Operations on Matrix Entries

To operate on one entry of a matrix, select the entry, and choose the operation while holding down the CTRL key. That will perform the operation in place, leaving the rest of the matrix unchanged. Because you are in a word-processing environment, you can edit individual entries (just click in the input box and then edit) and apply other word-processing features to entries, such as copy and paste or click and drag.

Many of the operations on the Maple menu operate directly on the entries when applied to a matrix, as can be seen from the following examples.

$\blacktriangleright$ Factor

$\left[\vphantom{
\begin{array}{cc}
5 & 6 \\
8 & 7
\end{array}
}\right.$$\begin{array}{cc}
5 & 6 \\
8 & 7
\end{array}$$\left.\vphantom{
\begin{array}{cc}
5 & 6 \\
8 & 7
\end{array}
}\right]$ = $\left[\vphantom{
\begin{array}{cc}
5 & 2\times 3 \\
2^{3} & 7
\end{array}
}\right.$$\begin{array}{cc}
5 & 2\times 3 \\
2^{3} & 7
\end{array}$$\left.\vphantom{
\begin{array}{cc}
5 & 2\times 3 \\
2^{3} & 7
\end{array}
}\right]$

$\blacktriangleright$ Evaluate

$\left[\vphantom{
\begin{array}{cc}
\vspace{8pt}\frac{d}{dx}\sin x & \int 6x^{2}dx \\
\frac{d^{2}}{dx^{2}}\ln x & x+3x
\end{array}
}\right.$$\begin{array}{cc}
\vspace{8pt}\frac{d}{dx}\sin x & \int 6x^{2}dx \\
\frac{d^{2}}{dx^{2}}\ln x & x+3x
\end{array}$$\left.\vphantom{
\begin{array}{cc}
\vspace{8pt}\frac{d}{dx}\sin x & \int 6x^{2}dx \\
\frac{d^{2}}{dx^{2}}\ln x & x+3x
\end{array}
}\right]$ =  $\left[\vphantom{
\begin{array}{cc}
\cos x & 2x^{3} \\
-\frac{1}{x^{2}} & 4x
\end{array}
}\right.$$\begin{array}{cc}
\cos x & 2x^{3} \\
-\frac{1}{x^{2}} & 4x
\end{array}$$\left.\vphantom{
\begin{array}{cc}
\cos x & 2x^{3} \\
-\frac{1}{x^{2}} & 4x
\end{array}
}\right]$

$\blacktriangleright$ Evaluate Numerically

$\left[\vphantom{
\begin{array}{cc}
\sin ^{2}\pi & e \\
\ln 5 & x+3x
\end{array}
}\right.$$\begin{array}{cc}
\sin ^{2}\pi & e \\
\ln 5 & x+3x
\end{array}$$\left.\vphantom{
\begin{array}{cc}
\sin ^{2}\pi & e \\
\ln 5 & x+3x
\end{array}
}\right]$ =  $\left[\vphantom{
\begin{array}{cc}
0 & 2.7183 \\
1.6094 & 4.0x
\end{array}
}\right.$$\begin{array}{cc}
0 & 2.7183 \\
1.6094 & 4.0x
\end{array}$$\left.\vphantom{
\begin{array}{cc}
0 & 2.7183 \\
1.6094 & 4.0x
\end{array}
}\right]$

$\blacktriangleright$ Combine + Trig Functions

$\left[\vphantom{
\begin{array}{cc}
\sin ^{2}x+\cos ^{2}x & 6x^{2} \\
4\sin 4x\cos 4x & \sin x\cos y+\sin y\cos x
\end{array}
}\right.$$\begin{array}{cc}
\sin ^{2}x+\cos ^{2}x & 6x^{2} \\
4\sin 4x\cos 4x & \sin x\cos y+\sin y\cos x
\end{array}$$\left.\vphantom{
\begin{array}{cc}
\sin ^{2}x+\cos ^{2}x & 6x^{2} \\
4\sin 4x\cos 4x & \sin x\cos y+\sin y\cos x
\end{array}
}\right]$ =  $\left[\vphantom{
\begin{array}{cc}
1 & 6x^{2} \\
2\sin 8x & \sin \left( x+y\right)
\end{array}
}\right.$$\begin{array}{cc}
1 & 6x^{2} \\
2\sin 8x & \sin \left( x+y\right)
\end{array}$$\left.\vphantom{
\begin{array}{cc}
1 & 6x^{2} \\
2\sin 8x & \sin \left( x+y\right)
\end{array}
}\right]$

$\blacktriangleright$ Evaluate

${\frac{{d}}{{dx}}}$$\left[\vphantom{
\begin{array}{cc}
x+1 & 2x^{3}-3 \\
\sin 4x & 3\sec x
\end{array}
}\right.$$\begin{array}{cc}
x+1 & 2x^{3}-3 \\
\sin 4x & 3\sec x
\end{array}$$\left.\vphantom{
\begin{array}{cc}
x+1 & 2x^{3}-3 \\
\sin 4x & 3\sec x
\end{array}
}\right]$ = $\left[\vphantom{
\begin{array}{cc}
1 & 6x^{2} \\
4\cos 4x & 3\sec x\tan x
\end{array}
}\right.$$\begin{array}{cc}
1 & 6x^{2} \\
4\cos 4x & 3\sec x\tan x
\end{array}$$\left.\vphantom{
\begin{array}{cc}
1 & 6x^{2} \\
4\cos 4x & 3\sec x\tan x
\end{array}
}\right]$