
Chapter Title

Objectives

 Discuss special element types.

 Learn how to declare attributes in a DTD.

 Learn how to reference external entities.

 Provide tips for good content modeling.

 Explain well-formed documents.

 Explain valid documents.

 Create and use an external DTD.

XML Content Modeling 1
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

XML Content Modeling 1

Special Element Types 4
Empty Elements 4
Unrestricted Elements 4
Mixed Content Elements 5
A Few Final Words on Elements 5

Attribute Declarations 6
Attribute Types 7
Attribute Attributes 11

The Completed Employee DTD 13

Elements or Attributes? 15

External Entities 16
Identifiers 16
Using External Entities 18
When to use External Entities 21

Tips for Good Content Modeling 22

Well-Formed and Valid 23

Well-Formed Documents 24
Checking for Well-Formedness 25
Choosing a Non-Validating Parser 31

Valid Documents 32
Validation is Relative 33
Validating Parsers 34

Final Words on Well-Formedness and Validity 35

Using External Document Type Definitions 36
Document Type Declarations 36
Standalone Documents 36
External DTD’s 37
Using an External DTD 38
Why Use an External DTD? 41

Code Listings 42
Chapter 4\EmployeeMaster.xml 42
Chapter 4\EmployeesWithDTD.xml 43
Chapter 4\EnumerationAttributes.xml 45
Chapter 4\IDAttributes.xml 46
Chapter 4\JohnDoe.xml 47
Chapter 4\JaneDoe.xml 48
Chapter 4\SpecialElementTypes.xml 49
Chapter 4\TokenAttributes.xml 50

XML Content Modeling 2
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 5\ Employees_NotWellFormed.xml 51
Chapter 5\Employees_WellFormed.xml 53
Chapter 5\TagError.xml 55
Chapter 6\Employees.dtd 57
Chapter 6\Employees.xml 58

XML Content Modeling 3
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Special Element Types

There are three more element types that require some explanation. These are
special element types that if used, must be declared within the document type
declaration.

Empty Elements

Empty elements have no content. If you will recall, there are two ways to
represent an empty element.

<empty.element></empty.element>

or

<empty.element/>

If you intend to model your content using one or more empty elements, you
must declare them as such in the DTD. This is done using the EMPTY
keyword. The syntax is for defining empty elements is:

<!ELEMENT empty.element EMPTY>

Tip: You will typically use empty elements only when you are going to associate

attributes with that element. We are going to discuss attribute declarations

shortly.

Unrestricted Elements

Unrestricted elements can contain any elements that are declared elsewhere in
the DTD (either internal or external). You cannot stipulate the order of any
elements contained within an unrestricted element.

In the following example, we show a declaration of an empty element
(<empty.element>), and an unrestricted element (<unrestricted.element>).

<?xml version="1.0"?>
<!DOCTYPE root.element [

<!ELEMENT empty.element EMPTY>
<!ELEMENT unrestricted.element ANY>

]>
<root.element>

<empty.element/>

<unrestricted.element>
<empty.element/>

XML Content Modeling 4
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

<empty.element/>
<empty.element/>

</unrestricted.element>

</root.element>

File: Chapter 4\SpecialElementTypes.xml

Mixed Content Elements

Mixed content elements are elements that can contain text and/or other
elements. This can get complicated in theory, but declaring them is not. For
example, let’s declare an element called <mixed.content> that can either
contain data (PCDATA), or one of three elements called <one>, <two> and
<three> respectively. The syntax would be as follows:

<!ELEMENT mixed.content (#PCDATA | one | two | three)*>

There are a couple points to make note of when declaring mixed content
elements. First, the content model has to take the form of a single set of
alternatives starting with #PCDATA followed by the element types that can
occur. Each element can be declared only once. Second, the asterisk (*) after
the closing parenthesis and before the closing > is not a typo. You have to
include the asterisk when declaring mixed content elements.

A Few Final Words on Elements

You now have the knowledge to create sophisticated element content models
that have structure and integrity. Believe it or not, we have just scratched the
surface on the topic of DTD’s. Now that you know how to declare elements,
let’s look at declaring attributes within those elements.

XML Content Modeling 5
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Attribute Declarations

Attributes can be likened to properties of an element. Attributes are specific to
an element and must be defined within the start tag of the element that they
belong to. We have seen attributes within our employee XML document in the
<employee> element.

<employee id="A1234">

In this case, “id” is an attribute. Like elements, attributes must be declared in
the DTD or an error will occur. An attribute declaration uses the <!ATTLIST>
tag and has the following syntax:

<!ATTLIST element.name attribute.definitions>

It is a general practice to keep attribute declarations close the element
declarations that they belong to. Also, if multiple attributes are being declared
for a single entity, use multiple lines in declaring them. This makes the DTD
much more readable and easy to understand. Do not dwell on this code as we
are going to explain the syntax in more detail in a moment. Instead, focus on
the <!ATTLIST> tag and its association with the <employee> element.

. . . (omitted)

<!ELEMENT employee (name, position?)>
<!ATTLIST employee

empid CDATA #REQUIRED
sex CDATA #REQUIRED>

. . . (omitted)

<employee empid=”123” sex=”M”>
<name>John Doe</name>

</employee>

. . . (omitted)

An attribute declaration accomplishes the following:

1. It declares the attribute names and element association.

2. It specifies the attribute type.

3. It can be used to specify a default value for the attribute.

Each attribute declaration consists of a name and type pair.

XML Content Modeling 6
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Attribute Types

There are three types of attributes that you can create. These consist of a string
type (similar to #PCDATA elements), a tokenized element, and an enumerated
attribute.

String Type

Like the name suggests, this attribute type is for storing string values. Any
attribute that is not specifically declared is assumed to be a string type
attribute. The syntax for creating a string type attribute is:

<!ATTLIST element.name attribute.name CDATA>

Notice that the CDATA (character data) string is used when declaring string
type attributes while #PCDATA (parseable character data) is used when
declaring string type elements. The following example declares an attribute
named “empid” that is a string type and is associated with the <employee>
element.

<!ATTLIST employee empid CDATA>

When an <employee> element is created, the “empid” attribute will contain a
string value.

<employee empid=”A1234”>

Tokenized Type

Tokenized attributes are attributes whose value consists of one or more tokens
that have meaning in XML. There are seven tokens that you can assign to an
attribute.

ID

An ID attribute serves as an identifier for an element. This is very similar to
the ID attribute in HTML. You may have seen or done something like the
following in an HTML document:

<DIV ID=”DIV1”>Some text</DIV>

The ID attribute in HTML allows you to uniquely identify an HTML element.
The same is true in XML, only it must be declared (as all things in XML
must). The syntax for declaring an XML attribute as an ID attribute is:

<!ATTLIST element.name attribute.name ID #REQUIRED>

An ID attribute is very similar to a primary key in a table. While a primary
key uniquely identifies a row in a table, an ID attribute uniquely identifies as
element. Thus, an ID attribute value must be unique to the XML document.
An ID value must also conform to XML naming rules, which we discussed
previously.

XML Content Modeling 7
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Tip: You can name an ID attribute any name that you like, but it is standard

practice to name the attibute “id” so that it is easy to visually identify.

IDREF

An IDREF attribute is a pointer to an ID attribute value that is declared
somewhere else in the document. In relational database terms, this is similar to
a foreign key reference. They key is that the IDREF attribute value must
match the value of an ID attribute somewhere else in the document. An
example is as follows:

. . . (omitted)

<!ELEMENT element1 EMPTY>
<!ATTLIST element1 id ID #REQUIRED>

<!ELEMENT element2 EMPTY>
<!ATTLIST element2 el1.id IDREF #REQUIRED>

. . . (omitted)

<element1 id=”A1234”/>

<element2 el1.id=”A1234”/>

. . . (omitted)

File: Chapter 4\IDAttributes.xml

An IDREF attribute is used when an element needs to refer to a specific
instance of another element type. In the above example, <element2> has a
direct reference to an instance of an <element1> element by using an IDREF
attribute.

Returning to our employee document, let’s add an “id” attribute to the
<employee> element so that we can uniquely identify each employee by their
unique employee ID.

<!ELEMENT employee (name, position, address, phone)>
<!ATTLIST employee id ID #REQUIRED>

File: Chapter 4\EmployeesWithDTD.xml

IDREFS

An IDREFS attribute has the same purpose as an IDREF attribute except that it
can hold multiple ID values. Each ID value is separated by a space.
Extending our previous example, we could declare a new element type
(<element3>) that references multiple (one or more) <element1> instances.

. . . (omitted)

XML Content Modeling 8
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

<!ELEMENT element1 EMPTY>
<!ATTLIST element1 id ID #REQUIRED>

<!ELEMENT element3 EMPTY>
<!ATTLIST element3 el1.ids IDREF #REQUIRED>

. . . (omitted)

<element1 id=”A1234”/>
<element1 id=”B1234”/>
<element1 id=”C1234”/>

. . . (omitted)

<element3 el1.ids=”A1234 B1234 C1234”/>

. . . (omitted)

File: Chapter 4\IDAttributes.xml

In the above example, <element3> references not one <element1> element, but
three.

The IDREFS attribute type provides a one-to-many type of capability. A
single element can reference multiple instances of other elements. You may
relate this capability to the relational models primary/foreign key concept.
This is partly correct, but the XML implementation is very different.

In our example, the referenced elements were of the same type. This is not a
requirement in XML. A single IDREFS attribute can not only reference
multiple elements, but multiple types of elements as well. This distinction
makes it very different from the relational model in that primary/foreign key
relationships relate data between only two tables (element types). IDREFS do
not have this restriction. This provides more flexibility, but does not provide
data integrity as does the relational model.

Warning: Do not make the mistake of thinking that IDREFS are the same as

primary/foreign key relationships in the relational model. There is

no data integrity associated with IDREFS.

ENTITY

ENTITY attributes are pointers to external entities. So far we have been
working with standalone documents. Standalone documents have no
references to external entities (they are complete and self-contained). The
value of an ENTITY attribute must consist of characters that represent an
external entity (storage object). The syntax for declaring an ENTITY attribute
is:

XML Content Modeling 9
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

<!ATTLIST element.name ENTITY>

We are going to go into detail on referencing external entities later.

ENTITIES

ENTITIES attributes are the same as ENTITY attributes, except they reference
multiple external entities. Like IDREFS, the values must be separated by a
space. The syntax for declaring an ENTITIES attribute is:

<!ATTLIST element.name ENTITIES>

NMTOKEN

NMTOKEN attributes have values that are token strings. These token strings
can consist of any mixture of name characters. The syntax for NMTOKEN
attributes is:

<!ATTLIST element.name NMTOKEN>

NMTOKENS

NMTOKEN attributes are the same as NMTOKEN attributes, except that they
can contain multiple values provided that they are separated by spaces.
Tokens are similar to string typess, but the are processed differently.
NMTOKENS attribute values are treated each independently by an XML
processor and can be queried independently be an application.

<?xml version="1.0"?>
<!DOCTYPE tokens [

<!ELEMENT tokens (element1+)>

<!ELEMENT element1 (#PCDATA)>
<!ATTLIST element1 attr1 NMTOKEN #IMPLIED>
<!ATTLIST element1 attr2 NMTOKENS #IMPLIED>

]>
<tokens>

<element1 attr1="Token1"
 attr2="123_Token1 Token2 Token3">

Some text here...
</element1>

</tokens>

File: Chapter 4\TokenAttributes.xml

Enumerated Type

Enumerated attributes have values that are part of a list of possible values.
These values must be valid name tokens. The syntax is:

<!ATTLIST element.name attribute.name
(option1 | option 2 | option n)

XML Content Modeling 10
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

“default value”>

Let’s say that you want to declare an element called <primary> with an
attribute called “color”. The only valid primary color values are “RED”,
“GREEN” and “BLUE”, and we want to force our DTD to constrain our
possible values to these. We also want the default value to be “RED”.

Here is the resulting XML document.

<?xml version="1.0"?>
<!DOCTYPE colors [

<!ELEMENT colors (primary+)>

<!ELEMENT primary EMPTY>
<!ATTLIST primary color (RED | GREEN | BLUE)

"RED">
]>
<colors>

<primary color="RED"/>
<primary color="GREEN"/>
<primary color="BLUE"/>

<!-- ERROR!
<primary color="YELLOW"/>
-->

</colors>

File: Chapter 4\EnumerationAttributes.xml

There is no such thing as an optional attribute in XML. However, using
enumeration attributes, you can emulate an optional value. This is
accomplished by defining the default value in the <!ATTLIST> declaration as
an empty string.

<!ATTLIST elem attr (X | Y | Z) “”>

If you leave the attribute out, the default value, which is an empty string, will
be assigned to the attribute. In other words, you do not have to assign it in the
element.

Attribute Attributes

There are three keywords in XML that are used to instruct the processor how
to treat an attribute. You have already seen us use two of these in our previous
examples. These keywords always begin with a # character are used at the end
of the attribute declaration.

XML Content Modeling 11
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

#REQUIRED

This keyword means that the attribute is required. If it is omitted, the XML
processor will generate a fatal error. When we discussed the ID and IDREFS
token types, we used the keyword in the example. This is because ID
attributes are required if the document is to be validated, which we will discuss
in the next chapter.

<!ATTLIST element1 id ID #REQUIRED>

#IMPLIED

This keyword instructs the XML processor to the application that no value was
specified if the attribute was not assigned. We first saw implied attributes in
the NMTOKENS example.

<!ELEMENT element1 (#PCDATA)>
<!ATTLIST element1 attr1 NMTOKEN #IMPLIED>
<!ATTLIST element1 attr2 NMTOKENS #IMPLIED>

If either the “attr1” and “attr2” attributes are left out, the processor reports it
the application and assumes that it knows how to deal with it.

#FIXED

This keyword is used to create a text constant. The syntax is:

<!ATTLIST element.name attribute.name
 attribute.type #FIXED “default value”>

Examine the following statement:

<!ATTLIST form method CDATA #FIXED “POST”>

The <form> element now has an attribute called “method”. This attribute can
only have one value: POST. The result is that the following statement is valid,
and any deviation from it will result in the XML processor generating a fatal
error.

<form method=”POST”>

This is actually a clever example, because if you know HTML, you know that
the <form> tag has a “method” attribute, and it must be set to “POST” to
function correctly. This is a good example of using one markup language to
define another markup language (i.e. XML to define HTML).

XML Content Modeling 12
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

The Completed Employee DTD

Now that we have covered many aspects of DTD’s, let’s go back and review
the finished employee XML document. With a complete DTD in place, we
can have a content model in place that will provide a structure for all employee
information that we may want to add to our document.

<?xml version="1.0"?>
<!DOCTYPE employees [

<!ELEMENT employees (employee+)>

<!ELEMENT employee (name, position, address, phone)>
<!ATTLIST employee id ID #REQUIRED>

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT address (street?, city?, state?, zip?)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone (main, office*, fax*, mobile*,
home*)>

<!ELEMENT main (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT home (#PCDATA)>

]>

<employees>
 <employee id="A1234">
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>

XML Content Modeling 13
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

 <employee id="A2345">
 <name>
 <first>Jane</first>
 <last>Doe</last>
 </name>
 <position>Systems Analyst</position>
 <address>
 </address>
 <phone>
 <main>(714) 555-2000</main>
 <mobile>(949) 555-2200</mobile>
 <home>(949) 555-2220</home>
 </phone>
 </employee>
</employees>

File Chapter 4\EmployeesWithDTD.xml

XML Content Modeling 14
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Elements or Attributes?

The question arises: “When should I use an element and when should I use an
attribute?” This is going to be a topic that will be debated for a long time.
There are really no clear guidelines on this one. Many have tried to throw
some basic ones together, but for the most part, they really don’t solve the
issue. Here are some guidelines that have been used by many. The first three
are really the most pragmatic and useful, but the others can shed some light
when looking at XML documents authored by others.

 Use whatever is more readable.

 When in doubt, use an element. Elements typically make more sense
to others (are more readable) when you give them an XML document.

 Use elements to represent objects, attributes to represent properties of
that object.

 Use elements to represent physical aspects. Use attributes to represent
intangible, abstract aspects.

 If you are using an XML editor, it may be easier to use elements since
some editors have trouble with attributes.

The real answer to the question is: “it depends”. It depends on you, the author.
It is up to you to create content models that accurately represent the structure
of the data that you are trying to capture. It is also up to you to create entities
(XML documents) that are readable and maintainable.

There are features in XML that require you to use one over the other. This has
not been a discussion about that. What we are discussing now is a preference
issue.

Tip: Since there is no “magic bullet” to solving the problem, the best

recommendation is to use good common sense and create entities that make

sense.

XML Content Modeling 15
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

External Entities

External entities are entities (storage objects) that are not part of your
document. When we originally talked about XML structure, there were two
facets:

 Logical – the logical order of elements in a document.

 Physical – the physical location of content.

These two can be very different. Whenever an XML processor processes a
document, it is working with the logical structure as one entity. However, that
one logical entity may be physically broken into multiple physical entities
(files/documents).

This is possible because you can declare external entities within your XML
document and include them so that they are treated like one document. In
effect, they become one logical entity, even though they are multiple entities.

The syntax for declaring an external entity is:

<!ENTITY entity.name SYSTEM|PUBLIC “URI”>

Let’s break down this syntax. The first item is the <!ENTITY> declaration
tag. The next is entity name that you define. The next item is either the
SYSTEM or PUBLIC keywords, which we will describe in a moment.
Finally, the Uniform Resource Identifier (URI) that points to the external
entity is specified. A URI is just like a Uniform Resource Locator (URL), but
has more capability. URI’s can be fully qualified or relative. The typical
structure of a URI is:

protocol://login-name:password@host:port/path

The protocol is optional and can specify a number of network protocols
including Internet protocols. The login and password are optional, and if not
specified, anonymous access is attempted. Finally, the path the absolute or
relative path to the external entity. For example, if we wanted to include a
document from a web site, the following would be valid:

<!ENTITY doc1 SYSTEM “http://www.mysrver.com/doc1.xml”>

Identifiers

Before we show a completed example, let’s define the SYSTEM and PUBLIC
keywords, or identifiers, and what they mean.

SYSTEM

A system identifier is a Universal Resource Identifier (URI) that is used to
retrieve an external entity (physical storage object). A URI is similar to a

XML Content Modeling 16
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

http://www.mysrver.com/doc1.xml

URL, except that URL’s are intended for network (Internet) use. For all
intents and purposes, the two terms are interchangeable.

A identifier can reference an absolute position or a relative position as is
exemplified in the following code fragments:

<!-- Absolute reference -->
<!DOCTYPE doc.name SYSTEM
”http://www.server.com/external.dtd”>

<!-- Relative reference -->
<!DOCTYPE doc.name SYSTEM “../DTDs/external.dtd”>

Most of the time you will use SYSTEM identifiers for your external DTD’s.

PUBLIC

A public identifier is the officially recorded identifier for an external entity.
Officially registered public identifiers are registered by the creator of the DTD
with The International Standards Organization (ISO). Public identifier names
are assigned by the American Graphic Communication Association (CGA)
under the direction of the ISO.

The syntax for a public identifier name is:

reg.type // owner // description // language

Let’s break down all four elements of a public identifier name.

 reg.type is a plus sign (+) sign if the owner is registered according to
the ISO 9070 standard. It is a minus sign (-) if it is not. Most are not,
so the minus sign (-) is more common.

 owner is the creator of the identifier (individual or company).

 description is a text description of the identifier. Keep this short even
though you can have a lot of text here.

 language is the two character language code.

An example of a public identifier could be:

-//David Harding/My First Public Identifier//EN

When an XML processor encounters a PUBLIC identifier, it attempts to
generate a location URI. If it can’t locate the file, it uses a secondary
parameter called a system literal, which you have to provide. The following is
an example of that.

XML Content Modeling 17
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

http://www.server.com/external.dtd

<!ENTITY my.entities PUBLIC
“-//David Harding//My First Public Identifier//EN”,
“http://www.davidharding.com/public_id.xml”>

In this example, if the public identifier cannot be located using the public
identifier name, the URI is used.

Tip: Public identifier resolution has not been completely solved yet. The method

that is currently the defacto standard is the same as that of SGML, which uses

and external catalog file called “catalog” that points to the various locations

for each possible public identifier.

Since this is not the official standard, and is likely to change, we are going to

focus on system identifiers since that is what you are going to use most of (or

all of) the time anyway.

Using External Entities

To really see how external entities can be put to use, let’s break our employee
XML document into multiple pieces. Our goal is to break the physical
structure into manageable chunks, while maintaining the logical structure.

Let’s start with our completed EmployeesWithDTD.xml document. We are
going to break it into three pieces:

 EmployeeMaster.xml

This XML document will contain:

o the employee content model (DTD) that we have defined,

o references to the other employee entities, which in turn will
contain individual employee information.

 JohnDoe.xml

This is the first employee entity that is referenced by
EmployeeMaster.xml. It contains the content (elements and attributes)
for John Doe. This content already adheres to the DTD defined in the
master document.

 JaneDoe.xml

This is the second employee entity that is referenced by
EmployeeMaster.xml. It contains the content (elements and attributes)

XML Content Modeling 18
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

for Jane Doe. This too adheres to the DTD defined in the master
document.

Let’s look at the EmployeeMaster.xml file first.

<?xml version="1.0"?>
<!DOCTYPE employees [

<!ELEMENT employees (employee+)>

<!ELEMENT employee (name, position, address, phone)>
<!ATTLIST employee id ID #REQUIRED>

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT address (street?, city?, state?, zip?)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone (main, office*, fax*, mobile*,
home*)>

<!ELEMENT main (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT home (#PCDATA)>

<!ENTITY employee1 SYSTEM "JohnDoe.xml">
<!ENTITY employee2 SYSTEM "JaneDoe.xml">

]>

<employees>

&employee1;
&employee2;

</employees>

File: Chapter 4\EmployeeMaster.xml.

The next two documents contain the data for employees John and Jane Doe.
Their contents is as follows:

<employee id="A1234">
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>

XML Content Modeling 19
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
</employee>

File: Chapter 4\JohnDoe.xml.

<employee id="A2345">
 <name>
 <first>Jane</first>
 <last>Doe</last>
 </name>
 <position>Systems Analyst</position>
 <address>
 </address>
 <phone>
 <main>(714) 555-2000</main>
 <mobile>(949) 555-2200</mobile>
 <home>(949) 555-2220</home>
 </phone>
</employee>

File: Chapter 4\JaneDoe.xml

The employee specific files are pretty straightforward. The master document
needs some review, though. Let’s look at the <!ENTITY> declarations that
point to the employee data files. These are located in the DTD (which makes
sense being that the DTD is where they need to be declared).

<!ENTITY employee1 SYSTEM "JohnDoe.xml">
<!ENTITY employee2 SYSTEM "JaneDoe.xml">

The words “employee1” and “employee2” are now system entity references
that can be expanded just like character entity references. The difference is
that instead of expanding simple text, the XML processor is going to expand
the contents of the external entities (documents).

Let’s see how this is done within the master document.

<employees>
&employee1;
&employee2;
</employees>

Within the root element is expanded the contents of both external entities just
as if we were expanding an internal entity. When we view the
EmployeeMaster.xml document in IE5, the logical content model is intact and
treated as a single entity, even though it is physically structured as three
distinct entities.

XML Content Modeling 20
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

File: Chapter 4\EmployeeMaster.xml.

When to use External Entities

The word to keep in mind here is reusability. Even though this is not a term
often used in the XML community (software developers seem to have the
market cornered on it use) it really is the goal.

Using external entities, you can break your content into multiple pieces that
can be included in multiple XML documents. This is going to reduce the
amount of duplication between documents that may reference the same
content.

XML Content Modeling 21
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Tips for Good Content Modeling

As you have seen, you can create rich content models using XML and DTD’s.
The DTD’s that we have created are pretty simple, but as you can imagine,
they can get quite complex. Some developers like to take a “less is more”
approach to content modeling in XML, but the rule of thumb among the
“gurus” is just the opposite. The common statement is, “Always create the
richest content model that you can.” This may seem strange, but there are
some good reasons why.

 It is easier to remove than to add.

This is a truism in XML and data modeling in general. It is always
easier to remove things from a model than to add them later.

 You cannot account for everything.

Yes, you are a good developer. It doesn’t matter. There are going to
be things that you forget, your subject matter experts forget (or don’t
tell you), or data will become available that wasn’t before. This being
the case, never “paint yourself into a corner” when it comes to content
modeling. True, the true “open system” (or content model) is an
unrealistic dream, but why make it more difficult an yourself? Add
everything that you can, and account for the fact that you are going to
miss something anyway.

 You are going to have to support it.

The reward for building a good content model for your documents is
that they are eventually going to become legacy data. Most
developers cringe when they think of supporting something (even their
own creations) years down the road. If you do it right up front, it is
going to save you a lot of time and headache later. This is in line with
the thought of creating the content model as rich as you can because it
will be easier to deal with things that are already in the model than to
try and add them later.

 It’s small now, but it’s going to grow.

There is a rule in software and data storage. If it starts out as a small
system, it is going to grow and become mission critical. We have all
created that “stop-gap” application or database that was only supposed
to last through a couple of weeks or months and it ended up becoming
a workflow process for an entire department. It happens. Account for
it. Build the content model right and growth won’t be nearly as big an
issue.

XML Content Modeling 22
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Well-Formed and Valid

There are two issues that we are going to address in this chapter:

1. The creation of well-formed documents

2. The creation of valid documents.

“Well-formed” and “valid” are often the most misunderstood words among all
of the terminology relating to XML. In this chapter, we are going to discuss
what these terms relate to, how you can check to make sure that your
documents are both well-formed and valid. Before we get started, let’s put a
high-level definition to these terms as they relate to XML.

A well-formed document is one that is syntactically correct. It’s elements and
attributes are correct as to their declaration.

A valid document is one whose content is correct. The values contained
within elements and attributes adhere to their respective element and attribute
declarations.

In a nutshell, the term “well-formed” has to do with the structure of your
content, and the term “valid” has to do with the content itself. In this chapter,
we are going to discuss how to create well-formed documents.

XML Content Modeling 23
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Well-Formed Documents

As you have seen so far, you can create very complex content models using
XML. If your document is not well-formed, XML processors are not going to
be able to use them. The XML specification goes so far as to say that an entity
is not an XML document until it is well-formed.

There are rules to document well-formedness, many of which you have already
encountered. A document is considered well-formed if:

 It contains one or more elements.

 It has just one element (the root element) that contains all other
elements.

 The elements contained within the root are properly nested inside each
other (synchronous structures).

 Element names are correctly matched by name and case.

 The names of attributes only appear once in a given element’s start
tag.

 Attribute values are enclosed in either single or double quotes.

 Attribute values do not reference external entities, either directly or
indirectly.

 The replacement text for any entity referenced in an attribute does not
contain a less-than (<) character (it can contain the predefined entity
<).

 All entities are declared before they are used.

 No entity references contain the name of an unparsed entity.

 The logical and physical structures are properly nested.

If an XML processor encounters a violation against these rules of well-
formedness in a document, it will stop processing the document and generate
one or more fatal errors.

This is very different than the HTML standard and the way that browsers
support HTML. Browsers are very lenient and try to make sense out of
everything that it is given. It is rumored that 75% of the code in both Internet
Explorer and Netscape Navigator exists to handle bad and/or invalid HTML
code!

XML Content Modeling 24
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Checking for Well-Formedness

What is the best (and easiest) way to make sure that your documents are well-
formed? There are a number of tools that are available that you can use to
check your documents. Best of all, many of the good ones are free! These
tools are called non-validating parsers (validation is a whole separate topic we
are working towards) and they check your XML syntax. Non-validating
parsers are like the old “lint” tool that C/C++ programmers use to pick out the
not-so-obvious errors in their source code.

A simple (and free) tool for checking for well-formedness is the Microsoft
XML Notepad. Do not use Microsoft Internet Explorer to check your XML
documents! Internet Explorer is a browser and by its nature is extremely
lenient. On the other hand, XML Notepad provides strict well-formedness
checking.

Tip: XML Notepad can be downloaded for free off the Microsoft web site at

http://msdn.microsoft.com/xml/notepad/download.asp. This does not mean

that it is the best. It just well works for our example.

Unlike many of the non-validating parsers out there, XML Notepad uses a
graphical user interface. Most of these tools use a command-line interface.
Based on your preferences, you can choose the set of tools that you will add to
your XML developers toolkit. Many of them even come with source code so
that you can modify them to your liking.

Using XML Notepad

Let’s walk through a document that has errors and check it for well-
formedness using XML Notepad. This is going to be familiar to software
developers who are used to using compilers to catch errors in their source
code.

The following is the contents of our flawed document. The lines in bold
contain the errors. See if you can identify what the errors are before we use
XML Notepad to identify them for us.

<?xml version="1.0"?>
<!DOCTYPE employes [

<!ELEMENT employees (employee+)>

<!ELEMENT employee (name position, address, phone)>
<!ATTLIST employee id ID>

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

XML Content Modeling 25
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

http://msdn.microsoft.com/xml/notepad/download.asp

<!ELEMENT position (#PCDATA)>

<!ELEMENT address (street?, city?, state?, zip?)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone (main, office*, fax*, mobile*,
home*)>

<!ELEMENT main (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT home (#PCDATA)>

]>

<employees>

 <employee id=A1234>
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>

 <employee id="A2345">
 <name>
 <first>Jane</first>
 <last>Doe</last>
 </name>
 <position>Systems Analyst</position>
 <address>
 </address>
 <phone>
 <main>(714) 555-2000<main>
 <mobile>(949) 555-2200</mobile>
 <home>(949) 555-2220</home>
 </phone>
 </employee>
</employees>

File: Chapter 5\Employees_NotWellFormed.xml

XML Content Modeling 26
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Let’s open the document in XML Notepad and see how it processes the errors.
Like most non-validating parsers, it only reports one error at a time. Do not
expect these tools to work like a compiler (e.g. C++, Java, etc.), which gives
you a list of errors and/or warnings. This is more of a nuisance than anything,
but it does take time to get through a complex document.

Tip: It is often a good idea to check for well-formedness throughout the

development of your document instead of creating the entire document then

running it through a parser.

When we attempt to open the document the for first time, the error that we get
is:

Error 1: Line 5 – missing comma (syntax error).

The first error is not entirely obvious, and this is not uncommon when working
with XML parsers. The real error is that there is a comma (,) missing
between the “name” and “position” declarations. The parser ran into the error
and could not determine how to parse it, so it put us on the first position it
could not understand.

 To fix the error, we need to change line 5 by adding a comma between
“name” and “position”.

<!ELEMENT employee (name, position, address, phone)>

Let’s reload the document and get the next error.

XML Content Modeling 27
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Error #2: Line 6 – missing #REQUIRED declaration (syntax error).

Now this one is somewhat ridiculous. The actual error is that the
#REQUIRED attribute is missing. In this example, the error message is not
even close to the actual error. However, in XML Notepad’s defense, when this
same error is run through several other parsers, you get almost the exact same
error.

The fix is to add the #REQUIRED attribute to the declaration because ID
attributes are required.

<!ATTLIST employee id ID #REQUIRED>

The next error message is much more descriptive.

Error #3: Line 28 – the root element is named differently than the name specified
in the <!DOCTYPE> tag (syntax error).

The full error message reads: “The name of the top most element must match
the name of the DOCTYPE declaration.”

XML Content Modeling 28
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

To fix this error, we need to match the name specified in the <!DOCTYPE>
tag to the name of the root element.

<!DOCTYPE employes [

. . . (omitted)

<employees>

In this case, we have misspelled the name in the <!DOCTYPE> tag. We can
correct the error by fixing the typo.

<!DOCTYPE employees [

Let’s reload the document and try again. The next error that we encounter will
be in the document content. However, this error is still regarding the well-
formedness of the document, and is not a violation of a declaration.

Error #4: Line 30 – missing quotes around the value assigned to the id attribute.

The full error message reads: “A string literal was expected, but no opening
quote character was found.”

This is indeed a syntax error. All string literals assigned as values to attributes
need to be enclosed in quotes. To fix the error, we need to add some quotes.

<employee id="A1234">

The final error that XML Notepad finds is going to be a bit tricky. The reason
being that the error message that we get is not going to give us much of a clue
as to what the real error is. This is because XML Notepad attempts to do
validity checking as well as checking for well-formedness. This being the
case, it is going to report a validity error to us, which it is, but it is due to a lack
of well-formedness in the document.

XML Content Modeling 29
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Error #5: Line 57 – missing terminator tag </main> (syntax error).

The error we received is in fact correct, event though the real error is that the
terminator tag for <main> is missing. The XML processor is returning a
content error to us. Here is how the XML processor came to this conclusion:

1. The <main> element is declared as type #PCDATA. These means that
it can only contain text data. It cannot contain any other elements.
This is the rule defined in the DTD.

2. The <main> element is a required element that can only appear once
within a <phone> element. This is the way that it is declared within
the <phone> element’s declaration. The XML processor found the text
data immediately following the greater-than symbol (>) in the open tag
and started to process the text.

3. The XML processor encountered another <main> element tag. This is
a typo; the termination backslash (/) is missing. To the XML
processor, however, this was another <main> element. This violates
both rules defined previously. Namely, <main> can only appear once
and it can only have text data.

This is why we got a content error, and not a syntax error. When you run this
example through a purely non-validating parser, which XML Notepad is not, a
syntax error is generated regarding the missing terminator tag.

XML Content Modeling 30
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Tips: It is often a good idea to have multiple parsers that you can use during this

process. This is very helpful when one parser gives you a less than helpful

error message or when you are having trouble understanding what the real

error is.

Another tip is to use a separate non-validating parser from your validating

parser. This way you can check for well-formedness apart from checking for

validity. The last error we encountered is a good example of why it is often

good to separate the two.

Choosing a Non-Validating Parser

As was mentioned before, choosing your toolset is a personal matter. There
are a number of really good parsers out there to choose from. The following
are some resources that you can go to on the Internet to download tools and
learn about different resources available.

 The Expat non-validating parser is one of the nicest parsers around. It
is a command line tool that is very simple to use and basic to
understand. It also includes source code. You can download it for
free at ftp://ftp.jclark.com/pub/xml/expat.zip.

 The TclXML parser is available at http://www.zveno.com/zm.cgi/in-
tclxml/. This non-validating parser is cross platform and is very robust.

 Finally, James Tauber’s XmlSoftware.com
(http://www.xmlsoftware.com/parsers/) is the definitive source for
finding both validating and non-validating parsers. This is the place to
go to start looking at what is available and putting together your XML
tool chest.

XML Content Modeling 31
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

http://www.zveno.com/zm.cgi/in-tclxml/
http://www.zveno.com/zm.cgi/in-tclxml/
ftp://ftp.jclark.com/pub/xml/expat.zip

Valid Documents

You have seen two types of XML documents thus far: those that have DTD’s,
and those that do not. XML documents that do have DTD’s appear to have
very few restrictions. You can add elements and attributes at will without
regard to structure as a whole. The only thing that you have to worry about is
that the document is syntactically correct. This being the case, you might
question the need for DTD’s at all. Actually, not having a DTD in your
document puts significant restrictions on your document as regards validity.

If you want an XML document to be valid, but do not want to have a DTD
associated with it, the following rules must be adhered to:

 All the attribute values in the document must be specified; there can
be no default values. This makes sense because default values are
specified in the DTD.

 There can be no references to internal entities in the DTD except those
that are predefined in the XML specification (i.e. <, >, ',
"). Again, this makes sense because internal entities are defined
in the DTD.

 There can be no attributes that are subject to normalization (contain
entity references).

 In elements with content consisting of only elements, there can be no
white-space (e.g. space, tab, etc.) between the starting tag and the
content of the first element. For example, the following would be
illegal:
 <el1> <el2>data</el2></el1>

As you can see, the DTD goes along way to helping XML processors deal with
your documents.

XML Content Modeling 32
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Tip: It is very easy to create XML documents without going to the process of

creating a DTD. However, the time saved by not creating a DTD will often

be spent working around problems/errors that you did not account for.

Make a habit of always using a DTD. Even for simple documents. It makes

them easier to create, readable and maintainable. It also makes them easier

to process by XML processors.

Going through the process of validating your document is beneficial for a
number of reasons. None the least of which is making sure that the content
within the document adheres to the structure defined in the DTD.

Validation is Relative

Validating a given document requires an examination of the document’s DTD
and then checking to make sure that the content contained therein matches that
DTD. DTD’s can be strict or loose. Also, DTD’s don’t have much in the way
of strict type checking. What is considered valid depends on the content
models that you create. How you design your DTD will affect the rules of
validation that are applied to the contents of the document. This is a very
important point.

Validating parsers are written in simple terms. They understand the content
model you define, they understand the element structure contained within the
document, and that is it.

Tip: What you may consider valid in an XML document may have a different

meaning to a validating parser. It can only compare the DTD to the content

that is defined in the document.

Another way to look at is that validation checks the markup, but actually does

little or nothing to check what’s between the markup (the content), other than

look for more markup.

Validating parsers cannot provide much in the way of element content
relationship, typos, and data integrity. XML is not a like relational database in
that way. There are new additions to the XML standards that are being
proposed that address some of these issues, but they are a ways off from being
implemented. Vendors such as Microsoft, Netscape and Sun are adding their

XML Content Modeling 33
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

own extensions to XML support within their products, but these are not
portable. Keep this in mind if you decide to use them. These same vendors
have done the same thing with HTML, and that is why there are many browser
specific web sites on the Internet today. Vendor specific technologies is the
antithesis of what XML is all about!

Validating Parsers

Like non-validating parsers, there are a number of validating parsers that are
available for free download. As mentioned before, the James Tauber’s
XmlSoftware.com (http://www.xmlsoftware.com/parsers/) is the first place
you may want to go to find a list of parsers that can be downloaded for free.

XML Content Modeling 34
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Final Words on Well-Formedness and
Validity

It is easy to create well-formed XML documents if you take the proper
measures in the beginning. Creating a DTD to define a concise content model
is the first step. Syntactically defining the DTD is not the difficult part.
Creating a logical content model that supports the data that you are storing is
where it can get difficult. However, this is not a new problem. It is the same
for database administrators as it is to application developers. Structuring the
data so that it supports all possible cases that your software may face is an art.

In conclusion, always check to make sure that your documents are well-formed
and valid. This will allow XML processors to deal with the document in the
way that is intended. Get in the habit of always creating a DTD for your
documents, no matter how simple they are (remember, it is always the simple
ones that grow and become complex). Use a non-validating parser to check to
make sure that your document is well-formed. Then use a validating parser to
check for validity. It is often a good idea to have a couple of different types of
these at your disposal.

Another way to create well-formed and valid documents is to use an XML
editor that validates while you are creating the document. There are a few
XML editors out there (like Microsoft XML Notepad), but they have a long
way to go before they are truly useful. The standard Window’s Notepad and
the Microsoft Visual InterDev development environment are still the editors of
choice for many.

XML Content Modeling 35
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Using External Document Type
Definitions

By now you know the importance of the DTD in an XML document. Already,
you have enough knowledge about DTD’s to create rich content models.
However, there are a number of other capabilities that can be exploited within
the DTD that are going to be discussed now.

Document Type Declarations

Now that you are going to always implement a DTD, let’s talk about the
association of a DTD with a XML document. This is done using a document
type declaration (not to be confused with a document type definition). You
have already seen and used document type declarations, but it is important to
understand the distinction between the declaration and the DTD. The syntax
that you have seen so far is:

<!DOCTYPE dtd.name [internal.subset]>

So far, we have created internal DTD’s. In other words, the DTD is declared
inside of the document. All element, attribute, and entity declarations have
been defined in the internal subset of the DTD. Soon we are going to discuss
external subsets and DTD’s.

Standalone Documents

A standalone document is one that does not require any external support and
without reference to any other files. In other words, the XML document stands
on its own. We can specify that our documents are standalone in the XML
processing instruction.

<?xml version=”1.0” standalone=”yes”?>

The statement standalone=”yes” means that there are no markup declarations
external to the document entity. This does not mean that our document cannot
reference external entities (other documents, binary files, etc.) provided that
the declarations of the external entities are contained inside the document
entity (inside the internal DTD subset). This is a very important point and it
needs to be stressed further.

The existence of external entities does not mean that the document is not
standalone. As long as these entities are declared within the internal subset of
the DTD, the document is still considered to be a standalone document. This
is a very important point and may take a while to completely understand. The

XML Content Modeling 36
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

term “standalone” does not only refer to documents that are physically self-
contained.

Tip: All that the “standalone” attribute does is make it explicit as to whether or not

the document is a standalone document.

External DTD’s

Using internal DTD’s, you can create sophisticated XML documents that
require no external references whatsoever. Considering that a DTD can get
rather large and complex, and the same DTD could possibly be used by
multiple XML documents, wouldn’t it be nice if you could create a DTD that
could be referenced by many XML documents? Think of all the typing (or
copying/pasting) that you could save. Well, you can. It is called an external
DTD.

To an XML processor, there is only one DTD. It consists of the internal DTD
subset and the external DTD subset. In other words, the XML processor uses
both the internal and external DTD’s (if you have one) and treats them as one.
In XML, the internal DTD subset is read before the external DTD subset and
so takes precedence.

Associating an external DTD is similar to creating an internal DTD in that it is
done within the document type declaration (<!DOCTYPE> tag.). The syntax
is:

<!DOCTYPE name PUBLIC|SYSTEM external.pointer
[internal.subset]>

Notice the new keywords PUBLIC and SYSTEM. These are the same
identifiers that we used when we declared external entities. Let’s review them
again in relation to DTD’s.

SYSTEM

A system identifier is a Universal Resource Identifier (URI) that is used to
retrieve the DTD. A URI is similar to a URL, except that URL’s are intended
for network (Internet) use. For all intents and purposes, the two terms are
interchangeable.

A identifier can reference an absolute position or a relative position as is
exemplified in the following code fragments:

<!-- Absolute reference -->
<!DOCTYPE doc.name SYSTEM
”http://www.server.com/external.dtd”>

<!-- Relative reference -->

XML Content Modeling 37
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

http://www.server.com/external.dtd

<!DOCTYPE doc.name SYSTEM “../DTDs/external.dtd”>

Most of the time you will use SYSTEM identifiers for your external DTD’s.

PUBLIC

A public identifier is the officially recorded identifier for a DTD. Officially
registered public identifiers are registered by the creator of the DTD with The
International Standards Organization (ISO). Public identifier names are
assigned by the American Graphic Communication Association (CGA) under
the direction of the ISO.

The syntax for a public identifier name is:

reg.type // owner // description // language

Let’s break down all four elements of a public identifier name.

 reg.type is a plus sign (+) sign if the owner is registered according to
the ISO 9070 standard. It is a minus sign (-) if it is not. Most are not,
so the minus sign (-) is more common.

 owner is the creator of the identifier (individual or company).

 description is a text description of the identifier. Keep this short even
though you can have a lot of text here.

 language is the two character language code.

An example of a public identifier could be:

-//David Harding/My First Public Identifier//EN

When an XML processor encounters a PUBLIC identifier, it attempts to
generate a location URI. If it can’t locate the file, it uses a secondary
parameter called a system literal, which you have to provide. The following is
an example of that.

<!DOCTYPE david.harding PUBLIC
“-//David Harding//My First Public Identifier//EN”,
“http://www.davidharding.com/public_id.dtd”>

In this example, if the public identifier cannot be located using the public
identifier name, the URI is used.

Using an External DTD

Let’s rework our employees document so that it uses an external DTD. The
first thing we are going to do is create a new file called “Employees.dtd”,
which will contain our external subset. This will include the entire DTD that
we have created for our employees document up to this point.

<!ELEMENT employees (employee+)>

XML Content Modeling 38
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

http://www.davidharding.com/public_id.dtd

<!ELEMENT employee (name, position, address, phone)>
<!ATTLIST employee id ID #REQUIRED>

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT address (street?, city?, state?, zip?)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone (main, office*, fax*, mobile*,
home*)>

<!ELEMENT main (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT home (#PCDATA)>

File: Chapter 6\Employees.dtd

Notice that there is no document type declaration (i.e. <!DOCTYPE> tag).
There can only be one declaration in an XML document. Remember, external
XML that is included in your document is considered part of the same
document. In this case, the external and the internal DTD’s are treated the
same.

Next, let’s modify the Employees.xml file so that it references the new
external DTD file instead of declaring the content model internally. The new
XML document looks like this:

<?xml version="1.0" standalone=”yes”?>
<!DOCTYPE employees SYSTEM "Employees.dtd" [
<!-- Declare the internal subset here -->
]>

<employees>
 <employee id="A1234">
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>

XML Content Modeling 39
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>

 <employee id="A2345">
 <name>
 <first>Jane</first>
 <last>Doe</last>
 </name>
 <position>Systems Analyst</position>
 <address>
 </address>
 <phone>
 <main>(714) 555-2000</main>
 <mobile>(949) 555-2200</mobile>
 <home>(949) 555-2220</home>
 </phone>
 </employee>
</employees>

File: Chapter 6\Employees.xml

There are a number of advantages to using external DTD’s. The most obvious
is that you can create rich content models that can be utilized by multiple
documents. If the content model changes, you only have to change it one
place.

Be careful of multiple declarations when using external DTD’s. When you use
an external DTD, you still have the ability to declare things inside the internal
subset. If the XML processor finds a duplicate declaration, there are going to
be errors. Consider the following example. The our Employee external DTD,
the <name> element is declared as containing to child elements: <first> and
<last>.

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

File: Chapter 6\Employees.dtd

What happens if we declare the <name> element again in our internal subset?
In the following example, we include the external DTD and redefine the
<name> element as a #PCDATA element.

<!DOCTYPE employees SYSTEM "Employees.dtd" [
<!ELEMENT name (#PCDATA)>

]>

File: Chapter 6\Employees.xml

Notice what happens when we open the document in XML Notepad.

XML Content Modeling 40
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Declaration error in Employees2.xml displayed in XML Notepad.

This may seen like an obvious thing, but when you have an external DTD that
is a couple of hundred lines long and an internal subset that is just as
descriptive, these types of things happen. Using external DTD’s is a great
thing, and it is recommended that you consider always using them, but make
sure that you understand the external DTD while you are creating your internal
subset.

Why Use an External DTD?

External DTD’s are a great way to maintain a consistent content model across
multiple XML documents. This is an especially useful feature when creating
content models that must be standardized across an organization or
department. By using external DTD’s, you can make sure that all your XML
documents remain consistent.

XML Content Modeling 41
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Code Listings

The following are the complete code listings for all of the samples used in this
lesson.

Chapter 4\EmployeeMaster.xml
<?xml version="1.0"?>
<!DOCTYPE employees [

<!ELEMENT employees (employee+)>

<!ELEMENT employee (name, position, address, phone)>
<!ATTLIST employee id ID #REQUIRED>

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT address (street?, city?, state?, zip?)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone
(main, office*, fax*, mobile*, home*)>

<!ELEMENT main (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT home (#PCDATA)>

<!ENTITY employee1 SYSTEM "JohnDoe.xml">
<!ENTITY employee2 SYSTEM "JaneDoe.xml">

]>

<employees>

&employee1;
&employee2;

</employees>

XML Content Modeling 42
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 4\EmployeesWithDTD.xml
<?xml version="1.0"?>

<!DOCTYPE employees [
<!ELEMENT employees (employee+)>

<!ELEMENT employee
(name, position, address, phone)>

<!ATTLIST employee id ID #REQUIRED>

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT address (street?, city?, state?, zip?)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone
(main, office*, fax*, mobile*, home*)>

<!ELEMENT main (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT home (#PCDATA)>

]>

<employees>

 <employee id="A1234">
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>

 <employee id="A2345">
 <name>

XML Content Modeling 43
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

 <first>Jane</first>
 <last>Doe</last>
 </name>
 <position>Systems Analyst</position>
 <address>
 </address>
 <phone>
 <main>(714) 555-2000</main>
 <mobile>(949) 555-2200</mobile>
 <home>(949) 555-2220</home>
 </phone>
 </employee>

</employees>

XML Content Modeling 44
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 4\EnumerationAttributes.xml
<?xml version="1.0"?>

<!DOCTYPE colors [

<!ELEMENT colors (primary+)>

<!ELEMENT primary EMPTY>
<!ATTLIST primary color

(RED | GREEN | BLUE) "RED">
]>

<colors>

<primary color="RED"/>
<primary color="GREEN"/>
<primary color="BLUE"/>

<!-- ERROR!
<primary color="YELLOW"/>
-->

</colors>

XML Content Modeling 45
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 4\IDAttributes.xml
<?xml version="1.0"?>

<!DOCTYPE id.attribs [

<!ELEMENT id.attribs
(element1*, element2*, element3*)>

<!ELEMENT element1 EMPTY>
<!ATTLIST element1 id ID #REQUIRED>

<!ELEMENT element2 EMPTY>
<!ATTLIST element2 el1.id IDREF #REQUIRED>

<!ELEMENT element3 EMPTY>
<!ATTLIST element3 el1.ids IDREFS #REQUIRED>

]>

<id.attribs>

<!-- Create three <element1> elements each with
a unique ID -->

<element1 id="A1234"/>
<element1 id="B1234"/>
<element1 id="C1234"/>

<!-- Reference a single element -->
<element2 el1.id="A1234"/>

<!-- Reference multiple elements -->
<element3 el1.ids="A1234 B1234 C1234"/>

</id.attribs>

XML Content Modeling 46
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 4\JohnDoe.xml
<employee id="A1234">
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
</employee>

XML Content Modeling 47
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 4\JaneDoe.xml
<employee id="A2345">
 <name>
 <first>Jane</first>
 <last>Doe</last>
 </name>
 <position>Systems Analyst</position>
 <address>
 </address>
 <phone>
 <main>(714) 555-2000</main>
 <mobile>(949) 555-2200</mobile>
 <home>(949) 555-2220</home>
 </phone>
</employee>

XML Content Modeling 48
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 4\SpecialElementTypes.xml
<?xml version="1.0"?>

<!DOCTYPE root.element [
<!ELEMENT empty.element EMPTY>
<!ELEMENT unrestricted.element ANY>

]>

<root.element>

<empty.element/>

<unrestricted.element>
<empty.element/>
<empty.element/>
<empty.element/>

</unrestricted.element>

</root.element>

XML Content Modeling 49
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 4\TokenAttributes.xml
<?xml version="1.0"?>

<!DOCTYPE tokens [

<!ELEMENT tokens (element1+)>

<!ELEMENT element1 (#PCDATA)>
<!ATTLIST element1 attr1 NMTOKEN #IMPLIED>
<!ATTLIST element1 attr2 NMTOKENS #IMPLIED>

]>

<tokens>

<element1 attr1="Token1"
 attr2="123_Token1 Token2 Token3">
Some text here...

</element1>

</tokens>

XML Content Modeling 50
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 5\
Employees_NotWellFormed.xml

<?xml version="1.0"?>
<!DOCTYPE employes [

<!ELEMENT employees (employee+)>

<!ELEMENT employee
(name position, address, phone)>

<!ATTLIST employee id ID>

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT address
(street?, city?, state?, zip?)>

<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone (main, office*, fax*, mobile*,
home*)>

<!ELEMENT main (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT home (#PCDATA)>

]>

<employees>

 <employee id=A1234>
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>

XML Content Modeling 51
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

 <employee id="A2345">
 <name>
 <first>Jane</first>
 <last>Doe</last>
 </name>
 <position>Systems Analyst</position>
 <address>
 </address>
 <phone>
 <main>(714) 555-2000<main>
 <mobile>(949) 555-2200</mobile>
 <home>(949) 555-2220</home>
 </phone>
 </employee>

</employees>

XML Content Modeling 52
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 5\Employees_WellFormed.xml
<?xml version="1.0"?>
<!DOCTYPE employees [

<!ELEMENT employees (employee+)>

<!ELEMENT employee (name, position, address, phone)>
<!ATTLIST employee id ID #REQUIRED>

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT address (street?, city?, state?, zip?)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone (main, office*, fax*, mobile*,
home*)>

<!ELEMENT main (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT home (#PCDATA)>

]>

<employees>

 <employee id="A1234">
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>

 <employee id="A2345">
 <name>
 <first>Jane</first>
 <last>Doe</last>

XML Content Modeling 53
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

 </name>
 <position>Systems Analyst</position>
 <address>
 </address>
 <phone>
 <main>(714) 555-2000</main>
 <mobile>(949) 555-2200</mobile>
 <home>(949) 555-2220</home>
 </phone>
 </employee>

</employees>

XML Content Modeling 54
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 5\TagError.xml
<?xml version="1.0"?>

<!DOCTYPE employees [
<!ELEMENT employees (employee+)>

<!ELEMENT employee (name, position, address, phone)>
<!ATTLIST employee id ID #REQUIRED>

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT address (street?, city?, state?, zip?)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone
(main, office*, fax*, mobile*, home*)>

<!ELEMENT main (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT home (#PCDATA)>

]>

<employees>

 <employee id="A1234">
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>

 <employee id="A2345">
 <name>
 <first>Jane</first>

XML Content Modeling 55
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

 <last>Doe</last>
 </name>
 <position>Systems Analyst</position>
 <address>
 </address>
 <phone>
 <main>(714) 555-2000</main>
 <mobile>(949) 555-2200</mobile>
 <home>(949) 555-2220</home>
 </phone>
 </employee>

</employees>

XML Content Modeling 56
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 6\Employees.dtd

<!ELEMENT employees (employee+)>

<!ELEMENT employee
(name, position, address, phone)>

<!ATTLIST employee id ID #REQUIRED>

<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT address (street?, city?, state?, zip?)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone
(main, office*, fax*, mobile*, home*)>

<!ELEMENT main (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT mobile (#PCDATA)>
<!ELEMENT home (#PCDATA)>

XML Content Modeling 57
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 6\Employees.xml
<?xml version="1.0" standalone="yes"?>

<!DOCTYPE employees SYSTEM "Employees.dtd" [

<!-- Declare the internal subset here -->

]>

<employees>

 <employee id="A1234">
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>

 <employee id="A2345">
 <name>
 <first>Jane</first>
 <last>Doe</last>
 </name>
 <position>Systems Analyst</position>
 <address>
 </address>
 <phone>
 <main>(714) 555-2000</main>
 <mobile>(949) 555-2200</mobile>
 <home>(949) 555-2220</home>
 </phone>
 </employee>

</employees>

XML Content Modeling 58
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

	0Chapter Title
	Special Element Types
	Empty Elements
	Unrestricted Elements
	Mixed Content Elements
	A Few Final Words on Elements

	Attribute Declarations
	Attribute Types
	String Type
	Tokenized Type
	ID
	IDREF
	IDREFS
	ENTITY
	ENTITIES
	NMTOKEN
	NMTOKENS

	Enumerated Type

	Attribute Attributes
	#REQUIRED
	#IMPLIED
	#FIXED

	The Completed Employee DTD
	Elements or Attributes?
	External Entities
	Identifiers
	SYSTEM
	PUBLIC

	Using External Entities
	When to use External Entities

	Tips for Good Content Modeling
	Well-Formed and Valid
	Well-Formed Documents
	Checking for Well-Formedness
	Using XML Notepad

	Choosing a Non-Validating Parser

	Valid Documents
	Validation is Relative
	Validating Parsers

	Final Words on Well-Formedness and Validity
	Using External Document Type Definitions
	Document Type Declarations
	Standalone Documents
	External DTD’s
	SYSTEM
	PUBLIC

	Using an External DTD
	Why Use an External DTD?

	Code Listings
	Chapter 4EmployeeMaster.xml
	Chapter 4EmployeesWithDTD.xml
	Chapter 4EnumerationAttributes.xml
	Chapter 4IDAttributes.xml
	Chapter 4JohnDoe.xml
	Chapter 4JaneDoe.xml
	Chapter 4SpecialElementTypes.xml
	Chapter 4TokenAttributes.xml
	Chapter 5
Employees_NotWellFormed.xml
	Chapter 5Employees_WellFormed.xml
	Chapter 5TagError.xml
	Chapter 6Employees.dtd
	Chapter 6Employees.xml

