
Lab 6.1: Modifying Resources and Adding Dialog Boxes
Objectives
After completing this lab, you will be able to:

 Create a dialog box template.

 Build a new class based on that template.

 Remove unused menu and toolbar items.

 Add an error string to the string table.

 Write code to handle a modal dialog box within an application.

 Use the new dialog class in an application.

Prerequisites
Familiarity with the topics covered in this chapter including the CDialog class and the UpdateData
function.

Lab Setup
To run the solution to this lab, click this icon.

To see a demonstration of the solution to this lab, click this icon.

Estimated time to complete this lab: 90 minutes.

Exercises
The following exercises provide practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Creating the Dialog Box Template

In this exercise, you will create a dialog box in which you choose the files to compare in the two panes of
a splitter window.

Exercise 2: Creating the Dialog Class and Providing for DDX and DDV

In this exercise, you will create a dialog class that is associated with your dialog box template. Then you
will add member variables for all controls other than static text controls, and add simple DDX and DDV
for the edit controls.

Exercise 3: Modifying the Menus and Toolbar

In this exercise, you will use the resource editor to modify the menus and toolbar for the Diff application.

Exercise 4: Implementing a Modal Dialog Box in an Application

In this exercise, you will write the code to enable the resources you have created in the previous
exercises.

Exercise 5: Using the New Class in an Application

In this exercise, you will write the code to include the new class in an application.

For this lab, you will use the project from Chapter 7, Lab 2, Exercise 4. This project is in
\Labs\C06\Lab01\Baseline. The completed code for these exercises is in \Labs\C06\Lab01\Xxx, where
Xxx is the exercise number.

Exercise 1: Creating the Dialog Box Template

2

If you do not have a starting point for this exercise, the code that forms the basis for this exercise is in
\Labs\C06\Lab01\Baseline.

In this exercise, you create a dialog box in which you choose the files to compare in the two panes of a
splitter window. This dialog box cascades to the File Open dialog box from the Common Dialogs library,
as shown in this illustration.

There are three parts to this exercise:

1. Creating the dialog box template

2. Adding the controls to the dialog box template

3. Testing the dialog box template and setting the tab order

Creating the Dialog Box Template
In Part 1 of this exercise, you will use the dialog editor to create the basic resource.

 Create a new (unadorned) dialog box resource

You can use any of the following techniques:

1. In the resource toolbar, click the dialog button to create a new dialog box template.

2. From the Insert menu, choose Resource. Select a dialog resource from the list box.

3. Right-click the dialog icon in the resource browser window. Select Insert Dialog from the shortcut
menu.

 Change the title and ID of a dialog box using the resource editor

1. Display the Dialog Properties page by right-clicking anywhere in the window and choose Properties.

2. In the Properties window for the dialog box frame, in the Caption text box, type Open Files, the title for
the dialog box.

3. In the ID text box, type IDD_OPENFILES as the ID value.

Adding Controls to the Dialog Box Template

 3

By default, the dialog box template comes with OK and Cancel buttons in the upper-right-hand corner.
You will add other common controls to produce a dialog box. The default buttons will be first and second
in the tab order, followed by the other controls in the order they are added. For now, do not assign Group
or Tabstop properties to any of the controls. Use the following table as a guide for adding the remaining
controls. Resize the dialog box frame as needed to contain the required controls.

Note In the static text controls, the ampersand establishes ALT key access to the control that follows in
the tab order. A static control cannot have focus, so focus automatically flows to the next control in the
tab-order sequence. In this case, the shortcut keys in the static-text labels provide access to the
associated edit-box controls.

Here are the controls to add, including their caption strings and IDs:

Control Type Caption String ID

Static text &Compare File: IDC_STATIC (default)

Edit box none IDC_EDIT_FILE1

Static text &With File: IDC_STATIC (default)

Edit box none IDC_EDIT_FILE2

Push button Browse... IDC_BUTTON_FILE1_BROWSE

Push button Browse... IDC_BUTTON_FILE2_BROWSE

 Open the IDD_OPENFILES dialog box resource

You will be adding a series of common controls to populate the dialog box. At any time in this process,
resize the dialog-box frame to contain the controls.

 Add a common control to the dialog box template

These are general instructions, though the Checklist calls for a static text control. The type of tool you
choose from the controls toolbar dictates the type of control that is drawn on the dialog box template.

1. From the controls toolbar, select the proper control. ToolTips provide hints about the functionality of
each tool, as does Visual C++ Help.

Note If the controls toolbar is not visible, go to the View menu and choose Toolbars. In the Toolbars
dialog box, select the Controls option. Alternately, you can right-click a toolbar and choose Controls
from the shortcut menu.

2. In the Dialog window, click the client area to add a static text control. You also can simply drag from
the static text tool and drop at the destination in the client area.

3. Resize and reposition the control as needed.

 Set the caption text of a control

Control captions are set on the control’s property page. Use one of the following two methods to gain
access to a property page. (If a control has no caption field, this does not apply.)

1. After a control is placed, start typing. The Text property page appears, and the typed text is entered as
the control caption.

2. Right-click the control and choose Properties. In the property page for that control, type the caption
into the Caption edit box.

 Locate and identify tools on the controls toolbar

With the controls toolbar displayed, you can use one of the following techniques to find a tool (such as
the one for group boxes) and display Help about the tool.

1. Rest the cursor on individual tool buttons. A Tool Tip that identifies each button should appear as you
pause over each button. Find the group-box tool.

4

2. To view a prompt-string description of a control, rest the cursor above its tool and look in the status-
bar pane. Holding down the left mouse-button on a control will accomplish the same thing.

3. To get Help, set focus to the controls toolbar window and press F1.

 Add an edit control to the dialog box template

Place it below the static text control.

 Change the ID of the edit control to IDC_EDIT_FILE1

 Add a &With File: static text control and an edit control to its immediate right

Use IDC_EDIT_FILE2 as the edit-control ID.

 Add two push buttons, placing one to the left of each edit control

Assign to the buttons the captions &Browse... and Brow&se.... The three dots after these captions will
display another dialog box. Assign the IDs IDC_BUTTON_FILE1_BROWSE and
IDC_BUTTON_FILE2_BROWSE, respectively.

 Align the controls

Use commands in the Layout menu or tools in the dialog toolbar.

 Save the current file

Testing the Dialog Box Template and Setting the Tab Order
In this final part of the exercise, you will use test mode to check various aspects of control functionality.
After you exit test mode, you will change the tab order and group three radio buttons.

Set a new tab order for the controls in the following order:

 Compare File

 Edit box (for Compare File)

 Browse button (for Compare File)

 With File

 Edit box (for With File)

 Browse button (for With File)

 OK button

 Cancel button

This illustration shows the correct tab order.

 Test the dialog box resource

 5

1. Enter test mode, using one of these methods:

a. Click the test tool on the dialog toolbar.

b. From the Layout menu, choose Test.

c. Press CTRL+T.

A simulation of the dialog box created from this resource appears.

2. Note which control has initial keyboard focus. Also note, however, that the OK button is the default
button, which is activated when the user presses the ENTER key.

3. Test the shortcut-key sequences.

4. Press the TAB key several times to cycle through the controls. Notice the effect and ordering. How do
the radio buttons participate in the tab ordering?

5. Within the radio button group, use the arrow keys to navigate through the buttons.

6. Select an edit control. Type a text string, such as Testing.

7. Click either the OK or Cancel button to exit the test mode.

 Set the tab order for the controls on the dialog box template

1. From the Layout menu, choose Tab Order, or use the CTRL+D accelerator keys.

The Properties page is hidden. The dialog editor now displays a number for each of the controls in
your dialog box template. By default, the numbers indicate the order in which each control was added
to the template.

2. Click the Compare File: static text control to set it as the first in the tab order. With this control now in
the first position, the other numbers adjust accordingly.

3. Click the control that should be second in the tab order, in this case, the edit control paired with
Compare File:.

4. Set the remaining controls in the same manner.

5. To end the tab-ordering operation, click inside the dialog editor window, but outside of the dialog box
resource. (Pressing ESC also will end the session.)

 Test the dialog box template again

6

 Save the current file

The completed code for this exercise is in \Labs\C06\Lab01\Ex01.

Exercise 2: Creating the Dialog Class and Providing for DDX and
DDV

If you do not have a starting point for this exercise, the code that forms the basis for this exercise is in
\Labs\C06\Lab01\Ex01.

This exercise has two parts. In the first, you will use ClassWizard to create a dialog class that is
associated with your dialog box template. In the second part, you will add member variables for all
controls other than static text controls, and add simple dialog data exchange (DDX) and dialog data
validation (DDV) for the edit controls.

Using ClassWizard to Create the Dialog Class
 Run the dialog editor on the IDD_OPENFILES dialog resource

 Add a dialog class using ClassWizard

1. In the dialog editor, be sure that your dialog box template window is the active child window.

2. Invoke ClassWizard. If the Adding A Class dialog box does not display automatically, click the Add
Class button.

3. Choose the create a new class option, and click OK. The Create New Class dialog box appears. Note
that the new dialog class is created in a new pair of .Cpp and .H files whose names are derived by
default from the dialog class name.

4. In the Name box, type CDlgOpenFiles for the name of the associated C++ dialog class.

5. In the Base Class box, select CDialog. The Dialog ID already should be set to IDD_OPENFILES.

6. Set the filenames to DlgOpenF.Cpp and DlgOpenF.H by using the Change button and its dialog box.

7. Choose OK.

 Examine the source files for the CDlgOpenFiles class

Note that the class is derived from the base class CDialog.

To have ClassWizard automatically present the Adding A Class dialog box, open ClassWizard during the
dialog editor session where you create the new dialog resource.

Adding Member Variables and DDX/DDV to the Dialog Class
In this part of the exercise, you will create C++ member variables for the new CDlgOpenFiles class and
bind the variables to the controls on the dialog resource. Then, you will select dialog data validation
(DDV) values or ranges where appropriate.

Add member variables as indicated in the following table. All the variables will be of category Value (not
Control).

Member Variable Name Variable Type DDV values

m_File1 CString 255 characters

m_File2 CString 255 characters

Create handlers for the two Browse buttons as indicated in the following table.

Object ID Message Function name

IDC_BUTTON_FILE1_BROWSE BN_CLICKED OnButtonFile1Brows
e

IDC_BUTTON_FILE2_BROWSE BN_CLICKED OnButtonFile2Brows

 7

e

 To complete this exercise, perform the following steps.

1. Invoke ClassWizard for the Diff project.

2. Click the Member Variables tab in the ClassWizard dialog box.

3. Select the CDlgOpenFiles class.

You are now ready to create member variables for the dialog class and bind them to the actual dialog
controls.

 Create a member variable for the IDC_EDIT_FILE1 edit control

1 Locate the control you want to bind in the Control IDs list box. Either double-click the control ID or
select it and choose the Add Variable button. This invokes the Add Member Variable dialog box.

2. Type a name for the member variable in the first edit box. Usually, this is a permutation of the control
ID. For example, m_File1 is a likely name for the IDC_EDIT_FILE1 control.

3. In the Category box, select a category of the control. For the simple common controls that can be
adequately represented by a single value, select Value. If you want to create a pointer to the actual
control window, select Control.

4. In the Variable Type box, select the data type that best represents the information contained within the
member variable being created. For example, an edit box generically returns a CString; but it can be
further limited to return only numeric types.

5. Choose OK to save your input and return to ClassWizard.

6. At the bottom of the ClassWizard window, you will see edit boxes for entering dialog data validation
(DDV) values. This will not be available for variables where DDV does not apply.

 Go to the Maximum Characters box in ClassWizard and enter 255

Note that 255 is the maximum file name length in Windows 95. This value is used for dynamic dialog
validation (DDV).

 Create a member variable for the IDC_EDIT_FILE2 edit control

For the member variable name, use m_File2. The other values are the same as for IDC_EDIT_FILE1.

 Move to the Message Maps tab in ClassWizard

 Create a handler for a dialog control

1. Select the IDC_BUTTON_FILE1_BROWSE in the ObjectIDs list box.

2. Select the BN_CLICKED message in the Messages list box.

3. Choose the Add Function button.

4. The Add Member Function dialog box will be displayed. You can accept or change the Member
Function name. Click OK to accept.

5. The function name will be displayed in the Member Functions list box.

6. Repeat the previous step for IDC_BUTTON_FILE2_BROWSE.

7. Repeat the previous step for IDOK.

8. Briefly examine the source files for the CDlgOpenFiles class.

The completed code for this exercise is in \Labs\C06\Lab01\Ex02.

Exercise 3: Modifying the Menus and Toolbar
If you do not have a starting point for this exercise, the code that forms the basis for this exercise is in
\Lab\C06\Lab01\Ex02.

In this exercise, you will use the resource editor to modify the menus and toolbar for the Diff application.
You also will add a string to the string table to display the following error message:

Either

8

<File 1>
OR
<File 2>
is an invalid file. Please check both file specifications and try again.

 Delete File New from the menu

1. Open the Menu folder in the Resource view.

2. Choose IDR_MAINFRAME to edit.

3. Open the File menu.

4. Choose New and delete it.

5. Save your changes to Diff.Rc.

 Delete File New from the toolbar

1. Open the toolbar folder.

2. Choose IDR_MAINFRAME to edit.

3. The File New icon will be selected; drag it off the sample toolbar to delete it.

4. Save your changes to Diff.Rc.

 Delete File New from the Accelerator Table

1. Open the Accelerator folder.

2. Choose IDR_MAINFRAME to edit.

3. Select the ID_FILE_NEW accelerator.

4. Press DELETE.

5. Save your changes to Diff.Rc.

 Add an error string to the String Table

1. Open the String Table folder.

2. Choose String Table to edit.

3. At the bottom of the String Table editor, double-click or choose Insert String. String properties db
appears.

5. Set ID to IDS_ERRFMT_INVALIDFILE.

6. Set caption to:

Either \r\n\n\%1\r\n\t\OR\r\n\%2\r\n\nis an invalid file. Please check both
file specifications and try again.

Note afxFormatString2 uses %1 and %2 as its string substitution markers; if you were using wsprintf,
you would use two %s markers.

7. Save your work and close the String Table editor.

The completed code for this exercise is in \Labs\C06\Lab01\Ex03.

Exercise 4: Implementing a Modal Dialog Box in an Application
In this exercise, you write the code that enables the resources that you have created.

If you do not have a starting point for this exercise, the code that forms the basis for this exercise is in
\Labs\C06\Lab01\Ex03.

 Get values from the edit controls

In this step, you will create two functions, GetFile1 and GetFile2, that are identical.

1. Declare two public methods in the attributes section of DlgOpenF.H.

 9

public:
void GetFile1 (CString& rFile);
void GetFile2 (CString& rFile);

2. Save DlgOpenF.H.

3. In DlgOpenF.Cpp, implement the methods to set rFile to the corresponding edit control members.

void CDlgOpenFiles::GetFile1(CString& rFile)
{

rFile = m_File1;
}

void CDlgOpenFiles::GetFile2(CString& rFile)
{

rFile = m_File2;
}

4. Save DlgOpenF.Cpp.

 Validate the files

The simplest way to validate a file name for this application is to test for the file’s existence.

1. Declare the method as protected in the implementation section in DlgOpenF.H.

protected:
BOOL IsValidFileSpec (LPCSTR lpszFileSpec);

2. Save DlgOpenF.H.

3. In DlgOpenF.Cpp, check for the existence of the file.

BOOL CDlgOpenFiles::IsValidFileSpec (LPCSTR lpszFileSpec)
{

OFSTRUCTof;
if(OpenFile(lpszFileSpec, &of, OF_EXIST) == HFILE_ERROR)

4. If the file exists, the test will fail; if the file does not exist, the test will succeed. Return the inverse.

{
return FALSE;

}
else
{

return TRUE;
}

}

5. Save DlgOpenF.Cpp.

 Implement OnButton1FileBrowse and OnButton2FileBrowse handlers

The browse buttons simply display the common dialog box, with the contents of the corresponding edit
box. The function outlines have been provided by ClassWizard, and the details of this function are
covered in [Check Ref] Chapter 3, Lab 2: Creating the Framework for DIFF. You can copy most of this
function from CDiffDoc::OnFileOpen of DiffDoc.Cpp.

Update the class members of the dialog box so that you can provide the existing file name as a default in
the File dialog box.

void CDlgOpenFiles::OnButtonFile1Browse()
{

UpdateData();
1. Define the filter for the File dialog box.

10

static char BASED_CODE szFilter[] =
"All Files (*.*)|*.*|C++ Files (*.cpp, *.h)"\
"|*.cpp;*.h||";

2. Construct the File dialog box as an open dialog box with this filter.

CFileDialog dlg(TRUE,NULL,m_File1,NULL,szFilter);

3. Display the File dialog box as modal.

if (dlg.DoModal() == IDOK)

4. If the user clicked OK, then assign the path back to the members of your dialog box.

{
m_File1 = dlg.GetPathName();

}

5. Update the data displayed in your dialog box.

UpdateData(FALSE);

6. Repeat this procedure for OnButtonFile2Browse. The complete function body follows.

void CDlgOpenFiles::OnButtonFile2Browse()
{

UpdateData();
static char BASED_CODE szFilter[] =

"All Files (*.*)|*.*|C++ Files (*.cpp, *.h)"\
"|*.cpp;*.h||";

CFileDialog dlg(TRUE,NULL,m_File2,NULL,szFilter);

if (dlg.DoModal() == IDOK)
{

m_File2 = dlg.GetPathName();
}
UpdateData(FALSE);

}

7. Save DlgOpenF.Cpp.

 Respond to the user clicking OK

1. Use ClassWizard to create a handler for IDOK. Accept the default OnOK function name.

2. Edit the code for this handler.

3. Update all the data in the members of the dialog box.

4. Check to see whether the files are valid using your IsValidFileSpec function. If the files are valid,
simply pass on the message to CDialog.

if(IsValidFileSpec(m_File1) &&
(IsValidFileSpec(m_File2)))

{
CDialog::OnOK();

}

5. If either of the file names is not valid, display an error message.

else
{

CString ErrMsg;
AfxFormatString2(ErrMsg, IDS_ERRFMT_INVALIDFILE,

m_File1, m_File2);

 11

MessageBox (ErrMsg);
}

6. Save DlgOpenF.Cpp.

The completed code for this exercise is in \Labs\C06\Lab01\Ex04.

Exercise 5: Using the New Class in an Application
If you do not have a starting point for this exercise, the code that forms the basis for this exercise is in
\Lab\C06\Lab01\Ex04.

In this exercise you will use the completed CDlgOpenFiles dialog class in Diff by modifying the simple
CDiffDoc::OnFileOpen from Chapter 7, Lab 2, rather than modifying CFileDialog.

 Include DlgOpenF.H in DiffDoc.Cpp

 Implement CDlgOpenFiles in OnFileOpen

1. Construct CDlgOpenFiles rather than CFileOpen.

void CDiffDoc::OnFileOpen()
{

CDlgOpenFiles dlg;

2. Show the dialog box as modal.

if(dlg.DoModal() == IDOK)

3. If the user clicks OK, get the contents of the two file edit controls through their public interface.

dlg.GetFile1(m_File1);
dlg.GetFile2(m_File2);

4. Call RunComparison to load the files into the splitter windows.

RunComparison(m_File1, m_File2);

5. Save DiffDoc.Cpp. The complete function follows.

void CDiffDoc::OnFileOpen()
{

CDlgOpenFiles dlg;
if(dlg.DoModal() == IDOK)

dlg.GetFile1(m_File1);
dlg.GetFile2(m_File2);
RunComparison(m_File1, m_File2);

}

 Build and run the Diff application

The completed code for this exercise is in \Labs\C06\Lab01\Ex05.

	Lab 6.1: Modifying Resources and Adding Dialog Boxes
	Exercise 1: Creating the Dialog Box Template
	Exercise 2: Creating the Dialog Class and Providing for DDX and DDV
	Exercise 3: Modifying the Menus and Toolbar
	Exercise 4: Implementing a Modal Dialog Box in an Application
	Exercise 5: Using the New Class in an Application

