Vector Sums

$\blacktriangleright$ To evaluate a vector expression

1.
Type the expression in mathematics mode

2.
Choose Evaluate.

$\blacktriangleright$ Evaluate

$\left(\vphantom{
x_{1},x_{2},x_{3}}\right.$x1, x2, x3$\left.\vphantom{
x_{1},x_{2},x_{3}}\right)$ + $\left(\vphantom{ y_{1},y_{2},y_{3}}\right.$y1, y2, y3$\left.\vphantom{ y_{1},y_{2},y_{3}}\right)$ = $\left(\vphantom{ x_{1}+y_{1},x_{2}+y_{2},x_{3}+y_{3}}\right.$x1 + y1, x2 + y2, x3 + y3$\left.\vphantom{ x_{1}+y_{1},x_{2}+y_{2},x_{3}+y_{3}}\right)$


(2, -1, 0) + (2, 3, -5) = $\left(\vphantom{ 4,2,-5}\right.$4, 2, - 5$\left.\vphantom{ 4,2,-5}\right)$


$\left[\vphantom{ 1,2,3,4.3}\right.$1, 2, 3, 4.3$\left.\vphantom{ 1,2,3,4.3}\right]$ - $\left[\vphantom{ 3,-5.1,6,0}\right.$3, - 5.1, 6, 0$\left.\vphantom{ 3,-5.1,6,0}\right]$ = $\left[\vphantom{
-2,7.\,1,-3,4.\,3}\right.$ -2, 7. 1, -3, 4. 3$\left.\vphantom{
-2,7.\,1,-3,4.\,3}\right]$


$\left(\vphantom{
\begin{array}{c}
a \\
b
\end{array}
}\right.$$\begin{array}{c}
a \\
b
\end{array}$$\left.\vphantom{
\begin{array}{c}
a \\
b
\end{array}
}\right)$ + $\left(\vphantom{
\begin{array}{c}
c \\
d
\end{array}
}\right.$$\begin{array}{c}
c \\
d
\end{array}$$\left.\vphantom{
\begin{array}{c}
c \\
d
\end{array}
}\right)$ = $\left(\vphantom{
\begin{array}{c}
a+c \\
b+d
\end{array}
}\right.$$\begin{array}{c}
a+c \\
b+d
\end{array}$$\left.\vphantom{
\begin{array}{c}
a+c \\
b+d
\end{array}
}\right)$


$\left[\vphantom{
\begin{array}{c}
1 \\
2
\end{array}
}\right.$$\begin{array}{c}
1 \\
2
\end{array}$$\left.\vphantom{
\begin{array}{c}
1 \\
2
\end{array}
}\right]$ - $\left[\vphantom{
\begin{array}{c}
-3 \\
1
\end{array}
}\right.$$\begin{array}{c}
-3 \\
1
\end{array}$$\left.\vphantom{
\begin{array}{c}
-3 \\
1
\end{array}
}\right]$ = $\left[\vphantom{
\begin{array}{c}
4 \\
1
\end{array}
}\right.$$\begin{array}{c}
4 \\
1
\end{array}$$\left.\vphantom{
\begin{array}{c}
4 \\
1
\end{array}
}\right]$


$\left[\vphantom{
\begin{array}{cc}
x & y
\end{array}
}\right.$$\begin{array}{cc}
x & y
\end{array}$$\left.\vphantom{
\begin{array}{cc}
x & y
\end{array}
}\right]$ + $\left[\vphantom{
\begin{array}{cc}
w & z
\end{array}
}\right.$$\begin{array}{cc}
w & z
\end{array}$$\left.\vphantom{
\begin{array}{cc}
w & z
\end{array}
}\right]$ = $\left[\vphantom{
\begin{array}{cc}
x+w & y+z
\end{array}
}\right.$$\begin{array}{cc}
x+w & y+z
\end{array}$$\left.\vphantom{
\begin{array}{cc}
x+w & y+z
\end{array}
}\right]$