Multi-Line Displays

Scientific Notebook provides a range of alignment options for multiline mathematical displays. Here is a series of multiline displays.

x = 17y$\displaystyle \tag$2 (1)
y > a + b + c + d + e + f + g + h + i + j +  
    k + l + m + n + o + p$\displaystyle \tag$3 (2)


x $\displaystyle \ll$ y1 + ... + yn  
  z  


y = a + b + c + d + e + f + g + h + i + j  
      + k + l + m + n + o + p  


w + x + y + z =    
    a + b + c + d + e + f + g + h + i + j +  
    k + l + m + n + o + p  

If f (x) = x + 1, then we will have

f ([x + 1]/[x + 2]) = {[x + 1]/[x + 2]} + 1 = (2x + 3)/(x + 2)


1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12      
+13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 = 190  


max(f, g) = $\displaystyle {\frac{{f+g+\left\vert f-g\right\vert }}{{2}}}$,$\displaystyle \tag$4 (3)
max(f, - g) = $\displaystyle {\frac{{f-g+\left\vert f+g\right\vert }}{{2}}}$.$\displaystyle \tag$5 (4)


(a + b)n+1 = (a + b)(a + b)n = (a + b)$\displaystyle \sum_{{j=0}}^{{n}}$$\displaystyle \binom{n}{j}$an-1bj$\displaystyle \tag$6 (5)
  = $\displaystyle \sum_{{j=0}}^{{n}}$$\displaystyle \binom{n}{j}$an+1-jbj + $\displaystyle \sum_{{j=1}}^{{n}}$$\displaystyle \binom{n}{j-1}%
$an-1bj$\displaystyle \tag$7 (6)
  = $\displaystyle \sum_{{j=0}}^{{n}}$$\displaystyle \binom{n+1}{j}$an+1-jbj.$\displaystyle \tag$8 (7)

Test the overriding of automatic equation labels:

x = y + z$\displaystyle \tag$A–1 (8)
  = k + m$\displaystyle \tag$A–2 (9)

Test the overriding of automatic equation labels, suppressing annotation:
x = y + z$\displaystyle \tag$*A–1 (10)
  = k + m$\displaystyle \tag$*A–2 (11)