
Lab 5.6: Adding a Dialog Bar
Objectives
After completing this lab you will be able to:

 Create the resources to support a dialog bar.

 Use a menu command to toggle the dialog bar on and off.

 Use a combo box drop-down list in the dialog bar to display information.

 Use an event handler to handle dialog bar events.

 Use CWnd::OnCommand to handle dialog bar events.

Prerequisites
This lab assumes that you are familiar with the topics covered this chapter, and have implemented
menus and command handlers. A basic understanding of combo boxes is also helpful, but not
necessary.

Lab Setup
To run the solution to this lab, click this icon.

To see a demonstration of the solution to this lab, click this icon.

Estimated time to complete this lab: 60 minutes.

Exercises
The following exercises provide practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Creating Dialog Bar Resources

In this exercise, you will create the dialog bar resources for an application.

Exercise 2: Implementing a Dialog Bar

In this exercise, you will implement a nonfunctional dialog bar, which includes a menu to toggle the
dialog bar on and off.

Exercise 3: Implementing a Combo Box for the Dialog Bar

In this exercise, you will implement a combo box on the left side of the dialog bar by manually adding a
message-map entry and its associated command handler.

Exercise 4: Implementing a Combo Box with Command Handlers

In this exercise, you will implement a combo box on the right side of the dialog bar using an
OnCommand handler.

Copy the contents of \Labs\C05\Lab06\Baseline to your working directory. The completed code for these
exercises is in \Labs\C05\Lab06\Xxx, where the Xxx is the exercise number.

Exercise 1: Creating Dialog Bar Resources
If you do not have a starting point for this exercise, the code that forms the basis for this exercise is in
\Labs\C05\Lab06\Baseline.

In this exercise, you will use the resource editors to add the menu option, and to create the dialog bar
resources and symbols.

2

 Add a Menu and Dialog Bar to the ShowDiff Application

1. Use the ResourceView to open the menu resource IDR_MAINFRAME for editing.

2. In the menu editor, choose the top-level item, View, then double-click the empty box at the bottom
(beneath Status Bar).

3. Use the Menu Item Properties dialog sheet to set the menu item ID to
ID_VIEW_DIALOGBAR=0xE821. This ID will cause the associated resources to be used in calculating
the layout of toolbars. If you do not want a menu item to toggle the dialog bar, you can just use View
Resource Symbols to insert the name and ID of the menu item.

For a more detailed explanation of toolbar layout, see Technical Note TN031: Control Bars in the
Visual C++ online documentation.

4. Use the property sheet to set the Caption to &Dialog Bar.

5. Use the property sheet to set the Prompt to Show or hide the dialog bar\nToggle Dialog Bar.

 Create the Dialog Bar Resources

1. Use the ResourceView to insert a new dialog resource. Right-click the Dialog folder and choose Insert.

2. Expand the Dialog icon by clicking the plus (+) symbol, and choose IDD_DIALOGBAR.

3. Delete the Static TODO control from the dialog bar.

4. Drag a combo box from the control palette to the dialog. Place the combo box in the upper left corner.
The position of the combo box should be 10, 1 and its size should be 142 by 12. Set its ID to
IDC_LEFT. Set its styles to Type Drop List, and check Auto HScroll.

5. Select the combo box. Use the menu to copy and paste a second combo box. Name the second box
IDC_RIGHT. Place it slightly to the right of the first combo box. Align the top edges of the combo
boxes, then reduce the size of the dialog box to just contain the combo boxes.

6. Save your work.

 Provide Prompts and Tootips for the Combo Boxes

1. Use the String Table.

2. Add a new string with an ID of IDC_LEFT and a caption: Select a file to display in the left
window\nDisplay on Left

3. Add a new string with an ID of IDC_RIGHT and a caption: Select a file to display in the right
window\nDisplay on Right

4. Save your work.

The completed code for this exercise is in \Labs\C05\Lab06\Ex01.

Exercise 2: Implementing a Dialog Bar
Continue with the files created in Exercise 1, or if you do not have a starting point for this exercise, the
code that forms the basis for this exercise is in \Labs\C05\Lab06\Ex01.

In this exercise you will create the dialog bar, and enable the menu to toggle the bar on and off.

 Associate the Dialog Bar Resource with the CMainFrame Class

1. Use the ResourceView to open the dialog resources. Highlight IDD_DIALOGBAR with a single click.
Start the Class Wizard. Choose the radio button Select an existing class, choose CMainFrame, and
then click Select.

2. Click Yes to create an association between CMainFrame and CDialog. Close ClassWizard, and then
restart it.

3. In ClassWizard, make sure that the selected class name is CMainFrame. In the Object IDs, select the
ID ID_VIEW_DIALOGBAR and double-click the word COMMAND in the Messages window. Accept
the default name of OnViewDialogbar. (Do not select Edit Code yet.)

4. Double-click UPDATE_COMMAND_UI. Accept the default name of OnUpdateViewDialogbar.

5. Exit ClassWizard.

 3

 Add a Protected Variable to the CMainFrame class

 Right-click CMainFrame in ClassView and add a protected variable.

CDialogBar m_wndDialogBar

 Implement the Dialog Bar in the CMainFrame::OnCreate Function

1. In the function CMainFrame::OnCreate, call CDialogBar::Create using the data member
m_wndDialogBar. Place the code at the bottom of the function, just before the return 0 statement,
as follows.

m_wndDialogBar.Create(this, IDD_DIALOGBAR, CBRS_TOP, ID_VIEW_DIALOGBAR);

The first argument, this, sets the mainframe as the parent of the dialog bar window. The second
argument, IDD_DIALOGBAR, is the graphic resource used for the dialog bar. The third argument,
CBRS_TOP, says the bar should initially align at the top of the main frame. The last argument,
ID_VIEW_DIALOGBAR, is the control ID. You set this ID to 0xE821 when you created the menu
resource to tell the operating system that the associated window should be treated as a control bar.

2. Because a dialog bar is similar to a toolbar, copy the code that AppWizard created for the toolbar to
set docking and styles, and to set tool tips. Change the variable name of the toolbar to that of the
dialog bar variable. Place this code after the call to CDialogBar::Create. Edit the docking style of the
dialog bar to allow docking at only the top or bottom of the frame.

m_wndDialogBar.EnableDocking(CBRS_ALIGN_TOP|CBRS_ALIGN_BOTTOM);
EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndDialogBar);
m_wndDialogBar.SetBarStyle(m_wndDialogBar.GetBarStyle() |

CBRS_TOOLTIPS | CBRS_FLYBY);

3. Open the header file for CMainFrame. Remove the following statement from the beginning of the file

(if it is there).

#define _BASELINE_CODE_

4. While you have the CMainFrame header file open, locate the definition of the enumerated values
LEFT and RIGHT. Now that you have added controls with the identifiers IDC_LEFT and IDC_RIGHT,
you can complete the declaration of this enumerated type as follows.

enum { LEFT = IDC_LEFT, RIGHT = IDC_RIGHT };

5. Build and run the application. If it is working correctly, the dialog bar should start docked beneath the
standard toolbar. It should tear away, float, and dock. If you float the dialog bar, and then close it, you
will not be able to get it back.

The next step implements toggling the dialog bar on and off from the menu.

 Implement the Menu to Toggle the Dialog Bar On and Off

1. Find the stub implementation of CMainFrame::OnViewDialogbar. Use the functions
CDialogBar::ShowControlBar and CWnd::IsWindowVisible to toggle the dialog bar on and off.

ShowControlBar(& m_wndDialogBar,
! m_wndDialogBar.IsWindowVisible(), FALSE);

2. Find the stub implementation of CMainFrame::OnUpdateViewDialogbar. Use the functions

CCmdUI::SetCheck and CWnd::IsWindowVisible to update the menu item.

pCmdUI->SetCheck(m_wndDialogBar.IsWindowVisible());

3. Build and run the application. Verify that the menu toggles the dialog bar on and off.

The completed code for this exercise is in \Labs\C05\Lab06\Ex02.

Exercise 3: Implementing a Combo Box for the Dialog Bar

4

Continue with the files created in Exercise 2, or if you do not have a starting point for this exercise, the
code that forms the basis for this exercise is in \Labs\C05\Lab06\Ex02.

In this exercise, you will implement the functionality for the left-side combo box on the dialog bar by
manually adding a command handler. (You also could code the right-side combo box functionality the
same way, but you will learn a different method in Exercise 4.)

 Create message map entries for the left combo box

The combo boxes each contain a list of files opened by the user. When the user selects a filename from
the list, the program will open and display that file.

1. Right-click the CMainFrame icon in the ClassView window. Click Add Member Function to add the
following function header:

afx_msg void OnSelendokLeft()

2. Insert a message map entry in the CMainFrame implementation file. Place the entry between the end
of the code section created by ClassWizard and the end of the Message Map as follows.

//}}AFX_MSG_MAP
ON_CBN_SELENDOK (IDC_LEFT, OnSelendokLeft)

END_MESSAGE_MAP()

 Code the function CMainFrame::OnSelendokLeft

You added this message handler in the previous step. In this handler, you will extract the selected string
from the combo box, then use that string as an argument to the function CMainFrame::ResetFile.
ResetFile is not part of MFC; it is part of the baseline code written for this application.

1. Get a pointer to the combo box using CWnd::GetDlgItem and the enum CMainFrame::LEFT.

2. Create a CString variable.

3. Call the function CWnd::GetWindowText to modify the CString variable.

4. Invoke CMainFrame:: ResetFile using the enum and the string variable.

5. The completed code for the CMainFrame::OnSelendokLeft function follows.

void CMainFrame::OnSelendokLeft()
{

// TODO: Add your control notification handler code here
CComboBox * pCmb =

(CComboBox *) m_wndDialogBar.GetDlgItem(LEFT);
CString str;
pCmb->GetWindowText(str); //Get the selected text
ResetFile(LEFT, str);

}

6. Build and run the application. Use File Open at least twice. Drop the left list box to choose a file name.
If the application is working correctly, when you click on the name, the indicated file will load into the
view.

The completed code for this exercise is in \Labs\C05\Lab06\Ex03.

Exercise 4: Implementing a Combo Box with Command Handlers
Continue with the files created in Exercise 3, or if you do not have a starting point for this exercise, the
code that forms the basis for this exercise is in \Labs\C05\Lab06\Ex03.

In this exercise, you will implement the functionality for the right-side combo box on the dialog bar by
using the ClassWizard to add a command handler. You will use an OnCommand handler to implement
combo box functionality.

 Add a Command handler to the CMainFrame Class

 5

Use ClassWizard to add a handler to the CMainFrame class for the message event OnCommand. The
parameter, wParam, contains the identifier of the message source in its low-order word. The high-order
word of wParam contains the notification code. When the message is the selection notification from the
right-hand combo box, get the selected file name from the combo box. Display the selected file in the
right-hand view.

1. Initialize an int variable with the message value. Use the HIWORD macro to extract the message.

2. Create a second int variable. Use LOWORD to extract and store the control ID in the variable.

3. If the message is CBN_SELENDOK and the control is IDC_RIGHT, then get the selected text from
the combo box.

4. Load the right-side view using the function CMainFrame::ResetFile. The completed code for adding
the command handler and coding this function follows.

BOOL CMainFrame::OnCommand(WPARAM wParam, LPARAM lParam)
{

// TODO: Add your specialized code here and/or call the base class

int msg = HIWORD(wParam); //Get the message
int ctrl = LOWORD(wParam); //Get the message source

//Check for notification message from the right-side combo
if (CBN_SELENDOK == msg && IDC_RIGHT == ctrl)
{

CString str;
CComboBox * pCmb =

(CComboBox *) m_wndDialogBar.GetDlgItem(ctrl);
pCmb->GetWindowText(str); //Get selected text
ResetFile(ctrl, str); //Change to the selected file

}
return CFrameWnd::OnCommand(wParam, lParam);

}

5. Build and run the application. Use File Open at least twice. Drop the right list box to choose a file
name. If the application is working correctly, when you click on the name, the indicated file will be
displayed. The left list box should work the same way.

The completed code for this exercise is in \Labs\C05\Lab06\Ex04.

	Lab 5.6: Adding a Dialog Bar
	Exercise 1: Creating Dialog Bar Resources
	Exercise 2: Implementing a Dialog Bar
	Exercise 3: Implementing a Combo Box for the Dialog Bar
	Exercise 4: Implementing a Combo Box with Command Handlers

