter window.

m_wndSplitter.ShowWindow(SW_SHOWNORMAL);
m_wndSplitter.UpdateWindow();

6. The complete function follows.

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
CCreateContext* pContext)

{
// Create a static splitter window with two side-by-side panes

if(!m_wndSplitter.CreateStatic (this,1,2,WS_CHILD))
{

return FALSE;
}

// Calculate the size of the splitter panes
SIZEsize;
CRect rect;
GetClientRect(&rect);

size.cx = (rect.right - m_wndSplitter.GetSplitterWidth())/2;
size.cy = rect.bottom;

//set the views
m_wndSplitter.CreateView(0,0,RUNTIME_CLASS(CDiffView), size,

pContext);
m_wndSplitter.CreateView(0,1,RUNTIME_CLASS(CDiffView), size,

pContext);
SetActiveView((CView *)m_wndSplitter.GetPane(0,1));

//show the splitter
m_wndSplitter.ShowWindow(SW_SHOWNORMAL);
m_wndSplitter.UpdateWindow();

return TRUE;
}

 Clean up, build, and run the Diff application

1. In MainFrm.Cpp, include Splitter.H, DiffDoc.H. and DiffView.H. Splitter.H. must be included before
MainFrm.H, because there is a CSplitter member of CMainFrame.

#include "splitter.h"
#include "MainFrm.h"
#include "diffdoc.h"
#include "diffview.h"

2. In Diff.Cpp, include Splitter.H.

#include "splitter.h"
#include "MainFrm.h"

3. From the Build menu, choose Build Diff.Exe.

 5

4. From the Build menu, choose Run Diff.Exe. Notice the splitter bar; you can reposition the bar, but you
cannot delete or add splitters.

The completed code for this exercise is in \Labs\C07\Lab01\Ex01.

	Lab 7.1: Adding a Splitter Bar
	Exercise 1: Adding the Splitter Window

