
Lab 12.1: Building an ActiveX Control from an Existing
Class
Objectives
After completing this lab, you will be able to:

 Package an existing class as an ActiveX control.

 Use the ActiveX Control Test Container.

 Add property pages to an ActiveX control.

Prerequisites
Familiarity with the topics covered in this chapter.

Lab Setup
To see a demonstration of the solution to this lab, click this icon.

Estimated time to complete this lab: 40 minutes.

Exercises
The following exercises provide practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Building an ActiveX Control

In this exercise, you will create an ActiveX control by encapsulating the existing Device-Independent
Bitmap (DIB) class. After you create the control, you will test the control using the ActiveX Control Test
Container.

Exercise 2: Setting Properties for an ActiveX Control

In this exercise, you will set the properties for the ActiveX control you created in Exercise 1.

Exercise 3: Adding a Property Sheet Interface

In this exercise, you will use a property sheet to create a design-mode interface for the ActiveX control
you implemented in Exercise 2.

There is no setup for this lab. Copy the implementation of the DIB class from \Labs\C12\Lab01\Baseline.
The completed code for these exercises is in \Labs\C12\Lab01\Xxx, where Xxx is the exercise number.

Exercise 1: Building an ActiveX Control
The code that forms the basis for this exercise is in \Labs\C12\Lab01\Baseline. Copy the files into your
project directory.

In this exercise, you will encapsulate a DIB and palette-display class as an ActiveX control. The only
property you will implement in this exercise is the file whose palette is to be displayed. You will then test
the control using the ActiveX Control Test Container.

 Build the framework control

1. Start Microsoft Developer Studio.

2. From the File menu, choose New.

3. In the New dialog box, choose the Projects tab.

4. Choose the MFC ActiveX ControlWizard. Name the project PalView.

2

5. Click OK to start the MFC ActiveX ControlWizard. In Step 1 of the ActiveX ControlWizard, create one
control and leave the other options at their default settings.

 3

6. Click Next. Step 2 of the ActiveX ControlWizard displays. Accept the default settings for all options.

4

7. Click Finish. The New Project Information dialog box appears.

 5

8. Click OK to create the project.

9. From the Project menu, choose Add to Project, and choose Files. Find and insert Dib.Cpp and
DibPal.Cpp into the project. You do not need to insert their headers; Developer Studio will resolve
their dependencies.

 Integrate CDibPal into CPalViewCtrl

1. Right-click CPalViewCtrl in ClassView and add a protected member variable.

CDIBPal*m_pDibPal

2. Open PalViewCtl.Cpp.

3. Include Dib.H and DibPal.H before including PalViewCtl.H.

4. Update the constructor to initialize m_pDibPal to zero (0). The complete constructor follows.

CPalViewCtrl::CPalViewCtrl()
{
InitializeIIDs(&IID_DPalView, &IID_DPalViewEvents);
m_pDibPal = 0;
}

6

5. Update the destructor to delete m_pDibPal if it exists. The complete destructor follows.

CPalViewCtrl::~CPalViewCtrl()
{

if (0 != m_pDibPal)
{

delete m_pDibPal;
m_pDibPal = 0;

}
}

 Update CPalViewCtrl::OnDraw to use CDibPal::Draw

1. Modify CPalViewCtrl::OnDraw to use CDIBPal::OnDraw if CDIBPal has been instantiated.

if(0 != m_pDibPal)
{

m_pDibPal->Draw(pdc, rcBounds, TRUE);
}
Otherwise, fill the control with a white brush.

else
pdc->FillRect(rcBounds,

CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));

2. Save PalViewCtl.Cpp. The complete function follows.

void CPalViewCtrl::OnDraw(
CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)
{

if(0 != m_pDibPal)
{

m_pDibPal->Draw(pdc, rcBounds, TRUE);
}
else
{

pdc->FillRect(rcBounds,
CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));

}
}

 Add a function to extract the palette from a DIB file

1. Right-click CPalViewCtl in ClassView and add a protected member function.

void ExtractPalFromDIBFile(LPCTSTR lpszFileSpec)

2. Add these variables to the implementation of ExtractPalFromDIBFile.

CDIB Dib;
CFile DibFile;

3. Open the file whose path is in lpszFileSpec.

if(DibFile.Open(lpszFileSpec, CFile::modeRead))

4. Copy the file into a CDIB instance.

if(Dib.Load(&DibFile))

5. Create a palette and extract the color table from the DIB into the palette.

CDIBPal* pTemp = new CDIBPal;
if(pTemp->Create(&Dib))

 7

6. If you already have a CDIBPal instance, delete it.

if(0 != m_pDibPal)
{

delete m_pDibPal;
m_pDibPal = 0;

}

7. Assign the palette you created to m_pDibPal.

m_pDibPal = pTemp;

8. Draw the palette in 3D style.

m_pDibPal->SetDraw3D(TRUE);

9. Save PalViewCtl.Cpp. The complete function follows.

void CPalViewCtrl::ExtractPalFromDIBFile(LPCSTR lpszFileSpec)
{

CDIB Dib;
CFile DibFile;

if(DibFile.Open(lpszFileSpec, CFile::modeRead))
{

// Load the bitmap file into a CDIB object
if(Dib.Load(&DibFile))
{

CDIBPal* pTemp = new CDIBPal;
ASSERT(pTemp != NULL);
// This will extract the color table fron the CDIB object
if(pTemp->Create(&Dib))
{

// Get rid of any existing CDIBPal object
if(0 != m_pDibPal)
{

delete m_pDibPal;
m_pDibPal = 0;

}
// Ready to go
m_pDibPal = pTemp;

// Make sure the new palette reflects our
// current state
m_pDibPal->SetDraw3D(TRUE);

}
else
{

delete pTemp;
}

}
}

}

The palette view control has several externally changeable properties. The Microsoft Foundation Class
Library provides two mechanisms for a container to change these properties:

 Member variables with notification.

 Get and Set methods.

8

Generally, use member variables when the property is a simple value stored in the control itself; use Get
and Set methods when the property is a complex value that you want to interpret, or when the property is
a member of an embedded class.

 Add DibFileName property

1. In the ClassWizard, choose the Automation page and click Add Property. The Add Property dialog box
displays.

2. Create a new DibFileName property, using the following settings.

External Name Type Variable Name Notification Function

DibFileName CString m_dibFileName OnDibFileNameChanged

3. In PalViewCtl.Cpp, modify the new OnDibFileNameChanged function to extract the palette from
DibFileName and repaint the control. The complete function follows.

void CPalViewCtrl::OnDibFileNameChanged()
{
ExtractPalFromDIBFile(m_dibFileName);
InvalidateControl();
SetModifiedFlag();
}

4. In the constructor, initialize m_dibFileName:

m_dibFileName = _T ("");

 Build and run the control using the ActiveX Control Test Container

1. Save all files and build PalView.Ocx.

 9

If you have not copied the four files from the BASELINE directory to your project subdirectory, do so
before building the project. Also, add these four files to the project by choosing Project/Add to
Project/Files into Project.

2. Developer Studio provides a test container for ActiveX controls. You can run the test container by
choosing the ActiveX Control Test Container option from the Tools menu (if you wish to simply test the
control), or by choosing Execute from the Build menu. Identify the location of TstCon32.Exe. (It is in
the \Program Files\DevStudio\VC\Bin directory in the default installation.) Developer Studio will inform
you that there is no debug information in TstCon32. The ActiveX Control Test Container will then be
displayed.

3. From the Edit menu, choose Insert OLE Control, then choose the PalView control. Resize the control
to an appropriate size.

4. From the View menu, choose the Properties item. The Properties dialog displays. Because you have
not implemented a Property Sheet for this control, invoking the Properties verb displays only the blank
default property sheet provided by the ActiveX ControlWizard.

5. From the Property combo box, choose the DibFileName property, and in the Value edit control, type
the name of a bitmap or DIB file, such as the one in \Windows\Forest.Bmp. When you click Apply, the
palette displays in the control.

The completed code for this exercise is in \Labs\C12\Lab01\Ex01.

Exercise 2: Setting Properties for an ActiveX Control
Continue with the files you created in Exercise 1 or, if you do not have a starting point for this exercise,
the code that forms the basis for this exercise is in \Labs\C12\Lab01\Ex01.

In this exercise, you will implement the rest of the properties for the control.

10

 Implement the ShowColorSelection and Show3D properties

1. The ShowColorSelection and Show3D properties are member variables of CPalViewCtrl. They are
implemented in the same way as the DibFileName property in Exercise 1, as member variables with
notification functions. Using the ClassWizard, create the following properties.

External Name Type Variable Name Notification Function

ShowColorSelection BOOL m_showColorSelection OnShowColorSelectionChanged

Show3D BOOL m_show3D OnShow3DChanged

2. When ShowColorSelection is changed, redraw the control in order show or hide the red outlining
rectangle indicating the color tile selected. Invalidate the control in OnShowColorSelectionChanged.

void CPalViewCtrl::OnShowColorSelectionChanged()
{
InvalidateControl();
SetModifiedFlag();
}

3. Show3D must be passed to CDIBPal. Call SetDraw3D in OnShow3DChanged.

void CPalViewCtrl::OnShow3DChanged()
{
if (0 != m_pDibPal)
{

m_pDibPal->SetDraw3D(m_show3D);
InvalidateControl();

}
SetModifiedFlag();

}

 Implement the SelectionIndex property

1. SelectionIndex exists only in CDIBPal. Implement this property as a pair of Get/Set methods.

External Name Type Get Set

SelectionIndex short GetSelectionIndex SetSelectionIndex

2. To get the selection index, use CDIBPal::GetSelectionIndex to query the control. Return -1 if you do
not have a CDIBPal instance.

short CPalViewCtrl::GetSelectionIndex()
{
short nSelectionIndex = -1;
if (0 != m_pDibPal)
{

nSelectionIndex = m_pDibPal->GetSelectionIndex();
}
return nSelectionIndex;
}

3. To set the selection index, use CDIBPal::SetSelectionIndex.

void CPalViewCtrl::SetSelectionIndex(short nNewValue)
{
if(nNewValue >= 0 && nNewValue < 256)
{

if (0 != m_pDibPal)
{

m_pDibPal->SetSelectionIndex(nNewValue);

 11

FireSelChange(nNewValue);
InvalidateControl();

}
}
SetModifiedFlag();
}

 Add event handling for left-click and double-click

1. Start the ClassWizard. Choose the ActiveX Events tab and click Add Event. The Add Event dialog will
display. Add a Stock event for DblClick.

2. Add a custom event for SelChange. Add a short parameter, nSelectionIndex.

12

3. Open the Message Maps tab in the ClassWizard and add a handler for WM_LBUTTONDOWN. Edit
the code for OnLButtonDown.

4. Validate that the ActiveX control has instantiated a CDIBPal, and if so, get the size of the control.

if(0 != m_pDibPal)
{

int x, y;
GetControlSize(&x, &y);
CRect rcControl(0, 0, x, y);

5. Pass the CRect and the CPoint to CDIBPal::HitTest to get the cell that was clicked. Then, set the

selection index.

int nPalIndex = m_pDibPal->HitTest(rcControl, point);
if(-1 != nPalIndex)
{

SetSelectionIndex(nPalIndex);
}

6. Save PalViewCtl.Cpp. The code for completed function follows.

void CPalViewCtrl::OnLButtonDown(UINT nFlags, CPoint point)
{
if(0 != m_pDibPal)
{

int x, y;
GetControlSize(&x, &y);
CRect rcControl(0, 0, x, y);

// Ask the DibPal object which palette index would
// be hit by the mouse click
int nPalIndex = m_pDibPal->HitTest(rcControl, point);

 13

if(-1 != nPalIndex)
{

//Change the selection property
SetSelectionIndex(nPalIndex);

}
}
COleControl::OnLButtonDown(nFlags, point);
}

 Implement a method to get the current color from the palette

1. Use the Automation tab of the ClassWizard to add a method to get a color from the palette.

External Name Return
Type

Parameter
Name

Parameter Type

GetColorFromPalette long nPalIndex short

2. Edit the code. Check that the palette index is between 0 and 255.

COLORREF crRet = 0; // Default to BLACK
if(nPalIndex >= 0 && nPalIndex < 256)
{

3. Return CDIBPal::GetColorFromIndex if there is a CDIBPal object.

if(0 != m_pDibPal)
{

crRet = m_pDibPal->GetColorFromIndex(nPalIndex);
}
return crRet;

4. Save PalViewCtl.Cpp. The complete function follows.

long CPalViewCtrl::GetColorFromPalette(short nPalIndex)
{

COLORREF crRet = 0; // Default to BLACK
if(nPalIndex >= 0 && nPalIndex < 256)
{

if(0 != m_pDibPal)
{

crRet = m_pDibPal->GetColorFromIndex(nPalIndex);
}

}
return crRet;

}

 Modify ControlWizard-provided functions

DoPropExchange is called by the framework when loading or storing a control from a persistent storage
representation, such as a stream or property set. This function normally makes calls to the PX_ family of
functions to load or store specific user-defined properties of an ActiveX control. Add PX_ calls for the
properties you just implemented.

PX_Bool(pPX, _T(“ShowColorSelection”), m_showColorSelection, TRUE);
PX_Bool(pPX, _T(“Show3D”), m_show3D, FALSE);
PX_String(pPX, _T(“DibFileName”), m_dibFileName, _T(““));

1. After loading DibFileName, get the palette from that file.

if (pPX->IsLoading())

14

{
ExtractPalFromDIBFile(m_dibFileName);

}

2. Save PalViewCtl.Cpp. The compete function follows.

void CPalViewCtrl::DoPropExchange(CPropExchange* pPX)
{
ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
COleControl::DoPropExchange(pPX);

PX_Bool(pPX, _T(“ShowColorSelection”),

m_showColorSelection, TRUE);
PX_Bool(pPX, _T(“Show3D”), m_show3D, FALSE);
PX_String(pPX, _T(“DibFileName”), m_dibFileName, _T(““));

if (pPX->IsLoading())
{

ExtractPalFromDIBFile(m_dibFileName);
}

}

3. Initialize m_showColorSelection and m_show3D in the CPalViewCtrl constructor. The complete
constructor follows.

CPalViewCtrl::CPalViewCtrl()
{
InitializeIIDs(&IID_DPalView, &IID_DPalViewEvents);
m_pDibPal = 0;
m_dibFileName = _T(““);

m_showColorSelection = TRUE;
m_show3D = FALSE;

}

4. In ExtractPalFromDIBFile, modify the call to CDIBPal::SetDraw3D to use m_show3D.

m_pDibPal->SetDraw3D(m_show3D);

5. In CPalViewCtrl::OnDraw modify the call to CDIBPal::Draw to use m_showColorSelection.

m_pDibPal->Draw(pdc, rcBounds, m_showColorSelection);

6. Save PalViewCtl.Cpp. Build and run PalView.Ocx using the ActiveX Control Test Container.

The completed code for this exercise is in \Labs\C12\Lab01\Ex02.

Exercise 3: Adding a Property Sheet Interface
Continue with the files you created in Exercise 2 or, if you do not have a starting point for this exercise,
the code that forms the basis for this exercise is in \Labs\C12\Lab01\Ex02.

You have implemented a programmer’s interface to the palette view. Now, you will use a property sheet
to create a design-mode interface. The ControlWizard provides a property sheet with one blank page. In
this exercise, you will implement this page and add another page.

 15

 Modify the AppWizard-provided property page

The first property page will have two check boxes: one for the ShowColorSelection property and the
other for the Show3D property.

1. Delete the static text control on the IDD_PROPPAGE_PALVIEW dialog template. Add and position
controls on this template according to the following table.

Type ID Caption

Checkbox IDC_COLORSELECTION Show Color &Selection

Checkbox IDC_3D_BOXES &3D Color Boxes

2. Create member variables and link them to their properties according to the following table. Press the
CTRL key, and double-click controls to display their variables.

ID Variable Name Type Property Name

IDC_COLORSELECTION m_bShowColorSelection BOOL ShowColorSelection

ICD_3D_BOXES m_bShowID BOOL Show3D

 Add a new property page

The new property page will enable your users to set the palette to be displayed.

16

1. Create a new dialog template. From the Insert menu, choose Resource to display the properties
resources. Expand the Dialog icon, choose IDD_OLE_PROPPAGE_SMALL and add this dialog
template with the following controls:

Type ID Caption

Dialog IDD_PROPPAGE_DIBFILE

Pushbutton IDC_BROWSE &Browse

Edit control IDC_DIB_FILENAME

Left aligned static IDC_STATIC Filename:

Left aligned static IDC_STATIC The Palette View
ActiveX control will
extract the color table
from the bitmap file you
supply here.

2. Use the ClassWizard to create a new class based on IDD_PROPPAGE_DIBFILE. Make the base
class COlePropertyPage. Name the new class CDibFilePropPage and use DibPrpg.Cpp and
DibPrpg.H as file names.

3. Create a member variable for the edit control.

Variable Name ID Type Property Name

m_DibFileName IDC_DIB_FILENAME CString DibFileName

4. In CDibFilePropPage, create a command handler for IDC_BROWSE.

5. In CDibFilePropPage::OnBrowse, display a common file dialog and set the text of the file name edit
control with the results. The complete function follows.

void CDibFilePropPage::OnBrowse()
{
CFileDialog dlg(TRUE);
if(dlg.DoModal() == IDOK)

 17

{
CEdit * pEdit = (CEdit *)GetDlgItem(IDC_DIB_FILENAME);
if(0 != pEdit)
{

pEdit->SetWindowText(dlg.GetPathName());
}

}
}

6. In the string table resource, add two strings for captions.

ID Caption

IDS_DIBPAGE Palette File

IDS_DIBPAGE_CAPTION Palette File

7. In the UpdateRegistry function, modify the call to AfxOleRegisterPropertyPageClass to use
IDS_DIBPAGE instead of 0. Note that ClassView does not display this member function; it is located
in the .Cpp file. Code for the completed function should look like this:

BOOL CDibFilePropPage::CDibFilePropPageFactory::UpdateRegistry(BOOL
bRegister)
{
// TODO: Define string resource for page type;
// replace ‘0’ below with ID.
if (bRegister)

return AfxOleRegisterPropertyPageClass(AfxGetInstanceHandle(),
m_clsid, IDS_DIBPAGE);

else
return AfxOleUnregisterClass(m_clsid, NULL);

}

8. In CDibFilePropPage::CDibFilePropPage, change the initialization to use IDS_DIBPAGE_CAPTION
instead of 0. The complete function follows.

CDibFilePropPage::CDibFilePropPage() :
COlePropertyPage(IDD, IDS_DIBPAGE_CAPTION)

{
//{{AFX_DATA_INIT(CDibFilePropPage)
m_DibFileName = _T(““);
//}}AFX_DATA_INIT

}

9. Save this file.

 Setup the new property page in CPalViewCtrl

1. Include DibFilePropPage.H in PalViewCtl.Cpp.

2. Change the BEGIN_PROPPAGEIDS macro to indicate that you will have two pages in the property
sheet.

BEGIN_PROPPAGEIDS(CPalViewCtrl, 2)

3. Add an additional PROPPAGEID macro for CDibFilePropPage.

PROPPAGEID(CDibFilePropPage::guid)

4. Save PalVwCtl.Cpp. The complete macro block follows.

BEGIN_PROPPAGEIDS(CPalViewCtrl, 2)
PROPPAGEID(CPalViewPropPage::guid)
PROPPAGEID(CDibFilePropPage::guid)

18

END_PROPPAGEIDS(CPalViewCtrl)

 Build and use the control

The completed code for this exercise is in \Labs\C12\Lab01\Ex03.

	Lab 12.1: Building an ActiveX Control from an Existing Class
	Exercise 1: Building an ActiveX Control
	Exercise 2: Setting Properties for an ActiveX Control
	Exercise 3: Adding a Property Sheet Interface

