Lab 7.3: Building a Text Viewer

Objectives
After completing this lab, you will be able to:

+ Implement supporting code for a viewer.
+ Display streams of text.

+ Control fonts for on-screen display.
Prerequisites

Because you will be working with many member functions of CDC, you may find it helpful to review the
Visual C++ Help topics on graphics before attempting this lab.

Lab Setup

To run the solution to this lab, click this icon.

To see a demonstration of the solution for this lab, click this icon.

Estimated time to complete this lab: 15 minutes.

Exercises

The following exercises provide practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Implementing a Basic Text Viewer

In this exercise, you will add text display capability to a viewer.

Exercise 2: Adding Font Support

In this exercise, you will implement a user interface for text viewer you created in Exercise 1.

There is no setup for this lab. The completed code for these exercises is in \Labs\C07\Lab03\Xxx, where
Xxx is the exercise number.

Exercise 1: Implementing a Basic Text Viewer
In this exercise, you will add text display capability to a viewer based on CScrollView. There are four
parts to this exercise:
1. Creating an AppWizard MDI application
2. Adding file-handling to the document
3. Calculating the basic metrics of the view
4. Displaying the text

At the end of this exercise, you will have created an MDI text viewer with file selection, display, and
scrolling.

Creating an AppWizard MDI Application

If you have not created an AppWizard MDI-based application before, please review the Chapter 5 Labs
and follow the procedure described there, with the following exceptions:

+ Name the new project workspace Text.

+ |n Step 6, derive CTextView from CScrollView, rather than CView.

Finish and create the new project. Build it at this point.

Adding File Handling to the Document

In Text.Exe, CTextDoc is little more than a holder for a CStringList, into which you will read the lines of
a selected file. CDocument provides the menuing and the File Open dialog. You will provide the file-
handling code and the parsing of the file into CStringList.

> Prepare CTextDoc for file reading

1. Open TextDoc.H.

2. Declare a protected CStringList member.
CStringList m LinelList;

3. Declare a public member function to return a pointer to m_LineList.
CStringList*GetLinelList () { return &m LineList; }

4. Save TextDoc.H.

5. CTextDoc::OnNewDocument is called when the application starts and when a user action occurs.
Because Text.Exe is a read-only application, you will want to explicitly disable this function in
TextDoc.Cpp.

BOOL CTextDoc: :0nNewDocument ()

{
return FALSE;

> Implement OnOpenDocument

1. CTextDoc::OnOpenDocument will read the selected text file, line by line, into the CStringList member.
OnOpenDocument is called from the application after CTextApp has queried the user with a File Open
dialog box. Create CTextDoc::OnOpenDocument from ClassWizard or WizardBar. Edit the code to
remove the default handler.

2. Reading a file into memory one line at a time could take a while. Show the wait cursor with
CCmdTarget::BeginWaitCursor.

BeginWaitCursor () ;

3. Clear all the items from m_LineList.

m LineList.RemoveAll () ;

4. CStdioFile provides stream-oriented file access with line-oriented file access. Open the file passed in
IpszPathName by constructing a CStdioFile object.

CStdioFile file(lpszPathName,
CFile::modeRead | CFile::typeText);

5. You will need a CString into which to read each line.
CString strLine;

6. CStdioFile::ReadString returns TRUE if anything was read and FALSE if the end of the file was
encountered before reading any data. Read data as long as there is anything to read.

while (file.ReadString(strLine) != NULL)
{

7. You will want to clean up the ends of the lines for white space and control characters.

int nLastCharIndex = strlLine.GetLength()-1;
while (nLastCharIndex >= 0 && strLine[nLastCharIndex] < ' ')
{

strLine.SetAt (nLastCharIndex--, '\0'");

8. Once the string is clean, add it to the end of m_LineList.
m LineList.AddTail (strLine);

9. At the end of the read loop, restore the cursor.
EndWaitCursor () ;

10. Return TRUE to indicate that you have handled the message.
return TRUE;

11. Save TextDoc.Cpp.
The completed function is shown in the following sample code.

BOOL CTextDoc::0nOpenDocument (LPCTSTR lpszPathName)
{

// Could be a big file

BeginWaitCursor () ;

// Clear List, this will cleanup the CString objects
m LineList.RemoveAll () ;

// Read the file and store as a list
// of CStrings
CStdioFile file(lpszPathName,
CFile::modeRead | CFile::typeText);

CString strLine;
while (file.ReadString(strLine) != NULL)

{

//remove the noise characters at the end of the line
int nLastCharIndex = strLine.GetLength()-1;
while (nLastCharIndex >= 0 && strLine[nLastCharIndex] < ' ')

{
strlLine.SetAt (nLastCharIndex--, '\0');

}

// Add to CStringList
m LineList.AddTail (strLine);

EndWaitCursor () ;
return TRUE;

» Save TextDoc.H and TextDoc.Cpp

Calculating the Basic Metrics of the View

> Declare the basic metrics members

You will need to have a number of basic metrics for the text view. These do not need to be calculated
each time you draw text on the screen if you hold them in member variables.

1. Right-click CTextView in ClassView and add the following protected variables.

CSize m ViewCharSize
CSize m DocSize
CFont* m pFont

2. Right-click CTextView in ClassView and declare a public function as follows.
CFont* GetFont ()

3. Right-click CTextView in ClassView and declare a protected function as follows.

void ComputeViewMetrics ()

4. Add public member functions manually to CtextView.h as follows.

CSize GetDocSize () const { return m DocSize; }
CSize GetCharSize () conts { return m ViewCharSize; }

5. Open Textview.Cpp.

6. Initialize m_ViewCharSize, m_DocSize, and m_pFont in the constructor. The constructor looks like the
following:

CTextView:: CTextView ()
m ViewCharSize (0,0),
m DocSize (0,0)

m_pFont = NULL;

7. Save TextView.Cpp.

> Get the current font
1. In TextView.Cpp, define GetFont.
CFont* CTextView: :GetFont ()

2. If no font has been created, construct a new font.
if (m_pFont == NULL)
{

m pFont = new Cfont;

3. Create a nine-point Arial font in m_pFont.
if (m_pFont)
{
// Default to 9 pt Arial
m pFont->CreatePointFont (90, "Arial");

4. Return m_pFont. Save TextView.Cpp.

The complete function is shown in the following sample code.

CFont * CTextView::GetFont ()
{

if (m_pFont == NULL)
{
m pFont = new CFont;
if (m_pFont)
{
// Default to 9 pt Arial
m pFont->CreatePointFont (90, "Arial");

}

return m_pFont;

> Compute the basic metrics of the view by defining ComputeViewMetrics

1.

10.

11.

12.

Get the pointer to the screen DC and save the state of the DC.

CDC* pDC = CDC::FromHandle (::GetDC (NULL)) ;
int nSaveDC = pDC->SaveDC() ;

. Set the mapping mode to MM_LOENGLISH.

pDC->SetMapMode (MM LOENGLISH) ;

. Select the display font into the DC and get the font’s text metrics.

CFont* pPreviousFont = pDC->SelectObject (GetFont())
TEXTMETRIC tm;
pDC->GetTextMetrics (&tm) ;

. The actual height of a font element (character) is the sum of its internal height (tmHeight) and the

space between lines (tmExternalLeading).

m ViewCharSize.cy = tm.tmHeight + tm.tmExternalleading;
m ViewCharSize.cx = tm.tmAveCharWidth;

. Convert the character size to device units (pixels, on the screen).

pDC->LPtoDP (&m_ViewCharSize);

. Get a pointer to a document so you can access the CStringList member that holds the data.

CTextDoc* pDoc = GetDocument () ;

. Initialize the document width to 0. To calculate the document height, you simply multiply the number of

lines by the height of a line.

m DocSize.cx = 0;

m DocSize.cy = m ViewCharSize.cy *
pDoc->GetLinelList () ->GetCount () ;

. The longest line has to be calculated by looking at each line of the document using the current font.

Declare variables for a loop to interrogate each line.
CString Line;
CSize size;

. Because CStringList is a collection with an iterator, you will use a POSITION to iterate through the

list.
POSITION pos = pDoc->GetLinelList ()->GetHeadPosition();
while (pos != NULL)

Get the current line, and from it get its text extent.

Line = pDoc->GetLinelist ()->GetNext (pos);
size = pDC->GetTextExtent (Line, Line.GetLength());

Set the width of the document to the largest size found.

m DocSize.cx = max(size.cx, m DocSize.cx);

After the loop is closed, add a four-pixel margin.

13.

14.

15.

m DocSize.cx += 4 * m ViewCharSize.cx;

Select the application font out of the DC.

if (pPreviousFont)

{
pDC->SelectObject (pPreviousFont) ;

}

Restore the DC to its original state.
pDC->RestoreDC (nSaveDC) ;

Release the DC.
::ReleaseDC (NULL, pDC->GetSafeHdc());

16. Save TextView.Cpp.

The complete function is shown in the following sample code.

void CTextView::ComputeViewMetrics ()

{

// get a CDC* for the screen
CDC* pDC = CDC::FromHandle (::GetDC (NULL)) ;
int nSaveDC = pDC->SaveDC() ;

// select mapping mode
pDC->SetMapMode (MM LOENGLISH) ;

// select the font and get its metrics

CFont* pPreviousFont = pDC->SelectObject (GetFont())
TEXTMETRIC tm;

pDC->GetTextMetrics (&tm) ;

// Calculate view character size
m ViewCharSize.cy = tm.tmHeight + tm.tmExternallLeading;
m ViewCharSize.cx = tm.tmAveCharWidth;

// convert to device units to minimize round off error
pDC->LPtoDP (&m_ViewCharSize);

// Calculate document size

CTextDoc* pDoc = GetDocument () ;

m DocSize.cy = m ViewCharSize.cy *
pDoc->GetLineList () ->GetCount () ;

// loop through the document and find the longest line
CString Line;
CSize size;
POSITION pos = pDoc->GetLinelList ()->GetHeadPosition();
while(pos != NULL)
{
Line = pDoc->GetLinelist ()->GetNext (pos);
size = pDC->GetTextExtent (Line, Line.GetLength());
m DocSize.cx = max(size.cx, m _DocSize.cx);

// Account for our simple margin
m DocSize.cx += 4 * m ViewCharSize.cx;

// clean up
if (pPreviousFont)

{
pDC->SelectObject (pPreviousFont) ;

}
pDC->RestoreDC (nSaveDC) ;
::ReleaseDC (NULL, pDC->GetSafeHdc ()) ;

» Save TextView.H and TextView.Cpp

Displaying the Text

When you have very small files, they can fit into the view window. In this case, your task would be simply
to draw the lines in the file to the screen, one line at a time. With larger files, however, only part of the file
can be displayed at one time. With files of less than a few hundred lines in length, you could draw all the
text into the view as if it were all visible. The general solution is to calculate the lines that can fit into the
window and paint those lines. In addition, you will need to process the OnUpdate message that is sent
when the view window is resized.

> Implement OnDraw
1. Move to the top of CTextView::OnDraw. Delete the contents of the function and declare variables.

int nFirstLn, nLastLn;

2. Calculate the lines to draw by calling ComputeVisibleLines.
ComputeVisiblelLines (pDC, nFirstLn, nLastLn);

3. Calculate the position of the first line, relative to the origin of the window.

int nYPos = - nFirstLn * GetCharSize().cy;
int nXPos = 4 * GetCharSize () .cx;

4. Call the core OnDraw handler.
OnDraw (pDC, nFirstLn, nLastLn,nXPos,nYPos);

5. Save TextView.Cpp.

The complete function is shown in the following sample code.

void CTextView::OnDraw (CDC* pDC)
{

int nFirstLn, nLastLn;
ComputeVisiblelLines (pDC, nFirstLn, nLastLn);

int nYPos = - nFirstLn * GetCharSize () .cy;
int nXPos = 4 * GetCharSize () .cx;
OnDraw (pDC, nFirstlLn, nlLastLn,nXPos,nYPos);

> Implement ComputeVisibleLines
1. Right-click CTextView in ClassView and add ComputeVisibleLines as a protected function:
void ComputeVisibleLines (CDC* pDC, int& nFirst, inté& nlast)

2. Begin coding the ComputeVisibleLines function by getting the number of lines in the CStringList.

int nLineCount = GetDocument () ->GetLinelList () ->GetCount () ;

3. Get the viewport origin, in logical coordinates.

CPoint pt = pDC->GetViewportOrg() ;
pDC->DPtoLP (&pt, 1) ;

4. Get the clipping region, in logical coordinates.

CRect rc;
pDC->GetClipBox (&xc) ;

5. Get the line height.
CSize CharSize = GetCharSize();

6. The algorithm for the first visible line accomplishes these points, and is as follows.
a. Calculate the distance from the top of the viewport to the top of clipping region.
b. Divide this distance by the height of a line, giving the number of lines.
c. Ensure that at least one line will be shown.

nFirst = min(abs((rc.top - pt.y)/CharSize.cy),
nLineCount-1);

7. The algorithm for the last visible line accomplishes these points, and is as follows:
a. Calculate the number of lines that will fit into the clipping region.
b. Add that to the starting line.
c. Add one more line to make sure that partial lines are displayed.
d. Ensure that this is less than the total number of lines.

nLast = min(abs(rc.Height())/CharSize.cy + nFirst + 1,
nLineCount-1);

8. Save TextView.Cpp.
The complete function is shown in the following sample code.

void CTextView::ComputeVisibleLines (CDC* pDC, inté& nFirst, inté& nLast)
{

int nLineCount = GetDocument () ->GetLinelList () ->GetCount ();

// Get the viewport origin, convert to logical coordinates
CPoint pt = pDC->GetViewportOrg() ;
pDC->DPtoLP (&pt, 1) ;

// Get the clipping region, in logical coordinates
CRect rc;
pDC->GetClipBox (&xrc) ;

// Get the logical line height
CSize CharSize = GetCharSize():;

// Compute the first visible line
nFirst = min(abs((rc.top - pt.y)/CharSize.cy),
nLineCount-1);

// compute the last visible line
nLast = min(abs(rc.Height())/CharSize.cy + nFirst + 1,

nLineCount-1);

> Implement the core OnDraw handler

1.

10.

11.

12.

Declare a second OnDraw handler in TextView.H.

virtual void OnDraw (CDC* pDC, int nFirstLn, int nLastln,
int nXPos = 0, int nYPos = 0);

. Define the second OnDraw handler in TextView.Cpp.

void CTextView::0OnDraw (CDC* pDC, int nFirstLn, int nLastln,
int nXPos /*= 0*/, int nYPos /*= 0*/)

. Select your chosen font into the DC.

CFont* pPreviousFont = pDC->SelectObject (GetFont ());

. Get the size of the font.

CSize CharSize = GetCharSize():;

. Get the string list from the document.

CStringList *pLinelist = GetDocument () ->GetLinelList () ;

. You will loop through the lines in pLineList from the first line passed (which will be an index) to the last

line passed, drawing the text on the screen and moving down the screen (that is, to lower Y-
coordinate values). Declare the necessary variables.

CString strLine;

POSITION pos;

. Control the loop.

while (nFirstLn <= nLastLn)

. Find the item in the list.

if((pos = plLinelist->FindIndex(nFirstLn)) != NULL)

. If you have a valid item, copy it to the string and display it.

strLine = pLinelList->GetAt (pos);
pDC->TabbedTextOut (nXPos, nYPos, strLine, 0, NULL, O0);

Decrement the Y-coordinate and increment the line count.

nYPos -= CharSize.cy;
nFirstLn++;

Back outside the loop, select your font out of the DC.

if (pPreviousFont)

{
pDC->SelectObject (pPreviousFont) ;

Save TextView.Cpp.

The complete function is shown in the following sample code.

void CTextView::0OnDraw (CDC* pDC, int nFirstLn, int nlLastln,

int nXPos /*= 0*/, int nYPos /*= 0%*/)

10

>
1.
2.

5.

// Select specified font
CFont* pPreviousFont = pDC->SelectObject (GetFont())

// Needed for height of each line
CSize CharSize = GetCharSize();

// Get list of strings from the document
// and output them to the display context
CStringList *plLinelList = GetDocument () ->GetLinelList () ;

CString strLine;
POSITION pos;
while (nFirstLn <= nLastLn)
{
if((pos = pLinelList->FindIndex(nFirstLn)) != NULL)
{
strLine = pLinelList->GetAt (pos);
pDC->TabbedTextOut (nXPos, nYPos, strLine, 0, NULL, O0);
nYPos -= CharSize.cy;
nFirstLn++;

// Cleanup and restore original GDI Objects
if (pPreviousFont)

{
pDC->SelectObject (pPreviousFont) ;

Implement OnUpdate
Using ClassWizard, delete CTextView::OnlnitialUpdate and manually remove the associated code.

Using ClassWizard or the WizardBar, add CTextView::OnUpdate. Edit the code to compute the view
metrics.

ComputeViewMetrics () ;

. CScrollView::SetScrollSizes sets the mapping mode for the scroll view. Because

CTextView::ComputeViewMetrics uses MM_LOENGLISH for its calculations, you will need to use that
mode here. It also sets the scrolling ranges. Get these ranges from the document size.

SetScrollSizes (MM LOENGLISH, GetDocSize());

. CView::OnUpdate is sent whenever the view window is changed. Invalidate the window so that

CTextView::OnDraw will be called to appropriately redisplay the text.

Invalidate () ;

Save TextView.Cpp.

The complete function is shown in the following sample code.

void CTextView::0OnUpdate (CView* pSender, LPARAM lHint, CObject* pHint)

{

ComputeViewMetrics () ;

SetScrollSizes (MM LOENGLISH, GetDocSize());
Invalidate () ;

11

» Save TextView.H and TextView.Cpp

» Build and run Text.Exe
The completed code for this exercise is in \Labs\C07\Lab03\Ex01.

Exercise 2: Adding Font Support
Continue with the files you created in Exercise 1 or, if you do not have a starting point for this exercise,
the code that forms the basis for this exercise is in \Labs\C07\Lab03\Ex01.

Most font support for the text viewer is already in place. You have only to implement a user interface to
CTextView.m_pFont.

> Add a menu item for Font
1. Open the IDR_TEXTTYPE menu resource.
2. Add a menu between the View and Window menus. Give it the caption Font.

3. Add a menu item below the font menu, giving it the ID ID_FORMAT_FONT and the prompt, Change
Font.

4. Save Text.Rc.

> Add a handler for the menu message

Use ClassWizard or WizardBar. Add a handler for ID_FORMAT_FONT to CTextView, and accept the
default OnFormatFont function name.

> Implement CTextView::OnFormatFont

1. Go to the head of OnFormatFont. Get (or create, if it has not yet been created) the current font with
GetFont.

CFont * pFont = GetFont();

2. Retrieve a LOGFONT structure with the font information.

LOGFONT 1f;
pFont->GetObject (sizeof (LOGFONT), &1f);

3. Use this structure to initialize a common font dialog box.
CFontDialog dlg(&lf, CF_SCREENFONTS | CF_INITTOLOGFONTSTRUCT) ;

4. Show it modally.
if (dlg.DoModal () == IDOK)

5. If the user closed the font dialog box with OK, delete the current font (remember that this font is
selected out of a DC each time it is selected in, so this deletion is safe).
if (m_pFont)
{
delete m pFont;
}

6. Construct the new font and initialize it using the LOGFONT returned from CFontDialog.
m_pFont = new CFont;
if (m_pFont)
{
m pFont->CreateFontIndirect (&1f);
}

12

7. Finally, you must recalculate all the metrics and invalidate the view’s window to redisplay the file using
the new font. You already have a function that does this, OnUpdate, but it will take some significant
code to set up the call. The simplest way to accomplish this is to call CDocument::UpdateAllViews.
Because there is only one view of this document, this will be the equivalent of calling OnUpdate
directly.

GetDocument () ->UpdateAllViews (NULL) ;

8. Save TextView.Cpp.
The complete function is shown in the following sample code.

void CTextView::OnFormatFont ()

{
CFont * pFont = GetFont();

LOGFONT 1f;
pFont->GetObject (sizeof (LOGFONT), &1f);

CFontDialog dlg(&lf, CF_SCREENFONTS | CF_INITTOLOGFONTSTRUCT) ;

if (dlg.DoModal () == IDOK)
{
if (m _pFont)
{
delete m pFont;

m_pFont = new CFont;
if (m_pFont)
{
m pFont->CreateFontIndirect (&1f);

// This will cause OnUpdate () to be called ensuring
// that our cached metrics and scrolling get updated
GetDocument () ->UpdateAllViews (NULL) ;

The completed code for this exercise is in \Labs\C07\Lab03\Ex02.

	Lab 7.3: Building a Text Viewer
	Exercise 1: Implementing a Basic Text Viewer
	Exercise 2: Adding Font Support

