
.

Ref – 277Interface Repository FrameworkProgrammers Reference Manual

Interface Repository Framework Reference

Interface Repository Framework
Class Organization

 Contained Container

Denotes “is a subclass of”

Repository

 ConstantDef

ExceptionDef

 InterfaceDef

 ModuleDef

OperationDef

SOMObject

ParameterDef

TypeDef AttributeDef

AttributeDef class

Ref – 278 Interface Repository Framework SOMobjects Base Toolkit

AttributeDef Class

Description
The AttributeDef class provides the interface for attribute definitions in the Interface Reposito-
ry.

File Stem
attribdf

Base
Contained

Metaclass
SOMClass

Ancestor Classes
Contained, SOMObject

Types
enum AttributeMode {NORMAL, READONLY};

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
TypeCode type;
AttributeMode mode;

};

The describe method, inherited from Contained, returns an AttributeDescription structure in
the “value” member of the Description structure (defined in the Contained class).

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of the attribute.
The TypeCode returned by the “_get_” form of the type attribute is contained in the receiving
AttributeDef object, which retains ownership. Hence, the returned TypeCode should not be
freed. To obtain a separate copy, use the TypeCode_copy operation. The “_set_” form of the
attribute makes a private copy of the TypeCode you supply, to keep in the receiving object.
You retain ownership of the passed TypeCode.

mode (AttributeMode)
The AttributeMode of the attribute (NORMAL or READONLY).

New Methods
None.

Overriding Methods
somInit
somUninit
somDumpSelf
somDumpSelfInt
describe

ConstantDef class

Ref – 279Interface Repository FrameworkProgrammers Reference Manual

ConstantDef Class

Description
The ConstantDef class provides the interface for constant definitions in the Interface Reposi-
tory.

File Stem
constdef

Base
Contained

Metaclass
SOMClass

Ancestor Classes
Contained, SOMObject

Types
struct ConstantDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
TypeCode type;
any value;

};

The describe method, inherited from Contained, returns a ConstantDescription structure in
the “value” member of the Description structure (defined in the Contained class).

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of constant.
The TypeCode returned by the “_get_” form of the type attribute is contained in the receiving
ConstantDef object, which retains ownership. Hence, the returned TypeCode should not
be freed. To obtain a separate copy, use the TypeCode_copy operation. The “_set_” form of
the attribute makes a private copy of the TypeCode you supply, to keep in the receiving
object. You retain ownership of the passed TypeCode.

value (any)
The value of the constant.

New Methods
None.

Overriding Methods
somInit
somUninit
somDumpSelf
somDumpSelfInt
describe

Contained class

Ref – 280 Interface Repository Framework SOMobjects Base Toolkit

Contained Class

Description
The Contained class is the most generic form of interface for objects in SOM’s CORBA-com-
pliant Interface Repository (IR). All objects contained in the IR inherit this interface.

File Stem
containd

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

Types
 typedef string RepositoryId;
 struct Description {
 Identifier name;
 any value;
 };

Attributes
All attributes of the Contained class provide access to information kept within the receiving
object. The “_get_” form of the attribute returns a memory reference that is only valid as long as
the receiving object has not been freed (using _somFree). The “_set_” form of the attribute
makes a (deep) copy of your data and places it in the receiving object. You retain ownership of all
memory references passed using the “_set_” attributes.

Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

name (Identifier)
A simple name that identifies the Contained object within its containment hierarchy.
The name may not be unique outside of the containment hierarchy; thus it may require
qualification by ModuleDef name and/or InterfaceDef name.

id (RepositoryId)
The value of the “id” field of the Contained object.
This is a string that uniquely identifies any object in the IR; thus it needs no qualification.
Note that RepositoryIds have no relationship to the SOM type somId.

defined_in (RepositoryId)
The value of the “defined_in” field of the Contained object.
This ID uniquely identifies the container where the Contained object is defined.
Objects without global scope that do not appear within any other object are, by default,
placed in the Repository object.

somModifiers (sequence<somModifier>)
The somModifiers attribute is a sequence containing all modifiers associated with the

Contained class

Ref – 281Interface Repository FrameworkProgrammers Reference Manual

object in the “implementation” section of the SOM IDL file where the receiving object is
defined. Note: This attribute is a SOM-unique extension of the Interface Repository; it is not
stipulated by the CORBA specification.

New Methods
within
describe

Overriding Methods
somFree
somInit
somUninit
somDumpSelf
somDumpSelfInt

Contained class

Ref – 282 Interface Repository Framework SOMobjects Base Toolkit

describe Method

Purpose
Returns a structure containing information defined in the IDL specification that corresponds to a
specified Contained object in the Interface Repository.

IDL Syntax
Description describe ();

Description
The describe method returns a structure containing information defined in the IDL specification
of a Contained object. The specified object represents a component of an IDL interface (class)
definition maintained within the Interface Repository.

When finished using the information in the returned Description structure, the client code must
release the storage allocated for it. To free the associated storage, use a call similar to this:

if (desc.value._value)
 SOMFree (desc.value._value);

Caution: The describe method returns pointers to elements within objects (for example,
name). Thus, the somFree method should not be used to release any of these objects while the
describe information is still needed.

Parameters
receiver A pointer to the Contained object in the Interface Repository for which a

Description is needed.

ev A pointer to the Environment structure for the caller.

Return Value
The describe method returns a structure of type Description containing information defined in
the IDL specification of the receiving object.

The “name” field of the Description is the name of the type of description. The “name” values
are from the following set:
 {“ModuleDescription”, “InterfaceDescription”, “AttributeDescription”, “OperationDescription”,
 “ParameterDescription”, “TypeDescription”, “ConstantDescription”, “ExceptionDescription”}

The “value” field is a structure of type any whose “_value” field is a pointer to a structure of the
type named by the “name” field of the Description. This structure provides all of the information
contained in the IDL specification of the receiver. For example, if the describe method is
invoked on an object of type AttributeDef, the “name” field of the returned Description will
contain the identifier “AttributeDescription” and the “value” field will contain an any structure
whose “_value” field is a pointer to an AttributeDescription structure.

Example
Here is a code fragment written in C that uses the describe method:

#include <containd.h>
#include <attribdf.h>
#include <somtc.h>

. . .

AttributeDef attr; /* An AttributeDef object (also a Contained) */
Description desc; /* .value field will be an AttributeDescription */
AttributeDescription *ad;
Environment *ev;

. . .

Contained class

Ref – 283Interface Repository FrameworkProgrammers Reference Manual

desc = Contained_describe (attr, ev);
ad = (AttributeDescription *) desc.value._value;
printf (”Attribute name: %s, defined in: %s\n”,
 ad–>name, ad–>defined_in);
printf (”Attribute type: ”);
TypeCode_print (ad–>type, ev);
printf (”Attribute mode: %s\n”, ad–>mode == AttributeDef_READONLY ?
 ”READONLY” : ”NORMAL”);
SOMFree (desc.value._value); /* Finished with describe output */
SOMObject_somFree (attr); /* Finished with AttributeDef object */

Original Class
Contained

Related Information
Methods: within

Contained class

Ref – 284 Interface Repository Framework SOMobjects Base Toolkit

within Method

Purpose
Returns a list of objects (in the Interface Repository) that contain a specified Contained object.

IDL Syntax
sequence<Container> within ();

Description
The within method returns a sequence of objects within the Interface Repository that contain
the specified Contained object. If the receiving object is an InterfaceDef or ModuleDef, it can
only be contained by the object that defines it. Other objects can be contained by objects that
define or inherit them.

If the object is global in scope, the sequence returned by within will have its _length field set to
zero.

When finished using the sequence returned by this method, the client code is responsible for
releasing each of the Containers in the sequence and freeing the sequence buffer. In C, this
can be accomplished as follows:

if (seq._length) {
 long i;
 for (i=0; i<seq._length; i++)
 _somFree (seq._buffer[i]); /* Release each Container obj */
 SOMFree (seq._buffer); /* Release the sequence buffer */
}

Parameters
receiver A pointer to a Contained object for which containing objects are needed.

ev A pointer to the Environment structure for the caller.

Return Value
The within method returns a sequence of Container objects that contain the specified
Contained object.

Example
Here is a code fragment written in C that uses the within method:

#include <containd.h>
#include <containr.h>

. . .

Contained anObj;
Environment *ev;
sequence(Container) sc;
long i;
. . .

sc = Contained_within (anObj, ev);
printf (”%s is contained in (or inherited by):\n”,
 Contained__get_name (anObj, ev));
for (i=0; i<sc._length; i++) {
 printf (”\t%s\n”,
 Contained__get_name ((Contained) sc._buffer[i], ev));
 SOMObject_somFree (sc._buffer[i]);
}
if (sc._length)
 SOMFree (sc._buffer);

Contained class

Ref – 285Interface Repository FrameworkProgrammers Reference Manual

Original Class
Contained

Related Information
Methods: describe

Container class

Ref – 286 Interface Repository Framework SOMobjects Base Toolkit

Container Class

Description
The Container class is a generic interface that is common to all of the SOM CORBA-compliant
Interface Repository (IR) objects that can hold or contain other objects. A Container object can
be one of three types: ModuleDef, InterfaceDef, or OperationDef.

File Stem
containr

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

Types
 typedef string InterfaceName;
 // Valid values for InterfaceName are limited to the following set:
 // {“AttributeDef”, “ConstantDef”, “ExceptionDef”, “InterfaceDef”,
 // “ModuleDef”, “ParameterDef”, “OperationDef”, “TypeDef”, “all”}

 struct ContainerDescription {
 Contained *contained_object;
 Identifier name;
 any value;
 };

New Methods
contents
lookup_name
describe_contents

Overriding Methods
somInit
somUninit
somDumpSelf
somDumpSelfInt

Container class

Ref – 287Interface Repository FrameworkProgrammers Reference Manual

contents Method

Purpose
Returns a sequence indicating the objects contained within a specified Container object of the
Interface Repository.

IDL Syntax
sequence<Contained> contents (

in InterfaceName limit_type,
in boolean exclude_inherited);

Description
The contents method returns a list of objects contained by the specified Container object.
Each object represents a component of an IDL interface (class) definition maintained within the
Interface Repository.

The contents method is used to navigate through the hierarchy of objects within the Interface
Repository: Starting with the Repository object, this method can list all of the objects in the
Repository, then all of the objects within the ModuleDef objects, then all within the InterfaceDef
objects, and so on.

If the “limit_type” is set to “all”, objects of all interface types are returned; otherwise, only objects
of the requested interface type are returned. Valid values for InterfaceName are limited to the
following set:
 {“AttributeDef”, “ConstantDef”, “ExceptionDef”, InterfaceDef”,
 “ModuleDef”, “ParameterDef”, “OperationDef”, “TypeDef”, “all”}

If “exclude_inherited” is set to TRUE, any inherited objects will not be returned.

When finished using the sequence returned by this method, the client code is responsible for
releasing each of the objects in the sequence and freeing the sequence buffer. In C, this can be
accomplished as follows:

if (seq._length) {
 long i;
 for (i=0; i<seq._length; i++)
 SOMObject_somFree (seq._buffer[i]); /* Release each object */
 SOMFree (seq._buffer); /* Release the buffer */
}

Parameters
receiver A pointer to a Container object whose contained objects are needed.

ev A pointer to the Environment structure for the caller.

limit_type The name of one interface type (see the valid list above) or “all”, to specify what
type of objects the contents method should search for.

exclude_inherited
A boolean value: TRUE to exclude any inherited objects, or FALSE to include all
objects.

Return Value
The contents method returns a sequence of pointers to objects contained within the specified
Container object.

Container class

Ref – 288 Interface Repository Framework SOMobjects Base Toolkit

Example
Here is a code fragment written in C that uses the contents method:

#include <containr.h>

...

Container anObj;
Environment *ev;
sequence(Contained) sc;
long i;

...

sc = Container_contents (anObj, ev, ”all”, TRUE);
printf (”%s contains the following objects:\n”,
 SOMObject_somIsA (anObj, _Contained) ?
 Contained__get_name ((Contained) anObj, ev) :
 ”The Interface Repository”);
for (i=0; i<sc._length; i++) {
 printf (”\t%s\n”,
 Contained__get_name (sc._buffer[i], ev));
 SOMObject_somFree (sc._buffer[i]);
}
if (sc._length)
 SOMFree (sc._buffer);
else
 printf (”\t[none]\n”);

Original Class
Container

Related Information
Methods: lookup_name, describe_contents

Container class

Ref – 289Interface Repository FrameworkProgrammers Reference Manual

describe_contents Method

Purpose
Returns a sequence of descriptions of the objects contained within a specified Container object
of the Interface Repository.

IDL Syntax
sequence<ContainerDescription> describe_contents (

in InterfaceName limit_type,
in boolean exclude_inherited,
in long max_returned_objs);

Description
The describe_contents method combines the operations of the contents method and the
describe method. That is, for each object returned by the contents operation, the description of
the object is returned by invoking its describe operation. Each object represents a component
of an IDL interface (class) definition maintained within the Interface Repository.

If the “limit_type” is set to “all”, objects of all interface types are returned; otherwise, only objects
of the requested interface type are returned. Valid values for InterfaceName are limited to the
following set:
 {“AttributeDef”, “ConstantDef”, “ExceptionDef”, “InterfaceDef”,
 “ModuleDef”, “ParameterDef”, “OperationDef”, “TypeDef”, “all”}

If “exclude_inherited” is set to TRUE, any inherited objects will not be returned.

The “max_returned_objs” argument is used to limit the number of objects that can be returned. If
“max_returned_objs” is set to –1, the results for all contained objects will be returned.

When finished using the sequence returned by this method, the client code is responsible for
freeing the “value._value” field in each description, releasing each of the objects in the
sequence, and freeing the sequence buffer. In C, this can be accomplished as follows:

if (seq._length) {
 long i;
 for (i=0; i<seq._length; i++) {
 if (seq._buffer[i].value._value)
 /* Release each description */
 SOMFree (seq._buffer[i].value._value);
 SOMObject_somFree (seq._buffer[i].contained_object);
 /* Release each object */
 }
 SOMFree (seq._buffer); /* Release the buffer */
}

Parameters
receiver A pointer to a Container object whose contained object descriptions are

needed.

ev A pointer to the Environment structure for the caller.

limit_type The name of one interface type (see the valid list above) or “all”, to specify what
type of objects the describe_contents method should return.

exclude_inherited
A boolean value: TRUE to exclude any inherited objects, or FALSE to include all
objects.

max_returned_objs
A long integer indicating the maximum number of objects to be returned by the
method, or –1 to indicate no limit is set.

Container class

Ref – 290 Interface Repository Framework SOMobjects Base Toolkit

Return Value
The describe_contents method returns a sequence of ContainerDescription structures, one
for each object contained within the specified Container object. Each ContainerDescription
structure has a “contained_object” field, which points to the contained object, as well as “name”
and “value” fields, which are the result of the describe method.

Example
Here is a code fragment written in C that uses the describe_contents method:

#include <containr.h>

...

Container anObj;
Environment *ev;
sequence(ContainerDescription) sc;
long i;

...

sc = Container_describe_contents (anObj, ev, ”all”, FALSE, –1L);
printf (”%s defines or inherits the following objects:\n”,
 SOMObject_somIsA (anObj, _Contained) ?
 Contained__get_name ((Contained) anObj, ev) :
 ”The Interface Repository”);
for (i=0; i<sc._length; i++) {
 printf (”\t%s\n”, sc._buffer[i].name);
 if (sc._buffer[i].value._value)
 SOMFree (sc._buffer[i].value._value);
 SOMObject_somFree (sc._buffer[i].contained_object);
}
if (sc._length)
 SOMFree (sc._buffer);
else
 printf (”\t[none]\n”);

Original Class
Container

Related Information
Methods: contents, describe, lookup_name

Container class

Ref – 291Interface Repository FrameworkProgrammers Reference Manual

lookup_name Method

Purpose
Locates an object by name within a specified Container object of the Interface Repository, or
within objects contained in the Container object.

IDL Syntax
sequence<Contained> lookup_name (

in Identifier search_name,
in long levels_to_search,
in InterfaceName limit_type,
in boolean exclude_inherited);

Description
The lookup_name method locates an object by name within a specified Container object, or
within objects contained in the Container object. The “search_name” specifies the name of the
object to be found. Each object represents a component of an IDL interface (class) definition
maintained within the Interface Repository.

The “levels_to_search” argument controls whether the lookup is constrained to the specified
Container object or whether objects contained within the Container object are also searched.
The “levels_to_search” value should be –1 to search the Container and all contained objects; it
should be 1 to search only the Container itself.

If “limit_type” is set to “all”, the lookup locates an object of the specified name with any interface
type; otherwise, the search locates the object only if it has the designated interface type. Valid
values for InterfaceName are limited to the following set:
 {“AttributeDef”, “ConstantDef”, “ExceptionDef”, “InterfaceDef”,
 “ModuleDef”, “ParameterDef”, “OperationDef”, “TypeDef”, “all”}

If “exclude_inherited” is set to TRUE, any inherited objects will not be returned.

When finished using the sequence returned by this method, the client code is responsible for
releasing each of the objects in the sequence and freeing the sequence buffer. In C, this can be
accomplished as follows:

if (seq._length) {
 long i;
 for (i=0; i<seq._length; i++)
 SOMObject_somFree (seq._buffer[i]);
 /* Release each object */
 SOMFree (seq._buffer); /* Release the buffer */
 }

Parameters
receiver A pointer to a Container object in which to locate the object.

ev A pointer to the Environment structure for the caller.

search_name The name of the object to be located.

levels_to_search
A long having the value 1 or –1.

limit_type The name of one interface type (see the valid list above) or “all”, to specify what
type of object to search for.

exclude_inherited
A boolean value: TRUE to exclude an object when it is inherited, or FALSE to
return the object from wherever it is found.

Container class

Ref – 292 Interface Repository Framework SOMobjects Base Toolkit

Return Value
The lookup_name method returns a sequence of pointers to objects of the given name
contained within the specified Container object, or within objects contained in the Container
object.

Example
Here is a code fragment written in C that uses the lookup_name method:

#include <containr.h>
#include <containd.h>
#include <repostry.h>

...

Container repo;
Environment *ev;
sequence(Contained) sc;
long i;
Identifier nameToFind;

...

repo = (Container) RepositoryNew ();
sc = Container_lookup_name (repo, ev, nameToFind, –1, ”all”, TRUE);
printf (”%d object%s found:\n”,
 sc._length, sc._length == 1 ? ”” : ”s”);
for (i=0; i<sc._length; i++) {
 printf (”\t%s\n”,
 Contained__get_id (sc._buffer[i], ev));
 SOMObject_somFree (sc._buffer[i]);
}
if (sc._length)
 SOMFree (sc._buffer);

Original Class
Container

Related Information
Methods: contents, describe_contents

ExceptionDef class

Ref – 293Interface Repository FrameworkProgrammers Reference Manual

ExceptionDef Class

Description
The ExceptionDef class provides the interface for exception definitions in the Interface Repos-
itory.

File Stem
excptdef

Base
Contained

Metaclass
SOMClass

Ancestor Classes
Contained, SOMObject

Types
struct ExceptionDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
TypeCode type;

};

The describe method, inherited from Contained, returns an ExceptionDescription structure
in the “value” member of the Description structure (defined in the Contained class).

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of the exception.
The TypeCode returned by the “_get_” form of the type attribute is contained in the receiving
ExceptionDef object, which retains ownership. Hence, the returned TypeCode should not
be freed. To obtain a separate copy, use the TypeCode_copy operation. The “_set_” form of
the attribute makes a private copy of the TypeCode you supply, to keep in the receiving
object. You retain ownership of the passed TypeCode.

New Methods
None.

Overriding Methods
somInit
somUninit
somDumpSelf
somDumpSelfInt
describe

InterfaceDef class

Ref – 294 Interface Repository Framework SOMobjects Base Toolkit

InterfaceDef Class

Description
The InterfaceDef class provides the interface for interface definitions in the Interface Reposito-
ry.

File Stem
intfacdf

Base
Contained, Container

Metaclass
SOMClass

Ancestor Classes
Contained, Container, SOMObject

Types
struct FullInterfaceDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
sequence<OperationDef::OperationDescription> operation;
sequence<AttributeDef::AttributeDescription> attributes;

};

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;

};

The describe method, inherited from Contained, returns an InterfaceDescription structure in
the “value” member of the Description structure (defined in the Contained class).
The describe_contents method, inherited from Container, returns a sequence of these
Description structures, each carrying a reference to an InterfaceDescription structure in its
“value” member.

Implementation note: The two sequences “OperationDescription” and “AttributeDescription”
are built dynamically within the FullInterfaceDescription structure, due to the InterfaceDef
class’s inheritance from the Contained class.

Attributes
All attributes of the InterfaceDef class provide access to information kept within the receiving
InterfaceDef object. The “_get_” form of the attribute returns a memory reference that is only
valid as long as the receiving object has not been freed (using _somFree). The “_set_” form of
the attribute makes a (deep) copy of your data and places it in the receiving InterfaceDef object.
You retain ownership of all memory references passed using the “_set_” attribute forms.

InterfaceDef class

Ref – 295Interface Repository FrameworkProgrammers Reference Manual

Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

base_interfaces (sequence<RepositoryId>)
The sequence of RepositoryIds for all of the interfaces that the receiving interface inherits.

instanceData (TypeCode)
The TypeCode of a structure whose members are the internal instance variables, if any,
described in the SOM implementation section of the interface. Note: This attribute is a
SOM-unique extension of the Interface Repository; it is not stipulated by the CORBA specifi-
cations.

New Methods
describe_interface

Overriding Methods
somInit
somUninit
somDumpSelf
somDumpSelfInt
within
describe

InterfaceDef class

Ref – 296 Interface Repository Framework SOMobjects Base Toolkit

describe_interface Method

Purpose
Returns (from the Interface Repository) a description of all the methods and attributes of an
interface definition.

IDL Syntax
FullInterfaceDescription describe_interface ();

Description
The describe_interface method returns a description of all the methods and attributes of an
interface definition that are held in the Interface Repository.

When finished using the FullInterfaceDescription returned by this method, the client code is
responsible for freeing the _buffer fields of the two sequences it contains. In C, this can be
accomplished as follows:

if (fid.operation._length)
 SOMFree (fid.operation._buffer); /* Release the buffer */
if (fid.attributes._length)
 SOMFree (fid.attributes._buffer); /* Release the buffer */

Parameters
receiver A pointer to an object of class InterfaceDef representing the Interface

Repository object where an interface definition is stored.

ev A pointer where the method can return exception information if an error is
encountered.

Return Value
The describe_interface method returns a description of all the methods and attributes of an
interface definition that are held in the Interface Repository.

Example
Here is a code fragment written in C that uses the describe_interface method:

#include <intfacdf.h>

...

InterfaceDef idef;
Environment *ev;
FullInterfaceDescription fid;
long i;

...

fid = InterfaceDef_describe_interface (idef, ev);
printf (”The %s interface has the following attributes:\n”,
 Contained__get_name ((Contained) idef, ev));
if (!fid.attributes._length)
 printf (”\t[none]\n”);
else {
 for (i=0; i<fid.attributes._length; i++)
 printf (”\t%s\n”, fid.attributes._buffer[i].name);
 SOMFree (fid.attributes._buffer);
}

InterfaceDef class

Ref – 297Interface Repository FrameworkProgrammers Reference Manual

printf (”and the following methods:\n”)
if (!fid.operation._length)
 printf (”\t[none]\n”);
else {
 for (i=0; i<fid.operation._length; i++)
 printf (”\t%s\n”, fid.operation._buffer[i].name);
 SOMFree (fid.operation._buffer);
}

Original Class
InterfaceDef

ModuleDef class

Ref – 298 Interface Repository Framework SOMobjects Base Toolkit

ModuleDef Class

Description
The ModuleDef class provides the interface for module definitions in the Interface Repository.

File Stem
moduledf

Base
Contained, Container

Metaclass
SOMClass

Ancestor Classes
Contained, Container, SOMObject

Types
struct ModuleDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;

};

The describe method, inherited from Contained, returns a ModuleDescription structure in
the “value” member of the Description structure (defined in the Contained class).
The describe_contents method, inherited from Container, returns a sequence of these
Description structures, each carrying a reference to a ModuleDescription structure in its
“value” member.

New Methods
None.

Overriding Methods
somInit
somUninit
somDumpSelf
somDumpSelfInt
describe
within

OperationDef class

Ref – 299Interface Repository FrameworkProgrammers Reference Manual

OperationDef Class

Description
The OperationDef class provides the interface for operation (method) definitions in the Inter-
face Repository.

File Stem
operatdf

Base
Contained, Container

Metaclass
SOMClass

Ancestor Classes
Contained, Container, SOMObject

Types
typedef Identifier ContextIdentifier;
enum OperationMode {NORMAL, ONEWAY};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
TypeCode result;
OperationMode mode;
sequence<ContextIdentifier> contexts;
sequence<ParameterDef::ParameterDescription> parameter;
sequence<ExceptionDef::ExceptionDescription> exceptions;

};

The describe method, inherited from Contained, returns an OperationDescription structure
in the “value” member of the Description structure (defined in the Contained class).
The describe_contents method, inherited from Container, returns a sequence of these
Description structures, each carrying a reference to an OperationDescription structure in its
“value” member.

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

result (TypeCode)
The TypeCode that represents the type of the operation (method).
The TypeCode returned by the “_get_” form of the type attribute is contained in the receiving
OperationDef object, which retains ownership. Hence, the returned TypeCode should not
be freed. To obtain a separate copy, use the TypeCode_copy operation. The “_set_” form of
the attribute makes a private copy of the TypeCode you supply, to keep in the receiving
object. You retain ownership of the passed TypeCode.

mode (OperationMode)
The OperationMode of the operation (method), either NORMAL or ONEWAY.

OperationDef class

Ref – 300 Interface Repository Framework SOMobjects Base Toolkit

contexts (sequence<ContextIdentifier>)
The list of ContextIdentifiers associated with the operation (method).
The “_get_” form of the attribute returns a sequence whose buffer is owned by the receiving
OperationDef object. You should not free it. The “_set_” form of the attribute makes a (deep)
copy of the passed sequence; you retain ownership of the original storage.

New Methods
None.

Overriding Methods
somInit
somUninit
somDumpSelf
somDumpSelfInt
describe

ParameterDef class

Ref – 301Interface Repository FrameworkProgrammers Reference Manual

ParameterDef Class

Description
The ParameterDef class provides the interface for parameter definitions in the Interface
Repository.

File Stem
paramdef

Base
Contained

Metaclass
SOMClass

Ancestor Classes
Contained, SOMObject

Types
enum ParameterMode {IN, OUT, INOUT};

struct ParameterDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
TypeCode type;
ParameterMode mode;

};

The describe method, inherited from Contained, returns a ParameterDescription structure in
the “value” member of the Description structure (defined in the Contained class).

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of the parameter.
The TypeCode returned by the “_get_” form of the type attribute is contained in the receiving
ParameterDef object, which retains ownership. Hence, the returned TypeCode should not
be freed. To obtain a separate copy, use the TypeCode_copy operation. The “_set_” form of
the attribute makes a private copy of the TypeCode you supply, to keep in the receiving
object. You retain ownership of the passed TypeCode.

mode (ParameterMode)
The ParameterMode of the parameter (IN, OUT, or INOUT).

New Methods
None.

Overriding Methods
somInit
somUninit
somDumpSelf
somDumpSelfInt
describe

Repository class

Ref – 302 Interface Repository Framework SOMobjects Base Toolkit

Repository Class

Description
The Repository class provides global access to SOM’s CORBA-compliant Interface Repository
(IR), which is discussed in Chapter 7, “The Interface Repository Framework,” of the SOM Toolkit
User’s Guide.

File Stem
repostry

Base
Container

Metaclass
SOMClass

Ancestor Classes
Container, SOMObject

Types
 struct RepositoryDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 };

The inherited describe_contents method returns an instance of the RepositoryDescription
structure in the “value” member of the Description structure defined in the Container interface.

New Methods
lookup_id
lookup_modifier
release_cache

Overriding Methods
describe_contents
somInit
somUninit
somFree
somDumpSelf
somDumpSelfInt

Repository class

Ref – 303Interface Repository FrameworkProgrammers Reference Manual

lookup_id Method

Purpose
Returns the object having a specified RepositoryId.

IDL Syntax
Contained lookup_id (

 in RepositoryId search_id);

Description
The lookup_id method returns the object having a RepositoryId given by the specified
search_id argument. The returned object represents a component of an IDL interface (class)
definition maintained within the Interface Repository.

When finished using the object returned by this method, the client code is responsible for
releasing it, using the somFree method.

Parameters
receiver A pointer to an object of class Repository representing SOM’s Interface

Repository.

ev A pointer where the method can return exception information if an error is
encountered.

search_id An ID value of type RepositoryId that uniquely identifies the desired object in
the Interface Repository.

Return Value
The lookup_id method returns the Contained object that has the specified RepositoryId.

Example
Here is a code fragment written in C that uses the lookup_id method:

#include <containd.h>
#include <repostry.h>

...

Repository repo;
Environment *ev;
Contained c;
RepositoryId objectToFind;

...

repo = RepositoryNew ();
c = Repository_lookup_id (repo, ev, objectToFind);
if (c) {
 printf (”lookup_id found object of type: %s, named: %s\n”,
 SOMObject_somGetClassName (c), Contained__get_name (c, ev));
 SOMObject_somFree (c);
}

Original Class
Repository

Related Information
Methods: lookup_modifier, lookup_name, contents, within

Repository class

Ref – 304 Interface Repository Framework SOMobjects Base Toolkit

lookup_modifier Method

Purpose
Returns the value of a given SOM modifier for a specified object [that is, for an object that is a
component of an IDL interface (class) definition maintained within the Interface Repository].

IDL Syntax
string lookup_modifier (

in RepositoryId id,
in string modifier);

Description
The lookup_modifier method returns the string value of the given SOM modifier for an object
with the specified RepositoryId within the Interface Repository. For a discussion of SOM
modifiers, see the topic “Modifier statements” in Chapter 4, “Implementing SOM Classes,” of the
SOM Toolkit User’s Guide.

If the object with the given RepositoryId does not exist or does not possess the modifier, then
NULL (or zero) is returned. If the object exists but the specified modifier does not have a value, a
zero-length string value is returned.

Note: The lookup_modifier method is not stipulated by the CORBA specifications; it is a
SOM-unique extension to the Interface Repository.

Parameters
receiver A pointer to an object of class Repository representing SOM’s Interface

Repository.

ev A pointer where the method can return exception information if an error is
encountered.

id The RepositoryId of the object whose modifier value is needed.

modifier The name of a specific (SOM or user-specified) modifier whose string value is
needed.

Return Value
The lookup_modifier method returns the string value of the given SOM modifier for an object
with the specified RepositoryId, if it exists. If an existing modifier has no value, a zero-length
string value is returned. If the object cannot be found, then NULL (or zero) is returned.

When the string value is no longer needed, client code must free the space for the string (using
SOMFree).

Repository class

Ref – 305Interface Repository FrameworkProgrammers Reference Manual

Example
Here is a code fragment written in C that uses the lookup_modifier method:

#include <repostry.h>

...

Repository repo;
Environment *ev;
RepositoryId objectId;
string filestem;i

...

repo = RepositoryNew ();
filestem = Repository_lookup_modifier (repo, ev, objectId,
 ”filestem”);
if (filestem) {
 printf
 (”The %s object’s filestem modifier has the value \”%s\”\n”,
 objectId, filestem);
 SOMFree (filestem);
} else
 printf (”No filestem modifier could be found for %s\n”,
 objectId);

Original Class
Repository

Related Information
Methods: lookup_id, lookup_name

Repository class

Ref – 306 Interface Repository Framework SOMobjects Base Toolkit

release_cache Method

Purpose
Permits the Repository object to release the memory occupied by Interface Repository objects
that have been implicitly referenced.

Syntax
void release_cache ();

Description
This method allows the Repository object to release the memory occupied by implicitly
referenced Interface Repository objects. Some methods (such as describe_contents and
lookup_name) may cause some objects to be instantiated that are not directly accessible
through object references that have been returned to the user. These objects are kept in an
internal Interface Repository cache until the release_cache method is used to free them. The
internal cache continuously replenishes itself over time as the need arises.

Parameters
receiver A pointer to an object of class Repository representing SOM’s Interface

Repository.

ev A pointer where the method can return exception information if an error is
encountered.

Return Value
None.

Example
#include <repostry.h>

...

Repository repo;
Environment *ev;
sequence(ContainerDescription) scd;

...

scd = Container_describe_contents (
 (Container) repo, ev, ”TypeDef”, TRUE, –1);
Repository_release_cache (repo, ev);

Original Class
Repository

Related Information
See the section entitled “A word about memory management” in Chapter 7 of the SOM
Toolkit User’s Guide.

TypeDef class

Ref – 307Interface Repository FrameworkProgrammers Reference Manual

TypeDef Class

Description
The TypeDef class provides the interface for typedef definitions in the Interface Repository.

File Stem
typedef

Base
Contained

Metaclass
SOMClass

Ancestor Classes
Contained, SOMObject

Types
struct TypeDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
TypeCode type;

};

The describe method, inherited from Contained, returns a TypeDescription structure in the
“value” member of the Description structure (defined in the Contained class).

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of the typedef.
The TypeCode returned by the “_get_” form of the type attribute is contained in the receiving
TypeDef object, which retains ownership. Hence, the returned TypeCode should not be
freed. To obtain a separate copy, use the TypeCode_copy operation. The “_set_” form of the
attribute makes a private copy of the TypeCode you supply, to keep in the receiving object.
You retain ownership of the passed TypeCode.

New Methods
None.

Overriding Methods
somInit
somUninit
somDumpSelf
somDumpSelfInt
describe

TypeCode functions

Ref – 308 Interface Repository Framework SOMobjects Base Toolkit

TypeCode_alignment Function

Purpose
Supplies the alignment value for a given TypeCode.

IDL Syntax
short TypeCode_alignment ();

Description
This function returns the alignment information associated with the given TypeCode. The
alignment value is a short integer that should evenly divide any memory address where an
instance of the type described by the TypeCode will occur.

Parameters
tc The TypeCode whose alignment information is desired.

ev A pointer to an Environment structure.

Return Value
A short integer containing the alignment value.

Related Information
Functions: TypeCodeNew, TypeCode_equal, TypeCode_kind,

TypeCode_param_count, TypeCode_parameter,
TypeCode_setAlignment, TypeCode_size, TypeCode_free,

 TypeCode_print

TypeCode functions

Ref – 309Interface Repository FrameworkProgrammers Reference Manual

TypeCode_copy Function

Purpose
Creates a new copy of a given TypeCode.

IDL Syntax
TypeCode TypeCode_copy ();

Description
The TypeCode_copy function creates a new copy of a given TypeCode. TypeCodes are
complex data structures whose actual representation is hidden, and may contain internal
references to strings and other TypeCodes. The copy created by this function is guaranteed
not to refer to any previously existing TypeCodes or strings, and hence can be used long after
the original TypeCode is freed or released (TypeCodes are typically contained in Interface
Repository objects whose memory resources are released by the _somFree method).

All of the memory used to construct the TypeCode copy is allocated dynamically and should be
subsequently freed only by using the TypeCode_free function.

This function is a SOM-unique extension to the CORBA standard.

Parameters
tc The TypeCode to be copied.

ev A pointer to an Environment structure. The CORBA standard mandates the
use of this structure as a standard way to return exception information when an
error condition is detected.

Return value
A new TypeCode with no internal references to any previously existing TypeCodes or strings.
If a copy cannot be created successfully, the value NULL is returned. No exceptions are raised
by this function.

Related Information
Functions: TypeCodeNew, TypeCode_alignment, TypeCode_equal, TypeCode_kind,

TypeCode_param_count, TypeCode_parameter, TypeCode_size,
 TypeCode_free, TypeCode_print, TypeCode_setAlignment

TypeCode functions

Ref – 310 Interface Repository Framework SOMobjects Base Toolkit

TypeCode_equal Function

Purpose
Compares two TypeCodes for equality.

IDL Syntax
boolean TypeCode_equal (

TypeCode tc2);

Description
The TypeCode_equal function can be used to determine if two distinct TypeCodes describe
the same underlying abstract data type.

Parameters
tc One of the TypeCodes to be compared.

ev A pointer to an Environment structure. The CORBA standard mandates the
use of this structure as a standard way to return exception information when an
error condition is detected.

tc2 The other TypeCode to be compared.

Return value
Returns TRUE (1) if the TypeCodes tc and tc2 describe the same data type, with the same
alignment. Otherwise, FALSE (0) is returned. No exceptions are raised by this function.

Related Information
Functions: TypeCodeNew, TypeCode_alignment, TypeCode_kind,
 TypeCode_param_count, TypeCode_parameter, TypeCode_copy,

TypeCode_free, TypeCode_print, TypeCode_setAlignment,
TypeCode_size

TypeCode functions

Ref – 311Interface Repository FrameworkProgrammers Reference Manual

TypeCode_free Function

Purpose
Destroys a given TypeCode by freeing all of the memory used to represent it.

IDL Syntax
void TypeCode_free ();

Description
The TypeCode_free function destroys a given TypeCode by freeing all of the memory used to
represent it. TypeCodes obtained from the TypeCode_copy or TypeCodeNew functions
should be freed using TypeCode_free. TypeCodes contained in Interface Repository objects
should never be freed. Their memory is released when a _somFree method releases the
Interface Repository object.

The TypeCode_free operation has no effect on TypeCode constants. TypeCode constants are
static TypeCodes declared in the header file “somtcnst.h” or generated in files emitted by the
SOM Compiler. Since TypeCode constants may be used interchangeably with dynamically
created TypeCodes, it is not considered an error to attempt to free a TypeCode constant with
the TypeCode_free function.

This function is a SOM-unique extension to the CORBA standard.

Parameters
tc The TypeCode to be freed.

ev A pointer to an Environment structure. The CORBA standard mandates the
use of this structure as a standard way to return exception information when an
error condition is detected.

Return value
None. No exceptions are raised by this function.

Related Information
Functions: TypeCodeNew, TypeCode_alignment, TypeCode_equal, TypeCode_kind,

TypeCode_param_count, TypeCode_parameter, TypeCode_size,
 TypeCode_copy, TypeCode_print, TypeCode_setAlignment

TypeCode functions

Ref – 312 Interface Repository Framework SOMobjects Base Toolkit

TypeCode_kind Function

Purpose
Categorizes the abstract data type described by a TypeCode.

IDL Syntax
TCKind TypeCode_kind ();

enum TCKind {
 tk_null, tk_void,
 tk_short, tk_long, tk_ushort, tk_ulong,
 tk_float, tk_double, tk_boolean, tk_char,
 tk_octet, tk_any, tk_TypeCode, tk_Principal,
 tk_objref, tk_struct, tk_union, tk_enum, tk_string,
 tk_sequence, tk_array, tk_pointer, tk_self, tk_foreign
};

Description
The TypeCode_kind function can be used to classify a TypeCode into one of the categories
listed in the TCKind enumeration. Based on the “kind” classification, a TypeCode may contain 0
or more additional parameters to fully describe the underlying data type.

Table 1 (see following page) indicates the number and function of these additional parameters.
TCKind entries not listed in the table are basic data types and do not have any additional
parameters. The designation “N” refers to the number of members in a struct or union, or the
number of enumerators in an enum.

Parameters
tc The TypeCode whose TCKind categorization is requested.

ev A pointer to an Environment structure. The CORBA standard mandates the
use of this structure as a standard way to return exception information when an
error condition is detected.

Return value
Returns one of the enumerators listed in the TCKind enumeration shown above. No exceptions
are raised by this function.

Related Information
Functions: TypeCodeNew, TypeCode_alignment, TypeCode_equal,

TypeCode_param_count, TypeCode_parameter, TypeCode_copy,
TypeCode_free, TypeCode_print, TypeCode_setAlignment, TypeCode_size

TypeCode functions

Ref – 313Interface Repository FrameworkProgrammers Reference Manual

TCKind Parameters Type Function

tk_objref 1 string The ID of the corresponding InterfaceDef
in the Interface Repository

tk_struct 2N+1 string The name of the struct.

––––– next 2 repeat for each member –––––

string The name of the struct member.

TypeCode The type of the struct member.

tk_union 3N+2 string The name of the union.

TypeCode The type of the discriminator.

––––– next 3 repeat for each member –––––

long The label value

string The name of the member.

TypeCode The type of the member.

tk_enum N+1 string The name of the enum.

––– next repeats for each enumerator ––––

string The name of the enumerator.

tk_string 1 long The maximum string length or 0.

tk_sequence 2 TypeCode The type of element in the sequence.

long The maximum number of elements or 0.

tk_array 2 TypeCode The type of element in the array.

long The maximum number of elements.

tk_pointer � 1 TypeCode The type of the referenced datum.

tk_self � 1 string The name of the referenced enclosing
struct or union.

tk_foreign � 3 string
string
long

The name of the foreign type.
The implementation context.
The size of an instance.

Table 1. TypeCode information per TCKind category.

�The TCKind values tk_pointer, tk_self, and tk_foreign are SOM-unique extensions to the CORBA
standard. They are provided to permit TypeCodes to describe types that cannot be expressed in
standard IDL.

The tk_pointer TypeCode contains only one parameter — a TypeCode which describes the data type
that the pointer references. The tk_self TypeCode is used to describe a “self-referential” structure or
union without introducing unbounded recursion in the TypeCode. For example, the following C struct:

struct node {
 long count;
 struct node *next;
 };

could be described with a TypeCode created as follows:

TypeCode tcForNode;

tcForNode = TypeCodeNew (tk_struct, ”node”,
 ”count”, TypeCodeNew (tk_long),
 ”next”, TypeCodeNew (tk_pointer,
 TypeCodeNew (tk_self, ”node”)));

The tk_foreign TypeCode provides a more general escape mechanism, allowing TypeCodes to be
created that partially describe non-IDL types. Since these foreign TypeCodes carry only a partial
description of a type, the “implementation context” parameter can be used by a non-IDL execution
environment to recognize other types that are known or understood in that environment. See the
section entitled “Using the tk_foreign TypeCode” in Chapter 7 of the SOM Toolkit User’s Guide for more
information about using foreign TypeCodes in SOM IDL files.

Note that the use of self-referential structures, pointers, or foreign types is beyond the scope of the
CORBA standard, and may result in a loss of portability or distributability in client code.

TypeCode functions

Ref – 314 Interface Repository Framework SOMobjects Base Toolkit

TypeCodeNew Function

Purpose
Creates a new TypeCode instance.

Syntax
TypeCode TypeCodeNew (TCKind tag, ...);

[The actual parameters indicated by “...” are variable in number and type, depending on the
value of the tag parameter.] There are no implicit parameters to this function.

TypeCodeNew (tk_objref, string interfaceId);
TypeCodeNew (tk_string, long maxLength);
TypeCodeNew (tk_sequence, TypeCode seqTC, long maxLength);
TypeCodeNew (tk_array, TypeCode arrayTC, long length);
TypeCodeNew (tk_pointer, TypeCode ptrTC);
TypeCodeNew (tk_self, string structOrUnionName);
TypeCodeNew (tk_foreign, string typename, string impCtx, long instSize);

TypeCodeNew (tk_struct, string name,
string mbrName, TypeCode mbrTC, [...,]
[mbrName and mbrTC repeat as needed]
NULL);

TypeCodeNew (tk_union, string name, TypeCode swTC,
long flag, long labelValue, string mbrName, TypeCode mbrTC, [...,]
[flag, labelValue, mbrName and mbrTC repeat as needed]
NULL);

TypeCodeNew (tk_enum, string name,
string enumId, [...,]
[enumIds repeat as needed]
NULL);

TypeCodeNew (TCKind allOtherTagValues);

Description
The TypeCodeNew function creates a new instance of a TypeCode from the supplied
parameters. TypeCodes are complex data structures whose actual representation is hidden.
The number and types of arguments required by TypeCodeNew varies depending on the value
of the first argument. All of the valid invocation sequences are shown in the “Syntax” section
above. There are no implicit parameters to this function.

All TypeCodes created by TypeCodeNew should be destroyed (when no longer needed) using
the TypeCode_free function.

This function is a SOM-unique extension to the CORBA standard.

Parameters
tag The type or category of TypeCode to create.

interfaceId A string containing the fully-qualified interface name that is the subject of an
object reference type.

name A string that gives the name of a struct, union, or enum.

mbrName A string that gives the name of a struct or union member element.

enumId A string that gives the name of an enum enumerator.

structOrUnionName
A string that gives the name of a struct or union that has been previously

TypeCode functions

Ref – 315Interface Repository FrameworkProgrammers Reference Manual

named in the current TypeCode and is the subject of a self-referential pointer
type. See the footnote on tk_self in the table given in the TypeCode_kind
function description for an example of what this means and how it is applied.

maxlength The maximum permitted length of a string or a sequence. The value 0 (zero)
means that the string or sequence is considered unbounded.

length The maximum number of elements that can be stored in an array. All IDL arrays
are bounded, hence a value of zero denotes an array of zero elements.

flag One of the following constant values used to distinguish a labeled case in an
IDL discriminated union switch statement from the default case:

 TCREGULAR_CASE – The value 1
 TCDEFAULT_CASE – The value 2

labelValue The actual value associated with a regular labeled case in an IDL discriminated
union switch statement. If preceded by the argument TCDEFAULT_CASE, the
value zero should be used.

mbrTC A TypeCode that represents the data type of a struct or union member.

swTC A TypeCode that represents the data type of the discriminator in an IDL union
statement.

seqTC A TypeCode that describes the data type of the elements in a sequence.

arrayTC A TypeCode that describes the data type of the elements of an array.

ptrTC A TypeCode that describes the data type referenced by a pointer.

typename A string that provides the name of a foreign type.

impCtx A string that identifies an implementation context where a foreign type is
understood.

instSize A long that holds the size of a foreign type instance. If the size is variable or is
not known, the value zero should be used.

allOtherTagValues
One of the values:

tk_null, tk_void, tk_short, tk_long,
tk_ushort, tk_ulong, tk_float, tk_double,
tk_boolean, tk_char, tk_octet,
tk_any, tk_TypeCode, or Tk_Principal

All of these tags represent basic IDL data types that do not require any other
descriptive parameters.

Return value
A new TypeCode instance, or NULL if the new instance could not be created.

Related Information
Functions: TypeCode_alignment, TypeCode_copy, TypeCode_equal, TypeCode_free,

TypeCode_kind, TypeCode_param_count, TypeCode_parameter,
 TypeCode_print, TypeCode_size, TypeCode_setAlignment

TypeCode functions

Ref – 316 Interface Repository Framework SOMobjects Base Toolkit

TypeCode_param_count Function

Purpose
Obtains the number of parameters available in a given TypeCode.

IDL Syntax
long TypeCode_param_count ();

Description
The TypeCode_param_count function can be used to obtain the actual number of parameters
contained in a specified TypeCode. Each TypeCode contains sufficient parameters to fully
describe its underlying abstract data type. Refer to the table given in the description of the
TypeCode_kind function.

Parameters
tc The TypeCode whose parameter count is desired.

ev A pointer to an Environment structure. The CORBA standard mandates the
use of this structure as a standard way to return exception information when an
error condition is detected.

Return value
Returns the actual number of parameters associated with the given TypeCode, in accordance
with the table shown in the TypeCode_kind description. No exceptions are raised by this
function.

Related Information
Functions: TypeCodeNew, TypeCode_alignment, TypeCode_equal, TypeCode_kind,

TypeCode_parameter, TypeCode_copy, TypeCode_free,
TypeCode_print, TypeCode_size, TypeCode_setAlignment

TypeCode functions

Ref – 317Interface Repository FrameworkProgrammers Reference Manual

TypeCode_parameter Function

Purpose
Obtains a specified parameter from a given TypeCode.

IDL Syntax
any TypeCode_parameter (

long index);

Description
The TypeCode_parameter function can be used to obtain any of the parameters contained in a
given TypeCode. Refer to the table shown in the description of the TypeCode_kind function for
a list of the number and type of parameters associated with each category of TypeCode.

Parameters
tc The TypeCode whose parameter is desired.

ev A pointer to an Environment structure. The CORBA standard mandates the
use of this structure as a standard way to return exception information when an
error condition is detected.

index The number of the desired parameter. Parameters are numbered from 0 to
N–1, where N is the value returned by the Typecode_param_count function.

Return value
Returns the requested parameter in the form of an any. This function raises the Bounds
exception if the value of the index exceeds the number of parameters available in the given
TypeCode. Because the values exist within the specified TypeCode, you should not free the
results returned from this function.

An any is a basic IDL data type that is represented as the following structure in C or C++:

typedef struct any {
 TypeCode _type;
 void * _value;
} any;

Since all TypeCode parameters have one of only three types (string, TypeCode, or long), the
_type member will always be set to TC_string, TC_TypeCode, or TC_long, as appropriate.
The _value member always points to the actual parameter datum. For example, the following
code can be used to extract the name of a structure from a TypeCode of kind tk_struct in C:

#include <repostry.h> /* Interface Repository class */
#include <typedef.h> /* Interface Repository TypeDef class */
#include <somtcnst.h> /* TypeCode constants */
TypeCode x;
Environment *ev = somGetGlobalEnvironment ();
TypeDef aTypeDefObj;
sequence(Contained) sc;
any parm;
string name;
Repository repo;

...

TypeCode functions

Ref – 318 Interface Repository Framework SOMobjects Base Toolkit

/* 1st, obtain a TypeCode from an Interface Repository object,
 * or use a TypeCode constant.
 */

repo = RepositoryNew ();
sc = _lookup_name (repo, ev,
 ”AttributeDescription”, –1, ”TypeDef”, TRUE);
if (sc._length) {
 aTypeDefObj = sc._buffer[0];
 x = __get_type (aTypeDefObj, ev);
 }
else
 x = TC_AttributeDescription;

if (TypeCode_kind (x, ev) == tk_struct) {
 parm = TypeCode_parameter (x, ev, 0); /* Get structure name */
 if (TypeCode_kind (parm._type, ev) != tk_string) {
 printf (”Error, unexpected TypeCode: ”);
 TypeCode_print (parm._type, ev);
 } else {
 name = *((string *)parm._value);
 printf (”The struct name is %s\n”, name);
 }
} else {
 printf (”TypeCode is not a tk_struct: ”);
 TypeCode_print (x, ev);
}

Related Information
Functions: TypeCodeNew, TypeCode_alignment, TypeCode_equal, TypeCode_kind,

TypeCode_param_count, TypeCode_copy, TypeCode_free,
TypeCode_print, TypeCode_size, TypeCode_setAlignment

TypeCode functions

Ref – 319Interface Repository FrameworkProgrammers Reference Manual

TypeCode_print Function

Purpose
Writes all of the information contained in a given TypeCode to “stdout”.

IDL Syntax
void TypeCode_print ();

Description
The TypeCode_print function can be used during program debugging to inspect the contents of
a TypeCode. It prints (in a human-readable format) all of the information contained in the
TypeCode. The format of the information shown by TypeCode_print is the same form that
could be used by a C programmer to code the corresponding TypeCodeNew function call to
create the TypeCode.

This function is a SOM-unique extension to the CORBA standard.

Parameters
tc The TypeCode to be examined.

ev A pointer to an Environment structure. The CORBA standard mandates the
use of this structure as a standard way to return exception information when an
error condition is detected.

Return value
None. No exceptions are raised by this function.

Related Information
Functions: TypeCodeNew, TypeCode_alignment, TypeCode_equal, TypeCode_kind,

TypeCode_param_count, TypeCode_parameter, TypeCode_copy,
TypeCode_free, TypeCode_size, TypeCode_setAlignment

TypeCode functions

Ref – 320 Interface Repository Framework SOMobjects Base Toolkit

TypeCode_setAlignment Function

Purpose
Sets the alignment value for a given TypeCode.

IDL Syntax
void TypeCode_setAlignment (short alignment);

Description

Parameters
tc The TypeCode to receive the new alignment value.

ev A pointer to an Environment structure.

alignment A short integer that specifies the alignment value.

Return Value
None.

Related Information
Functions: TypeCodeNew, TypeCode_alignment, TypeCode_equal, TypeCode_kind,

TypeCode_param_count, TypeCode_parameter, TypeCode_size,
TypeCode_free, TypeCode_print

TypeCode functions

Ref – 321Interface Repository FrameworkProgrammers Reference Manual

TypeCode_size Function

Purpose
Provides the size of an instance of the abstract data type described by a given TypeCode.

IDL Syntax
long TypeCode_size ();

Description
The TypeCode_size function is used to obtain the size of an instance of the abstract data type
described by a given TypeCode.

This function is a SOM-unique extension to the CORBA standard.

Parameters
tc The TypeCode whose instance size is desired.

ev A pointer to an Environment structure. The CORBA standard mandates the
use of this structure as a standard way to return exception information when an
error condition is detected.

Return value
The amount of memory needed to hold an instance of the data type described by a given
TypeCode. No exceptions are raised by this function.

Related Information
Functions: TypeCodeNew, TypeCode_alignment, TypeCode_equal, TypeCode_kind,

TypeCode_param_count, TypeCode_parameter, TypeCode_copy,
 TypeCode_free, TypeCode_print, TypeCode_setAlignment

.

Ref – 322 Interface Repository Framework SOMobjects Base Toolkit

Ref – 323Utility metaclasses/methodsProgrammers Reference Manual

Utility Metaclass and Methods Reference

Metaclass class organization

SOMObject

Denotes “is a subclass of”

SOMClass

 metaclass class

SOMMSingleInstance

SOMMSingleInstance class

Ref – 324 Utility metaclasses/methods SOMobjects Base Toolkit

SOMMSingleInstance Class

Description

SOMMSingleInstance is a metaclass provided with the SOM Toolkit. It can be specified as the
metaclass when defining a class for which only one instance can ever be created. The first call to
<className>New in C, the new operator in C++, or the somNew method creates the one
possible instance of the class. Thereafter, any subsequent “new” calls return the first (and only)
instance.

Alternatively, the method sommGetSingleInstance can be used to accomplish the same
purpose. The method offers an advantage in that the call site explicitly shows that something
special is occurring and that a new object is not necessarily being created.

File Stem

snglicls

Base Classes

SOMClass

Metaclass

SOMClass

Ancestor Classes

SOMClass, SOMObject

New Methods

sommGetSingleInstance

Overriding Methods

somInit
somNew

SOMMSingleInstance class

Ref – 325Utility metaclasses/methodsProgrammers Reference Manual

sommGetSingleInstance Method

Purpose

Gets the one instance of a specified class for which only a single instance can exist.

IDL Syntax

SOMObject sommGetSingleInstance ();

Description

The sommGetSingleInstance method gets a pointer to the one instance of a class for which
only a single instance can exist. A class can have only a single instance when its metaclass is
the SOMMSingleInstance metaclass (or is a subclass of it).

The first call to <className>New in C, the new operator in C++, or the somNew method creates
the one possible instance of the class. Thereafter, any subsequent “new” calls return the first
(and only) instance. Using the sommGetSingleInstance method, however, offers an advan-
tage in that the call site explicitly shows that something special is occurring and that a new object
is not necessarily being created. (That is, the sommGetSingleInstance method creates the
single instance if it does not already exist.)

Parameters

receiver A pointer to an object (class) whose metaclass is SOMMSingleInstance (or is
a subclass of it).

ev A pointer where the method can return exception information if an error is
encountered.

Return Value

The sommGetSingleInstance method returns a pointer to the single instance of the specified
class.

Example

Suppose the class “XXX” is an instance of SOMMSingleInstance; then the following C code

fragment passes the assertions.

x1 = XXXNew();
x2 = XXXNew();
assert(x1 == x2);
x3 = _sommGetSingleInstance(_somGetClass(x1), env);
assert(x2 == x3);

Note that the method sommGetSingleInstance is invoked on the class object, because
sommGetSingleInstance is a method introduced by the metaclass SOMMSingleInstance.

Original Class

SOMMSingleInstance

Ref – 326 Utility metaclasses/methods SOMobjects Base Toolkit

Ref – 327Event Management FrameworkProgrammers Reference Manual

Event Management Framework Reference

Event Management Framework Class Organization

SOMObject

SOMEEMan SOMEEMRegisterData

Denotes “is a subclass of”

SOMEEvent

SOMEClientEvent SOMESinkEvent SOMEWorkProcEventSOMETimerEvent

SOMEClientEvent class

Ref – 328 Event Management Framework SOMobjects Base Toolkit

SOMEClientEvent Class

Description
This class describes generic client events within the Event Manager. Client Events are defined,
created, processed and destroyed entirely by the application. The application can queue
several types of client events with EMan. When a client event occurs, EMan passes an instance
of this class to the callback routine. The callback can query this object about its type and obtain
any event-specific information.

File Stem
clientev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent SOMObject

New Methods
somevGetEventClientData
somevGetEventClientType
somevSetEventClientData
somevSetEventClientType

Overriding Methods
somInit

SOMEClientEvent class

Ref – 329Event Management FrameworkProgrammers Reference Manual

somevGetEventClientData Method

Purpose
Returns the user-defined data associated with a client event.

IDL Syntax
void* somevGetEventClientData ();

Description
This method returns the user-defined data (if any) associated with the Client Event object. This
associated data for a given client event type is passed to EMan at the time of registration.

Parameters
receiver A pointer to an object of class SOMEClientEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
A pointer to user-defined client event data.

Original Class
SOMEClientEvent

Related Information
Methods: somevSetEventClientData

SOMEClientEvent class

Ref – 330 Event Management Framework SOMobjects Base Toolkit

somevGetEventClientType Method

Purpose
Returns the type name of a client event.

IDL Syntax
string somevGetEventClientType ();

Description
This method returns the client event type of the Client Event object. Client event type is a string
name assigned to the event by the application at the time of registering the event.

Parameters
receiver A pointer to an object of class SOMEClientEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
A null terminated string identifying the client event type.

Original Class
SOMEClientEvent

Related Information
Methods: somevSetEventClientType

SOMEClientEvent class

Ref – 331Event Management FrameworkProgrammers Reference Manual

somevSetEventClientData Method

Purpose
Sets the user-defined data of a client event.

IDL Syntax
void somevSetEventClientData (

in void* clientData);

Description
This method sets the user-defined event data (if any) of the Client Event object. This associated
data for a given client event type is passed to EMan at the time of registration.

Parameters
receiver A pointer to an object of class SOMEClientEvent.

ev A pointer to the Environment structure for the calling method.

clientData A pointer to user-defined data for this client event.

Return Value
None.

Original Class
SOMEClientEvent

Related Information
Methods: somevGetEventClientData

SOMEClientEvent class

Ref – 332 Event Management Framework SOMobjects Base Toolkit

somevSetEventClientType Method

Purpose
Sets the type name of a client event.

IDL Syntax
void somevSetEventClientType (

in string clientType);

Description
This method sets the client event type field of the Client Event object. Client event type is a string
name assigned to the event by the application at the time of registering the event.

Parameters
receiver A pointer to an object of class SOMEClientEvent.

ev A pointer to the Environment structure for the calling method.

clientType A null terminated character string identifying the client event type. The contents
of this string are entirely up to the user. However, while using class libraries that
also use client events one must make sure that there are no name collisions.

Return Value
None.

Original Class
SOMEClientEvent

Related Information
Methods: somevGetEventClientType

SOMEEMan class

Ref – 333Event Management FrameworkProgrammers Reference Manual

SOMEEMan Class

Description
The Event Manager class (EMan for short) is used to handle several input events. The main
purpose of this class is to provide a service that can do a blocked (or timed) wait on several event
sources concurrently. Typically, in a main program, one registers an interest in an event type
with EMan and specifies a callback (a procedure or a method) to be invoked when the event of
interest occurs. After all the necessary registrations are complete, the main program ends with
a call to someProcessEvents in EMan. This call is non-returning. Eman then waits on all
registered event sources. The application is completely event driven at this point (that is, it does
something only when an event occurs). The control returns to EMan after processing each
event. Further registrations can be done from within the callback routines. Unregistrations can
also be done from within the callback routines.

For applications that want to have their own main loop, EMan provides a non-blocking call (the
someProcessEvent method), which processes just one event (if any) and returns to the main
loop immediately. Note that when this call is the only one in the application’s main loop, CPU
cycles are wasted in constantly polling for events. In this situation, the non-returning form of the
someProcessEvents call is preferable.

AIX Specifics:
On AIX this event manager supports Timer, Sink (any file, pipe, socket, or Message Queue),
Client and WorkProc events.

OS/2 Specifics:
On OS/2 this event manager supports Timer, Sink(sockets only), Client, and WorkProc events.

Thread Safety:
To cope with multi-threaded applications on OS/2, the event-manager methods are mutually
exclusive (that is, at any time only one thread can be executing inside of EMan). If an application
thread needs to stop EMan from running (that is, to achieve mutual exclusion with EMan), it can
use the two methods someGetEManSem and someReleaseEManSem to acquire and release
EMan semaphore(s). On AIX, since AIX does not support threads (at present), calling these two
methods has no effect.

File Stem
eman

Base Class
SOMObject

Metaclass
SOMMSingleInstance

Ancestor Classes
SOMObject

New Methods
someGetEManSem
someReleaseEManSem
someChangeRegData
someProcessEvent
someProcessEvents

SOMEEMan class

Ref – 334 Event Management Framework SOMobjects Base Toolkit

someQueueEvent
someRegister
someRegisterEv
someRegisterProc
someShutdown
someUnRegister

Overriding Methods
somInit
somUninit

SOMEEMan class

Ref – 335Event Management FrameworkProgrammers Reference Manual

someChangeRegData Method

Purpose
Changes the registration data associated with a specified registration ID.

IDL Syntax
void someChangeRegData (

in long registrationId,
in SOMEEMRegisterData registerData);

Description
This method is called to change the registration data associated with an existing registration of
EMan. The existing registration is identified by the registrationId parameter. This ID must be the
one returned by EMan when the event interest was originally registered with EMan. Further, the
registration must be active (that is, it must not have been unregistered). The result of providing a
non-existent or invalid registration ID is a “no op”.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registrationId The registration ID of the event interest whose data is being changed.

registerData A pointer to the registration data object whose contents will replace the existing
registration information with EMan.

Return Value
None.

Example
#include <eman.h>
SOMEEMan *EManPtr;
SOMEEMRegisterData *data;
Environment *Ev;
long RegId;

 ...
_someChangeRegData(EManPtr, Ev, RegId, data);

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterEv, someRegisterProc

SOMEEMan class

Ref – 336 Event Management Framework SOMobjects Base Toolkit

someGetEManSem Method

Purpose
Acquires EMan semaphore(s) to achieve mutual exclusion with EMan’s activity.

IDL Syntax
void someGetEManSem ();

Description
When EMan is used on OS/2, multiple threads can invoke methods on EMan concurrently.
EMan protects its internal data by acquiring SOM toolkit semaphore(s). The same sema-
phore(s) are made available to users of EMan through the methods someGetEManSem and
someReleaseEManSem. If an application desires to prevent EMan event processing from
interfering with its own activity (in another thread, of course), then it can call the
someGetEManSem method and acquire EMan semaphore(s). EMan activity will resume when
the application thread releases the same semaphore(s) by calling someReleaseEManSem.

Callers should not hold this semaphore for too long, since it essentially stops EMan activity for
that duration and may cause EMan to miss some important event processing. The maximum
duration for which one can hold this semaphore depends on how frequently EMan must process
events.

On AIX, calling this method has no effect.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
#include <eman.h>
SOMEEMan *EManPtr;
Environment *Ev;

 ...
_someGetEManSem(EManPtr, Ev);
 /* Do the work that needs mutual exclusion with EMan */
_someReleaseEManSem(EManPtr, Ev);

Original Class
SOMEEMan

Related Information
Methods: someReleaseEManSem

SOMEEMan class

Ref – 337Event Management FrameworkProgrammers Reference Manual

someProcessEvent Method

Purpose
Processes one event.

IDL Syntax
void someProcessEvent (

in unsigned long mask);

Description
Processes one event. This call is non-blocking. If there are no events to process it returns
immediately. The mask specifies which events to process. The mask is formed by OR’ing the bit
constants specified in “eventmsk.h”.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

mask A bit mask indicating the types of events to look for and process.

Return Value
None.

Example
#include <eman.h>

main()
{
Environment *testEnv = somGetGlobalEnvironment();
SOMEEMan *some_gEMan = SOMEEManNew();
 /* Do some registrations */
 ...
while (1) {

_someProcessEvent(some_gEMan, testEnv,
EMProcessTimerEvent |
EMProcessSinkEvent |
EMProcessClientEvent);

 /*** Do other main loop work, if needed. ***/
}
} /* end of main */

Original Class
SOMEEMan

Related Information
Methods: someProcessEvents, someRegister, someRegisterProc, someRegisterEv

SOMEEMan class

Ref – 338 Event Management Framework SOMobjects Base Toolkit

someProcessEvents Method

Purpose
Processes infinite events.

IDL Syntax
void someProcessEvents ();

Description
This call loops forever waiting for events and dispatching them. The only way this can be broken
is by calling someShutdown in a callback routine. It is a programming error to call this method
without having registered interest in any events with EMan. Typically, a call to this method is the
last statement in an application’s main program.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
#include <eman.h>

main()
{
Environment *testEnv = somGetGlobalEnvironment();
SOMEEMan *some_gEMan = SOMEEManNew();
 /* Do some registrations */
 ...
_someProcessEvents(some_gEMan, testEnv);
} /* end of main */

Original Class
SOMEEMan

Related Information
Methods: someProcessEvent, someRegister, someRegisterProc, someRegisterEv

SOMEEMan class

Ref – 339Event Management FrameworkProgrammers Reference Manual

someQueueEvent Method

Purpose
Enqueues the specified client event.

IDL Syntax
void someQueueEvent (

in SOMEClientEvent event);

Description
Client events are defined, created, processed and destroyed by the application. EMan simply
provides a means to enqueue and dequeue client events. Client events can be used in several
ways. For example, if an application component wants to handle an input message arriving on a
socket at a later time than when it arrives, it can receive the message in the socket callback
routine, create a client event out of it, and queue it with EMan. EMan can be asked for the client
event at a later time when the application is ready to handle it. Client events can also be useful to
hide the origin of event sources (that is, the original event handlers receive the events and
create client events in their place).

Dequeue is not a user-visible operation. Once a client event is queued, only EMan can dequeue
it.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

event A pointer to the clientevent object.

Return Value
None.

Example
#include <eman.h>
SOMEClientEvent *clientEvent1;

clientEvent1 = SOMEClientEventNew();
/* create a client event of type ”ClientType1” */
_somevSetEventClientType(clientEvent1, testEnv, ”ClientType1”);
_somevSetEventClientData(clientEvent1, testEnv, ”Test Msg”);
 ...

/* whenever it is desired to cause this client event to happen,
 call someQueueEvent Method with this clientEvent */
_someQueueEvent(some_gEMan, env, clientEvent1);

Original Class
SOMEEMan

SOMEEMan class

Ref – 340 Event Management Framework SOMobjects Base Toolkit

someRegister Method

Purpose
Registers an object/method pair with EMan, given a specified registerData object.

IDL Syntax
long someRegister (

in SOMEEMRegisterData registerData,
in SOMObject targetObject,
in string targetMethod,
in void *targetData);

Description
This method allows for registering an event of interest with EMan, with an object method as the
callback. It is assumed that the target method has been declared as using OIDL callstyle. The
event of interest and its details are filled in a registration data object registerData. The informa-
tion about the callback routine is indicated by targetObject and targetMethod.

A mismatch between the target method’s callstyle and the registration method used (that is,
someRegister vs. someRegisterEv) can result in unpredictable results.

Note: The target method is called using name–lookup method resolution.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registerData A pointer to the registration data object that contains all the necessary
information about the event for which an interest is being registered with EMan.

targetObject A pointer to the object that is the target of the callback method.

targetMethod The name of the callback method.

targetData A pointer to a data structure to be passed to the callback method when the
event occurs.

Return Value
The registration ID.

Example
#include <eman.h>
#include <emobj.h>

Environment *testEnv = somGetGlobalEnvironment();
some_gEMan = SOMEEManNew(); /* create an EMan object */
data = SOMEEMRegisterDataNew(); /* create a reg data object */
target = EMObjectNew(); /* create a target object */

/* reRegister a timer event */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, env, 100);
regId1 = _someRegister(some_gEMan, env, data, target,

”eventMethod”, ”Timer 100”);

SOMEEMan class

Ref – 341Event Management FrameworkProgrammers Reference Manual

Original Class
SOMEEMan

Related Information
Methods: someRegisterEv, someRegisterProc, someUnRegister

Also see the callstyle modifier of the SOM Interface Definition Language described in Chapter
4, “Implementing SOM Classes” of the SOM Toolkit User’s Guide.

SOMEEMan class

Ref – 342 Event Management Framework SOMobjects Base Toolkit

someRegisterEv Method

Purpose
Registers the (object, method, Environment parameter) combination of a callback with EMan,
given a specified registerData object.

IDL Syntax
long someRegisterEv (

in SOMEEMRegisterData registerData,
in SOMObject targetObject,
inout Environment callbackEv,
in string targetMethod,
in void *targetData);

Description
This method allows for registering an event interest with EMan with an object method as
callback. The callbackEv is used as the environment pointer when EMan makes the callback. It
is assumed that the target method has been declared as using IDL callstyle. The event of
interest and its details are filled in a registration data object registerData. The information about
the callback routine is indicated by targetObject and targetMethod.

A mismatch in the target method’s callstyle and the registration method called (someRegister
vs. someRegisterEv) can result in unpredictable results.

Note: The target method is called using name–lookup method resolution.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registerData A pointer to registration data object that contains all the necessary information
about the event for which an interest is being registered with EMan.

targetObject A pointer to the object which is the target of the callback method

callbackEv A pointer to the Environment structure to be passed to the callback method

targetMethod The name of the callback method.

targetData A pointer to a data structure to be passed to the callback method when the
event occurs.

Return Value
The registration ID.

SOMEEMan class

Ref – 343Event Management FrameworkProgrammers Reference Manual

Example
#include <eman.h>
#include <emobj.h>

Environment *testEnv = somGetGlobalEnvironment();
Environment *targetEv = somGetGlobalEnvironment();
some_gEMan = SOMEEManNew(); /* create an EMan object */
data = SOMEEMRegisterDataNew(); /* create a reg data object */
target = EMObjectNew(); /* create a target object */

/* reRegister a timer event */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, env, 100);
regId1 = _someRegisterEv(some_gEMan,env, data, target,targetEv,

”eventMethod”, ”Timer 100”);
 /* eventMethod of target is assumed to use callstyle=idl */

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterProc, someUnRegister

Also see the callstyle modifier in the SOM Interface Definition Language described in Chapter
4, “Implementing SOM Classes,” in the SOM Toolkit User’s Guide.

SOMEEMan class

Ref – 344 Event Management Framework SOMobjects Base Toolkit

someRegisterProc Method

Purpose
Register the procedure with EMan given the specified registerData.

IDL Syntax
long someRegisterProc (

in SOMEEMRegisterData registerData,
in EMRegProc *targetProcedure,
in void *targetData);

Description

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registerData A pointer to registration data object that contains all the necessary information
about the event for which an interest is being registered with EMan.

targetProcedure
A pointer to the procedure (callback) that is called when the registered event
occurs.

targetData A pointer to a data structure to be passed to the callback procedure when the
event occurs.

Return Value
The registration ID.

Example
#include <eman.h>

void MyCallBack(SOMEEvent *event, void *somedata){
 ...
}

Environment *testEnv = somGetGlobalEnvironment();
some_gEMan = SOMEEManNew(); /* create an EMan object */
data = SOMEEMRegisterDataNew(); /* create a reg data object */

/* reRegister a timer event */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, env, 100);
regId1 = _someRegisterProc(some_gEMan, env, data,

MyCallBack, ”Timer 100”);

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterEv, someUnRegister

SOMEEMan class

Ref – 345Event Management FrameworkProgrammers Reference Manual

someReleaseEManSem Method

Purpose
Releases the semaphore obtained by the someGetEManSem method.

IDL Syntax
void someReleaseEManSem ();

Description
When EMan is used on OS/2, multiple threads can invoke methods on EMan concurrently.
EMan protects its internal data by acquiring SOM toolkit semaphore(s). The same sema-
phore(s) are made available to users of EMan through the methods someGetEManSem and
someReleaseEManSem. If an application desires to prevent EMan’s event processing from
interfering with its own activity (in another thread, of course), then it can call the
someGetEManSem method and acquire EMan semaphore(s). EMan activity will resume when
the application thread releases the same semaphore(s) by calling someReleaseEManSem.

Callers should not hold this semaphore for too long, since it essentially stops EMan activity for
that duration and may cause EMan to miss some important event processing. The maximum
duration for which one can hold this semaphore depends on how frequently EMan must process
events.

On AIX, calling this method has no effect.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
#include <eman.h>
SOMEEMan *EManPtr;
Environment *Ev;

 ...
_someGetEManSem(EManPtr, Ev);
 /* Do the work that needs mutual exclusion with EMan */
_someReleaseEManSem(EManPtr, Ev);

Original Class
SOMEEMan

Related Information
Methods: someGetEManSem

SOMEEMan class

Ref – 346 Event Management Framework SOMobjects Base Toolkit

someShutdown Method

Purpose
Shuts down an EMan event loop. (That is, this makes the someProcessEvents return!)

IDL Syntax
void someShutdown ();

Description
This can be called from a callback routine to break the someProcessEvents loop.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
#include <eman.h>
SOMEEMan *some_gEMan;

void MyCallBack(SOMEEvent *event, void *somedata){
 ...
 _someShutdown(some_gEMan, env);
}
main()
{
Environment *testEnv = somGetGlobalEnvironment();
SOMEEMan *some_gEMan = SOMEEManNew();
 /* Do some registrations. At least one involving MyCallBack */
 ...
_someProcessEvents(some_gEMan, testEnv);
}

Original Class
SOMEEMan

Related Information
Methods: someProcessEvents

SOMEEMan class

Ref – 347Event Management FrameworkProgrammers Reference Manual

someUnRegister Method

Purpose
Unregisters the event interest associated with a specified registrationId within EMan.

IDL Syntax
void someUnRegister (

in long registrationId);

Description
When an application is no longer interested in a given event, it can unregister the event interest
from EMan. EMan will stop making callbacks on this event, even if the event source continues to
be active and generates events.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registrationId The registration ID of the event that needs to be unregistered.

Return Value
None.

Example
#include <eman.h>
long regId1;

 ...
/* Register a timer */
regId1 = _someRegisterEv(some_gEMan,env, data, target,targetEv,

”eventMethod”, ”Timer 100”);

/* Unregister the timer */
_someUnRegister(some_gEMan, env, regId1);

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterEv, someRegisterProc

SOMEEMRegisterData class

Ref – 348 Event Management Framework SOMobjects Base Toolkit

SOMEEMRegisterData Class

Description
This class is used for holding registration information for event types to be registered with EMan.
EMan extracts all needed information from this object and saves the information in its internal
data structures. An instance of this class must be created, properly initialized, and passed to the
registration methods of EMan for registering interest in any kind of event.

File Stem
emregdat

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
someClearRegData
someSetRegDataClientType
someSetRegDataEventMask
someSetRegDataSink
someSetRegDataSinkMask
someSetRegDataTimerCount
someSetRegDataTimerInterval

Overriding Methods
somInit
somUnInit

SOMEEMRegisterData class

Ref – 349Event Management FrameworkProgrammers Reference Manual

someClearRegData Method

Purpose
Clears the registration data.

IDL Syntax
void someClearRegData ();

Description
This method initializes all fields of a RegData object to their default values.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Original Class
SOMEEMRegisterData

SOMEEMRegisterData class

Ref – 350 Event Management Framework SOMobjects Base Toolkit

someSetRegDataClientType Method

Purpose
Sets the type name for a client event.

IDL Syntax
void someSetRegDataClientType (

in string clientType);

Description
Client events are defined, created, processed, and destroyed entirely by the application. The
application can queue several types of client events with EMan. This method sets the client
event type field of the registration data object. Thus, this information is communicated to EMan,
helping it deal with enqueueing and dequeing the different client events.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

clientType A null-terminated character string identifying the client event type. The con-
tents of this string are entirely up to the user. However, while using class
libraries that also use client events, one must make sure that there are no name
collisions.

Return Value
None.

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

SOMEEMRegisterData class

Ref – 351Event Management FrameworkProgrammers Reference Manual

someSetRegDataEventMask Method

Purpose
Sets the generic event mask within the registration data using NULL terminated event type list.

IDL Syntax
void someSetRegDataEventMask (

in long eventType,
in va_list ap);

Description
This allows setting the event mask within the registration data object. Essentially, this tells EMan
what kind of event is being registered with it. The event type list is a series of constants defined
in eventmsk.h. Although the current interface supports a NULL terminated list of event types,
currently each registration with EMan names only one event type. Thus, one usually gives only
one named constant as the event type and follows it with a NULL parameter (see example
below).

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

eventType A bit constant indicating the type of event being registered with EMan.

ap Additional event types (usually NULL).

Return Value
None.

Example
#include <eman.h>
long regId1;
int msgsock;

 ...
/* Register msgsock socket with EMan for further communication */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMSinkEvent, NULL);
/* The above call enables EMan to know (during registration) that
we are talking about a Sink Event */
_someSetRegDataSink(data, env, msgsock);
_someSetRegDataSinkMask(data, env, EMInputReadMask);

regId = _someRegisterProc(some_gEMan, env, data,
ReadSocketAndPrint, ”READMSG”);

Original Class
SOMEEMRegisterData

Related Information
Methods: someSetRegDataSink, someClearRegData

SOMEEMRegisterData class

Ref – 352 Event Management Framework SOMobjects Base Toolkit

someSetRegDataSink Method

Purpose
Sets the file descriptor (or socket ID, or message queue ID) for the sink event.

IDL Syntax
void someSetRegDataSink (

in long sink);

Description
This method enables setting the true type of an event object. Typically, a subclass of Event calls
this method (or overrides this method) to set the event type to indicate its true class(type).

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

sink An integer value indicating the file descriptor for input/output. It can also be a
socket ID, pipe ID or a message queue ID.

Return Value
None.

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

SOMEEMRegisterData class

Ref – 353Event Management FrameworkProgrammers Reference Manual

someSetRegDataSinkMask Method

Purpose
Sets the sink mask within the registration data object.

IDL Syntax
void someSetRegDataSinkMask (

in unsigned long sinkmask);

Description
The sink mask within the registration data allows one to express interest in different events of the
same event source. For example, using this mask one can express interest in being notified
when there is input for reading, when the resource is ready for writing output, or just when
exceptions occur.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

sinkmask A bit mask indicating the types of events of interest on a given sink.

Return Value
None.

Example
#include <eman.h>
long regId1;
int msgsock;

 ...
/* Register msgsock socket with EMan for further communication */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMSinkEvent, NULL);
_someSetRegDataSink(data, env, msgsock);
_someSetRegDataSinkMask(data, env,

 EMInputReadMask|EMInputExceptMask);
/* The above call expresses interest in knowing when there is
 input to be read from the socket and when there is an exception
condition associated with this socket. */
regId = _someRegisterProc(some_gEMan, env, data,

ReadSocketAndPrint, ”READMSG”);

Original Class
SOMEEMRegisterData

Related Information
Methods: someSetRegDataSink, someClearRegData

SOMEEMRegisterData class

Ref – 354 Event Management Framework SOMobjects Base Toolkit

someSetRegDataTimerCount Method

Purpose
Sets the number of times the timer will trigger, within the registration data.

IDL Syntax
void someSetRegDataTimerCount (

in long count);

Description
The someSetRegDataTimerCount method sets the number of times the timer will trigger,
within the registration data. The default behavior is for the timer to trigger indefinitely.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

count An integer indicating the number of times the timer event has to occur.

Return Value
None.

Example
#include <eman.h>
long regId1;

 ...
/* Register a timer */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, env, 100);
_someSetRegDataTimerCount(data, env, 1);
/* make this a one time timer event */
regId1 = _someRegister(some_gEMan,env, data, target,

”eventMethod”, ”Timer 100”);

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

SOMEEMRegisterData class

Ref – 355Event Management FrameworkProgrammers Reference Manual

someSetRegDataTimerInterval Method

Purpose
Sets the timer interval within the registration data.

IDL Syntax
void someSetRegDataTimerInterval (

in long interval);

Description
This call allows setting the timer interval (in milliseconds) within the registration data object.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

interval An integer indicating the timer interval in milliseconds.

Return Value
None.

Example
#include <eman.h>
long regId1;

 ...
/* Register a timer */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, env, 100);
/* Sets the timer interval to 100 milliseconds */
regId1 = _someRegister(some_gEMan,env, data, target,

”eventMethod”, ”Timer 100”);

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

SOMEEvent class

Ref – 356 Event Management Framework SOMobjects Base Toolkit

SOMEEvent Class

Description
This is the base class for all generic events within the Event Manager. It simply timestamps an
event before it is passed to a callback routine. The event type is set to the true type by a
subclass. The types currently used by the Event Management Framework are defined in
eventmsk.h. Any subclass of this class must avoid name and value collisions with eventmsk.h.

File Stem
event

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somevGetEventTime
somevGetEventType
somevSetEventTime
somevSetEventType

Overriding Methods
somInit

SOMEEvent class

Ref – 357Event Management FrameworkProgrammers Reference Manual

somevGetEventTime Method

Purpose
Returns the time of the generic event in milliseconds.

IDL Syntax
unsigned long somevGetEventTime ();

Description
Eman timestamps every event before dispatching it. The current time is obtained from the
operating system (for example, using a ‘gettimeofday’ call), is converted to milliseconds, and is
given as the value of the timestamp. When this function is called, the event timestamp is
returned.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
An event timestamp in milliseconds.

Original Class
SOMEEvent

Related Information
Methods: somevSetEventTime

SOMEEvent class

Ref – 358 Event Management Framework SOMobjects Base Toolkit

somevGetEventType Method

Purpose
Returns the type of the generic event.

IDL Syntax
unsigned long somevGetEventType ();

Description
This method returns the true type of a given event object (for example, to identify the particular
subclass of the event object). The type is an integer valued constant defined in eventmsk.h.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
A type value (an integer constant defined in eventmsk.h).

Original Class
SOMEEvent

Related Information
Methods: somevSetEventType

SOMEEvent class

Ref – 359Event Management FrameworkProgrammers Reference Manual

somevSetEventTime Method

Purpose
Sets the time of the generic event (time is in milliseconds).

IDL Syntax
void somevSetEventTime (

in unsigned long time);

Description
EMan timestamps every event before dispatching it. The current time is obtained from the
operating system (for example, using a ‘gettimeofday’ call), converted to milliseconds, and is
given as the value of the timestamp. When an event occurs, EMan sets the timestamp of the
event by calling this method.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

time The time of day expressed in milliseconds.

Return Value
None.

Original Class
SOMEEvent

Related Information
Methods: somevGetEventTime

SOMEEvent class

Ref – 360 Event Management Framework SOMobjects Base Toolkit

somevSetEventType Method

Purpose
Sets the type of the generic event.

IDL Syntax
void somevSetEventType (

in unsigned long type);

Description
This method enables setting the true type of an event object. Typically, a subclass of
SOMEEvent calls this method (or overrides this method) to set the event type to indicate its true
type.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

type An integer value indicating the type of the event (a constant defined in
eventmsk.h).

Return Value
None.

Original Class
SOMEEvent

Related Information
Methods: somevGetEventType

SOMESinkEvent class

Ref – 361Event Management FrameworkProgrammers Reference Manual

SOMESinkEvent Class

Description
This class describes a sink event that is generated by EMan when it notices activity on a
registered sink. On AIX, a sink refers to any file descriptor (file open for reading or writing), any
pipe descriptor, a socket ID or a message queue ID. On OS/2, a sink refers to a socket ID. One
can register for three types of interest in a sink: Read interest, Write interest, and Exception
interest. (See eventmsk.h file to determine the appropriate bit constants and see method
someSetRegDataSinkMask for their use.)

EMan passes an instance of this class as a parameter to the callback registered for Sink Events.
The callback can query the instance for some information on the sink.

File Stem
sinkev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent, SOMObject

New Methods
somevGetEventSink
somevSetEventSink

Overriding Methods
somInit

SOMESinkEvent class

Ref – 362 Event Management Framework SOMobjects Base Toolkit

somevGetEventSink Method

Purpose
Returns the sink, or source of I/O, of the generic sink event.

IDL Syntax
long somevGetEventSink ();

Description
The sink ID in the SinkEvent is returned. For message queues it is the queue ID, for files it is the
file descriptor, for sockets it is the socket ID, and for pipes it is the pipe descriptor.

Parameters
receiver A pointer to an object of class SOMESinkEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
An integer value indicating the file descriptor for input/output. It can also be a socket ID, pipe ID
or a message queue ID.

Original Class
SOMESinkEvent

Related Information
Methods: somevSetEventSink

SOMESinkEvent class

Ref – 363Event Management FrameworkProgrammers Reference Manual

somevSetEventSink Method

Purpose
Sets the sink, or source of I/O, of the generic sink event.

IDL Syntax
void somevSetEventSink (

in long sink);

Description
The sink ID in the SinkEvent is set. For message queues, it is the queue ID; for files it is the file
descriptor; for sockets it is the socket ID; and for pipes it is the pipe descriptor.

Parameters
receiver A pointer to an object of class SOMESinkEvent.

ev A pointer to the Environment structure for the calling method.

sink An integer value indicating the file descriptor for input/output. It can also be a
socket ID, pipe ID, or a message queue ID.

Return Value
None.

Original Class
SOMESinkEvent

Related Information
Methods: somevGetEventSink

SOMETimerEvent class

Ref – 364 Event Management Framework SOMobjects Base Toolkit

SOMETimerEvent Class

Description
This class describes a timer event that is generated by EMan when any of its registered timers
pops.

EMan passes an instance of this class as a parameter to the callbacks registered for Timer
Events. The callback can query the instance for information on the timer interval and on any
generic event properties.

File Stem
timerev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent, SOMObject

New Methods
somevGetEventInterval
somevSetEventInterval

Overriding Methods
somInit

SOMETimerEvent class

Ref – 365Event Management FrameworkProgrammers Reference Manual

somevGetEventInterval Method

Purpose
Returns the interval of the generic timer event (time in milliseconds).

IDL Syntax
void somevGetEventInterval ();

Description
The somevGetEventInterval method returns the interval of the generic timer event (time in
milliseconds).

Parameters
receiver A pointer to an object of class SOMETimerEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
The interval time in milliseconds.

Original Class
SOMETimerEvent

Related Information
Methods: somevSetEventInterval

SOMETimerEvent class

Ref – 366 Event Management Framework SOMobjects Base Toolkit

somevSetEventInterval Method

Purpose
Sets the interval of the generic timer event (in milliseconds).

IDL Syntax
void somevSetEventInterval (

in long interval);

Description
The somevSetEventInterval method sets the interval of the generic timer event (in millisec-
onds).

Parameters
receiver A pointer to an object of class SOMETimerEvent.

ev A pointer to the Environment structure for the calling method.

interval The timer interval in milliseconds.

Return Value
None.

Original Class
SOMETimerEvent

Related Information
Methods: somevGetEventInterval

SOMEWorkProcEvent class

Ref – 367Event Management FrameworkProgrammers Reference Manual

SOMEWorkProcEvent Class

Description
This class describes a work procedure event object. It currently has no methods of its own.
However, it sets the event type in its super class to say “EMWorkProcEvent” to help identify
itself. These events are created and dispatched by EMan when a work procedure (something
that the application wants to run when no other events are happening) is registered with EMan.

EMan passes an instance of this class as a parameter to the callback registered for WorkProc
Events.

File Stem
workprev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent, SOMObject

New Methods
None.

Overriding Methods
somInit

Ref – 368 Event Management Framework SOMobjects Base Toolkit

Ref – 369Programmers Reference Manual

����	

�

activate_impl_failed method, Ref–267

add_arg method, Ref–222

add_class_to_impldef method, Ref–188

add_impldef method, Ref–189

add_item method, Ref–198

AttributeDef class, Ref–278

See also “Interface Repository Framework”

�

BOA class, Ref–165

See also “DSOM Framework”

�

change_id method, Ref–268

change_implementation method, Ref–166

ConstantDef class, Ref–279

See also “Interface Repository Framework”

Contained class, Ref–280

See also “Interface Repository Framework”

Container class, Ref–286

See also “Interface Repository Framework”

contents method, Ref–287

Context class, Ref–177

See also “DSOM Framework”

create method, Ref–167

create_child method, Ref–178

create_constant method, Ref–269

create_list method, Ref–215

create_operation_list method, Ref–216

create_request method, Ref–240

create_request_args method, Ref–243

create_SOM_ref method, Ref–271

�

deactivate_impl method, Ref–169

deactivate_obj method, Ref–170

delete_impldef method, Ref–190

delete_values method, Ref–179

describe method, Ref–282

describe_contents method, Ref–289

describe_interface method, Ref–296

destroy method (Context object), Ref–180

destroy method (Request object), Ref–224

dispose method, Ref–171

DSOM Framework, Ref–155

BOA class, Ref–165
change_implementation method, Ref–166
create method, Ref–167
deactivate_impl method, Ref–169
deactivate_obj method, Ref–170
dispose method, Ref–171
get_id method, Ref–172
get_principal method, Ref–173
impl_is_ready method, Ref–174
obj_is_ready method, Ref–175
set_exception method, Ref–176

Context class, Ref–177
create_child method, Ref–178
delete_values method, Ref–179
destroy method (Context object), Ref–180
get_values method, Ref–181
set_one_value method, Ref–183
set_values method, Ref–184

Functions
get_next_response function, Ref–157
ORBfree function, Ref–158
send_multiple_requests function, Ref–159
SOMD_Init function, Ref–161
SOMD_RegisterCallback function, Ref–162
SOMD_Uninit function, Ref–164

ImplementationDef class, Ref–185

ImplRepository class, Ref–187
add_class_to_impldef method, Ref–188
add_impldef method, Ref–189
delete_impldef method, Ref–190
find_impldef method, Ref–192
find_impldef_by_alias method, Ref–193
find_impldef_by_class method, Ref–194
find_impldef_classes method, Ref–191
remove_class_from_impldef method, Ref–195
update_impldef method, Ref–196

NVList class, Ref–197
add_item method, Ref–198
free method, Ref–200
free_memory method, Ref–201
get_count method, Ref–203
get_item method, Ref–204
set_item method, Ref–206

ObjectMgr class, Ref–208
somdDestroyObject method, Ref–209
somdGetIdFromObject method, Ref–210
somdGetObjectFromId method, Ref–211
somdNewObject method, Ref–212
somdReleaseObject method, Ref–213

ORB class, Ref–214
create_list method, Ref–215
create_operation_list method, Ref–216
get_default_context method, Ref–217
object_to_string method, Ref–218
string_to_object method, Ref–219

Principal class, Ref–220

Request class, Ref–221
add_arg method, Ref–222
destroy method, Ref–224
get_response method, Ref–226
invoke method, Ref–228
send method, Ref–230

Ref – 370 SOMobjects Base Toolkit

DSOM Framework (cont’d.)

SOMDClientProxy class, Ref–232
somdProxyFree method, Ref–233
somdProxyGetClass method, Ref–234
somdProxyGetClassName method, Ref–235
somdTargetFree method, Ref–236
somdTargetGetClass method, Ref–237
somdTargetGetClassName method, Ref–238

SOMDObject class, Ref–239
create_request method, Ref–240
create_request_args method, Ref–243
duplicate method, Ref–245
get_implementation method, Ref–246
get_interface method, Ref–247
is_constant method, Ref–248
is_nil method, Ref–249
is_proxy method, Ref–250
is_SOM_ref method, Ref–251
release method, Ref–252

SOMDObjectMgr class, Ref–253
somdFindAnyServerByClass method, Ref–254
somdFindServer method, Ref–255
somdFindServerByName method, Ref–256
somdFindServersByClass method, Ref–257

SOMDServer class, Ref–258
somdCreateObj method, Ref–259
somdDeleteObj method, Ref–260
somdDispatchMethod method, Ref–261
somdGetClassObj method, Ref–262
somdObjReferencesCached method, Ref–263
somdRefFromSOMObj method, Ref–264
somdSOMObjFromRef method, Ref–265

SOMOA class, Ref–266
activate_impl_failed method, Ref–267
change_id method, Ref–268
create_constant method, Ref–269
create_SOM_ref method, Ref–271
execute_next_request method, Ref–272
execute_request_loop method, Ref–273
get_SOM_object method, Ref–275

duplicate method, Ref–245

�

EMan, Ref–327

See also “Event Management Framework”

Event Management Framework, Ref–327

SOMEClientEvent class, Ref–328
somevGetEventClientData method, Ref–329
somevGetEventClientType method, Ref–330
somevSetEventClientData method, Ref–331
somevSetEventClientType method, Ref–332

SOMEEMan class, Ref–333
someChangeRegData method, Ref–335
someGetEManSem method, Ref–336
someProcessEvent method, Ref–337
someProcessEvents method, Ref–338
someQueueEvent method, Ref–339
someRegister method, Ref–340
someRegisterEv method, Ref–342
someRegisterProc method, Ref–344
someReleaseEManSem method, Ref–345

Event Management Framework (cont’d.)

SOMEEMan class (cont’d.)
someShutdown method, Ref–346
someUnRegister method, Ref–347

SOMEEMRegisterData class, Ref–348
someClearRegData method, Ref–349
someSetRegDataClientType method, Ref–350
someSetRegDataEventMask method, Ref–351
someSetRegDataSink method, Ref–352
someSetRegDataSinkMask method, Ref–353
someSetRegDataTimerCount method, Ref–354
someSetRegDataTimerInterval method, Ref–355

SOMEEvent class, Ref–356
somevGetEventTime method, Ref–357
somevGetEventType method, Ref–358
somevSetEventTime method, Ref–359
somevSetEventType method, Ref–360

SOMESinkEvent class, Ref–361
somevGetEventSink method, Ref–362
somevSetEventSink method, Ref–363

SOMETimerEvent class, Ref–364
somevGetEventInterval method, Ref–365
somevSetEventInterval method, Ref–366

SOMEWorkProcEvent class, Ref–367

ExceptionDef class, Ref–293

See also “Interface Repository Framework”

execute_next_request method, Ref–272

execute_request_loop method, Ref–273

�
find_impldef method, Ref–192

find_impldef_by_alias method, Ref–193

find_impldef_by_class method, Ref–194

find_impldef_classes method, Ref–191

free method, Ref–200

free_memory method, Ref–201

�
get_count method, Ref–203

get_default_context method, Ref–217

get_id method, Ref–172

get_implementation method, Ref–246

get_interface method, Ref–247

get_item method, Ref–204

get_next_response function, Ref–157

get_principal method, Ref–173

get_response method, Ref–226

get_SOM_object method, Ref–275

get_values method, Ref–181

�
ImplementationDef class, Ref–185

See also “DSOM Framework”

impl_is_ready method, Ref–174

ImplRepository class, Ref–187

See also “DSOM Framework”

Ref – 371Programmers Reference Manual

Interface Repository Framework, Ref–277

AttributeDef class, Ref–278

ConstantDef class, Ref–279

Contained class, Ref–280
describe method, Ref–282
within method, Ref–284

Container class, Ref–286
contents method, Ref–287
describe_contents method, Ref–289
lookup_name method, Ref–291

ExceptionDef class, Ref–293

Functions. See “Interface Repository Framework,
TypeCode... functions”

InterfaceDef class, Ref–294
describe_interface method, Ref–296

ModuleDef class, Ref–298

OperationDef class, Ref–299

ParameterDef class, Ref–301

Repository class, Ref–302
lookup_id method, Ref–303
lookup_modifier method, Ref–304
release_cache method, Ref–306

TypeCode... functions
TypeCode_alignment function, Ref–308
TypeCode_copy function, Ref–309
TypeCode_equal function, Ref–310
TypeCode_free function, Ref–311
TypeCode_kind function, Ref–312
TypeCodeNew function, Ref–314
TypeCode_param_count function, Ref–316
TypeCode_parameter function, Ref–317
TypeCode_print function, Ref–319
TypeCode_setAlignment function, Ref–320
TypeCode_size function, Ref–321

TypeDef class, Ref–307

InterfaceDef class, Ref–294

See also “Interface Repository Framework”

invoke method, Ref–228

is_constant method, Ref–248

is_nil method, Ref–249

is_proxy method, Ref–250

is_SOM_ref method, Ref–251

�
lookup_id method, Ref–303

lookup_modifier method, Ref–304

lookup_name method, Ref–291

�
Metaclass classes/methods, Ref–323

SOMMSingleInstance class, Ref–324
sommGetSingleInstance method, Ref–325

ModuleDef class, Ref–298

See also “Interface Repository Framework”

�
NVList class, Ref–197

See also “DSOM Framework”

�
ObjectMgr class, Ref–208

See also “DSOM Framework”

object_to_string method, Ref–218

obj_is_ready method, Ref–175

OperationDef class, Ref–299

See also “Interface Repository Framework”

ORB class, Ref–214

See also “DSOM Framework”

ORBfree function, Ref–158

�
ParameterDef class, Ref–301

See also “Interface Repository Framework”

Principal class, Ref–220

See also “DSOM Framework”

�
release method, Ref–252

release_cache method, Ref–306

remove_class_from_impldef method, Ref–195

Repository class, Ref–302

See also “Interface Repository Framework”

Request class, Ref–221

See also “DSOM Framework”

�
send method, Ref–230

send_multiple_requests function, Ref–159

set_exception method, Ref–176

set_item method, Ref–206

set_one_value method, Ref–183

set_values method, Ref–184

SOM kernel, Ref–1

Functions
somBeginPersistentIds function, Ref–2, Ref–4,

Ref–6
SOMCalloc function, Ref–37
somCheckId function, Ref–7
SOMClassInitFuncName function, Ref–38
somClassResolve function, Ref–8
somCompareIds function, Ref–10
somDataResolve function, Ref–11
SOMDeleteModule function, Ref–39
somEndPersistentIds function, Ref–12
somEnvironmentNew function, Ref–13
SOMError function, Ref–40
somExceptionFree function, Ref–14
somExceptionId function, Ref–15
somExceptionValue function, Ref–16
SOMFree function, Ref–41
somGetGlobalEnvironment function, Ref–17
somIdFromString function, Ref–18
somIsObj function, Ref–19
SOMLoadModule function, Ref–42
somLPrintf function, Ref–20

Ref – 372 SOMobjects Base Toolkit

SOM kernel (cont’d.)

Functions (cont’d.)
SOMMalloc function, Ref–43
SOMOutCharRoutine function, Ref–44
somParentNumResolve function, Ref–21
somParentResolve function, Ref–23
somPrefixLevel function, Ref–24
somPrintf function, Ref–25
SOMRealloc function, Ref–45
somRegisterId function, Ref–26
somResolve function, Ref–27
somResolveByName function, Ref–29
somSetException function, Ref–30
somSetExpectedIds function, Ref–32
somStringFromId function, Ref–33
somTotalRegIds function, Ref–34
somUniqueKey function, Ref–35
somVprintf function, Ref–36

Macros
SOM_Assert macro, Ref–46
SOM_CreateLocalEnvironment macro, Ref–47
SOM_DestroyLocalEnvironment macro, Ref–48
SOM_Error macro, Ref–49
SOM_Expect macro, Ref–50
SOM_GetClass macro, Ref–51
SOM_InitEnvironment macro, Ref–52
SOM_NoTrace macro, Ref–53
SOM_Resolve macro, Ref–54
SOM_ResolveNoCheck macro, Ref–55
SOM_Test macro, Ref–56
SOM_TestC macro, Ref–57
SOM_UninitEnvironment macro, Ref–58
SOM_WarnMsg macro, Ref–59

SOMClass class, Ref–60
somAddDynamicMethod method, Ref–63
somAddStaticMethod method, Ref–65
somAllocate method, Ref–67
somCheckVersion method, Ref–68
somClassReady method, Ref–70
somDeallocate method, Ref–71
somDescendedFrom method, Ref–72
somFindMethod(OK) methods, Ref–73
somFindSMethod(OK) methods, Ref–75
somGetApplyStub method, Ref–76
somGetClassData method, Ref–77
somGetClassMtab method, Ref–78
somGetInstanceOffset method, Ref–79
somGetInstancePartSize method, Ref–80
somGetInstanceSize method, Ref–81
somGetInstanceToken method, Ref–82
somGetMemberToken method, Ref–83
somGetMethodData method, Ref–84
somGetMethodDescriptor method, Ref–85
somGetMethodIndex method, Ref–86
somGetMethodOffset method, Ref–87
somGetMethodToken method, Ref–88
somGetName method, Ref–89
somGetNthMethodData method, Ref–90
somGetNthMethodInfo, Ref–91
somGetNumMethods method, Ref–92
somGetNumStaticMethods method, Ref–93
somGetParent(s) methods, Ref–94
somGetPCIsMtab(s) methods, Ref–95
somGetRdStub, Ref–96

SOM kernel (cont’d.)

SOMClass class (cont’d.)
somGetVersionNumbers method, Ref–98
somInitClass method, Ref–99
somInitMIClass method, Ref–101
somLookupMethod method, Ref–103
somNew(NoInit) methods, Ref–105
somOverrideMtab method, Ref–106
somOverrideSMethod method, Ref–108
somRenew(NoInit) methods, Ref–109
somSetClassData method, Ref–111
somSupportsMethod method, Ref–112

SOMClassMgr class, Ref–113
somClassFromId method, Ref–115
somFindClass method, Ref–116
somFindClsInFile method, Ref–118
somGetInitFunction method, Ref–120
somGetRelatedClasses method, Ref–121
somLoadClassFile method, Ref–123
somLocateClassFile method, Ref–124
somMergeInto method, Ref–125
somRegisterClass method, Ref–127
somSubstituteClass method, Ref–128
somUnloadClassFile method, Ref–130
somUnregisterClass method, Ref–131

SOMObject class, Ref–132
somClassDispatch method, Ref–133
somDispatch method, Ref–133
somDispatchX method, Ref–136
somDumpSelf method, Ref–138
somDumpSelfInt method, Ref–139
somFree method, Ref–141
somGetClass method, Ref–142
somGetClassName method, Ref–143
somGetSize method, Ref–144
somInit method, Ref–145
somIsA method, Ref–147
somIsInstanceOf method, Ref–149
somPrintSelf method, Ref–151
somRespondsTo method, Ref–152
somUninit method, Ref–153

somAddDynamicMethod method, Ref–63

somAddStaticMethod method, Ref–65

somAllocate method, Ref–67

SOM_Assert macro, Ref–46

somBeginPersistentIds function, Ref–2, Ref–4, Ref–6

SOMCalloc function, Ref–37

somCheckId function, Ref–7

somCheckVersion method, Ref–68

SOMClass class, Ref–60

See also “SOM kernel”

somClassDispatch method, Ref–133

somClassFromId method, Ref–115

SOMClassInitFuncName function, Ref–38

SOMClassMgr class, Ref–113

See also “SOM kernel”

somClassReady method, Ref–70

somClassResolve function, Ref–8

somCompareIds function, Ref–10

SOM_CreateLocalEnvironment macro, Ref–47

Ref – 373Programmers Reference Manual

somDataResolve function, Ref–11

SOMDClientProxy class, Ref–232

See also “DSOM Framework”

somdCreateObj method, Ref–259

somdDeleteObj method, Ref–260

somdDestroyObject method, Ref–209

somdDispatchMethod method, Ref–261

somDeallocate method, Ref–71

SOMDeleteModule function, Ref–39

somDescendedFrom method, Ref–72

SOM_DestroyLocalEnvironment macro, Ref–48

somdFindAnyServerByClass method, Ref–254

somdFindServer method, Ref–255

somdFindServerByName method, Ref–256

somdFindServersByClass method, Ref–257

somdGetClassObj method, Ref–262

somdGetIdFromObject method, Ref–210

somdGetObjectFromId method, Ref–211

SOMD_Init function, Ref–161

somDispatch method, Ref–133

somDispatchX method, Ref–136

somdNewObject method, Ref–212

SOMDObject class, Ref–239

See also “DSOM Framework”

SOMDObjectMgr class, Ref–253

See also “DSOM Framework”

somdObjReferencesCached method, Ref–263

somdProxyFree method, Ref–233

somdProxyGetClass method, Ref–234

somdProxyGetClassName method, Ref–235

somdRefFromSOMObj method, Ref–264

SOMD_RegisterCallback function, Ref–162

somdReleaseObject method, Ref–213

SOMDServer class, Ref–258

See also “DSOM Framework”

somdSOMObjFromRef method, Ref–265

somdTargetFree method, Ref–236

somdTargetGetClass method, Ref–237

somdTargetGetClassName method, Ref–238

somDumpSelf method, Ref–138

somDumpSelfInt method, Ref–139

SOMD_Uninit function, Ref–164

someChangeRegData method, Ref–335

someClearRegData method, Ref–349

SOMEClientEvent class, Ref–328

See also “Event Management Framework”

SOMEEMan class, Ref–333

See also “Event Management Framework”

SOMEEMRegisterData class, Ref–348

See also “Event Management Framework”

SOMEEvent class, Ref–356

See also “Event Management Framework”

someGetEManSem method, Ref–336

somEndPersistentIds function, Ref–12

somEnvironmentNew function, Ref–13

someProcessEvent method, Ref–337

someProcessEvents method, Ref–338

someQueueEvent method, Ref–339

someRegister method, Ref–340

someRegisterEV method, Ref–342

someRegisterProc method, Ref–344

someReleaseEManSem method, Ref–345

SOMError function, Ref–40

SOM_Error macro, Ref–49

someSetRegDataClientType method, Ref–350

someSetRegDataEventMask method, Ref–351

someSetRegDataSink method, Ref–352

someSetRegDataSinkMask method, Ref–353

someSetRegDataTimerCount method, Ref–354

someSetRegDataTimerInterval method, Ref–355

someShutdown method, Ref–346

SOMESinkEvent class, Ref–361

See also “Event Management Framework”

SOMETimerEvent class, Ref–364

someUnRegister method, Ref–347

somevGetEventClientData, Ref–329

somevGetEventClientType method, Ref–330

somevGetEventInterval method, Ref–365

somevGetEventSink method, Ref–362

somevGetEventTime method, Ref–357

somevGetEventType method, Ref–358

somevSetEventClientData, Ref–331

somevSetEventClientType method, Ref–332

somevSetEventInterval method, Ref–366

somevSetEventSink method, Ref–363

somevSetEventTime method, Ref–359

somevSetEventType method, Ref–360

SOMEWorkProcEvent class, Ref–367

See also “Event Management Framework”

somExceptionFree function, Ref–14

somExceptionId function, Ref–15

somExceptionValue function, Ref–16

SOM_Expect macro, Ref–50

somFindClass method, Ref–116

somFindClsInFile method, Ref–118

somFindMethod(OK) methods, Ref–73

somFindSMethod(OK) methods, Ref–75

SOMFree function, Ref–41

somFree method, Ref–141

somGetApplyStub method, Ref–76

SOM_GetClass macro, Ref–51

somGetClass method, Ref–142

somGetClassData method, Ref–77

somGetClassMtab method, Ref–78

Ref – 374 SOMobjects Base Toolkit

somGetClassName method, Ref–143

somGetGlobalEnvironment function, Ref–17

somGetInitFunction method, Ref–120

somGetInstanceOffset method, Ref–79

somGetInstancePartSize method, Ref–80

somGetInstanceSize method, Ref–81

somGetInstanceToken method, Ref–82

somGetMemberToken method, Ref–83

somGetMethodData method, Ref–84

somGetMethodDescriptor method, Ref–85

somGetMethodIndex method, Ref–86

somGetMethodOffset method, Ref–87

somGetMethodToken method, Ref–88

somGetName method, Ref–89

somGetNthMethodData method, Ref–90

somGetNthMethodInfo method, Ref–91

somGetNumMethods method, Ref–92

somGetNumStaticMethods method, Ref–93

somGetParent(s) methods, Ref–94

somGetPCIsMtab(s) methods, Ref–95

somGetRdStub, Ref–96

somGetRelatedClasses method, Ref–121

somGetSize method, Ref–144

somGetVersionNumbers method, Ref–98

somIdFromString function, Ref–18

somInit method, Ref–145

somInitClass method, Ref–99

SOM_InitEnvironment macro, Ref–52

somInitMIClass method, Ref–101

somIsA method, Ref–147

somIsInstanceOf method, Ref–149

somIsObj function, Ref–19

somLoadClassFile method, Ref–123

SOMLoadModule function, Ref–42

somLocateClassFile method, Ref–124

somLookupMethod method, Ref–103

somLPrintf function, Ref–20

SOMMalloc function, Ref–43

somMergeInto method, Ref–125

sommGetSingleInstance method, Ref–325

SOMMSingleInstance class, Ref–324

See also “Metaclass classes/methods”

somNew(NoInit) methods, Ref–105

SOM_NoTrace macro, Ref–53

SOMOA class, Ref–266

See also “DSOM Framework”

SOMObject class, Ref–132

See also “SOM kernel”

SOMOutCharRoutine function, Ref–44

somOverrideMtab method, Ref–106

somOverrideSMethod method, Ref–108

somParentNumResolve function, Ref–21

somParentResolve function, Ref–23

somPrefixLevel function, Ref–24

somPrintf function, Ref–25

somPrintSelf method, Ref–151

SOMRealloc function, Ref–45

somRegisterClass method, Ref–127

somRegisterId function, Ref–26

somRenew(NoInit) methods, Ref–109

somResolve function, Ref–27

SOM_Resolve macro, Ref–54

somResolveByName function, Ref–29

SOM_ResolveNoCheck macro, Ref–55

somRespondsTo method, Ref–152

somSetClassData method, Ref–111

somSetException function, Ref–30

somSetExpectedIds function, Ref–32

somStringFromId function, Ref–33

somSubstituteClass method, Ref–128

somSupportsMethod method, Ref–112

SOM_Test macro, Ref–56

SOM_TestC macro, Ref–57

somTotalRegIds function, Ref–34

somUninit method, Ref–153

SOM_UninitEnvironment macro, Ref–58

somUniqueKey function, Ref–35

somUnloadClassFile method, Ref–130

somUnregisterClass method, Ref–131

somVprintf function, Ref–36

SOM_WarnMsg macro, Ref–59

string_to_object method, Ref–219

�
TypeCode_alignment function, Ref–308

TypeCode_setAlignment function, Ref–320

TypeCode_copy function, Ref–309

TypeCode_equal function, Ref–310

TypeCode_free function, Ref–311

TypeCode_kind function, Ref–312

TypeCodeNew function, Ref–314

TypeCode_param_count function, Ref–316

TypeCode_parameter function, Ref–317

TypeCode_print function, Ref–319

TypeCode_size function, Ref–321

TypeDef class, Ref–307

See also “Interface Repository Framework”

�
update_impldef method, Ref–196

�
within method, Ref–284

