Linear Algebra

Maple V Scientific Notebook
UserInputmultiply(A,B) AB 6pt
UserInputinverse(matrix(2,2,[1,2,3,4]) $\left[\vphantom{
\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}
}\right.$$\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}$$\left.\vphantom{
\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}
}\right]^{{-1}}_{}$ 12pt
UserInputtranspose(matrix(2,2,[1,2,3,4]) $\left[\vphantom{
\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}
}\right.$$\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}$$\left.\vphantom{
\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}
}\right]^{{T}}_{}$ 12pt
UserInputmap(x -> x mod 17,A) A$\func$mod17 pt 6pt
UserInputhtranspose(matrix(2,2,[1,I+1,-I,2]) $\left[\vphantom{
\begin{array}{cc}
1 & i+1 \\
-i & 2
\end{array}
}\right.$$\begin{array}{cc}
1 & i+1 \\
-i & 2
\end{array}$$\left.\vphantom{
\begin{array}{cc}
1 & i+1 \\
-i & 2
\end{array}
}\right]^{{H}}_{}$ 12pt
UserInputmultiply(A,inverse(B)) AB-1 6pt 12pt
UserInputmap(x -> x mod 17,inverse(A)) A-1$\func$mod17 12pt
UserInputlinalg[norm(x,n)] $\left\vert\vphantom{ x}\right.$x$\left.\vphantom{ x}\right\Vert _{{n}}^{}$ 12pt
UserInputli
nalg[norm(x,frobenius)]
$\left\vert\vphantom{ x}\right.$x$\left.\vphantom{ x}\right\Vert _{{F}}^{}$ 12pt
UserInputli
nalg[norm(x,infinity)]
$\left\vert\vphantom{ x}\right.$x$\left.\vphantom{ x}\right\Vert _{{\infty }}^{}$