Powers and Radicals

To raise numbers to powers, use common notation for powers and apply Evaluate.

$\blacktriangleright$ Evaluate

34 =  81 4pt

3-4 =  ${\dfrac{{1}}{{81}}}$

215 =  32768

$\left(\vphantom{ \dfrac{2}{5}}\right.$${\dfrac{{2}}{{5}}}$$\left.\vphantom{ \dfrac{2}{5}}\right)^{{32}}_{}$ =  ${\dfrac{{42949\,67296}}{{232\,83064\,36538\,69628\,90625}}}$ 4pt

$\left(\vphantom{ 0.4}\right.$0.4$\left.\vphantom{ 0.4}\right)^{{32}}_{}$ =  1.844674407×10-13 4pt

$\sqrt{{2.34}}$ =  1.529705854

$\left(\vphantom{ 2.5}\right.$2.5$\left.\vphantom{ 2.5}\right)^{{\frac{4}{5}}}_{}$ =  2.081383019

a-1 =  ${\dfrac{{1}}{{a}}}$

 4pt8$\scriptstyle {\frac{{1}}{{3}}}$ =  $\sqrt[3]{{8}}$

8.0$\scriptstyle {\frac{{1}}{{3}}}$ =  2.0

Note that Evaluate returns a different answer for $\left(\vphantom{ \frac{2}{5}}\right.$${\frac{{2}}{{5}}}$$\left.\vphantom{ \frac{2}{5}}\right)^{{32}}_{}$ and $\left(\vphantom{ 0.4}\right.$0.4$\left.\vphantom{ 0.4}\right)^{{32}}_{}$. The fraction displayed for $\left(\vphantom{ \frac{2}{5}}\right.$${\frac{{2}}{{5}}}$$\left.\vphantom{ \frac{2}{5}}\right)^{{32}}_{}$ is the exact answer, and the number displayed for $\left(\vphantom{ 0.4}\right.$0.4$\left.\vphantom{ 0.4}\right)^{{32}}_{}$ is the best 10-digit approximation to the exact answer.

Apply Evaluate to get 8$\scriptstyle {\frac{{1}}{{3}}}$ = $\sqrt[3]{{8}}$. Apply Evaluate Numerically to get  $\sqrt[3]{{8}}$ =  2.0.