
����
�
���� �	�
� �������

��
��� ����

An introductory guide to the
base capabilities of the
System Object Model and
its basic frameworks

Version 2.0
January 1994

ii SOMobjects Base Toolkit Users Guide

Note: Before using this information and the product it supports, be sure to read the trademark information under
“Notices” on page ix.

Second Edition (January 1994)

The following paragraph does not apply to the United Kingdom or any country where such provisions

are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE PUB-

LICATION “AS IS” WITHOUT WARRANT OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states

do not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may not

apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the publication. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and

programs), programming, or services that are not announced in your country. Such references or information

must not be construed to mean that IBM intends to announce such IBM products, programming, or services in

your country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your

IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of

this document does not give you any license to these patents. You can send license inquiries, in writing, to the

IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which

illustrate OS/2 or AIX programming techniques. You may copy and distribute these sample programs in any form

without payment to IBM, for the purposes of developing, using, marketing or distributing application programs

conforming to the OS/2 or AIX application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must

include a copyright notice as follows: “�(your company name) (year) All Rights Reserved.”

However, the following copyright notice protects this documentation under the Copyright laws of the United

States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and

making derivative works.

� Copyright International Business Machines Corporation 1991 — 1994. All rights reserved.

Notice to US Government Users – Documentation related to restricted rights – Use, duplication or disclosure is

subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

iiiSOMobjects Base Toolkit Users Guide

SOMobjects Base Toolkit Users Guide

Contents

About This Book vii

Notices ix

Chapter 1. Introduction to the SOMobjects Developer Toolkit

1.1 Background 1 – 1.

1.2 Introducing SOM and the SOMobjects Toolkit 1 – 3.

The SOM Compiler 1 – 4.
The SOM run-time library 1 – 5.
Frameworks provided in the SOMobjects Toolkit 1 – 5.

1.3 What’s New in the SOMobjects Developer Toolkit 1 – 7.

1.4 Overview of this book 1 – 8.

Chapter 2. Tutorial for Implementing SOM Classes

2.1 Basic Concepts of the System Object Model (SOM) 2 – 1.

Development of the Tutorial examples 2 – 5.

2.2 Basic Steps for Implementing SOM Classes 2 – 6.

Example 1 — Implementing a Simple Class with One Method 2 – 7.
Example 2 — Adding an Attribute to the Hello class 2 – 11.
Example 3 — Overriding an Inherited Method 2 – 13.

Example 4 — Using Metaclasses 2 – 16.
Example 5 — Using Metaclasses as Counters 2 – 20.
Attributes vs instance variables 2 – 22.
Example 6 — Using Multiple Inheritance 2 – 24.

Chapter 3. Using SOM Classes in Client Programs

3.1 An Example Client Program 3 – 3.

3.2 Using SOM Classes — the Basics 3 – 4.

Declaring object variables 3 – 4.
Creating instances of a class 3 – 5.
Invoking methods on objects 3 – 8.
Using class objects 3 – 18.
Compiling and linking 3 – 22.

3.3 Language-neutral Methods and Functions 3 – 23.

Generating output 3 – 23.
Getting information about a class 3 – 23.
Getting information about an object 3 – 25.
Debugging 3 – 26.
Checking the validity of method calls 3 – 27.

Exceptions and error handling 3 – 28.
Memory management 3 – 33.
SOM manipulations using somId’s 3 – 33.

Chapter 4. Implementing Classes in SOM

4.1 The SOM Run-Time Environment 4 – 1.

Run-time environment initialization 4 – 1.
Parent class vs. metaclass 4 – 4.

SOM-derived metaclasses 4 – 7.

iv SOMobjects Base Toolkit Users Guide

4.2 Inheritance 4 – 10.

4.3 Method Resolution 4 – 13.

Offset resolution 4 – 13.

Name-lookup resolution 4 – 14.

Dispatch-function resolution 4 – 14.

4.4 Interface vs Implementation 4 – 15.

4.5 SOM Interface Definition Language 4 – 16.

Include directives 4 – 17.

Type and constant declarations 4 – 17.

Exception declarations 4 – 23.

Interface declarations 4 – 25.

Constant, type, and exception declarations 4 – 26.

Attribute declarations 4 – 27.

Method (operation) declarations 4 – 27.

Implementation statements 4 – 30.

Comments within a SOM IDL file 4 – 37.

Designating ‘private’ methods and attributes 4 – 38.

Defining multiple interfaces in a .idl file 4 – 39.

Scoping and name resolution 4 – 39.

Extensions to CORBA IDL permitted by SOM IDL 4 – 40.

4.6 The SOM Compiler 4 – 42.

Generating binding files 4 – 42.

Environment variables affecting the SOM Compiler 4 – 45.

Running the SOM Compiler 4 – 47.

4.7 The ‘pdl’ Facility 4 – 51.

4.8 Implementing SOM Classes 4 – 52.

The implementation template 4 – 52.

Extending the implementation template 4 – 55.

Compiling and linking 4 – 58.

4.9 Initializing and Deinitializing Objects 4 – 59.

An example of customizing initialization 4 – 59.

Customizing the initialization of class objects 4 – 65.

4.10 Creating a SOM Class Library 4 – 67.

Building export files 4 – 67.

Specifying the initialization function 4 – 68.

Creating the import library 4 – 69.

Chapter 5. SOM Customization Features

5.1 Customizing Memory Management 5 – 1.

5.2 Customizing Class Loading and Unloading 5 – 2.

Customizing class initialization 5 – 2.

Customizing DLL loading 5 – 2.

Customizing DLL unloading 5 – 3.

5.3 Customizing Character Output 5 – 4.

5.4 Customizing Error Handling 5 – 5.

5.5 Customizing Method Resolution 5 – 6.

The basic technique 5 – 6.

Overriding the somDispatch method 5 – 6.

Saving the original method table 5 – 7.

An example of customizing method resolution 5 – 7.

vSOMobjects Base Toolkit Users Guide

Chapter 6. Distributed SOM (DSOM)

6.1 Introduction 6 – 1.
What is Distributed SOM? 6 – 1.
Chapter outline 6 – 2.

6.2 A Simple DSOM Example 6 – 4.
The “Stack” interface 6 – 4.
Client program using a local stack 6 – 4.
Client program using a remote stack 6 – 5.
A note on finding existing objects 6 – 8.
“Stack” server implementation 6 – 8.
Compiling the application 6 – 8.
Installing the implementation 6 – 8.
Running the application 6 – 10.
“Stack” example run-time scenario 6 – 10.
Summary 6 – 12.

6.3 Basic Client Programming 6 – 13.
DSOM Object Manager 6 – 13.
Initializing a client program 6 – 14.
Exiting a client program 6 – 14.
Creating remote objects 6 – 15.
Destroying remote objects 6 – 18.
Creating remote objects using user-defined metaclasses 6 – 19.
Saving and restoring references to objects 6 – 20.
Finding existing objects 6 – 21.
Invoking methods on remote objects 6 – 21.
Passing object references in method calls 6 – 21.
Writing clients that are also servers 6 – 22.
Compiling and linking clients 6 – 22.

6.4 Basic Server Programming 6 – 23.
Server run-time objects 6 – 23.
Server activation 6 – 24.
Initializing a server program 6 – 25.
Processing requests 6 – 26.
Exiting a server program 6 – 27.
Managing objects in the server 6 – 27.
Example: Writing a persistent object server 6 – 30.
Identifying the source of a request 6 – 33.
Compiling and linking servers 6 – 34.

6.5 Implementing Classes 6 – 35.
Using SOM class libraries 6 – 35.
Using other object implementations 6 – 37.
Building and registering class libraries 6 – 39.

6.6 Configuring DSOM Applications 6 – 40.
Preparing the environment 6 – 40.
Registering class interfaces 6 – 41.
Registering servers and classes 6 – 41.

6.7 Running DSOM Applications 6 – 47.

6.8 DSOM as a CORBA–compliant Object Request Broker 6 – 48.
Mapping OMG CORBA terminology onto DSOM 6 – 48.

6.9 Advanced Topics 6 – 56.
Peer vs. client-server processes 6 – 56.
Dynamic Invocation Interface 6 – 59.
Creating user-supplied proxies 6 – 65.
Sockets class 6 – 67.

vi SOMobjects Base Toolkit Users Guide

6.10 Error Reporting and Troubleshooting 6 – 68.
Error reporting 6 – 68.
Error codes 6 – 68.
DSOM tracing 6 – 68.
Troubleshooting hints 6 – 69.

6.11 Limitations 6 – 72.

Chapter 7. The SOM Interface Repository Framework

7.1 Introduction 7 – 1.

7.2 Using the SOM Compiler to Build an Interface Repository 7 – 2.

7.3 Managing Interface Repository files 7 – 3.
The SOM IR file “som.ir” 7 – 3.
Managing IRs via the SOMIR environment variable 7 – 3.
Placing ‘private’ information in the Interface Repository 7 – 4.

7.4 Programming with the Interface Repository Objects 7 – 5.
Methods introduced by Interface Repository classes 7 – 6.
Accessing objects in the Interface Repository 7 – 7.
A word about memory management 7 – 9.
Using TypeCode pseudo-objects 7 – 10.

Chapter 8. Utility Metaclasses in the SOMobjects Toolkit

8.1 Utility Metaclasses 8 – 1.
The “SOMMSingleInstance” metaclass 8 – 2.

Chapter 9. The Event Management Framework

9.1 Event Management Basics 9 – 1.
Model of EMan usage 9 – 1.
Event types 9 – 1.
Registration 9 – 2.
Unregistering for events 9 – 4.
An example callback procedure 9 – 4.
Generating client events 9 – 4.
Examples of using other events 9 – 4.
Processing events 9 – 5.
Interactive applications 9 – 5.

9.2 Event Manager Advanced Topics 9 – 6.
Threads and thread safety 9 – 6.
Writing an X or MOTIF application 9 – 6.
Extending EMan 9 – 6.
Using EMan from C++ 9 – 7.
Using EMan from other languages 9 – 7.
Tips on using EMan 9 – 7.

9.3 Limitations 9 – 8.
Use of EMan DLL 9 – 8.

Appendix A. Customer Support and Error Codes

Appendix B. SOM IDL Language Grammar

Appendix C. Implementing Sockets Subclasses
Sockets IDL interface C – 1.
IDL for a Sockets subclass C – 5.
Implementation considerations C – 6.
Example code C – 7.

Glossary

Index

viiSOMobjects Base Toolkit Users Guide

About This Book

This book accompanies the SOMobjects Base Toolkit, which consists of the base (or core)
capabilities in the System Object Model (SOM) of the SOMobjects Developer Toolkit. The
base system is a rich subset of the full-capability SOMobjects Developer Toolkit. Because the
current manual is a subset of chapters from the full SOMobjects Developer Toolkit Users Guide,
references herein to the “SOMobjects Developer Toolkit” should be interpreted as capabilities
of the SOMobjects Base Toolkit.

This manual explains how programmers using C, C++, and other languages can

� Implement class libraries that exploit the SOM library-packaging technology,

� Develop client programs that use class libraries that were built using SOM, and

� Develop applications that use the frameworks supplied with this core version of the
SOMobjects Toolkit, class libraries that facilitate development of object-oriented applica-
tions.

In addition to this book, refer to the SOMobjects Base Toolkit Programmers Reference Manual
during application development for specific information about the classes, methods, functions,
and macros of the SOMobjects Toolkit. Also, the SOMobjects Base Toolkit Quick Reference
Guide shows the syntax of each method or function, along with a one-sentence description of its
purpose, and gives syntax for the SOM Compiler commands and option flags.

For purchasers of the full-capability SOMobjects system, the SOMobjects Developer Toolkit:
Emitter Framework Guide and Reference contains documentation of the Emitter Framework of
the SOMobjects Developer Toolkit. In addition, the SOMobjects Developer Toolkit: Collection
Classes Reference Manual describes the collection classes and methods provided with the
SOMobjects Developer Toolkit.

How This Book Is Organized
This book contains nine chapters, three appendices, a glossary, and an index.

• The first part (chapters 1 and 2) introduces the reader to the SOMobjects Toolkit, gives an
overview of the major elements of SOM, and provides a Tutorial containing several evolution-
ary examples.

• The second part (chapter 3) describes how to develop client programs in C, C++, or other
languages to use classes that were implemented using SOM, including how to create
instances of a class and call methods on them.

• The third part (chapters 4 and 5) describes the SOM run-time environment, gives the syntax
of the SOM Interface Definition Language, provides directions for running the SOM Compil-
er, and contains advanced information about SOM’s object model and how to customize
SOM for particular applications.

• The fourth part (chapters 6 through 9) contains information about the frameworks composing
the SOMobjects Toolkit: Distributed SOM (DSOM), the Interface Repository Framework,
and the Event Management Framework. This part also describes the utility metaclasses
provided with the SOMobjects Toolkit.

• The appendices describe customer support-procedures and error codes, and provide the
grammar for SOM IDL. The final appendix describes how to subclass a “Sockets” class that
facilitates inter-process communications required by the DSOM and Event Management
Frameworks.

• The Glossary provides brief definitions of terminology related to SOM and the SOMobjects
Toolkit. Finally, an extensive Index enables the reader to locate specific information quickly.

viii SOMobjects Base Toolkit Users Guide

Who Should Read This Book
This book is for the professional programmer using C, C++, or another language who wishes to

� Use SOM to build object–oriented class libraries, or

� Write application programs using class libraries that others have implemented using SOM,

even if the programming language does not directly support object–oriented programming.

The discussions in this book are expressed in the commonly used terminology of object-
oriented programming. A number of important terms are everyday English words that take on
specialized meanings. These terms appear in the Glossary at the back of this book. You may
find it worth consulting the Glossary if the unusual significance attached to an otherwise
ordinary word puzzles you.

This book assumes that you are an experienced programmer and that you have a general
familiarity with the basic notions of object-oriented programming. Practical experience using an
object-oriented programming language is helpful, but not essential.

If you would like a good introduction to object-oriented programming or a general survey of the
many aspects of the topic, you might enjoy reading one of the following books:

• Booch, G, Object-Oriented Design with Applications, Benjamin/Cummings 1991, ISBN
0-8053-0091-0.

• Budd, T, An Introduction to Object-Oriented Programming, Addison-Wesley 1991, ISBN
0-201-54709-0.

• Cox, B, and Novobilski, A, Object-Oriented Programming, An Evolutionary Approach 2nd
Edition, Addison-Wesley 1991, ISBN 0-201-54834-8.

ixSOMobjects Base Toolkit Users Guide

Notices

The following terms are trademarks of the International Business Machines Corporation in the
United States and/or other countries:

AIX
Operating System/2
OS/2
OS/2 Workplace Shell
RISC System 6000
SOMobjects
System Object Model

For convenience, the acronym “SOM” is used in this publication to reference the technology of
the System Object Model, and the term “SOM Compiler” is used to reference the compiler of the
System Object Model.

Each of the following terms used in this publication is a trademark of another company:

Intel Intel Corporation
IPX Novell Corporation
Lotus 1-2-3 Lotus Development Corporation
Microsoft EXCEL Microsoft Corporation
Microsoft Windows Microsoft Corporation
NetWare Novell Corporation
Objective-C The Stepstone Corporation
Smalltalk Digitalk Inc.

The term “ANSI C” used throughout this publication refers to American National Standard
X3.159–1989.

The term “CORBA” used throughout this publication refers to the Common Object Request
Broker Architecture standards promulgated by the Object Management Group, Inc.

x SOMobjects Base Toolkit Users Guide

Chapter 1. Introduction to the SOMobjects Toolkit

Contents

1.1 Background 1 – 1.

1.2 Introducing SOM and the SOMobjects Toolkit 1 – 3.

The SOM Compiler 1 – 4.

The SOM run-time library 1 – 5.

Frameworks provided in the SOMobjects Toolkit 1 – 5.

Distributed SOM 1 – 5.

Interface Repository Framework 1 – 5.

Persistence Framework 1 – 6.

Replication Framework 1 – 6.

Emitter Framework 1 – 6.

1.3 What’s New in the SOMobjects Developer Toolkit 1 – 7.

1.4 Overview of this book 1 – 8.

ii SOMobjects Base Toolkit Users Guide

Chapter 1. Introduction to the SOMobjects Toolkit

1.1 Background
Object-oriented programming (or OOP) is an important new programming technology that
offers expanded opportunities for software reuse and extensibility. Object-oriented program-
ming shifts the emphasis of software development away from functional decomposition and
toward the recognition of units (called objects) that encapsulate both code and data. As a result,
programs become easier to maintain and enhance. Object-oriented programs are typically
more impervious to the “ripple effects” of subsequent design changes than their non-object-
oriented counterparts. This, in turn, leads to improvements in programmer productivity.

Despite its promise, penetration of object-oriented technology to major commercial software
products has progressed slowly because of certain obstacles. This is particularly true of prod-
ucts that offer only a binary programming interface to their internal object classes (i.e., products
that do not allow access to source code).

The first obstacle that developers must confront is the choice of an object-oriented program-
ming language.

So-called “pure” object-oriented languages (such as Smalltalk) presume a complete run-time
environment (sometimes known as a virtual machine), because their semantics represent a
major departure from traditional, procedure-oriented system architectures. So long as the
developer works within the supplied environment, everything works smoothly and consistently.
When the need arises to interact with foreign environments, however (for example, to make an
external procedure call), the pure-object paradigm ends, and objects must be reduced to data
structures for external manipulation. Unfortunately, data structures do not retain the advan-
tages that objects offer with regard to encapsulation and code reuse.

“Hybrid” languages such as C++, on the other hand, require less run-time support, but some-
times result in tight bindings between programs that implement objects (called “class libraries”)
and their clients (the programs that use them). That is, implementation detail is often unavoid-
ably compiled into the client programs. Tight binding between class libraries and their clients
means that client programs often must be recompiled whenever simple changes are made in
the library. Furthermore, no binary standard exists for C++ objects, so the C++ class libraries
produced by one C++ compiler cannot (in general) be used from C++ programs built with a
different C++ compiler.

The second obstacle developers of object-oriented software must confront is that, because
different object-oriented languages and toolkits embrace incompatible models of what objects
are and how they work, software developed using a particular language or toolkit is naturally
limited in scope. Classes implemented in one language cannot be readily used from another. A
C++ programmer, for example, cannot easily use classes developed in Smalltalk, nor can a
Smalltalk programmer make effective use of C++ classes. Object-oriented language and toolkit
boundaries become, in effect, barriers to interoperability.

Ironically, no such barrier exists for ordinary procedure libraries. Software developers routinely
construct procedure libraries that can be shared across a variety of languages, by adhering to
standard linkage conventions. Object-oriented class libraries are inherently different in that
no binary standards or conventions exist to derive a new class from an existing one, or even to
invoke a method in a standard way. Procedure libraries also enjoy the benefit that their imple-
mentations can be freely changed without requiring client programs to be recompiled, unlike the
situation for C++ class libraries.

1 – 2 SOMobjects Base Toolkit Users Guide

For developers who need to provide binary class libraries, these are serious obstacles. In an era
of open systems and heterogeneous networking, a single-language solution is frequently not
broad enough. Certainly, mandating a specific compiler from a specific vendor in order to use a
class library might be grounds not to include the class library with an operating system or other
general-purpose product.

The System Object Model (SOM) is IBM’s solution to these problems.

1 – 31. Introduction to the SOMobjects Toolkit

1.2 Introducing SOM and the SOMobjects Toolkit
The System Object Model (SOM) is a new object-oriented programming technology for
building, packaging, and manipulating binary class libraries.

� With SOM, class implementors describe the interface for a class of objects (names of the
methods it supports, the return types, parameter types, and so forth) in a standard
language called the Interface Definition Language, or IDL.

� They then implement methods in their preferred programming language (which may be
either an object-oriented programming language or a procedural language such as C).

This means that programmers can begin using SOM quickly, and also extends the advantages
of OOP to programmers who use non-object-oriented programming languages.

A principal benefit of using SOM is that SOM accommodates changes in implementation details
and even in certain facets of a class’s interface, without breaking the binary interface to a class
library and without requiring recompilation of client programs. As a rule of thumb, if changes to a
SOM class do not require source-code changes in client programs, then those client programs
will not need to be recompiled. This is not true of many object-oriented languages, and it is one of
the chief benefits of using SOM. For instance, SOM classes can undergo structural changes
such as the following, yet retain full backward, binary compatibility:

� Adding new methods,

� Changing the size of an object by adding or deleting instance variables,

� Inserting new parent (base) classes above a class in the inheritance hierarchy, and

� Relocating methods upward in the class hierarchy.

In short, implementors can make the typical kinds of changes to an implementation and its
interfaces that evolving software systems experience over time.

Unlike the object models found in formal object-oriented programming languages, SOM is
language-neutral. It preserves the key OOP characteristics of encapsulation, inheritance, and
polymorphism, without requiring that the user of a SOM class and the implementor of a SOM
class use the same programming language. SOM is said to be language-neutral for four
reasons:

1. All SOM interactions consist of standard procedure calls. On systems that have a stan-
dard linkage convention for system calls, SOM interactions conform to those conven-
tions. Thus, most programming languages that can make external procedure calls can
use SOM.

2. The form of the SOM Application Programming Interface, or API (the way that program-
mers invoke methods, create objects, and so on) can vary widely from language to
language, as a benefit of the SOM bindings. Bindings are a set of macros and procedure
calls that make implementing and using SOM classes more convenient by tailoring the
interface to a particular programming language.

3. SOM supports several mechanisms for method resolution that can be readily mapped
into the semantics of a wide range of object-oriented programming languages. Thus,
SOM class libraries can be shared across object-oriented languages that have differing
object models. A SOM object can potentially be accessed with three different forms of
method resolution:

� Offset resolution: roughly equivalent to the C++ “virtual function” concept. Offset
resolution implies a static scheme for typing objects, with polymorphism based strictly
on class derivation. It offers the best performance characteristics for SOM method
resolution. Methods accessible through offset resolution are called static methods,
because they are considered a fixed aspect of an object’s interface.

1 – 4 SOMobjects Base Toolkit Users Guide

� Name-lookup resolution: similar to that employed by Objective-C and Smalltalk. Name
resolution supports untyped (sometimes called “dynamically” typed) access to objects,
with polymorphism based on the actual protocols that objects honor. Name resolution
offers the opportunity to write code to manipulate objects with little or no awareness of
the type or shape of the object when the code is compiled.

� Dispatch-function resolution: a unique feature of SOM that permits method resolution
based on arbitrary rules known only in the domain of the receiving object. Languages
that require special entry or exit sequences or local objects that represent distributed
object domains are good candidates for using dispatch-function resolution. This tech-
nique offers the highest degree of encapsulation for the implementation of an object,
with some cost in performance.

4. SOM conforms fully with the Object Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA) standards.� In particular,

� Interfaces to SOM classes are described in CORBA’s Interface Definition Language,
IDL, and the entire SOMobjects Toolkit supports all CORBA-defined data types.

� The SOM bindings for the C language are compatible with the C bindings prescribed by
CORBA.

� All information about the interface to a SOM class is available at run time through a
CORBA-defined “Interface Repository.”

SOM is not intended to replace existing object-oriented languages. Rather, it is intended to
complement them so that application programs written in different programming languages can
share common SOM class libraries. For example, SOM can be used with C++ to

� Provide upwardly compatible class libraries, so that when a new version of a SOM class is
released, client code needn’t be recompiled, so long as no changes to the client’s source
code are required.

� Allow other language users (and other C++ compiler users) to use SOM classes imple-
mented in C++.

� Allow C++ programs to use SOM classes implemented using other languages.

� Allow other language users to implement SOM classes derived from SOM classes imple-
mented in C++.

� Allow C++ programmers to implement SOM classes derived from SOM classes imple-
mented using other languages.

� Allow encapsulation (implementation hiding) so that SOM class libraries can be shared
without exposing private instance variables and methods.

� Allow dynamic (run-time) method resolution in addition to static (compile-time) method
resolution (on SOM objects).

� Allow information about classes to be obtained and updated at run time. (C++ classes are
compile-time structures that have no properties at run time.)

The SOM Compiler
The SOMobjects Toolkit contains a tool, called the SOM Compiler, that helps implementors
build classes in which interface and implementation are decoupled. The SOM Compiler reads
the IDL definition of a class interface and generates:

� an implementation skeleton for the class,

� bindings for implementors, and

� bindings for client programs.

�OMG is an industry consortium founded to advance the use of object technology in distributed, heterogeneous environments.

1 – 51. Introduction to the SOMobjects Toolkit

Bindings are language-specific macros and procedures that make implementing and using
SOM classes more convenient. These bindings offer a convenient interface to SOM that is
tailored to a particular programming language. For instance, C programmers can invoke meth-
ods in the same way they make ordinary procedure calls. The C++ bindings “wrap” SOM objects
as C++ objects, so that C++ programmers can invoke methods on SOM objects in the same way
they invoke methods on C++ objects. In addition, SOM objects receive full C++ typechecking,
just as C++ objects do. Currently, the SOM Compiler can generate both C and C++ language
bindings for a class. The C and C++ bindings will work with a variety of commercial products
available from IBM and others. Vendors of other programming languages may also offer SOM
bindings. Check with your language vendor about possible SOM support.

The SOM run-time library

In addition to the SOM Compiler, SOM includes a run-time library. This library provides,
among other things, a set of classes, methods, and procedures used to create objects and
invoke methods on them. The library allows any programming language to use SOM classes
(classes developed using SOM) if that language can:

� Call external procedures,

� Store a pointer to a procedure and subsequently invoke that procedure, and

� Map IDL types onto the programming language’s native types.

Thus, the user of a SOM class and the implementor of a SOM class needn’t use the same
programming language, and neither is required to use an object-oriented language. The inde-
pendence of client language and implementation language also extends to subclassing: a SOM
class can be derived from other SOM classes, and the subclass may or may not be implement-
ed in the same language as the parent class(es). Moreover, SOM’s run-time environment allows
applications to access information about classes dynamically (at run time).

Frameworks provided in the SOMobjects Toolkit

In addition to SOM itself (the SOM Compiler and the SOM run-time library), the SOMobjects
Developer Toolkit provides a set of frameworks (class libraries) that can be used in developing
object-oriented applications. These include Distributed SOM, the Interface Repository Frame-
work, the Persistence Framework, the Replication Framework, and the Emitter Framework,
described below.

Note: SOMobjects Base Toolkit, the core version of SOMobjects shipped with this manual,
contains only the Distributed SOM and Interface Repository frameworks. The complete
SOMobjects Developer Toolkit can be ordered from IBM by calling 1–800–342–6672 in
the U.S. or 1–800–465–7999 in Canada. Part numbers are 96F8647 for the OS/2
version or 96F8648 for the AIX version (both of which include all publications), and
96F8649 for a separate publications package.

Distributed SOM
Distributed SOM (or DSOM) allows application programs to access SOM objects across
address spaces. That is, application programs can access objects in other processes, even on
a different machine. DSOM provides this transparent access to remote objects through its
Object Request Broker (ORB): the location and implementation of the object are hidden from
the client, and the client accesses the object as if were local. DSOM in the core-capability
SOMobjects Base Toolkit supports distribution of objects among processes within a single
workstation. The full-capability version of DSOM also supports distribution across a local area
network consisting of AIX systems, OS/2 systems, or some mix of these systems. Future
releases may support larger, enterprise-wide networks.

1 – 6 SOMobjects Base Toolkit Users Guide

Interface Repository Framework
The Interface Repository is a database, optionally created and maintained by the SOM Com-
piler, that holds all the information contained in the IDL description of a class of objects. The
Interface Repository Framework consists of the 11 classes defined in the CORBA standard
for accessing the Interface Repository. Thus, the Interface Repository Framework provides
run-time access to all information contained in the IDL description of a class of objects. Type
information is available as TypeCodes — a CORBA-defined way of encoding the complete
description of any data type that can be constructed in IDL.

Persistence Framework
The Persistence Framework is a collection of SOM classes that provide methods for saving
objects (either in a file or in a more specialized repository) and later restoring them. This means
that the state of an object can be preserved beyond the termination of the process that creates it.
This facility is useful for constructing object-oriented databases, spreadsheets, and so forth.
The Persistence Framework includes the following features:

� Objects can be stored singly or in groups.

� Objects can be stored in default formats or in specially designed formats.

� Objects of arbitrary complexity can be saved and restored.

Replication Framework
The Replication Framework is a collection of SOM classes that allows a replica (copy) of an
object to exist in multiple address spaces, while maintaining a single-copy image. In other
words, an object can be replicated in several different processes, while logically it behaves as a
single copy. Updates to any copy are propagated immediately to all other copies. The Replica-
tion Framework handles locking, synchronization, and update propagation, and guarantees
mutual consistency among the replicas. The Replication Framework includes these important
features:

� Good response times for both readers and writers,

� Fault-tolerance against node failures and message loss,

� Simple coding rules (that can be automated) for building replicated objects,

� Graceful degradation under wide-area networks, and

� Minimal overhead when replication is not activated.

Emitter Framework
Finally, the Emitter Framework is a collection of SOM classes that allows programmers to write
their own emitters. Emitter is a general term used to describe a back-end output component of
the SOM Compiler. Each emitter takes as input information about an interface, generated by the
SOM Compiler as it processes an IDL specification, and produces output organized in a
different format. SOM provides a set of emitters that generate the binding files for C and C++

programming (header files and implementation templates). In addition, users may wish to write
their own special-purpose emitters. For example, an implementor could write an emitter to
produce documentation files or binding files for programming languages other than C/C++. The
Emitter Framework is separately documented in the SOMobjects Developer Toolkit: Emitter
Framework Guide and Reference.

1 – 71. Introduction to the SOMobjects Toolkit

1.3 What’s New in the SOMobjects Developer Toolkit
The SOMobjects Toolkit is a major step up from SOM Version 1.0 in terms of functionality,
usability, standardization, performance, and documentation. In particular, the SOMobjects
Developer Toolkit Version 2.0 offers the following additions over SOM Version 1.0:

• C++ bindings

• Multiple platforms (OS/2 and AIX)

• Multiple inheritance (when using IDL)

• Derived metaclasses

• CORBA compliance (including IDL)

• SOM Compiler that handles both IDL and OIDL interface descriptions

• Full binary compatibility with SOM 1.0

• Improved method resolution

• Improved memory management

• Improved error checking

• Faster emitters

• Smaller and faster binaries for class libraries

• Header files that automatically prevent name collisions

• Smaller implementation header files

• Ability to package multiple classes in a single file, as an IDL module

• Ability to define (in IDL) methods that return structures

• Ability to use a C/C++ preprocessor within .idl files

• Improved incremental update of implementation files

• With IDL, full type checking and full name scoping

• Class shadowing (described in the Emitter Framework Guide and Reference)

• DSOM, which enables distribution of SOM objects across processes (see Chapter 6)

• Automatic generation and revision of an Interface Repository (see Chapter 7)

• Persistence Framework, which simplifies creating persistent objects (see Chapter 8)

• Replication Framework, which enables construction of replicated objects (see Chapter 9)

• Utility metaclasses (see Chapter 10)

• Collection classes (see Chapter 11)

• An Event Manager (see Chapter 12)

• Tools for automatically converting .csc files to .idl files (see Appendix B)

• Emitter Framework, which allows developers to write their own emitters (documented in the
Emitter Framework Guide and Reference)

1 – 8 SOMobjects Base Toolkit Users Guide

1.4 Overview of this book
This book is a subset of the SOMobjects Developer Toolkit Users Guide for the full-capability
SOMobjects Developer Toolkit. The omitted chapters describe capabilities not included with the
SOMobjects Base Toolkit. Chapters that are included appear in their entirety, as written for the
full-capability SOMobjects system, except for some references to chapters/capabilities not
included in the SOMobjects Base Toolkit. Because the current manual is a subset, references
herein to the “SOMobjects Developer Toolkit” should be interpreted as referencing capabilities
of the SOMobjects Base Toolkit.

Chapter 2 contains a Tutorial with six examples that illustrate techniques for implementing
classes in SOM. All readers should cover this tutorial.

Chapter 3 describes how an application program creates instances of a SOM class, how it
invokes methods, and so on. For readers interested only in using SOM classes, rather than
building them, chapters 2 and 3 may provide all of the information they need to begin using SOM
classes.

Chapter 4 provides more comprehensive information about the SOM system itself, including
operation of the SOM run-time environment, method resolution, and inheritance. This chapter
also describes how to create language-neutral class libraries using SOM, including explana-
tions of valid syntax components. All class implementors will need to reference this chapter.

Chapter 5 deals with advanced topics for customizing SOM to better suit the needs of a
particular application.

Chapter 6 describes Distributed SOM and how to use it to access objects across address
spaces, even on different machines. Chapter 6 also describes how to customize DSOM. Note
that SOMobjects Base Toolkit supports only Workstation DSOM (distribution among processes
on a single machine), whereas SOMobjects Developer Toolkit also supports Workgroup DSOM
(distribution among a network of machines).

Chapter 7 describes the Interface Repository Framework of classes supplied with the
SOMobjects Toolkit.

Chapter 8 describes some utility metaclasses that SOM provides to assist users in deriving new
classes with special abilities to execute “before” and “after” operations when a method call
occurs.

Chapter 9 describes the Event Management Framework, which allows grouping of all applica-
tion events and waiting on multiple events in one place. The Event Manager is used by both
DSOM and the Replication Framework (the latter is not part of the SOMobjects Base Toolkit).

Appendix A describes service and technical support policies for the SOMobjects Toolkit, and
contains lists of the error codes and messages that can be issued by the SOM kernel or by the
included frameworks.

Appendix B contains the SOM IDL language grammar.

Appendix C describes how to subclass a “Sockets” class that facilitates inter-process commu-
nications required by the DSOM and Event Management Frameworks.

A Glossary and a thorough Index conclude this manual.

Chapter 2. Tutorial for Implementing SOM Classes

Contents

2.1 Basic Concepts of the System Object Model (SOM) 2 – 1.

Development of the Tutorial examples 2 – 5.

2.2 Basic Steps for Implementing SOM Classes 2 – 6.

Example 1 — Implementing a Simple Class with One Method 2 – 7.

Example 2 — Adding an Attribute to the Hello class 2 – 11.

Example 3 — Overriding an Inherited Method 2 – 13.

Example 4 — Using Metaclasses 2 – 16.

Example 5 — Using Metaclasses as Counters 2 – 20.

Attributes vs instance variables 2 – 22.

Example 6 — Using Multiple Inheritance 2 – 24.

ii SOMobjects Base Toolkit Users Guide

Chapter 2. Tutorial for Implementing SOM Classes

This tutorial contains six examples showing how SOM classes can be implemented to achieve
various functionality. Obviously, for any person who wishes to become a class implementor, this
tutorial is essential. However, even for those programmers who expect only to use SOM classes
that were implemented by others, the tutorial is also necessary, as it presents several concepts
that will help clarify the process of using SOM classes.

2.1 Basic Concepts of the System Object Model (SOM)
The System Object Model (SOM), provided by the SOMobjects Developer Toolkit, is a set of
libraries, utilities, and conventions used to create binary class libraries that can be used by
application programs written in various object-oriented programming languages, such as C++

and Smalltalk, or in traditional procedural languages, such as C and Cobol. The following
paragraphs introduce some of the basic terminology used when creating classes in SOM:

� An object is an OOP entity that has behavior (its methods or operations) and state (its
data values). In SOM, an object is a run-time entity with a specific set of methods and
instance variables. The methods are used by a client programmer to make the object
exhibit behavior (that is, to do something), and the instance variables are used by the
object to store its state. (The state of an object can change over time, which allows the
object’s behavior to change.) When a method is invoked on an object, the object is said to
be the receiver or target of the method call.

� An object’s implementation is determined by the procedures that execute its methods,
and by the type and layout of its instance variables. The procedures and instance variables
that implement an object are normally encapsulated (hidden from the caller), so a program
can use the object’s methods without knowing anything about how those methods are
implemented. Instead, a user is given access to the object’s methods through its interface
 (a description of the methods in terms of the data elements required as input and the type
of value each method returns).

� An interface through which an object may be manipulated is represented by an object type.
That is, by declaring a type for an object variable, a programmer specifies the interface
that is intended to be used to access that object. SOM IDL (the SOM Interface Definition
Language) is used to define object interfaces. The interface names used in these IDL
definitions are also the type names used by programmers when typing SOM object
variables.

� In SOM, as in most approaches to object-oriented programming, a class defines the
implementation of objects. That is, the implementation of any SOM object (as well as its
interface) is defined by some specific SOM class. A class definition begins with an IDL
specification of the interface to its objects, and the name of this interface is used as the
class name as well. Each object of a given class may also be called an instance of the
class, or an instantiation of the class.

� Inheritance, or class derivation, is a technique for developing new classes from existing
classes. The original class is called the base class, or the parent class, or sometimes the
direct ancestor class. The derived class is called a child class or a subclass. The primary
advantage of inheritance is that a derived class inherits all of its parent’s methods and
instance variables. Also through inheritance, a new class can override (or redefine)
methods of its parent, in order to provide enhanced functionality as needed. In addition, a
derived class can introduce new methods of its own. If a class results from several

2 – 2 SOMobjects Base Toolkit Users Guide

generations of successive class derivation, that class “knows” all of its ancestors’s meth-
ods (whether overridden or not), and an object (or instance) of that class can execute any
of those methods.

� SOM classes can also take advantage of multiple inheritance, which means that a new
class is jointly derived from two or more parent classes. In this case, the derived class
inherits methods from all of its parents (and all of its ancestors), giving it greatly expanded
capabilities. In the event that different parents have methods of the same name that
execute differently, SOM provides ways for avoiding conflicts.

� In the SOM run time, classes are themselves objects. That is, classes have their own
methods and interfaces, and are themselves defined by other classes. For this reason, a
class is often called a class object. Likewise, the terms class methods and class variables
are used to distinguish between the methods/variables of a class object vs. those of its
instances. (Note that the type of an object is not the same as the type of its class, which
as a “class object” has its own type.)

� A class that defines the implementation of class objects is called a metaclass. Just as an
instance of a class is an object, so an instance of a metaclass is a class object. Moreover,
just as an ordinary class defines methods that its objects respond to, so a metaclass
defines methods that a class object responds to. For example, such methods might
involve operations that execute when a class (that is, a class object) is creating an instance
of itself (an object). Just as classes are derived from parent classes, so metaclasses can
be derived from parent metaclasses, in order to define new functionality for class objects.

� The SOM system contains three primitive classes that are the basis for all subsequent
classes:

SOMObject — the root ancestor class for all SOM classes,
SOMClass — the root ancestor class for all SOM metaclasses, and
SOMClassMgr — the class of the SOMClassMgrObject, an object created automatically

during SOM initialization, to maintain a registry of existing classes and
to assist in dynamic class loading/unloading.

SOMClass is defined as a subclass (or child) of SOMObject and inherits all generic object
methods; this is why instances of a metaclass are class objects (rather than simply
classes) in the SOM run time. The adjacent figure illustrates typical relationships of
classes, metaclasses, and objects in the SOM run time. (This illustration does not include
the SOMClassMgrObject.)

2 – 32. Tutorial for Implementing SOM Classes

Parent
 class
 “P”

Class
 “C”

O2

On
 Object
 “O1”

...

Typical class, metaclass, and object relationships

Metaclass
 “M”

Legend:
subclass–ofinstance–of

metaclass class simple object

SOMObject

�2

�n
 Object
 “�1”

...

SOMClass

SOM classes are designed to be language neutral. That is, SOM classes can be implemented in
one programming language and used in programs of another language. To achieve language
neutrality, the interface for a class of objects must be defined separately from its implemen-
tation. That is, defining interface and implementation requires two completely separate steps
(plus an intervening compile), as follows:

� An interface is the information that a program must know in order to use an object of a
particular class. This interface is described in an interface definition (which is also the class
definition), using a formal language whose syntax is independent of the programming
language used to implement the class’s methods. For SOM classes, this is the SOM
Interface Definition Language (SOM IDL). The interface is defined in a file known as the
IDL source file (or, using its extension, this is often called the .idl file).

An interface definition is specified within the interface declaration (or interface statement)
of the .idl file, which includes:

(a) the interface name (or class name) and the name(s) of the class’s parent(s), and
(b) the names of the class’s attributes and the signatures of its new methods.

(Recall that the complete set of available methods also includes all inherited
methods.)

Each method signature includes the method name, and the type and order of its argu-
ments, as well as the type of its return value (if any). Attributes are instance variables for

2 – 4 SOMobjects Base Toolkit Users Guide

which “set” and “get” methods will automatically be defined, for use by the application
program. (By contrast, instance variables that are not attributes are hidden from the user.)

� Once the IDL source file is complete, the SOM Compiler is used to analyze the .idl file and
create the implementation template file, within which the class implementation will be
defined. Before issuing the SOM Compiler command, sc, the class implementor can set
an environment variable that determines which emitters (output-generating programs) the
SOM Compiler will call and, consequently, which programming language and operating
system the resulting binding files will relate to. (Alternatively, this emitter information can
be placed on the command line for sc.) In addition to the implementation template file
itself, the binding files include two language-specific header files that will be #included in
the implementation template file and in application program files. The header files define
many useful SOM macros, functions, and procedures that can be invoked from the files
that include the header files.

� The implementation of a class is done by the class implementor in the implementation
template file (often called just the implementation file or the template file). As produced by
the SOM Compiler, the template file contains stub procedures for each method of the
class. These are incomplete method procedures that the class implementor uses as a
basis for implementing the class by writing the corresponding code in the programming
language of choice.

In summary, the process of implementing a SOM class includes using the SOM IDL syntax to
create an IDL source file that specifies the interface to a class of objects — that is, the methods
and attributes that a program can use to manipulate an object of that class. The SOM Compiler
is then run to produce an implementation template file and two binding (header) files that are
specific to the designated programming language and operating system. Finally, the class
implementor writes language-specific code in the template file to implement the method proce-
dures.

At this point, the next step is to write the application (or client) program(s) that use the objects
and methods of the newly implemented class. (Observe, here, that a programmer could write an
application program using a class implemented entirely by someone else.) If not done previous-
ly, the SOM compiler is run to generate usage bindings for the new class, as appropriate for the
language used by the client program (which may be different from the language in which the
class was implemented). After the client program is finished, the programmer compiles and
links it using a language-specific compiler, and then executes the program. (Notice again, the
client program can invoke methods on objects of the SOM class without knowing how those
methods are implemented.)

2 – 52. Tutorial for Implementing SOM Classes

Development of the Tutorial examples

� Example 1 — Implementing a simple class with one method
Prints a default message when the “sayHello” method is invoked
on an object of the “Hello” class.

� Example 2 — Adding an attribute to the Hello class
Defines a “msg” attribute for the “sayHello” method to use. The
client program “sets” a message; then the “sayHello” method
“gets” the message and prints it. (There is no defined message
when an object of the “Hello” class is initialized.)

� Example 3 — Overriding an inherited method
Overrides the required somInit method so the “msg” attribute
will be “set” with default text as each instance of the “Hello” class
is initialized. The client program can use that message and/or
“set” it to a different one. As before, the “sayHello” method then
“gets” the message and prints it.

� Example 4 — Using metaclasses
Defines the metaclass “M_Hello” of the “Hello” class, plus a new
metaclass method (“HelloCreate”) that is invoked on a “Hello”
class object to create an instance (or object) of the “Hello” class.
The client program first initializes the “Hello” class object. Then,
when the new “HelloCreate” method is invoked, the call includes
an argument containing text that “sets” the “msg” attribute when
an object of the “Hello” class is created. Thus, the “Hello” object
is initialized with a “msg” of the client’s choice.

� Example 5 — Using metaclasses as counters
Does everything from Example 4, and extends it with an attribute
(“numberObjs”) for the “HelloCreate” method of the metaclass.
The “numberObjs” attribute increments a counter each time a
call to the “HelloCreate” method creates a new object of the
“Hello” class. The client program also adds a print statement to
report how many objects of the “Hello” class are created.

� Example 6 — Using multiple inheritance
Does everything from Example 5, and extends it to provide the
“Hello” class with multiple inheritance (from the “Disk” and “Print-
er” classes). The “Hello” interface defines an enum and an “out-
put” attribute that takes its value from the enum (either “screen”,
“printer”, or “disk”). The client program “sets” the form of “output”
before invoking the “sayHello” method to send a “msg” (defined
as in Examples 4 and 5).

2 – 6 SOMobjects Base Toolkit Users Guide

2.2 Basic Steps for Implementing SOM Classes
Implementing and using SOM classes in C or C++ involves the following steps, which are
explicitly illustrated in the examples of this tutorial:

5. Define the interface to objects of the new class (that is, the interface declaration),
by creating a .idl file.

6. Run the SOM Compiler on the .idl file (by issuing the sc command on AIX or OS/2, or
by issuing the somc command on Windows) to produce the following binding files:

� Template implementation file
a .c file for C programmers, or
a .C file (on AIX) or a .cpp file (on OS/2 or Windows) for C++ programmers;

� Header file to be included in the implementation file
a .ih file for C programmers, or
a .xih file for C++ programmers; and

� Header file to be included in client programs that use the class
a .h file for C clients, or
a .xh file for C++ clients.

To specify whether the SOM Compiler should produce C or C++ bindings, set the
value of the SMEMIT environment variable or use the “–s” option of the sc or somc
command, as described in Section 4.6, “The SOM Compiler.” By default, the SOM
Compiler produces C bindings.

7. Customize the implementation, by adding code to the template implementation file.

8. Create a client program that uses the class.

9. Compile and link the client code with the class implementation, using a C or C++

compiler.

10.Execute the client program.

The following examples illustrate appropriate syntax for defining interface declarations in a .idl
file, including designating the methods that the class’s instances will perform. In addition,
example template implementation files contain typical code that the SOM Compiler produces.
Explanations accompanying each example discuss topics that are significant to the particular
example; full explanations of the SOM IDL syntax are contained in Chapter 4, “Implementing
Classes in SOM.” Customization of each implementation file (step 3) is illustrated in both C and
C++.

2 – 72. Tutorial for Implementing SOM Classes

Example 1 — Implementing a Simple Class with One Method

Example 1 defines a class “Hello” which introduces one new method, “sayHello”. When invoked
from a client program, the “sayHello” method will print the fixed string “Hello, World!” The
example follows the six steps described in the preceding topic, “Basic Steps for Implementing
SOM Classes.”

1) Define the interface to class “Hello”, which inherits methods from the root class SOMObject and
introduces one new method, “sayHello”. Define these IDL specifications in the file “hello.idl”.

The “interface” statement introduces the name of a new class and any parents (base classes) it
may have (here, the root class SOMObject). The body of the interface declaration introduces
the method “sayHello.” Observe that method declarations in IDL have syntax similar to C and
C++ function prototypes:

#include <somobj.idl> //# Get the parent class definition.

interface Hello : SOMObject

/* This is a simple class that demonstrates how to define the

 * interface to a new class of objects in SOM IDL.

 */

{

 void sayHello();

 // This method outputs the string ”Hello, World!”.

};

Note that the method “sayHello” has no (explicit) arguments and returns no value. The charac-
ters “//” start a line comment, which finishes at the end of the line. The characters “/*” start a
block comment which finishes with the “*/”. Block comments do not nest. The two comment
styles can be used interchangeably. Throw-away comments are also permitted in a .idl file; they
are ignored by the SOM Compiler. Throw-away comments start with the characters “//#” and
terminate at the end of the line.

Note: For simplicity, this IDL fragment does not include a releaseorder modifier; consequently,
the SOM Compiler will issue a warning for the method “sayHello”. For directions on using the
releaseorder modifier to remove this warning, see the topic “Modifier statements” in Chapter 4,
“Implementing Classes in SOM”)

2) Run the SOM Compiler to produce binding files and an implementation template. That is, issue
the sc command on AIX or OS/2, as follows:

> sc ”–sc;h;ih” hello.idl (for C bindings on AIX or OS/2)

> sc ”–sxc;xh;xih” hello.idl (for C++ bindings on AIX or OS/2)

On Windows, issue the somc command (started from the Run option on the File menu):

> somc –sc;h;ih hello.idl (for C bindings on Windows)

> somc –sxc;xh;xih hello.idl (for C++ bindings on Windows)

When set to generate C binding files, the SOM Compiler generates the following implementa-
tion template file, named “hello.c”, which contains stub procedures for each new method
(procedures whose bodies are largely vacuous, to be filled in by the implementor). Unimportant
details have been removed.

2 – 8 SOMobjects Base Toolkit Users Guide

#include <hello.ih>

/*

 * This method outputs the string ”Hello, World!”.

 */

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

{

 /* HelloData *somThis = HelloGetData(somSelf); */

 HelloMethodDebug(”Hello”, ”sayHello”);

}

The terms SOM_Scope and SOMLINK appear in the prototype for all stub procedures, but they
are defined by SOM and are not of interest to the developer. In the method procedure for the
“sayHello” method, “somSelf” is a pointer to the target object (here, an instance of the class
“Hello”) that will respond to the method. A “somSelf” parameter appears in the procedure
prototype for every method, since SOM requires every method to act on some object.

The target object is always the first parameter of a method’s procedure, although it should not
be included in the method’s IDL specification. The second parameter (which also is not included
in the method’s IDL specification) is the parameter (Environment *ev). This parameter can be
used by the method to return exception information if the method encounters an error. (Contrast
the prototype for the “sayHello” method in steps 1 and 2 above.)

The remaining lines of the template above are not pertinent at this point. (For those interested,
they are discussed in section 4.7 of Chapter 4, “Implementing SOM Classes.”) The file is now
ready for customization with the C code needed to implement method “sayHello”.

When set to generate C++ binding files, the SOM Compiler generates an implementation
template file, “hello.C” (on AIX) or “hello.cpp (on OS/2 or Windows), similar to the one above.
(Chapter 4 discusses the implementation template in more detail.)

Recall that, in addition to generating a template implementation file, the SOM Compiler also
generates implementation bindings (in a header file to be included in the implementation file)
and usage bindings (in a header file to be included in client programs). These files are named
“hello.ih” and “hello.h” for C bindings, and are “hello.xih” and “hello.xh” for C++ bindings.
Notice that the “hello.c” file shown above includes the “hello.ih” implementation binding file.

3) Customize the implementation, by adding code to the template implementation file.

Modify the body of the “sayHello” method procedure in the “hello.c” (or, for C++,“hello.C” on AIX,
“hello.cpp” on OS/2) implementation file so that the “sayHello” method prints “Hello, World!”:

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

{

 /* HelloData *somThis = HelloGetData(somSelf); */

 HelloMethodDebug(”Hello”,”sayHello”);

 printf(”Hello, World!\n”);

}

4) Create a client program that uses the class.

Write a program “main” that creates an instance (object) of the “Hello” class and invokes the
method “sayHello” on that object.

2 – 92. Tutorial for Implementing SOM Classes

A C programmer would write the following program in “main.c”, using the bindings defined in the
“hello.h” header file:

#include <hello.h>

int main(int argc, char *argv[])

{

 /* Declare a variable to point to an instance of Hello */

 Hello obj;

 /* Create an instance of the Hello class */

 obj = HelloNew();

 /* Execute the ”sayHello” method */

 _sayHello(obj, somGetGlobalEnvironment());

 /* Free the instance: */

 _somFree(obj);

 return (0);

}

Notice the statement obj = HelloNew(); The “hello.h” header file automatically contains
the SOM-defined macro <className>New(), which is used to create an instance of the
<className> class (here, the “Hello” class).

Also notice that, in C, a method is invoked on an object by using the form:

 _<methodName>(<objectName>, <environment_argument>, <other_method_arguments>)

as used above in the statement _sayHello(obj, somGetGlobalEnvironment()). As
shown in this example, the SOM-provided somGetGlobalEnvironment function can be used
to supply the (Environment *) argument of the method.

Finally, the code uses the method somFree, which SOM also provides, to free the object
created by HelloNew(). Notice that somFree does not require an (Environment *) argu-
ment. This is because the method procedures for some of the classes in the SOMobjects Toolkit
(including SOMObject, SOMClass, and SOMClassMgr) do not have an Environment parame-
ter, to ensure compatibility with the previous release of SOM. The documentation for each
SOM-kernel method in the SOMobjects Developer Toolkit: Programmers Reference Manual
indicates whether an Environment parameter is used.

A C++ programmer would write the following program in “main.C” (on AIX) or “main.cpp” (on
OS/2), using the bindings defined in the “hello.xh” header file:

#include <hello.xh>

int main(int argc, char *argv[])

{

 /* Declare a variable to point to an instance of Hello */

 Hello *obj;

 /* Create an instance of the Hello class */

 obj = new Hello;

 /* Execute the ”sayHello” method */

 obj–>sayHello(somGetGlobalEnvironment());

 obj–>somFree();

 return (0);

}

Notice that the only argument passed to the “sayHello” method by a C++ client program is the
Environment pointer. (Contrast this with the invocation of “sayHello” in the C client program,
above.

2 – 10 SOMobjects Base Toolkit Users Guide

5) Compile and link the client code with the class implementation.

Note: On AIX or OS/2, the environment variable SOMBASE represents the directory in which
SOM has been installed.

Under AIX, for C programmers:

> xlc –I. –I$SOMBASE/include –o hello main.c hello.c \

 –L$SOMBASE/lib –lsomtk

Under AIX, for C++ programmers:

> xlC –I. –I$SOMBASE/include –o hello main.C hello.C \

 –L$SOMBASE/lib –lsomtk

Under OS/2, for C programmers:

> set LIB=%SOMBASE%\lib;%LIB%

> icc –I. –I%SOMBASE%\include –Fe hello main.c hello.c \

 somtk.lib

Under OS/2, for C++ programmers:

> set LIB=%SOMBASE%\lib;%LIB%

> icc –I. –I\%SOMBASE%\include –Fe hello main.cpp hello.cpp \

 somtk.lib

Under Windows, for C programmers:

> cl –AL –Zp –D_WIN16 –F 5 –I. –I%SOMBASE%\include \

 –Fehello main.c hello.c llibcew.lib libw.lib somtk.lib

where %SOMBASE% is replaced by the directory in which SOM was installed (the default
is c:\som). In makefiles, the expression $(SOMBASE) can be used. Note that the –F option
to set the stack size is unnecessary if STACKSIZE is specified in a .def file.

Under Windows, for C++ programmers:

> cl –ALu –Zp –D_WIN16 –F 5 –I. –I%SOMBASE%\include \

 –Fehello main.cpp hello.cpp llibcew.lib libw.lib somtk.lib

where %SOMBASE% is replaced by the directory in which SOM was installed (the default
is c:\som). In makefiles, the expression $(SOMBASE) can be used. Note that the –F option
to set the stack size is unnecessary if STACKSIZE is specified in a .def file.

6) Execute the client program.

> hello

Hello, World!

Example 2 will extend the “Hello” class to introduce an “attribute”.

2 – 112. Tutorial for Implementing SOM Classes

File extensions for SOM files

� IDL source file:
.idl for all users

� Implementation template file:
.c for C, all systems
.C for C++, on AIX
.cpp for C++, on OS/2

 or Windows

� Header file for implementation file:
.ih for C
.xih for C++

� Header file for program file:
.h for C
.xh for C++

2 – 12 SOMobjects Base Toolkit Users Guide

Example 2 — Adding an Attribute to the Hello class
Example 1 introduced a class “Hello” which has a method “sayHello” that prints the fixed string
“Hello, World!” Example 2 extends the “Hello” class so that clients can customize the output
from the method “sayHello”.

1) Modify the interface declaration for the class definition in “hello.idl.”

Class “Hello” is extended by adding an attribute that we call “msg”. Declaring an attribute is
equivalent to defining “get” and “set” methods. For example, specifying:

attribute string msg;

is equivalent to defining the two methods:

string _get_msg();

void _set_msg(in string msg);

Thus, for convenience, an attribute can be used (rather than an instance variable) in order to use
the automatically defined “get” and “set” methods without having to write their method proce-
dures. The new interface specification for “Hello” that results from adding attribute “msg” to the
“Hello” class is as follows (with some comment lines omitted):

#include <somobj.idl>

interface Hello : SOMObject

{

 void sayHello();

 attribute string msg;

 //# This is equivalent to defining the methods:

 //# string _get_msg();

 //# void _set_msg(string msg);

};

2) Re-run the SOM Compiler on the updated .idl file, as in example 1. This produces new header
files and updates the existing implementation file, if needed, to reflect changes made to the .idl
file. In this example, the implementation file is not modified by the SOM Compiler.

3) Customize the implementation.

Customize the implementation file by modifying the print statement in the “sayHello” method
procedure. This example prints the contents of the “msg” attribute (which must be initialized in
the client program) by invoking the “_get_msg” method. Notice that, because the “_get_msg”
method name begins with an underscore, the method is invoked with two leading underscores
(for C only).

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

{

 /* HelloData *somThis = HelloGetData(somSelf); */

 HelloMethodDebug(”Hello”, ”sayHello”);

 printf(”%s\n”, __get_msg(somSelf, ev));

 /* for C++, use somSelf–>_get_msg(ev); */

}

This implementation assumes that “_set_msg” has been invoked to initialize the “msg” attribute
before the “_get_msg” method is invoked by the “sayHello” method. This initialization can be
done within the client program.

2 – 132. Tutorial for Implementing SOM Classes

4) Update the client program.

Modify the client program so that the “_set_msg” method is invoked to initialize the “msg”
attribute before the “sayHello” method is invoked. Notice that, because the “_set_msg” method
name begins with an underscore, the C client program invokes the method with two leading
underscores.

For C programmers:

#include <hello.h>

int main(int argc, char *argv[])

{

 Hello obj;

 obj = HelloNew();

 /* Set the msg text */

 __set_msg(obj, somGetGlobalEnvironment(), ”Hello World Again”);

 /* Execute the ”sayHello” method */

 _sayHello(obj, somGetGlobalEnvironment());

 _somFree(obj);

 return (0);

}

For C++ programmers:

#include <hello.xh>

int main(int argc, char *argv[])

{

 Hello *obj;

 obj = new Hello;

 /* Set the msg text */

 obj–>_set_msg(somGetGlobalEnvironment(), ”Hello World Again”);

 /* Execute the ”sayHello” method */

 obj–>sayHello(somGetGlobalEnvironment());

 obj–>somFree();

 return (0);

}

5) Compile and link the client program, as before.

6) Execute the client program:

> hello

Hello World Again

The next example extends the “Hello” class to override (redefine) one of the methods it inherits
from its parent class, SOMObject.

2 – 14 SOMobjects Base Toolkit Users Guide

Example 3 — Overriding an Inherited Method

As defined in Example 2, the “Hello” class has the limitation that it relies on the client program to
initialize the “msg” attribute of an object before the “sayHello” method is invoked on that object.
This example extends the class so that the “sayHello” method behaves reasonably even without
client initialization of the “msg” attribute. Specifically, this example initializes the “msg” attribute
as the object is created.

By default, the SOM method somInit is called once on every object as it is created, in order to
initialize the object. Thus, to automatically initialize the “msg” attribute when an instance of the
“Hello” class is created, the “Hello” class overrides (redefines) the SOM method somInit, which
the “Hello” class inherits from its designated parent class, SOMObject.

1) Modify the interface declaration in “hello.idl.”

To override the somInit method in “Hello”, additional information must be provided in “hello.idl”

in the form of an implementation statement, which gives extra information about the class, its
methods and attributes, and any instance variables. (The previous examples omitted the
optional “implementation” statement, because it was not needed.)

In the current example, the “implementation” statement introduces the modifiers for the “Hello”

class, as follows.

#include <somobj.idl>

interface Hello : SOMObject

{

 void sayHello();

 attribute string msg;

#ifdef __SOMIDL__

implementation

{

 //# Method Modifiers:

 somInit: override;

 // Override the inherited implementation of somInit.

};

#endif

};

Here, “somInit:” introduces a list of modifiers for the (inherited) somInit method in the class
“Hello”. Modifiers are like C/C++ #pragma commands and give specific implementation details
to the compiler. This example uses only one modifier, “override”. Because of the “override”
modifier, when somInit is invoked on an instance of class “Hello”, Hello’s implementation of
somInit (in the implementation file) will be called, instead of the implementation inherited from
the parent class, SOMObject.

The “#ifdef _ _SOMIDL_ _” and “#endif” are standard C and C++ preprocessor commands that

cause the “implementation” statement to be read only when using the SOM IDL compiler (and
not some other IDL compiler).

2 – 152. Tutorial for Implementing SOM Classes

2) Re-run the SOM Compiler on the updated .idl file, as before. The SOM Compiler extends the
existing implementation file from Example 2 to include new stub procedures as needed (in this
case, for somInit). Below is a shortened version of the C language implementation file as
updated by the SOM Compiler; C++ implementation files are similarly revised. Notice that the
code previously added to the “sayHello” method is not disturbed when the SOM Compiler
updates the implementation file.

#include <hello.ih>

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

{

 /* HelloData *somThis = HelloGetData(somSelf); */

 HelloMethodDebug(”Hello”,”sayHello”);

 printf(”%s\n”, __get_msg(somSelf, ev));

}

SOM_Scope void SOMLINK somInit(Hello somSelf)

{

 HelloData *somThis = HelloGetData(somSelf);

 HelloMethodDebug(”hello”,“somInit”);

 Hello_parent_SOMObject_somInit(somSelf);

}

Note that the SOM Compiler added code allowing the “Hello” class to redefine somInit. The
SOM Compiler provides a default implementation for overriding the somInit method. This
default implementation simply calls the “parent method” [the procedure that the parent class of
“Hello” (SOMObject) uses to implement the somInit method]. This parent method call is
accomplished by the invocation Hello_parent_SOMObject_somInit, which initializes any
instance variables and attributes introduced by Hello’s parent class, SOMObject.

Notice that the stub procedure for overriding the somInit method does not include an
Environment parameter. This is because somInit is introduced by SOMObject, which does not
include the Environment parameter in any of its methods (to ensure backward compatibility).
The signature for a method cannot change after it has been introduced.

3) Customize the implementation.

Within the new somInit method procedure, after invocation of the parent method, code is added
to initialize the “msg” attribute as each instance of the “Hello” class is created:

SOM_Scope void SOMLINK somInit(Hello somSelf)

{

 HelloData *somThis = HelloGetData(somSelf);

 HelloMethodDebug(”Hello”,”somInit”);

 Hello_parent_SOMObject_somInit(somSelf);

 __set_msg(somSelf, somGetGlobalEnvironment(), ”Hello, World!”);

 /* for C++, use:

 * somSelf–>_set_msg(somGetGlobalEnvironment(),”Hello, World!”);

 */

}

2 – 16 SOMobjects Base Toolkit Users Guide

4) Update the client program.

The client program can now be restored to the original version, which doesn’t initialize the “msg”
attribute. Then, the client program can be modified to change the “msg” that will print and to
invoke the “sayHello” method a second time.

For C programmers:

#include <hello.h>

int main(int argc, char *argv[])

{

 Hello obj;

 Environment *ev = somGetGlobalEnvironment();

 obj = HelloNew();

 _sayHello(obj, ev); /* Print the default message: */

 __set_msg(obj, ev, ”Hello World Again”); /* Set new message: */

 _sayHello(obj, ev);

 _somFree(obj);

 return (0);

}

For C++ programmers:

#include <hello.xh>

int main(int argc, char *argv[])

{

 Hello *obj;

 Environment *ev = somGetGlobalEnvironment();

 obj = new Hello;

 obj–>sayHello(ev);

 obj–>_set_msg(ev, ”Hello World Again”);

 obj–>sayHello(ev);

 obj–>somFree();

 return (0);

}

5) Compile and link the client program, as before.

6) Execute the client program, which now outputs both messages:

> hello

Hello, World!

Hello World Again

2 – 172. Tutorial for Implementing SOM Classes

Example 4 — Using Metaclasses
The previous example showed how to override somInit to set a default value for the “msg”
attribute. It would also be convenient if a user could initialize “msg” to a particular value as each
“Hello” object is created. This is one use of metaclasses.

Recall that a metaclass is the class that a class object (such as “Hello”) is an instance of. A
metaclass defines the methods that a class uses to perform class-related operations. This
includes such things as creating instances of the class, returning information about the class’s
methods or parent classes, and other “supervisory” operations that the class itself performs —
as opposed to methods that instances of the class will perform (instance methods are defined
within the class’s .idl file or are inherited from its parent classes).

The default metaclass for every class is SOMClass. For example, SOMClass provides the
somNew method that a class uses to create its instances. [The “HelloNew” procedure (used
previously in the main program) invokes the somNew method on the “Hello” class object to
create instances of the “Hello” class.] The current example, however, employs a different
technique for creating objects — one that permits the user to specify an initial value for “msg”.

A metaclass must be used here in order to modify a class-related operation (that is, to change
the way in which the “Hello” class creates its instances, so that the client program can specify an
initial value for the newly-created object’s “msg” attribute). “Hello” obtains this class method
from its metaclass “M_Hello”, where the method is defined.

In summary, this example illustrates defining a new method of the “M_Hello” metaclass that,
when performed by the “Hello” class object, creates an instance of the “Hello” class and sets the
value of that instance’s “msg” attribute to a specified text string. [The new method is declared in
the “M_Hello” interface (step 1) and is implemented in the implementation file (step 2)]. This
allows the value of the “msg” attribute to be initialized by the client as it creates each instance of
the “Hello” class.

The client program then performs three main activities:

� Creates a “Hello” class object, which can perform the new class method defined by the
metaclass.

� Creates instances of the “Hello” class, specifying the initial value for each instance’s “msg”
attribute (done by calling the class method defined by the metaclass).

� Prints the value of each instance’s “msg” attribute (by invoking the “sayHello” method on
each object).

The following example describes each step in more detail.

1) Modify the interface declaration in “hello.idl.”

The interface for the metaclass of “Hello” must be declared, just as for the “Hello” class. By
convention, the metaclass of “Hello” is called “M_Hello.” The interface for “M_Hello” consists of
a user-defined method, “HelloCreate”, that creates an instance of the “Hello” class and initial-
izes the “msg” attribute to the specified value.

#include <somobj.idl> //# Get the parent (base) class definition

#include <somcls.idl> //# Get the parent metaclass class definition

interface Hello; // Forward declaration of Hello since

 // HelloCreate returns class ”Hello”

interface M_Hello : SOMClass // The metaclass for Hello.

{

 Hello HelloCreate(in string message);

 //This method creates an instance of the Hello class and

 // uses the value of ”message” to initialize it.

};

2 – 18 SOMobjects Base Toolkit Users Guide

interface Hello : SOMObject

{

 void sayHello();

 attribute string msg;

#ifdef __SOMIDL__

 implementation {

 //# Class Modifiers

 metaclass = M_Hello; //# Identify Hello’s metaclass

 };

#endif //# __SOMIDL__

};

In the “implementation” statement for the “Hello” interface, we have removed the earlier state-
ment somInit:override, since “msg” will be initialized differently. Now, the “implementation”
statement for “Hello” designates the metaclass of “Hello” by using the “metaclass” modifier with
a value of “M_Hello”. (If not explicitly specified, the metaclass of a class is derived from its
parents.)

As shown in this example, the “interface” statements for a class and its metaclass may appear in
the same .idl file. IDL also allows the interfaces to arbitrary sets of classes to be defined in the
same .idl file; however, if the classes are not a class-metaclass pair, then the “interface”
statements should be contained in a module statement. Chapter 4, “Implementing SOM
Classes” contains a section entitled “SOM Interface Definition Language” that describes the
use of modules in IDL.

2) Re-run the SOM Compiler on the updated .idl file, as before. The SOM Compiler extends the
existing implementation file to include stub procedures for methods added for the class’s
metaclass, as specified by M_Hello’s interface declaration. Below is the material that the SOM
Compiler adds to the C language implementation file; C++ implementation files are similarly
revised:

#include <hello.ih>

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

{

 /* HelloData *somThis = HelloGetData(somSelf); */

 HelloMethodDebug(”Hello”,”sayHello”);

 printf(”%s\n”, __get_msg(somSelf, ev));

}

/*

 * This method creates an instance of the Hello class and

 * uses the value of ”message” to initialize it.

 */

SOM_Scope Hello SOMLINK HelloCreate(M_Hello somSelf,

 Environment *ev, string message)

{

 /* M_HelloData *somThis = M_HelloGetData(somSelf) ; */

 M_HelloMethodDebug(”M_Hello”,”HelloCreate”) ;

 /* Return statement to be customized: */

 return;

}

2 – 192. Tutorial for Implementing SOM Classes

3) Customize the implementation.

Expand the “HelloCreate” method procedure as follows:

SOM_Scope Hello SOMLINK HelloCreate(M_Hello somSelf,

Environment *ev, string message)

{

 /* M_HelloData *somThis = M_HelloGetData(somSelf) ; */

 Hello obj = _somNew(somSelf) ;

 /* for C++, use: somSelf–>somNew() */

 M_HelloMethodDebug(”M_Hello”,”HelloCreate”) ;

 __set_msg(obj, ev, message) ;

 /* for C++, use: obj–>_set_msg(ev, message); */

 return (obj) ;

}

“HelloCreate” invokes the method somNew (provided by SOMClass) to create an instance of
the “Hello” class. It then sets the value of the “msg” attribute by invoking the “_set_msg” method
(similarly to Example 2 in the client program).

4) Update the client program.

The client program can now call the “HelloCreate” method to create an instance of the “Hello”
class and set the “msg” attribute at the same time. This implementation is illustrated with the
following C client program (a corresponding C++ example is also given following the explanatory
paragraphs for step 4):

#include <hello.h>

int main(int argc, char *argv[])

{

 Hello a, b, c;

 Environment *ev = somGetGlobalEnvironment();

 /*

 * Create the Hello Class and save a pointer to it.

 * The class of a Hello class object is M_Hello.

 */

 M_Hello helloClsObj = HelloNewClass(Hello_MajorVersion,

 Hello_MinorVersion) ;

 /* Now create three instances of the Hello class */

 a = _HelloCreate(helloClsObj, ev, ”Hello from A”) ;

 b = _HelloCreate(helloClsObj, ev, ”Hello from B”) ;

 c = _HelloCreate(helloClsObj, ev, ”Hello from C”) ;

 /* Now call sayHello on each object */

 _sayHello(a, ev) ;

 _sayHello(b, ev) ;

 _sayHello(c, ev) ;

 _somFree(a) ;

 _somFree(b) ;

 _somFree(c) ;

 return (0);

}

The client program first creates the “Hello” class object (helloClsObj), by calling the
“HelloNewClass” procedure. The “HelloNewClass” procedure is defined by the SOM Compiler

2 – 20 SOMobjects Base Toolkit Users Guide

in the “hello.h” or “hello.xh” header file for the “Hello” class. (The SOM Compiler defines a
<className>NewClass procedure for each class, in the header file it generates for the class.)
In addition to creating the “Hello” class object, this procedure also creates the class objects for
the parent classes and metaclass of “Hello”.

Previous examples did not explicitly call the “HelloNewClass” procedure, because it is called by
the “HelloNew” macro. In this example, however, the client program must explicitly create the
“Hello” class object, so that it can invoke the new “HelloCreate” method on it.

Note: The “Hello_MajorVersion” and “Hello_MinorVersion” arguments to “HelloNewClass” are
defined in the header file for the “Hello” class by the SOM Compiler; they refer to the version
numbers of the “Hello” class at the time the header file was produced. SOM ensures that the
class object it creates is consistent with the specified version numbers.

After creating the “Hello” class object, the client program then creates three new instances of
the “Hello” class and invokes the “sayHello” method on each one.

The following code illustrates the revised client program in C++.

#include <hello.xh>

#include <stdio.h>

int main(int argc, char *argv[])

{

 Hello *a, *b, *c;

 Environment *ev = somGetGlobalEnvironment();

 /*

 * Create the Hello class object, and save a pointer to it.

 * The class of a Hello class object is M_Hello.

 */

 M_Hello *helloClsObj = HelloNewClass(Hello_MajorVersion,

 Hello_MinorVersion);

 /* Create three different instances of the Hello class object. */

 a = helloClsObj–>HelloCreate(ev, ”Hello from A”);

 b = helloClsObj–>HelloCreate(ev, ”Hello from B”);

 c = helloClsObj–>HelloCreate(ev, ”Hello from C”);

 /* Now call sayHello on each object. */

 a–>sayHello(ev);

 b–>sayHello(ev);

 c–>sayHello(ev);

 a–>somFree();

 b–>somFree();

 c–>somFree();

 return (0);

}

5) Compile and link the client program, as before.

6) Execute the client program:

> hello

Hello from A

Hello from B

Hello from C

2 – 212. Tutorial for Implementing SOM Classes

Example 5 — Using Metaclasses as Counters
The previous example introduced metaclasses as a way to provide constructors (methods for
creating new instances of a class). Metaclasses are also useful for providing methods that
maintain information about all the objects of a particular class. One simple use of metaclasses
is to maintain a count of all of the objects that a class creates. This example does everything that
Example 4 did, and also counts the number of objects created.

1) Modify the interface declaration in “hello.idl” so that it provides an attribute for the “Hello” class
object to count the number of objects it creates.

#include <somobj.idl>

#include <somcls.idl>

interface Hello; // Forward declaration of Hello since

 // HelloCreate returns class ”Hello”

interface M_Hello : SOMClass // The meta class for Hello.

{

 Hello HelloCreate(in string message);

 //This method creates an instance of the Hello class and

 // uses the value of ”message” to initialize it.

 readonly attribute long numberObjs;

};

interface Hello : SOMObject

{

 void sayHello();

 attribute string msg;

#ifdef __SOMIDL__

 implementation {

 //# Class Modifiers

 metaclass = M_Hello; //# Identify Hello’s metaclass

 };

#endif //# __SOMIDL__

};

The “readonly” keyword means that only a “_get_numberObjs” method will be defined, and
not a “_set_numberObjs”. (A “_set_numberObjs” method is not needed because clients should
not be permitted to change the value of the “numberObjs” attribute.) The implementation of the
class can access the attribute by accessing its corresponding instance variable. Internal
instance variables are automatically defined to store an attribute’s data. (An exception is
attributes given the “nodata” SOM IDL attribute modifier, described in Chapter 4, “Implementing
SOM Classes.)

2) Re-run the SOM Compiler on the updated .idl file, as before.
(In this case, the implementation file does not require modification.)

3) Customize the implementation.

Given the “readonly” attribute for “numberObjs”, modify the “HelloCreate” method to increment
“numberObjs” every time a client invokes “HelloCreate”. Notice that the assignment statement

2 – 22 SOMobjects Base Toolkit Users Guide

for somThis below has been uncommented as well. This is necessary because the implemen-
tation of the “HelloCreate” method accesses the “numberObjs” attribute via the corresponding
“numberObjs” instance variable. The assignment to somThis must be made before a method
implementation can access instance variables of the class.

SOM_Scope Hello SOMLINK HelloCreate(M_Hello somSelf,

 Environment *ev, string message)

{

 M_HelloData *somThis = M_HelloGetData(somSelf) ;

 Hello obj = _somNew(somSelf) ;

 /* for C++, use: somSelf–>somNew() */

 M_HelloMethodDebug(”M_Hello”,”HelloCreate”) ;

 __set_msg(obj, ev, message) ;

 /* for C++, use obj–>_set_msg(ev, message) ; */

 (somThis–>numberObjs)++ ;

 return (obj) ;

}

The syntax somThis–>numberObjs is used to set the value of the “numberObjs” attribute in
the absence of a “set” method. In general, the implementation file for a class can access any
instance variable of the class via the somThis–>variableName macro, or by the shorthand
form, _variableName. (In C++, the shorthand form is only available if VARIABLE_MACROS is
defined (via a #define directive) in the implementation file prior to including the .xih file.)

4) Update the client program.

The client program can now report the number of “Hello” objects created during its lifetime, as in
the following C program (the Example 4 code with a print statement added):

#include <hello.h>

 /* for C++, use ”hello.xh”. */

int main(int argc, char *argv[])

{

 Hello a, b, c;

 Environment *ev = somGetGlobalEnvironment();

 /*

 * Create the Hello Class and save a pointer to it.

 * The class of a Hello class object is M_Hello.

 */

 M_Hello helloClsObj = HelloNewClass(Hello_MajorVersion,

 Hello_MinorVersion) ;

 /* Now create an instance of the Hello class */

 a = _HelloCreate(helloClsObj, ev, ”Hello from A”) ;

 /* for C++, use:

 a = helloClsObj–>HelloCreate(ev, ”Hello from A”); */

 b = _HelloCreate(helloClsObj, ev, ”Hello from B”) ;

 c = _HelloCreate(helloClsObj, ev, ”Hello from C”) ;

 /* Now call sayHello on each object */

 _sayHello(a, ev) ; /* for C++, use: a–>sayHello(ev); */

 _sayHello(b, ev) ;

 _sayHello(c, ev) ;

 printf(”# objs created: %ld\n”,

 __get_numberObjs(helloClsObj, ev));

 /* for C++, use: helloClsObj–>_get_numberObjs(ev); */

2 – 232. Tutorial for Implementing SOM Classes

 _somFree(a) ; /* for C++, use: a–>somFree(); */

 _somFree(b) ;

 _somFree(c) ;

 return (0);

}

5) Compile and link the client program, as before.

6) Execute the client program:

> hello

Hello from A

Hello from B

Hello from C

objs created: 3

Attributes vs instance variables
As an alternative to defining “numberObjs” as an attribute, it could be defined as an instance
variable, with a “get_numberObjs” method also defined for retrieving its value, as shown below:

interface M_Hello

// The metaclass for Hello.

{

 Hello HelloCreate(in string message) ;

 // This method creates an instance of the Hello class and

 // uses the value of “message” to initialize it.

 long get_numberObjs() ;

#ifdef __SOMIDL__

implementation

{

 long numberObjs;

};

#endif

};

The disadvantage to using an instance variable is that the “get_numberObjs” method must be
defined in the implementation file by the class implementor. For attributes, by contrast, default
implementations of the “get” and “set” methods are generated automatically by the SOM
Compiler in the .ih and .xih header files.

Note: For some attributes (particularly those involving structures, strings, and pointers) the
default implementation generated by the SOM Compiler for the “set” method may not be
suitable. This happens because the SOM Compiler only performs a “shallow copy,” which
typically is not useful for distributed objects with these types of attributes. In such cases, it is
possible to write your own implementations, as you do for any other method, by specifying the
“noset/noget” modifiers for the attribute.

Regardless of whether you let the SOM Compiler generate your implementations or not, if
access to instance data is required, either from a subclass or a client program, then this access
should be facilitated by using an attribute. Otherwise, instance data can be defined in the
“implementation” statement as above (using the same syntax with which variables are declared
in C or C++), with appropriate methods defined to access it.

As an example where instance variables would be used (rather than attributes), consider a class
“Date” that provides a method for returning the current date. Suppose the date is represented by
three instance variables — “mm”, “dd”, and “yy”. Rather than making “mm”, “dd”, and “yy”

2 – 24 SOMobjects Base Toolkit Users Guide

attributes (and allowing clients to access them directly), “Date” defines “mm”, “dd”, and “yy” as
instance variables in the “implementation” statement, and defines a method “get_date” that
converts “mm”, “dd”, and “yy” into a string of the form “mm/dd/yy”:

interface Date

{

 string get_date() ;

#ifdef __SOMIDL__

implementation

{

 long mm,dd,yy;

};

#endif

};

To access instance variables that a class introduces from within the class implementation file,
two forms of notation are available:

somThis–>variableName

or

_variableName

For example, the implementation for “get_date” would

access the “mm” instance variable as somThis–>mm or _mm,
access “dd” as somThis–>dd or _dd, and
access “yy” as somThis–>yy or _yy.

In C++ programs, the _variableName form is available only if the programmer first defines the
macro VARIABLE_MACROS (that is, enter #define VARIABLE_MACROS) in the implementa-
tion file prior to including the .xih file for the class.

2 – 252. Tutorial for Implementing SOM Classes

Example 6 — Using Multiple Inheritance
The “Hello” class is useful for writing messages to the screen. So that clients can also write
messages to printers and disk files, this example references two additional classes: “Printer”
and “Disk”. The “Printer” class will manage messages to a printer, and the “Disk” class will
manage messages sent to files. These classes can be defined as follows (this example also
retains all of the functionality of Example 5):

#include <somobj.idl>

interface Printer : SOMObject

{

 void stringToPrinter(in string s) ;

 // This method writes a string to a printer.

};

#include <somobj.idl>

interface Disk : SOMObject

{

 void stringToDisk(in string s) ;

 // This method writes a string to disk.

};

This example assumes the “Printer” and “Disk” classes are defined separately (in “print.idl” and
“disk.idl”, for example), are implemented in separate files, and are linked with the other example
code. Given the implementations of the “Printer” and “Disk” interfaces, the “Hello” class can use
them by inheriting from them, as illustrated next.

1) Modify the interface declaration in “hello.idl”.

#include <somcls.idl>

#include <disk.idl>

#include <printer.idl>

interface Hello;

interface M_Hello : SOMClass

// The metaclass for Hello.

{

 Hello HelloCreate(in string message);

 // This method creates an instance of the Hello class and

 // uses the value of ”message” to initialize it.

 readonly attribute long numberObjs;

};

interface Hello : Disk, Printer

{

 void sayHello();

 attribute string msg;

 enum outputTypes {screen, printer, disk};

 // Declare an enumeration for the different forms of output

 attribute outputTypes output;

 // The current form of output

2 – 26 SOMobjects Base Toolkit Users Guide

#ifdef __SOMIDL__

 implementation {

 metaclass = M_Hello;

 override: somInit; //# Override somInit to call the somInit

 //# method of each parent as it is created.

 };

#endif //# __SOMIDL__

};

Notice that SOMObject is not listed as a parent of “Hello” above, because SOMObject is a
parent of “Disk” (and of “Printer”).

The IDL specification above declares an enumeration “outputTypes” for the different forms of

output, and an attribute “output” whose value will depend on where the client wants the output of
the “sayHello” method to go.

Note: SOM IDL allows the use of structures, unions (though with a syntax different from C or
C++), enumerations, constants, and typedefs, both inside and outside the body of an interface
statement. Declarations that appear inside an interface body will be emitted in the header file
(that is, in “hello.h” or “hello.xh”). Declarations that appear outside of an interface body do not
appear in the header file (unless required by a special #pragma directive; see the SOM Compiler
options in Chapter 4).

SOM IDL also supports all of the C and C++ preprocessor directives, including conditional
compilation, macro processing, and file inclusion.

2) Re-run the SOM Compiler on the updated .idl file, as before.

3) Customize the implementation, as in the following “hello.c” file:

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

{

 /* HelloData *somThis = HelloGetData(somSelf) ; */

 HelloMethodDebug(”Hello”,”sayHello”) ;

 switch (__get_output(somSelf, ev)) {

 /* for C++, use: somSelf–>_get_output(ev) */

 case Hello_screen:

 printf(”%s\n”, __get_msg(somSelf, ev));

 /* for C++, use: somSelf–>_get_msg(ev) */

 break;

 case Hello_printer:

 _stringToPrinter(somSelf, ev, __get_msg(somSelf, ev));

 /* for C++, use:

 * somSelf–>stringToPrinter(ev, somSelf–>_get_msg(ev));

 */

 break;

 case Hello_disk:

 _stringToDisk(somSelf, ev, __get_msg(somSelf, ev));

 /* for C++, use:

 * somSelf–>stringToDisk(ev, somSelf–>_get_msg(ev));

 */

break;

 }

}

2 – 272. Tutorial for Implementing SOM Classes

The “switch” statement invokes the appropriate method depending on the value of the “output”
attribute. Notice how the “case” statements utilize the enumeration values of “outputTypes”
declared in “hello.idl” by prefacing the enumeration names with the class name (Hello_screen,
Hello_printer, and Hello_disk).

Next, the implementation for “HelloCreate” is modified so that the “msg” output will go to the
screen by default. Code in the client program can reassign output to the printer or to disk, as
needed. In addition, we must override the somInit method for “Hello”, to ensure that all of the
parent somInit methods are called.

SOM_Scope Hello SOMLINK HelloCreate(M_Hello somSelf,

Environment *ev, char *message)

{

 /* M_HelloData *somThis = M_HelloGetData(somSelf) ; */

 Hello obj = _somNew(somSelf) ;

 /* for C++, use: somSelf–>somNew() */

 M_HelloMethodDebug(”M_Hello”,”HelloCreate”) ;

 __set_msg(obj, ev, message) ;

 /* for C++, use: obj–>_set_msg(ev, message) ; */

 (somThis–>numberObjs)++ ;

 __set_output(obj, ev, Hello_screen) ;

 /* for C++, use: obj–>_set_output(ev, Hello_screen); */

 return (obj) ;

}

SOM_Scope void SOMLINK somInit(Hello *somSelf)

{

 /* HelloData *somThis = HelloGetData(somSelf); */

 HelloMethodDebug(”Hello”,”somInit”);

 Hello_parent_Disk_somInit(somSelf);

 Hello_parent_Printer_somInit(somSelf);

}

4) Update the client program, as illustrated next:

#include <hello.h>

 /* for C++, use ”hello.xh” and <stdio.h> */

int main(int argc, char *argv[])

{

 Hello a;

 Environment *ev = somGetGlobalEnvironment();

 /*

 * Create the Hello Class and save a pointer to it.

 * The class of a Hello class object is M_Hello.

 */

 M_Hello helloClsObj = HelloNewClass(Hello_MajorVersion,

 Hello_MinorVersion) ;

 /* Now create an instance of the Hello class object*/

 a = _HelloCreate(helloClsObj, ev, ”Hello from A”) ;

 /* for C++, use:

 a = helloClsObj–>HelloCreate(ev, ”Hello from A”); */

2 – 28 SOMobjects Base Toolkit Users Guide

 /* Now call sayHello on an object and use each output */

 _sayHello(a, ev) ; /* for C++, use: a–>sayHello(ev); */

 __set_output(a, ev, Hello_printer) ;

 /* C++: a–>_set_output(ev, Hello_printer); */

 _sayHello(a, ev) ;

 __set_output(a, ev, Hello_disk) ;

 /* C++: a–>_set_output(ev, Hello_disk); */

 _sayHello(a, ev) ;

 printf(”# objs created: %ld\n”,

 __get_numberObjs(helloClsObj, ev));

 /* for C++, use: helloClsObj–>_get_numberObjs(ev) ; */

 _somFree(a) ; /* for C++, use: a–>somFree(); */

 return (0);

}

5) Compile and link the client program, as before.

6) Execute the client program:

Hello from A

Hello from A — goes to a Printer
Hello from A — goes to Disk
objs created: 1

This tutorial has described the features of SOM IDL that will be most useful to C and C++

programmers. SOM IDL also provides features such as full type checking, constructs for
declaring private methods, and constructs for defining methods that receive and return pointers
to structures. Chapter 4, “Implementing SOM Classes,” gives a complete description of the
SOM IDL syntax. That chapter also describes how to use the SOM Compiler and provides more
complete information on implementing SOM class libraries.

Chapter 3. Using SOM Classes in Client Programs

Contents

3.1 An Example Client Program 3 – 3.

3.2 Using SOM Classes — the Basics 3 – 4.

Declaring object variables 3 – 4.

Creating instances of a class 3 – 5.

Invoking methods on objects 3 – 8.

Using name-lookup method resolution 3 – 12.

A name-lookup example 3 – 13.

Obtaining a method’s procedure pointer 3 – 16.

Method name or signature not known at compile time 3 – 17.

Accessing Attributes 3 – 18.

Using class objects 3 – 18.

Getting the class of an object 3 – 18.

Creating a class object 3 – 19.

Referring to class objects 3 – 21.

Compiling and linking 3 – 22.

3.3 Language-neutral Methods and Functions 3 – 23.

Generating output 3 – 23.

Getting information about a class 3 – 23.

Getting information about an object 3 – 25.

Methods 3 – 25.

Functions 3 – 26.

Debugging 3 – 26.

Checking the validity of method calls 3 – 27.

Exceptions and error handling 3 – 28.

Exception declarations 3 – 29.

Standard exceptions 3 – 29.

The Environment 3 – 30.

Setting an exception value 3 – 30.

Getting an exception value 3 – 31.

Example 3 – 31.

Memory management 3 – 33.

SOM manipulations using somId’s 3 – 33.

ii SOMobjects Base Toolkit Users Guide

Chapter 3. Using SOM Classes in Client Programs

This chapter discusses how to use SOM classes that have already been fully implemented.
That is, these topics describe the steps that a programmer uses to instantiate an object and
invoke some method(s) on it from within an application program.

Who should read this chapter?

� Programmers who wish to use SOM classes that were originally developed by someone
else will need to know the information in this chapter. These programmers often may not
need the information from any subsequent chapters.

� By contrast, class implementors who are creating their own SOM classes should continue
with Chapter 4, “Implementing SOM Classes,” for complete information on the SOM
Interface Definition Language (SOM IDL) syntax and other details of class implementa-
tion.

Programs that use a class are referred to as client programs. A client program can be written in
C, in C++, or in another language. As noted, this chapter describes how client programs can use
SOM classes (classes defined using SOM, as described in Chapter 2, “Tutorial for Implement-
ing SOM Classes” and in Chapter 4, “Implementing SOM Classes”). Using a SOM class
involves creating instances of a class, invoking methods on objects, and so forth. All of the
methods, functions, and macros described here can also be used by class implementors within
the implementation file for a class.

Note: “Using a SOM class,” as described in this chapter, does not include subclassing the class
in a client program. In particular, the C++ compatible SOM classes made available in the .xh
binding file can not be subclassed in C++ to create new C++ or SOM classes.

Some of the macros and functions described here are supplied as part of SOM’s C and C++

usage bindings. These bindings are functions and macros defined in header files to be included
in client programs. The usage bindings make it more convenient for C and C++ programmers to
create and use instances of SOM classes. SOM classes can be also used without the C or C++

bindings, however. For example, users of other programming languages can use SOM classes,
and C and C++ programmers can use a SOM class without using its language bindings. The
language bindings simply offer a more convenient programmer’s interface to SOM. Vendors of
other languages may also offer SOM bindings; check with your language vendor for possible
SOM support.

To use the C or C++ bindings for a class, a client program must include a header file for the class
(using the #include preprocessor directive). For a C language client program, the file
<classFileStem>.h must be included. For a C++ language client program, the file
<classFileStem>.xh must be included. The SOM Compiler generates these header files from
an IDL interface definition. The header files contain definitions of the macros and functions that
make up the C or C++ bindings for the class. Whether the header files include bindings for the
class’s private methods and attributes (in addition to the public methods and attributes) de-
pends on the IDL interface definition available to the user, and on how the SOM Compiler was
invoked when generating bindings.

Usage binding headers automatically include any other bindings upon which they may rely.
Client programs not using the C or C++ bindings for any particular class of SOM object (for
example, a client program that does not know at compile time what classes it will be using)

3 – 2 SOMobjects Base Toolkit Users Guide

should simply include the SOM-supplied bindings for SOMObject, provided in the header file
“somobj.h” (for C programs) or “somobj.xh” (for C++ programs).

For each task that a user of a SOM class might want to perform, this chapter shows how the task
would be accomplished by:

� a C programmer using the C bindings,
� a C++ programmer using the C++ bindings, or
� a programmer not using SOM’s C or C++ language bindings.

If neither of the first two approaches is applicable, the third approach can always be used.

3 – 33. Using SOM Classes in Client Programs

3.1 An Example Client Program
Following is a C program that uses the class “Hello” (as defined in the Tutorial in Chapter 2). The
“Hello” class provides one attribute, “msg”, of type string, and one method, “sayHello”. The
“sayHello” method simply displays the value of the “msg” attribute of the object on which the
method is invoked.

#include <hello.h> /* include the header file for Hello */

int main(int argc, char *argv[])

{

 /* declare a variable (obj) that is a

 * pointer to an instance of the Hello class: */

 Hello obj;

 /* create an instance of the Hello class

 * and store a pointer to it in obj: */

 obj = HelloNew();

 /* invoke method _set_msg on obj with the argument

 * ”Hello World Again”. This method sets the value of

 * obj’s ’msg’ attribute to the specified string.

 */

 __set_msg(obj, somGetGlobalEnvironment(), ”Hello World Again”);

 /* invoke method sayHello on obj. This method prints

 * the value of obj’s ’msg’ attribute. */

 _sayHello(obj, somGetGlobalEnvironment());

 return(0);

}

The C++ version of the foregoing client program is shown below:

#include <hello.xh> /* include the header file for Hello */

int main(int argc, char *argv[])

{

 /* declare a variable (obj) that is a

 * pointer to an instance of the Hello class: */

 Hello *obj;

 /* create an instance of the Hello class

 * and store a pointer to it in obj: */

 obj = new Hello;

 /* invoke method _set_msg on obj with the argument

 * ”Hello World Again”. This method sets the value of

 * obj’s ’msg’ attribute to the specified string. */

 obj–>_set_msg(somGetGlobalEnvironment(), ”Hello World Again”);

 /* invoke method sayHello on obj. This method prints

 * the value of obj’s ’msg’ attribute. */

 obj–>sayHello(somGetGlobalEnvironment());

 return(0);

}

These client programs both produce the output:

Hello World Again

3 – 4 SOMobjects Base Toolkit Users Guide

3.2 Using SOM Classes — the Basics

Declaring object variables

When declaring an object variable, an object interface name defined in IDL is used as the type of
the variable. The exact syntax is slightly different for C vs. C++ programmers. Specifically,

<interfaceName> obj ; in C programs or
<interfaceName> *obj ; in C++ programs

declares “obj” to be a pointer to an object that has type <interfaceName>. In SOM, objects of
this type are instances of the SOM class named <interfaceName>, or of any SOM class derived
from this class. Thus, for example,

Animal obj; in C programs or
Animal *obj; in C++ programs

declares “obj” as pointer to an object of type “Animal” that can be used to reference an instance
of the SOM class “Animal” or any SOM class derived from “Animal”. Note that the type of an
object need not be the same as its class; an object of type “Animal” might not be an instance of
the “Animal” class (rather, it might be an instance of some subclass of “Animal” — the “Cat”
class, perhaps).

All SOM objects are of type SOMObject, even though they may not be instances of the
SOMObject class. Thus, if it is not known at compile time what type of object the variable will
point to, the following declaration can be used:

SOMObject obj; in C programs or
SOMObject *obj; in C++ programs.

Because the sizes of SOM objects are not known at compile time, instances of SOM classes
must always be dynamically allocated. Thus, a variable declaration must always define a
pointer to an object.

Note: in the C usage bindings, as within an IDL specification, an interface name used as a type
implicitly indicates a pointer to an object that has that interface (this is required by the CORBA

specification). The C usage bindings for SOM classes therefore hide the pointer with a C
typedef for <interfaceName>. But this is not appropriate in the C++ usage bindings, which
define a C++ class for <interfaceName>. Thus, it is not correct in C++ to use a declaration of the
form:

<interfaceName> obj ; not valid in C++ programs

Note: If a C programmer also prefers to use explicit pointers to <interfaceName> types, then the
SOM Compiler option –maddstar can be used when the C binding files are generated, and the
explicit “*” will then be required in declarations of object variables. (This option is required for
compatibility with existing SOM OIDL code. For information on using the –maddstar option, see
“Running the SOM Compiler” in Chapter 4, “Implementing SOM Classes.”)

Users of other programming languages must also define object variables to be pointers to the
data structure used to represent SOM objects. The way this is done is programming-language
dependent. The header file “somitype.h” defines the structure of SOM objects for the C and C++

languages, and is included by the C and C++ usage bindings.

3 – 53. Using SOM Classes in Client Programs

Creating instances of a class

For C programmers with usage bindings, SOM provides the <className>New and the
<className>Renew macros for creating instances of a class.

These macros are illustrated with the following two examples, each of which creates a single
instance of class “Hello”:

obj = HelloNew();

obj = HelloRenew(buffer);

Using <className> New

The <className>New macro allocates enough space for a new instance of <className>,
creates a new, initialized class instance, and returns a pointer to it. The <className>New
macro automatically creates the class object for <className>, as well as its ancestor classes
and metaclass, if needed.

After a client program has finished using an object created using the <className>New macro,
the object should be freed by invoking the method somFree on it :

_somFree(obj);

This is important because storage for an object created using the <className>New macro is
allocated by the class of the object. Because only the class of an object created this way can
know how to reclaim the object’s storage, the somFree method is designed to call the class
object for storage deallocation.

Using <className> Renew

The <className>Renew macro is only used when the space for the object has been allo-
cated previously. (Perhaps the space holds an old object that is not needed anymore.) This
macro converts the given space into a new, initialized instance of <className> and returns a
pointer to it. The argument of <className>Renew must point to a block of storage large
enough to hold an instance of class <className>. The SOM method somGetInstanceSize
can be invoked on the class to determine the amount of memory required.

Hint: When creating a large number of class instances, it may be more efficient to allocate at
once enough memory to hold all the instances, and then invoke <className>Renew once for
each object to be created, rather than performing separate memory allocations.

In addition, use of the<className>Renew macro requires that the class object has already
been created (otherwise an error will result). The C and C++ usage bindings for a SOM class
provide static linkage to a <className>NewClass procedure that can be used to create the
class object.

For example, the following C code uses the function HelloNewClass to create the “Hello” class
object. The arguments to this function are defined by the usage bindings, and indicate the
version of the class implementation that is assumed by the bindings. (For more detail on
creation of classes, see the later section, “Creating a class object.”) Once the class object has
been created, the example invokes the method somGetInstanceSize on this class to deter-
mine the size of a “Hello” object, uses SOMMalloc to allocate storage, and then uses the
HelloRenew macro to create ten instances of the “Hello” class:

3 – 6 SOMobjects Base Toolkit Users Guide

#include <hello.h>

main()

{

SOMClass helloCls; /* A pointer for the Hello class object */

Hello objA[10]; /* an array of Hello instances */

unsigned char *buffer;

int i;

int size;

/* create the Hello class object: */

helloCls = HelloNewClass(Hello_MajorVersion, Hello_MinorVersion);

/* get the amount of space needed for a Hello instance:

 * (somGetInstanceSize is a method provided by SOM.) */

size = _somGetInstanceSize(helloCls);

size = ((size+3)/4)*4; /* round up to doubleword multiple */

/* allocate the total space needed for ten instances: */

buffer = SOMMalloc(10*size);

/* convert the space into ten separate Hello instances: */

for (i=0; i<10; i++)

 objA[i] = HelloRenew(buffer+i*size);

...

...

/* Uninitialize the objects and free them */

for (i=0; i<10; i++)

 _somUninit(objA[i]);

SOMFree(buffer);

}

When an object created with the <className>Renew macro is no longer needed, its storage
must be freed using the dual to whatever method was originally used to allocate the storage.
Two method pairs are typical:

� For example, if an object was originally initialized using the <className>New macro,
then, as discussed previously, the client should use the somFree method on it.

� On the other hand, if the program uses the SOMMalloc function to allocate memory, as
illustrated in the example above, then the SOMFree function must be called to free the
objects’ storage (because SOMFree is the dual to SOMMalloc). Before doing so, howev-
er, the objects in the region to be freed should be deinitialized by invoking the somUninit
method on them. This allows each object to free any memory that it may have allocated
without the programmer’s knowledge. (The somFree method also calls the somUninit
method.)

For C++ programmers with usage bindings, SOM recognizes the new operator, just as in
standard C++, using the form:

new <className>

For example:

obj = new Hello;

The new operator allocates enough space for an instance of <className>, creates a new,
initialized class instance, and returns a pointer to it. The new operator automatically creates the
class object for <className>, as well as its ancestor classes and metaclass, if needed.

3 – 73. Using SOM Classes in Client Programs

SOM objects created using the new operator should be freed using the delete operator, just as
for C++ objects:

delete obj;

When previously allocated space will be used to hold a new object, C++ programmers should
use the somRenew method, described below. C++ bindings do not provide a macro for this
purpose.

somNew and somRenew: C and C++ programmers, as well programmers using other
languages, can create instances of a class using the SOM methods somNew and somRenew,
invoked on the class object. As discussed and illustrated above for the C bindings, the class
object must first be created using the <className>NewClass procedure (or, perhaps, using
the somFindClass method — see the section “Using class objects,” to follow later in this
chapter). The somNew method invoked on the class object creates a new instance of the class
and returns a pointer to it. For instance, the following C example creates a new object of the
“Hello” class.

#include <hello.h>

main()

{

 SOMClass helloCls; /* a pointer to the Hello class */

 Hello obj; /* a pointer to an Hello instance */

 /* create the Hello class */

 helloCls = HelloNewClass(Hello_MajorVersion, Hello_MinorVersion);

 obj = _somNew(helloCls); /* create the Hello instance */

}

An object created using the somNew method should be freed by invoking the somFree method
on it after the client program is finished using the object.

The somRenew method invoked on the class object creates a new instance of a class using the
given space, rather than allocating new space for the object. The method converts the given
space into an instance of the class and returns a pointer to it. The argument to somRenew must
point to a block of storage large enough to hold the new instance. The method
somGetInstanceSize can be used to determine the amount of memory required. For example,
the following C++ code creates ten instances of the “Hello” class:

#include <hello.xh>

#include <somcls.xh>

main()

{

 SOMClass *helloCls; // a pointer to the Hello class

 Hello *objA[10]; // an array of Hello instance pointers

 unsigned char *buffer;

 int i;

 int size;

// create the Hello class object

helloCls = HelloNewClass(Hello_MajorVersion, Hello_MinorVersion);

// get the amount of space needed for a Hello instance:

size = helloCls–>somGetInstanceSize();

size = ((size+3)/4)*4; // round up to doubleword multiple

// allocate the total space needed for ten instances

buffer = SOMMalloc(10*size);

3 – 8 SOMobjects Base Toolkit Users Guide

// convert the space into ten separate Hello objects

for (i=0; i<10; i++)

 objA[i] = helloCls–>somRenew(buffer+i*size);

 ...

// Uninitialize the objects and free them

 for (i=0; i<10; i++)

 objA[i]–>somUninit();

 SOMFree(buffer);

}

The somNew and somRenew methods are useful for creating instances of a class when the
header file for the class is not included in the client program at compile time. (The name of the
class might be specified by user input, for example.) However, the <className>New macro
(for C) and the new operator (for C++) can only be used for classes whose header file is included
in the client program at compile time.

Objects created using the somRenew method should be freed by the client program that
allocated it, using the dual to whatever allocation approach was initially used. If the method
somFree is not appropriate (because the method somNew was not initially used), then, before
memory is freed, the object should be explicitly deinitialized by invoking the somUninit method
on it. (The somFree method calls the somUninit method, also.)

Invoking methods on objects
For C programmers with usage bindings: To invoke a method in C, use the macro:

 _<methodName> (receiver, args)

(that is, an underscore followed by the method name). Arguments to the macro are the receiver
of the method followed by all of the arguments to the method. For example:

_foo(obj, somGetGlobalEnvironment(), x, y)

invokes method “foo” on “obj” (the remaining arguments are arguments to the method “foo”).
This expression can be used anywhere that a standard function call can be used in C.

In C, calls to methods defined using IDL require at least two arguments — a pointer to the
receiving object (the object responding to the method) and a value of type (Environment *).
The Environment data structure is specified by CORBA, and is used to pass environmental
information between a caller and a called method. For example, it is used to return exceptions.
(For more information on how to supply and use the Environment structure, see the later
section entitled “Exceptions and error handling.”)

In the IDL definition of a method, by contrast, the receiver and the Environment pointer are not
listed as parameters to the method. (Unlike the receiver, the Environment pointer is consid-
ered a method parameter, even though it is never explicitly specified in IDL. For this reason, it is
called an implicit method parameter.) For example, if a method is defined in a .idl file with two
parameters, as in:

int foo (in char c, in float f);

then the method would be invoked with four arguments, as in:

intvar = _foo(obj, somGetGlobalEnvironment(), x, y);

where “obj” is the object responding to the method and “x” and “y” are the arguments corre-
sponding to “c” and “f”, above.

If the IDL specification of the method includes a context specification, then the method has an
additional (implicit) context parameter. Thus, when invoking the method, this argument must

3 – 93. Using SOM Classes in Client Programs

follow immediately after the Environment pointer argument. (None of the SOM-supplied
methods require context arguments.) The Environment and context method parameters are
prescribed by the CORBA standard.

If the IDL specification of the class that introduces the method includes the callstyle=oidl
modifier, then the (Environment *) and context arguments should not be supplied when
invoking the method. That is, the receiver of the method call is followed immediately by the
arguments to the method (if any). Some of the classes supplied in the SOMobjects Toolkit
(including SOMObject, SOMClass, and SOMClassMgr) are defined in this way, to ensure
compatibility with the previous release of SOM. The SOMobjects Developer Toolkit: Program-
mers Reference Manual specifies for each method whether these arguments are used.

If you use a C expression to compute the first argument to a method call (the receiver), you must
use an expression without side effects, because the first argument is evaluated twice by the
_<methodName> macro expansion. In particular, a somNew method call or a macro call of
<className>New can not be used as the first argument to a C method call, because doing so
would create two new class instances rather than one.

If a client program uses the bindings for two different classes that introduce or inherit two
different methods of the same name, then the _<methodName> macro described above (called
the short form) will not be provided by the bindings, because the macro would be ambiguous in
that circumstance. The following long form macro, however, is always provided by the usage
bindings for each class that supports the method:

 <className>_<methodName> (receiver, args)

For example, method “foo” supported by class “Bar” can be invoked as:

Bar_foo(obj, somGetGlobalEnvironment(), x, y) (in C)

where “obj” has type “Bar” and “x” and “y” are the arguments to method “foo”. A programmer will
usually know what type an object is expected to have. If this is not known, but the different
methods have the same signature, the method can be invoked using name-lookup resolution,
as described in the next section.

As a convenience, methods whose final argument is a va_list, such as:

void setMany(in short start, in short numArgs, in va_list ap);

can be invoked by specifying a variable number of arguments, as in:

_setMany(aVector, somGetGlobalEnvironment(), 2, 4, 20, 12, 32, 41);

This is the short form of the invocation macro. Thus, the variable-arguments form illustrated
above is only available in the absence of ambiguity. Alternatively, the long-form macro (which is
always available) requires a va_list, as suggested by the method definition. Thus, to use a
va_list argument, the method must be invoked as <className>_<methodName>, where
<className> is the name of a class that supports the method.

For example, assuming that class “Vector” supports the “setMany” method above, the following
C code constructs a variable of type va_list containing the arguments to “setMany” and invokes
the “setMany” method with this variable:

va_list start_ap, ap;

Vector aVector = VectorNew();

...

start_ap = ap = (char *) SOMMalloc(4 * sizeof(long));

va_arg(ap, long) = 20;

va_arg(ap, long) = 12;

va_arg(ap, long) = 32;

va_arg(ap, long) = 41;

Vector_setMany(aVector, somGetGlobalEnvironment(), 2, 4, start_ap);

3 – 10 SOMobjects Base Toolkit Users Guide

Note: In most cases, a C programmer may use either the short or the long form of a method
invocation macro interchangeably. However, only the long form complies with the CORBA

standard for C usage bindings. If you wish to write code that can be easily ported to other vendor
platforms that support the CORBA standard, use the long form exclusively. The long form is
always available for every method that a class supports. The short form is provided both as a
programming convenience and for source code compatibility with release 1 of SOM.

For C++ programmers with usage bindings: To invoke a method, use the standard C++ form
shown below:

obj–><methodName> (args)

where args are the arguments to the method.

For instance, the following example invokes method “foo” on “obj”:

obj–>foo(somGetGlobalEnvironment(), x, y)

All methods introduced by classes declared using IDL (except those having the SOM IDL
callstyle=oidl modifier) have at least one parameter — a value of type (Environment *). The
Environment data structure is used to pass environmental information between a caller and a
called method. For example, it is used to return exceptions. For more information on how to
supply and use the Environment structure, see the later section entitled “Exceptions and error
handling.”

The Environment pointer is an implicit parameter; in the IDL definition of a method, the
Environment pointer is not explicitly listed as a parameter to the method. For example, if a
method is defined in IDL with two explicit parameters, as in:

int foo (in char c, in float f);

then the method would be invoked from C++ bindings with three arguments, as in:

intvar = obj–>foo(somGetGlobalEnvironment(), x, y);

where “obj” is the object responding to the method and “x” and “y” are the arguments corre-
sponding to “c” and “f”, above.

If the IDL specification of the method includes a context specification, then the method has a
second implicit parameter, of type context, and the method must be invoked with an additional
context argument. This argument must follow immediately after the Environment pointer
argument. (No SOM-supplied methods require context arguments.) The Environment and
context method parameters are prescribed by the CORBA standard.

If the IDL specification of the class that introduces the method includes the callstyle=oidl
modifier, then the (Environment *) and context arguments should not be supplied when the
method is invoked. Some of the classes supplied in the SOMobjects Toolkit (including
SOMObject, SOMClass, and SOMClassMgr) are defined in this way, to ensure compatibility
with the previous release of SOM. The SOMobjects Developer Toolkit: Programmers Refer-
ence Manual specifies for each method whether these arguments are used.

As a convenience, methods whose final argument is a va_list, such as:

void setMany(in short start, in short numArgs, in va_list ap);

can be invoked either by specifying a variable number of arguments, as in:

aVector–>setMany(somGetGlobalEnvironment(), 2, 4, 20, 12, 32, 41);

or by specifying a va_list in place of the variable number of arguments. To invoke a method
using a va_list argument, the method must be invoked as <className>_<methodName>,
where <className> is the name of the class that introduces the method. For example, assum-

3 – 113. Using SOM Classes in Client Programs

ing that class “Vector” defines the “setMany” method above, the following C++ code constructs a
variable of type va_list containing the arguments to “setMany” and invokes the “setMany”
method with this variable as an argument:

va_list start_ap, ap;

Vector *aVector = new Vector;

...

start_ap = ap = (char *) SOMMalloc(4*sizeof(long));

va_arg(ap, long) = 20;

va_arg(ap, long) = 12;

va_arg(ap, long) = 32;

va_arg(ap, long) = 41;

aVector–>Vector_setMany(somGetGlobalEnvironment(), 2, 4, start_ap);

For non-C/C++ programmers: To invoke a static method (that is, a method declared when
defining an OIDL or IDL object interface) without using the C or C++ usage bindings, a program-
mer can use the somResolve procedure. The somResolve procedure takes as arguments a
pointer to the object on which the method is to be invoked and a method token for the desired
method. It returns a pointer to the method’s procedure (or raises a fatal error if the object does
not support the method). Depending on the language and system, it may be necessary to cast
this procedure pointer to the appropriate type; the way this is done is language-specific.

The method is then invoked by calling the procedure returned by somResolve (the means for
calling a procedure, given a pointer to it, is language-specific), passing the method’s receiver,
the Environment pointer (if necessary), the context argument (if necessary) and the remain-
der of the method’s arguments, if any. (See the section above for C programmers; the argu-
ments to a method procedure are the same as the arguments passed using the long form of
the C-language method-invocation macro for that method.)

Using somResolve requires the programmer to know where to find the method token for the
desired method. Method tokens are available from class objects that support the method (via
the method somGetMethodToken), or from a global data structure, called the ClassData
structure, corresponding to the class that introduces the method. In C and C++ programs with
access to the definitions for ClassData structures provided by usage bindings, the method
token for method methodName introduced by class className may be accessed by the
following expression:

<className>ClassData.<methodName>

For example, the method token for method “sayHello” introduced by class “Hello” is stored at
location HelloClassData.sayHello, for C and C++ programmers. The way method tokens are
accessed in other languages is language-specific.

As an example of using offset resolution to invoke methods from a programming language other
than C/C++, one would do the following to create an instance of a SOM Class X in Smalltalk:

1. Initialize the SOM run-time environment, if it has not previously been initialized, using
the somEnvironmentNew function.

2. If the class object for class X has not yet been created, use somResolve with
arguments SOMClassMgrObject (returned by somEnvironmentNew in step 1)
and the method token for the somFindClass method, to obtain a method procedure
pointer for the somFindClass method. Use the method procedure for
somFindClass to create the class object for class X: Call the procedure with
arguments SOMClassMgrObject, the result of calling the somIdFromString
function with argument “X”, and the major and minor version numbers for class X (or
zero). The procedure returns the class object for class X.

3 – 12 SOMobjects Base Toolkit Users Guide

3. Use somResolve with arguments representing the class object for X (returned by
somFindClass in step 2) and the method token for the somNew method, to obtain a
method procedure pointer for method somNew. (The somNew method is used to
create instances of class X.)

4. Call the method procedure for somNew (using the method procedure pointer
obtained in step 3) with the class object for X (returned by somFindClass in step 3)
as the argument. The procedure returns a new instance of class X.

In addition to somResolve, SOM also supplies the somClassResolve procedure. Instead of
an object, the somClassResolve procedure takes a class as its first argument, and then
selects a method procedure from the instance method table of the passed class. (The
somResolve procedure, by contrast, selects a method procedure from the instance method
table of the class of which the passed object is an instance.) The somClassResolve procedure
therefore supports casted method resolution. See the SOMobjects Developer Toolkit: Pro-
grammers Reference Manual for more information on somResolve and somClassResolve.

If the programmer does not know at compile time which class introduces the method to be
invoked, or if the programmer cannot directly access method tokens, then the procedure
somResolveByName can be used to obtain a method procedure using name-lookup resolu-
tion, as described in the next section.

If the signature of the method to be invoked is not known at compile time, but can be discovered
at run time, use somResolve or somResolveByName to get a pointer to the somDispatch
method procedure, then use it to invoke the specific method, as described below under “Method
name or signature not known at compile time.”

Using name-lookup method resolution
For C/C++ programmers: Offset resolution is the most efficient way to select the method
procedure appropriate to a given method call. Client programs can, however, invoke a method
using “name-lookup” resolution instead of offset resolution. The C and C++ bindings for method
invocation use offset resolution by default, but methods defined with the namelookup SOM IDL
modifier result in C bindings in which the short form invocation macro uses name-lookup
resolution instead. Also, for both C and C++ bindings, a special lookup_<methodName> macro
is defined.

Name-lookup resolution is appropriate in the case where a programmer knows at compile time
which arguments will be expected by a method (that is, its signature), but does not know the type
of the object on which the method will be invoked. For example, name-lookup resolution can be
used when two different classes introduce different methods of the same name and signature,
and it is not known which method should be invoked (because the type of the object is not known
at compile time).

Name-lookup resolution is also used to invoke dynamic methods (that is, methods that have
been added to a class’s interface at run time rather than being specified in the class’s IDL
specification). For more information on name-lookup method resolution, see the topic “Method
Resolution” in Chapter 4, “Implementing SOM Classes.”

For C: To invoke a method using name-lookup resolution, when using the C bindings for a
method that has been implemented with the namelookup modifier, use either of the following
macros:

 _<methodName> (receiver, args)

 lookup_<methodName> (receiver, args)

Thus, the short-form method invocation macro results in name-lookup resolution (rather than
offset resolution), when the method has been defined as a namelookup method. (The long
form of the macro for offset resolution is still available in the C usage bindings.) If the method
takes a variable number of arguments, then the first form shown above is used when supplying a
variable number of arguments, and the second form is used when supplying a va_list argument
in place of the variable number of arguments.

3 – 133. Using SOM Classes in Client Programs

For C++: To invoke a method using name-lookup resolution, when using the C++ bindings for a
method that has been defined with the namelookup modifier, use either of the following
macros:

 lookup_<methodName> (receiver, args)

 <className>_lookup_<methodName> (receiver, args)

If the method takes a variable number of arguments, then the first form shown above is used
when supplying a variable number of arguments, and the second form is used when supplying a
va_list argument in place of the variable number of arguments. Note that the offset-resolution
forms for invoking methods using the C++ bindings are also still available, even if the method has
been defined as a namelookup method.

For C/C++: To invoke a method using name-lookup resolution, when the method has not been
defined as a namelookup method:

� Use the somResolveByName procedure (described in the following section), or any of
the methods somLookupMethod, somFindMethod or somFindMethodOk to obtain a
pointer to the procedure that implements the desired method.

� Then, invoke the desired method by calling that procedure, passing the method’s intended
receiver, the Environment pointer (if needed), the context argument (if needed), and the
remainder of the method’s arguments, if any.

The somLookupMethod, somFindMethod and somFindMethodOK methods are invoked
on a class object (the class of the method receiver should be used), and take as an argument
the somId for the desired method (which can be obtained from the method’s name using the
somIdFromString function). For more information on these methods, see the SOMobjects
Developer Toolkit: Programmers Reference Manual.

Important Note: SOM provides many ways for a SOM user to acquire a pointer to a method
procedure. Once this is done, it becomes the user’s responsibility to make appropriate use of
this procedure.

� First, the procedure should only be used on objects for which this is appropriate —
otherwise, run-time errors are likely to result.

� Second, when the procedure is used, it is essential that the compiler be given correct
information concerning the signature of the method and the linkage required by the
method. (On many systems, there are different ways to pass method arguments, and
linkage information tells a compiler how to pass the arguments indicated by a method’s
signature).

SOM method procedures on OS/2 must be called with “system” linkage. On AIX, there is only
one linkage convention for procedure calls. While C and C++ provide standard ways to indicate a
method signature, the way to indicate linkage information depends on the specific compiler and
system. For each method declared using OIDL or IDL, the C and C++ usage bindings therefore
use conditional macros and a typedef to name a type that has the correct linkage convention.
This type name can then be used by programmers with access to the usage bindings for the
class that introduces the method whose procedure pointer is used. The type is named
somTD_<className>_<methodName>. This is illustrated in the following example, and fur-
ther details are provided in the section below, titled, “Obtaining a method’s procedure pointer.”

A name-lookup example

The following example shows the use of name-lookup by a SOM client programmer. Name-
lookup resolution is appropriate when a programmer knows that an object will respond to a
method of some given name, but does not know enough about the type of the object to use offset
method resolution. How can this happen? It normally happens when a programmer wants to
write generic code, using methods of the same name and signature that are applicable to

3 – 14 SOMobjects Base Toolkit Users Guide

different classes of objects, and yet these classes have no common ancestor that introduces
the method. This can easily occur in single-inheritance systems (such as Smalltalk and SOM
release 1) and can also happen in multiple-inheritance systems such as SOM release 2 —
when class hierarchies designed by different people are brought together for clients’ use.

If multiple inheritance is available, it is always possible to create a common class ancestor into
which methods of this kind can be migrated. A refactoring of this kind often implements a
semantically pleasing generalization that unifies common features of two previously unrelated
class hierarchies. This step is most practical, however, when it does not require the redefinition
or recompilation of current applications that use offset resolution. SOM is unique in that it allows
this.

However, such refactoring must redefine the classes that originally introduced the common
methods (so the methods can be inherited from the new “unifying” class instead). A client
programmer who simply wants to create an application may not control the implementations of
the classes. Thus, the use of name-lookup method resolution seems the best alternative for
programmers who do not want to define new classes, but simply to make use of available ones.

For example, assume the existence of two different SOM classes, “classX” and “classY”, whose
only common ancestor is SOMObject, and who both introduce a method named “reduce” that
accepts a string as an argument and returns a long. We assume that the classes were not
designed in conjunction with each other. As a result, it is unlikely that the “reduce” method was
defined with a namelookup modifier. The following figure illustrates the class hierarchy for this
example.

Denotes “is a subclass of”

 classX

SOMObject

classY

Following is a C++ generic procedure that uses name-lookup method resolution to invoke the
“reduce” method on its argument, which may be either of type “classX” or “classY”. Note that
there is no reason to include classY’s usage bindings, since the typedef provided for the
“reduce” method procedure in “classX” is sufficient for invoking the method procedure, indepen-
dently of whether the target object is of type “classX” or “classY”.

3 – 153. Using SOM Classes in Client Programs

#include <classX.xh> // use classX’s method proc typedef

// this procedure can be invoked on a target of type

// classX or classY.

long generic_reduce1(SOMObject *target, string arg)

{

 somTD_classX_reduce reduceProc = (somTD_classX_reduce)

somResolveByName(target, ”reduce”);

 return reduceProc(target, arg);

}

On the other hand, If the classes were designed in conjunction with each other, and the class
designer felt that programmers might want to write generic code appropriate to either class of
object, the namelookup modifier might have been used. This is a possibility in SOM release 2,
even with multiple inheritance, but it is much more likely that the class designer would use
multiple inheritance to introduce the reduce method in a sepatate class, and then use this other
class as a parent for both classX and classY (thereby allowing the use of offset resolution).

In any case, if the “reduce” method in “classX” were defined as a namelookup method, the
following code would be appropriate. Note that the name-lookup support provided by “classX”
usage bindings is still appropriate for use on targets that do not have type “classX”. As a result,
the “reduce” method introduced by “classY” need not have been defined as a namelookup
method.

#include <classX.xh> // use classX’s name–lookup support

// this procedure can be invoked on a target of type

// classX or classY.

long generic_reduce2(SOMObject *target, string arg)

{

 return lookup_reduce(target, arg);

}

For non-C/C++ programmers: Name-lookup resolution is useful for non-C/C++ programmers
when the type of an object on which a method must be invoked is not known at compile time
or when method tokens cannot be directly accessed by the programmer. To invoke a method
using name-lookup resolution when not using the C or C++ usage bindings, use the
somResolveByName procedure to acquire a procedure pointer. How the programmer indi-
cates the method arguments and the linkage convention in this case is compiler specific.

The somResolveByName procedure takes as arguments a pointer to the object on which the
method is to be invoked and the name of the method, as a string. It returns a pointer to the
method’s procedure (or NULL if the method is not supported by the object). The method can then
be invoked by calling the method procedure, passing the method’s receiver, the Environment
pointer (if necessary), the context argument (if necessary), and the rest of the method’s
arguments, if any. (See the section above for C programmers; the arguments to a method
procedure are the same as the arguments passed to the long-form C-language method-invoca-
tion macro for that method.)

As an example of invoking methods using name-lookup resolution using the procedure
somResolveByName, the following steps are used to create an instance of a SOM Class X in
Smalltalk:

1. Initialize the SOM run-time environment (if it is not already initialized) using the
somEnvironmentNew function.

2. If the class object for class X has not yet been created, use somResolveByName
with the arguments SOMClassMgrObject (returned by somEnvironmentNew in

3 – 16 SOMobjects Base Toolkit Users Guide

step 1) and the string “somFindClass”, to obtain a method procedure pointer for
the somFindClass method. Use the method procedure for somFindClass to create
the class object for class X: Call the method procedure with these four arguments:
SOMClassMgrObject; the variable holding class X’s somId (the result of calling the
somIdFromString function with argument ”X”); and the major and minor version
numbers for class X (or zero). The result is the class object for class X.

3. Use somResolveByName with arguments the class object for X (returned by
somFindClass in step 2) and the string “somNew”, to obtain a method procedure
pointer for method somNew. (This somNew method is used to create instances of a
class.)

4. Call the method procedure for somNew (using the method procedure pointer
obtained in step 3) with the class object for X (returned by somFindClass in step 3)
as the argument. The result is a new instance of class X. How the programmer
indicates the method arguments and the linkage convention is compiler-specific.

Obtaining a method’s procedure pointer

Method resolution is the process of obtaining a pointer to the procedure that implements a
particular method for a particular object at run time. The method is then invoked subsequently
by calling that procedure, passing the method’s intended receiver, the Environment pointer (if
needed), the context argument (if needed), and the method’s other arguments, if any. C and
C++ programmers may wish to obtain a pointer to a method’s procedure for efficient repeated
invocations.

Obtaining a pointer to a method’s procedure is achieved in one of two ways, depending on
whether the method is to be resolved using offset resolution or name-lookup resolution.
Obtaining a method’s procedure pointer via offset resolution is faster, but it requires that the
name of the class that introduces the method and the name of the method be known at compile
time. It also requires that the method be defined as part of that class’s interface in the IDL
specification of the class. (See the topic “Method Resolution” in Chapter 4, “Implementing SOM
Classes,” for more information on offset and name-lookup method resolution.)

Offset resolution

To obtain a pointer to a procedure using offset resolution, the C/C++ usage bindings provide the
SOM_Resolve and SOM_ResolveNoCheck macros. The usage bindings themselves use the
first of these, SOM_Resolve, for offset-resolution method calls. The difference in the two
macros is that the SOM_Resolve macro performs consistency checking on its arguments, but
the macro SOM_ResolveNoCheck, which is faster, does not. Both macros require the same
arguments:

SOM_Resolve(<receiver>, <className>, <methodName>)
SOM_ResolveNoCheck(<receiver>, <className>, <methodName>)

where the arguments are as follows:

receiver — The object to which the method will apply. It should be
specified as an expression without side effects.

className — The name of the class that introduces the method.

methodName — The name of the desired method.

These two names (className and methodName) must be given as tokens, rather than strings
or expressions. (For example, as Animal rather than “Animal”.) If the symbol SOM_TestOn is
defined and the symbol SOM_NoTest is not defined in the current compilation unit, then
SOM_Resolve verifies that receiver is an instance of className or some class derived from
className. If this test fails, an error message is output and execution is terminated.

3 – 173. Using SOM Classes in Client Programs

The SOM_Resolve and SOM_ResolveNoCheck macros use the procedure somResolve to
obtain the entry-point address of the desired method procedure (or raise a fatal error if
methodName is not introduced by className). This result can be directly applied to the method
arguments, or stored in a variable of generic procedure type (for example, somMethodPtr) and
retained for later method use. This second possibility would result in a loss of information,
however, for the reasons now given.

The SOM_Resolve or SOM_ResolveNoCheck macros are especially useful because they
cast the method procedure they obtain to the right type to allow the C or C++ compiler to call this
procedure with system linkage and with the appropriate arguments. This is why the result of
SOM_Resolve is immediately useful for calling the method procedure, and why storing the
result of SOM_Resolve in a variable of some “generic” procedure type results in a loss of
information. The correct type information can be regained, however, because the type used by
SOM_Resolve for casting the result of somResolve is available from C/C++ usage bindings
using the typedef name somTD_<className>_<methodName>. This type name describes a
pointer to a method procedure for methodName introduced by class className. If the final
argument of the method is a va_list, then the method procedure returned by SOM_Resolve or
SOM_ResolveNoCheck must be called with a va_list argument, and not a variable number of
arguments.

Below is a C example of using SOM_Resolve to obtain a method procedure pointer for method
“sayHello”, introduced by class “Hello”, and using it to invoke the method on “obj.” (Assume that
the only argument required by the “sayHello” method is the Environment pointer.)

somMethodProc *p;

SOMObject obj = HelloNew();

p = SOM_Resolve(obj, Hello, sayHello);

((somTD_Hello_sayHello)p) (obj, somGetGlobalEnvironment());

SOM_Resolve and SOM_ResolveNoCheck can only be used to obtain method procedures
for static methods (methods that have been declared in an IDL specification for a class) and not
methods that are added to a class at run time. See the SOMobjects Programmers Reference
Manual for more information and examples on SOM_Resolve and SOM_ResolveNoCheck.

Name-lookup method resolution

To obtain a pointer to a method’s procedure using name-lookup resolution, use the
somResolveByName procedure (described in the following section), or any of the
somLookupMethod, somFindMethod and somFindMethodOK methods. These methods
are invoked on a class object that supports the desired method, and they take an argument
specifying the a somId for the desired method (which can be obtained from the method’s name
using the somIdFromString function). For more information on these methods and for exam-
ples of their use, see the SOMobjects Developer Toolkit: Programmers Reference Manual.

Method name or signature not known at compile time
If the programmer does not know a method’s name at compile time (for example, it might be
specified by user input), then the method can be invoked in one of two ways, depending upon
whether its signature is known:

� Suppose the signature of the method is known at compile time (even though the method
name is not). In that case, when the name of the method becomes available at run time,
the somLookupMethod, somFindMethod or somFindMethodOk methods or the
somResolveByName procedure can be used to obtain a pointer to the method’s proce-
dure using name-lookup method resolution, as described in the preceding topics. That
method procedure can then be invoked, passing the method’s intended receiver, the
Environment pointer (if needed), the context argument (if needed), and the remainder of
the method’s arguments.

� If the method’s signature is unknown until run time, then dispatch-function resolution is
indicated, as described in the next topic.

3 – 18 SOMobjects Base Toolkit Users Guide

Dispatch-function method resolution

If the signature of the method is not known at compile time (and hence the method’s argument
list cannot be constructed until run time), then the method can be invoked at run time by (a)
placing the arguments in a variable of type va_list at run time and (b) either using the
somGetMethodData method followed by use of the somApply function, or by invoking the
somDispatch or somClassDispatch method. Using somApply is more efficient, since this is
what the somDispatch method does, but it requires two steps instead of one. In either case, the
result invokes a “stub” procedure called an apply stub, whose purpose is to remove the method
arguments from the va_list, and then pass them to the appropriate method procedure in the
way expected by that procedure. For more information on these methods and for examples of
their use, see the somApply function, and the somGetMethodData, somDispatch, and
somClassDispatch methods in the SOMobjects Programmers Reference Manual.

Accessing Attributes
In addition to methods, SOM objects can also have attributes. An attribute is an IDL shorthand
for declaring methods, and does not necessarily indicate the presence of any particular instance
data in an object of that type. Attribute methods are called “get” and “set” methods. For
example, if a class “Hello” declares an attribute called “msg”, then object variables of type
“Hello” will support the methods _get_msg and _set_msg to access or set the value of the
“msg” attribute. (Attributes that are declared as “readonly” have no “set” method, however.)

The “get” and “set” methods are invoked in the same way as other methods. For example, given
class “Hello” with attribute “msg” of type string, the following code segments set and get the
value of the “msg” attribute:

For C:

#include <hello.h>

Hello obj;

Environment *ev = somGetGlobalEnvironment();

obj = HelloNew();

__set_msg(obj, ev, ”Good Morning”);/*note:two leading underscores */

printf(”%s\n”, __get_msg(obj, ev));

For C++:

#include <hello.xh>

#include <stdio.h>

Hello *obj;

Environment *ev = somGetGlobalEnvironment();

obj = new Hello;

obj–>_set_msg(ev, ”Good Morning”);

printf(”%s\n”, obj–>_get_msg(ev));

Using class objects
Using a class object encompasses three aspects: getting the class of an object, creating a new
class object, or simply referring to a class object through the use of a pointer.

Getting the class of an object
To get the class that an object is an instance of, SOM provides a method called somGetClass.
The somGetClass method takes an object as its only argument and returns a pointer to the
class object of which it is an instance. For example, the following statements store in “myClass”
the class object of which “obj” is an instance.

myClass = _somGetClass(obj); (for C)

myClass = obj–>somGetClass(); (for C++)

3 – 193. Using SOM Classes in Client Programs

Getting the class of an object is useful for obtaining information about the object; in some cases,

such information cannot be obtained directly from the object, but only from its class. The section

below entitled “Getting information about a class” describes the methods that can be invoked on

a class object after it is obtained using somGetClass.

The somGetClass method can be overridden by a class to provide enhanced or alternative
semantics for its objects. Because it is usually important to respect the intended semantics of a
class of objects, the somGetClass method should normally be used to access the class of an
object.

In a few special cases, it is not possible to make a method call on an object in order to determine
its class (for example, see “Customizing method resolution” in Chapter 5, “SOM Customization
Features”). For such situations, SOM provides the SOM_GetClass macro. In general, the
somGetClass method and the SOM_GetClass macro may have different behavior (if
somGetClass has been overridden). This difference may be limited to side effects, but it is
possible for their results to differ as well. The SOM_GetClass macro should only be used when
absolutely necessary.

Creating a class object
A class object is created automatically the first time the <className>New macro (for C) or the
new operator (C++) is invoked to create an instance of that class. In other situations, however,
it may be necessary to create a class object explicitly, as this section describes.

Using <className>Renew or somRenew

It is sometimes necessary to create a class object before creating any instances of the class.
For example, creating instances using the <className>Renew macro or the somRenew
method requires knowing how large the created instance will be, so that memory can be
allocated for it. Getting this information requires creating the class object (see the example
under “Creating instances of a class” early in this chapter). As another example, a class object
must be explicitly created when a program does not use the SOM bindings for a class. Without
SOM bindings for a class, its instances must be created using somNew or somRenew, and
these methods require that the class object be created in advance.

Use the <className>NewClass procedure to create a class object :

� When using the C/C++ language bindings for the class, and

� When the name of the class is known at compile time.

Using <className>NewClass

The <className>NewClass procedure initializes the SOM run-time environment, if neces-
sary, creates the class object (unless it already exists), creates class objects for the ancestor
classes and metaclass of the class, if necessary, and returns a pointer to the newly created
class object. After its creation, the class object can be referenced in client code using the macro

_<className> (for C and C++ programs)

or the expression

<className>ClassData.classObject (for C and C++ programs).

The <className>NewClass procedure takes two arguments, the major version number and
minor version number of the class. These numbers are checked against the version numbers
built into the class library to determine if the class is compatible with the client’s expectations.
The class is compatible if it has the same major version number and the same or a higher minor
version number. If the class is not compatible, an error is raised. Major version numbers usually
only change when a significant enhancement or incompatible change is made to a class. Minor

3 – 20 SOMobjects Base Toolkit Users Guide

version numbers change when minor enhancements or fixes are made. Downward compatibili-
ty is usually maintained across changes in the minor version number. Zero can be used in place
of version numbers to bypass version number checking.

When using SOM bindings for a class, these bindings define constants representing the major
and minor version numbers of the class at the time the bindings were generated. These
constants are named <className>_MajorVersion and <className>_MinorVersion. For ex-
ample, the following procedure call:

AnimalNewClass(Animal_MajorVersion, Animal_MinorVersion);

creates the class object for class “Animal”. Thereafter, _Animal can be used to reference the
“Animal” class object.

The preceding technique for checking version numbers is not failsafe. For performance rea-
sons, the version numbers for a class are only checked when the class object is created, and not
when the class object or its instances are used. Thus, run-time errors may result when usage
bindings for a particular version of a class are used to invoke methods on objects created by an
earlier version of the class.

Using somFindClass or somFindClsInFile

To create a class object when not using the C/C++ language bindings for the class, or when the
class name is not known at compile time:

� First, initialize the SOM run-time environment by calling the somEnvironmentNew func-
tion (unless it is known that the SOM run-time environment has already been initialized).

� Then, use the somFindClass or somFindClsInFile method to create the class object.
(The class must already be defined in a dynamically linked library, or DLL.)

The somEnvironmentNew function initializes the SOM run-time environment. That is, it
creates the four primitive SOM objects (SOMClass, SOMObject, SOMClassMgr, and the
SOMClassMgrObject), and it initializes SOM global variables. The function takes no argu-
ments and returns a pointer to the SOMClassMgrObject.

Note: Although somEnvironmentNew must be called before using other SOM functions and
methods, explicitly calling somEnvironmentNew is usually not necessary when using the
C/C++ bindings, because the macros for <className>NewClass, <className>New, and
<className>Renew call it automatically, as does the new operator for C++. Calling
somEnvironmentNew repeatedly does no harm.

After the SOM run-time environment has been initialized, the methods somFindClass and
somFindClsInFile can be used to create a class object. These methods must be invoked on
the class manager, which is pointed to by the global variable SOMClassMgrObject. (It is also
returned as the result of somEnvironmentNew.)

The somFindClass method takes the following arguments:

classId — A somId identifying the name of the class to be created.
The somIdFromString function returns a classId given
the name of the class.

major version number — The expected major version number of the class.

minor version number — The expected minor version number of the class.

The version numbers are checked against the version numbers built into the class library to
determine if the class is compatible with the client’s expectations.

The somFindClass method dynamically loads the DLL containing the class’s implementa-
tion, if needed, creates the class object (unless it already exists) by invoking its

3 – 213. Using SOM Classes in Client Programs

<className>NewClass procedure, and returns a pointer to it. If the class could not be created,
somFindClass returns NULL. For example, the following C code fragment creates the class
“Hello” and stores a pointer to it in “myClass”:

SOMClassMgr cm = somEnvironmentNew();

somId classId = somIdFromString(”Hello”);

SOMClass myClass = _somFindClass(SOMClassMgrObject, classId,

 Hello_MajorVersion, Hello_MinorVersion);

. . .

SOMFree(classId);

The somFindClass method uses somLocateClassFile to get the name of the library file
containing the class. If the class was defined with a “dllname” class modifier, then
somLocateClassFile returns that file name; otherwise, it assumes that the class name is the
name of the library file. The somFindClsInFile method is similar to somFindClass, except that
it takes an additional (final) argument — the name of the library file containing the class. The
somFindClsInFile method is useful when a class is packaged in a DLL along with other classes
and the “dllname” class modifier has not been given in the class’s IDL specification.

Warning: On AIX and Windows, the somFindClass and somFindClsInFile methods should
not be used to create a class whose implementation is statically linked with the client program.
Instead, the class object should be created using the <className>NewClass procedure
provided by the class’s .h/.xh header file. Static linkage is not created by simply including usage
bindings in a program, but is implied by use of the offset-resolution invocation macros.

Referring to class objects

Saving a pointer as the class object is created: The <className>NewClass macro and the
somFindClass method, used to create class objects, both return a pointer to the newly created
class object. Hence, one way to obtain a pointer to a class object is to save the value returned by
<className>NewClass or somFindClass when the class object is created.

Getting a pointer after the class object is created: After a class object has been created,
client programs can also get a pointer to the class object from the class name. When the class
name is known at compile time and the client program is using the C or C++ language bindings,
the macro

_<className>

can be used to refer to the class object for <className>. Also, when the class name is known at
compile time and the client program is using the C or C++ language bindings, the expression

<className>ClassData.classObject

refers to the class object for <className>. For example, _Hello refers to the class object for
class “Hello” in C or C++ programs, and HelloClassData.classObject refers to the class
object for class “Hello.” in C or C++ programs.

Getting a pointer to the class object from an instance: If any instances of the class are
known to exist, a pointer to the class object can also be obtained by invoking the somGetClass
method on such an instance. (See “Getting the class of an object,” above.)

Getting a pointer in other situations: If the class name is not known until run time, or if the
client program is not using the C or C++ language bindings, and no instances of the class are
known to exist, then the somClassFromId method can be used to obtain a pointer to a class
object after the class object has been created. The somClassFromId method should be
invoked on the class manager, which is pointed to by the global variable SOMClassMgrObject.
The only argument to the method is a somId for the class name, which can be obtained using

3 – 22 SOMobjects Base Toolkit Users Guide

the somIdFromString function. The method somClassFromId returns a pointer to the class
object of the specified class. For example, the following C code:

SOMClassMgr cm = somEnvironmentNew();

somId classId = somIdFromString(”Hello”);

SOMClass myClass = _somClassFromId(SOMClassMgrObject,classId,

Hello_MajorVersion, Hello_MinorVersion);

SOMFree(classId);

stores in “myClass” a pointer to the class object for class “Hello” (or NULL, if the class cannot be
created).

Compiling and linking
This section describes how to compile and link C and C++ client programs. Compiling and linking
a client program with a SOM class is done in one of two ways, depending on how the class is
packaged.

If the class is not packaged as a library (that is, the client program has the implementation
source code for the class, as in the examples given in the SOM IDL tutorial), then the client
program can be compiled together with the class implementation file as follows. (This assumes
that the client program and the class are both implemented in the same language, C or C++. If
this is not the case, then each module must be compiled separately to produce an object file and
the resulting object files linked together to form an executable.) In the examples below, the
environment variable SOMBASE refers to the directory in which SOM has been installed. For
client program “main” and class “Hello”:

Under AIX, for C programmers:
> xlc –I. –I$SOMBASE/include main.c hello.c –L$SOMBASE/lib –lsomtk \

 –o main

Under AIX, for C++ programmers:
> xlC –I. –I$SOMBASE/include main.C hello.C –L$SOMBASE/lib –lsomtk \

 –o main

Under OS/2, for C programmers:
> set LIB=%SOMBASE%\lib;%LIB%

> icc –I. –I%SOMBASE%\include main.c hello.c somtk.lib

Under OS/2, for C++ programmers:
> set LIB=%SOMBASE%\lib;%LIB%

> icc –I. –I%SOMBASE%\include main.cpp hello.cpp somtk.lib

If the class is packaged as a class library, then the client program, “main”, is compiled as
above, except that the class implementation file is not part of the compilation. Instead, the
“import library” provided with the class library is used to resolve the symbolic references that
appear in “main”. For example, to compile the C client program “main.c” that uses class “Hello”:

Under AIX:
> xlc –I. –I$SOMBASE/include main.c –lc –L$SOMBASE/lib –lsomtk \

 –lhello –o main

Under OS/2:
> set LIB=%SOMBASE%\lib;%LIB%

> icc –I. –I%SOMBASE%\include main.c somtk.lib hello.lib

Both of these examples assume that the header files and the import library for the “Hello” class
reside in the “include” and “lib” directories where SOM has been installed. If this is not the case,
additional path information should be supplied for these files.

3 – 233. Using SOM Classes in Client Programs

3.3 Language-neutral Methods and Functions
This section describes methods, functions, and macros that client programs can use regardless
of the programming language in which they are written. In other words, these macros and
functions are not part of the C or C++ bindings.

Generating output

The following functions and methods are used to generate output, including descriptions of
SOM objects. They all produce their output using the character-output procedure held by the
global variable SOMOutCharRoutine. The default procedure for character output simply
writes the character to stdout, but it can be replaced to change the output destination of the
methods and functions below. (See Chapter 5 for more information on customizing SOM.)

somDumpSelf — (method) Writes a detailed description of an object, includ-
ing its class, its location, and its instance data. The receiver
of the method is the object to be dumped. An additional
argument is the “nesting level” for the description. [All lines
in the description will be indented by (2 * level) spaces.]

somPrintSelf — (method) Writes a brief description of an object, including
its class and location in memory. The receiver of the meth-
od is the object to be printed.

somPrintf — (function) SOM’s version of the C “printf” function. It gener-
ates character stream output via SOMOutCharRoutine. It
has the same interface as the C “printf” function.

somVprintf — (function) Represents the “vprint” form of somPrintf. Its
arguments are a formatting string and a va_list holding the
remaining arguments.

somPrefixLevel — (function) Generates (via somPrintf) spaces to prefix a
line at the indicated level. The return type is void. The
argument is an integer specifying the level. The number of
spaces generated is (2 * level).

somLPrintf — (function) Combines somPrefixLevel and somPrintf.
The first argument is the level of the description (as for
somPrefixLevel) and the remaining arguments are as for
somPrintf (or for the C “printf” function).

See the SOMobjects Developer Toolkit: Programmers Reference Manual for more information
on a specific function or method.

Getting information about a class

The following methods are used to obtain information about a class or to locate a particular class
object:

somCheckVersion — Checks a class for compatibility with the specified major
and minor version numbers. The receiver of the method is
the SOM class about which information is needed. Addi-
tional arguments are values of the major and minor version
numbers. The method returns TRUE if the class is compat-
ible, or FALSE otherwise.

somClassFromId — Finds the class object of an existing class when given its
somId, but without loading the class. The receiver of the

3 – 24 SOMobjects Base Toolkit Users Guide

method is the class manager (pointed to by the global
variable SOMClassMgrObject). The additional argument
is the class’s somId. The method returns a pointer to the
class (or NULL if the class does not exist).

somDescendedFrom — Tests whether one class is derived from another. The re-
ceiver of the method is the class to be tested, and the
potential ancestor class is the argument. The method re-
turns TRUE if the relationships exists, or FALSE otherwise.

somFindClass — Finds or creates the class object for a class, given the
class’s somId and its major and minor version numbers.
The receiver of the method is the class manager (pointed to
by the global variable SOMClassMgrObject). Additional
arguments are the class’s somId and the major and minor
version numbers. The method returns a pointer to the class
object, or NULL if the class could not be created.

somFindClsInFile — Finds or creates the class object for a class. This method is
similar to somFindClass, except the user also provides
the name of a file to be used for dynamic loading, if needed.
The receiver of the method is the class manager (pointed to
by the global variable SOMClassMgrObject). Additional
arguments are the class’s somId, the major and minor
version numbers, and the file name. The method returns a
pointer to the class object, or NULL if the class could not be
created.

somGetInstancePartSize — Obtains the size of the instance variables introduced by a
class. The receiver of the method is the class object. The
method returns the amount of space, in bytes, needed for
the instance variables.

somGetInstanceSize — Obtains the total size requirements for an instance of a
class. The receiver of the method is the class object. The
method returns the amount of space, in bytes, required for
the instance variables introduced by the class itself and by
all of its ancestor classes.

somGetName — Obtains the name of a class. The receiver of the method is
the class object. The method returns the class name.

somGetNumMethods — Obtains the number of methods available for a class. The
receiver of the method is the class object. The method
returns the total number of currently available methods
(static or otherwise, including inherited methods).

somGetNumStaticMethods
— Obtains the number of static methods available for a class.

(A static method is one declared in the class’s interface
specification [.idl] file.) The receiver of the method is the
class object. The method returns the total number of avail-
able static methods, including inherited ones.

somGetParent — Obtains a pointer to a class’s parent (base) class. The
receiver of the method is the class object. The method
returns a pointer to the class’s parent class object (unless
the receiver is SOMObject, for which it returns NULL).

3 – 253. Using SOM Classes in Client Programs

somGetParents — Obtains a list of the parent (base) classes of a specified
class. The receiver of the method is the class object. The
method returns a pointer to a linked list of the parent (base)
classes (unless the receiver is SOMObject, for which it
returns NULL).

somGetVersionNumbers — Obtains the major and minor version numbers of a class.
The return type is void, and the two arguments are pointers
to locations in memory where the method can store the
major and minor version numbers (of type long).

somSupportsMethod — Indicates whether instances of a given class support a
given method. The receiver of the somSupportsMethod
method is the class object. The argument is the somId for
the method in question. The somSupportsMethod meth-
od returns TRUE if the method is supported, or FALSE other-
wise.

See the SOMobjects Developer Toolkit: Programmers Reference Manual for more information
on a specific method.

Getting information about an object
The following methods and functions are used to obtain information about an object (instance)
or to determine whether a variable holds a valid SOM object.

Methods
somGetClass — Gets the class object of a specified object. The receiver of

the method is the object whose class is desired. The meth-
od returns a pointer to the object’s corresponding class
object.

somGetClassName — Obtains the class name of an object. The receiver of the
method is the object whose class name is desired. The
method returns a pointer to the name of the class of which
the specified object is an instance.

somGetSize — Obtains the size of an object. The receiver of the method is
the object. The method returns the amount of contiguous
space, in bytes, that is needed to hold the object itself (not
including any additional space that the object may be using
or managing outside of this area).

somIsA — Determines whether an object is an instance of a given
class or of one of its descendant classes. The receiver of
the method is the object to be tested. An additional argu-
ment is the name of the class to which the object will
be compared. This method returns TRUE if the object
is an instance of the specified class or if (unlike
somIsInstanceOf) it is an instance of any descendant
class of the given class; otherwise, the method returns
FALSE.

somIsInstanceOf — Determines whether an object is an instance of a specific
class (but not of any descendant class).The receiver of the
method is the object. The argument is the name of the class
to which the object will be compared. The method returns
TRUE if the object is an instance of the specified class, or
FALSE otherwise.

3 – 26 SOMobjects Base Toolkit Users Guide

somRespondsTo — Determines whether an object supports a given method.
The receiver of the method is the object. The argument is
the somId for the method in question. (A somId can be
obtained from a string by using the somIdFromString
function.) The somRespondsTo method returns TRUE if
the object supports the method, or FALSE otherwise.

Functions
somIsObj — Takes as its only argument an address (which may not be

valid). The function returns TRUE (1) if the address contains
a valid SOM object, or FALSE (0) otherwise. This function is
designed to be failsafe.

See the SOMobjects Developer Toolkit: Programmers Reference Manual for more information
on a specific method or function.

Debugging

The following macros are used to conditionally generate output for debugging. All output
generated by these macros is written using the replaceable character-output procedure pointed
to by the global variable SOMOutCharRoutine. The default procedure simply writes the
character to stdout, but it can be replaced to change the output destination of the methods and
functions below. (See Chapter 5 for more information on customizing SOM.)

Debugging output is produced or suppressed based on the settings of three global variables,
SOM_TraceLevel, SOM_WarnLevel, and SOM_AssertLevel:

� SOM_TraceLevel controls the behavior of the <className>MethodDebug macro;

� SOM_WarnLevel controls the behavior of the macros SOM_WarnMsg, SOM_TestC,
and SOM_Expect; and

� SOM_AssertLevel controls the behavior of the SOM_Assert macro.

Available macros for generating debugging output are as follows:

<className>MethodDebug
— (macro for C and C++ programmers using the SOM lan-

guage bindings for <className>)
The arguments to this macro are a class name and a meth-
od name. If the SOM_TraceLevel global variable has a
nonzero value, the <className>MethodDebug macro
produces a message each time the specified method (as
defined by the specified class) is executed. This macro is
typically used within the procedure that implements the
specified method. (The SOM Compiler automatically gen-
erates calls to the <className>MethodDebug macro
within the implementation template files it produces.) To
suppress method tracing for all methods of a class, put the
following statement in the implementation file after includ-
ing the header file for the class:
#define <className>MethodDebug(c,m) \

 SOM_NoTrace(c,m)

This can yield a slight performance improvement. The
SOMMTraced metaclass, discussed below, provides a
more extensive tracing facility that includes method param-
eters and returned values.

3 – 273. Using SOM Classes in Client Programs

SOM_TestC — The SOM_TestC macro takes as an argument a boolean
expression. If the boolean expression is TRUE (nonzero)
and SOM_AssertLevel is greater than zero, then an in-
formational message is output. If the expression is FALSE

(zero) and SOM_WarnLevel is greater than zero, a warn-
ing message is produced.

SOM_WarnMsg — The SOM_WarnMsg macro takes as an argument a char-
acter string. If the value of SOM_WarnLevel is greater
than zero, the specified message is output.

SOM_Assert — The SOM_Assert macro takes as arguments a boolean
expression and an error code (an integer). If the boolean
expression is TRUE (nonzero) and SOM_AssertLevel is
greater than zero, then an informational message is output.
If the expression is FALSE (zero), and the error code indi-
cates a warning-level error and SOM_WarnLevel is great-
er than zero, then a warning message is output. If the
expression is FALSE and the error code indicates a fatal
error, then an error message is produced and the process is
terminated.

SOM_Expect — The SOM_Expect macro takes as an argument a boolean
expression. If the boolean expression is FALSE (zero) and
SOM_WarnLevel is set to be greater than zero, then a
warning message is output. If condition is TRUE and
SOM_AssertLevel is set to be greater than zero, then an
informational message is output.

See the SOMobjects Developer Toolkit: Programmers Reference Manual for more information
on a specific macro.

The somDumpSelf and somPrintSelf methods can be useful in testing and debugging. The
somPrintSelf method produces a brief description of an object, and the somDumpSelf meth-
od produces a more detailed description. See the SOMobjects Developer Toolkit: Programmers
Reference Manual for more information.

Checking the validity of method calls

The C and C++ language bindings include code to check the validity of method calls at run time.
If a validity check fails, the SOM_Error macro ends the process. (SOM_Error is described
below.) To enable method-call validity checking, place the following directive in the client
program prior to any #include directives for SOM header files:

#define SOM_TestOn

Alternatively, the –DSOM_TestOn option can be used when compiling the client program to
enable method-call validity checking.

3 – 28 SOMobjects Base Toolkit Users Guide

Exceptions and error handling
In the classes provided in the SOM run-time library (that is, SOMClass, SOMObject, and
SOMClassMgr), error handling is performed by a user-replaceable procedure, pointed to by the
global variable SOMError, that produces an error message and an error code and, if appropri-
ate, ends the process where the error occurred. (Chapter 5 describes how to customize the
error handling procedure.)

Each error is assigned a unique integer error code. Errors are grouped into three categories,
based on the last digit of the error code:

SOM_Ignore — This category of error represents an informational event.
The event is considered normal and can be ignored or
logged at the user’s discretion. Error codes having a last
digit of 2 belong to this category.

SOM_Warn — This category of error represents an unusual condition that
is not a normal event, but is not severe enough to require
program termination. Error codes having a last digit of 1
belong to this category.

SOM_Fatal — This category of error represents a condition that should
not occur or that would result in loss of system integrity if
processing were allowed to continue. In the default error
handling procedure, these errors cause the termination of
the process in which they occur. Error codes having a last
digit of 9 belong to this category.

The various codes for all errors detected by SOM are listed in Appendix A, “Customer Support
and Error Codes.”

When errors are encountered in client programs or user defined-classes, the following two mac-
ros can be used to invoke the error-handling procedure:

SOM_Error — The SOM_Error macro takes an error code as its only
argument and invokes the SOM error handling procedure
(pointed to by the global variable SOMError) to handle the
error. The default error handling procedure prints a mes-
sage that includes the error code, the name of the source
file, and the line number where the macro was invoked. If
the last digit of the error code indicates a serious error (of
category SOM_Fatal), the process causing the error is
terminated. (Chapter 5 describes how to customize the
error handling procedure.)

SOM_Test — The SOM_Test macro takes a boolean expression as an
argument. If the expression is TRUE (nonzero) and the
SOM_AssertLevel is greater than zero, then an informa-
tional message is output. If the expression is FALSE (zero),
an error message is produced and the program is termi-
nated.

See the SOMobjects Developer Toolkit: Programmers Reference Manual for more information
on a specific macro.

Other classes provided by the SOMobjects Toolkit (including those in the Persistence, Replica-
tion, DSOM, and Interface Repository frameworks, and the utility classes and metaclasses)
handle errors differently. Rather than invoking SOMError with an error code, their methods
return exceptions via the (Environment *) inout parameter required by these methods. The
following sections describe the exception declarations, the standard exceptions, and how to set
and get exception information in an Environment structure.

3 – 293. Using SOM Classes in Client Programs

Exception declarations
As discussed in Chapter 4 in the section entitled “SOM Interface Definition Language,” a

method may be declared to return zero or more exceptions. IDL exceptions are implemented by
simply passing back error information after a method call, as opposed to the “catch/throw”
model where an exception is implemented by a long jump or signal. Associated with each type of
exception is a name, and optionally, a struct-like data structure for holding error information. A
method declares the types of exceptions it may return in a raises expression.

Below is an example IDL declaration of a 	��������� exception, which may be “raised” by a

“checkFlag” method, as part of a “MyObject” interface:

interface MyObject {

 exception BAD_FLAG { long ErrCode; char Reason[80]; };

 void checkFlag(in unsigned long flag) raises(BAD_FLAG);

};

An exception structure contains whatever information is necessary to help the caller understand

the nature of the error. The exception declaration can be treated like a struct definition: i.e.,
whatever you can access in an IDL struct, you can access in an exception declaration.
Alternatively, the structure can be empty, whereby the exception is just identified by its name.

The SOM Compiler will map the exception declaration in the above example to the following C

language constructs:

typedef struct BAD_FLAG {

 long ErrCode;

 char Reason[80];

} BAD_FLAG;

#define ex_BAD_FLAG ”MyObject::BAD_FLAG”

When an exception is detected, the “checkFlag” method must call SOMMalloc to allocate a

“BAD_FLAG” structure, initialize it with the appropriate error information, and make a call to
somSetException (see “Setting an exception value,” below) to record the exception value in
the Environment structure passed in the method call. The caller, after invoking “checkFlag”,
can check the Environment structure that was passed to the method to see if there was an
exception, and if so, extract the exception value from the Environment (see “Getting an
exception value,” below.)

Standard exceptions
In addition to user-defined exceptions (those defined explicitly in an IDL file), there are several

predefined exceptions for system run-time errors. A system exception can be returned on any
method call. (That is, they are implicitly declared for every method whose class uses IDL call
style, and they do not appear in any raises expressions.) The standard exceptions are listed in
Table 2 of Section 4.5, “SOM Interface Definition Language”. Most of the predefined system
exceptions pertain to Object Request Broker errors. Consequently, these types of exceptions
are most likely to occur in DSOM applications (Chapter 6).

Each of the standard exceptions has the same structure: an error code (to designate the
subcategory of the exception) and a completion status code. For example, the NO_MEMORY
standard exception has the following definition:

enum completion_status {YES, NO, MAYBE};

exception NO_MEMORY { unsigned long minor;

 completion_status completed; };

The completion status value indicates whether the method was never initiated (NO), completed

execution prior to the exception (YES), or the completion status is indeterminate (MAYBE).

3 – 30 SOMobjects Base Toolkit Users Guide

Since all the standard exceptions have the same structure, file “somcorba.h” (included by
“som.h”) defines a generic StExcep typedef which can be used instead of the specific typedefs:

typedef struct StExcep {

 unsigned long minor;

 completion_status completed;

} StExcep;

The standard exceptions are defined in an IDL module called StExcep, in the file named

“stexcep.idl”, and the C definitions can be found in “stexcep.h”.

The Environment

The Environment is a data structure that contains environmental information that can be

passed between a caller and a called object when a method is executed. For example, it is used
to pass information about the user id of a client, to return exception data to the client following a
method call, and so on.

A pointer to an Environment variable is passed as an argument to method calls (unless the

method’s class has the callstyle=oidl SOM IDL modifier). The Environment typedef is defined
in “som.h”, and an instance of the structure is allocated by the caller in any reasonable way:
on the stack (by declaring a local variable and initializing it using the macro
SOM_InitEnvironment), dynamically (using the SOM_CreateLocalEnvironment macro), or
by calling the somGetGlobalEnvironment function to allocate an Environment structure to
be shared by objects running in the same thread.

For class libraries that use callstyle=oidl, there is no explicit Environment parameter. For

these libraries, exception information may be passed using the per-thread Environment struc-
ture returned by the somGetGlobalEnvironment procedure.

Setting an exception value
To set an exception value in the caller’s Environment structure, a method implementation

makes a call to the somSetException procedure:

void somSetException (Environment *ev,
exception_type major,

 string exception_name,
void *params);

where “ev” is a pointer to the Environment structure passed to the method, “major” is an

exception_type, “exception_name” is the string name of the exception (usually the constant
defined by the IDL compiler, for example, ex_BAD_FLAG), and “params” is a pointer to an
(initialized) exception structure which must be allocated by SOMMalloc:

typedef enum exception_type {

 NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION

} exception_type;

It is important to reiterate that somSetException expects the params argument to be a

pointer to a structure that was allocated using SOMMalloc. When somSetException is called,
the client passes ownership of the exception structure to the SOM run-time environment. The
SOM run-time environment will free the structure when the exception is reset (that is, upon the
next call to somSetException), or when the somExceptionFree procedure is called.

Note that somSetException simply sets the exception value; it performs no exit processing. If

there are multiple calls to somSetException before the method returns, the caller will only see
the last exception value.

3 – 313. Using SOM Classes in Client Programs

Getting an exception value
After a method returns, the calling client program can look at the Environment structure to see

if there was an exception. The Environment struct is mostly opaque, except for an exception
type field named _major:

typedef struct Environment {

 exception_type _major;

 ...

} Environment;

If ev._major != NO_EXCEPTION, there was an exception returned by the call. The caller can

retrieve the exception name and value (passed as parameters in the somSetException call)
from an Environment struct via the following functions:

string somExceptionId (Environment *ev);
somToken somExceptionValue (Environment *ev);

The somExceptionId function returns the exception name, if any, as a string. The function

somExceptionValue returns a pointer to the value of the exception, if any, contained in the
exception structure. If NULL is passed as the Environment pointer in either of the above calls,
an implicit call is made to somGetGlobalEnvironment.

The somExceptionFree procedure will free any memory in the Environment associated with

the last exception:

void somExceptionFree (Environment *ev);

Note: File “somcorba.h” (included by “som.h”) provides the following aliases for strict com-

pliance with CORBA programming interfaces:

#ifdef CORBA_FUNCTION_NAMES

#define exception_id somExceptionId

#define exception_value somExceptionValue

#define exception_free somExceptionFree

#endif /* CORBA_FUNCTION_NAMES */

Example
Let us define an IDL interface for a “MyObject” object, which declares a “BAD_FLAG” excep-

tion, which can be raised by the “checkFlag”method, in a file called “myobject.idl”:

interface MyObject {

 exception BAD_FLAG { long ErrCode; char Reason[80]; };

 void checkFlag(in unsigned long flag) raises(BAD_FLAG);

};

The SOM IDL compiler will map the exception to the following C language constructs, in

myobject.h:

typedef struct BAD_FLAG {

 long ErrCode;

 char Reason[80];

} BAD_FLAG;

#define ex_BAD_FLAG ”MyObject::BAD_FLAG”

A client program that invokes the “checkFlag” method might contain the following error handling

code. (Note: The error checking code below lies in the user-written procedure, “ErrorCheck,” so
the code need not be replicated through the program.)

3 – 32 SOMobjects Base Toolkit Users Guide

#include ”som.h”

#include ”myobject.h”

boolean ErrorCheck(Environment *ev); /* prototype */

main()

{

 unsigned long flag;

 Environment ev;

 MyObject myobj;

 char *exId;

 BAD_FLAG *badFlag;

 StExcep *stExValue;

 myobj = MyObjectNew();

 flag = 0x01L;

 SOM_InitEnvironment(&ev);

 /* invoke the checkFlag method, passing the Environment param */

 _checkFlag(myobj, &ev, flag);

 /* check for exception */

 if (ErrorCheck(&ev))

 {

 /* ... */

 somExceptionFree(&ev); /* free the exception memory */

 }

 /* ... */

}

/* error checking procedure */

boolean ErrorCheck(Environment *ev)

{

 switch (ev._major)

 {

 case SYSTEM_EXCEPTION:

 /* get system exception id and value */

 exId = somExceptionId(ev);

 stExValue = somExceptionValue(ev);

 /* ... */

 return(TRUE);

 case USER_EXCEPTION:

 /* get user–defined exception id and value */

 exId = somExceptionId(ev);

 if (strcmp(exId, ex_BAD_FLAG) == 0)

 {

 badFlag = (BAD_FLAG *) somExceptionValue(ev);

 /* ... */

 }

 /* ... */

 return(TRUE);

 case NO_EXCEPTION:

 return(FALSE);

 }

}

3 – 333. Using SOM Classes in Client Programs

The implementation of the “checkFlag” method might contain the following error-handling code:

#include ”som.h”

#include ”myobject.h”

void checkFlag(MyObject somSelf, Environment *ev,

 unsigned long flag)

{

 BAD_FLAG *badFlag;

 /* ... */

 if (/* flag is invalid */)

 {

 badFlag = (BAD_FLAG *) SOMMalloc(sizeof(BAD_FLAG));

 badFlag–>ErrCode = /* bad flag code */;

 strcpy(badFlag–>Reason, ”bad flag was passed”);

 somSetException(ev, USER_EXCEPTION,

 ex_BAD_FLAG, (void *)badFlag);

 return;

 }

 /* ... */

}

Memory management
The memory management functions used by SOM are a subset of those supplied in the ANSI C
standard library. They have the same calling interface and the same return types as their ANSI C
equivalents, but include supplemental error checking. Errors detected by these functions are
passed to SOMError (described in the previous section). The correspondence between SOM
memory management functions and their ANSI C standard library equivalents is shown below:

Equivalent ANSI C
SOM Function Library Routine

SOMMalloc malloc
SOMCalloc calloc
SOMRealloc realloc
SOMFree free

SOMMalloc, SOMCalloc, SOMRealloc, and SOMFree are actually global variables that point
to the SOM memory management functions (rather than being the names of the functions
themselves), so that users can replace them with their own memory management functions if
desired. (See chapter 5 for a discussion of replacing the SOM memory management functions.)

SOM manipulations using somId’s
A somId is similar to a number that represents a zero-terminated string. A somId is used in
SOM to identify method names, class names, and so forth. For example, many of the SOM
methods that take a method or class name as a parameter require a value of type somId rather
than string. All SOM manipulations using somIds are case insensitive, although the original
case of the string is preserved.

During its first use with any of the following functions, a somId is automatically converted to an
internal representation (registered). Because the representation of a somId changes, a special
SOM type (somId) is provided for this purpose. Names and the corresponding somId can be
declared at compile time, as follows:

string example = ”exampleMethodName”;

somId exampleId = &example;

or a somId can be generated at run time, as follows:

somId myMethodId;

myMethodId = somIdFromString(”exampleMethodName”);

3 – 34 SOMobjects Base Toolkit Users Guide

SOM provides the following functions that generate or use a somId:

somIdFromString — Finds the somId that corresponds to a string. The method
takes a string as its argument, and returns a value of type
somId that represents the string. The returned somId
must later be freed using SOMFree.

somStringFromId — Obtains the string that corresponds to a somId. The func-
tion takes a somId as its argument and returns the string
that the somId represents.

somCompareIds — Determines whether two somId values are the same (that
is, represent the same string). This function takes two
somId values as arguments. It returns TRUE (1) if the
somIds represent the same string, or FALSE (0) other-
wise.

somCheckId — Determines whether SOM already knows a somId. The
function takes a somId as its argument. It verifies whether
the somId is registered and in normal form, registers it if
necessary, and returns the input somId.

somRegisterId — The same as somCheckId, except it returns TRUE (1) if
this is the first time the somId has been registered, or
FALSE (0) otherwise.

somUniqueKey — Finds the unique key for a somId. The function takes a
somId identifier as its argument, and returns the unique
key for the somId — a number that uniquely represents the
string that the somId represents. This key is the same as
the key for another somId if and only if the other somId
refers to the same string as the input somId.

somTotalRegIds — Finds the total number of somIds that have been regis-
tered, as an unsigned long. This function is used to deter-
mine an appropriate argument to somSetExpectedIds,
below, in later executions of the program. The function
takes no input arguments.

somSetExpectedIds — Indicates how many unique somIds SOM can expect to
use during program execution, which, if accurate, can im-
prove the space and time utilization of the program slightly.
This routine must be called before the SOM run-time
environment is initialized (that is, before the function
somEnvironmentNew is invoked and before any objects
are created). This is the only SOM function that can be
invoked before the SOM run-time environment is initial-
ized. The input argument is an unsigned long. The func-
tion has no return value.

somBeginPersistentIds and somEndPersistentIds
— Delimit a time interval for the current thread during which it

is guaranteed that (a) any new somIds that are created will
refer only to static strings and (b) these strings will not be
subsequently modified or freed. These functions are useful
because somIds that are registered within a “persistent ID
interval” can be handled more efficiently.

See the SOMobjects Developer Toolkit: Programmers Reference Manual for more information
on a specific function.

