SOMobjects Base Toolkit
Programmers
Reference Manual

Reference material for the classes,
methods, functions, and macros
provided in the base capabilities
of the System Object Model

and its basic frameworks

Version 2.0
January 1994

Note: Before using this information and the product it supports, be sure to read the trademark information under
“Notices” on page xii.

Second Edition (January 1994)

The following paragraph does not apply to the United Kingdom or any country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE PUB-
LICATION“ASIS”WITHOUT WARRANT OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may not

apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or services in
your country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your
IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the
IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 or AIX programming techniques. You may copy and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or distributing application programs
conforming to the OS/2 or AIX application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: “©(your company name) (year) All Rights Reserved.”

However, the following copyright notice protects this documentation under the Copyright laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

© Copyright International Business Machines Corporation, 1991 — 1994. All rights reserved.

Notice to US Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

i SOMobjects Base Toolkit

SOMobjects Toolkit Programmers Reference Manual

Contents

SOMKernel Referencecvoiiiiiiiirnrererarararananns

somApPly Function
somBeginPersistentlds Function
somBuildClass Function i
somCheckld Function ... i
somClassResolve Function i
somComparelds Function o
somDataResolve Function i
somEndPersistentlds Function
somEnvironmentNew Function
somExceptionFree Function
somExceptionld Function
somExceptionValue Function i
somGetGlobalEnvironment Function i
somldFromString Function
somIsObj Function e
SOMLPrintf Function e
somParentNumResolve Function i
somParentResolve Function
somPrefixLevel Function e
SOMPriNtf FUNCHON
somRegisterld Function
SomResoIve FUNCHION e
somResolveByName Function i
somSetException Function
somSetExpectedlds Function
somStringFromld Function
somTotalReglds Function
somUniqueKey Function
somVoprintf Function
SOMCalloc FUNCHON ... oo e e
SOMClasslInitFuncName Function i,
SOMDeleteModule Function i e
SOMETITOr FUNCHON .. .o e e e
SOMFree FUNCHONo e e ettt
SOMLoadModule Function ...
SOMMalloc FUNCLIONot e et
SOMOutCharRoutine Function i
SOMRealloc FUNCHONo e e e

Programmers Reference Manual

Xii

Ref -1
Ref -2
Ref — 4
Ref —6
Ref -7
Ref -8

Ref-10

Ref — 11

Ref—12

Ref-13

Ref — 14

Ref-15

Ref-16

Ref - 17

Ref-18

Ref-19

Ref — 20

Ref — 21

Ref — 23

Ref — 24

Ref - 25

Ref — 26

Ref — 27

Ref — 29

Ref — 30

Ref — 32

Ref — 33

Ref — 34

Ref — 35

Ref — 36

Ref — 37

Ref — 38

Ref -39

Ref — 40

Ref — 41

Ref — 42

Ref —43

Ref — 44

Ref — 45

SOM _ASSErt MacCrottt e e e e Ref — 46

SOM_CreateLocalEnvironment Macroc i, Ref — 47
SOM_DestroyLocalEnvironmentMacroooiiiiiiiiiiinaaan. Ref — 48
SOM_Error MacCrooooii it e e Ref — 49
SOM_EXPeCt MacCroo e e Ref — 50
SOM_GetClass MaCro ovi ittt et et Ref — 51
SOM_InitEnvironment Macro ... i Ref — 52
SOM_NOTIace MaCrOttt et et et Ref — 53
SOM _ResOIVE MaCroo e e e e Ref — 54
SOM_ResolveNoCheck Macroot Ref — 55
SOM _Test MaCrot e e e e Ref — 56
SOM_TeStC MaCrO . ..ottt e e et Ref — 57
SOM_UninitEnvironment Macro i Ref — 58
SOM_WarnMsg Macrot e Ref — 59
SOMCIAasS Class ...cucitii ittt ie it te e et tasaneasasansaranensnsannnnnns Ref - 60
somAddDynamicMethod Method i Ref — 63
somAddStaticMethod Method Ref — 65
somAllocate Method Ref — 67
somCheckVersion Method i Ref — 68
somClassReady Method i Ref — 70
somDeallocate Method ... i e Ref — 71
somDescendedFrom Method Ref - 72
somFindMethod, somFindMethodOk Methods Ref - 73
somFindSMethod, somFindSMethodOk Methods Ref - 75
somGetApplyStub Method (Obsolete) ... Ref — 76
somGetClassData Method i Ref - 77
somGetClassMtab Method i Ref - 78
somGetinstanceOffset Method (Obsolete)ot Ref — 79
somGetlnstancePartSize Method Ref — 80
somGetinstanceSize Method Ref — 81
somGetlinstanceToken Method i, Ref — 82
somGetMemberToken Method i Ref — 83
somGetMethodData Method i Ref — 84
somGetMethodDescriptor Method o Ref — 85
somGetMethodindex Method Ref — 86
somGetMethodOffset Method (Obsolete) ...t Ref — 87
somGetMethodToken Method i Ref — 88
somGetName Method o i Ref — 89
somGetNthMethodData Method Ref —90
somGetNthMethodInfo Method Ref — 91
somGetNumMethods Method Ref — 92
somGetNumStaticMethods Method Ref —93
somGetParent, somGetParents Methods Ref — 94
somGetPClsMtab, somGetPClsMtabs Methods Ref — 95
SOMGEtRASIUD . ..o Ref — 96
somGetVersionNumbers Method Ref — 98
somlnitClass Method e Ref —99
somlnitMIClass Method i e Ref — 101
somLookupMethod Method Ref — 103
somNew, somNewNolnit Methods i, Ref - 105
somOverrideMtab Method i Ref - 106

iv SOMobjects Base Toolkit

somOverrideSMethod Method i Ref - 108
somRenew, somRenewNolnit, somRenewNolnitNoZero,

somRenewNoZeroMethods i Ref - 109
somSetClassData Method Ref — 111
somSupportsMethod Method Ref - 112
SOMCIassMgr Classcouuiiuirrerannnnnsrrennnnnnnsrssnnnnnnnssnnnns Ref - 113
somClassFromld Method i Ref - 115
somFindClass Method et Ref - 116
somFindClsInFile Method i Ref - 118
somGetlnitFunction Method Ref-120
somGetRelatedClasses Methodo i, Ref — 121
sombLoadClassFile Method i Ref - 123
somLocateClassFile Method Ref — 124
somMergelnto Method Ref — 125
somRegisterClass Method i Ref — 127
somSubstituteClassMethod Ref — 128
somUnloadClassFile Method Ref - 130
somUnregisterClass Method i Ref — 131
SOMODbjJeCt Classcouiiii ittt i esaia s ssnannsanesannnnnnn Ref — 132
somDispatch, somClassDispatch Methods Ref — 133
somDispatchX Methods (Obsolete) ..., Ref — 136
somDumpSelf Method Ref — 138
somDumpSelfint Method Ref - 139
somFree Method Ref — 141
somGetClass Method Ref — 142
somGetClassName Method i Ref — 143
somGetSize Method Ref - 144
somlnit Method i e Ref — 145
SOMISA Method e Ref — 147
somlsinstanceOf Method i Ref — 149
somPrintSelf Method o Ref — 151
somRespondsTo Method Ref - 152
somUninit Method Ref — 153
DSOM Framework Referencecciviiiirirnrnrnrnnnnnns Ref — 155
NOTES .ot e Ref — 156
get_next_response Function Ref — 157
ORBfree FUNCHION e e Ref — 158
send_multiple_requests Function L. Ref — 159
SOMD Init Function e Ref — 161
SOMD_RegisterCallback Function, Ref — 162
SOMD _Uninit Function i e Ref - 164
BOA ClasSsiiiitiiiii i iaeansaaraasaansassassnsssnssnssnnsnsnsnnsns Ref — 165
change_implementation Method i Ref — 166
create Method i Ref — 167
deactivate_impl Method Ref — 169
deactivate_objMethod Ref - 170
dispose Method o Ref — 171
get id Method oo e Ref - 172
get_principal Method e Ref - 173
impl_is_ready Method Ref - 174
obj_is_ready Method i Ref - 175
set_exception Method Ref - 176

Programmers Reference Manual \

vi

CoNteXt ClasSs ...iiiiii ittt ittt e et et asnananntasasaannn e s Ref - 177

create childMethod i e Ref—178
delete valuesMethod Ref - 179
destroy Method (for a Contextobject) Ref — 180
get_ values Method Ref — 181
set_ one value Method i Ref - 183
set valuesMethod e e Ref - 184
ImplementationDef Classoiiiiiiiiii it i ianaiaaaes Ref — 185
IMPIREPOSItOry Classcuiiiii it i e aa i ia s nnnnnannens Ref - 187
add_class_to_impldef Method Ref — 188
add_impldef Method Ref - 189
delete_impldef Method i Ref —190
find_classes_by_impldefMethod Ref — 191
find_impldef Method Ref -192
find_impldef_by_alias Method Ref — 193
find_impldef_by classMethod i Ref - 194
remove_class_from_impldef Method L. Ref - 195
update_impldef Method Ref — 196
NVLIiSt Classccuuuiiiiiiiiiiiin i enasian s inansnas s nnnnnnnnrns Ref - 197
add_itemMethod e e Ref — 198
free Method Ref —200
free_memory Method Ref — 201
get_countMethod Ref — 203
get itemMethod Ref — 204
set_item Method Ref — 206
10 o 1= o 111 [T 03 - T Ref — 208
somdDestroyObject Method Ref — 209
somdGetldFromObject Method Ref - 210
somdGetObjectFromld Method Ref — 211
somdNewObject Method i Ref — 212
somdReleaseObject Method i Ref - 213
L0] 5= 0 - T Ref - 214
create_list Method i e Ref - 215
create_operation_listMethod Ref - 216
get_default_contextMethod Ref — 217
object_to_string Method Ref — 218
string_to_object Method Ref — 219
Principal Classcuiiiiiiiiiiii i i et i i eaaiaa s e Ref — 220
Request Classcouiiinii ittt i asian s ananan s nnnnannrns Ref — 221
add_arg Method e Ref — 222
destroy Method (for a Requestobject) o i, Ref — 224
get_response Method Ref — 226
iNVOKe Method e Ref — 228
send Method e Ref — 230
SOMDCIientProxXy Classouvvieiiiiiii it iianssan i annannanraennns Ref — 232
somdProxyFree Method i Ref — 233
somdProxyGetClass Method i Ref — 234
somdProxyGetClassName Method i i, Ref — 235
somdTargetFree Method Ref — 236
somdTargetGetClass Method i Ref — 237
somdTargetGetClassName Method Ref — 238

SOMobjects Base Toolkit

SOMDODJect Classcuiiiiiiiiiiiiiiis s saaansansraannnnnnnssnnnns Ref — 239

create_request Method Ref — 240
create_request_argsMethod Ref — 243
duplicate Method Ref — 245
get_implementation Method Ref — 246
get_interface Method Ref — 247
is_constant Method e Ref — 248
is nilMethod e Ref — 249
is_proxy Method Ref — 250
is SOM refMethod Ref — 251
release Method i e Ref — 252
SOMDODJeCtMgr Classcoiiuiireiaaninnn i rsaannanrrrannnnnnsrnnnns Ref — 253
somdFindAnyServerByClass Method i it Ref — 254
somdFindServer Method Ref — 255
somdFindServerByName Method i Ref — 256
somdFindServersByClass Method i i, Ref — 257
SOMDServer Classvovuirennrrannrnannrsnnsrsnsnrsnsnssnanssnnnns Ref — 258
somdCreateObj Method Ref — 259
somdDeleteObj Method Ref — 260
somdDispatchMethod Method i Ref — 261
somdGetClassObjMethod i i Ref — 262
somdObjReferencesCached Method it Ref — 263
somdRefFromSOMObj Method i Ref — 264
somdSOMObjFromRef Method e Ref — 265
£ 0 1 0 N 0 - T Ref — 266
activate_impl_failed Method Ref — 267
change_id Method i Ref — 268
create_constant Method i Ref — 269
create SOM refMethod i Ref — 271
execute_next requestMethod Ref — 272
execute_request_loopMethod Ref — 273
get_ SOM_object Method Ref — 275
Interface Repository Framework Reference Ref - 277
AttributeDef Classccciiiiiiiiii ittt iae e iaa e iaa e aaaan Ref - 278
ConstantDef Classciiiiiiiiiiii ettt iasnrraanrraanranansnnnnss Ref — 279
ContaiNned Classciiiiiiiiii it iaee i ianareanarennnrannnrannnns Ref — 280
describe Method e Ref — 282
within Method Ref — 284
ContainNer Classccuiiiiirriie i iaee i ianareannreannrnnnarnnanrnnnnns Ref — 286
contents Method Ref — 287
describe_contents Method Ref — 289
lookup_name Method i Ref — 291
ExceptionDef Classciiiiiiiiiiiiiii ittt iaa i nnannanans Ref — 293
InterfaceDef Classccoiiiiiiiiiiiiiei i iassreaanseasnraannennnn Ref — 294
describe_interface Method Ref — 296
ModuleDef Classueiiiiiii ittt iaainan i rennannnnrs Ref — 298
OperationDef Classcoiiiiiiiiiiiiiii i iaaiiaa s aanaanannsnnnnns Ref — 299
ParameterDef Classciiiiiii ittt i e e et eia e nna e Ref — 301
Repository Classviiiiiiiiii it ittt aaa i ia s Ref — 302
lookup_id Method Ref — 303
lookup_modifier Method Ref — 304
release_cache Method Ref — 306

Programmers Reference Manual vii

viii

TypeDef Classccuiiiii ittt iaa s iaa i naa i aa e Ref — 307

TypeCode_alignment Function i Ref — 308
TypeCode_copy Function e Ref — 309
TypeCode_equal Function i e Ref — 310
TypeCode_free Function ... e Ref — 311
TypeCode_kind Function i Ref —312
TypeCodeNew Function i e Ref — 314
TypeCode_param_count Function Ref - 316
TypeCode_parameter Function it Ref —317
TypeCode_print Function e Ref - 319
TypeCode_setAlignment Function Ref — 320
TypeCode_size FUNCLON e Ref — 321
Utility Metaclass and Methods Reference Ref — 323
SOMMSinglelnstance Classcciiiiiiirrinnnnnnrrrrnannnnnrnnnnns Ref — 324
sommGetSinglelnstance Method Ref — 325
Event Management Framework Reference Ref — 327
SOMECIHEeNtEVENt Classouiiiiiiiiiii it iiaaiinnrannaannnnrnannns Ref — 328
somevGetEventClientData Method i i Ref — 329
somevGetEventClientType Method o i Ref — 330
somevSetEventClientData Method i i Ref — 331
somevSetEventClientType Method o i Ref — 332
SOMEEMaN Classccuuiiininrnnannnnnsrrsnnnnnnnsrssnnnsnnnssnnnns Ref — 333
someChangeRegData Method i Ref — 335
someGetEManSem Method i Ref — 336
someProcessEvent Method Ref — 337
someProcessEvents Method Ref — 338
someQueueEvent Method Ref — 339
someRegister Method Ref — 340
someRegisterEv Method Ref — 342
someRegisterProc Method Ref — 344
someReleaseEManSem Method o Ref — 345
someShutdown Method ... e Ref — 346
someUnRegister Method i Ref — 347
SOMEEMRegisterDataClassccciiiiiiiiiniiinirnrnnnnnnnrnnnnns Ref — 348
someClearRegDataMethod i Ref — 349
someSetRegDataClientType Method it Ref — 350
someSetRegDataEventMask Method il Ref — 351
someSetRegDataSink Method i Ref — 352
someSetRegDataSinkMask Method Ref — 353
someSetRegDataTimerCount Method s, Ref — 354
someSetRegDataTimerInterval Method Ref — 355
SOMEEVENt Classccviiiiiroiiiirannanransesssnnsnansanseansnnnnnns Ref — 356
somevGetEventTime Method i Ref — 357
somevGetEventType Method i Ref — 358
somevSetEventTime Method Ref — 359
somevSetEventType Method i Ref — 360
SOMESINKEVENt Classcoiiiiiiiiiiiirriannnnnrrnnnnnnnnsnnnnns Ref — 361
somevGetEventSink Method Ref — 362
somevSetEventSink Method Ref — 363

SOMobjects Base Toolkit

SOMETIMErEvent Classc.iiiiiiiiiienenenararnsnsnnnnsasnsnnnnnns Ref — 364

somevGetEventinterval Method Ref — 365
somevSetEventinterval Method Ref — 366
SOMEWOIKProCcEVENt Classcccvirirnenencnnrnsnsnsnennsasnsnnnnnns Ref — 367

Programmers Reference Manual ix

About This Book

This book gives reference material for the System Object Model (SOM) of the SOMobjects
Developer Toolkit. In particular, it contains a reference page for every class, method, function,
and macro provided by the SOM run-time library, the DSOM run-time library, the Interface
Repository Framework, and the Event Management Framework. It also includes documenta-
tion of the utility metaclasses provided by the SOMobjects Developer Toolkit, and each of their
methods.

Also, the SOMobjects Developer Toolkit Quick Reference Guide shows the syntax and purpose
for each entry of the current book, plus SOM Compiler commands/flags. In addition, refer to the
SOMobjects Developer Toolkit Users Guide for introductory information.

How This Book Is Organized

At the highest level, this book is organized by framework. Within each framework, the reference
pages describe the classes in alphabetical order, with the methods of each class given in
alphabetical order following their corresponding class. Similarly, related functions and SOM
macros are given in separate alphabetical sequences in the corresponding section. The refer-
ence page for a SOM class contains the following topics:

Description: A description of the class.

File Stem: The file stem for the class’s IDL interface specification (.idl) file
and its usage binding (.h/.xh) files.

Base Class: The class’s direct base (parent) classes.

Ancestor Classes: The class’s ancestor (indirect base) classes.

Metaclass: The class’s metaclass.

New Methods: The names of the methods that the class introduces

(grouped roughly according to purpose).

Each new method is documented on a separate reference page.
Overriding Methods: The names of the methods that the class overrides from

ancestor classes

The reference page for a method of a SOM class contains the following topics:

Purpose: The purpose of the method in brief.

Syntax: The method’s C/C++ procedure prototype (which includes the
method procedure’s return type and the names and types of its
parameters). The in/out/inout keywords associated with each of the
method’s parameters in the method’s IDL declaration are also
shown. These keywords are shown for information only;
they are not actually present in the method procedure prototype.

Description: A description of the method’s use.

Parameters: A description of each of the method procedure’s parameters.
Return Value: A description of the method’s return value.

Example: An example of using or overriding the method, if available.

Although methods of SOM classes are language neutral
(i.e., they can be invoked from any programming language that
can use SOM), the examples given here are written in C.
Original Class: The name of the class that introduces the method
(the class is documented separately in this book).
Related Information: Related methods and functions (and macros, for the SOM kernel)
that can be found in this book.

X SOMobjects Base Toolkit

The reference page for a function has the following topics:

Purpose:
Syntax:

Description:
Parameters:

Return Value:
Example:

Related Information:

The purpose of the function in brief.

The function’s prototype (which includes the return type and the
names and types of the parameters).

A description of the function’s use.

A description of each of the function’s parameters.

A description of the function’s return value.

An example of using the function, if available.

Related methods and functions (and macros, for the SOM kernel)
that can be found in this book.

The reference page for a macro has the following fields:

Purpose:
Syntax:
Description:
Parameters:
Expansion:

Example:
Related Information:

The purpose of the macro in brief.

The syntax for invoking the macro.

A description of the macro’s use.

A description of each of the macro’s parameters.

A description of the macro’s expansion

(although the exact code expansion is not always given).

An example of invoking the macro, if available.

Related macros and functions that can be found in this book.

Who Should Use This Book

This book is for the professional programmer using the SOMobjects Developer Toolkit to build
object-oriented class libraries or application programs that use SOM class libraries or the
frameworks in the SOMobjects Developer Toolkit.

This book assumes that you are an experienced programmer and that you have a general
familiarity with the basic notions of object-oriented programming. Practical experience using an
object-oriented programming language is helpful, but not essential.

Programmers Reference Manual

Xi

Notices

xii

The following terms are trademarks of the International Business Machines Corporation in the
United States and/or other countries:

AlX

Operating System/2
0Ss/2

0S/2 Workplace Shell
RISC System 6000
SOMobijects

System Object Model

For convenience, the acronym “SOM” is used in this publication to reference the technology of
the System Object Model, and the term “SOM Compiler” is used to reference the compiler of the
System Object Model.

Each of the following terms used in this publication is a trademark of another company:

Intel Intel Corporation

IPX Novell Corporation

Lotus 1-2-3 Lotus Development Corporation
Microsoft EXCEL Microsoft Corporation

Microsoft Windows Microsoft Corporation

NetWare Novell Corporation

Objective-C The Stepstone Corporation
Smalltalk Digitalk Inc.

The term “ANSI C” used throughout this publication refers to American National Standard
X3.159-1989.

The term “CORBA” used throughout this publication refers to the Common Object Request
Broker Architecture standards promulgated by the Object Management Group, Inc.

SOMobjects Base Toolkit

SOM Kernel Reference

SOM Kernel Class Organization

SOMObject
class

SOMClassMgr

‘—-
Denotes “is a subclass of”

Programmers Reference Manual

SOM kernel

Ref -1

SOM functions

somApply Function

Purpose

Syntax

Invoke an apply stub. Apply stubs are never invoked directly by SOM users, the somApply
function must be used instead.

boolean somApply (
SOMObject objPtr,
somToken *retPtr,
somMethodDataPtr mdPtr,
va_list args);

Description

somApply provides a single uniform interface through which it is possible to call any method
procedure. The interface is based on the caller passing: the object to which the method proce-
dure isto be applied; a return address for the method result; a somMethodDataPtrindicating the
desired method procedure; and an ANSI standard va list structure containing the method
procedure arguments. Different method procedures expect different argument types and return
different result types, so the purpose of somApply is to select an apply stub appropriate for the
specific method involved, according to the supplied method data, and then call this apply stub.
The apply stub removes the arguments from the va_list, calls the method procedure with these
arguments, accepts the returned result, and then copies this result to the location pointed to by
retPtr.

The method procedure used by the apply stub is determined by the content of the
somMethodData structure pointed to by mdPtr. The class methods somGetMethodData and
somGetNthMethodData are used to load a somMethodData structure. These methods re-
solve static method procedures based on the receiving class’s instance method table.

The SOM APl requires that information necessary for selecting an apply stub be provided when
anew method is registered with its introducing class (via the methods somAddStaticMethod or
somAddDynamicMethod). This is required because SOM itself needs apply stubs when
dispatch method resolution is used. C and C++ implementation bindings for SOM classes
support this requirement, but SOM does not terminate execution if this requirement is not met by
aclassimplementor. Thus, itis possible that there may be methods for which somApply cannot
select an appropriate apply stub. The somMethodData structure for the method can be in-
spected before calling somApply to verify that the method data contains sufficient information
to select an appropriate applyStub: either the applyStub component or the stubinfo component
of this structure must be non—-NULL. If these conditions are met, then somApply performs as
described above, and a TRUE value is returned; otherwise FALSE is returned.

Parameters

objPtr A pointer to the object on which the method procedure is to be invoked.

retPtr A pointer to the memory region into which the result returned by the method
procedure is to be copied. This pointer cannot be null (even in the case of
method procedures whose returned result is void).

mdPtr A pointer to the somMethodData structure that describes the method whose
procedure is to be executed by the apply stub.

args A pointer to a memory region in which all of the arguments to the method
procedure have been laid out in consecutive addresses, according to the
protocol implemented by va_lists. The first entry of the va_list must be objPtr.

Ref - 2 SOM kernel SOMobjects Base Toolkit

SOM functions

Furthermore, all arguments on the va_list must appear in widened form, as
defined by ANSI C. For example, floats must appear as doubles, and chars and
shorts must appear as ints.

Return Value
None.

C++ Example

#include <somcls.xh>
#include <string.h>
#include <stdarg.h>
main ()
{ va_list args = (va_list) SOMMalloc (4);
va_list push = args;
string result;
SOMClass *scObij;
somMethodData md;

somEnvironmentNew (); /* Init environment */
scObj = _SOMClass; /* The SOMClass object */

scObj—>somGetMethodData (somIdFromString (”somGetName”), &md);
va_arg (push, SOMObject) = scObij;

somApply (scObj, (somToken*)&result, &md, args);
SOM_Assert (!strcmp (result,”SOMClass”), SOM_Fatal);
/* result is ”SOMClass” */

Related Information

Data Structures: SOMODbject (somobj.idl), somMethodData (somapi.h),
somToken (somapi.h), somMethodPtr (somitype.h), va_list (stdarg.h)

Methods: somGetMethodData, somGetNthMethodData, somGetRdStub
somAddStaticMethod , somAddDynamicMethod(somcls.idl)

Programmers Reference Manual SOM kernel Ref -3

SOM functions

somBeginPersistentlds Function

Purpose
Tells SOM to begin a “persistent ID interval.”

Syntax
void somBeginPersistentlds ();

Description
The somBeginPersistentlds function informs the SOM ID manager that strings for any new
SOM IDs that are registered will not be freed or modified. This allows the ID manager to use a
pointer to the string in the unregistered ID as the master copy of the ID’s string, rather than
making a copy of the string. This makes ID handling more efficient.

Parameters

None.

Return Value
None.

Example

Ref-4 SOM kernel SOMobjects Base Toolkit

C Example

SOM functions

#include <som.h>
/* This is the way to create somIds efficiently */

static string idlName = "“whoami”;
static somId somId_idl = &idlName;
/*

somId_idl will be registered the first time it is used
in an operation that takes a somId, or it can be explicitly
registered using somCheckId.

*/

main ()
{
somId idl, 1id2;
string id2Name = “whereami”;

somEnvironmentNew () ;

somBeginPersistentIds () ;

idl = somCheckId(somId_idl); /* registers the id as persistent */
somEndPersistentIds () ;

id2 = somIdFromString(id2Name); /* registers the id */

SOM_Assert (!strcmp ("whoami”, somStringFromId(idl)), SOM_Fatal);
SOM_Assert (!strcmp ("whereami”, somStringFromId(id2)), SOM_Fatal);
idlName = ”it does matter”; /* because it is persistent */

id2Name = ”it doesn’t matter”; /* because it is not persistent */

SOM_Assert (strcmp ("whoami”, somStringFromId(idl)), SOM_Fatal);

/* The idl string has changed */

SOM_Assert (!strcmp ("whereami”, somStringFromId(id2)), SOM_Fatal);
/* the id2 string has not */

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromld,
somComparelds, somTotalReglds, somUniqueKey, somSetExpectedids,
somEndPersistentlds

Programmers Reference Manual SOM kernel Ref-5

SOM functions

somBuildClass Function

Purpose
Automate the process of building a new SOM class object.
Syntax
void somBuildClass (
unsigned long inheritVars,
somStaticClassInfoPtr sciPtr,
long majorVersion,
long minorVersion);
Description
The somBuildClass function accepts declarative information defining a new class that is be
built, and performs the activities required to build and register a correctly functioning class
object. The C and C++ implementation bindings use this function to create class objects.
Parameters
inheritVars abit mask that determines inheritance from parent classes. A mask containing
all ones is an appropriate default.
sciPtr a pointer to a structure holding static class information
majorVersion the major version number for the class
minorVersion the minor version number for the class
Example

See any .ih or .xih implementation binding file for details on construction of the required data
structures.

Return Value
None.

Related Information
Data Structures: somStaticClassiInfo (somapi.h)

Ref -6 SOM kernel SOMobjects Base Toolkit

SOM functions

somCheckld Function

Purpose
Registers a som ID.

Syntax

somld somCheckld (somld id);

Description

The somCheckld function registers a SOM ID and converts it into an internal representation.
The input SOM ID is returned. If the ID is already registered, this function has no effect.

Parameters
id The somld to be registered.

Return Value
The registered somid.

Example
See function somBeginPersistentlds().

Related Information
Data Structures: somid (sombtype.h)
Functions: somRegisterld, somldFromString, somStringFromld, somComparelds,

somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Programmers Reference Manual SOM kernel Ref -7

SOM functions

somClassResolve Function

Purpose

Obtains a pointer to the procedure that implements a static method for instances of a particular
SOM class.

Syntax

somMethodPtr somClassResolve (SOMClass c/s, somMToken mToken);

Description

The somClassResolve function is used to obtain a pointer to the procedure that implements
the specified method for instances of the specified SOM class. The returned procedure pointer
can then be used to invoke the method. The somClassResolve function is used to support
“casted” method calls, in which a method is resolved with respect to a specified class rather than
the class of which an object is a direct instance. The somClassResolve function can only be
used to obtain a method procedure for a static method (a method declared in an IDL specifica-
tion for a class); dynamic methods do not have method tokens.

The SOM language usage bindings for C and C++ do not support casted method calls, so this
function must be used directly to achieve this functionality. Whenever using SOM method
procedure pointers, itis necessary to indicate the use of system linkage to the compiler. The way
this is done depends on the compiler and the system being used. However, C and C++ usage
bindings provide an appropriate typedef for this purpose. The name of the typedef is based on
the name of the class that introduces the method, as illustrated in the example below.

Parameters
cls A pointer to the class object whose instance method procedure is required.

mToken The method token for the method to be resolved. The SOM API requires that if
the class “XYZ” introduces the static method “foo”, then the method token for
“foo” is found in the class data structure for “XYZ” (called XYZClassData) in the
structure member named “foo” (i.e., at XYZClassData.foo). Method tokens can
also be obtained using the somGetMethodToken method.

Return Value

A pointer to the somMethodProc (procedure) that implements the specified method for the
specified class of SOM object.

Ref -8 SOM kernel SOMobjects Base Toolkit

SOM functions

C++ Example

// SOM IDL for class A and class B
#include <somobj.idl>
module scrExample {
interface A : SOMObject { void foo(); implementation {
callstyle=o0idl; }; 1};
interface B : A { implementation { foo: override; }; };

}i

// Example C++ program to implement and test module scrExample
#define SOM_Module_screxample_Source

#include <scrExample.xih>

#include <stdio.h>

SOM_Scope void SOMLINK scrExample_Afoo (scrExample A *somSelf);
{ printf(”1\n”); }

SOM_Scope void SOMLINK scrExample_Bfoo (scrExample B *somSelf);
{ printf (”2\n”); }

main ()

{

scrExample_B *objPtr = new scrExample_B;

// This prints 2
objPtr->foo();

// This prints 1
((somTD_scrExample_A_foo) /* A necessary method procedure cast */
somClassResolve (
_scrExample_A, // the A class object
scrExample_AClassData.foo) // the foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */

// This prints 2
((somTD_scrExample_A_foo) /* A necessary method procedure cast */
somClassResolve (
_scrExample_B, // the B class object
scrExample_AClassData.foo) // the foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */

Related Information

Data Structures: somMethodPtr (somitype.h), SOMClass (somcls.idl),
somMToken (somitype.h).

Functions: somResolveByName, somParentResolve, somParentNumResolve,
somResolve

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,
somGetApplyStub, somGetMethodToken

Macros: SOM_Resolve, SOM_ResolveNoCheck

Programmers Reference Manual SOM kernel Ref-9

SOM functions

somComparelds Function

Purpose
Determines whether two SOM IDs represent the same string.

Syntax

long somComparelds (somid id7, somld id2);

Description

The somComparelds function returns 1 if the two input IDs represent strings that are equal;
otherwise, it returns 0.

Parameters
id1 The first SOM ID to be compared.
id2 The second SOM ID to be compared.

Return Value

Returns returns 1 if the two input IDs represent strings that are equal; otherwise, it returns 0.

C Example

#include <som.h>
main ()
{
somId idl, id2, id3;

somEnvironmentNew () ;

idl = somIdFromString (”this”);
id2 = somIdFromString (”“that”);
id3 = somIdFromString (”“this”);

SOM_Test (somComparelds (idl, 1id3));
SOM_Test (! somCompareIds (idl, id2));

Related Information
Data Structures: somld (sombtype.h)

Functions: somCheckld, somRegisterld, somldFromString, somStringFromid,
somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Ref —10 SOM kernel SOMobjects Base Toolkit

SOM functions

somDataResolve Function

Purpose
Accesses instance data within an object.

Syntax

somToken somDataResolve (SOMObject obj, somDToken dToken);

Description

The somDataResolve function is used to access instance data within an object. This function is
of use primarily to class implementors (rather than class clients) who are not using the SOM C or
C++ language bindings.

For C or C++ programmers with access to the C or C++ implementation bindings for a class,
instance data can be accessed using the <className>GetData macro (which expands to a
usage of somDataResolve).

Parameters
obj A pointer to the object whose instance data is required.

dToken A data token for the required instance data. The SOM API specifies that the
data token for accessing the instance data introduced by a class is found in the
instanceDataToken component of the auxiliary class data structure for that
class. The example below illustrates this.

Return Value
A somToken (i.e., a pointer) that points to the data in obj identified by the dToken.

C Example

The following C/C++ expression evaluates to the address of the instance data introduced by
class “XYZ” within the object “obj”. This assumes that obj points to an instance of “XYZ” or a
subclass of “XYZ".

include <som.h>
somDataResolve (obj, XYZCClassData.instanceDataToken)

Related Information

Data Structures: somToken (somitype.h), SOMObject (somobj.idl),
somDToken (somitype.h)

Programmers Reference Manual SOM kernel Ref — 11

SOM functions

somEndPersistentlds Function

Purpose
Tells SOM to end a “persistent ID interval.”

Syntax

void somEndPersistentlds ();

Description

The somEndPersistentlds function informs the SOM ID manager that strings for any new SOM
IDs that are registered might be freed or modified by the client program. Thus, the ID manager
must make a copy of the strings.

Parameters
None.

Return Value
None.

Example
See function somBeginPersistentlds.

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromid,
somComparelds, somTotalReglds, somUniqueKey, somSetExpectedids,
somBeginPersistentlds

Ref —12 SOM kernel SOMobjects Base Toolkit

SOM functions

somEnvironmentNew Function

Purpose
Initializes the SOM runtime environment.

Syntax

SOMClassMgr somEnvironmentNew ();

Description

The somEnvironmentNew function creates the four primitive SOM objects (SOMObject,
SOMClass, SOMClassMgr, and SOMClassMgrObject) and initializes global variables used by
the SOM run-time environment. This function must be called before using any other SOM
functions or methods (with the exception of somSetExpectedlds). If the SOM run-time environ-
ment has already been initialized, calling this function has no harmful effect.

Although this function must be called before using other SOM functions or methods, it needn’t
always be called explicitly, because the <className>New macros, the <className>Renew
macros, the new operator, and the <className>NewClass procedures defined by the SOM C
and C++ language bindings call somEnvironmentNew if needed.

Parameters
None.

Return Value

A pointer to the single class manager object active at run time. This class manager can be
referred by the global variable SOMClassMgrObject.

Example

somEnvironmentNew () ;

Related Information

Functions: somExceptionld, somExceptionValue, somSetException,
somGetGlobalEnvironment

Programmers Reference Manual SOM kernel Ref-13

SOM functions

somExceptionFree Function

Purpose
Frees the memory held by the exception structure within an Environment structure.

Syntax

void somExceptionFree (Environment *ev);

Description

The somExceptionFree function frees the memory held by the exception structure within an
Environment structure.

Parameters
ev A pointer to the Environment whose exception information is to be freed.

Return Value
None.

Example
See function somSetException.

Related Information
Data Structures: Environment (somcorba.h)

Functions: somExceptionld, somExceptionValue, somSetException,
somGetGlobalEnvironment

Ref —14 SOM kernel SOMobjects Base Toolkit

SOM functions

somExceptionid Function

Purpose
Gets the name of the exception contained in an Environment structure.
Syntax
string somExceptionld (Environment *ev);
Description
The somExceptionld function returns the name of the exception contained in the specified
Environment structure.
Parameters

ev A pointer to an Environment structure containing an exception.

Return Value

The somExceptionld function returns the name of the exception contained in the specified
Environment structure, as a string.

Example
See function somSetException.

Related Information
Data Structures: string (somcorba.h), Environment (somcorba.h)

Functions: somExceptionValue, somExceptionFree, somSetException,
somGetGlobalEnvironment

Programmers Reference Manual SOM kernel Ref —15

SOM functions

somExceptionValue Function

Purpose
Gets the value of the exception contained in an Environment structure.

Syntax

somToken somExceptionValue (Environment *ev);

Description

The somExceptionValue function returns the value of the exception contained in the specified
Environment structure.

Parameters
ev A pointer to an Environment structure containing an exception.

Return Value

The somExceptionValue function returns a pointer to the value of the exception contained in
the specified Environment structure.

Example

See function somSetException.

Related Information
Data Structures: somToken (somitype.h), Environment (somcorba.h)

Functions: somExceptionld, somExceptionFree, somSetException,
somGetGlobalEnvironment

Ref —16 SOM kernel SOMobjects Base Toolkit

SOM functions

somGetGlobalEnvironment Function

Purpose
Returns a pointer to the current global Environment structure.

Syntax

Environment *somGetGlobalEnvironment ();

Description

The somGetGlobalEnvironment function returns a pointer to the current global Environment
structure. This structure can be passed to methods that require an (Environment *) argument.
The caller can determine if the called method has raised an exception by testing whether

ev->exception._major != NO_EXCEPTION

If an exception has been raised, the caller can retrieve the name and value of the exception
using the somExceptionld and somExceptionValue methods.

Parameters
None.

Return Value
A pointer to the current global Environment structure.

Example
See function somSetException.

Related Information
Data Structures: Environment (somcorba.h)

Functions: somExceptionld, somExceptionValue,
somExceptionFree, somSetException

Programmers Reference Manual SOM kernel Ref-17

SOM functions

somldFromString Function

Purpose
Returns the SOM ID corresponding to a given text string.

Syntax

somld somldFromString (string aString);

Description
The somldFromString function returns the SOM ID that corresponds to a given text string.
Ownership of the somld returned by somldFromString passes to the caller, which has the
responsibility to subsequently free the somld using SOMFree.

Parameters
aString The string to be converted to a SOM ID.

Return Value
Returns the SOM ID corresponding to the given text string.

Example
See function somBeginPersistentlds.

Related Information
Data Structures: somld (sombtype.h), string (somcorba.h)

Functions: somCheckld, somRegisterld, somStringFromld, somComparelds,
somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Ref —18 SOM kernel SOMobjects Base Toolkit

SOM functions

somisObj Function

Purpose
Failsafe routine to determine whether a pointer references a valid SOM object.

Syntax
boolean somisObj (somToken memPir);

Description
The somlsObj function returns 1 if its argument is a pointer to a valid SOM object, or returns 0
otherwise. The function handles address faults, and does extensive consistency checking to
guarantee a correct result.

Parameters

mempPtr A somToken (a pointer) to be checked.

Return Value

The somlsObj function returns 1 if objis a pointer to a valid SOM object, and 0 otherwise.

C++ Example

#include <stdio.h>
#include <som.xh>

void example (void *memPtr)
{
if (!somIsObj (memPtr))

printf ("memPtr is not a valid SOM object.\n”);
else

printf ("memPtr points to an object of class %s\n”,
((SOMObject *)memPtr)->somGetClassName ());

Related Information

Data Structures: boolean (somcorba.h), somToken (somitype.h)

Programmers Reference Manual SOM kernel Ref -19

SOM functions

somLPrintf Function

Purpose
Prints a formatted string in the manner of the C printf function, at the specified indentation level.

Syntax

long somLPrintf (long /evel, string fmt, ...);

Description

The somLPrintf function prints a formatted string using SOMOutCharRoutine, in the same
manner as the C printf function. The implementation of SOMOutCharRoutine determines the
destination of the output, while the C printf function is always directed to stdout. (The default
output destination for SOMOutCharRoutine is stdout also, but this can be modified by the user.)
The output is prefixed at the indicated level, by preceding it with 2*level spaces.

Parameters
level The level at which output is to be placed.
fmt The format string to be output.

varargs The values to be substituted into the format string.

Return Value
Returns the number of characters written.

C Example

#include <somobj.h>
somLPrintf (5, ”“The class name is %s.\n”, _somGetClassName (ob3j));

Related Information
Data Structures: string (somcorba.h)

Functions: somVprintf, somPrefixLevel, somPrintf, SOMOutCharRoutine

Ref —20 SOM kernel SOMobjects Base Toolkit

SOM functions

somParentNumResolve Function

Purpose

Obtains a pointer to a procedure that implements a method, given a list of method tables.

Syntax

somMethodPtr somParentNumResolve (

Description

somMethodTabs parentMtab,
int parentNum,
somMToken mToken);

The somParentNumResolve function is used to make parent method calls by the C and C++
language implementation bindings. The somParentNumResolve function returns a pointer to
a procedure for performing the specified method. This pointer is selected from the specified
method table, which is intended to be the method table corresponding to a parent class.

For C and C++ programmers, the implementation bindings for SOM classes provide convenient
macros for making parent method calls (the “parent_” macros).

Parameters
parentMtab

parentNum

mToken

Return Value

A list of method tables for the parents of the class being implemented. The
SOM API specifies that the list of parent method tables for a given class be
stored in the auxiliary class data structure of the class, in the parentMtab
component. Thus, for the class “XYZ”, the parent method table list is found in
location XYZCClassData.parentMtab. Parent method table lists are available
from class objects via the method call somGetPClsMtabs.

The position of the parent for which the method is to be resolved. The order of a
class’s parents is determined by the order in which they are specified in the
interface statement for the class. (The first parent is number 1.)

The method token for the method to be resolved. The SOM API requires that if
the class “XYZ” introduces the static method “foo”, then the method token for
“foo” is found in the class data structure for “XYZ” (called XYZClassData) in the
structure member named “foo” (i.e., at XYZClassData.foo). Method tokens can
also be obtained using the somGetMethodToken method.

A pointer to a somMethodProc (procedure) that implements the specified method, selected
from the specified method table.

Programmers Reference Manual

SOM kernel Ref — 21

SOM functions

C++ Example

// SOM IDL for class A and class B
#include <somobj.idl>
module spnrExample {
interface A : SOMObiject { void foo(); implementation {
callstyle=o0idl; 1}; 1};
interface B : A { implementation { foo: override; }; };

}i

// Example C++ program to implement and test module scrExample
#define SOM_Module_spnrexample_Source

#include <spnrExample.xih>

#include <stdio.h>

SOM_Scope void SOMLINK spnrExample_ Afoo (spnrExample_ A *somSelf);
{ printf(”1\n”); }

SOM_Scope void SOMLINK spnrExample_ Bfoo (spnrExample_B *somSelf);
{ printf (”2\n”); }

main ()
{

spnrExample_B *objPtr = new spnrExample_B;

// This prints 2
objPtr->foo();

// This prints 1
((somTD_spnrExample_A_foo) /* This method procedure expression cast
is necessary */
somParentNumResolve (
objPtr->somGetClass () —>somGetPClsMtabs (),
1,
spnrExample_AClassData.foo) // the foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */

Related Information

Data Structures: somMethodPtr (somitype.h), somMethodTabs (somitype.h),
somMToken (somitype.h)

Functions: somResolveByName, somResolve, somParentNumResolve,
somClassResolve

Methods: somGetPClsMtab, somGetPClsMtabs, somGetMethodToken
Macros: SOM_ParentNumResolve, SOM_Resolve, SOM_ResolveNoCheck

Ref —-22 SOM kernel SOMobjects Base Toolkit

SOM functions

somParentResolve Function

Purpose
Obtains a pointer to a procedure that implements a method, given a list of method tables.
Obsolete but still supported.

Syntax
somMethodPtr somParentResolve (somMethodTabs parentMtab,

somMToken mToken);

Description
The somParentResolve function is used by old, single-parent class binaries to make parent
method calls. The function is obsolete, but is still supported. The somParentResolve function
returns a pointer to the procedure thatimplements the specified method. This pointer is selected
from the first method table in the parentMtab list.

Parameters

parentMtab A list of parent method tables, the first of which is the method table for the
parent class for which the method is to be resolved. The SOM APl specifies that
the list of parent method tables for a given class be stored in the auxiliary class
data structure of the class, in the parentMtab component. Thus, for
the class “XYZ”, the parent method table list is found in location
XYZCClassData.parentMtab. Parent method table lists are available from
class objects via the method call somGetPClsMtabs.

mToken The method token for the method to be resolved. The SOM API requires that if
the class “XYZ” introduces the static method “foo”, then the method token for
“foo” is found in the class data structure for “XYZ” (called XYZClassData) in the
structure member named “foo” (i.e., at XYZClassData.foo). Method tokens can
also be obtained using the somGetMethodToken method.

Return Value

A pointer to the somMethodProc (procedure) that implements the specified method, selected
from the first method table.

Related Information

Data Structures: somMethodPtr (somitype.h), somMethodTabs (somitype.h),
somMToken (somitype.h).

Functions: somResolveByName, somResolve, somParentNumResolve,
somClassResolve

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,
somGetApplyStub, somGetMethodToken

Macros: SOM_Resolve, SOM_ResolveNoCheck

Programmers Reference Manual SOM kernel Ref — 23

SOM functions

somPrefixLevel Function

Purpose
Outputs blanks to prefix a line at the indicated level.
Syntax
void somPrefixLevel (long /evel);
Description
The somPrefixLevel function outputs blanks (via the somPrintf function) to prefix the nextline
of output at the indicated level. (The number of blanks produces is 2*level.) This function is
useful when overriding the somDumpSelfint method, which takes the level as an argument.
Parameters

level The level at which the next line of output is to start.

Return Value
None.

C/C++ Example

#include <som.h>
somPrefixLevel (5);

Related Information
Functions: somPrintf, somVprintf, somLPrintf, SOMOutCharRoutine

Ref -24 SOM kernel SOMobjects Base Toolkit

SOM functions

somPrintf Function

Purpose

Syntax

Prints a formatted string in the manner of the C printf function.

long somPrintf (string fmt, ...);

Description

The somPrintf function prints a formatted string using function SOMOutCharRoutine, in the
same manner as the C printf function. The implementation of SOMOutCharRoutine deter-
mines the destination of the output, while the C printf function is always directed to stdout. (The
default output destination for SOMOutCharRoutine is stdout also, but this can be modified by
the user.)

Parameters

fmt The format string to be output.

varargs The values to be substituted into the format string.

Return Value

C Example

Returns the number of characters written.

#include <somcls.h>
somPrintf ("The class name is %s.\n”, _somGetClassName (obj));

Related Information

Functions: somVprintf, somPrefixLevel, somLPrintf, SOMOutCharRoutine

Programmers Reference Manual SOM kernel Ref — 25

SOM functions

somRegisterld Function

Purpose
Registers a SOM ID and determines whether or not it was previously registered.

Syntax

long somRegisterld (somld id);

Description

The somRegisterld function registers a SOM ID and converts itinto an internal representation.
If the ID is already registered, somRegisterld returns 0 and has no effect. Otherwise,
somRegisterld returns 1.

Parameters
id The somld to be registered.

Return Value
If the ID is already registered, somRegisterld returns 0. Otherwise, somRegisterld returns 1.

C Example
#include <som.h>
static string s = "unregistered”;
static somId sid = &s;
main ()

{
somEnvironmentNew () ;
SOM_Test (somRegisterId(sid) == 1);
SOM_Test (somRegisterId(somIdFromString (”“registered”)) == 0);

Related Information
Data Structures: somid (sombtype.h).

Functions: somCheckld, somldFromString, somStringFromld, somComparelds,
somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Ref - 26 SOM kernel SOMobjects Base Toolkit

SOM functions

somResolve Function

Purpose
Obtains a pointer to the procedure that implements a method for a particular SOM object.

Syntax
somMethodPtr somResolve (SOMObject obj, somMToken mToken);

Description

The somResolve function returns a pointer to the procedure that implements the specified
method for the specified SOM object. This pointer can then be used to invoke the method. The
somResolve function can only be used to obtain a method procedure for a static method (one
declared in an IDL or OIDL specification for a class); dynamic methods are not supported by
method tokens.

For C and C++ programmers, the SOM usage bindings for SOM classes provide more conve-
nient mechanisms for invoking methods. These bindings use the SOM_Resolve and
SOM_ResolveNoCheck macros, which construct a method token expression from the class
name and method name, and call somResolve.

Parameters
obj A pointer to the object whose method procedure is required.

mToken The method token for the method to be resolved. The SOM API requires that if
the class “XYZ” introduces the static method “foo”, then the method token for
“foo” is found in the class data structure for “XYZ” (called XYZClassData) in the
structure member named “foo” (i.e., at XYZClassData.foo). Method tokens can
also be obtained using the somGetMethodToken method.

Return Value

A pointer to the somMethodProc (procedure) that implements the specified method for the
specified SOM object.

Programmers Reference Manual SOM kernel Ref - 27

SOM functions

C Example

// SOM IDL for class A and class B
#include <somobj.idl>
module srExample {

interface A : SOMObiject { void foo(); implementation {
callstyle=o0idl; 1}; 1};
interface B : A { implementation { foo: override; }; };

}i

// Example C++ program to implement and test module scrExample
#define SOM_Module_srexample_Source

#include <srExample.ih>

#include <stdio.h>

SOM_Scope void SOMLINK srExample_Afoo (srExample_A *somSelf);
{ printf(”"1\n"); }

SOM_Scope void SOMLINK srExample_Bfoo (srExample_B *somSelf);
{ printf (”"2\n"); }

main ()
{
srExample_B objPtr = srExample_BNew () ;

/* This prints 2 */
((somTD_srExample_A_foo) /* this method procedure expression cast
is necessary */
somResolve (0bjPtr, srExample_AClassData.foo)
) /* end of method procedure expression */
(objPtr);

Related Information
Data Structures: somMethodPtr (somitype.h), somMToken (somitype.h).

Functions: somResolveByName, somParentResolve, somParentNumResolve,
somClassResolve

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,
somGetMethodToken

Macros: SOM_Resolve, SOM_ResolveNoCheck

Ref - 28 SOM kernel SOMobjects Base Toolkit

SOM functions

somResolveByName Function

Purpose

Obtains a pointer to the procedure that implements a method for a particular SOM object.

Syntax
somMethodPtr somResolveByName (SOMODbject obj, string methodName);

Description

The somResolveByName function is used to obtain a pointer to the procedure thatimplements
the specified method for the specified SOM object. The returned procedure pointer can then be
used to invoke the method. The C and C++ usage bindings use this function to support
name—lookup methods.

This function can be used for invoking dynamic methods. However, the C and C++ usage
bindings for SOM classes do not support dynamic methods, thus typedefs necessary for the use
of dynamic methods are not available as with static methods. The function somApply provides
an alternative mechanism for invoking dynamic methods that avoids the need for casting
procedure pointers.

Parameters
obj A pointer to the object whose method procedure is required.

methodName A character string representing the name of the method to be resolved.

Return Value

A pointer to the somMethodProc (procedure) that implements the specified method for the
specified SOM object.

C Example

Assuming the static method “setSound,” is introduced by the class "Animal”, the following
example will correctly invoke this method on an instance of "Animal” or one of its descendent
classes.

#include <animal.h>
example (Animal myAnimal)
{
somTD_Animal_setSound
setSoundProc = somResolveByName (myAnimal, “setSound”);
setSoundProc (myAnimal, ”“Roar!”);

}

Related Information
Data Structures: somMethodPtr (somitype.h), SOMObject (somobj.idl), string (somcorba.h)

Functions: somResolve, somParentResolve, somParentNumResolve,
somClassResolve

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,
somGetApplyStub

Macros: SOM_Resolve, SOM_ResolveNoCheck

Programmers Reference Manual SOM kernel Ref — 29

SOM functions

somSetException Function

Purpose
Sets an exception value in an Environment structure.
Syntax
void somSetException (Environment *ey,
enum exception_type major,
string exceptionName,
void *params);
Description
The somSetException function sets an exception value in an Environment structure.
Parameters

ev A pointer to the Environment structure in which to set the exception. This
value must be either NULL or a value formerly obtained from the function
somGetGlobalEnvironment.

major An integer representing the type of exception to set.

exceptionName The qualified name of the exception to set. The SOM Compiler defines, in the
header files it generates for an interface, a constant whose value is the quali-
fied name of each exception defined within the interface. This constant has the
name “ex_<exceptionName>", where <exceptionName> is the qualified
(scoped) exception name. Where unambiguous, the usage bindings also de-
fine the short form “ex_<exceptionName>", where <exceptionName> is un-
qualified.

params A pointer to an initialized exception structure value. No copy is made of this
structure; hence, the caller cannot free it. The somExceptionFree function
should be used to free the Environment structure that contains it.

Return Value
None.

Ref —30 SOM kernel SOMobjects Base Toolkit

C Example

/*

/*

SOM functions

IDL declaration of class X: */

interface X : SOMObiject {
exception OUCH {long codel; long code2; 1};
void foo(in long arg) raises (OUCH);

}i

implementation of foo method */

SOM_Scope void SOMLINK foo (X somSelf, Environment *ev, long arg)

{

}

X_OUCH *exception_params; /* X_OUCH struct is defined
in X’s usage bindings */

if (arg > 5) /* then this is a very bad error */

{

exception_params = (X_OUCH*)SOM_Malloc (sizeof (X_OUCH));
exception_params—->codel = arg;
exception_params—->code2 = arg-5;

somSetException (ev, USER_EXCEPTION, ex_X_OUCH,
exception_params);
/* the Environment ev now contains an X_OUCH exception, with
* the specified exception_params struct. The constant
* ex_X OUCH is defined in foo.h. Note that exception_params
* must be malloced.
*/

return;

main ()

{

Environment *ev;
X x;

somEnvironmentNew () ;

x = Xnew();

ev = somGetGlobalEnvironment () ;
X_foo(x, ev, 23);

if (ev->_major != NO_EXCEPTION) ({
printf (”"foo exception = %$s\n”, somExceptionId(ev));

printf (”“codel = %d\n”,
((X_OUCH*) somExceptionValue (ev)) —>codel) ;
/* finished handling exception. */
/* free the copied id and the original X_OUCH structure: */
somExceptionFree (ev) ;

Related Information

Data Structures: Environment, exception_type, string (somcorba.h)

Functions: somExceptionld, somExceptionValue, somExceptionFree,
somGetGlobalEnvironment

Programmers Reference Manual SOM kernel Ref — 31

SOM functions

somSetExpectedlds Function

Purpose
Tells SOM how many unique SOM IDs a client program expects to use.

Syntax

void somSetExpectedlds (unsigned long numlds);

Description

The somSetExpectedlds function informs the SOM run-time environment how many unique
SOM IDs a client program expects to use during its execution. This has the potential of slightly
improving the program’s space and time efficiency, if the value specified is accurate. This
function, if used, must be called prior to any explicit or implicit invocation of the
somEnvironmentNew function to have any effect.

Parameters
numlds The number of SOM IDs the client program expects to use.

Return Value
None.

C Example

#include <som.h>
somSetExpectedIds (1000);

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromid,
somComparelds, somTotalReglds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Ref -32 SOM kernel SOMobjects Base Toolkit

SOM functions

somStringFromld Function

Purpose
Returns the string that a SOM ID represents.

Syntax

string somStringFromld (somld id);

Description
The somStringFromld function returns the string that a given SOM ID represents.

Parameters
id The SOM ID for which the corresponding string is needed.

Return Value
Returns the string that the given SOM ID represents.

Example
See function somBeginPersistentlds.

Related Information
Data Structures: string (somcorba.h), somld (sombtype.h).

Functions: somCheckld, somRegisterld, somldFromString, somComparelds,
somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Programmers Reference Manual SOM kernel Ref — 33

SOM functions

somTotalReglds Function

Purpose
Returns the total number of SOM IDs that have been registered.

Syntax

unsigned long somTotalReglds ();

Description

The somTotalReglds function returns the total number of SOM IDs that have been registered
so far. This value can be used as a parameter to the somSetExpectedlds function to advise
SOM about expected ID usage in later executions of a client program.

Parameters
None.

Return Value
Returns the total number of SOM IDs that have been registered.

C Example

#include <som.h>
main ()
{ int 1i;
somId id;
somEnvironmentNew () ;
id = somIdFromString (”abc”)
i = somTotalRegIds();
id = somIdFromString (”abc”);
SOM_Test (i == somTotalRegIds);

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromid,
somComparelds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Ref —34 SOM kernel SOMobjects Base Toolkit

SOM functions

somUniqueKey Function

Purpose
Returns the unique key associated with a SOM ID.

Syntax

unsigned long somUniqueKey (somliD id);

Description

The somUniqueKey function returns the unique key associated with a SOM ID. The unique key
for a SOM ID is a number that uniguely represents the string that the SOM ID represents. The
unique key for a SOM ID is the same as the unique key for another SOM ID only if the two SOM
IDs represent the same string.

Parameters
id The SOM ID for which the unique key is needed.

Return Value
An unsigned long representing the unique key of the specified SOM ID.

C Example

#include <som.h>
main ()
{
unsigned long k1, k2;

k1 = somUniqueKey (somIdFromString (”abc”));
k2 = somUniqueKey (somIdFromString (”abc”));
SOM_Test (k1 == k2);

Related Information
Data Structures: somid (sombtype.h)

Functions: somCheckld, somRegisterld, somldFromString, somStringFromid,
somComparelds, somTotalReglds, somSetExpectedlds, somBeginPersistentids,
somEndPersistentlds

Programmers Reference Manual SOM kernel Ref — 35

SOM functions

somVprintf Function

Purpose

Prints a formatted string in the manner of the C vprintf function.

Syntax

long somVprintf (string f/mt, va_list ap);

Description

The somVprintf function prints a formatted string using SOMOutCharRoutine, in the same
manner as the C vprintf function. The implementation of SOMOutCharRoutine determines the
destination of the output, while the C printf function is always directed to stdout. (The default
output destination for SOMOutCharRoutine is stdout also, but this can be modified by the user.)

Parameters

fmt The format string to be output.

ap A va_list representing the values to be substituted into the format string.

Return Value

Returns the number of characters written.

C Example

#include <som.h>

main ()

{
va_list args = (va_list) SOMCalloc (20);
va_list push = args;
float £ = 3.1415

char ¢ = "a’;

va_arg (push, int) = 1;

va_arg (push, double) = f; /* note ANSI widening */
va_arg(push, int) = c¢; /* here, too */

va_arg (push, char*) = "this is a test”;

somVprintf (”%d, %f, %c, %s\n”, args);

Related Information
Data Structures: string (somcorba.h), va_list (stdarg.h).

Functions: somPrintf, somPrefixLevel, somLPrintf, SOMOutCharRoutine

Ref —36 SOM kernel SOMobjects Base Toolkit

SOM functions

SOMCalloc Function

Purpose

Allocates sufficient memory for an array of objects of a specified size.

Syntax

somToken (*SOMCalloc) (size_t num, size_t size);

Description

The SOMCalloc function allocates an amount of memory equal to num*size (sufficient memory
for an array of numobjects of size size). The SOMCalloc function has the same interface as the
C calloc function. It performs the same basic function as calloc with some supplemental error
checking. If an error occurs, the SOMError function is called. This routine is replaceable by
changing the value of the global variable SOMCalloc.

Parameters
num The number of objects for which space is to be allocated.

size The size of the objects for which space to is to be allocated.

Return Value
A pointer to the first byte of the allocated space.

Example
See function somVprintf.

Related Information
Data Structures: somToken (somitype.h)
Functions: SOMMalloc, SOMRealloc, SOMFree

Programmers Reference Manual SOM kernel Ref - 37

SOM functions

SOMClassInitFuncName Function

Purpose
Returns the name of the function used to initialize classes in a DLL.

Syntax
string (*SOMClassInitFuncName) ();

Description
The SOMClassInitFuncName function is called by the SOM Class Manager to determine what
function to call to initialize the classes in a DLL. The default version returns the string
“SOMInitModule.” The function can be replaced (so that the Class Manager will invoke a
different function to initialize classes in a DLL) by changing the value of the global variable
SOMClassInitFuncName.

Parameters

None.

Return Value
Returns the name of the function that should be used to initialize classes in a DLL.

C Example

#include <som.h>
string XYZFuncName () { return ”XYz”; }
main ()
{
SOMClassInitFuncName = XYZFuncName;

Related Information
Data Structures: string (somcorba.h)
Functions: SOMLoadModule, SOMDeleteModule

Ref — 38 SOM kernel SOMobjects Base Toolkit

SOM functions

SOMDeleteModule Function

Purpose

Unloads a dynamically linked library (DLL).

Syntax
long (*SOMDeleteModule) (somToken modHandle);

Description
The SOMDeleteModule function unloads the specified dynamically linked library (DLL). This
routine is called by the SOM Class Manager to unload DLLs. SOMDeleteModule can be
replaced (thus changing the way the Class Manager unloads DLLS) by changing the value of
the global variable SOMDeleteModule.

Parameters
modHandle The somToken for the DLL to be unloaded. This token is supplied by the

SOMLoadModule function when it loads the DLL.
Return Value

Returns 0 if successful or a non-zero system-specific error code otherwise.

Related Information
Data Structures: somToken (somitype.h).
Functions: SOMLoadModule, SOMClassInitFuncName

Programmers Reference Manual SOM kernel Ref — 39

SOM functions

SOMError Function

Purpose

Handles an error condition.

Syntax

void (*SOMEtrror) (int errorCode, string fileName, int lineNum);

Description

The SOMETrror function inspects the specified error code and takes appropriate action, depend-
ing on the severity of the error. The last digit of the error code indicates whether the error is
classified as SOM_Fatal (9), SOM_Warn (2), or SOM_Ignore (1). The default implementation of
SOME-rror prints a message that includes the specified error code, filename, and line number,
and terminates the current process if the error is classified as SOM_Fatal. The fileName and
lineNum arguments specify where the error occurred. This routine can be replaced by changing
the value of the global variable SOMError.

For C and C++ programmers, SOM defines a convenience macro, SOM_Error, which invokes
the SOMError function and supplies the last two arguments.
Parameters
errorCode An integer representing the error code of the error.
fileName The name of the file in which the error occurred.

lineNum The line number where the error occurred.

Return Value
None.

Related Information

Macros: SOM_Test, SOM_TestC, SOM_WarnMsg, SOM_Assert,
SOM_Expect, SOM_Error

Ref —40 SOM kernel SOMobjects Base Toolkit

SOM functions

SOMFree Function

Purpose
Frees the specified block of memory.

Syntax
void (*SOMFree) (somToken pin);

Description
The SOMFree function frees the block of memory pointed to by ptr. SOMFree should only be
called with a pointer previously allocated by SOMMalloc or SOMCalloc. The SOMFree function
has the same interface as the C free function. It performs the same basic function as free with
some supplemental error checking. If an error occurs, the SOMError function is called. This
routine is replaceable by changing the value of the global variable SOMFree.
To free an object (rather than a block of memory), use the somFree method, rather than this
function.

Parameters
ptr A pointer to the block of storage to be freed.

Return Value
None.

C Example

#include <som.h>

main ()

{
somToken ptr = SOMMalloc (20);
somFree (ptr) ;

}

Related Information
Functions: SOMCalloc, SOMRealloc, SOMMalloc

Methods: somFree

Programmers Reference Manual SOM kernel Ref — 41

SOM functions

SOMLoadModule Function

Loads the dynamically linked library (DLL) containing a SOM class.

long (*SOMLoadModule)

(string className,
string fileName,

string functionName,
long majorVersion,

long minorVersion,
somToken *modHandle);

The SOMLoadModule function loads the dynamically linked library (DLL) containing a SOM
class. This routine is called by the SOM Class Manager to load DLLs. SOMLoadModule can be
replaced (thus changing the way the Class Manager loads DLLS) by changing the value of the
global variable SOMLoadModule.

Purpose

Syntax

Description

Parameters
className
fileName
functionName
majorVersion

minorVersion

modHandle

Return Value

The name of the class whose DLL is to be loaded.

The name of the DLL library file.
This can be either a simple name or a fully-qualified pathname.

The name of the routine to be called after the DLL is loaded. The routine is
responsible for creating a class object for each class in the DLL. Typically, this
argument will have the value SOMinitModule, obtained from the
SOMClassInitFuncName function. If no SOMInitModule entry exists in the
DLL, the default version of SOMLoadModule looks for a routine named
<className>NewClass instead. If neither entry point is found, the default
version of SOMLoadModule fails.

The expected major version number of the class, to be passed to the initializa-
tion routine of the DLL.

The expected minor version number of the class, to be passed to the initializa-
tion routine of the DLL.

The address where SOMLoadModule should place a token that can be subse-
quently used by the SOMDeleteModule routine to unload the DLL.

Returns 0 if successful or a non-zero system-specific error code otherwise.

Related Information

Functions: SOMDeleteModule, SOMClassInitFuncName

Ref—-42 SOM kernel

SOMobjects Base Toolkit

SOM functions

SOMMalloc Function

Purpose

Allocates the specified amount of memory.

Syntax

somToken SOMMalloc (size_t size);

Description

The SOMMalloc function allocates size bytes of memory. The SOMMalloc function has the
same interface as the C malloc function. It performs the same basic function as malloc with
some supplemental error checking. If an error occurs, the SOMError function is called. This
routine is replaceable by changing the value of the global variable SOMMalloc.

Parameters
size The amount of memory to be allocated, in bytes.

Return Value
A pointer to the first byte of the allocated space.

Example
See function SOMFree.

Related Information
Functions: SOMCalloc, SOMRealloc, SOMFree

Programmers Reference Manual SOM kernel Ref — 43

SOM functions

SOMOutCharRoutine Function

Purpose

Prints a character. This function is replaceable.

Syntax
int SOMOutCharRoutine (char c);

Description

SOMOutCharRoutine is a replaceable character output routine. Itis invoked by SOM whenev-
er a character is generated by one of the SOM error-handling or debugging macros. The default
implementation outputs the specified character to stdout. To change the destination of character
output, store the address of a user-written character output routine in global variable
SOMOutCharRoutine.

Parameters
c The character to be output.

Return Value

Returns 0 if an error occurs and 1 otherwise.

Related Information

Functions: somVprintf, somPrefixLevel, somLPrintf, somPrintf

Ref-44 SOM kernel SOMobjects Base Toolkit

SOM functions

SOMRealloc Function

Purpose

Changes the size of a previously allocated region of memory.

Syntax

somToken SOMRealloc (somToken pir, size_t size);

Description

The SOMRealloc function changes the size of the previously allocated region of memory
pointed to by ptr so that it contains size bytes. The new size may be greater or less than the
original size. The SOMRealloc function has the same interface as the C realloc function. It
performs the same basic function as realloc with some supplemental error checking. If an error
occurs, the SOMETrror function is called. This routine is replaceable by changing the value of the
global variable SOMRealloc.

Parameters

ptr A pointer to the previously allocated region of memory. If NULL, a new region of
memory of size bytes is allocated.

size The size in bytes for the re-allocated storage. If zero, the memory pointed to by
ptris freed.

Return Value

A pointer to the first byte of the re-allocated space. (A pointer is returned because the block of
storage may need to be moved to increase its size.)

Related Information
Functions: SOMCalloc, SOMMalloc, SOMFree

Programmers Reference Manual SOM kernel Ref — 45

SOM macros

SOM_ Assert Macro

Purpose

Asserts that a boolean condition is true.
Syntax

SOM_Assert (condition, errorCode);
Description

The SOM_Assert macro is used to place boolean assertions in a program:

« If conditionis FALSE, and errorCode indicates a warning-level errorand SOM_WarnLevel is
set to be greater than zero, then a warning message is output.

« If condition is FALSE and errorCode indicates a fatal error, an error message is output and
the process is terminated.

« If conditionis TRUE and SOM_AssertLevel is set to be greater than zero, then an informa-
tional message is output.

External (Global) Data
long SOM_WarnLevel; /* default = 0 */
long SOM_AssertLevel; /* default 0 */

Parameters
condition A boolean expression that is expected to be TRUE (nonzero).
errorCode The integer error code for the error to be raised if condition is FALSE.
Expansion

If condition is FALSE, and errorCode indicates a warning-level error and SOM_WarnLevel is
set to be greater than zero, then a warning message is output. If condition is FALSE and
errorCode indicates a fatal error, an error message is output and the process is terminated. If
conditionis TRUE and SOM_AssertLevel is set to be greater than zero, then an information
message is output.

Example

#include <som.h>
main ()

{
SOM_WarnLevel = 1;
SOM_Assert (2==2, 29);

Related Information
Macros: SOM_Expect, SOM_Test, SOM_TestC

Ref —46 SOM kernel SOMobjects Base Toolkit

SOM macros

SOM CreateLocalEnvironment Macro

Purpose
Creates and initializes a local Environment structure.

Syntax

Environment * SOM_CreateLocalEnvironment ();

Description

The SOM_CreateLocalEnvironment macro creates a local Environment structure. This En-
vironment structure can be passed to methods as the Environment argument so that excep-
tion information can be returned without affecting the global environment.

Parameters
None.

Expansion
The SOM_CreateLocalEnvironment expands to an expression of type (Environment *).

C Example

Environment *ev;
ev = SOM_CreatelLocalEnvironment () ;
_myMethod (obj, ev);

SOM_DestroyLocalEnvironment (ev) ;

Related Information
Data Structures: Environment (somcorba.h)

Macros: SOM_DestroyLocalEnvironment, SOM_InitEnvironment,
SOM_UninitEnvironment

Functions: somGetGlobalEnvironment

Programmers Reference Manual SOM kernel Ref — 47

SOM macros

SOM_DestroylLocalEnvironment Macro

Purpose
Destroys a local Environment structure.

Syntax

SOM_DestroyLocalEnvironment (Environment * ev);

Description

The SOM_DestroyLocalEnvironment macro destroys a local Environment structure, such
as one created using the SOM_CreateLocalEnvironment macro.

Parameters

ev A pointer to the Environment structure to be discarded.

Expansion

The SOM_DestroyLocalEnvironment function first invokes the somExceptionFree method
on the Environment structure; then it invokes SOMFree on it to free the memory it occupies.

Example

Environment *ev;
ev = SOM_CreatelLocalEnvironment () ;
_myMethod (obj, ev);

SOM_DestroyLocalEnvironment (ev) ;

Related Information
Macros: SOM_CreateLocalEnvironment, SOM_UninitEnvironment

Functions: somExceptionFree

Ref —48 SOM kernel SOMobjects Base Toolkit

SOM macros

SOM Error Macro

Purpose
Reports an error condition.

Syntax
SOM _Error (errorCode);

Description
The SOM_Error macro invokes the SOMError error handling procedure with the specified error
code, supplying the filename and line number where the macro was invoked. The default
implementation of SOMError outputs a message containing the error code, filename, and line
number. Additionally, if the last digit of the error code indicates a serious error (that is, value
SOM_Fatal), the process is terminated.

Parameters
errorCode The integer error code for the error to be reported.

Expansion

The SOM_Error macro invokes the SOMError error handler, supplying the filename and line
number where the macro was invoked.

Related Information
Functions: SOMError

Programmers Reference Manual SOM kernel Ref — 49

SOM macros

SOM_Expect Macro

Purpose

Asserts that a boolean condition is expected to be true.

Syntax
SOM_Expect (condition);

Description

The SOM_Expect macro is used to place boolean assertions that are expected to be true into a
program:

« If condition is FALSE and SOM_WarnLevel is set to be greater than zero, then a warning
message is output.

« If conditionis TRUE and SOM_AssertLevel is set to be greater than zero, then an informa-
tional message is output.

Parameters
condition A boolean expression that is expected to be TRUE (nonzero).

Expansion

If condition is FALSE and SOM_WarnLevel is set to be greater than zero, then a warning
message is output. If conditionis TRUE and SOM_AssertLevel is set to be greater than zero,
then an information message is output.

Example
SOM_Expect (2==2, 29);

Related Information
Macros: SOM_Assert, SOM_Test, SOM_TestC

Ref - 50 SOM kernel SOMobjects Base Toolkit

SOM macros

SOM GetClass Macro

Purpose

Returns the class object of which a SOM object is an instance.

Syntax
SOMClass SOM_GetClass (SOMObiject ob));

Description

The SOM_GetClass macro returns the class object of which objis an instance. This is done
without recourse to a method call on the object. The somGetClass method introduced by
SOMObject is also intended to return the class of which an object is an instance, and the default
implementation provided for this method by SOMObject uses the macro.

Important Note: Itis generally recommended that the somGetClass method call be used, since
it cannot be known whether the class of an object wishes to provide special handling when its
address is requested from an instance. But, there are (rare) situations where a method call
cannot be made, and this macro can then be used. If you are unsure as to whether to use the
method or the macro, you should use the method.

Parameters

obj The object for which the class is needed.

C++ Example

#include <somcls.xh>

#include <animal.xh>

main ()

{
Animal *a = new Animal;
SOMClass clsl = SOM_GetClass(a);
SOMClass cls2 = a—->somGetClass();

if (clsl == cls2)
printf ("macro and method for getClass the same for Animall\n”);
else

printf (“macro and method for getClass not same for Animall\n”);

Related Information
Methods: somGetClass

Programmers Reference Manual SOM kernel Ref — 51

SOM macros

SOM InitEnvironment Macro

Purpose
Initializes a local Environment structure.

Syntax

SOM_InitEnvironment (Environment * ev);

Description

The SOM_InitEnvironment macro initializes a locally declared Environment structure. This
Environment structure can then be passed to methods as the Environment argument so that
exception information can be returned without affecting the global environment.

Parameters
ev A pointer to the Environment structure to be initialized.

Expansion
The SOM_InitEnvironment initializes an Environment structure to zero.

C Example

Environment ev;
SOM_InitEnvironment (&ev) ;
_myMethod (obj, &ev);

SOM_UninitEnvironment (&ev) ;

Related Information

Macros: SOM_DestroyLocalEnvironment, SOM_CreateLocalEnvironment,
SOM_UninitEnvironment

Functions: somGetGlobalEnvironment

Ref - 52 SOM kernel SOMobjects Base Toolkit

SOM macros

SOM NoTrace Macro

Purpose

Used to turn off method debugging.

Syntax

SOM_NoTrace (className, methodName);

Description

The SOM_NoTrace macro is used to turn off method debugging. Within an implementation file
for a class, before #including the implementation (.ih or .xih) header file for the class, #define the
<className>MethodDebug macro to be SOM_NoTrace. Then, <className>MethodDebug
will have no effect.

Parameters
className The name of the class for which tracing will be turned off.

methodName The name of the method for which tracing will be turned off.

Expansion
The SOM_NoTrace macro has a null (empty) expansion.

Example
Within an implementation file:
#define AnimalMethodDebug(c,m) SOM_NoTrace (c,m)

#include <animal.ih>
/* Now AnimalMethodDebug does nothing */

Programmers Reference Manual SOM kernel Ref — 53

SOM macros

SOM Resolve Macro

Purpose

Obtains a pointer to a method procedure.

Syntax

SOM_Resolve (object, className, methodName);

Description

The SOM_Resolve macro invokes the somResolve function to obtain a pointer to the static
method procedure that implements the specified method for the specified object. This pointer
can be used for efficient repeated casted method invocations on instances of the class of the
object on which the resolution is done, or instances of subclasses of this class. The name of the
class that introduces the method and the name of the method must be known to use this macro.
Otherwise, use the somResolveByName, somFindMethod or somFindMethodOk method.

The SOM_Resolve macro can only be used to obtain a method procedure for a static method
(one defined in the IDL specification for a class); not a dynamic method. Unlike the
SOM_ResolveNoCheck macro, the SOM_Resolve macro performs several consistency
checks on object.

Parameters
object The object to which the resolved method procedure will be applied.

className The name of the class that introduces methodName. This name should be
given as a simple token, rather than a quoted string (for example, Animalrather
than “Animar’).

methodName The name of the method to be resolved. This name should be given as a simple
token, rather than a quoted string (for example, setSound rather than
“setSound’).

Expansion

The SOM_Resolve macro uses the className and methodName to construct the method
token for the specified method, then invokes the somResolve function. Thus, the macro
expands to an expression that represents the entry-point address of the method procedure. This
value can be stored in a variable and used for subsequent invocations of the method.

Example

Animal myObj = AnimalNew () ;

somMethodProc *procPtr;

procPtr = SOM_Resolve (myObj, Animal, setSound);

/* note that procPtr will need to be typecast when it is used */

Related Information
Macros: SOM_ResolveNoCheck

Functions: somResolve, somClassResolve, somResolveByName

Methods: somFindMethod, somFindMethodOk, somDispatch, somClassDispatch

Ref - 54 SOM kernel SOMobjects Base Toolkit

SOM macros

SOM ResolveNoCheck Macro

Purpose

Syntax

Obtains a pointer to a method procedure.

SOM_ResolveNoCheck (object, className, methodName);

Description

The SOM_ResolveNoCheck macro invokes the somResolve function to obtain a pointer to
the method procedure that implements the specified method for the specified object. This
pointer can be used for efficient repeated invocations of the same method on the same type of
objects. The name of the class that introduces the method and the name of the method must be
known at compile time. Otherwise, use the somFindMethod or somFindMethodOk method.

The SOM_ResolveNoCheck macro can only be used to obtain a method procedure for a static
method (one defined in the IDL specification for a class) and not a method added to aclass atrun
time. Unlike the SOM_Resolve macro, the SOM_ResolveNoCheck macro does not perform
any consistency checks on object.

Parameters

Expansion

Example

object The object to which the resolved method procedure will be applied.

className The name of the class that introduces methodName. This name should be
given as a simple token, rather than a quoted string (for example, Animalrather
than “Animar’).

methodName The name of the method to be resolved. This name should be given as a simple
token, rather than a quoted string (for example, setSound rather than
“setSound’).

The SOM_ResolveNoCheck macro uses the className and methodName to construct an
expression whose value is the method token for the specified method, then invokes the
somResolve function. Thus, the macro expands to an expression that represents the entry-
point address of the method procedure. This value can be stored in a variable and used for
subsequent invocations of the method.

Animal myObj = AnimalNew () ;
somMethodProc *procPtr;
procPtr = SOM_ResolveNoCheck (myObj, Animal, setSound)

Related Information

Macros: SOM_Resolve
Functions: somResolve, somClassResolve, somResolveByName
Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk

Programmers Reference Manual SOM kernel Ref — 55

SOM macros

SOM Test Macro

Purpose
Tests whether a boolean condition is true; if not, a fatal error is raised.
Syntax
SOM_Test (expression);
Description
The SOM_Test macro tests the specified boolean expression:
* Ifthe expressionis TRUE and SOM_AssertLevel is set to a value greater than zero, then an
information message is output.
 If the expression is FALSE, an error message is output and the process is terminated.
Note: The SOM_TestC macro is similar, except that it only outputs a warning message in this
situation.
Parameters

expression The boolean expression to test.

External (Global) Data
long SOM_AssertLevel; /* default is 0 */

Expansion

The SOM_Test macro tests the specified boolean expression. If the expression is TRUE and
SOM_AssertLevel is set to a value greater than zero, then an information message is output. If
the expression is FALSE, an error message is output and the process is terminated.

C Example

#include <som.h>

main ()

{
SOM_AssertlLevel = 1;
SOM_Test (1=1) ;

Related Information
Macros: SOM_Expect, SOM_Assert, SOM_TestC

Ref - 56 SOM kernel SOMobjects Base Toolkit

SOM macros

SOM TestC Macro

Purpose

Tests whether a boolean condition is true; if not, a warning message is output.
Syntax

SOM_TestC (expression);
Description

The SOM_TestC macro tests the specified boolean expression:

* Ifthe expressionis TRUE and SOM_AssertLevel is set to a value greater than zero, then an
information message is output.

* Ifthe expression is FALSE and SOM_WarnLevel is set to a value greater than zero, then a
warning message is output. Note: The SOM_Test macro is similar, except that it raises a fatal
error in this situation.

Parameters

expression The boolean expression to test.

External (Global) Data
long SOM_AssertLevel; /* defaultis 0 */
long SOM_WarnLevel; /* default is 0 */

Expansion

The SOM_TestC macro tests the specified boolean expression. If the expression is TRUE and
SOM_AssertLevel is set to a value greater than zero, then an information message is output. If
the expression is FALSE and SOM_WarnLevel is set to a value greater than zero, a warning
message is output.

C Example

#include <som.h>
main ()

{
SOM_WarnLevel = 1;
SOM_TestC (1=1);

Related Information
Macros: SOM_Expect, SOM_Assert, SOM_Test

Programmers Reference Manual SOM kernel Ref - 57

SOM macros

SOM UninitEnvironment Macro

Purpose
Uninitializes a local Environment structure.

Syntax

SOM_UninitEnvironment (Environment * ev);

Description
The SOM_UninitEnvironment macro uninitializes a locally declared Environment structure.

Parameters
ev A pointer to the Environment structure to be uninitialized.

Expansion

The SOM_UninitEnvironment invokes the somExceptionFree function on the specified En-
vironment structure.

C Example

Environment ev;
SOM_InitEnvironment (&ev);
_myMethod (obj, &ev);

SOM_UninitEnvironment (&ev) ;

Related Information
Macros: SOM_DestroyLocalEnvironment, SOM_InitEnvironment

Ref - 58 SOM kernel SOMobjects Base Toolkit

SOM macros

SOM_WarnMsg Macro

Purpose
Reports a warning message.

Syntax
SOM_WarnMsg (msg);

Description

If SOM_WarnLevel is set to a value greater than zero, the SOM_WarnMsg macro prints the
specified message, along with the filename and line number where the macro was invoked.

Parameters

msg The warning message to be output.

Expansion

If SOM_WarnLevel is set to a value greater than zero, the SOM_WarnMsg macro prints the
specified message, along with the flename and line number where the macro was invoked.

Related Information
Macros: SOM_Error

Programmers Reference Manual SOM kernel Ref — 59

SOMClass class

SOMClass Class

Description

File Stem

Base

Metaclass

SOMClass is the root class for all SOM metaclasses. That is, all SOM metaclasses must be
subclasses of SOMClass or some other class derived from it. It defines the essential behavior
common to all SOM classes. In particular, it provides a suite of methods for initializing class
objects, generic methods for manufacturing instances of those classes, and methods that
dynamically obtain or update information about a class and its methods at run time.

Justas all SOM classes are expected to have SOMODbiject (or a class derived from SOMObject)
as their base class, all SOM classes are expected to have SOMClass or a class derived from
SOMClass as their metaclass. Metaclasses define “class” methods (sometimes called “factory”
methods or “constructors”) that manufacture objects from any class object that is defined as an
instance of the metaclass.

To define your own class methods, define your own metaclass by subclassing SOMClass or
one of its subclasses. Three methods that SOMClass inherits and overrides from SOMODbject
are typically overridden by any metaclass that introduces instance data— somlnit, somUninit,
and somDumpSelfint. The new methods introduced in SOMClass that are frequently overrid-
den are somNew, somRenew, and somClassReady. (See the descriptions of these methods
for further information.)

Other reasons for creating a new metaclass include tracking object instances, automatic gar-
bage collection, interfacing to a persistent object store, or providing/managing information that
is global to a set of object instances.

somcls

SOMObject

SOMClass (SOMClass is the only class with itself as metaclass.)

Ancestor Classes

Types

SOMObiject

typedef sequence <SOMClass> SOMClassSequence;

struct somOffsetinfo {

SOMClass cls;
long offset
b

typedef sequence <somOffsetinfo> SOMOffsets;

New Methods

Attributes:

readonly attribute somOffsets sominstanceDataOffsets

Ref —60 SOM kernel SOMobjects Base Toolkit

SOMClass class

_get_sominstanceDataOffsets returns a sequence of structures, each of which indicates an
ancestor of the receiver class (or the receiver class itself) and the offset to the beginning of the
instance data introduced by the indicated class in an instance of the receiver class. The
somOffsets information can be used in conjunction with information derived from calls to a SOM
Interface Repository to completely determine the layout of SOM objects at runtime.

C++ Example

#include <somcls.xh>

main ()
{
int i;
SOMClassMgr *scm = somEnvironmentNew () ;
somOffsets so = _SOMClass—->_get_somInstanceDataOffsets();

for (i=0; i<so._length; i++)
printf (”In an instance of SOMClass, %s data starts at %d\n”,
so._buffer[i]->cls—>somGetName (),
so._buffer[i]->offset);

Introduced Methods

Group: Instance Creation (Factory)
somAllocate
somDeallocate
somNew
somNewNolnit
somRenew
somRenewNolnit
somRenewNolnitNoZero
somRenewNoZero

Group: Initialization/Termination
sominitClass
sominitMIClass
somAddDynamicMethod
somAddStaticMethod
somClassReady
somOverrideSMethod

Group: Access
somGetApplyStub
somGetClassData
somGetClassMtab
somGetinstanceOffset
somGetinstancePartSize
somGetinstanceSize
somGetinstanceToken
somGetMemberToken
somGetMethodData,
somGetMethodDescriptor
somGetMethodindex
somGetMethodOffset
somGetMethodToken
somGetName

Programmers Reference Manual SOM kernel Ref — 61

somGetNthMethodData
somGetNthMethodInfo
somGetNumMethods
somGetNumStaticMethods
somGetParent
somGetParents
somGetPClsMtab
somGetPClsMtabs
somGetRdStub,
somGetVersionNumbers,
somSetClassData
somSetMethodDescriptor

Group: Testing
somCheckVersion
somDescendedFrom
somSupportsMethod

Group: Dynamic
somFindMethod
somFindMethodOk
somFindSMethod
somFindSMethodid
somFindSMethodOk
somLookupmethod
somOverrideMtab

Overridden Methods

somDumpSelfint
sominit
somUninit

Ref - 62 SOM kernel SOMobjects Base Toolkit

SOMClass class

somAddDynamicMethod Method

Purpose

Adds a new dynamic instance method to a class. Dynamic methods are not part of the declared
interface to a class of objects, and are therefore not supported by implementation and usage
bindings. Instead, dynamic methods provide a way to dynamically add new methods to a class
of objects during execution. SOM provides no standard protocol for informing a user of the
existence of dynamic methods and the arguments they take. Dynamic methods must be in-
voked using name-lookup or dispatch resolution.

IDL Syntax

void somAddDynamicMethod (
in somld methodld,
in somld methodDescriptor,
in somMethodPtr method,
in somMethodPtr applyStub);

Note: For backward compatibility, this method does nof take an Environment parameter.

Description

If a static method with the same methodld has already been added to an ancestor of the
receiving class, somAddDynamicMethod performs exactly as somOverrideSMethod.
Otherwise, somAddDynamicMethod adds a new dynamic instance method to the receiving
class. This involves recording the method’s ID, descriptor, method procedure (specified by
method), and apply stub in the receiving class’s method data.

The arguments to somAddDynamicMethod should be non-null and obey the requirements
expressed below. This is the responsibility of the implementor of a class, who in general has no
knowledge of whether clients of this class will require use of the applyStub argument.

Parameters

receiver A pointer to a SOM class object.
methodld A somld that names the method.

methodDescriptor
A somld appropriate for requesting information concerning the method from
the SOM IR. This is currently of the form <className>::<methodName>.

method A pointer to the procedure that will implement the new method. The first argu-
ment of this procedure is the address of the object on which itis being invoked.

applyStub A pointer to a procedure that returns nothing and receives as arguments: a
method receiver; an address where the return value from the method call is to
be stored; a pointer to a method procedure; and a va_list containing the argu-
ments to the method. The applyStub procedure (which is usually called by
somDispatch) must unload its va_list argument into separate variables of the
correct type for the method, invoke its procedure argument on these variables,
and then copy the result of the procedure invocation to the address specified by
the return value argument.

Return Value

none

Programmers Reference Manual SOM kernel Ref — 63

C Example

/* New dynamic method ”“newMethodl” for class ”"XXX" */
static char *somMN_newMethodl = "newMethodl”;

static somId somId_newMethodl &somMN_newMethodl;
static char *somDS_newMethodl "XXX::newMethodl”;
static somId somDI_newMethodl = &somDS_newMethodl;

static void SOMLINK somAP_newMethodl (SOMObject somSelf,
void *__retVal,
somMethodProc *_ methodPtr,
va_list __ap)

void* __somSelf = va_arg(__ap, SOMObiject);
int argl = va_arg(__ap, int);
SOM_IgnoreWarning (__retVal);

((somTD_SOMObject_newMethodl) _ methodPtr) (__somSelf, argl);

}

main ()

{
_somAddDynamicMethod (
XXXClassData.classObject, /* Receiver (class object) */
somId_newMethodl, /* method name somId */
somDI_newMethodl, /* method descriptor somId */
(somMethodProc *) newMethodl, /* method procedure */
(somMethodProc *) somAP_newMethodl); /* method apply stub */

}

Original Class
SOMClass

Related Information
Methods: somAddStaticMethod, somOverrideSMethod, somGetMethodDescriptor

Ref - 64 SOM kernel SOMobjects Base Toolkit

SOMClass class

somAddStaticMethod Method

Purpose

Adds a new static instance method to a class. Static methods are those indicated in the IDL or
OIDL declaration of the class.

IDL Syntax

somMToken somAddStaticMethod (
in somld methodld,
in somld methodDescriptor,
in somMethodPtr method,
in somMethodPtr redispatchStub,
in somMethodPtr applyStub);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somAddStaticMethod method adds a new static instance method to a class (the receiver).
This involves recording the method’s name, description, redispatchStub and applyStub, and
entering the method procedure (specified by methoqd) into the receiving class’s instance method
table. If the method has been already added to the instance method table of the receiving class
(perhaps due to inheritance from an ancestor of this class during execution of somiInitMIClass),
the new method procedure replaces the previous method table entry (thus “overriding” it).
somAddStaticMethod returns the method access token that must be used when resolving the
method on an object (see somResolve).

The arguments to somAddStaticMethod must be non-null and obey the requirements ex-
pressed below. This is the responsibility of the implementor of a class, who in general has no
knowledge of whether clients of this class will require use of the redispatchStub and applyStub
arguments. For classes declared using IDL (as opposed to OIDL), SOM can generate the
necessary redispatch and apply stubs dynamically. The redispatch and apply stub values
necessary to allow this are described in somapi.h, along with the definition of the
somMethodData structure.

somAddStaticMethod is intended for use by the code that initializes class objects. C and C++
programmers using SOM language bindings do not normally need to use this method explicitly;
the C and C++ implementation bindings build structures containing the necessary information
and call the function somBuildClass to create and initialize class objects.

Parameters

receiver A pointer to the SOM class object that is being initialized.
methodld A somld that names the method.

methodDescriptor
A somld that describes the types of the arguments and the return type of the
method, or which provides access to such a description.

method A pointer to the procedure that will implement the new method. The first argu-
ment of this procedure is the address of the object on which itis being invoked.

redispatchStub A pointerto a procedure with the same signature as the method procedure. The
redispatchStub procedure must package the method arguments that it re-
ceives (except the receiver object) into a va_list, use somDispatch to dispatch
the method call, and then return the method result to the caller. Alternative

Programmers Reference Manual SOM kernel Ref — 65

SOMClass class

Return Value

C Example

possibilities for this value are described in somapi.h, along with the definition of
the somMethodData structure.

applyStub A pointer to a procedure that returns nothing and receives as arguments: a

method receiver; an address where the return value from the method call is to
be stored; a pointer to a method procedure; and a va_list containing the argu-
ments to the method. The applyStub procedure (which is usually called by
somDispatch) must unload its va_list argument into separate variables of the
correct type for the method, invoke its procedure argument on these variables,
and then copy the result of the procedure invocation to the address specified by
the return value argument. Alternative possibilities for this value are described
in somapi.h, along with the definition of the somMethodData structure.

somMToken The somAddStaticMethod method returns a method-access token. As speci-

fied by the SOM API, C and C++ implementation bindings for SOM classes
place this value in the ClassData structure for the receiver class, where it can
be accessed by users for performing static method calls.

/* New static method "newMethodl” for class ”"XXX"” */
static char *somMN_newMethodl = "newMethodl”;

static somId somId_newMethodl = &somMN_newMethodl;
static char *somDS_newMethodl = ”XXX::newMethodl”;
static somId somDI_newMethodl = &somDS_newMethodl;

static void SOMLINK somAP_newMethodl (SOMObject somSelf,

}

void *__ retVal,
somMethodProc *__ methodPtr,
va_list __ap)

int argl = va_arg(__ap, int);
SOM_TIgnoreWarning (__retVal);
((somTD_SOMObject_newMethodl) _ methodPtr) (somSelf, argl);

static void SOMLINK somRD_newMethodl (SOMObject somSelf, int argl)

{

}

va_somDispatch (somSelf, (void **)NULL, somId_newMethodl, argl);

main ()

{
XXXClassData.newMethodl = _somAddStaticMethod (
XXXClassData.classObject, /* Receiver (class object) */
somId_newMethodl, /* method name somId */
somDI_newMethodl, /* method descriptor somId */
(somMethodProc *) newMethodl, /* method procedure */
(somMethodProc *) somRD_newMethodl, /* method redispatch stub */
(somMethodProc *) somAP_newMethodl); /* method apply stub *x/

}

Original Class
SOMClass

Related Information
Methods: somAddDynamicMethod, somInitMIClass, somOverrideSMethod,

somGetMethodDescriptor

Functions: somldFromString

Ref - 66 SOM kernel SOMobjects Base Toolkit

SOMClass class

somAllocate Method

Purpose
Supports class-specific memory allocation for class instances. Designed to be overridden.

IDL Syntax

string somAllocate (in long size);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The default method provided by SOMClass for this method simply uses the SOMMalloc macro.
Users of this method should be sure to use the dual method, somDeallocate to free allocated
storage. Also, these two methods should always be overridden as a pair.

Parameters
receiver A pointer to the class object whose memory allocation method is desired.
size The number of bytes to be allocated.

Return Value
string A pointer to the first byte of the allocated memory region, or NULL if sufficient
memory is not available.

C++ Example

#include <som.xh>
#include <somcls.xh>

main ()

{
SOMClassMgr *cm = somEnvironmentNew () ;
/* Use SOMClass’s instance allocation method */
string newRegion = _SOMClass—>somAllocate (20);

Original Class
SOMClass

Related Information
Methods: somDeallocate

Programmers Reference Manual SOM kernel Ref — 67

SOMClass class

somCheckVersion Method

Purpose

Checks a class for compatibility with the specified major and minor version numbers. Not
generally overridden.

IDL Syntax

boolean somCheckVersion (
In integer4 majorVersion,
In integer4 minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somCheckVersion method checks the receiving class for compatibility with the specified
major and minor version numbers. An implementation is compatible with the specified version
numbers if it has the same major version number and a minor version number that is equal to or
greater than minorVersion. The version number pair (0,0) is considered to match any version.

This method is called automatically after creating a class object to verify that a dynamically
loaded class definition is compatible with a client application.

Parameters
receiver A pointer to the SOM class whose version information should be checked.

majorVersion This value usually changes only when a significant enhancement or incompat-
ible change is made to a class.

minorVersion This value changes whenever minor enhancements or fixes are made to a
class. Class implementors usually maintain downward compatibility across
changes in the minorVersion number.

Return Value

Returns 1 (true) if the implementation of this class is compatible with the specified major and
minor version number, and 0 (false) otherwise.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
myAnimal = AnimalNew () ;

if (_somCheckVersion (_Animal, 0, 0))

somPrintf ("Animal IS compatible with 0.0\n”);
else

somPrintf ("Animal IS NOT compatible with 0.0\n”);

if (_somCheckVersion(_Animal, 1, 1))

somPrintf ("Animal IS compatible with 1.1\n”);
else

somPrintf (“Animal IS NOT compatible with 1.1\n”);

_somFree (myAnimal) ;

}

Ref - 68 SOM kernel SOMobjects Base Toolkit

SOMClass class

Assuming that the implementation of Animal is version 1.0, this program produces the following
output:

Animal IS compatible with 0.0
Animal IS NOT compatible with 1.1

Original Class
SOMClass

Related Information
Methods: somlInitMIClass

Programmers Reference Manual SOM kernel Ref — 69

SOMClass class

somClassReady Method

Purpose
Indicates that a class has been constructed and is ready for normal use. Designed to be
overridden.

IDL Syntax
void somClassReady ();
Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somClassReady method is invoked automatically by the somBuildClass function after
constructing and initializing a class object. The default implementation of this method provided
by SOMClass simply registers the newly constructed class with SOMClassMgrObject. Meta-
classes can override this method to augment class construction with additional registration
protocol.
To have special processing done when a class object is created, you must define a metaclass for
the class that overrides somClassReady. The final statement in any overriding method should
invoke the parent method to ensure that the class is properly registered with
SOMClassMgrObject. Users of the C and C++ implementation bindings for SOM classes
should never invoke the somClassReady method directly; it is invoked automatically during
class construction.

Parameters

receiver A pointer to the class object that should be registered.

Return Value

None.

Original Class

SOMClass

Related Information

Methods: somlInitMIClass

Ref —70 SOM kernel SOMobjects Base Toolkit

SOMClass class

somDeallocate Method

Purpose

Frees memory originally allocated by the somAllocate method from the same class object.
Designed to be overridden.

IDL Syntax

void somDeallocate (string memPtr);

Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somDeallocate method is intended for use to free memory allocated using its dual method,

somAllocate.
Parameters
receiver A pointer to the class object whose somAllocate was originally used to allocate
the memory now to be freed.
mempPtr A pointer to the first byte of the region of memory that is to be freed.

Return Value
None.

Original Class
SOMClass

Related Information
Methods: somAllocate

Programmers Reference Manual SOM kernel Ref — 71

SOMClass class

sombDescendedFrom Method
Purpose

Tests whether one class is derived from another. Not generally overridden.

IDL Syntax

boolean somDescendedFrom (in SOMClass aClassObj);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

Tests whether the receiver class is derived from a given class. For programs that use classes as
types, this method can be used to ascertain whether the type of one object is a subtype of
another.

This method considers a class object to be descended from itself.

Parameters
receiver A pointer to the class object to be tested.
aClassObj A pointer to the potential ancestor class.

Return Value
Returns 1 (true) if receiver is derived from aClassObj, and 0 (false) otherwise.

C Example

#include <dog.h>
/* ___

Note: Dog is a subclass of Animal.

AnimalNewClass (0,0);
DogNewClass (0,0) ;

if (_somDescendedFrom (_Dog, _Animal))

somPrintf ("Dog IS descended from Animal\n”);
else

somPrintf ("Dog is NOT descended from Animal\n”);
if (_somDescendedFrom (_Animal, _Dog))

somPrintf ("Animal IS descended from Dog\n”);
else

somPrintf (“Animal is NOT descended from Dog\n”);

This program produces the following output:

Dog IS descended from Animal
Animal is NOT descended from Dog

Original Class
SOMClass

Related Information
Methods: somlsA, somlisinstanceOf

Ref -72 SOM kernel SOMobjects Base Toolkit

SOMClass class

somFindMethod, somFindMethodOk Methods

Purpose

Finds the method procedure for a method and indicate whether it represents a static method or a
dynamic method. Not generally overridden.

IDL Syntax

boolean somFindMethod (
in somld methodld,
out somMethodPtr m);

boolean somFindMethodOk (
in somld methodld,
out somMethodPtr m);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somFindMethod and somFindMethodOk methods perform name—lookup method reso-
lution, determine the method procedure appropriate for performing the indicated method on
instances of the receiving class, and load m with the method procedure address. For static
methods, method procedure resolution is done using the instance method table of the receiving
class.

Name-lookup resolution must be used to invoke dynamic methods. Also, name—lookup can be
useful when different classes introduce methods of the same name, signature, and desired
semantics, but it is not known until runtime which of these classes should be used as a type for
the objects on which the method is to be invoked. If the signature of a method is a not known,
then method procedures cannot be be used directly, and the somDispatch method can be used
after dynamically discovering the signature to allow the correct arguments can be placed on a
va_list.

As with any methods that return procedure pointers, these methods allow repeated invocations
of the same method procedure to be programmed. If this is done, it up to the programmer to
prevent runtime errors by assuring that each invocation is performed either on an instance of the
class used to resolve the method procedure or of some class derived from it. Whenever using
SOM method procedure pointers, itis necessary to indicate the arguments to be passed and the
use of system linkage to the compiler, so it can generate a correct procedure call. The way this is
done depends on the compiler and the system being used. However, C and C++ usage bindings
provide an appropriate typedef for static methods. The name of the typedef is based on the
name of the class that introduces the method, as illustrated in the example below.

Unlike the somFindMethod method, if the class does not support the specified method, the
somFindMethodOk method raises an error and halts execution.

If the class does not support the specified method, then *mis set to NULL and the return value is
meaningless. Otherwise, the returned result is true if the indicated method was a static method.

Parameters

receiver A pointer to the class object whose method is desired.

methoadld An ID that represents the name of the desired method. The somldFromString
function can used to obtain an ID from the method’s name.

m A pointer to the location in memory where a pointer to the specified method’s
procedure should be stored. Both methods store a NULL pointer in this location
(if the method does not exist) or a value that can be called.

Programmers Reference Manual SOM kernel Ref —73

SOMClass class

Return Value

The somFindMethod and somFindMethodOk methods return TRUE when the method proce-
dure can be called directly and FALSE when the method procedure is a dispatch function.

C Example

Assuming that the Animal class introduces the method setSound, the type name for the
setSound method procedure type will be somTD_Animal_setSound, as illustrated below:

#include <animal.h>
void main ()

{

/*

}
/*

Animal myAnimal;

somId somId_setSound;

somTD_Animal_setSound methodPtr;

Environment *ev = somGetGlobalEnvironment () ;

myAnimal = AnimalNew () ;

Note: Next three lines are equivalent to
_setSound (myAnimal, ev, "Roar!!!”);

__ */

somId_setSound = somIdFromString(”setSound”);

_somFindMethod (_somGetClass (myAnimal),

somId_setSound, &methodPtr);
methodPtr (myAnimal, ev, "Roar!!!”);

_display (myAnimal, ev);
_somFree (myAnimal) ;

Program Output:
This Animal says
Roar!!!

*/

Original Class

SOMClass

Related Information

Methods: somFindSMethod, somFindSMethodOK, somSupportsMethod, somDispatch,
somClassDispatch

Functions: somApply, somResolve, somClassResolve, somResolveByName,
somParentNumResolve

Macros: SOM_Resolve, SOM_ResolveNoCheck, SOM_ParentNumResolve

Ref—-74 SOM kernel

SOMobjects Base Toolkit

SOMClass class

somFindSMethod, somFindSMethodOk Methods

Purpose

Finds the method procedure for a static method. Not generally overridden.

IDL Syntax
somMethodPtr somFindSMethod (in somld methodld);
somMethodPtr somFindSMethodOk (in somld methodld);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somFindSMethod and somFindSMethodOk methods perform name—lookup resolution
in a similar fashion to somFindMethod and somFindMethodOK, but are restricted to static
methods. See the description of somFindMethod for a discussion of name—lookup method
resolution. Because these methods are restricted to resolving static methods, their interface is
slightly different from the somFindMethod interfaces; a method procedure pointer is returned
when lookup is successful; otherwise NULL is returned.

The somFindSMethodOk method is identical to somFindSMethod, except that an error is
raised if the indicated static method is not defined for the receiving class.

Parameters
receiver A pointer to a class object.
methodld A somld representing the name of the desired method.

Return Value

The somFindSMethod and somFindSMethodOk methods return a pointer to the method
procedure that supports the specified method for the class.

Example
See the somFindMethod method example.

Original Class
SOMClass

Related Information
Methods: somFindMethod, somFindMethodOk, somOverrideMtab

Programmers Reference Manual SOM kernel Ref — 75

SOMClass class

somGetApplyStub Method (Obsolete)

Purpose

Returns an apply stub for a method supported by the receiving class. This method is obsolete.
Use function somApply instead.

IDL Syntax

somMethodPtr somGetApplyStub (in somld methodld);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

When possible, the somGetApplyStub method returns a pointer to an old—style apply stub for
the indicated method which has the following interface. An old—style apply stub is a procedure
that takes as arguments an object on which the method is to be invoked, a pointer to the location
in memory where the method’s result should be stored, a pointer to the method’s procedure, and
the arguments for the desired method invocation in the form of a va_list data structure. The
apply stub extracts the arguments, invokes the method, and stores its result in the specified
location. Apply stubs are useful when a static method invocation cannot be constructed at
compile time (i.e., when the name and signature of a method is not known until run time). When
an old—style apply stub of the kind described here is not available for supporting a method, a
NULL is returned.

For SOM classes described using IDL, the functionality originally provided by apply stubs is now
provided by a small set of generic assembly code routines that can handle all possible method
procedure argument and return types. These routines are not public, but, along with the old—
style apply stubs described here, are accessed through a single uniform interface provided by
the the somApply function.

The calling sequence for the old-style apply stub is illustrated below.
#include <stdarg.h>

somMethodPtr applyStub; /* get using somGetApplyStub */
SOMObject receiver; /* object to respond to the method */
somToken *retval; /* where the result should be stored */
somMethodPtr methodPtr; /* the method’s procedure, obtained

using SOM_Resolve or somFindMethod */
va_list arglist; /* the method’s arguments, constructed

using the va_arg library routine */
(*applyStub) (receiver, retval, methodPtr, arglist);

Parameters

receiver A pointer to the class object that supports the indicated method.
methodld An ID that represents the name of the desired method.

Return Value

The somGetApplyStub method returns a pointer to an old—style apply stub for the specified
method for the specified class. NULL is returned if the method is not supported by an apply stub
having the interface described here.

Original Class

SOMClass

Related Information

Functions: somApply

Ref —76 SOM kernel SOMobjects Base Toolkit

SOMClass class

somGetClassData Method

Purpose

Returns a pointer to the global <className>ClassData structure associated with a class. Not
generally overridden.

IDL Syntax

somClassDataStructurePtr somGetClassData ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetClassData method returns a pointer to the global <className>ClassData struc-
ture associated with a class. Every SOM class has an external data structure named
<className>ClassData that holds a pointer to the class object followed by a somMToken for
each method introduced by the class. This structure is used for efficient offsets—based method
resolution.

This method is not generally overridden. C and C++ programmers generally don’t invoke this
method, since the <className>ClassData structure for is an external data structure declared
by and statically linked into the C and C++ usage bindings for <className>.

Parameters

receiver A pointer to the class object whose ClassData structure is desired.

Return Value

The somGetClassData method returns a pointer to the ClassData structure for the specified
class.

Original Class
SOMClass

Related Information
Methods: somSetClassData

Programmers Reference Manual SOM kernel Ref -77

SOMClass class

somGetClassMtab Method

Purpose
Returns a pointer to a class’s method table. Not generally overridden.
IDL Syntax
somMethodTabPtr somGetClassMtab ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetClassMtab method returns the address of the instance method table for a class.
The instance method table is a structure containing a pointer to the class object followed by
private information that only the SOM kernel deals with. In the future, it is possible that more
information about the structure of SOM method tables may be made part of the public SOM AP,
but currently there is little or no use for this method by SOM users.
Parameters

receiver A pointer to the class object whose method table is desired.

Return Value

The somGetClassMtab method returns a pointer to the method table of the specified class.

Original Class
SOMClass

Related Information
Methods: somGetNumStaticMethods, somGetPClisMtab

Ref - 78 SOM kernel SOMobjects Base Toolkit

SOMClass class

somGetinstanceOffset Method (Obsolete)

Purpose

Returns the offset to the instance variables introduced by a class in instances of the class. This
method is obsolete, and is not useful in a multiple inheritance context.

IDL Syntax

long somGetinstanceOffset ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetinstanceOffset method returns the offset of the instance variables introduced by a
class in the body of all objects of exactly that class. This method is not generally overridden, and
is obsolete.

Parameters

receiver A pointer to the class object whose instance variable offset is desired.

Return Value

The somGetinstanceOffset method returns the offset (within any object of the receiving class)
to the instance data. The offset is given as the distance in bytes along the leftmost derivation
path of the class.

If a class introduces no instance variables, the value 0 is returned. Use the method
somGetinstancePartSize to determine the size of introduced instance data.

Original Class
SOMClass

Related Information
Methods: somGetinstancePartSize, somGetinstanceSize

Programmers Reference Manual SOM kernel Ref —79

SOMClass class

somGetlnstancePariSize Method

Purpose
Returns the total size of the instance data structure introduced by a class. Not generally
overridden.
IDL Syntax
long somGetinstancePartSize ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetlnstancePartSize method returns the amount of space needed in an object of the
specified class or any of its subclasses to contain the instance variables introduced by the class.
Parameters

receiver A pointer to the class object whose instance data size is desired.

Return Value

The somGetinstancePartSize method returns the size, in bytes, of the instance variables
introduced by this class. This does not include the size of instance variables introduced by this
class’s ancestor or descendent classes. If a class introduces no instance variables, 0 is re-
turned.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
SOMClass animalClass;
int instanceSize;
int instanceOffset;
int instancePartSize;

myAnimal = AnimalNew ();
animalClass = _somGetClass (myAnimal);
instanceSize = _somGetInstanceSize (animalClass);
instanceOffset = _somGetInstanceOffset (animalClass);
instancePartSize = _somGetInstancePartSize (animalClass);
somPrintf (”Instance Size: %d\n”, instanceSize);
somPrintf (”Instance Offset: %d\n”, instanceOffset);
somPrintf (”Instance Part Size: %d\n”, instancePartSize);
_somFree (myAnimal);

}

/*

Output from this program:

Instance Size: 8

Instance Offset: 0

Instance Part Size: 4

*/

Original Class
SOMClass

Related Information
Methods: somGetinstanceOffset, somGetinstanceSize

Ref —80 SOM kernel SOMobjects Base Toolkit

SOMClass class

somGetlnstanceSize Method
Purpose

Returns the size of an instance of a class. Not generally overridden.

IDL Syntax

long somGetinstanceSize ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetlnstanceSize method returns the total amount of space needed in an instance of
the specified class.

Parameters
receiver A pointer to the class object whose instance size is desired.

Return Value

The somGetinstanceSize method returns the size, in bytes, of each instance of this class. This
includes the space required for instance variables introduced by this class and all of its ancestor
classes.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
SOMClass animalClass;
int instanceSize;
int instanceOffset;
int instancePartSize;

myAnimal = AnimalNew ();
animalClass = _somGetClass (myAnimal);
instanceSize = _somGetInstanceSize (animalClass);
instanceOffset = _somGetInstanceOffset (animalClass);
instancePartSize = _somGetInstancePartSize (animalClass);
somPrintf (”Instance Size: %d\n”, instanceSize);
somPrintf (”Instance Offset: %d\n”, instanceOffset);
somPrintf (”Instance Part Size: %d\n”, instancePartSize);
_somFree (myAnimal);

}

/*

Output from this program:

Instance Size: 8

Instance Offset: O

Instance Part Size: 4

*/

Original Class
SOMClass

Related Information
Methods: somGetinstanceOffset, somGetinstancePartSize

Programmers Reference Manual SOM kernel Ref — 81

SOMClass clas

S

somGetinstanceToken Method

Purpose

IDL Syntax

Returns a data access token for the instance data introduced by a class. Not generally overrid-
den.

somDToken somGetinstanceToken ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

Returns a data token "pointing” to the beginning of the instance data introduced by the receiving
class. This token can be passed to the function somDataResolve to locate this instance data
within an an instance of the receiver class or any class derived from it. Also the instance data
token for a class can be passed to the class method somGetMemberToken to get a data token
for a specific instance variables introduced by the class (if the relative offset of this instance
variable is known). This approach is used by C and C++ implementation bindings to support
public instance data for OIDL classes (IDL classes currently have no public instance data).

A data token for the instance data introduced by a class is required by method procedures that
access data introduced by the method procedure’s defining class. For classes declared using
OIDL and IDL, the needed token is stored in the auxiliary class data structure, which is an
external data structure made statically available by the C and C++ language bindings as
<className>CClassData.instanceToken. Thus, this method call is not generally used by C and
C++ class implementors of classes declared using OIDL or IDL.

Parameters

receiver A pointer to a SOMClass object.

Return Value

Returns a data token for the beginning of the instance data introduced by the receiver.

Original Class

Related Inf

SOMClass

ormation
Functions: somDataResolve

Methods: somGetinstanceSize, somGetinstancePartSize, somGetinstanceOffset,
somGetMemberToken

Ref —82 SOM kernel SOMobjects Base Toolkit

SOMClass class

somGetMemberToken Method

Purpose
Returns an access token for an instance variable. This is method is not generally overridden.

IDL Syntax

somDToken somGetMemberToken (
integer4 memberOffset,
somDToken instanceToken);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMemberToken method returns an access token for the data member at offset
memberOffset within the block of instance data identified by instance token. The returned token
can subsequently be passed to the somDataResolve function to locate the data member.

Typically, only the code that implements a class declared using OIDL requires access to this
method, and this code is normally provided by implementation bindings. Thus C and C++
programmers do not normally invoke this method.

Parameters
receiver A pointer to a SOMClass object.
memberOffset A 32-bit integer representing the offset of the required data member.

instanceToken A token, obtained from somGetinstanceToken, that identifies the introduced
portion of the class.

Return Value
Returns an access token for the specified data member.

Original Class
SOMClass

Related Information
Functions: somDataResolve

Methods: somGetinstanceSize, somGetinstancePartSize,
somGetinstanceOffset, somGetinstanceToken

Programmers Reference Manual SOM kernel Ref — 83

SOMClass class

somGetMethodData Method

Purpose

Returns method information for a method known to the receiver class as having a given name.
Not generally overridden.

IDL Syntax

boolean somGetMethodData (
in somld methodld,
out somMethodData md);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMethodData method loads a somMethodData structure with data describing the
method identified by the passed methodld. If methodlddoes notidentify a method known to the
receiver, then false is returned; otherwise, true is returned after loading the somMethodData
structure with data corresponding to the indicated method.

Parameters
receiver A pointer to the class that produced the index value.
methodld A somld for the method’s name.
md A pointer to a somMethodData structure.

Return Value
Boolean true if successful; otherwise false.

Example
See method somGetMethodindex.

Related Information
Data Structures: somMethodData (somapi.h)
Methods: somGetMethodIindex, somGetMethodData, somGetNthMethodinfo

Ref -84 SOM kernel SOMobjects Base Toolkit

SOMClass class

somGetMethodDescriptor Method

Purpose
Returns the method descriptor for a method. Not generally overridden.
IDL Syntax
somld somGetMethodDescriptor (in somld methodld);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetMethodDescriptor method returns the method descriptor for a specified method
of aclass. (A method descriptor is a somld that represents the identifier of an attribute definition
or a method definition in the SOM Interface Repository. It contains information about the
method’s return type and the types of its arguments.) If the class object does not support the
indicated method, NULL is returned.
Parameters
receiver A pointer to a SOMClass object.
methodld A somld method descriptor.

Return Value

Example

The somGetMethodDescriptor method returns a somld method descriptor.

somId myMethodDescriptor;
myMethodDescriptor = _somGetMethodDescriptor (_Animal,
somIdFromString (“setSound”));

Original Class

SOMClass

Related Information

Methods: somAddDynamicMethod, somGetMethodinfo, somGetNthMethodIinfo,
somGetMethodData, somGetNthMethodData

Programmers Reference Manual SOM kernel Ref — 85

SOMClass class

somGetMethodindex Method

Purpose

Returns a class-specific index for a method. Not generally overridden.

IDL Syntax

long somGetMethodIndex (in somld methodld);
Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMethodIndex method returns an index that can be used in subsequent calls to the
same receiving class to determine information about the indicated (static or dynamic) method,
via the methods somGetNthMethodData and somGetNthMethodInfo. The method must be
appropriate for use on an instance of the receiver class; otherwise, a—1 isreturned. The index of
a method can change over time if dynamic methods are added to the receiver class or its
ancestors. Thus, in dynamic multi-threaded environments, a critical region should be used to
bracket the use of this method and of subsequent requests for method information based on
the returned index.

Parameters
receiver A pointer to a SOMClass object.
methodld A somld method id.

Return Value

The somGetMethodIndex method returns a positive long if successful, and a —1 otherwise.

C++ Example

#include <somcls.xh>
main
{
somEnvironmentNew () ;
somId gmiId = somIdFromString (”somGetMethodIndex”) ;

long index = _SOMClass—>somGetMethodIndex (gmiId) ;
somMethodData md;
boolean rc = _SOMClass—->somGetNthMethodData (index, &md) ;

SOM_Test (rc && somComparelds (gmiId, md.id));

Original Class
SOMClass

Related Information
Data Structures: somMethodData (somapi.h)
Methods: somGetNthMethodData, somGetNthMethodInfo

Ref —86 SOM kernel SOMobjects Base Toolkit

SOMClass class

somGetMethodOffset Method (Obsolete)

Purpose
Returns the offset (in the receiver class’s instance method table) of a static method. This method
is obsolete, and not generally overridden.
IDL Syntax
long somGetMethodOffset (in somld methodld);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetMethodOffset method returns the specified method’s offset in the receiver class’s
instance method table, or returns zero if the indicated method is not a static method.
Parameters
receiver A pointer to the class object whose method table offset is desired.
methodld The ID that designates the name of the method.

Return Value

If the specified method is not a static method, zero is returned; otherwise the method’s offset in
the somMethodTab structure for the class is returned.

Original Class
SOMClass

Programmers Reference Manual SOM kernel Ref — 87

SOMClass class

somGetMethodToken Method

Purpose

Returns a method access token for static method. Not generally overridden.

IDL Syntax

somMToken somGetMethodToken (in somld methodld);
Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMethodToken method returns a method access token for a static method with the
specified id that was introduced by the receiver class or an ancestor of the receiver class. This
method token can be passed to the somResolve function (or one of the other offset-based
method resolution functions) to select a method procedure pointer from a method table of an
object whose class is the same as, or is derived from the class that introduced the method.

Parameters
receiver A pointer to a SOMClass object.
methodld A somld identifying a method.

Return Value
The somGetMethodToken method returns a somMToken method access token.

C Example
Assuming that the class Animal introduces the method setSound,

#include <animal.h>
main () {
somMToken tok;
Animal myAnimal;
somTD_Animal_setSound methodPtr; /* use typedef from animal.h */

Environment *ev = somGetGlobalEnvironment () ;

myAnimal = AnimalNew () ;

/*next 3 lines equivalent to _setSound(myAnimal, ev, "Roar!!!”);*/
tok = _somGetMethodToken (_Animal, somIdFromString(“setSound”));
methodPtr = (somTD_Animal_setSound) somResolve (myAnimal, tok);
methodPtr (myAnimal, ev, "“Roar!!!”);

_display (myAnimal, ev);
_somFree (myAnimal) ;

}

Original Class
SOMClass

Related Information
Functions: somResolve, somClassResolve, somParentNumResolve

Methods: somGetNthMethodinfo, somGetMethodData,

Ref —88 SOM kernel SOMobjects Base Toolkit

SOMClass class

somGetName Method

Purpose

Returns the name of a class. Not generally overridden.

IDL Syntax

string somGetName ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetName method returns the address of a zero-terminated string that gives the name
of the receiving class. This name may be used as a Repositoryldin the Repository_lookup_id
method (described in the SOM Interface Repository Framework section) to obtain the IDL
interface definition that corresponds to the receiving class.

The returned name is not necessarily the same as the statically known class name used by a
programmer to gain access to the class object (e.g., via the method somFindClass). This is
because the method somSubstituteClass may have been used to "shadow” the class having
the static name used by the programmer. Also, when the interface to a class’s instances is
defined within an IDL module, the returned name will not directly correspond to the names of the
procedures and macros made available by C and C++ usage bindings for accessing class
objects (e.g., the <className>NewClass procedure, or the _<className> macro). This is
because , the <className> token used in constructing the names of these procedures and
macros uses an underscore character to separate the module name from the interface name,
while the actual name of the corresponding class uses two colon characters instead of an
underscore for this purpose.

The somGetName method is not generally overridden. The returned address is valid until the
class object is unregistered or freed.

Parameters

receiver The class whose name is desired.

Return Value

The somGetName method returns a pointer to the name of the class.

C++ Example

#include <animal.xh> /* assume Animal defined in the Zoo module */
#include <string.h>
main ()
{
string className = Zoo_AnimalNewClass (0, 0) —>somGetName () ;
SOM_Test (!strcmp (className, "Zoo::Animal”));

}

Original Class

SOMClass

Related Information

Methods: Repository lookup_id, somSubstituteClass, somFindClass

Programmers Reference Manual SOM kernel Ref — 89

SOMClass class

somGetNthMethodData Method

Purpose

Returns method information for the nth (static or dynamic) method known to a given class. Not
generally overridden.

IDL Syntax

boolean somGetNthMethodData (
in long index,
out somMethodData mqd)

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetNthMethodData method loads a somMethodData structure with data describing
the method identified by the passed index. The index must have been produced by a previous
call to exactly the same receiver class; the same method willin general have differentindexes in
different classes. If the index does not identify a method known to this class, then false is
returned; otherwise, true is returned after loading the somMethodData structure with data
corresponding to the indicated method.

Parameters
receiver A pointer to the class that produced the index value.
index An index returned as a result of a previous call of somGetMethodindex.

md A pointer to a somMethodData structure.

Return Value

Boolean true if successful; otherwise false.

Example
See method somGetMethodindex.

Related Information
Data Structures: somMethodData (somapi.h)
Methods: somGetMethodindex, somGetMethodData, somGetNthMethodinfo

Ref —90 SOM kernel SOMobjects Base Toolkit

SOMClass class

somGetNthMethodinfo Method

Purpose

Returns the somld of the nth (static or dynamic) method known to a given class. Also loads a
somld with a descriptor for the method. Not generally overridden.

IDL Syntax

somld somGetNthMethodinfo (
in long index,
out somld descriptor);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetNthMethodInfo method returns the identifier of a method, and loads the somid
whose address is passed with the somld of the method descriptor. Method descriptors are used
to support access to information stored in a SOM Interface Repository.

Parameters
receiver A pointer to the class from which the index was obtained using method
somGetMethodindex.
index The nth method known to this class, whose method descriptor is desired.
descriptor A pointer to a somld that will be loaded with a somld for the descriptor.

Return Value

The somld for the indicated method, if a method with the indicated index is known to the
receiver; otherwise NULL.

C++ Example

#include <somcls.xh>
main ()
{
somEnvironmentNew () ;
somId descriptor, icId = somIdFromString(”somInitClass”);

long ndx = _SOMClass—>somGetMethodIndex (icId) ;
SOM_Test (
somCompareIds (
icId,

_SOMClass—->somGetNthMethodInfo (ndx, &descriptor));
SOMFree (icId);
SOMFree (descriptor) ;
}

Original Class
SOMClass

Related Information
Classes: Repository (repostry.idl)
Methods: somGetMethodIindex, somGetNthMethodData

Programmers Reference Manual SOM kernel Ref — 91

SOMClass class

somGetNumMethods Method

Purpose

Returns the number of methods available for a class of objects. Not generally overridden.

IDL Syntax
long somGetNumMethods ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetNumMethods method returns the number of methods currently supported by the
specified class, including inherited methods (both static and dynamic).

The value that the somGetNumMethods method returns is the total number of methods
currently known to the receiving class as being applicable to its instances. This includes both
static and dynamic methods, whether defined in this class or inherited from an ancestor class.

Parameters

receiver A pointer to the class object whose instance method count is desired.

Return Value

The somGetNumMethods method returns the total number of methods that are currently
available for the receiving class.

C Example

#include <animal.h>
main ()
{

int numMethods;

AnimalNewClass (Animal_MajorVersion, Animal_MinorVersion);

numMethods = _somGetNumMethods (_Animal) ;

somPrintf ("Number of methods supported by class: %d\n”,
numMethods) ;

Original Class
SOMClass

Related Information
Methods: somGetNumStaticMethods

Ref —92 SOM kernel SOMobjects Base Toolkit

SOMClass class

somGetNumStaticMethods Method

Purpose
Obtains the number of static methods available for a class of objects. Not generally overridden.
IDL Syntax
int somGetNumStaticMethods ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetNumStaticMethods method returns the number of static methods available in the
specified class, including inherited ones. Static methods are those that are represented by
entries in the class’s instance method table, and which can be invoked using method tokens and
offset resolution.
Parameters

receiver A pointer to the class object whose static method count is desired.

Return Value

The somGetNumStaticMethods method returns the total number of static methods that are
available for instances of the receiving class.

C Example

#include <animal.h>
main ()
{

int numMethods;

AnimalNewClass (Animal_MajorVersion, Animal_MinorVersion);

numMethods = _somGetNumStaticMethods (_Animal) ;

somPrintf (“Number of static methods supported by class: %d\n”,
numMethods) ;

Original Class
SOMClass

Related Information
Methods: somGetNumMethods

Programmers Reference Manual SOM kernel Ref — 93

SOMClass class

somGetParent, somGetParents Methods
Purpose

Gets a pointer to a class’s parent (direct base) class(es). Not generally overridden.

IDL Syntax
SOMClass somGetParent (); // Obsolete
SOMClassSequence somGetParents ();

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somGetParent method obtains a pointer to the receiver's leftmost parent class. This
method is obsolete, and has little or no utility in a multiple inheritance context.

The somGetParents method returns a sequence containing pointers to the parents of the
receiver.

Parameters
receiver A pointer to the class whose parent (base) classes are desired.

Return Value

The somGetParent method returns a pointer to the leftmost parent of the receiver, if one exists,
and NULL otherwise (in the case of SOMObject). The somGetParents method returns a
sequence of pointers to the parents of the receiver.

C Example

/* Note: Dog is a single-inheritance subclass of Animal. */
#include <dog.h>
main ()
{
Dog myDog;
SOMClass dogClass;
SOMClassSequence parents;
char *parentName;
int i;

myDog = DogNew () ;
dogClass = _somGetClass (myDog) ;
parents = _somGetParents (dogClass);
for (i=0; i<parents._length; i++)
somPrintf (”"-- parent %d is %s\n”, i,
_somGetName (parents._buffer[i]));
_somFree (myDog) ;
}
/*
Output from this program:
—-— parent 0 is Animal

*/

Original Class
SOMClass

Related Information
Methods: somGetClass, somInitMIClass

Ref —94 SOM kernel SOMobjects Base Toolkit

SOMClass class

somGetPClsMtab, somGetPClsMtabs Methods

Purpose

Obtains a list of the method tables to be used to support parent method calls. By default, these
are the instance-method tables of a class’s parent (base) classes.

IDL Syntax
somMethodTabs somGetPClsMtab (); // Obsolete
somMethodTabs somGetPClsMtabs ();

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somGetPClsMtab and somGetPClsMtabs methods return a list of the method tables to
be usedto support parent-method calls within a class’s implementation. Normally, the result lists
the instance-method tables of a class’s parent (base) classes. If the class is a root class (i.e.,
SOMObiject), the method returns NULL. The two methods are equivalent except for their
names.

Typically, only the code that implements parent-method calls for a class requires access to this
method, and this code is provided automatically by implementation bindings. Thus, C and C++
programmers do not normally invoke this method.

Parameters

receiver A pointer to the class object whose parent’s method tables are desired.

Return Value

The method returns a pointer to the method tables to be used for performing parent-method
calls fromthe receiving class’s implementation. If this class is aroot class (SOMObject), NULL is
returned.

Original Class
SOMClass

Related Information
Data Structures: somMethodTabs (somapi.h)
Methods: somGetClassMtab

Programmers Reference Manual SOM kernel Ref — 95

SOMClass class

somGetRdStub

Purpose

Returns a redispatch stub for the static method known to the receiver class as having the
specified ID. Not generally overridden.

IDL Syntax

somMethodPtr somGetRdStub (somld methodld);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The purpose of a redispatch stub is to provide a call interface identical to that of the method
procedure that supports a given static method, thereby allowing a user to call the stub as if it
were a normal method procedure. But, when a redispatch stub receives control, it calls
somDispatch, thus invoking dispatch-method resolution for the method call. By using the
method somOverrideMtab to replace the method procedure pointers in a method table with
their redispatch stubs, and then overriding the somDispatch entry in the method table, it is
possible to get control of every method invocation on a class of objects, thus providing special-
ized handling for each method call.

The use of somGetRdStub allows finer control over method table manipulation than is possible
with somOverrideMtab, since individual methods can be overridden with their redispatch stubs
when method tables are built. The construction of method tables is performed by
somlnitMIClass, which is generally overridden by metaclasses to achieve these effects. Redis-
patch stubs are registered for static methods when they are introduced using
somAddStaticMethod.

The default implementation of somDispatch provided by SOMODbject simply invokes an apply
stub for the method after doing offset resolution to chose a method procedure. Thus, use of a
redispatch stub without also overriding the somDispatch method produces behavior identical
to that which would be produced using offset resolution. This is illustrated by the example below.

Parameters

receiver A pointer to the class object whose known static methods are to be searched
for a method having the indicated ID. Once such a method is found, its method
data will be used to provide the desired redispatch stub. Redispatch stubs are
not available for dynamic methods.

methodld A somld for the method whose redispatch stub is desired.

Return Value

A redispatch stub procedure pointer whose type is identical to that of the original method.

Ref —96 SOM kernel SOMobjects Base Toolkit

SOMClass class

C++ Example

#include <somcls.xh>
#include <somcm.xh>
main ()
{
somId getrdId = somIdFromString (”somGetRdStub”);

SOMClassMgr *cm = somEnvironmentNew () ;

somTD_SOMClass_somGetRdStub rdl = (somTD_SOMClass_somGetRdStub)
(_SOMClass—>somGetRdStub (getrdId)) ;

somTD_SOMClass_somGetRdStub rd2 = (somTD_SOMClass_somGetRdStub)
(rdl (_SOMClass, getrdId));

SOM_Test (rdl == rd2);

somFree (getrdId);

Original Class
SOMClass

Related Information
Functions: somApply

Methods: somOverrideMtab, sominitMIClass, somOverrideSMethod, somDispatch

Programmers Reference Manual SOM kernel Ref — 97

SOMClass class

somGetVersionNumbers Method

Purpose
Gets the major and minor version numbers of a class. Not generally overridden.
IDL Syntax
void somGetVersionNumbers (
out long majorVersion,
out long minorVersion);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetVersionNumbers method returns, via its output parameters, the major and minor
version numbers of the class specified by receiver. The class object must have already been
created (because the class object is the receiver of the method).
Parameters

receiver A pointer to a class object .
majorVersion A pointer where the major version number is to be stored.

minor Version A pointer where the minor version number is to be stored.

Return Value
None.

C Example

#include <som.h>
main () {

long major, minor;
SOMClass myClass;

somEnvironmentNew () ;
myClass = _somFindClass (SOMClassMgrObject,
somIdFromString (“Animal”), 0, 0);
_somGetVersionNumbers (myClass, &major, &minor);
somPrintf (“"The version numbers are %i and %i.\n”, major, minor);

Original Class
SOMClass

Related Information
Methods: somCheckVersionNumbers

Ref —98 SOM kernel SOMobjects Base Toolkit

SOMClass class

somlnitClass Method

Purpose

Performs the first step of initializing a single—inheritance class object: creates and initializes the
class’s instance method table by inheriting default methods from the parent class, and deter-
mines the size of the new class’s instances. Obsolete but still useful for single-inheritance
classes. Designed to be overridden.

IDL Syntax

void sominitClass (
in string className,
in SOMClass parentClass,
long dataSize,
long maxStaticMethods,
long majorVersion,
long minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somlnitClass method performs the first step of initializing a single—inheritance class
object: create and initialize the class’s instance method table by inheriting default methods from
the parent class, and determine the size of the new class’s instances. For classes having
multiple parents, the somlInitMIClass method is used instead.

Once this method has been executed, it is necessary to add new static methods to the receiving
class’s instance method table, using the method somAddStaticMethod, and override the
default implementation inherited from the parent class for any methods overridden by the new
class, using the method somOverrideSMethod.

C and C++ programmers using the implementation language bindings generated by the SOM
Compiler for classes declared using OIDL or IDL don’t invoke this method directly, because
implementation bindings use the somBuildClass function, which first calls somInitMIClass and
then adds new static methods and performs any necessary overrides.

Parameters

receiver A pointer to the class object to be initialized.
className A string representing the name of the class.

parentClass The parent (base) class of the newly created class. If NULL is specified, this
value defaults to SOMODbject. Parent (base) classes must be created prior to
the creation of their derived classes.

dataSize The amount of space needed to hold the instance variables introduced by the
newly created class. This value should not include any space required by
parent (base) classes.

maxStaticMethods
The number of static methods defined for the new class. It should not include
any static methods defined in the parent (base) classes, even if some of them
have been overridden in this class.

majorVersion The major version number of the current implementation of the new class.

minorVersion The minor version number of the current implementation of the new class.

Programmers Reference Manual SOM kernel Ref — 99

SOMClass class

Return Value
None.

Example

#include <som.h>

SOMClass myParentClass;

struct {

int a, b, c;

} myClassInstanceData;

#define MyClass_MaxMethods 4

#define MyClass_MajorVersion 2

#define MyClass_MinorVersion 1

extern struct MyClassClassDataStructure {
SOMAny *classObject;
somMOffset myMethodl;
somMOffset myMethod2;
somMOffset myMethod3;
somMOffset myMethod4;

} MyClassClassData;

/* L. %/

_somInitClass (MyClassClassData.classObject,
"Animal”,
myParentClass,
sizeof (myClassInstanceData),
MyClass_MaxMethods,
MyClass_MajorVersion,
MyClass_MinorVersion) ;

Original Class
SOMClass

Related Information
Methods: somlnitMIClass, somAddStaticMethod, somOverrideSMethod

Ref — 100 SOM kernel SOMobjects Base Toolkit

SOMClass class

somlnitMIClass Method

Purpose
Performs the first step of initializing a class object: creates and initializes the class’s instance
method table by inheriting default methods from the parent classes, and determines the size of
the new class’s instances. Designed to be overridden
IDL Syntax
void sominitMIClass (
in unsigned long inherit_vars,
in string className,
in SOMClassSequence parentClasses,
in long dataSize,
in long maxStaticMethods,
in long majorVersion,
in long minorVersion);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somInitMIClass method performs the first step of initializing a class object: create and
initialize the class’s instance method table by inheriting default methods from the parent
classes, and determine the size of the new class’s instances. The method can be overridden, to
change the way that class objects are initialized (see the example below).
C and C++ programmers using the implementation language bindings generated by the SOM
Compiler for classes declared using OIDL or IDL don’t invoke this method directly, because
implementation bindings use the somBuildClass function, which first calls somInitMIClass
and then adds new static methods and performs any necessary overrides.
Once the parent’s sominitMIClass method has been executed, somAddStaticMethod can be
used to add new static methods to the receiving class’s instance method table, or
somOverrideSMethod can be used to override the default implementation inherited from the
parent class for any methods overridden by the new class.
Parameters

receiver A pointer to the class object to be initialized.

inherit_vars An 32-bit vector used to control inheritance of instance data from parent
classes. This feature is used within the SOM implementation, butis not current-
ly documented. It is not enabled for classes declared using IDL. A word con-
taining all ones is an appropriate value to pass to inherit instance data from all
parent classes.

className A NULL terminated character string representing the name of the class to be
created. The string is copied, so it may be freed upon return to the caller.

parentClasses A pointerto a sequence of parent (base) classes. The sequence is copied, so it
may be freed upon return to the caller if this is desired.

dataSize A 32-bit integer representing the space needed for the instance variables
introduced by this class.
maxStaticMethods

Aninteger indicating the maximum number of static methods that will be added
to the initialized class using somAddStaticMethod.

Programmers Reference Manual SOM kernel Ref - 101

SOMClass class

majorVersion A 32-bit integer indicating the major version number for this implementation of
the class definition.

minorVersion A 32-bit integer indicating the minor version number.

Return Value
None

Example

A user-defined metaclass “MyMetaclass” might override the somlinitMIClass method as fol-
lows, to have all method invocations go through function “MyDispatch”. “MyMetaclass” defines
an internal instance variable, “saveMethods,” of type “MyMetaclass.”

SOM_Scope void SOMLINK somInitMIClass (MyMetaclass somSelf,
unsigned long inherit_vwvars,
string className,
SOMClassSequence parentClasses,
long dataSize, long maxStaticMethods,
long majorVersion, long minorVersion)

MyMetaclassData *somThis = MyMetaclassGetData(somSelf);

/* Normal class initialization, before somOverrideMtab: */
parent_SOMClass_somInitMIClass (somSelf, inherit_vars, className,
parentClasses, dataSize,
maxStaticMethods, majorVersion, minorVersion);

/* create another class Jjust like somSelf, in whose instance
method table we will save the original method procedures for
somSelf instance. MyDispatch will be able to use this to access
the original method procedures when they are needed.

*/

_saveMethods = MyMetaclassNew () ;

parent_SOMClass_somInitMIClass (_saveMethods, inherit_vars,

inherit_vars, ”“mtabClass”, parentClasses,
dataSize, maxStaticMethods, majorVersion,
minorVersion) ;

/* Now overwrite somSelf’s method table with redispatch stubs: */
_somOverrideMtab (somSelf) ;

/* override the dispatch procedure: */

_somOverrideSMethod (somSelf, somIdFromString (”somDispatch”),
(somMethodPtr)Mydispatch);

Original Class
SOMClass

Related Information

Methods: sominitClass, somOverrideMtab, somOverrideSMethod

Ref — 102 SOM kernel SOMobjects Base Toolkit

SOMClass class

somLookupMethod Method

Purpose

Performs name-look method resolution. Not generally overridden.

IDL Syntax
somMethodPtr somLookupMethod (in somld methodld);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somLookupMethod method uses name-lookup resolution to return the address of the
method procedure that supports the indicated method on instances of the receiver class. The
method may be either static or dynamic. If the method is not supported by the receiving class,
then NULL is returned. The SOM C and C++ usage bindings support name-lookup method
resolution by invoking somLookupMethod on the class of the object on which a name-lookup
method invocation is made.

As always, in order to use a method procedure pointer such as that returned by
somLookupMethod, it is necessary to typecast the procedure pointer so that the compiler can
create the correct procedure call. This means that a programmer making explicit use of this
method must either know the signature of the identified method, and from this create a typedef
indicating system linkage and the appropriate argument and return types, or make use of an
existing typedef provided by C or C++ usage bindings for a SOM class that introduces a static
method with the desired signature.

Parameters

receiver A pointer to the class whose instance method for the indicated method is
desired.

methoadld A somld of the method whose method-procedure pointer is needed.

Return Value
A pointer to the method procedure that supports the method indicated by method|d.

C++ Example

#include <somcls.xh>
#include <somcm.xh>
void main ()
{
somId fcpId = somIdFromString(”somFindClass”)
somId animalld = somIdFromString (”Animal”);
SOMClassMgr *cm = somEnvironmentNew () ;
somTD_SOMClassMgr_somFindClass findclassproc =
(somTD_SOMClassMgr_somFindClass)
_SOMClassMgr—>somLookupMethod (fcpId) ;
SOMClass *aCls = findclassproc(cm,animalId,0,0);

somFree (fcpId);
somFree (animalId);

Programmers Reference Manual SOM kernel Ref — 103

SOMClass class

Original Class
SOMClass

Related Information

Methods: somFindSMethod, somFindSMethodOK, somFindMethod,
somFindMethodOK

Ref — 104 SOM kernel SOMobjects Base Toolkit

SOMClass class

somNew, somNewNolnit Methods

Purpose
Creates a new instance of a class.

IDL Syntax
SOMANny *somNew ();
SOMAny *somNewNolnit ();

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somNew and somNewNolnit methods create a new instance of the receiving class. Space
is allocated as necessary to hold the new object.

When either of these methods is applied to a class, the result is a new instance of that class. If
thereceiver class is SOMClass or a class derived from SOMClass, the new object willbe a class
object; otherwise, the new object will not be a class object. The somNew method invokes the
somlinit method on the newly created object. The somNewNolnit method does not.

If the creation of the new object instance fails, an error condition is raised, and the SOMError
routine is called.

The SOM Compiler generates convenience macros for creating instances of each class, for use
by C and C++ programmers. These macros can be used in place of this method.

Parameters
receiver A pointer to the class object that is to create a new instance.

Return Value
A pointer to the newly created object.

Example

#include <animal.h>

void main ()

{ Animal myAnimal;
2 —
Note: next 2 lines are functionally equivalent to
myAnimal = AnimalNew () ;

___ */

/* Create class object:. */

AnimalNewClass (Animal_MajorVersion, AnimalMinorVersion);

myAnimal = _somNew (_Animal); /* Create instance of Animal cls */

/* ... %/

_somFree (myAnimal) ; /* Free instance of Animal */

}

Original Class
SOMClass

Related Information
Methods: somRenew

Programmers Reference Manual SOM kernel Ref — 105

SOMClass class

somOverrideMtab Method

Purpose

Replaces the method procedure pointers in a class’s instance method table with pointers to the
corresponding method redispatch stubs. As the single exception, the method procedure pointer
for somDispatch is left unchanged.

IDL Syntax

void somOverrideMtab ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somOverrideMtab method replaces the method procedure pointers in a class’s instance
method table with pointers to the corresponding method redispatch stubs. (The method proce-
dure pointer for somDispatch, however, is left unchanged.) This replacement does not change
the procedures that ultimately execute methods unless somDispatch is overridden by the
class. This is because the redispatch stubs invoke methods via somDispatch, and the default
implementation of somDispatch, which is not overridden, simply uses static method resolution
to invoke the original method procedure.

The somOverrideMtab method is useful for creating metaclasses that change the behavior of
an entire class of objects, by (1) using somOverrideMtab to insure that all method invocations
on class instances go through the redispatch stubs (and hence, through somDispatch), and (2)
using somOverrideSMethod to override somDispatch so that each method invocation is
treated specially for the new class of objects. This is generally done by having the metaclass of
the receiver class override sominitMIClass, the method that initializes class objects’ instance
method tables, so that it does a parent method call to get the method table of the newly created
class object, invokes somOverrideMtab on the class object to replace the method pointers in
the method table with pointers to the corresponding redispatch stubs, and then invokes
somOverrideSMethod to override somDispatch for the class object. (See the example be-
low.) By using this technique, metaclasses can change the way method resolution is done for
instances of their classes.

Client programs cannot tell whether somOverrideMtab has been used on a class object; the
way methods are invoked on the class’s instances by users does not change.

Parameters

receiver A pointer to a class object whose instance method table is to be overridden.

Return Value

Example

None.

A user-defined metaclass “MyMetaclass” might override the sominitMIClass method inherited
from SOMClass as follows, to have all method invocations go through function “MyDispatch”.
“MyMetaclass” defines an attribute “sister” of type “MyMetaclass.” (See Chapter 5 of the SOM
Toolkit User’s Guide, in the section entitled “Customizing Method Resolution,” for a complete
example.)

Ref — 106 SOM kernel SOMobjects Base Toolkit

SOMClass class

SOM_Scope void SOMLINK somInitMIClass (MyMetaclass somSelf,
long inherit_vars, string className,
somclassList* parentClasses,
somClassList* contextParentClasses,
long instanceSize, int maxStaticMethods,
long majorVersion, long minorVersion) {

MyMetaclassData *somThis = MyMetaclassGetData (somSelf);

/* Normal class initialization, before somOverrideMtab: */

parent_SOMClass_somInitMIClass (somSelf, inherit_vars, className,
parentClasses, contextParentClasses, instanceSize,
maxStaticMethods, majorVersion, minorVersion);

/* load "sister” attribute with original methods, for use
* by MyDispatch:
*/
__set_sister(somSelf, MyMetaclassNew());
parent_SOMClass_somInitMIClass (___get_sister (somSelf),
inherit_vars, "mtabClass”, parentClasses,
contextParentClasses, instanceSize,
maxStaticMethods, majorVersion, minorVersion);

/* overwrite somSelf’s method table with redispatch stubs: */
somOverrideMtab (somSelf) ;

/* override the dispatch procedure: */

somOverrideSMethod (somSelf, somIdFromString(”somDispatch”),
(somMethodProc *)MyDispatch);

Original Class
SOMClass

Related Information

Methods: somDispatch, sominitMIClass, somOverrideSMethod

Programmers Reference Manual SOM kernel Ref -107

SOMClass class

somOverrideSMethod Method

Purpose

Overrides an inherited static method. Not generally overridden.

IDL Syntax

void somOverrideSMethod (
in somld methodld,
in somMethodPtr method);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somOverrideSMethod method is used instead of somAddStaticMethod to replace the
inherited procedure for executing a method when it is known that a parent of the class already
supports the method. Unlike somAddStaticMethod, this method does not require method
descriptor and stub methods parameters. The original descriptor and stub values, registered by
the class that introduced the method, are still appropriate.

Programmers using the C/C++ implementation bindings for classes declared using IDL or OIDL
will not usually invoke the somOverrideSMethod method directly, because it is invoked auto-
matically when a class object is created.

Parameters

receiver A pointer to the class whose instance method table is to be modified by replac-
ing an inherited method procedure.

methodld An ID specifying the the method to be overridden.

method The method procedure to be used for supporting the indicated method on
instances of the receiver.

Return Value
None.

Original Class
SOMClass

Related Information

Methods: somAddDynamicMethod, somAddStaticMethod, somlInitClass,
sominitMIClass

Ref — 108 SOM kernel SOMobjects Base Toolkit

SOMClass class

somRenew, somRenewNolnit, somRenewNolnitNoZero,
somRenewNoZero Methods

Purpose

Creates a new object instance using a passed block of storage.

IDL Syntax

SOMObject somRenew (in somToken memPin);

SOMObject somRenewNolnit (in somToken memPtr);
SOMObject somRenewNolnitNoZero (in somToken memPtr);
SOMObject somRenewNoZero (in somToken memPtr);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somRenew method creates a new instance of the receiving class by setting the appropriate
location in the passed memory block to the receiving class’s instance method table. Unlike
somNew, these "Renew” methods use the space pointed to by memPtrrather than allocating
new space for the object. The somRenew method automatically re-initializes the object by first
zeroing the object’s memory, and then invoking sominit; somRenewNolnit zeros memory, but
does not invoke sominit. somRenewNolnitNoZero only sets the method table pointer; while
somRenewNoZero calls somlinit, but does not zero memory first.

No check is made to ensure that the passed pointer addresses enough space to hold an
instance of the receiving class. The caller can determine the amount of space necessary by
using the somGetlnstanceSize method.

The C bindings produced by the SOM Compiler contain a macro that is a convenient shorthand
for _somRenew(_className).

Parameters
receiver A pointer to the class object that is to create the new instance.
memPtr A pointer to the space to be used to construct a new object.

Return Value

The value of newObject is returned, which is now a pointer to a valid, initialized object.

Programmers Reference Manual SOM kernel Ref — 109

SOMClass class

Example

#include <animal.h>

main ()

{
void *myAnimalCluster;
Animal animals([5];
SOMClass animalClass;
int animalSize, i;

animalClass =
AnimalNewClass (Animal_MajorVersion,Animal_ MinorVersion);

animalSize = _somGetInstanceSize (animalClass);

/* Round up to double-word multiple */

animalSize = ((animalSize+3)/4)*4;

/*

* Next line allocates room for 5 objects

* in a &odg.cluster” with a single memory-

* allocation operation.

*/
myAnimalCluster = SOMMalloc (5*animalSize);

/*

* The for-loop that follows creates 5 initialized
* Animal instances within the memory cluster.

*/

for (i=0; 1i<5; i++)

animals[i] =
_somRenew (animalClass, myAnimalCluster+(i*animalSize));

/* Uninitialize the animals explicitly: */

for (i=0; 1i<5; i++)

_somUninit (animals[i]);

/*

* Finally, the next line frees all 5 animals

* with one operation.

*/
SOMFree (myAnimalCluster);

Original Class
SOMClass

Related Information
Methods: somGetinstanceSize, somlnit, somNew

Ref — 110 SOM kernel SOMobjects Base Toolkit

SOMClass class

somSetClassData Method

Purpose

Sets a class variable of the receiver to point to the ClassData structure for the receiver class.
Not generally overridden.

IDL Syntax

void somSetClassData (
in somClassDataStructure xyzClassData);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somSetClassData method sets a class variable of the receiver to point to the ClassData
structure of the receiving class. Every SOM class has an external data structure named
<className>ClassData that holds a pointer to the class object plus the method tokens for the
static methods introduced by the class. The class implementation code is responsible for giving
this structure external linkage to support static access, and for informing a class object of this
location to support dynamic access to the method tokens should this be useful for clients of the
class.

C and C++ programmers using implementation bindings to create classes do not need to invoke
this method directly; it is invoked by somBuildClass, which is called by the C and C++ implemen-
tation bindings.

Parameters
receiver A pointer to the class object whose ClassData structure pointer is to be set.

xyzClassData A pointer to the ClassData structure for the class.

Return Value
None.

Original Class
SOMClass

Related Information
Methods: somGetClassData

Programmers Reference Manual SOM kernel Ref - 111

SOMClass class

somSupportsMethod Method
Purpose

Returns a boolean indicating whether instances of a class respond to a given (static or dynamic)
method.

IDL Syntax

boolean somSupportsMethod (in somld methodld);

Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somSupportsMethod method determines ifinstances of the specified class respond to the
specified (static or dynamic) method.

Parameters
receiver A pointer to the class object to be tested.
methodld An ID that represents the name of the method.

Return Value

The somSupportsMethod method returns 1 (true) if instances of the specified class support
the specified method, and 0 (false) otherwise.

Example

Note: animal supports a setSound method;
animal does not support a doTrick method.

#include <animal.h>
main ()
{
SOMClass animalClass;
char *methodNamel "setSound”;
char *methodName2 "doTrick”;
animalClass =
AnimalNewClass (Animal_MajorVersion, Animal_MinorVersion);
if (_somSupportsMethod (animalClass,
somIdFromString (methodNamel)))
somPrintf ("Animals respond to %$s\n”, methodNamel);
if (_somSupportsMethod (animalClass,
somIdFromString (methodName?2)))
somPrintf ("Animals respond to %$s\n”, methodName2);

}

/*
Output from this program:
Animals respond to setSound
*/
Original Class
SOMClass

Related Information
Methods: somRespondsTo

Ref — 112 SOM kernel SOMobjects Base Toolkit

SOMClassMgr class

SOMClassMgr Class

Description

One instance of SOMClassMgr is created automatically during SOM initialization. This
instance (pointed to by the global variable, SOMClassMgrObject) acts as a run-time registry
for all SOM class objects that exist within the current process and assists in the dynamic loading
and unloading of class libraries.

You can subclass SOMClassMgr to augment the functionality of its registry. To have an
instance of your subclass replace the SOM-supplied SOMClassMgrObject, use the
somMergelnto method to place the existing registry information from SOMClassMgrObject
into your new class-manager object.

File Stem

somcm

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes

SOMObiject
Types
interface Repository;
SOMClass *SOMClassArray;
Attributes

Listed below is each available attribute with its corresponding type in parentheses, followed by a
description of its purpose.

sominterfaceRepository (Repository)

The SOM Interface Repository object. If the Interface Repository is not available or cannot be
initialized, this attribute returns NULL. The object reference returned by this attribute is owned by
the SOMClassMgr and should not be freed.

somRegisteredClasses (sequence<SOMClass>)

This is a “readonly” attribute that returns a sequence containing all of the class objects regis-
tered in the current process. When you have finished using the returned sequence, you should
free the sequence’s buffer using SOMFree. Here is a fragment of code written in C that
illustrates the proper use of this attribute:

sequence (SOMClass) clsList;

clsList = SOMClassMgr__get_somRegisteredClasses (SOMClassMgrObject);
somPrintf (”Currently registered classes:\n”);
for (i=0; i<clsList._length; i++)

somPrintf (”\t%s\n”, SOMClass_somGetName (clsList._buffer[i]));
SOMFree (clsList._buffer);

Programmers Reference Manual SOM kernel Ref - 113

SOMClassMgr class

New Methods

Group: Basic Functions
somLoadClassFile
somLocateClassFile
somRegisterClass
somUnloadClassFile
somUnregisterClass

Group: Access
somGetlnitFunction
somGetRelatedClasses

Group: Dynamic
somClassFromlid
somFindClass
somFindClsInFile
somMergelnto
somSubstituteClass

Overridden Methods

somDumpSelfint
sominit
somUninit

Ref — 114 SOM kernel

SOMobjects Base Toolkit

SOMClassMgr class

somClassFromld Method

Purpose
Finds a class object, given its somld, if it already exists. Does not load the class.

IDL Syntax

SOMClass somClassFromld (in somld class/d);

Note: For backward compatibility, this method does not take an Environment parameter.

Description
Finds a class object, given its somld, if it already exists. Does not load the class.

Use the somClassFromld method instead of somFindClass when you do not want the class
to be automatically loaded if it does not already exist in the current process.

Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).
classld The somld of the class. This can be obtained from the name of the class using

the somldFromString function.

Return Value
Returns a pointer to the class, or NULL if the class object does not yet exist.

C Example

#include <som.h>

main () {
SOMClass myClass;
char *myClassName = ”“Animal”;
somId animalId;

somEnvironmentNew () ;
animalIld = somIdFromString (myClassName);
myClass = SOMClassMgr_somClassFromId (SOMClassMgrObiject,
animalId);

if (!myClass)

somPrintf (”Class %s has not been loaded.\n”, myClassName) ;
SOMFree (animallId);
}

This program produces the following output:

Class Animal has not yet been loaded.

Original Class
SOMClassMgr

Related Information
Methods: somFindClass, somFindClsInFile

Programmers Reference Manual SOM kernel Ref - 115

SOMClassMgr class

somFindClass Method

Purpose
Finds the class object for a class.
IDL Syntax
SOMClass somFindClass (
in somld classld,
in long majorVersion,
in long minorVersion);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somFindClass method returns the class object for the specified class. This method first
uses somLocateClassFile to obtain the name of the file where the class’s code resides, then
uses somFindClsInFile.
Ifthe requested class has not yet been created, the somFindClass method attempts to load the
class dynamically by loading its dynamically linked library and invoking its “new class” proce-
dure.
If majorVersion and minorVersion are not both zero, they are used to check the class version
information against the caller’s expectations.
Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).
classld The somld representing the name of the class.

majorVersion The class’s major version number.

minorVersion The class’s minor version number.

Return Values
A pointer to the requested class object, or NULL if the class could not be found or created.

Ref — 116 SOM kernel SOMobjects Base Toolkit

SOMClassMgr class

C Example

#include <som.h>

/*
This program creates a class object
(from a DLL) without requiring the
usage binding file (.h or .xh) for
the class.

* %

* %

*/

void main ()

{
SOMClass myClass;
somId animalId;

somEnvironmentNew () ;
animalIld = somIdFromString (”Animal”);

/* The next statement is equivalent to:
#include "animal.h”
myClass = AnimalNewClass (0, 0);

myClass = SOMClassMgr_somFindClass (SOMClassMgrObject,
animalId, 0, 0);
if (myClass)
somPrintf (”“myClass: %$s\n”, SOMClass_somGetName (myClass));
else
somPrintf (”Class %s could not be dynamically loaded\n”,
somStringFromId (animallId));
SOMFree (animallId);
}

This program produces the following output:

myClass: Animal

Original Class
SOMClassMgr

Related Information
Methods: somFindClsInFile, somLocateClassFile

Programmers Reference Manual SOM kernel Ref - 117

SOMClassMgr class

somFindClsInFile Method

Purpose
Finds a class object for a class.
IDL Syntax
SOMClass somFindClsiInFile (
in somld classld,
in long majorVersion,
in long minorVersion,
in string file);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somFindClsInFile method returns the class object for the specified class. This method is
the same as somFindClass except that the caller provides the filename to be used if dynamic
loading is needed.
If the requested class has not yet been created, the somFindClsInFile method attempts to load
the class dynamically by loading the specified library and invoking its “new class” procedure.
If majorVersion and minorVersion are not both zero, they are used to check the class version
information against the caller’s expectations.
Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).
classld The somld representing the name of the class.

majorVersion The class’s major version number.
minorVersion The class’s minor version number.

file A string representing the filename to be used if dynamic loading is required.

Return Value
A pointer to the requested class object, or NULL if the class could not be found or created.

Ref — 118 SOM kernel SOMobjects Base Toolkit

C Example

SOMClassMgr class

#include <som.h>

/*
*
*
*

*

*/

This program loads a class and creates
an instance of it without requiring the
binding (.h) file for the class.

void main ()

{

}
/%

SOMObject myAnimal;
SOMClass animalClass;
char *animalName = "Animal”;
/*
* Filenames will be different for AIX and 0S/2

Set animalfile to ”C:\\MYDLLS\\ANIMAL.DLL” for 0S/2.
Set animalfile to ”/mydlls/animal.dll” for AIX.

* % X X

/

char *animalFile = ”/mydlls/animal.dl11”; /* AIX filename */

somEnvironmentNew () ;

animalClass = _somFindClsInFile (SOMClassMgrObiject,
somIdFromString (animalName),
o0, O,
animalFile);

myAnimal = _somNew (animalClass);

somPrintf ("The class of myAnimal is %s.\n”,
_somGetClassName (myAnimal)) ;
_somFree (myAnimal) ;

Output from this program:
The class of myAnimal is Animal.

*/

Original Class

SOMClassMgr

Related Information
Methods: somFindClass

Programmers Reference Manual SOM kernel Ref - 119

SOMClassMgr class

somGetlnitFunction Method

Purpose

IDL Syntax

Obtains the name of the function that initializes the SOM classes in a class library.

string somGetInitFunction ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetlnitFunction method supplies the name of the initialization function for OS/2 class
libraries (DLLs) that contain more than one SOM class. The defaultimplementation returns the
value of the global variable SOMClasslnitFuncName, which by default is set to the value
“SOMInitModule”.

For AIX, the name of the class initialization function is not important, since AIX class libraries
should always be constructed as shared libraries with a designated entry point which can be
executed automatically by the loader when the class is loaded. Consequently, the result of this
method is not significant on AIX.

Similarly, if an OS/2 class library (DLL) has been constructed with a DLL initialization function
assigned by the linker, you can choose to invoke the <className>NewClass functions for all
of the classes in the DLL during DLL initialization. In this case (as on AlX), there is no need to
export a “SOMInitModule” function. On the other hand, if your compiler does not provide a
convenient mechanism for creating a DLL initialization function, you can elect to export a
function named “SOMInitModule” (or whatever name is ultimately returned by the
somGetlnitFunction method).

The OS/2 SOMClassMgrObject, after loading a class library, will invoke the method
somGetlnitFunction to obtain the name of a possible initialization function. If this name has
been exported by the class library just loaded, the SOMClassMgrObject calls this function to
initialize the classes in the library. If the name has not been exported by the DLL, the
SOMClassMgrObject then looks for an exported name of the form <className>NewClass,
where <className> is the name of the class supplied with the method that caused the DLL to be
loaded. If the DLL exports this name, it is invoked to create the named class.

Regardless of the technique employed, the SOMClassMgrObject expects that all classes
packaged in a single class library will be created during this sequence.

This method is generally not invoked directly by users. User-defined subclasses of
SOMClassMgr, however, can override this method.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

Return Value

The somGetlnitFunction method returns a zero-terminated string that names the initialization
function of class libraries. By default, this name is the value of the global variable
SOMClasslInitFuncName, the default value of which is SOMInitModule.

Original Class

Related Inf

SOMClassMgr

ormation
Methods: somFindClass, somFindClsInFile

Ref — 120 SOM kernel SOMobjects Base Toolkit

SOMClassMgr class

somGetRelatedClasses Method

Purpose

Returns an array of class objects that were all registered during the dynamic loading of a class.

IDL Syntax

SOMClassArray somGetRelatedClasses (in SOMClass classOb));

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetRelatedClasses method returns an array of class objects that were all registered
during the dynamic loading of the specified class. These classes are considered to define an
affinity group. Any class is a member of at most one affinity group. The affinity group returned by
this call is the one containing the class identified by the classObj parameter.

The first elementin the array is either the class that caused the group to be loaded, or the special
value —1, which means that the class manager is currently in the process of unregistering and
deleting the affinity group (only class-manager objects would ever see this value). The remain-
der of the array consists of pointers to class objects, ordered in reverse chronological sequence
to that in which they were originally registered. This list includes the given argument, classObj,
as one of its elements, as well as the class that caused the group to be loaded (also given by the
first element of the array). The array is terminated by a NULL pointer as the last element.

Use SOMFree to release the array when it is no longer needed. If the supplied class was not
dynamically loaded, it is not a member of any affinity group and NULL is returned.

Parameters

receiver Usually a pointer to SOMClassMgrObject, or a pointer to an instance of a
user-defined subclass of SOMClassMgr.

classObj A pointer to a SOMClass object.

Return Value

Example

The somGetRelatedClasses method returns a pointer to an array of pointers to class objects,
or NULL, if the specified class was not dynamically loaded.

#include <som.h>

SOMClass myClass, *relatedClasses;
string className;

long 1i;

className = SOMClass_somGetName (myClass));
relatedClasses = SOMClassMgr_somGetRelatedClasses
(SOMClassMgrObject, myClass);
if (relatedClasses && *relatedClasses) {
somPrintf (”Class=%s, related classes are: ”, className);
for (i=1; relatedClasses([i]; i++)
somPrintf (”%s ”,SOMClass_somGetName (relatedClasses[i]));
somPrintf (”\n”);
somPrintf (”Class that caused loading was %s\n”,
relatedClasses[0] == (SOMClass) -1 2 "-1" :
SOMClass_somGetName (relatedClasses[0]));
SOMFree (relatedClasses);
} else
somPrintf (”No classes related to %s\n”, className);

Programmers Reference Manual SOM kernel Ref — 121

SOMClassMgr class

Original Class
SOMClassMgr

Related Information
Methods: somGetinitFunction

Ref — 122 SOM kernel

SOMobjects Base Toolkit

SOMClassMgr class

somLoadClassFile Method

Purpose
Dynamically loads a class.

IDL Syntax

SOMClass somLoadClassFile (
in somld class/d,
in long majorVersion,
in long minorVersion,
in string file);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The SOMClassMgr object uses the somLoadClassFile method to load a class dynamically
during the execution of somFindClass or somFindClsInFile. A SOM class object representing
the class is expected to be created and registered as a result of this method.

The somLoadClassFile method can be overridden to load or create classes dynamically using
your own mechanisms. If you simply wish to change the name of the procedure that is called to
initialize the classes in a library, override somGetlInitFunction instead.

This method is generally not invoked directly by users. Instead, use somFindClass or
somFindClsinFile.

Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).
classld The somld representing the name of the class to load.

majorVersion The major version number used to check the compatibility of the class’s imple-
mentation with the caller’s expectations.

minorVersion The minor version number used to check the compatibility of the class’s imple-
mentation with the caller’s expectations.

file The name of the dynamically linked library file containing the class. The name
can be either an unqualified name, without any extension or a fully-qualified file
name.

Return Value

The somLoadClassFile method returns a pointer to the class object, or NULL if the class could
not be loaded or the class object could not be created.

Original Class
SOMClassMgr

Related Information

Methods: somFindClass, somFindClsInFile, somGetlnitFunction,
somUnloadClassFile

Programmers Reference Manual SOM kernel Ref-123

SOMClassMgr class

somLocateClassFile Method

Purpose

Determines the file that holds a class to be dynamically loaded.

IDL Syntax

string somLocateClassFile (
in somld classld,
in long majorVersion,
in long minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The SOMClassMgr object uses the somLocateClassFile method when executing
somFindclass to obtain the name of a file to use when dynamically loading a class. The default
implementation consults the Interface Repository for the value of the dllname modifier of the
class; if no dliname modifier was specified, the method simply returns the class name as the
expected filename.

If you override the somLocateClassFile method in a user-supplied subclass of
SOMClassMgr, the name you return can be either a simple, unqualified name without any
extension or a fully-qualified file name. Generally speaking, you would not invoke this method
directly. It is provided to permit customization of subclasses of SOMClassMgr through overrid-

ing.

Parameters

receiver Usually SOMClassMgrObiject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

classld The somld representing the name of the class to locate.

majorVersion The major version number used to check the compatibility of the class’s imple-
mentation with the caller’s expectations.

minorVersion The minor version number used to check the compatibility of the class’s imple-
mentation with the caller’s expectations.

Return Value

The somLocateClassFile method returns the name of the file containing the class.

Original Class

SOMClassMgr

Related Information

Methods: somFindClass, somFindClsInFile, somGetlnitFunction, somLoadClassFile,
somUnloadClassFile

Ref — 124 SOM kernel SOMobjects Base Toolkit

SOMClassMgr class

somMergelnto Method

Purpose
Transfers SOM class registry information to another SOMClassMgr instance.

IDL Syntax
void somMergelnto (in SOMClassMgr target);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somMergelnto method transfers the SOMClassMgr registry information from one object
to another. The target object is required to be an instance of SOMClassMgr or one of its
subclasses. At the completion of this operation, the target object can function as a replacement
for the receiver. The receiver object (which is then in a newly uninitialized state) is placed in a
mode where all methods invoked on it will be delegated to the target object. If the receiving ob-
ject is the instance pointed to by the global variable SOMClassMgrObject, then
SOMClassMgrObiject is reassigned to point to the target object.

Subclasses of SOMClassMgr that override the somMergelnto method should transfer their
section of the class manager object from the target to the receiver, then invoke their parent’s
somMergelnto method as the final step.

Invoke this method only if you are creating your own subclass of SOMClassMgr. Invoke
somMergelnto from your override of the SOMClassMgr somNew method.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

target A pointer to another instance of SOMClassMgr or one of its subclasses.

Return Value
None.

Programmers Reference Manual SOM kernel Ref-125

SOMClassMgr class

C Example

* The following example is a hypothetical

* implementation of an override of the somNew method

* in a subclass of SOMClassMgr. It illustrates the

* proper use of the somMergeInto method.

*/
SOM_Scope SOMAny * SOMLINK somNew (MySOMClassMgr somSelf)
{

SOMAny *newlInstance;

static int firstTime = 1;

/*
* Permit only one instance of MySOMClassMgr to be created.
*/

if (!firstTime)

return (SOMClassMgrObiject);

newInstance = parent_SOMClassMgr_somNew (somSelf) ;
/*

* The next line will transfer the class registry

* information from SOMClassMgrObject into our

* new instance.

*/
_somMergeInto (SOMClassMgrObject, newlInstance);
/* As a result of the above operation

* SOMClassMgrObject is now set to point to the

* new instance of MySOMClassMgr.

*/
firstTime = 0;
return (newlInstance);

Original Class
SOMClassMgr

Ref — 126 SOM kernel SOMobjects Base Toolkit

SOMClassMgr class

somRBegisterClass Method

Purpose
Adds a class object to the SOM run-time class registry.

IDL Syntax

void somRegisterClass (in SOMClass classObj);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somRegisterClass method adds a class object to the SOM run-time class registry main-
tained by SOMClassMgrObject.

All SOM run-time class objects should be registered with the SOMClassMgrObject. This is
done automatically during the execution of the somClassReady method as class objects are

created.
Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).
classObj A pointer to the class object to add to the SOM class registry.

Return Value
None.

Original Class
SOMClassMgr

Related Information
Methods: somUnregisterClass

Programmers Reference Manual SOM kernel Ref -127

SOMClassMgr class

somSubstituteClass Method

Purpose

Causes the somFindClass, somFindClsInFile, and somClassFromld methods to substitute
one class for another.

IDL Syntax

long somSubstituteClass (
in string origClassName,
in string newClassName);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somSubstituteClass method causes the somFindClass, somFindClsInFile, and
somClassFromld methods to return the class named newClassName whenever they would
normally return the class named origClassName. This effectively results in class
newClassName replacing or substituting for class origClassName. Some restrictions are en-
forced to ensure that this works well. Both class origClassName and class newClassName must
have been already registered before issuing this method, and newClass must be an immediate
child of origClass. In addition (although not enforced), no instances should exist of either class at
the time this method is invoked.

A convenience macro (SOM_SubstituteClass) is provided for C or C++ users. In one operation,
it creates both the old and the new class and then substitutes the new one in place of the old.
The use of both the somSubstituteClass method and the SOM_SubstituteClass macro is
illustrated in the example below.

Parameters

receiver Usually SOMClassMgrObject or a pointer to an instance of a user-defined
subclass of SOMClassMgr.

origClassName
A NULL terminated string containing the old class name.

newClassName
A NULL terminated string containing the new class name.

Return Value

The somSubstituteClass method returns a value of zero to indicate success; a non-zero value
indicates an error was detected.

Ref — 128 SOM kernel SOMobjects Base Toolkit

SOMClassMgr class

C Example

#include ”student.h”
#include "mystud.h”

/* Macro form */
SOM_SubstituteClass (Student, MyStudent);

/* Direct use of the method, equivalent to
* the macro form above.

*/

{

SOMClass origClass, replacementClass;

origClass = StudentNewClass (Student_MajorVersion,
Student_MinorVersion) ;
replacementClass = MyStudentNewClass (MyStudent_MajorVersion,
MyStudent_MinorVersion);
SOMClassMgr_somSubstituteClass (
SOMClass_somGetName (origClass),
SOMClass_somGetName (replacementClass));

Original Class
SOMClassMgr

Related Information

Methods: somClassFromID, somFindClass, somFindClsinFile,
somMergelnto, somSubstituteClassObj

Programmers Reference Manual SOM kernel Ref-129

SOMClassMgr class

somUnloadClassFile Method

Purpose
Unloads a dynamically loaded class and frees the class’s object.

IDL Syntax
long somUnloadClassFile (in SOMClass c/ass);
Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somUnregisterClass method uses the somUnloadClassFile method to unload a dynam-
ically loaded class. This releases the class’s code and unregisters all classes in the same affinity
group. (Use somGetRelatedClasses to find out which other classes are in the same affinity
group.)
The class object is freed whether or not the class’ s shared library could be unloaded. If the class
was not registered, an error condition is raised and SOMError is invoked. This method is
provided to permit user-created subclasses of SOMClassMgr to handle the unloading of
classes by overriding this method. Do not invoke this method directly; instead, invoke
somUnregisterClass.

Parameters

receiver Usually SOMClassMgrObiject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

class A pointer to the class to be unloaded.

Return Value

The somUnloadClassFile method returns 0 if the class was successfully unloaded; otherwise,
it returns a system-specific non-zero error code from either the OS/2 DosFreeModule or the
AlX unload system call.

Original Class
SOMClassMgr

Related Information

Methods: somLoadClassFile, somRegisterClass,
somUnregisterClass, somGetRelatedClasses

Ref — 130 SOM kernel SOMobjects Base Toolkit

SOMClassMgr class

somUnregisterClass Method
Purpose

Removes a class object from the SOM run-time class registry.

IDL Syntax

long somUnregisterClass (in SOMClass class);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somUnregisterClass method unregisters a SOM class and frees the class object. If the
class was dynamically loaded, itis also unloaded using somUnloadClassFile (which causes its
entire affinity group to be unloaded as well).

Parameters
receiver Usually SOMClassMgrObiject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).
class A pointer to the class to be unregistered.

Return Value

The somUnregisterClass method returns 0 for a successful completion, or non-zero to denote
failure.

Example

#include <som.h>

void main ()

{
long rc; /* Return code */
SOMClass animalClass;

/* The next 2 lines declare a static form of somId */
string animalClassName = “Animal”;
somId animalId = &animalClassName;

somEnvironmentNew () ;
animalClass = SOMClassMgr_somFindClass (SOMClassMgrObiject,
animalId, 0, 0);
if (!animalClass) {
somPrintf (”Could not load class.\n”);
return;
}
rc = SOMClassMgr_somUnregisterClass (SOMClassMgrObiject,
animalClass);
if (rc)
somPrintf (”Could not unregister class, error code: %$1d.\n”,
rc);
else
somPrintf (”Class successfully unloaded.\n”);

}

Original Class
SOMClassMgr

Related Information
Methods: somLoadClassFile, somRegisterClass, somUnloadClassFile

Programmers Reference Manual SOM kernel Ref - 131

SOMObiject class

SOMOnbject Class

SOMObijectis the root class for all SOM classes. That s, all SOM classes must be subclasses of
SOMObiject or of some other class derived from SOMObject. SOMObject introduces no
instance data, so objects whose classes inherit from SOMODbject incur no size increase. They
do inherit a suite of methods that provide the behavior required of all SOM objects. Three of
these methods are typically overridden by any subclass that has instance data — sominit,
somUninit, and somDumpSelfint. See the descriptions of these methods for further informa-
tion.

File Stem

somobj

Base
None

Metaclass
SOMClass

Ancestor Classes
None

New Methods

Group: Initialization/Termination
somFree
sominit
somUninit

Group: Access
somGetClass
somGetClassName
somGetSize

Group: Testing
somisA
somlsinstanceOf
somRespondsTo

Group: Dynamic
somDispatchA
somDispatchD
somDispatchL
somDispatchV
somDispatch
somClassDispatch

Group: Development Support
somDumpSelf
somDumpSelfint
somPrintSelf

Overridden Methods

None

Ref — 132 SOM kernel SOMobjects Base Toolkit

SOMObiject class

somDispatch, somClassDispatch Methods

Purpose

Invokes a method using dispatch method resolution. The somDispatch method is designed to
be overridden. The somClassDispatch method is not generally overridden.

IDL Syntax

boolean somDispatch (
out somToken retValue,
in somld methodla,
in va_list args);

boolean somClassDispatch (
in SOMClass c/sObj,
out somToken retValue,
in somld methodla,
in va_list args);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

somDispatch and somClassDispatch perform method resolution to select a method proce-
dure, and then invoke this procedure on args. The somSelf argument for the selected method
procedure (called the target object, below, to distinguish it from the receiver of the somDispatch
or somClassDispatch method call) is the first argument included in the va_list, args. For
somDispatch, method resolution is performed using the class of the receiver; for
somClassDispatch, method resolution is performed using the argument class, c/sObj. Be-
cause somClassDispatch uses clsObj for method resolution, a programmer invoking
somDispatch or somClassDispatch should assure that the class of the target object is either
derived from or is identical to the class used for method resolution; otherwise, a runtime error will
likely result when the target object is passed to the resolved procedure. Although not necessary,
the receiver is usually also the target object.

somDispatch is not generally used by object clients; instead, it is overridden by a class
implementor to provide specialized class—specific method dispatching, and is invoked by redis-
patch stubs that are placed in a method table by a class implementor during class initialization
(often through use of the method somOverrideMtab). Although somDispatch and
somClassDispatch can be used by object clients for dispatching methods whose names are
not known until runtime, the function somApply can also be used for this purpose, and is more
efficient.

The somDispatch and somClassDispatch methods supersede the somDispatch X methods.
Unlike the somDispatch X methods, which are restricted to few return types, the somDispatch
and somClassDispatch methods make no assumptions concerning the result returned by the
method to be invoked. Thus, somDispatch and somClassDispatch can be used to invoke
methods that return structures. The somDispatch X methods now invoke somDispatch, so
overriding somDispatch serves to override the somDispatchX methods as well.

Parameters

receiver A pointer to the object whose class will be used for method resolution by
somDispatch.

clsObj A pointer to the class that will be used for method resolution by
somClassDispatch.

Programmers Reference Manual SOM kernel Ref — 133

SOMObiject class

retValue

methodld

args

Return Value

Aboolean representing whether or not the method was successfully dispatched is returned. The
reason for this is that somDispatch and somClassDispatch use the function somApply to
invoke the resolved method procedure, and somApply requires an apply stub for successful
execution. In support of old class binaries SOM does not consider a NULL apply stub to be an
error. As a result, somApply may fail. If this happens, then false is returned; otherwise true is

returned.

C Example

Ref — 134

The address of the area in memory where the result of the invoked method
procedure is to be stored. The caller is responsible for allocating enough
memory to hold the result of the specified method. When dispatching methods
that return no result (i.e., void), a NULL may be passed as this argument.

A somld identifying the method to be invoked. A string representing the meth-
od name can be converted to a somld using the somldFromString function.

A va_list containing the arguments to be passed to the method identified by
methodld. The arguments mustinclude a pointer to the target object as the first
entry. As a convenience for C and C++ programmers, SOM’s language bind-
ings provide a varargs invocation macro for va_list methods (such as
somDispatch and somClassDispatch). The example below illustrates this.

Given class Key that has an attribute keyval of type long and an overridden method for
somPrintSelf that prints the value of the attribute (as well as the information printed by
SOMObiject’'s implementation of somPrintSelf), the following client code invokes methods on
Key objects using somDispatch and somClassDispatch. (The Key class was defined with the
callstyle=oidl class modifier, so the Environment argument is not required of its methods.)

SOM kernel

SOMobjects Base Toolkit

SOMObiject class

#include <key.h>

main ()
{
SOMObject obj;
long k1 = 7, k2;
Key myKey = KeyNew () ;
va_list push, args = SOMMalloc(8);
somId setId = somIdFromString(”_set_keyval”);
somId getId somIdFromString (”_get_keyval”);
somId prtId somIdFromString (”_somPrintSelf”);

/* va_list invocation of setkey and getkey : */
push = args;

va_arg (push, SOMObject) = myKey;

va_arg (push, long) = kl1;

SOMObject_somDispatch (myKey, (somToken*)0,setId, args);
push = args;

va_arg (push, SOMObject) = myKey;
SOMObject__somDispatch (myKey, (somToken*) &k2, getId, args);
printf (”“va_list _set_keyval and _get_keyval: %i\n”, k2);

/* varargs invocation of setkey and getkey : */
_somDispatch (myKey, (somToken*)O0, setId, myKey, kl);
_somDispatch (myKey, (somToken*)&k2, getId, myKey);
printf (“varargs _set_keyval and _get_keyval: %i\n”, k2);

/* illustrate somclassDispatch ”casting” (use varargs form) */
printf ("somPrintSelf on myKey as a Key:\n”);
_somClassDispatch (myKey, _Key, (somToken*) &obj2, prtId, myKey,0);

printf ("somPrintSelf on myKey as a SOMObject:\n”);
_somClassDispatch (myKey, _SOMObject, (somToken*) &obj, prtId, myKey,0);
SOMFree (args); SOMFree (setId); SOMFree (getId); SOMFree (prtld);
_somFree (myKey) ;

}

This program produces the following output:

va_list _set_keyval and _get_keyval: 7

varargs _set_keyval and _get_keyval: 7

somPrintSelf on myKey as a Key:

{An instance of class Key at address 2005B2F8}
-— with key value 7

somPrintSelf on myKey as a SOMObject:

{An instance of class Key at address 2005B2F8}

Original Class
SOMObject

Related Information
Functions: somApply
Methods: somOverrideMtab

Programmers Reference Manual SOM kernel Ref — 135

SOMObiject class

somDispatchX Methods (Obsolete)

Purpose

Invoke a method using dispatch method resolution. These methods are obsolete.

IDL Syntax

somToken somDispatchA (
in somld methodld,
in somld descriptor,
in va_list args);

double somDispatchD (
in somld methodld,
in somld descriptor,
in va_list args);

long somDispatchlL (
in somld methodld,
in somld descriptor,
in va_list args);

void somDispatchV (
SOMObiject receiver,
in somld methodld,
in somld descriptor,
in va_list args);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somDispatch X methods are superseded by the more general somDispatch method, and
are retained solely for backward compatibility.

The somDispatch X methods invoke on the receiving object the method identified by methodld,
with arguments specified by args. The target object for the method invocation is the receiving
object, which is not included in the arguments.

Parameters
receiver A pointer to the object that on which the dispatched method is invoked.
methodld A somld that represents the method to be invoked.
descriptor A somld that represents the types of the arguments being passed in the args
va_list. This parameter is not used in the current implementation, so a
NULL value can be substituted.
args A va_list containing the arguments to be passed to the method identified by

methodld. The arguments do not include the target for the dispatched method..

Return Value

Four families of return values are supported, corresponding to the four forms of the
somDispatch X method. The somDispatch X method chosen should have a return type com-

Ref — 136 SOM kernel SOMobjects Base Toolkit

SOMObiject class

patible with the result of the method identified by methodld. Within each of the four families, only
the largest representation is supported. The four families are:

Pointer somDispatchA returns an address as a somToken.
Floating point somDispatchD returns a floating point number as a double.
Integer somDispatchL returns an integer as a long.

Void somDispatchV returns void. It is used for methods that do not return a result.

Original Class
SOMObiject

Related Information
Functions: somApply

Methods: somDispatch

Programmers Reference Manual SOM kernel Ref-137

SOMObiject class

somDumpSelf Method

Purpose

Writes out a detailed description of the receiving object. Intended for use by object clients. Not
generally overridden.

IDL Syntax

void somDumpSelf (in long level);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somDumpSelf method performs some initial setup, and then invokes the
somDumpSelfint method to write a detailed description of the receiver, including its state.

Parameters
receiver A pointer to the object to be dumped.
level The nesting level for describing compound objects. It must be greater than or

equal to 0. All lines in the description will be preceded by “2 * level” spaces.

Return Value

None.

Example
See somDumpSelfint.

Original Class
SOMObject

Related Information
Methods: somDumpSelfint

Ref — 138 SOM kernel SOMobjects Base Toolkit

SOMObiject class

somDumpSelfint Method

Purpose

Outputs the internal state of an object. Intended to be overridden by class implementors. Not
intended to be directly invoked by object clients.

IDL Syntax

void somDumpSelfint (in long /evel);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somDumpSelfint method should be overridden by a class implementor, to write out the
instance data stored in an object. This method is invoked by the somDumpSelf method, which
is used by object clients to output the state of an object.

The procedure used to override this method for a new class should begin by calling the parent
class form of this method on each of the class parents, and should then write a description of the
instance variables introduced by new class. This will result in a description of all the class’s
instance variables. The C and C++ implementation bindings provide a convenient macro for
performing parent method calls on all parents, as illustrated below.

The character output routine pointed to by SOMOutCharRoutine should be used for output.
The somLPrintf function is especially convenient for this, since level is handled appropriately.

Parameters

receiver

level

Return Value

None.

C Example

A pointer to the object to be dumped.

The nesting level for describing compound objects. It must be greater than or
equal to 0. Alllines in the description should be preceded by “2 * level” spaces.

Below is a method overriding somDumpSelfint for class “List”, which has two attributes, val
(which is a long) and next (which is a pointer to a “List” object).

SOM_Scope void SOMLINK somDumpSelfInt (List somSelf, int level)

{

Programmers Reference Manual

ListData *somThis = ListGetData (somSelf) ;
Environment *ev = somGetGlobalEnvironment () ;

List_parents_somDumpSelfInt (somSelf, level);

somLPrintf (level, ”“This item: %i\n”, __get_val (somSelf, ev);
somLPrintf (level, ”Next item: \n”);
if (__get_next(somSelf, ev) != (List) NULL)

somDumpSelfInt (get_next (somSelf, ev), level+l);
else
somLPrintf (level+l, ”NULL\n”);

SOM kernel Ref —139

SOMObiject class

Below is a client program that invokes the somDumpSelf method on “List” objects:

#include <list.h>

main ()

{
List L1, L2;
long x = 7, yv = 13;
Environment *ev =

L1l ListNew () ;
L2 = ListNew();
__set_val(Ll, ev,

X);

_ _set_next (L1, ev, (List) NULL);
__set_val(L2, ev, Vv);
__set_next (L2, ev, Ll1);

_somDumpSelf (L2, 0) ;

_somFree (L1);
_somFree (L2);

}

Below is the output produced by this program:

{An instance of class List at 0x2005EAS8
This item: 13
Next item:
1 This item: 7
1 Next item:
2 NULL

Original Class
SOMObject

Related Information
Methods: somDumpSelf, somPrintSelf

Ref — 140 SOM kernel

somGetGlobalEnvironment () ;

SOMobjects Base Toolkit

somFree Method

Purpose

SOMObiject class

Releases the storage used by an object. Intended for use by object clients. Not generally

overridden.

IDL Syntax

void somFree ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somFree method releases the storage containing the receiver object by calling the method
somDeallocate. No future references should be made to the receiver once this is done. Before
releasing storage, somFree calls somUninit to allow storage pointed to the object to be freed.

The somFree method should not be called on objects created by somRenew, thus the method

is normally only used by code that also created the object.

Note: SOM also supplies a macro, SOMFree, which is used to free a block of memory. This

macro should not be used on objects.

Parameters
receiver A pointer to the object to be freed.

Return Value
None.

C Example
#include <animal.h>
void main ()

{

Animal myAnimal;

/*

* Create an object.

*/
myAnimal = AnimalNew () ;
/* ... %/

/* Free it when finished. */
_somFree (myAnimal) ;

}

Original Class
SOMObject

Related Information
Methods: somNew, somNewNolnit, somUninit
Functions: SOMFree

Programmers Reference Manual

SOM kernel Ref — 141

SOMObiject class

somGetClass Method

Purpose
Returns a pointer to an object’s class object. Not generally overridden.

IDL Syntax
SOMClass somGetClass ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

somGetClass obtains a pointer to the receiver’s class object. The somGetClass method is
typically not overridden.

Important Note: For C and C++ programmers, SOM provides a SOM_GetClass macro that
performs the same function. This macro should only be used only when absolutely necessary
(i.e., when a method call on the object is not possible), since it bypasses whatever semantics
may be intended for the somGetClass method by the implementor of the receiver’s class. Even
class implementors do not know whether a special semantics for this method is inherited from
ancestor classes. If you are unsure of whether the method or the macro is appropriate, you
should use the method call.

Parameters
receiver A pointer to the object whose class is desired.

Return Value
A pointer to the object’s class object.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
int numMethods;
SOMClass animalClass;

myAnimal = AnimalNew ();
animalClass = _somGetClass (myAnimal);
SOM_Test (animalClass == _Animal);
}
Original Class
SOMObiject

Related Information
Macros: SOM_GetClass

Ref — 142 SOM kernel SOMobjects Base Toolkit

SOMObiject class

somGetClassName Method

Purpose
Returns the name of the class of an object. Not generally overridden.

IDL Syntax

string somGetClassName ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetClassName method returns a pointer to a zero-terminated string that gives the
name of the class of an object.

This method is not generally overridden; it simply invokes somGetName on the class of the
receiver. Refer to somGetName for more information on the returned string,

Parameters
receiver A pointer to the object whose class name is desired.

Return Value
The somGetClassName method returns a pointer to the name of the class.

C Example

#include <animal.h>

main ()

{
Animal myAnimal;
SOMClass animalClass;
char *className;

myAnimal = AnimalNew () ;
className = _somGetClassName (myAnimal) ;
somPrintf (“Class name: %s\n”, className);
_somFree (myAnimal) ;

}

/*

Output from this program:

Class name: Animal

*/

Original Class
SOMObject

Related Information
Methods: somGetName

Programmers Reference Manual SOM kernel Ref — 143

SOMObiject class

somGetSize Method

Purpose

Returns the size of an object. Not generally overridden.

IDL Syntax

long somGetSize ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetSize method returns the total amount of contiguous space used by the receiving
object.

The value returned reflects only the amount of storage needed to hold the SOM representation
of the object. The object might actually be using or managing additional space outside of this
area.

The somGetSize method is not generally overridden.

Parameters
receiver A pointer to the object whose size is desired.

Return Value
The somGetSize method returns the size, in bytes, of the receiver.

C Example

#include <animal.h>
void main ()
{
Animal myAnimal;
int animalSize;

myAnimal = AnimalNew () ;
animalSize = _somGetSize (myAnimal) ;
somPrintf (”Size of animal (in bytes): %d\n”, animalSize);

_somFree (myAnimal) ;

}

/*

Output from this program:
Size of animal (in bytes): 8
*/

Original Class
SOMObject

Related Information
Methods: somGetinstancePartSize, somGetinstanceSize

Ref — 144 SOM kernel SOMobjects Base Toolkit

SOMObiject class

somlinit Method

Purpose

Initializes instance variables or attributes in a newly created object. Designed to be overridden.

IDL Syntax

void somlnit ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somlnit method is invoked to cause a newly created object to initialize its instance variables
or attributes.

Because instances of SOMObject do not have any instance data, the default implementation
does nothing. It is provided as a convenience to class implementors so that initialization of
objects can be done in a uniform way across all classes (by overriding somlnit). This method is
called automatically by somNew during object creation.

A companion method, somUninit, is called whenever an object is freed. These two methods
should be designed to work together, with sominit priming an object for its first use, and
somUninit preparing the object for subsequent release.

If objects of your class contain instance variables or attributes, override the somlnit method to
initialize the instance variables or attributes when instances of the class are created. When
overriding this method, always call all parent (base) classes’ versions of this method before
doing your own initialization, as follows:

1. The overriding implementation should invoke the parent method for each parent. For
users of the C or C++ implementation bindings, this can be done in either of two ways:
(a) by calling a <className>_parents_<methodName> macro (which automatically
invokes all parent methods) or
(b) by calling the <className>_parent_<parentName>_<methodName> macro on
each parent separately.

For more information on parent method calls, see the topic “Extending the Implementa-
tion Template” in Chapter 4, “Implementing Classes in SOM,” of the SOM Toolkit User’s
Guide.

2. The code must be written so that it can be executed multiple times without harm on the
same object. This is necessary because, under multiple inheritance, parent method calls
that progress up the inheritance hierarchy may encounter the same ancestor class more
than once (where different inheritance paths “join” when followed backward). A check can
be made to determine whether a particular invocation of somlnit is the first on a given
object by examining the contents of its instance variables; all the instance variables of a
newly created SOM object are set to zero before somlnit is invoked on that object.

More information and examples are given in the topic “Initializing and Deinitializing Objects” in
Chapter 4, “Implementing Classes in SOM,” of the SOM Toolkit User’s Guide.

Parameters

receiver A pointer to the object to be initialized.

Return Value

None

Programmers Reference Manual SOM kernel Ref — 145

SOMObiject class

C Example
Below is the implementation for a class Animalthat introduces an attribute sound of type string
and overrides somlnit and somUninit, along with a main program that creates and then frees
an instance of class Animal.

#define Animal_Class_Source
#include <animal.ih>
#include <string.h>

SOM_Scope void SOMLINK somInit (Animal somSelf)

{
AnimalData *somThis = AnimalGetData (somSelf);

Environment *ev = somGetGlobalEnvironment () ;
Animal_parents_somInit (somSelf);

if (!_get_sound(somSelf, ev)) {
__set_sound(somSelf, ev, SOMMalloc (100));
strcpy (__get_sound(somSelf, ev), "“Unknown Noise”);

somPrintf (”New Animal Initialized\n”);

}

SOM_Scope void SOMLINK somUninit (Animal somSelf)

{
AnimalData *somThis = AnimalGetData (somSelf);

Environment *ev = somGetGlobalEnvironment () ;
if (__get_sound(somSelf, ev)) {
SOMFree (__get_sound(somSelf, ev);
__set_sound(somSelf, ev, (char*)O0);
somPrintf (”Animal Uninitialized\n”);
Animal_parents_somUninit (somSelf);

}

/* main program */
#include <animal.h>
void main ()

{

Animal myAnimal;
myAnimal = Animal2New ();
_somFree (myAnimal) ;

/*
Program output:

New Animal Initialized
Animal Uninitialized

*/

Original Class
SOMObject

Related Information
Methods: somNew, somRenew, somUninit

Ref — 146 SOM kernel SOMobjects Base Toolkit

SOMObiject class

somlisA Method
Purpose

Tests whether an object is an instance of a given class or of one of its descendant classes. Not
generally overridden.

IDL Syntax

boolean somlsA (in SOMClass aClass);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

Use the somlsA method to determine if an object can be treated like an instance of aClass.
SOM guarantees that if somlsA returns true, then the receiver will respond to all (static or
dynamic) methods supported by aClass.

Parameters
receiver A pointer to the object to be tested.
aClass A pointer to the class that the object should be tested against.

Return Value

The somisA methods returns 1 (true) if the receiving object is an instance of the specified class
or (unlike somlsinstanceOf) of any of its descendant classes, and 0 (false) otherwise.

C Example

#include <dog.h>
/* ________________________________

Animal myAnimal;

Dog myDog;

SOMClass animalClass;
SOMClass dogClass;

myAnimal = AnimalNew () ;
myDog = DogNew () ;
animalClass = _somGetClass (myAnimal);
dogClass = _somGetClass (myDog);
if (_somIsA (myDog, animalClass))
somPrintf (”myDog IS an Animal\n”);
else
somPrintf (”myDog IS NOT an Animal\n”);
if (_somIsA (myAnimal, dogClass))
somPrintf (“myAnimal IS a Dog\n”);
else
somPrintf (”“myAnimal IS NOT a Dog\n”);
_somFree (myAnimal);
_somFree (myDog);
}
/*
Output from this program:
myDog IS an Animal
myAnimal IS NOT a Dog
*/

Programmers Reference Manual SOM kernel Ref —147

SOMObiject class

Original Class
SOMObject

Related Information

Methods: somlsDescendedFrom, somisinstanceOf, somRespondsTo,
somSupportsMethod

Ref — 148 SOM kernel SOMobjects Base Toolkit

SOMObiject class

somlisinstanceOf Method
Purpose

Determines whether an object is an instance of a specific class. Not generally overridden.

IDL Syntax

boolean somlsinstanceOf (in SOMClass aClass);

Note: For backward compatibility, this method does nof take an Environment parameter.

Description

Use the somlsinstanceOf method to determine if an object is an instance of a specific class.
This method tests an object for inclusion in one specific class. It is equivalent to the expression:

(aClass == somGetClass (receiver))
Parameters
receiver A pointer to the object to be tested.
aClass A pointer to the class that the object should be an instance of.

Return Value

The somlisinstanceOf method returns 1 (true) if the receiving object is an instance of the
specified class, and 0 (false) otherwise.

C Example

#include <dog.h>
/* ________________________________

Animal myAnimal;

Dog myDog;

SOMClass animalClass;
SOMClass dogClass;

myAnimal = AnimalNew () ;

myDog = DogNew () ;

animalClass = _somGetClass (myAnimal);

dogClass = _somGetClass (myDog);

if (_somIsInstanceOf (myDog, animalClass))
somPrintf (”myDog is an instance of Animal\n”);

if (_somIsInstanceOf (myDog, dogClass))

somPrintf (”myDog is an instance of Dog\n”);
if (_somIsInstanceOf (myAnimal, animalClass))
somPrintf (”myAnimal is an instance of Animal\n”);
if (_somIsInstanceOf (myAnimal, dogClass))
somPrintf (”“myAnimal is an instance of Dog\n”);

_somFree (myAnimal);
_somFree (myDog);
}
/*
Output from this program:
myDog is an instance of Dog
myAnimal is an instance of Animal

*/

Programmers Reference Manual SOM kernel Ref — 149

SOMObiject class

Original Class
SOMObject

Related Information
Methods: somisDescendedFrom, somlisA

Ref — 150 SOM kernel SOMobjects Base Toolkit

SOMObiject class

somPrintSelf Method

Purpose

Outputs a brief description that identifies the receiving object. Designed to be overridden.

IDL Syntax
SOMObject somPrintSelf ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

somPrintSelf should output a brief string containing key information useful to identify the
receiver object, rather than a complete dump of the receiver object state as provided by
somDumpSelfint. The somPrintSelf method should use the character output routine
SOMOutCharRoutine (or any of the somPrintf functions) for this purpose. The default imple-
mentation outputs the name of the receiver object’s class and the receiver’s address in memory.

Because the most specific identifying information for an object will often be found within instance
data introduced by the class of an object, it is likely that a class implementor that overrides this
method will not need to invoke parent methods in order to provide a useful string identifying the
receiver object.

Parameters

receiver A pointer to the object to be described.

Return Value

The somPrintSelf method returns a pointer to the receiver object as its result.

C Example

#include <animal.h>

main ()

{
Animal myAnimal;
myAnimal = AnimalNew ();
/* ... %/
_somPrintSelf (myAnimal);
_somFree (myAnimal);

}

/*

Output from this program:

{An instance of class Animal at address 0001CECO}
*/

Original Class
SOMObject

Related Information
Methods: somDumpSelf, somDumpSelfint

Programmers Reference Manual SOM kernel Ref — 151

SOMObiject class

somRespondsTo Method

Purpose
Tests whether the receiving object supports a given method. Not generally overridden.

IDL Syntax

boolean somRespondsTo (in somld methodld);
Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somRespondsTo method tests whether a specific (static or dynamic) method can be
invoked on the receiver object. This test is equivalent to determining whether the class of the
receiver supports the specified method on its instances.

Parameters
receiver A pointer to the object to be tested.
methodld A somld that represents the name of the desired method.

Return Value

The somRespondsTo method returns TRUE if the specified method can be invoked on the
receiving object, and FALSE otherwise.

C Example

Note: Animal supports a setSound method;
Animal does not support a doTrick method.

#include <animal.h>
main ()
{

Animal myAnimal;

char *methodNamel = "setSound”;
char *methodName2 = "doTrick”;
myAnimal = AnimalNew () ;

if (_somRespondsTo (myAnimal, SOM_IdFromString (methodNamel)))
somPrintf ("myAnimal responds to %$s\n”, methodNamel) ;
if (_somRespondsTo (myAnimal, SOM_TIdFromString (methodNameZ2)))
somPrintf ("myAnimal responds to %$s\n”, methodName2);
_somFree (myAnimal) ;
}
/*
Output from this program:
myAnimal responds to setSound

*/

Original Class
SOMObject

Related Information
Methods: somSupportsMethod

Ref — 152 SOM kernel SOMobjects Base Toolkit

SOMObiject class

somUninit Method

Purpose

Un-initializes the receiving object. Designed to be overridden by class implementors. Not
normally invoked directly by object clients.

IDL Syntax

void somUninit ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somUninit method performs the inverse of object initialization. Class implementors that
introduce instance data that points to allocated storage should override somUninit so allocated
storage can be freed when an object is freed.

This method is called automatically by somFree to clean up anything necessary (such as extra
storage dynamically allocated to the object) before somFree releases the storage allocated to
the object itself.

Code responsible for freeing an object must first know that there will be no further references to
this object. Once this is known, this code would normally invoke somFree (which calls
somUninit). In cases where somRenew was used to create an object instance, however,
somFree cannot be called (e.g., the storage containing the object may simply be a location on
the stack), and in this case, somUninit must be called explicitly.

When overriding this method, always call the parent-class versions of this method after doing
your own un-initialization. Furthermore, just as with somlnit, because your method may be
called multiple times (due to multiple inheritance), you should zero out references to memory
that is freed, and check for zeros before freeing memory and calling the parent methods.

Parameters

receiver A pointer to the object to be un-initialized.

Return Value

C Example

None

Following is the implementation for a class Animal that introduces an attribute sound of type
string and overrides somlnit and somUninit, along with a main program that creates and then
frees an instance of class Animal.

Programmers Reference Manual SOM kernel Ref — 153

SOMObiject class

#define Animal_Class_Source
#include <animal.ih>
#include <string.h>

SOM_Scope void SOMLINK somInit (Animal somSelf)

{
AnimalData *somThis = AnimalGetData (somSelf);

Environment *ev = somGetGlobalEnvironment () ;
Animal_parents_somInit (somSelf);

if (!_get_sound(somSelf, ev)) {
__set_sound(somSelf, ev, SOMMalloc (100));
strcpy (__get_sound(somSelf, ev), "“Unknown Noise”);

somPrintf (”New Animal Initialized\n”);

}

SOM_Scope void SOMLINK somUninit (Animal somSelf)

{
AnimalData *somThis = AnimalGetData (somSelf);

Environment *ev = somGetGlobalEnvironment () ;
if (__get_sound(somSelf, ev)) {
SOMFree (__get_sound(somSelf, ev);
_ _set_sound(somSelf, ev, (char*)O0);
somPrintf (”Animal Uninitialized\n”);
Animal_parents_somUninit (somSelf);

}

/* main program */
#include <animal.h>
void main ()

{
Animal myAnimal;
myAnimal = AnimalNew ();
_somFree (myAnimal);

/~k

Program output:

New Animal Initialized
Animal Uninitialized

*/

Original Class
SOMObject

Related Information
Methods: somlnit, somNew, somRenew

Ref — 154 SOM kernel SOMobjects Base Toolkit

