
Chapter 7. The Interface Repository Framework

Contents

7.1 Introduction 7 – 1.

7.2 Using the SOM Compiler to Build an Interface Repository 7 – 2.

7.3 Managing Interface Repository files 7 – 3.

The SOM IR file “som.ir” 7 – 3.

Managing IRs via the SOMIR environment variable 7 – 3.

Placing ‘private’ information in the Interface Repository 7 – 4.

7.4 Programming with the Interface Repository Objects 7 – 5.

Methods introduced by Interface Repository classes 7 – 6.

Accessing objects in the Interface Repository 7 – 7.

A word about memory management 7 – 9.

Using TypeCode pseudo-objects 7 – 10.

Providing ‘alignment’ information 7 – 12.

Using the ‘tk_foreign’ TypeCode 7 – 13.

TypeCode constants 7 – 14.

Using the IDL basic type ‘any’ 7 – 14.

ii SOMobjects Base Toolkit Users Guide

Chapter 7. The Interface Repository Framework

7.1 Introduction
The SOM Interface Repository (IR) is a database that the SOM Compiler optionally creates and
maintains from the information supplied in IDL source files. The Interface Repository contains
persistent objects that correspond to the major elements in IDL descriptions. The SOM
Interface Repository Framework is a set of classes that provide methods whereby executing
programs can access these objects to discover everything known about the programming
interfaces of SOM classes.

The programming interfaces used to interact with Interface Repository objects, as well as the
format and contents of the information they return, are architected and defined as part of the
Object Management Group’s CORBA standard. The classes composing the SOM Interface
Repository Framework implement the programming interface to the CORBA Interface Reposito-
ry. Accordingly, the SOM Interface Repository Framework supports all of the interfaces de-
scribed in The Common Object Request Broker: Architecture and Specification (OMG Docu-
ment Number 91.12.1, Revision 1.1, chapter 7).

As an extension to the CORBA standard, the SOM Interface Repository Framework permits
storage in the Interface Repository of arbitrary information in the form of SOM IDL modifiers.
That is, within the SOM-unique implementation section of an IDL source file or through the use
of the #pragma modifier statement, user-defined modifiers can be associated with any ele-
ment of an IDL specification. (See the section entitled “SOM Interface Definition Language” in
Chapter 4, “Implementing Classes in SOM.”) When the SOM Compiler creates the Interface
Repository from an IDL specification, these potentially arbitrary modifiers are stored in the IR
and can then be accessed via the methods provided by the Interface Repository Framework.

This chapter describes, first, how to build and manage interface repositories, and second, the
programming interfaces embodied in the SOM Interface Repository Framework.

7 – 2 SOMobjects Base Toolkit Users Guide

7.2 Using the SOM Compiler to Build an Interface Repository
The SOMobjects Toolkit includes an Interface Repository emitter that is invoked whenever the
SOM Compiler is run using an sc command with the –u option (which “updates” the interface
repository). The IR emitter can be used to create or update an Interface Repository file. The IR
emitter expects that an environment variable, SOMIR, was first set to designate a file name for
the Interface Repository. For example, to compile an IDL source file named “newcls.idl” and
create an Interface Repository named “newcls.ir”, use a command sequence similar to the
following:

For OS/2:

set SOMIR=c:\myfiles\newcls.ir
sc –u newcls

For AIX:

export SOMIR=~/newcls.ir
sc –u newcls

If the SOMIR environment variable is not set, the Interface Repository emitter creates a file
named “som.ir” in the current directory.

The sc command runs the Interface Repository emitter plus any other emitters indicated by the
environment variable SMEMIT (described in the topic “Running the SOM Compiler” in Chapter 4,
“Implementing Classes in SOM”). To run the Interface Repository emitter by itself, issue the sc
command with the –s option (which overrides SMEMIT) set to “ir”. For example:

sc –u –sir newcls

or equivalently,

sc –usir newcls

The Interface Repository emitter uses the SOMIR environment variable to locate the designated
IR file. If the file does not exist, the IR emitter creates it. If the named interface repository already
exists, the IR emitter checks all of the “type” information in the IDL source file being compiled for
internal consistency, and then changes the contents of the interface repository file to agree with
with the new IDL definition. For this reason, the use of the –u compiler flag requires that all of the
types mentioned in the IDL source file must be fully defined within the scope of the compilation.
Warning messages from the SOM Compiler about undefined types result in actual error mes-
sages when using the –u flag.

The additional type checking and file updating activity implied by the –u flag increases the time it
takes to run the SOM Compiler. Thus, when developing an IDL class description from scratch,
where iterative changes are to be expected, it may be preferable not to use the –u compiler
option until the class definition has stabilized.

7 – 37. The Interface Repository

7.3 Managing Interface Repository files
Just as the number of interface definitions contained in a single IDL source file is optional,
similarly, the number of IDL files compiled into one interface repository file is also at the
programmer’s discretion. Commonly, however, all interfaces needed for a single project or class
framework are kept in one interface repository.

The SOM IR file “som.ir”
The SOMobjects Toolkit includes an Interface Repository file (“som.ir”) that contains objects
describing all of the types, classes, and methods provided by the various frameworks of the
SOMobjects Toolkit. Since all new classes will ultimately be derived from these predefined SOM
classes, some of this information also needs to be included in a programmer’s own interface
repository files.

For example, suppose a new class, called “MyClass”, is derived from SOMObject. When the
SOM Compiler builds an Interface Repository for “MyClass”, that IR will also include all of the
information associated with the SOMObject class. This happens because the SOMObject
class definition is inherited by each new class; thus, all of the SOMObject methods and
typedefs are implicitly contained in the new class as well.

Eventually, the process of deriving new classes from existing ones would lead to a great deal of
duplication of information in separate interface repository files. This would be inefficient, waste-
ful of space, and extremely difficult to manage. For example, to make an evolutionary change to
some class interface, a programmer would need to know about and subsequently update all of
the interface repository files where information about that interface occurred.

One way to avoid this dilemma would be to keep all interface definitions in a single interface
repository (such as “som.ir”). This is not recommended, however. A single interface repository
would soon grow to be unwieldy in size and become a source of frequent access contention.
Everyone involved in developing class definitions would need update access to this one file, and
simultaneous uses might result in longer compile times.

Managing IRs via the SOMIR environment variable
The SOMobjects Toolkit offers a more flexible approach to managing interface repositories. The
SOMIR environment variable can reference an ordered list of separate IR files, which process
from left to right. Taken as a whole, however, this gives the appearance of a single, logical
interface repository. A programmer accessing the contents of “the interface repository” through
the SOM Interface Repository framework would not be aware of the division of information
across separate files. It would seem as though all of the objects resided in a single interface
repository file.

A typical way to utilize this capability is as follows:

• The first (leftmost) Interface Repository in the SOMIR list would be “som.ir”. This file
contains the basic interfaces and types needed in all SOM classes.

• The second file in the list might contain interface definitions that are used globally across a
particular enterprise.

• A third interface repository file would contain definitions that are unique to a particular
department, and so on.

• The final interface repository in the list should be set aside to hold the interfaces needed
for the project currently under development.

Developers working on different projects would each set their SOMIR environment variables to
hold slightly different lists. For the most part, the leftmost portions of these lists would be the
same, but the rightmost interface repositories would differ. When any given developer is ready

7 – 4 SOMobjects Base Toolkit Users Guide

to share his/her interface definitions with other people outside of the immediate work group, that
person’s interface repository can be promoted to inclusion in the master list.

With this arrangement of IR files, the more stable repositories are found at the left end of the list.
For example, a developer should never need to make any significant changes to “som.ir”,
because these interfaces are defined by IBM and would only change with a new release of the
SOMobjects Toolkit.

The Interface Repository Framework only permits updates in the rightmost file of the SOMIR

interface repository list. That is, when the SOM Compiler –u flag is used to update the Interface
Repository, only the final file on the IR list will be affected. The information in all preceding
interface repository files is treated as “read only”. Therefore, to change the definition of an
interface in one of the more global interface repository files, a developer must overtly construct a
special SOMIR list that omits all subsequent (that is, further to the right) interface repository files,
or else petition the owner of that interface to make the change.

Here is an example that illustrates the use of multiple IR files with the SOMIR environment
variable. In this example, the SOMBASE environment variable represents the directory in which
the SOMobjects Toolkit files have been installed. Only the “myown.ir” interface repository file
will be updated with the interfaces found in files “myclass1.idl”, “myclass2.idl”, and “my-
class3.idl”.

For OS/2:

set BASE_IRLIST=%SOMBASE%\IR\SOM.IR;C:\IR\COMPANY.IR;C:\IR\DEPT10.IR
set SOMIR=%BASE_IRLIST%;D:\MYOWN.IR
set SMINCLUDE=.;%SOMBASE%\INCLUDE;C:\COMPANY\INCLUDE;C:\DEPT10\INCLUDE
sc –usir myclass1
sc –usir myclass2
sc –usir myclass3

For AIX:

export BASE_IRLIST=$SOMBASE/ir/som.ir:/usr/local/ir/company.ir:\
 /usr/local/ir/dept10.ir
export SOMIR=$BASE_IRLIST:~/myown.ir
export SMINCLUDE=.:$SOMBASE/INCLUDE:/usr/local/company/include:\
 /usr/local/dept10/include
sc –usir myclass1
sc –usir myclass2
sc –usir myclass3

Placing ‘private’ information in the Interface Repository
When the SOM Compiler updates the Interface Repository in response to the –u flag, it uses all
of the information available from the IDL source file. However, if the __PRIVATE__ preprocessor
variable is used to designate certain portions of the IDL file as private, the preprocessor actually
removes that information before the SOM Compiler sees it. Consequently, private information
will not appear in the Interface Repository unless the –p compiler option is also used in
conjunction with –u. For example:

sc –up myclass1

This command will place all of the information in the “myclass1.idl” file, including the private
portions, in the Interface Repository.

If you are using tools that understand SOM and rely on the Interface Repository to describe the
types and instance data in your classes, you may need to include the private sections from your
IDL source files when building the Interface Repository.

7 – 57. The Interface Repository

7.4 Programming with the Interface Repository Objects
The SOM Interface Repository Framework provides an object-oriented programming interface
to the IDL information processed by the SOM Compiler. Unlike many frameworks that require
you to inherit their behavior in order to use it, the Interface Repository Framework is useful in its
own right as a set of predefined objects that you can access to obtain information. Of course, if
you need to subclass a class to modify its behavior, you can certainly do so; but typically this is
not necessary.

The SOM Interface Repository contains the fully-analyzed (compiled) contents of all informa-
tion in an IDL source file. This information takes the the form of persistent objects that can be
accessed from a running program. There are ten classes of objects in the Interface Repository
that correspond directly to the major elements in IDL source files; in addition, one instance of
another class exists outside of the IR itself, as follows:

Contained — All objects in the Interface Repository are instances of
classes derived from this class and exhibit the common
behavior defined in this interface.

Container — Some objects in the Interface Repository hold (or contain)
other objects. (For example, a module [ModuleDef] can
contain an interface [InterfaceDef].) All Interface Reposi-
tory objects that hold other objects are instances of classes
derived from this class and exhibit the common behavior
defined by this class.

ModuleDef — An instance of this class exists for each module defined in
an IDL source file. ModuleDefs are Containers, and they
can hold ConstantDefs, TypeDefs, ExceptionDefs,
InterfaceDefs, and other ModuleDefs.

InterfaceDef — An instance of this class exists for each interface named in
an IDL source file. (One InterfaceDef corresponds to one
SOM class.) InterfaceDefs are Containers, and they
can hold ConstantDefs, TypeDefs, ExceptionDefs,
AttributeDefs, and OperationDefs.

AttributeDef — An instance of this class exists for each attribute defined in
an IDL source file. AttributeDefs are found only inside of
(contained by) InterfaceDefs.

OperationDef — An instance of this class exists for each operation (meth-
od) defined in an IDL source file. OperationDefs are Con-
tainers that can hold ParameterDefs. OperationDefs are
found only inside of (contained by) InterfaceDefs.

ParameterDef — An instance of this class exists for each parameter of each
operation (method) defined in an IDL source file.
ParameterDefs are found only inside of (contained by)
OperationDefs.

TypeDef — An instance of this class exists for each typedef, struct,
union, or enum defined in an IDL source file. TypeDefs
may be found inside of (contained by) any Interface Repos-
itory Container except an OperationDef.

ConstantDef — An instance of this class exists for each constant defined
in an IDL source file. ConstantDefs may be found inside
(contained by) of any Interface Repository Container ex-
cept an OperationDef.

7 – 6 SOMobjects Base Toolkit Users Guide

ExceptionDef — An instance of this class exists for each exception defined
in an IDL source file. ExceptionDefs may be found inside
of (contained by) any Interface Repository Container ex-
cept an OperationDef.

Repository — One instance of this class exists for the entire SOM Inter-
face Repository, to hold IDL elements that are global in
scope. The instance of this class does not, however, reside
within the IR itself.

Methods introduced by Interface Repository classes
The Interface Repository classes introduce nine new methods, which are briefly described
below. Many of the classes simply override methods to customize them for the corresponding
IDL element; this is particularly true for classes representing IDL elements that are only con-
tained within another syntactic element. Full descriptions of each method are found in the
SOMobjects Developer Toolkit: Programmers Reference Manual.

� Contained class methods (all IR objects are instances of this class and exhibit this behavior):

describe — Returns a structure of type Description containing all in-
formation defined in the IDL specification of the syntactic
element corresponding to the target Contained object. For
example, for a target InterfaceDef object, the describe
method returns information about the IDL interface decla-
ration. The Description structure contains a “name” field
with an identifier that categorizes the description (such as,
“InterfaceDescription”) and a “value” field holding an “any”
structure that points to another structure containing the IDL
information for that particular element (in this example, the
interface’s IDL specifications).

within — Returns a sequence designating the object(s) of the IR
within which the target Contained object is contained. For
example, for a target TypeDef object, it might be contained
within any other IR object(s) except an OperationDef ob-
ject.

� Container class methods (some IR objects contain other objects and exhibit this behavior):

contents — Returns a sequence of pointers to the object(s) of the IR
that the target Container object contains. (For example,
for a target InterfaceDef object, the contents method re-
turns a pointer to each IR object that corresponds to a part
of the IDL interface declaration.) The method provides op-
tions for excluding inherited objects or for limiting the
search to only a specified kind of object (such as
AttributeDefs).

describe_contents — Combines the describe and contents methods; returns a
sequence of ContainerDescription structures, one for
each object contained by the target Container object.
Each structure has a pointer to the related object, as well as
“name” and “value” fields resulting from the describe
method.

lookup_name — Returns a sequence of pointers to objects of a given name
contained within a specified Container object, or within
(sub)objects contained in the specified Container object.

7 – 77. The Interface Repository

� ModuleDef class methods:

— Override describe and within.

� InterfaceDef class methods:

describe_interface — Returns a description of all methods and attributes of a
given interface definition object that are held in the Inter-
face Repository.

— Also overrides describe and within.

� AttributeDef class method:

— Overrides describe.

� OperationDef class method:

— Overrides describe.

� ParameterDef class method:

— Overrides describe.

� TypeDef class method:

— Overrides describe.

� ConstantDef class method:

— Overrides describe.

� ExceptionDef class method:

— Overrides describe.

� Repository class methods:

lookup_id — Returns the Contained object that has a specified
RepositoryId.

lookup_modifier — Returns the string value held by a SOM or user-defined
modifier, given the name and type of the modifier, and the
name of the object that contains the modifier.

release_cache — Releases, from the internal object cache, the storage used
by all currently unreferenced Interface Repository objects.

Accessing objects in the Interface Repository

As mentioned above, one instance of the Repository class exists for the entire SOM Interface
Repository. This object does not, itself, reside in the Interface Repository (hence it does not
exhibit any of the behavior defined by the Contained class). It is, however, a Container, and it
holds all ConstantDefs, TypeDefs, ExceptionDefs, InterfaceDefs, and ModuleDefs that are
global in scope (that is, not contained inside of any other Containers).

When any method provided by the Repository class is used to locate other objects in the
Interface Repository, those objects are automatically instantiated and activated. Consequently,
when the program is finished using an object from the Interface Repository, the client code
should release the object using the somFree method.

All objects contained in the Interface Repository have both a “name” and a “Repository ID”
associated with them. The name is not guaranteed to be unique, but it does uniquely identify an
object within the context of the object that contains it. The Repository ID of each object is
guaranteed to uniquely identify that object, regardless of its context.

7 – 8 SOMobjects Base Toolkit Users Guide

For example, two TypeDef objects may have the same name, provided they occur in separate
name scopes (ModuleDefs or InterfaceDefs). In this case, asking the Interface Repository to
locate the TypeDef object based on its name would result in both TypeDef objects being
returned. On the other hand, if the name is looked up from a particular ModuleDef or
InterfaceDef object, only the TypeDef object within the scope of that ModuleDef or
InterfaceDef would be returned. By contrast, once the Repository ID of an object is known, that
object can always be directly obtained from the Repository object via its Repository ID.

C or C++ programmers can obtain an instance of the Repository class using the
RepositoryNew macro. Programmers using other languages (and C/C++ programmers with-
out static linkage to the Repository class) should invoke the method
somGetInterfaceRepository on the SOMClassMgrObject. For example,

For C or C++ (static linkage):

#include <repostry.h>
Repository repo;

...

repo = RepositoryNew();

From other languages (and for dynamic linkage in C/C++):

1. Use the somEnvironmentNew function to obtain a pointer to the SOMClassMgrObject,
as described in Chapter 3, “Using SOM Classes in Client Programs.”

2. Use the somResolve or somResolveByName function to obtain a pointer to the
somGetInterfaceRepository method procedure.

3. Invoke the method procedure on the SOMClassMgrObject, with no additional argu-
ments, to obtain a pointer to the Repository object.

After obtaining a pointer to the Repository object, use the methods it inherits from Container or
its own lookup_id method to instantiate objects in the Interface Repository. As an example, the
contents method shown in the C fragment below activates every object with global scope in the
Interface Repository and returns a sequence containing a pointer to every global object:

#include <containd.h> /* Behavior common to all IR objects */
Environment *ev;
int i;
sequence(Contained) everyGlobalObject;

ev = SOM_CreateLocalEnvironment(); /* Get an environment to use */
printf (”Every global object in the Interface Repository:\n”);

everyGlobalObject = Container_contents (repo, ev, ”all”, TRUE);

for (i=0; i < everyGlobalObject._length; i++) {
 Contained aContained;

 aContained = (Contained) everyGlobalObject._buffer[i];
 printf (”Name: %s, Id: %s\n”,
 Contained__get_name (aContained, ev),
 Contained__get_id (aContained, ev));
 SOMObject_somFree (aContained);
}

7 – 97. The Interface Repository

Taking this example one step further, here is a complete program that accesses every object in
the entire Interface Repository. It, too, uses the contents method, but this time recursively calls
the contents method until every object in every container has been found:

#include <stdio.h>
#include <containd.h>
#include <repostry.h>

void showContainer (Container c, int *next);

main ()
{
 int count = 0;
 Repository repo;

 repo = RepositoryNew ();
 printf (”Every object in the Interface Repository:\n\n”);
 showContainer ((Container) repo, &count);
 SOMObject_somFree (repo);
 printf (”%d objects found\n”, count);
 exit (0);
}

void showContainer (Container c, int *next)
{
 Environment *ev;
 int i;
 sequence(Contained) everyObject;

 ev = SOM_CreateLocalEnvironment (); /* Get an environment */
 everyObject = Container_contents (c, ev, ”all”, TRUE);

 for (i=0; i<everyObject._length; i++) {
 Contained aContained;

 (*next)++;
aContained = (Contained) everyObject._buffer[i];

 printf (”%6d. Type: %–12s id: %s\n”, *next,
 SOMObject_somGetClassName (aContained),
 Contained__get_id (aContained, ev));

 if (SOMObject_somIsA (aContained, _Container))
 showContainer ((Container) aContained, next);
SOMObject_somFree (aContained);

 }
}

Once an object has been retrieved, the methods and attributes appropriate for that particular
object can then be used to access the information contained in the object. The methods
supported by each class of object in the Interface Repository, as well as the classes themselves,
are documented in the SOMobjects Developer Toolkit: Programmers Reference Manual.

A word about memory management
Several conventions are built into the SOM Interface Repository with regard to memory man-
agement. You will need to understand these conventions to know when it is safe and appropriate
to free memory references and also when it is your responsibility to do so.

All methods that access attributes (such as, the _get_<attribute> methods) always return
either simple values or direct references to data within the target object. This is necessary
because these methods are heavily used and must be fast and efficient. Consequently, you
should never free any of the memory references obtained through attributes. This memory will
be released automatically when the object that contains it is freed.

7 – 10 SOMobjects Base Toolkit Users Guide

For all methods that give out object references (there are five: within, contents,
lookup_name, lookup_id, and describe_contents), when finished with the object, you are
expected to release the object reference by invoking the somFree method. (This is illustrated in
the sample program that accesses all Interface Repository objects.) Do not release the object
reference until you have either copied or finished using all of the information obtained from the
object.

The describe methods (describe, describe_contents, and describe_interface) return
structures and sequences that contain information. The actual structures returned by these
methods are passed by value (and hence should only be freed if you have allocated the memory
used to receive them). However, you may be required to free some of the information contained
in the returned structures when you are finished. Consult the specific method in the SOMobjects
Developer Toolkit: Programmers Reference Manual for more details about what to free.

During execution of the describe and lookup methods, sometimes intermediate objects are
activated automatically. These objects are kept in an internal cache of objects that are in use,
but for which no explicit object references have been returned as results. Consequently, there is
no way to identify or free these objects individually. However, whenever your program is finished
using all of the information obtained thus far from the Interface Repository, invoking the

release_cache method causes the Interface Repository to purge its internal cache of these

implicitly referenced objects. This cache will replenish itself automatically if the need to do so
subsequently arises.

Using TypeCode pseudo-objects
Much of the detailed information contained in Interface Repository objects is represented in the
form of TypeCodes. TypeCodes are complex data structures whose actual representation is
hidden. A TypeCode is an architected way of describing in complete detail everything that is
known about a particular data type in the IDL language, regardless of whether it is a (built-in)
basic type or a (user-defined) aggregate type.

Conceptually, every TypeCode contains a “kind” field (which classifies it), and one or more
parameters that carry descriptive information appropriate for that particular category of
TypeCode. For example, if the data type is long, its TypeCode would contain a “kind” field with
the value tk_long. No additional parameters are needed to completely describe this particular
data type, since long is a basic type in the IDL language.

By contrast, if the TypeCode describes an IDL struct, its “kind” field would contain the value
tk_struct, and it would possess the following parameters: a string giving the name of the struct,
and two additional parameters for each member of the struct: a string giving the member name
and another (inner) TypeCode representing the member’s type. This example illustrates the
fact that TypeCodes can be nested and arbitrarily complex, as appropriate to express the type
of data they describe. Thus, a structure that has N members will have a TypeCode of tk_struct
with 2N+1 parameters (a name and TypeCode parameter for each member, plus a name for the
struct itself).

A tk_union TypeCode representing a union with N members has 3N+2 parameters: the type
name of the union, the switch TypeCode, and a label value, member name and associated
TypeCode for each member. (The label values all have the same type as the switch, except that
the default member, if present, has a label value of zero octet.)

A tk_enum TypeCode (which represents an enum) has N+1 parameters: the name of the
enum followed by a string for each enumeration identifier. A tk_string TypeCode has a single
parameter: the maximum string length, as an integer. (A maximum length of zero signifies an
unbounded string.)

A tk_sequence TypeCode has two parameters: a TypeCode for the sequence elements, and
the maximum size, as an integer. (Again, zero signifies unbounded.)

7 – 117. The Interface Repository

A tk_array TypeCode has two parameters: a TypeCode for the array elements, and the array
length, as an integer. (Arrays must be bounded.)

The tk_objref TypeCode represents an object reference; its parameter is a repository ID that
identifies its interface.

TypeCodes are not actually “objects” in the formal sense. TypeCodes are referred to in the
CORBA standard as pseudo-objects and described as “opaque”. This means that, in reality,
TypeCodes are special data structures whose precise definition is not fully exposed. Their
implementation can vary from one platform to another, but all implementations must exhibit a
minimal set of architected behavior. SOM TypeCodes support the architected behavior and
have additional capability as well (for example, they can be copied and freed).

Although TypeCodes are not objects, the programming interfaces that support them adhere to
the same conventions used for IDL method invocations in SOM. That is, the first argument is
always a TypeCode pseudo-object, and the second argument is a pointer to an Environment
structure. Similarly, the names of the TypeCode functions are constructed like SOM’s C-lan-
guage method–invocation macros (all functions that operate on TypeCodes are named
TypeCode_<function–name>). Because of this ostensible similarity to an IDL class, the
TypeCode programming interfaces can be conveniently defined in IDL as shown below.

interface TypeCode {

enum TCKind {
 tk_null, tk_void,
 tk_short, tk_long, tk_ushort, tk_ulong,
 tk_float, tk_double, tk_boolean, tk_char,
 tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
 tk_struct, tk_union, tk_enum, tk_string,
 tk_sequence, tk_array,

 // The remaining enumerators are SOM–unique extensions
 // to the CORBA standard.
 //
 tk_pointer, tk_self, tk_foreign
};

exception Bounds {};
// This exception is returned if an attempt is made
// by the parameter() operation (described below) to
// access more parameters than exist in the receiving
// TypeCode.

boolean equal (in TypeCode tc);
// Compares the argument with the receiver and returns TRUE
// if both TypeCodes are equivalent. This is NOT a test for
// identity.

TCKind kind ();
// Returns the type of the receiver as a TCKind.

long param_count ();
// Returns the number of parameters that make up the
// receiving TypeCode.

any parameter (in long index) raises (Bounds);
// Returns the indexed parameter from the receiving TypeCode.
// Parameters are indexed from 0 to param_count()–1.

7 – 12 SOMobjects Base Toolkit Users Guide

//
// The remaining operations are SOM–unique extensions.
//

short alignment ();
// This operation returns the alignment required for an instance
// of the type described by the receiving TypeCode.

TypeCode copy (in TypeCode tc);
// This operation returns a copy of the receiving TypeCode.

void free (in TypeCode tc);
// This operation frees the memory associated with the
// receiving TypeCode. Subsequently, no further use can be
// made of the receiver, which, in effect, ceases to exist.

void print (in TypeCode tc);
// This operation writes a readable representation of the
// receiving TypeCode to stdout. Useful for examining
// TypeCodes when debugging.

void setAlignment (in short align);
// This operation overrides the required alignment for an
// instance of the type described by the receiving TypeCode.

long size (in TypeCode tc);
// This operation returns the size of an instance of the
// type represented by the receiving TypeCode.
};

A detailed description of the programming interfaces for TypeCodes is given in the SOMobjects
Developer Toolkit: Programmers Reference Manual.

Providing ‘alignment’ information
In addition to the parameters in the TypeCodes that describe each type, a SOM-unique
extension to the TypeCode functionality allows each TypeCode to carry alignment information
as a “hidden” parameter. Use the TypeCode_alignment function to access the alignment
value. The alignment value is a short integer that should evenly divide any memory address
where an instance of the type will occur.

If no alignment information is provided in your IDL source files, all TypeCodes carry default
alignment information. The default alignment for a type is the natural boundary for the type,
based on the natural boundary for the basic types of which it may be composed. This informa-
tion can vary from one hardware platform to another. The TypeCode will contain the default
alignment information appropriate to the platform where it was defined.

To provide alignment information for the types and instances of types in your IDL source file, use
the “align=N” modifier, where N is your specified alignment. Use standard modifier syntax of the
SOM Compiler to attach the alignment information to a particular element in the IDL source file.
In the following example, align=1 (that is, unaligned or no alignment) is attached to the struct
“abc” and to one particular instance of struct “def” (the instance data item “y”).

7 – 137. The Interface Repository

 interface i {
 struct abc {
 long a;
 char b;
 long c;
 };

struct def {
 char l;
 long m;
 };

 void foo ();

implementation {

 //# instance data
 abc x;
 def y;
 def z;

//# alignment modifiers
 abc: align=1;
 y: align=1;
 };
 };

Be aware that assigning the required alignment information to a type does not guarantee that
instances of that type will actually be aligned as indicated. To ensure that, you must find a way to
instruct your compiler to provide the desired alignment. In practice, this can be difficult except in
simple cases. Most compilers can be instructed to treat all data as aligned (that is, default
alignment) or as unaligned, by using a compile-time option or #pragma. The more important
consideration is to make certain that the TypeCodes going into the Interface Repository
actually reflect the alignment that your compiler provides. This way, when programs (such as
the DSOM Framework) need to interpret the layout of data during their execution, they will be
able to accurately map your data structures. This happens automatically when using the normal
default alignment.

If you wish to use unaligned instance data when implementing a class, place an “unattached”
align=1 modifier in the implementation section. An unattached align=N modifier is presumed
to pertain to the class’s instance data structure, and will by implication be attached to all of the
instance data items.

When designing your own public types, be aware that the best practice of all (and the one that
offers the best opportunity for language neutrality) is to lay out your types carefully so that it will
make no difference whether they are compiled as aligned or unaligned!

Using the ‘tk_foreign’ TypeCode
TypeCodes can be used to partially describe types that cannot be described in IDL (for
example, a FILE type in C, or a specific class type in C++). The SOM-unique extension
tk_foreign is used for this purpose. A tk_foreign TypeCode contains three parameters:

1. The name of the type,
2. An implementation context string, and
3. A length.

The implementation context string can be used to carry an arbitrarily long description that
identifies the context where the foreign type can be used and understood. If the length of the
type is also known, it can be provided with the length parameter. If the length is not known or is
not constant, it should be specified as zero. If the length is not specified, it will default to the size
of a pointer. A tk_foreign TypeCode can also have alignment information specified, just like
any other TypeCode.

7 – 14 SOMobjects Base Toolkit Users Guide

Using the following steps causes the SOM Compiler to create a foreign TypeCode in the
Interface Repository:

1. Define the foreign type as a typedef SOMFOREIGN in the IDL source file.

2. Use the #pragma modifier statement to supply the additional information for the
TypeCode as modifiers. The implementation context information is supplied
using the “impctx” modifier.

3. Compile the IDL file using the –u option to place the information in the Interface
Repository.

For example:

typedef SOMFOREIGN Point;
#pragma modifier Point: impctx=”C++ Point class”,length=12,align=4;

If a foreign type is used to define instance data, structs, unions, attributes, or methods in an
IDL source file, it is your responsibility to ensure that the implementation and/or usage bindings
contain an appropriate definition of the type that will satisfy your compiler. You can use the
passthru statement in your IDL file to supply this definition. However, it is not recommended
that you expose foreign data in attributes, methods, or any of the public types, if this can be
avoided, because there is no guarantee that appropriate usage binding information can be
provided for all languages. If you know that all users of the class will be using the same
implementation language that your class uses, you may be able to disregard this recommenda-
tion.

TypeCode constants
TypeCodes are actually available in two forms: In addition to the TypeCode information
provided by the methods of the Interface Repository, TypeCode constants can be generated by
the SOM Compiler in your C or C++ usage bindings upon request. A TypeCode constant
contains the same information found in the corresponding IR TypeCode, but has the advantage
that it can be used as a literal in a C or C++ program anywhere a normal TypeCode would be
acceptable.

TypeCode constants have the form TC_<typename>, where <typename> is the name of a
type (that is, a typedef, union, struct, or enum) that you have defined in an IDL source file. In
addition, all IDL basic types and certain types dictated by the OMG CORBA standard come with
pre-defined TypeCode constants (such as TC_long, TC_short, TC_char, and so forth). A full
list of the pre-defined TypeCode constants can be found in the file “somtcnst.h”. You must
explicitly include this file in your source program to use the pre-defined TypeCode constants.

Since the generation of TypeCode constants can increase the time required by the SOM
Compiler to process your IDL files, you must explicitly request the production of TypeCode
constants if you need them. To do so, use the “tcconsts” modifier with the –m option of the sc
command. For example, the command

 sc –sh –mtcconsts myclass.idl

will cause the SOM Compiler to generate a “myclass.h” file that contains TypeCode constants
for the types defined in “myclass.idl”.

Using the IDL basic type ‘any’
Some Interface Repository methods and TypeCode functions return information typed as the
IDL basic type any. Usually this is done when a wide variety of different types of data may need
to be returned through a common interface. The type any actually consists of a structure with
two fields: a _type field and a _value field. The _value field is a pointer to the actual datum that
was returned, while the _type field holds a TypeCode that describes the datum.

In many cases, the context in which an operation occurs makes the type of the datum apparent.
If so, there is no need to examine the TypeCode unless it is simply as a consistency check. For

7 – 157. The Interface Repository

example, when accessing the first parameter of a tk_struct TypeCode, the type of the result
will always be the name of the structure (a string). Because this is known ahead of time, there is
no need to examine the returned TypeCode in the any _type field to verify that it is a tk_string
TypeCode. You can just rely on the fact that it is a string; or, you can check the TypeCode in the
_type field to verify it, if you so choose.

An IDL any type can be used in an interface as a way of bypassing the strong type checking that
occurs in languages like ANSI C and C++. Your compiler can only check that the interface
returns the any structure; it has no way of knowing what type of data will be carried by the any
during execution of the program. Consequently, in order to write C or C++ code that accesses the
contents of the any correctly, you must always cast the _value field to reflect the actual type of
the datum at the time of the access.

Here is an example of a code fragment written in C that illustrates how the casting must be done
to extract various values from an any:

 #include <som.h> /* For ”any” & ”Environment” typedefs */
 #include <somtc.h> /* For TypeCode_kind prototype */

 any result;
 Environment *ev;

 printf (”result._value = ”);
 switch (TypeCode_kind (result._type, ev)) {

 case tk_string:

 printf (”%s\n”, *((string *) result._value));
 break;

 case tk_long:
 printf (”%ld\n”, *((long *) result._value));
 break;

 case tk_boolean:
 printf (”%d\n”, *((boolean *) result._value));

 break;

 case tk_float:
 printf (”%f\n”, *((float *) result._value));
 break;

 case tk_double:
 printf (”%f\n”, *((double *) result._value));
 break;

 default:

 printf (”something else!\n”);
 }

Note: Of course, an any has no restriction, per se, on the type of datum that it can carry.
Frequently, however, methods that return an any or that accept an any as an argument do place
semantic restrictions on the actual type of data they can accept or return. Always consult the
reference page for a method that uses an any to determine whether it limits the range of types
that may be acceptable.

7 – 16 SOMobjects Base Toolkit Users Guide

Chapter 8. Utility Metaclasses in SOMobjects Toolkit

Contents

8.1 Utility Metaclass 8 – 1.

The “SOMMSingleInstance” metaclass 8 – 2.

ii SOMobjects Base Toolkit Users Guide

Chapter 8. Utility Metaclasses in SOMobjects Toolkit

8.1 Utility Metaclasses

In SOM, classes are objects; metaclasses are classes and thus are objects, too. Figure 1
depicts the relationship of these sets of objects. Also depicted are the three primitive class
objects of the SOM run time: SOMClass, SOMObject, and SOMClassMgr.

Legend:
subclass–ofinstance–of

metaclass class simple object

Primitive objects of the SOM run time

SOMClass

SOMClassMgr SOMObject

Set of Metaclasses

Set of Classes

Set of Objects

SOMClassMgrObject

Figure 1. The primitive objects of the SOM run time.

The important point to be aware of here is that any class that is a subclass of SOMClass is a
metaclass (because SOMClass’s object-creation method is inherited, and that method creates
a class). The current section describes the SOMMSingleInstance metaclass that is available
as part of the SOMobjects Developer Toolkit utilities. Figure 2 depicts the relationship of the
SOMMSingleInstance metaclass to SOMClass:

8 – 2 SOMobjects Base Toolkit Users Guide

SOMMSingleInstance metaclass
provided in the SOMobjects Toolkit

Legend:
subclass–ofinstance–of

metaclass class simple object

SOMClass

SOMMSingleInstance

Figure 2. The SOMMSingleInstance metaclasses is provided in the SOMobjects Toolkit.

SOMMSingleInstance — Used to create a class that may have at most one instance.

The “SOMMSingleInstance” metaclass

Sometimes it is necessary to define a class for which only one instance can be created. This is
easily accomplished with the SOMMSingleInstance metaclass. Suppose the class “Collie” is
an instance of SOMMSingleInstance. The first call to CollieNew creates the one possible
instance of “Collie”; hence, subsequent calls to CollieNew return the first (and only) instance.

Any class whose metaclass is SOMMSingleInstance gets the requisite behavior; nothing
further needs to be done. The first instance created is always returned by the <className>New
macro.

Alternatively, the method sommGetSingleInstance does the same thing as the
<className>New macro. This method invoked on a class object (for example, “Collie”) is
useful because the call site explicitly shows that something special is occurring and that a new
object is not necessarily being created. For this reason, you might prefer the second form of
creating a single-instance object to the first.

Chapter 9. The Event Management Framework

Contents

9.1 Event Management Basics 9 – 1.

Model of EMan usage 9 – 1.

Event types 9 – 1.

Registration 9 – 2.

Callback 9 – 2.

Event classes 9 – 2.

EMan parameters 9 – 2.

Registering for events 9 – 3.

Unregistering for events 9 – 4.

An example callback procedure 9 – 4.

Generating client events 9 – 4.

Examples of using other events 9 – 4.

Processing events 9 – 5.

Interactive applications 9 – 5.

9.2 Event Manager Advanced Topics 9 – 6.

Threads and thread safety 9 – 6.

Writing an X or MOTIF application 9 – 6.

Extending EMan 9 – 6.

Using EMan from C++ 9 – 7.

Using EMan from other languages 9 – 7.

Tips on using EMan 9 – 7.

9.3 Limitations 9 – 8.

Use of EMan DLL 9 – 8.

ii SOMobjects Base Toolkit Users Guide

9 – 19. The Event Management Framework

Chapter 9. The Event Management Framework

The Event Management Framework is a central facility for registering all events of an applica-
tion. Such a registration facilitates grouping of various application events and waiting on multiple
events in a single event-processing loop. This facility is used by the DSOM Framework to wait on
events of interest. The Event Management Framework must also be used by any interactive
application that contains DSOM or replicated objects.

9.1 Event Management Basics
The Event Management Framework consists of an Event Manager (EMan) class, a Registration
Data class and several Event classes. It provides a way to organize various application events
into groups and to process all events in a single event-processing loop. The need for this kind of
facility is seen very clearly in interactive applications that also need to process some back-
ground events (say, messages arriving from a remote process). Such applications must main-
tain contact with the user while responding to events coming from other sources.

One solution in a multi-threaded environment is to have a different thread service each different
source of events. For a single-threaded environment it should be possible to recognize and
process all events of interest in a single main loop. EMan offers precisely this capability. EMan
can be useful even when multiple threads are available, because of its simple programming
model. It avoids contention for common data objects between EMan event processing and other
main-loop processing activity.

Model of EMan usage

The programming model of EMan is similar to that of many GUI toolkits. The main program
initializes EMan and then registers interest in various types of events. The main program ends
by calling a non-returning function of EMan that waits for events and dispatches them as and
when they occur. In short, the model includes steps that:

1. Initialize the Event Manager,
2. Register with EMan for all events of interest, and
3. Hand over control to EMan to loop forever and to dispatch events.

The Event Manager is a SOM object and is an instance of the SOMEEMan class. Since any
application requires only one instance of this object, the SOMEEMan class is an instance of the
SOMMSingleInstance class. Creation and initialization of the Event Manager is accomplished
by a function call to SOMEEmanNew.

Currently, EMan supports the four kinds of events described in the following topic. An application
can register or unregister for events in a callback routine (explained below) even after control
has been turned over to EMan.

Event types

Event types are categorized as follows:

� Timer events

These can be either one-time timers or interval timers.

� Sink events (sockets, file descriptors, and message queues)

On AIX, this includes file descriptors for input/output files, sockets, pipes, and message
queues. On OS/2, only sockets are supported.

9 – 2 SOMobjects Base Toolkit Users Guide

� Client events (any event that the application wants to queue with EMan)

These events are defined, created, processed, and destroyed by the application. EMan
simply acts as a place to queue these events for processing. EMan dispatches these client
events whenever it sees them. Typically, this happens immediately after the event is
queued.

� Work procedure events (procedures that can be called when there is no other event)

These are typically background procedures that the application intends to execute when
there are spare processor cycles. When there are no other events to process, EMan calls
all registered work procedures.

The Event Management Framework is extendible (that is, other event types can be added to it)
through subclassing. The event types currently supported by EMan are at a sufficiently low level
so as to enable building other higher level application events on top of them. For example, you
can build an X-event handler by simply registering the file descriptor for the X connection with
EMan and getting notified when any X-event occurs.

Registration
This topic illustrates how to register for an event type.

Callbacks
The programmer decides what processing needs to be done when an event occurs and then
places the appropriate code either in a procedure or in a method of an object. This procedure
or method is called a callback. (The callback is provided to EMan at the time of registration and is
called by EMan when a registered event occurs.) The signature of a callback is fixed by the
framework and must have one of the following three signatures:

void EMRegProc(SOMEEvent, void *);
void SOMLINK EMMethodProc(SOMObject, SOMEEvent, void *);
void SOMLINK EMMethodProcEv(SOMObject, Environment *Ev,
 SOMEEvent, void *);
/* On OS/2, they all use ”system” linkage */

The three specified prototypes correspond to a simple callback procedure, a callback method
using OIDL call style, and a callback method using IDL call style. The parameter type
SOMEEvent refers to an event object passed by EMan to the callback. Event objects are
described below.
Note: When the callbacks are methods, EMan calls these methods using Name–lookup Reso-
lution (see Chapter 4, Section 4.3 on Method Resolution). One of the implications is that at the
time of registration EMan queries the target object’s class object to provide a method pointer for
the method name supplied to it. Eman uses this pointer for making event callbacks.

Event classes
All event objects are instances of either the SOMEEvent class or a subclass of it. The hierar-
chy of event classes is as follows:

SOMObject –––––– SOMEEvent ––––– |––––––––– SOMETimerEvent
 |––––––––– SOMEClientEvent
 |––––––––– SOMESinkEvent
 |––––––––– SOMEWorkProcEvent

When called by EMan, a callback expects the appropriate event instance as a parameter. For
example, a callback registered for a timer event expects a SOMETimerEvent instance from
EMan.

EMan parameters
Several method calls in the Event Management Framework make use of bit masks and
constants as parameters (for example, EMSinkEvent or EMInputReadMask). These methods

9 – 39. The Event Management Framework

are defined in the include file “eventmsk.h”. When a user plans to extend the Event Management
Framework, care must be taken to avoid name and value collisions with the definitions in
“eventmsk.h”. For convenience, the contents of the “eventmsk.h” file are shown below.

#ifndef H_EVENTMASKDEF
#define H_EVENTMASKDEF

/* Event Types */
#define EMTimerEvent 54
#define EMSignalEvent 55
#define EMSinkEvent 56

#define EMWorkProcEvent 57

#define EMClientEvent 58

#define EMMsgQEvent 59

/* Sink input/output condition mask */

#define EMInputReadMask (1L<<0)
#define EMInputWriteMask (1L<<1)
#define EMInputExceptMask (1L<<2)

/* Process Event mask */

#define EMProcessTimerEvent (1L<<0)
#define EMProcessSinkEvent (1L<<1)
#define EMProcessWorkProcEvent (1L<<2)
#define EMProcessClientEvent (1L<<3)
#define EMProcessAllEvents (1L<<6)

#endif /* H_EVENTMASKDEF */

Registering for events
In addition to the event classes, the Event Management Framework uses a registration data
class (SOMEEMRegisterData) to capture all event-related registration information. The proce-
dure for registering interest in an event is as follows:

1. Create an instance of the SOMEEMRegisterData class (this will be referred to as
a “RegData” object).

2. Set the event type of “RegData.”

3. Set the various fields of “RegData” to supply information about the particular event for
which an interest is being registered.

4. Call the registration method of EMan, using “RegData” and the callback method
information as parameters. The callback information varies, depending upon whether
it is a simple procedure, a method called using OIDL call style, or a method called
using IDL call style.

The following code segment illustrates how to register input interest in a socket “sock” and
provide a callback procedure “ReadMsg”.

9 – 4 SOMobjects Base Toolkit Users Guide

data = SOMEEMRegisterDataNew(); /* create a RegData object */
_someClearRegData(data, Ev);
_someSetRegDataEventMask(data,Ev,EMSinkEvent,NULL); /* Event type */
_someSetRegDataSink(data, Ev, sock); /* provide the socket id */
_someSetRegDataSinkMask(data,Ev, EMInputReadMask);
 /*input interest */
regId = _someRegisterProc(some_gEMan,Ev,data,ReadMsg,”UserData”);
/* some_gEMan points to EMan. The last parameter ”userData” is any
 data the user wants to be passed to the callback procedure as a
 second parameter */

Unregistering for events
One can unregister interest in a given event type at any time. To unregister, you must provide
the registration id returned by EMan at the time of registration. Unregistering a non-existent
event (such as, an invalid registration id) is a no-op. The following example unregisters the
socket registered above:

_someUnRegister(some_gEMan, Ev, regId);

An example callback procedure
The following code segment illustrates how to write a callback procedure:

void SOMLINK ReadMsg(SOMEEvent event, void *targetData)
{
int sock;
 printf(”Data = %s\n”, targetData);
 switch(_somevGetEventType(event)) {
 case EMSinkEvent:
 printf(”callback: Perceived Sink Event\n”);
 sock = _somevGetEventSink(event);
 /* code to read the message off the socket */
 break;
 default: printf(”Unknown Event type in socket callback\n”);
 }
}

Generating client events
While the other events are caused by the operating system (for example, Timer), by I/O devices,
or by external processes, client events are caused by the application itself. The application
creates these events and enqueues them with EMan. When client events are dispatched, they
are processed in a callback routine just like any other event. The following code segment
illustrates how to create and enqueue client events.

clientEvent1 = SOMEClientEventNew(); /* create a client event */
_somevSetEventClientType(clientEvent1, Ev, ”MyClientType”);
_somevSetEventClientData(clientEvent1, Ev,
 ”I can give any data here”);
/* assuming that ”MyClientType” is already registered with EMan */
/* enqueue the above event with EMan */
_someQueueEvent(some_gEMan, Ev, clientEvent1);

Examples of using other events
The sample program shipped with the Event Management Framework illustrates the tasks listed
below. (Due to its large size, the source code is not included here.)

� Registering and unregistering for Timer events.

9 – 59. The Event Management Framework

� Registering and unregistering for Workproc events.

� Registering an AIX Message Queue, sending messages on it, and unregistering the
Message Queue.

� Registering a stream socket that listens to incoming connection requests. Also, sockets
connecting, accepting a connection, and sending/receiving messages through EMan.

� Registering a file descriptor on AIX and reading one line of the file at a time in a callback.

Processing events

After all registrations are finished, an application typically turns over control to EMan and is
completely event driven thereafter. Typically, an application main program ends with the follow-
ing call to EMan:

_someProcessEvents(some_gEMan, Ev);

An equivalent way to process events is to write a main loop and call someProcessEvent from
inside the main loop, as indicated:

while (1) { /* do forever */
 _someProcessEvent(some_gEMan, Ev, EMProcessTimerEvent |
 EMProcessSinkEvent |
 EMProcessClientEvent |
 EMProcessWorkProcEvent);
 /*** Do other main loop work, as needed. ***/
 }

The second way allows more precise control over what type of events to process in each call.
The example above enables all four types to be processed. The required subset is formed by
logically OR’ing the appropriate bit constants (these are defined in “eventmsk.h)”. Another
difference is that the second way is a non-blocking call to EMan. That is, if there are no events to
process, control returns to the main loop immediately, whereas someProcessEvents is a
non-returning blocking call. For most applications, the first way of calling EMan is better, since it
does not waste processor cycles when there are no events to process.

Interactive applications

Interactive applications need special attention when coupled with EMan. Once control is turned
over to EMan by calling someProcessEvents, a single-threaded application (for example, on
AIX) has no way of responding to keyboard input. The user must register interest in “stdin” with
EMan and provide a callback function that handles keyboard input. In a multi-threaded environ-
ment (for example, OS/2), this problem can be solved by spawning a thread to execute
someProcessEvents and another to handle keyboard input. (These two options are illustrated
in the sample program shipped with the Event Management Framework.)

9 – 6 SOMobjects Base Toolkit Users Guide

9.2 Event Manager Advanced Topics

Threads and thread safety
As indicated earlier, on OS/2, interactive programs call someProcessEvents in one thread and
process keyboard input in a separate thread. (This recommended usage is illustrated in the
sample program). The event manager object (EMan) is thread safe in the sense that concurrent
method invocations on EMan are serialized. Even when someProcessEvents is invoked in a
thread and other methods of EMan are invoked from other threads, EMan still preserves its data
integrity. However, when Eman dispatches an event, a callback can call methods on the same
data objects as the other interactive thread(s). The user must protect such data objects using
appropriate concurrency control techniques (for example by using semaphores).

One must also be aware of some deadlock possibilities. Consider the following situation. EMan
code holds some SOMobjects Toolkit semaphores while it is running (for example, while in
someProcessEvents). A user-defined object protects its data by requiring its methods to
acquire and release a sempahore on the object. If a separate thread running in this object were
to call an operation that requires a SOMobjects Toolkit semaphore (which is currently held by
EMan) and if concurrently EMan dispatches an event whose callback invokes a method of this
object, a deadlock occurs. Two possibilities exist to cope with such a situation: One is to acquire
all needed semaphores ahead of time, and the other is to abort the operation when you fail to
obtain a semaphore. To achieve mutual exclusion with EMan, you can call the methods
someGetEManSem and someReleaseEmanSem. These methods acquire and release the
SOMobject Developer Toolkit semaphores that EMan uses.

Writing an X or MOTIF application
Although the Event Manager does not recognize X events, an X or MOTIF application can be
integrated with EMan as follows. First, the necessary initialization of X or MOTIF should be
performed. Next, using the Xlib macro “ConnectionNumber” or the “XConnectionNumber”
function, you can obtain the file descriptor of the X connection. This file descriptor can be
registered with EMan as a sink. It can be registered for both input events and exception events.
When there is any activity on this X file descriptor, the developer-provided callback is invoked.
The callback can receive the X-event, analyze it, and do further dispatching.

Extending EMan
The current event manager can be extended without having access to the source code. The use
of EMan in an X or MOTIF application mentioned above is just one such example. Several other
extensions are possible. For example, new event types can be defined by subclassing either
directly from SOMEEvent class or from any of its subclasses in the framework. There are three
main problems to solve in adding a new event type:

� How to register a new event type with EMan?

� How to make EMan recognize the occurrence of the new event?

� How to make EMan create and send the new event object (a subclass of SOMEEvent) to
the callback when the event is dispatched?

Because the registration information is supplied with appropriate “set” methods of a RegData
object, the RegData object should be extended to include additional methods. This can be
achieved by subclassing from SOMERegisterData and building a new registration data class
that has methods to “set” and “get” additional fields of information that are needed to describe
the new event types fully. To handle registrations with instances of new registration data sub-
class, we must also subclass from SOMEEMan and override the someRegister and the
someUnRegister methods. These methods should handle the information in the new fields
introduced by the new registration data class and call parent methods to handle the rest.

9 – 79. The Event Management Framework

Making EMan recognize the occurrence of the new event is primarily limited by the primitive
events EMan can wait on. Thus the new event would have to be wrapped in a primitive event that
EMan can recognize. For example, to wait on a message queue on OS/2 concurrently with other
EMan events, a separate thread can be made to wait on the message queue and to enqueue a
client event with EMan when a message arrives on this message queue. We can thus bring
multiple event sources into the single EMan main loop.

The third problem of creating new event objects unknown to EMan can be easily done by
applying the previous technique of wrapping the new event in terms of a known event. In a
callback routine of the known event, we can create and dispatch the new event unknown to
EMan. Of course, this does introduce an intermediate callback routine which would not be
needed if EMan directly understood the new event type.

A general way of extending EMan is to look for newly defined event types by overriding
someProcessEvent and someProcessEvents in a subclass of EMan.

Using EMan from C++

The Event Management framework can be used from C++ just like any other framework in the
SOMobjects Toolkit. You must ensure that the C++ usage bindings (that is, the .xh files) are
available for the Event Management Framework classes. These .xh files are generated by the
SOM Compiler in the SOMobjects Toolkit when the -s option includes an xh emitter.

Using EMan from other languages

The event manager and the other classes can be used from other languages, provided usage
bindings are available for them. These usage bindings are produced from .idl files of the
framework classes by the appropriate language emitter.

Tips on using EMan

The following are some do’s and don’ts for EMan:

� Eman callback procedures or methods must return quickly. You cannot wait for long
periods of time to return from the callbacks. If such long delays occur, then the applica-
tion may not notice some subsequent events in time to process them meaningfully (for
example, a timer event may not be noticed until long after it occurred).

� It follows from the previous tip that you should not do independent “select” system calls on
file descriptors while inside a callback. (This applies to sockets and message queues, as
well.) In general, a callback should not do any blocking of system calls. If an application
must do this, then it must be done with a small timeout value.

� Since EMan callbacks must return quickly, no callback should wait on a semaphore
indefinitely. If a callback has to obtain some semaphores during its processing, then the
callback should try to acquire all of them at the very beginning, and should be prepared
to abort and return to EMan if it fails to acquire the necessary semaphores.

� EMan callback methods are called using name-lookup resolution. Therefore, the parame-
ters to an EMan registration call must be such that the class object of the object parameter
must be able to provide a pointer to the method indicated by the method parameter.
Although this requirement is satisfied in a majority of cases, there are exceptions. For
example, if the object is a proxy (in the DSOM sense) to a remote object, then the “real”
class object cannot provide a meaningful method pointer. Also note that, when
somDispatch is overridden, the effect of such an override will not apply to the callback
from EMan. Do not use a method callback in these situations; instead, use a procedure
callback.

9 – 8 SOMobjects Base Toolkit Users Guide

9.3 Limitations
The present implementation of the Event Management framework has the limitations described
below. For a more up-to-date list of limitations, refer to the README file on EMan in the
SOMobjects Developer Toolkit.

� EMan supports registering a maximum of 64 AIX message queues.

� EMan can only wait on file descriptors (including files, pipes, sockets, and message
queues) on AIX, and socket identifiers on OS/2 and Windows.

� EMan supports registering a maximum of FILENO (the AIX limit on maximum number of
open files) file descriptors on AIX. On OS/2 and Windows, the maximum number of socket
identifiers depends on the underlying Sockets class.

Use of EMan DLL

The Event Manager Framework uses a Sockets “select” call to wait on multiple sockets. . At the
time of EMan creation, the SOMEEMan class object loads one of the Sockets subclass DLLs,
based on the value of the environment variable SOMSOCKETS. This environment variable
should name the implementation class of sockets (see Appendix E describing the Sockets
abstract class and the specific implementation DLLs available with the SOMobjects Toolkit.)
The current choices for this environment variable are TCPIPSockets, NBSockets, and
IPXSockets.

Appendix A. Customer Support and Error Codes

Service and Technical Support for SOMobjects
This service and technical support information applies for:

� SOMobjects Developer Toolkit, Version 2.0
� SOMobjects Workstation Enabler, Version 2.0
� SOMobjects Workgroup Enabler, Version 2.0

Notes: Customers in European, Middle Eastern, and African Countries should refer to the
separate Service Statement included with the product for service and technical support
instructions for this product.

Customers in Canada and Asia Pacific Countries should refer to the Service Statement
in the License Information Booklet for service and technical support instructions for this
product.

You Must Register for Service
Defect service for this product is available through September 30, 1995, or six months after the
general availability of a subsequent version of the product (or a product designated as a
replacement product), whichever occurs earlier.

Register by providing your company name, address, phone number, contact person’s name,
phone and FAX numbers (include area code). This information can be sent via electronic mail as
follows:

• IBM OS2BBS to userid: WZ00178

or

• Internet Commercial: somreg@austin.ibm.com

or

• CompuServe: GO IBMSOM
and then browse the News Flash for further registration information.

Within two working days of receipt of your registration, a service ID or password will be issued
to you, allowing access to the defect forum and technical support forum.

Defect Support
Defect service for this product is available through September 30, 1995, or six months after the
general availability of a subsequent version of the product (or a product designated as a
replacement product), whichever occurs earlier.

Defect service is provided by the IBM SOMobjects Development personnel via the following
Electronic Support Services:

• IBM OS/2 Bulletin Board System
via IBM TalkLink Electronic Conferencing Service

• Internet Commercial Electronic Network

• CompuServe

The IBM SOMobjects Development personnel will monitor these Electronic Support Services
between 8 a.m. and 7 p.m. CST, Monday through Friday, except holidays. Acknowledgement of
receipt of Defect Report will be within 24 hours for SOMobjects RUNTIME defects and 72 hours
for SOMobjects TOOLKIT defects, provided that the Defect Report is received by the
SOMobjects Technical Support personnel during the time period of 8 a.m. to 7 p.m. CST,
Monday through Friday.

A – 2 SOMobjects Base Toolkit Users Guide

Technical Support

Technical support service for this product is available for ninety (90) days after receipt of your
service registration by SOMobjects Development personnel or until expiration of defect sup-
port, whichever occurs first.

Technical support service is provided by the IBM SOMobjects Development personnel via the
following Electronic Support Services:

• IBM OS/2 Bulletin Board System
via IBM TalkLink Electronic Conferencing Service

• Internet Commercial Electronic Network

• CompuServe

The IBM SOMobjects Development personnel will monitor these Electronic Support Services
between 8 a.m. and 7 p.m. CST, Monday through Friday, except holidays. Questions will be
answered in the order in which they are received. Extension of the technical support beyond the
expiration date will be offered on a fee basis. Information regarding this offering will be provided
on the service bulletin boards.

IBM OS/2 Bulletin Board System via TalkLink

The OS/2 Bulletin Board System (BBS) is implemented on the IBMLink facility. The OS/2 BBS is
provided to all Workstation Technical Coordinators (WTSC) in corporate IBMLink accounts and
all members of the OS/2 Developer’s Assistance Program (DAP) who have access to IBMLink.
You may contact your Technical Coordinator, if one has been identified by your company. If your
company does not currently utilize IBMLink, you can subscribe to TalkLink by calling
1–800–547–1283 (USA).

How to use the IBM OS/2 Bulletin Board System (OS2BBS) via TalkLink for service and support
for SOMobjects:

• To obtain technical support for non-defect “how-to” questions and answers:

– Logon to IBM OS2BBS system from IBMLink Main Menu screen
– Select “OS/2 Questions and Answer Bulletin Boards”
– Select “SOMHOWTO” CFORUM

• To submit a suspected defect report:

– Logon to IBM OS2BBS system from IBMLink Main Menu screen
– Select “OS/2 Questions and Answer Bulletin Boards”
– Select “SOMTKBUG” – if the suspected defect is with the SOM Toolkit
– Select “SOMRTBUG” – if the suspected defect is with the SOM Runtime

Note: When submitting a suspected defect report, please provide the following information:

– Your Company name and address.
– Your name, phone and FAX numbers.
– The hardware platform – (PS/2 Model ____, or RS/6000 Model ____).
– Operating System and level – (OS/2 Version ____, or AIX Version ____).
– System configuration (memory, communication protocol, etc.).
– SOMobjects Version _____.
– Complete description of the problem.

A – 3A. Customer Support and Error Codes

Internet Commercial Electronic Network

How to use Internet for service and support for SOMobjects:

• To obtain technical support, for non-defect “how-to” questions and answers:

– Via USENET Newsgroup at: comp.unix.aix
Note: Include the word “SOM” in the subject line.

• To submit a suspected defect report:

– Send EMAIL to: sombug@austin.ibm.com

Note: When submitting a suspected defect report, please provide the following information:

– Your Company name and address.
– Your name, phone and FAX numbers.
– The hardware platform (PS/2 Model ____, or RS/6000 Model ____).
– Operating System and level (OS/2 Version ____, or AIX Version ____).
– System configuration (memory, communication protocol, etc.).
– SOMobjects Version _____.
– Complete description of the problem.

CompuServe

How to use CompuServe for service and support for SOMobjects:

• From any CompuServe prompt, enter: GO IBMSOM

Note: When submitting a suspected defect report, please provide the following information:

– Your Company name and address.
– Your name, phone and FAX numbers.
– The hardware platform (PS/2 Model ____, or RS/6000 Model ____).
– Operating System and level (OS/2 Version ____, or AIX Version ____).
– System configuration (memory, communication protocol, etc.).
– SOMobjects Version _____.
– Complete description of the problem.

If you are not currently a member of CompuServe, you can subscribe by calling (USA)
1–800–524–3388 and asking for Representative 239.

A – 4 SOMobjects Base Toolkit Users Guide

SOM Kernel Error Codes
Following are error codes with messages/explanations for the SOM kernel and the various
frameworks of the SOMobjects Developer Toolkit.

Value Symbolic Name and Description

20011 SOMERROR_CCNullClass
The somDescendedFrom method was passed a null class argument.

20029 SOMERROR_SompntOverflow
The internal buffer used in somPrintf overflowed.

20039 SOMERROR_MethodNotFound
somFindMethodOk failed to find the indicated method.

20049 SOMERROR_StaticMethodTableOverflow
A Method–table overflow occurred in somAddStaticMethod.

20059 SOMERROR_DefaultMethod
The somDefaultMethod was called; a defined method probably was not
added before it was invoked.

20069 SOMERROR_MissingMethod
The specified method was not defined on the target object.

20079 SOMERROR_BadVersion
An attempt to load, create, or use a version of a class-object implementation is
incompatible with the using program.

20089 SOMERROR_NullId
The SOM_CheckId was given a null ID to check.

20099 SOMERROR_OutOfMemory
Memory is exhausted.

20109 SOMERROR_TestObjectFailure
The somObjectTest found problems with the object it was testing.

20119 SOMERROR_FailedTest
The somTest detected a failure; generated only by test code.

20121 SOMERROR_ClassNotFound
The somFindClass could not find the requested class.

20131 SOMERROR_OldMethod
An old-style method name was used; change to an appropriate name.

20149 SOMERROR_CouldNotStartup
The somEnvironmentNew failed to complete.

20159 SOMERROR_NotRegistered
The somUnloadClassFile argument was not a registered class.

20169 SOMERROR_BadOverride
The somOverrideSMethod was invoked for a method that was not defined in
a parent class.

20179 SOMERROR_NotImplementedYet
The method raising the error message is not implemented yet.

20189 SOMERROR_MustOverride
The method raising the error message should have been overridden.

A – 5A. Customer Support and Error Codes

20199 SOMERROR_BadArgument
An argument to a core SOM method failed a validity test.

20219 SOMERROR_NoParentClass
During the creation of a class object, the parent class could not be found.

20229 SOMERROR_NoMetaClass
During the creation of a class object, the metaclass object could not be found.

A – 6 SOMobjects Base Toolkit Users Guide

DSOM Error Codes
The following table lists the error codes that may be encountered when using DSOM.

Value Description

30001 SOMDERROR_NoMemory

Memory is exhausted.

30002 SOMDERROR_NotImplemented

Function or method has a null implementation.

30003 SOMDERROR_UnexpectedNULL

Internal error: a pointer variable was found to be NULL, unexpectedly.

30004 SOMDERROR_IO

I/O error while accessing a file located in SOMDDIR.

30005 SOMDERROR_BadVersion

Internal error: incorrect version of an object reference data table.

30006 SOMDERROR_ParmSize

Internal error: a parameter of incorrect size was detected.

30007 SOMDERROR_HostName

Communications error: unable to retrieve local host name.

30008 SOMDERROR_HostAddress

Communications error: unable to retrieve local host address.

30009 SOMDERROR_SocketCreate

Communications error: unable to create socket.

30010 SOMDERROR_SocketBind

Communications error: unable to bind address to socket.

30011 SOMDERROR_SocketName

Communications error: unable to query socket information.

30012 SOMDERROR_SocketReceive

Communications error: unable to receive message from socket.

30013 SOMDERROR_SocketSend

Communications error: unable to send message to socket.

30014 SOMDERROR_SocketIoctl

Communications error: unable to set socket blocking state.

30015 SOMDERROR_SocketSelect

Communications error: unable to select on socket.

30016 SOMDERROR_PacketSequence

Communications error: unexpected message packet received.

30017 SOMDERROR_PacketTooBig

Communications error: packet too big for allocated message space.

30018 SOMDERROR_AddressNotFound

Uninitialized DSOM communications object.

30019 SOMDERROR_NoMessages

No messages available (and caller specified “no wait”).

30020 SOMDERROR_UnknownAddress

Invalid client or server address.

30021 SOMDERROR_RecvError

Communications error during receive.

30022 SOMDERROR_SendError

Communications error during send.

30023 SOMDERROR_CommTimeOut

Communications timeout.

A – 7A. Customer Support and Error Codes

30024 SOMDERROR_CannotConnect

Unable to initialize connection information.

30025 SOMDERROR_BadConnection

Invalid connection information detected.

30026 SOMDERROR_NoHostName

Unable to get host name.

30027 SOMDERROR_BadBinding

Invalid server location information in proxy object.

30028 SOMDERROR_BadMethodName

Invalid method name in request message.

30029 SOMDERROR_BadEnvironment

Invalid Environment value in request message.

30030 SOMDERROR_BadContext

Invalid Context object in request message.

30031 SOMDERROR_BadNVList

Invalid Named Value List (NVList).

30032 SOMDERROR_BadFlag

Bad flag in NVList item.

30033 SOMDERROR_BadLength

Bad length in NVList item.

30034 SOMDERROR_BadObjref

Invalid object reference.

30035 SOMDERROR_NullField

Unexpected null field in request message.

30036 SOMDERROR_UnknownReposId

Attempt to use Invalid Interface Repository ID.

30037 SOMDERROR_NVListAccess

Invalid NVList object in request message.

30038 SOMDERROR_NVIndexError

Attempt to use an out-of-range NVList index.

30039 SOMDERROR_SysTime

Error retrieving system time.

30040 SOMDERROR_SystemCallFailed

System call failed.

30041 SOMDERROR_CouldNotStartProcess

Unable to start a new process.

30042 SOMDERROR_NoServerClass

No SOMDServer (sub)class specified for server implementation.

30043 SOMDERROR_NoSOMDInit

Missing SOMD_Init call in program.

30044 SOMDERROR_SOMDDIRNotSet

SOMDDIR environment variable not set.

30045 SOMDERROR_NoImplDatabase

Could not open Implementation Repository database.

30046 SOMDERROR_ImplNotFound

Implementation not found in implementation repository.

30047 SOMDERROR_ClassNotFound

Class not found in implementation repository.

30048 SOMDERROR_ServerNotFound

Server not found in somdd’s active server table.

30049 SOMDERROR_ServerAlreadyExists

Server already exists in somdd’s active server table.

A – 8 SOMobjects Base Toolkit Users Guide

30050 SOMDERROR_ServerNotActive

Server is not active.

30051 SOMDERROR_CouldNotStartSOM

SOM initialization error.

30052 SOMDERROR_ObjectNotFound

Could not find desired object.

30053 SOMDERROR_NoParentClass

Unable to find / load parent class during proxy class creation.

30054 SOMDERROR_DispatchError

Unable to dispatch method.

30055 SOMDERROR_BadTypeCode

Invalid type code.

30056 SOMDERROR_BadDescriptor

Invalid method descriptor.

30057 SOMDERROR_BadResultType

Invalid method result type.

30058 SOMDERROR_KeyInUse

Internal object key is in use.

30059 SOMDERROR_KeyNotFound

Internal object key not found.

30060 SOMDERROR_CtxInvalidPropName

Illegal context property name.

30061 SOMDERROR_CtxNoPropFound

Could not find property name in context.

30062 SOMDERROR_CtxStartScopeNotFound

Could not find specified context start scope.

30063 SOMDERROR_CtxAccess

Error accessing context object.

30064 SOMDERROR_CouldNotStartThread

System error: Could not start thread.

30065 SOMDERROR_AccessDenied

System error: Access to a system resource (file, queue, shared memory, etc.) denied.

30066 SOMDERROR_BadParm

System error: invalid parameter supplied to a operating system call.

30067 SOMDERROR_Interrupt

System error: Interrupted system call.

30068 SOMDERROR_Locked

System error: Drive locked by another process.

30069 SOMDERROR_Pointer

System error: Invalid physical address.

30070 SOMDERROR_Boundary

OS/2 system error: ERROR_CROSSES_OBJECT_BOUNDARY.

30071 SOMDERROR_UnknownError

System error: Unknown error on operating system call.

30072 SOMDERROR_NoSpace

System error: No space left on device.

30073 SOMDERROR_DuplicateQueue

System error: Duplicate queue name.

30074 SOMDERROR_BadQueueName

System error: Invalid queue name.

30075 SOMDERROR_DuplicateSem

System error: Duplicate semaphore name used.

A – 9A. Customer Support and Error Codes

30076 SOMDERROR_BadSemName

System error: Invalid semaphore name.

30077 SOMDERROR_TooManyHandles

System error: Too many files open (no file handles left).

30078 SOMDERROR_BadAddrFamily

System error: Invalid address family.

30079 SOMDERROR_BadFormat

System error: Invalid format.

30080 SOMDERROR_BadDrive

System error: Invalid drive.

30081 SOMDERROR_SharingViolation

System error: Sharing violation.

30082 SOMDERROR_BadExeSignature

System error: Program file contains a DOS mode program or invalid program.

30083 SOMDERROR_BadExe

Executable file is invalid (linker errors occurred when program file was created).

30084 SOMDERROR_Busy

System error: Segment is busy.

30085 SOMDERROR_BadThread

System error: Invalid thread id.

30086 SOMDERROR_SOMDPORTNotDefined

SOMDPORT not defined.

30087 SOMDERROR_ResourceExists

System resource (file, queue, shared memory segment,. etc.) already exists.

30088 SOMDERROR_UserName

USER environment variable is not set.

30089 SOMDERROR_WrongRefType

Operation attempted on an object reference is incompatible with the reference type.

30090 SOMDERROR_MustOverride

This method has no default implementation and must be overridden.

30091 SOMDERROR_NoSocketsClass

Could not find/load Sockets class.

30092 SOMDERROR_EManRegData

Unable to register DSOM events with the Event Manager.

30093 SOMDERROR_NoRemoteComm

Remote communications is disabled (for Workstation DSOM).

A – 10 SOMobjects Base Toolkit Users Guide

Appendix B. SOM IDL Language Grammar

specification : [comment] definition+

definition : type_dcl ; [comment]
 | const_dcl ; [comment]
 | interface ; [comment]
 | module ; [comment]
 | pragma_stm

module : module identifier [comment]
 { [comment] definition+ }

interface : interface identifier
 | interface_dcl

interface_dcl : interface identifier [inheritance] [comment]
 { [comment] export* } [comment]

inheritance : : scoped_name {, scoped_name}*

export : type_dcl ; [comment]
 | const_dcl ; [comment]
 | attr_dcl ; [comment]
 | op_dcl ; [comment]
 | implementation_body ; [comment]
 | pragma_stm

scoped_name : identifier
 | :: identifer
 | scoped_name :: identifer

const_dcl : const const_type identifier = const_expr

const_type : integer_type
 | char_type
 | boolean_type
 | floating_pt_type
 | string_type
 | scoped_name

const_expr : or_expr

or_expr : xor_expr
 | or_expr | xor_expr

xor_expr : and_expr
 | xor_expr ^ and_expr

and_expr : shift_expr
 | and_expr & shift_expr

shift_expr : add_expr
 | shift_expr >> add_expr
 | shift_expr << add_expr

B – 2 SOMobjects Base Toolkit Users Guide

add_expr : mult_expr
 | add_expr + mult_expr
 | add_expr – mult_expr

mult_expr : unary_expr
 | mult_expr * unary_expr
 | mult_expr / unary_expr
 | mult_expr % unary_expr

unary_expr : unary_operator primary_expr
 | primary_expr

unary_operator : –
 | +
 | ~

primary_expr : scoped_name
 | literal
 | (const_expr)

literal : integer_literal
 | string_literal
 | character_literal
 | floating_pt_literal
 | boolean_literal

type_dcl : typedef type_declarator
 | constr_type_spec

type_declarator : type_spec declarator {, declarator}*

type_spec : simple_type_spec
 | constr_type_spec

simple_type_spec : base_type_spec
 | template_type_spec
 | scoped_name

base_type_spec : floating_pt_type
 | integer_type
 | char_type
 | boolean_type
 | octet_type
 | any_type
 | voidptr_type

template_type_spec : sequence_type
 | string_type

constr_type_spec : struct_type
 | union_type
 | enum_type

declarator : [stars] std_declarator

std_declarator : simple_declarator
 | complex_declarator

simple_declarator : identifier

complex_declarator : array_declarator

B – 3B. SOM IDL Language Grammar

array_declarator : simple_declarator fixed_array_size+

fixed_array_size : [const_expr]

floating_pt_type : float
 | double

integer_type : signed_int
 | unsigned_int

signed_int : long
 | short

unsigned_int : unsigned signed_int

char_type : char

boolean_type : boolean

octet_type : octet

any_type : any

voidptr_type : void stars

struct_type : (struct|exception) identifier
 | (struct|exception) [comment]
 { [comment] member* }

member : type_declarator ; [comment]

union_type : union identifier
 | union identifier switch
 (switch_type_spec) [comment]
 { [comment] case+ }

switch_type_spec : integer_type
 | char_type
 | boolean_type
 | enum_type
 | scoped_name

case : case_label+ element_spec ; [comment]

case_label : case const_expr : [comment]
 | default : [comment]

element_spec : type_spec declarator

enum_type : enum identifier { identifier
 {, identifier}* [comment] }

sequence_type : sequence < simple_type_spec , const_expr >
 | sequence < simple_type_spec >

string_type : string < const_expr >
 | string

attr_dcl : [readonly] attribute simple_type_spec
 declarator {, declarator}*

B – 4 SOMobjects Base Toolkit Users Guide

op_dcl : [oneway] op_type_spec [stars] identifier
 parameter_dcls [raises_expr] [context_expr]

op_type_spec : simple_type_spec
 | void

parameter_dcls : (param_dcl {, param_dcl}* [comment])
 | ()

param_dcl : param_attribute simple_type_spec declarator

param_attribute : in
 | out
 | inout

raises_expr : raises (scope_name+)

context_expr : context (context_string {, context_string}*)

implementation_body : implementation [comment]
 { [comment] implementation+ }

implementation : modifier_stm
 | pragma_stm
 | passthru
 | member

pragma_stm : #pragma modifier modifier_stm
 | #pragma somtemittypes on
 | #pragma somtemittypes off

modifier_stm : smidentifier : [modifier {, modifier}*] ; [comment]
 | modifier ; [comment]

modifier : smidentifier
 | smidentifier = modifier_value

modifier_value : smidentifier
 | string_literal
 | integer_literal
 | keyword

passthru : passthru identifier = string_literal+ ; [comment]

smidentifier : identifer

 | _identifier

stars | *+

Appendix C. Implementing Sockets Subclasses

Contents

Sockets IDL interface C – 1.

IDL for a Sockets subclass C – 5.

Implementation considerations C – 6.

Example code C – 7.

ii SOMobjects Base Toolkit Users Guide

Appendix C. Implementing Sockets Subclasses

Distributed SOM (DSOM) requires basic message services for inter-process communications.
The Event Management Framework must be integrated with the same communication services
in order to handle communications events.

To maximize their portability to a wide variety of local area network transport protocols, the
DSOM and Event Management Frameworks have been written to use a common communica-
tions interface, which is implemented by one or more SOM class libraries using available local
protocols.

The common communications interface is based on the “sockets” interface used with TCP/IP,
since its interface and semantics are fairly widespread and well understood. The IDL interface is
named Sockets. There is no implementation associated with the Sockets interface by default;
specific protocol implementations are supplied by subclass implementations.

Note: The Sockets classes supplied with the SOMobjects Developer Toolkit and run-time
packages are only intended to support the DSOM and Event Management
Frameworks. These class implementations are not intended for general application
usage.

The SOMobjects Workstation run-time package on AIX or OS/2 includes the TCPIPSockets
class for TCP/IP. The SOMobjects Workgroup run-time package on AIX includes the
TCPIPSockets class for TCP/IP, and the IPXSockets class for Netware IPX/SPX. On OS/2, the
Workgroup run-time package includes the class TCPIPSockets for TCP/IP, the class
NBSockets for NetBIOS, and the class IPXSockets for Netware IPX/SPX.

Application developers may need to develop their own Sockets subclass if the desired trans-
port protocol or product version is not one of those supported by the SOMobjects run-time
packages. This appendix explains how to approach the implementation of a Sockets subclass,
if necessary. Warning: this may be a non-trivial exercise!

Sockets IDL interface

The base Sockets interface is expressed in IDL in the file somssock.idl, listed below. There is
a one-to-one mapping between TCP/IP socket APIs and the methods defined in the Sockets
interface.

Please note the following:

• The semantics of each of the Sockets methods must be that of the corresponding TCP/IP

call. Currently, only Internet address family (AF_INET) addresses are used by the frame-
works.

(The TCP/IP sockets API is not documented as part of the SOMobjects Developer Toolkit.
The implementor is referred to the programming references for IBM TCP/IP for AIX or OS/2,
or to similar references that describe the sockets interface for TCP/IP.)

• Data types, constants, and macros which are part of the Sockets interface are defined in a
C include file, soms.h. This file is supplied with the SOMobjects Toolkit, and is not shown
in this manual.

• The Sockets interface is expressed in terms of a 32-bit implementation.

• Some of the method parameters and return values are expressed using pointer types, for
example:

hostent *somsGethostent ();

C – 2 SOMobjects Base Toolkit Users Guide

This has been done to map TCP/IP socket interfaces as directly as possible to their IDL

equivalent. (Use of strict CORBA IDL was not a primary goal for the Sockets interface,
since it is only used internally by the frameworks.)

• The Sockets class and its subclasses are single instance classes.

Following is a listing of the file somssock.idl. Each socket call is briefly described with a
comment.

// 96F8647, 96F8648 (C) Copyright IBM Corp. 1992, 1993
// All Rights Reserved
// Licensed Materials – Property of IBM

#ifndef somssock_idl
#define somssock_idl

#include <somobj.idl>
#include <snglicls.idl>

interface Sockets : SOMObject
{

//# The following typedefs are fully defined in <soms.h>.
typedef SOMFOREIGN sockaddr;
#pragma modifier sockaddr : impctx=”C”, struct;
typedef SOMFOREIGN iovec;
#pragma modifier iovec : impctx=”C”, struct;
typedef SOMFOREIGN msghdr;
#pragma modifier msghdr : impctx=”C”, struct;
typedef SOMFOREIGN fd_set;
#pragma modifier fd_set : impctx=”C”, struct;
typedef SOMFOREIGN timeval;
#pragma modifier timeval : impctx=”C”, struct;
typedef SOMFOREIGN hostent;
#pragma modifier hostent : impctx=”C”, struct;
typedef SOMFOREIGN servent;
#pragma modifier servent : impctx=”C”, struct;
typedef SOMFOREIGN in_addr;
#pragma modifier in_addr : impctx=”C”, struct;

long somsAccept (in long s, out sockaddr name, out long namelen);
// Accept a connection request from a client.

long somsBind (in long s, inout sockaddr name, in long namelen);
// Binds a unique local name to the socket with descriptor s.

long somsConnect (in long s, inout sockaddr name,
 in long namelen);
// For streams sockets, attempts to establish a connection
// between two sockets. For datagram sockets, specifies the
// socket’s peer.

hostent *somsGethostbyaddr (in char *addr, in long addrlen,
 in long domain);
// Returns a hostent structure for the host address specified on
// the call.

hostent *somsGethostbyname (in string name);
// Returns a hostent structure for the host name specified on
// the call.

hostent *somsGethostent ();
// Returns a pointer to the next entry in the hosts file.

C – 3C. Implementing Sockets Subclasses

unsigned long somsGethostid ();
// Returns the unique identifier for the current host.

long somsGethostname (in string name, in long namelength);
// Retrieves the standard host name of the local host.

long somsGetpeername (in long s, out sockaddr name,
 out long namelen);
// Gets the name of the peer connected to socket s.

servent *somsGetservbyname (in string name, in string protocol);
// Retrieves an entry from the /etc/services file using the
// service name as a search key.

long somsGetsockname (in long s, out sockaddr name,
 out long namelen);
// Stores the current name for the socket specified by the s
// parameter into the structure pointed to by the name
// parameter.

long somsGetsockopt (in long s, in long level, in long optname,
 in char *optval, out long option);
// Returns the values of socket options at various protocol
// levels.

unsigned long somsHtonl (in unsigned long a);
// Translates an unsigned long integer from host–byte order to
// network–byte order.

unsigned short somsHtons (in unsigned short a);
// Translates an unsigned short integer from host–byte order to
// network–byte order.

long somsIoctl (in long s, in long cmd, in char *data,
 in long length);
// Controls the operating characteristics of sockets.

unsigned long somsInet_addr (in string cp);
// Interprets character strings representing numbers expressed
// in standard ’.’ notation and returns numbers suitable for use
// as internet addresses.

unsigned long somsInet_lnaof (in in_addr addr);
// Breaks apart the internet address and returns the local
// network address portion.

in_addr somsInet_makeaddr (in unsigned long net,
 in unsigned long lna);
// Takes a network number and a local network address and
// constructs an internet address.

unsigned long somsInet_netof (in in_addr addr);
// Returns the network number portion of the given internet
// address.

unsigned long somsInet_network (in string cp);
// Interprets character strings representing numbers expressed
// in standard ’.’ notation and returns numbers suitable for use
// as network numbers.

string somsInet_ntoa (in in_addr addr);
// Returns a pointer to a string expressed in the dotted–decimal
// notation.

C – 4 SOMobjects Base Toolkit Users Guide

long somsListen (in long s, in long backlog);
// Creates a connection request queue of length backlog to queue
// incoming connection requests, and then waits for incoming
// connection requests.

unsigned long somsNtohl (in unsigned long a);
// Translates an unsigned long integer from network–byte order
// to host–byte order.

unsigned short somsNtohs (in unsigned short a);
// Translates an unsigned short integer from network–byte order
// to host–byte order.

long somsReadv (in long s, inout iovec iov, in long iovcnt);
// Reads data on socket s and stores it in a set of buffers
// described by iov.

long somsRecv (in long s, in char *buf, in long len,
 in long flags);

// Receives data on streams socket s and stores it in buf.

long somsRecvfrom (in long s, in char *buf, in long len,
in long flags, out sockaddr name, out long namelen);

// Receives data on datagram socket s and stores it in buf.

long somsRecvmsg (in long s, inout msghdr msg, in long flags);
// Receives messages on a socket with descriptor s and stores
// them in an array of message headers.

long somsSelect (in long nfds, inout fd_set readfds,
 inout fd_set writefds, inout fd_set exceptfds,
 inout timeval timeout);
// Monitors activity on a set of different sockets until a
// timeout expires, to see if any sockets are ready for reading
// or writing, or if an exceptional condition is pending.

long somsSend (in long s, in char *msg, in long len,
 in long flags);

// Sends msg on streams socket s.

long somsSendmsg (in long s, inout msghdr msg, in long flags);
// Sends messages passed in an array of message headers on a
// socket with descriptor s.

long somsSendto (in long s, inout char msg, in long len,
 in long flags, inout sockaddr to, in long tolen);
// Sends msg on datagram socket s.

long somsSetsockopt (in long s, in long level, in long optname,
 in char *optval, in long optlen);
// Sets options associated with a socket.

long somsShutdown (in long s, in long how);
// Shuts down all or part of a full–duplex connection.

long somsSocket (in long domain, in long type,
 in long protocol);

// Creates an endpoint for communication and returns a socket
// descriptor representing the endpoint.

long somsSoclose (in long s);
// Shuts down socket s and frees resources allocated to the
// socket.

C – 5C. Implementing Sockets Subclasses

long somsWritev (in long s, inout iovec iov, in long iovcnt);
// Writes data on socket s. The data is gathered from the
// buffers described by iov.

attribute long serrno;
// Used to pass error numbers.

#ifdef __SOMIDL__
 implementation
 {

releaseorder:
somsAccept, somsBind, somsConnect, somsGethostbyaddr,
somsGethostbyname, somsGethostent, somsGethostid,
somsGethostname, somsGetpeername, somsGetsockname,
somsGetsockopt, somsHtonl, somsHtons, somsIoctl,
somsInet_addr, somsInet_lnaof, somsInet_makeaddr,
somsInet_netof, somsInet_network, somsInet_ntoa,
somsListen, somsNtohl, somsNtohs, somsReadv,
somsRecv, somsRecvfrom, somsRecvmsg, somsSelect,
somsSend, somsSendmsg, somsSendto, somsSetsockopt,
somsShutdown, somsSocket, somsSoclose, somsWritev,
_set_serrno, _get_serrno, somsGetservbyname;

//# Class modifiers
callstyle=idl;
metaclass = SOMMSingleInstance;
majorversion=1; minorversion=1;
dll=”soms.dll”;

 };
#endif /* __SOMIDL__ */
};
#endif /* somssock_idl */

IDL for a Sockets subclass

Sockets subclasses inherit their entire interface from Sockets. All methods are overridden.

For example, here is a listing of the TCPIPSockets IDL description.

// 96F8647, 96F8648 (C) Copyright IBM Corp. 1992, 1993
// All Rights Reserved
// Licensed Materials – Property of IBM

#ifndef tcpsock_idl
#define tcpsock_idl

#include <somssock.idl>
#include <snglicls.idl>

interface TCPIPSockets : Sockets
{
#ifdef __SOMIDL__
 implementation
 {

//# Class modifiers
callstyle=idl;
majorversion=1; minorversion=1;
dllname=”somst.dll”;
metaclass=SOMMSingleInstance;

C – 6 SOMobjects Base Toolkit Users Guide

//# Method modifiers
somsAccept: override;
somsBind: override;
somsConnect: override;
somsGethostbyaddr: override;
somsGethostbyname: override;
somsGethostent: override;
somsGethostid: override;
somsGethostname: override;
somsGetpeername: override;
somsGetservbyname: override;
somsGetsockname: override;
somsGetsockopt: override;
somsHtonl: override;
somsHtons: override;
somsIoctl: override;
somsInet_addr: override;
somsInet_lnaof: override;
somsInet_makeaddr: override;
somsInet_netof: override;
somsInet_network: override;
somsInet_ntoa: override;
somsListen: override;
somsNtohl: override;
somsNtohs: override;
somsReadv: override;
somsRecv: override;
somsRecvfrom: override;
somsRecvmsg: override;
somsSelect: override;
somsSend: override;
somsSendmsg: override;
somsSendto: override;
somsSetsockopt: override;
somsShutdown: override;
somsSocket: override;
somsSoclose: override;
somsWritev: override;
_set_serrno: override;
_get_serrno: override;

 };
#endif /* __SOMIDL__ */
};

#endif /* tcpsock_idl */

Implementation considerations

• Only the AF_INET address family must be supported. That is, the DSOM and Event
Manager frameworks both use Internet addresses and port numbers to refer to specific
sockets.

• On OS/2, the SOMobjects run-time libraries were built using the C Set/2 32-bit compiler. If
the underlying subclass implementation uses a 16-bit subroutine library, conversion of the
method call arguments may be required. (This mapping of arguments is often referred to
as “thunking.”)

C – 7C. Implementing Sockets Subclasses

• Sockets subclasses to be used in multi-threaded environments should be made thread-
safe. That is, it is possible that concurrent threads may make calls on the (single) Sockets
object, so data structures must be protected within critical regions, as appropriate.

• Valid values for the serrno attribute are defined in the file soms.h. The subclass imple-
mentation should map local error numbers into the appropriate corresponding Sockets
error numbers.

Example code

The following code fragment shows an example of the implementation of the somsBind
method of the TCPIPSockets subclass, for both AIX and OS/2. The sample illustrates that, for
TCP/IP, the implementation is basically a one-to-one mapping of Sockets methods onto TCP/IP

calls. For other transport protocols, the mapping from the socket abstraction to the protocol’s
API may be more difficult.

For AIX, the mapping from Sockets method to TCP/IP call is trivial.

SOM_Scope long SOMLINK somsBind(TCPIPSockets somSelf,
 Environment *ev,
 long s, Sockets_sockaddr* name,
 long namelen)
{
 long rc;

 TCPIPSocketsMethodDebug(”TCPIPSockets”,”somsBind”);

 rc = (long) bind((int)s, name, (int)namelen);

 if (rc == –1)
 _ _set_serrno(somSelf, ev, errno);

 return rc;
}

On OS/2, however, the TCP/IP Release 1.2.1 library is a 16-bit library. Consequently, many of
the method calls require conversion (“thunking”) of 32-bit parameters into 16-bit parameters,
before the actual TCP/IP calls can be invoked. For example, the function prototype for the
somsBind method is defined as:

SOM_Scope long SOMLINK somsBind(TCPIPSockets somSelf,
 Environment *ev,
 long s, Sockets_sockaddr* name,
 long namelen);

whereas the file socket.h on OS/2 declares the bind function with the following prototype:

short _Far16 _Cdecl bind(short /*s*/, void * _Seg16 /*name*/,
 short /*len*/);

In this case, the pointer to the “name” structure, passed as a 32-bit address, cannot be used
directly in the bind call: a 16-bit address must be passed instead. This can be accomplished by
dereferencing the 32-bit pointer provided by the “name” parameter in the somsBind call,
copying the caller’s Sockets_sockaddr structure into a local structure (“name16”), and then
passing the address of the local structure (“&name16”) as a 16-bit address in the bind call.

C – 8 SOMobjects Base Toolkit Users Guide

SOM_Scope long SOMLINK somsBind(TCPIPSockets somSelf,
 Environment *ev,
 long s, Sockets_sockaddr* name,
 long namelen)
{
 long rc;
 Sockets_sockaddr name16;

 TCPIPSocketsMethodDebug(”TCPIPSockets”,”somsBind”);

 /* copy user’s parameter into a local structure */
 memcpy ((char *)&name16, (char *)((sockaddr32 *)name), namelen);
 rc = (long) bind((short)s, (void *)&name16, (short)namelen);

 if (rc == –1)
 _ _set_serrno(somSelf, ev, tcperrno());

 return rc;
}

Glos – 1Glossary

Glossary

Note: In the following definitions, words shown in italics are terms for which separate glossary
entries are also defined.

abstract class
A class that is not designed to be instantiated, but serves as a base class for
the definition of subclasses. Regardless of whether an abstract class inherits
instance data and methods from parent classes, it will always introduce meth-
ods that must be overridden in a subclass, in order to produce a class whose
objects are semantically valid.

affinity group An array of class objects that were all registered with the SOMClassMgr
object during the dynamic loading of a class. Any class is a member of at most
one affinity group.

ancestor class
A class from which another class inherits instance methods, attributes, and
instance variables, either directly or indirectly. A direct descendant of an an-
cestor class is called a child class, derived class, or subclass. A direct ancestor
of a class is called a parent class, base class, or superclass.

aggregate type
A user-defined data type that combines basic types (such as, char, short, float,
and so on) into a more complex type (such as structs, arrays, strings, se-
quences, unions, or enums).

apply stub A procedure corresponding to a particular method that accepts as arguments:
the object on which the method is to be invoked, a pointer to a location in
memory where the method’s result should be stored, a pointer to the method’s
procedure, and the method’s arguments in the form of a va_list. The apply stub
extracts the arguments from the va_list, invokes the method with its argu-
ments, and stores its result in the specified location. Apply stubs are registered
with class objects when instance methods are defined, and are invoked using
the somApply function. Typically, implementations that override somDispatch
call somApply to invoke a method on a va_list of arguments.

attribute A specialized syntax for declaring “set” and “get” methods. Method names
corresponding to attributes always begin with “_set_” or “_get_”. An attribute
name is declared in the body of the interface statement for a class. Method
procedures for get/set methods are automatically defined by the SOM Compil-
er unless an attribute is declared as “noget/noset”. Likewise, a corresponding
instance variable is automatically defined unless an attribute is declared as
“nodata”. IDL also supports “readonly” attributes, which specify only a “get”
method. (Contrast an attribute with an instance variable.)

auxiliary class data structure
A structure provided by the SOM API to support efficient static access to
class-specific information used in dealing with SOM objects. The structure’s
name is <className>CClassData. Its first component (parentMtab) is a list of
parent-class method tables (used to support efficient parent method calls). Its
second component (instanceDataToken) is the instance token for the class
(generally used to locate the instance data introduced by method procedures
that implement methods defined by the class).

Glos – 2 SOMobjects Base Toolkit Users Guide

base class See parent class.

behavior (of an object)
The methods that an object responds to. These methods are those either
introduced or inherited by the class of the object. See also state.

bindings Language-specific macros and procedures that make implementing and using
SOM classes more convenient. These bindings offer a convenient interface to
SOM that is tailored to a particular programming language. The SOM Compiler
generates binding files for C and C++. These binding files include an implemen-
tation template for the class and two header files, one to be included in the
class’s implementation file and the other in client programs.

BOA (basic object adapter) class
A CORBA interface (represented as an abstract class in DSOM), which defines
generic object-adapter (OA) methods that a server can use to register itself
and its objects with an ORB (object request broker). See also SOMOA (SOM
object adapter) class.

callback A user-provided procedure or method to the Event Management Framework
that gets invoked when a registered event occurs. (See also event).

casted dispatching
A form of method dispatching that uses casted method resolution; that is, it
uses a designated ancestor class of the actual target object’s class to deter-
mine what procedure to call to execute a specified method.

casted method resolution
A method resolution technique that uses a method procedure from the
method table of an ancestor of the class of an object (rather than using a
procedure from the method table of the object’s own class).

child class A class that inherits instance methods, attributes, and instance variables
directly from another class, called the parent class, base class, or superclass,
or indirectly from an ancestor class. A child class may also be called a derived
class or subclass.

class A way of categorizing objects based on their behavior (the methods they
support) and shape (memory layout). A class is a definition of a generic object.
In SOM, a class is also a special kind of object that can manufacture other
objects that all have a common shape and exhibit similar behavior. The specifi-
cation of what comprises the shape and behavior of a set of objects is referred
to as the “definition” of a class. New classes are defined in terms of existing
classes through a technique known as inheritance. See also class object.

class variable Instance data of a class object. All instance data of an object is defined
(through either introduction or inheritance) by the object’s class. Thus, class
variables are defined by metaclasses.

class data structure
A structure provided by the SOM API to support efficient static access to
class-specific information used in dealing with SOM objects. The structure’s
name is <className>ClassData. Its first component (classObject) is a pointer
to the corresponding class object. The remaining components (named after
the instance methods and instance variables) are method tokens or data
tokens, in order as specified by the class’s implementation. Data tokens are
only used to support data (public and private) introduced by classes declared
using OIDL; IDL attributes are supported with method tokens.

Glos – 3Glossary

class manager
An object that acts as a run-time registry for all SOM class objects that exist
within the current process and which assists in the dynamic loading and
unloading of class libraries. A class implementor can define a customized class
manager by subclassing SOMClassMgr class to replace the SOM-supplied
SOMClassMgrObject. This is done to augment the functionality of the default
class-management registry (for example, to coordinate the automatic quiesc-
ing and unloading of classes).

class method (Also known as factory method or constructor.) A class method is a method
that a class object responds to (as opposed to an instance method). A class
method that class <X> responds to is provided by the metaclass of class <X>.
Class methods are executed without requiring any instances of class <X> to
exist, and are frequently used to create instances of the class.

class object The run-time object representing a SOM class. In SOM, a class object can
perform the same behavior common to all objects, inherited from SOMObject.

client code (Or client program or client.) An application program, written in the program-
mer’s preferred language, which invokes methods on objects that are
instances of SOM classes. In DSOM, this could be a program that invokes a
method on a remote object.

constructor See class method.

context expression
An optional expression in a method’s IDL declaration, specifying identifiers
whose value (if any) can be used during SOM’s method resolution process
and/or by the target object as it executes the method procedure. If a context
expression is specified, then a related Context parameter is required when the
method is invoked. (This Context parameter is an implicit parameter in the IDL
specification of the method, but it is an explicit parameter of the method’s
procedure.) No SOM-supplied methods require context parameters.

CORBA The Common Object Request Broker Architecture established by the Object
Management Group. IBM’s Interface Definition Language used to describe
the interface for SOM classes is fully compliant with CORBA standards.

data token A value that identifies a specific instance variable within an object whose class
inherits the instance variable (as a result of being derived, directly or indirectly,
from the class that introduces the instance variable). An object and a data
token are passed to the SOM run-time procedure, somDataResolve, which
returns is a pointer to the specific instance variable corresponding to the data
token. (See also instance token.)

derived class See subclass and subclassing.

derived metaclass
(Or SOM-derived metaclass.) A metaclass that SOM creates automatically
(often even when the class implementor specifies an explicit metaclass) as
needed to ensure that, for any code that executes without method-resolution
error on an instance of a given class, the code will similarly execute without
method-resolution error on instances of any subclass of the given class.
SOM’s ability to derive such metaclasses is a fundamental necessity in order to
ensure binary compatibility for client programs despite any subsequent
changes in class implementations.

descriptor (Or method descriptor.) An ID representing the identifier of a method definition
or an attribute definition in the Interface Repository. The IR definition contains
information about the method’s return type and the type of its arguments.

Glos – 4 SOMobjects Base Toolkit Users Guide

directive A message (a pre-defined character constant) received by a replica from the
Replication Framework. Indicates a potential failure situation.

dirty object A persistent object that has been modified since it was last written to persistent
storage.

dispatch-function resolution
Dispatch-function resolution is the slowest, but most flexible, of the three
method-resolution techniques SOM offers. Dispatch functions permit method
resolution to be based on arbitrary rules associated with an object’s class.
Thus, a class implementor has complete freedom in determining how methods
invoked on its instances are resolved. See also dispatch method and dynamic
dispatching.

dispatch method
A method (such as somDispatch or somClassDispatch) that is invoked (and
passed an argument list and the ID of another method) in order to determine
the appropriate method procedure to execute. The use of dispatch methods
facilitates dispatch-function resolution in SOM applications and enables meth-
od invocation on remote objects in DSOM applications. See also dynamic
dispatching.

dynamic dispatching
Method dispatching using dispatch-function resolution; the use of dynamic
method resolution at run time. See also dispatch-function resolution and
dynamic method.

Dynamic Invocation Interface (DII)
The CORBA-specified interface, implemented in DSOM, that is used to dynam-
ically build requests on remote objects. Note that DSOM applications can also
use the somDispatch method for dynamic method calls when the object is
remote. See also dispatch method.

dynamic method
A method that is not declared in the IDL interface statement for a class of
objects, but is added to the interface at run time, after which instances of the
class (or of its subclasses) will respond to the registered dynamic method.
Because dynamic methods are not declared, usage bindings for SOM classes
cannot support their use; thus, offset method resolution is not available.
Instead, name-lookup or dispatch-function method resolution must be used to
invoke dynamic methods. (There are currently no known uses of dynamic
methods by any SOM applications.) See also method and static method.

encapsulation
An object-oriented programming feature whereby the implementation details
of a class are hidden from client programs, which are only required to know the
interface of a class (the signatures of its methods and the names of its
attributes) in order to use the class’s methods and attributes.

encoder/decoder
In the Persistence Framework, a class that knows how to read/write the
persistent object format of a persistent object. Every persistent object is asso-
ciated with an Encoder/Decoder, and an encoder/decoder object is created
for each attribute and instance variable. An Encoder/Decoder is supplied by
the Persistence Framework by default, or an application can define its own.

entry class In the Emitter Framework, a class that represents some syntactic unit of an
interface definition in the IDL source file.

Glos – 5Glossary

Environment parameter
A CORBA-required parameter in all method procedures, it represents a
memory location where exception information can be returned by the object of
a method invocation. [Certain methods are exempt (when the class contains a
modifier of callstyle=oidl), to maintain upward compatibility for client programs
written using an earlier release.]

emitter Generically, a program that takes the output from one system and converts the
information into a different form. Using the Emitter Framework, selected output
from the SOM Compiler (describing each syntactic unit in an IDL source file) is
transformed and formatted according to a user-defined template. Example
emitter output, besides the implementation template and language bindings,
might include reference documentation, class browser descriptions, or “pretty”
printouts.

event The occurrence of a condition, or the beginning or ending of an activity that is of
interest to an application. Examples are elapse of a time interval, sending or
receiving of a message, and opening or closing a file. (See also event manager
and callback.)

event manager (EMan)
The chief component of the Event Management Framework that registers
interest in various events from calling modules and informs them through
callbacks when those events occur.

factory method See class method.

ID See somId.

IDL source file
A user-written .idl file, expressed using the syntax of the Interface Definition
Language (IDL), which describes the interface for a particular class (or
classes, for a module). The IDL source file is processed by the SOM Compiler
to generate the binding files specific to the programming languages of the
class implementor and the client application. (This file may also be called the
“IDL file,” the “source file,” or the “interface definition file.”)

implementation
(Or object implementation.) The specification of what instance variables
implement an object’s state and what procedures implement its methods (or
behaviors). In DSOM, a remote object’s implementation is also characterized
by its server implementation (a program).

Implementation Repository
A database used by DSOM to store the implementation definitions of DSOM
servers.

implementation statement
An optional declaration within the body of the interface definition of a class in a
SOM IDL source file, specifying information about how the class will be imple-
mented (such as, version numbers for the class, overriding of inherited meth-
ods, or type of method resolution to be supported by particular methods). This
statement is a SOM-unique statement; thus, it must be preceded by the term
“#ifdef __SOMIDL__” and followed by “#endif”. See also interface declaration.

implementation template
A template file containing stub procedures for methods that a class introduces
or overrides. The implementation template is one of the binding files generated
by the SOM Compiler when it processes the IDL source file containing class
interface declarations. The class implementor then customizes the implemen-
tation, by adding language-specific code to the method procedures.

Glos – 6 SOMobjects Base Toolkit Users Guide

implicit method parameter
A method parameter that is not included in the IDL interface specification of a
method, but which is a parameter of the method’s procedure and which is
required when the method is invoked from a client program. Implicit parame-
ters include the required Environment parameter indicating where exception
information can be returned, as well as a Context parameter, if needed.

incremental update
A revision to an implementation template file that results from reprocessing of
the IDL source file by the SOM Compiler. The updated implementation file will
contain new stub procedures, added comments, and revised method proto-
types reflecting changes made to the method definitions in the IDL specifica-
tion. Importantly, these updates do not disturb existing code that the class
implementor has defined for the prior method procedures.

inheritance The technique of defining one class (called a subclass, derived class, or child
class) as incremental differences from another class (called the parent class,
base class, superclass, or ancestor class). From its parents, the subclass
inherits variables and methods for its instances. The subclass can also pro-
vide additional instance variables and methods. Furthermore, the subclass
can provide new procedures for implementing inherited methods. The sub-
class is then said to override the parent class’s methods. An overriding method
procedure can elect to call the parent class’s method procedure. (Such a call is
known as a parent method call.)

inheritance hierarchy
The sequential relationship from a root class to a subclass, through which the
subclass inherits instance methods, attributes, and instance variables from all
of its ancestors, either directly or indirectly. The root class of all SOM classes is
SOMObject.

instance (Or object instance or just object.) A specific object, as distinguished from a
class of objects. See also object.

instance method
A method valid for an object instance (as opposed to a class method, which is
valid for a class object). An instance method that an object responds to is
defined by its class or inherited from an ancestor class.

instance token
A data token that identifies the first instance variable among those introduced
by a given class. The somGetInstanceToken method invoked on a class object
returns that class’s instance token.

instance variables
(Or, instance data.) Variables declared for use within the method procedures
of a class. An instance variable is declared within the body of the implementa-
tion statement in a SOM IDL source file. An instance variable is “private” to the
class and should not be accessed by a client program. (Contrast an instance
variable with an attribute.)

interface The information that a client must know to use a class — namely, the names of
its attributes and the signatures of its methods. The interface is described in a
formal language (the Interface Definition Language, IDL) that is independent
of the programming language used to implement the class’s methods.

Glos – 7Glossary

interface declaration
(Or interface statement.) The statement in the IDL source file that specifies
the name of a new class and the names of its parent class(es). The “body” of
the interface declaration defines the signature of each new method and any
attribute(s) associated with the class. In SOM IDL, the body may also include
an implementation statement (where instance variables are declared or a
modifier is specified, for example to override a method).

Interface Definition Language (IDL)
The formal language (independent of any programming language) by which
the interface for a class of objects is defined in a .idl file, which the
SOM Compiler then interprets to create an implementation template file and
binding files. SOM’s Interface Definition Language is fully compliant with stan-
dards established by the Object Management Group’s Common Object Re-
quest Broker Architecture (CORBA).

Interface Repository (IR)
The database that SOM optionally creates to provide persistent storage of
objects representing the major elements of interface definitions. Creation and
maintenance of the IR is based on information supplied in the IDL source file.
The SOM IR Framework supports all interfaces described in the CORBA
standard.

Interface Repository Framework
A set of classes that provide methods whereby executing programs can
access the persistent objects of the Interface Repository to discover every-
thing known about the programming interfaces of SOM classes.

macro An alias for executing a sequence of hidden instructions; in SOM, typically the
means of executing a command known within a binding file created by the
SOM Compiler.

metaclass A class whose instances are classes. In SOM, any class descended from
SOMClass is a metaclass. The methods a class inherits from its metaclass
are sometimes called class methods (in Smalltalk) or factory methods (in
Objective-C) or constructors. See also class method.

metaclass incompatibility
A situation where a subclass does not include all of the class variables or
respond to all of the class methods of its ancestor classes. This situation can
easily arise in OOP systems that allow programmers to explicitly specify
metaclasses, but is not allowed to occur in SOM. Instead, SOM automatically
prevents this by creating and using derived metaclasses whenever necessary.

method A combination of a procedure and a name, such that many different proce-
dures can be associated with the same name. In object-oriented programming,
invoking a method on an object causes the object to execute a specific method
procedure. The process of determining which method procedure to execute
when a method is invoked on an object is called method resolution. (The
CORBA standard uses the term “operation” for method invocation). SOM sup-
ports two different kinds of methods: static methods and dynamic methods.
See also static method and dynamic method.

method descriptor See descriptor.

method ID A number representing a zero-terminated string by which SOM uniquely repre-
sents a method name. See also somId.

Glos – 8 SOMobjects Base Toolkit Users Guide

method procedure
A function or procedure, written in an arbitrary programming language, that
implements a method of a class. A method procedure is defined by the class
implementor within the implementation template file generated by the SOM
Compiler.

method prototype
A method declaration that includes the types of the arguments. Based on
method definitions in an IDL source file, the SOM Compiler generates method
prototypes in the implementation template. A class implementor uses the
method prototype as a basis for writing the corresponding method procedure
code. The method prototype also shows all arguments and their types that are
required to invoke the method from a client program.

method resolution
The process of selecting a particular method procedure, given a method name
and an object instance. The process results in selecting the particular function/
procedure that implements the abstract method in a way appropriate for the
designated object. SOM supports a variety of method-resolution mechanisms,
including offset method resolution, name-lookup resolution, and dispatch-
function resolution.

method table A table of pointers to the method procedures that implement the methods that
an object supports. See also method token.

method token A value that identifies a specific method introduced by a class. A method token
is used during method resolution to locate the method procedure that imple-
ments the identified method. The two basic method-resolution procedures are
somResolve (which takes as arguments an object and a method token, and
returns a pointer to a procedure that implements the identified method on the
given object) and somClassResolve (which takes as arguments a class and a
method token, and returns a pointer to a procedure that implements the identi-
fied method on an instance of the given class).

modifier Any of a set of statements that control how a class, an attribute, or a method
will be implemented. Modifiers can be defined in the implementation statement
of a SOM IDL source file. The implementation statement is a SOM-unique
extension of the CORBA specification. [User-defined modifiers can also be
specified for use by user-written emitters or to store information in the Interface
Repository, which can then be accessed via methods provided by the Interface
Repository Framework.]

module The organizational structure required within an IDL source file that contains
interface declarations for two (or more) classes that are not a class–metaclass
pair. Such interfaces must be grouped within a module declaration.

multiple inheritance
The situation in which a class is derived from (and inherits interface and
implementation from) multiple parent classes.

name-lookup method resolution
Similar to the method resolution techniques employed by Objective-C and
Smalltalk. It is slower than offset resolution (roughly two to three times the cost
of an ordinary procedure call). Name-lookup resolution, unlike offset resolu-
tion, can be used when the name of the method to be invoked is not known until
run time, or the method is added to the class interface at run time, or the name
of the class introducing the method is not known until run time.

naming scope See scope.

Glos – 9Glossary

object (Or object instance or just instance.) An entity that has state (its data values)
and behavior (its methods). An object is one of the elements of data and
function that programs create, manipulate, pass as arguments, and so forth.
An object is a way to encapsulate state and behavior. Encapsulation permits
many aspects of the implementation of an object to change without affecting
client programs that depend on the object’s behavior. In SOM, objects are
created by other objects called classes.

object adapter (OA)
A CORBA term denoting the primary interface a server implementation uses
to access ORB functions; in particular, it defines the mechanisms that a server
uses to interact with DSOM, and vice versa. This includes server activation/
deactivation, dispatching of methods, and authentication of the principal
making a call. The basic object adapter described by CORBA is defined by the
BOA (basic object adapter) abstract class; DSOM’s primary object adapter
implementation is provided by the SOMOA (SOM Object Adapter) class.

object definition See class.

object implementation See implementation.

object instance See instance and object.

object reference
A CORBA term denoting the information needed to reliably identify a particular
object. This concept is implemented in DSOM with a proxy object in a client
process, or a SOMDObject in a server process. See also proxy object and
SOMDObject.

object request broker (ORB) See ORB.

offset method resolution
The default mechanism for performing method resolution in SOM, because it
is the fastest (nearly as fast as an ordinary procedure call). It is roughly
equivalent to the C++ “virtual function” concept. Using offset method resolution
requires that the name of the method to be invoked must be known at compile
time, the name of the class that introduces the method must be known at
compile time (although not necessarily by the programmer), and the method to
be invoked must be a static method.

OIDL The original language used for declaring SOM classes. The acronym stands
for Object Interface Definition Language. OIDL is still supported by SOM
release 2, but it does not include the ability to specify multiple inheritance
classes.

one-copy serializable
The consistency property of the Replication Framework which states that the
concurrent execution of methods on a replicated object is equivalent to the
serial execution of those same methods on a nonreplicated object.

OOP An acronym for “object-oriented programming.”

operation See method.

operation logging
In the Replication Framework, a technique for maintaining consistency among
replicas of a replicated object, whereby the execution of a method that up-
dates the object is repeated at the site of each replica.

Glos – 10 SOMobjects Base Toolkit Users Guide

ORB (object request broker)
A CORBA term designating the means by which objects transparently make
requests (that is, invoke methods) and receive responses from objects, wheth-
er they are local or remote. With SOMobjects Developer Toolkit and Runtimes,
this functionality is implemented in the DSOM Framework. Thus, the DSOM
(Distributed SOM) system is an ORB. See also BOA (basic object adapter)
class and SOMOA (SOM object adapter) class.

override (Or overriding method.) The technique by which a class replaces (redefines)
the implementation of a method that it inherits from one of its parent classes.
An overriding method can elect to call the parent class’s method procedure as
part of its own implementation. (Such a call is known as a parent method call.)

parent class A class from which another class inherits instance methods, attributes, and
instance variables. A parent class is sometimes called a base class or super-
class.

parent method call
A technique where an overriding method calls the method procedure of its
parent class as part of its own implementation.

persistent object
An object whose state can be preserved beyond the termination of the pro-
cess that created it. Typically, such objects are stored in files.

polymorphism
An object-oriented programming feature that may take on different meanings
in different systems. Under various definitions of polymorphism, (a) a method
or procedure call can be executed using arguments of a variety of types, or
(b) the same variable can assume values of different types at different times, or
(c) a method name can denote more than one method procedure. The SOM
system reflects the third definition (for example, when a SOM class overrides a
parent class definition of a method to change its behavior). The term literally
means “having many forms.”

principal The user on whose behalf a particular (remote) method call is being per-
formed.

procedure A small section of code that executes a limited, well-understood task when
called from another program. In SOM, a method procedure is often referred to
as a procedure. See also method procedure.

process A series of instructions (a program or part of a program) that a computer
executes in a multitasking environment.

proxy object In DSOM, a SOM object in the client’s address space that represents a remote
object. The proxy object has the same interface as the remote object, but each
method invoked on the proxy is overridden by a dispatch method that for-
wards the invocation request to the remote object. Under DSOM, a proxy ob-
ject is created dynamically and automatically in the client whenever a remote
method returns a pointer to an object that happens to be remote.

readers and writers
In the Replication Framework, different processes can access the same repli-
cated object in different modes. A “reader” is a process that does not intend to
update the object, but wants to continually watch the object as other processes
update it. A “writer” is a process that wants to update the object, as well as con-
tinually watch the updates performed by others.

receiver See target object.

Glos – 11Glossary

redispatch stub
A procedure, corresponding to a particular method, which has the same signa-
ture as the method’s procedure but which invokes somDispatch to dispatch
the method. The somOverrideMtab method can be used to replace the proce-
dure pointers in a class’s method table with the corresponding redispatch
stubs. This is done when overriding somDispatch to customize method resolu-
tion so that all static method invocations will be routed through somDispatch
for selection of an appropriate method procedure. (Dynamic methods have no
entries in the method table, so they cannot be supported with redispatch
functionality.)

reference data
Application-specific data that a server uses to identify or describe an object in
DSOM. The data, represented by a sequence of up to 1024 bytes, is registered
with DSOM when a server creates an object reference. A server can later ask
DSOM to return the reference data associated with an object reference. See
also object reference.

replica When an object is replicated among a set of processes (using the Replication
Framework), each process is said to have a replica of the object. From the view
point of any application model, the replicas together represent a single object.

replicated object
An object for which replicas (copies) exist. See replica.

run-time environment
The data structures, objects, and global variables that are created, maintained,
and used by the functions, procedures, and methods in the SOM run-time
library.

scope (Or naming scope.) That portion of a program within which an identifier name
has “visibility” and denotes a unique variable. In SOM, an IDL source file forms
a scope. An identifier can only be defined once within a scope; identifiers can
be redefined within a nested scope. In a .idl file, modules, interface statements,
structures, unions, methods, and exceptions form nested scopes.

serializable See one-copy serializable.

server (Or server implementation.) In DSOM, a process, running in a distributed
environment, that executes the implementation of an object. DSOM provides a
default server implementation that can dynamically load SOM class libraries,
create SOM objects, and make those objects accessible to clients. Developers
can also write application-specific servers for use with DSOM.

server object In DSOM, every server has an object that defines methods for managing
objects in that server. These methods include object creation, object destruc-
tion, and maintaining mappings between object references and the objects
they reference. A server object must be an instance of the class SOMDServer
(or one of its subclasses). See also object reference and SOMDObject.

shadowing In the Emitter Framework, a technique that is required when any of the entry
classes are subclassed. Shadowing causes instances of the new subclass(es)
(rather than instances of the original entry classes) to be used as input for
building the object graph, without requiring a recompile of emitter framework
code. Shadowing is accomplished by using the macro SOM_SubstituteClass.

signature The collection of types associated with a method (the type of its return value, if

any, as well as the number, order, and type of each of its arguments).

Glos – 12 SOMobjects Base Toolkit Users Guide

sister class object
A duplicate of a class object that is created in order to save a copy of the class’s
original method table before replacing the method table to customize method
resolution. The sister class object is created so that some original method
procedures can be called by the replacement method procedures.

Sockets class A class that provides a common communications interface to Distributed
SOM, the Replication Framework, and the Event Management Framework.
The Sockets class provides the base interfaces (patterned after TCP/IP sock-
ets); the subclasses TCPIPSockets, NBSockets, and IPXSockets provide actu-
al implementations for TCP/IP, Netbios, and Netware IPX/SPX, respectively.

SOM Compiler
A tool provided by the SOM Toolkit that takes as input the interface definition
file for a class (the .idl file) and produces a set of binding files that make it more
convenient to implement and use SOM classes.

SOMClass One of the three primitive class objects of the SOM run-time environment.
SOMClass is the root (meta)class from which all subsequent metaclasses are
derived. SOMClass defines the essential behavior common to all SOM
class objects.

SOMClassMgr
One of the three primitive class objects of the SOM run-time environment.
During SOM initialization, a single instance (object) of SOMClassMgr is
created, called SOMClassMgrObject. This object maintains a directory of all
SOM classes that exist within the current process, and it assists with dynamic
loading and unloading of class libraries.

SOM-derived metaclass See derived metaclass.

SOMDObject The class that implements the notion of a CORBA “object reference” in DSOM.
An instance of SOMDObject contains information about an object’s server
implementation and interface, as well as a user-supplied identifier.

somId A pointer to a number that uniquely represents a zero-terminated string. Such
pointers are declared as type somId. In SOM, somId’s are used to represent
method names, class names, and so forth.

SOMObject One of the three primitive class objects of the SOM run-time environment.
SOMObject is the root class for all SOM (sub)classes. SOMObject defines the
essential behavior common to all SOM objects.

SOMOA (SOM object adapter) class
In DSOM, a class that dispatches methods on a server’s objects, using the
SOM Compiler and run-time support. The SOMOA class implements methods
defined in the abstract BOA class (its base class). See also BOA class.

somSelf Within method procedures in the implementation file for a class, a parameter
pointing to the target object that is an instance of the class being implement-
ed. It is local to the method procedure.

somThis Within method procedures, a local variable that points to a data structure
containing the instance variables introduced by the class. If no instance
variables are specified in the SOM IDL source file, then the somThis assign-
ment statement is commented out by the SOM Compiler.

state (of an object)
The data (attributes, instance variables and their values) associated with an
object. See also behavior.

static method Any method that can be accessed through offset method resolution. Any
method declared in the IDL specification of a class is a static method. See also
method and dynamic method.

Glos – 13Glossary

stub procedures
Method procedures in the implementation template generated by the SOM
Compiler. They are procedures whose bodies are largely vacuous, to be filled
in by the implementor.

subclass A class that inherits instance methods, attributes, and instance variables
directly from another class, called the parent class, base class, superclass, or
indirectly from an ancestor class. A subclass may also be called a child class or
derived class.

subclassing The process whereby a new class, as it is created (or derived), inherits
instance methods, attributes, and instance variables from one or more pre-
viously defined ancestor classes. The immediate parent class(es) of a new
class must be specified in the class’s interface declaration. See also inheri-
tance.

superclass See parent class.

symbol In the Emitter Framework, any of a (standard or user-defined) set of names
(such as, className) that are used as placeholders when building a text
template to pattern the desired emitter output. When a template is emitted, the
symbols are replaced with their corresponding values from the emitter’s sym-
bol table. Other symbols (such as, classSN) have values that are used by
section-emitting methods to identify major sections of the template (which are
correspondingly labeled as “classS” or by a user-defined name).

target object (Or receiver.) The object responding to a method call. The target object is
always the first formal parameter of a method procedure. For SOM’s C-lan-
guage bindings, the target object is the first argument provided to the method
invocation macro, _methodName.

usage bindings
The language-specific binding files for a class that are generated by the SOM
Compiler for inclusion in client programs using the class.

value logging In the Replication Framework, a technique for maintaining consistency among
replicas of a replicated object, whereby the new value of the object is distrib-
uted after the execution of a method that updates the object.

view–data paradigm
A Replication Framework construct similar to the Model-View-Controller para-
digm in SmallTalk. The “view” object contains only presentation-specific in-
formation, while the “data” object contains the state of the application. The
“view” and “data” are connected by means of an “observation” protocol that lets
the “view” be notified whenever the “data” changes.

writers See readers and writers.

Glos – 14 SOMobjects Base Toolkit Users Guide

Index – 1SOMobjects Developer Toolkit Users Guide

�����

�
activate_impl_failed method, 6–26

Activation policies, DSOM servers, 6–53

add_arg method, 6–62

add_class_to_impldef method, 6–46

add_impldef method, 6–46

add_item method, 6–61

‘addstar’ compiler option, 4–48

Aggregate type, 7–10

alignment method, 7–12

Ancestor class, 3–24

‘any’ IDL type, 4–18

Apply stubs, 5–7

ARG_IN flag value, 6–60

ARG_INOUT flag value, 6–60

ARG_OUT flag value, 6–60

Array declarations in IDL, 4–22

Atomic type, 7–10

AttributeDef class, 7–5

Attributes

“set” and “get” methods for, 3–18

accessing from client programs, 3–18

private attributes, 4–38

readonly attributes, 3–18

syntax for declarations, 4–27

tutorial example, 2–12

Attributes vs instance variables, 2–23

�
Base class, 4–4

Basic Object Adapter, 6–54

Binary compatibility of SOM classes, 1–3

Binding files for client programs, 3–1

Binding files for SOM classes, 1–3, 1–5, 4–15, 4–42

porting to another platform, 4–45

BOA class, 6–50, 6–54

Boolean IDL type, 4–18

Bounds exception, 7–11

�
C++ classes converted to SOM classes, 4–56

METHOD_MACROS for, 4–56

C/C++ binding files for SOM classes, 1–5, 4–15, 4–42,
4–43

limitations of, 4–44

C/C++ usage bindings, 3–1

Callback procedures/methods, 9–2

callstyle = oidl modifier, 3–9, 3–10, 4–32

Casted method resolution, 3–12

change_id method, 6–28

char IDL type, 4–18

Character output

customizing, 5–4

from SOM methods/functions, 3–23

Child class, 4–4

Class categories

base class, 4–4

child class, 4–4

metaclass, 4–2

parent class, 4–4

parent class vs metaclass, 4–4

root class, 4–2

subclass, 4–4

Class data structure, 3–11, 4–13

Class libraries

creating, 4–67

loading, 3–20

packaging, for DSOM, 6–39

provided by SOMobjects Toolkit, 8–1

Class name, getting, 3–24, 3–25

Class names as types, 4–23

Class objects, 3–18, 4–1

creating from a client program, 3–19

customizing initialization, 5–2

getting information about, methods for, 3–23, 3–25

getting the class of an object, 3–18

size of, getting, 3–24

using, 3–18

classinit modifier, 4–32

_<className> macro, 3–21

<className>_Class_Source symbol, 4–53

<className>ClassData.classObject, 3–21

<className>_MajorVersion constant, 3–20

<className>MethodDebug macro, 3–26

<className>_<methodName> macro, 3–9

<className>_MinorVersion constant, 3–20

<className>New macro, 2–9, 3–5, 3–8, 4–59

invalid as first C method argument, 3–9

<className>NewClass procedure, 2–19, 5–2

for creating class objects, in C/C++, 3–19

<className>Renew macro, 3–5

Client events, 9–2

Client programming in DSOM, 6–13

client initialization, 6–14

client termination, 6–14

compiling and linking, 6–8, 6–22

creating objects
arbitrary server, 6–15
specific server, 6–16
using metaclasses, 6–19

creating remote objects, 6–15

destroying objects
via a proxy, 6–18
via a server object, 6–19
via DSOM object manager, 6–18

DSOM object manager, 6–13

finding existing objects, 6–21

finding servers, 6–17

method invocation, 6–21
failure, 6–70

Index – 2 SOMobjects Base Toolkit Users Guide

Client programming in DSOM (cont’d.)

object lifecycle service, 6–13, 6–52

object references, 6–20, 6–21

proxy objects, 6–16

server objects, 6–16

Client programs, 3–1

compiling and linking, 2–10, 3–22

creating objects in, 3–5

executing (Tutorial example), 2–10

header files, 3–1, 4–15

method invocations, 2–9, 4–27

testing and debugging, 3–26

CLOS language, 5–6

Comments in IDL files, 2–7

syntax of, 4–37

Compiling and linking, 2–10, 3–22, 4–58, 4–69

DSOM client programs, 6–8, 6–22

DSOM servers, 6–34

Constant declarations in IDL, 4–17, 4–26

ConstantDef class, 7–5

Constructed IDL types

enum, 4–18

struct, 4–18

union, 4–20

Constructor methods, 2–21

Contained class, 7–5

Container class, 7–5

Context class, 6–49

Context expression in method declarations, 3–8, 3–10,
4–29

Context parameter in method calls, 3–8, 3–10

copy method, 7–12

CORBA compliance of SOM system, 1–4, 4–16, 6–48,
7–1

create method, 6–27, 6–30, 6–51

create_constant method, 6–27, 6–30, 6–32

create_list method, 6–61

create_operation_list method, 6–61

create_request method, 6–62

create_request_args method, 6–62

create_SOM_ref method, 6–28

Creating objects in client programs, 3–5

Customer support procedures, A–1

Customization features of SOM, 5–1

character output, 5–4

class loading and unloading, 5–2

class objects initialized/deinitialized, 4–65

error handling, 5–5

memory management, 5–1

method resolution, 5–6

objects initialized/deinitialized, 4–59

�

deactivate_impl method, 6–27

Debugging

client programs, 3–26

in DSOM, 6–68

macros and global variables for, 3–26

statements in stub procedures, 4–54

def emitter, 4–44

delete operator, use after ‘new’ operator, in C++, 3–7

delete_impldef method, 6–46

Derived metaclasses, 4–7

descriptor (method descriptor), 6–10, 6–39

Dispatch methods, 3–17

Dispatch-function method resolution, 3–17, 4–14, 5–6

Distributed SOM (DSOM), 6–1

advanced topics, 6–56

classes, registering, 6–9

client programming, 6–13

compiling clients, 6–8

configuring applications, 6–8, 6–10, 6–40

debugging, 6–68

DSOM daemon (somdd), 6–10, 6–47

Dynamic Invocation Interface, 6–59, 6–63

EMan used with, 6–56
potential deadlocks of, 6–57

environment variables, 6–9, 6–40, 6–68, 6–69

error codes, A–6

error reporting, 6–68

error-message form, 6–68

existing objects, finding, 6–8

existing SOM libraries, using, 6–8

features of, 6–1

header files, 6–5, 6–22, 6–34

implementation registration, 6–10, 6–42

Implementation Repository, 6–40, 6–46, 6–53

implementing classes for use with, 6–35

introduction to, 1–5

library files, 6–22, 6–34, 6–39

moving objects, 6–72

peer processes, 6–56

proxy classes, constructing, 6–51

proxy objects, 6–6, 6–16, 6–50

regimpl utility, 6–10, 6–42
command line interface, 6–45
interactive interface, 6–43

run-time components, 6–12

running applications, 6–10, 6–47

server objects, 6–7, 6–16, 6–24, 6–29

server programming, 6–23

server proxy, 6–7

servers, 6–7, 6–30, 6–41
activation policies, 6–53
somdsvr command syntax, 6–47

Sockets class use, 6–67

Sockets class, implementing, C–1

SOM object adapter (SOMOA class), 6–24, 6–26, 6–35,
6–51, 6–54

Index – 3SOMobjects Developer Toolkit Users Guide

Distributed SOM (DSOM) (cont’d.)

tracing, 6–68

troubleshooting hints, 6–69

tutorial example, 6–4

using SOM classes, 6–35

vs Replication Framework, 6–2

when to use, 6–2

workgroup DSOM, 6–1

workstation DSOM, 6–1

DLL loading, 3–20

dllname modifier, 3–21, 4–32

double IDL type, 4–17

DSOM applications, configuring, 6–10, 6–40

environment variables, 6–40

regimpl registration utility, 6–42
command line interface, 6–45
interactive interface, 6–43

registering class interfaces, 6–41

server implementation definitions, 6–41

updating Implementation Repository, 6–46

DSOM classes, implementing, 6–35

constraints, 6–36

generic server role, 6–35

non-SOM classes, 6–37

SOM object adapter (SOMOA) role, 6–35

SOMDServer role, 6–35

subclassing SOMDServer, 6–37

using DLLs, 6–39

DSOM daemon (somdd), 6–10, 6–40, 6–47

DSOM method arguments

‘any’ values, 6–71

(char *) values, 6–71

pointer types, 6–55, 6–70

strings, inout, 6–36

structures
embedded pointers, 6–36
packing/optimizing, 6–36

DSOM method invocation, failure, 6–70

–DSOM_TestOn compile option, 3–27

duplicate method, 6–52

Dynamic class loading, 3–20

Dynamic dispatching, 3–17, 5–6

Dynamic Invocation Interface (DII), 6–48, 6–52, 6–59,
6–63

Dynamically linked library (DLL)

creating, 4–67

customizing loading, 5–2

on OS/2, 4–67

�

EMan event manager, 9–1

See also “Event Management Framework”

Emitter Framework, introduction to, 1–6

Emitters

def emitter, 4–44

for C binding files (c, h, ih), 4–42

for C++ binding files (xc, xh, xih), 4–43

ir emitter, 4–44, 7–2

pdl emitter, 4–44

enum IDL type, 4–18

tutorial example, 2–26

Environment structure, 3–8, 3–30

Environment variables

as SOM Compiler controls, 4–45

DSOM, 6–9, 6–40, 6–68, 6–69

HOSTNAME environment variable, 6–9, 6–33, 6–40

MALLOCTYPE environment variable, 6–9, 6–41

SMEMIT environment variable, 4–45

SMINCLUDE environment variable, 4–45

SMTMP environment variable, 4–46

SOMDDEBUG environment variable, 6–41, 6–68

SOMDDIR environment variable, 6–9, 6–40

SOMDMESSAGELOG environment variable, 6–41, 6–68,
6–69

SOMDPORT environment variable, 6–40

SOMDTIMEOUT environment variable, 6–41

SOMDTRACELEVEL environment variable, 6–41

SOMIR environment variable, 4–46, 6–9, 6–40, 7–2

SOMSOCKETS environment variable, 6–40, 6–67

USER environment variable, 6–9, 6–33, 6–40

equal method, 7–11

Error codes, A–1

DSOM, A–6

SOM kernel, A–4

Error handling, 3–28

customizing, 5–5

Environment variable, 3–30

exception values, setting/getting, 3–30

exceptions, 3–29

standard exceptions, 3–29

Error reporting to IBM, A–1

Event classes of Event Management Framework, 9–2

Event Management Framework, 9–1

advanced topics, 9–6

basics of, 9–1

callback procedures/methods, 9–2

client events, generating, 9–4

‘ConnectionNumber’ macro, 9–6

EMan DLL, 9–8

EMan parameters, 9–2

event classes, 9–2

event types
client events, 9–2
sink events, 9–1
timer events, 9–1
work procedure events, 9–2

‘eventmsk.h’ include file, 9–2

extending EMan, 9–6

interactive applications, 9–5

limitations, 9–8

message queues, 9–1

MOTIF applications, 9–6

Index – 4 SOMobjects Base Toolkit Users Guide

Event Management Framework (cont’d.)

processing events, 9–5

RegData object, 9–3

registering for events, 9–3

Sockets class, implementing, C–1

SOMEEMan class, 9–1

SOMEEMRegisterData class, 9–3

SOMSOCKETS environment variable, 9–8

thread safety, 9–6

tips on using EMan, 9–7

unregistering for events, 9–4

exception IDL declarations, 4–23, 4–26

table of standard CORBA exceptions, 4–25

ExceptionDef class, 7–6

exception_free function, 3–31

exception_id function, 3–31

Exceptions, 3–29

setting/getting values, 3–30

exception_value function, 3–31

execute_next_request method, 6–26, 6–54

execute_request_loop method, 6–26, 6–54

�
filestem modifier, 4–32

find_impldef method, 6–25, 6–46

find_impldef_by_alias method, 6–46

find_impldef_by_class method, 6–46

find_impldef_classes method, 6–46

float IDL type, 4–17

Floating point IDL types

double, 4–17

float, 4–17

Frameworks

as SOMobjects Toolkit class libraries, 1–5

Distributed SOM (DSOM), 1–5

Emitter Framework, 1–6

Event Management Framework, 9–6

Interface Repository Framework, 1–6, 7–1

Persistence Framework, 1–6

Replication Framework, 1–6

free method, 6–61, 7–12

free_memory method, 6–61

functionprefix modifier, 4–32, 4–48

Functions for generating output, 3–23

�
Generating output

customization of, 5–4

from SOM methods/functions, 3–23

get<attribute> method, 3–18

tutorial example, 2–12, 2–21

get_count method, 6–61

get_id method, 6–28

get_implementation method, 6–17

get_item method, 6–61

get_principal method, 6–33

get_response method, 6–63

get_SOM_object method, 6–28

Grammar of SOM IDL syntax, B–1

�
Header files for DSOM, 6–22, 6–34

Header files for SOM classes, 4–15, 4–17, 4–53

HOSTNAME environment variable, 6–9, 6–33, 6–40

�
ID manipulation, somId’s, 3–33

Identifier names, naming scope restrictions, 4–39

#ifdef __SOMIDL__ statement, 2–14

impctx modifier, 4–34

impl_is_ready method, 6–26

Implementation of objects, 6–53

Implementation Repository, 6–40, 6–41, 6–46, 6–53

regimpl utility, 6–10, 6–42

Implementation statement, 2–14

syntax of, 4–30

Implementation templates, 1–5, 4–15

accessing internal instance variables, 4–55

bindings, 1–5, 4–15, 4–42

<className>MethodDebug procedure in, 4–54

customizing implementations, 5–1

customizing the stub procedures, 2–8, 4–55

#define <className>_Class_Source statement, 4–53

#include header file, 4–15, 4–17, 4–53

incremental updates of, 4–42, 4–52, 4–56

method procedures, 2–8, 4–53

parent-method calls in, 4–56

somSelf usage, 4–53

somThis usage, 4–54

syntax of SOM Compiler output, 4–52

syntax of stub procedures for methods, 2–7, 4–53

ImplementationDef class, 6–17, 6–23, 6–41, 6–46, 6–53

attributes of, 6–41

Implicit method parameter, 3–8

ImplRepository class, 6–46, 6–53

‘in’ and ‘out’ parameters, 4–28

#include directive in implementation templates, 4–15,
4–53

IDL syntax of, 4–17

Incremental updates of implementation template file,
4–42, 4–52, 4–56

indirect modifier, 4–34

Inheritance, 4–4, 4–10

Inherited methods, overriding, 2–14

Initialization

of DSOM client programs, 6–14

of SOM run-time environment, 4–1

Instance method table, 5–6

Instance variable declarators, syntax of, 4–37

Instance variables, accessing in method procedures,
4–55

Index – 5SOMobjects Developer Toolkit Users Guide

Instance variables vs attributes, 2–23

Integral IDL types, 4–17

long, 4–17

short, 4–17

unsigned short or long, 4–17

Interface Definition Language, 1–3

SOM classes defined in, 4–15

syntax of IDL specifications, 4–16

Interface names as types, 4–23

Interface Repository, 1–6, 6–9, 6–39, 7–1

accessing objects in, 7–7

classes, 7–5

emitter, 7–2

files, 7–3

memory management in, 7–9

objects, 7–5

‘private’ information in, 7–4

Interface Repository Framework, 7–1

environment variables, 7–2, 7–3

introduction to, 1–6

Interface statement

declarations in, 2–26

defining, 2–7

multiple interfaces defined, 4–39

syntax of, 4–25

InterfaceDef class, 7–5

invoke method, 6–62

Invoking methods, 3–8

from C client programs, 3–8

from C++ client programs, 3–10

from other client programs, 3–11

IPXSockets class, C–1

ir emitter, 4–44, 7–2

is_constant method, 6–28

is_nil method, 6–52

is_SOM_ref method, 6–28

�

kind method, 7–11

�

Language bindings, 1–5, 4–15, 4–42

Language-neutral methods and functions, 3–23

Libraries

building export files, 4–67

creating import library, 3–22, 4–69

dynamically linked libraries, 4–67

dynamically linked libraries on OS/2, 4–67

packaging classes in libraries, 4–67

shared libraries on AIX, 4–67

specifying initialization function, 4–68

Linking, 2–10, 3–22, 4–58

DSOM client programs, 6–22

DSOM servers, 6–34

Loading classes and DLLs, 5–2

long IDL type, 4–17

lookup_id method, 7–8

�
Macros

<className>_lookup_<methodName>, 3–13

<className>_<methodName>, 3–9

<className>New, 3–9

lookup_<methodName>, 3–12, 3–13

_<methodName>, 3–8

SOM_Assert, 3–27

SOM_CreateLocalEnvironment, 3–30

SOM_Error, 3–27, 3–28

SOM_Expect, 3–27

SOM_GetClass, 3–19

SOM_InitEnvironment, 3–30, 3–32

SOM_Resolve, 3–16

SOM_ResolveNoCheck, 3–16

SOM_Test, 3–28

SOM_TestC, 3–27

SOM_WarnMsg, 3–27

–maddstar compiler option, 4–48

Major and minor version numbers, 3–19

majorversion modifier, 4–33

MALLOCTYPE environment variable, 6–9, 6–41

Memory management, 3–33

Memory management customization features, 5–1

SOMCalloc global variable, 5–1

SOMFree global variable, 5–1

SOMMalloc global variable, 5–1

SOMRealloc global variable, 5–1

Message queues, 9–1

metaclass modifier, 4–33

Metaclasses, 4–2, 4–7

metaclass incompatibility, 4–8

SOM-derived, 4–7

tutorial example, 2–17

use in DSOM, 6–19

utility metaclasses, 8–1

Method call validity checking, 3–27

Method declarations in IDL, 2–7

context expression, 4–29

in, out, inout parameters, 4–28

oneway keyword, 4–28

parameter list, 4–28

raises expression, 4–29

syntax of, 4–27

Method invocations, 3–8

Context parameters, 3–8, 3–10

dynamic dispatching, 3–17

Environment variable, 3–8, 3–30

error handling, 3–28

exception values, setting/getting, 3–30

exceptions, 3–29

for client programs in C, 3–8

for client programs in C++, 3–10

for client programs in other languages, 3–11

Index – 6 SOMobjects Base Toolkit Users Guide

Method invocations (cont’d.)

format of, 2–9, 3–8, 4–27

from Smalltalk, 3–11, 3–15

implicit method parameters, 3–8

method name/signature unknown at compile time,
3–17

obtaining method procedure pointers, 3–16

receiving object of, 3–8

standard exceptions, 3–29

va_list arguments, 3–9

validity checking, 3–27

method modifier, 4–34

Method procedure pointers, 3–16

obtaining with name-lookup method resolution, 3–17

obtaining with offset method resolution, 3–16

Method procedures, 2–8, 4–53

Method resolution

customizing, 5–6

dispatch-function resolution, 3–17, 4–14, 5–6

example of customization, 5–7

instance-method table, 5–6

introduction to, 1–3, 4–13

method procedure pointers, 3–16

name-lookup resolution, 3–12, 3–17, 4–14

offset resolution, 3–11, 3–12, 3–16, 4–13

redispatch stubs, 5–6

saving the method table, 5–7

Method table, 4–13

saving, 5–7

Method tokens, 3–11, 3–12, 3–15, 4–13

Method tracing, 3–26

METHOD_MACROS for C++ bindings, 4–56

_<methodName> macro, 3–8

Methods

class methods vs instance methods, 4–2

customization features of SOM, 5–1

customizing stub procedures in implementation tem-
plates, 4–55

for generating output, 3–23

get<attribute>, in Tutorial, 2–12, 2–21

getting the number of, 3–24

inherited, 2–14

invoking in client programs, 3–8

modifiers, 2–14, 4–30

overriding, 2–14, 4–59, 4–65, 5–6, 5–7

procedures of, 2–8

__set_<attribute>, in Tutorial, 2–13, 2–19

somFree, in tutorial, 2–9

stub procedures in implementation template, 2–7, 4–53

syntax of IDL method declarations, 4–27

Methods and functions, language-neutral, 3–23

minorversion modifier, 4–33

Modifier statements, 2–14, 4–30, 7–1

attribute modifiers
indirect, 4–34
nodata, 4–34
noget, 4–34
noset, 4–35
persistent, 4–35

class modifiers, 4–30
callstyle, 4–32
classinit, 4–32
dllname, 4–32
filestem, 4–32
functionprefix, 4–32
majorversion, 4–33
metaclass, 4–33
minorversion, 4–33
releaseorder, 4–35

method modifiers
method, 4–34
namelookup, 4–35
nooverride, 4–34
offset, 4–35
override, 4–35
procedure, 4–34

qualified, 4–30, 4–34

syntax of, 4–30

type modifiers, impctx, 4–34

unqualified, 4–30, 4–32

Module statement

syntax of, 4–39

usage of, 2–18

ModuleDef class, 7–5

Multiple inheritance, 4–10, 4–59

tutorial example, 2–25

Multiple interfaces in a SOM IDL file, syntax of, 4–39

Multi-threaded DSOM programs, 6–56

�
NamedValue structure, 6–59

Name-lookup method resolution, 3–12, 3–17, 4–14, 4–39

namelookup modifier, 4–35

Naming scopes, 4–39

NBSockets class, C–1

New macro (<className>New), 2–9

‘new’ operator in C++ client programs, 3–6, 3–8, 4–59

NewClass procedure (<className>NewClass), 2–19

NO_EXCEPTION exception, 3–31

nodata modifier, 4–34

noget modifier, 4–34

nooverride modifier, 4–34

noset modifier, 4–35, 4–60

Number of methods, getting, 3–24

NVList class, 6–49, 6–60, 6–61

�
Object Adapter, 6–35, 6–54

Object lifecycle service, 6–52

Object oriented programming, 1–1

class libraries for, 1–1

Index – 7SOMobjects Developer Toolkit Users Guide

Object pseudo–class, 6–51

Object references in DSOM, 6–15, 6–50

creating in the SOMOA, 6–27

passing in method calls, 6–21

saving, 6–20

Object Request Broker (ORB), 6–48

Object size, getting, 3–24

Object variables

declaring in client programs, 3–4

object type, 3–4

ObjectMgr abstract class, 6–13

object_to_string method, 6–21, 6–52

octet IDL type, 4–18

Offset method resolution, 3–11, 3–12, 3–16, 4–13

vs name-lookup method resolution, 3–12

offset modifier, 4–35

‘oneway’ keyword of method declarations, 4–28

Oneway messages in DSOM, 6–57

Operation declarations, 4–27

OperationDef class, 7–5

ORB (Object Request Broker), 6–48

ORB class, 6–49, 6–51

‘out’ parameter, 4–28

Overloaded method, 4–12

override modifier, 4–35

Overriding of methods

examples, 4–59, 5–7

inherited methods (Tutorial example), 2–14

somClassReady, 4–65

somDispatch, 5–6, 5–7

somInit, 4–59

somInitMIClass, 4–65, 5–7

somOverrideMtab, 5–6, 5–7

somUninit, 4–59

�
Packaging SOM classes, customizing, 5–2

param_count method, 7–11

parameter method, 7–11

ParameterDef class, 7–5

Parent class vs metaclass, 4–4

Parent class, getting, 3–25

passthru statement, syntax of, 4–36

pdl emitter, 4–44

pdl program, command syntax and options, 4–51

Peer processes in DSOM, 6–56

Persistence Framework, introduction to, 1–6

Persistent servers, 6–53

Pointer SOM IDL declarations, 4–22

Porting classes to another platform, 4–45

Principal class, 6–33, 6–50

print method, 7–12

Printing output

customization of, 5–4

from SOM methods/functions, 3–23

Private methods and attributes, syntax of, 4–38

procedure modifier, 4–34

Proxy classes, user-supplied, 6–65

Proxy objects (in DSOM), 6–6, 6–16, 6–50, 6–51

Pseudo–objects, 7–11

�
Qualified modifiers, 4–30, 4–34

�
‘raises’ expression in method declarations, 4–29

Receiving object, 3–8

Redispatch stubs, 5–6

ReferenceData type, 6–27

RegData objects, 9–3

See also “Event Management Framework”

regimpl utility, 6–10, 6–42

command line interface, 6–45

interactive interface, 6–43

Registration of classes, customizing, 5–2

release method, 6–18, 6–52

releaseorder modifier, 4–35

Remote objects

creating, 6–15

moving, 6–72

remove_class_from_impldef method, 6–46

Replication Framework

introduction to, 1–6

Sockets class, implementing, C–1

Reporting errors to IBM, A–1

Repository class, 7–7

Repository ID, 7–7

Request class, 6–49, 6–62

RESP_NO_WAIT flag, 6–63

Return codes, A–1

DSOM, A–6

SOM kernel, A–4

Run-time environment, 4–1

initialization of, 3–20, 4–1

primitive class objects created, 4–1

run-time library, 1–5

�
sc command to run SOM Compiler, 2–7, 4–47

compiler options, 4–47

Scoping in IDL, 4–39

send method, 6–62

sequence IDL type, 4–21

Server activation (in DSOM), 6–24

Server implementation definition (in DSOM), 6–23

Server objects (in DSOM), 6–7, 6–16, 6–24, 6–29

Index – 8 SOMobjects Base Toolkit Users Guide

Server programming in DSOM, 6–23

authentication, 6–33

compiling and linking servers, 6–34

generic server program (somdsvr), 6–23, 6–30

identifying source of a request, 6–33

object references, 6–27

server implementation definition, 6–23

server objects, 6–24, 6–29

servers
activation, 6–24
dispatching methods, 6–30
initialization, 6–25
mapping objects to references, 6–29
mapping references to objects, 6–30
processing requests, 6–26
termination, 6–27

SOM object adapter (SOMOA class), 6–24
initializing, 6–26

SOM object references, 6–28

subclassing SOMDServer, 6–31

use with Persistence Framework, 6–30

Server proxy (in DSOM), 6–7

Server–per–method servers, 6–53

Servers, 6–2, 6–7, 6–16, 6–23, 6–53

activation and deactivation, 6–24, 6–27, 6–35, 6–42,
6–47, 6–54

activation policies, 6–53

compiling and linking, 6–34

finding a specific server, 6–16

generic (somdsvr), 6–23, 6–35, 6–47, 6–54

implementation definitions, 6–23, 6–41

initializing the SOMOA, 6–26

persistent, 6–30, 6–53

server objects, 6–24

server–per–method, 6–53

shared, 6–53

SOMDServer server-object class, 6–29, 6–35, 6–37

somdsvr command syntax, 6–47

unshared, 6–53

Service and technical support, A–1

set<attribute> method, 3–18

tutorial example, 2–13, 2–19

setAlignment method, 7–12

set_item method, 6–61

Shared libraries on AIX, creating, 4–67

Shared servers, 6–53

short IDL type, 4–17

Sink events, 9–1

Sister class object, 5–7

size method, 7–12

Size of objects, getting, 3–24

Smalltalk, 3–11, 3–15

SMEMIT environment variable, 4–45

SMINCLUDE environment variable, 4–45

SMTMP environment variable, 4–46

Sockets class, C–1

implementation considerations, C–6

implementation example, C–7

implementing subclasses, C–1

interface definition, C–1
soms.h file, C–1
somssock.idl file, C–1

IPXSockets subclass, C–1

NBSockets subclass, C–1

subclass interface definition, C–5

TCPIPSockets subclass, C–1

use with DSOM, 6–67

SOM bindings, 1–3, 1–5

for C/C++ client programs, 3–1

for SOM classes, 4–15, 4–42

SOM classes, 4–2, 4–15

attributes vs instance variables, 2–23

implementation, 6–53

inheritance, 4–4, 4–10

interface vs implementation, 4–10, 4–15

metaclasses, 4–2

multiple inheritance, 2–25, 4–10

parent class vs metaclass, 4–4

primitive SOM class objects, 4–1

using with DSOM, 6–35

SOM classes, customizing loading/unloading, 5–2

class initialization, 5–2

<classname>NewClass procedure, 5–2

DLL loading, 5–2

DLL unloading, 5–3

SOMClassInitFuncName function, 5–2

SOMDeleteModule global variable, 5–3

SOMInitModule function, 5–2

SOMLoadModule global variable, 5–2

SOM classes, implementing, 4–15

<className>New macro, 2–9

<className>NewClass procedure, 2–19

comments in, 2–7

customizing the implementation template, 2–8

header files, 4–15, 4–17, 4–53

implementation templates, 2–7, 4–15

interface definition file (.idl file), 4–15

Interface Definition Language (IDL), 4–15

interface statement, 2–7

metaclasses, defining, 2–17

method declarations, 2–7

method invocations, 2–9, 4–27

method procedures, 2–8

modifiers, 2–14, 4–30

overriding an inherited method, 2–14

porting classes to another platform, 4–45

somThis assignment, 2–21

steps required, 2–6

stub method procedures, 2–7

tutorial, 2–6

Index – 9SOMobjects Developer Toolkit Users Guide

SOM classes, usage in client programs, 3–1, 3–18

C/C++ usage bindings, 3–1

checking the validity of method calls, 3–27

<className>New macro, 2–9

<className>NewClass procedure, 2–19

creating class objects, in C/C++, 3–19

creating class objects, in other languages, 3–7

creating instances, in C, 3–5

creating instances, in C++, 3–6

creating instances, in other languages, 3–7

debugging macros, 3–26

deleting instances, in C++, 3–7

Environment structure, 3–8, 3–30

Environment variable, 3–30

error handling, 3–28

example program, 2–8, 3–3

exception values, setting/getting, 3–30

exceptions, 3–29

freeing instances, in C, 3–5

generating output, methods/functions for, 3–23

get<attribute> method, 2–12, 2–21

getting information about a class, methods for, 3–23

getting information about an object, methods/functions
for, 3–25

getting the class of an object, 3–18

language-neutral methods/functions available, 3–23

manipulations using somId’s, 3–33

memory management, 3–33

method invocations, 2–9, 3–8

object variables, declaring, 3–4

__set_<attribute> method, 2–13, 2–19, 3–18

SOM header files for C/C++, 3–1

standard exceptions, 3–29

SOM Compiler, 4–42

actions of, 4–52

and Interface Repository, 7–2

binding files generated, 4–42

C binding files, 4–42

C++ binding files, 4–43

environment variables affecting, 4–45

implementation template created, 4–52

incremental updates of implementation template, 4–42,
4–52, 4–56

introduction to, 1–4

sc command and options, 4–47

sc command to run SOM Compiler, 2–7

somc command to run SOM Compiler, 2–7

SOM ID manipulation, 3–33

SOM IDL language grammar, B–1

SOM IDL syntax, 4–16

attribute declarations, 2–12, 4–27

comments, 4–37

constant declarations, 4–17, 4–26

exception declarations, 4–23, 4–26

grammar of IDL, B–1

#ifdef __SOMIDL__ statement, 2–14

implementation statement, 2–14, 4–30

#include directive, 4–17

SOM IDL syntax (cont’d.)

instance variables, 4–37

interface declarations, 2–7, 4–25

keywords, 4–17

metaclasses, 2–17

method declarations, 2–7, 4–27

modifier statements, 4–30, 7–1

module definition, 4–39

multiple interfaces, 4–39

name resolution, 4–39

naming scopes, 4–39

override modifier, 4–35

passthru statement, 4–36

private methods and attributes, 4–38

scopes, 4–39

type declarations, 4–17, 4–26

SOM objects, customizing initialization/
deinitialization, 4–59

<className>New macro, in C, 4–59

customizing class objects, 4–65

deinitializing, 4–59

example, 4–59

initializing, 4–59

new operator, in C++, 4–59

somFree method, 4–59

somInit method, 4–59, 4–65

somInitMIClass method, 4–65

somNew method, 4–59

somUninit method, 4–59

SOM system

binary compatibility of SOM classes, 1–3

bindings (language bindings), 1–3, 1–5, 4–15, 4–42

class libraries from, 1–3, 4–67

CORBA compliance, 1–4, 4–16, 6–48

customer support, A–1

error codes, A–4

Interface Definition Language (IDL), 1–3

language-neutral characteristics, 1–3, 1–5

method resolution, 4–13

parent class vs metaclass, 4–4

primitive class objects created, 4–1

run-time environment initialization, 4–1

run-time library of, 1–5

SOM Compiler, introduction to, 1–4

SOMClass metaclass, 4–2

SOMClassMgr class, 4–3

SOMClassMgrObject, 4–3

SOMObject root class, 4–2

som.ir Interface Repository file, 7–3

som.xh header file for C++ programs, 3–1

somApply function, 3–18

SOM_Assert macro, 3–27

SOM_AssertLevel global variable, 3–26

somc command to run SOM Compiler, 2–7

SOMCalloc function, 3–33, 5–1

SOMClass metaclass, 4–2

somClassDispatch method, 3–18

somClassFromId method, 3–21

Index – 10 SOMobjects Base Toolkit Users Guide

SOMClassInitFuncName function, 5–2

SOMClassMgr class, 4–3

SOMClassMgrObject, 3–20, 4–3

somClassReady method, overriding, 4–65

somClassResolve procedure, 3–12

somcorba.h file, 3–30, 3–31

SOM_CreateLocalEnvironment macro, 3–30

SOMDClientProxy class, 6–50

somdCreateObj method, 6–7, 6–16, 6–29, 6–31

somdd DSOM daemon, 6–10, 6–40, 6–47

SOMDDEBUG environment variable, 6–68

SOMD_DebugFlag global variable, 6–68

somdDeleteObj method, 6–7, 6–19, 6–29, 6–31

somdDestroyObject method, 6–6, 6–18

SOMDDIR environment variable, 6–9, 6–40

somdDispatchMethod, 6–29

SOMDeleteModule global variable, 5–3

SOM-derived metaclasses, 4–7

somdFindAnyServerByClass method, 6–17

somdFindServer method, 6–17

somdFindServerByName method, 6–7, 6–16

somdFindServersByClass method, 6–17

somdGetClassObj method, 6–29

somdGetIdFromObject method, 6–21

somdGetObjectFromId method, 6–21

SOMD_ImplDefObject global variable, 6–24, 6–25

SOMD_ImplRepObject global variable, 6–25

SOMD_Init function, 6–6, 6–14, 6–25, 6–68

somDispatch method, 3–18

overriding, 5–6, 5–7

SOMDMESSAGELOG environment variable, 6–41, 6–68,
6–69

somdNewObject method, 6–6, 6–15

SOMD_NO_WAIT flag, 6–26

SOMDObject class, 6–49, 6–50, 6–51

SOMDObjectMgr class, 6–13

SOMD_ObjectMgr global variable, 6–6

SOMD_ORBObject global variable, 6–14

SOMDPORT environment variable, 6–40

somdProxyFree method, 6–18

somdRefFromSOMObj method, 6–29, 6–32

SOMD_RegisterCallback function, 6–56

somdReleaseObject method, 6–6, 6–7, 6–18

SOMDServer class, 6–7, 6–29, 6–35, 6–37

SOMD_ServerObject global variable, 6–26

SOMD_SOMOAObject global variable, 6–26

somdSOMObjFromRef method, 6–29, 6–32

somdsvr program (in DSOM), 6–23, 6–30

command syntax, 6–47

somdTargetFree method, 6–18

SOMDTIMEOUT environment variable, 6–41

SOMDTRACELEVEL environment variable, 6–41

SOMDTRACELEVEL global variable, 6–68

SOMD_Uninit function, 6–6, 6–27

SOMD_WAIT flag, 6–26

SOMEEMan class, 9–1

See also “Event Management Framework”

SOMEEMRegisterData class, 9–3

See also “Event Management Framework”

SOMEEvent class, 9–2

See also “Event Management Framework”

somEnvironmentNew function, 3–20

somError function, 3–33

SOMError global variable, 3–28, 5–5

SOM_Error macro, 3–27, 3–28

somExceptionFree procedure, 3–30, 3–31, 3–32

somExceptionId function, 3–31, 3–32

somExceptionValue function, 3–31, 3–32

SOM_Expect macro, 3–27

SOM_Fatal error code, 3–28

somFindClass method, 3–7, 3–11, 3–20

somFindClsIn File method, 3–20, 3–21

somFindMethod method, 3–13, 3–17

somFindMethodOK method, 3–13, 3–17

SOMFree function, 3–33, 5–1

use with Renew macro, 3–6, 3–8

somFree method

tutorial example, 2–9

use after <className>New macro, in C, 3–5, 3–7

use on a proxy in DSOM, 6–18

somFree method, use after <className>New macro, in
C, 4–59

somGetApplyStub method, 5–7

SOM_GetClass macro, 3–19, 5–6

somGetClass method, 3–18, 3–21, 5–6

somGetGlobalEnvironment procedure, 3–30

somGetInstanceSize method, use with <className>Re-
new macro, 3–5, 3–7

somGetInterfaceRepository method, 7–8

somGetMethodData method, 3–18

som.h header file for C programs, 3–1, 3–30

somId ID type, 3–33

SOM_Ignore error code, 3–28

somInit method, overriding, 2–14, 4–59

SOM_InitEnvironment macro, 3–30, 3–32

somInitMIClass method, overriding, 4–65, 5–7

SOMInitModule function, 5–2

usage when creating DLLs, 4–69, 4–70

SOM_InterfaceRepository macro, 7–8

SOMIR environment variable, 4–46, 6–9, 6–40, 7–2, 7–3

SOMLoadModule global variable, 5–2

somLocateClassFile method, 3–21

somLookupMethod method, 3–17

SOMMalloc function, 3–33, 4–61, 5–1

sommGetSingleInstance method, 8–2

SOMMSingleInstance metaclass, 8–2

Index – 11SOMobjects Developer Toolkit Users Guide

somNew method

for creating instances, not in C/C++, 3–7, 4–59

for creating instances, with classname from user input,
3–8

invalid as first C method argument, 3–9

tutorial example, 2–17, 2–19

use in C/C++, 3–7

SOM_NoTest symbol, 3–16

SOM_NoTrace macro, 4–54

SOMOA (SOM object adapter) class, 6–24, 6–26, 6–35,
6–51, 6–54

SOMObject class, 4–2

SOMobjects Toolkit

frameworks of, introduction to, 1–5

introduction to, 1–3

release 2.0 enhancements, 1–7

SOMOutCharRoutine global variable, 3–23, 3–26, 5–4

somOverrideMtab method, 5–6, 5–7

SOMRealloc function, 3–33, 5–1

somRenew method, for creating instances in given
space, 3–7

SOM_Resolve macro, 3–16

somResolve procedure, without C/C++ bindings, 3–11

somResolveByName function, 3–12, 3–15, 3–17

SOM_ResolveNoCheck macro, 3–16

soms.h file with Sockets class, C–1

somSelf pointer, syntax in implementation template, 4–53

somSetException procedure, 3–30

SOMSOCKETS environment variable, 6–40, 6–67, 9–8

somssock.idl file, C–1

somTD type definition, 3–17

SOM_Test macro, 3–28

SOM_TestC macro, 3–27

SOM_TestOn directive, 3–27

SOM_TestOn symbol, 3–16

somThis assignment

syntax in implementation template, 4–54

tutorial example, 2–21

SOM_TraceLevel global variable, 3–26

somUninit method

overriding, 4–59

use with SOMFree function, 3–6

SOM_Warn error code, 3–28

SOM_WarnLevel global variable, 3–26

SOM_WarnMsg macro, 3–27

Standard exceptions, 3–29

Static methods, 3–17

StExcep type, 3–30

stexcep.idl file, 3–30

string IDL type, 4–21

string_to_object method, 6–21, 6–52

struct IDL type, 4–18

Stub procedures, 2–7, 4–54

Subclass, 4–4

System exceptions, 3–29

SYSTEM_EXCEPTION exception, 6–68

�
TCKind enumeration, 7–11

TCPIPSockets class, C–1

Technical support procedures, A–1

Testing

client programs, 3–26

in DSOM, 6–68

method call validity checking, 3–27

Timer events, 9–1

tk_<type> enumerator names, 7–11

Tracing, in DSOM, 6–68

Tutorial for implementing SOM classes, 2–6

attribute definition, 2–12

attributes vs instance variables, 2–23

<className>New macro, 2–9

<className>NewClass procedure, 2–19

client program using the class, 2–8

comments, 2–7

compiling and linking client code, 2–10

customizing the implementation template, 2–8

enum type, 2–26

example 1: defining a simple method, 2–7

example 2: defining an attribute, 2–12

example 3: overriding an inherited method, 2–14

example 4: defining metaclasses, 2–17

example 5: using metaclasses as counters, 2–21

example 6: using multiple inheritance, 2–25

executing the client program, 2–10

get<attribute> method, 2–12, 2–21

#ifdef __SOMIDL__ statement, 2–14

implementation statement, 2–14

implementation template with stub procedures, 2–7

interface statement, 2–7

method declaration, 2–7

method invocation form, 2–9

method procedures, 2–8

modifiers, 2–14

multiple inheritance, 2–25

sc command to run SOM Compiler, 2–7

__set_<attribute> method, 2–13, 2–19

somc command to run SOM Compiler, 2–7

somFree method, 2–9

somNew method, 2–17, 2–19

somThis assignment, 2–21

Type declarations in IDL, 4–17, 4–26

any, 4–18

array, 4–22

boolean, 4–18

char, 4–18

constructed types, 4–18

double, 4–17

enum, 4–18

exception, 4–23

float, 4–17

Index – 12 SOMobjects Base Toolkit Users Guide

Type declarations in IDL (cont’d.)

floating point types, 4–17

integral types, 4–17

long, 4–17

object types, 4–23

octet, 4–18

pointer, 4–22

sequence, 4–21

short, 4–17

SOM-unique extensions, 4–40

string, 4–21

struct, 4–18

template types, 4–21

union, 4–20

unsigned short or long, 4–17

TypeCode pseudo–objects, 7–10

‘any’ type usage, 7–14

‘alignment’ modifier for, 7–12

foreign data types for, 7–13

methods for, 7–11

TypeCode constants, 7–14

TypeCode types, 4–18

TypeDef class, 7–5

Types provided by SOM

somId, 3–33

somMethodProc, 3–17

somTD_<className>_<methodName>, 3–17

StExcep, 3–30

�
union IDL type, 4–20

Unloading classes and DLLs, 5–2

Unqualified modifiers, 4–30, 4–32

Unshared servers, 6–53

unsigned short or long IDL type, 4–17

update_impldef method, 6–46

Updating the implementation template file, 4–42, 4–52,
4–56

Usage bindings, 1–3, 1–5, 3–1, 4–15, 4–42

USER environment variable, 6–9, 6–33, 6–40

Utility classes, 8–1

Utility metaclasses, 8–1

�
Variable argument list (va_list), 3–9, 3–12, 3–13

defining, 4–28

VARIABLE_MACROS for C++ bindings, 2–24

Version numbers, 3–19, 3–23

getting, 3–25

in customizing DLL loading, 5–3

�
Work procedure events, 9–2

Workgroup DSOM, 6–1

Workstation DSOM, 6–1

