
Lab 9.1: Building a Database Editor with ODBC
Objectives
After completing this lab, you will be able to:

 Use AppWizard to create an ODBC database application.

 Connect controls in a CRecordView to their CRecordset variables.

 Create a parameterized query filter for data retrieval.

 Process CRecordView::OnMove for multiple-table record coordination, update, deletion, and addition.

 Determine whether an ODBC dataset supports transactions.

 Use transactions in a program.

Prerequisites
You should have completed Chapter 9 and mastered the use of the dialog editor before attempting this
lab.

Lab Setup
This demonstration shows what you will accomplish during the lab.

Estimated time to complete this lab: 90 minutes.

Exercises
The following exercise provides practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Building an ODBC Database Application

In this exercise, you implement a two-table ODBC database application.

Exercise 2: Editing the Underlying Database

In this exercise, you enable the Employee database application to:

 Add a new record.

 Modify a record.

 Delete a record.

Before starting this lab, use the 32-bit ODBC driver manager in Control Panel to add a data source using
the Microsoft Access Driver. Name the data source PERSONAL. Use the Personnel.mdb database
located in \Labs\C09\Lab01.

Copy the file \Labs\C09\Lab01\EmployeeDdx.cpp to your lab directory. This file contains custom DDX
and DDV functions for calendar-date data.

There is no setup for this lab. The completed code for these exercises is in \Labs\C09\Lab01\Xxx where
Xxx is the exercise number.

Exercise 1: Building an ODBC Database Application
In this exercise, you will implement a two-table ODBC database application.

The database for this lab, Personnel.Mdb, contains two tables: the Employee Pay Table and Employee
Personal Info Table.

This is the schema for the Employee Pay Table.

2

This is the schema for the Employee Personal Info Table.

Employee Number is the common key between the two tables. The SQL query to synchronize the
recordsets is:

Select *
from [Employee Personal Info Table], [Employee Pay Table]
where [Employee Personal Info Table].[Employee Number] =

 [Employee Pay Table].[Employee Number]

Your complete application will look like the following graphic.

 3

 Create a new ODBC database application

1. From the File menu, choose New.

2. Select the Projects tab; choose MFC AppWizard (exe), and type Employee in the Project Name box.
Click OK.

4

3. In Step 1, choose Single Document Interface.

4. In Step 2 (the Database Options Page), select the “Database view without file support” option.

5. Click Data Source. The Database options page will be displayed. Choose the ODBC option. Choose
PERSONAL from the list box. Choose Dynaset as the Resource type.

 5

When you click OK, the Select Database Tables dialog will be displayed. Select the Employee Pay
Table and click OK. You will be returned to the Database Options page.

6. Accept the defaults in Steps 3, 4, and 5.

7. In Step 6, notice the base classes for the various classes in the application:

Class Base Class

CEmployeeApp CWinApp

CEmployeeDoc CDocument

CMainFrame CFrameWnd

CEmployeeView CRecordView

CEmployeeSet CRecordset

8. Change the name of CEmployeeSet to CEmployeePaySet. You will be creating another
CRecordset-derived class for the other table in the database soon, and you will need to be able to tell
them apart. Change the files for CEmployeePaySet to EmployeePaySet.H and
EmployeePaySet.Cpp.

9. Click OK in the Project Information dialog to create the project.

 Customize the Dialog Template for the Employee form

1. Because CEmployeeView is derived from CRecordView, and CRecordView is derived from
CFormView, you will use a dialog template to define the client area. Along with the classes it created,
AppWizard created a dialog resource, IDD_EMPLOYEE_FORM, for you to lay out. AppWizard places

6

one static text control in the resource, labeled “TO DO: Place form controls on this dialog.” Open
IDD_EMPLOYEE _FORM by clicking this dialog’s icon in the Resource View.

2. Delete the one static control. Enlarge the dialog box to a width of 245 and a height of 220 so there will
be room for the controls you are going to copy. Now copy the controls from the solution: Open the
solution file \XXX\Ex01\Employee.Rc. Open the dialog resource IDD_EMPLOYEE_FORM in the
solution file. Use the DevStudio menu to choose Edit Select All. Choose Edit Copy. Close the solution
Rc file. Click the application’s dialog form, press Edit Paste.

The following table shows the controls and their IDs.

Type ID Caption

Dialog IDD_EMPLOYEE_FORM

Right aligned text IDC_STATIC Employee:

Right aligned text IDC_STATIC Employee No:

Right aligned text IDC_STATIC Department No:

Right aligned text IDC_STATIC Pay Type:

Right aligned text IDC_STATIC Hourly Rate:

Right aligned text IDC_STATIC Birthdate:

Right aligned text IDC_STATIC Marital Status:

Right aligned text IDC_STATIC Height:

Right aligned text IDC_STATIC Weight:

Group box IDC_STATIC Personnel
Information

Group box IDC_STATIC Personal

 7

Information

Edit control IDC_FNAME First Name

Edit control IDC_LNAME Last Name

Edit control IDC_EMP_NO Note: This control
is read-only

Edit control IDC_DEPT

Edit control IDC_PAY_TYPE

Edit control IDC_HOUR_RATE

Edit control IDC_BIRTH

Edit control IDC_MARITAL_STATUS

Edit control IDC_HEIGHT

Edit control IDC_WEIGHT

3. Save Employee.Rc.

 Bind controls to member variables

You can use an extension to the dialog editor, or the ClassWizard, to bind controls to the appropriate
member variables of CEmployeePaySet, according to the following table. You will bind the last four Edit
controls after you have created a CRecordset for their table.

Control Data Type Variable

IDC_FNAME CString m_pSet->m_First_Name

IDC_LNAME CString m_pSet->m_Last_Name

IDC_EMP_NO long m_pSet->m_Employee_Number

IDC_DEPT int m_pSet->m_Department__

IDC_PAY_TYPE int m_pSet->m_Employee_Pay_Type

IDC_HOUR_RATE double m_pSet->m_Hourly_Rate

1. To bind using the Dialog editor, CTRL+double-click the control to display the Add Member Variable
dialog. This step is easiest if you first set the tab order of all controls sequentially, with each Static
Text control immediately preceding its associated Edit Box in the tab number sequence. The wizard
tries to match the Caption of the Static control with a recordset member name. The Static control must
preceed the Edit control in the tab order for matching to occur.

2. To start ClassWizard, use the View menu or press CTRL+W, then click the Member Variables tab.
Choose CEmployeeView from the Class name list box, and browse the Control IDs. Click Add
Variable to display the Add Member Variable dialog box.

Use the Member variable name combo box to select the variable name. Leave the category as Value,
and the Variable type should default to the data types listed above.

3. Close the ClassWizard or the Dialog editor and save all files.

 Order the display of the records

1. In ODBC, you can specify the ORDER BY clause in m_strSort. Add this to the end of the
CEmployeePaySet constructor.

m_strSort = "[Last Name],[First Name]";

2. Save EmployeePaySet.Cpp.

 Create a class for a second table and bind its variables

1. Start the ClassWizard from the View menu or press CTRL+W. Click Add Class, then click New.

2. Set the name of this new class to CEmployeePersonalSet. Set its base class to CRecordset, and
click OK.

8

3. The Database Options dialog that you used to create CEmployeePaySet will be displayed, with one
additional option: Bind all columns. Make sure that this option is checked. Select the dynaset
recordset type. Leave the ODBC option selected and choose the PERSONAL data source name. Click
OK.

4. In the Select Database Tables dialog box, choose Employee Personal Info Table and click OK.
CEmployeePersonalSet will be created and added to your project.

5. Select the wizard’s Member Variables tab. Delete the CTime variable m_Birthdate. The Class Wizard
binds to a CTime variable, which is not the correct type for our needs. Manually add the variable to the
public section of the class CEmployeePersonalSet:

TIMESTAMP_STRUCT m_Birthdate;

6. Assign zero to each data-member of m_Birthdate, in the class constructor.

m_Birthdate.year = 0;
m_Birthdate.month = 0;
m_Birthdate.day = 0;
m_Birthdate.hour = 0;
m_Birthdate.minute = 0;
m_Birthdate.second = 0;
m_Birthdate.fraction= 0;

7. Modify the class member function, CEmployeePersonalSet::DoFieldExchange, to transfer data to

m_Birthdate. Place the code after the section //}}AFX_FIELD_MAP

RFX_Date(pFX, _T("[Birthdate]"), m_Birthdate);

8. In the class constructor, find the section //{{AFX_FIELD_INIT(CEmployeePersonalSet). Manually
increment the data member to indicate the additional field transfer:

m_nFields = 5;

9. Add a CEmployeePersonalSet instance variable to the CEmployeeView class immediately following
the AFX_DATA section of EmployeeView.H.

public:
//{{AFX_DATA(CEmployeeView)
enum { IDD = IDD_EMPLOYEE_FORM };
CEmployeePaySet* m_pSet;
//}}AFX_DATA
CEmployeePersonalSet* m_pEmplInfoSet;

10. In the constructor for CEmployeeView, initialize m_pEmplInfoSet to NULL.

m_pEmplInfoSet = NULL;

11. At the top of EmployeeView.H, add the following forward declaration:

class CEmployeePersonalSet;

 Modify DoDataExchange to transfer data from the second table

1. You need to manually edit the DDX links. Following the AFX_DATA_MAP section of
CEmployeeView::DoDataExchange, validate m_pEmplInfoSet and then set the following DDX links.
Be sure to use the correct recordset pointer. The DDX_FieldText function for the Birthdate field is an
overloaded version provided for you in EmployeeDdx.Cpp.

Control Data type Variable

IDC_BIRTH TIMESTAMP_STRUC
T

m_pEmplInfoSet ->m_Birthdate

IDC_MARITAL_STATUS BYTE m_pEmplInfoSet
->m_Sex___Marital_Status

 9

IDC_HEIGHT double m_pEmplInfoSet ->m_Height

IDC_WEIGHT double m_pEmplInfoSet ->m_Weight

2. Immediately following the data exchange call for m_Birthdate, enter the following call to DDV_Date.
This is an overloaded version provided for you in EmployeeDdx.Cpp:

DDV_Date(pDX, m_pEmplInfoSet->m_Birthdate, m_pEmplInfoSet);

3. At the top of EmployeeView.Cpp, following the #include directives, place the following:

#include "EmployeeDdx.Cpp"

4. Save EmployeeView.Cpp. The complete function follows.

void CEmployeeView::DoDataExchange(CDataExchange* pDX)
{

CRecordView::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CEmployeeView)
DDX_FieldText(pDX, IDC_FNAME, m_pSet->m_First_Name, m_pSet);
DDX_FieldText(pDX, IDC_LNAME, m_pSet->m_Last_Name, m_pSet);
DDX_FieldText(pDX, IDC_EMP_NO, m_pSet->m_Employee_Number, m_pSet);
DDX_FieldText(pDX, IDC_DEPT, m_pSet->m_Department__, m_pSet);
DDX_FieldText(pDX, IDC_PAY_TYPE, m_pSet->m_Employee_Pay_Type, m_pSet);
DDX_FieldText(pDX, IDC_HOUR_RATE, m_pSet->m_Hourly_Rate, m_pSet);
//}}AFX_DATA_MAP

//Ensure pointer is valid
if (NULL != m_pEmplInfoSet)
{

DDX_FieldText(pDX, IDC_BIRTH, m_pEmplInfoSet->m_Birthdate,
m_pEmplInfoSet);

DDV_Date(pDX, m_pEmplInfoSet->m_Birthdate, m_pEmplInfoSet);
DDX_FieldText(pDX, IDC_MARITAL_STATUS, m_pEmplInfoSet-

>m_Sex___Marital_Status, m_pEmplInfoSet);
DDX_FieldText(pDX, IDC_HEIGHT, m_pEmplInfoSet->m_Height,

m_pEmplInfoSet);
DDX_FieldText(pDX, IDC_WEIGHT, m_pEmplInfoSet->m_Weight,

m_pEmplInfoSet);
}

}

5. Embed a protected CDatabase member into CEmployeeDoc. Name the member m_DB.

CDatabase m_DB;

6. Embed CEmployeePersonalSet into CEmployeeDoc by adding an instance of
CEmployeePersonalSet to EmployeeDoc.H.

CEmployeePersonalSetm_employeePersonalInfoSet;

Note The declaration for CDatabase m_DB, done in Step 5, must precede the declaration of the
CEmployeePersonalSet and CEmployeePaySet members, because the CDatabase object must be
constructed before the two CRecordset-derived objects.

7. Add accessor functions for both the CRecordset objects.

// Operations
public:
CEmployeePaySet* GetEmployeePaySet()
{return &m_employeePaySet;}

10

CEmployeePersonalSet* GetEmployeeInfoSet()
{return &m_employeePersonalInfoSet;}

8. Add colon initialization to the document constructor CEmployeeDoc::CEmployeeDoc to initialize the
recordset members with the database.

CEmployeeDoc::CEmployeeDoc()
: m_employeePaySet(& m_DB), m_employeePersonalInfoSet(& m_DB)

{
…

9. Include EmployeePersonalSet.H in EmployeeView.Cpp, EmployeeDoc.Cpp, and in Employee.Cpp. In
each case, insert the include directive immediately before the directive that includes
EmployeePaySet.H.

10. To avoid multiple inclusions, wrap the recordset header-files with preprocessor directives. In
EmployeePaySet.H, insert these two lines at the top:

#ifndef _CEmployeePaySet_H
#define _CEmployeePaySet_H

and at the bottom of the file, insert

#endif

11. In EmployeePersonalSet.H, insert these two lines at the top:

#ifndef _CEmployeePersonalSet_H
#define _CEmployeePersonalSet_H

and at the bottom of the file, insert

#endif

12. Save all files.

 Program the tables’ relationship

Not all databases support updatable joins. Your program has to maintain the relationship between the
two tables. One way is to create a parameterized query that finds the record in Employee Personal
Information Table that corresponds to the record found in the Employee Pay Table.

There are two methods for creating a parameterized query. You can use the PARAMETERS statement
in the SQL query (as outlined in Chapter 10), or you can update the recordset class as shown in the
following method.

1. Declare a long for the parameter in CEmployeePersonalSet after the AFX_FIELD block.

long m_EmployeeNumberParam;

2. Save EmployeePersonalSet.H. In the constructor for CEmployeePersonalSet, define the query. Note
that the question mark serves as the parameter placeholder.

m_strFilter = "[Employee Number] = ?";

3. Indicate that there is one parameter. Initialize that parameter to 0.

m_nParams = 1;
m_EmployeeNumberParam = 0;

4. In CEmployeePersonalSet::DoFieldExchange, you need to identify the query as parameterized.

Before the AFX_FIELD_MAP, use SetFieldType to parameterize the recordset.

pFX->SetFieldType(CFieldExchange::param);

5. Bind the parameterized field to the variable.

RFX_Long(pFX, _T("EmployeeNumberParam"), m_EmployeeNumberParam);

 11

6. Save EmployeePersonalSet.Cpp.

 Implement CEmployeeView::OnInitialUpdate

1. Before the CRecordView::OnInitialUpdate statement, set the instance variable for
CEmployeePersonalSet.

m_pEmplInfoSet = GetDocument()->GetEmployeeInfoSet();

2. Resize the main window so that it matches the dialog template.

GetParentFrame()->RecalcLayout();
ResizeParentToFit(FALSE);

3. Start a try block. Open the primary table. Because CRecordset::Open can throw exceptions, you
place this call in a try block.

try
{

m_pSet->Open();

4. Set the employee number parameter for the CEmployeePersonalSet filter from the employee number
field of CEmployeePaySet.

m_pEmplInfoSet->m_EmployeeNumberParam =
m_pSet->m_Employee_Number;

5. Open the secondary table, and close the try block.

m_pEmplInfoSet->Open();
}

6. Write a catch block to trap any exception thrown by CRecordset::Open. Report the error to the user.

catch (CException * pEx)
{

pEx->ReportError();

7. Delete the exception and return from the function without updating the display. Close the try block.

pEx->Delete();
return;
}

8. Use DDX to update the screen display from the view’s member variables.

UpdateData(FALSE);

9. Save EmployeeView.Cpp.

 Implement CEmployeeView::OnMove to synchronize recordsets

The virtual function OnMove is called from the default functions OnRecordFirst. OnRecordPrevious,
OnRecordLast, and OnRecordNext of the CRecordView class. In the simplest case, the call goes to
the base class OnMove function. In this lab, you override OnMove to force a requery of
CEmployeePersonalSet after a move of the primary set, CEmployeeSet.

1. Use ClassWizard or the WizardBar to create an override of CRecordView::OnMove. The function
created by ClassWizard includes a call to the base class OnMove. To save any user changes to the
dialog controls, precede the call to the base class with a call to UpdateData. If UpdateData returns
FALSE, immediately return FALSE from the function.

BOOL CEmployeeView::OnMove(UINT nIDMoveCommand)
{

if (! UpdateData(TRUE)) //If DDX failed

12

return FALSE; //Bad data: We don't want to move

2. Call CRecordset:: SetFieldDirty to notify the base class we want the data saved.

m_pSet->SetFieldDirty(NULL);
//Otherwise DB update won't occur

3. Remove the return statement from the call to the base class. Define a BOOL variable to store the

returned value.

BOOL bMove = CRecordView::OnMove(nIDMoveCommand);
//Primary table updated

4. Write an if control block based on the Boolean variable.

if (bMove)//If successful update the foreign info
{

5. To save any user changes, put the foreign recordset into edit mode, mark all fields as dirty, and then

save the data.

m_pEmplInfoSet->Edit();//Turn on edit mode
m_pEmplInfoSet->SetFieldDirty(NULL);

//Mark the fields dirty
m_pEmplInfoSet->Update();

6. Set the parameter for CEmployeePersonalSet from the primary recordset’s employee number.

m_pEmplInfoSet->m_EmployeeNumberParam =
m_pSet->m_Employee_Number;

7. Execute the query on CEmployeePersonalSet.

m_pEmplInfoSet->Requery();

8. Initiate a data transfer to the dialog, then close the if block.

UpdateData(FALSE);
}

9. Return the Boolean’s value to complete the function.

return bMove;

10. Save EmployeeView.Cpp.

 Build and run Employee.Exe

Your application has the same functionality as Join.exe from Lab 8.1, except that you can modify data in
the edit controls. Employee Number remains read-only.

The completed code for this exercise is in \Labs\C09\Lab01\Ex01.

Exercise 2: Editing the Underlying Database
Continue with the files you created in Exercise 1 or, if you do not have a starting point for this exercise,
the code that forms the basis for this exercise is in \Labs\C09\Lab01\Ex01.

In this exercise, you will edit the Employee project in order to enable the user to do the following:

 Add a new record.

 Delete a record.

 Use transactions when supported.

There are four parts to this exercise:

 13

1. Adding items to the menu.

2. Preparing to add a record.

3. Adding a record.

4. Deleting a record.

Adding Items to the Menu
 Copy menu resources from the lab solution

1. Open the file \Labs\C09\Lab01\Ex02\Employee.Rc. Expand the menu tree. Choose
IDR_MAINFRAME. Single-click the menu-selection “&Record." Press CTRL+C to copy the menu
selection. Close the file.

2. Open the IDR_MAINFRAME menu for this application. Single-click the menu-selection “&Record."
Press CTRL+V to paste the menu selection copied from the solution file. This adds a separator to the
end of the Record menu, and adds the following items to the Record menu:

ID Caption Prompt

ID_RECORD_CLEAR &Clear Record Clear the fields in the
form

ID_RECORD_ADD &Add Record Add this record to the
database

ID_RECORD_DELETE &Delete Record Delete this record from
the database

3. Save Employee.Rc.

4. Use the ClassWizard to create command handlers in CEmployeeView for each of the three menu
items.

5. Create an Update Command UI handler for ID_RECORD_DELETE.

6. Create an Update Command UI handler for ID_RECORD_ADD.

Preparing to Add Records
The first step to add a record to a database is to set the recordset(s) to AddNew mode. AddNew

prepares an empty record using the recordset’s field data members. Taken collectively, the field
data members of a recordset serve as an “edit buffer” that contains one recordin this case, a new
record. If the user moves to another record before saving the new record, your application will
cancel the addition, and return to normal viewing. You will program the functions to use
transactions when the database supports transactions.

 Implement OnRecordClear to prepare the recordsets and the dialog

1. In the ClassView pane, expand the CEmployeeView class, and double-click the handler function
OnRecordClear to edit the code.

2. On the line after the opening brace of this function, retrieve and store the CDatabase pointer from the
primary recordset.

CDatabase * pDB = m_pSet->m_pDatabase;

3. CRecordset does not support transactions across databases. ASSERT that the primary and
secondary recordsets point to the same database.

ASSERT (m_pEmplInfoSet->m_pDatabase == pDB);

4. If CView::IsAddMode returns TRUE (you will program this function in a moment), call CancelUpdate
for each recordset.

if (IsAddMode())
{

m_pSet->CancelUpdate();

14

m_pEmplInfoSet->CancelUpdate();
}

5. If add mode is inactive, determine whether the database supports transactions. (Use an else if block.)

else if (pDB->CanTransact())
{

6. Within the else if block, call CDataBase::GetCursorCommitBehavior to determine whether to start
the transaction with an open cursor (recordset) or to close the recordsets and then start the
transaction. Close all code blocks.

if (SQL_CB_PRESERVE == pDB->GetCursorCommitBehavior())
pDB->BeginTrans();

else//Cannot have an open recordset to start transaction
{

m_pSet->Close();
m_pEmplInfoSet->Close();
pDB->BeginTrans();
m_pSet->Open();
m_pEmplInfoSet->Open();

}
} //End can transact

Note For further information about transactions, see Technical Note 68, "Performing Transactions
with the Microsoft Access 7 ODBC Driver" in the Microsoft Foundation Class Reference, which is part
of the Microsoft Visual C++ online documentation.

7. Call CRecordset::AddNew for each recordset.

m_pSet->AddNew();
m_pEmplInfoSet->AddNew();

8. Call CView::SetAddMode (programmed in the next step) and CView::UpdateData to clear the dialog
controls.

SetAddMode();
UpdateData(FALSE);

9. Save your work.

 Implement SetAddMode and IsAddMode

1. In the ClassView pane, right-click CEmployeeView, choose Add Member Function. Type void in the
Return type box and type SetAddMode(BOOL bAddMode = TRUE) in the Declaration box.

2. In the ClassView pane, right-click CEmployeeView, choose Add Member Function. Type BOOL in the
Return type box and type IsAddMode in the Declaration box.

3. In the ClassView pane, right-click CEmployeeView, choose Add Member Variable. Type
m_bAddMode in the Name box and choose Protected for the access mode. the data type is BOOL.

4. Open EmployeeView.Cpp. In the body of the SetAddMode function, set the add mode state to the
passed value.

m_bAddMode = bAddMode;

5. Get a pointer to the employee number edit control.

CEdit * pField = (CEdit *) GetDlgItem(IDC_EMP_NO);

6. Set the state of that edit control to readable when you are in add mode, or read-only when you are not
in add mode.

pField->SetReadOnly(! m_bAddMode);

 15

7. If function argument is TRUE, set the focus to the first-name edit control.

if(m_bAddMode)
{

pField = (CEdit *)GetDlgItem(IDC_FNAME);
pField->SetFocus();

}

8. Program IsAddMode to return the value m_bAddMode.

9. Save EmployeeView.Cpp.

 Cancel Add Mode

1. In the ClassView pane, right-click CEmployeeView, choose Add Member Function. Type void in the
Return type box and type AddRecordCancel in the Declaration box.

2. Open EmployeeView.Cpp. In the body of AddRecordCancel function, add code to return if not in add
mode.

if (! m_bAddMode)
return;

3. Turn off add mode.

SetAddMode(FALSE);

4. Cancel the update on both tables.

m_pSet->CancelUpdate();
m_pEmplInfoSet->CancelUpdate();

 Roll back a pending transaction

1. Continue adding code to the body of AddRecordCancel to get a pointer to the database, and then
determine whether the database supports transactions.

CDatabase * pDB = m_pSet->m_pDatabase;
if (pDB->CanTransact())
{

2. Roll back the transaction.

pDB->Rollback();
3. Some databases require that you close the cursor(s) after a rollback. If required, you need to do so.

if (SQL_CB_DELETE == pDB->GetCursorRollbackBehavior())
{

m_pSet->Close();
m_pEmplInfoSet->Close();
m_pSet->Open();
m_pEmplInfoSet->Open();

}
4. Requery each table.

m_pSet->Requery();
m_pEmplInfoSet->m_EmployeeNumberParam =
m_pSet->m_Employee_Number;m_pEmplInfoSet->Requery();

}

5. Refresh the form.

UpdateData(FALSE);

6. Save EmployeeView.Cpp.

16

 Implement the Command UI handlers

1. Enable the Add menu item only when you are in add mode.

void CEmployeeView::OnUpdateRecordAdd(CCmdUI* pCmdUI)
{

pCmdUI->Enable(IsAddMode());

}

2. Enable the Delete menu item only when you are not in add mode.

void CEmployeeView::OnUpdateRecordDelete(CCmdUI* pCmdUI)
{

pCmdUI->Enable(! IsAddMode());

}

3. Set add mode to FALSE in CEmployeeView::OnInitialUpdate before the call to the base class.

SetAddMode(FALSE);
CRecordView::OnInitialUpdate();

4. Save EmployeeView.Cpp.

 Reset Add Mode on navigation

The default handler for CRecordView::OnMove updates a record before moving off the record. We want
a move to cancel AddMode, if AddMode is set.

1. To cancel AddMode, as the first statement in OnMove, insert a call to the AddRecordCancel
function, which you created earlier in this exercise.

if (IsAddMode())
AddRecordCancel();

2. Save EmployeeView.Cpp.

Adding a Record
Whether adding or updating records, changes need synchronization between tables. OnRecordAdd will
use transactions when available. Transactions encapsulate database modifications to help maintain data
integrity.

 Add a record

1. In CEmployeeView:: OnRecordAdd, get and store a database pointer. Determine whether the
database supports transactions. Save the information.

CDatabase * pDB = m_pSet->m_pDatabase;
BOOL bTrans = pDB->CanTransact();

2. Update the recordsets from the form. If the update is successful, execute a try block.

if (UpdateData(TRUE)) //Scrape the screen data into memory
try
{

3. Within the try block, first update the secondary table’s employee number.

m_pEmplInfoSet->m_Employee_Number =
m_pSet->m_Employee_Number;

4. Update each record in its corresponding table.

m_pSet->Update();

 17

m_pEmplInfoSet->Update();

5. If the database supports transactions, commit the transaction.

if (bTrans)
{

BOOL bCommitOk = pDB->CommitTrans();

6. If CommitTrans failed, or if the database does not preserve the cursor, our recordsets might be in
indetermined states. In either case, we should Close and then Open the recordsets.

if (! bCommitOk ||
SQL_CB_PRESERVE != pDB->GetCursorCommitBehavior())

 //See TN068
{

m_pSet->Close();
m_pEmplInfoSet->Close();
m_pSet->Open();
m_pEmplInfoSet->Open();

}

7. Close the outer if block. Call SetAddMode with an argument of FALSE.

}
SetAddMode(FALSE);

8. Call OnRecordClear to prepare for the next new record. Close the try block.

OnRecordClear(); //Set up to add the next record
} //End try

 Handle an exception during OnRecordAdd

If an exception occurs without an active transaction, CRecordset leaves the recordset in AddNew mode.
An active transaction, however, may require closing the recordset after a rollback, or the transaction may
leave the recordset mode in an undetermined state.

Our logic is to assume the worst with a pending transaction. We will close the recordset and then reset
the mode. Since the current record is an empty edit buffer during AddNew mode, and since the dialog
controls contain the user’s input data, everything works out nicely.

1. In the ClassView pane, expand the CEmployeeView class, and double-click the handler function
OnRecordAdd to edit the code.

2. On the line after the opening brace of this function, if an exception occurs, report the error, then delete
the exception.

catch (CDBException * pEx)
{

pEx->ReportError();
pEx->Delete();

3. If a transaction is pending, roll back the transaction.

if (bTrans)
{

pDB->Rollback();

4. Assume the worst behavior from the recordsets, and close them both.

m_pSet->Close(); //Assume worst case
m_pEmplInfoSet->Close();

5. Begin a transaction (again), open the recordsets, and reset the recordsets’ modes. Close all code

blocks.

18

pDB->BeginTrans(); //Start trans, again
m_pSet->Open();
m_pEmplInfoSet->Open();

m_pSet->AddNew();
m_pEmplInfoSet->AddNew();

} //End if bTrans
} //End catch

} //End if UpdateData(TRUE)

6. Save EmployeeView.Cpp.

Deleting a Record
You delete two related records in much the same way that you add and update them. You will start a
transaction (when supported), delete the records and, if the transaction fails, recover. To simplify
programming, we assume that the recordsets must be closed after a CommitTrans or a Rollback. In a
production environment, you will want to query for the recordset’s behavior, as in earlier exercises.
Repeatedly opening and closing recordsets is inefficient.

 Delete a record

1. In the ClassView pane expand the CEmployeeView class, and double-click the handler function
OnRecordDelete to edit the code.

2. On the line after the opening brace of this function, add a statement to get a pointer to the database.
Save the pointer.

CDatabase * pDB = m_pSet->m_pDatabase;

3. Use a Boolean variable to store whether the data source supports transactions. If so, begin a
transaction.

BOOL bTrans = m_pSet->CanTransact();
if (bTrans)

pDB->BeginTrans();

4. Start a try block. Call Delete for each recordset.

try
{

m_pEmplInfoSet->Delete();
m_pSet->Delete();

5. If the database supports transactions, commit the transaction. End the try block.

if (bTrans)
pDB->CommitTrans();

}

6. In the catch block, inform the user of the problem, then delete the exception.

catch(CDBException * pEx)
{

pEx->ReportError();
pEx->Delete();

7. If a transaction is pending, call Rollback. End the catch block.

if (bTrans)
pDB->Rollback();

} //End catch

 19

8. In any case, Close both recordsets, and then Open them.

m_pSet->Close(); //Assume minimal ODBC support
m_pEmplInfoSet->Close();
m_pSet->Open();
m_pEmplInfoSet->Open();

9. Requery the primary recordset, update the employee number in the secondary set, and Requery the

secondary recordset. This synchronizes the data.

m_pSet->Requery(); //Get a record
m_pEmplInfoSet->m_EmployeeNumberParam =

m_pSet->m_Employee_Number;
m_pEmplInfoSet->Requery(); //Get related data

10. Update the controls.

UpdateData(FALSE);//Show the data

11. Save EmployeeView.Cpp.

12. Build and run Employee.Exe.

 Build and test your application

You will be able to scroll though the records. If you change a record, and then move to a new record, the
change persists. Choosing Record Clear enables you to add a record to the database. Record Delete will
remove a record from the database.

The completed code for this exercise is in \Labs\C09\Lab01\Ex02.

	Lab 9.1: Building a Database Editor with ODBC
	Exercise 1: Building an ODBC Database Application
	Exercise 2: Editing the Underlying Database
	Adding Items to the Menu
	Preparing to Add Records
	Adding a Record
	Deleting a Record

