
Lab 8.1: Building a Database Viewer with DAO
Objectives
After completing this lab, you will be able to:

 Use AppWizard to create a DAO database application.

 Connect controls in a CDaoRecordView to their member variables.

 Add filters for data retrieval.

Prerequisites
You should have completed Chapter 8 and mastered the use of the dialog editor before attempting this
lab.

Lab Setup
This demonstration shows what you will accomplish during the lab.

Estimated time to complete this lab: 40 minutes.

Exercises
The following exercise provides practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Building a DAO Database Application

In this exercise, you will implement a complete two-table database viewer application using DAO.

There is no setup for this lab. The completed code for these exercises is in \Labs\C08\Lab01\Xxx, where
Xxx is the exercise number.

Exercise 1: Building a DAO Database Application
In this exercise, you will implement a complete two-table database viewer application using DAO.

The database for this lab, Personnel.Mdb, contains two tables: Employee Pay Table and Employee
Personal Info Table.

To see the schema for the Employee Pay Table, click this icon.
To see the schema for the Employee Personal Info Table, click this icon.
Employee Number is a common key between the two tables. The SQL query behind this viewer is:

Select *
from [Employee Personal Info Table], [Employee Pay Table]
where [Employee Personal Info Table].[Employee Number] =

 [Employee Pay Table].[Employee Number]

To see what your complete application will look like, click this icon.
 Create a new DAO database application

1. From the File menu, choose New.

2. Select the Projects tab; choose MFC AppWizard (exe), and type Join in the Project Name box. Click
OK.

3. In Step 1, choose Single Document Interface.

2

4. In Step 2 (the Database Options Page):

a. Select the “Database view without file support” option.

 3

b. Click Data Source. The Database Options page will be displayed. Choose the DAO option. Click
Browse to find the Personnel.Mdb database. Accept Dynaset as the recordset type. Leave the
Detect dirty columns option selected.

c. When you click OK, the Select Database Tables dialog will be displayed. Select both tables and
click OK.

4

You will be returned to the Database Options page.

5. In Step 3, clear the ActiveX Controls support check box and click Next.

6. Accept the default settings in Steps 4 and 5.

7. In Step 6, note the base classes for the various classes in the application:

Class Base Class

 5

CJoinApp CWinApp

CMainFrame CFrameWnd

CJoinDoc CDocument

CJoinView CDaoRecordView

CJoinSet CDaoRecordSet

8. Click Finish.

9. In the Project Information dialog box, click OK to create the project.

 Examine the Join classes

1. Expand the Join classes folder in the ClassView pane of the Project Workspace window.

2. Expand the CJoinSet class. Note that AppWizard has created instance variables for each of the
columns in the two tables.

6

Note There are two fields for the Employee Number column. To see the column bindings, display the
Member Variables page of ClassWizard. Choose the CJoinSet to display its bindings.

 7

3. Close ClassWizard and return to the Project Workspace.

4. Double-click the CJoinDoc class icon to display JoinDoc.H.

In most applications, the document stores data and serializes it to a file on disk. Often, the application
reads the whole file into memory at once, and writes it back to disk as a whole. In a database application,
however, the data is stored in the database, and the user usually views the data as records. Such an
application does not need a file.

A document in a database application, then, is not normally used for its serialization support. Why does
Join have a document class?

The following code, at the beginning of JoinDoc.H, reveals that the role of the document class in Join is
to own the recordset.

class CJoinDoc : public CDocument
{

// Attributes
public:

CJoinSet m_joinSet;

The recordset object, m_joinSet, is embedded in the document object. Therefore, the recordset object is
automatically constructed when the document object is constructed, and automatically deleted when the
document object is deleted. The document class can own any number of recordset objects in this way

In a sense, the document class is a proxy for the database. If you design your database application to
use the document class this way, you can better take advantage of the framework’s document/view
architecture. For example, if you have multiple views (forms) simultaneously showing some of the
contents of the database, you can use CDocument::UpdateAllViews to conveniently notify all views
about an update that might have been initiated in one of the views.

 Customize the Dialog Template for the Join form

8

1. Because CJoinView is derived from CDaoRecordView, and CDaoRecordView is derived from
CFormView, you will use a dialog template to define the client area. Along with the classes it created,
AppWizard created a dialog resource, IDD_JOIN_FORM, for you to lay out. AppWizard places one
static text control in the resource, labeled “TO DO: Place form controls on this dialog.” Open
IDD_JOIN_FORM by clicking the icon for this dialog in the ResourceView.

2. Delete the static control. You will develop a dialog box similar to the one below:

Type

ID Caption

Dialog IDD_JOIN_FORM

Right aligned text IDC_STATIC Employee:

Right aligned text IDC_STATIC Employee No:

Right aligned text IDC_STATIC Department No:

Right aligned text IDC_STATIC Pay Type:

Right aligned text IDC_STATIC Hourly Rate:

Right aligned text IDC_STATIC Birthdate:

Right aligned text IDC_STATIC Marital Status:

Right aligned text IDC_STATIC Height:

Right aligned text IDC_STATIC Weight:

Group box IDC_STATIC Personnel
Information

Group box IDC_STATIC Personal
Information

Edit control IDC_FNAME

Edit control IDC_LNAME

Edit control IDC_EMP_NO

Edit control IDC_DEPT

Edit control IDC_PAY_TYPE

Edit control IDC_HOUR_RATE

Edit control IDC_BIRTH

Edit control IDC_MARITAL_STA
TUS

Edit control IDC_HEIGHT

Edit control IDC_WEIGHT

Note: All edit controls are read-only

 9

3. Save Join.Rc.

 Bind controls to member variables

You can use an extension to the dialog editor, or the ClassWizard, to bind controls to member variables
according to the following table.

Control Datatype Variable

IDC_BIRTH COleDateTime m_pSet->m_Birthdate

IDC_DEPT short m_pSet->m_Department__

IDC_EMP_NO long m_pSet->m_Employee_Number

IDC_FNAME CString m_pSet->m_First_Name

IDC_HEIGHT double m_pSet->m_Height

IDC_HOUR_RATE double m_pSet->m_Hourly_Rate

IDC_LNAME CString m_pSet->m_Last_Name

IDC_MARITAL_STATUS BYTE m_pSet->m_Sex___Marital_Status

IDC_PAY_TYPE short m_pSet->m_Employee_Pay_Type

IDC_WEIGHT double m_pSet->m_Weight

1. To bind using the dialog editor, CTRL+double-click the control to display the Add Member Variable
dialog.

To bind using the ClassWizard, display the Member Variables page and browse the Control IDs. Click
Add Variable to display the Add Member Variable dialog box.

2. Use the Member variable name combo box to select the variable name. Leave the category as Value,
and the Variable type should default to the datatypes listed above.

3. Close the ClassWizard or the Dialog editor and save all files.

 Set the query

CDaoRecordSet constructs its query from two of its member variables: The SQL WHERE clause is in
CDaoRecordSet.m_strFilter, and the SQL ORDER BY clause is in CDaoRecordSet.m_strSort.

1. Open CJoinSet to its constructor. At the end of the constructor, set m_strFilter to create the join.

m_strFilter = "[Employee Pay Table].[Employee Number] = "
 "[Employee Personal Info Table].[Employee Number]";

2. Set m_strSort to create the order clause.

m_strSort = "[Employee Pay Table].[Last Name], "
 "[Employee Pay Table].[First Name]";

3. Save JoinSet.Cpp. The complete constructor follows.

CJoinSet::CJoinSet(CDaoDatabase* pdb)
: CDaoRecordset(pdb)

{
//{{AFX_FIELD_INIT(CJoinSet)
m_Employee_Number = 0;
m_Last_Name = _T("");
m_First_Name = _T("");
m_Department__ = 0;
m_Employee_Pay_Type = 0;
m_Hours = 0.0;
m_Hourly_Rate = 0.0;
m_Weekly_Salary = 0.0;
m_Sales_Bonus_Rate = 0.0;
m_Weekly_Sales = 0.0;

10

m_Employee_Number2 = 0;
m_Sex___Marital_Status = 0;
m_Height = 0.0;
m_Weight = 0.0;
m_nFields = 15;
//}}AFX_FIELD_INIT
m_nDefaultType = dbOpenDynaset;

m_strFilter = "[Employee Pay Table].[Employee Number] = "\

 "[Employee Personal Info Table].[Employee Number]";

m_strSort = "[Employee Pay Table].[Last Name], "\
 "[Employee Pay Table].[First Name]";

}

 To size the view to the dialog template

1. Open JoinView.Cpp to CJoinView::OnInitialUpdate. To the end of this function, add a call to
CFrameWnd::RecalcLayout to determine the positions of all the controls, including the dialog frame.

GetParentFrame()->RecalcLayout();

2. Call CScrollView::ResizeParentToFit to size the window.

ResizeParentToFit(FALSE);

3. Save JoinView.Cpp. The complete function follows.

void CJoinView::OnInitialUpdate()
{

m_pSet = &GetDocument()->m_joinSet;
CDaoRecordView::OnInitialUpdate();

//add following
GetParentFrame()->RecalcLayout();
ResizeParentToFit(FALSE);}

 Build and run Join.Exe

1. Save all files and build Join.Exe.

2. Run Join.Exe.

3. Notice the Record menu and its menu items and the corresponding controls on the toolbar. These are
all provided by AppWizard.

4. As an additional exercise, change the values of m_strFilter and m_strSort to build different queries into
the database.

The completed code for this exercise is in \Labs\C08\Lab01\Ex01.

	Lab 8.1: Building a Database Viewer with DAO
	Exercise 1: Building a DAO Database Application

