SQL Primer

I n several of the chapters on working with databases,

you saw how SQL statements were used to determine
what information would be available in a recordset. This
chapter explains how to create those SQL statements and
how to do much more with SQL. The examples in this
chapter all use an Access database, but the techniques

of using SQL are applicable to many database formats. In
fact, SQL statements are the cornerstone of working with
many database servers, such as Oracle or SQL Server.

Two basic types of SQL statements are covered in this
chapter: data-manipulation language (DML) and data-
definition language (DDL). Most of the chapter deals with
DML statements, and, unless a statement is identified
otherwise, you should assume that it is a DML

statement. =

BONUS CHAPTER

What is SQL?
SQL allows you to quickly retrieve

or modify groups of records in your
database.

Retrieve selected records

By setting the appropriate clauses,
you can work with only a portion of
a table rather than have to work
with the entire table.

Get information from multiple
tables
Using SQL statements allows you to

easily combine information from
two or more tables.

Calculate summary
information

You can find out how many records
are in a recordset, or determine the
total or average values of specific
fields.

Use SQL to modify the
information in tables

With a single SQL statement, you
can change the values of multiple
records in a database. To do the
same thing with a program would
require a number of statements.

Use SQL to change the ﬁ

structure of the database

SQL statements can even be set up s
to create a table, modify the struc-
ture of a table, or delete a table.

2 I Bonus Chapter 5 SQL Primer

Defining SQL

Structured Query Language (SQL) is a specialized set of programming commands that enable
the developer (or end user) to do the following kinds of tasks:

Retrieve data from one or more tables in one or more databases
Manipulate data in tables by inserting, deleting, or updating records

Obtain summary information about the data in tables, such as totals; record counts; and
minimum, maximum, and average values

Create, modify, or delete tables in a database (Access databases only)
Create or delete indexes for a table (Access databases only)

SQL statements enable the developer to perform functions in one line or a few lines of code
that would take 50 or 100 lines of standard BASIC code to perform.

What SQL Does

As the name implies, Structured Query Language statements create a query that is processed
by the database engine. The query defines the fields to be processed, the tables containing the
fields, the range of records to be included, and, for record retrieval, the order in which the
returned records are to be presented.

When retrieving records, a SQL statement usually returns the requested records in a dynaset.
Recall that a dynaset is an updatable recordset that actually contains a collection of pointers to
the base data. Dynasets are temporary and are no longer accessible after they are closed. SQL
does have a provision for the times when permanent storage of retrieved records is required.

N O T E The Microsoft SQL syntax used in this chapter is designed to work with the Jet database

engine and is compatible with ANSI SQL (there are, however, some minor differences
between Microsoft SQL and ANSI SQL). In addition, if you use SQL commands to query an external
database server such as SQL Server or Oracle, read the documentation that comes with the server to
verify that the SQL features you want to use are supported and that the syntax of the statements is the
same.

The Parts of the SQL Statement

A SQL statement consists of three parts:
Parameter declarations These optional parameters are passed to the SQL statement by
the program.

The manipulative statement This part of the statement tells the Query engine what kind
of action to take, such as SELECT or DELETE.

Options declarations These declarations tell the Query engine about any filter condi-
tions, data groupings, or sorts that apply to the data being processed. These include the
WHERE, GROUP BY, and ORDER BY clauses.

http://www.quecorp.com

Defining SQL I 3

These parts are arranged as follows:
[Parameter declarations] Manipulative statement [options]

The parameter declarations section is where you define any parameters used in the SQL state-
ment. Any values defined in the parameter declarations section are assigned before the SQL
statement is executed. See the section, “Using Parameters,” later in this chapter for a more
detailed discussion of the parameters declaration.

Most of this chapter uses only the manipulative statement and the options declarations. By
using these two parts of the SQL statement, you can create queries to perform a wide variety
of tasks. Table B5.1 lists four of the manipulative clauses and their purposes.

Table B5.1 Parts of the Manipulative Statement

Statement Function

DELETE FROM Removes records from a table

INSERT INTO Adds a group of records to a table

SELECT Retrieves a group of records and places the records in a dynaset
or table

UPDATE Sets the values of fields in a table

Although manipulative statements tell the database engine what to do, the options declarations
tell it what fields and records to process. The discussion of the optional parameters makes up
the bulk of this chapter. In this chapter, you first look at how the parameters are used with the
SELECT statement and then apply the parameters to the other manipulative statements. Many
examples in this chapter are based on the sales-transaction table of a sample database that
might be used to manage an aquarium business.

The following discussions of the different SQL statements show just the SQL statement syntax.
Be aware that these statements can’t be used alone in Visual Basic. The SQL statement is al-
ways used to create a QueryDef, to create a dynaset or snapshot by using the Execute method,
or as the RecordSource property of a data control. This section explains the part of a SQL state-
ment. Later in the chapter, the “Using SQL” section explains how these statements are actually
used in code. For other examples of using SQL statements, look back through Chapters 29,
“Using the Visual Basic Data Control,” 30, “Doing More with Bound Controls,” and 31, “Im-
proving Data Access with Data Access Objects (DAO).”

N O T E AQueryDef is a part of the database that stores the query definition. This definition is the
SQL statement that you create.

4 I Bonus Chapter 5 SQL Primer

Using SELECT Statements

The SELECT statement retrieves records (or specified fields from records) and places the infor-
mation in a dynaset or table for further processing by a program. The SELECT statement follows
this general form:

SELECT [predicate] fieldlist FROM tablelist [table relations]
[range options] [sort options] [group options]

N O T E Inmy demonstrations of code statements, words in all caps are SQL keywords, and

italicized words or phrases are used to indicate terms that a programmer would replace in
an actual statement—for example, fieldlist would be replaced with Lastname, Firstname.
Phrases or words inside square brackets are optional terms.

The various components of the preceding statement are explained in this chapter. Although a
SQL statement can be greatly complex, it also can be fairly simple. The simplest form of the
SELECT statement is shown here:

SELECT * FROM Sales

Defining the Desired Fields

The fieldlist part of the SELECT statement is used to define the fields to be included in the
output recordset. You can include all fields in a table, selected fields from the table, or even
calculated fields based on other fields in the table. You can also choose the fields to be included
from a single table or from multiple tables.

The fieldlist portion of the SELECT statement takes the following form:
[tablename.]fieldl [AS altl][,[tablename.]field2 [AS alt2]]

Selecting All Fields from a Table The * wild-card parameter is used to indicate that you want
to select all the fields in the specified table. The wild card is used in the fieldlist portion of
the statement. The statement SELECT * FROM Sales, when used with the sample database you
are developing, produces the output recordset shown in Figure B5.1.

Selecting Individual Fields from a Table Frequently, you need only a few fields from a table.
You can specify the desired fields by including a field list in the SELECT statement. Within the
field list, the individual fields are separated by commas. In addition, if the desired field has a
space in the name, as in Order Quantity, the field name must be enclosed within square brack-
ets, [1.The recordset that results from the following SELECT statement is shown in Figure B5.2.
A recordset created with fields specified is more efficient than one created with the wild card
(*), both in terms of the size of the recordset and speed of creation. As a general rule, you
should limit your queries to the smallest number of fields that can accomplish your purpose.

SELECT [Item Code], Quantity FROM Sales

http://www.quecorp.com

FIG. B5.1
Using * in the
fieldlist
parameter selects
all fields from the
source table.

FIG. B5.2

This recordset results
from specifying indi-
vidual fields in the
SELECT statement.

Using SELECT Statements I 5

BRefresh | Sort | FEilter | Lloze
Custnol| 5 aleslD Item Code|Date Quantity| Ordema| «
» 854 |JTHOMA 1028(8/1/94 2 1
854|JTHOMA 1077|8/1/94 1 1
854|JTHOMA 1076|8194] 1
1135|CFIELD 1041[841./94 5 2
1265[JBURMS 1096(8/1./34] 3
1265|JBURMS 1005|8/1/34] 3
583|ASMITH 1076|8/1/34 1 4
583|RSMITH 1059(8/1/94 3 [
583|RSMITH 102984194 4 4
1037 MNORTO 1027|8454 5 5
1037|MNORTO 1082|8194 3 g
1578|KMILLE 1022(8/1/94 4 5
1578 KMILLE 1098[8/1./34 2 B
1578|KMILLE 1053]8/1/94 1 5 fas
W AllowaddNew ¥ AlowDelste ¥ Allowlpdate
|] 4 [Fight Click for Data Corttrol Properties » Nl

EE SELECT [item Code]. Quantity FROM Sales IH =] E3

Refresh

Sort

Filter

Close

Item Code

[Quantity

» 1028

1077

1076

1041

1036

1005

1078

1053

1029

1027

1082

1022

1098

ra| = | wafon| | w| = m|of o) o | —{ro

10R7

1

=
|

W AllowaddNew

W alowDelste

¥ AlowUpdate

| |4| 4 |Hight Click for Data Control Properties

[

Selecting Fields from Multiple Tables As you might remember from the discussions on
database design in Chapter 28, “Building Database Applications,” you normalize data by
placing it in different tables to eliminate data redundancy. When you retrieve this data for
viewing or modification, you want to see all the information from the related tables. SQL
lets you combine information from various tables into a single recordset.

See “Designing a Database,” in Chapter 28.

To select data from multiple tables, you specify three things:

The table from which each field is selected

The fields from which you are selecting the data

The relationship between the tables

6 I Bonus Chapter 5 SQL Primer

Specify the table for each field by placing the table name and a period in front of the field name
(for example, Sales.[1tem Code] or Sales.Quantity). (Remember, square brackets must
enclose a field name that has a space in it.) You also can use the wild-card identifier (*) after
the table name to indicate that you want all the fields from that table.

To specify the tables you're using, place multiple table names (separated by commas) in the
FROM clause of the SELECT statement.

The relationship between the tables is specified either by a WHERE clause or by a JOIN condition.

These elements are discussed later in this chapter.

The statement in Listing B5.1 is used to retrieve all fields from the Sales table and the Item
Description and Retail fields from the Retail Items table. These tables are related by the Item
Code field. Figure B5.3 shows the results of the statement.

FIG. B5.3
Selecting fields from
multiple tables
produces a combined
recordset.

EE 5QL Statement M=l
Hefresh | Sort ‘ Filter | LClose |
Cugtno|SaleslD Item Code|Date Quantity| Ordemo|ltem D escription Retail ;I
[854 | THOMA, 1028(8/1/94 2 1| Checker Baib 26| |
854/ THOMA 1077(81/34 1 1|Black Ghost 35
854 THOMA 1076[841 /34 5 1|Green Discus 1.6
1135|CFIELD 1041|8/1/94 5 2|Black Neon Telra 2.35
1265|JEURANS 1096|8/1/94 5 3|'Water Aose 1.55
1265|JBURMNS 1005]8/1/94 5 3| Blue Gourami 16
583|RSMITH 10768/1./94 1 4| Green Discus 18
B83|ASMITH 1059[8/1 /94 3 4|Emperor Tebra 1.2
BE3|RSMITH 1029(8/1./94 4 4| Marbled Hatchetfish 265
1037 |MNORTO 1027(841/34 5 5|Zebra Danio 16
1037|MNORTO 1082]8/1/34 3 5| Snakeskin Gourami 24
1578|KMILLE 1022|8/1/94 [E| Stiped Headstander 23
1578 |KMILLE 1038|8/1/94 2 | Hornwort 1.45
1578|KMILLE 1053[8/1 /34 1 E| S ailfin tolly 1.85| %
v AllowaAddMew ¥ AllowDelete v Allowlpdate
|] 4 [Right Click for Data Cartrol Praperties Llﬂl

N O T E The listing shows an underscore character at the end of each of the first three lines. This is
used to break the lines for the purpose of page-width in the book. When you enter the
expressions, they need to be on a single line.

Listing B5.1 Sales.txt—Selecting Fields from Multiple Tables in a SQL
Statement

SELECT Sales.*, [Retail Items].[ltem Description], _
[Retail Items].Retail _
FROM Sales, [Retail Items] _
WHERE Sales.[ltem Code]=[Retail Items].[ltem Code]

N O T E You can leave out the table name when specifying fields as long as the requested field is
present only in one table in the list. However, it is very good programming practice to
include the table name, both for reducing the potential for errors and for readability of your code.

http://www.quecorp.com

Using SELECT Statements I 7

Creating Calculated Fields The example in Listing B5.1 has customer-order information
consisting of the item ordered, quantity of the item, and the retail price. Suppose that you also
want to access the total cost of the items. You can achieve this by using a calculated field in the
SELECT statement. A calculated field can be the result of an arithmetic operation on numeric
fields (for example, Price * Quantity) or the result of string operations on text fields (for
example, Lastname & Firstname). For numeric fields, you can use any standard arithmetic
operation (+, —, *, /,). For strings, you can use the concatenation operator (&). In addition,
you can use Visual Basic functions to perform operations on the data in the fields (for example,
you can use the MID$ function to extract a substring from a text field, the UCASES$ function to
place text in uppercase letters, or the SQR function to calculate the square root of a number).
Listing B5.2 shows how some of these functions can be used in the SELECT statement.

Listing B5.2 Totprice.txt—Creating a Variety of Calculated Fields with
the SELECT Statement

“Calculate the total price for the items
SELECT [Retail Items].Retail * Sales.Quantity FROM _
[Retail Items],Sales _
WHERE Sales.[ltem Code]=[Retail Items].[ltem Code]

“Create a name field by concatenating the Lastname and
“‘Firstname fields

SELECT Lastname & “, “ & Firstname FROM Customers

“Create a customer ID using the first 3 letters of the Lastname

“ and Firstname fields and make all letters uppercase.

SELECT UCASE$(MID$(Lastname,1,3)) & UCASE$S(MID$S(Firstname,1,3))
FROM Customers

<

“Determine the square root of a number for use in a data report.

SELECT Datapoint, SQR(Datapoint) FROM Labdata

In the listing, no field name is specified for the calculated field. The Query engine automatically
assigns a name, such as Expr1001, for the first calculated field. The next section, “Specifying
Alternative Field Names,” describes how you can specify a name for the field.

Calculated fields are placed in the recordset as read-only fields—they can’t be updated. In
addition, if you update the base data used to create the field, the changes are not reflected in
the calculated field.

8 I Bonus Chapter 5 SQL Primer

N O T E Ifyou use a calculated field with a data control, it is best to use a label control to show

the contents of the field. This prevents the user from attempting to update the field and
causing an error. You could also use a text box with the locked property set to True. (You can learn
more about the Data control and bound controls by reviewing Chapters 29, “Using the Visual Basic
Data Control;” and 30, “Doing More with Bound Controls.”) If you use a text box, you might want to
change the background color to indicate to the user that the data cannot be edited.

Specifying Alternative Field Names Listing B5.2 created calculated fields to include in a
recordset. For many applications, you will want to use a name for the field other than the one
automatically created by the query engine.

You can change the syntax of the SELECT statement to give the calculated field a name. You
assign a name by including the As clause and the desired name after the definition of the field
(refer to the second part of Listing B5.3). If you want, you can also use this technique to assign
a different name to a standard field.

Listing B5.3 Custname.txt—Accessing a Calculated Field’s Value and
Naming the Field

“Set up the SELECT statement without the name

Dim NewDyn As RecordSet
SQL = “SELECT Lastname & “, “ & Firstname FROM Customers™

“Create a dynaset from the SQL statement

NewDyn = OldDB5.0penRecordset(SQL)

“Get the value of the created field

Person = NewDyn.Recordset(0)

<

“Set up the SELECT statement and assign a name to the field

SQL = *“SELECT Lastname & “, “ & Firstname As Name FROM Customers”

“Create a dynaset from the SQL statement

NewDyn = OldDb.OpenRecordset(SQL)

“Get the value of the created field

Person = NewDyn.Recordset(“Name’)

http://www.quecorp.com

Using SELECT Statements I 9

Specifying the Data Sources

In addition to telling the database engine what information you want, you must tell it in which
table to find the information. This is done with the FROM clause of the SELECT statement. Here is
the general form of the FROM clause:

FROM tablel [IN datal] [AS aliasl][,table2 [IN data2] [AS alias2]]
Various options of the FROM clause are discussed in the following sections.

Specifying the Table Names The simplest form of the FRoM clause is used to specify a single
table. This is the form of the clause used in this statement:

SELECT * FROM Sales

The FROM clause can also be used to specify multiple tables (refer to Listing B5.1). When speci-
fying multiple tables, separate the table names with commas. Also, if a table name has an em-
bedded space, the table name must be enclosed in square brackets, [1 (refer to Listing B5.1).

Using Tables in Other Databases As you develop more applications, you might have to pull
data together from tables in different databases. For example, you might have a ZIP Code
database that contains the city, state, and ZIP Code for every postal code in the United States.
You do not want to have to duplicate this information in a table for each of your database appli-
cations that requires it. The SELECT statement lets you store that information once in its own
database and then pull it in as needed. To retrieve the information from a database other than
the current one, you use the IN portion of the FROM clause. The SELECT statement for retrieving
the ZIP Code information along with the customer data is shown in Listing B5.4.

Listing B5.4 Getcust.txt—Retrieving Information from More than One
Database

“We are working from the TRITON database which is already open.

SELECT Customers.Lastname, Customers.Firstname, Zipcode.City, _
Zipcode.State FROM Customers, Zipcode IN USZIPS
WHERE Customers.Zip = Zipcode.Zip

Assigning an Alias Name to a Table Notice the way the table name for each desired field
was listed in Listing B5.4. Because these table names are long and there are a number of fields,
the SELECT statement is fairly long. The statement gets much more complex with each field
and table you add. In addition, typing long names each time increases the chances of making

a typo.

10 I Bonus Chapter 5 SQL Primer

To alleviate this problem, you can assign the table an alias by using the As portion of the FROM
clause. By using As, you can assign a unique, shorter name to each table. This alias can be
used in all the other clauses in which the table name is needed. Listing B5.5 is a rewrite of the
code from Listing B5.4, using the alias cs for the Customers table and zP for the Zipcode table.

Listing B5.5 Alias.txt—Using a Table Alias to Cut Down on Typing

“We use aliases to make the statement easier to enter.

SELECT CS.Lastname, CS.Firstname, ZP.City, ZP.State
FROM Customers AS CS, Zipcode IN USZIPS AS ZP
WHERE CS.Zip = ZP.Zip

Using ALL, DISTINCT, or DISTINCTROW Predicates

In most applications, you select all records that meet specified criteria. You can do this by
specifying the ALL predicate in front of your field names or by leaving out any predicate specifi-
cation (ALL is the default behavior). Therefore, the following two statements are equivalent:

SELECT * FROM Customers
SELECT ALL * FROM Customers

Sometimes, however, you might want to determine the unique values of fields. For these times,
use the DISTINCT or DISTINCTROW predicate. The DISTINCT predicate causes the database en-
gine to retrieve only one record with a specific set of field values—no matter how many dupli-
cates exist. For a record to be rejected by the DISTINCT predicate, its values for all the selected
fields must match those of another record. For example, if you are selecting first and last
names, you can retrieve several people with the last name Smith, but you can’t retrieve multiple
occurrences of Adam Smith.

If you want to eliminate records that are completely duplicated, use the DISTINCTROW predicate.
DISTINCTROW compares the values of all fields in the table, whether or not they are among the
selected fields. For the sample database, you can use DISTINCTROW to determine which prod-
ucts have been ordered at least once. DISTINCTROW has no effect if the query is on only a single
table.

Listing B5.6 shows the uses of DISTINCT and DISTINCTROW.

Listing B5.6 Distinct.txt—Obtaining Unique Records with the DISTINCT
or DISTINCTROW Predicates

“Use of the DISTINCT predicate

SELECT DISTINCT [Item Code] FROM Sales

http://www.quecorp.com

Using SELECT Statements I 11

“Use of the DISTINCTROW predicate
SELECT DISTINCTROW [Item Code] FROM [Retail Items], Sales
[Retail Items] INNER JOIN Sales _
ON [Retail Items].[ltem Code]=Sales.[ltem Code]

Setting Table Relationships

When you design a database structure, you use key fields so that you can relate the tables in
the database. For example, you use a salesperson ID in the Customers table to relate to the
salesperson in the Salesperson table so that you don’t have to include all the salesperson data
with every customer record. You use these same key fields in the SELECT statement to set the
table relationships so that you can display and manipulate the related data. That is, when you
view customer information, you want to see the salesperson’s name, not his or her ID.

You can use two clauses to specify the relationships between tables:

JOIN This combines two tables, based on the contents of specified fields in each table
and the type of JOIN.

WHERE This usually is used to filter the records returned by a query, but it can be used
to emulate an INNER JOIN. You will take a look at the INNER JOIN in the following section.

N O T E Using the WHERE clause to join tables creates a read-only recordset. To create a modifiable
recordset, you must use the JOIN clause.

Using a JOIN Clause The basic format of the JOIN clause is as follows:
tablel {INNER|LEFT]RIGHT} JOIN table2 ON tablel.keyl = table2.key2

The Query engine used by Visual Basic (also used by Access, Excel, and other Microsoft
products) supports three JOIN clauses: INNER, LEFT, and RIGHT. Each clause returns records
that meet the JOIN condition, but each behaves differently in returning records that do not
meet that condition. Table B5.2 shows the records returned from each table for the three JOIN
conditions. For this discussion, tablel is the left table and table2 is the right table. In general,
the left table is the first one specified (on the left side of the J0IN keyword) and the right table
is the second table specified (on the right side of the JoIN keyword).

N O T E You can use any comparison operator (<, <=, =, >=, >, or <>) in the JOIN clause to relate
the two tables.

12 I Bonus Chapter 5 SQL Primer

Table B5.2 Records Returned Based on the Type of JOIN Used

JOIN Type Table Records from Left Table Records from Right Table
INNER Only records with Only records with
corresponding record in corresponding record in
right table left table
LEFT All records Only records with corresponding
record in left table
RIGHT Only records with All records
corresponding record in
right table

To further understand these concepts, consider the sample database with its Customers and
Salesperson tables. In that database, you created a small information set in the tables consist-
ing of ten customers and four salespeople. Two customers have no salesperson listed, and one
of the salespeople has no customers (he’s a new guy). You select the same fields with each
JOIN but specify an INNER JOIN, LEFT JOIN, and RIGHT JOIN (refer to Listing B5.7). Figure
B5.4 shows the two base-data tables from which this listing is working. Figure B5.5 shows the
resulting recordsets for each of the JOIN operations.

FIG. B5.4 ¥ Customers (- O]
The Customers and Refresh | Sart | Filter | Close | .
Lastname _ [Firstname Address City Slate |Zip Custno|SaleslD a
Salesmen tables are B [Anderson | Bill 123 Main Street Birmingham AL JR202 1|EGREEM _I
RIGHT JOINED to match Smith Maween | 425 Ganzales Pensacola FL |32503 2|BWALEH
i Smith Adam 3423 Peachtiee Atlanta GA 303m 3|MJOHNS
salesmen to their Smith Zachary 17 Archer Gainesvile FL 32612 4| MaDAMS
customers. _lﬁhnson “Wairen 25 5th Awe Birmingham AL 35203 5|CFIELD ﬁ
4 13
v AllowdddMew v AllowDelete [Allowlpdate

) HI 4 IF\ight Click far Data Control Properties 4 I NI
Related field - = =
% Salesmen M=

Befresh I Soart | Filter I Close | Customers
aleslD SalesFirst SalesLast - table
p [aMODRE Alex toore
BDANMO Beth Dannon
BuwaLSH Bill Walsh fud
Salesperson table V¥ AlowAddNew [AllowDelete ¥ AlowUpdate
[4] 4] Right Click for Data Control Properties |3 | Nl

Listing B5.7 Join.txt—Examples of the Three JOIN Types

“Select using an INNER JOIN
SELECT CS.Lastname, CS.Firstname, SL.Saleslast, SL.Salesfirst
FROM Customers AS CS, Salesmen AS SL, _
CS INNER JOIN SL ON CS.SaleslID=SL.SaleslID

http://www.quecorp.com

Using SELECT Statements I 13

“Select using an LEFT JOIN
SELECT CS.Lastname, CS.Firstname, SL.Saleslast, SL.Salesfirst
FROM Customers AS CS, Salesmen AS SL, _
CS LEFT JOIN SL ON CS.SaleslID=SL.SaleslID

“Select using an RIGHT JOIN
SELECT CS.Lastname, CS.Firstname, SL.Saleslast, SL.Salesfirst
FROM Customers AS CS, Salesmen AS SL, _
CS RIGHT JOIN SL ON CS.SaleslID=SL.SaleslID

FIG. B5.5 X |NNERJOIN2 [_[Of <]
Different records are Betesh | Gt | Ete | e |
returned with the LASTNAME FIRSTNAME SALESLAST SALESFIRST B
dff Evans wanda Burns John
ifferent JOIN types' Hawthorne Wanda Bums John [
Moore Faula Burng John
—. |Hawthorne Lisa Green Elizabeth
INNER JOIN Thompson Frank. Green Elizabeth
‘Wwalers Lisa Green Elizabeth
Evans Lisa Green Elizabeth
Hawthorne Michele Green Elizabeth -
v AllowaddNew W AllowDelete [v Allowlpdate
[] 4[Right Click for Data Cantral Praperties » NI
X Ieftjoin [_[O[=]
Refresh | Sort | Filter | Lloze |
LASTHNAME FIRSTNAME SALESLAST SALESFIRST B
b [Anderson Bil _I
Smith Maureen ‘whalsh Eill
Smith Adam Johnzan Mary
Smith Zachary Adams b ax
—t=_[Johnson ‘Warren Fields Caral
LEFT JOIN [|willams Stephanie Moore Ll
T aylar Liza Dannan Beth
Davis D awid Smith Robyn
Miller Cathering
Floberts Judy Evans Lisa -
WV AllowaddN ew [AllowDelete v Allowl pdate
[4] 4| Right Click for Data Contral Properties [HI
¥ rightjoin =1 E3
Refresh | Sort | Filter | Cloze I
LASTHNAME FIRSTNAME SALESLAST SALESFIRST |
Smith Zachary Adams Man
| |Johnson Warren Fields Caral
‘Williams Stephanie Moore Alex _I
RIGHT JOIN —_|Taylor Liza Dannon Beth
Daviz David Srnith Robyn
Thomas Jim
Roberts Judy Evans Liza
Reid Sam -
v Allowaddhew v AllowDelete v Allowlpdate
[] 4[Right Click for Data Cantal Properties » NI

14 I Bonus Chapter 5 SQL Primer

Note that, in addition to returning the salesperson with no customers, the RIGHT JOIN returned
all customer records for each of the other salespeople, not just a single record. This is because
aRIGHT JOIN is designed to return all the records from the right table, even if they have no
corresponding record in the left table.

Using the WHERE Clause You can use the WHERE clause to relate two tables. The WHERE clause
has the same effect as an INNER JOIN. Listing B5.8 shows the same INNER JOIN as Listing B5.7,
this time using the WHERE clause instead of the INNER JOIN.

Listing B5.8 Where.txt—A WHERE Clause Performing the Same Function
as an INNER JOIN

“Select using WHERE to relate two tables
SELECT CS.Lastname, CS.Firstname, SL.Saleslast, SL.Salesfirst
FROM Customers AS CS, Salesmen AS SL,
WHERE CS.SaleslID=SL.SaleslID

Setting the Filter Criteria

One of the most powerful features of SQL commands is that you can control the range of
records to be processed by specifying a filter condition. You can use many types of filters, such
as Lastname = “Smith”, Price < 1, Or birthday between 5/1/94 and 5/31/94. Although the
current discussion is specific to the use of filters in the SELECT command, the principles shown
here also work with other SQL commands, such as DELETE and UPDATE.

Filter conditions in a SQL command are specified by using the WHERE clause. The general for-
mat of the WHERE clause is as follows:

WHERE logical-expression

You can use four types of predicates (logical statements that define the condition) with the
WHERE clause. These are shown in the following table:

Predicate Action

Comparison Compares a field to a given value

LIKE Compares a field to a pattern (for example, A*)
IN Compares a field to a list of acceptable values
BETWEEN Compares a field to a range of values

Using the Comparison Predicate As its name suggests, the comparison predicate is used to
compare the values of two expressions. You can use six comparison operators (the symbols
that describe the comparison type); the operators and their definitions are summarized in
Table B5.3.

http://www.quecorp.com

Using SELECT Statements I 15

Table B5.3 Comparison Operators Used in the WHERE Clause

Operator Definition

< Less than

<= Less than or equal to

= Equal to

>= Greater than or equal to
> Greater than

<> Not equal to

Here is the generic format of the comparison predicate:
expressionl comparison-operator expression2

For all comparisons, both expressions must be of the same type (for example, both must be
numbers or both must be text strings). Several comparisons of different types are shown in
Listing B5.9. The comparison values for strings and dates require special formatting. Any
strings used in a comparison must be enclosed in single quotes (for example, “Smith” or “AL”).
Likewise, dates must be enclosed between pound signs (for example, #5/15/94#). The quotes
and the pound signs tell the Query engine the type of data that is being passed. Note that num-
bers do not need to be enclosed within special characters.

Listing B5.9 Compare.txt—Comparison Operators Used with Many Types
of Data

“Comparison of text data using customer table as source

SELECT * FROM Customers WHERE Lastname=’Smith”

“Comparison of numeric data using Retail Items table

SELECT * FROM [Retail Items] WHERE Retail<2

“Comparison of date data using Sales table

SELECT * FROM Sales WHERE Date>#8/15/94#

Using the LIKE Predicate With the LIKE predicate, you can compare an expression (that is, a
field value) to a pattern. The LIKE predicate lets you make comparisons such as last names
starting with S, titles containing SQL, or five-letter words starting with M and ending with H.
You use the wild cards * and ? to create the patterns. The actual predicates for these compari-
sons would be Lastname LIKE “S*”, Titles LIKE <*SQL*”, and Word LIKE “M???H”, respec-
tively.

16 I Bonus Chapter 5 SQL Primer

The LIKE predicate is used exclusively for string comparisons. The format of the LIKE predicate
is as follows:

expression LIKE pattern
The patterns defined for the LIKE predicate make use of wild-card matching and character-
range lists. When you create a pattern, you can combine some of the wild cards and character
lists to allow greater flexibility in the pattern definition. When used, character lists must meet
three criteria:

The list must be enclosed within square brackets.

The first and last characters must be separated by a hyphen.

The range of the characters must be defined in ascending order (for example, a-z, and

not z-a).

In addition to using a character list to match a character in the list, you can precede the list
with an exclamation point to indicate that you want to exclude the characters in the list. Table
B5.4 shows the type of pattern matching you can perform with the LIKE predicate. Listing
B5.10 shows the use of the LIKE predicate in several SELECT statements.

Table B5.4 The LIKE Predicate Using a Variety of Pattern Matching

Wild Card Used to Match Example Pattern Example Results
* Multiple characters S* Smith, Sims, sheep
? Single character an? and, ant, any
Single digit 35244# 35242,

35243
[list] Single character in list [c-F1 def
['1ist] Single character not in list [lc-T] a,b,g,h
combination Specific to pattern a?t* art, antique, artist

Listing B5.10 Like.txt—Use the LIKE Predicate for Pattern Matching

“Multiple character wild card

SELECT * FROM Customers WHERE Lastname LIKE “S*~

“Single character wild card

SELECT * FROM Customers WHERE State LIKE “?L~

http://www.quecorp.com

Using SELECT Statements I 17

“Character list matching

SELECT * FROM Customers WHERE MID$(Lastname,1,1) LIKE “[a-f]’

Using the IN Predicate The IN predicate lets you determine whether the expression is one of
several values. With the IN predicate, you can check state codes for customers to determine
whether the customer’s state matches a sales region. This example is shown in the following
sample code:

SELECT * FROM Customers WHERE State IN (“AL”, “FL”, “GA”)

Using the BETWEEN Predicate The BETWEEN predicate lets you search for expressions with
values within a range of values. You can use the BETWEEN predicate for string, numeric, or date
expressions. The BETWEEN predicate performs an inclusive search, meaning that if the value is
equal to one of the endpoints of the range, the record is included. You can also use the NOT
operator to return records outside the range. The form of the BETWEEN predicate is as follows:

expression [NOT] BETWEEN valuel AND value2

Listing B5.11 shows the use of the BETWEEN predicate in several scenarios.

Listing B5.11 Between.txt—Using the BETWEEN Predicate to Check an
Expression Against a Range of Values

“String comparison

SELECT * FROM Customers WHERE Lastname BETWEEN “M” AND “W~

“Numeric comparison

SELECT * FROM [Retail Items] WHERE Retail BETWEEN 1 AND 2.5

& kkkkhhhhhhhhhhx

“Date comparison

L

SELECT * FROM Sales WHERE Date BETWEEN #8/01/94# AND #8/10/94#

“Use of the NOT operator

SELECT * FROM Customers WHERE Lastname NOT BETWEEN “M” AND “W~”

Combining Multiple Conditions The WHERE clause can also accept multiple conditions so that
you can specify filtering criteria on more than one field. Each individual condition of the mul-
tiple conditions is in the form of the conditions described in the preceding sections on using
predicates. These individual conditions are then combined by using the logical operators AND
and OR. By using multiple-condition statements, you can find all the Smiths in the Southeast, or
you can find anyone whose first or last name is Scott. Listing B5.12 shows the statements for
these examples. Figure B5.6 shows the recordset resulting from a query search for Scott.

18 I Bonus Chapter 5 SQL Primer

Listing B5.12 Andor.txt—Combining Multiple WHERE Conditions with
AND or OR

“Find all Smiths in the Southeast
SELECT * FROM Customers WHERE Lastname = “Smith> AND
State IN (“AL”, “FL”, “GA”)

“Find all occurrences of Scott in first or last name
SELECT * FROM Customers WHERE Lastname = “Scott” _
OR Firstname = “Scott”

FIG. B5.6 @SQL Statement M= E3
YOU can use multlple Refresh | Sort | Filter | LClose |
conditions to enhance Lastname Firstname City Custno|§aleslD 2]
Kirk. Scatt Portsmouth 3JEE|EGREEN
a WHERE clause. Lows Scott Tampa 40[SAREID]
Moore Scatt Shreveport 446 AMOORE
Monroe Scott Columbia 486 EGREEM
Melson Scott Wilmington 526|SAREID
0T oole Scott Portsmouth 566|AMOORE
Richards Scatt Tampa GOG|EGREEN
Scatt Alice Birmingham G16|5AREID
Scott Andrew Muobile 617|MMORTO
Scatt Betty Juneau E18|KMILLE
Scatt Eil Fairbanks E13|TJACKS
Scott Charles Phoenix 520[JBURMNS =
W AllowAddNew W AllowDelste W Allowlpdate
[] 4[Right Cick for Data Control Properties » [l

Setting the Sort Conditions

In addition to specifying the range of records to process, you can also use the SELECT statement
to specify the order in which you want the records to appear in the output dynaset. The SELECT
statement controls the order in which the records are processed or viewed. Sorting the
records is done by using the ORDER BY clause of the SELECT statement.

You can specify the sort order with a single field or with multiple fields. If you use multiple
fields, the individual fields must be separated by commas.

The default sort order for all fields is ascending (that is, A-Z, 0-9). You can change the sort
order for any individual field by specifying the DEsc keyword after the field name (the DESC
keyword affects only the one field, not any other fields in the ORDER BY clause). Listing B5.13
shows several uses of the ORDER BY clause. Figure B5.7 shows the results of these SELECT
statements.

http://www.quecorp.com

Using SELECT Statements I 19

N O T E When you're sorting records, the presence of an index for the sort field can significantly
speed up the SQL query.

FIG. B5.7 E SOL Statement O] x| I E SAL Statement - |O] %] % 50L Statement H=
The ORDER BY clause fefiesh | Sot | Befesh | Sot Rehesh | Sent |
specifies the sort order LastName FirstName LastName FirstN.ame L] La.s.LName FlrstNam.e
p B |Anderson Bil P} | Anderson Eil P |williams Stephanie
of the dynaset. Daviz David Davis Darvid T aylor Lisa
| [Johnzon Warren | [Johnzon W arnen Smith Zachary
Miller Catherine Miller Catheting Smith Adam
Roberts Judy Roberts Judy Smith M aureen
i Smith Zacharm Smith Adam | [Fioberts Judy
First names are — Smith Adam Smith M aureen tiller Catherine
out of order Smith Maureen Smith Zachary Johnson ‘wWiarren
Taylor Lisa Taylor Lisa Daviz D avid
“illiarns Stephanie wiliams Stephanie Anderzon Eill
* * *

¥ AllowadddNew W AllowDelete | [Alowaddiew v allowDelel| W AlowaddNew W AlowDelete
| |4| 4 | Right Click for Data Control Prop: I 4] 4 |F|ight Click for Data Contral Pic I{l 4 |F|ighl Click for D ata Control Prope:
—

Lastname-only order Lastname and Descending Lastname order
Firstname order

Listing B5.13 Sort.txt—Specifying the Sort Order of the Output Dynaset

“Single field sort

SELECT * FROM Customers ORDER BY Lastname

“Multiple field sort

SELECT * FROM Customers ORDER BY Lastname, Firstname

“Descending order sort

SELECT * FROM Customers ORDER BY Lastname DESC, Firstname

Using Aggregate Functions

You can use the SELECT statement to perform calculations on the information in your tables by
using the SQL aggregate functions. To perform the calculations, define them as a field in your
SELECT statement, using the following syntax:

function(expression)

The expression can be a single field or a calculation based on one or more fields, such as
Quantity * Price or SQR(Datapoint). The Count function can also use the wild card * as
the expression, because Count returns only the number of records. Table B5.5 shows the 11
aggregate functions available in Microsoft SQL.

20 I Bonus Chapter 5 SQL Primer

Table B5.5 Aggregate Functions Provide Summary Information About Data

in the Database

Function Returns

Avg The arithmetic average of the field for the records that meet the WHERE
clause

Count The number of records that meet the WHERE clause

Min The minimum value of the field for the records that meet the WHERE
clause

Max The maximum value of the field for the records that meet the WHERE
clause

Sum The total value of the field for the records that meet the WHERE clause

First The value of the field for the first record in the recordset

Last The value of the field for the last record in the recordset

StDev The standard deviation of the values of the field for the records that
meet the WHERE clause

StDevP The standard deviation of the values of the field for the records that
meet the WHERE clause

var The variance of the values of the field for the records that meet the
WHERE clause

varpP The variance of the values of the field for the records that meet the

WHERE clause

N O T E InTable B5.5, SstDev and StDevP seem to perform the same function. The same is true of
var and Varp. The difference between the functions is that the StbevP and VarP evaluate
populations where StDev and var evaluate samples of populations.

As with other SQL functions, these aggregate functions operate only on the records that meet
the filter criteria specified in the WHERE clause. Aggregate functions are unaffected by sort
order. Aggregate functions return a single value for the entire recordset unless the GROUP BY
clause (described in the following section) is used. If GROUP BY is used, a value is returned for
each record group. Listing B5.14 shows the SELECT statement used to calculate the minimum,
maximum, average, and total sales amounts, as well as the total item volume from the Sales
table in the sample case. Figure B5.8 shows the output from this query.

http://www.quecorp.com

Using SELECT Statements I 21

FIG. B5.8 EZ 501 Statement - [O1]
The table shows the Refresh | Sart | Filter | Close I
summary information Minsls] Mansls avgsls totsls| totvol

0.75 185 6.60323032537060] 46371.7933224663| 21290
from aggregate ~
functions.

v Allowaddhew ¥ AllowDelete W AllowUpdate
[14] 4 |Right Click for D ata Contial Froperties » Nl

Listing B5.14 Summary.txt—Using Aggregate Functions to Provide
Summary Information

SELECT Min(SL.Quantity * RT.Retail) AS Minsls,
Max(SL.Quantity * RT.Retail) AS Maxsls,
Avg(SL.Quantity * RT.Retail) AS Avgsls,
Sum(SL.Quantity * RT.Retail) AS Totsls,
Sum(SL.Quantity) AS Totvol _

FROM Sales AS SL, [Retail Items] AS RT
WHERE SL.[ltem Code]=RT.[Item Code]

Creating Record Groups

Creating record groups lets you create a recordset that has only one record for each occur-
rence of the specified field. For example, if your group the Customers table by state, you have
one output record for each state. This arrangement is especially useful when combined with
the calculation functions described in the preceding sections. When groups are used with
aggregate functions, you can easily obtain summary data by state, salesperson, item code,

or any other desired field.

Most of the time, you want to create groups based on a single field. You can, however, specify
multiple fields in the GROUP BY clause. If you do, a record is returned for each unique combina-
tion of field values. You can use this technique to get sales data by salesperson and item code.
Separate multiple fields in a GRoUP BY clause with commas. Listing B5.15 shows an update of
Listing B5.14, adding groups based on the salesperson ID. Figure B5.9 shows the results of the

query.

Listing B5.15 Group.txt—Using the GROUP BY Clause to Obtain Summary
Information for Record Groups

SELECT SL.SaleslID, Min(SL.Quantity * RT.Retail) AS Minsls,
Max(SL.Quantity * RT.Retail) AS Maxsls,
Avg(SL.Quantity * RT.Retail) AS Avgsls,
Sum(SL.Quantity * RT.Retail) AS Totsls,
Sum(SL.Quantity) AS Totvol _

FROM Sales AS SL, [Retail Items] AS RT
WHERE SL.[ltem Code]=RT.[Item Code]
GROUP BY SL.SaleslID

22 I Bonus Chapter 5 SQL Primer

FIG. B5.9
Using GROUP BY creates Betesh | Gt | Bt | Clese |
a Summary record for zalesid Minsls| Maxsls avgsls toksls tobval ;I
. AMOOAE 075 105 645/20079097299 2005.2999990% 71| 1329 ||
each defined group. BDANND 075 105 E52875432310246) 330354999113003) 1505
BWALSH 075 165 KA50221233908308 3005.09999735355) 1364
CFIELD 075 185 659553043488627| 3034.45000004768) 1386
EGREEN 075 165 Fa30790706060333] 3326.09999537468) 1556
JBURNS 075 105 664333957070724] 3540.09999443293 1612
JTHOMA, 075 165 h70352621484680 3324.94999456406 1453

KMILLE 0.80000 186 BARYG01132267673) 2908.395999330044| 1324
b |LEWANS 0.80000 185 EE0346151521673) 343379998791218) 1560

MADAMS 0.75 1685 EBES7S178471272| 2876.74335773463 1262
MJOHNS 0.75 168.5| E.76400006756964| 3044.199359045134 1343
MHORTO 075 185 E.B52031593359034| 3035.445999879595) 1324
RSMITH 075 185 B.32583147234504| 2852.34333402761 1331 X
v AllowdddMaw v AllowDelete [Allowlpdate
[H[4 [Right Click for Data Control Propertiss » | 4

The GROUP BY clause can also include an optional HAVING clause. The HAVING clause works
similarly to a WHERE clause but examines only the field values of the returned records. The
HAVING clause determines which of the selected records to display; the WHERE clause
determines which records to select from the base tables. You can use the HAVING clause to
display only those salespeople with total sales exceeding $3,000 for the month. Listing B5.16
shows this example; Figure B5.10 shows the output from this listing.

Listing B5.16 Having.txt—The HAVING Clause Filters the Display of the
Selected Group Records

SELECT SL.SalesID, Min(SL.Quantity * RT.Retail) AS Minsls,
Max(SL.Quantity * RT.Retail) AS Maxsls,
Avg(SL.Quantity * RT.Retail) AS Avgsls,
Sum(SL.Quantity * RT.Retail) AS Totsls,
Sum(SL.Quantity) AS Totvol _

FROM Sales AS SL, [Retail Items] AS RT _

SL INNER JOIN RT ON SL.[ltem Code]=RT.[ltem Code]
GROUP BY SL.SalesID _

HAVING Sum(SL.Quantity * RT.Retail) > 3000

FIG. B5.10 ¥ 5QL Statement M=l E3
The HAVING Clau se Refresh | Sort | FEilter | Llose
limits the d|sp|ay of salesid Minsls| Mansls avosls totsls] totvol
d BDANND 0.75 185| E.52875492318346) 3303.545939113083 1585
group recoras. BwALSH 075 105 6.65002123300308] 5005 60339735355 1364
CFIELD 0.75 185 EB.59663043488627| 3034 45000004768 1386
EGREEM 0.75 185 B.3873078E0E0399| 3328 09999537468 1556
JBURNS 0.75 185 B.64333957673724| 3540.83333443233 1612
JTHOMA 0.75 185 6.70352521484683) 3324 34333456406 1453
b |LEWVANS 0.80000 185 E.E0346151521573] 3433 795938791218 1560
MJOHNS 0.75 185| EB.764B5806766964) 3044.15933045134 1343
MHORTO 0.75 185 E6.05203159999094| 3035 44939873533 1324
TJACKS 0.75 185 B.718B965508581452| 3507 299359560118 1566
*
v AllowaddNeaw [AllowDelete v Allowlpdate
[14] A |Right Click far Data Contral Froperties 4 | Hl

http://www.quecorp.com

Using SELECT Statements I 23

Creating a Table

In all the examples of the SELECT statement used earlier in this chapter, the results of the query
were output to a dynaset or a snapshot. Because these recordsets are only temporary, their
contents exist only as long as the recordset is open. After a close method is used or the applica-
tion is terminated, the recordset disappears (although any changes made to the underlying
tables are permanent).

Sometimes, however, you might want to permanently store the information in the recordset for
later use. Do so with the INTO clause of the SELECT statement. With the INTO clause, you specify
the name of an output table (and, optionally, the database for the table) in which to store the
results. You might want to do this to generate a mailing-list table from your customer list. This
mailing-list table can then be accessed by your word processor to perform a mail-merge func-
tion or to print mailing labels. Listing B5.4, earlier in this chapter, generated such a list in a
dynaset. Listing B5.17 shows the same basic SELECT statement as was used in Listing B5.4, but
with the INTO clause used to store the information in a table.

Listing B5.17 Into.txt—Using the INTO Clause to Save Information
to a New Table
SELECT CS.Firstname & “ “ & CS.Lastname, CS.Address, ZP.City, _

ZP_.State, CS.ZIP INTO Mailings FROM Customers AS CS, _
Zipcode IN USZIPS AS ZP WHERE CS.Zip = ZP.Zip

CAUTION

The table name you specify should be that of a new table. If you specify the name of a table that already
exists, that table is overwritten with the output of the SELECT statement.

Using Parameters

So far in all the clauses, you have seen specific values specified. For example, you specified ‘AL’
for a state and $1.25 for a price. But what if you don’t know in advance what value you want to
use in comparison? Well, this is precisely what parameters are used for in a SQL statement.
The parameter is to the SQL statement what a variable is to a program statement. The param-
eter is a placeholder whose value is assigned by your program before the SQL statement is
executed.

To use a parameter in your SQL statement, you first have to specify the parameter in the
PARAMETERS declaration part of the statement. The PARAMETERS declaration comes before the
SELECT or other manipulative clause in the SQL statement. The declaration specifies both
the name of the parameter and its data type. The PARAMETERS clause is separated from the
rest of the SQL statement by a semicolon.

24 I Bonus Chapter 5 SQL Primer

After you have declared the parameters, you simply place them in the manipulative part of the
statement where you want to be able to substitute a value. The following code line shows how a
parameter would be used in place of a state ID in a SQL statement:

PARAMETERS StateName String; SELECT * FROM Customers
WHERE State = StateName

When you go to run the SQL statement in your program, each parameter is treated like a prop-
erty of the QueryDef. Therefore, you need to assign a value to each parameter before you use
the Execute method. The following code shows you how to set the property value for the pre-
ceding SQL statement and open a recordset:

Dim OldDb As Database, Qry As QueryDef, Rset As Recordset

Set OldDb = DBEngine.Workspaces(0) .0OpenDatabase(“C:\Triton.Mdb™")

Set Qry = OldDb.QueryDefs(“StateSelect™)

Qry!StateName = “AL”
Set Rset = Qry.OpenRecordset()

As you can see, using parameters makes it easy to store your queries in the database and still
maintain the flexibility of being able to specify comparison values at run time.

SQL Action Statements

In the previous section, you saw how the SELECT statement can be used to retrieve records and
place the information in a dynaset or table for further processing by a program. This was just
one of the four manipulative statements that you defined earlier in this chapter. The three
remaining statements are as follows:

DELETE FROM An action query that removes records from a table

INSERT INTO An action query that adds a group of records to a table

UPDATE An action query that sets the values of fields in a table

In the following sections, you look at how to use these statements to further refine that data
that you are manipulating in a database via a SQL function.

Using the DELETE Statement

The DELETE statement is used to create an action query. The DELETE statement’s purpose is to
delete specific records from a table. An action query does not return a group of records into
a dynaset as SELECT queries do. Instead, action queries work like program subroutines. That
is, an action query performs its functions and returns to the next statement in the calling
program.

The syntax of the DELETE statement is as follows:
DELETE FROM tablename [WHERE clause]

The WHERE clause is an optional parameter. If it is omitted, all the records in the target table are
deleted. You can use the WHERE clause to limit the deletions to only those records that meet

http://www.quecorp.com

SQL Action Statements I 25

specified criteria. In the WHERE clause, you can use any of the comparison predicates defined in
the earlier section “Using the Comparison Predicate.” Following is an example of the DELETE
statement used to eliminate all customers who live in Florida:

DELETE FROM Customers WHERE State="FL”

CAUTION

After the DELETE statement is executed, the records are gone and can't be recovered. The only exception is
if transaction processing is used. If you're using transaction processing, you can use a ROLLBACK statement
to recover any deletions made since the last BEGINTRANS statement was issued.

Using the INSERT Statement

Like the DELETE statement, the INSERT statement is another action query. The INSERT state-
ment is used with the SELECT statement to add a group of records to a table. The syntax of the
statement is as follows:

INSERT INTO tablename SELECT rest-of-select-statement

You build the SELECT portion of the statement exactly as explained in the first part of this chap-
ter in the section “Using SELECT Statements.” The purpose of the SELECT portion of the state-
ment is to define the records to be added to the table. The INSERT statement defines the action
of adding the records and specifies the table that is to receive the records.

One use of the INSERT statement is to update tables created with the SELECT INTO statement.
Suppose that you're keeping a church directory. When you first create the directory, you create
a mailing list for the current member list. Each month, as new members are added, you either
can rerun the SELECT INTO query and re-create the table, or you can run the INSERT INTO
query and add only the new members to the existing mailing list. Listing B5.18 shows the
creation of the original mailing list and the use of the INSERT INTO query to update the list.

Listing B5.18 Insert.txt—Using the INSERT INTO Statement to Add a Group
of Records to a Table

“Create a new mailing list table

SELECT CS.Firstname & “ “ & CS.Lastname, CS.Address, ZP.City, _
ZP _.State, CS.ZIP INTO Mailings FROM Members AS CS, _
Zipcode IN USZIPS AS ZP WHERE CS.Zip = ZP.Zip

“Update the mailing list each month
INSERT INTO Mailings SELECT CS.Firstname & “ “ & CS.Lastname,
CS.Address, ZP.City, ZP.State, CS.ZIP _
FROM Customers AS CS, Zipcode IN USZIPS AS ZP
WHERE CS.Zip = ZP.Zip AND CS.Memdate>Lastmonth

26 I Bonus Chapter 5 SQL Primer

Using the UPDATE Statement

The UPDATE statement is another action query. It is used to change the values of specific fields
in a table. The syntax of the UPDATE statement is as follows:

UPDATE tablename SET field = newvalue [WHERE clause]

You can update multiple fields in a table at one time by listing multiple field = newvalue
clauses, separated by commas. The inclusion of the WHERE clause is optional. If it is excluded,
all records in the table are changed.

Listing B5.19 shows two examples of the UPDATE statement. The first example changes the
salesperson ID for a group of customers, as happens when a salesperson leaves the company
and his or her accounts are transferred to someone else. The second example changes the
retail price of all retail sales items, as can be necessary to cover increased operating costs.

Listing B5.19 Update.txt—Using the UPDATE Statement to Change Field
Values for Many Records at Once

<

“Change the SaleslID for a group of customers

UPDATE Customers SET SalesID = “EGREEN” WHERE SaleslD=~JBURNS”

“Increase the retail price of all items by five percent

UPDATE [Retail Items] SET Retail = Retail * 1.05

Using Data-Definition-Language Statements

Data-definition-language statements (DDLSs) let you create, modify, and delete tables and in-
dexes in a database with a single statement. For many situations, these statements take the
place of the data-access-object methods described in Chapter 28, “Building Database Applica-
tions.” However, there are some limitations to using the DDL statements. The main limitation
is that these statements are supported only for Jet databases (remember that data-access ob-
jects can be used for any database accessed with the Jet engine). The other limitation of DDL
statements is that they support only a small subset of the properties of the table, field, and
index objects. If you need to specify properties outside of this subset, you must use the meth-
ods described in Chapter 28.

Defining Tables with DDL Statements

Three DDL statements are used to define tables in a database:

CREATE TABLE Defines a new table in a database
ALTER TABLE Changes atable’s structure
DROP TABLE Deletes a table from the database

http://www.quecorp.com

Using Data-Definition-Language Statements I 27

Creating a Table with DDL Statements To create a table with the DDL statements, you cre-
ate a SQL statement containing the name of the table and the names, types, and sizes of each
field in the table. The following code shows how to create the Orders table of the sample case:

CREATE TABLE Orders (Orderno LONG, Custno LONG, SaleslID TEXT (6), _
OrderDate DATE, Totcost SINGLE)

Notice that when you specify the table name and field names, you do not have to enclose the
names in quotation marks. However, if you want to specify a name with a space in it, you must
enclose the name in square brackets (for example, [Last name]).

When you create a table, you can specify only the field names, types, and sizes. You can't
specify optional parameters such as default values, validation rules, or validation error mes-
sages. Even with this limitation, the DDL CREATE TABLE statement is a powerful tool that you
can use to create many of the tables in a database.

Modifying a Table By using the ALTER TABLE statement, you can add a field to an existing
table or delete a field from the table. When adding a field, you must specify the name, type, and
(when applicable) the size of the field. You add a field by using the ADD COLUMN clause of the
ALTER TABLE statement. To delete a field, you need to specify only the field name and use the
DROP COLUMN clause of the statement. As with other database-modification methods, you can't
delete a field used in an index or a relation. Listing B5.20 shows how to add and then delete a
field from the Orders table created in the preceding section.

Listing B5.20 Altertab.txt—Using the ALTER TABLE Statement to Add or
Delete a Field from a Table

“Add a shipping charges field to the “Orders” table

ALTER TABLE Orders ADD COLUMN Shipping SINGLE

“Delete the shipping charges field

ALTER TABLE Orders DROP COLUMN Shipping

Deleting a Table You can delete a table from a database by using the DROP TABLE statement.
The following simple piece of code shows how to get rid of the Orders table. Use caution when
deleting a table; the table and all its data are gone forever after the command has been ex-
ecuted.

DROP TABLE Orders

Defining Indexes with DDL Statements

Two DDL statements are designed especially for use with indexes:

CREATE INDEX Defines a new index for a table
DROP INDEX Deletes an index from a table

28 I Bonus Chapter 5 SQL Primer

Creating an Index You can create a single-field or multi-field index with the CREATE INDEX
statement. To create the index, you must give the name of the index, the name of the table for
the index, and at least one field to be included in the index. You can specify ascending or de-
scending order for each field. You can also specify that the index is a primary index for the
table. Listing B5.21 shows how to create a primary index on customer number and a two-field
index with the sort orders specified. These indexes are set up for the Customers table of the
sample case.

Listing B5.21 Createind.txt—Create Several Types of Indexes with the
CREATE INDEX Statement

“Create a primary index on customer number

CREATE INDEX Custno ON Customers (Custno) WITH PRIMARY

“Create a two field index with ascending order on Lastname and
“ descending order on Firstname.

CREATE INDEX Name2 ON Customers (Lastname ASC, Firstname DESC)

Deleting an Index Getting rid of an index is just as easy as creating one. To delete an index
from a table, use the DROP INDEX statement as shown in the following example. These state-
ments delete the two indexes created in Listing B5.21. Notice that you must specify the table
name for the index that you want to delete:

DROP INDEX Custno ON Customers
DROP INDEX Name2 ON Customers

Using SQL
As stated at the beginning of the chapter, you can't place a SQL statement by itself in a

program. It must be part of another function. This part of the chapter describes the various
methods used to implement the SQL statements.

Executing an Action Query

The Jet engine provides an execute method as part of the database object. The execute method
tells the engine to process the SQL query against the database. An action query can be ex-
ecuted by specifying the SQL statement as part of the execute method for a database. An action
query can also be used to create a QueryDef. Then the query can be executed on its own. List-
ing B5.22 shows how both of these methods are used to execute the same SQL statement.

http://www.quecorp.com

Using SQL I 29

Listing B5.22 Execute.txt—Run SQL Statements with the DatabaseExecute
or QueryExecute Method

Dim OldDb AS Database, NewQry AS QueryDef

“Define the SQL statement and assign it to a variable
SQLstate
SQLstate

“UPDATE Customers SET SaleslID = “EGREEN””
SQLstate + “ WHERE SalesID="JBURNS~””

“Use the database execute to run the query

OldDb.Execute SQLstate

“Create a QueryDef from the SQL statement

Set NewQry = OldDb.CreateQueryDef(“Change Sales”, SQLstate)

“Use the query execute to run the query

NewQry .Execute

“Run the named query with the database execute method

OldDb.Execute “Change Sales”

Creating a QueryDef

Creating a QueryDef lets you hame your query and store it in the database with your tables.
You can create either an action query or a retrieval query (one that uses the SELECT statement).
After the query is created, you can call it by name for execution (shown in a listing in the previ-
ous section “Executing an Action Query”) or for creation of a dynaset (as described in the
following section). Listing B5.22 showed how to create a QueryDef called Change Sales that is
used to update the salesperson ID for a group of customers.

Creating Dynasets and Snapshots

To use the SELECT statement to retrieve records and store them in a dynaset or snapshot, you
must use the SELECT statement with the OpenRecordset method. By using the OpenRecordset
method, you specify the type of recordset with the options parameter. With this method, you
either can use the SELECT statement directly or use the name of a retrieval query that you have
previously defined. Listing B5.23 shows these two methods of retrieving records.

30 I Bonus Chapter 5 SQL Primer

Listing B5.23 Createmeth.txt—Using the Create Methods to Retrieve the
Records Defined by a SELECT Statement

Dim OldDb As Database, NewQry As QueryDef, NewDyn As Recordset
Dim NewSnap As Recordset

“Define the SELECT statement and store it to a variable
SQLstate = “SELECT RI.[lItem Description], SL.Quantity,”
SQLstate = SQLstate & “ RI.Retail, _

SL.Quantity * RI._Retail AS Subtot”
SQLstate = SQLstate & “FROM [Retail Items] AS RI, Sales AS SL”
SQLstate = SQLstate & “WHERE SL.[ltem Code]=RI.[l1tem Code]”

“Create dynaset directly

Set NewDyn = OldDb.OpenRecordset(SQLstate, dbOpenDynaset)

B

“Create QueryDef

€ Kkk KKk hhhhhhhhk

Set NewQry = OldDb.CreateQueryDef(“Get Subtotals”, SQLstate)
NewQry .Close

“Create snapshot from querydef

Set NewSnap = OldDb.OpenRecordset(“Get Subtotals”, dbOpenSnapshot)

You have seen how SELECT statements are used to create dynasets and snapshots. But, the
comparison part of a WHERE clause and the sort list of an ORDER BY clause can also be used to
set dynaset properties. The filter property of a dynaset is a WHERE statement without the WHERE
keyword. When setting the filter property, you can use all the predicates described earlier in
the section “Using the WHERE Clause.” In a like manner, the sort property of a dynaset is an
ORDER BY clause without the ORDER BY keywords.

Using SQL Statements with the Data Control

The data control uses the RecordSource property to create a recordset when the control is
loaded. The RecordSource can be a table, a SELECT statement, or a predefined query. There-
fore, the entire discussion on the SELECT statement (in the section “Using SELECT state-
ments”) applies to the creation of the recordset used with a data control.

N O T E When you specify a table name for the RecordSource property, Visual Basic uses the
name to create a SELECT statement such as this:

SELECT * FROM table

http://www.quecorp.com

Creating SQL Statements I 31

Creating SQL Statements

When you create and test your SQL statements, you can program them directly into your code
and run the code to see whether they work. This process can be very time-consuming and
frustrating, especially for complex statements. However, three easier ways of developing SQL
statements might be available to you:

The Visual Data Manager add-in that comes with Visual Basic
Microsoft Access (if you have a copy)
Microsoft Query

N O T E Users of Microsoft Excel or Microsoft Office also have access to Microsoft Query, the tool in
Access.

The Visual Data Manager and Access both have query builders that can help you create SQL
queries. They provide dialog boxes for selecting the fields to include, and they help you with
the various clauses. When you have finished testing a query with either application, you can
store the query as a QueryDef in the database. This query can then be executed by hame from
your program. As an alternative, you can copy the code from the query builder into your pro-
gram, using standard cut-and-paste operations.

Using the Visual Data Manager

The Visual Data Manager is a Visual Basic add-in that allows you to create and modify data-
bases for your Visual Basic programs. The Visual Data Manager also has a window that allows
you to enter and debug SQL queries. And if you don’t want to try to create the query yourself,
VDM has a query builder that makes it easy for you to create queries by making choices in the
builder.

N O T E If youwant to learn about the inner workings of the Visual Data Manager, it is one of the
sample projects installed with Visual Basic. The project file is VISDATA.VBP and is found in
the VISDATA folder of the Samples folder.

To start the Visual Data Manager, simply select the Visual Data Manager item from the Add-
Ins menu of Visual Basic. After starting the program, open the File menu and select the Open
Database item; then select the type of database to open from the submenu. You are presented
with a dialog box that allows you to open a database. After the database is opened, a list of the
tables and queries in the database appears in the left window of the application. The Visual
Data Manager with the Triton.Mdb database open is shown in Figure B5.11.

32 I Bonus Chapter 5 SQL Primer

FIG. B5.11 ¥iii VisD ata:C:\WBSE S amples\CHAPTERB\Triton. mdb
You can use the Visual File Jet Utlity Preferences Window Help
Recordset (~ Dynaset Form " Data Control BENnT e |
Data Manager Add-In to Type: = Snapshot Type: ¢ Mo Data Contral
develop SQL queries. " Table (= DBGrid Control [User: admin
V5% Tables/Queries | _ (2] =] | e 50L Statement [Tl %]
e | Open I Design | Execute I Clear | Save |
UL {_iReenhels select * from customers ;I
fishbuys
Retail ltems
Sales
Salesmen
|Ready
=] SlarlI iy visdata | | | | | mVisData...l 9:34 PM

To develop and test SQL statements, first enter the statement in the text box of the SQL dialog
box (the one on the right of Figure B5.11). When you're ready to test the statement, click the
Execute SQL button. If you're developing a retrieval query, a dynaset is created and the results
are displayed in a data entry form (or a grid) if the statement has no errors. If you're develop-
ing an action query, a message box appears, telling you that the execution of the query is com-
plete (again, assuming that the statement is correct). If you have an error in your statement, a
message box appears informing you of the error.

The Visual Data Manager add-in also includes a Query Builder. You can access the Query
Builder (shown in Figure B5.12) by choosing Query Builder from the Utilities menu of the
Visual Data Manager. To create a query with the Query Builder, follow these steps:

1. Select the tables to include from the Tables list.

2. Select the fields to include from the Fields to Show list.

3. Set the WHERE clause (if any) using the Field Name, Operator, and Value drop-down lists
at the top of the dialog box.

4. Set the table JoIN conditions (if any) by clicking the Set Table Joins command button.

5. Set a single-field oORDER BY clause (if any) by selecting the field from the Order By Field
drop-down box and selecting either the Asc or Desc option.

6. Setasingle GRouP BY field (if any) by selecting the field from the Group By Field drop-
down box.

http://www.quecorp.com

FIG. B5.12

The Query Builder
makes it easy to build
SQL statements.

Optimizing SQL Performance I 33

I3 Query Builder
Field Name: Operatar. alue:
- | - =l =l

And into Criteria | Or inta Criteria | List Possible Values |
T ables Fields ta Show: Group By:
customer2 P I LI
Cuist
ﬁ;ﬁbﬂTfS Oider By: & fse Desc
Retail ltems -
Sales = J
Salesmen Set Table Joins I
create fishbuys ;l |
Ciiteria Top N Value: " Top Percent
&l
Bun | Show | Copy | Save | Clear | Cloze |

After you have set the Query Builder parameters, you can run the query, display the SQL
statement, or copy the query to the SQL statement window. The Query Builder provides an
easy way to become familiar with constructing SELECT queries.

When you have developed the query to your satisfaction (either with the Query Builder or by
typing the statement directly), you can save the query as a QueryDef in your database. In your
Visual Basic code, you can then reference the name of the query you created. Alternatively,
you can copy the query from Visual Data Manager and paste it into your application code.

Using Microsoft Access

If you have a copy of Microsoft Access, you can use its query builder to graphically construct
queries. You can then save the query as a QueryDef in the database and reference the query
name in your Visual Basic code.

One of more creative uses for Access is to reverse-engineer a QueryDef. Microsoft Access
allows you to build a graphical representation of the tables and databases for a particular
QueryDef entered in SQL format. This reverse-engineering process gives you a unique way
to debug or make modifications graphically to an existing query.

Optimizing SQL Performance

Developers always want to get the best possible performance from every aspect of their appli-
cations. Wanting high performance out of SQL queries is no exception. Fortunately, you can
use several methods to optimize the performance of your SQL queries.

34 I Bonus Chapter 5 SQL Primer

Using Indexes

The Microsoft Jet database engine uses an optimization technology called Rushmore. Under
certain conditions, Rushmore uses available indexes to try to speed up queries. To take maxi-
mum advantage of this arrangement, you can create an index on each of the fields you typically
use in a WHERE clause or a JOIN condition. This is particularly true of key fields used to relate
tables (for example, the Custno and SaleslID fields in the sample database). An index also
works better with comparison operators than with the other types of WHERE conditions, such

as LIKE or IN.

N O T E Only certain types of queries are optimizable by Rushmore. For a query to use Rushmore
optimization, the WHERE condition must use an indexed field. In addition, if you use the

L IKE operator, the expression should begin with a character, not a wild card. Rushmore works with Jet

databases and FoxPro and dBase tables. Rushmore does not work with ODBC databases.

Compiling Queries
Compiling a query refers to creating a QueryDef and storing it in the database. If the query
already exists in the database, the command parser does not have to generate the query each
time it is run, and this increases execution speed. If you have a query that is frequently used,
create a QueryDef for it.

Keeping Queries Simple
When you're working with a lot of data from a large number of tables, the SQL statements can
become quite complex. Complex statements are much slower to execute than simple ones.
Also, if you have a number of conditions in WHERE clauses, this increases complexity and slows
execution time.

Keep statements as simple as possible. If you have a complex statement, consider breaking it
into multiple smaller operations. For example, if you have a complex JOIN of three tables, you
might be able to use the SELECT INTO statement to create a temporary table from two of the
three and then use a second SELECT statement to perform the final JOIN. There are no hard-
and-fast rules for how many tables are too many or how many conditions make a statement too
complex. If you're having performance problems, try some different ideas and find the one that
works best.

Another way to keep things simple is to try to avoid pattern matching in a WHERE clause. Be-
cause pattern matching does not deal with discrete values, it is hard to optimize. In addition,
patterns that use wild cards for the first character are much slower than those that specifically
define that character. For example, if you're looking for books about SQL, finding ones with
SQL anywhere in the title (pattern = “*sSQL*") requires looking at every title in the table. On
the other hand, looking for titles that start with SQL (pattern = *sQL*") lets you skip over
most records. If you had a Title index, the search would go directly to the first book on SQL.

http://www.quecorp.com

From Here... | 35

Passing SQL Statements to Other Database Engines

[0y
CI T

Visual Basic can pass a SQL statement through to an ODBC database server such as SQL
Server. When you pass a statement through, the Jet engine does not try to do any processing
of the query, but it sends the query to the server to be processed. Remember, however, that
the SQL statement must conform to the SQL syntax of the host database.

To use the pass-through capability, set the options parameter in the OpenRecordset or the
execute methods to the value of the dbsQLPassThrough constant.

N O T E The project file, SQLDEMO.VBP, also on the companion CD, contains many of the

listings used in this chapter. Each listing is assigned to a command button. Choosing the
command button creates a dynaset with the SQL statement in the listing and displays the results in a
data-bound grid. The form containing the grid also has a text box that shows the SQL statement.

From Here...

This chapter has taught you the basics of using SQL in your database program. You have seen
how to select records and how to limit the selection by using the WHERE clause. You have also
seen how SQL statements can be used to modify the structure of a database and how to use
aggregate functions to obtain summary information.

To see how SQL statements are used in programs and with the data control, refer to the follow-
ing chapters:

Chapter 28, “Building Database Applications,” explains how to write data-access pro-
grams.

Chapters 29, “Using the Visual Basic Data Control,” and 30, “Doing More with Bound
Controls,” explain how to use the Data control.

