Polygons and Point Plots

You can plot the points {$\left(\vphantom{ x_{1},y_{1}}\right.$x1, y1$\left.\vphantom{ x_{1},y_{1}}\right)$,$\left(\vphantom{
x_{2},y_{2}}\right.$x2, y2$\left.\vphantom{
x_{2},y_{2}}\right)$,$\left(\vphantom{ x_{3},y_{3}}\right.$x3, y3$\left.\vphantom{ x_{3},y_{3}}\right)$,…,$\left(\vphantom{
x_{n},y_{n}}\right.$xn, yn$\left.\vphantom{
x_{n},y_{n}}\right)$}, or a polygon whose vertices lie at these points, by typing the vector $\left(\vphantom{ x_{1},y_{1},x_{2},y_{2},x_{3},y_{3},\ldots
,x_{n},y_{n}}\right.$x1, y1, x2, y2, x3, y3,…, xn, yn$\left.\vphantom{ x_{1},y_{1},x_{2},y_{2},x_{3},y_{3},\ldots
,x_{n},y_{n}}\right)$ or by entering the matrix $\left[\vphantom{
\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
\vdots & \vdots \\
x_{n} & y_{n}
\end{array}
}\right.$$\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
\vdots & \vdots \\
x_{n} & y_{n}
\end{array}$$\left.\vphantom{
\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
\vdots & \vdots \\
x_{n} & y_{n}
\end{array}
}\right]$ and choosing Plot 2D + Rectangular.

$\blacktriangleright$ Plot 2D + Rectangular

$\left(\vphantom{ 1,1,2,1,2,2,1,2,1,1}\right.$1, 1, 2, 1, 2, 2, 1, 2, 1, 1$\left.\vphantom{ 1,1,2,1,2,2,1,2,1,1}\right)$

dtbpF1.9995in1.299in0ptFigure

The default is to connect the points with straight-line segments. To plot points alone, choose Point Plot in the Plot Properties dialog box.

$\blacktriangleright$ Plot 2D + Rectangular, Edit + Properties, Point, Circle

$\left[\vphantom{
\begin{array}{cc}
1 & 1 \\
2 & 1 \\
2 & 2 \\
1 & 2
\end{array}
}\right.$$\begin{array}{cc}
1 & 1 \\
2 & 1 \\
2 & 2 \\
1 & 2
\end{array}$$\left.\vphantom{
\begin{array}{cc}
1 & 1 \\
2 & 1 \\
2 & 2 \\
1 & 2
\end{array}
}\right]$

dtbpF1.9986in1.2981in0ptFigure



\begin{example}
You can generate a regular pentagon with an enclosed five-point...
...xesstyle ''none'';xis \TEXUX{x};var1name
\TEXUX{$x$};}}\medskip
\end{example}

You may find it convenient to combine Line and Point styles, as in the following plot that combines a data cloud with a line of best fit. (See the chapter on Statistics for information on curves of best fit.DM11.tex)

$\blacktriangleright$ Plot 2D + Rectangular, Edit + Properties, Point, Circle, select and drag ${\frac{{2792}}{{647}}}$ + ${\frac{{957}}{{647}}}$x to the view

$\left[\vphantom{
\begin{array}{ll}
1 & 8 \\
3 & 7 \\
4 & 9 \\
6 & 12 \\
7 & 15 \\
7 & 16 \\
10 & 19 \\
11 & 21
\end{array}
}\right.$$\begin{array}{ll}
1 & 8 \\
3 & 7 \\
4 & 9 \\
6 & 12 \\
7 & 15 \\
7 & 16 \\
10 & 19 \\
11 & 21
\end{array}$$\left.\vphantom{
\begin{array}{ll}
1 & 8 \\
3 & 7 \\
4 & 9 \\
6 & 12 \\
7 & 15 \\
7 & 16 \\
10 & 19 \\
11 & 21
\end{array}
}\right]$

dtbpF3in2.0003in0pt