
1

Doing Graphics

hat do you think of when someone mentions graphics? Do
you envision the artistic creations of a graphic designer?
Do you conjure up images of the last sales presentation
that you attended? Maybe you think of computer-aided
design (CAD) or intricate data charts. The point is that
the graphics topic encompasses a very wide range of im-
ages and applications.

Defined in the simplest terms, graphics (in the computer
world) is the placement of lines, circles, points, and text in
a specific pattern on a screen. These objects can be differ-
ent sizes, shapes, and colors. The purpose of this chapter
is to illustrate how to control the placement and character-
istics of these objects.

The design and use of graphics is a large and complex
subject. This single chapter cannot cover all the bases.
However, it provides you with enough information and
techniques to get you well on your way to creating great
graphics programs. ■

W

1B O N U S  C H A P T E R

Enhance the user interface

Use the Line and Shape controls to
highlight areas of your forms,
making your user interface more
visually pleasing.

Want to show a picture?

The form itself, as well as  several
controls, enables you to display
almost any type of picture. You can
even display pictures that are stored
in a database.

Change your pictures

With some of Visual Basic’s meth-
ods you can even modify the pic-
tures that you display.

Create your own pictures

Visual Basic’s graphics methods
enable  you to create many types of
graphics-related programs.

Analyze data with graphics

You can even use the graphics
methods to create charts and other
data analysis tools.



2 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

Enhancing the User Interface
A typical user interface for an application consists of one or more forms containing a menu,
labels, text boxes, command buttons, and perhaps a few other controls for specific pieces of
data. However, without graphics, an otherwise functional interface can be quite boring and
unintuitive. You can use graphics to enhance the user interface in the following ways:

■ Highlighting specific information on the screen

■ Providing a different view of the information

■ Providing a more intuitive link to the application’s functions

These enhancements can be accomplished through the use of the Line and Shape controls,
color, pictures, and drawing methods.

Using the Line and Shape Controls
The Line and Shape controls provide the easiest means to add a graphic element to a form. The
controls are drawn on the form at design time and placed where you need them. During the
program’s execution, these controls can be hidden or moved. Their colors can be changed by
setting the appropriate property values in your code.

As you would guess by its name, the Line control places a line on the form. You can control the
width of the line, the line style, the color, and the position of the terminal points of the line by
setting the control’s properties. Figure B1.1 shows several Line controls drawn on a form using
the various styles and the BorderStyle property options for the Line control.

FIG. B1.1
The Line control enables
you to place lines of
different styles on a
form. You assign the
style by selecting the
appropriate Border-
Style property.

CAUTION

If you set the BorderWidth property of the Line control greater than one, the BorderStyle property has
no effect.

The Line control can be used on a form to separate areas of the form from one another. For
instance, you might want to separate the data display portion of a form from the command



3

buttons, as shown in Figure B1.2. Or you may want to separate the information on the form
into distinct groups. If you are presenting a lot of information on a form, the use of a line is a
good way to enable the user to focus on one group of information at a time.

FIG. B1.2
The Line control is used
to provide a visual
separator between
different areas on the
form.

The Shape control provides another simple means of placing graphics elements on a form. You
could use the Shape control to create any of six shapes. Simply change the control’s Shape
property (see Figure B1.3).

FIG. B1.3
You can change the
Shape property of the
Shape control to
create any of the
shapes pictured.

You can set the BorderStyle property of these shapes to any of the six line styles shown in
Figure B1.1. You can also select patterns and colors for the shapes by setting the FillStyle
and FillColor properties. The Shape control can be used to enclose various areas of a form
and other controls, as shown in Figure B1.4.

Although a Shape control can visually enclose other controls, it cannot be used as a
container for other controls, as the Frame and PictureBox controls can. If a frame is placed

on a form, then other controls can be placed within the frame’s borders. The frame and the controls
contained within it then act as one unit. When the frame is moved, the other controls are moved with it,
maintaining their relative position within the frame. If a frame is hidden, all controls in the frame are

N O T E

Enhancing the User Interface

continues



4 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

also hidden. These characteristics are also true of a picture box. Not so with a Shape control. Any
controls placed within the border of a Shape control are independent of the shape. If the shape is
moved or hidden, the other controls remain unaffected. ■

See “Exploring the Uses of Containers,” in Chapter 13.

FIG. B1.4
The Shape control can
be used to provide a
border or other visual
effects.

The Shape control can also be used to highlight information in a different manner. Suppose
you want to draw your user’s attention to the fact that he or she entered an incorrect value in a
field. One way to do this is to draw a shape around the text box where the data was entered and
to set its Visible property to False. Then place code to either show or hide the shape (depend-
ing on the value of the text) in the Change event procedure of the text box. The following code
shows a shape when the text box’s value is less than zero and hides the shape otherwise:

If Text1.Text < 0 Then
   Shape1.Visible = True
Else
   Shape1.Visible = False
End If

The Change event is triggered whenever the user starts typing in the text box. Therefore, if he
or she starts to enter an incorrect value, the shape immediately appears. When an acceptable
value is entered, the shape disappears. A good shape for this function is an oval with a
BorderWidth of three and a red BorderColor.

Pictures on the Form
Another way to enhance your screens with graphics is to place pictures on the form. A picture
is a bitmap file that can contain art, flow diagrams, or photos. The picture can be purely decora-
tive, or it can be used to communicate specific information. You have probably seen pictures
used for information in the setup screens of many programs. These pictures tell you about the
features and benefits of the program while the installation is running. Visual Basic is capable of
displaying many types of graphics files, which are summarized in Table B1.1.

continued



5

Table B1.1 Graphics Files Compatible with Visual Basic

File Extension Type of File

.BMP Windows bitmap.

.DIB Bitmap file.

.ICO Windows icon.

.WMF Windows metafile.

.EMF Enhanced Windows metafile.

.GIF Graphics Interchange Format; a file format originally developed
by CompuServe as a way to store raster (as opposed to vector)
graphics images. Commonly used to store graphics on the
Internet.

.JPG JPEG images, named after the Joint Photographic Experts Group,
developer of the format; similar to GIF images, but use compres-
sion algorithms to reduce file size. These are also used exten-
sively on the Internet.

There are several ways to add a picture to a form. The picture can be placed on the form itself,
or it can be placed in a PictureBox or Image control on the form. The advantages and disadvan-
tages of each of these methods are addressed in the following paragraphs.

Loading a Picture on the Form The simplest way to add a picture to your screen is to add it
to the form itself. You can do this at design time by setting the form’s Picture property from
the Properties window. To load a picture, select the Picture property, and then press the ellip-
sis (…) button at the far right of the line. This will call up the Load Picture dialog box shown in
Figure B1.5. From this box, you can select the file containing the desired picture.

FIG. B1.5
To place a picture on a
form at design time, the
Properties window
invokes the Load Picture
dialog box. Pictures can
also be loaded during
program execution.

When a picture is loaded on the form, the entire picture is placed on the form, starting in the
upper-left corner. If the picture is smaller than the form, space is left below or to the right of the
picture. If the picture is larger than the form, the entire picture is still loaded, but only part of it
is visible. As the form is resized, the amount of the picture shown changes.

Enhancing the User Interface



6 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

The picture is always placed starting in the upper-left corner. It cannot be placed anywhere
else on the form. If you want a small picture in another area of the form, you must use

either a Picture or Image control, as explained in the next two sections. ■

When a picture is loaded on the form, it provides a background for the form. Any other con-
trols added to the form appear on top of the picture. With the exception of the Label and Shape
controls, the picture does not show through the background of the control. The Label and
Shape controls allow the picture to show through if the BackStyle property of the control is set
to Transparent. Figure B1.6 illustrates controls placed on a form containing a picture. Note the
background of the controls.

N O T E

FIG. B1.6
Some controls placed
on a form do not allow
the picture to show
through.

You can also add a picture to a form at run time. This is done by setting the Picture property
of the form with the LoadPicture function as shown in the following code:

Form1.Picture = LoadPicture(“C:\MYPICT.BMP”)

You can also remove the picture from the form by specifying a null argument for the
LoadPicture function:

Form1.Picture = LoadPicture(“”)

The key advantage to placing your picture directly on the form is that this method uses fewer
system resources than placing the picture in a Picture or Image control. Another benefit of
placing the picture on the form is that you can use drawing methods to annotate the picture.
For example, you could display a product’s picture and then, by using the Print method, over-
lay the price or other database information on top of the picture. This capability is available
with the PictureBox control as well, but is not available with the Image control.

Placing the picture directly on the form does, however, have several drawbacks:

■ You cannot hide the picture; it can only be loaded or unloaded.

■ You cannot control the placement of the picture on the form.

■ You can only place one picture on the form at a time.

These drawbacks can be overcome with the use of the PictureBox or Image control. However,
the added flexibility comes at the expense of system resources.



7

Using the Image Control A second way of placing pictures on a form is to use an Image
control. The Image control provides a frame for a bitmap or other picture on a form. The con-
trol can be placed anywhere on the form and drawn to any desired size. You assign a picture to
the Image control by setting the Picture property of the control. This can be done either at
design time using the Properties window or at runtime using an assignment statement:

Image1.picture = LoadPicture(“C:\mypic.bmp”)
Image2.picture = Image1.Picture

One other property of the Image control greatly affects the appearance of any pictures you may
use. This is the Stretch property. The Stretch property determines whether the Image con-
trol is sized to fit the picture, or the picture is sized to fit the control as drawn. If the Stretch
property is set to False (the default), the Image control is automatically resized to fit the pic-
ture you assign to it. If the Stretch property is set to True, the picture is automatically resized
so that the entire picture fits within the current boundaries of the Image control. This setting
causes the overall size of the picture to change and can change the aspect ratio of the picture
(the ratio of vertical to horizontal size). Figure B1.7 shows the same picture in several Image
controls. The one with the Stretch property set to False shows the image at its original size,
while the others show some possible effects of resizing the Image controls that have their
Stretch properties set to True.

FIG. B1.7
The Stretch property
of the Image control
enables you to resize
the picture to the size of
the control or vice
versa.

If you are showing pictures of different sizes in your application, you should probably set the Stretch
property to True. Otherwise, the size of the Image control will change with each picture and may
cause the Image control to overlap other controls on the form. The Image control is anchored at its top-
left corner, so only objects to the right and below the control would be affected. If the appearance of
the pictures is unsuitable due to stretching, you may want to use the PictureBox control instead of the
Image control.

T I P

Enhancing the User Interface



8 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

The advantages of using the Image control instead of placing a picture directly on the form
include the following:

■ You can control the size of the picture’s display area.

■ You can place the picture anywhere on the form.

■ You can place multiple Image controls on a form and use code to move them around.

■ You can easily hide the picture using the Visible property of the Image control.

Using the Image control does have a few drawbacks, however:

■ The Image control uses more resources than placing the picture directly on the form.

■ You cannot use drawing methods to modify the picture in the Image control, as you can
with a picture placed directly on the form or one in a PictureBox control.

■ The Image control cannot serve as a container for other controls the way the PictureBox
control can.

Using the PictureBox Control The third way to place a picture on a form is with the
PictureBox control. As with the Image control, multiple picture boxes can be placed on a form.
The PictureBox control uses the most resources of the three methods. Loading a picture in a
PictureBox control is accomplished the same way as loading a picture on a form or into an
Image control. The picture can either be loaded at design time or at run time.

Like the Image control, the PictureBox control enables you to place a picture anywhere on a
form and to size the control. However, resizing the PictureBox control does not have the same
effect on the picture as resizing an Image control. The default behavior of the PictureBox con-
trol is to show only as much of a picture as will fit in its current boundaries. If the picture is
larger than the PictureBox control, the upper-left corner of the picture is shown. If the picture
is smaller than the PictureBox control, space is shown around the edges of the picture. In
either case, the entire picture, displayed or not, is loaded in the PictureBox control and avail-
able if the control is resized. Setting the PictureBox’s AutoSize property to True changes this
default behavior, causing the PictureBox control to resize itself to fit the current picture. As
with the Image control, the top-left corner of the control is anchored in place, and resizing of
the control occurs to the right and down. However, don’t confuse the AutoSize property with
the Image control’s Stretch property. The PictureBox control always preserves the aspect
ratio of the picture being shown. Figure B1.8 shows the same picture in each of two
PictureBox controls—one with the AutoSize property set to False, and the other with the
AutoSize property set to True.

The PictureBox control also provides you with other capabilities that help you work with pic-
tures. You can use the drawing methods to make changes to the picture, just as you can with
the picture on a form.  You can hide the picture or move it on the screen, just as you can with
the Image control. But the PictureBox control also has some added benefits. Like the Frame
control, the PictureBox control can be used as a container for other controls, so that any con-
trols placed on the PictureBox control are treated as a unit with the PictureBox control itself. If
the PictureBox control is hidden or moved, the other controls on it are also hidden or moved.



9

This feature allows the PictureBox control to be used to display multiple views or portions of
data on a single form. For  more detail on this feature, see “Exploring the Uses of Containers”
in Chapter 10, “Using the Windows Common Controls.”

See “Exploring the Uses of Containers,” in Chapter 13.

FIG. B1.8
The AutoSize property
determines whether the
PictureBox control will
change size to fit the
picture being displayed.
Note that the size of the
picture itself does not
change.

Invisible Buttons
As useful as it is to be able to display a picture on a form, you probably would like to be able to
do more with pictures. One way to take advantage of the visual information displayed in a pic-
ture is to use it to control part of your application’s interface.

For example, consider a flowchart displayed on a form that shows the various input files and
calculations in a complex application (see Figure B1.9).

FIG. B1.9
A flowchart can be
used to display
information about an
application.

The flowchart helps the user understand how the information in the application is related. But
suppose you could set up your application so that the user could access an input file merely by

Enhancing the User Interface



10 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

clicking the file name in the flowchart. This can be done by superimposing Image controls over
the flowchart to create invisible buttons.

Load a picture onto the form or into a PictureBox control. Wherever you want an invisible
button, place an Image control over the region that you want to activate. Finally, place code in
the Click event of each Image control to accomplish the task you want performed. The Image
control is invisible because it has no border; and with no picture assigned to it, the background
of the control is transparent. Figure B1.10 shows the flowchart from Figure B1.9 in design
mode so that you can see the invisible buttons. During program execution, these controls
would not be seen because their BorderStyle property is set to None (which is the default).
Image controls are needed because the Shapes have no events of their own.

FIG. B1.10
Invisible buttons can
make a picture part of
your user interface.

This flowchart and invisible button application is contained in the file INVISBTN.VBP, which
is on the companion CD-ROM.

When the buttons are clicked, a message box appears to tell you which button or area you
pressed. ■

Okay, since the buttons are invisible, how do you let the user know where they are and that he
can click them? You can use a characteristic of the mouse pointer and the MouseMove event of
the Image controls to change the mouse pointer when it is over one of the invisible buttons. Set
the mouse pointer to an icon as shown in the following code:

Image1.MousePointer = vbCustom
Image1.MouseIcon =  LoadPicture(“C:\myicon.ico”)

This code changes the mouse pointer to an icon of your choosing for as long as the mouse is
over the Image control. When the mouse is moved off of the control, the mouse pointer reverts
to its original style. Figure B1.11 shows the invisible button with the changed mouse pointer
over it.

N O T E



11

This invisible button concept can be used with all types of applications. For example, you can
create a demonstration application for a new car. By placing invisible buttons on a picture of the
car, you can enable the user to click the parts of the car to obtain information about its fea-
tures—for example, the application can describe the car’s engine capabilities if the user clicks
the hood. The invisible buttons can be made any size you want them.

Creating and Managing Graphics
Earlier sections of this chapter have shown how you can use graphics to enhance the user
interface through displayed pictures, invisible buttons, and other devices. To obtain the graph-
ics used in these display elements, you can either use a graphics image from a library or create
your own with a package such as Paintbrush.

But what if your application needs to be able to create graphics on its own? For example, cer-
tain data analysis programs create charts and programs for which the user might need a
sketchpad for note taking. The following section discusses how you can create graphics images
from within your application and how to store and manage the created graphics.

Creating Graphics
Visual Basic provides several tools that you can use to create graphics. The drawing methods
can work on a form or in a PictureBox control. They can also be used with Visual Basic’s
Printer object to send the output to the printer. If no object is specified with the method, the
form that is currently the focus will receive the output of the methods.

Visual Basic provides seven basic methods for creating graphics. These methods can be used
to create many types of graphics images:

■ Line method, which draws a line or a box on the target object

■ Circle method, which draws a circle or oval on the target object

■ PSet method, which places a single point on the target object

FIG. B1.11
Changing the mouse
pointer shows the user
where the invisible
buttons are located.

Mouse pointer

Creating and Managing Graphics



12 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

■ Point method, which returns the color of a specific point

■ PaintPicture method, which draws an image from another control onto the target
object

■ Cls method, which clears the output area of the target object

■ Print method, which places text on the target object

In the following sections, we discuss these various graphics methods. For simplicity, code
samples are given with the assumption that the target object is the form itself; therefore,

the form name is left out of the syntax for invoking the method. For example, the first code sample
below, Line (1500, 750)-(2000, 750), draws a line on the form itself. However, the Line
method can also apply to a PictureBox control. If you want to use one of these graphics methods on
another object to which it applies, you can add the appropriate object name to the method syntax. To
invoke the sample above on a PictureBox control named Picture1, you could use Picture1.Line
(1500, 750)-(2000, 750). ■

Using the Line Method You use the Line method to draw lines and boxes on the form. To
draw a line, you need to provide the Line method with the starting and ending points of the
line. If you omit the starting point, the method draws a line from the current position to the
ending point. The following code draws a triangle on a form:

Line (1500, 750)-(2000, 750)
Line -(2000, 1250)
Line -(1500, 750)

As with a form’s Left and Top properties, the coordinate system’s origin is at the upper-left
corner. The Line method enables you to specify the color used to draw the line. You can also
use the Line method to draw a box on the form by including the optional B argument. In this
case, the coordinates passed to the Line method specify the top-left and bottom-right corners
of the box. This example shows how to draw a red box from the upper-left coordinate
(2000, 2000) to the lower-right coordinate (2500, 2500):

Line (2000, 2000)-(2500, 2500), vbRed, B

When drawing a box, you can see the form behind it if the FillStyle property of the form is
set to transparent. If you want the box to be filled, you can also specify the optional F argument,
which fills the box with the same color used to draw the border. In the following example, you
get a filled blue box:

Line -(3000, 3000), vbBlue, BF

In the preceding example, the starting point is omitted; therefore, the box is drawn from the
current position to the ending point.

As you can see, the commands to draw lines and boxes are quite simple. The key to controlling
the appearance of lines and boxes is setting the drawing properties of the form (or other object
that is receiving the graphics). The graphics methods use the object’s current settings when
drawing. The properties that affect the graphics methods are summarized in Table B1.2. The
effects of some of these properties are shown in Figure B1.12.

N O T E



13

Table B1.2 Drawing Properties that Affect the Appearance of Graphics
Drawn with the Graphics Methods

Property Name Purpose

DrawMode Determines how the color used to draw the border of the object
interacts with objects already on the screen

DrawStyle Determines the pattern used to draw the border of the object

DrawWidth Determines the width of the line used to draw the border of the
object

FillColor Determines the color used to fill an object

FillStyle Determines the fill pattern used to fill an object

ForeColor Determines the primary color used in drawing the border of an
object

The values of these properties are explained in Visual Basic’s Help system. All of these proper-
ties can be set for a form or PictureBox control at design time. However, they are most useful
when they are set at run time, when they can be set for a single drawing operation. The follow-
ing code segment stores the form’s drawing properties in variables, draws a series of boxes,
and then returns the properties to their original settings:

frmset1 = Form1.DrawStyle
frmset2 = Form1.DrawWidth
frmset3 = Form1.FillColor
frmset4 = Form1.FillStyle
frmset5 = Form1.ForeColor
Line (1000, 1000)-(1500, 1500), , B
Form1.DrawStyle = 2
Form1.FillStyle = 2
Line -(2000, 2000), , B
Form1.FillColor = &hff
Line -(2500, 2500), , B
Form1.DrawWidth = 3
Form1.ForeColor = &hff0000
Line -(3000, 3000)
Form1.DrawStyle = frmset1
Form1.DrawWidth = frmset2
Form1.FillColor = frmset3
Form1.FillStyle = frmset4
Form1.ForeColor = frmset5
Line (100, 100)-(500, 500), , B

Figure B1.12 displays the appearance of the form after executing this code sample.

Using the Circle Method The Circle method allows you to draw circles, ellipses, arcs, and
pies on the form. The simplest form of the method is the following:

Circle (X, Y), R

Creating and Managing Graphics



14 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

This command draws a circle of radius R with a center at the position specified by X and Y. As
with the Line method, the pattern and color of the circle’s border and fill are determined by the
settings of the drawing properties. The full syntax of the Circle method is as follows:

object.Circle [Step] (x, y), radius, [color, start, end, aspect]

Several optional arguments can be used with the Circle method. See the Visual Basic help
system for the complete syntax. You use the start and end arguments of the method to draw
an arc rather than a full circle. The values of start and end are the angles from horizontal
expressed in radians. (The value of an angle in radians is determined by multiplying the angle
in degrees by π/180.) The values of start and end can range from zero to 2π, or zero to –2π. If
the values of both the start and end arguments are negative, the method draws a pie (an arc
with lines extending to the center of the circle). If both values are positive, a simple arc is
drawn. If one of the values is negative, a line is drawn from that end of the arc to the center.

Another argument that can be specified is the aspect argument. This argument is used to draw
an ellipse or an oval. The aspect is the ratio of the vertical size of the ellipse to the horizontal
size. An aspect of one draws a circle. If the aspect is greater than one, the ellipse is taller than it
is wide. If the aspect is less than one, the ellipse is wider than it is tall. In all cases, the radius
specified in the method sets the size of the longer dimension. The code for drawing several
shapes with the Circle method is the following. (The results of this code are shown in Figure
B1.13.)

‘Circle
Circle (500, 500), 500
‘Arc

FIG. B1.12
The Line method can be
used to draw lines and
boxes on an object
such as a form or
printer.



15

Circle (1500, 1500), 500, , 1.57, 0
‘Piece of pie
Circle (2500, 2500), 500, , -4.7, -6.2
‘Ellipse
Circle (3500, 3500), 500, , , , 1.5
‘Another piece of pie
Circle (4500, 4500), 500, , -0.01, -1.57, 1.5

In the previous code, there’s a “missing” argument, which is after the radius but before the
start and end arguments. This place is reserved for the optional color argument. If this

argument is not present, the color used to draw the circle is the ForeColor property of the object on
which it’s drawn. Notice also that even though the color argument is left out, its place is “saved” by an
extra comma. ■

N O T E

FIG. B1.13
The Circle method has
several optional para-
meters that allow it to
draw ellipses, arcs, and
pies.

Using the PSet Method The PSet method is used to draw a single point on the form using
the color specified by the ForeColor property. The size of the point drawn is dependent on the
setting of the DrawWidth property. A larger DrawWidth setting produces a larger point. The PSet
method draws the point at the coordinates specified in the argument of the method. The follow-
ing code will draw a point at position 100, 100:

PSet (100, 100)

One use of the PSet method is to provide a freehand drawing capability for the users of your
application. This use is covered in the later section “Creating a Sketchpad Application.”

Using the PaintPicture Method The PaintPicture method enables you to place all or part of
a picture from one object into a specific location in another object. Also, by carefully setting the

Creating and Managing Graphics



16 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

height and width of the source and target objects, you can enlarge or reduce the size of the
source picture. The following code paints part of a picture from a PictureBox control named
picSource onto the base form:

frmdest.PaintPicture picSource.Picture, 50, 50, 750, 750, 0, 0, 500, 500

As you can see from the line of code, the PaintPicture method contains several arguments:

■ Source picture  All or part of this source picture is drawn in a “target region” on the
destination object.

■ Target X and Y  These two numerical arguments specify the coordinates of the upper-
left corner of the target region. Therefore, in the previous example, drawing occurs on
frmDest 50 twips from the left edge and 50 twips from the top edge.

■ Target Size  Specifies the horizontal and vertical size of the target region. If this size is
different from the size of the source picture or region, the picture is stretched or
compressed to fit the target region.

■ Source X and Y  The third pair of numbers in the command specifies the upper-left
corner of the source region—that is, the part of the picture being copied.

■ Source Size  Specifies the height and width of the source region.

The first three arguments are the only ones required for the PaintPicture method. All other
arguments are optional. If only the three required arguments are specified, the entire source
picture is copied to the target at full size.

The code shown in this listing takes a piece of a picture from the PictureBox control, enlarges
it by 50 percent, and places it on the form. The results of this command are shown in Figure
B1.14.

FIG. B1.14
The PaintPicture
method can copy all or
part of a picture from
one object to another
and enlarge or reduce
the picture.

Some uses of the PaintPicture method in creating graphics would be the following:

■ To provide a zoom feature for looking more closely at specific regions of a picture. This
feature would be useful for implementing print preview in your application.

■ To make multiple copies of a picture (or a portion of one) on a target object.

■ To clear a specified region of a picture or combine several pictures.

■ To print the contents of a PictureBox control—for example, to put a company logo on
your report.

■ To be able to create data point markers for a chart.



17

Using the Print Method Although the Print method is not usually thought of as a graphics
method, it works the same way. Its primary use is to place text on a form, PictureBox control,
or the Printer object. The Print method can be used in conjunction with the graphics methods
to create charts or drawings or to annotate existing bit maps. The Print method itself is quite
simple. The following code displays a single line of text at the current position on the form:

Print “This is a one-line test.”

Remember, these code examples assume that the graphics methods are directed to the current
form. To print the line of text in the previous sample to the printer, you could invoke the
Printer object’s Print method:

Printer.Print “This is a one-line test.”

The output of the Print method is controlled by the settings of five properties of the object
being printed on. These properties are as follows:

■ CurrentX This sets the horizontal position for the starting point of the text.

■ CurrentY This sets the vertical position for the starting point of the text.

■ Font This determines the font type and size used for the text.

■ ForeColor This determines the color of the text.

■ FontTransparent On a form or picture, this determines whether or not the background
behind the text will show through the spaces in the text.

Other Methods The other two graphics methods mentioned at the beginning of this section
are the Point method and the Cls method. These two methods each perform a single function.
The Point method returns the RGB color setting of a single specified point. The Cls method,
which stands for “Clear Screen” (a carryover from DOS-based programming languages that
needed to clear the entire screen before writing more information), clears all graphics drawn
with the graphics methods from a form, PictureBox control, or Image control. The Cls method
has no effect on any controls that are on the object. It only clears graphics that were drawn at
run time.

Creating a Sketchpad Application
To further illustrate how the different graphics methods work, this section discusses how to
create a sketchpad application. This application is similar to the familiar Windows Paintbrush
application. The starting form for the application is shown in Figure B1.B1.

This sketchpad application only creates bit map (.BMP) drawings. After being created, any
object placed on the screen is handled simply as a series of points. The objects cannot be se-
lected later to be resized or moved. In contrast to this application, programs like Microsoft
PowerPoint save information about the size, type, location, and other characteristics of an
object. This feature allows the object to be re-selected and those characteristics to be modified
in order to change the object’s appearance at a later time.

Setting Up the Toolbar The sketchpad application uses Image controls to create a toolbar,
which enables the user to select which type of object to draw. The toolbar is set up by placing

Creating and Managing Graphics



18 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

three arrays of Image controls on the form. Two of the arrays are used to store the image of
the “up” button and the “down” position for each tool. The third image array acts as the actual
toolbar. When the button for a tool is pressed, two results occur. First, the down image of the
button is displayed to indicate which tool was selected. Second, a variable is set to tell the pro-
gram which drawing tool to use. The sketchpad application provides the user with the capabil-
ity to draw the following six objects:

■ Line

■ Open Box

■ Filled Box

■ Open Circle

■ Filled Circle

■ Freehand Sketch

FIG. B1.15
You can create a
Paintbrush-style
application by using the
drawing methods.

You use the Image control array to make programming simpler. The index of the control array
defines the tool used to draw on the PictureBox control. An example of the code for setting the
Image control pictures and the tool type is shown here. The variable inToolNum is declared in
the declarations section of the form and is initially set to zero, the number for the Freehand
tool:

Private Sub imgToolBar_Click(Index As Integer)
   ‘Reset the button for the previously used tool to the Up position
   imgToolbar(inToolNum).Picture = imgUp(inToolNum).Picture

   ‘Set the button for the newly selected tool to the Down position
   imgToolBar(Index).Picture = imgDown(Index).Picture

   ‘Set the inToolNum variable to the new tool
   inToolNum = Index
End Sub

Using the Various Drawing Tools The sketchpad enables the user to press the mouse button
and then drag the mouse to draw an object, just like VB controls or any Windows drawing



19

program. The sketchpad application provides a PictureBox control on which the user may
draw.

See “Introducing Events,” in Chapter 7.

To implement the various drawing tools, you need to work with three events: MouseDown,
MouseMove, and MouseUp. These events correspond with the user’s actions as he or she is draw-
ing an object.

The MouseDown event is responsible for telling the program that the user is drawing on the
PictureBox control and for setting the initial position of the object. The purpose of this initial
point depends on the type of object being drawn. Table B1.3 shows the purpose of the initial
point for each of the objects in the sketchpad application.

Table B1.3 Initial Point of a Drawing Operation Has Different Meanings for
Each Object

Object Use of Initial Point

Line One of two points defining the line

Box (open or filled) One of the corners of the box

Circle (open or filled) One corner of a box which would bound the circle

Freehand The first point drawn

A variable has been defined to tell the program whether to draw objects while the mouse is in
motion. This variable, DrawNow, has a value of either True or False. The MouseDown event sets
this variable to True. The following code is placed in the MouseDown event to enable the drawing
methods. In the code, the variables curX and curY are the coordinates of the initial point. The
variables oldX and oldY are the coordinates of the last mouse position. These variables are
important in the MouseMove event, as you will see:

Private Sub PicMain_MouseDown(Button As Integer, Shift As Integer, _
     X As Single, Y As Single)
   DrawNow = True
   curX = X
   curY = Y
   oldX = X
   oldY = Y
End Sub

The MouseMove event is the main workhorse of the sketchpad application. If the mouse button
is down (DrawNow is set to True), the code in the MouseMove event draws the selected object
between the initial point of the drawing and the current mouse position. The event contains a
set of cases to handle the various types of objects that might be drawn. You might notice that
the open and filled boxes and the open and filled circles use the same code. This is because in
the MouseMove event, it is only necessary to show the outline of a filled object while the drawing
is in progress.

Creating and Managing Graphics



20 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

You might also notice that the Line method is used for the Freehand drawing instead of the
PSet method. The reason for this is that the MouseMove event is triggered at certain intervals,
not as a continuous event. Rapid movements of the mouse leave gaps in the lines drawn with
the PSet method. When the Line method is used, a line is drawn between the last position of
the mouse and the current position, thereby providing a continuous line. The code for the
MouseMove event is shown in Listing B1.1.

Listing B1.1 MouseMove.Frm—The MouseMove Event Draws the Outline of
the Object as the Mouse Is Dragged

Private Sub PicMain_MouseMove(Button As Integer, Shift As Integer, _
       X As Single, Y As Single)
If DrawNow Then
   Select Case inToolNum
      Case 0 ‘Freehand drawing tool
         PicMain.Line (oldX, oldY)-(X, Y)
         oldX = X
         oldY = Y
      Case 1 ‘Lines
         PicMain.Line (curX, curY)-(oldX, oldY), PicMain.BackColor
         PicMain.Line (curX, curY)-(X, Y)
         oldX = X
         oldY = Y
      Case 2,3 ‘Open and filled boxes
         PicMain.Line (curX, curY)-(oldX, oldY), PicMain.BackColor, B
         PicMain.Line (curX, curY)-(X, Y), , B
         oldX = X
         oldY = Y
      Case 4,5 ‘Open and filled circles
         cntX = curX + Int((X - curX) / 2)
         cntY = curY + Int((Y - curY) / 2)
         radX = Abs(curX - X)
         radY = Abs(curY - Y)
         radcir = IIf(radX > radY, radX, radY) / 2
         If radX = 0 Then
             aspcir = 1
         Else
             aspcir = radY / radX
         End If
         PicMain.Circle (oldX, oldY), oldrad, PicMain.BackColor, , , _
             oldasp
         PicMain.Circle (cntX, cntY), radcir, , , , aspcir
         oldX = cntX
         oldY = cntY
         oldasp = aspcir
         oldrad = radcir
   End Select
End If
End Sub



21

When the user is finished drawing and releases the mouse button, the MouseUp event creates
the final drawing for the object and turns off the drawing mode (see Listing B1.2). Much of the
same code is used in the MouseUp event as in the MouseMove event, but separate cases have
been added for the filled boxes and circles.

Listing B1.2  MouseUp.Frm—The MouseUp Event Renders the Final
Drawing and Turns Off the Drawing Mode
Private Sub PicMain_MouseUp(Button As Integer, Shift As Integer, _
     X As Single, Y As Single)
If DrawNow Then
   Select Case inToolNum
      Case 1  ‘Line
         PicMain.Line (curX, curY)-(oldX, oldY), PicMain.BackColor
         PicMain.Line (curX, curY)-(X, Y)
      Case 2  ‘Open Box
         PicMain.FillStyle = vbFSTransparent
         PicMain.Line (curX, curY)-(oldX, oldY), PicMain.BackColor, B
         PicMain.Line (curX, curY)-(X, Y), , B
      Case 3  ‘Filled Box
         PicMain.FillStyle = vbFSSolid
         PicMain.Line (curX, curY)-(oldX, oldY), PicMain.BackColor, B
         PicMain.Line (curX, curY)-(X, Y), , B
         PicMain.FillStyle = vbFSTransparent
      Case 4  ‘Open Elipse
         cntX = curX + Int((X - curX) / 2)
         cntY = curY + Int((Y - curY) / 2)
         radX = Abs(curX - X)
         radY = Abs(curY - Y)
         radcir = IIf(radX > radY, radX, radY) / 2
         If radX = 0 Then
             aspcir = 1
         Else
             aspcir = radY / radX
         End If
         PicMain.FillStyle = vbFSTransparent
         PicMain.Circle (oldX, oldY), oldrad, PicMain.BackColor, , , _
            oldasp
         PicMain.Circle (cntX, cntY), radcir, , , , aspcir
      Case 5  ‘Filled elipse
         cntX = curX + Int((X - curX) / 2)
         cntY = curY + Int((Y - curY) / 2)
         radX = Abs(curX - X)
         radY = Abs(curY - Y)
         radcir = IIf(radX > radY, radX, radY) / 2
         If radX = 0 Then
             aspcir = 1
         Else
             aspcir = radY / radX
         End If

continues

Creating and Managing Graphics



22 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

         PicMain.FillStyle = vbFSSolid
         PicMain.Circle (oldX, oldY), oldrad, PicMain.BackColor, , , _
            oldasp
         PicMain.Circle (cntX, cntY), radcir, , , , aspcir
         PicMain.FillStyle = vbFSTransparent
   End Select
End If
DrawNow = 0
End Sub

Creating an Undo Feature Most applications that perform drawing functions have an Undo
feature that allows the user to restore the picture to its state prior to the last drawing operation.
An Undo function can be implemented in the sketchpad application by adding a second
PictureBox control to the form, placing some additional code in the MouseDown event, and add-
ing an Undo button. The second PictureBox control contains a copy of the image in the
PictureBox control that contains the “primary” drawing. This second PictureBox control has its
Visible property set to False so that it is not visible when the application is running. The
second picture is updated each time a new drawing operation is started. This update is per-
formed in the MouseDown event as shown in the following code:

picUndo.Picture = picMain.Image

In the previous code, a picture was copied to a picture box’s Picture property by
assigning to the property another picture box’s Image property. The Image property was

used because it not only contains the loaded picture, but also the results of any drawing
operations. ■

To undo an operation, the code simply copies the picture in the second PictureBox control
back to the main PictureBox control, returning the drawing area back to the way it was before
the last drawing operation. This code is shown in the following line:

picMain.Picture = picUndo.Picture

Saving the Picture Finally, you should give your users the capability of saving the pictures
they create. The drawings on a PictureBox control can be saved as a bit map file using the
SavePicture function. This function requires the name of the source picture and the name of
the output file. You probably want to use the CommonDialog control to enable the user to
specify a name for the output file. For a drawing, the source of the picture is the Image property
of the PictureBox control or the form on which the drawing was made. The following code gets
a file name using the CommonDialog control (named GetFile) and stores the drawing created
by the sketchpad application:

GetFile.Filter = “Bitmap Files (*.BMP)|*.bmp”
GetFile.DefaultExt = “BMP”
GetFile.ShowSave
DataName = GetFile.FileName
SavePicture PicMain.Image, DataName

Listing B1.2 Continued

N O T E



23

 Bit Map Annotation
The sketchpad application showed how you can create graphics with the graphics methods and
how to store the graphics in files. Because the PictureBox control is also capable of displaying
an existing graphics file, you can use the sketchpad program to modify graphics from other
sources. You might want to use this program to annotate fax images before sending them on
to another person. You can also use the sketchpad to make changes to bit maps created by
others.

To annotate bit maps, you need to add a LoadPicture function to the sketchpad application so
that you can  import the picture into the editing area. The code for this operation is shown
here. This code again uses the CommonDialog control to obtain the name of the file to be
edited:

stTemp = “Bitmap Files (*.BMP)|*.bmp|Icon Files | *.ico |All Files|*.*”
GetFile.Filter = stTemp
GetFile.DefaultExt = “BMP”
GetFile.ShowOpen
DataName = GetFile.FileName
PicMain.Picture = LoadPicture(DataName)

Using a Database to Store Pictures
There are two ways to use pictures with databases. The most obvious is to store a pointer to the
name of the picture file in the database. However, an Access database created in Visual Basic
can store pictures in the database itself. The field type to use for pictures is a long binary field.
If the database is bound to a Data control, the field containing the pictures can be bound to
either a PictureBox control or an Image control. If a PictureBox control is used, the drawing
methods discussed in this section can be used to create or edit the pictures in the database.

It is important to know how to save the changes to the pictures back into the database. A prob-
lem arises in saving these changes because the data field containing the picture is bound to the
Picture property of the PictureBox control. The drawings that are made with the graphics
methods are not part of the Picture property, but rather part of the Image property. It is there-
fore necessary to copy the Image property to the Picture property prior to the update of the
database, which you can do with the following line of code:

PicMain.Picture = PicMain.Image

Once the drawing or annotations have been copied to the Picture property, the drawing is
stored in the database. An application that requires a number of sketches can benefit from
using this technique to store the drawings. When you use the database, all the drawings are
stored in one file rather than a series of bitmap files. It is also possible to add other fields to the
database that contain a description of the drawing and possibly supporting information or
notes.

CAUTION

If you use a great number of pictures in a database, it may grow to an unmanageable size!

Creating and Managing Graphics



24 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

Analyzing Data with Graphics
This final topic in the chapter deals with analyzing data or information with the use of graphics
or charts. Often charts are very useful in giving users a better feel for the information than
numbers alone can give. The percentage of your household budget devoted to debt reduction
is presented far more dramatically by a pie chart than by the mere presentation of dollar
amounts. Charts can also help a user spot trends in the data that would not be possible from
viewing only the numeric data.

Generating charts with the graphics methods is much more difficult than using the Chart
control, but there are some advantages to the effort:

■ You can create multiple charts on the same PictureBox control (such as a bar chart for
regional sales by month and a pie chart for total sales by region).

■ You can place multiple axes on the same chart, enabling you to plot multiple variables
(for example, a chart of engine temperature and coolant pressure versus speed).

■ You can create charts that change with time.

■ Graphics methods do not have the overhead of distributing a custom control.

■ You can superimpose the chart on another graphic for special effects.

This section discusses the general programming aspects of creating your own charts and then
looks in detail at some of the advantages mentioned in the list.

Creating a Simple Chart
To begin the discussion, consider the pie chart shown in Figure B1.16. To create this chart in a
program, you follow these steps:

1. Calculate the total value of all the points.

2. Convert the value of each point to a fraction of the total.

3. Convert the fractional value to the radian values of a circle.

4. Set the FillColor property for each point.

5. Draw the pie shape for each of the points.

FIG. B1.16
By using the Circle
method to draw arcs,
you can create a pie
chart.



25

Listing B1.3 demonstrates how you can perform these steps for the graph illustrated in Figure
B1.16.

Listing B1.3 ChartFrm—Creating a Pie Chart

Sub CreatePieChart()
    Const SLICES = 6
    Const PIEX = 2000
    Const PIEY = 2000
    Const PIERADIUS = 1500
    Dim inData(1 To SLICES) As Integer
    Dim inCounter As Integer
    Dim inTotal As Integer
    Dim lgStartPoint As Single
    Dim lgEndPoint As Single
    Dim lgPercent As Single
    Dim lgSliceSize As Single

    ‘First, we create sample data points
    ‘with random numbers from 1 to 20
    For inCounter = 1 To SLICES
        inData(inCounter) = Int(20 * Rnd + 1)
    Next inCounter

    ‘Next, we’ll add all the data points
    ‘together to get a total value.
    For inCounter = 1 To SLICES
        inTotal = inTotal + inData(inCounter)
    Next inCounter

    ‘Finally, we calculate each data point’s
    ‘percent of the total value and plot it.
    frmMain.FillStyle = vbFSSolid
    lgStartPoint = -0.001
    For inCounter = 1 To SLICES
        lgPercent = inData(inCounter) / inTotal
        lgSliceSize = lgPercent * 2 * 3.14159
        lgEndPoint = lgStartPoint - lgSliceSize
        lgEndPoint = IIf(lgEndPoint < -6.2831, -6.2831, lgEndPoint)
        frmMain.FillColor = QBColor(inCounter)
        frmMain.Circle (PIEX, PIEY), PIERADIUS, , lgStartPoint, lgEndPoint
        lgStartPoint = lgEndPoint
    Next inCounter

End Sub

This is a somewhat generic routine for creating a pie chart. In a real program, of course, the
data would not be generated randomly. Notice also, the QBColor function is used to assign a
color to a particular data point. QBColor (QB stands for “QuickBasic,” which was Visual

Analyzing Data with Graphics



26 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

Basic’s granddaddy) converts integer color codes used by older versions of BASIC into an
equivalent hexadecimal color code that can be used by Visual Basic. I just used it here because
the data is random and the color doesn’t matter anyway.

What Methods to Use for Different Chart Types
As you saw previously, a pie chart can be created using the Circle method. Most of the chart
types described for the graphic control can be easily (“easy” being a relative term) created with
the graphics methods. Each graphic type uses one or more of the graphics methods to create
the charts. Table B1.4 shows several of the most common chart types and the methods used to
create them.

Table B1.4 GraphicChart.frm—Different Graphics Methods Are Used to
Create Different Types of Charts

Chart Type Graphics Method

Pie Circle 

Bar Line (drawing boxes)

Gantt Line (drawing lines or boxes)

Line Line

Scatter PSet, PaintPicture, Print

High-Low-Close Line

Symbols can be drawn on any of the chart types using the PaintPicture method; or, if the
symbols are simple characters, the Print method can be used to place the character on the
chart. You may also notice that the chart indicates that the Print method can produce scatter
charts. This process works the same way as placing symbols on the chart. You establish the
necessary position of the symbol using the CurrentX and CurrentY properties and then print
the symbol.

Determining Where to Place Points on the Chart
The previous section, “Creating a Simple Chart,” showed how to use the Circle method to
create a pie chart. The code used to produce the chart assumed that the size of the form and
the position of the chart were predetermined. This may not always be the case. If you are draw-
ing a chart on a form whose size can change, you need to calculate the position of the chart on
the form. In addition, for many chart types (such as line or bar), you need to establish the
range of the horizontal and vertical coordinates that are available for showing data.

This section walks you through this process using a line chart containing 50 data points with a
random value of 0 to 1,000 as an example. (The program code for the chart is shown in Listing
B1.3.) The actual chart is shown in Figure B1.17.



27

The first step in determining where the data for the chart should be placed is to find the size of
the form or PictureBox control that can contain the chart. Horizontal and vertical size are
determined using the ScaleWidth and ScaleHeight properties, respectively. These properties
determine the maximum space available for the output of the chart.

Next, you determine the amount of space needed for labels on the two axes. This space is
handled by the TextHeight and TextWidth methods. You will want the maximum length of all
the labels on the chart. For this sample, the Y-axis ranges from 0 to 1,000 in increments of 200.
Therefore, the maximum TextWidth would be for 1,000. Along the X-axis, the values range
from 1 to 50 in increments of 10, but all the values should have the same text height. The
TextWidth determines the margin between the edge of the output object (form or picture box)
and the Y-axis. Similarly, the TextHeight gives the margin between the bottom of the output
object and the X-axis. If you also want a margin at the top and right of the chart, you have to
establish values for these as well. The code for the sample chart uses half the TextWidth and
TextHeight margins for the right and top margins, respectively.

Subtracting the margin sizes from the total size of the object gives you the size of the area
where you will draw the line graph. The size of this area determines the scaling factor that you
need to use to place data points. For the Y-axis values, this is the height of the drawing area
divided by the maximum value. For the X-axis value, the scaling factor is the width of the draw-
ing area divided by the maximum X value. To obtain the drawing position of any point you need
to perform the following steps:

1. Multiply the X value by the horizontal scaling factor to determine the distance from the
Y-axis.

2. Add the distance obtained in tep 1 to the width of the left margin to obtain the actual X
position on the output object.

3. Multiply the Y value by the vertical scaling factor to determine the distance from the
X-axis.

4. Subtract the distance obtained in tep 3 from the position of the X-axis to obtain the actual
Y position on the output object.

FIG. B1.17
The chart pictured was
created by graphics
methods rather than a
custom control.

Analyzing Data with Graphics



28 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

You might notice that the last step instructs you to subtract the value obtained in Step 3 from
the position of the X-axis. The reason for this step is that the vertical position coordinates of an
object increase from top to bottom. Therefore, a point above the X-axis has a smaller number
for the vertical position than the axis itself (see Listing B1.4).

Listing B1.4 GraphicChrt.Frm—Creating a Chart with Graphics Methods

Sub CreateLineChart()
    Dim inCounter As Integer
    Dim inMaxX As Integer
    Dim inMaxY As Integer
    Dim inLmarg As Integer
    Dim inRmarg As Integer
    Dim inBmarg As Integer
    Dim inTmarg As Integer
    Dim inScaleX As Integer
    Dim inScaleY As Integer
    Dim inYPos As Integer
    Dim inXPos As Integer

    picChart.ForeColor = vbBlack
    picChart.Cls

    ‘Determine maximum size of chart
    inMaxX = picChart.ScaleWidth
    inMaxY = picChart.ScaleHeight

    ‘Determine chart margins, including
    ‘width for the axis labels
    inLmarg = picChart.TextWidth(“1000”)
    inBmarg = picChart.TextHeight(“50”)
    inRmarg = inMaxX - 0.5 * inLmarg
    inTmarg = 0.5 * inBmarg
    inBmarg = inMaxY - inBmarg

    ‘Determine scale factors for each axis
    inScaleX = (inRmarg - inLmarg) / 50
    inScaleY = (inBmarg - inTmarg) / 1000

    ‘Draw axes
    picChart.Line (inLmarg, inTmarg)-(inLmarg, inBmarg)
    picChart.Line -(inRmarg, inBmarg)

    ‘Draw labels and tic marks for vertical axis
    For inCounter = 1 To 6
        picChart.CurrentX = 5
        inYPos = inBmarg - ((inCounter - 1) * 200 * inScaleY)
        picChart.CurrentY = inYPos
        picChart.Print Right(Str((inCounter - 1) * 200), 4)
        picChart.Line (inLmarg, inYPos)-(inLmarg + 40, inYPos)
    Next inCounter

    ‘Draw labels and tic marks for horizontal axis
    For inCounter = 1 To 6



29

        inXPos = inLmarg + ((inCounter - 1) * 10 * inScaleX)
        picChart.CurrentX = inXPos
        picChart.CurrentY = inBmarg + 5
        picChart.Print Right(Str((inCounter - 1) * 10), 2)
        picChart.Line (inXPos, inBmarg)-(inXPos, inBmarg - 40)
    Next inCounter

    ‘Draw Random Points
    picChart.ForeColor = vbRed
    For inCounter = 1 To 50
        inXPos = inLmarg + (inCounter * inScaleX)
        inYPos = inBmarg - (1000 * Rnd * inScaleY)
        If inCounter = 1 Then
            picChart.CurrentX = inXPos
            picChart.CurrentY = inYPos
        Else
            picChart.Line -(inXPos, inYPos)
        End If
    Next inCounter

End Sub

Dynamic, or Time-Dependent, Graphs
One of the advantages of creating your own data analysis charts is that you can create a chart
that changes with time. To create this dynamic, or time-dependent, chart, you need a way to add
points to the chart at specified intervals. An example you may have seen is the Windows NT
Performance monitor, which can be used to provide a timed graph of CPU usage. There are
two ways to handle plotting time-dependent information. You can track all the information—
adding new points but never removing old points—or you can track some number of points
representing the most recent measurements (for instance, the last 100 points).

Tracking a number of recent points is usually the preferable method of developing a dynamic
chart. The advantages of this method are that you have a limited number of points that keep
system resource requirements down, and you do not have to constantly recalculate the scale
factors to account for additional points.

The following sample code segments build a dynamic chart based on our previous example.
The same code is used to draw the axes and set up the chart. First, move the code from Listing
B1.3 to a separate procedure called SetupChart. Next, remove the last For loop, which draws
all the points. Add the lines

SetupChart
inCounter = 1

to the form’s Load event. Finally, move all the variable declarations from SetupChart to the
form’s general declarations section so that they are visible to other procedures.

The new code needed is a function that draws one segment of the line graph at a time. This
function can then be placed in a Timer control’s Timer event to fill the chart gradually:

Analyzing Data with Graphics



30 Bonus Chapter 1 Doing Graphics

http://www.quecorp.com

Private Sub Timer1_Timer()

    inXPos = inLmarg + (inCounter * inScaleX)
    inYPos = Int(inBmarg - (1000 * Rnd * inScaleY))

    If inCounter = 1 Then
        picChart.CurrentX = inXPos
        picChart.CurrentY = inYPos
    Else
        picChart.Line -(inXPos, inYPos)
    End If

    inCounter = inCounter + 1

    If inCounter > 50 Then SetupChart

End Sub

Notice in the code above that when the 50th data point is reached, the graph simply starts over
from the left. Figure B1.18 illustrates the chart created by this code.

FIG. B1.18
You can create a
dynamic chart that
changes as new points
are added.

From Here…
In this chapter, you learned about which controls and objects can be used to add pictures to a
program. You also learned how to use some low-level graphics to draw on the screen or printer.
These methods can be used for creating visual effects or informational displays, such as charts.

■ For a more detailed discussion of the PictureBox control’s capabilities, Chapter 10,
“Using the Windows Common Controls.”

■ To learn more ways to add visual appeal to your forms, see Chapter 19, “Designing User
Interfaces.”

■ To find out how to use these enhancements in a manner that is useful to the end user,
see Chapter 25, “Extending ActiveX Controls.”


