Complex Conjugate

The complex conjugate of a complex number a + ib is the complex number a - ib. To find the complex conjugate of a + ib, evaluate the expression $\left(\vphantom{
a+ib}\right.$a + ib$\left.\vphantom{
a+ib}\right)^{{*}}_{}$.

$\blacktriangleright$ Evaluate

$\left(\vphantom{
a+ib}\right.$a + ib$\left.\vphantom{
a+ib}\right)^{{*}}_{}$ = a - ib                                                            

$\left(\vphantom{ 5-14i}\right.$5 - 14i$\left.\vphantom{ 5-14i}\right)^{{*}}_{}$ = 5 + 14i

$\left(\vphantom{ \dfrac{3.6+6i}{5-3.25i}}\right.$${\dfrac{{3.6+6i}}{{5-3.25i}}}$$\left.\vphantom{
\dfrac{3.6+6i}{5-3.25i}}\right)^{{*}}_{}$ = - 4.2179×10-2 - 1.1726i        

$\left(\vphantom{
a+ib}\right.$a + ib$\left.\vphantom{ a+ib}\right)$$\left(\vphantom{
a+ib}\right.$a + ib$\left.\vphantom{
a+ib}\right)^{{*}}_{}$ = a2 + b2 6pt