
Lab 8.2: Building a Database Editor with DAO
Objectives
After completing this lab, you will be able to:

 Create an AppWizard application using DAO.

 Connect controls in a CDaoRecordView to their member variables.

 Add filters for data retrieval.

 Process CDaoRecordView::OnMove for multitable record coordination, update, deletion, and addition.

 Use transactions in a program.

Prerequisites
You should have completed Chapter 8 and mastered the use of the dialog editor before attempting this
lab. You also should be familiar with the application created in Lab 8.1.

Lab Setup
This demonstration shows what you will accomplish during the lab.

Estimated time to complete this lab: 60 minutes.

Exercises
The following exercises provide practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Building a DAO Database Application

In this exercise, you will implement a complete two-table database application using DAO.

Exercise 2: Editing the Underlying Database

In this exercise, you will edit Employee in the following ways:

 Add a new record.

 Modify a record.

 Delete a record.

There is no setup for this lab. The completed code for these exercises is in \Labs\C08\Lab02\Xxx, where
Xxx is the exercise number.

Exercise 1: Building a DAO Database Application
In this exercise, you will implement a complete two-table database application using DAO. You will
implement a more complete version of the simple record-oriented database viewer that was developed in
Lab 8.1.

The database for this lab, Personnel.Mdb contains two tables: the Employee Pay Table and Employee
Personal Info Table. Their schemas are:

2

Employee Number is a common key between the two tables. The SQL query behind this viewer is:

Select *
from [Employee Personal Info Table], [Employee Pay Table]
where [Employee Personal Info Table].[Employee Number] =

 [Employee Pay Table].[Employee Number]
Your complete application will look like the following graphic.

 3

 Create a new DAO database application

1. From the File menu, choose New.

2. Select the Projects tab; choose MFC AppWizard (exe), and type Employee in the Project Name box.
Click OK.

4

3. In Step 1, choose Single Document Interface.

4. In Step 2 (the Database Options Page):

5. Select the “Database view without file support” option.

6. Click Data Source. The Database options page will be displayed. Choose the DAO option. Click
Browse to find the Personnel.Mdb database. Accept Dynaset as the Resource type. Leave the Detect
dirty columns option selected.

 5

When you click OK, the Select Database Tables dialog will be displayed. Select the Employee Pay Table
and click OK. You will be returned to the Database Options page.

7. Accept the defaults in Steps 3, 4, and 5.

8. In Step 6, notice the base classes for the various classes in the application:

Class Base Class

CEmployeeApp CWinApp

CEmployeeDoc CDocument

CMainFrame CFrameWnd

CEmployeeView CDaoRecordView

CEmployeeSet CDaoRecordSet

6

9. Change the name of CEmployeeSet to CEmployeePaySet. You will be creating another
CDaoRecordSet-derived class for the other table in the database soon, and you will need to be able
to tell them apart. Change the files for CEmployeePaySet to EmployeePaySet.H and
EmployeePaySet.Cpp.

10. Click OK in the Project Information dialog box to create the project.

 Customize the Dialog Template for the Employee form

1. Because CEmployeeView is derived from CDaoRecordView, and CDaoRecordView is derived from
CFormView, you will use a dialog template to define the client area. Along with the classes it created,
AppWizard created a dialog resource, IDD_EMPLOYEE_FORM, for you to lay out. AppWizard places
one static text control in the resource, labeled “TO DO: Place form controls on this dialog.” Open
IDD_EMPLOYEE _FORM by clicking this dialog’s icon in the Resource View.

2. Delete the one static control. You will develop a dialog box similar to the one below. If you have
completed the previous lab, you can copy the dialog from that project and paste it into this project to
speed up the dialog creation. If you do this, remember to turn off the Read-Only properties of the Edit
controls.

Type

ID Caption

Dialog IDD_EMPLOYEE_FOR
M

Right aligned text IDC_STATIC Employee:

Right aligned text IDC_STATIC Employee No:

Right aligned text IDC_STATIC Department No:

Right aligned text IDC_STATIC Pay Type:

Right aligned text IDC_STATIC Hourly Rate:

Right aligned text IDC_STATIC Birthdate:

Right aligned text IDC_STATIC Marital Status:

Right aligned text IDC_STATIC Height:

Right aligned text IDC_STATIC Weight:

Group box IDC_STATIC Personnel
Information

Group box IDC_STATIC Personal
Information

Edit control IDC_FNAME First Name

Edit control IDC_LNAME Last Name

Edit control IDC_EMP_NO Note: This
control is read-
only

Edit control IDC_DEPT

Edit control IDC_PAY_TYPE

Edit control IDC_HOUR_RATE

Edit control IDC_BIRTH

Edit control IDC_MARITAL_STATU
S

 7

Edit control IDC_HEIGHT

Edit control IDC_WEIGHT

3. Save Employee.Rc.

 Bind controls to member variables

You can use an extension to the dialog editor, or the ClassWizard, to bind controls to the appropriate
member variables of CEmployeePaySet, according to the following table. You will bind the last four
controls after you have created a CDaoRecordSet for their table.

Control Data Type Variable

IDC_FNAME CString m_pSet->m_First_Name

IDC_LNAME CString m_pSet->m_Last_Name

IDC_EMP_NO long m_pSet->m_Employee_Number

IDC_DEPT short m_pSet->m_Department__

IDC_PAY_TYPE short m_pSet->m_Employee_Pay_Type

IDC_HOUR_RATE double m_pSet->m_Hourly_Rate

1. To bind using the Dialog editor, CTRL+double-click the control to display the Add Member Variable
dialog.

To use the ClassWizard, press CTRL+W, then click the Member Variables tab and choose
CEmployeeView from the Class name list box. You can browse the Control IDs. Click Add Variable to
display the Add Member Variable dialog box.

2. Use the Member variable name combo box to select the variable name. Leave the category as Value,
and the Variable type should default to the data types listed above.

3. Close the ClassWizard or the Dialog editor and save all files.

 Order the display of the records

In Lab 8.1, you created a single query for the join in which you included an ORDER BY clause. To
produce the same effect in this two-query application, you need to make a query for CEmployeePaySet
that is equivalent to the following:

SELECT *
FROM [Employee Pay Table]
ORDER BY [Last Name],[First Name]

1. In DAO, you need specify only the ORDER BY in m_strSort. Add this to the end of the

CEmployeePaySet constructor.

m_strSort = "[Last Name],[First Name]";

2. Save EmployeePaySet.Cpp.

 Create a class for a second table and bind its variables

1. Start the ClassWizard from the View menu or press CTRL+W. Click Add Class, then click New.

2. Set the name of this new class to CEmployeePersonalSet. Set its base class to CDaoRecordSet,
and click OK.

3. The Database Options dialog that you used to create CEmployeePaySet will be displayed, with one
additional option: Bind all columns. Make sure that this option is checked. Leave the DAO option
selected and choose the Personnel.Mdb database. Click OK.

4. In the Select Database Tables dialog box, choose Employee Personal Info Table and click OK.
CEmployeePersonalSet will be created and added to your project.

5. Add a CEmployeePersonalSet instance variable to the CEmployeeView class within the AFX_DATA
section of EmployeeView.H.

8

public:
//{{AFX_DATA(CEmployeeView)
enum { IDD = IDD_EMPLOYEE_FORM };
CEmployeePaySet* m_pSet;
CEmployeePersonalSet* m_pEmplInfoSet;
//}}AFX_DATA

6. Save EmployeeView.H.

7. You need to edit the DDX links manually. Following the AFX_DATA_MAP section of
CEmployeeView::DoDataExchange, validate m_pEmplInfoSet and then set the following DDX links.

Control Datatype Variable

IDC_BIRTH COleDateTime m_pSet->m_Birthdate

IDC_MARITAL_STATUS BYTE m_pSet->m_Sex___Marital_Status

IDC_HEIGHT double m_pSet->m_Height

IDC_WEIGHT double m_pSet->m_Weight

8. Save EmployeeView.Cpp. The complete function follows.

void CEmployeeView::DoDataExchange(CDataExchange* pDX)
{

CDaoRecordView::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CEmployeeView)
DDX_FieldText(pDX, IDC_FNAME, m_pSet->m_First_Name, m_pSet);
DDX_FieldText(pDX, IDC_LNAME, m_pSet->m_Last_Name, m_pSet);
DDX_FieldText(pDX, IDC_EMP_NO, m_pSet->m_Employee_Number, m_pSet);
DDX_FieldText(pDX, IDC_DEPT, m_pSet->m_Department__, m_pSet);
DDX_FieldText(pDX, IDC_PAY_TYPE, m_pSet->m_Employee_Pay_Type, m_pSet);
DDX_FieldText(pDX, IDC_HOUR_RATE, m_pSet->m_Hourly_Rate, m_pSet);
//}}AFX_DATA_MAP

// Make sure this dataset pointer has been setup before trying
// to access it.
if(m_pEmplInfoSet != NULL)
{

DDX_FieldText(pDX, IDC_BIRTH, m_pEmplInfoSet->m_Birthdate,
m_pEmplInfoSet);

DDX_FieldText(pDX, IDC_MARITAL_STATUS, m_pEmplInfoSet-
>m_Sex___Marital_Status, m_pEmplInfoSet);

DDX_FieldText(pDX, IDC_HEIGHT, m_pEmplInfoSet->m_Height,
m_pEmplInfoSet);

DDX_FieldText(pDX, IDC_WEIGHT, m_pEmplInfoSet->m_Weight,
m_pEmplInfoSet);

}

}

9. Embed CEmployeePersonalSet into CEmployeeDoc by adding an instance of

CEmployeePersonalSet to EmployeeDoc.H.

CEmployeePersonalSetm_employeePersonalInfoSet;

10. Add accessor functions for both the CDaoRecordSet objects.

// Operations
public:

CEmployeePaySet* GetEmployeePaySet()
{return &m_employeePaySet;}

 9

CEmployeePersonalSet* GetEmployeeInfoSet()
{return &m_employeePersonalInfoSet;}

11. Include EmployeePersonalSet.H in EmployeeDoc.Cpp, EmployeeView.Cpp, and Employee.Cpp.

Since the document object embeds a CEmployeePersonalSet object within it, place the include
before the include of the EmployeeDoc.H file.

12. Save all files.

 Set up the table join

Because you cannot assume that a join is updatable, you have to maintain the relationship between the
two tables. The simplest way is to create a parameterized query that finds the record in Employee
Personal Info Table that corresponds to the record found in the Employee Pay Table.

There are two methods for creating a parameterized query. You can use the PARAMETERS statement
in the SQL query (as outlined in Chapter 10), or you can update the recordset class as shown in the
following method.

1. Declare a long for the parameter in CEmployeePersonalSet after the AFX_FIELD block.

long m_EmployeeNumberParam;

2. Save EmployeePersonalSet.H. In the constructor for CEmployeePersonalSet, define the query.

m_strFilter = "[Employee Number] = EmployeeNumberParam";

3. Identify that there is one parameter, and initialize that parameter to 0.

m_nParams = 1;
m_EmployeeNumberParam = 0;

4. In CEmployeePersonalSet::DoFieldExchange, you need to identify the query as parameterized.

After the AFX_FIELD_MAP, use SetFieldType to parameterize the recordset.

pFX->SetFieldType(CDaoFieldExchange::param);

5. Set the value of the parameterized field.

DFX_Long(pFX, _T("EmployeeNumberParam"), m_EmployeeNumberParam);

6. Save EmployeePersonalSet.Cpp.

 Implement CEmployeeView::OnInitialUpdate

1. Before the CDaoRecordView::OnInitialUpdate statement, set the instance variable for
CEmployeePersonalSet.

m_pEmplInfoSet = GetDocument()->GetEmployeeInfoSet();

2. Resize the main window so that it matches the dialog template.

GetParentFrame()->RecalcLayout();
ResizeParentToFit(FALSE);

3. Set the employee number parameter for the CEmployeePersonalSet filter from the employee number

field of CEmployeePaySet.

m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;

4. Open CEmployeePersonalSet and position the set to the same employee number. Because

CDaoRecordSet::Open is a likely place for exceptions to be thrown, you should place this call in a try
block.

try
{

m_pEmplInfoSet->Open();

10

}
5. If there is an error in the execution of the function Open, use CDaoException to recognize the

exception and display it to the user.

catch (CDaoException* e)
{

AfxMessageBox(e->m_pErrorInfo->m_strDescription);

6. Delete the exception and return from the function without updating the display.

e->Delete();
return;

}
7. Using DDX, update the screen display from the member variables.

UpdateData(FALSE);

8. Save EmployeeView.Cpp. The complete function follows.

void CEmployeeView::OnInitialUpdate()
{

m_pSet = GetDocument()->GetEmployeePaySet();
m_pEmplInfoSet = GetDocument()->GetEmployeeInfoSet();

CDaoRecordView::OnInitialUpdate();

//resize the window
GetParentFrame()->RecalcLayout();
ResizeParentToFit();

//set the parameter for the info query
m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;

//open the Info recordset
try
{

m_pEmplInfoSet->Open();
}
catch (CDaoException* e)
{

AfxMessageBox(e->m_pErrorInfo->m_strDescription);
e->Delete();
return;

}

UpdateData(FALSE);
}

 Implement CEmployeeView::OnMove

The OnMove message is sent to the view from the default handlers of the OnRecordFirst,
OnRecordPrevious, OnRecordNext, and OnRecordLast messages in CDaoRecordView. In the
simplest case, such as in Lab 8.1, OnMove is passed back up the hierarchy, unhandled. In this lab, you
will force a requery of CEmployeePersonalSet after the default set for this view, CEmployeePaySet,
has been updated.

1. Use the ClassWizard or the WizardBar to create a handler for CEmployeeView::OnMove. The
ClassWizard will include a call of the default handler. Remove the return.

BOOL CEmployeeView::OnMove(UINT nIDMoveCommand)
{

 11

CDaoRecordView::OnMove(nIDMoveCommand);

2. Set the parameter for CEmployeePersonalSet from the employee number.

m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;

3. Execute the query on CEmployeePersonalSet.

m_pEmplInfoSet->Requery();

4. Initiate a data transfer into the dialog and set the return status.

UpdateData(FALSE);
 return TRUE;

5. Save EmployeeView.Cpp. The complete function follows.

BOOL CEmployeeView::OnMove(UINT nIDMoveCommand)
{

CDaoRecordView::OnMove(nIDMoveCommand);

//set the parameter for the info query
m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;

//do the secondary query
m_pEmplInfoSet->Requery();

UpdateData(FALSE);

return TRUE;

}

 Build and run Employee.Exe

It has the same functionality as Join.Exe from Lab 8.1, except that you can enter data into the edit
controls.

The completed code for this exercise is in \Labs\C08\Lab02\Ex01.

Exercise 2: Editing the Underlying Database
Continue with the files you created in Exercise 1 or, if you do not have a starting point for this exercise,
the code that forms the basis for this exercise is in \Labs\C08\Lab02\Ex01.

In this exercise, you will edit Employee in the following ways:

 Add a new record.

 Modify a record.

 Delete a record.

There are five parts to this exercise:

1. Adding items to the menu.

2. Preparing to add a record.

3. Adding a record.

4. Updating a record.

5. Deleting a record.

Adding Items to the Menu
1. Open the IDR_MAINFRAME menu.

12

2. Add a separator to the end of the Record menu.

3. Add the following items to the Record menu.

ID Caption Prompt

ID_RECORD_CLEAR &Clear Record Clear the fields in the form

ID_RECORD_ADD &Add Record Add this record to the database

ID_RECORD_DELETE &Delete Record Delete this record from the
database

4. Save Employee.Rc.

5. Use the ClassWizard to create command handlers for each of these menu items in CEmployeeView.

6. Create an Update Command UI handler for ID_RECORD_DELETE.

7. Create an Update Command UI handler for ID_RECORD_ADD.

Preparing to Add Records
The first step in adding a record to a database is to get an empty recordset, or in the case of
Employee.Exe, two empty recordsets. In this exercise, you will explicitly clear and add records. When the
user moves to another record, you will end the editing session and return to normal viewing. You also will
provide a function for canceling the add process.

 Implement OnRecordClear

1. Because OnRecordClear is the first step in adding records, start a transaction as follows:

m_pSet->m_pDatabase->m_pWorkspace->BeginTrans();

2. Call CDaoRecordSet::AddNew for both recordsets.

m_pSet->AddNew();
m_pEmplInfoSet->AddNew();

3. Display the blank fields in the form.

UpdateData(FALSE);

4. Set the member variable for the Add Mode, and set the state of the Employee Number edit control.

SetAddMode(TRUE);

5. Save EmployeeView.Cpp. The complete function follows.

void CEmployeeView::OnRecordClear()
{

m_pSet->m_pDatabase->m_pWorkspace->BeginTrans();
m_pSet->AddNew();
m_pEmplInfoSet->AddNew();
UpdateData(FALSE);
SetAddMode(TRUE);

}

 Implement SetAddMode

1. In the ClassView pane, right-click CEmployeeView, choose Add Member Function. Type void in the
Return type box and type SetAddMode(BOOL bAddMode = TRUE) in the Declaration box.

2. In the ClassView pane, right-click CEmployeeView, choose Add Member Variable. Type
m_bAddMode in the Name box and choose Protected for the access mode.

3. Open EmployeeView.Cpp. In the body of the SetAddMode function, set the add mode state to the
passed value.

m_bAddMode = bAddMode;

 13

4. Get a pointer to the employee number edit control.

CEdit* pField = (CEdit*)GetDlgItem(IDC_EMP_NO);

5. Set the state of that edit control to readable when you are in the add mode, or read-only when you are

not in add mode.

pField->SetReadOnly(!m_bAddMode);

6. If you are in the add mode, set the focus to the first-name edit control.

if(m_bAddMode)
{

pField = (CEdit*)GetDlgItem(IDC_FNAME);
pField->SetFocus();

}
7. Save EmployeeView.Cpp The complete function follows.

void CEmployeeView::SetAddMode(BOOL bAddMode /* = TRUE */)
{

m_bAddMode = bAddMode;

CEdit* pField = (CEdit*)GetDlgItem(IDC_EMP_NO);

pField->SetReadOnly(!m_bAddMode);

if(m_bAddMode)
{

pField = (CEdit*)GetDlgItem(IDC_FNAME);
pField->SetFocus();

}
}

 Cancel the Add Mode

1. In the ClassView pane, right-click CEmployeeView, choose Add Member Function. Type void in the
Return type box and type AddRecordCancel() in the Declaration box.

2. In the ClassView pane, right-click CEmployeeView, choose Add Member Variable. Type
m_bAddMode in the Name box and choose Protected for the access mode.

3. Open EmployeeView.Cpp. In the body of AddRecordCancel function, add code to implement if not in
add mode, return.

if (!m_bAddMode)
return;

4. Turn off the add mode.

SetAddMode(FALSE);

5. Cancel the update on both tables.

m_pSet->CancelUpdate();
m_pEmplInfoSet->CancelUpdate();

6. AddRecordCancel aborts the transaction started in OnRecordClear. Roll back the system to its prior

state.

m_pSet->m_pDatabase->m_pWorkspace->Rollback();

7. Requery both the tables.

m_pSet->Requery();

14

m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;
m_pEmplInfoSet->Requery();

8. Refresh the form.

UpdateData(FALSE);

9. Save EmployeeView.Cpp. The complete function follows.

void CEmployeeView::AddRecordCancel()
{

SetAddMode(FALSE);

m_pSet->CancelUpdate();
m_pEmplInfoSet->CancelUpdate();
m_pSet->m_pDatabase->m_pWorkspace->Rollback();

m_pSet->Requery();
m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;
m_pEmplInfoSet->Requery();

UpdateData(FALSE);

}

 Implement the Command UI handlers

1. Enable the Add menu item only when you are in add mode.

void CEmployeeView::OnUpdateRecordAdd(CCmdUI* pCmdUI)
{

pCmdUI->Enable(m_bAddMode);

}

2. Enable the Delete menu item only when you are not in add mode.

void CEmployeeView::OnUpdateRecordDelete(CCmdUI* pCmdUI)
{

pCmdUI->Enable(!m_bAddMode);

}

3. Set add mode to FALSE in CEmployeeView::CEmployeeView.

CEmployeeView::CEmployeeView()
: CDaoRecordView(CEmployeeView::IDD)

{
//{{AFX_DATA_INIT(CEmployeeView)
m_pSet = NULL;
//}}AFX_DATA_INIT
// TODO: add construction code here
m_bAddMode = FALSE;

}

4. Save EmployeeView.Cpp.

 Reset add mode on navigation

1. The default handler for CDaoRecordView::OnMove updates the record sets before navigating off
them. Because you will be aborting new record creation on navigation, check whether you are in add
mode. If so, cancel it before calling the default handler in CEmployeeView::OnMove.

 15

if(m_bAddMode)
{

AddRecordCancel();
}

CDaoRecordView::OnMove(nIDMoveCommand); //existing line

2. Save EmployeeView.Cpp.

Adding or Updating a Record
In adding and updating records, you update two tables simultaneously. These two functions use
transactions to encapsulate database modifications so that synchronization of adds are assured.

 Add a record

1. In OnRecordAdd, refresh the recordsets from the form.

UpdateData();

2. Because you are in a transaction, you will perform all your updates inside a try block so that you can

roll back the entire failed transaction, leaving both tables as you found them. DDX does not update
m_pEmplInfoSet->m_Employee_Number; begin by setting it from m_pSet.

try
{

m_pEmplInfoSet->m_Employee_Number = m_pSet->m_Employee_Number;

3. Update both recordsets to their corresponding tables.

m_pSet->Update();
m_pEmplInfoSet->Update();

4. If there are no exceptions in either of the calls to the function Update, commit the transaction in the

database.

m_pSet->m_pDatabase->m_pWorkspace->CommitTrans();

5. If an exception occurs, use the Rollback function to restore the database to its state at the time the

function BeginTrans was called. There are many reasons for DAO to get an exception. The most
common reasons in Employee.Exe are having NULL data for database fields that require data, or the
database having specific acceptable data needs that are not implemented by DDV.

 catch (CDaoException* e)

 {

m_pSet->m_pDatabase->m_pWorkspace->Rollback();

6. Tell the user why the transaction failed, and delete the exception.

AfxMessageBox(e->m_pErrorInfo->m_strDescription);
e->Delete();

7. Because most exceptions are caused by trivial user errors, restart the transaction and return.

m_pSet->m_pDatabase->m_pWorkspace->BeginTrans();
m_pSet->AddNew();
m_pEmplInfoSet->AddNew();
return;

 }

8. The record you just added is not part of the current recordsets. Requery the database to make the

recordsets current. This will place you on the first record of the new sets.

m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;

16

m_pSet->Requery();
m_pEmplInfoSet->Requery();

9. Update the form and turn off the add mode.

UpdateData(FALSE);
SetAddMode(FALSE);

10. Save EmployeeView.Cpp. The complete function follows.

void CEmployeeView::OnRecordAdd()
{

UpdateData();

try
{

m_pEmplInfoSet->m_Employee_Number = m_pSet->m_Employee_Number;
m_pSet->Update();
m_pEmplInfoSet->Update();

//if we didn't except out, commit it to the database
m_pSet->m_pDatabase->m_pWorkspace->CommitTrans();

}
catch (CDaoException* e)
{

//something happened, so restore the db
m_pSet->m_pDatabase->m_pWorkspace->Rollback();

//tell why
AfxMessageBox(e->m_pErrorInfo->m_strDescription);
e->Delete();

//restore the add mode
m_pSet->m_pDatabase->m_pWorkspace->BeginTrans();
m_pSet->AddNew();
m_pEmplInfoSet->AddNew();
return;

}

//load it all back in, reset current record
m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;
m_pSet->Requery();
m_pEmplInfoSet->Requery();

//copy back to the form
UpdateData(FALSE);

SetAddMode(FALSE);

}

 Update a record

Updating single-table recordsets is managed as a part of CDaoRecordView::OnMove. Wrap that
message with additional functionality to update the second recordset.

1. When you are navigating and a transaction fails, the most logical place to return to is the current
record. Set a bookmark to the current record in CEmployeePaySet.

COleVariant varRecordToReturnTo;

 17

varRecordToReturnTo = m_pSet->GetBookmark();

2. Wrap your database calls in a try block and start the transaction.

try
{

m_pSet->m_pDatabase->m_pWorkspace->BeginTrans();

3. Put the employee info set into edit mode.

m_pEmplInfoSet->Edit();

4. Call CDaoRecordView::OnMove. OnMove will update the employee pay set and move to the record

specified by nIDMoveCommand.

CDaoRecordView::OnMove(nIDMoveCommand);

5. Update the employee info set.

m_pEmplInfoSet->Update();

6. Commit the transaction. If something has failed, it will be addressed in the exception block before this

line:

m_pSet->m_pDatabase->m_pWorkspace->CommitTrans();

7. Catch the DAO exception, if necessary, and roll back the transaction.

catch (CDaoException* e)
{

m_pSet->m_pDatabase->m_pWorkspace->Rollback();

8. Set the employee pay back to the bookmark.

m_pSet->SetBookmark(varRecordToReturnTo);

9. Inform the user what happened.

AfxMessageBox(e->m_pErrorInfo->m_strDescription);
e->Delete();

10. Find the employee information record, whether the transaction succeeded or not.

m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;
m_pEmplInfoSet->Requery();

11. Show the data in the form.

UpdateData(FALSE);

12. Save EmployeeView.Cpp. The complete function follows.

BOOL CEmployeeView::OnMove(UINT nIDMoveCommand)
{

if(m_bAddMode)
{

AddRecordCancel();
}

COleVariant varRecordToReturnTo;
varRecordToReturnTo = m_pSet->GetBookmark();
try
{

// Begin update transaction
m_pSet->m_pDatabase->m_pWorkspace->BeginTrans();

18

// Put the EmployeeInfoSet into Edit mode before
// calling CDaoRecordSet::OnMove()
m_pEmplInfoSet->Edit();

// CDaoRecordView::OnMove() will call UpdateData
CDaoRecordView::OnMove(nIDMoveCommand);

// Finish the update of the EmployeeInfoSet
m_pEmplInfoSet->Update();
// Commit update transaction
m_pSet->m_pDatabase->m_pWorkspace->CommitTrans();

}
catch (CDaoException* e)
{

// Rollback changes
m_pSet->m_pDatabase->m_pWorkspace->Rollback();

// Make sure PayInfo record set is returned
// to the proper position
m_pSet->SetBookmark(varRecordToReturnTo);

AfxMessageBox(e->m_pErrorInfo->m_strDescription);
e->Delete();

}

// Update EmployeeNumber parameter and requery
m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;
m_pEmplInfoSet->Requery();

// Show results of Employee Info requery
UpdateData(FALSE);

 return TRUE;
}

Deleting a Record
You delete the two records in much the same way that you add and update them. You will start a
transaction, delete the records and, if the transaction fails, recover.

 Delete a record

1. Start a try block in CEmployeeView::OnRecordDelete with BeginTrans.

try
{

m_pSet->m_pDatabase->m_pWorkspace->BeginTrans();

2. Delete the records and end the transaction.

m_pSet->Delete();
m_pEmplInfoSet->Delete();
m_pSet->m_pDatabase->m_pWorkspace->CommitTrans();

3. If the block excepted out, roll back the transaction, and tell the user what happened.

catch (CDaoException* e)
{

m_pSet->m_pDatabase->m_pWorkspace->Rollback();

 19

AfxMessageBox(e->m_pErrorInfo->m_strDescription);
e->Delete();
return;

}

4. Requery the recordset.

m_pSet->MoveNext();
m_pSet->Requery();

5. If you are past the end of the set, move to the last record.

if(m_pSet->IsEOF() && !m_pSet->IsBOF())
m_pSet->MoveLast();

6. If you just deleted the last record in the set, clear it out.

if(m_pSet->IsBOF())
m_pSet->SetFieldNull(NULL);

7. Find the corresponding record in the Employee Info set.

m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;
m_pEmplInfoSet->Requery();

if(m_pEmplInfoSet->IsEOF() && m_pEmplInfoSet->IsBOF())

m_pEmplInfoSet->SetFieldNull(NULL);

8. Display the record in the form.

UpdateData(FALSE);

9. Save EmployeeView.Cpp. The complete function follows.

void CEmployeeView::OnRecordDelete()
{

try
{

//begin the transaction
m_pSet->m_pDatabase->m_pWorkspace->BeginTrans();

//delete both records
m_pSet->Delete();
m_pEmplInfoSet->Delete();

//end the transaction
m_pSet->m_pDatabase->m_pWorkspace->CommitTrans();

}
catch (CDaoException* e)
{

//something happened, so restore the db
m_pSet->m_pDatabase->m_pWorkspace->Rollback();

//you could clear stuff out here...

//tell why
AfxMessageBox(e->m_pErrorInfo->m_strDescription);
e->Delete();

//and bail out
return;

20

}

m_pSet->MoveNext();
m_pSet->Requery();

if(m_pSet->IsEOF() && !m_pSet->IsBOF())

m_pSet->MoveLast();

if(m_pSet->IsBOF())
m_pSet->SetFieldNull(NULL);

m_pEmplInfoSet->m_EmployeeNumberParam = m_pSet->m_Employee_Number;
m_pEmplInfoSet->Requery();

if(m_pEmplInfoSet->IsEOF() && m_pEmplInfoSet->IsBOF())

m_pEmplInfoSet->SetFieldNull(NULL);

UpdateData(FALSE);
}

10. Build and run Employee.Exe.

The completed code for this exercise is in \Labs\C08\Lab02\Ex02.

	Lab 8.2: Building a Database Editor with DAO
	Exercise 1: Building a DAO Database Application
	Exercise 2: Editing the Underlying Database

