
1

I

4
Learn how to provide simple
security in your applications

Building a secure application starts
with having control of who has
access to your application.

Find out how to secure your
database from outside users

Securing your database provides
you with a greater level of applica-
tion security, and is easier to achieve
than you might think.

Discover how to provide an
enhanced level of security in
your Web applications

Today’s Internet applications re-
quire an additional step to provide
a secure environment for users.

Find out how to digitally sign
your ActiveX controls

Digitally signed controls provide a
unique electronic fingerprint that
indicates what company or person
created the control.

Building Security into
Your Applications

n the not-so-distant past, applications developers focused
more on how the application worked than how it might
affect the user’s environment. With the explosion of
Internet applications and the magnitude of data that is now
readily available on the Web, security is a very big con-
cern. Today, the possibility exists for your data and appli-
cations to fall into the hands of individuals who have no
right to access your private information. This chapter
looks at a couple of very simple and effective ways to
secure your data and guarantee that your application will
not cause harm to your users’ systems.Whether you are
planning to create a very large client/server application or
a small shareware product, security should definitely be
on your short list of must-have features. In the past, VB
programs were somewhat limited in the security features
that could be used, especially on Microsoft Access data-
bases. Today, however, VB programs have a wider selec-
tion of security options than ever.

One popular means of providing security is through a
serial number that is keyed to your application. This serial
number typically is entered by the user during the pro-
gram installation. These serial numbers have the benefit
of not only verifying registered users, but also of enabling
the functionality of the application.

B O N U S C H A P T E R

2 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

Today’s applications also need to address the ever-increasing presence of the Web. The Inter-
net is perhaps the biggest threat to security that applications have faced to date. One of the
more widely accepted methods of providing security is through the use of digital signatures
attached to the controls that make up the Web application. The process of digitally signing a
control does not inherently make it safe. You can take other steps designed to act as a comple-
ment to the digital signature. ■

The Logon Screen
This first line of defense in any secure system is controlling the users who have access to the
system. One of the most common ways to do this on an application level is through the use of a
simple logon screen, as shown in Figure B4.1. Although the logon screen is a very simple form
to create in Visual Basic, requiring only a handful of controls and some minor coding, it has the
potential to wield a lot of power. The logon screen can be used as a simple gateway into your
system with hardcoded values, or it can be an excellent tool to control how your application
functions for each user. This section will take a look at how to create a simple logon screen that
can be scaled to whatever level of sophistication you need.

FIG. B4.1
A typical logon screen
can act as a gatekeeper
to applications.

To create the logon screen, start a new project in Visual Basic. Add controls to a standard form
so that it is similar to Figure B4.2. After completion of the logon form, you can begin entering
the code.

FIG. B4.2
Creating a logon screen
in Visual Basic requires
only six controls and
five minutes.

The actual code that comprises the logon project is very straightforward. The code for variable
declarations is shown in the following code line. The code that resides in the Click events of
the OK and Cancel buttons is shown in the following piece of code and Listing B4.1, respec-
tively.

 Public OK As Boolean

3

Listing B4.1 Validate.txt—Validating the User’s Entry with the Click Event
of the OK Button

Private Sub cmdOK_Click()
 If txtPassword.Text = “Password” And txtUserName.Text = “Breanna” Then
 OK = True
 Me.Hide
 MsgBox “Logon Successful!”, , “Login”
 Else
 MsgBox “Invalid Password, try again!”, , “Login”
 txtPassword.SetFocus
 txtPassword.SelStart = 0
 txtPassword.SelLength = Len(txtPassword.Text)
 End If
End Sub

In Listing B4.2, the accepted values of “Password” and “Breanna” have been hardcoded into
the code. A message box is displayed if any values other than what are hardcoded are entered
into the text boxes.

Listing B4.2 reset.txt—Resetting the Logon Form with the Click Event of
the Cancel Button

Private Sub cmdCancel_Click()
 OK = False
 Me.Hide
End Sub

As you can see in the previous code listings, creating a logon form is indeed a very easy pro-
cess. Now that you have a basic idea of what’s involved in this process, you can add a few fea-
tures to make it more interesting.

Extending the Logon Screen
One of the more popular techniques for logon forms is to place the user’s user name into the
username field of the logon screen. The user name is actually a system variable name that the
computer uses to recognize each user, such as in a network environment. In a Windows 95
environment, the system stores the name that you used when you installed Windows in the
user name variable. The code in Listing B4.3 is a replacement for the code that you already
entered in Listing B4.1. The code in Listings B4.4 and B4.5 show what additional code is
required.

Listing B4.3 click.txt—A Direct Replacement for the Existing Code of Click
Event on the OK Button

Private Sub cmdOK_Click()
 If txtPassword.Text = “Password” Then

The Logon Screen

continues

4 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

 OK = True
 Me.Hide
 MsgBox “Logon Successful!”, , “Login”
 Else
 MsgBox “Invalid Password, try again!”, , “Login”
 txtPassword.SetFocus
 txtPassword.SelStart = 0
 txtPassword.SelLength = Len(txtPassword.Text)
 End If
End Sub

Listing B4.4 init.txt—Initializing Variables and Calling a Function that
Retrieves the User Name From the System

Private Sub Form_Load()
 Dim sBuffer As String
 Dim lSize As Long
 sBuffer = Space$(255)
 lSize = Len(sBuffer)
 Call GetUserName(sBuffer, lSize)
 If lSize > 0 Then
 txtUserName.Text = Left$(sBuffer, lSize)
 Else
 txtUserName.Text = vbNullString
 End If
End Sub

Listing B4.5 getname.txt—This Code Is an API Call to the GetUserName
Function

Private Declare Function GetUserName Lib “advapi32.dll” Alias
➥”GetUserNameA”(ByVal lpbuffer As String, nSize As Long) As Long

GetUserName is a function that retrieves the name of the current user. In a non-networked envi-
ronment, this is the name of the person who is registered to the software. The GetUserName
function returns a non-zero value on a successful operation and a zero if there is an error. The
parameters that GetUserName can take are described in Table B4.1.

Table B4.1 GetUserName Parameters

Parameter Description

lpBuffer A string pre-initialized to the length nSize. It is loaded with the user name.

nSize A long variable initialized to the length of lpBuffer. On return, it contains
the number of characters loaded into lpBuffer.

Listing B4.3 Continued

5

See “Calling Basic APIs and DLLs,” in Chapter 46.

The Future of the Logon Screen
As mentioned earlier in the chapter, the logon screen can be a major player in your applica-
tion’s security system. This chapter has already touched on a few ways that you can use the
logon screen to provide a level of security to your applications. Now, a few ways to increase the
functionality of the logon screen will be presented. The following suggestions should provide a
few starting points toward that goal:

■ The logon screen can very easily be tied to a table in a database that is queried to
determine proper logon and password values. This eliminates the need to have
hardcoded values (which is not very secure).

■ The logon screen can be coded so as to verify the user name against the system name to
determine a proper match. Currently, the user name is displayed, thereby increasing the
possibility of a security breach by 50 percent.

■ The logon screen can be tied to a table that, based on a user’s login, automatically adjusts
the application to fit the desired setup profile or to enable specific program functionality.

The actual implementation of the preceding ideas is left up to you. However, you can see from
the list that the possibilities are indeed intriguing. The next section explains how to secure
your database to provide an even greater level of protection for your data.

Creating a Secure Database
In the early days of Visual Basic, the application programmer had very little control over data-
base security. If a programmer chose to use the Jet engine, the security options became even
fewer. The only way to write applications that used a truly secure database was through some
type of ODBC connection to a SQL database engine. The Jet engine at that time had a very
limited security system that was implemented through the System.MDA database. Fortunately
for developers using Visual Basic 5, those days are long gone.

Visual Basic 5 gives application developers who use the Jet engine a number of effective ways
to implement security on their databases, ranging from a simple password to user- and group-
specific rights.

Securing your application against unregistered users is a good first step. Now look at how to
secure the data that your application depends on. With the popularity of the Jet database en-
gine comes the possibility of increased security threats to your data. An unsecured Jet database
is open to anyone who has access to the correct version of Microsoft Access. With the intro-
duction of the Jet 3.x database engine, Microsoft provides the tools needed to adequately se-
cure any application that relies on the Jet 3.x database engine, including the following methods:

■ OpenDatabase

■ NewPassword

■ CreateWorkspace

Creating a Secure Database

6 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

■ CreateUser

■ CreateGroup

Some of these methods are new, and some are enhanced to use the new security features. The
following sections take a look at these methods.

Using the OpenDataBase Method
For most Visual Basic programmers, the OpenDataBase method is a familiar one. One of the
nicest things about this method is that you now can pass a password that is to be used on the
database via the connect string. This password approach can be used on both Jet 3.x databases
and ODBC databases, such as FoxPro or SQL Server. The syntax for the OpenDatabase method
is as follows:

Set database = workspace.opendatabase(dbname, options, read-only, connect)

Table B4.2 describes the parameters of the OpenDataBase method.

Table B4.2 OpenDatabase Method Parameters

Parameter Description

Database An object variable that represents the Database object that you want to
open.

Workspace An optional object variable that represents the existing Workspace object
that will contain the database. If you don’t include a value for Workspace,
OpenDatabase uses the default Workspace.

dbname A String that is the name of an existing Microsoft Jet database file, or the
data source name (DSN) of an ODBC data source.

options An optional Variant datatype that sets various options for the database, as
specified in Settings.

read-only An optional Variant (Boolean subtype) value that is True if you want to
open the database with read-only access, or False (default) if you want to
open the database with read/write access.

connect An optional Variant (String subtype) that specifies various connection
information, including passwords.

The code segment in Listing B4.6 illustrates how the OpenDatabase method can be used with a
database that uses a password.

Listing B4.6 getpass.txt—Supplying a Password to Either a Jet or
an ODBC-Type Database

Dim workJet As Workspace
Dim dbData As Database

7

Set dbData = workJet.OpenDatabase(“Users”, _
 dbDriverNoPrompt, True, “ODBC;DATABASE=Sample;PWD=mypassword”)

Using the NewPassword Method
The NewPassword method enables you to change the password of an existing user account.
This method applies only to a Microsoft Jet Workspace. The syntax for the NewPassword method
is:

Object.NewPassword oldpassword, newpassword

Table B4.3 describes the parameters of the NewPassword method.

Table B4.3 NewPassword Method Parameters

Parameter Description

object An object variable that represents the User object or a Jet 3.x database
object

oldpassword A String that represents the current setting of the Password property
of the User object or a Jet 3.x database object

newpassword A String that is the new setting of the Password property of the User
object or a Jet 3.x database object

The following notes apply to the use of the NewPassword method:

■ Passwords are case-sensitive.

■ If a database currently has no password, the Jet engine will create one by passing a zero-
length string for the old password.

■ The OldPassword and NewPassword objects can be up to 14 characters in length and can
include any characters except null.

■ To clear the password, use a zero-length string for NewPassword.

■ To set a new password, you must log in as the user whose account you are changing or
be a member of the Admin group.

The code segment in Listing B4.7 illustrates how to create a new password on a Jet database by
using the NewPassword method.

Listing B4.7 changepass.txt—Creating or Reassigning a Password to
a Jet 3.x Database

Dim usernew as user
Dim strPassword as string
strPassword = Inputbox(“Enter New Password”)
Select Case Len(strPassword)

Creating a Secure Database

continues

8 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

 Case 1 to 14
 usernew.Newpassword “oldPassWord”, strPassword
msgbox “Password Change Sucessful”
 Case is > 14
 MsgBox “Password is too long!”
 Case 0
 exit
End Select

CAUTION

If you lose or forget the password to your database, you cannot recover the password or reopen the
database.

Using the CreateWorkspace Method
The CreateWorkspace method enables you to create a new Workspace object. This new object
can be used for either the Jet database engine or an ODBC type of connection. The syntax for
the CreateWorkspace method is:

Set workspace = CreateWorkspace(name, user, password, type)

Table B4.4 describes the parameters of the CreateWorkspace method.

Table B4.4 CreateWorkspace Method Parameters

Parameter Description

Workspace An object variable that represents the Workspace object that you
want to create.

Name A String that uniquely identifies the newly created Workspace object.

User A String that uniquely identifies the owner of the new Workspace
object.

Password A String that contains the password for the new Workspace object.
The string can include any ASCII character, with the exception
of 0 (NULL), up to 14 characters. To clear a password, set the
NewPassword argument of the NewPassword method to a zero-length
String (“”).

Type Optional. This indicates the type of Workspace. To create a Jet
Workspace, use dbusejet. To create an ODBC Workspace, use
dbuseODBC. If the type argument is omitted, the defaulttype
property of DBEngine will determine the type of datasource to be
used.

Listing B4.7 Continued

9

You can have more than one Workspace open at a time, such as a Jet Workspace and an
ODBC Workspace. ■

The code segments in Listings B4.8 and B4.9 show how to use the CreateWorkspace method to
create a Jet Workspace and an ODBC Workspace.

Listing B4.8 jetwrk.txt—Creating a Jet Workspace

‘ Create a Jet Workspace
Dim workJet as Workspace
Set workJet = CreateWorkspace(“JetWorkspace”, “admin”, “Password”, dbUseJet)
Workspaces.Append workJet

Listing B4.9 odbcwrk.txt—Creating an ODBC Workspace

‘ Create a ODBC Workspace
Dim workODBC as Workspace
Set workODBC = CreateWorkspace(“ODBCWorkspace”, “admin”, “Password”, dbUseODBC)
Workspaces.Append workODBC

If you want to delete a Workspace from the Workspaces collection, you first need to close all
open databases. Second, you need to issue a Close method on the actual Workspace object, as
described in the following lines of code:

workODBC.close
workJet.close

Using the CreateUser and CreateGroup Methods
The CreateUser method enables you to create a new User object. This applies only to the those
Workspaces that use the Microsoft Jet engine. The syntax for the CreateUser method is

users = object.CreateUser(name, pid, password)

Table B4.5 describes the parameters of the CreateUser and CreateGroup methods.

Table B4.5 CreateUser and CreateGroup Method Parameters

Parameters Description

user This object variable represents the User object that you want to
create.

object This object variable represents the Group or Workspace object that
relates to the new User object.

name This optional Variant uniquely identifies the new User object.

Creating a Secure Database

N O T E

continues

10 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

Pid This optional Variant is contained in the pid of a user account. This
identifier can be anywhere from 4 to 20 alphanumeric characters in
length.

Password This optional Variant contains the password for the new User object.
The password can be up to 14 characters in length. To clear a
password, set the NewPassword argument of the NewPassword
method to a zero-length string (“”).

The code segments in Listings B4.10 and B4.11 show how to use the CreateUser method and
the CreateGroup method to create new users and groups.

Listing B4.10 newuser.txt—Creating a New User in a Jet Workspace

‘ Create and append a new user
Dim usernew as User
Set userNew = .CreateUser(“NewUser”)
userNew.PID = “PID123456789”
userNew.Password = “NewPassword”
.Users.Append userNew

Listing B4.11 newgrp.txt—Creating a New Group in a Jet Workspace

‘Create and append a new group
Dim groupNew as group
Set groupNew = .CreateGroup(“NewGroup”, “PID123456789”)
.Groups.Append groupNew

Putting the Pieces Together
So far you have seen how to create a logon screen that accepts a user ID and password and to
create a secure database. The next step is to actually combine them to create a usable applica-
tion.

Listing B4.12 shows how you might create a Logon screen that attaches to a secure database.
The logon screen checks to make sure that the user ID and password are entered in the test
database. Although this example is not as robust as it could be, it does illustrate how easy it is
to create a secure gateway to your application.

Table B4.5 Continued

Parameters Description

11

Listing B4.12 Logonscrn.txt—Combining a Logon Screen with Database
Connectivity

Option Explicit

Public wrkJet As Workspace
Public DB As Database
Public RS As Recordset
Public userid_Login As String
Public userid_password As String
Public LoginSuccessfull As Boolean

Private Sub cmdCancel_Click()

 ‘set the global var to false
 ‘to denote a failed login
 LoginSuccessfull = False
 Me.Hide
End Sub

Private Sub cmdOK_Click()

 Dim db_prefix As String
 Dim db_password As String

 ‘ prefix + password to open secured database as required
 ‘ by the connect portion of the opendatabase()
 db_password = “secure”
 db_prefix = “;pwd=”

 ‘ Create Microsoft Jet Workspace object.
 Set wrkJet = CreateWorkspace(“”, “admin”, “”, dbUseJet)

 ‘ Open Database object from saved Microsoft Jet database
 ‘ for exclusive use.
 Set DB = wrkJet.OpenDatabase(“C:\testdata\secure.mdb”, False,
 ➥ True, db_prefix + db_password)

 ‘ openrecordset as a snapshot ordered by keyvalue.
 ‘ this will allow use to grap a image of the table without another
 ‘ user affecting our data.
 ‘ we can also assign the various fields brought out by the SQL statement
 ‘ to global vars for latter use by the application.
 Set RS = DB.OpenRecordset(“SELECT User_ID, Password “ & __
 “FROM Security ORDER BY User_Id”, dbOpenSnapshot)
 Do While True
 userid_Login = txtUserName
 userid_password = txtPassword

 ‘ assign criteria string for use by rs.findfirst
 userid_Login = “User_Id = ‘“ & userid_Login & “‘“
 userid_password = “Password = ‘“ & userid_password & “‘“
 ‘

continues

Creating a Secure Database

12 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

 With RS
 RS.MoveFirst
 ‘ Find first record satisfying search string. Exit
 ‘ loop if no such record exists.
 RS.FindFirst userid_Login
 If .NoMatch Then
 MsgBox “No records found with “ & userid_Login
 ➥ & “.”, , “Login”
 txtUserName.SetFocus
 Exit Do
 Else
 RS.MoveFirst
 RS.FindFirst userid_password
 If .NoMatch Then
 MsgBox “ You were not sucessfuly logged in!”, , “Login”
 txtUserName.SetFocus
 LoginSuccessfull = False
 Exit Do
 Else
 MsgBox “You have sucessfuly logged in!”, , “Login”
 LoginSuccessfull = True
 Exit Do
 End If
 End If
 End With
 Exit Do
 Loop
 ‘ close down files
 RS.Close
 DB.Close
End Sub

Security, the Internet, and You
Okay, suppose that you now have an application that requires users to enter their password
before they can log on to the application. This password is then verified by a secure database
that determines what type of functionality the user is to have. The program works flawlessly;
you have had no security breaches and are feeling fairly confident with the integrity of your
system and data. You’ve decided to take the big plunge and put your application on the Internet
for all to use. Your system should be perfectly safe from intruders and hackers, right?

Unfortunately, the correct answer is almost always NO!

The Internet is not only a giant network but it’s also a giant desktop environment. Due to the
very nature of the Internet, applications that are secure in their closed systems are vulnerable
on an open system such as the Web. So the question remains: How do you launch secure appli-
cations on the Internet?

Listing B4.12 Continued

13

The answer to that question is many fold. First, your application needs to be secure in a stan-
dard environment, such as your local network or your desktop. If you have implemented some
of the suggestions previously mentioned in this chapter, your application has a better-than-
average chance of surviving the Internet. Second, you need to provide a level of security for the
basic elements of the application itself. This could be the individual controls that make up your
Internet application, whether they be Java applets or ActiveX controls. And finally, you need to
provide a level of security for the network that currently runs the application over the Internet.
This type of security is usually implemented via firewalls and proxy servers. The topic of proxy
servers is beyond the scope of this book; however, several good books by Que detail how to
fully utilize this level of security:

For more information about setting up and configuring proxy servers, see the Que book
Special Edition Using Microsoft BackOffice, Volumes 1 and 2 (ISBNs 0-7897-1142-7 and
0-7897-1130-3).

In the following sections, you look at how you can provide a high level of security for the con-
trols in your Web application.

Why You Should Control Security
Even if you have implemented the previously described security procedures, you’ve yet to deal
with the sensitive issue of network security. How can users who will automatically receive
copies of your control be sure that the control won’t harm their systems? To ensure users that
you’re a responsible control programmer, you must digitally sign the control’s files. This en-
ables users to contact you should the control misbehave.

If you don’t digitally sign your controls, many Web browsers will refuse to download them onto
the users’ systems. Microsoft Internet Explorer, for example, has three levels of security to
deal with executable content that is not digitally signed. When set to the default security level
(high), Internet Explorer refuses to accept the control. The next level down (medium) enables
you to download insecure controls, but only after Internet Explorer gives you a chance to
refuse the control (see Figure B4.3).

FIG. B4.3
You can set Internet
Explorer’s security so
that you’re warned
about unsafe content.

Security, the Internet, and You

14 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

The lowest level of security actually provides no security at all. This level allows all unsafe
content to be loaded, without warning. Obviously, most users avoid this setting. If you’d like to
experiment with your controls and Internet Explorer, you can find Internet Explorer’s security
setting by choosing View, Options. When you do, the Options dialog box appears. Click the
Security tab to move to the security settings (see Figure B4.4) and then click the Safety Level
button. The Safety Level dialog box appears (see Figure B4.5), from which you can select the
security level you want. Other Web browsers have similar security options.

FIG. B4.4
The Options dialog box
enables you to customize
your copy of Internet
Explorer 3.01.

FIG. B4.5
Internet Explorer sup-
ports three levels of
security to deal with
unsafe content.

Determining Who Needs to Control Safety
Before Java applets and ActiveX controls entered the picture, security on the Internet wasn’t
quite as big a deal. After all, for the most part, you had complete control over the files you
downloaded. You could take precautions to ensure that the files that you did download were
safe.

15

With things such as ActiveX controls and Java applets, though, you have very little control over
the downloading process, because these objects are downloaded automatically onto your com-
puter. Worse, they are executed automatically. Imagine an ActiveX control that looks like an
animated button but it erases your hard drive when clicked. Gives you the shivers, doesn’t it?

Yes, you can set your Web browser so that it refuses to download executable content such as
ActiveX controls. But then you will be unable to view many of the best Web pages on the
Internet. After all, the whole point of ActiveX controls and Java applets is to give Web pages
more power and pizzazz. It doesn’t make sense to lock out such important enhancements when
alternatives are available.

About Java Applets and Security
From a security standpoint, Java applets are much easier for programmers to handle than are
ActiveX controls. First, the Java language doesn’t include any commands that can access pro-
tected parts of memory. To ensure that the Java applet hasn’t been modified to override these
restrictions, each applet is verified by the Java interpreter before the applet is displayed in the
user’s Web browser. Moreover, Java applets are run under very strict file-access rules. In fact,
under normal circumstances, a Java applet cannot access files at all. As a programmer, you
don’t have to do anything to assure the user that your applet is safe. Java itself guarantees this
safety.

CAUTION

To say that Java guarantees an applet’s safety is perhaps a bit strong. Many security leaks in Java have come
to light in recent months. Sun Microsystems is working hard to plug these leaks and increase Java’s relia-
bility. But, as anyone who has used a computer knows, anything that can be done can be undone. There are
never any absolute guarantees.

About ActiveX Controls and Security
Microsoft felt that the restrictions forced on Java applets were too severe and that, while pre-
venting mischief, they also prevented the programmer from creating truly powerful, execut-
able content for Web pages. Microsoft’s security philosophy is that an ActiveX control should
be able to do just about anything that a stand-alone application can do. Rather than cripple the
control, Microsoft came up with the idea of digital signing. When you digitally sign a control,
you tell the eventual user of the control who you are and where you can be found. Then, if your
control causes havoc with the user’s system, he has a way to contact you.

More importantly, Microsoft Internet Explorer can be set up to refuse all executable content
that has not been digitally signed. That guy who wants to erase your hard drive with his sneaky
button isn’t likely to identify himself with digital signing. So he sends his control out onto the
Internet unsigned. When your ActiveX-capable browser downloads a Web page containing the
control, the browser sees that the control is unsigned and refuses to accept it.

Security, the Internet, and You

16 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

Digital signing is one way Microsoft makes using controls safer. Digital signing, however,
doesn’t guarantee that a control is safe. It just gives a user a way to find the responsible party
should problems arise from using the control. Digital signatures, like fingerprints, cannot be
faked; the signature is unique to the person or corporation it is registered to. Two other types
of control certification also document a control’s safety: Safe for Initialization and Safe for
Scripting. These two control-certification types are discussed in Chapter 24, “Creating ActiveX
Controls.”

Digitally Signing Your ActiveX Controls
Digitally signing your ActiveX control gives the user recourse if the control damages the user’s
system. Because having a verified identity for the control’s programmer is so important, digital
signing requires that you work with a certificate authority which verifies your identity and
issues a digital certificate to you. You use tools provided by the certificate authority, or in-
cluded with the ActiveX SDK, to include your digital certificate with all your controls.

When a user’s browser is about to install the new component, the certificate appears, telling
the user who is responsible for the control and who issued the certificate. Figure B4.6 shows a
digital certificate. The certificate is for an ActiveX component called FutureSplash Player, and
the certificate is issued by VeriSign Commercial Software Publishers. A certificate is some-
times referred to as an X.509 Certificate.

FIG. B4.6
Digitally signing an
ActiveX control includes
a certificate with the
control.

Before accepting the new ActiveX component, the user can click the program name to get
more information about the component. When the user clicks the program name, a second
instance of the browser runs and connects to the Web page containing the information (see
Figure B4.7). Finally, the user also can get information about the company that issued the
certificate by clicking the company’s name in the certificate. Again, another instance of the
Web browser runs and connects to the Web page that displays the requested information (see
Figure B4.8).

17

Getting the Right Stuff
All the software tools necessary for this chapter can be downloaded from Microsoft at http://
www.microsoft.com/intdev/sdk/ or at http://www.microsoft.com/sitebuilder/.

FIG. B4.7
Users can get additional
information about the
ActiveX component that
is about to be installed.

FIG. B4.8
Users can also get
information about the
company that issued
the certificate.

Digitally Signing Your ActiveX Controls

18 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

Microsoft developed the Site Builder Network to provide controls and cutting-edge software to
Web developers like you and me. Figure B4.9 shows the opening screen from the Site Builder
Network.

FIG. B4.9
Microsoft’s Site Builder
Network home page is a
great place to get the
hottest ActiveX controls.

From this site, you can download the ActiveX SDK (Software Development Kit). The SDK
contains tools necessary to sign your ActiveX controls, as well as tools for those developers
interested in developing ActiveX components from other platforms such as Macintosh and
RISC. The SDK includes samples and help files to get you started and to answer any questions
that might arise while you are working with the tools. The ActiveX SDK includes not only the
tools to perform digital signing, but also test certificates that you can use for testing your
control’s Internet download package.

http://www.microsoft.com/msdownload/sbndownload/sbnaxsdk/sbnaxsdk.htm
To obtain the ActiveX SDK, you need to point your browser to this Web address.

You are presented with a page that asks you to pick your choice of a download site. For those of
you with slow modems, you might want to plan this download over lunch. A connection to the
Web at 28.8Kbps will take over 1.5 hours to download the 8+M file.

After you have successfully downloaded this mammoth file, you need to type the following on
the command line:

c:> ActiveX -d

Make sure that you have saved the ActiveX.exe to the root directory on your hard drive. ■N O T E

19

This extracts the necessary files and creates the required subdirectories. After successfully
completing the installation process, you can access all the tools from the \INETSDK directory
on your hard drive.

The fully expanded SDK requires that you have at least 20M available on your hard
drive. ■

Digital Signing Overview
Before you continue, getting a quick overview of the digital-signing process might be helpful.
On its Web site, Microsoft lists six steps you need to follow to digitally sign your controls:

1. Download the latest version of Internet Explorer 3.01. You can find this file at http://
www.microsoft.com/ie/download.

2. Apply for credentials from a certificate authority. You can get instructions on this step by
aiming your Web browser at http://www.microsoft.com/intdev/security/authcode/
certs.htm. You also need to visit the certificate authority’s Web site to obtain an online
certificate application. You can choose to apply for an Individual Software Publisher
certificate or Commercial Software Publisher certificate.

3. Get the latest version of the ActiveX SDK. You can get the SDK from http://www.
microsoft.com/intdev/sdk. The ActiveX SDK includes code-signing documentation.

4. Prepare your files for signing. For the CAB files that you create with the Application
Setup Wizard, you need to add .Set ReservePerCabinetSize=6144 to your .ddf file
before creating the CAB file.

5. Sign your files. Run the signcode tool to digitally sign your files. When you run the tool
without any parameters, a wizard will guide you through the process.

6. Test your signature by running the chktrust tool. If your digital signing worked success-
fully, you’ll then see your certificate.

Included in the ActiveX SDK is Webpost.exe, a Web page posting utility that is self-installing. This utility
enables you to post one or more Web pages to a specific URL address. The Webpost utility is located in
the \INETSDK folder.

Using Digital Signing
As mentioned earlier, your code needs to be signed to be accepted by the default implementa-
tion of Internet Explorer. Take a look at a few utilities that will help you do just that.

Microsoft’s Authenticode, provided with the ActiveX SDK, contains the utilities to sign your
application. Included in the SDK are a sample certificate and a private key designed to aid in
the testing process of your certificates.

N O T E

T I P

Digitally Signing Your ActiveX Controls

20 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

If you intend to sign your code for commercial purposes, you need to obtain a valid
certificate from GTE or VeriSign before you sign any code for public distribution. ■

Using the MakeCert Utility The MakeCert.exe utility enables you to create a test certificate.
This utility allows you to create an X.509 certificate that binds your name to a public key.

The command-line syntax for the MakeCert utility is:

MakeCert [options] outputCertificateFile

Table B4.6 shows what options can be set for the MakeCert utility.

Table B4.6 Command-Line Options for MakeCert

Option Description

-u:subjectKey Specifies the publisher keypair name. If none is found, it is
created.

-U:subjectCertFile Certificate with existing public key to use. Indicates the file
name to use.

-k:subjectKeyFile Location of subject’s private-key (.pvk) file.

-n:name Designates the certificates X.509 name (for example,
“CN=Missy Carlson”).

-d:displayname Designates name of the publisher displayed.

-s:issuerKey(File) The location of issuer’s key; a default to root key is provided
for testing purposes.

-i:issuerCertFile Indicates the location of the issuer’s certificate.

-#:serialNumber Indicates the serial number of the certificate. This is an
optional value. The maximum value is two to the 31st
power (231). The default value generated is guaranteed to be
unique.

-l:policyLink Indicates a hyperlink to SPC Agency policy info (for ex-
ample, an URL).

-I Explicitly specifies the certificate is allowed for use by
individual software publishers.

-C Explicitly specifies the certificate is allowed for use by
commercial software publishers.

-C:f Indicates that the publisher has met the minimal financial
criteria.

-S:session Indicates the session name for the enrollment session.

N O T E

21

-P:purpose Indicates why the certificate is to be generated CodeSigning
(default) or Clientauth.

-x:providerName Indicates what CryptoAPI provider to use.

-y:nProviderType Indicates the CryptoAPI provider type to use.

-K:keyspec Designates the key. Possible values are ‘S’ signature key
(default) and ‘E’ key-exchange key.

-B:dateStart Specifies the start date of the validity period. The default is
certificate generation date.

-D:nMonths Indicates the duration of the validity period.

-E:dateEnd Indicates the end of the validity period; defaults to the year
2039.

-h:numChildren Indicates the maximum number of certificates on the tree
below this certificate.

-t:types Indicates certificate type: either/both of ‘E’nd-entity;
‘C’ertification authority.

-r Creates a self-signed certificate.

-m Uses MD5 hash algorithm (default).

-a Uses SHA1 hash algorithm.

-N Includes the Netscape client authentication extension.

CAUTION

You cannot make a valid signed certificate by using the MakeCert.exe and cert2spc.exe. These utilities are
provided for testing purposes only until you receive your real certificate from an authorized certificate
authority.

The previously mentioned flags and notes are also visible by typing MakeCert.exe without any
additional parameters.

For the -u and -k options, if the indicated subject’s key (key pair) cannot be found, then it is
created. For -u, it is created in the CryptoAPI keyset; for -k, it is created in a file.

Alternatively, the subject public key can be obtained from an already existing certificate by
using the -U option. -U changes the default subject name to be the same as that of the indicated
certificate.

A typical usage of MakeCert is:

c:>MakeCert -u:myKey -k: myKeyfile -n:CN=mySoftwareCompanyName myCert.cer

Option Description

Digitally Signing Your ActiveX Controls

22 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

This generates a certificate file called myCert.cer. The public part of the key pair called myKey
is bound to the publisher mySoftwareCompanyName. If the keypair myKey does not already exist,
it is generated along with myKeyfile.

CAUTION

The certificate that you just created by using MakeCert is not a valid certificate. This certificate is designed
for test purposes only until you receive a valid X.509 certificate from a valid CA.

On receipt of a valid X.509 certificate, use of the MakeCert utility is no longer needed.

Using the Cert2SPC Utility The next step required to digitally sign code is to create a Soft-
ware Publisher Certificate (SPC) with the Cert2SPC program. This program combines the
X.509 certificate and the root certificate into a PKCS#7 signed-data object. PKCS#7 objects
allow for the inclusion of several certificates into a single object.

The syntax for Cert2SPC is

Cert2SPC cert1.cer cert2.cer. . .certN.cer output.spc

where cert1. . .certN are the names of the X.509 certificates.

output is the name of the SPC. This is a PKCS#7 object containing the X.509 certificate and the
root certificate.

Here is an example:

c:>Cert2Spc root.cer mycert.cer . . . mycert.spc

This combines mycert.cer and root.cer to make an SPC called mycert.spc.

CAUTION

The SPC mycert.spc that you just created is not a valid SPC. You need to obtain a valid SPC from a
certificate authority before you actually begin to sign your code.

Using the SignCode Utility The last step needed to digitally sign code is to use the SPC to
actually sign a file. This is accomplished with the SignCode program. This program does the
following:

■ Creates a cryptographic digest of the file

■ Signs the digest with your private key

■ Extracts the X.509 certificates from the SPC

■ Creates a new PKCS#7 signed-data object that contains the serial numbers of the
certificates and the signed digest information

■ Embeds the object into the file

23

If you have a valid SPC, you can use the SignCode utility to actually sign your code. The
SignCode program has a wizard to help you do this. To sign code by using the wizard, simply
type SignCode without any options. If you want to sign your code manually, the syntax is

SignCode [-prog filename -spc credentials -pvk privateKeyFile] [options]

Table B4.7 lists the SignCode command-line parameters.

Table B4.7 SignCode Command-Line Parameters

Option Description

-prog The name of the file to sign.

-spc The file that contains the credentials. This is usually an .spc file.

-pvk The file containing the private key of the publisher. This is a .pvk file.

Table B4.8 lists the SignCode command-line options. You can include as many options as you
need.

Table B4.8 SignCode Command-Line Options

Name Description

-name The name of your program.

-info A location for obtaining more information about your program, such as
an URL.

-gui Invokes the code-signing wizard.

-nocerts Indicates that you do not want any X.509 certificates embedded in the
PKCS#7 signed-data object. In this case, the relevant certificates must
already be stored on the client computer.

-provider The name of the Cryptographic service provider to use.

-provider The Cryptographic provider type to use.

-commercial Indicates that the code was signed by a commercial software publisher.

-individual Indicates that the code was signed by an individual software publisher.

-sha Indicates that you want to use the SHA hashing algorithm.

-md5 Indicates that you want to use the MD5 hashing algorithm. This is the
default hashing algorithm.

 -? Displays all the preceding options.

Here is an example of how to sign a file:

c:>SignCode -prog MyProgram.exe -spc Cert.spc -pvk MyKey

Digitally Signing Your ActiveX Controls

24 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

This embeds a PKCS#7 object, Cert.spc, into the digest of file, MyProgram. The digest is
signed with the private key of the MyKey key pair.

After this is done (assuming that you have a valid certificate), the file can be distributed to your
customers.

The SignCode utility also allows for the use of a wizard to guide you through the process of
digitally signing a file. To invoke the Code Signing Wizard, type signcode on the command
line without any parameters. The main screen of the Code Signing Wizard, shown in Figure
B4.10, is then displayed.

FIG. B4.10
The Code Signing Wizard
displays the greeting
screen when first
launched.

Click the Next button and you see the Code Signing Wizard Setup screen, shown in Figure
B4.11.

FIG. B4.11
The Code Signing
Wizard Setup screen
allows you to enter
where additional
information (such as
documentation) is
located.

This screen requests some background information on the program that you want to sign. This
is where you enter the name and location of the program you are about to sign. You are also
prompted to enter where additional information about the program can be found. After you
have completed entering the information, you are presented with the screen in Figure B4.12.

At this point, you need to fill in the credential information. You are also prompted for the loca-
tion of the private key with which to sign the program and the hashing algorithm you want to
use to create the digest from your program.

25

Clicking the Next button displays a review of the information that you have supplied, as shown
in Figure B4.13.

FIG. B4.12
The Code Signing
Wizard credentials
information screen
requires that you have
a private key to
continue.

FIG. B4.13
At this point, you have a
chance to make any
last-minute changes
before continuing.

This actually is a compilation of all the information that you have supplied in the previous steps.
If you need to make any changes to any of the information presented, now would be a good
time to do that. You can use the Back button to return to the previous screen.

After verifying that the appropriate information is displayed, click the Next button to view the
final phase of the code-signing process, as displayed in Figure B4.14.

FIG. B4.14
The Code Signing
Wizard Confirmation
screen is you last
chance to abort the
process should you
need to make any
changes.

Digitally Signing Your ActiveX Controls

26 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

Clicking the Sign button starts the signing process. On successful completion, the Code Sign-
ing Wizard displays the screen as shown in Figure B4.15.

FIG. B4.15
Congratulations! You
have successfully signed
your control!

The only remaining task is to verify that the program actually was signed correctly.

Using the PeSigMgr Utility The PeSigMgr program checks to see if SignCode was success-
ful. This means the file should have a PKCS#7 object embedded in it. Here is the syntax:

PESIGMGR [options] signedfile

Table B4.9 contains a listing of the command parameters used with PeSigMgr.

Table B4.9 PeSigMgr Command-Line Parameters

Parameter Description

-l Lists all the certificates in an image.

-a:<-filename -> Adds a certificate file to an image.

-r:<-index -> Removes a certificate <-index -> from an image.

-s:<-filename -> Used with -r to save the removed certificate.

-t:<-CertType -> Used with -a to specify the type of certificate, where CertType
can be X509 or PKCS7. The default is PKCS7.

 -? Displays all the options.

Signedfile The name of the signed file you want to check.

To check for the existence of signed code within the MyProgram.exe file, execute the following
statement:

c:>PeSigMgr -l MyProgram.exe

If a certificate is found in MyProgram.exe, PeSigMgr returns the number, revision, and type of
the certificate. A sample response is

>Certificate 0 Revision 256 Type PKCS#7

PeSigMgr does not provide for any signature verification. Its sole purpose is to check that
SignCode actually did its job. ■

N O T E

27

Using the Chktrust Utility The purpose of the ChkTrust program is to check the validity of
the signed file. The syntax is

CHKTRUST [switches] signedfile

Table B4.10 lists all the ChkTrust command parameters.

Table B4.10 ChkTrust Command-Line Parameters

Parameter Description

-c Designates a cabinet file

-i Designates a PE image file

-j Designates an ActiveX file

ChkTrust performs the following actions when invoked:

1. Extracts the PKCS#7 signed-data object.

2. Extracts the X.509 certificates from the PKCS#7 signed-data object.

3. Computes a new hash of the file and compares it to the signed hash in the PKCS#7
signed-data object.

4. Verifies that the signer’s X.509 certificate points back to the root certificate and that the
correct root key was used.

5. Verifies that the code has not been modified or tampered with, and that the vendor was
authorized to publish the file by the root authority. After the proper verification is made,
ChkTrust returns a 0.

To perform validity checking on a file, execute the following line:

ChkTrust MyProgram.exe

On successful completion, ChkTrust returns

Result: 0

If for some reason the validity checking is not successful, the return code is a six-digit number
representing the signature of the file that you are checking.

From Here…
This chapter looked at ways to provide security to your applications on several different levels.
It explains how you can provide security to your application through the use of a simple logon
screen that can easily be scaled to whatever needs you have. The chapter also explores ways to
protect your data by using simple methods available to the Visual Basic programmer. Finally,
this chapter shows how easy it is to digitally sign your Active X controls for use on the Web.

From Here…

28 Bonus Chapter 4 Building Security into Your Applications

http://www.quecorp.com

For more information on ActiveX controls, you might want to check out the following chapters
in this book:

■ Chapter 24, “Creating ActiveX Controls,” explains in detail how to build your first ActiveX
control. You also are introduced to a few special items designed to make the process
easier.

■ Chapter 25, “Extending ActiveX Controls,” takes you to the next step in your ActiveX
education by showing how to add additional functionality to your base control.

For more information on database programming, the following chapters might be helpful:

■ Chapter 28, “Building Database Applications,” walks you through the steps needed to
build a database application with data controls.

■ Chapter 33, “Database Access with ActiveX Data Objects (ADO),” explains in detail how
to connect your ActiveX control to a database by using the ADO.

