
Lab 11.1: Using the Web Browser Control
Objectives
After completing this lab, you will be able to:

 Create an MFC application that is a control container.

 Use the Developer Studio Gallery to include the Web Browser control into your project.

 Programmatically create a Web Browser control and set properties and invoke methods of the Web
Browser control.

 Handle events of the Web Browser control in your application.

Prerequisites
Before attempting this lab, you should have completed Chapter 11 through the section titled "The Internet
Explorer Object and Web Browser Control."

Lab Setup
This demonstration shows what you will accomplish during the lab.

Estimated time to complete this lab: 40 minutes.

Exercises
The following exercise provides practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Using the Web Browser Control

In this exercise, you will create a simple a control container application and use the Developer Studio
Gallery to add the Web Browser control to the project. You also will add code to create an instance of the
Web Browser control and to invoke a method and set properties of the control.

Exercise 2: Handling Web Browser Control Events

In this exercise, you will modify the application created in Exercise 1 of this lab to handle a Web Browser
control event.

Before you start this lab, you should have installed Internet Explorer and have an account with an
Internet service provider or access to the Internet via a corporate firewall.

The completed code for these exercises is in \Labs\C11\Lab01\Xxx, where Xxx is the exercise number.

Exercise 1: Using the Web Browser Control
In this exercise, you will create a simple a control container application and use the Microsoft Developer
Studio Gallery to add the Web Browser control to the project. You also will add code to create an
instance of the Web Browser control and to invoke a method and set properties of the control.

 Create a Control Container Application

1. Start Microsoft Developer Studio and then from the File menu, click New.

2. In the New dialog box, click the Projects tab, and then select MFC AppWizard (EXE).

3. Type the directory path under which you wish to create the project in the Location field, type Browse
in the Project Name field, accept the default option Create new workspace, then click OK.

4. In Step 1 of MFC AppWizard, select Single Document for the type of application to create, then click
Next.

5. In Step 2 of MFC AppWizard, accept the default settings and click Next.

2

6. In Step 3 of MFC AppWizard, accept the default of None for compound document support and under
other support, make sure that the ActiveX Controls check box is checked. You can accept defaults for
the remaining steps, so click Finish.

7. To have MFC AppWizard finish creating the application, in the New Project Information box, click OK.

8. In the Developer Studio ClassView pane, expand the Browse classes to view the list of classes
supplied by MFC AppWizard.

 Add the Web Browser Control to Your Project

1. From the Project menu, choose Add To Project, and then choose Components and Controls. In the
Gallery dialog box, double-click the Registered ActiveX Controls folder.

2. Select the Microsoft Web Browser Control component, choose Insert and click OK.

3. In the Confirm Classes dialog box, click OK.

4. In The Gallery dialog box, click Close. Note that the CWebBrowser class has been added to the list of
classes in the Browse application.

5. In the Developer Studio ClassView pane, expand the CWebBrowser class to view properties and
methods of the class.

 Create an Instance of the Web Browser Control

1. Before you create an instance of the Web Browser control, you will need to include the header file for
the CWebBrowser class in several of your application's implementation files.

a. Use Developer Studio to open the file Browse. Cpp. After #include "stdafx.h", add this line:

#include "webbrowser.h"

b. Use Developer Studio to open the file BrowseView.Cpp. After #include "stdafx.h", add this
line:

#include "webbrowser.h"

2. You also need to add a member variable for a pointer to a Web Browser control to the class in which
you will create the control. In this case, you will embed the control in the view class.

a. In the Developer Studio ClassView pane, right-click CBrowseView, then click Add Member
Variable.

b. In the Add Member Variable dialog box, type CWebBrowser* in the Variable Type field.

c. In the Add Member Variable dialog box, type m_pBrowse in the Variable Declaration field.

d. Accept the default of Public access and click OK.

e. Use Developer Studio to open the file BrowseView.Cpp, and inside the constructor,
CBrowseView::CBrowseView, add this line:

m_pBrowse = NULL;

3. Create a control ID to use as a parameter for the Web Browser control Create function.

The Create function for the Web Browser control requires a control identifier as a parameter. One way
to create a control ID is to insert a new menu resource into your project and then add a menu item for
the control ID to be used for the parameter to the Create function. This new resource is not visible to
the user; it is just an easy way to create IDs.

a. In the ResourceView pane of your Project Workspace, right-click the Menu folder and from the
context menu, select Insert menu.

b. In the Menu editor pane, double-click the empty top-level menu item provided and in the Menu Item
Properties dialog box, set the Caption property to IDs.

c. In the Menu editor pane, double-click the empty menu item under IDs. In the Menu Item Properties
dialog box, set the ID property to IDC_WBC. This is the control ID you will provide as a parameter
to the Web Browser control's Create function in the next step.

You can add caption and prompt information to help you remember what this resource is for.

 3

4. To embed the control in the view, add a message handler for WM_CREATE to the view class, and
place the code to create an instance of the Web Browser control in the message handler.

a. In the Developer Studio ClassView pane, right-click CBrowseView, and then click Add Windows
Message Handler.

b. From the New Windows messages/events list, select WM_CREATE, then click the Add and Edit
button.

c. Inside the CBrowseView::OnCreate function, before the return statement, add the following code.

// Define the area where the control will reside.
CRect rect;
GetClientRect(&rect);

// Create the control.
// IDC_WBC is a unique identifier for the control and was defined
// in Step 3 using a dummy menu item.
m_pBrowse = new CWebBrowser;
ASSERT(m_pBrowse);
if (!m_pBrowse->Create(NULL,NULL,WS_VISIBLE,rect,this,IDC_WBC))
{

TRACE("failed to create browser\n");
delete m_pBrowse;
m_pBrowse = NULL;
return 0;

}

You will not be able to see any results from the code you have added until you have completed the
next two steps of invoking a method and setting properties of the control.

 Invoke a Method of the Web Browser Control

Following the lines added to the CBrowseView::OnCreate function in the previous procedure, add
the code to invoke the Web Browser control's Navigate method.

// Initialize the first URL.
COleVariant noArg;
m_pBrowse->Navigate("www.microsoft.com", &noArg, &noArg, &noArg,

&noArg);

Note The empty COleVariant arguments can be set to further customize the Navigate method. For
more information on COleVariant arguments, refer to the article "Automation" in the Visual C++
Programmer's Guide, in the Microsoft Visual C++ online documentation.

4

 Set Properties of the Web Browser Control

To set properties of the control, add a message handler for WM_SIZE to the view class, and place the
code to set the height and width properties of the Web Browser control in the message handler.

1. In the Developer Studio class view pane, right-click CBrowseView, and then click Add Windows
Message Handler.

2. From the New Windows messages/events list, select WM_SIZE, then click the Add and Edit button.

3. Inside the CBrowseView::OnSize function, after the call to the base class's OnSize function, add the
following code.

if (m_pBrowse)
{

m_pBrowse->SetWidth(cx);
m_pBrowse->SetHeight(cy);

}

This code causes the Web Browser control to resize when a user resizes the application's mainframe
window.

 Build and test your application

If you have an active connection to the Internet, you should see the default page for the Microsoft
Corporation's Web site displayed in the Web Browser control in your application's view class. The
completed code for this exercise is in \Labs\C11\Lab01\Ex01.

Exercise 2: Handling Web Browser Control Events
In this exercise, you will modify the application from Exercise 1 of this lab so that it handles a Web
Browser control event.

Continue with the files you created in Exercise 1 or, if you do not have a starting point for this exercise,
the code that forms the basis for this exercise is in \Labs\C11\Lab01\Ex01.

There are three main steps to handle events:

1. Determine the function prototype and ID of the event.

2. Add the event function handler to the wrapper class.

3. Link the event to the handler.

 Determine the function prototype and ID of the event

1. From the Developer Studio Tools menu, choose OLE/COM Object Viewer.

2. In the left-hand pane of the OLE/COM Object Viewer dialog box, double-click the Controls folder.
Scroll down the list and right-click the Microsoft Web Browser Control.

3. From the menu that appears, select View Type Information.

4. To view Web Browser control events, in the ITypeLib Viewer dialog box that appears, double-click
dispInterface DWebBrowserEvents. Now double-click the Methods folder. This displays the event
methods for the Web Browser control.

If you do not see the dispInterfaceDWebBrowserEvents node in the left-hand pane of the ITypeLib
Viewer dialog box, on the View menu, see whether "Group by type kind" is checked. If so, click Group by
type kind to uncheck it and the dispInterfaceDWebBrowserEvents node will appear.

5. Under the Methods folder, click StatusTextChange. The information you require about the ID for the
event and the prototype for the event handler is displayed in the right-hand pane of the ITypeLib
Viewer dialog box.

[id(0x00000066)
void StatusTextChange([in] BSTR Text);

 5

 Add the event function handler to the control's wrapper class

1. Before you create the OnStatusTextChange event handler, create a public member function, Status,
in the CMainFrame class. This helper function, which enables the view class to access the status bar
object, will be called in the OnStatusTextChange event handler.

a. In the Developer Studio ClassView pane, right-click CMainFrame, then click Add Member Function.

b. In the Add Member Function dialog box, type void in the Function Type field, type
Status(LPCTSTR text) in the Function Declaration field, then click OK.

c. Add this line inside the Status function:

m_wndStatusBar.SetWindowText(text);

2. You can now add the OnStatusTextChange event handler function. In the Developer Studio
ClassView pane, right-click CBrowseView, then click Add Member Function.

3. In the Add Member Function dialog box, type void in the Function Type field, type
OnStatusTextChange(LPCTSTR text) in the Function Declaration field, then click OK.

4. Add these lines inside the OnStatusTextChange function:

// Only write to status line if there is a non-zero string.
// (lstrlen works on either ANSI or UNICODE strings.)
if (lstrlen(text))

((CMainFrame*)AfxGetMainWnd())->Status(text);

AfxGetMainWnd returns a CFrameWnd pointer. You must cast the return value to a CMainFrame
pointer because Status is a member function of the CMainFrame class.

5. Because the Status function called in Step 4 of this procedure is a member of the CMainFrame class,
add a line near the top of the BrowseView.Cpp file to include the header file for the CMainFrame
class:

#include "mainfrm.h"

 Link the event to the handler

In our application, the view class handles the OnStatusTextChange event, so the changes outlined
below are made in each case to the appropriate view class file(s).

1. Add a DECLARE_EVENTSINK_MAP() macro call to the header file for the class that handles the
event.

a. Use the Developer Studio editor to open BrowseView.H.

b. After the call to DECLARE_MESSAGE_MAP(), add this line:

DECLARE_EVENTSINK_MAP()

2. Add an event sink map to the source file for the class that handles the event. Recall that the event ID
displayed in the OLE/COM Object Viewer for the StatusTextChange event was 0x66.

a. If you do not have BrowseView.Cpp open, use the Developer Studio editor to open it.

b. After the line END_MESSAGE_MAP(), add these lines to add an event sink map to the view class:

BEGIN_EVENTSINK_MAP(CBrowseView, CView)
ON_EVENT(CBrowseView, 0, 0x66, OnStatusTextChange, VTS_BSTR)

END_EVENTSINK_MAP()

 Build and test your application

Notice that the text in the status bar changes as the Web Browser control navigation takes place. The
completed code for this exercise is in \Labs\C11\Lab01\Ex02.

	Lab 11.1: Using the Web Browser Control
	Exercise 1: Using the Web Browser Control
	Exercise 2: Handling Web Browser Control Events

