
Simplicity for Java

User Guide
This
 the

rk

rk
Simplicity for Java

Simplicity for Java 1.2 by Data Representations, Inc.
Manual Version 1.2
Copyright © 1997, 1998, 1999 Data Representations, Inc.
All rights reserved.

Copyright © 1997, 1998, 1999 Data Representations, Inc. All rights reserved.
software and documentation are copyrighted. All rights, including ownership of
software, are reserved to Data Representations, Inc.

Simplicity for Java contains FLEXlm license management software from
Globetrotter Software, Inc. (http://www.globetrotter.com/) FLEXlm is a tradema
of Globetrotter Software, Inc.

Simplicity for Java contains InstallShield installation software from InstallShield
Software Corporation. (http://www.installshield.com/) InstallShield is a tradema
of InstallShield Software Corporation.

Simplicity for Java contains SimpleText database software from Thought, Inc.
(http://www.thoughtinc.com/)
Simplicity for Java i

ii
Data Representations, the Data Representations logo, Simplicity for, Simplicity
Professional, Execution-on-the-fly, and Code Sourcerer are trademarks of Data
Representations, Inc. Solaris, Java and JavaBeans are trademarks of Sun
Microsystems, Inc. Pentium is a trademark of Intel Corporation. IBM, OS/2, OS/2
Warp and AIX are trademarks of International Business Machines Corporation.
Microsoft, Windows, Windows NT, and Windows 95 are trademarks of Microsoft
Corporation. Apple, Macintosh and MacOS are trademarks of Apple Computer,
Inc. InstallShield is a trademark of InstallShield Software Corporation. Adobe
Acrobat is a trademark of Adobe, Inc. All other brand and product names are
trademarks of their respective owners.
Simplicity for Java

Table of Contents

Simplicity for Java

Table of Contents

CHAPTER 1 Installation 1

System Requirements
Java Virtual Machine...1
Minimum System Requirements ...2
Suggested Minimum System Features..2

Installing
Windows (95/98/NT) ..2
Mac OS ..2
OS/2 Warp..2
Linux, Solaris, AIX, IRIX, SCO UnixWare, and Other Unix..3

Starting Simplicity for Java
ClassPath ...3
Starting Simplicity for Java ...4

Platform Specific Notes
Windows NT 4.0 ...4
OS/2 Warp..4
Linux ..5
Macintosh...5
Solaris ..5
SCO UnixWare ...6

The Personal Settings Directory
Linux, Solaris, SCO UnixWare, and other Unix ..6
Windows, MacOS, and OS/2 ..6
Files in the Personal Settings Directory ..6

Technical Support and Feedback
Technical Support ..7
Feedback..7
Simplicity for Java iii

iv

.....32
.....33

......3

.....35
CHAPTER 2 Tutorial 1 -
Introduction to Simplicity 9

A Simple Text Editor
Open a project..10
Create a new Application... 10
Assemble the GUI .. 11
Cleaning up..13
Responding to events ...14
Completing the program ..18

CHAPTER 3 Tutorial 2 -
Programming with Simplicity 21

A Bank Account Application
Open a project..22
View the finished application ...22
Creating the Transaction Window ...23
Using the GridBag Layout ...23
Adding code ...24
Test the Transaction Dialog ...26
Creating the Bank Account application...26
Create the layout..27
Deposits and Withdrawals ...27
Print a receipt ..29
Email a receipt ...29
Finishing up ...30

CHAPTER 4 Tutorial 3 -
Using JavaBeans™ and Swing 31

A Thermostat Application
Open a project..31
View the finished application ...32
Importing JavaBeans™ ..
Creating the Thermostat application ..
Create the layout..33
Working with JavaBeans..4
Creating a Swing Application ...
Simplicity for Java

Finishing up ...35

CHAPTER 5 Tutorial 4 -
Advanced Swing and JDBC 37

A Database Application
Open a project..37
Creating the Database application ..38
Create the layout..38
Using JDBC (Java Database Connectivity) ..39
Creating a TableModel .. 41
Working with SQL queries ...42
Finishing up ...42

CHAPTER 6 Tutorial 5 -
Using the Canvas Composer 45

A Traffic Light JavaBean
Open a project..45
Creating the Traffic Light ..46
Set the Size of the Canvas ..46
Set up initial variables. ..47
Drawing the Traffic Light ..47
Light changing methods...50
Creating the main application ...51
Finishing up ...52

CHAPTER 7 Integrated Design Environment 53

The IDE Window
The Classpath ..55
The Folders area..55
Using the Classpath and the Folders area ..55
Project Groups ...56

Editing parts of the Project Tree
Editing Groups using the IDE Group Editor ...56
Editing The Classpath..57
Simplicity for Java v

vi

......7

.....

......

..
Editing The Folders area ... 57
Opening items in the Group Contents Box ..58

IDE Menu Bar
IDE Button Bar ..60
File Menu...60
Edit Menu...61
Create Menu...62
Import Menu ..63
Project Menu..63
Help Menu..63

Program Settings
Directories ...64
External Editors ...65
Object Palette ..65
Java Editor...66
Printing ..66

CHAPTER 8 Java Source Code Editor 69

Editing
File Menu...70
Edit Menu...70
Indentation Features ..71
Color and Printing Features..72
Search & Replace ..72
The Sourcerer’s Apprentice..3

CHAPTER 9 Composers 75

Creating a New Composer
Types of Composers ..75

The Composer Window
Composer Button Bar ..77
File Menu...78
Program Menu ...78
Code Menu...79
Parts Menu...79
Simplicity for Java

Property Notebooks
Notebook pages..80

Code Generation

CHAPTER 10 Object Palette 85

Assembling A Program Using The Object Palette
Object Palette ..86
Working Model ...86
Object Palette Pages..86

Layout Parts
Border Layout ..87
Flow Layout ...87
Grid Layout..87
GridBag Layout ...88
Card Layout ...88
Tabbed Card Layout...89
Left Side Layout ...89
Bottom Layout..90
ScrollPane Layout..90
Absolute Layout ...90

Basic Parts
Label ..91
Checkbox..91
Radio Button ..91
Button...91
Text Field ...92
Choice ..92
Listbox..92
Text Area ..92
Scrollbar ..93

Extended Parts
Spacer ..93
Inset Sizer...93
Validated Text Field ...93
Wrap Label...94
Image Button..95
Simplicity for Java vii

viii
Image Canvas ..95
Group Box..95
Progress Bar ..95
Flyer...95
Frame Animator...96

Swing 1 & 2
Button (JButton)...96
Toggle (JToggleButton)..96
CheckBox (JCheckBox)..97
RadioButton (JRadioButton)..97
Label (JLabel)..98
ComboBox (JComboBox) ..98
Listbox (JList) ..98
Slider (JSlider) ...99
ScrollBar (JScrollBar) ...99
ProgressBar (JProgressBar)..99
TextField (JTextField) ..100
TextArea (JTextArea)..100
PasswordField (JPasswordField)..100
EditorPane (JEditorPane) ...101
TextPane (JTextPane) ..101
ScrollPane (JScrollPane)...101
SplitPane (JSplitPane) ... 101
TabbedPane (JTabbedPane) ..102
ToolBar (JToolBar) ..102
Tree (JTree) ..102
Table (JTable) ..103

Menus
MenuBar (JMenuBar)..103
Menu (JMenu)..103
MenuItem (JMenuItem)..104
CheckBoxMenuItem (JCheckBoxMenuItem) ...104
RadioButtonMenuItem (JRadioButtonMenuItem) ...104
Separator (JSeparator) ..104

JavaBeans
Importing Beans into Simplicity ..105
Using Beans ...105

The Working Model
Simplicity for Java

Frames ...106
Building Layouts ..106

CHAPTER 11 Code Sourcerer 109

Using the Code Sourcerer
Change a property of an existing part ... 110
Ask a part about one of its properties .. 111
Declare a new variable.. 111
Applet-only operations... 112
File operations... 112
Printing operations .. 113
Window operations .. 114
Java system operations .. 115
Network operations (TCP and UDP)... 115
TCP operations .. 116
Miscellaneous .. 117
Java Language statements ... 117

CHAPTER 12 Canvas Composer 119

Creating a new Canvas Composer

The Composer Window for a Canvas object
Canvas Property Notebooks ..120
Canvas Working Model..120
Canvas Palette Pages ..121

Graphics Parts
Oval..122
Filled Oval ...122
Arc..122
Filled Arc ...123
Rectangle ...123
Filled Rectangle...123
Line ..124
Round Rectangle ..124
Filled Round Rectangle ...124
Text ...125
Image ...125
Simplicity for Java ix

x

Effects Parts
Set Clipping..125
Translate ..126
Choose Font ...126

Color Parts
Choose a Color ..126
Black, Blue, Cyan, etc. ...126

CHAPTER 13 Java Command Window 127

Using The Java Command Window
Command Input..128
Local Symbol Table..129
Command History .. 129

The Three Java Command Window Contexts
IDE...129
Composer ...130
Debugger ...130

CHAPTER 14 Debugger 131

Starting the Debugger

The Debugger Window
Available classes and methods...133
Breakpoints ..133
Threads ..133
Execution Stack..134
Source Viewer ..134
Variables List ...134
Command Buttons.. 134
Java Command Window...135
Run program ..135
Load classes...135
Simplicity for Java

CHAPTER 15 Advanced Features -
Extending the IDE 137

Extending the IDE
The IDEmenu.config file ..137
MenuBar ..138
Menu ..138
MenuItem ...138
Separator ...139
Action ...139

Samples of the extended IDE
Adding a command to the help menu...140
Adding a new action .. 141
Modifying existing actions ...141
A Complex Action ..142

Index
Simplicity for Java xi

xii
 Simplicity for Java

CHAPTER 1 Installation
This chapter will discuss installing Simplicity for Java.

It will cover

• System requirements

• The install program

• Operating system specific notes

System Requirements

Java Virtual Machine

Before you install Simplicity for Java, you must install a Java Development Kit
(JDK). If you do not have a JDK already installed you can get one from

http://www.javasoft.com/cgi-bin/java-ports.cgi

This web page lists all of the known JDKs by operating system. Make sure that you
choose one which is compliant with Java version 1.1 or later. Try to use the latest
revision of the JDK for your operating system. It is preferable that your JDK be
version 1.1.4 or later.
Simplicity for Java 1

http://www.javasoft.com/cgi-bin/java-ports.cgi

Installation

2

Minimum System Requirements

• Java Development Kit, version 1.1 or higher

• 10 MB free disk space for program

• HTML web browser

Suggested Minimum System Features

• CPU of similar power to a 133 MHz Pentium chip

• 32 MB RAM (64 MB on MacOS)

• 800x600 pixel display

Installing

NOTE: Before beginning the install, you must have installed a JDK1.1.4 or greater
on your computer. This must be a full JDK; a JRE is not enough.

Windows (95/98/NT)

The installer is called simpjava.exe. Double click this file to begin the install. The
install utility will guide you through the installation. You must accept the terms of
the licence agreement to complete the install. After specifying the install location,
all of the files will be copied.

Mac OS

Make sure that you have previously installed the MRJ 2.1.4, available from
http://developer.apple.com/java/ . MRJ 2.2 is not recommended at the current time.

The installer is MacBinary encoded and should be automatically decoded when
downloaded. If not, you can decode it using Stuffit Expander 4.5 or later. Double
click the installer to begin the install.

OS/2 Warp

The distribution is called simpjava.zip. Unzip this file using an unzip utility, being
careful to maintain the directory structure. Execute the simpwps.cmd Rexx script to
create a Program Object on your desktop for starting Simplicity.
Simplicity for Java

http://developer.apple.com/java/

Starting Simplicity for Java

ay
p

 the
Linux, Solaris, AIX, IRIX, SCO UnixWare, and Other Unix

Simplicity is distributed as a .tar.gz file, named simpjava.tar.gz. To install, copy the
distribution to your user directory and execute the following commands to unpack
the archive:

gzip -d simpjava.tar.gz

tar -xf simpjava.tar

Starting Simplicity for Java

On most platforms, the installer will create a launcher which will start Simplicity.

• Windows 95, 98 or NT A group called ‘Simplicity for Java’ will be created in
your Programs menu on the Start Menu.

• OS/2 Warp There is also a file called simpwps.cmd which will create a Program
Object on your desktop from which you can start Simplicity.

• Solaris, Linux, and most other Unix systems a shell script will be created in the
directory where Simplicity is installed, called Simplicity. You must edit the two
variables in this file which correspond to the location of the java executable on
your machine and the location of the Simplicity install directory. Set this script
to be executable (using the chmod command), and then you can copy this file to
a directory on your path.

• Macintosh A program icon called “Simplicity for Java” will be created in the
install directory. Double-click this icon to start Simplicity. You may wish to
make an alias of this file and put it on the desktop.

In many cases the default installation is sufficient. There are cases when you m
need to customize the installation. The following information is provided to hel
you customize the Simplicity for Java installation.

ClassPath

Simplicity requires that three items be on your classpath. They are (in order)

1. The full path of simplicity.jar

2. The swingall.jar file. (This is not needed if you are using JDK 1.2 or later, as
swing classes are already present.)

3. The full path of datarep_common.jar
Simplicity for Java 3

Installation

4

to

The method by which you set your system classpath varies according to the
operating system.

• Windows 95 The CLASSPATH is set in your autoexec.bat file with
SET CLASSPATH=.;c:\Simplicity\simplicity.jar;c:\Simplicity\swingall.jar;

c:\Simplicity\datarep_common.jar

• Windows NT The CLASSPATH is set in the Environment page of the System
Properties in the Control Panel. Set a system variable similar to the Windows 95
example, above.

• OS/2 Warp The CLASSPATH is set in your config.sys file with a line similar to
the Windows 95 example, above.

• Solaris/Linux/other Unix The CLASSPATH is set in your .profile with
export CLASSPATH =$CLASSPATH:$HOME/Simplicity/simplicity.jar:

$HOME/Simplicity/swingall.jar:
$HOME/Simplicity/datarep_common.jar

Note that the CLASSPATH definitions must be on one line.

Starting Simplicity for Java

Simplicity for Java is started by invoking the Java interpreter. The main entry point
is ‘datarep.Simplicity’. On most systems, the following command can be used
start Simplicity.

java -mx100m datarep.Simplicity

If you are using Microsoft’s Java Virtual Machine, the command would be

jview datarep.Simplicity

Platform Specific Notes

Windows NT 4.0

You must use JDK 1.1.7B or higher.

OS/2 Warp

The installation directory for Simplicity for Java as well as the Project directory
must be located on an HPFS drive.
Simplicity for Java

Platform Specific Notes
OS/2 users may wish to execute the simpwps.cmd file. This REXX script will
create a WPS object on the OS/2 desktop for starting Simplicity.

We recommend using either jdk114 or jdk117 from IBM. These can be found at
http://www.ibm.com/Java/jdk/download/. Do NOT use jdk116, as it contains a bug
which will crash the WPS, when you exit from Simplicity. If you are using JDK
1.1.8, be sure to download the fixes from IBM
(ftp://ftp.hursley.ibm.com/pub/java/fixes/os2/11/).

The debugger needs to have the localhost interface enabled. You can do this by
typing the following command in an OS/2 window:

ifconfig lo 127.0.0.1 up

Note that this will be reset when you next reboot your computer.

Linux

Before installing Simplicity, make sure that you have the latest Linux JDK from
www.blackdown.org. Simplicity for Java will work properly with either
jdk1.1.7_v3 or jdk1.2.2_rc3.

Suse Linux users: the rpm packaged JDK from older Suse distributions contains an
incomplete version of libjpeg.so. This causes the jdk to be unable to display jpeg
files. To fix this, install the .tar.gz distribution from blackdown (jdk1.1.7), and then
copy the libjpeg.so from that distribution over the one in /usr/X11R6/lib.

Macintosh

It is highly recommended that you have at least 64 MB of RAM to run Simplicity
for Java. MRJ 2.1.4 is the recommended version of the MRJ.

Solaris

On some Solaris machines, Simplicity for Java will stall shortly after starting. This
can be fixed by disabling the JIT. (Uncomment the appropriate line in the startup
script.) Solaris 8 users will need to be sure to edit the first line of the shell script as
described in the script.
Simplicity for Java 5

http://www.ibm.com/Java/jdk/download/
http://www.ibm.com/Java/jdk/download/

Installation

6

 as a

s
ory
SCO UnixWare

On some SCO machines, Simplicity for Java will stall shortly after starting. This
can be fixed by removing the -mx100m argument from the startup script.
(Uncomment the appropriate line in the startup script.)

The Personal Settings Directory

Simplicity 1.2 has introduced a centralized directory where all of the settings files
for Simplicity are stored. The name for the directory is ‘.simplicity’. The default
location for the directory is different in Unix (including Linux) and in other
operating systems.

Linux, Solaris, SCO UnixWare, and other Unix

In Unix, the default location for the settings directory is in the user’s home
directory. For example, a user named bob with a home directory /home/bob, would
have the default settings directory located in /home/bob/.simplicity. Multiple users
in Unix can run Simplicity from the same location, but have their own unique
settings. In Unix, the ‘.’ which precedes the directory name marks the directory
settings directory, and as such is not normally displayed by the ls command.
However, ls -a will list all files, including ones which start with ‘.’.

Windows, MacOS, and OS/2

Windows, Macintosh, and OS/2 are primarily single-user operating systems. A
such, the personal settings directory on these platforms is located in the direct
where Simplicity is installed.

Files in the Personal Settings Directory

There are several files and directories which will have special meaning to
Simplicity if found in the Personal Settings Directory.

• Project files Every project stores its settings in a file in the Personal Settings
Directory with a name constructed by adding .Simplicity to the end of the
project name. (i.e. Tutorial2.Simplicity).

• program.set This file contains the configuration settings for Simplicity,
including window locations and printing preferences.
Simplicity for Java

Technical Support and Feedback
• IDEmenu.config This file is used to customize the IDE (see page 137).

• .lic_txt and the contents of the .license directory are files generated by
Simplicity and used to store license information. Users should not change these
files.

Technical Support and Feedback

Technical Support

Send your questions to: support@datarepresentations.com

We ask that you restrict your questions to issues specific to Simplicity for Java.

Be sure to include your name and return email address. Please also indicate which
Operating System and Java Virtual Machine you are using.

Feedback

We always love to hear from our customers. Please send us your comments.

We are constantly improving our products. Please send us your ideas and
suggestions for how we can improve Simplicity for Java.

Send feedback to: info@datarepresentations.com
Simplicity for Java 7

mailto:info@datarepresentations.com

Installation

8
 Simplicity for Java

CHAPTER 2 Tutorial 1 -
Introduction to Simplicity
iate
Welcome to Simplicity for Java. This tutorial will guide you through creating a
simple text editor using Simplicity for Java.

By completing this tutorial you will learn about

• Managing files in the IDE

• Building a Graphical User Interface (GUI)

• Creating event code using the Code Sourcerer

It is estimated that this tutorial should take most people between 30 and 40 minutes
to complete. All of the details in this tutorial are designed to highlight important
functionality, so try to read and follow each part carefully.

A Simple Text Editor

If you haven’t already done so, start Simplicity for Java in the manner appropr
for your operating system. The Simplicity IDE should be on the screen.
Simplicity for Java 9

Tutorial 1 - Introduction to Simplicity

10

t’ by
n
e

).
 first
ems
ted.
ld

Edit

ar

 will
y

pp’
Open a project

You will now open a project which came with Simplicity for Java called Tutorial1.

1. Choose Open from the File menu.
If the welcome screen is showing, you can choose ‘Open an Existing Projec
clicking the mouse on the green disk icon. Otherwise, you can choose ‘Ope
Project’ from the File menu or click the ‘Open’ button (green disk icon) on th
button bar.

2. A small window will appear listing the names of all the available projects.
Choose ‘Tutorial1’ from the list and press the Ok button.

Create a new Application

You will now create a new Main Application (which will become your text editor
In the IDE, you see on the left the Project Tree, which has three sections. The
is called “Project Groups”, and contains a list of group names. Each of these it
represents a group of files which will appear in the box on the right when selec
For example, if you chose ‘Java Source Files’, all of the Java source files wou
appear in the box on the right.

1. Choose the first item in Project Groups, labeled ‘Composer Files’.

2. To see what our tutorial will look like when finished, double click on
Finished.Main. (You can also choose ‘Open’ from Finished.Main’s pop-up
menu or select Finished.Main with the mouse and choose ‘Open’ from the
menu.)

Three windows appear. One of these will be a small text editor with a title b
‘Finished Text Editor’. It will have three buttons, New, Load, and Save. Try
typing some text in the text area. When you press the New Button, the text
be cleared. The Load, and Save buttons work as you would expect, too. Tr
loading a text file from your computer into the Text Editor.

3. When you are finished, choose Exit from the File menu of the first window,
titled ‘Simplicity Composer’. Press No when asked if you would like to save
any changes

4. In the IDE, choose ‘Main App’ from the Create menu. This creates a new
Application in the current project. (You can also press the ‘Create a Main A
button on the button bar. It is the fourth button with the light bulb on it.)

A new Icon appears in the ‘Composer Files’ group with a name similar to
Untitled1.Main.
Simplicity for Java

ns.

r.

y

ty’

 the
he

you
.

rst

rd
le.

 All

he

n.
st
5. Click this new icon once to select it. (It will become highlighted.)

6. From the Edit menu, choose Rename selection. A text field will appear to the
right of the icon. Replace the old name with ‘text editor’. Click the mouse
anywhere else in the right hand window to accept the change. If you don’t
specify the ‘.Main’ extension, Simplicity will add it for you. Simplicity will also
modify the spacing and capitalization to conform to Java naming conventio

7. Double click the new ‘TextEditor.Main’ icon to open the Simplicity Compose

You have now created a new Application, and have loaded it into the Simplicit
Composer. You should see three new Windows on the screen. They are the
Composer window, the Object Palette, and a small window with the word ‘Emp
in it. This last window is your program, which currently has nothing in it.

The composer window is the place where you will set up all of the properties of
graphical parts of your program. It is also where you will be able to supply all t
code that your programs will need.

Toward the top of the composer window is a choice box. This is the part list. If
select it, you will see that there is currently only one item in it called TextEditor
This refers to the empty window that will become your application.

The bottom portion of the Composer window has a four page notebook. The fi
page, called ‘Main Window’, has the properties that are specific to a main
application window.

1. Click the mouse in the text field entitled ‘Title Bar’. A cursor should now be
visible in that field.

2. Replace any text in the Title Bar field with ‘Text Editor’ .
As you type, the title appears in the program window. (The one with the wo
‘Empty’ in it.) You may need to resize the program window to see the full tit

Assemble the GUI

You will now begin to assemble the graphical components for your Text Editor.
of the graphical components can be found in the Object Palette window.

All graphical components in a Java application are placed into Java Layouts. T
Layouts position your components so that they will be properly sized to be
attractive regardless of the operating system that your application is running o
While most of the layouts are rather simple, they can be combined to create ju
about any component placement you desire.
Simplicity for Java 11

Tutorial 1 - Introduction to Simplicity

12

goes

not,

r of

der
rth,
t (or

age

.

ch

rea
s’

t
 the

,
t
e

e

 the
We will start by using a Border Layout. A Border Layout can hold up to five
components, located in the North, South, East, West, and Center. The layout tries to
give the four border components their ‘preferred’ size, and any space left over
to the Center component.

1. On the Object Palette, make sure that the first page, ‘Layouts’, is visible. (If
click the mouse button on the ‘Layouts’ Tab.)

2. You will see icons for all of the available layouts. Click the first icon, named
‘Border’, with the mouse. (It should now appear depressed. Also, the title ba
the Object Palette will reflect your selection.)

3. In the program window, click once in the center. You have just placed a Bor
Layout into the window. You should now see five empty spaces, labeled No
South, East, West, and Center. Each of these spaces can hold a componen
another layout).

4. On the Object Palette select the second page’s tab, labelled ‘Basic’. This p
contains all of the basic components which are part of the Java library.

5. Click the second to last icon, named TextArea. It should appear depressed
A TextArea is a component which can hold multiple lines of text, and is
optionally editable and scrollable.

6. Click the mouse once in the ‘Center’ empty space in the Border Layout whi
you previously placed in the main window. This will put a TextArea in the
center of the Border Layout.

7. In the composer window, you will see the properties notebook for the TextA
that you just created. Edit its properties by settings ‘Rows’ to 5 and ‘Column
to 40. Make sure that ‘Editable’ is selected, and erase any text in ‘TextArea
text’.

8. Each component is given a name which you use to refer to each componen
when you write Java code. In the properties for the TextArea you’ll see that
current ‘Object name’ is set to ‘textArea2’. Change it to a simpler, more
descriptive name, ‘text’.

9. On the Object Palette, choose the ‘Layouts’ page and click the second icon
named Flow. Click once in the ‘North’ empty space of the Border Layout tha
you previously put in the window. You have just put a new Flow Layout in th
northern part of your Border Layout.
A Flow Layout lays out components in a row and wraps to a new line if mor
space is needed. You see a single empty space where you can place
components. As you click components into this space, the space moves to
right.
Simplicity for Java

med
ted.
n the
hird

by
.

r as

ents

le

 the

pty

e
4’

 the
lows
the
10. On the Object Palette, choose the ‘Basic’ page and click the fourth icon, na
Button. Click once in the empty space inside the Flow Layout you just crea
A new button appears and the empty space moves to the right. Click again i
flow’s empty space to add another button. Do this one more time to add a t
button.

11. To be careful, save your work by pressing the ‘Save’ button at the top of the
Composer window (the red disk icon).

If by accident you placed a part in the wrong empty space, you can remove it
using the ‘Recycle’ button. Choose the part by clicking it with the mouse button
Then push the ‘Recycle Current Part’ button located toward the top of the
Composer window. The part will be removed from your program and will appea
an icon in the ‘Recycled’ page in the Object palette. You can select it from the
palette if you wish to reuse it elsewhere. If you recycle a layout, the entire cont
of the layout are moved to the Recycle page.

Cleaning up

You have finished placing all of the components that you will need for the simp
text editor. You will now clean up the extra empty spaces, and do a little
decorating.

1. Toward the top of the Composer window is the part list. It is a Choice field
which contains the names of all of the parts that you have just created. From
part list select ‘flow3’. The properties for the Flow Layout appear in the
Composer window.

2. On the Flow Layout Properties page, de-select ‘Show empty panel’. The em
panel in the Flow Layout disappears, leaving only the three buttons.

3. Choose ‘border1’ from the part list. De-select ‘Show empty panel’. The
remaining empty panels in the Border Layout disappear.

4. Clicking on any component will cause its property notebook to appear in th
Composer window. Click on button4. Change the ‘Button Text’ from ‘button
to ‘New’. Click on the remaining two buttons and change their text to ‘Load’
and ‘Save’, respectively.

5. From the part list choose flow3. From the flow3 properties notebook, choose
second page, labelled ‘Visual’. This page exists for every component and al
you to specify a variety of visual properties of your components. By setting
visual properties of a Layout, the changes will cascade through all of the
components in the Layout.
Simplicity for Java 13

Tutorial 1 - Introduction to Simplicity

14

s a

 text
y are

uld
 will
n it.

t

ook

ere

ite

ew

rea.
y of
6. In the Font box, change the Name to ‘Helvetica’, change the size to 16, and
change the Style to ‘Bold’. This changes the font of all of the buttons.

7. Change the cursor to ‘hand’. This specifies that the cursor should appear a
hand whenever the mouse is over the Flow Layout.

8. Save your changes again by choosing Save from the File menu in the Composer
window.

Responding to events

So far, you have created only the shell of your application. You can type in the
area, and you can press the buttons, but the buttons do not yet know what the
supposed to do.

In Java, components respond to user interaction using Event Listeners. For
example, a button can respond to being pressed by listening for Action Events.

Simplicity for Java lets you select the type of events that each component sho
listen for and specify the code that should be executed in response. Simplicity
dynamically execute this code so that you can test your program as you desig

Let’s begin with the New button. We would like the New button to clear any tex
that is currently in the text area, so that new text may then be entered.

1. Click the New button to show its properties in the Composer window.

2. Select the third page from the properties notebook, labelled ‘Listeners’. You
should now see a list of the types of events that a button can listen for.

3. Select ‘Listen for action events’. A new page appears in the properties noteb
for the New button labelled ‘Action’.

4. Select this new ‘Action’ page. You should now see an empty Java Editor wh
you can specify the code that you wish to have executed whenever the New
button is pressed.

To write the code, we will use the Code Sourcerer. The Code Sourcerer will wr
Java code for you, based upon some simple choices.

5. Press the Code Sourcerer button toward the top of the ‘Action’ page for the N
button.

6. A dialog appears with a list of choices. We want to clear the text in the text a
If it is not already selected, choose the first item, labelled ‘Change a propert
an existing part...’. Press Next.
Simplicity for Java

s

rea.
ve

he

ted

.

se

ess

se a

ile
7. The Code Sourcerer now asks you which part you would like to change. Choose
‘text’ (the TextArea in your program). Press Next.

8. The Code Sourcerer now presents you with a list of the text area’s propertie
that can be changed. Choose ‘Change text of Text Area...’. Press Next.

9. The Code Sourcerer now asks you where to get the new text for the Text A
We want to simply erase the current text, so choose the first option, and lea
the text field to the right blank. Press Done.

The following code should have appeared in the Action Page.
text.setText("");

Now you can test the code that you have just created. Type a few words into t
text area in your program. Then press the New button. The text is cleared. Try
changing the code in the New button’s Action page to

text.setText("Hello World!");
and press the New button. Each change that you make is immediately integra
into the working model of your program. Test the change by pressing the New
button again.

We will now create the code to load a text file.

1. Press the Load button to show its properties in the Composer. Choose its
‘Listeners’ page and select ‘Listen for action events’. Select the Action page

2. Press the Code Sourcerer button from the Load button’s Action page. Choo
‘File operations...’. Press Next.

3. Choose the second item, “Create a new File object from a FileDialog...”. Pr
Next.

4. The Code Sourcerer asks you to enter a title for the FileDialog. Enter ‘Choo
file to load’ for the title.

5. The Code Sourcerer asks you to enter a name for the File object which will
point to the file that the user chooses. Leave the default value of ‘theFile’ for
the destination name.

6. Select ‘Load’ mode.

7. Press Done. Several lines of code should have appeared in the Action page
which will launch a File Dialog and ask the user to choose a file to load. A f
object has been created called theFile.

8. Press the Code Sourcerer button again. Choose ‘File operations...’. Press Next.

9. Choose ‘Read a String from a text file...’. Press Next.
Simplicity for Java 15

Tutorial 1 - Introduction to Simplicity

16

he

file

 into
erty of

ld

ar.

10. The Code Sourcerer asks for the name of a File object to read from. Leave the
default value of ‘theFile’. The Code Sourcerer also asks for the name of t
string in which to store the data. Leave the default value of ‘theText’.

11. Press Done. Now you have created a File object, and read the text from the
that the user chose into the String, ‘theText’.

12. We will use the Code Sourcerer once more to put the text that we just read
the text area. Press the Code Sourcerer button and choose ‘Change a prop
an existing part...’. Press Next.

13. Choose the part, ‘text’ to change. Press Next.

14. Choose ‘Change text of Text Area’. Press Next.

15. Choose ‘The following variable expression’. Remove any text in the text fie
to the right and replace it with theText. (Note: It is case sensitive!) Press
Done.

You should see the following code in the Action page of the Load button.

FileDialog fd = new FileDialog(_getFrame(this),

"Choose a file to load", FileDialog.LOAD);

fd.show();

if(fd.getFile() == null) return; // user pressed Cancel

File theFile = new File(fd.getDirectory(),fd.getFile());

String theText = "";

try {

FileReader fr = new FileReader(theFile);

char charar[] = new char[(int)theFile.length()];

fr.read(charar);

theText = String.valueOf(charar);

fr.close();

}

catch (FileNotFoundException excpt0) {

}

catch (IOException excpt1) {

}

text.setText(String.valueOf(theText));

You can now test this code by pressing the Load button. A FileDialog will appe
Choose any text file on your computer to load. The contents of that file should
appear in the text area.

We will now create the code to save a text file.
Simplicity for Java

.

se

ess

e
d.

m.
he
our

e
eck
 read

at

r

n,
1. Press the Save button to show its properties in the Composer. Choose its
‘Listeners’ page and select ‘Listen for action events’. Select the Action page

2. Press the Code Sourcerer button from the Save button’s Action page. Choo
‘File operations...’. Press Next.

3. Choose the second item, “Create a new File object from a FileDialog...”. Pr
Next.

4. Enter ‘Choose a filename to save’ for the title.
Leave the default value, ‘theFile’, for the destination name.
Select ‘Save’ mode.

5. Press Done. Several lines of code should have appeared in the Action page
which will launch a File Dialog and ask the user to choose a filename. A file
object has been created called theFile.

6. Press the Code Sourcerer button again. Choose ‘File operations...’. Press Next.

7. Choose ‘Write a String to a text file...’. Press Next.

8. The Code Sourcerer asks for the name of a File object to write to. Leave th
default value, ‘theFile’, which is the name of the File object you just create
Press Next.

9. The Code Sourcerer now asks where the text to be saved should come fro
Select ‘Another Part’ and choose ‘text’ from the Choice box. This instructs t
Code Sourcerer to save the current text from the component named ‘text’ (
TextArea).

10. Press Done. Now you have created a File object, and saved the text to it.

You can test this code by typing a few words into the text area and pressing th
Save button. A FileDialog will ask you for the filename to save it to. You can ch
that this worked by pressing the New button, and then using the Load button to
the text back.

Let’s add one last thing to this program... A way to close it.

1. Toward the top of the Composer window, find the part list Choice box and
choose the first item, ‘TextEditor’. This shows the settings for the window th
our program is sitting in.

2. Select the ‘Listeners’ page.

3. We want to respond to the user trying to close the window. Select ‘Listen fo
window events’. A new page appears in the properties notebook called
‘Window’. Select this new page.

4. There are seven kinds of window events. We want to respond to a ‘Window
Closing’ event. From the Choice box to the left of the Code Sourcerer butto
Simplicity for Java 17

Tutorial 1 - Introduction to Simplicity

18

r
n or
y

ser

 the

ill
 the
select the third item, labelled ‘windowClosing’. (Be sure to select
windowClosing and not windowClosed.)

5. Press the Code Sourcerer Button.

6. Choose ‘Change a property of an existing part...’. Press Next.

7. Select the first item, labelled ‘TextEditor’. Press Next.

8. Choose ‘Dispose of this Frame’. Press Done.

The following code should have appeared in the Window Page for the
windowClosing event.

_getFrame(this).dispose();

You can test this code by closing the program window in the default manner fo
your operating system. (This is often done by double clicking the upper-left ico
by pressing a close button on the upper-right). You can get the window back b
choosing Initialize Class from the Program menu in the Composer.

You have now finished designing your text editor. Save your work by choosing
Exit from the File menu in the Composer. Choose Yes when asked if you want to
save your changes.

Completing the program

Looking back at the IDE, you should see the TextEditor.Main file in the ‘Compo
Files’ group. Let’s look at the code you just created.

1. Choose the ‘Java Source Files’ group. You should see a new file called
TextEditor.java. This is the java code which has been generated by the
Composer. (If you are using the demo version of Simplicity for Java, the
composer will not create the Java source file. Use Finished.java instead for
rest of the tutorial.)

2. Double-click the TextEditor.java icon. This opens Simplicity’s Java Source
Editor with the TextEditor.java file loaded. Browse through the code. You w
see toward the bottom of the file all of the code which you generated using
Code Sourcerer.

3. Exit the Java Editor. (Don’t save any changes to the file just yet.)

Now we want to compile and test the program.
Simplicity for Java

ur

ed

 can

ics
4. You want to bring up the pop-up menu for the TextEditor.java icon. This is
usually done by clicking the right mouse button on the icon, but this behavior
varies on different operating systems. You can also show the pop-up menu by
holding the shift key and clicking the icon with the mouse.

5. Choose ‘Compile’ from the pop-up menu. Simplicity for Java now invokes yo
Java compiler to turn the Java source code which you just created into an
executable file, called a Java class file.

6. In the Project Tree, choose ‘Java Class Files’. You should see an icon nam
TextEditor.class. This file is your executable program.

7. Double click TextEditor.class. The Class Viewer appears. The Class Viewer
provide a variety of information about the contents of a class file.

8. At the bottom of the Class Viewer is a large button labelled Run. Press this
button to run the application.

Congratulations! You have completed this tutorial and learned many of the bas
of working with Simplicity for Java.
Simplicity for Java 19

Tutorial 1 - Introduction to Simplicity

20
 Simplicity for Java

CHAPTER 3 Tutorial 2 -
Programming with Simplicity
iate

l-up
ust
This tutorial will guide you through creating a small bank account application. By
completing this tutorial you will learn about

• Creating a multi-window application

• Using the GridBagLayout

• Creating variables, methods, and constructor code

• Integrating Code Sourcerer generated code with your own.

It is estimated that this tutorial should take most people between 30 and 40 minutes
to complete. It is assumed that you have already completed the first tutorial. You
should already be familiar with the Simplicity IDE, creating simple layouts using
the Object Palette, and choosing event listeners.

A Bank Account Application

If you haven’t already done so, start Simplicity for Java in the manner appropr
for your operating system. The Simplicity IDE should be on the screen.

This tutorial will make use of some network resources. If you need to start a dia
connection in order to reach your SMTP server (this is your e-mail server) you m
Simplicity for Java 21

Tutorial 2 - Programming with Simplicity

22

o

o your

n

s
do this before you start Simplicity for Java. You will also need to know the name of
your SMTP server. (It often is similar to smtp.somewhere.com).

Open a project

You will now open a project which came with Simplicity for Java called Tutorial2.

1. Choose ‘Open Project...’ from the File menu or from the welcome screen.

2. A small window will appear listing the names of all the available projects.
Choose ‘Tutorial2’ from the list and press the Ok button.

View the finished application

Let’s begin by viewing the completed tutorial so that you’ll know what we are
going to accomplish. In order for the email portion to work, you will first need t
enter your SMTP mail server and your email address.

1. In the IDE, choose ‘Java Source Files’ from the Project Tree.

2. Double-click ‘FinishedBankAccount.java’. This will open the Java Editor.

3. Scroll Down about 3/4 of the file and find a set of lines which read:
email.setServer("smtp.somewhere.com");
email.setFrom("me@somewhere.com");
email.setTo("me@somewhere.com");

4. change the SMTP server name and the email address in these three lines t
SMTP server and email address.

5. Save and Exit the Java Editor using the File menu.

6. Compile the Application by right clicking the ‘FinishedBankAccount.java’ ico
and choosing Compile from the pop-up menu. The pop-up menu can also be
shown by holding down shift while clicking the icon.

7. Now choose ‘Java Class Files’ from the Project Tree.

8. Double-click ‘FinishedBankAccount.class’ and press the ‘Run’ button in the
Class Viewer.

The bank account application is very simple to use. Press the Deposit or
Withdrawal buttons to add or subtract money from the account. The Print and
Email Receipt buttons will send an account statement to your printer or email
account.

When you are finished, close the finished bank account program and the Clas
Viewer.
Simplicity for Java

A Bank Account Application

k in

 to

e it

t

 first

e in

ern
t
Creating the Transaction Window

We will now create the dialog which is used to handle deposits and withdrawals.

1. In the IDE, choose ‘Composer files’ from the Project Tree.

2. Press the ‘Create a Dialog’ button on the button bar. (The exclamation mar
the yellow triangle.)

3. Rename this new Dialog to ‘TransactionDialog.Dialog’. Then Double click it
open the Composer.

4. In the Title Bar field for the Dialog, enter ‘Transaction Dialog’.

5. Check the ‘modal’ checkbox.

Using the GridBag Layout

The GridBag Layout is one of the most versatile and flexible layouts. We will us
to build the entire Transaction Dialog.

1. From the Layouts page of the Object Palette, choose GridBag.

2. Click once in the Empty Space in the Working Model. A new GridBagLayou
appears, initially with one Empty Space available.

3. Press the Add Empty button twice (at the top of the GridBag properties page).
This will add an additional two Empty Spaces to the layout.

4. From the Basic page of the Object Palette, choose Label. Click once in the
Empty Space of the GridBag.

5. Change the Label’s text to “Enter amount:”.

6. From the Extended page of the Object Palette, choose ValidText. Click onc
the second Empty Space of the GridBag.

7. Change its ‘Object name’ to ‘amountField’, its ‘Type of validation’ to ‘Float’
and its ‘Number of columns’ to ‘20’.

8. From the Basic page of the Object Palette, choose Button. Click once in the
third Empty Space of the GridBag.

9. Change its ‘Object name’ to ‘commandButton’ and its ‘Button text’ to
‘Command’.

10. Choose ‘gridbag1’ from the partlist (at the top of the Composer window) to
view the properties for the GridBag Layout.

The GridBag Layout allows you to give each part a set of constraints which gov
how the parts should be positioned. The property sheet for the GridBag Layou
Simplicity for Java 23

Tutorial 2 - Programming with Simplicity

24

lumn

oth
ill.

m

.

de
contains a table showing all of the constraints for each part. You can edit these
directly in the table as well.

The table should have three rows, one for each part that we’ve added. The co
on the left lists the part names. We will now adjust some of these properties.

11. For ‘label2’, change the X and Y both to 0. Change the Top and Left Insets b
to 15. Click once on the small square in Fill column to specify a horizontal f
(The small box changes to a horizontal bar. Clicking four times will cycle
through all the states: None, Horizontal, Vertical, and Both.)

12. For ‘amountField’, change the X to 0 and the Y to 1. Change the Left, Botto
and Right Insets each to 15.

13. For ‘commandButton’, change the X to 0 and the Y to 2. Change the Bottom
Inset to 15.

You’ve finished adjusting the constraints for the parts in the Transaction Dialog
The table should look similar to the following:

Adding code

The layout for the Transaction Dialog is finished. Now we want to add some co
to this Dialog.

The Dialog needs a variable to hold the amount that the user enters.

1. Choose ‘Goto declaration code’ from the Code menu in the Composer.

2. Press the Code Sourcerer button.

3. Choose ‘Declare a new variable’ and press Next.

4. Choose ‘float’ from the ‘primitive’ choice box.

5. Enter ‘amount’ into the ‘Choose its name’ field.

6. Choose ‘private’ in the accessibility group.

7. Press Next.

8. Leave the initial value at 0.0 and press Done.
Simplicity for Java

A Bank Account Application

del,

ctor

he

an
The Dialog needs methods to access the ‘amount’.

1. Choose ‘Goto method code’ from the Code menu in the Composer.

2. Type in the following lines. (Much of this can be generated using the Code
Sourcerer, but we’ll type it to save time).

public float getAmount() {

return amount;

}

public void setCommand(String s) {

commandButton.setLabel(s);

commandButton.invalidate();

gridbag1.validate();

}

In order for declaration and method code to be integrated into the Working Mo
the program needs to be initialized.

3. Choose ‘Initialize Class’ from the Program menu. (This executes any variable
and method declarations, resets all components, and executes any constru
code as well.)

Now we’ll add some code to the ‘Command’ button and test the Dialog.

4. Press the Command button in the Working Model. Its properties appear in t
Composer.

5. Choose the ‘Listeners’ tab and check ‘Listen for action events’.

6. Choose the newly added ‘Action’ tab.

7. Press the Code Sourcerer button and choose ‘Ask a part about one of its
properties...’. Press Next.

8. Choose ‘amountField’. Press Next.

9. Choose ‘get value as a float’. Press Done.

10. Replace the suggested new variable ‘float value’ with ‘amount’. Press Ok.

11. Press the Code Sourcerer button again and choose ‘Change a property of
existing part...’. Press Next.

12. Choose ‘TransactionDialog’ from the list. Press Next.

13. Choose ‘Dispose of this Dialog’. Press Done.
Simplicity for Java 25

Tutorial 2 - Programming with Simplicity

26

t it.

ess

sing
r in

two

(If
ed.

n).

ser.
Test the Transaction Dialog

The Transaction Dialog is now finished, but let’s add another line of code to tes

1. Press the Code Sourcerer button and choose ‘Java System Operations’. Pr
Next.

2. Choose ‘Write text to the standard output...’. Press Next.

3. Choose the third option, ‘The following variable expression’ and enter
"You entered $" + getAmount()

in the adjacent text field.

4. Press Done.

You can now test the Dialog by entering a number in the amountField and pres
the ‘Command’ button. The dialog should vanish and a message should appea
the Java console. Choose ‘Initialize Class’ from the Program menu to reset the
dialog.

When you are finished testing the Dialog, comment-out the last line by putting
slashes in front of it. The code should read

amount = amountField.floatValue();

this.dispose();

// System.out.println(String.valueOf("You entered $" + getAmount()));

You can now save and exit the Dialog Composer. All of the code you have just
created is written to ‘TransactionDialog.java’. You should compile this file now.
you are using the demo version of Simplicity for Java, this file will not be creat
You can use the ‘FinishedTransactionDialog.java’ instead for the rest of the
tutorial.)

Creating the Bank Account application

We will now create the BankAccout Main Application.

1. In the IDE, choose ‘Create a Main App’ from button bar. (The lightbulb butto

2. Rename it ‘BankAccount.Main’ and then double-click it to open the Compo

3. Change the ‘Title Bar’ to ‘Bank Account’.

4. Choose the ‘Listeners’ page and check ‘Listen for window events’.

5. Choose the newly added ‘Window’ page.

6. Choose ‘windowClosing’ from the window events list.
Simplicity for Java

A Bank Account Application

’.

ick

ave

nce

 in

in

 in

ress
7. Press Code Sourcerer and choose ‘Change a property of an existing part...
Press Next.

8. Choose ‘BankAccount’ from the list. Press Next.

9. Choose ‘dispose of this frame’. Press Done.

Create the layout

We will create a compound layout using a series of layouts.

1. From the ‘Extended’ page on the Object Palette, choose ‘InsetSizer’ and cl
once in the Empty Space in the Working Model.

2. On the properties page of the InsetSizer, set the four Inset values to 20. Le
the Size fields blank.

3. From the ‘Layouts’ page on the Object Palette, choose ‘Border’ and click o
in the Empty Space in the InsetSizer.

4. Change the Border Layout’s vertical gap to 15.

5. From the ‘Layouts’ page on the Object Palette, choose ‘Grid’ and click once
the ‘South’ space of the Border Layout.

6. Change the Grid Layout’s vertical and horizontal gaps to 15.

7. From the ‘Basic’ page on the Object Palette, choose ‘Label’ and click once
the ‘North’ space of the Border Layout.

8. Change the Label’s ‘Object Name’ to ‘output’.

9. Choose ‘border2’ from the Part List and uncheck the ‘Show empty panels’
checkbox.

10. From the ‘Basic’ page on the Object Palette, choose ‘Button’ and click once
each of the four grid spaces to create four buttons.

11. Change the button text on the four buttons to

Deposits and Withdrawals

We need to add some code to keep track of and let the user know the current
account balance.

1. Choose ‘Goto declaration code’ from the Code menu.

2. Press the Code Sourcerer button and choose ‘Declare a new variable...’. P
Next.

Make a deposit Make a withdrawal

Print a receipt Email a receipt
Simplicity for Java 27

Tutorial 2 - Programming with Simplicity

28

m

e

3. Choose ‘float’ from the ‘primitive’ choice box.

4. Enter ‘balance’ into the ‘Choose its name’ field.

5. Choose ‘private’ in the accessibility group. Press Next.

6. Leave the initial value at 0.0 and press Done.

7. Choose ‘Goto method code’ from the Code menu.

8. Type the following method
public void setBalance(float f) {

balance = f;
output.setText("Your balance is $"+balance);

}

9. Choose ‘Goto constructor code’ from the Code menu.

10. Type the following
setBalance(0);

You can test the code that you’ve typed so far by choosing ‘Initialize Class’ fro
the Program menu. The output label should read “Your balance is $0.0”.

11. Press the ‘Make a deposit’ button to view its properties.

12. Enable the Action event for this button and goto its Action page.

13. Press the Code Sourcerer button.

14. Choose ‘Window operations...’. Press Next.

15. Choose ‘Open a new Frame/Window/Dialog...’. Press Next.

16. Choose ‘TransactionDialog’ or ‘FinishedTransactionDialog’ if you are using
the Simplicity for Java Demo.

17. Enter ‘dialog’ where the Code Sourcerer asks for a name for this window.

18. Press Done. Two lines of code are produced. The first creates the Dialog. Th
second shows the dialog on the screen.

19. Insert a second line and add a fourth line so that the code reads
TransactionDialog dialog = new

TransactionDialog(_getFrame(this));

dialog.setCommand("Deposit");

dialog.show();

setBalance(balance += dialog.getAmount());

20. Select all of this text by choosing ‘Select All’ from the pop-up menu. The
pop-up menu will appear when you right-click in the Sourcerer, or when you
hold down the control key while you click in the Sourcerer.

21. Select ‘Copy’ from the pop-up menu.
Simplicity for Java

A Bank Account Application

ion
osit’

r

ss

22. Press the ‘Make a withdrawal’ button to view its properties.

23. Enable the Action event for this button and goto its Action page.

24. Select ‘Paste’ from the pop-up menu.

25. Change the "Deposit" command to "Withdrawal".

26. Change the += to -= on the last line.

Try testing the ‘Make a deposit’ and ‘Make a withdrawal’ buttons. The transact
dialog should appear, asking for an amount. The button should contain a ‘Dep
or ‘Withdrawal’ label.

Print a receipt

1. Press the ‘Print a receipt’ button to view its properties.

2. Enable the Action event and choose its Action page.

3. Press the Code Sourcerer button and choose ‘Printing Operations...’. PressNext.

4. Choose ‘Print the contents of a part...’. Press Next.

5. Enter “Print Receipt” for the PrintJob title.

6. Choose ‘output’ from the list of parts. Press Done.

You can test this by pressing the ‘Print a receipt’ button. An operating system
dependent dialog will appear in which you can choose a printer and any printe
settings. When you confirm this dialog the receipt will be printed.

Email a receipt

1. Press the ‘Email a receipt’ button to view its properties.

2. Enable the Action event and choose its Action page.

3. Press the Code Sourcerer button and choose ‘Miscellaneous...’. Press Next.

4. Choose ‘Send an E-mail message..’. Press Next.

5. Enter your SMTP server name in the first entry field. Enter your email addre
in the ‘From:’ and ‘To:’ fields. Enter “Your account balance” in the ‘Subject:’
field. Leave the message field blank. Press Done.

6. Find the sixth line of the generated code. It should read
email.setMessage("");

Change this to read
email.setMessage(output.getText());
Simplicity for Java 29

Tutorial 2 - Programming with Simplicity

30

ail

just
of

 in

r.
the
You can test this by pressing the ‘Email a receipt’ button. If you entered your em
address and server correctly, an email receipt will be sent to you.

Finishing up

You can now save and exit the Composer. The Java source file that you have
created, BankAccount.java, will be written. (If you are using the demo version
Simplicity for Java this will be disabled. The finished code is provided with the
tutorial, though.)

You can compile the BankAccount application by choosing ‘Java Source Files’
the IDE Project Tree, right-clicking the ‘BankAccount.java’ (or
‘FinishedBankAccount.java’) icon, and choosing Compile.

You can run the BankAccount application by choosing ‘Java Class Files’ in the
IDE Project Tree, double-clicking the ‘BankAccount.class’ (or
‘FinishedBankAccount.class’) icon, and pressing the Run button.

You can also test the application by invoking it directly from the Java interprete
Make sure that the Project directory is on your CLASSPATH and use either of
following commands.

java Tutorial2.BankAccount
java Tutorial2.FinishedBankAccount
Simplicity for Java

CHAPTER 4 Tutorial 3 -
Using JavaBeans™ and Swing
iate

l3.
This tutorial will guide you through creating a thermostat application. By
completing this tutorial you will learn about

• adding JavaBeans to the Object Palette

• using JavaBeans in the Composer

• creating an application using Swing

It is estimated that this tutorial should take most people between 30 and 40 minutes
to complete. It is assumed that you have already completed the first tutorial. You
should already be familiar with the Simplicity IDE, creating simple layouts using
the Object Palette, and choosing event listeners.

A Thermostat Application

If you haven’t already done so, start Simplicity for Java in the manner appropr
for your operating system. The Simplicity IDE should be on the screen.

Open a project

You will now open a project which came with Simplicity for Java called Tutoria
Simplicity for Java 31

Tutorial 3 - Using JavaBeans™ and Swing

32

ass

ouse

m

ns’.
e
e by

his
w

a

.

s
s
1. Choose Open from the File menu or from the welcome screen.

2. A small window will appear listing the names of all the available projects.
Choose ‘Tutorial3’ from the list and press the Ok button.

View the finished application

Let’s begin by viewing the completed tutorial so that you’ll know what we are
going to accomplish.

1. Choose ‘Java Class Files’ from the Project Tree.

2. Double-click ‘FinishedThermostat.class’ and press the ‘Run’ button in the Cl
Viewer.

The thermostat application is very easy to use. Turn the knob by pressing the m
button while the cursor is over the knob and then drag clockwise or
counterclockwise. When you are finished, close the finished thermostat progra
and the Class Viewer.

Importing JavaBeans™

Our thermostat application is going to use a JavaBean which is not initially on the
Object Palette in the Composer. This bean is the rotary knob which you saw in the
finished application. We will now add this new part to the palette.

1. In the IDE, open the ‘import’ menu and choose the first item, titled ‘JavaBea
The ‘Import JavaBeans’ window will appear. On the left of the window will b
a tree listing the items in your classpath. You can expand any item in the tre
double clicking it.

2. In the tree, expand the node of the item which has your Project directory. (T
will be something similar to \Simplicity\Project). The tree will expand to sho
you the directories in your Project directory.

3. Expand the ‘datarep’ directory under the Project directory.

4. Single-click the ‘beans’ directory under the ‘datarep’ directory. All of the Jav
classes in the ‘beans’ directory will be listed in the Available Classes list.

5. Select Knob from this list and press the Add button at the bottom of the window

6. Press Ok.

You have just added a JavaBean to the Object Palette of any Composer in this
Project. If you wish to see more details about the bean, you can double-click it
icon in the ‘Java Beans’ group in the IDE. The Knob bean that we just added i
Simplicity for Java

A Thermostat Application

r.

nce

al

h

ed.

nd
included with Simplicity as a demonstration. You can find thousands of different
JavaBeans, though, on the Internet that you can use in your projects.

Creating the Thermostat application

We will now create the thermostat application.

1. In the IDE, choose ‘Create a Main App’ from the button bar. (The lightbulb
button).

2. Rename it ‘Thermostat.Main’ and then double-click it to open the Compose

3. Change the ‘Title Bar’ to ‘Thermostat’.

Create the layout

Our thermostat has a very simple layout.

1. From the ‘Layouts’ page on the Object Palette, choose ‘Bottom’ and click o
in the Empty Space in the Working Model.

2. Change the Bottom Layout’s horizontal gap to 15.

3. Choose the ‘Beans’ page on the Object Palette. Here you will find any visu
JavaBeans which you have imported.

4. Select Knob from the ‘Beans’ page, and click once in the Bottom layout whic
you previously added.

5. Choose the ‘Swing 1’ page on the Object Palette.

6. Select Progress and click once in the Bottom Layout.

7. Select Label and click once in the Bottom Layout.

8. From the Part List at the top of the Composer window, choose ‘bottom1’.
Uncheck ‘Show Empty Panel’ to get rid of the last Empty Space.

We will now set up some of the properties for the parts which we have just add

9. Click once on the progress bar.

10. Set the orientation to ‘vertical’.

11. Enter 73 for the current value.

12. Enter 32 for the minimum value.

13. Enter 212 for the maximum value.

14. Choose the progress bar’s ‘Visual’ property page, and change the foregrou
color to red.

15. Click once on the label.
Simplicity for Java 33

Tutorial 3 - Using JavaBeans™ and Swing

34

 is
r to
es

g the
, an
e

he
a

’.

’.
16. Change the label’s text to “degrees Fahrenheit”.

Working with JavaBeans

In the previous section we added several parts to our application, one of which
the Knob bean that we imported earlier. Working with JavaBeans is very simila
working with parts that are preinstalled on the palette. Lets look at the properti
page for this bean.

1. Click once on the Knob in the Working Model.

Simplicity generates a custom property page for any bean that you import usin
bean’s exposed properties. From left to right, you see a list of property names
input field, the data type, and the default value. Any properties which you leav
blank will keep their default value.

2. Enter 32 for the minimum.

3. Enter 212 for the maximum.

4. Enter 73 for the value.

5. Enter 35 for the radius.

Handling events with JavaBeans works exactly the same as with other parts.

6. Select the ‘Listeners’ page of the Knob.

7. Check ‘Listen for KnobTurn events’. A message will be briefly displayed in t
Java Console as Simplicity sets up the new event type. When this finishes
‘KnobTurn’ tab will appear.

8. Choose the KnobTurn tab.

9. Press Code Sourcerer and choose ‘Ask a part about one of its properties...
Press Next.

10. Choose ‘bean2’ from the list. Press Next.

11. Choose ‘value’. Press Done. Press Ok in the dialog which then appears.

12. Press Code Sourcerer and choose ‘Change a property of an existing part...
Press Next.

13. Choose ‘jProgressBar3’ from the list. Press Next.

14. Choose ‘current value’. Press Done.

15. In the generated code, replace 0 with “value”.

The final code should appear as
Simplicity for Java

A Thermostat Application

thing

ith

.

ice

rty
ecify

o
the

just
f

 the
int value = bean2.getValue();

jProgressBar3.setValue(value);

You can test this by turning the knob using the mouse. The progress bar should
respond by showing the mercury level.

Creating a Swing Application

In our application, we have used two parts from the Swing pages on the palette, the
JLabel and the JProgressBar. The application that we created, though, is still using
the AWT’s Frame and Panel to build the user interface. Since we want this
application to be written using Swing’s JFrame and JPanel, we have one more
to do.

1. At the top of the Composer window, press the ‘View Code’ button (the one w
the eye on it). Notice that the class uses Frame and Panel to build the user
interface.

2. At the top of the Composer window, choose ‘Thermostat’ from the Part List

3. Check the ‘Generate Swing Code’ checkbox.

4. Press the ‘View Code’ button again to refresh the code viewer window. Not
that the application now uses Swing’s JFrame and JPanel to build the user
interface.

Notice that the ‘Default close action’ field is enabled on the MainWindow prope
page when you select ‘Generate Swing Code’. This option makes it easy to sp
a default behavior when a JFrame is closed by the user.

5. Select ‘Dispose’ from the ‘Default close action’ field. This tells the window t
dispose of itself when the user requests that the window close. It saves us
work of creating a WindowListener which we previously did in Tutorial 1.

Finishing up

You can now save and exit the Composer. The Java source file that you have
created, Thermostat.java, will be written. (If you are using the Tryout version o
Simplicity for Java this will be disabled. The finished code is provided with the
tutorial, though.)

You can compile the Thermostat application by choosing ‘Java Source Files’ in
IDE Project Tree, right-clicking the ‘Thermostat.java’ (or
‘FinishedThermostat.java’) icon, and choosing Compile.
Simplicity for Java 35

Tutorial 3 - Using JavaBeans™ and Swing

36

E

r.
You can run the Thermostat application by choosing ‘Java Class Files’ in the ID
Project Tree, double-clicking the ‘Thermostat.class’ (or
‘FinishedThermostat.class’) icon, and pressing the Run button.

You can also test the application by invoking it directly from the Java interprete
Make sure that the Project directory and the Swingall.jar file are on your
CLASSPATH and use either of the following commands.

java Tutorial3.Thermostat

java Tutorial3.FinishedThermostat
Simplicity for Java

CHAPTER 5 Tutorial 4 -
Advanced Swing and JDBC
iate

l4.
This tutorial will guide you through creating a database application. By completing
this tutorial you will learn about

• using the Swing data models to control the content of a JTable

• accessing databases using JDBC

• managing groups in the IDE

It is estimated that this tutorial should take most people between 30 and 40 minutes
to complete. It is assumed that you have already completed the first tutorial. You
should already be familiar with the Simplicity IDE, creating simple layouts using
the Object Palette, and choosing event listeners.

A Database Application

If you haven’t already done so, start Simplicity for Java in the manner appropr
for your operating system. The Simplicity IDE should be on the screen.

Open a project

You will now open a project which came with Simplicity for Java called Tutoria
Simplicity for Java 37

Tutorial 4 - Advanced Swing and JDBC

38

o

r.

nce

e in

ed.
1. Choose Open from the File menu or from the welcome screen.

2. A small window will appear listing the names of all the available projects.
Choose ‘Tutorial4’ from the list and press the Ok button.

Creating the Database application

We will now create the database application. This application will allow users t
type an SQL query and view the results in a table.

1. In the IDE, choose ‘Create a Main App’ from the button bar. (The lightbulb
button).

2. Rename it ‘QueryTable.Main’ and then double-click it to open the Compose

3. Change the ‘Title Bar’ to ‘SQL Query Table’.

4. Check ‘Generate Swing Code’.

Create the layout

Our application has a very simple layout.

1. From the ‘Layouts’ page on the Object Palette, choose ‘Border’ and click o
in the Empty Space in the Working Model.

2. Select JScrollPane (Scroll) from the ‘Swing 2’ page, and click once in the
Center of the Border Layout. a ‘viewport’ will appear in the Center.

3. Select Table from the ‘Swing 2’ page, and click once in the viewport in the
Center of the Border Layout.

4. From the ‘Layouts’ page on the Object Palette, choose ‘Flow’ and click onc
the Empty Space in the ‘North’ of the Border Layout.

5. Select Label from the ‘Swing 1’ page, and click once in the Flow Layout.

6. Select TextField from the ‘Swing 2’ page, and click once in the Flow Layout.

7. From the Part List at the top of the Composer window, choose ‘border1’.
Uncheck ‘Show Empty Panel’. Do the same for ‘flow4’.

We will now set up some of the properties for the parts which we have just add

8. Click once on jLabel5.

9. Change the JLabel text to “Enter a query:”.

10. Click once on jTextField6.

11. Change the Object name to query.

12. Erase any text in JTextField text.
Simplicity for Java

A Database Application

se
and
xt

n’t
13. Change the Number of columns to 30.

14. Select ‘jTable3’ from the Part List. Change its Object name to ‘table’.

Using JDBC (Java Database Connectivity)

We will now add a few lines of code which will connect our application to a
database using JDBC. In this application we will use the SimpleText™ Databa
Server and JDBC Driver. (The SimpleText database is a free database server
JDBC implementation from Thought, Inc. written completely in Java. SimpleTe
is included with this tutorial so that the tutorial will operate consistently
everywhere. We wish to thank Thought, Inc. for allowing us to redistribute
SimpleText.)

To start we will need some variables to store data.

1. Select Goto declaration code from the Code menu in the Composer.

2. Type the following code. (All of the text after the “//” is a comment. It is
provided to help you understand the code. You don’t have to type it if you do
want to.)

// import various standard Java classes

import java.sql.*;

import java.util.*;

Connection db; // The JDBC connection

Statement statement; // an SQL statement

ResultSet rs; // an SQL ResultSet

ResultSetMetaData meta; // meta data describing the results

Vector data; // storage for the results

Next, we will connect to the database server in the constructor of our class.

3. Select Goto constructor code from the Code menu in the Composer.

4. Type the following code.

try {

// Load the database driver

new jdbc.SimpleText.SimpleTextDriver();

5. Press the Code Sourcerer button.

6. Choose ‘File operations...’ and press Next.

7. Choose ‘Create new file object from pathname...’ and press Next.
Simplicity for Java 39

Tutorial 4 - Advanced Swing and JDBC

40

st
8. Press the Browse button. Browse to
/Project/Tutorial4/Databases/ADDRESS.SBF in the Simplicity install directory.
Press Done. The Code Sourcerer will produce the appropriate code.

9. Press the Code Sourcerer button.

10. Choose ‘File operations...’ and press Next.

11. Choose ‘Get the directory from a File object...’ and press Next.

12. Leave the default value of ‘theFile’ and press Done.

13. Leave the default value of ‘dir’ and press Ok. The Code Sourcerer will produce
the following line of code.

String dir = theFile.getParent();

14. Type the following code.
Properties prop = new Properties();

prop.put("Directory",dir);

// Connect to the database

db = DriverManager.getConnection("jdbc:SimpleText",prop);

statement = db.createStatement();

} catch (SQLException e) {

}

15. Choose ‘Initialize Class’ from the Program menu to initialize the code you ju
typed.

We want to allow the user to type any valid SQL query in the JTextField and
display the results of the query in the JTable.

16. Click once on the JTextField named ‘query’ to view its properties.

17. Choose its Listeners page.

18. Check ‘Listen for Action events’. Select the new Action page which appears.

19. Type the following code.

// try to execute the query. If it fails, notify the user.

try {

// execute whatever the user typed in query

rs = statement.executeQuery(query.getText());

meta = rs.getMetaData();// get the Meta Data

data = new Vector();// initialize the data storage

while(rs.next()) {

for(int i=0;i<meta.getColumnCount();i++) {
Simplicity for Java

A Database Application

ry to
 the

ea).
// store the data in row order

data.addElement(rs.getString(i+1));

}

}

} catch (Exception e) {

getToolkit().beep(); // bad query

System.out.println("Bad SQL query: "+e.getMessage());

data = null;// indicate failure

}

// tell the table to update its contents

((AbstractTableModel)table.getModel())

.fireTableStructureChanged();

Test this code by typing “select * from address” in the TextField, and
then press enter. If any error occurs, a message will displayed.

Creating a TableModel

So far, we’ve connected to a database, we’ve set up code to send an SQL que
the database, and we’ve stored the results. We now want to be able to display
data. To do this we will create a TableModel.

1. From the Part List, select ‘table’ to view the properties of our JTable.

2. Choose the TableModel tab. This code area contains the methods which
describe the data we wish to place in the table.

3. Choose ‘getColumnCount’ from the method choice field (above the code ar

4. Enter the following code:
try {

return meta.getColumnCount();

} catch (Exception e) { return 0; }

5. Choose ‘getColumnName’ from the method choice field.

6. Enter the following code:
try {

return meta.getColumnName(columnIndex+1);

} catch (Exception e) { return "Error"; }

7. Choose ‘getRowCount’ from the method choice field.

8. Enter the following code:
try {
Simplicity for Java 41

Tutorial 4 - Advanced Swing and JDBC

42

code
ode,

ield

 the

DE

r.
return data.size()/meta.getColumnCount();

} catch (Exception e) { return 0; }

9. Choose ‘getValueAt’ from the method choice field.

10. Enter the following code:
try {

return data.elementAt(

meta.getColumnCount()*rowIndex + columnIndex);

} catch (Exception e) { return "Error"; };

The TableModel code is executed on the fly in the same manner as the event
which you are already familiar with. As you enter each of the above pieces of c
the table will show the results.

Working with SQL queries

Our program is finished. We can test it by entering SQL queries into the TextF
and pressing Enter. Try the following queries to see what they do.

select * from address

select Name,State from address

select * from address where state=’OH’

select Name,City from address where state=’OH’

Finishing up

You can now save and exit the Composer. The Java source file that you have just
created, QueryTable.java, will be written. (If you are using the Tryout version of
Simplicity for Java this will be disabled. The finished code is provided with the
tutorial, though.)

You can compile the QueryTable application by choosing ‘Java Source Files’ in
IDE Project Tree, right-clicking the ‘QueryTable.java’ (or
‘FinishedQueryTable.java’) icon, and choosing Compile.

You can run the QueryTable application by choosing ‘Java Class Files’ in the I
Project Tree, double-clicking the ‘QueryTable.class’ (or
‘FinishedQueryTable.class’) icon, and pressing the Run button.

You can also test the application by invoking it directly from the Java interprete
Make sure that the Project directory and the Swingall.jar file are on your
CLASSPATH and use either of the following commands.
Simplicity for Java

A Database Application
java Tutorial4.QueryTable
java Tutorial4.FinishedQueryTable
Simplicity for Java 43

Tutorial 4 - Advanced Swing and JDBC

44
 Simplicity for Java

CHAPTER 6 Tutorial 5 -
Using the Canvas Composer
iate

l5.
This tutorial will guide you through creating a small traffic light JavaBean, and
inserting it into a program. By completing this tutorial you will learn about

• The Canvas Composer

• Creating and using your own JavaBeans

It is estimated that this tutorial should take most people 40 minutes to complete. It
is assumed that you have already completed the first tutorial. You should already
be familiar with the Simplicity IDE, creating simple layouts using the Object
Palette, choosing event listeners, and using the Code Sourcerer.

A Traffic Light JavaBean

If you haven’t already done so, start Simplicity for Java in the manner appropr
for your operating system. The Simplicity IDE should be on the screen.

Open a project

You will now open a project which came with Simplicity for Java called Tutoria

1. Choose Open from the File menu or from the welcome screen.
Simplicity for Java 45

Tutorial 5 - Using the Canvas Composer

46

the

p

or

w

e of

cial

e
2. A small window will appear listing the names of all the available projects.
Choose ‘Tutorial5’ from the list and press the Ok button.

Creating the Traffic Light

We will now create the traffic light.

1. In the IDE, choose ‘Create a Canvas’ from the button bar (The button with
Square, Circle, and line). A new file will be created with a name similar to
‘Untitled0.Canvas’.

2. Control-click on the new Canvas file, and choose ‘Rename’ from the pop-u
menu which will appear. You will now be able to edit the name of the new
Canvas file.

3. Rename the new file ‘TrafficLight’. Simplicity will add .Canvas to the name f
you, if needed.

4. Double-click TrafficLight.Canvas. The Canvas Composer will open your ne
file.

Set the Size of the Canvas

The Canvas is the area where you will be working. It is possible to edit the siz
the Canvas whenever you like, but in this tutorial, you will only change it once.

1. Make sure you are looking at the Canvas Composer.

2. Choose the “Canvas Methods” tab on the Canvas Composer. This is a spe
tab which only appears in the Canvas Composer.

3. Use the choice box to the left of the Code Sourcerer button to choose
getPreferredSize().

You should see the following code:

return new Dimension(200,200);

This is the code which tells Simplicity how large the Canvas should be. It will b
easier to work with a larger Canvas. Edit the code so that it reads

return new Dimension(300,300);

The Canvas window will change to reflect the new, larger, size.
Simplicity for Java

A Traffic Light JavaBean

ser.

the

e
d

 to
.

ngle
Set up initial variables.

Next you will set up some variables for the traffic light.

1. Choose “Goto declaration code” from the Code menu of the Canvas Compo

2. Type the following lines into the text area. This text could be created using
Code Sourcerer, using “Declare a new variable...” and then adjusting the
various settings.

static final int RED = 0;

static final int YELLOW = 1;

static final int GREEN = 2;

int state = 0;

These lines of code create a variable called ‘state’ which stores which color th
traffic light should display, and define three possible states, RED, YELLOW, an
GREEN.

3. Choose “Initialize Class” from the Program menu. This will cause Simplicity
restart the working model, giving it access to the variables you just created

Drawing the Traffic Light

We will now start to draw the traffic light itself.

1. Choose “Rectangle” from the Graphics page of the Object Palette.

2. Drag on the working model to get a rectangle that looks like the outer recta
in the picture below.
Simplicity for Java 47

Tutorial 5 - Using the Canvas Composer

48

wn

gle.

that
ou

va

o
Next we will change the color to orange and draw the inner part of the traffic light.

3. Choose “Orange” from the Color page of the Object Palette.

4. Click once anywhere on the working model. Now the next thing which is dra
will be orange.

5. Choose “Filled Rectangle” from the Graphics page of the Object Palette.

6. Draw a Filled rectangle inside the first similar to the inner rectangle in the
figure.

Now you will start to set up some code which will let the traffic light display the
three lights.

7. Click on the Code Sourcerer button in the Simplicity Composer.

8. Choose Java Language Statements... and press the Next button.

9. Choose if ... and press the Next button.

10. type “state == RED” in the conditions box, and press the Done button.

Now you will draw the first of the bulbs of the traffic light.

11. Choose “Red” from the Color page of the Object Palette.

12. Click once anywhere on the working model.

13. Choose “Filled Oval” from the Graphics page of the Object Palette.

14. Hold down the control key and drag the oval near the top third of the rectan
The control key constrains the oval to be a circle.

If you wish to change the location or the size of the circle, you may edit the line
was just generated in the Simplicity Composer. If you dislike the circle that y
drew, you could also erase the line that was generated and try again.

The second and third bulbs are set up and drawn in a very similar manner.

15. Click on the Code Sourcerer button in the Simplicity Composer. Choose Ja
Language Statements... and press the Next button.

16. Choose if... and press the Next button.

17. type “state == YELLOW” in the conditions box, and press the Done button.

18. Choose “Yellow” from the Color page of the Object Palette.

19. Click once anywhere on the working model.

20. Choose “Filled Oval” from the Graphics page of the Object Palette.

21. Hold down the control key and drag over the middle third of the rectangle, t
draw a circle.
Simplicity for Java

A Traffic Light JavaBean

ode

ide
se

22. Press the Code Sourcerer button in the Simplicity Composer. Choose Java
Language Statements... and press the Next button.

23. Choose if... and press the Next button.

24. type “state == GREEN” in the conditions box, and press the Done button.

25. Choose “Green” from the Color page of the Object Palette.

26. Click once anywhere on the working model.

27. Choose “Filled Oval” from the Graphics page of the Object Palette.

28. Hold down the control key and drag the oval over the bottom third of the
rectangle to draw a circle. Your traffic light should now look like the figure.

29. Now you must do some editing of the generated code. The last part of the c
which is generated will look like this:

if (state == RED) {

// type statements that will happen if the above is true.

}

g.setColor(Color.red);

g.fillOval(79,33,29,29);

if (state == YELLOW) {

// type statements that will happen if the above is true.

}

g.setColor(Color.yellow);

g.fillOval(79,66,29,29);

if (state == GREEN) {

// type statements that will happen if the above is true.

}

g.setColor(Color.yellow);

g.fillOval(79,100,29,29);

You need to change the code so that the setColor and fillOval methods are ins
their respective if statements. This is easily accomplished by deleting each clo
bracket, “}”, and typing it after the following fillOval method. You may also wish
to adjust the tabs in the code. This section of your code will now look like this:

if (state == RED) {

// type statements that will happen if the above is true.

g.setColor(Color.red);

g.fillOval(79,33,29,29);

}

if (state == YELLOW) {

// type statements that will happen if the above is true.

g.setColor(Color.yellow);
Simplicity for Java 49

Tutorial 5 - Using the Canvas Composer

50

r.

yes”.

ee

ass
g.fillOval(79,66,29,29);

}

if (state == GREEN) {

// type statements that will happen if the above is true.

g.setColor(Color.green);

g.fillOval(79,100,29,29);

}

Light changing methods

We will now create the methods to control the state of the traffic light.

1. Choose “Goto method code” from the Code menu in the Canvas Compose

2. Type the following code into the method section:
public int getState() {

return state;
}
public void setState(int state) {

this.state = state;
repaint();

}
public void cycle() {

state++;
if (state > GREEN) state = RED;
repaint();

}

3. Close the Canvas Composer by choosing ‘Exit’ from the file menu in the
Composer. When you are asked if you wish to save your changes, answer “
If you are running the tryout version of Simplicity for Java, you may use
FinishedTrafficLight.java for the rest of this Tutorial.

4. In the Simplicity IDE, click on the ‘Java Source Files’ Group in the Project Tr
to see the file that was just created, TrafficLight.java.

5. Control-click TrafficLight.java in the IDE.

6. Choose ‘Compile’ from the pop-up menu which will appear.

7. Choose ‘Java Class Files’ or ‘All Files’ in the Project Tree to see the new cl
file that you’ve created.
Simplicity for Java

A Traffic Light JavaBean

nu.

 and

e

t,

ut.

ide

k

is
Creating the main application

You have just created a JavaBean! Now you will make a simple application which
will use the traffic light.

1. Choose the ‘Composer Files’ group in the Project Tree.

2. Create a new Main Application by choosing “Main App” from the Create me

3. Control-click on the new Main application file in the IDE, and then choose
“Rename” from the pop-up menu that appears.

4. Rename the newly created main application “RunTraffic”.

5. Double-click the RunTraffic icon to open the Composer.

6. From the Layouts page of the Object Palette, choose Border.

7. Click once in the Empty space in the Working Model. A new Border Layout
appears. You will see five empty spaces, labeled North, South, East, West,
Center.

8. Select Button from the Basic page of the Object Palette

9. Click once in the South of the Border Layout. The button you created will b
used to cycle the traffic light.

10. Choose the ‘Beans’ page of the Object Palette. Your JavaBean, TrafficLigh
has been automatically placed on this page.

11. Choose TrafficLight and then click in the Center section of the Border Layo

12. Click in the Composer window. Change the ‘ObjectName’ of your bean to
‘theLight’.

13. Choose “Hide all empty panels” from the Parts menu. This is a fast way to h
the empty panels in the Working Model.

Now you will make the button change the traffic light.

14. Press the button at the bottom of the working model. Its properties noteboo
will appear in the Composer.

15. Change the ‘Button text’ to “Cycle Light”.

16. Choose the Listeners page from the properties notebook of the button.

17. Select ‘Listen for Action events’.

18. A new page appears in the properties notebook, called “Action”. Choose th
page, and then add the following code to the actionPerformed area:

theLight.cycle();
Simplicity for Java 51

Tutorial 5 - Using the Canvas Composer

52

. In

rer

r

The traffic light demo is now almost finished. You can test it out by clicking on the
“Cycle Light” button a few times.

You still need to tell your program what it should do when its window is closed
this Tutorial, the program will quit when its window is closed.

1. Toward the top of the Composer window, find the part list Choice box and
choose the first item, ‘RunTraffic’.

2. Select the ‘Listeners’ page.

3. Select ‘Listen for window events’. A new page appears in the properties
notebook called ‘Window’. Select this new page.

4. Choose ‘windowClosing’ from the Choice box to the left of the Code Source
button.

5. Press the Code Sourcerer button.

6. Choose ‘Java system operations...’, and press the Next button.

7. Choose ‘Exit the program with termination code’, and press the Done button.

The Code Sourcerer will generate the appropriate code for the program to quit
when its window is closed. If you run this from within Simplicity, Simplicity will
indicate to you that the program has tried to quit by displaying a dialog.

Finishing up

There are now just a few steps left.

1. Close the composer. When asked if you want to save your changes, answe
“yes”.

2. In the IDE, choose ‘Java Source Files’ in the Project Tree. Control-click the
RunTraffic.java file (use FinishedRunTraffic if you are using the Tryout
version). Choose ‘Compile & Run’ from the pop-up menu. Simplicity will
compile the source file and then run the program.
Simplicity for Java

CHAPTER 7 Integrated Design Environment

This chapter will discuss Simplicity’s Integrated Design Environment (IDE) and
how to use it to build and manipulate projects.

It will cover

• The IDE window, button bar, and menu bar

• File Groups

• Editing the Classpath

• Adding Folders

• Creating and importing files

• Program settings
Simplicity for Java 53

Integrated Design Environment

54

Project Tree

Group Contents Box
The IDE Window

The first window which appears after Simplicity for Java is started is the IDE
Window.

The IDE is centered around the Project Tree. The Project Tree organizes all of the
elements in your project into three key areas:

• Project Groups

• Classpath

• Folders

The Classpath and the Folders areas will be discussed first, then the Project Groups.
Simplicity for Java

The IDE Window

ses

l
licity
e
hin

ct to
ry
will
aving

It can
ind

odes
a. A

g the
E.
The Classpath

The Classpath is where Simplicity looks for Java classes on your hard drive. It can
include directories, Zip files, and Jar files. The Classpath should indicate
directories at the root of the subtree of your java files. If a user wishes to access the
class datarep.common.Util, and the datarep directory is located inside a directory
named MyProjects, the Classpath would need an entry similar to
/home/user/MyProjects. Simplicity will search through the Classpath
starting at the top, and stopping when the specified class is found.

Simplicity is started using a “primordial Classpath” which contains the core clas
that Simplicity requires. This primordial classpath cannot be edited from within
Simplicity, and so it is not displayed in the Project Tree. Simplicity will always
check the dynamic Classpath first when looking for classes, then the primordia
Classpath. It is recommended, therefore, that the Classpath used to start Simp
be as simple as possible (just the Simplicity.zip file, the Swingall.jar file, and th
datarep_common.jar file), and all other changes to the Classpath be made wit
Simplicity.

Simplicity will generate package statements based on where a file is with respe
the Classpath. In the example above, files created in the “MyProjects” directo
will not have any package statements. Files created in the “datarep” directory
be made part of the “datarep” package. Complex packages can be created by h
folders inside of folders.

The Folders area

The Folders area is a place to put any directory that you want quick access to.
be used to quickly traverse and view folders which are commonly used, or to f
other files in the user’s file system.

Using the Classpath and the Folders area

It is possible to navigate the Classpath or the Folders area by expanding the n
in the tree view of the directories which is displayed in the Groups List box are
node with a minus sign is expanded. A node with a plus sign is collapsed.

Items may be added or removed from the Classpath and the Folders area usin
Classpath editor and the Folders editor, both found on the Edit Menu in the ID
Simplicity for Java 55

Integrated Design Environment

56

iles

s

r the
only

he

, the
right
Project Groups

A project can also be organized into groups of related items. The Groups in a
project are listed in the first area of the Project Tree and can be modified by
choosing Edit Groups from the Edit menu

A group consists of fields.

1. Group Name

2. Group Directory

3. Group Extensions

The user can edit any Group and modify the directory to be searched and the
filename extensions to be included. The directory may be specified relative to the
project’s directory, or as a fully qualified path. This allows a project to access f
located anywhere on the user’s file system. Any number of extensions may be
specified. If no extensions are specified, all files in the directory are included a
well as the parent directory (‘..’) allowing complete file system navigation. Any
group whose extensions include gif, jpg, or xbm will be included in any Image
Selection Dialog.

Groups can also be used to filter the files which are viewed in the Classpath o
Folders area. If a group is chosen from the drop-down menu on the menubar,
files with the appropriate extensions will be viewed. This can be useful when
directories with many files in them are being viewed.

Editing parts of the Project Tree

The Project Groups, the Classpath, and the Folders area can all be edited in t
IDE.

Editing Groups using the IDE Group Editor

The IDE Group Editor lists the current groups. When the user chooses a Group
group’s fields are displayed. The values can be edited in the entry fields on the
of the Group Editor.

The following commands are available.

• New Create a new Group, initially named ‘new group’.
Simplicity for Java

Editing parts of the Project Tree

nd
• Up Move the selected Group one position upward in the Project Tree.

• Down Move the selected Group one position downward in the Project Tree.

• Delete Erase the selected Group.

• Ok Accept the changes.

• Cancel Dismiss the changes.

Editing The Classpath

The Classpath Editor lets the user manipulate the items on the Classpath and add
new directories or Jar/Zip files. The following commands are available.

• Up Move the selected directory or Jar/Zip file one position upward in the
Classpath.

• Down Move the selected directory or Jar/Zip file one position downward in the
Classpath.

• Remove Remove the selected directory or Jar/Zip file from the Classpath.

• Add directory Opens a new dialog to choose a directory to add to the Classpath.
The current directory is shown at the top of the dialog. The special files “..” a
“.” are displayed. It is possible to move to the parent directory by
double-clicking on the “..” file. The “.” file signifies the current directory.

• Add Jar/Zip file Opens a system-dependent dialog to choose a Jar or Zip file to
add to the Classpath.

• Ok Accept the changes to the Classpath.

• Cancel Dismiss the changes to the Classpath.

Editing The Folders area

The Folder List Editor lets the user manipulate the items in the Folders area and add
new directories or Jar/Zip files. The Folder List Editor is similar to the Classpath
Editor. The following commands are available.

• Up Move the selected directory or Jar/Zip file one position upward in the
Folders area.

• Down Move the selected directory or Jar/Zip file one position downward in the
Folders area.

• Remove Remove the selected directory or Jar/Zip file from the Folders area.

• Add directory Opens a new dialog to choose a directory to add to the Folders
area. The current directory is shown at the top of the dialog. The special files
Simplicity for Java 57

Integrated Design Environment

58

enu
 to

 be
“..” and “.” are displayed. It is possible to move to the parent directory by
double-clicking on the “..” file. The “.” file signifies the current directory.

• Add Jar/Zip file Opens a system-dependent dialog to choose a Jar or Zip file to
add to the Folders area.

• Ok Accept the changes.

• Cancel Dismiss the changes.

Opening items in the Group Contents Box

Choosing any item in the Project Tree displays its contents in the Group Contents
Box.

The Group Contents Box shows the name of each item in the group alongside an
icon which indicates the type of item and the behavior of the item when opened.
The Group Contents Box is aware of and has special behaviors for

• Composer Files (*.Main, *.Frame, *.Window, *.Dialog, *.Panel, *.Canvas, and
*.Object)

• Image files (*.gif, *.jpg, *.xbm)

• Sound files (*.au, *.wav)

• Java source files (*.java)

• Java class files (*.class)

• Java archives (*.zip, *.jar)

• Text and HTML files (*.txt, *.html, *.htm)

• Java Beans

• Folders

Each item has a pop-up menu associated with it which contains those actions that
are appropriate for the selected item. For example, a Java class file’s pop-up m
has the default options: Open, Copy, Rename, and Delete as well as an option
invoke the compiler.

The first action on an item’s popup menu is always Open. This action can also
performed by double clicking the item.

• Opening a Composer file will launch the Simplicity Composer. These files store
the contents of a Main Application or Applet, a Frame, a Window, a Panel, or an
Object Composer.
Simplicity for Java

IDE Menu Bar
• Opening a Java source file will launch the Simplicity Java Editor. This default
action may be overridden in the Program Settings in order to specify a preferred
Editor.

• Opening a Java class file or Java Bean will launch the Simplicity Class Viewer
which will allow inspection of the contents of that class. If the class has a
public static void main(String[]) method, the Class Viewer will
also include a button which will execute this program entry point.

• Opening an HTML file will launch the preferred web browser specified in the
Program Settings.

• Opening an Image file will launch the Simplicity Image Viewer. This default
action may be overridden in the Program Settings in order to specify a
full-featured image editor.

• Opening a Sound file will launch the Simplicity Sound Player. This default
action may be overridden in the Program Settings in order to specify a
full-featured sound editor.

• Opening a folder will display the contents of that folder in the Group Contents
Box. Folders only appear when all files are being displayed.

• Opening all other files will launch a Text Editor.

IDE Menu Bar

The IDE Menu Bar provides a set of commands for manipulating items in a project.
The Menu Bar also provides commands for opening, saving, and closing projects as
well as exiting from Simplicity and getting help.
Simplicity for Java 59

Integrated Design Environment

60

re

ied
 of
l be
IDE Button Bar

The IDE Button Bar provides easy access to the most commonly used menu items.

File Menu

The File menu has the following options.

• New Project... This option will prompt the user for the name of a new project to
create, and the project’s main directory. The main directory can be anywhe
the user chooses. A Browse... button is available to help the user choose the
location. If needed, the project’s main directory will be created at the specif
place. Once the main directory is specified, Simplicity will then create a set
directories for the new project. If a project was previously open, the user wil
given the option of saving any changes before it is closed.

• Open Project... This option will prompt the user to select one of the projects
that has previously been created. Projects may be anywhere the user wishes.
The Project Directory (used in Simplicity 1.1 and earlier) may still be used, but
it is not necessary. If a project created in Simplicity 1.1 does not appear in the
list, try using the Migrate Old Projects... menu item. If this menu item is chosen
when a project is already open, the user will be given the option of saving any
changes before it is closed.

• Save Project This option will save any changes to the current project.

• Close Project This option will close the current project. The user will be given
the option of saving any changes before it is closed.

• Migrate Old Projects... This option will allow Simplicity to import projects
from earlier versions of Simplicity. The user may choose a Project directory,
and then pick which projects to import. After using this option, the projects will

Save
Load
New

Create a new Object

Create a new Frame

Create a new Window

Create a new Dialog

Create a new Panel

Create a new Canvas

Create a new Main Application/Applet

Create a new Java Source file
File filter
Simplicity for Java

IDE Menu Bar
appear in the list given by Open Project... To share projects from Simplicity 1.2
or later, simply copy the .Simplicity file corresponding to the desired project
into the Personal Settings Directory.

• Program Settings... This option will launch the Program Settings Dialog
(page 64) which allows the user to modify many aspects of how Simplicity for
Java operates. All changes are applied after the user presses the Ok button and
affect all projects.

• Show Console/Hide Console These options will make visible or hide the Java
Input/Output Console.

• Exit This option will exit from Simplicity for Java. If a project was previously
open, the user will be given the option of saving any changes before it is closed.

Edit Menu

The Edit menu has the following options. Those options which modify items will
make permanent changes to files on your hard drive.

• Open Selection This option will open the item in the Group Contents Box
which has been selected with the mouse. This has the same effect as double
clicking an item or choosing Open from an item’s pop-up menu.

• Close Selection This option will close the item in the Group Contents Box
which has been selected with the mouse.

• Rename Selection This option will allow the user to change the name of an
item. A text field will appear in place of the item containing the old name.
Pressing the mouse button anywhere outside the text field will accept the
change. This has the same effect as choosing Rename from an item’s pop-up
menu.

• Copy Selection This option will make a copy of an item. This has the same
effect as choosing Copy from an item’s pop-up menu.

• Delete Selection This option will delete an item.This has the same effect as
choosing Delete from an item’s pop-up menu.

• Refresh This option will cause the Group Contents Box to update itself with any
changes that have been made to the project directory. This may be necessary
when external programs create or modify files in a project.

• Edit Groups This option will launch the Group Editor. This will allow the list of
groups to be modified.
Simplicity for Java 61

Integrated Design Environment

62

s
 be
• Edit Classpath This option will let the user interactively add folders and/or Zip
files to the Classpath. They will be available immediately. They will also be
shown immediately in the IDE’s main window.

• Edit Folders This option will let the user interactively add folders to the IDE’
main window. This can be a useful way to access files which do not have to
in the Classpath.

Create Menu

The Create menu has the following options. The user may need to select an
appropriate group in order to see the new item.

• Main App This option will create a new Main Application/Applet Composer
file. This will allow the user to create a new java program.

• Frame This option will create a new Frame Composer file. This will allow the
user to create a framed window which can be launched from a program.

• Window This option will create a new Window Composer file. This will allow
the user to create an unframed window which can be launched from a frame.

• Dialog This option will create a new Dialog Composer file. This will allow the
user to create a (possibly modal) dialog which can be launched from a frame.

• Panel This option will create a new Panel Composer file. This will allow the
user to create a reusable compound object which can be inserted into other
Composer files.

• Canvas This option will create a new Canvas Composer file.

• Object This option will create a new Object Composer file. This will allow the
user to create a non-graphical object which can be used in other Composer files.

• Java File This option will create a new empty Java source file.

• Text File This option will create a new empty text file.

• Data File This option will create a new empty binary data file.

• HTML File This option will create a new empty HTML file.

• Image File This option will create a new graphic file. It is useful as a template
or place holder for a graphic that will be created later.

• Sound File This option will create a new sound file. It is useful as a template or
place holder for a sound that will be created later.

• Folder This option will create a new folder.
Simplicity for Java

IDE Menu Bar

be

any

ill
Import Menu

The Import menu has the following options. The user may need to select an
appropriate group in order to see the new item.

• JavaBeans This menu item will launch the ‘Import JavaBeans Dialog’. The
user will be presented with a tree view of the current classpath. Beans can
selected from the ‘Available Classes’ list and added by pressing the ‘Add’
button. Those beans which subclass java.awt.Component will be added to
Composer’s Object Palette.

• Text File This option will import a text file.

• Data File This option will import a binary data file.

• HTML File This option will import an HTML file.

• Image File This option will import an Image file.

• Sound File This option will import a Sound file.

Project Menu

The Project menu has options for operations affecting an entire project

• Compile project Compile all Java source files in the Project directory.

• Compile current group Compile all Java source files in the currently selected
group.

• New command window... Opens a new Java Command window (see page 127).

Help Menu

The Help menu has the following options.

• User Guide... This option will show the user a hyper-linked table of contents of
the Simplicity for Java User Guide (This book!).

• Tutorials... This option will show the user the table of contents for the
Simplicity for Java Tutorials.

• About Simplicity... This option will show the user the Simplicity for Java
‘About Box’ and version information. Clicking the mouse button anywhere w
dismiss the about box.
Simplicity for Java 63

Integrated Design Environment

64

piler
this

is
Program Settings

The program settings dialog has five pages.

• Directories

• External Editors

• Object Palette

• Java Editor

• Printing

Directories

The Directories page contains the following fields.

• Simplicity Installation Directory This is the directory where Simplicity’s core
files are stored. You cannot change this information here.

Example: C:\Program Files\Simplicity

• Personal Settings Directory This is the directory where the information that
Simplicity creates about projects will be stored. The personal settings file and
other files that Simplicity needs will also be stored here. You cannot change this
information here.

Example: C:\Program Files\Simplicity\.simplicity
See page 6 for more details.

• Preferred Java Compiler If this field is left blank, then Simplicity for Java will
attempt to use the Java compiler which is built into your platform’s Java
Development kit. The user can override this behavior to use a different com
by specifying a command here. For most purposes it is preferable to leave
field blank.

Example: C:\jdk1.1.5\bin\java.exe

• Preferred JDB Command If this field is left blank, then Simplicity for Java will
attempt to use the JDB debugger which is built into your platform’s Java
Development kit. The user can override this behavior to use a different
JDB-compatible debugger by specifying a command here. In most cases th
field should be left blank, as the debugger is very sensitive to different
environments.

• Show Opening Dialog If checked, a welcome screen will appear when
Simplicity is first started, presenting the user with three choices: Open an
existing project, create a new project, or view the tutorials.
Simplicity for Java

Program Settings

ed

ed

fy

ite

t
tte so
ser’s

e the
External Editors

The External Editors page contains the following text fields.

• Preferred Web Browser This is the full path to the web browser in which the
user has chosen to view HTML pages.

Example: /usr/local/bin/netscape

• Preferred Image Editor If this field is left blank, then images will be viewed
with Simplicity for Java’s Image Viewer. Otherwise, the image editor specifi
here will be launched to view images.

Example: C:\Program Files\PhotoShop\PhotoShop.exe

• Preferred Sound Editor If this field is left blank, then sounds will be played
with Simplicity for Java’s Sound Player. Otherwise, the sound editor specifi
here will be launched to edit sound files.

Example: C:\WinNT\System32\Sndrec32.exe

• Preferred Java Editor If this field is left blank, then Java source files will be
edited with Simplicity for Java’s Java Editor. Otherwise, the user may speci
their favorite editor here.

Example: /usr/bin/vi

• Preferred Text Editor If this field is left blank, then text files will be edited with
Simplicity for Java’s Text Editor. Otherwise, the user may specify their favor
editor here.

Example: C:\Win95\Notepad.exe

Object Palette

Video display size and quality can vary greatly between computers. The Objec
Palette Customizer lets the user adjust the size and behavior of the Object Pale
that it will be clear and easy to use without wasting unnecessary space on the u
video display. A small sample palette is provided, so that the user may observ
effect of changes immediately. The following settings may be adjusted.

• Spacing The icons in the palette will be spaced this many pixels apart.

• Shadow The icons will cast a shadow this many pixels deep. The depressed icon
will cast a shadow half this number.

• Enable Flyouts If selected, icons will popup a small window containing the text
of the icon. This is particularly useful if Pictures Only is selected.

• Show palette as These three radio buttons allow the user to indicate that icons
should be shown using pictures, text, or both.
Simplicity for Java 65

Integrated Design Environment

66

ice

ava

sted.

uide
• Size This slider lets the user indicate how large icons should be. This is very
useful for small displays.

• Scaling Algorithm This choice field lets the user choose which algorithm to use
to scale the icons. While “Smooth Scaling” is often the best choice, the cho
which appears most attractive may vary on different platforms.

Java Editor

The Java Editor Customizer lets the user customize how Simplicity for Java’s J
Editor should operate. A small sample editor is provided so that the user may
observe the effect of changes immediately. The following settings may be adju

• Background The background color.

• Foreground The color for class names and variable names.

• Keywords The color for Java Keywords (e.g. int, for, class, void,...).

• Numbers The color for numbers (e.g. 3, 3.14, 3e-5, 0x0011,...).

• Strings The color for text strings (e.g. “hello” , “\”” ,...).

• Characters The color for characters (e.g. ‘a’ , ‘\\’ , ‘\011’ ,...).

• Operators The color for Java operators (e.g. +, -, =, ==, [],...).

• Comments The color for comments (e.g. /* comment */).

• Errors The color for lexical errors (e.g. bad@name).

• Enable Auto-tab Enabling this option inserts tab characters when the
Return/Enter key is pressed so that the new line lines up with the previous line.

• Substitute spaces for tabs Enabling this option will replace tabs with spaces, the
number of which is determined by the Tab Size.

• Font The display font.

• Tab Size The number of characters in each tabstop. The width of an ‘n’
character of the chosen font is used to compute the tab stop width.

Printing

This settings page complements the Java Editor page by providing settings specific
to printing Java Source code to a printer. A preview is provided to serve as a g
to the appearance of the printed page.

• Margins These four fields specify the top, bottom, left, and right margins on the
printed page.
Simplicity for Java

Program Settings
• Tab size This field specifies the size, in inches, of tabs. This can have a large
effect on the printing of source code.

• Wrap long lines If selected, lines which extend beyond the right margin will be
wrapped to the next line. This option may make printed output appear less
attractive, though it ensures that all text is printed.

• Print page headers Select this option to print a header on the top of each page.
The header will include the filename and the page number. The first page will
also include the current date.

• Printer font The font to be used for printing
Simplicity for Java 67

Integrated Design Environment

68
 Simplicity for Java

CHAPTER 8 Java Source Code Editor
This chapter will discuss Simplicity’s Java Source Code Editor. The Editor is
designed to provide many powerful tools for working writing Java code, while
being easy to learn and use.

This chapter will cover:

• Basic Editing

• Printing

• Search and Replace

• Using the Sourcerer’s Apprentice

• Configuration

Editing

The general design of the Java Source Editor is intended to be familiar for users.
General text editing, cursor movement with the keyboard and mouse, as well as
selecting text using the mouse all operate in the standard fashion as most other text
editors.
Simplicity for Java 69

Java Source Code Editor

70
The Java Source Editor can be used as a standalone editor within the Simplicity
IDE. It is also used within the Composer anywhere that code areas appear. The
standalone editor has a menubar at the top for accessing its features, as well as a
pop-up menu containing most features. When the editor is used in a Composer,
only the popup-menu is available. In addition most menu items have keyboard
shortcuts available.

File Menu

• New clears any text in the editor in order to start a new document. The user will
be prompted to save any unsaved changes.

• Open... displays a dialog for the user to select a new file to edit. The user will be
prompted to save any unsaved changes.

• Save saves the current document.

• Save As... saves the current document to a new file name.

• Print... lets the user print the current document. If the printer supports color, the
color-syntax display will be printed in color. This item first displays an
operating system-specific print dialog, allowing the user to customize the print
job.

• Exit closes the editor. The user will be prompted to save any unsaved changes.

Edit Menu

• Undo undoes the last operation. This can be used as many times as the user
wishes to undo changes. All operations in the editor can be undone.

• Redo is the opposite of Undo. Once an edit has been undone, it can be redone
until another edit is performed.

• Cut removes the selected text from the editor and places it on the system
clipboard.

• Copy copies the selected text to the system clipboard.

• Paste pastes any text in the system clipboard into the editor at the cursor.

• Delete deletes the selected text.

• Select All selects all text in the editor.

• Sourcerer’s Apprentice... displays the methods and fields in a particular class.
See Sourcerer’s Apprentice on page 73.

• Goto... displays a dialog letting the user jump to a specific line in the code.
Simplicity for Java

Editing

m
• Search & Replace... displays a dialog letting the user search for some text and
optionally replace it with new text. See Search & Replace.

To facilitate fast editing, the following keyboard shortcuts are available:

Holding down the Shift key while using the arrow keys can also be used to select
text using the keyboard.

Indentation Features

The Java Source Editor can optionally auto-indent when the user presses the Enter
key. This saves time by automatically adding the same number of tabs at the
beginning of a new line as the previous line.

The user can also change the indentation level of a block of code by selecting the
code and then pressing tab. The entire block will be indented. Shift-Tab will
remove an indentation tab from the block.

The tab size and the auto-indent feature can be configured in the IDE’s progra
settings.

TABLE 1.

Feature Keyboard Sequence Alternate Sequence

Cut Ctrl-X Shift-Delete

Copy Ctrl-C Ctrl-Insert

Paste Ctrl-V Shift-Insert

Delete Delete

Select All Ctrl-A

Undo Ctrl-U Ctrl-LeftArrow

Redo Ctrl-R Ctrl-RightArrow

Goto... Ctrl-G

Search & Replace... Ctrl-F Ctrl-S

Sourcerer’s Apprentice Ctrl-Space F1
Simplicity for Java 71

Java Source Code Editor

72

 The
ped
h

ava

 A
king

orm

uld

any
Color and Printing Features

The Java Source Editor can identify various Java language elements by displaying
each in a different color. The language elements that it can identify are: keywords,
number, strings, characters, operators and comments. Each of these may be
assigned an individual color in the Program Settings. Additionally, the background
and foreground colors can be specified, and a screen font can be chosen.

When printing a Java source file, all of the color settings (with the exception of
background) will be used if the printer supports color printing. The user can also
specify page margins and a printer font in the Program Settings’ Printing page.
user can also indicate whether long lines should be wrapped (they will be wrap
at word boundaries), and whether a header should be printed at the top of eac
page.

To print a Java source file, select the print command on the File menu of the J
Source Editor. An operating system-specific dialog will appear displaying any
options for the available printer(s). After the user confirms this dialog, the
document will be printed.

Search & Replace

The Java Source Editor’s ‘Search & Replace’ dialog lets the user find any
occurrences of a text string and optionally replace them with a new text string.
single ‘Search & Replace’ dialog is shared between all Java Source Editors, ma
it easy to perform the same search on multiple files. The dialog will always perf
the search in the Editor which currently has the focus.

The search can be performed in three modes:

• Ignore case finds any matches with the same letters, but ignoring the case of the
letters. For example, ‘java’ would find occurrences of ‘java’, ‘JAVA’, and
‘jAvA’.

• Match case finds any matches with the same letters. For example, ‘java’ wo
find only occurrences of ‘java’, and not ‘JAVA’ or ‘jAvA’.

• Match Perl 5 regular expressions finds matches based on the regular
expressions syntax of the Perl 5 language. For example, ‘ [a-c]* ’ matches
word starting with ‘a’, ‘b’, or ‘c’.

The following buttons are available for searching:
Simplicity for Java

Editing

.

te

able

er’s
lass.
ser

n

 then
• Find Next finds the next occurrence of the string in the ‘Find what:’ text field
The search is always performed starting at the cursor location. If a match is
found, it will be highlighted in the editor, otherwise a beep sound will indica
no match.

• Replace will replace the highlighted text in the editor with the text in the
‘Replace with:’ text field. It will then automatically perform a find operation.

• Replace All will replace all occurrences of the search string with the
replacement string.

• Cancel will dismiss the Search dialog.

All replacement operations can be undone in the editor.

The Sourcerer’s Apprentice

The Sourcerer’s Apprentice lets the user quickly view and select from the avail
methods and fields in a class. This feature is invoked from the menubar or
popup-menu, or by pressing Ctrl-Space or F1. When this is done, the Sourcer
Apprentice takes the Java identifier to the left of the cursor and determines its c
It then displays a dialog showing all the methods and fields in that class. The u
can select a method or field which will then be displayed at the bottom of the
dialog. If a method is selected, default arguments will be provided. The user ca
edit this code if they wish. When the OK button is pressed, this code will be
inserted in the editor at the cursor’s position. The Cancel button dismisses the
dialog without making any changes to the code.

For example, if a section of code has a String object named ‘str’, typing str and
pressing Ctrl-Space will launch the Sourcerer’s Apprentice. See Figure 2.
Simplicity for Java 73

Java Source Code Editor

74

nce
If the Sourcerer’s Apprentice is invoked next to something which is not an insta
of class, it will beep, but not display a dialog box.

String str;
str

Typing Ctrl-Space here shows all
of the methods and fields in ‘str’

Figure 2. Example of Sourcerer’s Apprentice
Simplicity for Java

CHAPTER 9 Composers
This chapter will discuss the Simplicity Composer. The Composer lets the user
specify properties of any parts, as well as enter user code.

This chapter will cover

• Choosing and creating composers

• The Composer window, button bar, and menu bar

• Property notebooks

Creating a New Composer

A new composer file can be created by choosing one of the first seven items on the
Create menu in the Simplicity IDE. These items are also on the Button Bar in the
IDE.

Types of Composers

The seven composer types are

1. Main Application
Simplicity for Java 75

Composers

76
2. Frame

3. Window

4. Dialog

5. Panel

6. Object

7. Canvas

Each type of composer allows the user to create a different type of compound
object. A Main Application Composer is used to create either a Java Applet
(usually to be embedded in a web page) or the primary frame of a Java Application.
The Frame, Window, and Dialog Composers are used to create secondary windows
which can be launched from a Main Application. The Panel Composer is used to
create compound parts which can be reused in other composers. The Object
Composer is used to create non-graphical parts. The Canvas Composer is
significantly different from the other composers and will be described in its own
chapter.

Each composer will generate a single Java source file corresponding to a public
class as well as any supporting inner classes.

When a Composer is opened from within the IDE, three windows appear (except in
the case of an Object Composer). These three windows are the Composer window,
the Object Palette, and the Working Model window.

The Composer Window

The Composer window is a dynamic, context-sensitive property editor in which the
user can assign default properties and behaviors for all parts in a program. All user
supplied code that a program requires is entered into the composer, including event
response code, class declaration and constructor code, and method code which can
be called from within the class or from external code which will use the class.

The Composer window contains a menu bar, a button bar, and a context sensitive
set of tabbed pages.
Simplicity for Java

The Composer Window
Composer Button Bar

The Composer button bar contains the following items:

• Save This button is identical to the Save option on the file menu. It saves the
current state of the composer to disk.

• Part List This choice field contains a list of all of the parts being used in the
current program. The user can view the properties of any part by selecting it
from the Part List.

• Recycle Current Part Pressing this button removes the part currently displayed
in the Part List from the working model and stores it in the Recycled page in the
Object Palette. If the part is a layout, all of its contents are moved with it to the
Recycled page. The part is still active while in the Recycled page. It can be
modified from its properties page as well as referenced by event code.

Recycle current part

Empty the recycling bin

View code

Save

Part List
Simplicity for Java 77

Composers

78
• Empty The Recycling Bin Pressing this button deletes all parts from the
Recycled parts page. The parts are no longer accessible from event code. If a
part in the Recycled parts page is a layout, any parts contained within it are
deleted as well.

• View Code Pressing this button opens the Code Viewer window, which shows
the current generated code. If the window is already visible, pressing this button
will update the code and bring the window to the front.

File Menu

The File menu has the following options.

• Save This item saves the current state of the composer to disk, as well as the
generated Java code.

• Generate code This item saves the current generated Java code, but does not
save the current state of the composer.

• View code This item is equivalent to pressing View Code in the button bar.

• Exit This item exits the Composer. It will query the user to save any changes
first. Upon exiting, a Java source file will be created containing all of the
generated code.

Program Menu

The Program menu has the following options. Depending on the type of Composer,
only a subset of these may be available.

• Command window... This item opens a new Java Command Window (see
page 130).

• Initialize Class This item restores all parts to the current settings in the
Composer window. Any code in the Code Declaration and Constructor pages is
also executed.

• Execute init() This item will execute any code in the init() method. It should be
used to simulate a web browser or applet viewer. When an applet is first loaded,
the browser will execute the init() method.

• Execute start() This item will execute any code in the start() method. It should
be used to simulate a web browser or applet viewer. A browser will execute the
start() method when the applet is started.
Simplicity for Java

The Composer Window
• Execute stop() This item will execute any code in the stop() method. It should
be used to simulate a web browser or applet viewer. A browser will execute the
stop() method when the applet is stopped.

• Execute destroy() This item will execute any code in the destroy() method. It
should be used to simulate a web browser or applet viewer. When an applet is
removed from memory, the browser will execute the destroy() method.

• Execute finalize() This item will execute any code in the finalize() method. It
should be used to simulate the Java Virtual Machine, when it runs the garbage
collector on the class.

Code Menu

The Code menu has the following options.

• Goto declaration code This item will bring the declaration code area into view
in the Composer window. The user should use this code area to declare any
instance variables as well as static variables.

• Goto constructor code This item will bring the constructor code area into view
in the Composer window. The user should use this code area for any code that
should be added to the class constructor.

• Goto method code This item will bring the method code area into view in the
Composer window. The user should use this code area for any instance methods
or static methods that should be included in the class.

• Goto init() code

• Goto start() code

• Goto stop() code

• Goto destroy() code

• Goto finalize() code These methods will bring the chosen method into view in
the Composer window.

Parts Menu

The Parts menu has the following options.

• Recycle current part This places the part currently displayed in the Part List
from the working model and stores it in the Recycled page in the Object Palette,
just as if the button with the same name had been pressed.

• Empty Recycling bin This deletes all parts from the Recycled parts page, just as
if the button with the same name had been pressed.
Simplicity for Java 79

Composers

80

w

art

 a

e all

e
bel

 the
ther
• Hide all Empty Panels This item has the same effect as unchecking the “Sho
empty panel” checkbox in all the layouts in the partlist.

• Enable Events When this item is unchecked, parts in the working model will
not respond to events. This will allow you to temporarily suspend all code
execution, to allow easier editing. Be sure to re-enable this checkbox to
continue testing your code.

Property Notebooks

Notebook pages

Each time a part is added to the Working Model, its Properties Notebook is
displayed in the Composer window. At any future time, a part’s Properties
Notebook can be viewed either by selecting the part’s Object Name from the P
List or by clicking the part with the mouse.

Every part in the Composer has a minimum of three pages in its properties
notebook. These three pages are

1. The part-specific properties page

2. The Visual properties page

3. The Listeners page

All properties specified in the properties notebook are the initial properties that
part will have. Any properties may be changed in the working model by either
event code or by user interaction with the working model. The user may restor
parts to the state specified in the properties pages by choosing the Initialize Class
menu item on the Program menu.

The first property page for any part contains the name which will identify the
declared object and the part-specific properties for that object. For example, th
first page for a Checkbox would contain the Object Name plus the checkbox la
and the initial checkbox state.

The first property page may also contain controls which have no effect on the
operation of the final program, but will assist the user in using the part while in
Composer. For example, the Flow Layout part has a checkbox to indicate whe
the Empty Space should appear. The user should check this checkbox to add
Simplicity for Java

Property Notebooks

d for
g as

code
additional parts to the Flow Layout, and uncheck it when finished. Further, the user
can specify the position of the Empty Panel using the Position choice field.

The second property page is the Visual properties page. This page is identical for
every part. It contains the visual properties that are common to all parts. Initially,
these properties are set to ‘default’ which means that they should inherit the
properties of the layout in which they are sitting. By changing one of these
properties, the user overrides this default setting. If a visual property is change
a layout, that property cascades through all of the parts within that layout as lon
that property is set to ‘default’ for each of those parts.

Visual properties include

• Font This specifies the font to use when displaying the part. When the font
name is set to default, the font size and style will be disabled.

• Color This specifies the foreground and background colors to be used when
displaying the part.

• Cursor This specifies the mouse cursor to be displayed when the mouse is
placed over the part.

• Visible This specifies whether the part is initially visible.

• Enabled This specifies whether the part is initially enabled.

Parts from the Swing library also include

• Tool Tip This is the text that should be displayed when the user holds the mouse
over a component without activity for a period of time.

• Double Buffer This specifies whether graphics should be drawn using an
off-screen buffer, rather than directly on the screen. It uses more memory, but
creates much smoother scrolling. Any part which is doubled buffered will also
double buffer its children.

• Auto-scroll This option lets a part do internal scrolling based on mouse and
cursor movement. It only has meaning for parts which support it, such as
JTextField.

The third properties page is the Listeners page. This page contains a set of
checkboxes corresponding to the kinds of events that a part is capable of
‘Listening’ for. The events which are most often used are presented in bold.

When a listener is selected, a new page will appear in that part’s properties
notebook. This new page will contain a code area where the user can specify
Simplicity for Java 81

Composers

82

n,

cus.

 a key.

 part,

d or

 or

 For
utton.

,
which should be executed in response to events of that Listener type. Many types of
events have several kinds of events defined within them. Each of these events are
listed in the choice field at the top of the event page. The code which is displayed in
the code area corresponds to the event listed in the choice field.

The user can enter any legal Java statements in the code area. Simplicity watches
for any changes made and updates the working model so that the working model
always reflects the current state of the code. When the user generates an event in
the Working Model, the event code will be executed. If there is an error in the code,
a message will be printed to the console.

At the top of every event page is a Code Sourcerer button. The Code Sourcerer will
write Java statements for the user based upon the user’s choices.

All parts listen for at least five types of events.

1. Component Events These events are generated when a part is shown, hidde
resized, or moved.

2. Focus Events These events are generated when a part gains or loses the fo

3. Key Events These events are generated when the user presses or releases

4. Mouse Events These events are generated when the mouse enters or exits a
or when a mouse button is pressed or released over a part.

5. Mouse Motion Events These events are generated when the mouse is move
dragged over a part.

All of the Layout parts also listen for a sixth type of event.

6. Container Events These events are generated when components are added
removed from the layout.

Some parts generate additional events which are specific to their functionality.
example, a Button generates an Action Event whenever the user presses the B

The properties notebooks for the top-level containers (Main Application, Frame
Window, Dialog, Panel, Object) also have a fourth page titled Class. This page
contains code areas for user code. These code areas include

• declaration code This code area should be used to declare any static variables or
instance variables that a program may need. Any Java statement which is legal
to exist within the outermost scope of a Java class can be put here.
Simplicity for Java

Code Generation

es

,
ll of

e

 an

en
 (hide
 for

ese

e a
• constructor code This code area should be used for any additional initialization
code that a class may need. Any legal Java statements may be placed here. This
code will be appended to the class constructor.

• method code This code area should be used to declare any static methods or
instance methods that a program may need.

• finalize() code This code area should be used for any de-construction code. It
will be executed asynchronously by the Java garbage collector when the class is
no longer in use.

A Main Application Composer will also have code areas for the four special
methods that a web browser uses to control an Applet.

Each of these code areas can be also be reached using the Code menu in the
Composer. They can be tested by being used in event code or by the commands on
the Program menu in the Composer.

Code Generation

Each of the five graphical Composers (Main, Frame, Dialog, Window, Panel)
generate code based on the AWT architecture by default. They each have a
checkbox on their properties page labeled ‘Generate Swing code’ which chang
the generated code to the JFC/Swing architecture.

Specifically, selecting the ‘Generate Swing code’ checkbox converts all Frame
Dialog, Window, and Panel classes to JFrame, JDialog, and JPanel classes. A
the Menu-related classes are also generated to correspond to their appropriat
parent Frame or JFrame.

The three Composers which include title bars (Main, Frame, and Dialog) have
additional option called ‘default close action’. This choice, available only when
Swing code generation is enabled, is a shorthand to specify what should happ
when the user attempts to close a Frame or Dialog. The most common actions
or dispose) can be chosen. Using these options can replace the need to listen
window events in many cases.

The Main Application Composer has an addition set of three radio buttons. Th
buttons indicate what kind of Java program should be created. Choose
‘Application’ to create a stand-alone Java application. Choose ‘Applet’ to creat
Simplicity for Java 83

Composers

84

 Java
Java program that can be embedded in a web page. Choose ‘Both’ to create a
program that can run stand-alone or be embedded in a web page.
Simplicity for Java

CHAPTER 10 Object Palette
This chapter will discuss the Object Palette and how to use it to assemble Graphical
User Interfaces.

It will cover

• Assembling layouts and parts

• Each of the layouts

• Each of the basic AWT parts

• Each of Simplicity’s extended parts

• Each of the Swing parts

• Each of the Menu parts

• Importing JavaBeans

Assembling A Program Using The Object Palette

When a Composer is opened from the IDE, two additional windows are created: the
Object Palette and the Working Model.
Simplicity for Java 85

Object Palette

86

ate
 will
ed.
Object Palette

The Object Palette contains all of the graphical parts which are available to be used
in a project. It is organized into a set of pages containing related parts. When the
user clicks the mouse button over one of the icons in the palette, that icon will
appear depressed to indicate that it is selected.

Working Model

The Working Model is a live prototype which is built interactively. Because the
model is built using the actual Java controls and layouts, the model reflects exactly
how the application will function and behave. All of the controls are active and will
respond to user interaction. The layouts will show the true part placement.

The Working Model initially is a window containing a box labelled Empty.
Whenever the user clicks the mouse in an Empty box, the part which is selected in
the Object Palette will be placed in that space.

Object Palette Pages

The pages in the Object Palette are

• Layouts These parts each contain a series of empty spaces in which the user can
place an additional part.

• Basic These parts are the graphical components which make up the Abstract
Windowing Toolkit (AWT). They are part of the standard Java libraries and can
be assumed to be present on any Java-enabled machine.

• Extended These parts are additional parts which come with Simplicity for Java
to provide extended functionality to the AWT.

• Swing 1 & 2 These parts are the graphical components from the JFC/Swing
library. They are included with JDK 1.2. They can also be used with JDK 1.1 if
the swingall.jar file is included in the classpath.

• Menus These parts are used to build menus in your applications. They represent
both the AWT menu classes, as well the Swing menu classes. If the ‘Gener
Swing code’ checkbox is checked, then the generated code for these parts
be based on the Swing library. Otherwise, the AWT menu classes will be us

• Beans This page is initially blank. Java Beans can be imported in the IDE. If a
bean is a subclass of Component, it will be added to the Beans page. Any Panel
Composers, once compiled, will also be available here.
Simplicity for Java

Layout Parts

 in

odel.

m of
sing

 and
ies

arts,

he
nd

 a
cify

he
 the

 grid
• Recycled This page is the ‘Recycling Bin’ for parts. When the Recycle button
the Composer is pressed, the part which is showing in the part list will be
removed from the working model and moved to the Recycled page in the
Palette. It can then be placed back into any Empty Space in the Working M

The Object Palette can exist in its own window or it can be placed at the botto
the Composer window. The user can switch between these two positions by clo
the window or by pressing the Detach button, respectively.

Layout Parts

Border Layout

This Layout can hold up to five parts, arranged in the North, South, East, West,
Center positions. The center part expands to fill any excess room. The propert
page has controls to specify the horizontal and vertical gaps.

A Border Layout holds five Empty Spaces. When the user is finished adding p
the remaining Empty Spaces can be removed by unchecking the ‘Show empty
panels’ checkbox.

Flow Layout

This layout places parts in a centered, horizontal row, wrapping if necessary. T
properties page has controls to specify the alignment (left, right, or centered) a
the horizontal and vertical gaps.

A Flow Layout starts out with a single Empty Space. Each time the user clicks
parts into the layout, the Empty Space advances to the right. The user can spe
where the Empty Space should appear using the Position choice field. When t
user is finished adding parts, the Empty Space can be removed by unchecking
‘Show empty panel’ checkbox.

Grid Layout

This Layout holds parts arranged in a grid of user specified dimensions. The
properties page has controls to specify the number of rows and columns in the
as well as the horizontal and vertical gaps.
Simplicity for Java 87

Object Palette

88

y

 set of
ut

 at the
s the
n be
A Grid Layout holds (rows*columns) Empty Spaces. When the user is finished
adding parts, the remaining Empty Spaces can be removed by unchecking the
‘Show empty panels’ checkbox. When the grid dimensions are enlarged, Empt
Spaces are added to the bottom and right. When the grid dimensions are
diminished, Empty Spaces are removed from the bottom and right. If parts are
sitting in these spaces, those parts are moved to the ‘Recycling Bin’.

GridBag Layout

The GridBag Layout is the most flexible and versatile layout among the AWT
Layout Managers. Once a set of parts have been added, the user can specify a
constraints to be applied to each part to indicate how the parts should be laid o
with respect to each other.

A GridBag Layout starts out with a single Empty Space. The user can add or
remove Empty Spaces, as well as change the order of parts using the buttons
top of the properties page. The rest of the properties page is a table which show
constraints for each part that is placed in the layout. Any of these constraints ca
edited in this table.

The GridBag Constraints are

• gridx, gridy The part’s position in the grid.

• width, height The number of rows and columns the part should occupy.

• anchor A part can be anchored to any side of its cell. The user can choose a
value by clicking the mouse in the grid in the appropriate table cell.

• fill How the part should expand to fill extra space. The possible values are none,
horizontal, vertical, and both. The user can cycle through these values by
clicking the mouse on the appropriate table cell.

• xweight, yweight Specifies how extra space should be distributed among parts.

• x internal..., y internal... Internal padding of the part.

• top inset, left inset, bottom inset, right inset External padding of the part.

Card Layout

The Card Layout can hold any number of parts, but only displays one of them at a
time. Each part is given a name. The visible part can be chosen programmatically
using the name or by advancing through the parts in order.
Simplicity for Java

Layout Parts

om
ed by

elds.

of

.

an be
sing

bed
l

has
nd

icks
pecify
he
 the
The properties page for a Card Layout has a list of the available cards. Clicking any
item in the list will make that card visible. The name of the visible card appears in
the ‘Current Card’ text field and can be changed. New cards can be added by
pressing the ‘Add a new card’ button. A card can be removed by choosing it fr
the list and pressing the ‘Recycle’ button. The order of the cards can be chang
choosing a card and pressing the ‘Up’ or ‘Down’ buttons. The Card Layout’s
internal borders can also be set using the Horizontal and Vertical Gaps entry fi

Tabbed Card Layout

The Tabbed Card Layout can hold any number of parts, but only displays one
them at a time. Each part is given a name. The visible part can be chosen
programmatically by name or by user interaction with the name tabs.

The properties page for a Tabbed Card Layout has a list of the available cards
Clicking any item in the list will make that card visible. The name of the visible
card appears in the ‘Current Card’ text field and can be changed. New cards c
added by pressing the ‘Add a new card’ button. A card can be removed by choo
it from the list and pressing the ‘Recycle’ button. The order of the cards can be
changed by choosing a card and pressing the ‘Up’ or ‘Down’ buttons. The Tab
Card Layout’s internal borders can also be set using the Horizontal and Vertica
Gaps entry fields.

A Tabbed Card Layout will generate an ItemEvent whenever a new page is
selected.

Left Side Layout

This layout places parts in a left justified vertical column. The properties page
controls to specify the alignment (top, bottom, or centered), the vertical gaps, a
whether the components should fill horizontally any extra space.

A Left Side Layout starts out with a single Empty Space. Each time the user cl
a parts into the layout, the Empty Space advances downward. The user can s
where the Empty Space should appear using the Position choice field. When t
user is finished adding parts, the Empty Space can be removed by unchecking
‘Show empty panel’ checkbox.
Simplicity for Java 89

Object Palette

90

ars
han
size.

nent
t is
ould
ny
of a

e the

ove
 the
 using
the
aints
Bottom Layout

This layout places parts in a bottom justified, horizontal row. The properties page
has controls to specify the alignment (left, right, or centered), the horizontal gaps,
and whether the components should fill vertically any extra space.

A Bottom Layout starts out with a single Empty Space. Each time the user clicks a
parts into the layout, the Empty Space advances to the right. The user can specify
where the Empty Space should appear using the Position choice field. When the
user is finished adding parts, the Empty Space can be removed by unchecking the
‘Show empty panel’ checkbox.

ScrollPane Layout

This layout simplifies the use of scrollbars. It holds a single part which can be
scrolled programmatically, or by user interaction with the scrollbars. The scrollb
can be chosen to be always visible, visible only if the contained part is larger t
the display size, or never visible. The display size can also be fixed to a given

Absolute Layout

This layout allows the user to specify the exact location and size of each compo
in the layout. The layout can be given a preferred size. Additionally, if the layou
resized the parts can optionally be scaled proportionally to fit the new size. Sh
two parts overlap, the Z-order will determine which part will be on top. (Note: a
‘heavyweight’ part, such as most AWT components, will always appear on top
lightweight part, such as a Swing component.)

The mouse editing option allows the user to adjust the size and position of
components in the Absolute Layout.by dragging on the components within the
layout. To move a component, drag on the edge of it. To adjust the size of a
component, drag the rectangles displayed in the corners and sides of the
component’s frame. If the preferred size is being used, then the user can mov
components, but not resize them.

An absolute Layout starts out with no Empty Spaces. The user can add or rem
Empty Spaces, as well as change the Z-order of the parts using the buttons at
left of the properties page. The user can also set the preferred size and scaling
the controls at the left. The rest of the properties page is a table which shows
location and size for each part that is placed in the layout. Any of these constr
can be edited in this table.
Simplicity for Java

Basic Parts

ent
are

e

r.

n
Basic Parts

Label

A Label can hold a single line of text. The alignment of the text can be specified as
left, right, or centered. The alignment is particularly useful when the Label is sized
larger that the text.

Checkbox

A Checkbox holds a single line of text and a graphical On/Off indicator. The text
and the initial state of the Checkbox can be specified in its properties page.

A Checkbox will generate an ItemEvent whenever its state is changed.

Radio Button

A Radio Button holds a single line of text next to a graphical On/Off indicator.
Each Radio Button is also assigned a group. Only one Radio Button in each group
can be in the On state at a time.

The text and the initial state of the Radio Button can be specified in its properties
page. Pressing the ‘Group Editor’ Button will launch a dialog displaying the curr
group and allowing the user to add, edit, or remove groups. All Radio Buttons
initially set to a group named ‘defaultGroup’. Once the user has created other
groups in the Group Editor, these groups can be chosen from the Group choic
field.

All changes in the Group Editor effect all of the Radio Buttons in that Compose
Once a group is created it is available to all Radio Buttons.

A Radio Button will generate an ItemEvent whenever its state is changed.

Button

A Button allows the user to indicate when an action should be performed. It ca
hold a single line of text, which can be specified in the properties page.

A Button will generate an ActionEvent when the Button is pressed.
Simplicity for Java 91

Object Palette

92

ntain
ked,

xt.

r’

.

.

ear in
 and

key

e

Text Field

A Text Field is a single line entry field for text input. In its properties page, the user
can specify the default text to appear and the number of columns wide the field
should be. The Text Field can be set read-only by disabling the ‘Editable’
checkbox. The user can also choose an echo character if the Text Field will co
sensitive information such as a password. When the ‘Enable’ checkbox is chec
the character to the right of the checkbox will become the echo character.

A Text Field will generate a TextEvent whenever the user modifies the field’s te

A Text Field will generate an ActionEvent whenever the user presses the ‘Ente
key while the field has the focus.

Choice

The Choice field lets the user choose one item from a set. The properties page
includes an area in which the user may enter the items to appear in the Choice

A Choice field will generate an ItemEvent whenever the user chooses an item

Listbox

The Listbox lets the user choose one item or multiple items from a list. The
properties page includes an area in which the user may enter the items to app
the Listbox. The user can also specify the number of visible lines in the Listbox
whether multiple selections should be allowed

A Listbox will generate an ItemEvent whenever the user chooses an item.

A Listbox will generate an ActionEvent whenever the user presses the ‘Enter’
while the Listbox has the focus.

Text Area

The Text Area is a multi-line editable text component. In its properties page, th
user can specify the default text to appear and the number of rows high and
columns wide the Text Area should be. The Text Area can be set read-only by
disabling the ‘Editable’ checkbox. The user can also specify which scrollbars
should appear.
Simplicity for Java

Extended Parts

f the
e
0. If

Its
A Text Area will generate a TextEvent whenever the user modifies the text.

Scrollbar

A Scrollbar allows the user to select from a range of values. In its properties page,
the user can specify the scrollbar minimum and maximum values, the visible
portion of the scrolled object, and the initial scrollbar value. The user can also
choose whether the scrollbar should be oriented horizontally or vertically.

A Scrollbar will generate an AdjustmentEvent whenever the user moves the
control.

Extended Parts

Spacer

The Spacer is an empty part used to adjust the spacing between parts in a layout.
The user can specify its width and height.

Inset Sizer

The Inset Sizer is a container which can hold one part. It allows the user to specify
the height and width of the part that it holds, as well as the insets (gaps) around that
part. This is very useful for overriding the default sizing of parts by a layout.

For example, a Button’s size is usually based upon the text inside the Button. I
user wants to create a large Button whose size is always 150 by 150 pixels, th
Button can be placed inside an Inset Sizer with the dimension set to 150 by 15
the user want a gap around the Button, it can be entered as a set of Insets.

The Inset Sizer will generate a ContainerEvent whenever a part is added or
removed.

Validated Text Field

A Validated Text Field has all of the features of a Text Field plus the ability to
ensure that the user can only enter text which matches a particular data type.
Simplicity for Java 93

Object Palette

94

 the

xt.
properties page includes a choice field that lets the user choose the validation type.
The validation types are

• Null no validation

• Byte integers from -128 to 127

• Short integers from -32768 to 32767

• Integer integers from -2147483648 to 2147483647

• Long integers from -9223372036854775808 to 9223372036854775807

• Character a single character

• Float floating point from 1.4e-45 to 3.4e+38

• Double floating point from 4.9e-324 to 1.8e+308

• String any string, no validation

• Boolean true or false

• Phone (000)000-0000

• Social Security 000-00-0000

• Zip 00000

• Zip+4 00000-0000

• Dollar Amount $0.00

• Time 00:00am

• Date 00/00/00

• Date2000 00/00/0000

• Identifier an identifier (variable name) according to the rules of Java

A Validated Text Field will generate a TextEvent whenever the user modifies the
field’s text.

A Validated Text Field will generate an ActionEvent whenever the user presses
‘Enter’ key while the field has the focus.

Wrap Label

A Wrap Label is a multi-line label. Its preferred size is to fit the longest line of te
If its parent layout should size it smaller, the text will wrap to fit as much as
possible in the allocated space.
Simplicity for Java

Extended Parts

es
is

f

 the

using

ify a

.
te in
tal
Image Button

An Image Button is similar to a Button, except it holds an image rather than a text
string. Images are loaded through the Simplicity IDE’s Import menu. The
properties page for an Image Button contains a choice field listing all the imag
that are loaded into the IDE. The user can choose among the images using th
choice field. The user can also specify a text string which will be appear in a
tool-tip flyout window. The tool-tip only works on platforms which are capable o
displaying a Window (without a Frame).

An Image Button will generate an ActionEvent when pressed.

Image Canvas

An Image Canvas is a part which displays an image. It attempts to size itself to
size of the image. Images are loaded through the Simplicity IDE’s Import menu.
The properties page for an Image Canvas contains a choice field listing all the
images that are loaded into the IDE. The user can choose among the images
this choice field.

Group Box

A Group Box is a container which can hold one part, often a layout. It draws a
border around its contents to indicate a related set of parts. The user can spec
text string to appear at the top of the box.

The Group Box will generate a ContainerEvent whenever a part is added or
removed.

Progress Bar

A progress bar graphically displays a percentage. Often it is used to show the
percent of a process that is complete. The user can specify the minimum,
maximum, and current values.

Flyer

A Flyer is a container which can perform some simple marque-style animation
Any part or set of parts in a layout can be placed in a Flyer. The user can indica
the properties page the number of pixels per second in the vertical and horizon
Simplicity for Java 95

Object Palette

96
directions that the part should move. The user can also indicate the frame rate, as
well as the size of the bounding box.

The horizontal and vertical bounce checkboxes indicate whether the part should
reverse directions when hitting the side of the bounding box or wrap to the other
side. The horizontal and vertical runoff checkboxes indicate whether the part
should be allowed to completely move out of the bounding box or only touch the
side. Start and Stop buttons are provided so that the user may easily test the
animation. A Flyer should be started and stopped programmatically, though, using
its start() and stop() methods.

Frame Animator

A Frame Animator takes a series of images and displays them sequentially at a
specified frame rate. Start and Stop buttons are provided so that the user may easily
test the animation. A Frame Animator should be started and stopped
programmatically, though, using its start() and stop() methods.

Swing 1 & 2

The Swing pages contain the components from the Swing graphical user interface
library.

Button (JButton)

A JButton allows the user to indicate when an action should be performed. It can
hold a single line of text, whose alignment and position can be specified relative to
an icon. Several different icons can be specified to indicate the various states of the
JButton. A keyboard mnemonic can also be specified.

A JButton will generate an ActionEvent when the JButton is pressed.

A JButton will generate a ChangeEvent whenever the button changes state (i.e. is
pressed, is released, etc...)

Toggle (JToggleButton)

A JToggleButton allows the user to indicate an on/off condition. A set of
ToggleButtons can be grouped together, such that only one can be selected at a
Simplicity for Java

Swing 1 & 2
time. The button can hold a single line of text, whose alignment and position can be
specified relative to an icon. Several different icons can be specified to indicate the
various states of the JToggleButton. A keyboard mnemonic and the initial state of
the JToggleButton can also be specified.

A JToggleButton will generate an ActionEvent when the JToggleButton is pressed.

A JToggleButton will generate a ChangeEvent whenever the button changes state
(i.e. is pressed, is released, etc...)

A JToggleButton will generate an ItemEvent when the JToggleButton is selected or
deselected.

CheckBox (JCheckBox)

A JCheckBox allows the user to indicate an on/off condition. A set of checkboxes
can be grouped together, such that only one can be selected at a time. The checkbox
can hold a single line of text, whose alignment and position can be specified
relative to an icon. Several different icons can be specified to indicate the various
states of the JCheckBox. A keyboard mnemonic and the initial state of the
JCheckBox can also be specified.

A JCheckBox will generate an ActionEvent when the JCheckBox is pressed.

A JCheckBox will generate a ChangeEvent whenever the JCheckBox changes state
(i.e. selected, rolled over, disabled, etc...)

A JCheckBox will generate an ItemEvent when the JCheckBox is selected or
deselected.

RadioButton (JRadioButton)

A JRadioButton allows the user to indicate an on/off condition. A set of radio
buttons can be grouped together, such that only one can be selected at a time. The
button can hold a single line of text, whose alignment and position can be specified
relative to an icon. Several different icons can be specified to indicate the various
states of the JRadioButton. A keyboard mnemonic and the initial state of the
JRadioButton can also be specified.

A JRadioButton will generate an ActionEvent when the JRadioButton is pressed.
Simplicity for Java 97

Object Palette

98

d

ct

ows

 of
nd

ter’

t be
s

ne.

A JRadioButton will generate a ChangeEvent whenever the JRadioButton changes
state (i.e. selected, rolled over, disabled, etc...)

A JRadioButton will generate an ItemEvent when the JRadioButton is selected or
deselected.

Label (JLabel)

A JLabel can hold a single piece of text as well as an icon. An icon and a disabled
icon can be specified, as well as the position and alignment of the text relative to
the icon. The gap (spacing) between the icon and text can be indicated. A part can
be chosen as the ‘Labeled part’ that this label is labeling. The chosen keyboar
mnemonic will set the focus to this labeled part.

ComboBox (JComboBox)

A JComboBox is a combination of a Choice and a TextField. The user can sele
from a set of pre-defined values or edit the contents directly (if the editable
checkbox is selected). The Maximum rows entry field indicates the number of r
that are visible when the ComboBox is opened.

The ComboBox can be used in two ways. The first is by specifying a static set
text entries in the ‘JComboBox items’ area (each one on a line). The second, a
more powerful, is to use a ComboBoxModel. A ComboBoxModel lets the user
fully describe the contents of the ComboBox in an abstract manner to create
dynamic contents. See the JDK API reference and documentation for further
details.

A ComboBox will generate an ItemEvent whenever the user chooses an item.

A ComboBox will generate an ActionEvent whenever the user presses the ‘En
key while the Listbox has the focus.

Listbox (JList)

A JList shows a list of a set of items. In order to include a scrollbar, a JList mus
placed inside of a JScrollPane. The user can select either one or multiple item
depending on the ‘Selection Mode’. The Visible rows entry field indicates the
number of rows that are displayed when a JList is placed inside of a JScrollPa
The ‘Prototype Value for Sizing’ is a text string whose display width determines
the preferred width of the JList.
Simplicity for Java

Swing 1 & 2

e JDK

t can
for
ues.
the

the

 and
roll

r
ar,
The JList can be used in two ways. The first is by specifying a static set of text
entries in the ‘JList items’ area (each one on a line). The second, and more
powerful, is to use a ListModel. A ListModel lets the user fully describe the
contents of the JList in an abstract manner to create dynamic contents. See th
API reference and documentation for further details.

A List will generate an ItemEvent whenever the user chooses an item.

A List will generate an ActionEvent whenever the user presses the ‘Enter’ key
while the Listbox has the focus.

Slider (JSlider)

A JSlider lets the user select a numeric value from a range of integer values. I
be drawn either horizontally or vertically. The user can specify the initial value
the slider, the minimum and maximum values, and the major and minor tick val
The user can also indicate whether ticks and/or labels should be drawn under
slider, whether the slider knob will automatically jump to the tick values, and
whether the ticks are drawn in ascending or descending order.

A JSlider will generate a ChangeEvent when the Slider’s knob is moved. By
default, the event will only be fired when the knob’s final position is selected. If
‘Fire Events While Adjusting’ checkbox is selected, then events will be fired
continuously as the knob is moved.

ScrollBar (JScrollBar)

A JScrollBar is a scroll bar which can be drawn either horizontally or vertically.
The user can specify the initial value of the JScrollBar, as well as the minimum
maximum values. In most cases, the JScrollPane is the easiest way to add sc
bars to a Swing object.

ProgressBar (JProgressBar)

A JProgressBar displays a value from a range of values. It can be drawn eithe
horizontally or vertically. The user can specify the initial value for the ProgressB
as well as the minimum and maximum values. Optionally, a text string can be
drawn inside the bar, and/or a border can be painted around the bar.
Simplicity for Java 99

Object Palette

100

er’

pear
 tabs

line
hould

text,

e
 text
y

TextField (JTextField)

A JTextField is a single line entry field for text input. In its properties page, the user
can specify the default text to appear and the number of columns wide the field
should be. The text can be left, right or center justified. The JTextField can be set
read-only by disabling the ‘Editable’ checkbox.

A JTextField will generate a CaretEvent whenever the user modifies the field’s
text, or moves the cursor via the mouse or keyboard.

A JTextField will generate an ActionEvent whenever the user presses the ‘Ent
key while the field has the focus.

TextArea (JTextArea)

A JTextArea is a multi-line entry field for text input. It can also be used as a
multi-line label. In its properties page, the user can specify the default text to ap
and the number of rows tall and columns wide the area should be. The size of
can be set. The JTextArea can be set read-only by disabling the ‘Editable’
checkbox. The JTextArea can optionally wrap long lines to the next line. If this
wrap is enabled, a word wrap feature can be selected, specifying that the text s
be wrapped at word boundaries, rather than at any arbitrary character.

A JTextArea will generate a CaretEvent whenever the user modifies the field’s
or moves the cursor via the mouse or keyboard.

PasswordField (JPasswordField)

A JPasswordField is a single line entry field for text input whose characters are
disguised by an ‘echo’ character. In its properties page, the user can specify th
default text to appear and the number of columns wide the field should be. The
can be left, right or center justified. The JPasswordField can be set read-only b
disabling the ‘Editable’ checkbox.

A JPasswordField will generate a CaretEvent whenever the user modifies the
field’s text, or moves the cursor via the mouse or keyboard.

A JPasswordField will generate an ActionEvent whenever the user presses the
‘Enter’ key while the field has the focus.
Simplicity for Java

Swing 1 & 2

e’s

ly by

’s

e
he

s well

e
e
EditorPane (JEditorPane)

A JEditorPane is used to edit formatted content. The user can specify whether this
content is plain text, HTML, or Rich Text Format. The user can load a new
document via a URL. The JEditorPane can be set read-only by disabling the
‘Editable’ checkbox.

A JEditorPane will generate a CaretEvent whenever the user modifies the pan
text.

A JEditorPane will generate an HyperlinkEvent whenever the user clicks on a
hyperlink when the pane is in HTML mode and is set to non-editable.

TextPane (JTextPane)

A JTextPane is used to display stylized text. The JTextPane can be set read-on
disabling the ‘Editable’ checkbox.

A JTextPane will generate a CaretEvent whenever the user modifies the pane
text.

ScrollPane (JScrollPane)

A JScrollPane is used to add scrollbars to any of the Swing components. (By
default, none of the Swing components draw their own scrollbars. It is up to th
user to put these components inside of a JScrollPane if scrolling is desired.) T
Horizontal and vertical scrollbar display policies can be set individually.

In most cases, a single component will be placed in the center viewport of the
JScrollPane. Optionally, row and column header components can be added, a
as corner components.

SplitPane (JSplitPane)

A JSplitPane allows the user to dynamically modify the location of a divider
between two parts. The two parts can be displayed horizontally or vertically. Th
divider size and location can specified. Optionally, the child components can b
redrawn while the divider is being moved.
Simplicity for Java 101

Object Palette

102

y
om
ed by
cify

ted.

 out
that
og.

r

lly
s are
r

ed by

ther

 the
TabbedPane (JTabbedPane)

The JTabbedPane can hold any number of parts, but only displays one of them at a
time. Each part is given a name. The visible part can be chosen programmatically
by name or by user interaction with the named tabs.

The properties page for a JTabbedPane has a list of the available pages. Clicking
any item in the list will make that card visible. The name of the visible card appears
in the ‘Current Card’ text field and can be changed. New cards can be added b
pressing the ‘Add a new card’ button. A card can be removed by choosing it fr
the list and pressing the ‘Recycle’ button. The order of the cards can be chang
choosing a card and pressing the ‘Up’ or ‘Down’ buttons. The user can also spe
whether the tabs should appear on the top, bottom, left, or right of the pane.

A JTabbedPane will generate an ChangeEvent whenever a new page is selec

ToolBar (JToolBar)

A JToolBar displays a series of components in a row. The components are laid
in a similar fashion to a FlowLayout. The JToolBar adds the special capability
it can be dragged off of the application window, and displayed in a floating dial
The dialog can then be positioned anywhere on the user’s screen. The initial
orientation of the JToolBar can be chosen (horizontal or vertical) and the borde
can be optionally drawn.

The JToolBar is especially versatile when placed in a BorderLayout. If it is initia
placed in any of the border locations (not the Center) and no other component
in the border locations (uncheck ‘Show empty panels’ for this to work!) the use
can drag the toolbar to any of these four locations. This behavior can be disabl
deselecting ‘Allow Floatable’.

Tree (JTree)

A JTree displays a set of hierarchical data in a tree. The user can specify whe
these items should be editable, whether the tree should scroll when a node is
expanded, whether the root of the tree is visible, and whether the root handles
should be visible. Also, the user can specify the number of rows displayed and
height each row should have.

A JTree is most often placed inside of a JScrollPane.
Simplicity for Java

Menus

e, or
ill
red.

he
er to
 any
d

the
The contents of a JTree are specified using a TreeModel. A TreeModel lets the user
fully describe the contents of the JTree in an abstract manner to create dynamic
contents. See the JDK API reference and documentation for further details.

Table (JTable)

A JTable displays a set of data in a table. The user can specify how cells are
selected (single/multiple and cell/column/row), as well as how the table is drawn
(colors and lines).

A JTable is most often placed inside of a JScrollPane.

The contents of a JTable are specified using a TableModel. A TableModel lets the
user fully describe the contents of the JTable in an abstract manner to create
dynamic contents. See the JDK API reference and documentation for further
details.

Menus

The Menus page contains the parts used to build menus. By default they are
generated as the Swing menu components, and can be placed anywhere in an
application. Also, any component can be placed within a menu. The MenuBar has
the additional use of being added to a Frame, JFrame, JDialog, or JApplet. As such,
a MenuBar can be added to the special ‘menubar empty space’ of a Main, Fram
Dialog composer. If the composer is generating AWT, then AWT menu code w
be generated. In this case, many of the (swing-specific) properties will be igno

MenuBar (JMenuBar)

A MenuBar is used to hold a series of menus that the user can navigate with t
mouse or keyboard. It is the component that must be added to a Frame in ord
build menus. In the case of a Swing application, though, it can also be added to
empty space. The user can optionally specify margins around the menubar, an
indicate that a border should be painted.

Menu (JMenu)

A Menu is used to hold a series of MenuItems that the user can navigate with
mouse or keyboard. It can display a single line of text, whose alignment and
Simplicity for Java 103

Object Palette

104
position can be specified relative to an icon. Several different icons can be specified
to indicate the various states of the Menu. A keyboard mnemonic can also be
specified.

MenuItem (JMenuItem)

A MenuItem displays a single line of text, whose alignment and position can be
specified relative to an icon. It usually is placed in a Menu. Several different icons
can be specified to indicate the various states of the Menu. A keyboard mnemonic
and a keyboard accelerator can also be specified.

CheckBoxMenuItem (JCheckBoxMenuItem)

A CheckBoxMenuItem displays a single line of text, whose alignment and position
can be specified relative to an icon and a checkmark to indicate on and off. It
usually is placed in a Menu and is used to indicate that a feature is enabled. Several
different icons can be specified to indicate the various states of the Menu. A
keyboard mnemonic and a keyboard accelerator can also be specified.

A set of CheckBoxMenuItems can be grouped together, such that only one can be
selected at a time.

RadioButtonMenuItem (JRadioButtonMenuItem)

A RadioButtonMenuItem displays a single line of text, whose alignment and
position can be specified relative to an icon and a radiobutton to indicate on and off.
It usually is placed in a Menu and is used to indicate that a feature is enabled.
Several different icons can be specified to indicate the various states of the Menu.
A keyboard mnemonic and a keyboard accelerator can also be specified.

A set of RadioButtonMenuItems are usually grouped together, such that only one
can be selected at a time.

Separator (JSeparator)

A Separator is a component whose sole purpose is to indicate visually a separation
between a set of parts. It is most often used in a menu, but can be placed anywhere.
The user can specify whether the separator should display vertically or
horizontally.
Simplicity for Java

JavaBeans

ses

. The
s
 the
for.

e
tions

een
f the
JavaBeans

The Beans page contains any Java Beans which the user has imported into a
Simplicity project. Any JavaBeans located in the primary directory of a project
(such as created by a Panel or Canvas Composer) will be imported automatically.

In order for a bean to appear in the Object Palette, it must subclass
java.awt.Component, and not be a subclass of java.awt.Window.

Importing Beans into Simplicity

JavaBeans are imported into Simplicity through the IDE. When the user chooses
the JavaBeans item from the Import menu, a dialog appears which allows the user
to choose classes from a tree-view of their classpath. The buttons at the bottom of
this dialog will add or remove beans from the ‘imported’ list. When the user pres
‘OK’, these beans will appear in the ‘Java Beans’ group in the IDE.

Using Beans

Java Beans can be clicked into a layout in the same manner as any other part
properties page for a bean contains the Object Name field plus those propertie
which have ‘set’ methods. The visual properties for a bean can be modified on
Visual page. The bean is queried by the Composer for any events it will listen
These appear on the Listeners page.

Any additional properties and setup code for a bean should be placed in the
constructor code page. (Choose Goto constructor page from the Code menu.)

The Code Sourcerer can probe the methods of a bean. Bean properties can b
queried or changed using the first two options in the code sourcerer. These op
are

• ‘Change a property of an existing part...’

• ‘Ask a part about one of its properties...’

Both of these options will present the user with a list of the parts which have b
added to the Working Model. If the user chooses a bean part, the properties o
bean will be displayed on the following page.
Simplicity for Java 105

Object Palette

106
The Working Model

The Working Model is a live prototype which is built interactively. Because the
model is built using the actual Java controls and layouts, the model reflects exactly
how the application will function and behave. All of the controls are active and will
respond to user interaction. The layouts will show the true part placement.

Frames

For Main, Frame and Dialog Composers the Working Model is the Frame or Dialog
which is being constructed by the user. For Window and Panel Composers, the
Working Model is contained within a Frame in order that the user can easily move
it on the screen, as well as view it at different sizes. This Frame is not part of the
generated code, though.

Building Layouts

All Working Models initially consist of a single Empty Space. Parts are added to
the Working Model by choosing them from the Object Palette and clicking them
into an Empty Space using the mouse. Each of the Layout parts can hold multiple
additional parts. Complex layouts can be achieved by nesting Layouts within other
Layouts. In the following diagram, a Frame contains a Border Layout. In the
Simplicity for Java

The Working Model

ear
e
e part
northern part of the Border Layout is a Flow Layout. The Flow Layout is
containing four other parts.

Once a part has been put into the Working Model it is alive and can respond to user
interaction. The user can specify which types of events a part should respond to by
selecting them in the part’s Listeners page in its properties notebook.

Clicking any part with the mouse will also cause its properties notebook to app
in the Composer window. Some parts are difficult or impossible to click with th
mouse. The properties notebooks for those parts can be viewed by choosing th
name from the part list at the top of the Composer window.

Border Layout

Center
EastWest

South

North

Frame

Flow Layout
Simplicity for Java 107

Object Palette

108
 Simplicity for Java

CHAPTER 11 Code Sourcerer
This chapter will discuss the Code Sourcerer. The Code Sourcerer will generate
Java statements based upon user choices.

This chapter will cover

• How to use the Code Sourcerer

• The major categories in the Code Sourcerer.

Using the Code Sourcerer

Every code area in the Composer has a Code Sourcerer button. When the user
presses this button, a dialog will appear which will guide the user through a
context-sensitive set of pages. By making a few selections, and filling in a few
entry fields the user can construct Java statements to perform a wide variety of
activities.

The Code Sourcerer presents the user with a series of panels. Once finished with a
panel, the user can proceed to the next panel by pressing the Next button. The user
can return to a previous panel using the Back button. At any time the user can quit
the Code Sourcerer by pressing the Cancel button. Once the Code Sourcerer has
obtained enough information to completely write the requested code, the Done
Simplicity for Java 109

Code Sourcerer

110
button will become enabled. Pressing Done will write the code. Each of these
buttons will become enabled/disabled in a context-sensitive manner. In some cases,
both Next and Done will be disabled. This indicates that there are still critical fields
to be filled in before the Code Sourcerer can proceed.

Each time the Code Sourcerer is invoked, the code which is produced is appended
to the code area. This code can be used as is, combined with other user code, or
edited to meet particular needs.

The first panel of the Code Sourcerer contains eleven categories. The user can
choose from

• Change a property of an existing part... Choose a part and then modify any
attribute of the part.

• Ask a part about one of its properties... Choose a part and then retrieve the
value of any attribute.

• Declare a new variable... Create a new variable of any type and optionally
initialize it.

• Applet-only operations... These options can only be performed by an Applet.
(They require a web browser.)

• File operations... Read, write, or modify files. These operations cannot be
performed by an Applet.

• Printing operations... Print a part, some text, or create a complex print job.

• Window operations... Create or destroy secondary windows.

• Java system operations... Interact with the Java Virtual Machine or the
Operating System. (Some of these cannot be performed by an Applet.)

• Network operations... Set up and use a network connection, using either the
TCP or UDP protocol.

• Miscellaneous... Font, Image, Beep, Clipboard, Email, more...

• Java Language operations... Conditional statements (if, if else) and loop
statements.

Change a property of an existing part

This option presents the user with a list of the parts which have been added to the
Working Model. The user should choose the part that they wish to modify and press
the Next button. The panel which follows will let the user choose from among the
specialized properties for that part.
Simplicity for Java

Using the Code Sourcerer

 of
g
on

 the
ress
e

g

sk
ch
, the
to
nts of

r the
ble.
ss

ges
At the end of this list is always ‘Common properties’. Choose this to modify any
the common visual properties for any part, or to revalidate it. If a part is a Swin
part, ‘Common Swing properties’ is added as well. Choose this to modify comm
swing properties like opacity and the Tool tip text

Ask a part about one of its properties

This option presents the user with a list of the parts which have been added to
Working Model. The user should choose the part that they wish to query and p
the Next button. The panel which follows will let the user choose from among th
specialized properties for that part.

At the end of this list is always ‘Common properties’. Choose this to get the
common visual properties for any part. If a part is a Swing part, ‘Common Swin
properties’ is added as well. Choose this to get properties which are specific to
Swing.

After the user has chosen the property that they wish to retrieve, a dialog will a
where the value should be stored. The input field will contain a suggestion whi
will create a new local variable. While the variable type must remain the same
name may be changed to any unused, legal Java name. If the user would like
store the value in a variable that has been previously declared, the entire conte
this field can be changed to that name.

Declare a new variable

This option lets the user create a new variable. The user must enter a name fo
new variable. The user can choose a primitive type or a class type for the varia
If a class type is chosen, the name for the class should be entered. The full cla
name should be specified unless the class is a member of the following packa
which are imported by default.

• java.lang.*

• java.awt.*

• java.awt.event.*

• java.io.*

Any array dimensionality and set of modifiers can be chosen. The accessibility
radio buttons must be set to default for all code areas except the ‘Declarations’
code area.
Simplicity for Java 111

Code Sourcerer

112

 a
d to

e
used,
When the Next button is pressed, the user will be able to indicate how the variable
should be initialized. For primitive types, the user should enter a value. For class
types, the user will be given a list of the available constructors as well as the null
value. If a constructor is chosen, the next panel will contain fields for the
parameters.

Applet-only operations

This option contains operations that require a web browser or an Applet viewer to
work properly. They will only be available in a Main Application Composer where
the user has chosen the Applet or Both code options. They include

• Ask for the URL for this Applet

• Ask for the URL for the web page containing this Applet

• Ask for the value of an HTML <PARAM> tag...

• Get an Image from a URL...

• Get an AudioClip from a URL...

• Play an AudioClip...

• Stop an AudioClip...

• Loop an AudioClip..

• Load a URL into the browser...

• Display a message in the browser’s status bar..

• Ask the Applet if it is currently active

File operations

The file operations panel contains options for manipulating files. These operations
are available to any Java Application, but are usually denied to an Applet by the
web browser’s security policy.

All of the file operations require a File object. This is a class which can refer to
user file in an operating system independent way. The first two options are use
create File objects. The first creates a File object using a hard-coded path. Th
second lets the end-user choose a file using a FileDialog. In both cases, an un
legal Java name must be specified to refer to the File object. All other file
operations will use this name to refer to the file. These include

• Create a new File object from a pathname...
Simplicity for Java

Using the Code Sourcerer
• Create a new File object from a FileDialog...

• Delete a File object...

• Rename a File object...

• Copy a File object...

• Ask if the File exists...

• Ask if the File is a normal file...

• Ask if the File is a directory...

• Ask if the user has read permission for a File...

• Ask if the user has write permission for a File...

• Get the filename from a File object...

• Get the directory from a File object...

• Get the full pathname from a File object...

• Get the file size from a File object...

• Get the last modified date from a File object...

• Create a new directory...

• Write a String to a text file...

• Read a String from text file...

• Write an Object to a File...

• Read an Object from File...

Printing operations

The printing operations panel contains options for printing some text. The first two
options

• Print some text...

• Print the contents of a part...

are very simple. In both cases, all that is needed is to specify the text, or the part,
which will be printed. If a layout part is chosen in the second choice, all of the parts
that it contains will be printed as well.

The next options let the user set up and use a datarep.common.TextPrinter object. A
TextPrinter lets the user control how the printed text will appear. It is important to
remember that a TextPrinter object must be created before any options are set, and
Simplicity for Java 113

Code Sourcerer

114

..’.
that printing will not occur until the TextPrinter object is sent to the printer. The
other options can occur in any order desired. They are

• Set font... allows the user to set the font to any available font from this point
onwards.

• Set color... allows the user to set the color of the printed text to any one of a
number of choices. The printer must be able to print in color to see the best
results.

• Set word wrap... allows the user to choose whether the word wrap is on or off. If
the word wrap is off, then lines which are long will be cut off at the right
margin. If it is on, then they will be wrapped so as to fit properly.

• Set tab stops... allows the user to specify the size of the tab stops, in inches.

• Set margins... allows the user to specify the top, bottom, left, and right margins
for a page, in inches.

• Send form feed... allows the user to send a form feed to the printer. This will
cause the printer to print any subsequent text on a new page.

• Send new line... allows the user to force the TextPrinter to start a new line.

• Send text... allows the user to send text to the TextPrinter object.

When a TextPrinter object is created, an operating system-dependent dialog will
appear. However, printing will not occur if the TextPrinter object is not sent to the
printer.

To repeat, every TextPrinter job must be created and (eventually) sent to the printer.
The commands to do this through the Sourcerer are

• Create a new TextPrinter object...

• Send TextPrinter object to the printer...

Window operations

This option is generally used to launch or close secondary windows. These are
usually created using a Frame, Window, or Dialog Composer. Message Boxes can
also be launched.

This option can also be used to modify the top-level window of a Composer. To do
this, choose the first option, ‘Manipulate the current window - Open/Close/etc.
Simplicity for Java

Using the Code Sourcerer

nt
me to

r the
last
x.

ting
To launch a secondary window, choose the second option, ‘Open a new
Frame/Window/Dialog’. The next panel will include a list of classes in the curre
project which subclass Window. The user should choose a class and enter a na
refer to it.

To close a secondary window, choose the third option, ‘Close a
Frame/Window/Dialog. The next panel will ask the user for the variable name
which refers to the window to close.

The other four options will launch a datarep.common.MessageBox and wait fo
end-user to respond. A MessageBox contains a title bar and a message. The
option allows the user to choose a customized set of buttons for a MessageBo

Java system operations

These options interact with the Java Virtual Machine and the underlying opera
system. They include

• Query the total amount of system memory

• Query the amount of free memory

• Run the garbage collector

• Execute any pending finalization methods

• Get a string with the current date and time

• Query the value of a system property...

• Suspend the current thread for a specified number of milliseconds

• Exit the program with a termination code

• Execute an external command...

• Write text to the standard output...

• Write text to the standard error...

• Read text from the standard input

Network operations (TCP and UDP)

These options will write code to let computers communicate over a network. Java
hides some of the complexities of network connections by allowing programs to
write to sockets, which can either be TCP based or UDP based. (UDP sockets are
also sometimes called “Datagrams”.)
Simplicity for Java 115

Code Sourcerer

116

t up,
t.

d in

d in

the

e port

g for
 be

p a
TCP operations

To start a TCP connection, a Client computer must connect to a Server computer.
When this is successfully set up, there will be a “socket”. Once the socket is se
both the Server and the Client can send and receive TCP data using the socke

To set up a TCP Server using the Sourcerer, you must do the following steps

1. Start up a TCP server...

2. Send TCP data... or Receive TCP data...

(The Server may Send and Receive TCP data as many times as is desired, an
any order desired.)

3. Stop sending or receiving TCP data...

4. Shut down a TCP server...

To set up a TCP Client using the Sourcerer, you must do the following steps

1. Create a TCP client connection...

2. Send TCP data... or Receive TCP data...

(The Client may Send and Receive TCP data as many times as is desired, an
any order desired.)

3. Stop sending or receiving TCP data...

To set up the Server and Client, it will be necessary to set the port number for
TCP connection. Port numbers 1025-65535 are typically available. The exact
number is not important as long as the Client and the Server are using the sam
number, and the port is not being used by another application.

Be aware that Java will wait (block) when a TCP server has been set up, waitin
a client to connect. It will also wait when trying to receive TCP data. This should
taken into consideration when considering the Client/Server interaction.

UDP operations

UDP does not differentiate between Client and Server like TCP does. To set u
UDP connection, you must do the following steps

1. Start up UDP...

2. Send UDP data... or Receive UDP data... or Reply to UDP data...
Simplicity for Java

Using the Code Sourcerer
(You may Send and Receive UDP data in any order, and as many times as is
desired. The Reply option should only be used after UDP data has already been
received.)

3. Shut down UDP...

The Send and Receive options have many options. It is important to keep track of
the port number which is being used, as well as the names of the UDP packet
objects which are used to send and receive data, since UDP packets contain
information about the connection.

Be aware that Java will wait (block) when trying to receive UDP data.

Miscellaneous

This option includes a variety of operations. They include

• Emit an audio ’beep’ sound

• Query the available fonts

• Ensure that all components have been updated

• Get an Image from a filename...

• Get an Image from a URL...

• Get an image using Image selection dialog...

• Copy text to the system clipboard...

• Get text from the system clipboard...

• Query the size of the screen

• Query the screen resolution (in dots per inch)

• Send an E-mail message...

• Convert from Strings to other types...

• Convert variables to Strings...

Java Language statements

This option lets the Sourcerer create Java statements.

Conditional Statements

Conditional statements let the user specify code which will only happen if a certain
condition is met. There are two types of conditional statements,
Simplicity for Java 117

Code Sourcerer

118
• if...

• if else...

In both cases, the User must enter the statements which happen if the condition is
true. A comment shows where this is appropriate.

Loop Statements

Loop statements let the Java program repeat certain portions of code in a controlled
manner. There are several different types of loop statements available from the
Sourcerer. Each one has its own advantages.

• do... this will run the statements inside the loop, then check to see if the loop
condition is true. If it is true, then the loop will be run again and the loop
condition tested again. This means that the loop will be run at least once.

• while... this will check to see if the loop condition is true. If it is true, then the
loop will be run, and the loop condition tested again. This means that it is
possible that the loop will not be run at all.

• counter... this will start a loop which is connected to a counter. The counter will
start at a starting number, end at an ending number, and count in user-defined
multiples. This is a quick way to make a loop run a specific number of times, or
to have access to a variable which is counting up or down.
Simplicity for Java

CHAPTER 12 Canvas Composer
This chapter will discuss the Canvas Composer, which allows you to create new
graphical JavaBeans. The differences between the Canvas Composer and the other
Composers will also be highlighted.

This chapter will cover

• Creating a new Canvas Composer

• Differences between the Canvas Composer window and other Composers

• A brief overview of the tools in the Canvas Palette

Creating a new Canvas Composer

A new Canvas Composer can be created in the same way as the other Composer
files. Choose Canvas under the Create menu in the Simplicity IDE, or use the
Button Bar in the IDE.
Simplicity for Java 119

Canvas Composer

120

a

 class

ins
The Composer Window for a Canvas object

Canvas Property Notebooks

The ‘Canvas’ property page contains several settings which affect how the Jav
source code is generated. The new JavaBean can extend one of four posible
choices: Component, Container, JComponent, or Canvas. The generated Java
will have its name specified by the text in Object Name, and it will extend the
chosen parent class.

The Canvas Composer has a special page labelled ‘Canvas Methods’. It conta
two methods:

• paint(Graphics g)

• getPreferredSize()

The getPreferredSize() should return the best size for the component being created.
For example, the code

return new Dimension(300,200);

would make the preferred size of the Canvas 300 pixels wide and 200 pixels high.
New Canvas objects start with a preferred size of (200,200).

The paint() method contains all of the instructions for drawing the component.
Each of the palette buttons write some code to this area. The user can also write
code here as well. The working model will display the appearance of the
component based upon the drawing instructions in the paint() method. The paint
method of a Canvas object might be called very frequently, so it is a bad idea to
have computationally intensive code in this area.

Canvas Working Model

The Canvas working model initially is a window with the characteristics as defined
in the canvas property notebook. The user may use the items in the Palette menu to
interactively draw on the working model, or may type in the appropriate code in the
paint method area. Once an object has been drawn, it may be modified by changing
the code in the paint method area.
Simplicity for Java

Graphics Parts
Canvas Palette Pages

The Canvas Composer has a set of special palette pages. These are

• Graphics These are tools to perform common drawing tasks, such as drawing
ovals, rectangles, and placing text.

• Effects These are tools which will change the display of subsequent objects
drawn on the Canvas.

• Colors These let the user choose the colors of subsequent objects drawn on the
Canvas.

Palette items do not take effect until the user clicks (or drags) on the working
model. Items will become unselected after one use. Palette items may be unselected
by clicking them a second time.

Graphics Parts

The following graphics parts all require the user to drag on the working model. The
shape will be drawn interactively.

• Oval

• Filled Oval

• Rectangle

• Filled Rectangle

• Line

• Arc (this requires additional interaction)

• Filled Arc (this requires additional interaction)

• Rounded Rectangle (this requires additional interaction)

• Filled Rounded Rectangle (this requires additional interaction)

In addition, the following parts require the user to click on the working model, after
which some additional interaction is required.

• Text

• Image
Simplicity for Java 121

Canvas Composer

122
Oval

This will draw an oval. Since the java.awt.Graphics definition of an oval describes
an oval inscribed in a rectangle, the corner of the oval will not be exactly at the
cursor. The color of the oval will be that of the current foreground color.

If the control key is held down while drawing, the oval will be constrained to be a
circle.

If the shift key is held down while creating the oval, its size and position will be
relative to the current size of the Canvas. Later resizing of the Canvas will result in
the shifting of the size and position of the oval.

The control and shift keys may be used simultaneously.

Filled Oval

This will draw a filled oval. The oval will be filled with the current foreground
color.

If the control key is held down while drawing, the oval will be constrained to be a
circle.

If the shift key is held down while creating the filled oval, its size and position will
be relative to the current size of the Canvas. Later resizing of the Canvas will result
in the shifting of the size and position of the filled oval.

The control and shift keys may be used simultaneously.

Arc

The Arc draws a portion of an oval. First the underlying oval is drawn. Then the
user must click and drag to set the first endpoint of the arc. A line is drawn from the
center of the oval to the position of the cursor for reference. Next the other endpoint
of the arc is chosen by clicking and dragging until the desired arc is drawn. The
underlying oval is shown greyed out for reference. When the arc is finished, the
reference lines will disappear, leaving only the arc. The arc will be drawn in the
current foreground color.

If the control key is held down while drawing, the oval will be constrained to be a
circle.
Simplicity for Java

Graphics Parts

nd

 a

ize
 the

user
e the

 to

ill
esult

re
ses
If the shift key is held down while creating the underlying oval, the Arc’s size a
position will be relative to the current size of the Canvas. Later resizing of the
Canvas will result in the shifting of the size and position of the arc.

The control and shift keys may be used simultaneously.

Filled Arc

The Filled Arc is created identically to the arc, but the interior of the arc is filled
with the current foreground color.

If the control key is held down while drawing, the oval will be constrained to be
circle.

If the shift key is held down while creating the underlying oval, the filled arc’s s
and position will be relative to the current size of the Canvas. Later resizing of
Canvas will result in the shifting of the size and position of the filled arc.

The control and shift keys may be used simultaneously.

Rectangle

Drag to draw a rectangle in the current foreground color. The point where the
presses initially will be one corner, and the point where the user releases will b
opposite corner.

If the control key is held down while creating the rectangle, it will be constrained
be a square.

If the shift key is held down while creating the rectangle, its size and position w
be relative to the current size of the Canvas. Later resizing of the Canvas will r
in the shifting of the size and position of the rectangle.

The control and shift keys may be used simultaneously.

Filled Rectangle

Drag to draw a rectangle filled with the current foreground color. The point whe
the user presses initially will be one corner, and the point where the user relea
will be the opposite corner.
Simplicity for Java 123

Canvas Composer

124

ater
If the control key is held down while creating the filled rectangle, it will be
constrained to be a square.

If the shift key is held down while creating the filled rectangle, its size and position
will be relative to the current size of the Canvas. Later resizing of the Canvas will
result in the shifting of the size and position of the filled rectangle.

The control and shift keys may be used simultaneously.

Line

Draws a line in the current foreground color. The point where the user presses will
be the beginning of the line, and the point where the user releases will be the end.

If the shift key is held down while creating the line, its size and position will be
relative to the current size of the Canvas. Later resizing of the Canvas will result in
the shifting of the size and position of the line.

Round Rectangle

First a rectangle will be created. The user must then choose the roundedness of the
rectangle. Press the mouse a second time, and drag until the rounded rectangle
looks as desired. The amount of rounding is relative to the upper left hand corner of
the rectangle. The further the mouse is dragged down and to the right, the more
rounding will appear.

If the control key is held down while creating the underlying rectangle, it will be
constrained to be a square.

If the shift key is held down while creating the underlying rectangle, the rounded
rectangle’s size and position will be relative to the current size of the Canvas. L
resizing of the Canvas will result in the shifting of the size and position of the
rounded rectangle.

The control and shift keys may be used simultaneously.

Filled Round Rectangle

The filled round rectangle behaves exactly as the round rectangle, except the
interior is filled with the current foreground color.
Simplicity for Java

Effects Parts
Text

This lets you draw a line of text in the current font and color on the canvas. To do
this, you should

1. Click the mouse anywhere on the working model

2. Type the desired text in the text area

3. Hit return or press the mouse in the working model (outside of the text area)

4. Choose the location of the text. The text will be placed when the mouse button
is released.

If the shift key is held down while the location of the text is being chosen, then the
position of the text will be relative to the current size of the Canvas. Later resizing
of the Canvas will result in the shifting of the position (but not size) of the text.

Image

This lets you place an image on the canvas. To do this, you should

1. Click the mouse anywhere on the working model

2. An image selector dialog will appear. Choose the image that you wish to display
and press Ok to continue.

3. Choose the location of the image. The image will be placed when the mouse
button is pressed and then released.

If the shift key is held down while the location of the image is being chosen, then
the position of the image will be relative to the current size of the Canvas. Later
resizing of the Canvas will result in the shifting of the position (but not size) of the
image.

Effects Parts

Set Clipping

This lets you set a clipping rectangle on the canvas. Once the clipping is created,
painting only occurs inside the clipping rectangle. This means that it is possible to
draw a shape which is not displayed at all because it is not inside the clipping.
Simplicity for Java 125

Canvas Composer

126
Translate

This resets the origin to a new location chosen by clicking the mouse. Use this tool
with caution, because all subsequent graphics which are drawn will be affected by
the translation, and may be difficult to draw on the working model.

Choose Font

This sets the font, size, and style for all subsequent text placement.

Color Parts

These parts let you set the foreground color of the canvas. This color will be used
by all subsequent operations.

Choose a Color

This brings up the standard Swing color chooser. From it, it is possible to choose a
color using several different methods.

Black, Blue, Cyan, etc.

These parts each change the foreground color to a standard Java color, defined in
Color.
Simplicity for Java

CHAPTER 13 Java Command Window
The Java Command Window allows the user to experiment with Java language
statements, execute methods dynamically for testing and debugging, and view the
local symbol tables while working in a Composer.

This chapter will discuss:

• Inputting Java statements

• Reviewing the command history

• Manipulating the local symbol table

• Using the Java Command Window from the IDE

• Using the Java Command Window from the Composer

• Using the Java Command Window from the Debugger
Simplicity for Java 127

Java Command Window

128
Using The Java Command Window

The Java Command Window allows the user to execute individual Java statements
to test code, manipulate running applications, and discover information about
running applications.

The Window itself three major parts: The Command Input line, The Local Symbol
Table, and the Command History.

Command Input

The Command Input, which appears at the bottom of the Command Window,
allows the user to enter one or more Java language statements. These will be
executed when the user presses the Enter key.
Simplicity for Java

The Three Java Command Window Contexts

ut
ly

xt

d

lly

h
It is not necessary to terminate a single statement with a semicolon, as one will be
added implicitly. Multiple statements may be separated by semicolons. For
example, the following line may be entered into the Command Input:

import java.util.*;

Vector v = new Vector();

int i=0; while(i<8) v.addElement(String.valueOf(i++));

System.out.println(v);

Local Symbol Table

The Local Symbol Table contains a list of all of the local identifier names as well as
the String value of the object being referenced.

Double clicking a symbol will add the name of the symbol to the Command Input
field and then launch the Sourcerer’s Apprentice (page 73) to allow the user to
select a method or field name from the class.

Command History

The Command History lists all of the commands which you have previously
entered. Selecting any command will copy the command to the Command Inp
field for further editing or execution. Double-clicking a command will immediate
re-execute the command.

The Three Java Command Window Contexts

The Java Command Window is used in different ways depending on the conte
from where it has been launched.

IDE

A Command Window may be launched from the IDE, using the “New Comman
Window...” item on the “Project” menu. This Command Window will inherit the
classpath as set in the dynamic classpath in the IDE. Its symbol table will initia
be empty.

This Command Window may be used for general purpose experimentation wit
Java statements and for execution and testing of classes.
Simplicity for Java 129

Java Command Window

130

and

ain
nd

e,

 the

ed

to

y.

a

d
Composer

A Command Window may be launched from any Composer, using the “Comm
Window” item on the “Program” menu. This Command Window will inherit the
classpath as set in the dynamic classpath in the IDE. Its symbol table will cont
all of the symbols in the class scope of the Composer. For example, a Comma
Window opened from within a Frame Composer will contain references to the
Frame itself, all of the graphical components that have been added to the Fram
and any declarations added to the Declarations code page.

This Command Window may be used for testing the class being constructed in
Composer. Properties of the components in the Composer may be changed
programatically for testing and experimentation purposes. Any method in the
Methods code area may be executed for testing.

Debugger

A Command Window is launched whenever the Debugger is started. This
Command Window allows the user to manipulate the application being debugg
directly from within its own Java Virtual Machine. The Symbol table is initially
empty.

This Command Window has two additional buttons at the top that are specific
the debugger. The first, Run program..., allows the user to specify a class with a
public static void main(String[]) method for execution. The
second, Load classes..., lets the user specify a set of classes to load into memor

This Command Window may be used in many ways depending on the type of
debugging being done. It may be used to create specialized invocations of Jav
class methods for testing and debugging, without the need to have a main
application previously created to invoke them. It also may be used to query an
modify running applications through static method calls.
Simplicity for Java

CHAPTER 14 Debugger
This chapter will discuss Simplicity’s Debugger. It will cover

• Starting the Debugger

• The Debugger window

• The Command Window

Starting the Debugger

The debugger is started from the Simplicity IDE. When you right-click (or
Ctrl-click for single button mice) on any Java Source or Java Class icon, the pop-up
menu that appears will include options to launch the debugger. Initially, the Java
class which is selected in the IDE will be loaded into the debugger.

Once the Debugger has started, three windows will appear. The Debugger Window,
the Debugger Command Window, and the Run Class dialog. The Run Class dialog
will allow you to start an application. This dialog will let you specify a Java class
which contains a public static void main(String[]) method, and
command line parameters for the application.
Simplicity for Java 131

Debugger

132

Source View
The Debugger Window

The debugger window is the central location for controlling and debugging your
application. From the Debugger window, you can view all of your classes and their
methods, set breakpoints, observe and modify thread states, observe the execution
stack, view the source code being debugged (along with markers indicating
breakpoints and current location), and view all local variables.

er Variables ListCommand Buttons
Simplicity for Java

The Debugger Window

onse
a

o the

t to
les

of

rce

d

d or
. Note
nt.

e
The top portion of the Debugger window contains a tabbed pane with four tabs
labeled “Available classes and methods”, “Breakpoints”, “Threads”, and
“Execution Stack”. The information displayed on each page is updated in resp
to program events. An update may be forced by clicking on a tab at the top of
page. (This may be used to refresh the current page, or any other page.)

Available classes and methods

This page contains a tree showing all of the classes that have been loaded int
debugger’s Virtual Machine.

Selecting any class in the tree will display a list of the class’ methods in the lis
the right. If available, it will also display the class’ source code and local variab
in the Source Viewer and Variables List.

Double clicking any method in the methods list will set a breakpoint at the
entrypoint to that method.

Breakpoints

The Breakpoints tab displays a list of all of the current breakpoints. The name
the class and the line number are listed.

Selecting any of the breakpoints in the list will display that source file in the Sou
Viewer, and jump to that line.

Double-clicking a breakpoint will clear the breakpoint.

Threads

The Threads tab displays all of the threads that the application being debugge
contains, as well as information about the current state of each thread.

The four buttons at the bottom of this page can be used to individually suspen
resume a particular thread, or to suspend or resume all threads simultaneously
that these buttons have no effect while an application is stopped at a breakpoi
You must press the Continue button to continue execution from a breakpoint.

Selecting a thread makes that thread the active thread being debugged. The
Execution Stack, Source Viewer, and Variables list will display information in th
context of the active thread.
Simplicity for Java 133

Debugger

134

r

line

ne

 the
 in

n
g
s

ad
ctive.

sed
ns
Execution Stack

The Execution Stack page displays the execution stack and current location within
the current thread’s stack frame. This only has meaning when the thread is
suspended or is stopped at a breakpoint.

Selecting a method call within the execution stack will cause the Source Viewe
and Variables list to display their contents within the context of that method.

Source Viewer

The Source Viewer displays the source code (if available) for the class being
debugged. It is context sensitive, and will jump to the source file or method or
number being chosen in the class list, breakpoints list or execution stack.

Double clicking a line will set a breakpoint at that line or clear a breakpoint if o
already exists. A breakpoint can only be set at a line containing an executable
statement.

Variables List

The Variables List contains a list of all local variables and method arguments in
current Source Viewer context. It also contains a reference to the “this” pointer
the current class context.

Double clicking any item in the Variables List will launch a window containing a
additional Variables List showing an expanded view of that item. Double-clickin
an item in the new list will again launch an additional Variables List. Class field
may be viewed to an arbitrary depth in this manner. The contents of any given
Variables List window may be unavailable depending on the current active thre
and stack depth, but will be refreshed when the appropriate context becomes a

Command Buttons

At the bottom of the Debugger Window are five Command Buttons, which are u
to control execution when an application is stopped at a breakpoint. The butto
are:

• Continue This button will resume normal execution of an application after it
has been stopped at a breakpoint.

• Step over This button will execute the line of code at the cursor, and attempt to
remain in the same stack location.
Simplicity for Java

The Debugger Window

re

ad
d a
• Step into This button will begin execution of any method call in the line of code
at the cursor, and will leave the cursor at the top of that method call for further
debugging.

• Step up This button will instruct the debugger to finish executing the method in
the current stack location, and leave the cursor at the next line in the stack
location above the current stack location.

• Step instruction This button will execute a single Java byte code instruction
within the current line of code.

Java Command Window

A Java Command Window is launched whenever the Debugger is started. The
Command Window allows the user to manipulate the application(s) being
debugged directly from within its own Java Virtual Machine. The Command
Window may be used in many ways depending on the type of debugging being
done. It may be used to create specialized invocations of Java class methods for
testing and debugging, without the need to have a main application previously
created to invoke them. It also may be used to query and modify running
applications through static method calls.

This Command Window has two buttons at the top that are specific to the
debugger. The first, Run program..., allows the user to specify a class with a
public static void main(String[]) method for execution. The
second, Load classes..., lets the user specify a set of classes to load into memory.

Run program

The Run program dialog lets the user specify a class with a public static
void main(String[]) method for execution. The user may also enter
command line parameters (one per line) into the dialog. The specified class’s main
method will be executed when the Run button is pressed. All applications started
through the Run program dialog execute within the same Virtual Machine and a
capable of interacting with each other through static methods.

Load classes

The Load classes dialog allows the user to instruct the Java Virtual Machine to lo
particular classes into memory. It is primarily used to force the debugger to loa
class so that the class can be viewed in the Debugger Window or so that
breakpoints can be set in the class.
Simplicity for Java 135

Debugger

136

ath
d
n
The dialog works in a similar fashion to the “Import Java Bean” dialog. A classp
tree is on the left panel. The middle panel shows a list of classes in the selecte
package. Selecting and pressing the Add button will add the classes to the panel o
the left. The classes are loaded when the Ok button is pressed.
Simplicity for Java

CHAPTER 15 Advanced Features -
Extending the IDE
 easy

l
e
This chapter will discuss how to extend Simplicity’s Integrated Design
Environment (IDE) and how it can be customized.

It will cover

• How to extend the IDE

• Some Samples of the extended IDE

Extending the IDE

Simplicity version 1.2 introduced the possibility to extend the IDE. The menus in
the IDE can all be customized to meet the user’s current needs and to allow for
access to programming utilities.

The IDEmenu.config file

When Simplicity starts, it looks for a file called IDEmenu.config in the Persona
Settings Directory (See page 6). If this file does not exist, Simplicity will use th
default factory settings for the menus.
Simplicity for Java 137

Advanced Features - Extending the IDE

138

sing
e
A copy of IDEmenu.config is included in the install, but it will not be used unless it
is moved to the Personal Settings Directory.

The IDEmenu.config file is a plain text file, which uses a simple markup language
similar to HTML to format the menus. Capitalization of the tags and commands are
also not important. Spaces and line breaks between tags are not important. Like
HTML, tags must be contained within angled brackets <>.

The only allowed tags are

• <menubar> </menubar>

• <menu> </menu>

• <menuitem> </menuitem>

• <separator>

• <action> </action>

• A # sign signifies a comment, which causes the rest of the line to be ignored.

MenuBar

The IDEmenu.config file must have both the <menubar> and </menubar> tags. The
text between these will be used to build the menus.

Menu

The Menu tag starts a menu. The label= command gives the name. Quotation
marks are not necessary if the name is only one word; names longer than a word
should be enclosed in straight quotes. Menus can be nested (to give sub-menus).
Each <menu> tag must be paired with a </menu>. The following example will
create one menu, named File, which only contains a sub-menu named “Open
This...”.

<menubar>

<menu label=File>

<menu label="Open This..."> </menu>

</menu> </menubar>

MenuItem

The MenuItem tag defines a menu item. A MenuItem should be given a name u
the label= command. Quotation marks are not necessary if the name is only on
Simplicity for Java

 be
ent)
ays
; the
word; names longer than a word should be enclosed in straight quotes. If a
MenuItem should be available even when there is no open Project, then the
command alwaysEnabled=true should be included in the MenuItem tag. If this is
not included, the default of alwaysEnabled=false is used. For a MenuItem to have
any function, it must contain at least one Action tag. The </MenuItem> tag is
optional, since MenuItems cannot nest. The following sequence will be correctly
interpreted by Simplicity as being two MenuItems in a menu: <Menu label=a>
<MenuItem label=one> <MenuItem label=two> </Menu>

Separator

The Separator tag creates a separator between MenuItems. In most operating
systems, the separator appears as a line.

Action

The Action tag tells Simplicity what to do when a menu item is chosen. It should be
enclosed within MenuItem tags. There are two different ways to tell Simplicity
what should be done. The command= command or the class= command can be
used.

The command= command lets the user specify a command just as would normally
be done from the command line of the operating system being used. Tabs can be
used to separate parts of the command. The following command might be used to
open Netscape on a machine running Windows:

command=C:/Netscape.exe

Windows normally uses the “\” character to separate directories. However, this
character is used to denote escape sequences in Java. To use \s in the above
example, the command would have to be command=C:\\Netscape.exe.

Even though the MacOS does not have a command line, command= will work to
open programs with the MacOS. See the next section for an example.

The class= command can be used to have Simplicity open a class. The class to
opened must extend datarep.ide.config.Action. The actionPerformed(ActionEv
method will be called when the menu item is chosen. There are two possible w
to use this command. One would be to create a new class which extends Action
other would be to extend one of Simplicity’s existing menu commands by
extending that class. Examples of both will be given in the next section.
Simplicity for Java 139

Advanced Features - Extending the IDE

140

se of
en

ome
r
Any number of Action tags can be associated with a menuItem; they will be
executed in sequential order. The </Action> tag is optional, because Action tags do
not nest. Simplicity interprets the following sequence correctly as being two
Actions associated with the menuItem “test”: <menuItem label=test>
<action command=command1> <action command=command2>
</menuItem>

Samples of the extended IDE

The following samples have been shortened, but will demonstrate the proper u
the tags and commands available to extend the IDE. Package names have be
omitted from the Java code, but may be used if desired.

Adding a command to the help menu

This example shows how to add a new command to the help menu, using
command= . The command being added opens up Netscape to the Simplicity h
page. The path given is for an iMac; you will have to change this to reflect you
computer

<Menubar>

all text from the ‘#’ onwards is a comment.

... other menus should be defined here...

<Menu label=Help>

<MenuItem label="User Guide..." alwaysEnabled=true>

the user guide should always available

<action class=datarep.ide.config.LaunchUserGuideAction>

the above action launches the user guide

</menuitem> # this tag is optional

<Separator>

<MenuItem label="Go to data representation’s home page"

alwaysEnabled=true>

<action command="/myiMac/Internet/Netscape Navigator 
http://www.datarepresentations.com">

note that there is a tab separating the path name from

the web site.

</menuItem>

</menu> # this tag is not optional
Simplicity for Java

Samples of the extended IDE

e

that

y
 item

e
</menubar>

Adding a new action

This brief example adds a new menuItem called “beep”, which beeps, using th
class= command. First a new class is created, then the addition to the
IDEmenu.config file is described.

First a new BeepAction class must be created and compiled:

import java.awt.event.*;

import datarep.ide.config.Action;

public class BeepAction extends Action {

 public void actionPerformed(ActionEvent event) {

getToolkit().beep();

}

}

Next the following addition needs to be made to the IDEmenu.config file. Note
the class which is used in the action tag is the new BeepAction class.

<menuItem label=beep> <action class=BeepAction> </menuItem>

Modifying existing actions

In addition to creating new classes extending the Action class, users can easil
change existing classes by extending them. In this example, the Refresh menu
(under the Edit menu) will be modified. First a new class will be created which
extends RefreshAction, then the modifications to the IDEmenu.config file will b
shown.

First the BeepAndRefreshAction class must be created and compiled:

import java.awt.event*;

import datarep.ide.config.RefreshAction;

public class BeepAndRefreshAction extends RefreshAction {

public void actionPerformed(ActionEvent event) {

getToolkit().beep();

super.actionPerformed(event);

}

}

Simplicity for Java 141

Advanced Features - Extending the IDE

142
Next the following change must be made to the IDEmenu.config file. The tag
which reads

<action class=datarep.ide.config.RefreshAction>

should be replaced with

<action class=BeepAndRefreshAction>

Now whenever the Refresh item is chosen from the Edit menu, the user will hear a
beep before the refresh occurs. Although this example was simple, more complex
classes could be created.

A Complex Action

This last example will show how multiple action tags can be associated with a
MenuItem. It will also involve making the Refresh menu item beep, both before
and after the Refresh occurs. To do this,

1. Make sure that the BeepAction class (page 141) is compiled.

2. replace the code for the Refresh MenuItem with the following code:
<MenuItem label=Refresh> <action class=BeepAction>

<action class=datarep.ide.config.RefreshAction>

<action class=BeepAction>

More Action tags could be chained together if desired. Also command= and class=
Action tags can be associated with the same MenuItem.
Simplicity for Java

Index

Symbols
.lic_txt 7
.license directory 7

A
Absolute Layout 90
ActionEvent 82, 91, 92, 94, 95, 96, 97, 98, 99, 100
AdjustmentEvent 93
AIX 3
Applet 83, 112
array 111
audio 117
AudioClip 112
Auto-scroll 81
AWT 83

B
Basic Parts 86, 91
Beans 86, 105
Boolean 94
Border Layout 87, 107
Bottom Layout 90
breakpoint 134
Breakpoints 133
Button 91, 96
Byte 94

C
Canvas 62, 76
Card Layout 88
ChangeEvent 96, 97, 98, 99
Character 94
CheckBox 97
Checkbox 91, 97
CheckBoxMenuItem 104
Choice 92
class type 111
Class Viewer 59
CLASSPATH 4
ClassPath 3
Classpath 54, 55
Classpath, primordial 55
clipboard 117
code area 81, 109
Code menu 79, 83
Code Sourcerer 82, 105, 109
Simplicity for Java 143

144
Color 72, 81
ComboBox 98
ComboBoxModel 98
Command History 128
Command Input line 128
Component Events 82
Composer 58, 62, 75, 77, 80, 83, 85, 106, 109, 127, 130
Conditional statements 117
Console 61
constructor code 79, 83, 105
ContainerEvent 82, 93, 95
Continue 134
Convert 117
counter 118
Cursor 81

D
Data File 62
Data Representations, Inc. i
Datagram 115
Date 94
Date2000 94
Debugger 130, 131
debugger 64
debugging 127
declaration code 79, 82
default close action 83
destroy 79
Detach 87
Dialog 62, 76, 106, 114
Directories 64
do loop 118
Dollar Amount 94
Double 94
Double Buffer 81

E
Editor 69
EditorPane 101
E-mail 117
Empty Panel 80
Empty Space 87, 88, 90, 106
Empty The Recylcing Bin 78
Enabled 81
events 82
Execution Stack 133
Extended Parts 86, 93
External Editors 64, 65
Simplicity for Java

F
Feedback 7
File operations 112
FileDialog 112
finalization 115
finalize 79, 83
Float 94
Flow Layout 87, 107
Flyer 95
Flyouts 65
Focus Events 82
Folders 54
Folders area 55
fonts 81, 117
Frame 62, 76, 106, 114
Frame Animator 96

G
garbage collector 115
Generate code 78
Generate Swing code 83
Grid Layout 87
GridBag Constraints 88
GridBag Layout 88
Group Box 95
Group Editor 56, 61
Groups 56

H
HTML 59, 62, 112
HyperlinkEvent 101

I
IDE 53, 54, 76, 129
IDEmenu 7, 137
IDEmenu.config 137
Identifier 94
Image 59, 62, 95, 117
Image Button 95
Image Canvas 95
Image Editor 65
Image Viewer 59
Import 95, 105
Importing JavaBeans 32
Indentation 71
init 78, 79
Initialize Class 78, 80
Inset Sizer 93
Installation 1
Simplicity for Java 145

146
Installation Directory 64
Integer 94
Integrated Design Environment 53, 119, 127, 131, 137
IRIX 3
ItemEvent 89, 91, 92, 97, 98, 99, 102

J
Java Bean 59, 63
Java class file 59
Java Command Window 78, 127, 135
Java Command window 63
Java Compiler 64
Java Editor 59, 64, 65, 66
Java File 62, 63
Java source file 59
Java system operations 115
Java Virtual Machine 1, 115
JavaBeans 31, 34, 105
JButton 96
JCheckBox 97
JCheckBoxMenuItem 104
JComboBox 98
JDB 64
JDBC 37, 39
JDK 1
JEditorPane 101
JFC 83
JLabel 98
JList 98
JMenu 103
JMenuBar 103
JMenuItem 104
JPasswordField 100
JProgressBar 99
JRadioButton 97
JRadioButtonMenuItem 104
JScrollBar 99
JScrollPane 101
JSeparator 104
JSlider 99
JSplitPane 101
JTabbedPane 102
JTable 103
JTextArea 100
JTextField 100
JTextPane 101
JToggleButton 96
JToolBar 102
JTree 102
Simplicity for Java

K
Key Events 82
keyboard shortcuts 71

L
Label 91, 98
Layouts 86, 87, 106
Left Side Layout 89
Linux 3, 4, 5, 6
List 98
Listbox 92
Listeners 80, 81, 105, 107
ListModel 99
Local Symbol Table 128
Long 94
Loop statements 118

M
Mac OS 2, 3, 5
Main App 62, 75, 76, 83, 106, 112
memory 115
Menu 83, 103
MenuBar 103
MenuItem 104
Menus 86, 103
Message Boxes 114
method code 79, 83
mouse editing 90
Mouse Events 82
Mouse Motion Events 82

N
Null 94

O
Object 62, 76
Object Name 80
Object Palette 64, 65, 76, 85, 86, 105, 106
OS/2 Warp 2, 3, 4

P
package 55
Panel 62, 76, 106
Part List 77
PasswordField 100
Perl 5 72
Personal 64
Personal Settings 64
Personal Settings Directory 61
Simplicity for Java 147

148
Phone 94
primitive type 111
Printing 64, 66, 69, 72
program 6
Program menu 78, 80, 83
Program Settings 59, 61, 64
Progress Bar 95
ProgressBar 99
Project Groups 56
Project Tree 54
properties 81, 110, 111
Property Notebooks 80

R
Radio Button 91
RadioButton 97
RadioButtonMenuItem 104
Recycle Current Part 77
Recycled 87

S
SCO 3
Scrollbar 93
ScrollPane 101
ScrollPane Layout 90
Search & Replace 72
Search and Replace 69
secondary windows 115
Separator 104
Short 94
SimpleText 39
Sizer 93
Slider 99
Social Security 94
Solaris 3, 4
Sound 59, 62
Sound Editor 65
Sound Player 59
Sourcerer’s Apprentice 69, 70, 73, 129
Spacer 93
SplitPane 101
SQL 39, 42
start 78, 79
stdin/stdout/stderr 115
Step instruction 135
Step into 135
Step over 134
Step up 135
stop 79
Simplicity for Java

String 94
Swing 35, 37, 83, 86
System Requirements 1, 2

T
Tabbed Card Layout 89
TabbedPane 102
Table 38, 103
TableModel 41, 103
TCP 115
Technical 7
Text Area 92
Text Editor 59, 65
Text Field 92
Text File 62
TextArea 100
TextEvent 92, 93, 94, 100, 101
TextField 100
TextPane 101
TextPrinter 113
thread 115
Threads 133
Time 94
Toggle 96
Tool Tip 81
ToolBar 102
Tree 102
TreeModel 103

U
UDP 115, 116
Unix 3, 4
UnixWare 3
URL 112, 117

V
Validated Text Field 93
variable 111
Variables List 134
View Code 78
viewport 101
Visible 81
Visual properties 80, 81, 105

W
web browser 59, 65
web page 84
while loop 118
Window 62, 76, 106, 114
Simplicity for Java 149

150
Window operations 114
Windows 2, 4
Windows 95 3, 7
Windows NT 4, 7
Working Model 76, 80, 82, 86, 106
Wrap Label 94

Z
Zip 94
Zip+4 94
Simplicity for Java

	Simplicity for Java
	Table of Contents
	CHAPTER 1 Installation
	System Requirements
	Java Virtual Machine
	Minimum System Requirements
	Suggested Minimum System Features

	Installing
	Windows (95/98/NT)
	Mac OS
	OS/2 Warp
	Linux, Solaris, AIX, IRIX, SCO UnixWare, and Other Unix

	Starting Simplicity for Java
	ClassPath
	Starting Simplicity for Java

	Platform Specific Notes
	Windows NT 4.0
	OS/2 Warp
	Linux
	Macintosh
	Solaris
	SCO UnixWare

	The Personal Settings Directory
	Linux, Solaris, SCO UnixWare, and other Unix
	Windows, MacOS, and OS/2
	Files in the Personal Settings Directory

	Technical Support and Feedback
	Technical Support
	Feedback

	CHAPTER 2 Tutorial 1 - Introduction to Simplicity
	A Simple Text Editor
	Open a project
	Create a new Application
	Assemble the GUI
	Cleaning up
	Responding to events
	Completing the program

	CHAPTER 3 Tutorial 2 - Programming with Simplicity
	A Bank Account Application
	Open a project
	View the finished application
	Creating the Transaction Window
	Using the GridBag Layout
	Adding code
	Test the Transaction Dialog
	Creating the Bank Account application
	Create the layout
	Deposits and Withdrawals
	Print a receipt
	Email a receipt
	Finishing up

	CHAPTER 4 Tutorial 3 - Using JavaBeans™ and Swing
	A Thermostat Application
	Open a project
	View the finished application
	Importing JavaBeans™
	Creating the Thermostat application
	Create the layout
	Working with JavaBeans
	Creating a Swing Application
	Finishing up

	CHAPTER 5 Tutorial 4 - Advanced Swing and JDBC
	A Database Application
	Open a project
	Creating the Database application
	Create the layout
	Using JDBC (Java Database Connectivity)
	Creating a TableModel
	Working with SQL queries
	Finishing up

	CHAPTER 6 Tutorial 5 - Using the Canvas Composer
	A Traffic Light JavaBean
	Open a project
	Creating the Traffic Light
	Set the Size of the Canvas
	Set up initial variables.
	Drawing the Traffic Light
	Light changing methods
	Creating the main application
	Finishing up

	CHAPTER 7 Integrated Design Environment
	The IDE Window
	The Classpath
	The Folders area
	Using the Classpath and the Folders area
	Project Groups

	Editing parts of the Project Tree
	Editing Groups using the IDE Group Editor
	Editing The Classpath
	Editing The Folders area
	Opening items in the Group Contents Box

	IDE Menu Bar
	IDE Button Bar
	File Menu
	Edit Menu
	Create Menu
	Import Menu
	Project Menu
	Help Menu

	Program Settings
	Directories
	External Editors
	Object Palette
	Java Editor
	Printing

	CHAPTER 8 Java Source Code Editor
	Editing
	File Menu
	Edit Menu
	Indentation Features
	Color and Printing Features
	Search & Replace
	The Sourcerer’s Apprentice

	CHAPTER 9 Composers
	Creating a New Composer
	Types of Composers

	The Composer Window
	Composer Button Bar
	File Menu
	Program Menu
	Code Menu
	Parts Menu

	Property Notebooks
	Notebook pages

	Code Generation

	CHAPTER 10 Object Palette
	Assembling A Program Using The Object Palette
	Object Palette
	Working Model
	Object Palette Pages

	Layout Parts
	Border Layout
	Flow Layout
	Grid Layout
	GridBag Layout
	Card Layout
	Tabbed Card Layout
	Left Side Layout
	Bottom Layout
	ScrollPane Layout
	Absolute Layout

	Basic Parts
	Label
	Checkbox
	Radio Button
	Button
	Text Field
	Choice
	Listbox
	Text Area
	Scrollbar

	Extended Parts
	Spacer
	Inset Sizer
	Validated Text Field
	Wrap Label
	Image Button
	Image Canvas
	Group Box
	Progress Bar
	Flyer
	Frame Animator

	Swing 1 & 2
	Button (JButton)
	Toggle (JToggleButton)
	CheckBox (JCheckBox)
	RadioButton (JRadioButton)
	Label (JLabel)
	ComboBox (JComboBox)
	Listbox (JList)
	Slider (JSlider)
	ScrollBar (JScrollBar)
	ProgressBar (JProgressBar)
	TextField (JTextField)
	TextArea (JTextArea)
	PasswordField (JPasswordField)
	EditorPane (JEditorPane)
	TextPane (JTextPane)
	ScrollPane (JScrollPane)
	SplitPane (JSplitPane)
	TabbedPane (JTabbedPane)
	ToolBar (JToolBar)
	Tree (JTree)
	Table (JTable)

	Menus
	MenuBar (JMenuBar)
	Menu (JMenu)
	MenuItem (JMenuItem)
	CheckBoxMenuItem (JCheckBoxMenuItem)
	RadioButtonMenuItem (JRadioButtonMenuItem)
	Separator (JSeparator)

	JavaBeans
	Importing Beans into Simplicity
	Using Beans

	The Working Model
	Frames
	Building Layouts

	CHAPTER 11 Code Sourcerer
	Using the Code Sourcerer
	Change a property of an existing part
	Ask a part about one of its properties
	Declare a new variable
	Applet-only operations
	File operations
	Printing operations
	Window operations
	Java system operations
	Network operations (TCP and UDP)
	TCP operations
	Miscellaneous
	Java Language statements

	CHAPTER 12 Canvas Composer
	Creating a new Canvas Composer
	The Composer Window for a Canvas object
	Canvas Property Notebooks
	Canvas Working Model
	Canvas Palette Pages

	Graphics Parts
	Oval
	Filled Oval
	Arc
	Filled Arc
	Rectangle
	Filled Rectangle
	Line
	Round Rectangle
	Filled Round Rectangle
	Text
	Image

	Effects Parts
	Set Clipping
	Translate
	Choose Font

	Color Parts
	Choose a Color
	Black, Blue, Cyan, etc.

	CHAPTER 13 Java Command Window
	Using The Java Command Window
	Command Input
	Local Symbol Table
	Command History

	The Three Java Command Window Contexts
	IDE
	Composer
	Debugger

	CHAPTER 14 Debugger
	Starting the Debugger
	The Debugger Window
	Available classes and methods
	Breakpoints
	Threads
	Execution Stack
	Source Viewer
	Variables List
	Command Buttons
	Java Command Window
	Run program
	Load classes

	CHAPTER 15 Advanced Features - Extending the IDE
	Extending the IDE
	The IDEmenu.config file
	MenuBar
	Menu
	MenuItem
	Separator
	Action

	Samples of the extended IDE
	Adding a command to the help menu
	Adding a new action
	Modifying existing actions
	A Complex Action

	Index

