
Lab 11.3: Using the FTP WinInet Classes
Objectives
After completing this lab, you will be able to use the MFC WinInet classes to:

 Create an Internet session.

 Establish an FTP connection.

 Use FTP to transfer files.

 Close an FTP session.

Prerequisites
You should be able to create MFC applications that invoke and use modal dialog boxes.

You should have completed Chapter 11 through the section titled "Writing FTP Applications."

Lab Setup
This demonstration shows what you will accomplish during the lab.

Estimated time to complete this lab: 60 minutes.

Exercises
The following exercise provides practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Creating an FTP Application

In this exercise, you will:

 Modify the baseline application to invoke a dialog box to get user information (search parameters)
required for an FTP request.

 Implement an FTP transfer function that encapsulates the creation, file transfer, and termination of an
FTP connection.

 Implement a function to do a recursive directory search and file retrieval using an FTP connection.

Before you start this lab, you should have installed Internet Explorer. You also must have an account
with an Internet service provider or access to the Internet via a corporate firewall.

Alternatively, you can test these labs on a standalone computer. To do so, ensure that the Microsoft
Personal Web Server (PWS)software is installed on your computer and that the Web server is properly
configured and started. For more information on installing and configuring PWS, see the section
Microsoft Personal Web Server in Chapter 11 of this course.

Copy the contents of \Labs\C11\Lab03\Baseline to your working directory.

The completed code for these exercises is in \Labs\C11\Lab03\Xxx, where Xxx is the exercise number.

Exercise 1: Creating an FTP Application
It is often useful to copy many files of a given type from an FTP server. The purpose of this lab is to
create an application that uses the MFC WinInet classes to create an FTP utility that accepts wildcard
strings to retrieve a subset of files existing on an FTP file server.

In this exercise, you will:

 Modify the baseline application to invoke a dialog box to get user information (search parameters)
required for an FTP request.

2

 Implement an FTP transfer function that encapsulates the creation, file transfer, and termination of an
FTP connection.

 Implement a function to do a recursive directory search and file retrieval using an FTP connection.

About the Baseline Application
The baseline application contains a File menu item "FTP Transfer" with an empty command handler and
a dialog box resource and class (CFtpDlg) that you can use to query the user for FTP search
parameters. This is the dialog box resource provided with the baseline application.

This table lists the member variables in the CFtpDlg class that are used to store the FTP search
parameters that the user enters.

Member Variable Data Type Description

m_strServer CString This string stores the path for the FTP
server.

m_strPath CString This string stores the path string entered by
the user. The string can contain wildcard
characters.

m_strFile CString This string stores the specification for the
file, or types of files, to be copied. The string
can contain wildcard characters.

m_strRoot CString This string stores the path to the local
destination directory.

m_strGateway CString This string stores the specification for the
gateway, if one is required.

m_nCopyType int This integer stores a value corresponding to
one of three enumerated values that
indicates the type of copy to perform:
 Copy directories only
 Copy leaf files
 Copy all (directories and leaf files).

 3

This table lists the CFtpGet class members used or implemented in this exercise.

Member Variable or
Function

Data Type or
Return Type

Description

m_arrStaticPath CStringArray This string array stores the original
path specification, with each
element of the array containing one
path element.
The wildcard characters are kept
intact in this array.

m_arrDynamicPath CStringArray This string array stores the original
path specification, with each
element of the array containing one
path element.
The wildcard characters are
replaced with actual path elements
during the FTP tree traversal.

DoFtpTransfer() void This public function is called by the
menu handler to initialize the FTP
connection, to call CopyDirectory()
to perform the actual FTP transfer,
and to close the FTP connection.
Implemented by the student.

CopyDirectory(int
PathIndex)

BOOL This member function performs
copying of all matching files from
one directory of the FTP server.
Recursive calls are made to this
function to copy files from child
directories of the current FTP
directory.
Implemented by the student.

SetFtpDirectory(int
index)

BOOL This member function performs
copying of all matching files from
one directory of the FTP server.
Recursive calls are made to this
function to copy files from child
directories of the current FTP
directory.
Implemented by the student.

PathToArray(CString&
path, CStringArray&
strArray)

void This utility member function takes a
path and extracts the path elements
and stores them into the string
array.
Used by the student.

GetLocalDirectory(int
level, CString& FullDir)

BOOL This utility member function returns
the current local directory, as
determined by the directory level
parameter.
Used by the student.

In addition, the CFtpView class contains the AddToView helper function, which adds a string to the
view's string array and updates the view screen. The AddToView function receives a single LPCTSTR
argument and has a void return type.

Get User Information and Start the FTP Operation
There are four main steps required to invoke a dialog box and start the FTP operation:

4

1. Include the header files for the CFtpDlg dialog box class and the CFtpGet class in the view class's
implementation file.

2. Create a CFtpDlg object and invoke it to query the user for the FTP search parameters.

3. Create a CFtpGet object, passing the appropriate dialog box member variables as arguments to the
CFtpGet constructor.

4. Invoke the CFtpGet member function DoFtpTransferB to start the transfer.

 Add the required include files

1. Use the Developer Studio editor to open the file FtpView.Cpp.

2. Add the following directives after the line #include "Stdafx.H":

#include "ftpdlg.h"
#include "ftpget.h"

 Create and invoke a CFtpDlg object

Inside the CFtpView::OnFileFtpTransfer command handler, after the call to the OnViewClear function,
add code to create an CFtpDlg object. Invoke DoModal only if the user clicks OK.

// Display dialog box to prompt user for FTP transfer parameters
CFtpDlg dlg(this);
// Do transfer only if user clicked the OK button
if (dlg.DoModal()==IDOK)

 Create a CFtpGet object using information from dialog box

Inside the DoModal if block, add code to construct a CFtpGet object using the dialog box's search
parameters.

{ // Open DoModal if block
// Create an instance of the FTP object using dialog box variables
CFtpGet ftpget(this, dlg.m_strServer, dlg.m_strFile,

dlg.m_strPath, dlg.m_strRoot, dlg.m_strGateway,
dlg.m_nCopyType);

 Start the transfer by invoking the DoFtpTransfer function

Add code to do the FTP transfer and close DoModal if block.

// Do the transfer
ftpget.DoFtpTransfer();

} // Close DoModal if block

Implement the DoFtpTransfer Function
There are five main steps to implement in the DoFtpTransfer function:

1. Create an Internet session.

2. Establish an FTP connection.

3. Add some initialization code for the string arrays that hold path information and set the type of copy
operation desired.

4. Do the file transfer.

5. Close the FTP connection and Internet session.

 Create an Internet session

1. Use the Developer Studio editor to open Ftpget.Cpp.

2. Within the try block of the CFtpGet::DoFtpTransfer function, add the code to create an Internet
session.

 5

//
// 1) Create an Internet session
//
TRACE("creating session...\n");
CInternetSession session;

 Establish an FTP connection

Next, add the code to establish an FTP connection. Ensure that you check to see whether the connection
is made through a proxy server and then uses the correct GetFtpConnection function call for each case.

//
// 2) Establish FTP connection
//
TRACE("getting ftp connection...\n");
// Heuristic: If no gateway is specified then use server name directly,
// otherwise use gateway as proxy server.
// See your network admin for your proxy name, or use an internal site.
//
if (m_strGateway.IsEmpty())
{

m_ftp= session.GetFtpConnection(m_strServer);
}
else
{

m_ftp= session.GetFtpConnection(
m_strGateway,
"anonymous@" + m_strServer,
"YourName@YourCom.com"
);

}
TRACE("Connection made\n");

 Initialize path information and set the type of copy operation

Add the following code to initialize the string arrays and set the type of copy operation to be performed.

//
// 3) Some miscellaneous initialization
//
// If no server path specified, make a "wildcard path".
if (m_strPath.IsEmpty())
{

// If the path string is empty make a "wildcard path" to catch
// everything (up to number of path elements). Also, turn off "copy leaf
files only"
// since we don't have any knowledge of the leafs at this time.

m_strPath= "************\\";
if (m_CopyType==FC_LEAFFILES)
{

m_CopyType= FC_ALL;
}

}
// Split path string up and place into string arrays, one for each path
element.
PathToArray(m_strPath, m_arrStaticPath);// original path as user entered.
PathToArray(m_strPath, m_arrDynamicPath); // path with wildcard
characters

// replaced with matched directories.

6

 Invoke the function to do the file transfer

Call the member function to do the remote directory traversal and file copying. In the next subsection of
this exercise, you will implement the CFtpGet::CopyDirectory function.

//
// 4) Begin file transfer starting at root of FTP server.
//
CopyDirectory(0);
//

 Close the FTP connection and Internet session.

Add code to close the connection and the session.

//
// 5) Close things up
//
m_ftp->Close();
delete m_ftp;
session.Close();

Implement a Recursive Search and File Retrieval Function
The function CFtpGet::CopyDirectory performs the search for desired file types and the retrieval, if that
option is set. It also searches the directory for subdirectories that may be candidates for further searching
and then recursively calls itself with the new directory level.

There are five main steps to implement in the CopyDirectory function:

1. Add initialization code to set the current directory on the FTP server to the current path level to be
searched and to set a flag to indicate whether the directory should be copied.

2. Use the file type string to search for the desired file type(s) in this directory.

3. Determine whether the end of the path has been reached or to proceed down to another subdirectory
and take the appropriate action in either case.

4. Check for subdirectories that match the desired path and store the names in a string array.

5. For each matching subdirectory found, set the dynamic path array and then recursively call
CFtpGet::CopyDirectory with an updated path value.

 Add initialization code

1. Use the Developer Studio editor to open Ftpget.Cpp.

2. Add initialization code to set the current directory on the FTP server to the current path level to be
searched and to set a flag to indicate whether the directory should be copied.

//
// 0) Initialization
//
// Set source directory at ftp site.
// A level of 0 is the server root, 1 is first sub-dir, etc
if (!SetFtpDirectory(PathLevel))
{

TRACE("Cannot set ftp directory\n");
return FALSE;

}

// Set a flag to determine whether or not this is a dir to copy.
BOOL bCopy= (m_CopyType==FC_ALL) ||

((m_CopyType==FC_LEAFFILES)&&(PathLevel ==
m_arrDynamicPath.GetSize()));

 7

 Search for the desired file type(s) in this directory

Use the file type string to search for the desired file type(s) in this directory.

//
// 1) Find desired files for current directory and copy.
//

 CFtpFileFind ff(m_ftp);
BOOL success= ff.FindFile(m_strFileTypes);
while (success==TRUE)
{

{
// Need to call FindNextFile before doing any attribute

methods.
success=ff.FindNextFile();

CString strFilename= ff.GetFileName();
if (!ff.IsDirectory())
{

// Get destination directory, create if needed.
CString DestinationDir;
if (GetLocalDirectory(PathLevel, DestinationDir))
{

CString FullName= DestinationDir + strFilename;
// Do the copy.
if (bCopy) {

if (!m_ftp->GetFile(strFilename,FullName)) {
TRACE("Cannot put to local directory, error:

%d\n", ::GetLastError());
}

}
// Output file information.
static DWORD count= 0;
DWORD filesize= ff.GetLength();
m_TotalFileSize += filesize;
TRACE("%ld: %ld (%ld) %s\n", ++count, filesize,

m_TotalFileSize, FullName);
}
else
{

TRACE("Cannot access local directory\n");
return FALSE;

}
}

}
}
// Call Close to reset the search.
ff.Close();

 Determine appropriate action to pursue for search

Add code to determine whether the end of the path has been reached or to proceed down to another
subdirectory and take the appropriate action in either case.

1. If at the end of the path specification, then just return.

//
// 2) Terminate here if at end of path specification.
//

if (PathLevel >= m_arrDynamicPath.GetSize())

8

{
return TRUE;

}

2. Otherwise, if there are no wildcard characters at the current path element, proceed to that
subdirectory.

else if (!strchr(m_arrStaticPath[PathLevel],'*') && !
strchr(m_arrStaticPath[PathLevel],'?'))

{

// Just go down into path if no wildcards

if (CopyDirectory(PathLevel+1)==FALSE)
return FALSE;

}

 Store the names of subdirectories that match the current path element

Otherwise, check for subdirectories that match the current path element and store the names in a string
array.

else
{

//
// 3) Start a new search looking for sub-directory names only.
//

CStringArray arrSubDirNames;
success= ff.FindFile(m_arrStaticPath[PathLevel]);
while (success==TRUE)
{

{
// Need to call FindNextFile before doing any attribute

methods.
success=ff.FindNextFile();
// Only concerned with sub-directories.
if (ff.IsDirectory())
{

CString strFilename= ff.GetFileName();
// Ignore special directory names, "." and "..".
if (strFilename!="." && strFilename!="..")
{

// Save matching sub-directory names.
arrSubDirNames.Add(strFilename);

}
}

}
}
// Call Close to reset the search.
ff.Close();

 For each matching subdirectory, recursively call CFtpGet::CopyDirectory

For each matching subdirectory found, set the dynamic path array and then recursively call
CFtpGet::CopyDirectory with an updated path value.

 9

//
// 4) Recursively copy matching sub-directories.
//

for (int idx= 0; idx< arrSubDirNames.GetSize(); idx++)
{

// Replace wildcard name with matching name.
m_arrDynamicPath[PathLevel]= arrSubDirNames[idx];
// Recursive call for new sub-directory, end copy if any errors

are encountered.
if (CopyDirectory(PathLevel+1) == FALSE)

return FALSE;
}

} // end of else

 Build and test your application

If you are currently connected to the Internet, you can accept the default search parameters set in the
baseline application to search the Microsoft FTP server for Knowledge Base articles. The completed
code for this exercise is in \Labs\C11\Lab03\Ex01.

	Lab 11.3: Using the FTP WinInet Classes
	Exercise 1: Creating an FTP Application
	About the Baseline Application

