
Chapter 6. Distributed SOM (DSOM)

Contents

6.1 Introduction 6 – 1.

What is Distributed SOM? 6 – 1.

DSOM features 6 – 1.

When to use DSOM 6 – 2.

Chapter outline 6 – 2.

Tutorial example 6 – 2.

Programming DSOM applications 6 – 2.

Configuring DSOM applications 6 – 2.

Running DSOM applications 6 – 2.

DSOM and CORBA 6 – 3.

Advanced topics 6 – 3.

Error reporting and troubleshooting 6 – 3.

6.2 A Simple DSOM Example 6 – 4.

The “Stack” interface 6 – 4.

Client program using a local stack 6 – 4.

Client program using a remote stack 6 – 5.

Using specific servers 6 – 7.

A note on finding existing objects 6 – 8.

“Stack” server implementation 6 – 8.

Compiling the application 6 – 8.

Installing the implementation 6 – 8.

Setting environment variables 6 – 9.

Registering the class in the Interface Repository 6 – 9.

Registering the server in the Implementation Repository 6 – 10.

Running the application 6 – 10.

Starting the DSOM daemon 6 – 10.

Running the client 6 – 10.

“Stack” example run-time scenario 6 – 10.

Summary 6 – 12.

6.3 Basic Client Programming 6 – 13.

DSOM Object Manager 6 – 13.

Initializing a client program 6 – 14.

Exiting a client program 6 – 14.

Creating remote objects 6 – 15.

Creating an object in an arbitrary server 6 – 15.

Proxy objects 6 – 16.

Servers and server objects 6 – 16.

Creating an object in a specific server 6 – 16.

Inquiring about a remote object’s implementation 6 – 17.

Destroying remote objects 6 – 18.

Destroying objects via a proxy 6 – 18.

Destroying objects via the DSOM Object Manager 6 – 18.

Destroying objects via a server object 6 – 19.

Creating remote objects using user-defined metaclasses 6 – 19.

Saving and restoring references to objects 6 – 20.

ii SOMobjects Base Toolkit Users Guide

Finding existing objects 6 – 21.

Finding server objects 6 – 21.

Invoking methods on remote objects 6 – 21.

Passing object references in method calls 6 – 21.

Writing clients that are also servers 6 – 22.

Compiling and linking clients 6 – 22.

6.4 Basic Server Programming 6 – 23.

Server run-time objects 6 – 23.

Server implementation definition 6 – 23.

SOM Object Adapter (SOMOA) 6 – 24.

Server object 6 – 24.

Server activation 6 – 24.

Initializing a server program 6 – 25.

Initializing the DSOM run-time environment 6 – 25.

Initializing the server’s ImplementationDef 6 – 25.

Initializing the SOM Object Adapter 6 – 25.

When initialization fails 6 – 26.

Processing requests 6 – 26.

Exiting a server program 6 – 27.

Managing objects in the server 6 – 27.

Object references, ReferenceData, and the ReferenceData table 6 – 27.

Simple SOM object references 6 – 28.

SOMDServer (default server-object class) 6 – 28.

Creation and destruction of SOM objects 6 – 29.

Mapping objects to object references 6 – 29.

Hints on the use of create vs. create_constant 6 – 30.

Mapping object references to objects 6 – 30.

Dispatching a method 6 – 30.

Example: Writing a persistent object server 6 – 30.

Identifying the source of a request 6 – 33.

Compiling and linking servers 6 – 34.

6.5 Implementing Classes 6 – 35.

Using SOM class libraries 6 – 35.

Role of DSOM generic server program 6 – 35.

Role of SOM Object Adapter 6 – 35.

Role of SOMDServer 6 – 35.

Implementation constraints 6 – 36.

Using other object implementations 6 – 37.

Wrapping a printer API 6 – 37.

Building and registering class libraries 6 – 39.

6.6 Configuring DSOM Applications 6 – 40.

Preparing the environment 6 – 40.

Registering class interfaces 6 – 41.

Registering servers and classes 6 – 41.

Implementation definitions 6 – 41.

The ‘regimpl’ registration utility 6 – 42.

Registration steps 6 – 43.

Command line interface to ‘regimpl’ 6 – 45.

Programmatic interface to the Implementation Repository 6 – 46.

6.7 Running DSOM Applications 6 – 47.

Running the DSOM daemon (somdd) 6 – 47.

Running DSOM servers 6 – 47.

iiiSOMobjects Base Toolkit Users Guide

6.8 DSOM as a CORBA–compliant Object Request Broker 6 – 48.

Mapping OMG CORBA terminology onto DSOM 6 – 48.

Object Request Broker run-time interfaces 6 – 48.

Object references and proxy objects 6 – 50.

Creation of remote objects 6 – 52.

Interface definition language 6 – 52.

C language mapping 6 – 52.

Dynamic Invocation Interface (DII) 6 – 52.

Implementations and servers 6 – 53.

Object Adapters 6 – 54.

Extensions and limitations 6 – 54.

6.9 Advanced Topics 6 – 56.

Peer vs. client-server processes 6 – 56.

Multi-threaded DSOM programs 6 – 56.

Event-driven DSOM programs using EMan 6 – 56.

Sample server using EMan 6 – 57.

Dynamic Invocation Interface 6 – 59.

The NamedValue structure 6 – 59.

The NVList class 6 – 60.

Creating argument lists 6 – 61.

Building a Request 6 – 62.

Initiating a Request 6 – 62.

Example code 6 – 63.

Creating user-supplied proxies 6 – 65.

Sockets class 6 – 67.

6.10 Error Reporting and Troubleshooting 6 – 68.

Error reporting 6 – 68.

Error codes 6 – 68.

DSOM tracing 6 – 68.

Troubleshooting hints 6 – 69.

6.11 Limitations 6 – 72.

iv SOMobjects Base Toolkit Users Guide

Chapter 6. Distributed SOM (DSOM)

Notice: The SOMobjects Base Toolkit provides the capability for implementing Workstation
DSOM (distribution among processes on a single machine). Implementing an applica-
tion that is distributed across a network of machines requires Workgroup DSOM,
which is available only in the full-capability SOMobjects Developer Toolkit.

6.1 Introduction

What is Distributed SOM?
Whereas the power of SOM technology comes from the fact that SOM insulates the client of an
object from the object’s implementation, the power of DSOM lies in the fact that DSOM insulates
the client of an object from the object’s location.

Distributed SOM (or DSOM) provides a framework that allows application programs to access
objects across address spaces. That is, application programs can access objects in other
processes, even on different machines. Both the location and implementation of an object are
hidden from a client, and the client accesses the object (via method calls) in the same manner
regardless of its location.

DSOM currently supports two types of distribution: distribution among processes on the same
machine — referred to as Workstation DSOM — and distribution among a network of machines
— referred to as Workgroup DSOM. DSOM runs on the AIX (Release 3.2 and above) and OS/2
(Release 2.0 and above) operating systems. A Workstation DSOM application can run on a
machine in either environment using core capabilities of the SOMobjects system. Under the
full-capability SOMobjects Developer Toolkit, Workgroup DSOM supports distribution across
local area networks comprised of both OS/2 and AIX systems. Future releases of DSOM may
support large, enterprise-wide networks.

DSOM can be viewed in two ways:

� As an extension to the System Object Model, that allows a program to invoke methods on
SOM objects in other processes, and

� As an Object Request Broker (ORB); that is, a standardized “transport” for distributed
object interaction. In this respect, DSOM complies with the Common Object Request
Broker Architecture (CORBA) specification, published by the Object Management Group

(OMG) and x/Open�.

This chapter describes DSOM from both perspectives.

DSOM features
Here is a quick summary of some of DSOM’s more important features:

• Uses the standard SOM Compiler, Interface Repository, language bindings, and class li-
braries. Thus, DSOM provides a growth path for non-distributed SOM applications.

• Allows an application program to access a mix of local and remote objects. The fact that an
object is remote is transparent to the program.

• Provides run-time services for creating, destroying, identifying. locating, and dispatching
methods on remote objects. These services can be overridden or augmented to suit the
application.

• Uses existing interprocess communication (IPC) facilities for Workstation communication,
and common local area network (LAN) transport facilities for Workgroup communications.

6 – 2 SOMobjects Base Toolkit Users Guide

Support for TCP/IP, Netware IPX/SPX, and NetBios is provided. DSOM communications is
extensible in that an application can provide its own transport (see Appendix C, “Implement-
ing Sockets Subclasses,” of this User’s Guide).

• Provides support for writing multi-threaded (on OS/2) and event-driven programs.

• Provides a default object server program, which can be easily used to create SOM objects
and make those objects accessible to one or more client programs. If the default server
program is used, SOM class libraries are loaded upon demand, so no server programming or
compiling is necessary.

• Complies with the CORBA 1.1 specification, which is important for application portability.

When to use DSOM
DSOM should be used for those applications that require sharing of objects among multiple
programs. The object actually exists in only one process (this process is known as the object’s
server); the other processes (known as clients) access the object via remote method invoca-
tions, made transparently by DSOM.

DSOM should also be used for applications that require objects to be isolated from the main
program. This is usually done in cases where reliability is a concern — either to protect the object
from failures in other parts of the application, or (less often), to protect the application from an
object.

Note that some distributed applications may have special performance, reliability, or coopera-
tive processing requirements, to which the SOM Replication framework is better suited. The
Replication framework is oriented toward “groupware” (multi-party cooperative processing)
applications, and has facilities for fault tolerance and recovery. The Replication framework is
distinct from DSOM in that it maintains a complete replica of an object in each participant’s
address space, while DSOM establishes remote connections to shared objects. The Replica-
tion Framework is available only in the full-capability SOMobjects Developer Toolkit.

Chapter outline

Tutorial example
First, a complete example shows how an existing SOM class implementation (a “Stack”) can be
used, without modification, with DSOM to create a distributed “Stack” application. Using the
“Stack” example as backdrop, the basic DSOM interfaces are introduced.

Programming DSOM applications
All DSOM applications involve three kinds of programming:

• Client programming: writing code that uses objects;

• Server programming: writing code that implements and manages objects; and

• Implementing classes: writing code that implements objects.

Three sections — “Basic Client Programming”, “Basic Server Programming”, and “Implement-
ing Classes” — describe how to create DSOM applications from these three points of view. In
turn, the structure and services of the relevant DSOM run-time environment are explained.

Note: The three sections are presented in the order above to aid in their explanation. However,
the actual programming tasks are likely to be performed in the opposite order!

Additional examples are provided in these sections to illustrate DSOM services.

Configuring DSOM applications
The section “Configuring DSOM Applications” explains what is necessary to set up a DSOM
application, once the application has been built.

6 – 36. Distributed SOM (DSOM)

Running DSOM applications
The section “Running DSOM Applications” explains what is necessary to run a DSOM applica-
tion, once it has been built and configured.

DSOM and CORBA
Those readers interested in using DSOM as a CORBA-compliant ORB should read the section
entitled “DSOM as a CORBA-compliant Object Request Broker.” That section answers the
question: How are CORBA concepts implemented in DSOM?

Advanced topics
The section on “Advanced Topics” covers the following:

• “Peer vs. client-server processes” demonstrates how peer-to-peer object interactions are
supported in DSOM.

• “Dynamic Invocation Interface” details DSOM support for the CORBA dynamic invocation
interface to dynamically build and invoke methods on remote objects.

• “Creating user-supplied proxy classes” describes how to override proxy generation by the
DSOM run time and, instead, install a proxy object supplied by the user.

• “Sockets class” describes how DSOM uses Sockets subclasses.

Error reporting and troubleshooting
The section on “Error Reporting and Troubleshooting” discusses facilities to aid in problem
diagnosis.

6 – 4 SOMobjects Base Toolkit Users Guide

6.2 A Simple DSOM Example
A sample “Stack” application is presented in this section as a tutorial introduction to DSOM. It
demonstrates that, for simple examples like a “Stack”, after very little work the class can be used
to implement distributed objects that are accessed remotely. The example first presents the
“Stack” application components and the steps that the implementor must perform before the
application can be run, and then describes the run-time activity that results from executing the
application. This run-time scenario introduces several of the key architectural components of
the DSOM run-time environment.

The source code for this example is provided with the DSOM samples in the SOMobjects
Developer Toolkit.

The “Stack” interface

The example starts with the assumption that the class implementor has successfully built a
SOM class library DLL, called “stack.dll”, in the manner described in Chapter 4. The DLL
implements the following IDL interface.

interface Stack: SOMObject {
const long stackSize = 100;
boolean full();
boolean empty();
long top();
void pop();
void push(in long element);
#ifdef __SOMIDL__
implementation {
 releaseorder: full, empty, top, pop, push;
 dllname=”stack.dll”; // dll name
 somInit: override; // method modifier
 long stackimpl[stackSize]; // instance data
};
#endif

};

This DLL could have been built without the knowledge that it would ever be accessed remotely
(that is, built following the procedures in Chapter 4, “Implementing Classes in SOM”). Note,
however, that some DLLs may require changes in the way their classes pass arguments and
manage memory, in order to be used by remote clients (see the topic “Implementation
Constraints” in section 6.5, “Implementing Classes”).

Client program using a local stack

A simple client program written to use a local “Stack” object is displayed below. This C program
is shown so that the differences between a local and remote client program can be highlighted.

6 – 56. Distributed SOM (DSOM)

#include <stack.h>

int main(int argc, char *argv[]) {
Stack stk;
Environment e;

SOM_InitEnvironment(&e);
stk = StackNew();

_push(stk,&e,100);
_push(stk,&e,200);
_pop(stk,&e);
if (!_empty(stk,&e)) somPrintf(”Top: %d\n”, _top(stk,&e));

_somFree(stk);
SOM_UninitEnvironment(&e);

return(0);
}

Client program using a remote stack

The preceding program has been rewritten below to use DSOM to create and access a “Stack”
object somewhere in the system. The exact location of the object does not matter to the
application — it just wants a “Stack” object. Note that the stack operations of the two programs
are identical. The main differences lie in stack creation and destruction, as highlighted below.

#include <somd.h>

#include <stack.h>

int main(int argc, char *argv[]) {
Stack stk;
Environment e;

SOM_InitEnvironment(&e);
SOMD_Init(&e);

StackNewClass(Stack_MajorVersion, Stack_MinorVersion);

stk = _somdNewObject(SOMD_ObjectMgr, &e, ”Stack”, ””);

/* Note that the stack is accessed as if it is local */
_push(stk,&e,100);
_push(stk,&e,200);
_pop(stk,&e);
if (!_empty(stk,&e)) somPrintf(”Top: %d\n”, _top(stk,&e));

_somdDestroyObject(SOMD_ObjectMgr, &e, stk);

SOMD_Uninit(&e);

SOM_UninitEnvironment(&e);

return(0);
}

Let’s step through the differences.

First, every DSOM program must include the file <somd.h> (or, when using C ++, <somd.xh>).
This file defines constants, global variables, and run-time interfaces used by DSOM. Usually,
this file is sufficient to establish all necessary DSOM definitions.

6 – 6 SOMobjects Base Toolkit Users Guide

Next, DSOM requires its own initialization call.

SOMD_Init(&e);

The call to SOMD_Init initializes the DSOM run-time environment. SOMD_Init must be called
before any DSOM run-time calls are made. A side-effect of calling SOMD_Init is that a run-time
object, called the DSOM Object Manager, is created and a pointer to it is stored in the global
variable, SOMD_ObjectMgr, for programming convenience. The DSOM Object Manager pro-
vides basic run-time support for clients to find, create, destroy, and identify objects. The Object
Manager is discussed in detail in the section entitled “Basic Client Programming.”

Next, the local stack creation statement,

stk = StackNew();

was replaced by

StackNewClass(Stack_MajorVersion, Stack_MinorVersion);
stk = _somdNewObject(SOMD_ObjectMgr, &e, ”Stack”, ””);

The call to “StackNewClass” registers the “Stack” class with the SOM Class Manager. This call
is necessary to define the “Stack” class and its interfaces to the SOM run time. In fact, in the
original program “StackNewClass” is implicitly called by the “StackNew” procedure.

The call to somdNewObject asks the DSOM Object Manager (SOMD_ObjectMgr) to create a
“Stack” object, wherever it can find an implementation of “Stack”. (There are other methods with
which one can request specific servers.) If no object could be created, NULL is returned and an
exception is raised. Otherwise, the object returned is a “Stack” proxy.

A proxy is an object that is a local representative for a remote target object. A proxy inherits the
target object’s interface, so it responds to the same methods. Operations invoked on the proxy
are not executed locally, but are forwarded to the “real” target object for execution. The client
program always has a proxy for each remote target object on which it operates.

From this point on, the client program treats the “Stack” proxy exactly as it would treat a local
“Stack”. The “Stack” proxy takes responsibility for forwarding requests to and yielding results
from the remote “Stack”. For example,

_push(stk,&e,100);

causes a message representing the method call to be sent to the server process containing the
remote object. The DSOM run time in the server process decodes the message and invokes the
method on the target object. The result (in this case, just an indication of completion) is then
returned to the client process in a message. The DSOM run time in the client process decodes
the result message and returns any result data to the caller.

At the end of the original client program, the local “Stack” was destroyed by the statement,

_somFree(stk);

whereas in the client program above, the “Stack” proxy and the remote “Stack” are destroyed by
the statement,

_somdDestroyObject(SOMD_ObjectMgr, &e, stk);

If the client only wants to release its use of the remote object (freeing the proxy) without
destroying the remote object, it can call the somdReleaseObject method instead of
somdDestroyObject.

Finally, the client must shut down DSOM, so that any operating system resources acquired by
DSOM for communications or process management can be returned:

SOMD_Uninit(&e);

This call must be made at the end of every DSOM program.

6 – 76. Distributed SOM (DSOM)

Using specific servers
In DSOM, the process that manages a target object is called the object’s server. Servers are
implemented as programs that use SOM classes. Server implementations are registered with
DSOM in an Implementation Repository — the Implementation Repository is a database
queried by clients in order to find desired servers, and queried by DSOM in order to activate
those servers upon demand.

The example above placed no constraints on the DSOM Object Manager as to where the
remote “Stack” object should be created. The somdNewObject call creates a remote object of
a specified class in an arbitrary server that implements that class. However, the DSOM Object
Manager provides methods for finding specific servers.

For example, the client program above can be modified slightly to find a specific server named
“StackServer”, which has already been registered in DSOM’s Implementation Repository.
(Note that the programmer knew or discovered that the “StackServer” server implementation
supports the “Stack” class.) The highlighted lines below show the changes that were made:

#include <somd.h>
#include <stack.h>

int main(int argc, char *argv[]) {
Stack stk;
Environment e;
SOMDServer server;

SOM_InitEnvironment(&e);
SOMD_Init(&e);

StackNewClass(Stack_MajorVersion, Stack_MinorVersion);
server =

 _somdFindServerByName(SOMD_ObjectMgr, &e, ”StackServer”);

stk = _somdCreateObj(server, &e, ”Stack”, ””);

_push(stk,&e,100);
_push(stk,&e,200);
_pop(stk,&e);
if (!_empty(stk,&e)) somPrintf(”Top: %d\n”, _top(stk,&e));

_somdDeleteObj(server, &e, stk);

_somdReleaseObject(SOMD_ObjectMgr, &e, stk);

_somdReleaseObject(SOMD_ObjectMgr, &e, server);

SOMD_Uninit(&e);
SOM_UninitEnvironment(&e);

return(0);
}

This version of the program replaces the somdNewObject operation with calls to
somdFindServerByName and somdCreateObj. The somdFindServerByName method
consults the Implementation Repository to find the DSOM server implementation whose name
is “StackServer”, and creates a server proxy, which provides a connection to that server. Every
DSOM server process has a server object that defines methods to assist in the creation and
management of objects in that server. Server objects must be instances of SOMDServer or one
of its subclasses. The somdFindServerByName returns a proxy to the SOMDServer object in
the named server.

Once the client has the server proxy, it can create and destroy objects in that server. The
somdCreateObj call creates an object of the class “Stack” in the server named “StackServer”.

6 – 8 SOMobjects Base Toolkit Users Guide

To free the remote “Stack” object, the example shows a somdDeleteObj request on the stack
object’s server. Next, somdReleaseObject requests are made on the DSOM Object Manager,
to free the stack proxy and the server proxy in the client. (Note that these three calls are
equivalent to the somdDestroyObject call in the previous example.)

A note on finding existing objects
The two examples above show how a remote, transient object can be created by a client, for its
exclusive use. It is also likely that clients will want to find and use objects that are already in
existence. In that case, the calls to somdNewObject or somdCreateObj would be replaced
with other “lookup” calls on some directory object that would take an object name or identifier
and return a proxy to the remote object.

Such a directory object could be implemented by the application as a persistent SOM object,
using DSOM to share it among processes.

The basic mechanisms that DSOM provides for naming and locating objects will be discussed in
section 6.3, “Basic Client Programming.”

“Stack” server implementation
A server consists of three parts. First, a “main” program, when run, provides an address space
for the objects it manages, and one or more process “threads” that can execute method calls.
(AIX currently does not have multi-thread support, while OS/2 does.) Second, a server object,
derived from the SOMDServer class, provides methods used to manage objects in the server
process. Third, one or more class libraries provide object implementations. Usually these
libraries are constructed as dynamically linked libraries (DLLs), so they can be loaded and
linked by a server program dynamically.

In this simple example, we can use the default DSOM server program, which is already
compiled and linked. The default server behaves as a simple server, in that it simply receives
requests and executes them, continuously. The default server creates its server object from the
class, SOMDServer. The default server will load any class libraries it needs upon demand.

The “Stack” class library, “stack.dll”, can be used without modification in the distributed applica-
tion. This is possible because the “Stack” class is “well formed” — there are no methods that
implicitly assume the client and the object are in the same address space.

Thus, by using the default server and the existing class library, a simple “Stack” server can be
provided without any additional programming!

An application may require more functionality in the server program or the server object than the
default implementations provide. A discussion on how to implement server programs and
server objects is found later in this chapter, in section 6.4, “Basic Server Programming”.

Compiling the application
DSOM programs and class libraries are compiled and linked like any other SOM program or
library. The header file “somd.h” (or for C++, “somd.xh”) should be included in any source
program that uses DSOM services. DSOM run-time calls can be resolved by linking with the
SOMobjects Toolkit library: “libsomtk.a” on AIX and “somtk.lib” on OS/2. (The DSOM DLL,
“somd.dll”, will be loaded at run time.)

For more information, see “Compiling and linking” in Chapter 3, “Using SOM Classes in Client
Programs,” and the same topic in Chapter 4, “Implementing Classes in SOM.”

Installing the implementation
Before the application can be run, certain environment variables must be set and the stack class
and server implementations must be registered in the SOM Interface Repository and DSOM
Implementation Repository.

6 – 96. Distributed SOM (DSOM)

Setting environment variables
Several environment variables are used by SOM and DSOM. These variables need to be set
before registering the DSOM application in the Interface and Implementation Repositories.

For this example, the following environment variables could be set as shown. A full description
of the environment variables and how to set them is given in section 6.6, “Configuring DSOM.”

On AIX (in the syntax of the default shell, /bin/ksh):

export HOSTNAME=machine3
export SOMIR=$SOMBASE/etc/som.ir:/u/myuserid/my.ir
export SOMDDIR=/u/myuserid/somddir
export LIBPATH=$LIBPATH:$SOMBASE/lib:/u/myuserid/lib
export MALLOCTYPE=3.1

On OS/2:

set USER=pat
set HOSTNAME=machine3
set SOMDDIR=c:\somddir

rem *** The following variables are set in CONFIG.SYS by
rem *** the install program on OS/2, assuming ”c:\som” is the
rem *** value of %SOMBASE% supplied by the user.
set SOMIR=c:\som\etc\som.ir;som.ir
set LIBPATH=.;c:\som\lib;<previous LIBPATH>

USER identifies the user of a DSOM client application. DSOM sends the USER ID with every
remote method call, in case the remote object wishes to perform any access-control checking.
This is discussed later in the section “Basic Server Programming.” (Note that USER is usually
set automatically by AIX when a user logs in.)

HOSTNAME identifies the name of each machine running DSOM.

SOMIR gives a list of files that together constitute the Interface Repository. The IR is used by
DSOM to guide the construction and interpretation of request messages. For DSOM, it is
preferable to use full pathnames in the list of IR files, since the IR will be shared by several
programs that may not all reside in the same directory.

SOMDDIR gives the name of a directory used to store DSOM configuration files, including the
Implementation Repository.

LIBPATH (on AIX and OS/2) gives a list of directories where DLLs can be found.

MALLOCTYPE is defined by AIX; it forces the standard C library routines to use the same
memory allocation algorithm as in AIX 3.1. (DSOM occasionally experiences problems using
the AIX 3.2 algorithm.)

Registering the class in the Interface Repository
Before an object can be accessed remotely by DSOM, it is necessary to register the class’s
interface and implementation in the Interface Repository (IR). DSOM uses the interface in-
formation when transforming local method calls on proxies into request messages transmitted
to remote objects.

DSOM servers also consult the IR to find the name of the DLL for a dynamically loaded class.
The DLL name for the “Stack” class must be specified using the dllname=“stack.dll” modifier
in the implementation statement of the “Stack” IDL. The Interface Repository is described in
detail in Chapter 7, “The Interface Repository Framework.”

The IDL specification of “Stack” is compiled into the Interface Repository using the following
command:

sc –u –sir stack.idl

6 – 10 SOMobjects Base Toolkit Users Guide

When a class has not been compiled into the Interface Repository, DSOM will generate a
run-time error when an attempt is made to invoke a method from that class. The error indicates
that the method’s descriptor was not found in the IR.

Registering the server in the Implementation Repository
It is necessary to register a description of a server’s implementation in the Implementation
Repository. DSOM uses this information to assist clients in finding servers, and in activating
server processes upon demand.

For this example, where the default server is used, we need only to identify the server’s name,
and the class that the server implements. This is accomplished using the regimpl utility
discussed in section 6.6, “Configuring DSOM Applications”. The following commands define a
default server, named “StackServer”, which supports the Stack class:

regimpl –A –i StackServer
regimpl –a –i StackServer –c Stack

Running the application

Starting the DSOM daemon
Before running a DSOM application, the DSOM daemon, somdd� must be started. The daemon
can be started manually from the command line, or it could be started automatically from a
start-up script run at boot time. It may be run in the background with the commands somdd& on
AIX and start somdd on OS/2. (The somdd program takes no parameters.)

The somdd daemon is responsible for establishing a “binding” (i.e., a connection) between a
client process and a server. It will activate the desired server automatically, if necessary.

Running the client
Once the DSOM daemon is running, the application may be started. This is accomplished by
running the client program. If the StackServer is not running, it will be started automatically by
the DSOM daemon when the client attempts to invoke a method on one of its objects.

“Stack” example run–time scenario
The following scenario steps through the actions taken by the DSOM run time in response to
each line of code in the second “Stack” client program presented above. The illustration
following the scenario is an illustration of the processes, and the objects within them, that
participate in these actions.

• Initialize an environment for error passing:

SOM_InitEnvironment(&e);

• Initialize DSOM:

SOMD_Init(&e);

This causes the creation of the DSOM Object Manager (with SOMDObjectMgr interface).
The global variable SOMD_ObjectMgr points to this object.

• Initialize “Stack” class object:

StackNewClass(Stack_MajorVersion, Stack_MinorVersion);

• Find the “StackServer” implementation and assign its proxy to the variable server:

server = _somdFindServerByName(SOMD_ObjectMgr, &e, ”StackServer”);

This causes the creation of the server proxy object in the client process. Proxy objects are
shown as shaded circles. Note that the “real” server object in the server process is not
created at this time. In fact, the server process has not yet been started.

6 – 116. Distributed SOM (DSOM)

• Ask the server object to create a “Stack” and assign “Stack” proxy to variable stk:

stk = _somdCreateObj(server, &e, ”Stack”, ””);

This causes somdd, the DSOM daemon (which is already running), to activate the stack
server process (by starting the “generic” server program). The stack server process, upon
activation, creates the “real” SOMDServer object in the server process. The SOMDServer
object works with the DSOM run time to create a local “Stack” object and return a “Stack”
proxy to the client. (The details of this procedure are deferred until section 6.4, “Basic Server
Programming”.)

• Ask the “Stack” proxy to push 100 onto the remote stack:

_push(stk,&e,100);

This causes a message representing the method call to be marshalled and sent to the server
process. In the server process, DSOM demarshals the message and, with the help of the
SOMDServer, locates the target “Stack” object upon which it invokes the method (“push”).
The result (which is void in this case) is then passed back to the client process in a message.

• Invoke more “Stack” operations on the remote stack, via the proxy:

_push(stk,&e,200);
_pop(stk,&e);
if (!_empty(stk,&e)) t = _top(stk,&e);

• Explicitly destroy both the remote stack, the stack proxy, and the server proxy:

_somdDeleteObj(server, &e, stk);
_somdReleaseObject(SOMD_ObjectMgr, &e, stk);
_somdReleaseObject(SOMD_ObjectMgr, &e, server);

• Free the error-passing environment:

SOM_UninitEnvironment(&e);

This scenario has introduced the key processes in a DSOM application: client, server, and
somdd. Also introduced are the key objects that comprise the DSOM run-time environment: the
SOMD_ObjectMgr in the client process and the SOMD_ServerObject in the server process.

6 – 12 SOMobjects Base Toolkit Users Guide

Summary

This example has introduced the key concepts of building, installing, and running a DSOM
application. It has also introduced some (though not all) of the key components that comprise
the DSOM application run-time environment, as pictured below.

The following sections, “Basic Client Programming,” “Basic Server Programming,” and “Imple-
menting Classes,” provide more detail on how to use, manage, and implement remote objects,
respectively.

ÍÍÍ

ÍÍÍ

ÍÍÍ

ÍÍÍ

ÍÍÍ

CLIENT SERVER

is a stack proxy for

is a server proxy for

“real”
server

“real”
stack

ÍÍÍ

ÍÍÍ

ÍÍÍ

ÍÍÍ

ÍÍÍ

DSOM
Object Mgr

server
proxy

stack
proxy

DSOM
DAEMON

(somdd)

INTERFACE
REPOSITORY

IMPLEMENTATION
REPOSITORY

Components of DSOM application run-time environment

6 – 136. Distributed SOM (DSOM)

6.3 Basic Client Programming

For the most part, client programming in DSOM is exactly the same as client programming in
SOM, since DSOM transparently hides the fact that an object is remote when the client
accesses the object.

However, a client application writer also needs to know how to create, locate, use, save, and
destroy remote objects. (This is not done using the usual SOM bindings.) The DSOM run-time
environment provides these services to client programs primarily through the DSOM Object
Manager. These run-time services will be detailed in this section. Examples of how an applica-
tion developer uses these services are provided throughout the section.

DSOM Object Manager

DSOM defines a DSOM Object Manager, which provides services needed by clients to create,
find and use objects in the DSOM run time environment.

The DSOM Object Manager is derived from an abstract, generic “object manager” class, called
ObjectMgr. This abstract ObjectMgr class defines a basic set of methods that support object
creation, location (with implicit activation), and destruction.

As an abstract class, ObjectMgr defines only an interface — there is no implementation
associated with ObjectMgr. Consequently, an application should not create instances of the
ObjectMgr class.

An abstract Object Manager class was defined under the expectation that applications will often
need simultaneous access to objects implemented and controlled by a variety of object sys-
tems. Such object systems may include other ORBs (in addition to DSOM), persistent object
managers, object-oriented databases, and so forth. It is likely that each object system will
provide the same sort of basic services for object creation, location, and activation, but each
using a different interface.

Thus, the ObjectMgr abstract class defines a simple and “universal” interface that can be
mapped to any object system. The application would only have to understand a single, common
ObjectMgr interface. Under this scheme, specific object managers are defined by subclassing
the ObjectMgr class and overriding the ObjectMgr methods to map them into the object
system-specific programming interfaces.

DSOM’s Object Manager, SOMDObjectMgr, is defined as a specific class of ObjectMgr. It
defines methods for:

• Finding servers that implement particular kinds of objects

• Creating objects in servers

• Obtaining object identifiers (string IDs)

• Finding objects, given their identifiers

• Releasing and destroying objects

These functions will be discussed in the remainder of this section.

Note: The OMG only recently accepted a standard for programming interfaces for an “object
lifecycle” service, which includes support for creating and destroying distributed objects.
The interface to the DSOM Object Manager may change in the future to be compliant
with the accepted standard.

6 – 14 SOMobjects Base Toolkit Users Guide

Initializing a client program
A client application must declare and initialize the DSOM run time before attempting to create or
access a remote object. The SOMD_Init procedure initializes all of the DSOM run time,
including the SOMDObjectMgr object. The global variable, SOMD_ObjectMgr is initialized to
point to the local DSOM Object Manager.

A client application must also initialize all application classes used by the program. For each
class, the corresponding <className>NewClass call should be made.

Note: In non-distributed SOM programs, the <className>New macro (and the new operator
provided for each class by the SOM C++ bindings) implicitly calls the procedure
<className>NewClass when creating a new object. This is not currently possible in
DSOM because, when creating remote objects, DSOM uses a generic method that is
not class specific.

This was shown in the “Stack” example in section 6.2. In a similar example of an application that
uses “Car” and “Driver” objects, the initialization code might look like this:

#include <somd.h> /* needed by all clients */
#include <Car.h> /* needed to access remote Car */
#include <Driver.h> /* needed to access remote Driver */

main()
{
 Environment ev; /* ev used for error passing */
 SOM_InitEnvironment(&ev);

 /* Do DSOM initialization */
 SOMD_Init(&ev);

 /* Initialize application classes */
 CarNewClass(Car_MajorVersion, Car_MinorVersion);
 DriverNewClass(Driver_MajorVersion, Driver_MinorVersion);
 ...
}

As shown, client programs should include the “somd.h” file (or, for C++ programs, the “somd.xh”
file) in order to define the DSOM run-time interfaces.

Note also that, since Environments are used for passing error results between a method and
its caller, an Environment variable (ev) must be declared and initialized for this purpose.

The calls to “CarNewClass” and “DriverNewClass” are required if the client will be creating or
accessing Cars and Drivers. The procedures “CarNewClass” and “DriverNewClass” create
class objects for the classes “Car” and “Driver”. When a DSOM Object Manager method like
somdNewObject is invoked to create a “Car”, it expects the “Car” class object to exist. If the
class does not yet exist, the “ClassNotFound” exception will be returned.

Exiting a client program
At the end of a client program, the SOMD_Uninit procedure must be called to free DSOM
run-time objects, and to release system resources such as semaphores, shared memory
segments, and so on.

For example, the exit code in the client program might look like this:

 ...
 SOMD_Uninit(&e);
 SOM_UninitEnvironment(&e);
}

Note also the SOM_UninitEnvironment call, which frees any memory associated with the
specified Environment structure.

6 – 156. Distributed SOM (DSOM)

Creating remote objects

Distributed objects can be created in several different ways in DSOM.

• The client can create an object on any server that implements that class of object.

• The client can find a specific server upon which to create an object.

• A server can create an object and register a reference to the object in some well-known
directory. (An object reference contains information that reliably identifies a particular object.)

The first two cases are discussed immediately below. The last case is discussed near the end of
this section.

Creating an object in an arbitrary server
Following is an example of how to create a new remote object in the case where the client does
not care in which server the object is created. In this situation, the client defers these decisions
to the DSOM Object Manager (SOMD_ObjectMgr)by using the somdNewObject method
call, which has this IDL definition:

 // (from file om.idl)

 SOMObject somdNewObject(in Identifier objclass, in string hints);

 // Returns a new object of the named class. This is a ”basic”
 // creation method, where the decisions about where and how to
 // create the object are mostly left up to the Object Manager.
 // However, the Object Manager may optionally define creation
 // ”hints” which the client may specify in this call.

Here is the example of a how a remote “Car” would be created using somdNewObject:

#include <somd.h>
#include <Car.h>

main()
{
 Environment ev;
 Car car;

 SOM_InitEnvironment(&ev);
 SOMD_Init(&ev);

 /* create the class object */
 CarNewClass(Car_MajorVersion, Car_MinorVersion);

 /* create a Car object on some server, let the
 Object Manager choose which one */
 car = _somdNewObject(SOMD_ObjectMgr, &ev, ”Car”, ””);
 ...
}

The main argument to the somdNewObject method call is a string specifying the name of the
class of the desired object. The last argument is a string that may contain “hints” for the Object
Manager when choosing a server. In this example, the client is providing no hints. (Currently, the
DSOM Object Manager simply passes the hints to the server object in a somdCreateObj call.)

6 – 16 SOMobjects Base Toolkit Users Guide

Proxy objects
As far as the client program is concerned, when a remote object is created, a pointer to the
object is returned. However, what is actually returned is a pointer to a proxy object, which is a
local representative for the remote target object.

Proxies are responsible for ensuring that operations invoked on it get forwarded to the “real”
target object that it represents. The DSOM run time creates proxy objects automatically,
wherever an object is returned as a result of some remote operation. The client program will
always have a proxy for each remote target object on which it operates. Proxies are described
further in the sections entitled “DSOM as a CORBA-compliant Object Request Broker” and
“Advanced Topics”.

In the example above, a pointer to a “Car” proxy is returned and put in the variable “car”. Any
subsequent methods invoked on “car” will be forwarded and executed on the corresponding
remote “Car” object.

Proxy objects inherit behavior from the SOMDClientProxy class.

Servers and server objects
In DSOM, the process that manages a target object is called the object’s server. Servers are
implemented as programs that use SOM classes. The example above placed no constraints on
the DSOM Object Manager as to which server should create the remote “Car” object. However,
if the client desires more control over distribution of objects, the DSOM Object Manager
provides methods for finding specific servers.

Server implementations are registered with DSOM in an Implementation Repository. Server
implementations are described by a unique ID, a unique (user-friendly) name, the program
name that implements the server, the classes that are implemented by the server, the machine
on which the server is located, whether the server is multi-threaded, and so forth. (See section
6.6 for more information on registering server implementations.) A client can ask the DSOM
Object Manager to find a particular server:

• By name,

• By ID,

• By a class it supports.

When a client asks for a “server”, it is given (a proxy to) a server object that provides interfaces
for managing the objects in the server. There is one server object per server process. All server
objects are instances of the SOMDServer class, or its subclasses. The default method provided
by SOMDServer for creating objects is:

 // (from file somdserv.idl)

 SOMObject somdCreateObj(in Identifier objclass, in string hints);

 // Creates an object of the specified class. This method
 // may optionally define creation ”hints” which the client
 // may specify in this call. (Hints are ignored by default.)

Section 6.4 explains how to create application-specific server objects, derived from
SOMDServer, which override SOMDServer methods and introduce their own methods for
object management.

Creating an object in a specific server
The following example demonstrates how a client application creates a new object in a remote
server chosen by the client. The DSOM Object Manager method somdFindServerByName is
used to find and create a proxy to the server object for the server implementation named
“myCarServer”. The method somdCreateObj is then invoked on the server object to create the

6 – 176. Distributed SOM (DSOM)

remote “Car”. A proxy to the remote “Car” is returned. (The “Stack” client presented in the
previous section used the same methods to create a remote “Stack”.)

 /* find a specific Car server */
 server =
 _somdFindServerByName(SOMD_ObjectMgr, &ev, “myCarServer”);

 /* create a remote Car object on that server */
 car = _somdCreateObj(server, &ev, ”Car”, ””);
 ...
}

Note: If the specified server does not provide any implementation of the desired class, a NULL

pointer will be returned and a “ClassNotFound” exception will be raised.

Three other methods can be invoked on the DSOM Object Manager to find server implementa-
tions: somdFindServer, somdFindServersByClass, and somdFindAnyServerByClass.
The IDL declarations of these methods follow:

SOMDServer somdFindServer(in ImplId serverid);

sequence<SOMDServer> somdFindServersByClass(in Identifier objclass);

SOMDServer somdFindAnyServerByClass(in Identifier objclass);

The somdFindServer method is similar to the somdFindServerByName method, except that
the server’s implementation ID (of type ImplId) is used to identify the server instead of the
server’s user-friendly name (or “alias”). The implementation ID is a unique string generated by
the Implementation Repository during server registration. (See section 6.6 for more details.)

The somdFindServersByClass method, given a class name, returns a sequence of all servers
that support the given class. The client program may then choose which server to use, based on
the server’s name, program, or other implementation attributes (e.g., the server is multi-
threaded). (See the topic below, “Inquiring about a remote object’s implementation.”)

Finally, the somdFindAnyServerByClass method simply selects any one of the server imple-
mentations registered in the Implementation Repository that supports the given class, and
returns a server proxy for that server.

Once the server proxy is obtained, methods like somdCreateObj, shown in the example above,
can be invoked upon it to create new objects.

Inquiring about a remote object’s implementation
A client may wish to inquire about the (server) implementation of a remote object. All objects in a
server, including the “server object”, share the same implementation definition. This is common
when using the somdFindServersByClass call, where a sequence of server proxies is re-
turned, and some choice must be made about which to use.

When a proxy is obtained by a client, the client can inquire about the underlying server imple-
mentation by obtaining its corresponding ImplementationDef. An ImplementationDef
object contains a set of attributes that describe a server implementation. To get the
ImplementationDef associated with a remote object, the get_implementation method (im-
plemented on SOMDObject and inherited by SOMDClientProxy) can be called.

6 – 18 SOMobjects Base Toolkit Users Guide

For example, if a program has a proxy for a remote server object, it can get the Implementation-
Def for the server with method calls similar to the following:

 ImplementationDef implDef;
 SOMDServer server;

 ...
 implDef = _get_implementation(server, &ev);

Once the ImplementationDef has been obtained, the application can access its attributes
using the _get_impl_xxx methods.

The ImplementationDef class is discussed further in section 6.6, “Configuring DSOM.”

Destroying remote objects

There are several ways of destroying objects or their proxies in DSOM, just as there are several
ways to create objects. Remote objects can be asked to destroy themselves, or, the
SOMDObjectMgr and the SOMDServer can participate in the deletion.

Destroying objects via a proxy
DSOM provides means for deleting remote objects via their proxies. For example, if somFree is
invoked on a proxy, the somFree call gets forwarded directly to the target object, just like any
other target method call. For example,

_somFree(car);

frees the remote car.

To be explicit about whether the proxy or the remote object is being deleted, the methods
somdTargetFree and somdProxyFree, defined on proxies, can be used:

_somdTargetFree(car, &ev);

frees the remote “Car” (but not the proxy) and

_somdProxyFree(car, &ev);

frees the proxy (but not the remote “Car”).

Note: CORBA specifies a third method for deleting object references. (Proxies are a special-
ized type of object reference.) The method

_release(car, &ev);

 deletes the proxy (but not the target object).

Destroying objects via the DSOM Object Manager
Having created a remote object with somdNewObject or somdCreateObj, the remote object
and its local proxy may be destroyed by invoking the method somdDestroyObject on the
DSOM Object Manager using the proxy as an argument. For example,

/* create the car */
car = _somdNewObject(SOMD_ObjectMgr, &ev, ”Car”, ””);
...
/* destroy the car (and its proxy) */
_somdDestroyObject(SOMD_ObjectMgr, &ev, car);

If the client does not want to destroy the remote object, but is finished working with it, the
somdReleaseObject method should be used instead, e.g.,

_somdReleaseObject(SOMD_ObjectMgr, &ev, car);

6 – 196. Distributed SOM (DSOM)

This deletes the local proxy, but not the remote object.

Both somdDestroyObject and somdReleaseObject are defined on the ObjectMgr, so that
the Object Manager is aware of the client’s actions, in case it wants to do any bookkeeping.

Destroying objects via a server object
The somdDestroyObject method described above sends a request to delete a remote object
to the object’s server. It does so to ensure that the server has an opportunity to participate in, if
not perform, the deletion. The method defined on the SOMDServer class for destroying objects
is somdDeleteObj. If the client has a proxy for the server object, it can also invoke
somdDeleteObj directly, instead of calling somdDestroyObject.

Destroying objects via the server object, rather than asking the object itself (as in somFree or
somdTargetFree), allows the server object do any clean-up that is needed. For simple applica-
tions, this may not be necessary, but for applications that provide their own application-tailored
server objects, it may be critical. See, for example, the persistent server example in section 6.4,
entitled “Basic Server Programming.”

Creating remote objects using user-defined metaclasses

An application may wish to define its own constructor methods for a particular class, via a
user-supplied metaclass. In this case, the somdNewObject method should not be used, since
it simply calls the default constructor method, somNew, defined by SOMClass.

Instead, the application can obtain a proxy to the actual class object in the server process. It can
do so via the somdGetClassObj method, invoked on the SOMDServer proxy returned by one
of the somdFindServerXxx methods. The application-defined constructor method can then be
invoked on the proxy for the remote class object.

Note: The same issues apply to destructor methods. If the application defines its own destruc-
tor methods, they can be called via the class object returned by somdGetClassObj, as
opposed to calling somdDestroyObject.

The following example creates a new object in a remote server using an application-defined
constructor method, “makeCar”, which is assumed to have been defined in the metaclass of
“Car”, named “MetaCar”.

#include <somd.h>
#include <Car.h>
main()
{
 Environment ev;
 SOMDServer server;
 Car car;
 MetaCar carClass;

 SOM_InitEnvironment(&ev);
 SOMD_Init(&ev);

 /* find a Car server */
 server = _somdFindAnyServerByClass(SOMD_ObjectMgr, &ev, “Car”);

 /* get the class object for Car */
 carClass = (MetaCar) _somdGetClassObj(server, &ev, “Car”);

 /* create the car object */
 car = _makeCar(carClass, &ev, “Red”, “Toyota”, “2–door”);

 ...
}

6 – 20 SOMobjects Base Toolkit Users Guide

Saving and restoring references to objects

A proxy is a kind of “object reference”. An object reference contains information that is used to
identify a target object.

To enable clients to save references to remote objects (in a file system, for example) or
exchange references to remote objects (with other application processes), DSOM must be able
to externalize proxies. To “externalize a proxy” means to create a string ID for a proxy that can be
used by any process to identify the remote target object. DSOM must also support the transla-
tion of string IDs back into proxies.

The DSOM Object Manager defines two methods for converting between proxies and their
string IDs: somdGetIdFromObject and somdGetObjectFromId.

Here is an example client program that creates a remote “Car” object. It generates a string ID
corresponding to the proxy, and saves the string ID to a file for later use.

#include <stdio.h>
#include <somd.h>
#include <Car.h>
main()
{
 Environment ev;
 Car car;
 string somdObjectId;
 FILE* file;

 SOM_InitEnvironment(&ev);
 SOMD_Init(&ev);

 /* create a remote Car object */
 car = _somdNewObject(SOMD_ObjectMgr, &ev, ”Car”, ””);

 /* save the reference to the object */
 somdObjectId = _somdGetIdFromObject(SOMD_ObjectMgr, &ev, car);
 file = fopen(”/u/joe/mycar”, ”w”);
 fprintf(file, ”%s”, somdObjectId);
...

Next is an example client program that retrieves the string ID and regenerates a valid proxy for
the original remote “Car” object (assuming the remote “Car” object can still be found in the
server).

...
 Environment ev;
 Car car;
 char buffer[256];
 string somdObjectId;
 FILE* file;

...
 /* restore proxy from its string form */
 file = fopen(”/u/joe/mycar”, ”r”);
 somdObjectId = (string) buffer;
 fscanf(file, ”%s”, somdObjectId);
 car = _somdGetObjectFromId(SOMD_ObjectMgr, &ev, somdObjectId);
...

Once the proxy has been regenerated, methods can be invoked on the proxy and they will be
forwarded to the remote target object, as always.

6 – 216. Distributed SOM (DSOM)

Note: The somdGetIdFromObject and somdGetObjectFromId methods directly corre-
spond to the CORBA methods ORB_object_to_string and ORB_string_to_object,
defined on the ORB class.

Finding existing objects
The SOMDObjectMgr and SOMDServer classes support the methods described above,
which allow clients to create objects in servers. However, it is also likely that clients will want to
find and use objects that have already been created, usually by the servers that implement
them. For example, a print service will create printer objects, and must then export them to
clients. In that case, the calls to somdNewObject or somdCreateObj would be replaced with
other “lookup” calls on some directory (server) object which would take an object name or
identifier and return a proxy to a corresponding remote object. Likewise, the server that owns
the object would register the exported object in the directory.

It is important to understand that DSOM does not provide a directory service such as the one
described. But such a directory object could be implemented by the application, where a table or
collection object maps object names to proxies. The string IDs for the proxies in the directory
object could be saved using a file (as above) or a persistent object (via the Persistence
Framework of SOMobject Developer Toolkit). A directory server implemented using DSOM
could be used to share the directory among processes.

Upon a lookup call, the directory server could find the corresponding proxy (or its string ID) in the
directory, and return it to the caller.

Finding server objects
The DSOM Object Manager can be used to find server object proxies using the
somdFindServerXxx methods. However, it is important to point out that an application can
also augment those services, by managing server proxies itself. Server proxies can be main-
tained in an application-specific directory, stored in a file, or passed from process to process,
just as any other proxies.

Invoking methods on remote objects
As described earlier, DSOM proxies are local representatives of remote objects, and as such,
they can be treated like the target objects themselves. Method calls are invoked in exactly the
same manner as if the object is local. This is true both for method calls using the static bindings
(as most of our examples have shown), as well as for dynamic dispatching calls, where SOM
facilities (such as the somDispatch method) are used to construct method calls at run time.

CORBA 1.1 also defines a dynamic invocation interface that is implemented by DSOM. It is
described later in section 6.9, “Advanced Topics”.

The DSOM run time is responsible for transporting any input method argument values supplied
by the caller (defined by legal IDL types) to the target object in a remote call. Likewise, the
DSOM run time transports the return value and any output argument values back to the caller
following the method call.

Note: DSOM uses the Interface Repository (IR) to discover the “signature” of a method (that
is, the method’s prototype). It is important that the contents of the IR match the method
bindings used by the application program (i.e. the same IDL file is used to update the IR
and to generate bindings).

Passing object references in method calls
When pointers to objects are returned as method output values (as in the previous examples),
DSOM automatically converts the object pointers (in the server) to object proxies in the client.

Likewise, when a client passes object (proxy) pointers as input arguments to a method, DSOM
automatically converts the proxy argument in the client to an appropriate object reference in the
server.

6 – 22 SOMobjects Base Toolkit Users Guide

Note: If the proxy is for an object that is in the same server as the target object, DSOM gives
the object reference to the server object for resolution to a SOM object pointer. Other-
wise, DSOM leaves the proxy alone, since the proxy must refer to an object in some
process other than the target’s server.

Writing clients that are also servers

In many applications, processes may need to play both client and server roles. That is, objects in
the process may make requests of remote objects on other servers, but may also implement
and export objects, requiring that it be able to respond to incoming requests. Details of how to
write programs in this peer-to-peer style are explained in section 6.9, “Advanced Topics”.

Compiling and linking clients

All client programs must include the header file “somd.h” (or for C++, “somd.xh”) in addition to
any “<className>.h” (or “<className>.xh”) header files they require from application classes.
All DSOM client programs must link to the SOMobjects Toolkit library: “libsomtk.a” on AIX and
“somtk.lib” on OS/2. For more information, see the topic “Compiling and linking” in Chapter 3,
“Using SOM Classes in Client Programs.”

6 – 236. Distributed SOM (DSOM)

6.4 Basic Server Programming
Server programs execute and manage object implementations. That is, they are responsible
for:

• Notifying the DSOM daemon that they are ready to begin processing requests,

• Accepting client requests,

• Loading class library DLLs when required,

• Creating/locating/destroying local objects,

• Demarshalling client requests into method invocations on their local objects,

• Marshalling method invocation results into responses to clients, and

• Sending responses back to clients.

As mentioned previously, DSOM provides a simple, “generic” server program that performs all
of these tasks. All the server programmer needs to provide are the application class library(ies)
DLL that the implementor wants to distribute. Optionally, the programmer can also supply an
application-specific server class, derived from SOMDServer. (The SOMDServer class can be
used by default.) The server program does the rest automatically.

The “generic” server program is called somdsvr and can be found in /usr/lpp/som/bin/
somdsvr on AIX and in %SOMBASE%\bin\somdsvr.exe on OS/2.

Some applications may require additional flexibility or functionality than what is provided by the
generic server program. In that case, application-specific server programs can be developed.
This section discusses the steps involved in writing such a server program.

To create a server program, a server writer needs to know what services the DSOM run-time
environment will provide and how to use those services to perform the duties (listed above) of a
server. The DSOM run-time environment provides several key objects that can be used to
perform server tasks. These objects and the services they provide will be discussed in this
section. Examples showing how to use the run-time objects to write a server are also shown.

Server run-time objects
There are three DSOM run-time objects that are important in a server:

• The server’s implementation definition (ImplementationDef),

• The SOM Object Adapter (SOMOA), and

• The application-specific server object (an instance of either SOMDServer or a class derived
from SOMDServer).

Server implementation definition
A server’s implementation definition must be registered in the Implementation Repository
before a server can be used. When a client attempts to invoke a method on a remote object,
DSOM consults the Implementation Repository to find the location of the target object’s server.

An implementation definition is represented by an object of class ImplementationDef, whose
attributes describe a server’s ID, user-assigned alias, host name, program pathname, the class
of its server object, whether or not it is multi-threaded, and so forth. Implementation IDs uniquely
identify servers within the Implementation Repository, and are used as keys into the Imple-
mentation Repository when retrieving the ImplementationDef for a particular server.

It is possible to change the implementation characteristics of a server, even to the point of using
a completely different server program on another machine (with Workgroup DSOM). Thus, the
implementation ID identifies a logical server, and the ImplementationDef describes the current
implementation of that logical server.

6 – 24 SOMobjects Base Toolkit Users Guide

See the topic “Registering Servers and Classes” in section 6.6 for details on server registration.
Two registration methods are described: “manual,” via the regimpl utility, and “programmatic,”
via ImplRepository methods.

When a server is initialized, it must retrieve a copy of its ImplementationDef, and keep it in a
global variable (SOMD_ImplDefObject). This variable is used by the DSOM run time. (Client-
only programs may leave the SOMD_ImplDefObject variable set to NULL.)

SOM Object Adapter (SOMOA)
The SOM Object Adapter (SOMOA) is the main interface between the server application and
the DSOM run time. The SOMOA is responsible for most of the server duties listed at the
beginning of this section. In particular, the SOMOA object handles all communications and
interpretation of inbound requests and outbound results. When clients send requests to a
server, the requests are received and processed by the SOMOA.

The SOMOA works together with the server object to create and resolve DSOM references to
local objects, and dispatch methods on objects.

There is one SOMOA object per server process. (The SOMOA class is implemented as a single
instance class.)

Server object
Each server process contains a single server object, which has the following responsibilities for
managing objects in the server:

• Provides an interface to client applications for basic object creation and destruction services,
as well as any other application-specific object-management services that may be required
by clients. For example, a print server may have a method that returns a list of all printers
managed by that server. Clients may call this method to find out what printers are available.

• Provides an interface to the SOM Object Adapter for support in the creation and manage-
ment of DSOM object references (which are used identify an object in the server), and for
dispatching requests.

The server class, SOMDServer, defines the base interface that must be supported by any
server object. In addition, SOMDServer provides a default implementation that is suited to
managing transient SOM objects in a server. This section will show how an application might
override the basic SOMDServer methods and introduce new methods in order to tailor the
server object functionality to a particular application.

Server activation

Server programs may be activated either

• Automatically by the DSOM daemon, somdd, or

• Manually via command line invocation, or under application control.

When a server is activated automatically by somdd, it will be passed a single argument (in
argv[1]) that is the implementation ID assigned to the server implementation when it was
registered into the Implementation Repository (discussed above and in section 6.6, “Configur-
ing DSOM Applications”). This is useful when the server program cannot know until activation
which “logical” server it is implementing. (This is true for the generic server provided with
DSOM.) The implementation ID is used by the server to retrieve its ImplementationDef from
the Implementation Repository.

A server that not activated by somdd may obtain its ImplementationDef from the Implementa-
tion Repository in any manner that is convenient: by ID, by alias, and so forth. Moreover, a
server may choose to “register itself” dynamically, as part of its initialization. To do so, the server
would use the programmatic interface to the Implementation Repository.

6 – 256. Distributed SOM (DSOM)

For example, suppose that the server program “myserver” was designed so that it could be
activated either automatically or manually. This requires that it be written to expect the imple-
mentation ID as its first argument, and to use that argument to retrieve its ImplementationDef
from the Implementation Repository. If an application defines a server in the Implementation
Repository whose implementation ID is 2bcdc4f2–0f62f780–7f–00–10005aa8afdc,
then “myserver” could be run as that server by invoking the following command:

 myserver 2bcdc4f2–0f62f780–7f–00–10005aa8afdc

AIX users should be aware that, unless the SetUserID mode bit is set on the file containing the
server program, the UID for the server process will be inherited from the somdd process. To set
the SetUserID mode bit from the AIX command line, type one of the following commands:

chmod 4000 <filename> – or –
chmod u+s <filename>

where “<filename>” denotes the name of the file containing the server program. For additional
details, see the “chmod” command in InfoExplorer or consult the man pages.

Initializing a server program

Initializing the DSOM run-time environment
The first thing the server program should do is to initialize the DSOM run time by calling the
SOMD_Init function. This causes the various DSOM run-time objects to be created and
initialized, including the Implementation Repository (accessible via the global variable
SOMD_ImplRepObject), which is used in the next initialization step.

Initializing the server’s ImplementationDef
Next, the server program is responsible for initializing its ImplementationDef, referred to by the
global variable SOMD_ImplDefObject. It is initialized to NULL by SOMD_Init. (For client
programs it should be left as NULL.) If the server implementation was registered with the
Implementation Repository before the server program was activated (as will be the case for all
servers that are activated automatically by somdd), then the ImplementationDef can be
retrieved from the Implementation Repository. Otherwise, the server program can register its
implementation with the Implementation Repository dynamically (as shown in section 6.6,
“Configuring DSOM applications”).

The server can retrieve its ImplementationDef from the Implementation Repository by invok-
ing the find_impldef method on SOMD_ImplRepObject. It supplies, as a key, the imple-
mentation ID of the desired ImplementationDef.

The following code shows how a server program might initialize the DSOM run-time environ-
ment and retrieve its ImplementationDef from the Implementation Repository.

#include <somd.h> /* needed by all servers */
main(int argc, char **argv)
{
 Environment ev;
 SOM_InitEnvironment(&ev);

/* Initialize the DSOM run–time environment */
 SOMD_Init(&ev);

/* Retrieve its ImplementationDef from the Implementation
 Repository by passing its implementation ID as a key */
 SOMD_ImplDefObject =
 _find_impldef(SOMD_ImplRepObject, &ev, argv[1]);
...
}

6 – 26 SOMobjects Base Toolkit Users Guide

Initializing the SOM Object Adapter
The next step the server must take before it is ready to accept and process requests from clients
is to create a SOMOA object and initialize the global variable SOMD_SOMOAObject to point to
it. This is accomplished by the assignment:

SOMD_SOMOAObject = SOMOANew();

Note: The SOMOA object is not created automatically by SOMD_Init because it is only
required by server processes.

After the global variables have been initialized, the server can do any application-specific
initialization required before processing requests from clients. Finally, when the server is ready
to process requests, it must call the impl_is_ready method on the SOMOA:

_impl_is_ready(SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);

The SOMOA will then set up a communications port for incoming messages, which it registers
with the DSOM daemon. Once the DSOM daemon has been notified of the server’s port, it
assists client applications in “binding” (i.e., establishing a connection) to that server.

The impl_is_ready method also causes the server object, whose class is defined in the
server’s ImplementationDef, to be created. The server object can be referenced through the
global variable, SOMD_ServerObject.

When initialization fails
It is possible that a server will encounter some error when initializing itself. Servers must attempt
to notify DSOM that their activation failed, using the activate_impl_failed method. This meth-
od is called as follows:

/* tell the daemon (via SOMOA) that activation failed */
_activate_impl_failed(SOMD_SOMOAObject,&ev, SOMD_ImplDefObject, rc);

Server writers should be aware, however, that until the server’s SOMD_ImplDefObject has
been initialized, it is not possible to call the _activate_impl_failed method on the DSOM
daemon.

Note: A server program should not call activate_impl_failed once it has called
impl_is_ready.

Processing requests
The SOMOA is the object in the DSOM run-time environment that receives client requests and
transforms them into method calls on local server objects. In order for SOMOA to listen for a
request, the server program must invoke one of two methods on SOMD_SOMOAObject. If the
server program wishes to turn control over to SOMD_SOMOAObject completely (that is,
effectively have SOMD_SOMOAObject go into an infinite request-processing loop), then it
invokes the execute_request_loop method on SOMD_SOMOAObject as follows:

rc = _execute_request_loop(SOMD_SOMOAObject, &ev, SOMD_WAIT);

Note: This is the way the DSOM-provided “generic” server program interacts with
SOMD_SOMOAObject.

The execute_request_loop method takes an input parameter of type Flags. The value of this
parameter should be either SOMD_WAIT or SOMD_NO_WAIT. If SOMD_WAIT is passed as argu-
ment, execute_request_loop will return only when an error occurs. If SOMD_NO_WAIT is
passed, it will return when there are no more outstanding messages to be processed.
SOMD_NO_WAIT is usually used when the server is being used with the event manager. See the
topic “Peer vs. client–server processes” in section 6.9, “Advanced Topics,” for more details.

If the server wishes to incorporate additional processing between request executions, it can
invoke the execute_next_request method to receive and execute requests one at a time:

6 – 276. Distributed SOM (DSOM)

for(;;) {
 rc = _execute_next_request(SOMD_SOMOAObject, &ev, SOMD_NO_WAIT);
 /* perform app–specific code between messages here, e.g., */
 if (!rc) numMessagesProcessed++;
}

Just like execute_request_loop, execute_next_request has a Flags argument that can take
one of two values: SOMD_WAIT or SOMD_NO_WAIT. If execute_next_request is invoked with
the SOMD_NO_WAIT flag and no message is available, the method returns immediately with a
return code of SOMDERROR_NoMessages. If a request is present, it will execute it. Thus, it is
possible to “poll” for incoming requests using the SOMD_NO_WAIT flag.

Exiting a server program
When a server program exits, it should notify the DSOM run time that it is no longer accepting
requests. This should be done whether the program exits normally, or as the result of an error. If
this is not done, somdd will continue to think that the server program is active, allowing clients to
attempt to connect to it, as well as preventing a new copy of that server from being activated.

To notify DSOM when the server program is exiting, the deactivate_impl method defined on
SOMOA should be called. For example,

 /* tell DSOM (via SOMOA) that server is now terminating */
 _deactivate_impl(SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);

Note: For robustness, it would be worthwhile to add appropriate “exit handlers” or “signal
handlers” to your application servers that call the deactivate_impl method upon abnor-
mal program termination. This ensures the the DSOM daemon is made aware of the
server’s termination, so that client connections are no longer allowed.

Finally, at the end of a server program, the SOMD_Uninit procedure must be called to free
DSOM run-time objects, and to release semaphores, shared memory segments, and any other
system resources.

For example, the exit code in the server program might look like this:

 ...
 SOMD_Uninit(&e);
 SOM_UninitEnvironment(&e);
}

Note also the SOM_UninitEnvironment call, which frees any memory associated with the
specified Environment structure.

Managing objects in the server

Object references, ReferenceData, and the ReferenceData table
One of SOMOA’s responsibilities is to support the creation of object references
(SOMDObjects). Recall from the “Stack” example discussion (in Section 6.2) that an object
reference is an exportable “handle” to an object and that proxies are examples of object
references. The SOMOA interface supports three operations for creating object references:
create, create_constant, and create_SOM_ref.

The create and create_constant methods allow a server to associate application-specific data
about an object with an object reference for that object. This data, called reference data, is
represented in a sequence of up to 1024 bytes of information about the object. This sequence,
defined by the type ReferenceData, may contain the object’s location, state, or any other
characteristics meaningful to the application. Usually, ReferenceData is used by a server
process to locate or activate an object in the server. ReferenceData, and hence the methods
create and create_constant, are usually only used in connection with persistent objects
(objects whose lifetimes exceed that of the process that created them).

6 – 28 SOMobjects Base Toolkit Users Guide

The create method differs from the create_constant method in the following way:
ReferenceData associated with an object reference constructed by create_constant is immu-
table whereas the the ReferenceData associated with an object reference created by create
can be changed (via the change_id method). References created with create_constant return
true when the method is_constant is invoked on them.

The create method stores the ReferenceData in a ReferenceData table associated with the
server, while create_constant maintains the ReferenceData as a constant part of the object
reference. The ReferenceData associated with an object reference (whether it was
constructed using create or create_constant) can be retrieved via the SOMOA method
get_id.

The IDL SOMOA interface declarations of create, create_constant, get_id, and change_id,
and the SOMDObject interface declaration of is_constant are presented below.

/* From the SOMOA interface */

 sequence <octet,1024> Referencedata;
 SOMDObject create(in ReferenceData id, in InterfaceDef intf,

 in ImplementationDef impl);

 SOMDObject create_constant(in ReferenceData id,
 in InterfaceDef intf,
 in ImplementationDef impl);

 ReferenceData get_id(in SOMDObject objref);

 void change_id(in SOMDObject objref, in ReferenceData id);

/* From the SOMDObject interface */

 boolean is_constant();

An example of how ReferenceData can be used by an application follows the description of
SOMDServer objects in the next section.

Simple SOM object references
In order to efficiently support the generation and interpretation of references to SOM objects,
the SOMOA defines another method called create_SOM_ref.

The create_SOM_ref method creates a simple DSOM reference (SOMDObject) for a local
SOM object. The reference is “special” in that, unlike create and create_constant, there is no
user-supplied ReferenceData associated with the object and because the reference is only
valid while the SOM object exists in memory. The SOMObject to which it refers can be retrieved
via the get_SOM_object method. The is_SOM_ref method can be used to tell if the reference
was created using create_SOM_ref or not. The IDL declarations for create_SOM_ref,
get_SOM_object, and is_SOM_ref are displayed below:

/* from SOMOA’s interface */

 SOMDObject create_SOM_ref(in SOMObject somobj,
 in ImplementationDef impl);

 SOMObject get_SOM_object(in SOMDObject somref);

/* from SOMDObject’s interface */

 boolean is_SOM_ref();

6 – 296. Distributed SOM (DSOM)

SOMDServer (default server-object class)
Every server has a server object that implements three kinds of activities:

• Creation and destruction of SOM objects

• Mapping between SOMObjects and SOMDObjects, and

• Dispatching methods on SOM objects

Additional, application-specific server methods (for initialization, server control, etc.) can be
defined in a subclass of the SOMDServer class. The class of the server object to be used with a
server is contained in the server’s ImplementationDef.

Following are the IDL declarations of the SOMDServer operations:

// methods called by a client

 SOMObject somdCreateObj(in Identifier objclass, in string hints);

 void somdDeleteObj(in SOMObject somobj);

 SOMClass somdGetClassObj(in Identifier objclass);

// methods called by SOMOA

 SOMDObject somdRefFromSOMObj(in SOMObject somobj);

 SOMObject somdSOMObjFromRef(in SOMDObject objref);

 void somdDispatchMethod(in SOMObject somobj,
 out somToken retValue,
 in somId methodId,
 in va_list ap);

Creation and destruction of SOM objects
The SOMDServer class defines methods for the basic creation of SOM objects in the server
process (somdCreateObj), and for finding the SOM class object for a specified class
(somdGetClassObj). With somdGetClassObj, a client can get a proxy to a class object on the
server, so that methods introduced in the class’s metaclass (for example, class-specific
constructors, etc.) may be invoked directly on the class object. Examples of client use of these
two methods were presented earlier in Sections 6.2 and 6.3.

With somdDeleteObj, the client can involve the server object in object destruction. (The
methods somdTargetFree and somFree are defined on the objects themselves and do not
involve the server object.) Involving the server object in object creation and destruction can be
important for applications that need more control over how objects are created and destroyed,
or if the application needs to keep track of an object’s creation and destruction.

Mapping objects to object references
SOMDServer also defines methods that implement mappings between SOMObjects and
SOMDObjects (object references) and a method for dispatching method calls on SOM objects.
These methods are used by the SOM Object Adapter (SOMOA) when converting remote
requests into method calls and results into responses.

Recall from the topic “Proxy objects” in Section 6.3, “Basic Client Programming”, that servers
return proxies to remote objects as method results, not the remote objects themselves. Recall
also that class libraries need not be designed to be distributed (that is, the code that implements
the classes need not be aware of the existence of proxy objects at all). Thus, it is up to the DSOM
run-time environment to ensure that proxies, rather than remote objects, are returned to clients.
The SOMD_SOMOAObject and SOMD_ServerObject work together to perform this service.

6 – 30 SOMobjects Base Toolkit Users Guide

Whenever a result from a remote method call includes a SOMObject, the
SOMD_SOMOAObject invokes the somdRefFromSOMObj method on
SOMD_ServerObject, asking it to create a SOMDObject from the SOMObject.

The default implementation (i.e., SOMDServer’s implementation) for somdRefFromSOMObj
uses the create_SOM_ref method to return a “simple” reference for the SOMObject. Applica-
tion-specific server objects (instances of a subclass of SOMDServer) may elect to use create
or create_constant to construct the object reference if the application requires ReferenceData
to be stored.

Hints on the use of create vs. create_constant
Enough context now exists so that the following question may be answered: “If object refer-
ences constructed with create support changeable ReferenceData, but object references
constructed with create_constant do not, why would I ever want to use create_constant?”

Invocations of create add entries to a table called the ReferenceData Table. The
ReferenceData Table is persistent; that is, ReferenceData saved in it persists between server
activations. Two calls to create with the same arguments do not return the same SOMDObject
(per CORBA 1.1 specifications). That is, if create is called twice with the same arguments, two
entries in the ReferenceData Table will be created. If a server using create wishes to avoid
cluttering up the ReferenceData Table with multiple references to the same object, it must
maintain a table of its own to keep track of the references it has created to avoid calling create
twice with the same arguments.

The create_constant method stores the ReferenceData as part of the SOMDObject’s state;
that is, it does not add entries to the ReferenceData Table. The create_constant method, then,
might be used by a server that does not want to have maintain a table of references nor pay the
penalty of cluttering up the ReferenceData Table with multiple entries.

Mapping object references to objects
The somdSOMObjFromRef method maps SOMDObjects to SOMObjects. This method is
invoked by SOMOA on the server object, for each object reference found as a parameter in a
request. The somdSOMObjFromRef call returns a SOMObject pointer, which can be used in
building the argument list for the method call.

Dispatching a method
After SOMOA (with the help of the local server object) has resolved all the SOMDObjects
present in a request, it is ready to invoke the specified method on the target. Rather than
invoking somDispatch directly on the target, it calls the somdDispatchMethod method on the
server object. The parameters to somdDispatchMethod are the same as the parameters for
SOMObject::somDispatch (see the SOMobjects Developer Toolkit: Programmers Reference
Manual for a complete description).

The default implementation for somdDispatchMethod in SOMDServer simply invokes
SOMObject::somDispatch on the specified target object with the supplied arguments. The
reason for this indirection through the server object is to give the server object a chance to
intercept method calls coming into the server process, if desired.

Example: Writing a persistent object server

This section shows an example of how to provide a server class implementation for persistent
SOM objects. (The Persistence Framework of the full-capability SOMobjtects Developer Tool-
kit can be used to write a persistent object server; an example of that type is given in the
SOMobjects Developer Toolkit Users Guide.) All of the persistent object management is con-
tained in the server class; this class can be used with the DSOM “generic” server program,
somdsvr.

6 – 316. Distributed SOM (DSOM)

The following example describes a user-supplied server class “MyPServer” that is derived from
SOMDServer. The “MyPServer” class introduces five new methods:

 isPObj
 assignRefDataToPObj
 deletePObj
 getRefDataFromPObj and
 activatePObjFromRefData

and overrides four SOMDServer methods:

 somdCreateObj
 somdDeleteObj
 somdRefFromSOMObj and
 somdSOMObjFromRef.

The example shows how a server class might use and manage ReferenceData in object
references to find and activate persistent objects.

The IDL specification for “MyPServer” follows:

interface MyPServer : SOMDServer {
 boolean isPObj (in SOMObject obj);
 void assignRefDataToPObj(in SOMObject pobj);
 void deletePObj(in SOMObject pobj);
 ReferenceData getRefDataFromPObj(in SOMObject pobj);
 SOMObject activatePObjFromRefData(in ReferenceData rd);
 #ifdef __SOMIDL__
 implementation {
 somdCreateObj : override;
 somdDeleteObj : override;
 somdRefFromSOMObj : override;
 somdSOMObjFromRef : override:
 };
 #endif
};

The “isPObj” method returns TRUE if the object passed to it is a persistent object. It is imple-
mented as follows:

SOM_Scope boolean SOMLINK
isPObj(MyPServer somSelf, Environment *ev, SOMObject obj) {
 return(obj && _somIsA(obj, MyPersistentObjectNewClass(0, 0));
}

The following two procedures override SOMDServer’s implementations of somdCreateObj
and somdDeleteObj.

SOM_Scope SOMObject SOMLINK
 somdCreateObj(MyPServer somSelf, Environment *ev,
 Identifier objclass, string hints)
{
 /* create the object as usual */
 SOMObject obj =
 parent_somdCreateObj(somSelf, ev, objclass, hints);
 /* if obj is persistent, assign Ref Data to it */
 if (_isPObj(somSelf, ev, obj))) {
 _assignRefDataToPObj(somSelf, ev, obj)
 }
 return(obj);
}

6 – 32 SOMobjects Base Toolkit Users Guide

The implementation of somdCreateObj first creates the object as usual by employing the
implementation of SOMDServer (MyPServer’s parent). If the newly created object is persis-
tent, the job of “assignRefDataToPObj” is to associate with the object a piece of data that (1)
identifies the object, (2) is retrievable from the object, and (3) can be coerced into
ReferenceData so that it can be used to create a SOMDObject (an object reference).

SOM_Scope void SOMLINK
 somdDeleteObj(MyPServer somSelf, Environment *ev, SOMObject obj)
{
 /* is obj persistent, have the persistence framework delete it */
 if (_isPObj(somSelf, ev, obj)) {
 _deletePObj(somSelf, ev, obj);
 } else /* obj is not persistent, so delete as usual */
 parent_somdDeleteObj(somSelf, ev, obj);
}

The somdDeleteObj implementation, when the object to be deleted is persistent, invokes
“deletePObj” to delete the object. When the object is not persistent, the SOMDServer imple-
mentation of somdDeleteObj deletes the object.

The following two procedures override SOMDServer’s implementations of the methods
somdRefFromSOMObj and somdSOMObjFromRef:

SOM_Scope SOMDObject SOMLINK
 somdRefFromSOMObj(MyPServer somSelf, Environment *ev,
 SOMObject obj)
{
 SOMDObject objref;

 /* is obj persistent */
 if (_isPObj(somSelf, ev, obj {
 /* Create an object reference based on identifying data. */
 ReferenceData rd = _getRefDataFromPObj(somSelf, ev, obj);
 InterfaceDef intf =
 _lookup_id(SOM_InterfaceRepository,ev,somGetClassName(obj));
 objref = _create_constant(SOMD_SOMOAObject, ev, &rd, intf,
 SOMD_ImplDefObject);
 _somFree(intf);
 SOMFree(rd._buffer);
 } else /* obj is not persistent, so get Ref in usual way */
 objref = parent_somdRefFromSOMObj(somSelf, ev, obj);
 return(objref);
}

Method somdRefFromSOMObj is responsible for producing a SOMDObject (the “Ref” in
somdRefFromSOMObj) from a SOMObject. As mentioned earlier, SOMOA exports two
methods for creating SOMDObjects: create and create_constant. This implementation uses
create_constant because it does not want to store the ReferenceData in the ReferenceData
Table. If it did use create and store the ReferenceData in the persistent table, the server object
would either (1) have to keep a persistent table that maps SOMObjects to SOMDObjects so
that it didn’t call create twice with the same arguments (recall that create always returns a
new SOMDObject even when called twice with the same arguments), or (2) fill up the
ReferenceData table with SOMDObjects that contain the same ReferenceData.

The prerequisites for asking SOMOA to create a SOMDObject are (1) some ReferenceData to
be associated with the SOMDObject, (2) an InterfaceDef that describes the interface of
the object, and (3) an ImplementationDef that describes the object’s implementation. The
InterfaceDef is retrieved from the SOM Interface Repository using the object’s class name as
key. The ImplementationDef is held in the variable SOMD_ImplDefObject that is set when the
server process is initialized. The “MyPServer” method “getRefDataFromPObj” is used to re-

6 – 336. Distributed SOM (DSOM)

trieve the identifying data from the object and coerce it into ReferenceData. With these three
arguments, SOMOA’s create_constant is called to create the SOMDObject.

SOM_Scope SOMObject SOMLINK
 somdSOMObjFromRef(MyPServer somSelf, Environment *ev,
 SOMDObject objref)
{ SOMObject obj;

 /* test if objref is mine */
 if (_is_constant(objref, ev)) {
 /* objref was mine, activate persistent object myself */
 ReferenceData rd = _get_id(SOMD_SOMOAObject, ev, objref);
 obj = _activatePObjFromRefData(somSelf, ev, &rd);
 SOMFree(rd._buffer);
 } else
 /* it’s not one of mine, let parent activate object */
 obj = parent_somdSOMObjFromRef(somSelf, ev, objref);
 return obj;
}

This implementation of somdSOMObjFromRef is a little different from the others in that the
server object must determine whether the SOMDObject is one that it created (that is, one that
represents a persistent object), or is just a SOMDObject that was created by the SOMDServer
code (its parent). This is done by asking the SOMDObject if it is a “constant” object reference
(that is, one created by create_constant). If the SOMDObject says that it is a “constant”, then
the “MyPServer” may safely assume that the SOMDObject represents a persistent object that it
created. If the SOMDObject is determined to represent a persistent object, then
its ReferenceData is used to locate/activate the object it represents (via the
method “activatePObjFromRefData”).

Identifying the source of a request
CORBA 1.1 specifies that a Basic Object Adapter should provide a facility for identifying the
principal (or user) on whose behalf a request is being performed. The get_principal method,
defined by BOA and implemented by SOMOA, returns a Principal object, which identifies the
caller of a particular method. From this information, an application can perform access control
checking.

In CORBA 1.1, the interface to Principal is not defined, and is left up to the ORB implementation.
In the current release of DSOM, a Principal object is defined to have two attributes:

userName (string)

— Identifies the name of the user who invoked a request.

hostName (string)

— Identifies the name of the host from which the request originated.

Currently, the value of the userName attribute is obtained from the USER environment variable
in the calling process. Likewise, the hostName attribute is obtained from the HOSTNAME

environment variable. This facility is intended to provide basic information about the source of a
request, and currently, is not based on any specific authentication (i.e., “login”) scheme. More
rigorous authentication and security mechanisms will be considered for future DSOM imple-
mentations.

The IDL prototype for the get_principal method, defined on BOA (SOMOA) is as follows:

Principal get_principal (in SOMDObject obj,
 in Environment *req_ev);

This call will typically be made either by the target object or by the server object, when a method
call is received. The get_principal method uses the Environment structure associated with the

6 – 34 SOMobjects Base Toolkit Users Guide

request, and an object reference for the target object, to produce a Principal object that defines
the request initiator.

Note: CORBA 1.1 defines a “tk_Principal” TypeCode which is used to identify the type of
Principal object arguments in requests, in case special handling is needed when
building the request. Currently, DSOM does not provide any special handling of objects
of type “tk_Principal”; they are treated like any other object.

Compiling and linking servers

The server program must include the “somd.h” header file. Server programs must link to the
SOMobjects Toolkit library: “libsomtk.a” on AIX, and “somtk.lib” on OS/2.

For more information, see the topic “Compiling and linking” in Chapter 4, “Implementing Classes
in SOM.”

6 – 356. Distributed SOM (DSOM)

6.5 Implementing Classes
DSOM has been designed to work with a wide range of object implementations, including SOM
class libraries as well as non-SOM object implementations. This section describes the neces-
sary steps in using SOM classes or non-SOM object implementations with DSOM.

Using SOM class libraries
It is quite easy to use SOM classes in multi-process DSOM-based applications as exemplified
by the sample DSOM application presented in section 6.2, “A Simple DSOM Example”. In fact,
in many cases, existing SOM class libraries may be used in DSOM applications without
requiring any special coding or recoding for distribution. This is possible through the use of
DSOM’s generic server program, which uses SOM and the SOM Object Adapter (SOMOA) to
load SOM class libraries on demand, whenever an object of a particular class is created or
activated.

The topic “Registering servers and classes” in section 6.6 “Configuring DSOM Applications”
discusses how to register a server implementation consisting of a DSOM generic server
process and one or more SOM class libraries.

Role of DSOM generic server program
The generic server program provides basic server functionality: it continuously receives and
executes requests (via an invocation of the SOMOA’s execute_request_loop method), until
the server is stopped. Some requests result in the creation of SOM objects; the generic server
program will find and load the DLL for the object’s class automatically, if it has not already been
loaded.

When generic server program functionality is not sufficient for the particular application, applica-
tion-specific server programs can be developed. For example, some applications may want to
interact with a user or I/O device between requests. The previous section, entitled “Basic Server
Programming,” discussed the steps involved in writing a server program.

Role of SOM Object Adapter
The SOM Object Adapter is DSOM’s standard object adapter. It provides basic support for
receiving and dispatching requests on objects. As an added feature, the SOMOA and the server
process’s server object collaborate to automate the task of converting SOM object pointers into
DSOM object references, and vice versa. That is, whenever an object pointer is passed as an
argument to a method, the SOMOA and the server object convert the pointer to a DSOM object
reference (since a pointer to an object is meaningless outside the object’s address space).

Role of SOMDServer
The server process’s server object (whose default class is SOMDServer) is responsible for
creating/destroying objects on the server via somdCreateObj, somdGetClassObj, and
somdDeleteObj, for mapping between object references (SOMDObjects) and SOMObjects
via somdRefFromSOMObj and somdSOMObjFromRef, and for dispatching remote re-
quests to server process objects via somdDispatchMethod. These last three methods are
invoked on the server object by the SOMOA when objects are to be returned to clients, when
incoming requests contain object references, and when the method is ready to be dispatched,
respectively. By partitioning out these mapping and dispatching functions into the server object,
the application can more easily customize them, without having to build object adapter sub-
classes.

SOMDServer can be subclassed by applications that want to manage object location, object
activation, and method dispatching. An example of such an application (which provides a server
class implementation for persistent SOM objects) is shown in section 6.4, “Basic Server
Programming.”

6 – 36 SOMobjects Base Toolkit Users Guide

These features of SOMOA and SOMDServer make it possible to take existing SOM classes,
which have been written for a single-address space environment, and use them unchanged in a
DSOM application. More information on the SOMOA and server objects can be found in the
“Basic Server Programming” section.

Implementation constraints
The generic server program (somdsvr), the SOMOA, and the SOMDServer make it easy to
use SOM classes with DSOM. However, if there are any parts of the class implementation that
were written expecting a single-process environment, the class may have to be modified to
behave properly in a client-server environment. Some common implementation practices to
avoid are listed below:

• Printing to standard output. Any text printed by a method will appear at the server, as
opposed to the client. In fact, the server may not be attached to a text display device or
window, so the text may be lost completely. It is preferred that any textual output generated
by a method be returned as an output string.

Note: Passing textual output between the client program and the called method via an “inout
string” parameter is strongly discouraged. As discussed in the CORBA 1.1 specification
(page 94), the size of the output string is constrained by the size of the input string. If there
was no input string value, the size of the output string would be constrained to 0 bytes.
Instead, it is preferred that textual data be returned either as an output string (DSOM
provides the storage), or by passing a character array buffer (client provides the storage).

• Creating and deleting objects. Methods that create or delete objects may have to be
modified if the created objects are intended to be remote. The calls to create local objects are
different than the calls to create remote objects.

• Using pointers to client-allocated memory in instance variables. Consider the following
example: A class has a method that accepts a pointer to a data value created by the client
(e.g., a string or a struct), and simply stores the pointer in an instance variable or attribute.
However, in DSOM, the called method is passed a pointer to a copy of the value (in the
request message body), but the copy is freed at the end of the request. If the data value is
meant to persist between requests, the object is responsible for making its own copy of it.
(The implementation of the “_set_printerName” method in the topic “Wrapping a printer API”
later in this section is an example of a method performing such a copy.)

In addition to those coding practices which simply do not “port” to a distributed environment,
there are a few other restrictions that are imposed by DSOM’s (current) implementation.

• Using structures with embedded pointers as method arguments. When DSOM makes
a copy of a struct value used as an argument to a method call, it simply copies the values of
the structure fields. For structure fields that are pointers, it copies the pointer value, but it
does not dereference the pointer (and copy that value). The only exception is that DSOM
does convert pointers to SOM objects or DSOM object proxies into an encoding for object
references.

• Packing of structures used as method arguments. If a compiler option is used to pack or
optimize storage of structs (including reordering of struct members) or unions, it is impor-
tant to indicate the exact alignment of the structures using alignment modifiers expressed in
the implementation section of the IDL file. This information must then be updated in the
Interface Repository. See the topic “Providing ‘alignment’ information” in Chapter 7, “The
Interface Repository Framework.”

Some applications may need to associate specific identification information with an object,to
support application-specific object location or activation. In that case, an application server
should create object references explicitly, using the create or create_constant method in
SOMOA. A logical place to put these calls is in a subclass of SOMDServer, as it is the server
object that is responsible for producing/activating objects from object references.

6 – 376. Distributed SOM (DSOM)

Using other object implementations

As an Object Request Broker, DSOM must support a wide range of object implementations,
including non-SOM implementations. For example, in a print spooler application, the implemen-
tation of a print queue object may be provided by the operating system, where the methods on
the print queue are executable programs or system commands. As another example, consider
an application that uses a large, existing class library that is not implemented using SOM.
Finally, consider a class library where persistence is implemented by something other than the
Persistence Framework.

In each of these examples, the application must participate in object identification, activation,
initialization, and request dispatching. Each server supplies a server object (derived from
SOMDServer) that works in conjunction with the SOMOA for this purpose.

Wrapping a printer API
Presented below is a simple example showing how an existing API could be “wrapped” as SOM
objects. The API is admittedly trivial, but it is hoped that readers understand this simple example
well enough to create more sophisticated applications of their own.

The “API” wrapped in this example is comprised of two OS/2 system calls. The first one asks for
a file to be printed on a specific printer:

print /D:<printerName> <filename>

The second one asks for the file currently being printed on device <printerName> to be
cancelled.

print /D:<printerName> /C

Two IDL interfaces are declared in the module “PrinterModule”: “Printer” and “PrinterServer”.
The “Printer” interface wraps the two system calls. The “PrinterServer” interface describes a
subclass of SOMDServer. “PrinterModule::PrinterServer” will be the class of the server object

in the print-server application.

#include <somdserv.idl>

module PrinterModule {
 interface Printer : SOMObject {
 attribute string printerName;
 void print(in string fname);
 void cancel();
 #ifdef __SOMIDL__
 implementation {
 printerName: noset;
 };
 #endif
 };

 interface PrinterServer : SOMDServer {
 #ifdef __SOMIDL__
 implementation {
 somdCreateObj: override;
 somdRefFromSOMObj: override;
 somdSOMObjFromRef: override;
 };
 #endif
 };

};

6 – 38 SOMobjects Base Toolkit Users Guide

Note that the “Printer” interface defines one attribute, “printerName”, that will be used to identify
the printer. It will be set when a “Printer” is created. Printer’s two operations, “print” and “cancel”,
correspond to the two system commands the interface is encapsulating. The “PrinterServer”
interface does not introduce any new attributes or operations. It does specify that three of
SOMDServer’s methods will have their implementations overridden. The three method proce-
dures below show how the “Printer” interface is implemented for the “_set_printerName”, “print”,
and “cancel” methods.

SOM_Scope void SOMLINK PrinterModule_Printer_set_printerName(
 PrinterModule_Printer somSelf, Environment *ev, string printerName)
{
 PrinterModule_PrinterData *somThis =
 PrinterModule_PrinterGetData(somSelf);

 if (_printerName) SOMFree(_printerName);
 _printerName = (string)SOMMalloc(strlen(printerName) + 1);
 strcpy(_printerName, printerName);
}

SOM_Scope void SOMLINK PrinterModule_Printerprint(
 PrinterModule_Printer somSelf, Environment *ev, string fname)
{
 long rc;
 PrinterModule_PrinterData *somThis =
 PrinterModule_PrinterGetData(somSelf);
 string printCommand = (string)
 SOMMalloc(strlen(_printerName) + strlen(fname) + 10 + 1);

 sprintf(printCommand,”print /D:%s %s”,_printerName,fname);
 rc = system(printCommand);
 if (rc) raiseException(ev,rc);
}

SOM_Scope void SOMLINK PrinterModule_Printercancel(
 PrinterModule_Printer somSelf, Environment *ev)
{
 long rc;
 PrinterModule_PrinterData *somThis =
 PrinterModule_PrinterGetData(somSelf);
 string printCommand =
 (string) SOMMalloc(strlen(_printerName) + 12 + 1);

 sprintf(printCommand,”print /D:%s /C”,_printerName);
 rc = system(printCommand);
 if (rc) raiseExeception(ev,rc);
}

Note: The implementation of the “raiseException” procedure shown in the example above
must be provided by the application. However, it is not shown in this example.

The three method procedures that implement the “PrinterServer” interface’s three overridden
methods of SOMDServer are very similar to the method procedures of the “MyPServer”
server-object class presented in the previous section (6.4), and therefore have not been shown
here.

6 – 396. Distributed SOM (DSOM)

Building and registering class libraries

The generic server uses SOM’s run-time facilities to load class libraries dynamically. Thus,
dynamically linked libraries (DLLs) should be created for the classes, just as they would be for
non-distributed SOM-based applications. For more information, see the topic “Creating a SOM
class library” in Chapter 4, “Implementing Classes in SOM.”

During the development of the DLL, it is important to remember the following steps:

� Export a routine called SOMInitModule in the DLL, which will be called by SOM to initialize
the class objects implemented in that library. SOMInitModule should contain a
<className>NewClass call for each class in the DLL.

� For each class in the DLL, specify the DLL name in the class’s IDL file. The DLL name is
specified using the dllname=<name> modifier in the implementation statement of the
interface definition. If not specified, the DLL filename is assumed to be the same as the
class name.

� For each class in the DLL, compile the IDL description of the class into the Interface
Repository. This is accomplished by invoking the following command syntax:

sc –sir –u stack.idl

Note: If the classes are not compiled into the Interface Repository, DSOM will generate a
run-time error (30056: SOMDERROR_BadDescriptor) when an attempt is made to lookup
the signature of a method in the class (for example, on a method call).

� Put the DLL in one of the directories listed in LIBPATH. (This is necessary for both OS/2 and
AIX.)

� On OS/2, if the DLL uses the C run time, export a routine called “_DLL_InitTerm” that
invokes the C Set/2 run time initialization function, “_CRT_Init.” The _DLL_InitTerm
function is invoked automatically when the DLL is loaded.

An example _DLL_InitTerm function is included in the DSOM sample code shipped with
the SOMobjects Developer Toolkit for OS/2, in the file “initterm.c”.

6 – 40 SOMobjects Base Toolkit Users Guide

6.6 Configuring DSOM Applications

Preparing the environment

Some environment variables must be defined before running DSOM. Unless noted, these
environment variables are required in both the AIX and OS/2 environments.

HOSTNAME=<name> — Each machine that is running DSOM must have its
HOSTNAME variable set.

USER=<name> — USER specifies the name of the DSOM user running a client
program.

SOMIR=<file(s)> — SOMIR specifies a list of files (separated by a colon on AIX
and a semicolon on OS/2) which together make up the
Interface Repository. See Chapter 7, “The Interface Re-
pository Framework,” for more information on how to set
this variable.

Note: For DSOM, it is preferable to use full pathnames in
the list of IR files, since the IR will be shared by several
programs that may not all be started in the same directory.

SOMSOCKETS=<name> — SOMSOCKETS specifies the name of the SOM Sockets
subclass that implements the sockets services.

Note: For Workstation DSOM, this variable is effectively
ignored. (However, it may be used by the Event Manage-
ment Framework.)

SOMDDIR=<directory> — SOMDDIR specifies the directory where various DSOM files
should be located, including the Implementation Reposito-
ry files. See the later section in this chapter entitled “Regis-
tering servers and classes” for more information.

Note: If this value is not set, DSOM will attempt to use a
default directory: $SOMBASE/etc/dsom on AIX, and
%SOMBASE%\ETC\DSOM on OS/2.

SOMDPORT=<integer> — In DSOM, servers, clients and DSOM daemons communi-
cate with each other using a “sockets” abstraction. In par-
ticular, DSOM clients establish connections to DSOM serv-
ers by communicating with the DSOM daemon, somdd,
running on each server machine. The daemon is designed
to listen for client requests on a well-known port.

Normally, somdd will look in the /etc/services (for AIX) or
%ETC%\SERVICES (for OS/2) file for its well-known port

number. However, if the user has set the SOMDPORT

environment variable, the value of SOMDPORT will be used
and the “services” file will not be consulted. The user should
pick a 16-bit integer that is not likely to be in use by another
application (check the “services” file for ports reserved for
use on your machine). Typically, values below 1024 are
reserved and should not be used.

Note: If there is no “services” file and the SOMDPORT

environment variable is not set, DSOM will use a default
port number (currently 9393).

6 – 416. Distributed SOM (DSOM)

SOMDTIMEOUT=<integer> — SOMDTIMEOUT specifies how long a receiver should wait
for a message, or how long a sender should wait for an
acknowledgement. The value should be expressed in se-
conds. The default value is 600 seconds (10 minutes).

SOMDDEBUG=<integer> — SOMDDEBUG may optionally be set to enable DSOM run–
time error messages. If set to 0, error reporting is disabled.
If set to 1, error reporting is enabled. Error reports may be
directed to the file named by SOMDMESSAGELOG, if set.

SOMDTRACELEVEL=<integer> — SOMDTRACELEVEL may optionally be set to enable
DSOM run–time trace messages. If set to 0, tracing is
disabled. If set to 1, tracing is enabled. Trace output may be
directed to the file named by SOMDMESSAGELOG, if set.

SOMDMESSAGELOG=<file> — SOMDMESSAGELOG may optionally be set to the name of a
file where DSOM run-time error messages are recorded. If
not set, error messages will be reported on the standard
output device.

MALLOCTYPE=3.1 — This is just for AIX. It tells the malloc/free routines in the AIX
standard C library to use the memory management algo-
rithms from AIX Version 3.1, versus the new algorithms
used in Version 3.2. Apparently the new algorithms some-
times cause problems, so this environment variable was
provided.

DSOM occasionally experiences problems with malloc/
free on AIX 3.2. Setting MALLOCTYPE=3.1 usually fixes the
problem.

Registering class interfaces

DSOM relies heavily on the Interface Repository for information on method signatures (that is, a
description of the method’s parameters and return value). It is important to compile the IDL for
all application classes into the IR before running the application.

For each class in the DLL, compile the IDL description of the class into the Interface Repository.
This is accomplished by invoking the following command syntax:

 sc –sir –u stack.idl

If the default SOM IR (supplied with the SOMobjects Toolkit and Runtimes) is not used by the
application, the user’s IR must include the interface definitions for:

• the appropriate Sockets class (if the SOMSOCKETS environment variable is set),

• the server class (derived from SOMDServer), and

• the definitions of the standard DSOM exceptions (found in file “stexcep.idl”) that may be
returned by a method call.

Registering servers and classes

Implementation definitions
The Implementation Repository holds ImplementationDef objects. The ImplementationDef
class defines attributes necessary for the SOMOA to find and activate the implementation of an
object. Details of the ImplementationDef object are not currently defined in the CORBA 1.1
specification; the attributes that have been defined are required by DSOM.

6 – 42 SOMobjects Base Toolkit Users Guide

Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

impl_id (string)

— Contains the DSOM-generated identifier for a server implementation.

impl_alias (string)

— Contains the “alias” (user-friendly name) for a server implementation.

impl_program (string)

— Contains the name of the program or command file which will be executed when a
process for this server is started automatically by somdd. If the full pathname is not
specified, the directories specified in the PATH environment variable will be searched
for the named program or command file.

— Optionally, the server program can be run under control of a “shell” or debugger, by
specifying the shell or debugger name first, followed by the name of the server
program. (A space separates the two program names.) For example,

dbx myprogram

will start the program “myprogram” under control of “dbx”.

— Servers that are started automatically by somdd will always be passed their impl_id
as the first parameter, in order to retrieve their ImplementationDef (if desired).

impl_flags (Flags)

— Contains a bit-vector of flags used to identify server options (for example, the
IMPLDEF_MULTI_THREAD flag indicates multi-threading).

impl_server_class (string)

— Contains the name of the SOMDServer class or subclass created by the server
process.

impl_refdata_file (string)

— Contains the full pathname of the file used to store ReferenceData for the server.

impl_refdata_bkup (string)

— Contains the full pathname of the backup mirror file used to store ReferenceData
for the server. This file can be used to restore a copy of the primary file in case it
becomes corrupted. (It would be a good idea to keep the primary and backup files
in different disk volumes.)

impl_hostname (string)

— Contains the hostname of the machine where the server is located.

The ‘regimpl’ registration utility
Before an implementation (a server program and class libraries) can be used by client applica-
tions, it must be registered with DSOM by running the implementation registration utility,
regimpl. During execution of regimpl, DSOM updates its database to include the new server
implementation and the associated classes. This enables DSOM to find and, if necessary, to
activate the server so that clients can invoke methods on it.

Typically, DSOM users employ the generic SOM-object server program, described below. A
discussion on how to write a specific (non-generic) server program is found in the earlier
section, “Basic Server Programming.”

6 – 436. Distributed SOM (DSOM)

Registration steps
Registering a server implementation and its classes requires the steps described in the follow-
ing paragraphs.

First, make sure the SOMDDIR environment variable is defined to the name of the Implementa-
tion Repository directory, as discussed in the section “Preparing the Environment.”

Then, to run the regimpl utility, at the system prompt enter:

> regimpl

This brings up the DSOM Implementation Registration Utility menu, shown below. To begin
registering the new implementation, select “1.Add” from the IMPLEMENTATION OPERATIONS

section — that is, at the “Enter operation:” prompt, enter “1” (as shown in bold):

DSOM IMPLEMENTATION REGISTRATION UTILITY
(C) Copyright IBM Corp. 1992,1993. All rights reserved.

Implementation data being loaded from: /u/xyz/dsomRepos/

[IMPLEMENTATION OPERATIONS]
 1.Add 2.Delete 3.Change
 4.Show one 5.Show all 6.List aliases
[CLASS OPERATIONS]
 7.Add 8.Delete 9.Delete from all 10.List classes
[SAVE & EXIT OPERATIONS]
 11.Save data 12.Exit
Enter operation: 1

The regimpl utility then issues several prompts for information about the server implementation
(typical responses are shown in bold as an example).

Implementation alias. Enter a “shorthand” name for conveniently referencing the registered
server implementation while using regimpl:

Enter an alias for new implementation: myServer

Program name. Enter the name of the program that will execute as the server. This may be the
name of one of the DSOM generic servers (discussed under the later topic “Running DSOM
Servers”) or a user-defined name for one of these servers. Note: If the program is located in
PATH, only the program name needs to be specified. Otherwise, the pathname must be speci-
fied.

Enter server program name:(default: somdsvr) <return>

Multi-threading. Specify whether or not the server expects the SOM Object Adapter (SOMOA)
to run each method in a separate thread or not. Notes: This option is only meaningful on OS/2. It
is the responsibility of the class implementor to ensure that the methods being executed by the
server are “thread safe”.

Allow multiple threads in the server? [y/n] (default: no) : n

Server class. Enter the name of the SOMDServer class or subclass that will manage the
objects in the server.

Enter server class (default: SOMDServer) : <return>

Reference data file name. Enter the full pathname of the file used to store ReferenceData
associated with object references created by this server. Note: A file name is required only if the
server is using the create method to generate object references.

Enter object reference file name (optional) : <return>

6 – 44 SOMobjects Base Toolkit Users Guide

Backup reference data file name. Enter the full pathname of the backup file used to mirror the
primary ReferenceData file for this server. Note: a file name is required only if (1) a primary
reference data file has been specified, and (2) the application desires an online backup to be
maintained. This file can be used to restore a copy of the primary file should it become
corrupted.

Enter object reference backup file name (optional) : <return>

Host machine name. This is the name of the machine on which the server program code is
stored. The same name should be indicated in the HOSTNAME environment variable. (If
“localhost” is entered, the contents of the HOSTNAME environment variable will be used.

Enter host machine name:(default: localhost) <return>

The regimpl system next displays a summary of the information defined thus far, and asks for
confirmation before adding it. Enter “y” to save the implementation information in the Implemen-
tation Repository.

==
Implementation id.........: 2befc82b–13a11e00–7f–00–10005ac9272a
Implementation alias......: myServer
Program name..............: somdsvr
Multithreaded.............: No
Server class..............: SOMDServer
Object reference file.....:
Object reference backup...:
Host Name.................: localhost

The above implementation is about to be added. Add? [y/n] y

Implementation ’myServer’ successfully added

Add class. Once the server implementation is added, the complete menu reappears. The next
series of prompts and entries will identify the classes associated with this server. To begin, from
the CLASS OPERATIONS section, select “7.Add”:

[IMPLEMENTATION OPERATIONS]
 1.Add 2.Delete 3.Change
 4.Show one 5.Show all 6.List aliases
[CLASS OPERATIONS]
 7.Add 8.Delete 9.Delete from all 10.List classes
[SAVE & EXIT OPERATIONS]
 11.Save data 12.Exit

Enter operation: 7

Class name. Enter the name of a class associated with the implementation alias.

Enter name of class: class1

Implementation alias. Enter the alias for the server that implements the new class (this should
be the same alias as given above).

Enter alias of implementation that implements class: myServer

Class ’class1’ now associated with implementation ’myServer’

The top-level menu will then reappear. Repeat the previous three steps until all classes have
been associated with the server.

6 – 456. Distributed SOM (DSOM)

Then, from the SAVE & EXIT OPERATIONS section, select “11.Save data” to complete the regis-
tration. Finally, select “12.Exit” to exit the regimpl utility.

[IMPLEMENTATION OPERATIONS]
 1.Add 2.Delete 3.Change
 4.Show one 5.Show all 6.List aliases
[CLASS OPERATIONS]
 7.Add 8.Delete 9.Delete from all 10.List classes
[SAVE & EXIT OPERATIONS]
 11.Save data 12.Exit

Enter operation: 11

Enter operation: 12

Command line interface to ‘regimpl’
The regimpl utility also has a command line interface. The command flags correspond to the
interactive commands described above. The syntax of the regimpl commands follow.

To enter interactive mode:

regimpl

To add an implementation:

regimpl –A –i <str> [–p <str>] [–v <str>] [–f <str>] [–b <str>]
 [–h <str>] [–m {on|off}]

To update an implementation:

regimpl –U –i <str> [–p <str>] [–v <str>] [–f <str>] [–b <str>]
 [–h <str>] [–m {on|off}]

To delete one or more implementations:

regimpl –D –i <str> [–i ...]

To list all, or selected, implementations:

regimpl –L [–i <str> [–i ...]]

To list all implementation aliases:

regimpl –S

To add class associations to one or more implementations:

regimpl –a –c <str> [–c ...] –i <str> [–i ...]

To delete class associations from all, or selected, implementations:

regimpl –d –c <str> [–c ...] [–i <str> [–i ...]]

To list classes associated with all, or selected, implementation:

regimpl –l [–i <str> [–i ...]]

The following parameters are used in the commands described above:

–i <str> = Implementation alias name
–p <str> = Server program name (default: somdsvr)
–v <str> = Server–class name (default: SOMDServer)
–f <str> = Reference data file name (optional)
–b <str> = Reference data backup file name (optional)
–h <str> = Host machine name (default: localhost)
–m {on|off} = Enable multi–threaded server (optional)
–c <str> = Class name

6 – 46 SOMobjects Base Toolkit Users Guide

Programmatic interface to the Implementation Repository
The Implementation Repository can be accessed and updated dynamically using the program-
matic interface provided by the ImplRepository class (defined in “implrep.idl”). The global
variable SOMD_ImplRepObject is initialized by SOMD_Init to point to the ImplRepository
object. The following methods are defined on it:

void add_impldef (in ImplementationDef impldef);

— Adds an implementation definition to the Implementation
Repository. (Note: The value of the “impl_id” attribute is
ignored. A unique ImplId will be generated for the newly
added ImplementationDef.)

void delete_impldef (in ImplId implid);

— Deletes an implementation definition from the Implementa-
tion Repository, given the ID of the implementation defini-
tion.

void update_impldef (in ImplementationDef impldef);

— Updates the implementation definition (defined by the
“impl_id” of the supplied ImplementationDef) in the Imple-
mentation Repository.

ImplementationDef find_impldef (in ImplId implid);

— Returns a server implementation definition given its ID.

ImplementationDef find_impldef_by_alias (in string alias_name);

— Returns a server implementation definition, given its user-
friendly alias.

sequence<ImplementationDef> find_impldef_by_class (
 in string classname);

— Returns a sequence of ImplementationDefs for those
servers that have an association with the specified class.
Typically, a server is associated with the classes it knows
how to implement, by registering its known classes via the
add_class_to_impldef method.

The following methods maintain an association between server implementations and the
names of the classes they implement. These methods effectively maintain a mapping of
<className, Implid>.

void add_class_to_impldef (in ImplId implid,
 in string classname);

— Associates a class, identified by name, with a server, identi-
fied by its ImplId. This type of association is used to lookup
server implementations via the find_impldef_by_class
method.

void remove_class_from_impldef (
 in ImplId implid,
 in string classname);

— Removes the association of a particular class with a server.

sequence<string> find_classes_by_impldef (in ImplId implid);

— Returns a sequence of class names associated with a
server.

With the ImplRepository programmatic interface, it is possible for an application to define
additional server implementations at run time.

6 – 476. Distributed SOM (DSOM)

6.7 Running DSOM Applications
Prior to starting the DSOM processes, the DSOM executables should be installed and the
DSOM environment variables should be set appropriately, as discussed in the earlier section,
“Configuring DSOM.”

Running the DSOM daemon (somdd)
To run a DSOM application, the DSOM daemon, somdd� must first be started. The daemon can
be started manually from the command line, or could be started automatically from a start-up
script run at boot time. It may be run in the background with the commands somdd& on AIX,
and start somdd on OS/2. (The somdd program takes no parameters.)

The somdd daemon is responsible for “binding” a client process to a server process and will
activate the desired server if necessary. The binding procedure is such that the client will consult
the Implementation Repository to find out which machine contains a desired server, and will
then contact the DSOM daemon on the server’s machine to retrieve the server’s communica-
tions address (a port). Servers are activated dynamically as separate processes.

Running DSOM servers
Once the somdd daemon is running, application programs can be started. If the application
uses the generic SOM server, somdsvr, it can be started either from the command line or
automatically upon demand. When starting somdsvr from the command line, the server’s
implementation ID or alias must be supplied as an argument. The command syntax for starting a
generic SOM server is:

 somdsvr [impl_id | –a alias]

For example, the command

$ somdsvr 2ad2688fb–00389c00–7f–00–10005ac900d8

would start a somdsvr for an implementation with the specified ID. Likewise, the command

$ somdsvr –a myServer

would start a somdsvr that represents an implementation of “myServer”.

6 – 48 SOMobjects Base Toolkit Users Guide

6.8 DSOM as a CORBA–compliant Object Request Broker

The Object Management Group (OMG) consortium defines the notion of an Object Request
Broker (ORB) that supports access to remote objects in a distributed environment. Thus,
Distributed SOM is an ORB. SOM and DSOM together comply with the OMG’s specification of
the Common Object Request Broker Architecture (CORBA).

Since the interfaces of SOM and DSOM are largely determined by the CORBA specification, the
CORBA components and interfaces are highlighted in this section.

The CORBA specification defines the components and interfaces that must be present in an
ORB, including the:

� Interface Definition Language (IDL) for defining classes (discussed in Chapter 4, “Imple-
menting Classes in SOM”),

� C usage bindings (procedure-call formats) for invoking methods on remote objects,

� Dynamic Invocation Interface and an Interface Repository, which support the construction
of requests (method calls) at run time (for example, for interactive desktop applications),
and

� Object Request Broker run-time programming interfaces.

SOM and DSOM were developed to comply with these specifications (with only minor exten-
sions to take advantage of SOM services). Although the capabilities of SOM are integral to the
implementation of DSOM, the application programmer need not be aware of SOM as the
implementation technology for the ORB.

This section assumes some familiarity with The Common Object Request Broker: Architecture
and Specification, Revision 1.1 (also referred to as “CORBA 1.1”). The specification is published

jointly by the Object Management Group and x/Open�. The mapping of some CORBA 1.1 terms
and concepts to DSOM terms and concepts is described in the remainder of this section.

Mapping OMG CORBA terminology onto DSOM

This section discusses how various CORBA concepts and terms are defined in terms of DSOM’s
implementation of the CORBA 1.1 standard.

Object Request Broker run-time interfaces
In the previous sections, the SOMDObjectMgr and SOMDServer classes were introduced.
These are classes defined by DSOM to provide basic support in managing objects in a distrib-
uted application. These classes are built upon Object Request Broker interfaces de-
fined by CORBA for building and dispatching requests on objects. The ORB interfaces,
SOMDObjectMgr and SOMDServer, together provide the support for implementing distrib-
uted applications in DSOM.

CORBA 1.1 defines the interfaces to the ORB components in IDL. In DSOM, the ORB compo-
nents are implemented as SOM classes whose interfaces are expressed using the same
CORBA 1.1 IDL. Thus, an application can make calls to the DSOM run time using the SOM
language bindings of its choice.

Interfaces for the following ORB run-time components are defined in CORBA 1.1, and are
implemented in DSOM. They are introduced briefly here, and discussed in more detail through-

6 – 496. Distributed SOM (DSOM)

out this chapter. (See the SOMobjects Developer Toolkit: Programmers Reference Manual for
the complete interface definitions.)

Object — The Object interface defines operations on an “object ref-
erence”, which is the information needed to specify an
object within the ORB.

 In DSOM, the class SOMDObject implements the CORBA

1.1 Object interface. (The “SOMD” prefix was added to
distinguish this class from SOMObject.) The subclass
SOMDClientProxy extends SOMDObject with support
for proxy objects.

ORB — (Object Request Broker) The ORB interface defines utility
routines for building requests and saving references to
distributed objects. The global variable SOMD_ORBObject
is initialized by SOMD_Init and provides the reference to
the ORB object.

ImplementationDef — An ImplementationDef object is used to describe an ob-
ject’s implementation. Typically, the ImplementationDef
describes the program that implements an object’s server,
how the program is activated, and so on.

(CORBA 1.1 introduces ImplementationDef as the name
of the interface, but leaves the remainder of the IDL specifi-
cation to the particular ORB. DSOM defines an interface for
ImplementationDef.)

ImplementationDef objects are stored in the Implementa-
tion Repository (defined in DSOM by the ImplRepository
class).

InterfaceDef — An InterfaceDef object is used to describe an IDL interface
in a manner that can be queried and manipulated at run
time when building requests dynamically, for example.

InterfaceDef objects are stored in the Interface Repository
(described fully in Chapter 7, “The Interface Repository
Framework”).

Request — A Request object represents a specific request on an ob-
ject, constructed at run–time. The Request object contains
the target object reference, operation (method) name, a list
of input and output arguments. A Request can be invoked
synchronously (wait for the response), asynchronously
(initiate the call, and later, get the response), or as a “one-
way” call (no response expected).

NVList — An NVList is a list of NamedValue structures, used primar-
ily in building Request objects. A NamedValue structure
consists of a name, typed value, and some flags indicating
how to interpret the value, how to allocate/free the value’s
memory, and so on.

Context — A Context object contains a list of “properties” that rep-
resent information about an application process’s envi-
ronment. Each Context property consists of a
<name,string_value> pair, and is used by application pro-
grams or methods much like the “environment variables”
commonly found in operating systems like AIX and OS/2.

6 – 50 SOMobjects Base Toolkit Users Guide

IDL method interfaces can explicitly list which properties
are queried by a method, and the ORB will pass those
property values to a remote target object when making a
request.

Principal — A Principal object identifies the principal (“user”) on whose
behalf a request is being performed.

(CORBA 1.1 introduces the name of the interface,
Principal, but leaves the remainder of the IDL specification
to the particular ORB. DSOM defines an interface for
Principal.)

BOA — (Basic Object Adapter) An Object Adapter provides the
primary interface between an implementation and the ORB
“core”. An ORB may have a number of Object Adapters,
with interfaces that are appropriate for specific kinds of
objects.

The Basic Object Adapter is intended to be a general-pur-
pose Object Adapter available on all CORBA-compliant Ob-
ject Request Brokers. The BOA interface provides support
for generation of object references, identification of the
principal making a call, activation and deactivation of ob-
jects and implementations, and method invocation on ob-
jects.

In DSOM, BOA is defined as an abstract class. The
SOMOA (SOM Object Adapter) class, derived from BOA,
is DSOM’s primary Object Adapter implementation. The
SOMOA interface extends the BOA interface with several
of its own methods that are not defined by CORBA 1.1.

Object references and proxy objects
CORBA 1.1 defines the notion of an object reference, which is the information needed to specify
an object in the ORB. An object is defined by its ImplementationDef, InterfaceDef, and
application-specific “reference data” used to identify or describe the object. An object reference
is used as a handle to a remote object in method calls. When a server wants to export a
reference to an object it implements, it supplies the object’s ImplementationDef, InterfaceDef,
and reference data to the Object Adapter, which returns the reference.

The structure of an object reference is opaque to the application, leaving its representation up to
the ORB.

In DSOM, an object reference is represented as an object that can simply be used to identify the
object on that server. The DSOM class that implements simple object references is called
SOMDObject (corresponding to Object in CORBA 1.1.) However, in a client’s address space,
DSOM represents the remote object with a proxy object in order to allow the client to invoke
methods on the target object as if it were local. When an object reference is passed from a
server to a client, DSOM dynamically and automatically creates a proxy in the client for the
remote object. Proxies are specialized forms of SOMDObject; accordingly, the base proxy
class in DSOM, SOMDClientProxy, is derived from SOMDObject.

In order to create a proxy object, DSOM must first build a proxy class. It does so automatically
using SOM facilities for building classes at run time. The proxy class is constructed using
multiple inheritance: the proxy object functionality is inherited from SOMDClientProxy, while
just the interface of the target class is inherited. (See the illustration below.)

6 – 516. Distributed SOM (DSOM)

 SOMDClientProxy

 SOMDObject

 “Stack”

“Stack__Proxy”

.

.

.

abstract inheritance
(interface only)

Construction of a proxy class in DSOM

In the newly derived proxy class, DSOM overrides each method inherited from the target class
with a “remote dispatch” method that forwards an invocation request to the remote object.
Consequently, the proxy object provides location transparency, and the client code invokes
operations (methods) on the remote object using the same language bindings as if it were a local
target object.

For example, recall the “Stack” class used in the tutorial example given earlier. When a server
returns a reference to a remote “Stack” object to the client, DSOM builds a “Stack_ _Proxy”
class (note two underscores in the name), derived from SOMDClientProxy and “Stack”, and
creates a proxy object from that class. When the client invokes the “push” method on the proxy,

_push(stk, &ev, 100);

the method is redispatched using the remote-dispatch method of the SOMDClientProxy class,
and the method is forwarded to the target object.

CORBA defines several special operations on object references that operate on the local
references (proxies) themselves, rather than on the remote objects. These operations are
defined by the classes SOMOA (SOM Object Adapter), SOMDObject (which is DSOM’s
implementation of CORBA’s Object “pseudo-class”) and ORB (Object Request Broker class).
Some of these operations are listed below, expressed in terms of their IDL definitions.

SOMOA methods (inherited from BOA):

sequence <octet,1024> ReferenceData;
SOMDObject create (in ReferenceData id, in InterfaceDef intf,
 in ImplementationDef impl);

— Creates and returns an object reference.

6 – 52 SOMobjects Base Toolkit Users Guide

SOMDObject methods:

SOMDObject duplicate ();

— Creates and returns a duplicate object reference.

void release ();

— Destroys an object reference.

boolean is_nil ();

— Tests to see if the object reference is NULL.

ORB methods:

string object_to_string (SOMDObject obj);

— Converts an object reference to a (storable) string form.

SOMDObject string_to_object (string str);

— Converts a string form back to the original object reference.

Creation of remote objects
The CORBA specification addresses only the execution of requests on remote objects. It does
not address the creation of new remote objects. In the OMG’s Object Management Architec-
ture, creation and deletion of remote objects is considered an object lifecycle service, built on
top of the ORB.

Specifications for lifecycle-service interfaces have only recently been approved by the OMG.
Currently, DSOM provides its own programming interfaces that allow a client application to
create new objects in a remote server. These are discussed in the section entitled “Basic Client
Programming.” The interface to the DSOM Object Manager may change in the future to be
compliant with the OMG standard.

Interface definition language
The CORBA specification defines an Interface Definition Language, IDL, for defining object
interfaces. The SOM Compiler compiles standard IDL interface specifications, but it also allows
the class implementor to include implementation information that will be used in the implemen-
tation bindings for a particular language.

Note: Before IDL, SOM (version 1.0) had its own Object Interface Definition Language (OIDL).
SOM classes specified using OIDL must be converted to IDL before they can be used with
DSOM. The SOMobjects Developer Toolkit provides a migration tool for this purpose. (See
Appendix B of this User’s Guide.)

C language mapping
The CORBA specification defines the mapping of method interface definitions to C language
procedure prototypes, hence SOM defines the same mapping. This mapping requires passing a
reference to the target object and a reference to an implementation-specific Environment
structure as the first and second parameters, respectively, in any method call.

The Environment structure is primarily used for passing error information from a method back
to its caller. See also the topic “Exceptions and Error Handling” in Chapter 3, “Using SOM
Classes in Client Programs,” for a description of how to “get” and “set” error information in the
Environment structure.

Dynamic Invocation Interface (DII)
The CORBA specification defines a Dynamic Invocation Interface (DII) that can be used to
dynamically build requests on remote objects. This interface is described in section 6 (page
105) of the CORBA 1.1 document, and is implemented in DSOM. The DSOM implementation of

6 – 536. Distributed SOM (DSOM)

the DII is described later in this chapter, in the section entitled “Advanced Topics.” Note that, in
DSOM, somDispatch is overridden so that method invocations on proxy objects are forwarded
to the remote target object. SOM applications can use the SOM somDispatch method for
dynamic method calls whether the object is local or remote.

Implementations and servers
The CORBA specification defines the term implementation as the code that implements an
object. The implementation usually consists of a program and class libraries.

Servers are processes that execute object implementations. CORBA 1.1 defines four activation
policies for server implementations: shared, unshared, server-per-method, and persistent, as
follows.

� A shared server implements multiple objects (of arbitrary classes) at the same time, and
allows multiple methods to be invoked at the same time.

� An unshared server, conversely, implements only a single object, and handles one
request at a time.

� The server-per-method policy requires a separate process to be created for each request
on an object and, usually, a separate program implements each method.

Under the shared, unshared, and server-per-method activation policies, servers are acti-
vated automatically (on demand).

� A persistent server, by contrast, is a shared server that is activated “by hand” (for
example, from the command shell or from a startup script), vs. being activated automati-
cally when the first method is dispatched to it.

The term “persistent server” refers to the relative lifetime of the server: it is “always running”
when DSOM is running. (CORBA implies that persistent servers are usually started at ORB boot
time.) It should not be assumed, however, that a “persistent” server necessarily implements
persistent objects (that persist between ORB reboots).

In DSOM, specific process models are implemented by the server program. That is, DSOM
simply starts a specified program when a client attempts to connect to a server. The four CORBA

activation policies, or any other policies, can be implemented by the application as necessary.
For example,

• an object that requires a server-per-method implementation could itself spawn a process at
the beginning of each method execution. Alternatively, the server object in the “main” server
can spawn a process before each method dispatch.

• a dedicated server could be registered for each object that requires an unshared server
implementation (separate process). This may be done dynamically (see the topic “Program-
matic interface to the Implementation Repository” earlier in this chapter).

An ImplementationDef object, as defined by the CORBA specification, describes the charac-
teristics of a particular implementation. In DSOM, an ImplementationDef identifies an imple-
mentation’s unique ID, the program name, its location, and so forth. The ImplementationDef
objects are stored in an Implementation Repository, which is represented in DSOM by an
ImplRepository object.

A CORBA-compliant ORB must provide the mechanisms for a server program to register itself
with the ORB. To “register itself with the ORB” simply means to tell the ORB enough information
about the server process so that the ORB will be able to locate, activate, deactivate, and
dispatch methods to the server process. DSOM supports these mechanisms, so that server
programs written in arbitrary languages can be used with DSOM. (See also the next topic,
“Object Adapters.”)

6 – 54 SOMobjects Base Toolkit Users Guide

In addition to the generic registration mechanisms provided by all CORBA-compliant ORBs,
DSOM provides extra support for using SOM-class DLLs. DSOM provides a generic server
program that automatically registers itself with DSOM, loads SOM-class DLLs on demand, and
dispatches incoming requests on SOM objects. Thus, by using the generic server program
(when appropriate), a user may be able to avoid writing any server program code.

Object Adapters
An Object Adapter (OA) provides the mechanisms that a server process uses to interact with
DSOM, and vice versa. That is, an Object Adapter is responsible for server activation and
deactivation, dispatching methods, activation and deactivation of individual objects, and provid-
ing the interface for authentication of the principal making a call.

DSOM defines a Basic Object Adapter (BOA) interface, described in the CORBA specification,
as an abstract class (a class having no implementation, only an interface specification). The
BOA interface represents generic Object Adapter methods that a server written in an arbitrary
language can use to register itself and its objects with the ORB. Because it is an abstract class
having no implementation, however, the BOA class should not be directly instantiated.

DSOM provides a SOM Object Adapter, SOMOA, derived from the BOA interface, that uses
SOM Compiler and run-time support to accomplish dispatching of methods (that is, accepting
messages, turning them into method invocations, and routing the invocations to the target
object in the server process). SOMOA can be used to dispatch methods on either SOM or
non-SOM object implementations, as described in the sections “Implementing Classes” and
“Basic Server Programming.” It is possible to use non-SOM based implementations with
SOMOA, and often there is no additional programming required to use implementations (class
libraries) already developed using SOM.

The SOMOA works in conjunction with the application–defined server object to map between
objects and object references, and to dispatch methods on objects. By partitioning out these
mapping and dispatching functions into the server object, the application can more easily
customize them, without having to build object adapter subclasses.

SOMOA introduces two methods that handle execution of requests received by the server:

execute_request_loop
execute_next_request

Typically, execute_request_loop is used to receive and execute requests, continuously, in the
server’s main thread. The execute_next_request method allows a single request to be
executed. Both methods have a non-blocking option: when there are no messages pending, the
method call will return instead of wait.

On OS/2, if the server implementation has been registered as “multi-threaded” (via an IMPL-
DEF_MULTI_THREAD flag in the ImplementationDef), SOMOA will automatically run each
request in a separate thread. If the “multi-thread” flag is not set, the server implementation can
still choose to manage its own threads.

The generic server program provided by DSOM (described in the preceding topic) uses
execute_request_loop to receive and execute requests on SOM objects.

Extensions and limitations
The DSOM implementation has the following extensions and limitations in its implementation of
the CORBA specification:

• As just described, the current release of DSOM supports a simple server activation policy,
which is equivalent to the “shared” and “persistent” policies defined by CORBA. DSOM does
not explicitly support the “unshared” or “server–per–method” server activation policies.
Policies other than the basic activation scheme must be implemented by the application.

• DSOM provides null implementations for the object_is_ready or deactivate_obj methods,
defined by the BOA interface for the unshared server activation policy.

6 – 556. Distributed SOM (DSOM)

• DSOM does not support the change_implementation method, defined by the BOA inter-
face to allow an application to change the implementation definition associated with an
object. In DSOM, the ImplementationDef identifies the server which implements an object.
In these terms, changing an object’s ImplementationDef would result in a change in the
object’s server ID. Any existing object references that have the old server ID would be
rendered invalid.

It is possible, however, to change the program which implements an object’s server, or
change the class library which implements an object’s class. To modify the program
associated with an ImplementationDef, use the update_impldef method defined on
ImplRepository. To change the implementation of an object’s class, replace the correspond-
ing class library with a new (upward–compatible) one.

• The SOM Object Adapter (SOMOA) provides a method (change_id) to update the
ReferenceData associated with an object reference created by the create call. This is useful
if the information which describes the object must be changed without invalidating copies of
the existing object reference. CORBA defines no such method; change_id is an extension
to the standard BOA methods.

• The SOMOA provides some specialized object reference types which, in certain situations,
are more efficient or easier-to-use than standard object references.

• DSOM supports the SOM extension to IDL that allows method parameters that are pointers.
Structure, sequence, and array parameters may only contain pointers to objects (not arbi-
trary types).

6 – 56 SOMobjects Base Toolkit Users Guide

6.9 Advanced Topics

Peer vs. client-server processes
The client-server model of distributed computing is appropriate when it is convenient (or
necessary) to centralize the implementation and management of a set of shared objects in one
or more servers. However, some applications require more flexibility in the distribution of objects
among processes. Specifically, it is often useful to allow processes to manage and export some
of their objects, as well as access remote objects owned by other processes. In these cases, the
application processes do not adhere to a strict client-server relationship — instead, they cooper-
ate as “peers”, behaving both as clients and as servers.

Peer applications must be written to respond to incoming asynchronous requests, in addition to
performing their normal processing. In a multi-threaded system (like OS/2), this is best accom-
plished by dedicating a separate process thread that handles DSOM communications and
dispatching. In systems that do not currently support multi-threading (like AIX), peer applica-
tions must be structured as event-driven programs.

Multi-threaded DSOM programs
In a system that supports multi-threading, like OS/2, the easiest way to write a peer DSOM
program is to dedicate a separate thread to perform the usual “server” processing. This body of
this thread would contain the same code as the simple servers described in section 6.4, “Basic
Server Programming.”

DSOM_thread(void *params)
{
 Environment ev;
 SOM_InitEnvironment(&ev);

/* Initialize the DSOM run–time environment */
 SOMD_Init(&ev);

/* Retrieve its ImplementationDef from the Implementation
 Repository by passing its implementation ID as a key */
 SOMD_ImplDefObject =
 _find_impldef(SOMD_ImplRepObject, &ev, *(ImplId *)params);

/* Create SOM Object Adapter and begin executing requests */
 SOMD_SOMOAObject = SOMOANew();
 _impl_is_ready(SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);
 _execute_request_loop(SOMD_SOMOAObject, &ev, SOMD_WAIT);
}

Note: The DSOM run time is “thread safe”; that is, DSOM protects its own data structures and
objects from race conditions and update conflicts. However, it is the application’s responsibility
to implement its own concurrency control for concurrent thread access to local shared applica-
tion objects.

Event-driven DSOM programs using EMan
EMan (see Chapter 9 on “The Event Management Framework”) is not a replacement for
threads, but it supports processing of asynchronous requests. EMan allows a program to
handle events from multiple input sources — but the handlers run on a single thread, under
control of EMan’s main loop.

DSOM provides a runtime function, SOMD_RegisterCallback, which is used by DSOM to
associate user-supplied event handlers with DSOM’s communications sockets and message
queues with EMan. Example code is shown below.

6 – 576. Distributed SOM (DSOM)

DSOM server programs which use EMan must be very careful not to get into deadlock situa-
tions. This is quite easy to do with DSOM, since method calls are synchronous. If two cooperat-
ing processes simultaneously make calls on each other, a deadlock could result. Likewise, if a
method call on remote object B from A requires a method call back to A, a deadlock cycle will
exist. (Of course, the number of processes and objects which create the cyclic dependency
could be greater than two.) To illustrate:

ÍÍ

ÍÍ

ÍÍ

ÍÍ

ÈÈÈ

ÈÈÈ

ÈÈÈ

ÈÈÈ

A B

register(B, A)

get_data(A)

DEADLOCK!

ÍÍ

ÍÍ

ÍÍ

ÍÍ

ÈÈ

ÈÈ

ÈÈ

ÈÈ

A B

OK!

Synchronous
method calls
block, awaiting
responses ...
for requests
that will never
be serviced.

Note: oneway mes-
sages may be used
to avoid deadlock.

Potential deadlocks exist using EMan and DSOM

notify(B)

notify(A)

(then waits
for response)

(then waits
for response)

The application developer must be careful to avoid situations where cooperating processes are
likely to make calls upon each other, creating a cyclic dependency. Some applications may find
it appropriate to use oneway messages to avoid deadlock cycles, since oneway messages do
not cause a process to block. It may also be possible for an application to defer the actual
processing of a method that may “call back” an originating process, by scheduling work using
EMan client events.

Sample server using EMan

The following server code has been distilled from one of the DSOM sample applications
provided with SOMobjects Developer Toolkit. It is an example of a server which has an interval
timer that signals another server (via DSOM) whenever its timer “pops”. Thus, it is both a client
(of the server it signals) and a server (because it can receive timer notifications from other
servers).

The IDL for the server object class to be used by this server program is as follows. Note that the
“noteTimeout” method is oneway, in order to avoid deadlock.

interface PeerServer : SOMDServer
{ oneway void noteTimeout(in string serverName);
 // Notification that a timer event occurred in server serverName
};

6 – 58 SOMobjects Base Toolkit Users Guide

The example server program is outlined as follows. It is assumed that “eman.h” has been
included by the program.

• Perform DSOM initialization up to, but not including, asking SOMOA to start handling
requests.

MyEMan = SOMEEManNew();
SOM_InitEnvironment(&ev);
SOM_InitEnvironment(&peerEv);
SOMD_Init(&ev);

somPrintf(”What is the alias for this server? ”);
gets(thisServer);

SOMD_ImplDefObject = _find_impldef_by_alias(SOMD_ImplRepObject,
 &ev, thisServer);

SOMD_SOMOAObject = SOMOANew();
_impl_is_ready(SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);

• Register a “DSOM event” with EMan, having EMan callback to a procedure that asks the
SOMOA to process any pending DSOM requests.

void SOMD_RegisterCallback(SOMEEman emanObj, EMRegProc *func);

void DSOMEventCallBack (SOMEEvent event, void *eventData)
{ Environment ev;
 SOM_InitEnvironment(&ev);
 _execute_request_loop(SOMD_SOMOAObject, &ev, SOMD_NO_WAIT);
}

SOMD_RegisterCallback (MyEMan, DSOMEventCallBack);

• Ask user to provide “target server’s alias”, where the target server is that this server will signal
when its timer “pops”. Then get a proxy for that server.

somPrintf(”What is the alias for the target server? ”);
gets(inbuf);
RemotePeer = _somdFindServerByName(SOMD_ObjectMgr, &ev, inbuf);

• Ask user to provide the timer’s interval (in milliseconds)

somPrintf(”What is the timer interval, in millseconds? ”);
gets(inbuf);
Interval = atoi(inbuf);

• Register a timer event with EMan, having EMan call back a procedure that will invoke the
notification method on the target server.

void TimerEventCallBack (SOMEEvent event, void *eventData)
{ Environment ev;
 SOM_InitEnvironment(&ev);
 /* call the peer, with a oneway message */
 _noteTimeout(RemotePeer, &ev, thisServer);
}

data = SOMEEMRegisterDataNew();
_someClearRegData(data, &ev);
_someSetRegDataEventMask(data, &ev, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, &ev, Interval);
somPrintf(”Type <Enter> key when ready to go: ”);
gets(inbuf);
regId = _someRegisterProc(MyEMan, &ev, data, TimerEventCallBack,

 NULL);

6 – 596. Distributed SOM (DSOM)

Important: Do not use someRegister or someRegisterEv to register “callback methods” that
would be executed on proxy objects. Instead, write a callback routine that invokes the desired
method on the proxy, like the one shown above, and register that routine using the method
someRegisterProc.

Note: EMan currently uses the methods someRegister and someRegisterEv to obtain the
address of a method-procedure to call when a specified event occurs. If EMan directly calls the
method-procedure versus somDispatch, the method call will not be forwarded to the remote
object as desired.

• Start the EMan event processing loop.

_someProcessEvents(MyEMan, &ev);

Before the sample is run, two server implementations should be registered with regimpl. The
implementations are identical except for their aliases. One may be called “peerServer1” and the
other “peerServer2”. The “PeerServer” class should be specified as their server-object class.

Whenever peerServer1’s timer pops, the Event Manager causes a method, “noteTimeout”, to
be sent to the server object in peerServer2. PeerServer2’s server object executes this method
by displaying a message on its window. Whenever peerServer2’s timer pops, a similar se-
quence occurs with peerServer1. The two servers will run continuously until interrupted.

Dynamic Invocation Interface
DSOM supports the CORBA dynamic invocation interface (DII), which clients can use to dynami-
cally build and invoke requests on objects. This section describes how to use the DSOM DII.
Currently, DSOM supports dynamic request invocation only on objects outside the address
space of the request initiator, via proxies. The somDispatch method (non–CORBA) can be
used to invoke methods dynamically on either local or remote objects, however.

To invoke a request on an object using the DII, the client must explicitly construct and initiate the
request. A request is comprised of an object reference, an operation, a list of arguments for the
operation, and a return value from the operation. A key to proper construction of the request is
the correct usage of the NamedValue structure and the NVList object. The return value for an
operation is supplied to the request in the form of a NamedValue structure. In addition, it is
usually most convenient to supply the arguments for a request in the form of an NVList object,
which is an ordered set of NamedValues. This section begins with a description of
NamedValues and NVLists and then details the procedure for building and initiating requests.

The NamedValue structure
The NamedValue structure is defined in C as:

typedef unsigned long Flags;

struct NamedValue {
Identifier name; // argument name
any argument; // argument
long len; // length/count of arg value
Flags arg_modes; // argument mode flags

};

where:

name is an Identifier string as defined in the CORBA specification, and
arg is an any structure with the following declaration:

struct any {
TypeCode _type;
void* _value;

};

6 – 60 SOMobjects Base Toolkit Users Guide

_type is a TypeCode, which has an opaque representation with operations defined on it to allow
access to its constituent parts. Essentially the Typecode is composed of a field specifying the
CORBA type represented and possibly additional fields needed to fully describe the type. See
Chapter 7 of this manual for a complete explanation of TypeCodes.

_value is a pointer to the value of the any structure. Important: The contents of “_value” should
always be a pointer to the value, regardless of whether the value is a primitive, a structure, or is
itself a pointer (as in the case of object references, strings and arrays). For object references,
strings and arrays, _value should contain a pointer to the pointer that references the value.
For example:

string testString;
any testAny;

testAny._value = &testString;

len is the number of bytes that the argument value occupies. The following table gives the
length of data values for the C language bindings. The value of len must be consistent with the
TypeCode.

Data type Length
short sizeof(short)
unsigned short sizeof(unsigned short)
long sizeof(long)
unsigned long sizeof(unsigned long)
float sizeof(float)
double sizeof(double)
char sizeof(char)
boolean sizeof(boolean)
octet sizeof(octet)
string strlen(string) – does not include ’\0’ byte
enum E{} sizeof(unsigned long)
union U sizeof(U)
struct S{} sizeof(S)
Object 1
array N of type T1 Length(T1)*N
sequence V of type T2 Length(T2)*V – V is the actual # of elements

The arg_modes field is a bitmask (unsigned long) and may contain the following flag values:

ARG_IN the associated value is an input-only argument
ARG_OUT the associated value is an output-only argument
ARG_INOUT the associated argument is an in/out argument

These flag values identify the parameter passing mode for the arguments. Additional flag values
have specific meanings for Request and NVList methods and are listed with their associated
methods.

The NVList class
An NVList contains an ordered set of NamedValues. The CORBA specification defines several
operations that the NVList supports. The IDL prototypes for these methods are as follows:

6 – 616. Distributed SOM (DSOM)

// get the number of elements in the NVList
ORBStatus get_count(

out long count);

// add an element to an NVList
ORBStatus add_item(

in Identifier item_name,
in TypeCode item_type,
in void* value,
in Flags item_flags);

// frees the NVList and any associated memory
ORBStatus free();

// frees dynamically allocated memory associated with the list
ORBStatus free_memory();

In DSOM, the NVList is a full-fledged object with methods for getting and setting elements:

//set the contents of an element in an NVList
ORBStatus set_item(

in long item_number, /* element # to set */
in Identifier item_name,
in TypeCode item_type,
in void* item_value,
in long value_len,
in Flags item_flags);

// get the contents of an element in an NVList
ORBStatus get_item(

in long item_number, /* element # to get */
out Identifier item_name,
out TypeCode item_type,
out void* item_value,
out long value_len,
out Flags item_flags);

See the SOMobjects Developer Toolkit: Programmers Reference Manual for a detailed descrip-
tion of the methods defined on the NVList object.

Creating argument lists
A very important use of the NVList is to pass the argument list for an operation when creating a
request. CORBA 1.1 specifies two methods, defined in the ORB class, to build an argument list:
create_list and create_operation_list. The IDL prototypes for these methods are as follows:

ORBStatus create_list(
in long count, /* # of items */
out NVList new_list);

ORBStatus create_operation_list(
in OperationDef oper,
out NVList new_list);

The create_list method returns an NVList with the specified number of elements. Each of the
elements is empty. It is the client’s responsibility to fill the elements in the list with the correct
information using the set_item method. Elements in the NVList must contain the arguments in
the same order as they were defined for the operation. Elements are numbered from 0 to
count–1.

The create_operation_list method returns an NVList initialized with the argument descrip-
tions for a given operation (specified by the OperationDef). The arguments are returned in the

6 – 62 SOMobjects Base Toolkit Users Guide

same order as they were defined for the operation. The client only needs to fill in the item_value
and value_len in the elements of the NVList.

In addition to these CORBA-defined methods, DSOM provides a third version, defined in the
SOMDObject class. The IDL prototype for this method is as follows:

ORBStatus create_request_args(
in Identifier operation,
out NVList arg_list,
out NamedValue result);

Like create_operation_list, the create_request_args method creates the appropriate
NVList for the specified operation. In addition, create_request_args initializes the
NamedValue that will hold the result with the expected return type. The create_request_args
method is defined as a companion to the create_request method, and has the advantage that
the InterfaceDef for the operation does not have to be retrieved from the Interface Repository.

Note: The create_request_args method is not defined in CORBA 1.1. Hence, the
create_operation_list method, defined on the ORB class, should be used instead
when writing portable CORBA-compliant programs.

Building a Request
There are two ways to build a Request object. Both begin by calling the create_request
method defined by the SOMDObject class. The IDL prototype for create_request is as follows:

ORBStatus create_request(
in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags);

The arg_list can be constructed using the procedures described above and is passed to the
Request object in the create_request call. Alternatively, arg_list can be specified as NULL and
repetitive calls to add_arg can be used to specify the argument list. The add_arg method,
defined by the Request class, has the following IDL prototype:

ORBStatus add_arg(
in Identifier name,
in TypeCode arg_type,
in void* value,
in long len,
in Flags arg_flags);

Initiating a Request
There are two ways to initiate a request, using either the invoke or send method defined by the
Request class. The IDL prototypes for these two operations are as follows:

ORBStatus invoke(
in Flags invoke_flags);

ORBStatus send(
in Flags send_flags);

The invoke method calls the ORB, which handles the remote method invocation and returns
the result. This method will block while awaiting return of the result.

6 – 636. Distributed SOM (DSOM)

The send method calls the ORB but does not wait for the operation to complete before
returning. To determine when the operation is complete, the client must call the get_response
method (also defined by the Request class), which has this IDL prototype:

ORBStatus get_response(
in Flags response_flags);

The following flag is defined for get_response:

RESP_NO_WAIT Means that the caller does not want to wait for a response.

get_response determines whether a request has competed. If the RESP_NO_WAIT flag is set,
get_response returns immediately even if the request is still in progress. If RESP_NO_WAIT is
not set, get_response waits until the request is done before returning.

Example code
Following is an incomplete example showing how to use the DII to invoke a request having the
method procedure prototype shown here:

string _testMethod(testObject obj,
 Environment *ev,
 long input_value,

);

6 – 64 SOMobjects Base Toolkit Users Guide

main()
{
 ORBStatus rc;
 Environment ev;
 SOMDObject obj;
 NVList arglist;
 NamedValue result;
 Context ctx;
 Request reqObj;
 OperationDef opdef;
 Description desc;
 OperationDescription opdesc;
 static long input_value = 999;

 SOM_InitEnvironment(&ev);
 SOMD_Init(&ev);

/* create the argument list */
/* get the operation description from the interface repository */
 opdef = _lookup_id(SOM_InterfaceRepository, *ev,
 ”testObject::testMethod”);
 desc = _describe(opdef, &ev);
 opdesc = (OperationDescription *) desc.value._value;

/* fill in the TypeCode field for the result */
 result.argument._type = opdesc–>result;

/* Initialize the argument list */
 rc = _create_operation_list(SOMD_ORBObject, &ev, opdef,
 &arglist);

/* get default context */
 rc = _get_default_context(SOMD_ORBObject, &ev, &ctx);

/* put value and length into the NVList */
 _get_item(arglist, &ev, 0, &name, &tc, &dummy, &dummylen,
 &flags);

 _set_item(arglist, &ev, 0, name, tc, &input_value,
 sizeof(input_value),flags);
 ...
/* create the request – assume the object reference came from
 somewhere –– from a file or returned by a previous request*/
 rc = _create_request(obj, &ev, ctx,
 ”testMethod”, arglist, &result, &reqObj,
 (Flags)0);

/* invoke request */
 rc = invoke(reqObj, &ev, (Flags)0);

/* print result */
 printf(”result: %s\n”,*(string*)(result.argument._value));
 return(0);
}

6 – 656. Distributed SOM (DSOM)

Creating user-supplied proxies

DSOM uses a proxy object in the client’s address space to represent the remote object. As
mentioned earlier in this chapter, the proxy object encapsulates the operations necessary to
forward and invoke methods on the remote object and return the results. By default, proxy
generation is done automatically by the DSOM run time. However, if desired, the programmer
can cause a user-supplied proxy class to be loaded instead of letting the run time dynamically
generate a default proxy class. User-supplied proxies can be useful in specialized circum-
stances when local processing or data caching is desired.

To build a user-supplied proxy class, it is necessary to understand a bit about how dynamic
proxy classes are constructed by the DSOM run time. The DSOM run time constructs a proxy
class by creating an instance of a class that inherits the interface and implementation of
SOMDClientProxy, and the interface (but not the implementation) of the target class. The
methods in the interface of the target object are all overridden to call the somDispatch method.
(For more details, see “Object references and proxy objects” in section 6.8.)

Every SOM object contains the somDispatch method, inherited from SOMObject. This meth-
od is used to dynamically dispatch a method on an object, and can be overridden with applica-
tion-specific dispatching mechanisms. This technique for customizing method resolution is
described in detail in Chapter 5. In SOMDClientProxy, the somDispatch method is overridden
to forward method calls to the corresponding remote target object.

So, in effect, when a method is called on a default proxy object created by the DSOM run time, it
redispatches the method to the remote object using DSOM’s version of somDispatch.

Below is a simple example of a user-supplied proxy class. In this particular example, the proxy
object maintains a local, unshared copy of an attribute (“attribute_long”) defined in the remote
object (“Foo”), while forwarding method invocations (“method1”) on to the remote object. The
result is that, when multiple clients are talking to the same remote “Foo” object, each client has a
local copy of the attribute but all clients share the “Foo” object’s implementation of “method1”.

Note: It is important to understand that simply setting the attribute in one client’s proxy does
not affect the value of the attribute in other proxies. Maintaining consistency of the
cached data values, if desired, is the responsibility of the user-supplied proxy class.

Following is the IDL file for the “Foo” class:

// foo.idl

#include <somdtype.idl>
#include <somobj.idl>

interface Foo : SOMObject
{

string method1(out string a, inout long b,
 in ReferenceData c);
attribute long attribute_long;

 implementation
 {
 releaseorder: method1, _set_attribute_long,
 _get_attribute_long;
 dllname=”foo.dll”;
 somInit: override;
 };
};

6 – 66 SOMobjects Base Toolkit Users Guide

The user-supplied proxy class is created by using multiple inheritance between
SOMDClientProxy and the target object (in this case “Foo”). Thus, the IDL file for the user-
supplied proxy class “Foo__Proxy” (note the two underscores) is as follows:

// fooproxy.idl

#include <somdcprx.idl>
#include <foo.idl>

interface Foo__Proxy : SOMDClientProxy, Foo
{
 implementation
 {
 dllname=”fooproxy.dll”;
 method1: override;
 };
};

When a dynamic proxy class is created by the DSOM run time, the methods inherited from the
target class are automatically overridden to use somDispatch. When you build a user-supplied
proxy, you need to do this explicitly. This is why “method1” is overridden in the implementation
section of the “fooproxy.idl” file.

The implementation of “method1”, which was added to the template produced by the SOM
Compiler, simply calls the somDispatch method on “somSelf”. Because “Foo__Proxy” has
inherited the implementation of SOMDClientProxy, calling somDispatch within “method1”
sends the method to the remote “Foo” object.

/* foo.c */

#include <somdtype.h>
#include <fooproxy.ih>

SOM_Scope string SOMLINK method1(Foo__Proxy somSelf,
 Environment *ev,
 string* a, long* b,
 ReferenceData* c)
{
 string ret_str;
 somId methodId;

/* Foo__ProxyData *somThis = Foo__ProxyGetData(somSelf); */
 Foo__ProxyMethodDebug(”Foo__Proxy”,”method1”);

 /* redispatch method, remotely */
 methodId = somIdFromString(”method1”);
 _somDispatch(somSelf, (void**)&ret_str,
 methodId, somSelf, ev, a, b, c);
 SOMFree(methodId);

 return ret_str;
}

In summary, to build a user-supplied proxy class:

• Create the .idl file with the proxy class inheriting from both SOMDClientProxy and from
the target class.
Important: The user-supplied proxy class must be named “<targetClassName>_ _Proxy”
(with two underscores in the name) and SOMDClientProxy must be the first class in the list
of parent classes; for example,

interface Foo_ _Proxy : SOMDClientProxy, Foo

6 – 676. Distributed SOM (DSOM)

Putting SOMDClientProxy first ensures that its version of somDispatch will be used to
dispatch remote method calls.

In the implementation section of the .idl file, override all methods that are to be invoked on the
target class. Do not override methods that are to be invoked on the local proxy.

• Compile the .idl file. Be sure the Interface Repository gets updated with the .idl file. In the .c or
.C file, for each overridden method, call somDispatch with the method name and parame-
ters passed into the overridden method.

• Build the DLL and place it the LIBPATH. Before creating the default proxy, the DSOM run time
checks the LIBPATH for a DLL containing the class named “<targetClassName>_ _Proxy”. If
such a DLL is found, DSOM loads it instead of dynamically generating a proxy class.

Sockets class

To aid in portability, DSOM has been written to use a common communications interface, which
is implemented by one or more available local protocols.

The common communications interface is represented as an abstract class, called Sockets,
and is based on the familiar “sockets” interface. Several protocol implementations are sup-
ported as Sockets subclasses: TCPIPSockets for TCP/IP, the class NBSockets for Netbios,
and the class IPXSockets for Netware IPX/SPX. (The libraries included in a particular
SOMobjects run–time package will vary.)

There is one case where a Sockets subclass is not required: the DSOM Workstation run-time
package uses shared memory to pass messages within a single machine, and bypasses the
use of a Sockets subclass. (The SOMSOCKETS environment variable is ignored.)

When the Event Management Framework (EMan) is used with DSOM, a Sockets subclass will
be needed to support EMan, whether or not the application runs completely within a single
machine.

Appendix C describes how an application might provide its own Sockets subclass implementa-
tion, for special circumstances.

6 – 68 SOMobjects Base Toolkit Users Guide

6.10 Error Reporting and Troubleshooting

Error reporting
When the DSOM run-time environment encounters an error during execution of a method or
procedure, a SYSTEM_EXCEPTION will be raised. The standard system exceptions are dis-
cussed in the topic “Exceptions and Error Handling” in Chapter 3 “Using SOM Classes in Client
Programs.” The “minor” field of the returned exception value will contain a DSOM error code.
The DSOM error codes are listed below.

Although a returned exception value can indicate that a DSOM run-time error occurred, it may
be difficult for the user or application to determine what caused the error. Consequently, DSOM
has been enabled to report run-time error information, for interpretation by IBM support person-
nel. These error messages take the following form:

DSOM <type> error: <code> [<name>] at <file>:<line>

where the arguments are as follows:

type SYSTEM_EXCEPTION type,
code DSOM error code,
name symbol for DSOM error code (from “somderr.h”),
file source-file name where the error occurred, and
line line number where the error occurred.

For example,

DSOM NO_MEMORY error: 30001 [SOMDERROR_NoMemory] at somdobj.c:250

indicates that a “NO_MEMORY” error (error code 30001) occurred in file “somdobj.c” at line 250.
This information is not usually meaningful to the user; it provides IBM support personnel with a
starting point for problem analysis. There will often be a sequence of error messages; together
they indicate the context in which the error occurred. It is important to give all reported mes-
sages to IBM support personnel for analysis.

There is an environment variable, SOMDDEBUG, which is used to activate error reporting. There
is a corresponding global variable that can be set by an application program; it is declared as:

extern long SOMD_DebugFlag;

Error reporting is normally disabled. To enable error reporting, the environment variable
SOMDDEBUG should be set to a value greater than 0. To disable error reporting, SOMDDEBUG

should be set to a value less than or equal to 0.

By default, error messages will display on the standard output device. Error messages can also
be redirected to a log file. For this, the environment variable SOMDMESSAGELOG should be
set to the pathname of the log file. The SOMD_Init procedure opens the file named in
SOMDMESSAGELOG (if any), during process initialization.

Error codes
The error codes that may be encountered when using DSOM are listed in Appendix A, “Custom-
er Support and Error Codes,” which contains the codes for the entire SOMobjects Toolkit.

DSOM tracing
DSOM has also been enabled to produce a detailed run-time trace, to supplement the error
messages used in problem analysis. There is an environment variable, SOMDTRACELEVEL,
which is used to activate DSOM tracing. There is a corresponding global variable that can be set
by an application program; it is declared as:

extern long SOMD_TraceLevel;

6 – 696. Distributed SOM (DSOM)

Tracing is normally disabled. To enable tracing, the environment variable SOMDTRACELEVEL

should be set to a value greater than 0. To disable tracing, SOMDTRACELEVEL should be set to a
value less than or equal to 0. If the environment variable SOMDMESSAGELOG is set, the trace
messages will be redirected to the specified log file, instead of the standard output device.

The trace messages are not expected to be meaningful to a user or application; they are
intended to provide IBM support personnel with information used in problem analysis. The trace
may be enabled when detailed information is required to determine the context in which a
problem occurs.

Troubleshooting hints
The following hints may help while developing and testing your DSOM application.

The DSOM error codes mentioned below can be obtained directly by the application from the
“minor” field of the exception data returned in a system exception, or from an error report
message when SOMDDEBUG is set to a positive integer value (see the previous topic, “Error
reporting”).

Symptom: When running regimpl, a “PERSIST_STORE” exception is returned. The DSOM
error code is SOMDERROR_IO or SOMDERROR_NoImplDatabase.

• This may indicate that the Implementation Repository files are not found or cannot be
accessed. Verify that SOMDDIR is set correctly, to a directory that has granted read/write
permission to the DSOM user. (It is best if the directory name is fully qualified.) If the
SOMDDIR variable is not set, verify that the default directory ($SOMBASE/etc/dsom on AIX,
and %SOMBASE%\etc\dsom on OS/2) has been set up with the correct permissions. Ensure
that the the files contained in the directory all have read/write permission granted to the
DSOM user.

Symptom: When starting somdd, a “COMM_FAILURE” exception is returned.

• If the DSOM error code is SOMDERROR_SocketBind or SOMDERROR_DuplicateQueue, this
may indicate that there is already an instance of somdd running. If this is true, and the current
instance of somdd does not seem to be responding properly, delete all instances of somdd
and restart a new copy of somdd.

Otherwise, some other communications error caused the failure. Verify that the DSOM
environment variables (including HOSTNAME) are set correctly. Also, if SOMSOCKETS is set,
verify that the IR contains the appropriate Sockets interface definition.

Symptom: When starting up a server program, an exception is returned with a DSOM error
code of SOMDERROR_ServerAlreadyExists.

• This may indicate that a server process that is already running has already registered itself
with the DSOM daemon, somdd, using the implementation ID of the desired server program.

Symptom: On OS/2, an operating system error occurs indicating a “stack overflow” condition
soon after a the first call to a class DLL. Rebuilding the DLL with a larger stack size does not help.

• This sometime occurs when a DLL uses, but does not initialize, the C run time for OS/2. To
perform the proper initialization, a function named “_DLL_InitTerm” must be included in the
DLL, and it must invoke the C Set/2 initialization function, “_CRT_Init.” The _DLL_InitTerm
function is invoked automatically when the DLL is loaded.

An example _DLL_InitTerm function is included in the DSOM sample code shipped with the
SOMobjects Developer Toolkit for OS/2, in the file “initterm.c”.

Symptom: When running an DSOM application that uses EMan, an error message is displayed
asking that the SOMSOCKETS be set.

• This may indicate a need to specify the Sockets subclass to be used with the application.
Current choices are TCPIPSockets for TCP/IP, NBSockets for NetBios, and IPXSockets for

6 – 70 SOMobjects Base Toolkit Users Guide

Netware IPX/SPX. Note: Each SOMobjects package will contain an appropriate subset of
Sockets subclasses. Workstation DSOM includes TCPIPSockets for TCP/IP. Workgroup
DSOM also includes NBSockets for NetBios and IPXSockets for Netware.

Symptom: A remote method invocation fails and a “DISPATCH” exception is returned. The
DSOM error code is SOMDERROR_BadDescriptor.

• This may indicate that the interface describing the method cannot be found in the Interface
Repository. Verify that SOMIR is set correctly, and that the IR contains all interfaces used by
your application.

If the default SOM IR (supplied with the SOMobjects Toolkit and Runtimes) is not used by the
application, the user’s IR must include the interface definitions for the appropriate Sockets
class, server class (derived from SOMDServer), and the definitions of the standard DSOM
exceptions (found in file “stexcep.idl”) that may be returned by a method call.

Symptom: A SOMDERROR_ClassNotFound error is returned by a client either when creat-
ing a remote object using somdNewObject, or when finding a server object using
somdFindAnyServerByClass. (These methods are defined on the SOMDObjectMgr class.)

• This sometimes occurs when the class name specified in calls to somdNewObject or
somdFindAnyServerByClass cannot be found in the Implementation Repository. Make
sure that the class name has been associated with at least one of the server implementa-
tions.

Symptom: A SOMDERROR_ClassNotFound error is returned by a server when creating a new
object using somdNewObject, somdCreateObj, or somdGetClassObj.

• This error may result if the DLL for the class cannot be found. Verify that:

— the interface of the object can be found in the IR;

— the class name is spelled correctly and is appropriately scoped (for example, the “Printer”
class in the “PrintServer” module must have the identifier “PrintServer::Printer”).

• This error can also result when the shared library is statically linked to the server program, but
the <className>NewClass procedures have not been called to initialize the classes.

Symptom: When invoking a method returns a proxy for a remote object in the client, a
SOMDERROR_NoParentClass error occurs.

• This error may result when the class libraries used to build the proxy class are statically linked
to the program, but the <className>NewClass procedures have not been called to initialize
the classes.

Symptom: Following a method call, the SOM run-time error message, “A target object failed
basic validity checks during method resolution” is displayed.

• Usually this means that the method call was invoked using a bad object pointer, or the object
has been corrupted.

Symptom: A remote object has an attribute or instance variable that is, or contains, a pointer to
a value in memory (for example, a string, a sequence, an “any”). The attribute or instance
variable value is set by the client with one method call. When the attribute or instance variable is
queried in a subsequent method call, the value referenced by the pointer is “garbage”.

• This may occur because DSOM makes a copy of argument values in a client call, for use in
the remote call. The argument values are valid for the duration of that call. When the remote
call is completed, the copies of the argument values are freed.

In a DSOM application, a class cannot assume that the client has allocated and will manage
the space for object instance values, because the client may be in a different address space.
If a data value is meant to persist between requests, the object is responsible for making its
own copy of the value.

6 – 716. Distributed SOM (DSOM)

Symptom: A method defines a (char *) parameter that is used to pass a string input value to an
object. The object attempts to print the string value, but it appears to be “garbage”.

• DSOM will support method arguments that are of type “pointer-to-X” (pointer types are a
SOM extension), by deferencing the pointer in the call, and copying the base value. The
pointer-to-value is reconstructed on the server before the actual method call is made.

While (char *) is commonly used to refer to NULL-terminated strings in C programs, (char *)
could also be a pointer to a single character or to an array of characters. Thus, DSOM
interprets the argument type literally as a pointer-to-one-character.

To correctly pass strings or array arguments, the appropriate CORBA type should be used (for
example, “string” or “char foo[4]”).

Symptom: A segmentation violation occurs when passing an “any” argument to a method call,
where the “any” value is a string, array, or object reference. Note: The NamedValues used in DII
calls use “any” fields for the argument values.

• This error may occur because the “_value” field of the “any” structure does not contain the
address of a pointer to the target string, array, or object reference, as it should. (A common
mistake is to set the “_value” field to the address of the string, array, or object reference itself.)

Symptom: When a server program or a server object makes a call to get_id or to
get_SOM_object on a SOMDObject, an “OBJ_ADAPTER” exception is returned with an error
code of SOMDERROR_WrongRefType.

• This error may occur when the operation get_id is called on a SOMDObject that does not
have any user-supplied ReferenceData (that is, the SOMDObject is a proxy, is nil, or is a
simple “SOM ref” created by create_SOM_ref). Likewise, this error may occur when the
operation get_SOM_object is called on a SOMDObject that was not created by the
create_SOM_ref method.

Symptom: A segmentation fault occurs when a SOMD_Uninit call is executed.

• This error could occur if the application has already freed any of the DSOM run-time
objects that were allocated by the SOMD_Init call, including SOMD_ObjectMgr,
SOMD_ImplRepObject and SOMD_ORBObject.

Symptom: Unexplained program crashes.

• Verify that all DSOM environment variables are set, as described in the earlier section
“Configuring DSOM Applications.” Verify that all class libraries are in directories specified in
LIBPATH. Verify that the contents of the Interface Repository, specified by SOMIR, are correct.
Verify that the contents of the Implementation Repository, specified by SOMDDIR, are cor-
rect. Verify that somdd is running. Set SOMDDEBUG to 1 to obtain additional DSOM error
messages.

6 – 72 SOMobjects Base Toolkit Users Guide

6.11 Limitations
The following list indicates known limitations of Distributed SOM at the time of this release.

1. Currently, objects cannot be moved from one server to another without changing the
object references (i.e., deleting the object, and creating it anew in another server).
This yields all copies of the previous reference invalid.

2. The change_implementation method is not supported. This method, defined by the
BOA interface, is intended to allow an application to change the implementation
definition associated with an object. However, in DSOM, changing the server
implementation definition may render existing object references (which contain the
old server ID) invalid.

3. Currently, DSOM has a single server activation policy, which corresponds to CORBA’s
“shared” activation policy for dynamic activation, and “persistent” activation policy for
manual activation. Other activation policies, such as “server-per-method” and
“unshared” are not directly supported, and must be implemented by the application.

Since the unshared server policy is not directly supported, the object_is_ready and
deactivate_obj methods, defined in the BOA interface, have null implementations.

4. If a server program terminates without calling deactivate_impl, subsequent
attempts to start that server may fail. The DSOM daemon believes the server is still
running until it is told it has stopped. Attempts to start a server that is believed to be
exist results in an error (SOMDERROR_ServerAlreadyExists).

5. Currently, file names used in ImplementationDefs are limited to 255 bytes.
Implementations aliases used in ImplementationDefs are limited to 50 bytes. Class
names used in the Implementation Repository are limited to 50 bytes. Hostnames are
limited to 32 bytes.

Other important notes concerning DSOM are documented in the “README” file in the SOMBASE

root directory ($SOMBASE on AIX, and %SOMBASE% on OS/2).

