
Olectra Chart
3D DLL
Programmer’s Guide & Reference Manual

Version 1.1

TM

260 King Street East
Toronto, Ontario, Canada M5A 1K3
(416) 594-1026
www.klg.com

June 1996 RefNo: 3DLLPR-CH/11-06/96

Copyright  1996 by KL Group Inc. All rights reserved.

Olectra and Olectra Chart are trademarks of KL Group Inc.

Microsoft, MS-DOS, Visual Basic, and Windows are registered trademarks, and Windows NT is a
trademark of Microsoft Corporation.

All other products, names, and services are trademarks or registered trademarks of their respective
companies or organizations.

Printed in Canada on recycled paper.

iii

Table of Contents

Preface . 1
Introduction. . 1
Assumptions . 2
Typographical Conventions Used in This Manual 2
Overview of Manual . 2
Related Documents . 3

Part I: Using the Chart

1 Getting Started: Developing a Simple Olectra Chart Program . . 7
1.1 Introduction . 7
1.2 The SIMPLE.C Program 7
1.3 The SIMPLE.C 3D Data 8
1.4 The SIMPLE.C Controls 9

2 Olectra Chart Basics .11
2.1 Terminology . 11
2.2 Property Setting and Retrieving 12
2.3 USE_DEFAULT Properties 13
2.4 Pointer Properties 14
2.5 Batching Property Updates 15
2.6 Font Properties . 15
2.7 Programming with C++ 15
2.8 Distributing Olectra Chart Applications 16

3 Programming Olectra Chart .19
3.1 Properties . 19
3.2 15 Basic Types of Surfaces and Bars 24
3.3 Bar Charts and Histograms 29
3.4 Contours and Zone Display 31
3.5 Axis Controls . 33
3.6 Legend Display 34

iv Contents

3.7 Perspective . 35
3.8 Mesh Controls . 36
3.9 Surface Colors . 37
3.10 Solid Surface . 37
3.11 Axis Scaling . 38
3.12 Axis Labelling . 38
3.13 Grid Lines . 39
3.14 Header and Footer Text 40
3.15 Header, Footer and Legend Fonts 40
3.16 Area Positioning . 41
3.17 Area Borders . 42
3.18 Foreground and Background Colors 43
3.19 Double Buffering . 44
3.20 Output and Printing 44

4 Olectra Chart Data . 47
4.1 Data Overview . 47
4.2 The Xrt3dData Structure 49

5 Programming User Interaction . 53
5.1 Default User Interaction 53
5.2 Overview of Action Maps and Messages 55
5.3 Starting User Interaction 55
5.4 Updating User Interaction 56

Scaling, Translation, and Zooming 56
Rotation . 57

5.5 Ending User Interaction 58
5.6 Programming Actions 58

Changing the Action Maps 58
Disabling and Disallowing Interactions 60
Calling Actions Directly 60

5.7 Interacting with Chart Data 61
5.8 Window Resizing 63

6 Advanced Olectra Chart Programming. 65
6.1 4D Surface Charts 65
6.2 4D Bar Charts . 66
6.3 Text Objects . 67
6.4 Customizing the Distribution Table 70
6.5 Customizing Legend Labels 71
6.6 Customizing Contour Styles 73

Contents v

Part II: Reference Appendices

A Olectra Chart Property Reference .79
A.1 Control Synopsis 79
A.2 Olectra Chart Properties 79

B Olectra Chart Text Object Property Reference.95

C Procedures and Methods Reference 99

D Message Reference. 121

E Data Types . 125

F Sample Code . 135
F.1 SIMPLE.C . 136

vi Contents

1

Preface
Introduction ■ Assumptions

Typographical Conventions Used in This Manual ■ Related Documents

Introduction

The Olectra Chart Control
Windows contains many different pre-defined controls such as buttons, scrollbars,
and list boxes. Conceptually, Olectra Chart adds a new control class to Windows.
The control displays 3D data in surface, contour, and bar chart representations.

Olectra Chart has properties that determine how the chart will look and behave.
Writing programs using Olectra Chart is very similar to writing any other kind of
Windows program; you now have one more Windows control to use.

Olectra Chart has properties which allow control of:

■ Drawing (whether to draw the mesh, surface, contours and/or zones) and chart
type (surface or bar chart).

■ Contour styles: line widths, colors and patterns, and fill colors.

■ Distribution method, distribution table, number of distribution levels.

■ Hidden-line display, surface colors and mesh colors.

■ 3D rotation and perspective.

■ Legend positioning, orientation, style, border style, anchor, font and color.

■ Header and footer positioning, border style, text, font and color.

■ Chart positioning, border style, color, width, and height.

■ Axis maximums and minimums, fonts, gridlines, titles and labels.

■ Window background and foreground color.

Olectra Chart also provides several procedures and methods which:

■ Allocate and load data structures containing the numbers to be graphed.

■ Assist the developer in dealing with user-events.

■ Assist the developer in dealing with interactive rotation, zooming and shifting of
the 3D view by the end-user.

■ Assist the developer with setting and getting indexed properties.

2 Preface

Assumptions

This manual assumes that the reader is proficient with the C language and the
Windows API. C concepts such as “an array of char *” and “pointer to a structure”
must be understood before beginning to program Windows and Olectra Chart
applications. An understanding of basic Windows programming concepts such as
event-driven programming and programming Windows controls is required before
continuing with this manual. See page 3 for information on Windows programming
references.

Typographical Conventions Used in This Manual

Overview of Manual

Part I describes how to use Olectra Chart.

Chapter 1, “Getting Started: Developing a Simple Olectra Chart Program”,
provides a hands-on introduction to Olectra Chart by giving you the chance to
compile and run a simple example program. It should be read by all
programmers learning to use Olectra Chart.

Chapter 2, “Olectra Chart Basics”, provides basic information that you need to
know before starting to develop applications with Olectra Chart. It gives
terminology, an overview of the control, and provides some programming
approaches that apply to many properties.

Bold ■ Chart property and method names.
■ Language-specific keywords, constants, variables, and

function names.
■ Commands that you enter at a command prompt.

Italic Text ■ Parameter names and information you specify.
■ New terms as they are introduced, and to emphasize

important words.
■ Figure and table titles.
■ The names of other documents referenced in this manual,

such as the Getting Started with Olectra Chart booklet.

UPPERCASE ■ File and directory names, key names, and key sequences.

Monospace ■ Code examples, variables in body text, and error text.

...[XYZ]... Many Olectra Chart properties used to specify axis information
are similar for the X-, Y-, and Z-axis. The syntax [XYZ] used
in an property name refers to one of all of the X, Y, or Z
versions of this property.
For example, “XRT3D_XMIN, XRT3D_YMIN, and
XRT3D_ZMIN” is shortened to “XRT3D_[XYZ]MIN”.

Preface 3

Chapter 3, “Programming Olectra Chart”, provides programming information
for most Olectra Chart properties.

Chapter 4, “Olectra Chart Data”, provides details on getting data into charts and
manipulating the Xrt3dData structure.

Chapter 5, “Programming User Interaction”, provides programming and end-
user information on Olectra Chart’s user interaction capabilities.

Chapter 6, “Advanced Olectra Chart Programming”, discusses more advanced
and less commonly-used aspects of Olectra Chart, including: creating 4D charts;
using text objects; creating charts with custom distribution tables; custom legend
labels; and customizing contour styles.

Part II contains detailed technical reference information in a number of appendices.

Appendix A, “Olectra Chart Property Reference”, provides a concise reference
of all Olectra Chart properties in alphabetical order.

Appendix B, “Olectra Chart Text Object Property Reference”, describes all
Olectra Chart text object properties.

Appendix C, “Procedures and Methods Reference”, describes all Olectra Chart
procedures and methods in alphabetical order.

Appendix D, “Message Reference”, provides a reference of Olectra Chart’s
notification messages.

Appendix E, “Data Types”, lists the Olectra Chart data structures.

Appendix F, “Sample Code”, provides an overview of the sample programs
included with Olectra Chart, and lists two short example programs.

Related Documents

The following documents are useful references for Windows application
development:

■ Programming Windows 3.1 by Charles Petzold, Microsoft Press.

■ Windows 3.1 SDK and Windows 3.1 API online documentation, Microsoft
Corporation.

■ Advanced Windows Programming by Jeffrey Richter, Microsoft Press.

■ Win32 SDK and Win32 API online documentation, Microsoft Corporation.

4 Preface

Part
I

Using
the Chart

7

1
Getting Started: Developing a
Simple Olectra Chart Program

Introduction ■ The SIMPLE.C Program
The SIMPLE.C 3D Data ■ The SIMPLE.C Controls

1.1 Introduction

This chapter allows you to immediately try out Olectra Chart by compiling and
running an example application, introducing some fundamental Olectra Chart
concepts. The application, SIMPLE.C, graphs a basic mathematical function and
allows a user to directly manipulate the four most important Olectra Chart drawing
controls: DrawMesh, DrawShaded, DrawContours, and DrawZones.

This program is listed in Appendix F and can be found online in
Olectra Chart’s \CHART\3D\DEMOS\DLL\SDK\SIMPLE directory.

1.2 The SIMPLE.C Program

In this chapter we’ll describe an introductory Olectra Chart program called
SIMPLE.C. A complete listing of this program can be found in Olectra Chart’s
\CHART\3D\DEMOS\DLL\SDK\SIMPLE directory. SIMPLE.C is listed in
Appendix F on page 135.

When SIMPLE.C is compiled and run, the window shown in Figure 1 is displayed.
Try compiling and running SIMPLE.C before continuing with this section.

8 Part I ■ Using the Chart

Figure 1 The Window Created by SIMPLE.C

SIMPLE.C illustrates several Olectra Chart programming principles. It creates a
window containing a row of check-box controls. Below the check-box controls, a
chart control is created. If the window is resized, the chart control is automatically
resized.

1.3 The SIMPLE.C 3D Data

A common task in any Olectra Chart program is to load the data to be graphed into
an Xrt3dData structure. The data can come from any source: a file or database,
another process running on the machine, or can be calculated on the fly. SIMPLE.C
creates an Xrt3dData structure and loads it with grid data from the surface defined by
the equation:

Chapter 4 on page 47 provides complete details on Olectra Chart data, but for now,
think of a grid aligned with the X and Y axis projected onto the surface we’ve
defined above. When an X grid line crosses a Y grid line, the intersection defines a
point on the surface. We’ll evaluate the surface equation at that point, and pass the
solution into the chart control for graphing.

The first decision to make is: How many grid points? Too few grid points will result
in too few samples, and a low resolution image. Too many will result in extra
overhead, without adding clarity to the on-screen display. Olectra Chart is optimized
for grid sizes less than 100 x 100.

SIMPLE.C defines the Xrt3dData structure in the CalculateGrid() routine. nRows
and nColumns are both assigned the value 20. They will define the grid resolution.

z 3xy x3– y3–= 3– x y, 5≤ ≤

Chapter 1 ■ Getting Started: Developing a Simple Olectra Chart Program 9

SIMPLE.C calls Xrt3dMakeGridData() to allocate an Xrt3dData structure with
enough space to hold 20 x 20 Z-values:

Xrt3dGridData* pGridData = (Xrt3dGridData*)
Xrt3dMakeGridData(nRows, nColumns, XRT3D_HUGE_VAL,

8.0 / (nRows - 1), 8.0 / (nColumns - 1),
-3.0, -3.0, TRUE);

If Xrt3dMakeGridData() is successful, it returns a pointer to an Xrt3dData structure.
If it is not successful, it returns NULL. The first two parameters, nRows and
nColumns, tell it how large a structure to allocate.

The third parameter indicates the data value that will be used to mean “no value”.
Since there are no holes in our surface data, we set this to XRT3D_HUGE_VAL, a
value which is unlikely to appear in our data values.

The next two parameters specify the step distance between grid lines in the X and Y
directions. Since our grid will have to span from -3 to 5 using 20 grid lines, the
distance between grid lines will be 8.0 / (20 - 1) or about 0.421.

The next two parameters indicate the location of our data’s origin (-3, -3). Finally, the
last parameter tells Xrt3dMakeGridData() whether or not to allocate space for the Z
values. We do not want to allocate this ourselves, so we set it to TRUE.

Now that we have an Xrt3dData structure to hold our grid data, we can go ahead and
evaluate the surface equation at each of the grid points. The g.values element in the
Xrt3dData structure is a two dimensional array of type double. The following code
populates it with our surface’s grid values:

for (i = 0; i < nRows; i++) {
x = pGridData->xorig + i * pGridData->xstep;
for (j = 0; j < nColumns; j++) {

y = pGridData->yorig + j * pGridData->ystep;
pGridData->values[i][j] = 3*x*y - x*x*x - y*y*y;

}
}

Our Xrt3dData structure referenced by grid is now ready for graphing. When
SIMPLE.C creates the chart control, it attaches the data to the control by setting the
XRT3D_SURFACE_DATA property to grid.

1.4 The SIMPLE.C Controls

At the top of the SIMPLE.C application window are a number of toggles that the user
can adjust.

The DrawMesh, DrawShaded, DrawContours and DrawZones toggles turn the
corresponding XRT3D_DRAW_MESH, XRT3D_DRAW_SHADED,
XRT3D_DRAW_CONTOURS and XRT3D_DRAW_ZONES Boolean properties on
and off.

These four properties provide 15 different combinations of basic 3D data display.
Some combinations will be more useful for your applications than others. These
properties are described in section 3.2 on page 24.

10 Part I ■ Using the Chart

Most Olectra Chart properties are discussed in the following sections, and all are
fully described in Appendix A.

11

2
Olectra Chart Basics

Terminology ■ Property Setting and Retrieving
USE_DEFAULT Properties ■ Pointer Properties

Batching Property Updates ■ Font Properties

Programming with C++ ■ Distributing Olectra Chart Applications

Conceptually, Olectra Chart adds a new control to the pre-defined Windows control
classes (such as Button, ScrollBar, and ListBox). A Windows programmer
manipulates this control similarly to other controls.

2.1 Terminology

Figure 2 shows the major components of the chart control. There are four major
areas: Header, Footer, Legend and Graph. Each area has its own origin, width and
height.

Unit Cube
The unit cube is defined to be the smallest cube which encloses the entire 3D scene
(including the axis). Some Olectra Chart properties, such as those that specify axis
scaling and axis font sizes, have definitions that depend on the unit cube size.

12 Part I ■ Using the Chart

Figure 2 Olectra Chart Areas

2.2 Property Setting and Retrieving

To set the value of chart properties, use either the Xrt3dSetValues() or
Xrt3dSetPropString() procedure. To retrieve the current value of chart properties,
use either the Xrt3dGetValues() or Xrt3dGetPropString() procedure.

SetValues / GetValues
Xrt3dSetValues() and Xrt3dGetValues() allow you to set or get any number of
properties at once. The following example sets two chart properties to the values
contained in the bg and fg variables:

Xrt3dSetValues(hChart,
XRT3D_BACKGROUND_COLOR,bg,
XRT3D_FOREGROUND_COLOR,fg,
NULL);

Graph
Height

Graph Width

Header
Origin

Graph
Origin

Graph
Area

Legend
Origin

Footer
Origin

Data
Area

Control Width

Control
Height

Chapter 2 ■ Olectra Chart Basics 13

To retrieve values using Xrt3dGetValues(), pass the address of the variable to
contain the value retrieved. For example:

Xrt3dGetValues(hChart,
XRT3D_BACKGROUND_COLOR,&bg,
XRT3D_FOREGROUND_COLOR,&fg,
NULL);

Make sure that each variable is of the proper type before calling Xrt3dGetValues().
The resource value types are listed at the start of Chapter 3.

SetPropString / GetPropString
Xrt3dSetPropString() and Xrt3dGetPropString() allow you to set or get a property
value as a string. This is particularly useful for setting fonts, colors, and datastyles.
Olectra Chart converts a string to/from the data type of the property. The following
example sets the header font:

Xrt3dSetPropString(hChart,
XRT3D_HEADER_FONT,"Times,10,Bold");

To retrieve a value using Xrt3dGetPropString(), pass the address of the variable to
contain the value retrieved. For example:

char * my_font;
Xrt3dGetPropString(hChart,

XRT3D_HEADER_FONT,&my_font);
...
Xrt3dFreePropString(my_font);

Use Xrt3dFreePropString() to free the string allocated by Xrt3dGetPropString() after
use.

2.3 USE_DEFAULT Properties

Many Olectra Chart properties have corresponding USE_DEFAULT properties, for
example, XRT3D_HEADER_X and XRT3D_HEADER_X_USE_DEFAULT.

USE_DEFAULT properties are Booleans that determine if Olectra Chart should
calculate a default value for the property.

For example, if XRT3D_HEADER_X_USE_DEFAULT is TRUE, every time the
Olectra Chart window is resized, Olectra Chart will determine a reasonable default
value for the X pixel coordinate for the header area position. Otherwise, Olectra
Chart will use the last specified value of XRT3D_HEADER_X to position the header
area.

Attempts to set a USE_DEFAULT property to FALSE are ignored by Olectra Chart
unless the corresponding property has been explicitly set or previously calculated by
Olectra Chart. A side effect of setting any property that has a corresponding
USE_DEFAULT property is that the USE_DEFAULT property will be set to FALSE.

14 Part I ■ Using the Chart

The following code will freeze the value of XRT3D_XMAX at its current value. It will
also have the side effect of setting XRT3D_XMAX_USE_DEFAULT to FALSE.

double xmax;
Xrt3dGetValues(mygraph,

XRT3D_XMAX, &xmax, NULL);
Xrt3dSetValues(mygraph, XRT3D_XMAX, xmax, NULL);

The following code will revert back to the default behavior, enabling Olectra Chart
to calculate a default value for XRT3D_XMAX whenever it draws the chart.

Xrt3dSetValues(mygraph,
XRT3D_XMAX_USE_DEFAULT, TRUE,
NULL);

2.4 Pointer Properties

Some Olectra Chart properties return pointers to structures or characters when used
in an Xrt3dGetValues() call. A program should never use this pointer to change any
data in memory. Everything the pointer points to should be considered “read-only”.

The only exceptions to this rule are the XRT3D_SURFACE_DATA and
XRT3D_ZONE_DATA properties. These properties should always point to data
structures that exist in program memory.

Olectra Chart makes its own copy of all data passed through a pointer property
(except for XRT3D_SURFACE_DATA and XRT3D_ZONE_DATA).

The “duplicating” procedures Xrt3dDupContourStyles(), Xrt3dDupDistnTable(),
Xrt3dDupStrings(), Xrt3dDupValueLabels(), and Xrt3dDupXYColors() can be used
to make copies of some types of data. These copies can be freed with corresponding
“free” procedures (e.g. Xrt3dFreeStrings()). See Appendix C on page 99 for a
complete list of procedures.

Chapter 2 ■ Olectra Chart Basics 15

For example, if a program wants to interchange the first header string with the first
footer string, the following code could be used:

char **hs, **fs, **myhs, **myfs, *tmp;
Xrt3dGetValues(mygraph, /* Get read-only ptrs */

XRT3D_HEADER_STRINGS, &hs,
XRT3D_FOOTER_STRINGS, &fs
NULL);

myhs = Xrt3dDupStrings(hs); /* Make copies */
myfs = Xrt3dDupStrings(fs);

tmp = myfs[0]; /* Interchange 1st */
myfs[0] = myhs[0];
myhs[0] = tmp;

Xrt3dSetValues(mygraph, /* Reset them */
XRT3D_HEADER_STRINGS, myhs,
XRT3D_FOOTER_STRINGS, myfs,
NULL);

Xrt3dFreeStrings(myhs); /* Free my copies */
Xrt3dFreeStrings(myfs);

2.5 Batching Property Updates

Normally property changes take effect immediately after the Xrt3dSetValues() call.
If you would prefer to make several changes to the control’s properties before
causing a repaint, set XRT3D_REPAINT to FALSE. All property changes will be
batched until XRT3D_REPAINT is set to TRUE.

2.6 Font Properties

If you are using Microsoft Windows 3.1, you should always cast the property value to
an int when setting font properties. For example:

HFONT hfont;

Xrt3dSetValues(hChart, XRT3D_HEADER_FONT, (int)hfont, NULL);

2.7 Programming with C++

Olectra Chart provides two C++ interfaces to the control:

1. MFC — For use within version 2.0 or greater of MFC, subclassed from the CWnd
visual object class.

2. OWL — For use within version 2.5 or greater of OWL, subclassed from the
TControl ObjectWindows class.

16 Part I ■ Using the Chart

To use the MFC classes, include the OCH3DMFC.H header file and
OCH3DMFC.CPP source file in your application. Both files are located in Olectra
Chart’s \INCLUDE directory. The \CHART\3D\DEMOS\DLL\MFC directory
contains a simple MFC example program.

To use the OWL classes, include the OCH3DOWL.H header file and
OCH3DOWL.CPP source file in your application. Both files are located in Olectra
Chart’s \INCLUDE directory. The \CHART\3D\DEMOS\DLL\OWL directory
contains a simple OWL example program.

The MFC and OWL implementations create the following classes:

2.8 Distributing Olectra Chart Applications

You can freely distribute any applications that you create with Olectra Chart. An
Olectra Chart application needs its dynamic link library present on the system it is
run on.

MFC Class OWL Class Methods

CChart3d TChart3d ■ A constructor that creates the chart object.
■ A destructor that calls DestroyWindow().
■ A method for each of the C procedures that take an

Olectra Chart control as its first argument. For
example, the method for Xrt3dCallAction() is
CallAction().

■ A method to set each settable property. For example,
the method to set
XRT3D_BACKGROUND_COLOR is
SetBackgroundColor().

■ A method to retrieve each property. For example, the
method to retrieve
XRT3D_BACKGROUND_COLOR is
GetBackgroundColor().

CChart3dData TChart3dData ■ A constructor that calls one of Xrt3dMakeData(),
Xrt3dMakeDataFromFile(), or
Xrt3dDataCopy().

■ A destructor that calls Xrt3dDestroyData().
■ A method for most of the C procedures that take an

Xrt3dData structure as its first argument. For
example, the method for Xrt3dDataSmooth() is
DataSmooth().

■ Inline methods for Xrt3dData macros.
■ Overloaded = operator to perform

Xrt3dDataCopy().
■ Casting support for (Xrt3dData *).

Chapter 2 ■ Olectra Chart Basics 17

Distributing 32-bit Applications

When distributing 32-bit applications, you may only distribute the OLCH3D32.DLL
dynamic link library.

Distributing 16-bit Applications

When distributing 16-bit applications, you may only distribute the OLCH3D16.DLL
dynamic link library.

18 Part I ■ Using the Chart

19

3
Programming Olectra Chart

Properties ■ 15 Basic Types of Surfaces and Bars

Bar Charts and Histograms ■ Contours and Zone Display
Axis Controls ■ Legend Display

Perspective ■ Mesh Controls

Surface Colors ■ Solid Surface
Axis Scaling ■ Axis Labelling

Grid Lines ■ Header and Footer Text

Header, Footer and Legend Fonts ■ Area Positioning
Area Borders ■ Foreground and Background Colors

Double Buffering ■ Output and Printing

3.1 Properties

This section summarizes all of the Olectra Chart properties. It is not necessary to
remember all the properties in order to program Olectra Chart effectively. For most
charts, many properties may be left with their default settings.

This section will not describe each property in detail. Most properties are described
in this chapter, and each property is summarized in Appendix A. Scan through these
tables to gather a basic understanding of the properties.

20 Part I ■ Using the Chart

Figure 3 Data Display Properties

Property Type

XRT3D_CONTOUR_STYLES Xrt3dContourStyle **
XRT3D_DATA_AREA_BACKGROUND_COLOR COLORREF
XRT3D_DISTN_METHOD Xrt3dDistnMethod
XRT3D_DISTN_TABLE Xrt3dDistnTable *
XRT3D_DRAW_MESH BOOL
XRT3D_DRAW_SHADED BOOL
XRT3D_DRAW_CONTOURS BOOL
XRT3D_DRAW_ZONES BOOL
XRT3D_DRAW_HIDDEN_LINES BOOL
XRT3D_MESH_BOTTOM_COLOR COLORREF
XRT3D_MESH_TOP_COLOR COLORREF
XRT3D_NUM_DISTN_LEVELS int
XRT3D_PERSPECTIVE_DEPTH double
XRT3D_PROJECT_ZMAX int
XRT3D_PROJECT_ZMIN int
XRT3D_SOLID_SURFACE BOOL
XRT3D_SURFACE_BOTTOM_COLOR COLORREF
XRT3D_SURFACE_TOP_COLOR COLORREF
XRT3D_SURFACE_DATA Xrt3dData *
XRT3D_TYPE Xrt3dType
XRT3D_VIEW_NORMALIZED BOOL
XRT3D_VIEW_SCALE double
XRT3D_VIEW_[XY]TRANSLATE double
XRT3D_[XY]MESH_FILTER int
XRT3D_[XY]MESH_SHOW BOOL
XRT3D_[XYZ]ROTATION double
XRT3D_[XYZ]SCALE double
XRT3D_ZONE_DATA Xrt3dData *
XRT3D_ZONE_METHOD Xrt3dZoneMethod

Chapter 3 ■ Programming Olectra Chart 21

Figure 4 Chart Properties

Figure 5 Axis Properties

Property Type

XRT3D_GRAPH_BACKGROUND_COLOR COLORREF
XRT3D_GRAPH_BORDER Xrt3dBorder
XRT3D_GRAPH_BORDER_WIDTH int
XRT3D_GRAPH_FOREGROUND_COLOR COLORREF
XRT3D_GRAPH_HEIGHT int
XRT3D_GRAPH_HEIGHT_USE_DEFAULT BOOL
XRT3D_GRAPH_WIDTH int
XRT3D_GRAPH_WIDTH_USE_DEFAULT BOOL
XRT3D_GRAPH_[XY] int
XRT3D_GRAPH_[XY]_USE_DEFAULT BOOL

Property Type

XRT3D_AXIS_STROKE_FONT Xrt3dStrokeFont
XRT3D_AXIS_STROKE_SIZE int
XRT3D_AXIS_TITLE_STROKE_FONT Xrt3dStrokeFont
XRT3D_AXIS_TITLE_STROKE_SIZE int
XRT3D_[XY]DATA_LABELS char **
XRT3D_[XYZ]ANNO_METHOD Xrt3dAnnoMethod
XRT3D_[XYZ]AXIS_SHOW BOOL
XRT3D_[XYZ]AXIS_TITLE char *
XRT3D_[XYZ]GRID_LINES int
XRT3D_[XYZ]MAX double
XRT3D_[XYZ]MAX_USE_DEFAULT BOOL
XRT3D_[XYZ]MIN double
XRT3D_[XYZ]MIN_USE_DEFAULT BOOL
XRT3D_[XYZ]VALUE_LABELS Xrt3dValueLabel **
XRT3D_ZORIGIN double

22 Part I ■ Using the Chart

Figure 6 Header and Footer Properties

Figure 7 Bar Properties

Property Type

XRT3D_HEADER_ADJUST Xrt3dAdjust
XRT3D_HEADER_BACKGROUND_COLOR COLORREF
XRT3D_HEADER_BORDER Xrt3dBorder
XRT3D_HEADER_BORDER_WIDTH int
XRT3D_HEADER_FOREGROUND_COLOR COLORREF
XRT3D_HEADER_STRINGS char **
XRT3D_HEADER_FONT HFONT
XRT3D_HEADER_HEIGHT int
XRT3D_HEADER_WIDTH int
XRT3D_HEADER_[XY] int
XRT3D_HEADER_[XY]_USE_DEFAULT BOOL

XRT3D_FOOTER_ADJUST Xrt3dAdjust
XRT3D_FOOTER_BACKGROUND_COLOR COLORREF
XRT3D_FOOTER_BORDER Xrt3dBorder
XRT3D_FOOTER_BORDER_WIDTH int
XRT3D_FOOTER_FONT HFONT
XRT3D_FOOTER_FOREGROUND_COLOR COLORREF
XRT3D_FOOTER_HEIGHT int
XRT3D_FOOTER_STRINGS char **
XRT3D_FOOTER_WIDTH int
XRT3D_FOOTER_[XY] int
XRT3D_FOOTER_[XY]_USE_DEFAULT BOOL

Property Type

XRT3D_[XY]BAR_FORMAT Xrt3dBarFormat
XRT3D_[XY]BAR_SPACING double
XRT3D_XY_COLORS Xrt3dXYColor **

Chapter 3 ■ Programming Olectra Chart 23

Figure 8 Legend Properties

Figure 9 Other Properties

Property Type

XRT3D_LEGEND_ANCHOR Xrt3dAnchor
XRT3D_LEGEND_BACKGROUND_COLOR COLORREF
XRT3D_LEGEND_BORDER Xrt3dBorder
XRT3D_LEGEND_BORDER_WIDTH int
XRT3D_LEGEND_FONT HFONT
XRT3D_LEGEND_FOREGROUND_COLOR COLORREF
XRT3D_LEGEND_HEIGHT int
XRT3D_LEGEND_LABEL_FUNC Function
XRT3D_LEGEND_ORIENTATION Xrt3dAlign
XRT3D_LEGEND_SHOW BOOL
XRT3D_LEGEND_STRINGS char **
XRT3D_LEGEND_STYLE Xrt3dLegendStyle
XRT3D_LEGEND_WIDTH int
XRT3D_LEGEND_[XY] int
XRT3D_LEGEND_[XY]_USE_DEFAULT BOOL

Property Type

XRT3D_BACKGROUND_COLOR COLORREF
XRT3D_BORDER Xrt3dBorder
XRT3D_BORDER_WIDTH int
XRT3D_DEBUG BOOL
XRT3D_DOUBLE_BUFFER BOOL
XRT3D_FOREGROUND_COLOR COLORREF
XRT3D_HEIGHT int
XRT3D_NAME char *
XRT3D_REPAINT BOOL
XRT3D_WIDTH int

24 Part I ■ Using the Chart

Figure 10 Text Object Properties

3.2 15 Basic Types of Surfaces and Bars

Any data that has been attached to the chart control using the
XRT3D_SURFACE_DATA property will be displayed in either a surface or bar
representation. The type of representation depends on the value of the
XRT3D_TYPE property, which can be either XRT3D_TYPE_SURFACE or
XRT3D_TYPE_BAR.

Olectra Chart’s four basic display boolean properties—DrawMesh, DrawShaded,
DrawContours and DrawZones—combine to create 15 different basic surface and bar
displays.1

DrawMesh
Surfaces: When DrawMesh is TRUE, Olectra Chart displays the X-Y grid projected
onto the 3D surface in a 3D view with a Z-axis. The chart honors rotation and
perspective control. The XRT3D_DRAW_HIDDEN_LINES,
XRT3D_[XY]MESH_SHOW and XRT3D_[XY]MESH_FILTER properties are used to
fine-tune the mesh display, and XRT3D_MESH_BOTTOM_COLOR and
XRT3D_MESH_TOP_COLOR properties control the mesh colors.

1. No chart is displayed when all four booleans are FALSE.

Property Type

XRT3D_TEXT_ADJUST Xrt3dAdjust
XRT3D_TEXT_ATTACH_INDEX_[XY] int
XRT3D_TEXT_ATTACH_METHOD Xrt3dTextAttachMethod
XRT3D_TEXT_ATTACH_PIXEL_[XY] int
XRT3D_TEXT_ATTACH_POINT_[XYZ] double
XRT3D_TEXT_BACKGROUND_COLOR COLORREF
XRT3D_TEXT_BORDER Xrt3dBorder
XRT3D_TEXT_BORDER_WIDTH int
XRT3D_TEXT_FONT HFONT
XRT3D_TEXT_FOREGROUND_COLOR COLORREF
XRT3D_TEXT_LINE_SHOW BOOL
XRT3D_TEXT_OFFSET_[XY] int
XRT3D_TEXT_PLANE int
XRT3D_TEXT_PRINT_FONT char *
XRT3D_TEXT_SHOW BOOL
XRT3D_TEXT_STRINGS char **
XRT3D_TEXT_STROKE_FONT Xrt3dStrokeFont
XRT3D_TEXT_STROKE_SIZE int

Chapter 3 ■ Programming Olectra Chart 25

Bars: When DrawMesh is TRUE, Olectra Chart will draw the outline of all the bars.
All bars with value greater than or equal to XRT3D_ZORIGIN will be outlined using
XRT3D_MESH_TOP_COLOR, and all bars with value less than XRT3D_ZORIGIN
will be outlined using XRT3D_MESH_BOTTOM_COLOR. When
XRT3D_DRAW_HIDDEN_LINES is TRUE, all the lines of every bar are visible.

DrawShaded
Surfaces: When DrawShaded is TRUE, Olectra Chart displays the data as a flat
shaded surface in a 3D view with a Z-axis. The chart honors rotation and perspective
control. The surface color is controlled with XRT3D_SURFACE_BOTTOM_COLOR
and XRT3D_SURFACE_TOP_COLOR.

Bars: When DrawShaded is TRUE, Olectra Chart draws each bar as a solid bar. All
bars with value greater than or equal to XRT3D_ZORIGIN will be drawn using
XRT3D_SURFACE_TOP_COLOR, and all bars with value less than
XRT3D_ZORIGIN will be drawn using XRT3D_SURFACE_BOTTOM_COLOR.

DrawContours
Surfaces: When DrawContours is TRUE, Olectra Chart examines the distribution of
the data (using the XRT3D_DISTN_METHOD and possibly
XRT3D_DISTN_TABLE), and draws contour lines demarcating each of the
distribution levels. The contour line style, thickness and color are controlled with the
XRT3D_CONTOUR_STYLES property.

Bars: When DrawContours is TRUE, Olectra Chart examines the distribution of the
data (using XRT3D_DISTN_METHOD and possibly XRT3D_DISTN_TABLE), and
draws contour lines around the bars, demarcating each of the distribution levels. The
contour line style, thickness and color are controlled with the
XRT3D_CONTOUR_STYLES property.

DrawZones
Surfaces: When DrawZones is TRUE, Olectra Chart examines the distribution of
the data (using the XRT3D_DISTN_METHOD and possibly
XRT3D_DISTN_TABLE), and fills each level with a solid color1. The color for each
level is specified with the XRT3D_CONTOUR_STYLES property.

Bars: When DrawZones is TRUE, Olectra Chart examines the distribution of the
data (using XRT3D_DISTN_METHOD and possibly XRT3D_DISTN_TABLE), and
fills each level within each bar with a solid color.1 The color for each level is
specified with the XRT3D_CONTOUR_STYLES property. If XRT3D_ZONE_DATA
is supplied, each bar is filled with a solid color. Otherwise, the bar is segmented by
height according to the distribution table.

1. Unless DrawMesh is TRUE and DrawShaded is FALSE, in which case the fill color is used to draw each level’s mesh
lines.

26 Part I ■ Using the Chart

The following table shows the 15 basic chart types:
Ch

ar
t T

yp
e

D
ra

w
M

es
h

D
ra

w
Sh

ad
ed

D
ra

w
Co

nt
ou

rs

D
ra

w
Zo

ne
s

Surface Example Bar Example Comments

1 T F F F

Mesh.
Displays surface as a
mesh and bars in
outline.

2 F T F F

Shaded.
Displays surface and
bars in a flat shade.
Top and bottom colors
may be set.

3 F F T F

Contours.
Contour lines are
automatically drawn
between distribution
levels in the data.

4 F F F T

Zones.a

Similar to #3, except
that each distribution
level is displayed in a
solid color.

60.6
54.7
48.8
43.0
37.1
31.3
25.4
19.5
13.7
7.8

5.69
4.70
3.71
2.72
1.73
0.74
-0.25
-1.23
-2.22
-3.21

66.4
60.6
54.7
48.8
43.0
37.1
31.3
25.4
19.5
13.7
7.8
1.9

6.67
5.69
4.70
3.71
2.72
1.73
0.74
-0.25
-1.23
-2.22
-3.21
-4.20

Chapter 3 ■ Programming Olectra Chart 27

5 T T F F

Mesh, Shaded.
Draws surface as a
mesh and bars in
outline. Surface and
bars are flat shaded.

6 T F T F

Mesh, Contours.
Displays surface as a
mesh and bars in
outline. Also draws
contour lines along
borders between
distribution levels in
the data.

7 T F F T

Mesh, Zones.
Displays surface as a
mesh and bars in
outline Uses zoning
colors for mesh and
bar outlines.

8 F T T F

Shaded, Contours.
Displays a flat-shaded
surface or bars with
contour lines
superimposed.

9 F T F T

Shaded, Zones.
Zone colors are used
to flat shade the
surface or bars.

Ch
ar

t T
yp

e

D
ra

w
M

es
h

D
ra

w
Sh

ad
ed

D
ra

w
Co

nt
ou

rs

D
ra

w
Zo

ne
s

Surface Example Bar Example Comments

60.6
54.7
48.8
43.0
37.1
31.3
25.4
19.5
13.7
7.8

5.69
4.70
3.71
2.72
1.73
0.74
-0.25
-1.23
-2.22
-3.21

60.6 .. 66.4
54.7 .. 60.6
48.8 .. 54.7
43.0 .. 48.8
37.1 .. 43.0
31.3 .. 37.1
25.4 .. 31.3
19.5 .. 25.4
13.7 .. 19.5
7.8 .. 13.7
1.9 .. 7.8

5.69 .. 6.67
4.70 .. 5.69
3.71 .. 4.70
2.72 .. 3.71
1.73 .. 2.72
0.74 .. 1.73
-0.25 .. 0.74
-1.23 .. -0.25
-2.22 .. -1.23
-3.21 .. -2.22
-4.20 .. -3.21

60.6
54.7
48.8
43.0
37.1
31.3
25.4
19.5
13.7
7.8

5.69
4.70
3.71
2.72
1.73
0.74
-0.25
-1.23
-2.22
-3.21

66.4
60.6
54.7
48.8
43.0
37.1
31.3
25.4
19.5
13.7
7.8
1.9

6.67
5.69
4.70
3.71
2.72
1.73
0.74
-0.25
-1.23
-2.22
-3.21
-4.20

28 Part I ■ Using the Chart

10 F F T T

Contours, Zones.a

Displays contour
lines and flat shaded
zone colors to
demarcate levels in
the data.

11 T T F T

Mesh, Shaded,
Zones.
Like #9, but with a
mesh or bar outlines
superimposed.

12 T T T F

Mesh, Shaded,
Contours.
Like #5, but contour
lines are
superimposed.

13 F T T T

Shaded, Contours,
Zones.
Like #9, but contour
lines are
superimposed.

14 T F T T

Mesh, Contours,
Zones.
Like #7, but with
contours
superimposed.

Ch
ar

t T
yp

e

D
ra

w
M

es
h

D
ra

w
Sh

ad
ed

D
ra

w
Co

nt
ou

rs

D
ra

w
Zo

ne
s

Surface Example Bar Example Comments

66.4
60.6
54.7
48.8
43.0
37.1
31.3
25.4
19.5
13.7
7.8
1.9

6.67
5.69
4.70
3.71
2.72
1.73
0.74
-0.25
-1.23
-2.22
-3.21
-4.20

66.4
60.6
54.7
48.8
43.0
37.1
31.3
25.4
19.5
13.7
7.8
1.9

6.67
5.69
4.70
3.71
2.72
1.73
0.74
-0.25
-1.23
-2.22
-3.21
-4.20

60.6
54.7
48.8
43.0
37.1
31.3
25.4
19.5
13.7
7.8

5.69
4.70
3.71
2.72
1.73
0.74
-0.25
-1.23
-2.22
-3.21

66.4
60.6
54.7
48.8
43.0
37.1
31.3
25.4
19.5
13.7
7.8
1.9

6.67
5.69
4.70
3.71
2.72
1.73
0.74
-0.25
-1.23
-2.22
-3.21
-4.20

60.6 .. 66.4
54.7 .. 60.6
48.8 .. 54.7
43.0 .. 48.8
37.1 .. 43.0
31.3 .. 37.1
25.4 .. 31.3
19.5 .. 25.4
13.7 .. 19.5
7.8 .. 13.7
1.9 .. 7.8

5.69 .. 6.67
4.70 .. 5.69
3.71 .. 4.70
2.72 .. 3.71
1.73 .. 2.72
0.74 .. 1.73
-0.25 .. 0.74
-1.23 .. -0.25
-2.22 .. -1.23
-3.21 .. -2.22
-4.20 .. -3.21

Chapter 3 ■ Programming Olectra Chart 29

3.3 Bar Charts and Histograms

When XRT3D_TYPE is XRT3D_TYPE_BAR, the data pointed to by the
XRT3D_SURFACE_DATA property will be displayed as a bar chart. Each data point
will be represented by a single bar. Data for bar charts may be supplied in either a
regular or irregular grid. In either case, the spacing between adjacent elements in the
grid is honored.

Bar Z Origin
Bars start from the Z origin, which can be controlled through the XRT3D_ZORIGIN
property. The default value of the origin is 0.0. When DrawShaded is TRUE, bars
that have values greater than the origin are rendered in the
XRT3D_SURFACE_TOP_COLOR. Negative bars (that is, bars with values less than
the origin) are rendered in the XRT3D_SURFACE_BOTTOM_COLOR.

Bar Spacing
The amount of space occupied by a bar, as a percentage of the maximum amount
possible, is controlled through the XRT3D_[XY]BAR_SPACING properties. The
default is 80%. Setting it smaller results in thinner bars. Setting bar spacing to 100% (the
maximum) results in bars that abut one another.

a. In this release, DrawZones is the same as DrawZones and DrawShaded for bar charts. Application developers are urged to use
the DrawZones and DrawShaded combination for this view, since the interpretation of the DrawZones combination may change in
a future release.

15 T T T T

Mesh, Shaded,
Contours, Zones.
The sum of all basic
options.

Ch
ar

t T
yp

e

D
ra

w
M

es
h

D
ra

w
Sh

ad
ed

D
ra

w
Co

nt
ou

rs

D
ra

w
Zo

ne
s

Surface Example Bar Example Comments

66.4
60.6
54.7
48.8
43.0
37.1
31.3
25.4
19.5
13.7
7.8
1.9

6.67
5.69
4.70
3.71
2.72
1.73
0.74
-0.25
-1.23
-2.22
-3.21
-4.20

30 Part I ■ Using the Chart

Figure 11 Fixed Bar Chart with X Spacing set to 1% and Y Spacing set to 100%

Histograms
To display a histogram, set XRT3D_[XY]BAR_FORMAT to
XRT3D_BAR_HISTOGRAM. (The default is XRT3D_BAR_FIXED.) The X-axis and
Y-axis can be independently switched between fixed and histogram formats. If the X-
axis is switched to a histogram, each bar’s left edge will be drawn aligned with
corresponding X values in the data. The width of each bar will be the distance
between subsequent X values in the data. Since the width of each bar is derived from
the spacing between its neighbors, there is always one fewer bar along a histogram
axis than there is if the same data is displayed along a fixed axis.

Histograms usually make use of irregularly-gridded data. This gives control over
spacing in the data grid. See section 4.2 on page 49 for more information on
irregularly-gridded data.

Figure 12 Fixed versus Histogram Display of Identical Data.

The number of graduate degrees given
at four large midwestern universities

Chapter 3 ■ Programming Olectra Chart 31

Bar Colors
If DrawShaded is TRUE and DrawZones is FALSE, the colors of the individual bars
can be controlled. Normally, all bars with value below the origin are colored with
the surface bottom color, and all others are colored with the surface top color.
However, in some situations, it is useful to color a row, column or individual bar in
the chart with a distinct color.

The property XRT3D_XY_COLORS is used to specify the fill color of a line of bars,
or of an individual bar. It takes a pointer to a NULL-terminated list of pointers to the
following structure:

typedef struct {
int xindex; /* 0-indexed */
int yindex; /* 0-indexed */
COLORREF *color; /* color */

} Xrt3dXYColor;

An individual bar can be colored by specifying its indices in the structure. For
example, to set the bar in the third X data line, second point to red, specify the
values (2, 1, RGB(255,0,0)) in one of the Xrt3dXYColor structures. To specify the color
of an entire row of bars, set the other index to -1. For instance, the entire fifth X line
of bars is set to green with (4, -1, RGB(128,255,128)). To set the color of all the bars, set
both xindex and yindex to -1.

You can retrieve the color used for a bar by calling the Xrt3dGetXYColor()
procedure. The Xrt3dSetXYColor() procedure makes it easy to change the bar
coloring. For example, to change the fourth row of bars (as measured along the Y-
axis) to yellow, you could use:

Xrt3dSetXYColor(mygraph, -1, 3, RGB(255, 255, 0));

Olectra Chart will only maintain one entry per (xindex, yindex) combination.
Whenever a second entry for the same indices is supplied, the first entry is removed.
Later entries take precedence over earlier entries.

If any Xrt3dXYColor structure contains a NULL for the color, it is taken as a request
to delete any other entry with the same indices. This is most conveniently used with
the procedure Xrt3dSetXYColors(), to remove individual color entries.

XYColors are not placed in the legend. This method of coloring bars should only be
used if it is not important to label the bars a certain color. If labelling is important, a
4D bar chart should be created. 4D bar charts are discussed in section 6.2 on page
66.

3.4 Contours and Zone Display

When DrawContours or DrawZones is TRUE, Olectra Chart marks each distribution
level from an array of 100 built-in contour styles.

Each contour style contains information about the contour line style, width, pattern,
color, and zone color (used to mark each level). Contour styles can be customized by
an application. For more information, see section 6.6 on page 73.

32 Part I ■ Using the Chart

Contour Styles Used
Olectra Chart determines which contour style to use for a particular level
automatically, evenly distributing the styles through the number of levels, as shown
by Figure 13.

Figure 13 A Sampling of Supplied Contour Styles Used as Needed

Contour/Zone Projection
The contours and zones determined for the chart can be displayed on the top or
bottom side of the unit cube using the XRT3D_PROJECT_ZMAX and
XRT3D_PROJECT_ZMIN properties. These properties take integers combined from
the following constants:

#define XRT3D_PROJECT_CONTOURS 0x1
#define XRT3D_PROJECT_ZONES 0x2

For instance, to project contours and zones onto the plane z=zmax, set
XRT3D_PROJECT_ZMAX to the value
(XRT3D_PROJECT_CONTOURS|XRT3D_PROJECT_ZONES). To remove all
projections from a side, set the property to 0.

These properties are not dependent on the values of DrawContours or DrawZones.
However, any property that affects contour generation or rendering (such as
XRT3D_CONTOUR_STYLES, XRT3D_NUM_DISTN_LEVELS or
XRT3D_ZONE_DATA) affects projected contours/zones. XRT3D_PROJECT_ZMAX
and XRT3D_PROJECT_ZMIN are ignored in 2D charts and bar charts.

Magnetic Field Measurement

1210 .. 1566
855 .. 1210
500 .. 855
145 .. 500

-210 .. 145

Contour Style 0
Contour Style 1
Contour Style 2

Contour Style 24

Contour Style 49

Contour Style 74

Contour Style 97
Contour Style 98
Contour Style 99

.

.

.

.

.

.

.

.

.

nlevels = 4
Contour lines from 4 contour styles are used.
Fill colors from 5 contour styles are used.

Average length of stay for patients
with the same type of illness
at three different hospitals

26.5 .. 33.2 19.9 .. 26.5 13.3 .. 19.9
6.6 .. 13.3 0.0 .. 6.6

.

.

.

Chapter 3 ■ Programming Olectra Chart 33

Figure 14 Projecting Contours and Zones

Zoning Method
An application can control the method used to fill each zone region with the
XRT3D_ZONE_METHOD property. By default (XRT3D_ZONE_CONTOURS),
Olectra Chart fills between each contour interval. When set to
XRT3D_ZONE_CELLS, Olectra Chart fills entire cells in the grid based on the
average of the four corners of the cell. Figure 15 illustrates the visual difference.

Cell zoning produces a coarser-looking surface, but offers significant performance
advantages over contour zoning. However, the visual difference between the two
methods diminishes with larger grids.

Figure 15 Contour Zoning (left) and Cell Zoning (right)

3.5 Axis Controls

The properties listed in Figure 5 on page 21 control the Axis display.

34 Part I ■ Using the Chart

Axis Show
The XRT3D_[XYZ]AXIS_SHOW properties tell Olectra Chart whether it should
draw the axis at all. If set to FALSE, the axis will not be drawn.

Axis Font and Size
The axis annotation is rendered using the stroke font specified by
XRT3D_AXIS_STROKE_FONT. There are several stroke fonts to choose from (see
Appendix E). The default font is XRT3D_SF_ROMAN_SIMPLEX.

The axis font size is measured in units which are each 1/1,000 of the unit cube length.
The default axis font size is 80, which means the characters are 8% of the length of
the unit cube high. See section 2.1 on page 11 for a definition of the unit cube.

Title
The XRT3D_[XYZ]TITLE properties may be used to specify a title for each axis.
Titles are rendered in the stroke font specified by
XRT3D_[XYZ]AXIS_TITLE_STROKE_FONT, and in the size specified by
XRT3D_[XYZ]AXIS_TITLE_STROKE_SIZE.

Min and Max
The XRT3D_[XYZ]MAX and XRT3D_[XYZ]MIN properties specify the minimum
and maximum values of each axis. By default, Olectra Chart determines the extent
of the axes based on the minimum and maximum data values and anytime the data
changes, the axes update automatically. You can frame the data displayed by setting
these properties. When set by an application, the axis extents do not change when
the data changes. To return to the default behavior, set
XRT3D_[XYZ]MAX_USE_DEFAULT or XRT3D_[XYZ]MIN_USE_DEFAULT to
TRUE.

Note: The Z-axis minimum/maximum cannot be inside the Z-range of the data.
When XRT3D_ZMIN/XRT3D_ZMAX has been set, any changes to the data that put
it inside the Z-range causes Olectra Chart to set its corresponding USE_DEFAULT
property to TRUE.

3.6 Legend Display

Olectra Chart will automatically generate a legend whenever contours or zones are
drawn. If you don’t want a legend, set XRT3D_LEGEND_SHOW to FALSE. If
contours are drawn and zones are not, a legend listing the contour lines is generated.
If zones are drawn, the legend lists the fill colors for each level.

By default, Olectra Chart will attempt to list the legend contents vertically and
position the legend to the right (i.e. east) of the graph area.

Orientation
The legend layout is controlled through the XRT3D_LEGEND_ORIENTATION
property. It may be either XRT3D_ALIGN_VERTICAL or

Chapter 3 ■ Programming Olectra Chart 35

XRT3D_ALIGN_HORIZONTAL. If the legend is too large to fit in one row or
column, Olectra Chart will create the legend in several rows or columns.

Anchor
The default legend positioning relative to the graph area is controlled with the
XRT3D_LEGEND_ANCHOR property. Valid values correspond to the eight points
of the compass: XRT3D_ANCHOR_NORTH, XRT3D_ANCHOR_SOUTH,
XRT3D_ANCHOR_EAST, XRT3D_ANCHOR_WEST,
XRT3D_ANCHOR_NORTHWEST, XRT3D_ANCHOR_NORTHEAST,
XRT3D_ANCHOR_SOUTHEAST, and XRT3D_ANCHOR_SOUTHWEST.

Style
The XRT3D_LEGEND_STYLE property can be set to either
XRT3D_LEGEND_STYLE_CONTINUOUS (the default) or
XRT3D_LEGEND_STYLE_STEPPED. See Figure 16 for an example of these styles.
Continuous legends are recommended since they display the same information
while using less space.

Figure 16 Continuous (left) and Stepped (right) Legends

Legend Position and Border
To explicitly position the legend, see section 3.16 on page 41. Also, see section 3.17
on page 42 for information on how to program the legend border.

Custom Legend Contents
It is possible to specify custom text for the legend elements. See section 6.5 on page
71 for more information.

3.7 Perspective

The XRT3D_PERSPECTIVE_DEPTH property controls the perspective effect
observed by projecting the unit cube onto the screen. Small values exaggerate the
perspective effect, while large values diminish it. Valid values are anything between
1 and XRT3D_HUGE_VAL.

36 Part I ■ Using the Chart

Figure 17 Perspective Depth Measurement

3.8 Mesh Controls

Mesh Colors

The bottom and top colors of the mesh drawn when DrawMesh is TRUE can be set
with XRT3D_MESH_BOTTOM_COLOR and XRT3D_MESH_TOP_COLOR. They
are both “Black” by default.

Mesh Filtering
The XRT3D_[XY]MESH_FILTER properties specify how the mesh is filtered before
being displayed. By default, no filtering is performed. When set to 0, Olectra Chart
automatically filters the mesh to provide a pleasing display, and changes the filter as
the chart is scaled or the data changes.

You can hard-code a mesh filter by setting these properties to any positive integer.
For example, a value of 5 filters the mesh so that every 5th line is drawn.

Figure 18 Effect of Mesh Filtering

Perspective = 1.5 Perspective = 10

Filter = 1 Filter = 0 Filter = 10

Chapter 3 ■ Programming Olectra Chart 37

Hidden Mesh Lines
When DrawMesh is TRUE and DrawShaded is FALSE, grid and contour lines that
are obscured from view by intervening portions of the scene are not displayed by
default. To display these lines, set XRT3D_DRAW_HIDDEN_LINES to TRUE.

Figure 19 Hidden Line Removal

3.9 Surface Colors

The bottom and top colors of the shaded surface drawn when DrawShaded is TRUE
can be set with XRT3D_SURFACE_BOTTOM_COLOR and
XRT3D_SURFACE_TOP_COLOR. By default the bottom color is RGB(112,112,112)
and the top color is RGB(211,211,211).

3.10 Solid Surface

Setting XRT3D_SOLID_SURFACE to TRUE will cause Olectra Chart to draw a skirt
around the data, thereby joining the edge of the surface to a plane at the minimum Z
value, as shown in Figure 20.

38 Part I ■ Using the Chart

Figure 20 Setting Solid Surface On and Off

3.11 Axis Scaling

The axis scaling properties XRT3D_[XYZ]SCALE can be used to adjust the X, Y and
Z dimensions of the unit cube relative to one another. For example, if you would like
the 3D display to be twice as long in the Y direction as in the X, set the Y scale to
twice the X scale. Setting the Z scale higher or lower has the effect of flattening or
stretching the surface view.

.

Figure 21 Axis scaling using various X : Y : Z ratios

3.12 Axis Labelling

There are three distinct ways to annotate the X- and Y-axes, and two ways the Z-axis
can be annotated. The annotation method is determined by the

1 : 1 : 1 1 : 1 : 1/2 2 : 1 : 1/2

Chapter 3 ■ Programming Olectra Chart 39

XRT3D_[XYZ]ANNO_METHOD property which takes one of the following three
values:

typedef enum {
XRT3D_ANNO_VALUE,
XRT3D_ANNO_DATA_LABELS, /* X, Y axes only */
XRT3D_ANNO_VALUE_LABELS

} Xrt3dAnnoMethod;

Value Method
When XRT3D_[XYZ]ANNO_METHOD is XRT3D_ANNO_VALUE, Olectra Chart
will automatically annotate the axis based on the range of data. It is most suitable for
the Z-axis, and for the X- and Y-axes when the value of XRT3D_TYPE is
XRT3D_TYPE_SURFACE. This is the default annotation method.

Data Labels Method
To label individual lines in a surface, or a row/column of bars, use
XRT3D_ANNO_DATA_LABELS. This method uses a list of strings supplied with the
XRT3D_[XY]DATA_LABELS property to annotate each line from the grid.
Individual labels can be supplied with the procedure Xrt3dSetNthDataLabel() and
retrieved with Xrt3dGetNthDataLabel() procedure.

Value Labels Method
Labels can be placed at explicit locations along an axis by setting the value of
XRT3D_[XYZ]ANNO_METHOD to XRT3D_ANNO_VALUE_LABELS. The
locations of the labels are specified with the property
XRT3D_[XYZ]VALUE_LABELS, which takes an array of pointers to the following
structure:

typedef struct {
double value;
char * label;

} Xrt3dValueLabel;

Any labels which are beyond the bounds of the axis are not drawn. Individual value
labels can be added and removed through the procedure Xrt3dSetValueLabel(), and
retrieved through the procedure Xrt3dGetValueLabel().

3.13 Grid Lines

Grid lines can be displayed on each of the three primary planes using the
XRT3D_[XYZ]GRID_LINES properties. These properties take integers as values,
combined from the following constants:

#define XRT3D_XY_PLANE 1
#define XRT3D_XZ_PLANE 2
#define XRT3D_YZ_PLANE 4

For instance, to draw X grid lines in all applicable planes, set
XRT3D_XGRID_LINES to the value (XRT3D_XY_PLANE | XRT3D_XZ_PLANE).
To remove grid lines completely, set the value to 0. In a 2D chart, grid lines are
displayed whenever the XRT3D_[XY]GRID_LINES property is non-zero.

40 Part I ■ Using the Chart

Grid lines are drawn where annotation is drawn on the axis, regardless of the
annotation method. Grid lines are always drawn as a solid 1-pixel wide line, using
XRT3D_GRAPH_FOREGROUND_COLOR or, if that is NULL,
XRT3D_FOREGROUND_COLOR.1

3.14 Header and Footer Text

The header and footer areas can both contain multiple lines of text. Text is aligned
within the area, depending on the value of the XRT3D_HEADER_ADJUST or
XRT3D_FOOTER_ADJUST property. The values XRT3D_ADJUST_LEFT,
XRT3D_ADJUST_RIGHT and XRT3D_ADJUST_CENTER cause the text to be left-
justified, right-justified, or centered. XRT3D_ADJUST_CENTER is the default.

Text for the header and footer areas is specified using the
XRT3D_HEADER_STRINGS and XRT3D_FOOTER_STRINGS properties. Both of
these properties have NULL-terminated arrays of strings as their values.

The code below will set two header lines and left-align them:

static char *hs[] = { "Analysis Results",
"Sample Group A", NULL };

Xrt3dSetValues(my_graph,
XRT3D_HEADER_STRINGS, hs,
XRT3D_HEADER_ADJUST, XRT3D_ADJUST_LEFT,
NULL);

3.15 Header, Footer and Legend Fonts

A font may be specified for each of the header, footer and legend areas. Olectra
Chart can use any font available on the system at runtime.

Use the CreateFont() or CreateFontIndirect() Windows API call to create an
HFONT structure for use with Olectra Chart’s font properties. The Windows API
EnumFontFamilies() function determines which fonts are available on the system.
Consult your Windows programming documentation for further details on finding
and setting fonts.

Another way to set a font property is to use the Xrt3dSetPropString() function. This
allows you to avoid creating and destroying an HFONT or LOGFONT structure and
set a font using a simple string, such as “Arial,24,Italic”.

1. A future release of Olectra Chart may support customizable line styles and colors for the grid lines.

Chapter 3 ■ Programming Olectra Chart 41

The following example uses both methods to set font properties:

/* Use CreateFont() to set Header font */
HFONT hFont;
hFont = CreateFont(24, 0, 0, 0, 0, /* Set only Size & */

0, 0, 0, 0, 0, 0, 0, 0, "MS Serif"); /* Typeface */
Xrt3dSetValues(hChart, XRT3D_HEADER_FONT, hFont, NULL);
DeleteObject(hFont);

/* Use Xrt3dSetPropString() to set Legend font */
Xrt3dSetPropString(hChart, XRT3D_LEGEND_FONT,

"Times,12,bold");

For information on setting font properties in the Windows 3.1 environment, refer to
section 2.6 on page 15.

3.16 Area Positioning

At run-time, each of the four areas (header, footer, legend and graph) will, by default,
be positioned by Olectra Chart. The default positioning for each area depends on a
large number of factors, including:

■ The control’s current width and height.

■ The size of the legend, header and footer areas. These, in turn, depend on the
text and fonts being used.

■ The value of the XRT3D_LEGEND_ANCHOR property.

■ The positioning of areas which have been explicitly positioned by the user
program.

Olectra Chart’s default positioning algorithms will size and position the header,
footer and legend areas first. The graph area will be sized and positioned to fit into
the largest remaining rectangular area.

A program can determine and adjust area positioning through the use of the
positioning properties.

Figure 22 Area Positioning Properties

When used in an Xrt3dGetValues() call, positioning properties will return the values
used the last time the control was displayed. The width and height properties are of
type int, and the X and Y properties are of type int.

XRT3D_HEADER_X XRT3D_HEADER_Y (XRT3D_HEADER_WIDTH) (XRT3D_HEADER_HEIGHT)
XRT3D_FOOTER_X XRT3D_FOOTER_Y (XRT3D_FOOTER_WIDTH) (XRT3D_FOOTER_HEIGHT)
XRT3D_LEGEND_X XRT3D_LEGEND_Y (XRT3D_LEGEND_WIDTH) (XRT3D_LEGEND_HEIGHT)
XRT3D_GRAPH_X XRT3D_GRAPH_Y XRT3D_GRAPH_WIDTH XRT3D_GRAPH_HEIGHT

(Properties in Parentheses are Read-Only)

42 Part I ■ Using the Chart

A program should not explicitly set any of the positioning properties unless it is
prepared to recalculate them when the control’s size changes. See section 5.8 on
page 63 for more information on handling window resizing.

In some situations, it may be worthwhile to explicitly set some or all of the
positioning properties. For example, if the program will be displaying data that
changes in real time, the default positioning may change slightly with each redisplay.
These small positioning changes could distract the user. In this situation, the program
should use one of the following strategies:

■ Hardcode all the positioning properties. Window resizing should not be allowed;
or

■ Let Olectra Chart calculate default positioning for all areas when the control first
displays, and for the first display after any window resize. After the first display,
explicitly set the positioning properties to the values calculated by Olectra Chart.

3.17 Area Borders

Each of the 4 graph areas (header, footer, legend and graph) may be enhanced with a
border. There is a Border and a BorderWidth property for each of these areas (for
example, XRT3D_GRAPH_BORDER and XRT3D_GRAPH_BORDER_WIDTH). In
addition, you can specify a border for the entire control.

The Border properties may be set to any of XRT3D_BORDER_NONE,
XRT3D_BORDER_3D_OUT, XRT3D_BORDER_3D_IN,
XRT3D_BORDER_ETCHED_IN, XRT3D_BORDER_ETCHED_OUT,
XRT3D_BORDER_SHADOW and XRT3D_BORDER_PLAIN. The width of the
border (in pixels) is controlled with the corresponding BorderWidth property. The
width must be between 0 and 20.

Figure 23 Border Types

If control areas are explicitly positioned to intersect each other, highlighting the
intersections by showing borders may look unattractive.

Chapter 3 ■ Programming Olectra Chart 43

3.18 Foreground and Background Colors

Olectra Chart supports the specification of colors for the window background and
foreground, as well as for the lines and bars that represent data in the chart itself.
Olectra Chart will choose default colors for the application, so simple applications
need not concern themselves with color specification.

Background Colors
The window background color is specified through the
XRT3D_BACKGROUND_COLOR property. It is white by default.

Each of the header, footer, legend and graph areas also have a background color
which is XRT3D_DEFAULT_COLOR (transparent) by default. For example, the
property to change the legend background color is
XRT3D_LEGEND_BACKGROUND_COLOR. The data area of the chart also has its
own background color, specified by
XRT3D_DATA_AREA_BACKGROUND_COLOR.

Foreground Colors
The window foreground color is black by default, and is specified with the
XRT3D_FOREGROUND_COLOR property. It will be used as the foreground color
for each of the header, footer, legend and graph areas, unless a different foreground
color is specified for one or more of these areas. For example, to specify a different
header foreground color, use the XRT3D_HEADER_FOREGROUND_COLOR
property.

Specifying Colors
All color properties take a valid Windows color reference as their value. Use
Xrt3dSetValues() to set a property to a color reference created with the RGB macro.

Alternately, use Xrt3dSetPropString() to set a property to a named color string, as
shown by the following example:

Xrt3dSetPropString(hChart,
XRT3D_BACKGROUND_COLOR,"skyblue");

Olectra Chart recognizes over 200 colors (ranging from “Aquamarine” to
“YellowGreen”). A list of recognized colors can be found in the file OC_COLOR.H,
located in Olectra Chart’s \INCLUDE directory.

Palette Handling
Because the charts created by Olectra Chart look best when rendered using solid
colors, Olectra Chart automatically adds new solid colors to the Windows palette
when creating the chart or changing color properties. This saves the programmer the
step of allocating a new color in the palette before setting a color property. If the
palette is full, the color is set to the nearest palette color or by dithering the closest
palette colors, depending on the macro or function you used to specify the color.

Once a chart is created, an application should not update or change the Windows
palette directly. Changes to any of the chart’s colors should be made by updating the
appropriate chart properties (such as XRT3D_BACKGROUND_COLOR).

44 Part I ■ Using the Chart

The Windows color palette is a shared resource. In some situations, the number of
colors in use by all the applications being displayed is more than the number of
palette entries available. In this case, the colors in some windows will “flash” to
inappropriate colors as the user uses different applications.

Palette Notification Message
To ensure proper color palette handling, your application needs to handle the
XRT3DN_PALETTECHANGED notification message, as well as
WM_QUERYNEWPALETTE and WM_PALETTECHANGED. The
XRT3DN_PALETTECHANGED message is sent to a chart’s parent window after the
chart control has changed its color palette. For more information on this message,
refer to Appendix D. The SIMPLE.C example in Appendix F provides an example
of a program which handles XRT3DN_PALETTECHANGED.

3.19 Double Buffering

Double buffering is a graphics technique which will reduce the amount of flashing
perceived by a user when a chart changes.

When XRT3D_DOUBLE_BUFFER is TRUE, every time Olectra Chart changes a
chart, it will:

■ allocate (if necessary) and clear an off-screen bitmap.

■ render the complete image to the off-screen bitmap.

■ copy the off-screen bitmap to the screen.

When XRT3D_DOUBLE_BUFFER is FALSE, every time Olectra Chart changes a
chart it will clear the screen image (possibly causing a visual flash) and then render
the complete image to the visible window (possibly allowing the user to see the chart
being drawn piece by piece).

By default, XRT3D_DOUBLE_BUFFER is TRUE. However, setting it to FALSE can
improve the graphing performance and reduce memory requirements.

3.20 Output and Printing

Many applications need to provide users with a way to get a hardcopy of a chart they
see on the screen. Olectra Chart provides several procedures that output chart
representations to files or printers. These procedures work correctly even when the
chart control is obscured by other windows. These procedures are fully described in
Appendix C.

Chapter 3 ■ Programming Olectra Chart 45

Output/Printing Procedures
The procedures listed below are fully documented in Appendix B on page 95:

Printing Charts
To print a chart using the standard Windows Print dialog box, call Xrt3dPrint(). This
procedure allows you to specify the image format and the size/position as described
above; its only difference is that it displays the Print dialog box.

Xrt3dDrawToDC()
Use the Xrt3dDrawToDC() procedure for more complex chart output. For instance,
to print several charts on one page, call Xrt3dDrawToDC() for each chart, using the
top, left, width and height arguments to specify each chart’s different size/position.
Figure 24 shows using Xrt3dDrawToDC() for a printing function that prints a chart to
the default printer without using the Windows Print dialog box.

Xrt3dDrawToClipboard() Outputs a chart image to the Windows clipboard
using the graphics format you specify.

Xrt3dDrawToDC() Outputs a chart image to any device context (DC)
at the scale and graphics format you specify.

Xrt3dDrawToFile() Outputs a chart image to a file using the graphics
format you specify.

Xrt3dPrint() Outputs a chart image to a printer, using the
Windows Print dialog box.

46 Part I ■ Using the Chart

Figure 24 Non-interactive chart printing procedure

BOOL
printGraph(HXRT3D hChart)
{

PRINTDLGpd;
DOCINFO di;
HDC hdc;
TEXTMETRIC tm;
RECT rect;

memset ((void *) &pd, 0, sizeof(pd));
pd.lStructSize = sizeof(pd);
pd.hwndOwner = NULL;
pd.Flags = PD_RETURNDC | PD_RETURNDEFAULT;
pd.hInstance = NULL;
PrintDlg(&pd);
hdc = pd.hDC;

if (!hdc) {
return (FALSE);

}

di.cbSize = sizeof(di);
di.lpszDocName = "My Graph";
di.lpszOutput = NULL;

StartDoc(hdc, &di);
StartPage(hdc);

GetTextMetrics(hdc, &tm);

/* Define graph size and output graph */
rect.left = tm.tmAveCharWidth * 2;
rect.top = (tm.tmHeight + tm.tmExternalLeading) * (3);
rect.right = tm.tmAveCharWidth * 42;
rect.bottom = (tm.tmHeight + tm.tmExternalLeading) * (25);

Xrt3dDrawToDC(hChart, hdc, XRT3D_DRAW_METAFILE,
XRT3D_DRAWSCALE_NONE, rect.left, rect.top,
rect.right-rect.left, rect.bottom-rect.top);

EndPage(hdc);
EndDoc(hdc);
DeleteDC(hdc);
return (TRUE);

}

47

4
Olectra Chart Data

Data Overview ■ The Xrt3dData Structure

4.1 Data Overview

Data to be graphed can originate from diverse sources: files, databases, real time data
feeds, or even unrelated processes running on the machine. The data can represent
the results of an experiment or the solution to an analytical problem. Olectra Chart
displays data graphically. It does not do any analysis of the data, except for possibly
displaying its zone and contour distributions.

This chapter discusses the Xrt3dData structure in detail and offers examples of
allocating and loading the Xrt3dData structure.

Rules and Guidelines
Olectra Chart graphs surfaces that are increasing in X and Y. It does not graph
surfaces that fold back in X or Y (such as a sphere). Olectra Chart expects its data to
come from a regularly or irregularly gridded surface. Think of X and Y gridlines
forming a mesh. When gridlines meet, they define a point which has a Z value. If a
point doesn’t have a Z value, it is called a hole.

Olectra Chart is optimized for small dimension meshes. Ideally, grids should not be
more than 100 x 100. Very large dimension data will take longer to graph, and the
results may not be satisfactory. If you need to graph large dimension data, thin it out
before using it with Olectra Chart. For example, you might decide to load every
tenth grid point into the Xrt3dData structure or use the Xrt3dDataWindow()
procedure.

48 Part I ■ Using the Chart

Figure 25 7 x 4 Regular grid and 8 x 6 Irregular grid

Holes in the Data
The Xrt3dData structure contains an element called noval. Whenever Olectra Chart
sees values in the grid data that are the same as noval, it will treat that grid
intersection as a hole. You should set noval to be a value that is well outside of the
range of your data. For example, you may want to set it to XRT3D_HUGE_VAL.

Figure 26 Example of a Hole. (Chart on left has noval set to 0.)

Data from a File
If the data exists in a file, and it does not need to be changed or updated in real time,
there are two options to consider. The first option is to massage the data so that the
file conforms to a syntax understood by Xrt3dMakeDataFromFile(). This procedure
will allocate the Xrt3dData structure and load it with data from a named file.
Xrt3dMakeDataFromFile() is fully described in Appendix C. There is also a
corresponding Xrt3dSaveDataToFile() procedure.

Another approach is to allocate an Xrt3dData structure using Xrt3dMakeGridData()
or Xrt3dMakeIrGridData() and populate it with data by reading the data file
(perhaps by using fgets() or fscanf()).

X Dimension

Y
Di

m
en

si
on

Origin is at
(xorig, yorig) and

has value Z0,0

xstep

ys
te

p

Every Grid point, like
this one at (4,2),

has a Z value: Z4,2

If nothing should be
graphed at this point,

set Z2,1 equal to noval.

Regular Grid Data

X Dimension

Y
Di

m
en

si
on

Origin is at
(xorig, yorig) and

has value Z0,0

Every Grid point, like
this one at (6,3),

has a Z value: Z6,3

If nothing should be
graphed at this point,

set Z4,2 equal to noval.

Irregular Grid Data

Chapter 4 ■ Olectra Chart Data 49

Changing Data
It is easy to change data while leaving other control properties unchanged. Programs
can create any number of Xrt3dData structures and then switch among them by
setting the XRT3D_SURFACE_DATA property to point to the current data.

Real Time Performance
For the best possible real time performance, try to keep the grid dimensions small.
DrawShaded and DrawZones are the slowest types of displays. DrawMesh is the
fastest type of display. If XRT3D_DRAW_HIDDEN_LINES is TRUE, Olectra Chart
uses an optimized algorithm to speed display even further. Keeping the window size
small and turning off double buffering will also improve performance. Use of
XRT3D_REPAINT can also improve performance dramatically.

Responsibility for Data
It is the application’s responsibility to allocate and destroy all required Xrt3dData
structures. Olectra Chart does not make a copy of the data; instead, it references data
in the application’s memory pointed to by XRT3D_SURFACE_DATA and by
XRT3D_ZONE_DATA.

If Olectra Chart has to repaint the control window, it will use the data pointed to by
XRT3D_SURFACE_DATA. An application may adjust the values inside an
Xrt3dData structure while that structure is in use, if it can ensure that the structure
will be correct when next required by Olectra Chart. Remember to reset the
XRT3D_SURFACE_DATA property after changing any data values so that Olectra
Chart refreshes the display.

4.2 The Xrt3dData Structure

Whenever Olectra Chart displays a chart image, it uses the data values located in the
Xrt3dData structure pointed to by the XRT3D_SURFACE_DATA property.

The Xrt3dData structure is defined in the OLCH3DCM.H header file. (It is also
defined in Appendix E.) The Xrt3dData structure is defined as a union of regular and
irregular grid structures:

typedef union{
Xrt3dGridData g; /* regular grid */
Xrt3dIrGridData ig; /* irregular grid */

} Xrt3dData;

Regular Grid Data
The Xrt3dGridData structure is defined as follows:

typedef struct {
Xrt3dDataType type; /*XRT3D_DATA_GRID*/
int numx, numy;
double noval;
double xstep, ystep;
double xorig, yorig;
double **values;

}Xrt3dGridData;

50 Part I ■ Using the Chart

The Xrt3dGridData structure contains a type field which is always initialized to
XRT3D_DATA_GRID by Xrt3dMakeGridData() and Xrt3dMakeDataFromFile().

numx and numy are integers defining the number of grid lines (i.e. elements) in the X
and Y dimensions. For surface and histogram charts, numx and numy must be ≥ 2. For
bar charts, numx and numy must be ≥ 1.

The special value which Olectra Chart treats as “no value” is specified by noval. The
distance between grid lines in the X and Y direction is specified by xstep and ystep,
and should always be > 0. The origin of the entire grid is specified with xorig and
yorig.

values is a two-dimensional array of the Z values for each grid point in X major order,
as Figure 27 illustrates.

Figure 27 The Two Dimensional Array of Z Values

The easiest way to allocate the Xrt3dData structure is by using
Xrt3dMakeGridData(). This procedure is described in Appendix C.

Irregular Grid Data
The Xrt3dIrGridData structure is defined as follows:

typedef struct {
Xrt3dDataType type; /*XRT3D_DATA_IRGRID*/
int numx, numy;
double noval;
double *xgrid, *ygrid;
double **values;

}Xrt3dIrGridData;

The Xrt3dGridData structure contains a type field which is always initialized to
XRT3D_DATA_GRID by Xrt3dMakeIrGridData() and Xrt3dMakeDataFromFile().

numx and numy are integers defining the number of grid lines (i.e. elements) in the X
and Y dimensions. For surface and histogram charts, numx and numy must be ≥ 2. For
bar charts, numx and numy must be ≥ 1.

[z0,0 z0,1 z0,2 . . . z0,numy - 1]values

[z1,0 z1,1 z1,2 . . . z1,numy - 1]

[z2,0 z2,1 z2,2 . . . z2,numy - 1]

[znumx - 1,0 . . . znumx - 1,numy - 1]

. . .

[z0

z1

z2

.

znumx - 1]

.

.

Chapter 4 ■ Olectra Chart Data 51

The special value which Olectra Chart treats as “no value” is specified by noval. xgrid
and ygrid are arrays of doubles of length numx and numy which contain the values of
the X and Y grid lines.

values is a two-dimensional array of the Z values for each grid point in X major order.

Figure 28 An Irregular Surface Plot

Example of Setting Values
An application can easily access the Xrt3dData structure to read or change values.
The following example initializes a regular grid surface to 42.0:

int i, j;
Xrt3dData *data;

data = Xrt3dMakeGridData(...);

for (i = 0; i < data->g.numx; i++) {
for (j = 0; j < data->g.numy; j++) {

data->g.values[i][j] = 42.0;
}

}

Convenience Procedures
There are a number of Xrt3dData structure manipulation convenience procedures
included with Olectra Chart. These procedures are fully described in Appendix C on
page 99.

Xrt3dDataCopy() Creates a copy of an Xrt3dData structure.

Xrt3dDataShaded() Creates a new Xrt3dData structure from an existing
structure and fills it with a shaded relief map of the original
data.

Weekly Bond Yield Curves
− 1982 −

16% 15 14 13 12 11 10 9 8%

52 Part I ■ Using the Chart

Xrt3dDataSmooth() Smooths the data in an Xrt3dData structure using center-
weighted averaging.

Xrt3dDataWindow() Creates a new Xrt3dData structure from an existing
structure, extracting a subset of the original data and
resampling it using either cubic or linear splines.

53

5
Programming User Interaction

Default User Interaction ■ Overview of Action Maps and Messages

Starting User Interaction ■ Updating User Interaction
Ending User Interaction ■ Overview of Action Maps and Messages

Interacting with Chart Data ■ Window Resizing

This chapter describes the user-interaction features of Olectra Chart—how a user can
interact with the chart and how an application can control interaction.

5.1 Default User Interaction

By default, an end-user can rotate, translate, scale, and zoom into the unit cube. An
application can also define action maps which manipulate a chart programmatically.
Figure 29 shows the user interactions enabled by Olectra Chart’s default action
maps. Note that if you have a three-button mouse, holding down the middle mouse
button is equivalent to simultaneously holding down the left and right mouse
buttons.

54 Part I ■ Using the Chart

Figure 29 Olectra Chart’s Default User Interactions

Scaling
• Press Ctrl and

hold down both mouse
buttons

• Move mouse down
to zoom in

• Move mouse up
to zoom out

Return to
Default
• Press “r”

• All scaling, translation,
and zooming removed

Zooming
• Press Ctrl and

hold down left mouse
button

• Move mouse to select
the area to zoom into

Translation
• Press Shift and

hold down both mouse
buttons

• Move mouse to
shift the graph

Rotation
• Hold down both mouse

buttons and either:

• Move mouse counter-
clockwise to rotate view
clockwise or

• Press x, y, z, or e to select
an axis, and then move
mouse perpendicular to
axis

Chapter 5 ■ Programming User Interaction 55

5.2 Overview of Action Maps and Messages

Olectra Chart’s default action maps define user events that cause some interactive
action within the control. You can customize user interaction through the following
mechanisms:

■ Action maps—An application can change or remove the default actions.

■ Messages—An application can be notified as a user interacts with the control by
defining message handler procedures that are called before, during, and after
user interaction. A message handler procedure can affect each interaction in such
ways as disallowing or constraining it. See the section on each interaction for
details on using its callback.

Three Interaction Stages
Olectra Chart’s default user interaction passes through three stages:

■ Starting user interaction

■ Updating user interaction, and

■ Ending user interaction

An interaction must pass through these stages in sequence, and an application can be
notified by messages during each stage. Each stage is described in the following
sections.

5.3 Starting User Interaction

The XRT3DN_MODIFY_START message is passed to the window’s message
handler to notify the application that a user interaction is about to begin. Figure 30
illustrates this.

Figure 30 XRT3D_ACTION_MODIFY_START Action

Shift <Btn2Down>

Event

XRT3D_ACTION_

Action

Ctrl <Btn2Down>

<Btn2Down>

Ctrl <Btn1Down>

Proceed to
Update
Stage

No YesIs
doit = True?

Pass message
XRT3DN_MODIFY_START

to message handler
MODIFY_START

56 Part I ■ Using the Chart

Disabling All User Interaction
You can use the XRT3DN_MODIFY_START message to disable any user
interaction regardless of the action maps installed. The window’s message handler is
passed the following message:

XRT3DN_MODIFY_START:
hWnd = (HWND) wParam;
mcb = (Xrt3dModifyCallbackStruct *) lParam;

typedef struct {
BOOL doit;

} Xrt3dModifyCallbackStruct;

Set the doit parameter of this structure to FALSE to disable all user interactions.
When doit is FALSE, all “update” actions are disabled until the next
XRT3DN_MODIFY_START message is passed.

5.4 Updating User Interaction

One of several messages is passed to notify the application that a user interaction is
about to be updated. No action can update the chart unless the interaction has
successfully passed through the XRT3D_ACTION_MODIFY_START action.

Controlling Previewing
As a user rotates, scales, or translates a chart, Olectra Chart can provide user
feedback either by drawing a quick outline of the unit cube or by drawing the entire
unit cube. The XRT3D_PREVIEW_METHOD property controls this feedback, and
can be set to either XRT3D_PREVIEW_CUBE (draw quick outline—the default) or
XRT3D_PREVIEW_FULL (draw full unit cube). Drawing the entire unit cube works
best with small datasets.

5.4.1 Scaling, Translation, and Zooming

The XRT3D_ACTION_SCALE action updates interactive scaling of the chart. The
XRT3D_ACTION_TRANSLATE action updates interactive translation of the chart.
The XRT3D_ACTION_ZOOM_END action zooms into the chart at the area defined
by the “zoom rubberband” (defined by the XRT3D_ACTION_ZOOM_UPDATE
action). These routines alter the XRT3D_VIEW_SCALE and
XRT3D_VIEW_[XY]TRANSLATE properties. Figure 31 illustrates these action
routines.

Figure 31 Scale, Translate and Zoom Actions

XRT3D_ACTION_TRANSLATE

Ctrl <Btn2Motion>

Event Action

Shift <Btn2Motion>

Ctrl <Btn1Up>

Apply new values
(from callback
struct) to graph

YesIs
doit = True?

XRT3D_ACTION_SCALE

XRT3D_ACTION_ZOOM_END

Pass message
to message

handler

Pass message
XRT3DN_TRANSFORM

to message handler

Chapter 5 ■ Programming User Interaction 57

Controlling Interaction
You can use the XRT3DN_TRANSFORM message to control scaling, translation, or
zooming. The following message is passed to the window’s message handler:

XRT3DN_TRANSFORM:
hWnd = (HWND) wParam;
tcb = (Xrt3dTransformCallbackStruct *) lParam;

typedef struct {
double scale;
double xtranslate;
double ytranslate;
BOOL doit;

} Xrt3dTransformCallbackStruct;

A Transform action can change the scale, xtranslate, ytranslate, and doit parameters,
which are then applied to the chart. For example, to constrain scaling, examine and
change the scale parameter.

Resetting Interactions
The XRT3D_ACTION_RESET action removes all scaling and translation by
restoring XRT3D_VIEW_SCALE and XRT3D_VIEW_[XY]TRANSLATE to their
default values.

The XRT3DN_TRANSFORM message is sent to the window’s message handler. An
application can deny a reset by setting doit to FALSE.

5.4.2 Rotation

The XRT3D_ACTION_ROTATE action updates interactive rotation of the chart.
This routine alters the XRT3D_[XYZ]ROTATION properties. Figure 32 illustrates
this action routine.

XRT3D_VIEW_NORMALIZED
By default, Olectra Chart resizes the unit cube so that the entire chart is visible
(including axis titles and annotation); this setting causes jerky interactive rotation. To
allow a user to smoothly rotate a chart, XRT3D_VIEW_NORMALIZED should be
set to FALSE before interactive rotation begins.

Figure 32 XRT3D_ACTION_ROTATE Action

Pass message
XRT3DN_ROTATE

to message handler

Event Action

Apply new values
(from callback

struct) to graph

YesIs
doit = True?<Btn2Motion>

XRT3D_ACTION_
ROTATE

58 Part I ■ Using the Chart

Controlling Rotation
You can use the XRT3D_ACTION_ROTATE action to control rotation. The
following message is sent to the window’s message handler:

XRT3DN_ROTATE:
hWnd = (HWND) wParam;
tcb = (Xrt3dRotateCallbackStruct *) lParam;

typedef struct {
double xrotation;
double yrotation;
double zrotation;
BOOL doit;

} Xrt3dRotateCallbackStruct;

A Rotate action can change the xrotation, yrotation, zrotation, and doit parameters.

5.5 Ending User Interaction

The XRT3D_ACTION_MODIFY_END action redraws the control and notifies the
application that a user interaction has finished. The message
XRT3DN_MODIFY_END is sent:

XRT3DN_MODIFY_END:
hWnd = (HWND) wParam;

Note that no structure is passed.

5.6 Programming Actions

All Olectra Chart actions are customizable: you can determine which Microsoft
Windows message should call a particular action, and decide on the appropriate
steps to perform in each case.

Only mouse messages and the WM_KEYDOWN and WM_KEYUP messages are
recognized.

5.6.1 Changing the Action Maps

An action map is a mapping of a particular Windows message to a predefined action.
Each action map consists of three parts: the Windows message, any modifier flags,
and the keycode (only if WM_KEYDOWN or WM_KEYUP).

The following messages are recognized:

WM_LBUTTONDBLCLK double-click left mouse button

WM_MBUTTONDBLCLK double-click both mouse buttons

WM_RBUTTONDBLCLK double-click right mouse button

WM_LBUTTONDOWN press left mouse button

WM_MBUTTONDOWN press both mouse buttons

Chapter 5 ■ Programming User Interaction 59

WM_RBUTTONDOWN press right mouse button

WM_LBUTTONUP release left mouse button

WM_MBUTTONUP release both mouse buttons

WM_RBUTTONUP release right mouse button

WM_MOUSEMOVE move mouse

WM_KEYDOWN press key

WM_KEYUP release key

Note that if you have a three-button mouse, holding down the middle mouse button
is equivalent to simultaneously holding down the left and right mouse buttons.

Modifier Flags
The following modifier flags are recognized:

MK_LBUTTON left mouse button

MK_MBUTTON both mouse buttons

MK_RBUTTON right mouse button

MK_ALT Alt key

MK_SHIFT Shift key

MK_CONTROL Ctrl key

All actions are normalized to match the event sent by Microsoft Windows. For
example, MK_LBUTTON is added to the modifier flags if a WM_LBUTTONDOWN
message is sent.

Recognized Keycodes
Any valid VK_ value is treated as a recognized keycode. Note the following,
however:

■ All alphabetic characters are forced to upper case.

■ MK_SHIFT must appear in the modifier if capitals are desired.

■ The CapsLock key toggles the meaning of the MK_SHIFT modifier.

Determining Action Mappings
To determine which action is mapped to a particular Microsoft Windows message,
use the Xrt3dGetAction() function. For example, the following code determines
which action is mapped to the left mouse button down message:

Xrt3dAction action;

action = Xrt3dGetAction(hXrt3d, WM_LBUTTONDOWN, 0, 0);

Any unmapped action returns XRT3D_ACTION_NONE.

To return the entire list of action maps, call Xrt3dGetActionList(). The pointer
returned points to read-only memory.

60 Part I ■ Using the Chart

Programming Action Mappings
To program an action mapping, call Xrt3dSetAction(). For example, the following
code removes all previously defined actions:

Xrt3dActionItem *item, *next;

item = Xrt3dGetActionList(hXrt3d);
for (; item; item = next) {

next = item->next;
Xrt3dSetAction(hXrt3d, item->msg, item->modifier,

item->keycode, XRT3D_ACTION_NONE);
}

Setting an action mapping to XRT3D_ACTION_NONE removes the action.

The following example uses the left mouse button plus the Alt key for rotation
instead of both mouse buttons:

/* remove all use of both buttons */
Xrt3dSetAction(hXrt3d, WM_MBUTTONDOWN, 0, 0, XRT3D_ACTION_NONE);
Xrt3dSetAction(hXrt3d, WM_MOUSEMOVE, MK_MBUTTON, 0,

XRT3D_ACTION_NONE);
Xrt3dSetAction(hXrt3d, WM_MBUTTONUP, 0, 0, XRT3D_ACTION_NONE);

/* reprogram for Alt+Left */
Xrt3dSetAction(hXrt3d, WM_LBUTTONDOWN, MK_ALT, 0,

XRT3D_ACTION_MODIFY_START);
Xrt3dSetAction(hXrt3d, WM_MOUSEMOVE, MK_LBUTTON|MK_ALT, 0,

XRT3D_ACTION_ROTATE);
Xrt3dSetAction(hXrt3d, WM_LBUTTONUP, MK_ALT, 0,

XRT3D_ACTION_MODIFY_END);

5.6.2 Disabling and Disallowing Interactions

The easiest way to disallow interactions in Olectra Chart is to catch the
XRT3DN_MODIFY_START message, and set the doit element in the passed
structure to FALSE. Another approach is to remove all action mappings, as shown in
the previous section.

To remove individual interactions, use Xrt3dSetAction() to set the desired
interaction to XRT3D_ACTION_NONE.

5.6.3 Calling Actions Directly

To call a chart action directly, use Xrt3dCallAction(). This function expects four
arguments:

■ The graph handle

■ The action to be called

■ The X- and Y-coordinates of the window location at which the action is to be
called

When an action is invoked, the window coordinates specified by Xrt3dCallAction()
must be contained within the graph area.

Chapter 5 ■ Programming User Interaction 61

5.7 Interacting with Chart Data

Microsoft Windows provides a mechanism for registering interest in events such as
mouse movement, mouse button clicks, and keyboard clicks. An Olectra Chart
program can make use of the event handling mechanisms to react to events that
happen over a chart control.

Olectra Chart provides procedures for mapping the pixel coordinates of an event to:

■ the indices of the grid point closest to the event coordinates.

■ the exact chart coordinates at the event coordinates.

Xrt3dPick()
The Xrt3dPick() procedure takes a chart control handle, (x,y) pixel coordinates and a
pointer to an Xrt3dPickResult structure. It fills in the Xrt3dPickResult structure with
information about the grid point closest to the specified pixel coordinates on the
specified chart control:

Xrt3dRegion
Xrt3dPick(graph, pix_x, pix_y, pick)

HXRT3D graph;
int pix_x, pix_y;
Xrt3dPickResult *pick;

The Xrt3dPickResult structure is defined as:

typedef struct {
 int pix_x, pix_y;

int xindex, yindex;
 int distance;

} Xrt3dPickResult;

The fields are broken down as follows:

Xrt3dPick() returns one of the following values:

pix_x The x pixel coordinate passed to Xrt3dPick().

pix_y The y pixel coordinate passed to Xrt3dPick().

xindex The index of the X grid line closest to the pixel coordinates.

yindex The index of theY grid line closest to the pixel coordinates.

distance The screen distance (in pixels) between the given pixel
coordinates and the on-screen display of the data value
Z(xindex, yindex).

XRT3D_RGN_NOWHERE The given pixel coordinates are not close enough to
anything to be picked. xindex and yindex are set
to -1.

62 Part I ■ Using the Chart

Xrt3dUnpick()
The Xrt3dUnpick() procedure is the opposite of Xrt3dPick(). It determines the pixel
coordinate displaying a grid point. See Appendix C on page 99 for more details.

Figure 33 Message handler calling Xrt3dPick()

Xrt3dMap()
The Xrt3dMap() procedure takes a chart control handle, (x,y) pixel coordinates and
a pointer to a map structure. It maps the center of the pixel coordinates to a point on
the surface. Surface values are obtained by interpolating from the nearest grid values.
It writes the pixel coordinates and floating-point chart coordinates into the map
structure.

Xrt3dRegion
Xrt3dMap(graph, pix_x, pix_y, map)

HXRT3D graph;
int pix_x, pix_y;
Xrt3dMapResult *map;

The Xrt3dMapResult structure is defined as:

typedef struct {
int pix_x, pix_y;
double x, y, z;

} Xrt3dMapResult;

The fields are broken down as follows:

XRT3D_RGN_IN_GRAPH The given pixel coordinates are in the graph area.
xindex and yindex and distance are set correctly. If a
hole in the data is picked, xindex and yindex are set
to -1.

XRT3D_RGN_IN_LEGEND The given pixel coordinates are in the legend area.
xindex and yindex are set to -1.

XRT3D_RGN_IN_HEADER The given pixel coordinates are not in the graph
area, but are in the header area. xindex and yindex are
set to -1.

XRT3D_RGN_IN_FOOTER The given pixel coordinates are not in the graph
area, but are in the footer area. xindex and yindex are
set to -1.

pix_x The X coordinate passed into Xrt3dMap().

WM_LBUTTONDOWN:
int x, y;
Xrt3dPickResult p;

x = LOWORD(lParam);
y = HIWORD(lParam);
Xrt3dPick(hXrt3d, x, y, &pick);

Chapter 5 ■ Programming User Interaction 63

Xrt3dMap() returns XRT3D_RGN_NOWHERE, XRT3D_RGN_IN_FOOTER,
XRT3D_RGN_IN_HEADER, XRT3D_RGN_IN_LEGEND or
XRT3D_RGN_IN_GRAPH. If the mapped pixel is not on the surface, the map
result’s x, y and z elements are all set to XRT3D_HUGE_VAL.

Xrt3dUnmap()
The Xrt3dUnmap() procedure is the opposite of Xrt3dMap(). It maps from chart
coordinates to pixel coordinates. See Appendix C on page 99 for more details.

Xrt3dComputeZValue()
The value of a grid cell can be modified programmatically using
Xrt3dComputeZValue(). This function is passed the indices of the grid cell to be
modified and the new pixel location of the point.

This procedure can be used to support the interactive modification of a grid value.
For example: when the user clicks somewhere on the surface, call Xrt3dPick() to
determine the closest grid index. Then, as the mouse is dragged, new pixel values are
passed along with the grid indices to Xrt3dComputeZValue(), which returns the new
Z value for that grid cell. When the drag has completed, place the new Z value into
the appropriate grid cell, and assign the updated data structure to the property
XRT3D_SURFACE_DATA. See the bars demo program and source code for an
example of this type of user interaction.

Mapping/Picking Bar Charts
Xrt3dMap() and Xrt3dPick() can be used on bar charts as well as 3D surface charts. If
passed the coordinates of a pixel that is not part of any bar, Xrt3dMap() will return
XRT3D_HUGE_VAL in the map result’s x, y and z elements; Xrt3dPick() will return
-1 in the pick result’s x and y indices.

For pixels that are used to display any portion of the top, bottom or sides of a bar,
Xrt3dMap() returns the actual X, Y and Z values of the pixel.

5.8 Window Resizing

Most applications should allow the user to resize a window containing a chart control
and have the control adjust to its new window size.

pix_y The Y coordinate passed into Xrt3dMap().

x The mapped chart coordinate X-value.

y The mapped chart coordinate Y-value.

z The mapped chart coordinate Z-value.

64 Part I ■ Using the Chart

To resize the chart when the user resizes the window containing it, change the chart
control’s size in a WM_SIZE message handler, for example:

case WM_SIZE:
{

int width = LOWORD(lParam);
int height = HIWORD(lParam);

SetWindowPos(hwndXrt3D, NULL, 0, 0, width, height,
SWP_NOMOVE | SWP_NOZORDER);

break;
}

Repaint & Resize Messages
An application can find out when the chart control is repainted or resized by
checking for the XRT3DN_REPAINTED or XRT3DN_RESIZED notification
messages. These messages contain information in the lParam parameter. See
Appendix D on page 121 for complete details. The resize message is sent after the
chart is resized. The repaint message is sent after the chart is redrawn.

An application can use these messages to draw onto the chart image using Windows
API functions. Another use is to adjust the control properties, depending on the size
of the chart control.

The following message handler uses XRT3DN_RESIZED to remove the legend from
the chart when it gets too small:

case XRT3DN_RESIZED:
cb = (Xrt3dCallbackStruct *) lParam;
if (cb->width <= 300) {

Xrt3dSetValues(hChart,
XRT3D_LEGEND_SHOW, FALSE,

 NULL);
} else {

Xrt3dSetValues(hChart,
XRT3D_LEGEND_SHOW, TRUE,

 NULL);
}
break;

65

6
Advanced Olectra Chart Programming

4D Surface Charts ■ 4D Bar Charts

Text Objects ■ Customizing the Distribution Table
Customizing Legend Labels ■ Customizing Contour Styles

This section covers topics that programmers of advanced Olectra Chart applications
will find useful. It assumes that you are already familiar with Olectra Chart.

6.1 4D Surface Charts

Olectra Chart can be used to display 4D charts using color as a fourth dimension.
The additional color information is provided to Olectra Chart as a second Xrt3dData
structure using the XRT3D_ZONE_DATA property.

To create a 4D chart:

■ Set DrawZones and DrawShaded to TRUE.

■ Using the XRT3D_SURFACE_DATA property, attach data to provide the 3D
surface shape.

■ Attach data to be used for deriving the zoning and contouring colors as
XRT3D_ZONE_DATA.

■ Make sure both Xrt3dData structures have the same origin and the same number
of X and Y points. If regularly gridded data is being used, then the xstep and ystep
must be identical in both structures. If irregularly-gridded data is being used, the
values of xgrid and ygrid must be identical in both structures. It is not possible to
use a regularly gridded data set for the surface data, and an irregularly gridded
data for the zone data, or vice versa. If any of these conditions are not met, a 4D
chart will not be displayed.

If the zone data has a hole that is not in the surface data, the surface in the region of
the hole will be displayed as if the zone data were not attached.

66 Part I ■ Using the Chart

Figure 34 4D chart—Zone/Contour data is different from Surface data

6.2 4D Bar Charts

When XRT3D_ZONE_DATA is supplied for a bar chart, the values in the zone data
are used in conjunction with the distribution table to apply zone colors to the bars in
the grid.

When zone data is supplied and DrawZones is TRUE, the bar is not broken up into
separate colored segments. Rather, each bar is individually colored according to the
zoned height of the bar. Contours are never drawn when zone data is supplied.
Figure 35 gives an example of a 4D bar chart.

Figure 35 4D Bar Chart

Average MPG of Three Cars Over Five Years
Correlated with Number of Days Since TuneUp

Number of Days
Since Tuneup

over 120
under 120
under 90
under 30

Chapter 6 ■ Advanced Olectra Chart Programming 67

In a bar chart, the zone data structure is only referenced when DrawZones is TRUE.
A legend is generated based on the distribution table. The legend labels can be
replaced, or supplied in a property with the XRT3D_LEGEND_STRINGS property.
Section 6.5 on page 71 has more details on supplying legend strings.

6.3 Text Objects

A surface or bar chart can contain one or more text objects. A text object is an
independent rectangular region that can be attached to the chart in one of three
ways:

■ To a particular grid index,

■ To a point in 3D space, or

■ To a set of pixel coordinates on the control.

You can use text objects in a number of ways, such as annotating points of interest on
a surface or as “headers” that appear inside the unit cube.

Figure 36 Pixel and Grid Text Objects attached to a surface chart

Text Object Types
The XRT3D_TEXT_ATTACH_METHOD property specifies how a text object is
attached to the chart—this defines the type of text object it is. A Grid text object is
specified when attachment is XRT3D_ATTACH_INDEX or
XRT3D_ATTACH_POINT. A Pixel text object is specified when attachment is
XRT3D_ATTACH_PIXEL. A Grid text object displayed on a 2D chart (that is, a
surface with DrawMesh and DrawShaded set to FALSE) is referred to as a 2D Grid
text object. Figure 37 shows the properties that apply to text objects.

The following points summarize the characteristics of each text object type:

■ 2D Grid text objects—attached to the unit cube itself; drawn over the chart; scale
and translate with the chart; use stroke fonts.

Missing Value due to
Weather Disturbance

68 Part I ■ Using the Chart

■ 3D Grid text objects—attached to the unit cube itself (either to an X-Y grid point
or a point in 3D space); drawn from back to front; rotate, scale, and translate
with the chart; use stroke fonts.

■ Pixel text objects—similar to a header or footer; attached at a set of control pixel
coordinates; drawn over the chart; stay stationary when the chart rotates, scales
or translates; use X fonts; have a customizable border.

Note: Multiple text objects that intersect are not rendered correctly by Olectra
Chart. Applications should ensure that text objects are arranged so that they do not
intersect each other.

Figure 37 Text Object Property Summary

Creating a Text Object
To add a text object to a chart, create it as a child of the chart, as shown by the
following example:

HXRT3DTEXT text_obj;
char *strings[] = {"Hello World!", NULL};
text_obj = Xrt3dTextCreate(graph);
Xrt3dTextSetValues(text_obj, XRT3D_TEXT_STRINGS, strings, NULL);

Text
The text displayed in a text object is specified with the XRT3D_TEXT_STRINGS
property. Text objects can display multiple lines of text.

The alignment of multi-line text is specified with the XRT3D_TEXT_ADJUST
property. Text can be left-aligned (XRT3D_ADJUST_LEFT), centered
(XRT3D_ADJUST_CENTER), or right-aligned (XRT3D_ADJUST_RIGHT).

Common Properties
XRT3D_TEXT_ADJUST XRT3D_TEXT_ATTACH_METHOD XRT3D_TEXT_BACKGROUND_COLOR

XRT3D_TEXT_FOREGROUND_COLOR XRT3D_TEXT_LINE_SHOW XRT3D_TEXT_OFFSET_[XY] †

XRT3D_TEXT_PRINT_FONT XRT3D_TEXT_SHOW XRT3D_TEXT_STRINGS

† XRT3D_TEXT_OFFSET_[XY] does not apply to 3D Grid text objects

Grid-only Properties
XRT3D_TEXT_ATTACH_INDEX_[XY] XRT3D_TEXT_ATTACH_POINT_[XYZ] XRT3D_TEXT_PLANE

XRT3D_TEXT_STROKE_FONT XRT3D_TEXT_STROKE_SIZE

Pixel-only Properties
XRT3D_TEXT_ATTACH_PIXEL_[XY] XRT3D_TEXT_BORDER XRT3D_TEXT_BORDER_WIDTH

XRT3D_TEXT_FONT

Chapter 6 ■ Advanced Olectra Chart Programming 69

3D Grid Object Positioning
To attach a text object to a grid index, set XRT3D_TEXT_ATTACH_METHOD to
XRT3D_ATTACH_INDEX and XRT3D_TEXT_ATTACH_INDEX_[XY] to an X and
Y index on the chart. The X and Y values must be within the X and Y range of the
dataset.1 Olectra Chart draws the text object above the maximum Z value on the
surface. The offset properties are ignored but the plane the text object is oriented to
can be specified using XRT3D_TEXT_PLANE.

To attach a text object to a point in 3D space, set
XRT3D_TEXT_ATTACH_METHOD to XRT3D_ATTACH_POINT and
XRT3D_TEXT_ATTACH_POINT_[XYZ] to an X, Y, and Z point in 3D. These values
must be within the data range. If the Z value is less than the Z value on the surface,
Olectra Chart draws the text object below the minimum Z value; if it is greater or
equal to the dataset’s Z value (or equal to the hole value), the text object is drawn
above the maximum Z value. The offset properties are ignored but the plane the text
object is oriented to can be specified using XRT3D_TEXT_PLANE.

The following example positions a 3D Grid text object:

Xrt3dTextSetValues(my_text,
XRT3D_TEXT_ATTACH_METHOD, XRT3D_ATTACH_POINT,
XRT3D_TEXT_ATTACH_POINT_X, 20.0,
XRT3D_TEXT_ATTACH_POINT_Y, 20.0,
XRT3D_TEXT_ATTACH_POINT_Z, 500.0,
NULL);

2D Grid Object Positioning
Text objects on 2D surfaces are attached the same way as 3D surfaces
(XRT3D_TEXT_ATTACH_POINT_Z is ignored on text objects attached to a point in
3-D space). Olectra Chart draws these text objects on top of the chart in the order
they were created.

Use the XRT3D_TEXT_OFFSET_[XY] properties to move the text object away from
its point of attachment.

Pixel Object Positioning
To attach a text object to pixel coordinates on the control, set
XRT3D_TEXT_ATTACH_METHOD to XRT3D_ATTACH_PIXEL and
XRT3D_TEXT_ATTACH_PIXEL_[XY] to a set of (x,y) pixel coordinates. Olectra
Chart draws these text objects in the order they were created, after any Grid text
objects.

Use the XRT3D_TEXT_OFFSET_[XY] properties to move the text object away from
its point of attachment.

Connecting Line
You can place a line between a text object and its attachment point using the
XRT3D_TEXT_LINE_SHOW property. This property should be used with the

1. If the Z-value at the X and Y index is a hole, no text object is drawn because the hole is considered to be out of data range.

70 Part I ■ Using the Chart

XRT3D_TEXT_OFFSET_[XY] properties to set a distance between the text object
and the attachment point.

Font
Grid text objects use XRT3D_TEXT_STROKE_FONT and
XRT3D_TEXT_STROKE_SIZE to specify the font used. See Appendix E on page
125 for a list of the valid stroke fonts.

Pixel text objects use XRT3D_TEXT_FONT to specify the font used. This property is
specified the same as header, footer, and legend fonts. See section 3.15 on page 40
for further details.

Border
Pixel text objects can be enhanced with a border using the XRT3D_TEXT_BORDER
and XRT3D_TEXT_BORDER_WIDTH properties. Any valid Olectra Chart border
type may be used; see section 3.17 on page 42 for details on Olectra Chart borders.

Grid text objects do not use this property. They have a single-pixel border drawn in
the foreground color of the text object. If the background color is NULL, no border
appears.

Colors
You can set a background and foreground color for a text object using
XRT3D_TEXT_BACKGROUND and XRT3D_TEXT_FOREGROUND.

Text Object Performance
Applications should batch the creation or manipulation of multiple text objects. See
section 2.5 on page 15 for more information on batching.

Removing a Text Object
To remove a text object from the display, set XRT3D_TEXT_SHOW to FALSE. To
permanently destroy a text object, call Xrt3dTextDestroy().

6.4 Customizing the Distribution Table

By default, Olectra Chart will use a linear distribution table with
XRT3D_NUM_DISTN_LEVELS when DrawContours and/or DrawZones is TRUE.

To specify your own distribution table, set XRT3D_DISTN_METHOD to
XRT3D_DISTN_FROM_TABLE and then supply your own distribution table using
the XRT3D_DISTN_TABLE property.

XRT3D_DISTN_TABLE specifies a pointer to an Xrt3dDistnTable structure:

typedef struct {
int nentries;
double *entry;

} Xrt3dDistnTable;

Chapter 6 ■ Advanced Olectra Chart Programming 71

nentries tells Olectra Chart how many entries are in the table. entry is an array of
doubles specifying the boundaries of each level.

When a distribution table is defined, nentries defines the number of distribution levels
nlevels, and XRT3D_NUM_DISTN_LEVELS is ignored. Recall that to display nlevels
of distribution, nlevels contour line styles are needed, and the fill color from the (nlevel
+ 1)th contour style is needed for the last (highest) zone color when DrawZones is
TRUE.

For example, the following code defines a distribution table which specifies 2 levels.
The first fill color displays all values ≤ -5. The second style displays all values > -5,
and ≤ 40. The third style’s zone fill color displays all values > 40.

static double e[] = { -5.0, 40.0 };
static Xrt3dDistnTable mytable;

mytable.nentries = 2;
mytable.entry = e;

Xrt3dSetValues(mygraph,
XRT3D_DISTN_METHOD, XRT3D_DISTN_FROM_TABLE,
XRT3D_DISTN_TABLE, &mytable,
NULL);

6.5 Customizing Legend Labels

There are two ways of specifying your own legend labels. You can define your own
labeling function, or you can specify labels for each level in the distribution table.
Each method is described below.

Legend Label Function
To specify your own legend labels, set XRT3D_LEGEND_LABEL_FUNC to the
name of your own label generating function.

Whenever Olectra Chart needs to generate a legend label, it will call your function.
Your function must then return a label to use. The form of the function is:

char *
MyLegendFunc(widget, level, zmin, zmax, label)
HXRT3D widget;
int level;
double zmin, zmax;
char * label;

control is the handle of the chart control. level is the (zero-indexed) level that a label is
being generated for. zmin and zmax define the level’s lowest and highest values. label
is the string that Olectra Chart would generate by default.

To return to default labels, set XRT3D_LEGEND_LABEL_FUNC to NULL.

The label string can contain the special characters “\l”, “\c” and “\r” for left, center
and right field justification. Each field is preceded by one of these special characters.
Remember to escape the “\” itself with another “\”. If no special characters are
provided, left justification is assumed.

72 Part I ■ Using the Chart

For example, the following code generates normal legend labels, except when the
level includes Z=212. It will label this single level as “Boiling Zone”:

char *
mylabfunc(widget, level, zmin, zmax, label)
HXRT3D widget;
int level;
double zmin, zmax;
char * label;
{

if (zmin < 212.0 && 212.0 <= zmax)
return("\\cBoiling Zone")

else
return(label);

}

Xrt3dSetValues(mygraph;
XRT3D_LEGEND_LABEL_FUNC, mylabfunc,
NULL);

If the legend is stepped, and your label function returns NULL, Olectra Chart will
skip the legend entry altogether.

Legend Label Strings
Another way to get custom legend labels is to supply a list of strings to the
XRT3D_LEGEND_STRINGS property. These strings are used to annotate each level
in the distribution table. This method is most useful when displaying a 4D bar chart
where groups of bars with the same color require a common label.

The actual strings used can still be overridden programmatically using the
XRT3D_LEGEND_LABEL_FUNC property.

Chapter 6 ■ Advanced Olectra Chart Programming 73

6.6 Customizing Contour Styles

By default, Olectra Chart provides an array of 100 contour styles. The array used for
the chart is specified by the XRT3D_CONTOUR_STYLES property.You will need to
provide custom contour styles if:

■ it is important to your application to specify the precise contour style for any
particular level;

■ if you want to display more than 100 levels; or

■ if you want to uniquely identify contour lines. The Olectra Chart default contour
styles use only black solid lines of width 1.

It is usually easiest to specify more contour styles than will be needed for the number
of levels of distribution. If nstyles contour styles are provided, and the number of
distribution levels is nlevels, Olectra Chart will calculate the index into the contour
styles array for level i (0 ≤ i ≤ nlevels) as follows1:

Xrt3dContourStyle
Each contour style is defined by an Xrt3dContourStyle structure (declared in
the OLCH3DCM.H header file):

typedef struct {
char *fill_color; /*for zoning*/
char *line_color; /*line color*/
int line_width; /*line width*/
Xrt3dLinePattern lpat; /*2D contours only*/

} Xrt3dContourStyle;

The Xrt3dContourStyle data structure contains information about how Olectra Chart
should display contours and zones in a set of data. The fields are broken down as
follows:

1. x means floor(x); that is, the largest integer less than or equal to x.

fill_color The color used to demarcate the level when DrawZones is TRUE.
Use the RGB() macro to specify this color.

line_color The color used to demarcate the level’s contour line when
DrawContours is TRUE. Use the RGB() macro to specify this
color.

line_width The line width used to demarcate the level’s contour line when
DrawContours is TRUE. Must be greater than or equal to 0.
When line_width is zero, no line is drawn.

i nstyles 1–() nlevels⁄×

74 Part I ■ Using the Chart

Figure 38 Line Patterns

Explicit Contour Styles
If you do not want to use Olectra Chart’s default contour styles, you may set your
own contour styles.

Contour styles are accessed through the XRT3D_CONTOUR_STYLES property
and/or through the Xrt3dSetNthContourStyle() and Xrt3dGetNthContourStyle()
procedures.

XRT3D_CONTOUR_STYLES can be used to get or set the entire array of contour
styles. When used with Xrt3dGetValues(), the returned array pointer should be
considered read-only. The Xrt3dDupContourStyles() procedure may be used to
duplicate the returned contour styles array pointer. For example, to set the first and
second contour style’s line widths to 3 pixels thick, the following code could be used:

Xrt3dContourStyle **cs, **mycs;
Xrt3dGetValues(myg, XRT3D_CONTOUR_STYLES, &cs,

NULL);
mycs = Xrt3dDupContourStyles(cs);
mycs[0]->line_width = 3;
mycs[1]->line_width = 3;
Xrt3dSetValues(myg,

XRT3D_CONTOUR_STYLES, mycs,
NULL);

Xrt3dFreeContourStyles(mycs);

lpat The line pattern used to demarcate the level’s contour line when
DrawContours is TRUE. Line patterns are only honored when
viewing in 2D (i.e. when DrawMesh and DrawShaded are both
FALSE and when XRT3D_TYPE is XRT3D_TYPE_SURFACE).
The line pattern must be one of the XRT3D_LPAT_ constants
listed in Figure 38.

XRT3D_LPAT_NONE

XRT3D_LPAT_SOLID

XRT3D_LPAT_LONG_DASH

XRT3D_LPAT_DOTTED

XRT3D_LPAT_SHORT_DASH

XRT3D_LPAT_LSL_DASH

XRT3D_LPAT_DASH_DOT

Chapter 6 ■ Advanced Olectra Chart Programming 75

A program can get a pointer to a particular Xrt3dContourStyle structure using
Xrt3dGetNthContourStyle(). For example, the following code will print out the 50th
contour style’s line thickness and double it:

char buffer[100];

Xrt3dContourStyle*cstyle, my_cstyle;
cstyle = Xrt3dGetNthContourStyle(myg, 49,FALSE);
sprintf(buffer, "line width for 50th CStyle: %d",

cstyle->line_width);
MessageBox(hWnd, buffer, "Information", MB_OK);
my_cstyle = * cstyle;
my_cstyle.line_width = my_cstyle.line_width * 2;
Xrt3dSetNthContourStyle(myg, 49,

&my_cstyle, FALSE);

Contour Style Tips
To return to using default contour styles, call the Xrt3dResetContourStyles()
procedure.

The number of zoning or contouring levels, nlevels, is defined by
XRT3D_NUM_DISTN_LEVELS. (If a distribution table has been provided, then
nlevels is the number of entries in the table.) If DrawContours is TRUE and
DrawZones is FALSE, nlevels of contour styles will be needed. If DrawZones is
TRUE, nlevels + 1 contour styles will be needed, as the (nlevels+1)th contour style will
just be used for defining the last (i.e. highest) zone’s fill color.

If you want to have a one-to-one mapping from the supplied contour styles to the
styles used on screen, make sure that you supply exactly nlevels + 1 contour styles.

If too few contour styles are provided for the number of levels requested, Olectra
Chart will re-sample the supplied contour styles.

76 Part I ■ Using the Chart

Part
II

Reference
Appendices

79

A
Olectra Chart Property Reference

Control Synopsis

Olectra Chart Properties

This appendix lists all of the Olectra Chart properties in alphabetical order. Listed
after the property name are its data type and default value.

A.1 Control Synopsis
Include File: \INCLUDE\OLCH3D.H

Class Name: “OlectraChart3D”

A.2 Olectra Chart Properties

XRT3D_AXIS_STROKE_FONT Xrt3dStrokeFont XRT3D_SF_ROMAN_SIMPLEX
Specifies the font to be used for the axis annotation. May be set to any of the valid stroke fonts
listed in Appendix E.

XRT3D_AXIS_STROKE_SIZE int 80
Specifies the size of the axis annotation font. The size is measured in thousandths of the unit
cube size, and must be between 0 and 1000. See section 2.1 on page 11 for a description of the
unit cube.

XRT3D_AXIS_TITLE_STROKE_FONT Xrt3dStrokeFont XRT3D_SF_ROMAN_SIMPLEX
Specifies the font to be used for the axis titles. May be set to any of the valid stroke fonts listed
in Appendix E.

80 Part II ■ Reference Appendices

XRT3D_AXIS_TITLE_STROKE_SIZE int 80
Specifies the size of the axis title font. The size is measured in thousandths of the unit cube
size, and must be between 0 and 1000. See section 2.1 on page 11 for a description of the unit
cube.

XRT3D_BACKGROUND_COLOR COLORREF RGB(255,255,255)
Specifies the window background color. The value is a Windows color reference. See section
3.18 on page 43 for details of color specification. This color will be inherited as the default
background color for the chart, data area, header, footer and legend.

XRT3D_BORDER Xrt3dBorder (enum) XRT3D_BORDER_NONE
Specifies the style of border used to enclose the chart. Valid styles are
XRT3D_BORDER_NONE, XRT3D_BORDER_3D_IN, XRT3D_BORDER_3D_OUT,
XRT3D_BORDER_ETCHED_IN, XRT3D_BORDER_ETCHED_OUT,
XRT3D_BORDER_SHADOW, XRT3D_BORDER_PLAIN.

XRT3D_BORDER_WIDTH int 2
Specifies the width of the chart border in pixels. Must be between 0 and 20.

XRT3D_CONTOUR_STYLES Xrt3dContourStyle **dynamic
The Xrt3dContourStyle structure defines a fill color for zoning, and a line color, line width and
line style for contouring.

Use XRT3D_CONTOUR_STYLES to determine what contour styles are currently defined, or
to define new styles to be used. To set new contour styles, create a NULL-terminated array of
contour style structure pointers, and set XRT3D_CONTOUR_STYLES to be a pointer to this
array. When used with Xrt3dGetValues(), a pointer to an array of Xrt3dContourStyle
structures is returned.

The number of styles actually used, nlevels, depends on XRT3D_DISTN_METHOD and
XRT3D_NUM_DISTN_LEVELS. If a linear distribution method is being used, then nlevels is
the value of XRT3D_NUM_DISTN_LEVELS. If a distribution table is being used, then nlevels is
the number of table entries.

If more than enough contour styles have been provided, Olectra Chart will evenly sample the
provided styles. Specifically, if nstyles contour styles have been provided, the index of the
contour style used at each level i is:1

If not enough contour styles are defined, Olectra Chart will re-sample the provided contour
styles as needed.

When contour styles are not specified by XRT3D_CONTOUR_STYLES, Olectra Chart will
use default contour styles. The default contour styles all have 100 entries. To return to using

1. x means floor(x); that is, the largest integer less than or equal to x.

i nstyles 1–() nlevels⁄×

Appendix A ■ Olectra Chart Property Reference 81

the default contour styles after having set XRT3D_CONTOUR_STYLES, call the
Xrt3dResetContourStyles() procedure.

The procedures Xrt3dDupContourStyles() and Xrt3dFreeContourStyles(), and the methods
Xrt3dGetNthContourStyle() and Xrt3dSetNthContourStyle() may be used to manipulate
contour style structures.

XRT3D_DATA_AREA_BACKGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the background color of the chart’s data area. When XRT3D_DEFAULT_COLOR,
the data area background is transparent. The value is a Windows color reference. See section
3.18 on page 43 for details of color specification. This property is ignored in pie charts.

XRT3D_DEBUG BOOL FALSE
Specifies whether to send warning messages to a debug window. When set to FALSE, only
property conversion errors are output.

XRT3D_DISTN_METHOD Xrt3dDistnMethod (enum) XRT3D_DISTN_LINEAR
Specifies the type of distribution method used. Must be one of XRT3D_DISTN_LINEAR or
XRT3D_DISTN_FROM_TABLE. Setting this property to XRT3D_DISTN_FROM_TABLE will
only have effect if a distribution table has been provided (using XRT3D_DISTN_TABLE).

XRT3D_DISTN_TABLE Xrt3dDistnTable * NULL
Use this property to specify a custom distribution. The nentries element in the Xrt3dDistnTable
structure specifies the number of entries in the table. entry is a pointer to an array of doubles
specifying the distribution separation.

typedef struct {
int nentries;
double *entry;

} Xrt3dDistnTable;

If XRT3D_DISTN_METHOD is set to XRT3D_DISTN_FROM_TABLE, and a distribution
table has been supplied, it will be used to define the distribution. All surface data values less
than or equal to the first entry will be graphed in the first zone and displayed using the first
contour style. Surface data values greater than the n-1th entry and less than or equal to the nth
entry will be graphed in the nth zone. Surface values greater than the last entry will be graphed
in the nentries+1th zone, and displayed using the last contour style.

Entries that are outside of the chart’s Z-range are not displayed in the legend. Entries do not
have to be specified in ascending order because Olectra Chart will sort the entries before using
them. Olectra Chart will also cull any duplicate entries.

XRT3D_DOUBLE_BUFFER BOOL TRUE
When TRUE, display updates are first rendered into an off-screen bitmap, then copied to the
display area. This reduces flashing on the screen. Setting this property to FALSE will cause
chart images to be rendered directly to the display, resulting in less memory utilization.

XRT3D_DRAW_CONTOURS BOOL FALSE
When TRUE, Olectra Chart will draw contour lines identifying each entry in the distribution.
The contour line color, line width and line pattern are determined by the value of

82 Part II ■ Reference Appendices

XRT3D_CONTOUR_STYLES. The distribution is determined by XRT3D_DISTN_METHOD,
XRT3D_DISTN_TABLE and XRT3D_NUM_DISTN_LEVELS. This property is ignored when
a 4D bar chart is drawn.

If DrawContours is TRUE and DrawZones is FALSE, Olectra Chart will automatically
generate a legend entry for each contour line.

This property is used in conjunction with the DrawMesh, DrawShaded and DrawZones
properties to define the 15 basic chart types. See section 3.2 on page 24 for more information.

XRT3D_DRAW_HIDDEN_LINES BOOL FALSE
This property determines if mesh, contour and axis lines, hidden from the observer’s view,
should be drawn. For realistic images, this boolean should be set to FALSE. Rendering
performance improves when set to TRUE.

This property has no effect when both DrawMesh and DrawContours are FALSE, or when
either DrawShaded or DrawZones is TRUE.

XRT3D_DRAW_MESH BOOL TRUE
When TRUE, and when XRT3D_TYPE is XRT3D_TYPE_SURFACE, Olectra Chart will
display data on a three-dimensional mesh. The mesh lines in either the X or Y direction may
be turned off using XRT3D_[XY]MESH_SHOW. Display of hidden mesh lines is controlled
with XRT3D_DRAW_HIDDEN_LINES. The color of the top and bottom of the mesh is
specified with XRT3D_MESH_BOTTOM_COLOR and XRT3D_MESH_TOP_COLOR.

When TRUE, and when XRT3D_TYPE is XRT3D_TYPE_BAR, Olectra Chart will draw the
outline of each bar. All bars whose value is above the value of XRT3D_ZORIGIN will be
outlined using the XRT3D_MESH_TOP_COLOR; those bars with value below the value of
XRT3D_ZORIGIN will be outlined using the color XRT3D_MESH_BOTTOM_COLOR.

Display of hidden lines can be controlled with XRT3D_DRAW_HIDDEN_LINES.

This property is used in conjunction with the DrawShaded, DrawContours and DrawZones
properties to define the 15 basic chart types. See section 3.2 on page 24 for more information.

XRT3D_DRAW_SHADED BOOL FALSE
When TRUE, Olectra Chart will use flat shading to display the 3D surface (when
XRT3D_TYPE is XRT3D_TYPE_SURFACE) and the bar surfaces (when XRT3D_TYPE is
XRT3D_TYPE_BAR). The color of the top and bottom of the 3D surface is specified with
XRT3D_SURFACE_TOP_COLOR and XRT3D_SURFACE_BOTTOM_COLOR. For bar
charts, these colors are used to indicate whether a bar is above or below the value of
XRT3D_ZORIGIN.

This property is used in conjunction with the DrawMesh, DrawContours and DrawZones
properties to define the 15 basic chart types. See section 3.2 on page 24 for more information.

XRT3D_DRAW_ZONES BOOL FALSE
When TRUE, Olectra Chart will fill the zones (areas between either contour lines or cells)
identifying each entry in the distribution. The zone color is determined by the value of
XRT3D_CONTOUR_STYLES. The distribution is determined by XRT3D_DISTN_METHOD,
XRT3D_DISTN_TABLE and XRT3D_NUM_DISTN_LEVELS. Normally,
XRT3D_SURFACE_DATA is used to determine zones; however, if XRT3D_ZONE_DATA is

Appendix A ■ Olectra Chart Property Reference 83

defined, it will be used instead, resulting in a 4D display. See sections 6.1 and 6.2 for more
information on 4D surfaces and bar charts.

When DrawZones is TRUE, Olectra Chart will automatically generate a legend entry for each
zone color.

This property is used in conjunction with the DrawMesh, DrawShaded and DrawContours
properties to define the 15 basic chart types. See section 3.2 on page 24 for more information.

XRT3D_FOOTER_ADJUST Xrt3dAdjust (enum) XRT3D_ADJUST_CENTER
Specifies how multiple footer text lines should be adjusted within the footer area. Must be one
of XRT3D_ADJUST_CENTER, XRT3D_ADJUST_LEFT or XRT3D_ADJUST_RIGHT.

XRT3D_FOOTER_BACKGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the footer area background color. When XRT3D_DEFAULT_COLOR, the footer
background is transparent. The value is a Windows color reference. See section 3.18 on page
43 for details of color specification.

XRT3D_FOOTER_BORDER Xrt3dBorder (enum) XRT3D_BORDER_NONE
Specifies the style of border used to identify the footer area. Valid styles are
XRT3D_BORDER_NONE, XRT3D_BORDER_3D_IN, XRT3D_BORDER_3D_OUT,
XRT3D_BORDER_ETCHED_IN, XRT3D_BORDER_ETCHED_OUT,
XRT3D_BORDER_SHADOW, XRT3D_BORDER_PLAIN.

XRT3D_FOOTER_BORDER_WIDTH int 2
Specifies the width of the footer area border in pixels. Must be between 0 and 20.

XRT3D_FOOTER_FONT HFONT Arial, 12 pt
Specifies the font to use for the footer strings. If the Arial TrueType font is not available on
the system, the System font is used. If you are using Microsoft Windows 3.1, cast the value to
an int when setting this property.

XRT3D_FOOTER_FOREGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the footer area foreground color. When XRT3D_DEFAULT_COLOR, the window
foreground color is used. The value is a Windows color reference. See section 3.18 on page 43
for details of color specification.

XRT3D_FOOTER_STRINGS char ** NULL
Specifies a NULL-terminated list of strings to be displayed in the footer area.

XRT3D_FOOTER_WIDTH int dynamic
XRT3D_FOOTER_HEIGHT int dynamic

Contains the height and width of the footer area in pixels.

XRT3D_FOOTER_X int centered under chart area
XRT3D_FOOTER_Y int centered under chart area

Specifies the x or y pixel offset of the top left corner of the footer, relative to the top left corner
of the window. For example, (10, 70) will cause the footer to begin 10 pixels to the right of and

84 Part II ■ Reference Appendices

70 pixels down from the top left corner of the window. A side-effect of setting these properties
is that the corresponding USE_DEFAULT property is set to FALSE.

XRT3D_FOOTER_X_USE_DEFAULT BOOL TRUE
XRT3D_FOOTER_Y_USE_DEFAULT BOOL TRUE

When TRUE, XRT3D_FOOTER_X and XRT3D_FOOTER_Y values are determined by
Olectra Chart at render-time. When explicit XRT3D_FOOTER_X and XRT3D_FOOTER_Y
values are provided, Olectra Chart sets these Booleans to FALSE.

XRT3D_FOREGROUND_COLOR COLORREF RGB(0,0,0)
Specifies the window foreground color. The value is a Windows color reference. See section
3.18 on page 43 for details of color specification. This color will be inherited as the default
foreground color for the header, footer, and legend text, as well as the chart axes.

XRT3D_GRAPH_BACKGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the chart area background color. When XRT3D_DEFAULT_COLOR, the chart is
transparent. The value is a Windows color reference. See section 3.18 on page 43 for details of
color specification.

XRT3D_GRAPH_BORDER Xrt3dBorder (enum) XRT3D_BORDER_NONE
Specifies the style of border used to identify the chart area. Valid styles are
XRT3D_BORDER_NONE, XRT3D_BORDER_3D_IN, XRT3D_BORDER_3D_OUT,
XRT3D_BORDER_ETCHED_IN, XRT3D_BORDER_ETCHED_OUT,
XRT3D_BORDER_SHADOW, XRT3D_BORDER_PLAIN.

XRT3D_GRAPH_BORDER_WIDTH int 2
Specifies the width of the chart area border in pixels. Must be between 0 and 20.

XRT3D_GRAPH_FOREGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the chart area foreground color. When XRT3D_DEFAULT_COLOR, the window
foreground color is used. The value is a Windows color reference. See section 3.18 on page 43
for details of color specification.

XRT3D_GRAPH_WIDTH int dynamic
XRT3D_GRAPH_HEIGHT int dynamic

Specifies the height and width of the chart area in pixels. A side-effect of setting these
properties is that the corresponding USE_DEFAULT property is set to FALSE.

XRT3D_GRAPH_WIDTH_USE_DEFAULT BOOL TRUE
XRT3D_GRAPH_HEIGHT_USE_DEFAULT BOOL TRUE

When TRUE, XRT3D_GRAPH_WIDTH and XRT3D_GRAPH_HEIGHT values are
determined by Olectra Chart at render-time. When explicit XRT3D_GRAPH_WIDTH and
XRT3D_GRAPH_HEIGHT values are provided, Olectra Chart sets these Booleans to FALSE.

Appendix A ■ Olectra Chart Property Reference 85

XRT3D_GRAPH_X int derived from data
XRT3D_GRAPH_Y int derived from data

Specifies the x or y pixel offset of the top left corner of the chart area, relative to the top left
corner of the window. For example, (10, 5) will cause the chart area to begin 10 pixels to the
right, and 5 pixels down from the top left corner of the window. A side-effect of setting these
properties is that the corresponding USE_DEFAULT property is set to FALSE.

XRT3D_GRAPH_X_USE_DEFAULT BOOL TRUE
XRT3D_GRAPH_Y_USE_DEFAULT BOOL TRUE

When TRUE, XRT3D_GRAPH_X and XRT3D_GRAPH_Y values are determined by Olectra
Chart at render-time. When explicit XRT3D_GRAPH_X and XRT3D_GRAPH_Y values are
provided, Olectra Chart sets these Booleans to FALSE. You cannot set these properties to
FALSE unless you have previously provided XRT3D_GRAPH_X or XRT3D_GRAPH_Y
values.

XRT3D_HEADER_ADJUST Xrt3dAdjust (enum) XRT3D_ADJUST_CENTER
Specifies how multiple header text lines should be adjusted within the header area. Must be
one of XRT3D_ADJUST_CENTER, XRT3D_ADJUST_LEFT or XRT3D_ADJUST_RIGHT.

XRT3D_HEADER_BACKGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the header area background color. When XRT3D_DEFAULT_COLOR, the header is
transparent. The value is a Windows color reference. See section 3.18 on page 43 for details of
color specification.

XRT3D_HEADER_BORDER Xrt3dBorder (enum) XRT3D_BORDER_NONE
Specifies the style of border used to identify the header area. Valid styles are
XRT3D_BORDER_NONE, XRT3D_BORDER_3D_IN, XRT3D_BORDER_3D_OUT,
XRT3D_BORDER_ETCHED_IN, XRT3D_BORDER_ETCHED_OUT,
XRT3D_BORDER_SHADOW, XRT3D_BORDER_PLAIN.

XRT3D_HEADER_BORDER_WIDTH int 2
Specifies the width of the header area border in pixels. Must be between 0 and 20.

XRT3D_HEADER_FONT HFONT Arial, 12 pt
Specifies the font to use for the header strings. If the Arial TrueType font is not available on
the system, the System font is used. If you are using Microsoft Windows 3.1, cast the value to
an int when setting this property.

XRT3D_HEADER_FOREGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the header area foreground color. When XRT3D_DEFAULT_COLOR, the window
foreground color is used. The value is a Windows color reference. See section 3.18 on page 43
for details of color specification.

XRT3D_HEADER_STRINGS char ** NULL
Specifies a NULL-terminated list of strings to be displayed in the header area.

86 Part II ■ Reference Appendices

XRT3D_HEADER_WIDTH int dynamic
XRT3D_HEADER_HEIGHT int dynamic

Contains the height and width of the header area in pixels.

NOTE: These properties cannot be set.

XRT3D_HEADER_X int centered above chart area
XRT3D_HEADER_Y int centered above chart area

Specifies the x or y pixel offset of the top left corner of the header, relative to the top left
corner of the window. For example, (10, 20) will cause the header to begin 10 pixels to the
right of, and 20 pixels down from, the top left corner of the window. A side-effect of setting
these properties is that the corresponding USE_DEFAULT property is set to FALSE.

XRT3D_HEADER_X_USE_DEFAULT BOOL TRUE
XRT3D_HEADER_Y_USE_DEFAULT BOOL TRUE

When TRUE, XRT3D_HEADER_X and XRT3D_HEADER_Y values are determined by
Olectra Chart at render-time. When explicit XRT3D_HEADER_X and XRT3D_HEADER_Y
values are provided, Olectra Chart sets these Booleans to FALSE.

XRT3D_HEIGHT int size of created window
Specifies the height of the control window.

XRT3D_LEGEND_ANCHOR Xrt3dAnchor (enum) XRT3D_ANCHOR_EAST
Specifies where to anchor the legend to the window. Valid values are:
XRT3D_ANCHOR_NORTH, XRT3D_ANCHOR_SOUTH, XRT3D_ANCHOR_EAST,
XRT3D_ANCHOR_WEST, XRT3D_ANCHOR_NORTHWEST,
XRT3D_ANCHOR_NORTHEAST, XRT3D_ANCHOR_SOUTHWEST,
XRT3D_ANCHOR_SOUTHEAST.

XRT3D_LEGEND_BACKGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the legend area background color. When XRT3D_DEFAULT_COLOR, the legend
background is transparent. The value is a Windows color reference. See section 3.18 on page
43 for details of color specification.

XRT3D_LEGEND_BORDER Xrt3dBorder (enum) XRT3D_BORDER_NONE
Specifies the style of border used to identify the legend area. Valid styles are
XRT3D_BORDER_NONE, XRT3D_BORDER_3D_IN, XRT3D_BORDER_3D_OUT,
XRT3D_BORDER_ETCHED_IN, XRT3D_BORDER_ETCHED_OUT,
XRT3D_BORDER_SHADOW, XRT3D_BORDER_PLAIN.

XRT3D_LEGEND_BORDER_WIDTH int 2
Specifies the width of the legend area border in pixels. Must be between 0 and 20.

XRT3D_LEGEND_FONT HFONT Arial, 12 pt
Specifies the font to be used in the legend. If the Arial TrueType font is not available on the
system, the System font is used. If you are using Microsoft Windows 3.1, cast the value to an
int when setting this property.

Appendix A ■ Olectra Chart Property Reference 87

XRT3D_LEGEND_FOREGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the legend area foreground color. When XRT3D_DEFAULT_COLOR, the window
foreground color is used. The value is a Windows color reference. See section 3.18 on page 43
for details of color specification.

XRT3D_LEGEND_LABEL_FUNC Function NULL
This property can be used to provide legend labels. If not NULL, Olectra Chart will call the
supplied function to obtain a label for each legend level (starting from 0). The form of the
function is:

char * MyLegendFunction(hChart, level, zmin, zmax, label)
HXRT3D hChart;
int level;
double zmin, zmax;
char * label;

Once a specific function is provided, Olectra Chart will call it, passing as parameters the
control handle, the level for which a label is required (zero-indexed), the zmin and zmax that
define the level, and the label that Olectra Chart would normally calculate by default. This
function should return a string that Olectra Chart will use for that level’s legend label. If the
legend is stepped, and this function returns NULL, Olectra Chart will skip the legend entry.

The label string can contain up to thirty fields which are delimited by ‘\l’, ‘\c’ and ‘\r’ for left,
center and right justification. For example, “\r32.0\cto\r39.6”. Remember to escape the ‘\’ with
another ‘\’.

XRT3D_LEGEND_ORIENTATION Xrt3dAlign (enum) XRT3D_ALIGN_VERTICAL
Specifies the orientation of the legend. Valid values are XRT3D_ALIGN_HORIZONTAL and
XRT3D_ALIGN_VERTICAL.

XRT3D_LEGEND_SHOW BOOL TRUE
Determines if the legend should be displayed. Legends are created automatically by Olectra
Chart whenever contours or zones are drawn.

XRT3D_LEGEND_STRINGS char ** NULL
Specifies strings to be used in the legend. The number of distribution levels is determined by
the value of XRT3D_NUM_DISTN_LEVELS or XRT3D_DISTN_TABLE, and the setting of
XRT3D_LEGEND_STYLE. If too few strings are provided, the corresponding entries in the
legend are dropped. A legend is generated only when either contours or zones are drawn, and
XRT3D_LEGEND_SHOW is TRUE.

These legend strings override anything that the control would normally have generated;
however, if an XRT3D_LEGEND_LABEL_FUNC has been specified, the legend strings may
be overridden dynamically at runtime. This property is most often used to annotate particular
groups of bars in a 4D bar chart.

XRT3D_LEGEND_STYLE Xrt3dLegendStyle XRT3D_LEGEND_STYLE_CONTINUOUS
Determines the legend style and must be one of XRT3D_LEGEND_STYLE_STEPPED or
XRT3D_LEGEND_STYLE_CONTINUOUS. Stepped legends have the range printed for each
zone. Continuous legends have the level printed at the division between two adjacent zones,
and are more compact.

88 Part II ■ Reference Appendices

XRT3D_LEGEND_WIDTH int dynamic
XRT3D_LEGEND_HEIGHT int dynamic

Contains the height and width of the legend area in pixels.

NOTE: These properties cannot be set.

XRT3D_LEGEND_X int depends on anchor
XRT3D_LEGEND_Y int depends on anchor

Specifies the (X,Y) coordinates of the top left corner of the legend area. A side-effect of setting
these properties is that the corresponding USE_DEFAULT property is set to FALSE.

XRT3D_LEGEND_X_USE_DEFAULT BOOL TRUE
XRT3D_LEGEND_Y_USE_DEFAULT BOOL TRUE

When TRUE, XRT3D_LEGEND_X and XRT3D_LEGEND_Y values are determined by
Olectra Chart at render-time. When explicit XRT3D_LEGEND_X and XRT3D_LEGEND_Y
values are provided, Olectra Chart sets these Booleans to FALSE.

XRT3D_MESH_BOTTOM_COLOR COLORREF RGB(0,0,0)
XRT3D_MESH_TOP_COLOR COLORREF RGB(0,0,0)

Specifies the color of the 3D surface mesh lines or bar chart outlines displayed when
XRT3D_DRAW_MESH is TRUE. The value is a Windows color reference. See section 3.18 on
page 43 for details of color specification.

For bar charts, the top color is used for bars with a value greater than XRT3D_ZORIGIN, and
the bottom color is used for bars with a value less than XRT3D_ZORIGIN.

XRT3D_NAME char * dynamic
Specifies the name of a particular chart instance. By default, Olectra Chart generates a unique
name for each chart created.

XRT3D_NUM_DISTN_LEVELS int 10
Specifies the number of distribution levels (i.e. nlevels) used when DrawContours and/or
DrawZones is TRUE. Any value between 0 and 100 is valid. Setting it to 0 causes no contour
lines to be drawn, and if DrawZones is TRUE, only one zone is drawn. If a custom distribution
table has been provided, and XRT3D_DISTN_METHOD is XRT3D_DISTN_FROM_TABLE,
the number of distribution levels is the number of entries in the table and
XRT3D_NUM_DISTN_LEVELS is ignored.

XRT3D_PERSPECTIVE_DEPTH double 2.5
Controls the perspective effect. Range is 1 to XRT3D_HUGE_VAL. Small values exaggerate
perspective while large values reduce it. To reduce the perspective effect and approach a
parallel projection, set this property to a very high number (such as 100,000).

XRT3D_PREVIEW_METHOD Xrt3dPreviewMethod XRT3D_PREVIEW_CUBE
Controls how the interactive rotations are previewed to the user. XRT3D_PREVIEW_CUBE
draws only the outline of the cube. XRT3D_PREVIEW_FULL draws the entire chart during
rotations (useful for small charts or bar charts).

Appendix A ■ Olectra Chart Property Reference 89

XRT3D_PROJECT_ZMAX int 0
XRT3D_PROJECT_ZMIN int 0

Specifies whether to project contours and/or zones on the z=zmin or z=zmax plane. These
properties are specified using a combination of the following constants:

#define XRT3D_PROJECT_CONTOURS 0x1
#define XRT3D_PROJECT_ZONES 0x2

Contours/zones are projected regardless of the setting of DrawContours and DrawZones.
These properties are ignored in a 2D chart, and when XRT3D_TYPE is XRT3D_TYPE_BAR.

For example, to project both contours and zones, set the property to:

XRT3D_PROJECT_CONTOURS | XRT3D_PROJECT_ZONES

XRT3D_REPAINT BOOL TRUE
When this property is TRUE, any changes made to the control are rendered immediately. In
order to batch changes to the control, set this property to FALSE, make the changes, and then
on the last Xrt3dSetValues() call, set this property to TRUE again.

XRT3D_SOLID_SURFACE BOOL FALSE
When this property is TRUE, and DrawMesh or DrawShaded is TRUE, Olectra Chart will
render the 3D surface as a solid object by adding “sides” to the surface. The sides drop from
the surface to the minimum Z value. The mesh and surface bottom colors are used when
drawing the “sides”. This property has no effect on bar charts.

XRT3D_SURFACE_BOTTOM_COLOR COLORREF RGB(112,112,112)
XRT3D_SURFACE_TOP_COLOR COLORREF RGB(211,211,211)

Specifies the color of the bottom and top of the 3D surface and bar chart facets displayed
when XRT3D_DRAW_SHADED is TRUE. The value is a Windows color reference. See
section 3.18 on page 43 for details of color specification.

For bar charts, the top color is used for bars with a value greater than XRT3D_ZORIGIN, and
the bottom color is used for bars with a value less than XRT3D_ZORIGIN.

XRT3D_SURFACE_DATA Xrt3dData * NULL
Specifies the data to be displayed in 3D surface charts and bar charts. The Xrt3dData structure
should be allocated using the procedure Xrt3dMakeGridData() or Xrt3dMakeDataFromFile().
See section 4.2 on page 49 for information on this structure.

XRT3D_TYPE Xrt3dType XRT3D_TYPE_SURFACE
Specifies the basic type of chart that will be drawn. It may be XRT3D_TYPE_SURFACE or
XRT3D_TYPE_BAR. Many variations can be displayed by manipulating the four major
Boolean properties. See section 3.2 on page 24 for more information.

XRT3D_VIEW_NORMALIZED BOOL TRUE
When TRUE, Olectra Chart always calculates the full view (before taking into account any
view scaling or translation) so as to maximize the view without causing any portion of the view
to be clipped. Dynamically rotating when this property is TRUE will look “jerky”. To
eliminate “jerky rotation”, set this property to FALSE.

90 Part II ■ Reference Appendices

XRT3D_VIEW_SCALE double 1.0
Specifies the degree of scaling (i.e. zooming) up or down from a full view (i.e. a maximal, non-
clipped view). Valid values must be between 1/30 and 30.0. This property is updated if the
user dynamically scales or zooms their view. See section 5.4.1 on page 56 for information on
dynamic scaling.

XRT3D_VIEW_XTRANSLATE double 0.0
XRT3D_VIEW_YTRANSLATE double 0.0

Specifies the degree of view translation from a full view (i.e. a maximal, non-clipped view).
The translations are relative to a normalized box, with origin in the bottom left corner.
Translation of more than a full unit (i.e. more than ± 1.0) will cause the view to translate “out
of view”. This property is updated if the user dynamically translates their view. See section
5.4.1 on page 56 for information on dynamic translation.

XRT3D_WIDTH int size of created window
Specifies the width of the control window.

XRT3D_XANNO_METHOD Xrt3dAnnoMethod XRT3D_ANNO_VALUES
XRT3D_YANNO_METHOD Xrt3dAnnoMethod XRT3D_ANNO_VALUES
XRT3D_ZANNO_METHOD Xrt3dAnnoMethod XRT3D_ANNO_VALUES

Specifies the method used to annotate the axis. It is an enumerated type, with possible values
XRT3D_ANNO_VALUES, XRT3D_ANNO_DATA_LABELS, and
XRT3D_ANNO_VALUE_LABELS. If XRT3D_ANNO_VALUES, the strings are generated by
the control automatically, based on the range of the data. If XRT3D_ANNO_DATA_LABELS,
the value of the property XRT3D_[XY]DATA_LABELS is used; this method is not available for
the Z-axis. If XRT3D_ANNO_VALUE_LABELS, the value of the property
XRT3D_[XYZ]VALUE_LABELS is used.

XRT3D_XAXIS_SHOW BOOL TRUE
XRT3D_YAXIS_SHOW BOOL TRUE
XRT3D_ZAXIS_SHOW BOOL TRUE

Determines if the X-, Y-, or Z-axis should be displayed.

XRT3D_XAXIS_TITLE char * NULL
XRT3D_YAXIS_TITLE char * NULL
XRT3D_ZAXIS_TITLE char * NULL

Specifies the title to display on the X-, Y- and Z-axis.

XRT3D_XBAR_FORMAT Xrt3dBarFormat XRT3D_BAR_FIXED
XRT3D_YBAR_FORMAT Xrt3dBarFormat XRT3D_BAR_FIXED

Specifies the representation format of the bar chart along each of the gridded axes. When set
to XRT3D_BAR_FIXED, the bars in the chart are centered about their X values and Y values,
and each bar is a fixed width. When set to XRT3D_BAR_HISTOGRAM, each bar fills the
space up to its adjoining bar, and the width of each bar is derived from the separation between
adjacent lines in the grid.

Appendix A ■ Olectra Chart Property Reference 91

XRT3D_XBAR_SPACING double 80.0
XRT3D_YBAR_SPACING double 80.0

Specifies the amount of space used to display bars (in the X or Y direction) as a percentage of
the total amount of space available. Values between 1.0 and 100.0 are valid. A value of 100.0
will cause the bars to abut one another if using regular data (they may not abut if using
irregular data). This property only applies when XRT3D_TYPE is set to XRT3D_TYPE_BAR,
and XRT3D_[XY]BAR_FORMAT is XRT3D_BAR_FIXED.

XRT3D_XDATA_LABELS char ** NULL
XRT3D_YDATA_LABELS char ** NULL

This property is used to supply the labels that will be used when the
XRT3D_[XY]ANNO_METHOD is set to XRT3D_ANNO_DATA_LABELS. This is a NULL-
terminated list of strings, where each label is applied to a line of data in the grid.

XRT3D_XGRID_LINES int 0
XRT3D_YGRID_LINES int 0
XRT3D_ZGRID_LINES int 0

These properties can be used to specify grid lines on each applicable plane. The three planes
are represented by constant values, and combined together to specify the affected planes
exactly. In 2D, any non-zero value causes grid lines to be drawn perpendicular to the axis. The
grid lines are drawn wherever an axis label would be drawn. The following constants are
defined in the OLCH3DCM.H header file, and should be used when setting the value of these
properties:

#define XRT3D_XY_PLANE 1
#define XRT3D_XZ_PLANE 2
#define XRT3D_YZ_PLANE 4

For example, to draw X grid lines on all possible planes, set XRT3D_XGRID_LINES to:

XRT3D_XY_PLANE | XRT3D_XZ_PLANE

To remove grid lines, set these properties to zero.

XRT3D_XMAX double dynamic
XRT3D_YMAX double dynamic
XRT3D_ZMAX double dynamic

Specifies the value of the high end of the X, Y, and Z data displayed. X and Y data values
higher than this value are not displayed. To zoom into the data, set narrower X and Y
minimums and maximums. XRT3D_ZMAX cannot be less than the maximum Z data value.1
A side-effect of setting these properties is that the corresponding USE_DEFAULT property is
set to FALSE.

1. Olectra Chart sets the corresponding USE_DEFAULT property to TRUE when the value of this property falls inside
the Z-range.

92 Part II ■ Reference Appendices

XRT3D_XMAX_USE_DEFAULT BOOL TRUE
XRT3D_YMAX_USE_DEFAULT BOOL TRUE
XRT3D_ZMAX_USE_DEFAULT BOOL TRUE

When TRUE, the value of XRT3D_[XYZ]MAX is determined by Olectra Chart at render time.
When an explicit value for XRT3D_[XYZ]MAX is provided, Olectra Chart sets this property to
FALSE. You cannot set this property to FALSE until a value for XRT3D_ZMAX has been
calculated or provided. If the value of XRT3D_ZMAX is determined to be less than the
maximum Z-value of the data, the value of XRT3D_ZMAX_USE_DEFAULT is forced to
TRUE.

XRT3D_XMESH_FILTER int 1
XRT3D_YMESH_FILTER int 1

Specifies how the mesh is filtered before being displayed. For a value n, every nth mesh line is
drawn. When set to 0, Olectra Chart automatically determines a pleasing mesh filter. The filter
applies to both regular and irregular grids.

These properties affects the display only when DrawMesh is TRUE. They are ignored when
the value of XRT3D_TYPE is XRT3D_TYPE_BAR.

XRT3D_XMESH_SHOW BOOL TRUE
XRT3D_YMESH_SHOW BOOL TRUE

Specifies whether Olectra Chart should draw the mesh lines in the X or Y direction when
XRT3D_DRAW_MESH is TRUE. These properties have no effect on bar charts.

XRT3D_XMIN double dynamic
XRT3D_YMIN double dynamic
XRT3D_ZMIN double dynamic

Specifies the value of the low end of the X, Y, and Z data displayed. X and Y data values
lower than this value are not displayed. To zoom into the data, set narrower X and Y
minimums and maximums. XRT3D_ZMIN cannot be greater than the minimum Z data
value.1 A side-effect of setting these properties is that the corresponding USE_DEFAULT
property is set to FALSE.

XRT3D_XMIN_USE_DEFAULT BOOL TRUE
XRT3D_YMIN_USE_DEFAULT BOOL TRUE
XRT3D_ZMIN_USE_DEFAULT BOOL TRUE

When TRUE, the value of XRT3D_[XYZ]MIN is determined by Olectra Chart at render time.
When an explicit value for XRT3D_[XYZ]MIN is provided, Olectra Chart sets this property to
FALSE. You cannot set this property to FALSE until a value for XRT3D_ZMIN has been
calculated or provided. If the value of XRT3D_ZMIN is determined to be greater than the
minimum Z-value of the data, the value of XRT3D_ZMIN_USE_DEFAULT is forced to TRUE.

1. Olectra Chart sets the corresponding USE_DEFAULT property to TRUE when the value of this property falls inside
the Z-range.

Appendix A ■ Olectra Chart Property Reference 93

XRT3D_XROTATION double 45.0
XRT3D_YROTATION double 0.0
XRT3D_ZROTATION double 45.0

Specifies the number of degrees of rotation of the unit cube, in a counter-clockwise direction
about the axis. Olectra Chart applies rotations in Z-Y-X order. These properties are updated if
the user dynamically rotates their view. See section 5.4.2 on page 57 for information on
dynamic rotations.

XRT3D_XSCALE double 1.0
XRT3D_YSCALE double 1.0
XRT3D_ZSCALE double 1.0

The XRT3D_[XYZ]SCALE properties can be used to scale the unit cube. For example, to scale
the unit cube up by a factor of two in the Y direction (resulting in an oblong unit cube, twice as
long in the Y direction as in the X and Z directions), set XRT3D_YSCALE to 2.0.

XRT3D_XVALUE_LABELS Xrt3dValueLabel ** NULL
XRT3D_YVALUE_LABELS Xrt3dValueLabel ** NULL
XRT3D_ZVALUE_LABELS Xrt3dValueLabel ** NULL

This property is used to specify labels for the axis to be used when
XRT3D_[XY]ANNO_METHOD is XRT3D_ANNO_VALUE_LABELS. These labels provide a
set of strings that are applied at specific values along the axis. See section 3.12 on page 38 for
more information.

XRT3D_XY_COLORS Xrt3dXYColor ** NULL
Specifies a list of colors that are to be applied, in order, to bar charts when
XRT3D_DRAW_SHADED is TRUE and XRT3D_DRAW_ZONES is FALSE. These colors can
be applied to an entire row or column of bar charts, or to an individual cell. See the
description of the Xrt3dXYColor structure in section 3.3 on page 29 for more information.

This property has no effect when XRT3D_TYPE is XRT3D_TYPE_SURFACE.

XRT3D_ZONE_DATA Xrt3dData * NULL
When XRT3D_TYPE is XRT3D_TYPE_SURFACE, this property specifies the zone (i.e. filled
contour) data to be displayed draped over surface data (which is specified with
XRT3D_SURFACE_DATA) in a 4D chart. This property should be set to NULL unless
projections or a 4D chart is desired. See section 6.1 on page 65 for information on 4D surface
charts.

When XRT3D_TYPE is XRT3D_TYPE_BAR, this property specifies a dataset which is used to
determine bar colors, resulting in a 4D bar chart. See section 6.2 for more information on 4D
bar charts.

XRT3D_ZONE_METHOD Xrt3dZoneMethod XRT3D_ZONE_CONTOURS
Specifies the method used to fill the zone regions, displayed when DrawZones is TRUE. When
set to XRT3D_ZONE_CONTOURS, Olectra Chart fills between each contour line. When set
to XRT3D_ZONE_CELLS, Olectra Chart fills entire cells in a surface grid, based on the
average value in the cell.

94 Part II ■ Reference Appendices

XRT3D_ZORIGIN double 0.0
Defines the Z-value from which bars are filled when XRT3D_TYPE is XRT3D_TYPE_BAR.
This property has no effect on the chart when XRT3D_TYPE is XRT3D_TYPE_SURFACE.

95

B
Olectra Chart Text Object

Property Reference

This appendix lists all of the Olectra Chart text object properties in alphabetical
order. Listed after the property name is its data type and default value.

XRT3D_TEXT_ADJUST Xrt3dAdjust XRT3D_ADJUST_CENTER
Specifies how multiple lines of text should be aligned within the text object. Valid values are
XRT3D_ADJUST_LEFT, XRT3D_ADJUST_CENTER and XRT3D_ADJUST_RIGHT.

XRT3D_TEXT_ATTACH_INDEX_X int 0
XRT3D_TEXT_ATTACH_INDEX_Y int 0

Specifies the grid index that the text object is attached to. This property affects text object
positioning when XRT3D_TEXT_ATTACH_METHOD is XRT3D_TEXT_ATTACH_INDEX.

XRT3D_TEXT_ATTACH_METHOD Xrt3dTextAttachMethod XRT3D_TEXT_ATTACH_INDEX
Specifies how the text object is attached to the chart. Valid values are
XRT3D_TEXT_ATTACH_PIXEL, XRT3D_TEXT_ATTACH_POINT and
XRT3D_TEXT_ATTACH_INDEX. The positioning of the text object is controlled by
properties that correspond to the attachment method: XRT3D_TEXT_ATTACH_PIXEL_[XY],
XRT3D_TEXT_ATTACH_POINT_[XYZ], and XRT3D_TEXT_ATTACH_INDEX_[XY].

XRT3D_TEXT_ATTACH_PIXEL_X int 0
XRT3D_TEXT_ATTACH_PIXEL_Y int 0

Specifies the control pixel coordinates that the text object is attached to. This property affects
text object positioning when XRT3D_TEXT_ATTACH_METHOD is
XRT3D_TEXT_ATTACH_PIXEL.

96 Part II ■ Reference Appendices

XRT3D_TEXT_ATTACH_POINT_X double 0.0
XRT3D_TEXT_ATTACH_POINT_Y double 0.0
XRT3D_TEXT_ATTACH_POINT_Z double 0.0

Specifies the 3D chart coordinates that the text object is attached to. This property affects text
object positioning when XRT3D_TEXT_ATTACH_METHOD is
XRT3D_TEXT_ATTACH_POINT.

XRT3D_TEXT_BACKGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the text object background color. When XRT3D_DEFAULT_COLOR, the legend
background is transparent. The value is a Windows color reference. See section 3.18 on page
43 for details of color specification.

XRT3D_TEXT_BORDER Xrt3dBorder XRT3D_BORDER_NONE
Specifies the style of border used to identify the text object. This property is only used when
the text object is attached by pixel (XRT3D_TEXT_ATTACH_METHOD is
XRT3D_TEXT_ATTACH_PIXEL). Valid styles are XRT3D_BORDER_NONE,
XRT3D_BORDER_3D_IN, XRT3D_BORDER_3D_OUT, XRT3D_BORDER_ETCHED_IN,
XRT3D_BORDER_ETCHED_OUT, XRT3D_BORDER_SHADOW,
XRT3D_BORDER_PLAIN.

Text objects attached by point or index have a 1-pixel line around the object, displayed when
the text object background color is not NULL.

XRT3D_TEXT_BORDER_WIDTH int 2
Specifies the width of the text object border when XRT3D_TEXT_ATTACH_METHOD is
XRT3D_TEXT_ATTACH_PIXEL. Must be between 0 and 20.

XRT3D_TEXT_FONT HFONT Arial, 12 pt
Specifies the font used for the text contained in the text object. This property is used when
XRT3D_TEXT_ATTACH_METHOD is XRT3D_TEXT_ATTACH_PIXEL.
XRT3D_TEXT_STROKE_FONT specifies the font used when the text object is attached by
point or index. If the Arial TrueType font is not available on the system, the System font is
used.

XRT3D_TEXT_FOREGROUND_COLOR COLORREF XRT3D_DEFAULT_COLOR
Specifies the text object foreground color. When XRT3D_DEFAULT_COLOR, the window
foreground color is used. The value is a Windows color reference. See section 3.18 on page 43
for details of color specification.

XRT3D_TEXT_LINE_SHOW BOOL TRUE
Specifies whether to draw a connecting line from the text object to the point of attachment.
This is a pixel-wide line drawn in the foreground color of the text object.

Appendix B ■ Olectra Chart Text Object Property Reference 97

XRT3D_TEXT_OFFSET_X int 0
XRT3D_TEXT_OFFSET_Y int 0

Specifies the pixel offset between the center of the text object and the point of attachment.
This property is only used when the text object is either attached to a pixel, or the Olectra
Chart control is in a 2D projection.

XRT3D_TEXT_PLANE int XRT3D_XZ_PLANE
Specifies the orientation of the text object. Text objects must be drawn parallel to one the
planes of the cube, and are rendered so that the text is always drawn left-to-right. Valid values
are XRT3D_XZ_PLANE and XRT3D_YZ_PLANE. This property is ignored in a 2D projection.

XRT3D_TEXT_SHOW BOOL TRUE
Specifies whether to display the text object.

XRT3D_TEXT_STRINGS char ** NULL
Specifies a NULL-terminated list of strings displayed in the text object.

XRT3D_TEXT_STROKE_FONT Xrt3dStrokeFont XRT3D_SF_ROMAN_SIMPLEX
Specifies the stroke font used for the text contained in the text object. This property is used
when XRT3D_TEXT_ATTACH_METHOD is XRT3D_TEXT_ATTACH_POINT or
XRT3D_TEXT_ATTACH_INDEX. This property can be set to any of the valid stroke fonts
listed in Appendix E on page 130. XRT3D_TEXT_FONT specifies the X font used when the
text object is attached by pixel.

XRT3D_TEXT_STROKE_SIZE int 80
Specifies the size of the stroke font. The size is measured in thousandths of the unit cube size,
and must be between 0 and 1000. See page 11 for a description of the unit cube.

98 Part II ■ Reference Appendices

99

C
Procedures and Methods Reference

This appendix lists the Olectra Chart procedures and methods in alphabetical order.

Xrt3dAttachWindow()
Attaches a window to a chart. Returns True if the attach was successful.

BOOL
Xrt3dAttachWindow(

HXRT3D hChart,
HWND hWnd,
)

hChart is the chart handle. hWnd is the window handle.

Xrt3dCallAction()
Calls an action explicitly at a given window coordinate. All coordinates should be
within the graph area of the control. Any notification messages normally triggered
by this action are called.

void
Xrt3dCallAction(

HXRT3D hChart,
Xrt3dAction action,
int x,
int y
)

hChart is the chart handle. action is the action to be called. x and y specify the window
coordinate.

Xrt3dComputePalette()
Asks the chart to recompute its palette based on the current system palette.

void
Xrt3dComputePalette(

HXRT3D hChart,
)

100 Part II ■ Reference Appendices

hChart is the chart handle.

Xrt3dComputeZValue()
Procedure which is useful when interactively dragging the value of a grid location to
a new value.

double
Xrt3dComputeZValue(

HXRT3D hChart,
int xindex, yindex,
int pixel_x, pixel_y
)

hChart is the chart handle; xindex and yindex identify the grid cell that is to be
changed; pixel_x and pixel_y point to the new location of the screen to which the
point has been dragged. If the grid value at (xindex, yindex) is a hole, then
Xrt3dComputeZValue() returns the hole value for the grid.

Xrt3dContourStylesFromFile()
Procedure which creates a NULL-terminated array of pointers to Xrt3dContourStyle
structures using information read in from a text file. The result can be used for setting
the XRT3D_CONTOUR_STYLES property. File names of files that can be read with
this routine may be used to set the XRT3D_CONTOUR_STYLES property in
property files.

Xrt3dContourStyle **
Xrt3dContourStylesFromFile(

char *filename,
char *errbuf
)

filename is the filename of the data file. If Xrt3dContourStylesFromFile() encounters
any errors, it will return NULL, and will write an error message in errbuf. If errbuf is
NULL, error messages will be written to stderr. errbuf should be at least 100 bytes.

Lines in the file beginning with a “!” symbol in the first position are treated as
comments and ignored. All other lines define one contour style, and should be of the
form:

fill-color line-color line-width line-pattern

An example file:

! Example contour styles file
! This file defines 3 contour styles
#001e001effdc black 1 solid
#001e08d4ffdc red 2 dotted
#001e118affdc yellow 1 shortdash

Appendix C ■ Procedures and Methods Reference 101

Xrt3dContourStylesToFile()
Procedure which writes Xrt3dContourStyle structures to a text file. Returns a non-
zero value if the operation is successful, and 0 if an error occurs.

int
Xrt3dContourStylesToFile(

Xrt3dContourStyle **styles,
char *filename,
char *errbuf
)

styles is a pointer to the array of contour styles to write. filename is the pathname of the
data file. If Xrt3dContourStylesToFile() encounters any errors, it will return 0, and
will write an error message in errbuf. If errbuf is NULL, error messages will be written
to stderr. errbuf should be at least 100 bytes.

Xrt3dCreate()
Creates a chart without creating a window for it. Returns the chart handle.

HXRT3D
Xrt3dCreate(void)

Xrt3dCreateWindow()
Creates a window and a chart and attaches the two. Returns the chart handle.

HXRT3D
Xrt3dCreateWindow(

LPCTSTR lpWindowName,
int x, y,
int nWidth, nHeight,
HWND hWndParent,
HINSTANCE hInstance
)

lpWindowName is a pointer to the window name. x and y are the horizontal and
vertical position of the window. nWidth and nHeight are the width and height of the
window. hWndParent is a handle to the parent or owner window. hInstance is a handle
to the application instance.

Xrt3dDataCopy())
Creates a copy of the supplied data set.

Xrt3dData *
Xrt3dDataCopy(

Xrt3dData *source
)

102 Part II ■ Reference Appendices

Xrt3dDataShaded()
Creates a new Xrt3dData structure from an existing structure, filling it with a shaded-
relief map of the original dataset, suitable for draping over the original data as a 4D
dataset.

Xrt3dData *
Xrt3dDataShaded(

Xrt3dData *source,
double sweep,
double rise,
double scale,
double ambient,
double intensity
)

This function calculates reflectance values for each of the facets in the original
surface and stores the values in a new grid. This grid, when viewed with a set of grey-
scale contour styles, resembles a shaded-relief map of the original data. The light
source is located by the two angles sweep and rise. The difference in units between the
“ground” coordinates in the XY plane and those of the Z values can be controlled
through the scale parameter. If scale is 0, a default value of scale will be computed
based on the average slope of the facets. The base amount of light for the surface is
called the ambient light, while the brightness of the light is controlled through the
intensity; both of these values should be between 0 and 1.

Xrt3dDataSmooth()
Passes a center-weighted averaging function over the grid, resulting in a smoother-
looking dataset.

void
Xrt3dDataSmooth(

Xrt3dData *source,
double center_weight,
)

center_weight must be between 0 and 1. This procedure is a nine-point filter using all
points adjacent to the center. Each new value is a weighted average of the original
value and its surrounding points. The weights of the surrounding points are
computed based on the value of center_weight and its distance from the center point.

Xrt3dDataWindow()
Creates a new Xrt3dData structure from an existing structure, extracting a subset of
the original, and resampling the data to the requested specifications.

Xrt3dData *
Xrt3dDataWindow(

Xrt3dData *source,
double xstart, ystart,
double xend, yend,
int numx, numy,
Xrt3dInterpMethod interp
)

The source data can be either a regular or irregular grid. The new dataset is a
regularly-gridded dataset, with its origin at (xstart, ystart), numx lines in the x-
direction, and numy lines in the y-direction in a region ending at (xend, yend). Any

Appendix C ■ Procedures and Methods Reference 103

requested portion that is outside of the region defined by the source grid is filled with
holes. interp specifies either cubic (XRT3D_INTERP_CUBIC_SPLINE) or linear
(XRT3D_INTERP_LINEAR_SPLINE) spline interpolation.

Xrt3dDestroyData()
Destroys an Xrt3dData structure.

void
Xrt3dDestroyData(

Xrt3dData *data,
BOOL all
)

data is the structure to be destroyed. If all is TRUE, then any space allocated for data
values is also freed.

This data structure is detached from any control that is currently using it.

Xrt3dDetachWindow()
Detaches a chart from its window. Returns the window handle.

HWND
Xrt3dDetachWindow(

HXRT3D hChart
)

hChart is the chart handle.

Xrt3dDistnIndex()
Calculates the index of the entry in the distribution table for this value. The returned
value can be used to access the contour style used for value by calling
Xrt3dGetNthContourStyle().

int
Xrt3dDistnIndex(

HXRT3D hChart,
double value
)

hChart is the chart handle.

Xrt3dDistnTableFromFile()
Procedure which creates a pointer to Xrt3dDistnTable structures using information
read in from a text file. The result can be used for setting the XRT3D_DISTN_TABLE
property. File names of files that can be read with this routine may be used to set the
XRT3D_DISTN_TABLE property in property files.

Xrt3dDistnTable *
Xrt3dDistnTableFromFile(

char *filename,
char *errbuf
)

filename is the filename of the data file. If Xrt3dDistnTableFromFile() encounters any
errors, it will return NULL, and will write an error message in errbuf. If errbuf is
NULL, error messages will be written to stderr. errbuf should be at least 100 bytes.

104 Part II ■ Reference Appendices

Lines in the file beginning with a “!” symbol in the first position are treated as
comments and ignored. All other lines define one distribution table entry.

An example file:

! Example distribution table file
! Note the not-quite-linear distribution!
1.0
1.2
1.4
3.0

Xrt3dDistnTableToFile()
Procedure which writes Xrt3dDistnTable structures to a text file. Returns a non-zero
value if the operation is successful, and 0 if an error occurs.

int
Xrt3dDistnTableToFile(

Xrt3dDistnTable *table,
char *filename,
char *errbuf
)

table is a pointer to the structures to be written. filename is the pathname of the data
file. If Xrt3dDistnTableToFile() encounters any errors, it will return 0, and will write
an error message in errbuf. If errbuf is NULL, error messages will be written to stderr.
errbuf should be at least 100 bytes.

Xrt3dDrawToClipboard()
Copies a chart to the Windows clipboard as a bitmap or metafile.

BOOL
Xrt3dDrawToClipboard(

HXRT3D hChart,
Xrt3dDrawFormat format
)

hChart is the chart control to output. format is the graphics format to use and can be:
XRT3D_DRAW_BITMAP for a Windows bitmap (BMP);
XRT3D_DRAW_METAFILE for a Windows metafile (WMF); or
XRT3D_DRAW_ENHMETAFILE (Windows 95 and Windows NT applications only) for
an enhanced metafile (EMF).

Xrt3dDrawToDC()
Outputs a chart to any device context as a bitmap or metafile.

BOOL
Xrt3dDrawToDC(

HXRT3D hChart,
HDC hdc,
Xrt3dDrawFormat format,
Xrt3dDrawScale scale,
long left, top, width, height
)

hChart is the chart control to output. hdc is a device context handle. format is the
graphics format to use and can be: XRT3D_DRAW_BITMAP for a device-

Appendix C ■ Procedures and Methods Reference 105

independent bitmap (BMP); XRT3D_DRAW_METAFILE for a Windows metafile
(WMF); or XRT3D_DRAW_ENHMETAFILE (Windows 95 and Windows NT
applications only) for an enhanced metafile (EMF). scale specifies the scaling to
perform when printing, and is one of XRT3D_DRAWSCALE_NONE (no scaling),
XRT3D_DRAWSCALE_TOWIDTH (scale to width specified by width, preserving
aspect ratio and ignoring height), XRT3D_DRAWSCALE_TOHEIGHT (scale to
height specified by height, preserving aspect ratio and ignoring width),
XRT3D_DRAWSCALE_TOFIT (scale to minimum of height or width, preserving
aspect ratio), XRT3D_DRAWSCALE_TOMAX (enlarge to size of page regardless of
aspect ratio). left is the offset from the left of the page. top is the offset from the top of
the page. width specifies the width to scale to; to use the existing window width, set
width to 0. height specifies the height to scale to; to use the existing window height, set
height to 0.

Xrt3dDrawToFile()
Outputs a chart to a file as a bitmap or metafile.

BOOL
Xrt3dDrawToFile(

HXRT3D hChart,
char *filename,
Xrt3dDrawFormat format
)

hChart is the chart control to output. format is the graphics format to use and can be:
XRT3D_DRAW_BITMAP for a Windows bitmap (BMP);
XRT3D_DRAW_METAFILE for a Windows metafile (WMF); or
XRT3D_DRAW_ENHMETAFILE (Windows 95 and Windows NT applications only) for
an enhanced metafile (EMF).

Xrt3dDupContourStyles()
Duplicates an array of Xrt3dContourStyle structures. The pointer to the duplicate
array is returned.

Xrt3dContourStyle **
Xrt3dDupContourStyles(

Xrt3dContourStyle **cs
)

Xrt3dDupDistnTable()
Duplicates a Xrt3dDistnTable structure. The pointer to the duplicate table is
returned. NULL is returned if the allocation failed for any reason.

Xrt3dDistnTable *
Xrt3dDupDistnTable(

Xrt3dDistnTable *dt
)

106 Part II ■ Reference Appendices

Xrt3dDupStrings()
Duplicates an array of strings. The pointer to the duplicate array is returned. NULL is
returned if the allocation failed for any reason.

char **
Xrt3dDupStrings(

char **s
)

Xrt3dDupValueLabels()
Duplicates a list of value labels.

Xrt3dValueLabel **
Xrt3dDupValueLabels(

Xrt3dValueLabel **vlabels
)

vlabels is an array of NULL-terminated pointers to structures of type
Xrt3dValueLabel. A copy of this list is returned to the caller. NULL is returned if the
allocation failed for any reason.

Xrt3dDupXYColors()
Duplicates a list of XYColors.

Xrt3dXYColor **
Xrt3dDupXYColors(

Xrt3dXYColor **xycols
)

xycols is an array of NULL-terminated pointers to structures of type Xrt3dXYColor. A
copy of this list is returned to the caller. NULL is returned if the allocation failed for
any reason.

Xrt3dFreeContourStyles()
Frees the memory used by an array of Xrt3dContourStyle structures.

void
Xrt3dFreeContourStyles(

Xrt3dContourStyle **cs
)

Xrt3dFreeDistnTable()
Frees the memory used by an Xrt3dDistnTable structure.

void
Xrt3dFreeDistnTable(

Xrt3dDistnTable *dt
)

Xrt3dFreePropString()
Frees the memory used by a string allocated by Xrt3dGetPropString().

void
Xrt3dFreePropString(

char *str
)

Appendix C ■ Procedures and Methods Reference 107

Xrt3dFreeStrings()
Frees the memory used by an array of strings.

void
Xrt3dFreeStrings(

char **s
)

Xrt3dFreeValueLabels()
Frees a list of value labels.

void
Xrt3dFreeValueLabels(

Xrt3dValueLabel **vlabels
)

vlabels is an array of NULL-terminated pointers to structures of type
Xrt3dValueLabel. The memory occupied by these structures, and the pointer array,
is freed.

Never free an Xrt3dValueLabel list that is currently being used by the control.

Xrt3dFreeXYColors()
Frees a list of XYColors.

void
Xrt3dFreeXYColors(xycols)

Xrt3dXYColors **xycols;

xycols is an array of NULL-terminated pointers to structures of type Xrt3dXYColor.
The memory occupied by these structures, and the pointer array, is freed.

Never free an Xrt3dXYColor list that is currently being used by the control.

Xrt3dGetAction()
Returns the action that is bound to this window event. If there is no action bound,
XRT3D_ACTION_NONE is returned.

Xrt3dAction
Xrt3dGetAction(

HXRT3D hChart,
UINT msg,
UINT modifier,
UINT keycode
)

hChart is the chart handle. msg is the message for this window event. The following
messages are recognized:

WM_LBUTTONDBLCLK double-click left mouse button

WM_MBUTTONDBLCLK double-click both mouse buttons

WM_RBUTTONDBLCLK double-click right mouse button

WM_LBUTTONDOWN press left mouse button

WM_MBUTTONDOWN press both mouse buttons

108 Part II ■ Reference Appendices

WM_RBUTTONDOWN press right mouse button

WM_LBUTTONUP release left mouse button

WM_MBUTTONUP release both mouse buttons

WM_RBUTTONUP release right mouse button

WM_MOUSEMOVE move mouse

WM_KEYDOWN press key

WM_KEYUP release key

modifier specifies the modifier flags, if any. The following modifier flags are
recognized:

MK_LBUTTON left mouse button

MK_MBUTTON both mouse buttons

MK_RBUTTON right mouse button

MK_ALT Alt key

MK_SHIFT Shift key

MK_CONTROL Ctrl key

All actions are normalized to match the event sent by Microsoft Windows. For
example, MK_LBUTTON is added to the modifier flags if a WM_LBUTTONDOWN
message is sent.

keycode is the keycode. Any valid VK_ value is treated as a recognized keycode. All
alphabetic characters are forced to upper case. MK_SHIFT must appear in the
modifier if capitals are desired. The CapsLock key toggles the meaning of the
MK_SHIFT modifier.

Xrt3dGetActionList()
Returns a pointer to the entire list of actions used by the control. The list is stored as
a linked list, and must not be modified in any way.

Xrt3dActionItem *
Xrt3dGetActionList(

HXRT3D hChart,
)

hChart is the chart handle.

Xrt3dGetDistnTable()
Returns a pointer to the distribution table currently being used by the control.

Xrt3dDistnTable *
Xrt3dGetDistnTable(

HXRT3D graph
)

This procedure allocates space for the returned table, which may be freed by the
application by calling Xrt3dFreeDistnTable(). Returns NULL on failure for any
reason.

Appendix C ■ Procedures and Methods Reference 109

Xrt3dGetHandle()
Retrieves the chart attached to a window.

HXRT3D
Xrt3dGetHandle(

HWND hWnd
)

hWnd is the window handle.

Xrt3dGetNthContourStyle()
Returns a pointer to a contour style.

Xrt3dContourStyle *
Xrt3dGetNthContourStyle(

HXRT3D hChart,
int index,
BOOL used
)

hChart is the chart handle. The (zero-based) index specifies which contour style
should be returned. Remember that the subset of contour styles actually used will
depend on the number of levels (nlevels) in the distribution. Set used to TRUE to
lookup contour styles from the set of contour styles actually being used. Set used to
FALSE to lookup contour styles from the set of all contour styles currently defined.
The pointer returned by this method should be considered read-only.

Xrt3dGetNthDataLabel()
Returns a pointer to a data label.

char *
Xrt3dGetNthDataLabel(

HXRT3D hChart,
Xrt3dAxis axis,
int index
)

hChart is the chart handle. axis identifies the axis the label is to be taken from. index is
the 0-indexed number of the requested label. If there are no data labels for this axis,
or if index is out of range, Xrt3dGetNthDataLabel() returns NULL.

Xrt3dGetNthFooterString()
Returns a pointer to the nth footer string currently being used by the chart.

char *
Xrt3dGetNthFooterString(

HXRT3D hChart,
int index
)

hChart is the chart handle. The (zero-based) index specifies which footer string should
be returned. The default footer string for index will be returned if index is larger than
the number of currently defined footer strings. The pointer returned by this method
should be considered read-only.

110 Part II ■ Reference Appendices

Xrt3dGetNthHeaderString()
Returns a pointer to the nth header string currently being used by the chart.

char *
Xrt3dGetNthHeaderString(

HXRT3D hChart,
int index
)

hChart is the chart handle. The (zero-based) index specifies which header string
should be returned. The default header string for index will be returned if index is
larger than the number of currently defined header strings. The pointer returned by
this method should be considered read-only.

Xrt3dGetNthLegendString()
Returns a pointer to the nth legend string currently being used by the chart.

char *
Xrt3dGetNthLegendString(

HXRT3D hChart,
int index
)

hChart is the chart handle. The (zero-based) index specifies which legend string
should be returned. The default legend string for index will be returned if index is
larger than the number of currently defined legend strings. The pointer returned by
this method should be considered read-only.

Xrt3dGetPalette()
Retrieves a chart’s color palette.

HPALETTE
Xrt3dGetPalette(

HXRT3D hChart
)

hChart is the chart handle.

Xrt3dGetPropString()
Retrieves the current value of a chart property as a string.

BOOL
Xrt3dGetPropString(

HXRT3D hChart,
int property,
char **str /* Returned */
)

hChart is the chart handle. property specifies any Olectra Chart property; str is a
pointer to a string returned with the value of the property. str must be freed after use
by calling Xrt3dFreePropString().

Appendix C ■ Procedures and Methods Reference 111

Xrt3dGetValueLabel()
Returns a pointer to the value label which has the closest value to the supplied value
label.

Xrt3dValueLabel *
Xrt3dGetValueLabel(

HXRT3D hChart,
Xrt3dAxis axis,
Xrt3dValueLabel *vlabel
)

hChart is the chart handle. axis identifies the axis the label is to be taken from. vlabel
points to an Xrt3dValueLabel structure which has the value element filled in. A
pointer to the value label which lies closest to the requested value is returned. If there
are no value labels for this axis, Xrt3dGetValueLabel() returns NULL.

Xrt3dGetValues()
Retrieves the current value of one or more chart properties.

void
Xrt3dGetValues(

HXRT3D hChart,
...,
NULL
)

hChart is the chart handle. ... is one or more property-value pairs. Each pair consists
of a property name and a pointer to a variable for its value. Olectra Chart writes the
current value of the property to this variable. The list is terminated by NULL.

Xrt3dGetWindow()
Retrieves the window attached to a chart.

HWND
Xrt3dGetWindow(

HXRT3D hChart
)

hChart is the chart handle.

Xrt3dGetXYColor()
Returns a pointer to a color in a bar chart.

COLORREF
Xrt3dGetXYColor(

HXRT3D hChart,
int xindex, yindex
)

hChart is the chart handle. xindex and yindex specify the bar or set of bars to retrieve
the color from.

112 Part II ■ Reference Appendices

Xrt3dMakeDataFromFile()
Procedure which will allocate an Xrt3dData structure and load it with data read in
from a text file. See also Xrt3dSaveDataToFile().

Xrt3dData *
Xrt3dMakeDataFromFile(

char *filename,
char *errbuf
)

filename is the filename of the data file. If Xrt3dMakeDataFromFile() encounters any
errors, it will return NULL, and will write an error message in errbuf. If errbuf is
NULL, error messages will be written to stderr. errbuf should be at least 100 bytes.

Lines in the file beginning with a “!” symbol in the first position are treated as
comments and ignored. The first non-comment line must begin with the data type,
which may be GRID or IRGRID. This is followed by two integers (which should be
≥ 1) specifying the number of points in the X and Y directions. The next value is a
floating-point number specifying the data hole value.

If GRID was specified, the next two floating-point numbers specify the grid step
amount in the X and Y direction. The grid step amounts are followed by two
floating-point numbers which indicate the X and Y grid origin values. Finally, the
surface data values are listed in order of increasing Y values. (All of the Y values for
X=origin are listed. Then all the Y values for X = (x origin + x grid step) are listed,
etc.)

An example of a suitable GRID data file:

! Grid has 50 by 30 points
! Holes have value 100.0
! Grid increases in
! X steps of 1.0 & Y steps of 2.0
! Origin of grid is at X = -20.0, Y = 50.0
GRID 50 30
100.0 1.0 2.0 -20.0 50.0
! 1500 data values follow, one for each grid pt.
49.875000 43.765625 38.500000 33.984375 30.12400
26.828125 24.000000 21.546875 19.375000 17.39062
. . .

If IRGRID is specified, then a list of xgrid and ygrid values is supplied instead of the
origin, xstep and ystep values.

An example of a suitable IRGRID data file:

! Irregular grid has 10 by 5 points
! Holes have value 100.0
! Ten x values are given
! Five y values are given
IRGRID 10 5
100.0
20 21.1 22.3 23 24.4 25.4 27.8 29.9 30.1 31.2
50.3 51.3 52.6 54.8 59.6
! 50 data values follow
23.34343 12.89239 11.99423 15.781212 18.81988
. . .

Appendix C ■ Procedures and Methods Reference 113

Xrt3dMakeGridData()
Procedure used to allocate an empty Xrt3dData structure for regularly gridded data.
To allocate space for irregularly gridded data, use Xrt3dMakeIrGridData().

Xrt3dData *
Xrt3dMakeGridData(

int numx, numy,
double noval,
double xstep, ystep,
double xorig, yorig,
BOOL all
)

numx and numy specify the number of elements in the grid in the X and Y directions
and should always be ≥ 1. noval defines the value that Olectra Chart will treat as a
data hole. xstep and ystep define the step between grid elements along the X and Y
axis. xorig and yorig define the origin of the grid in axis coordinates. If all is TRUE,
then space for the data values is also allocated. Otherwise, only the structure itself is
allocated, and the passed values are assigned to the structure.

Xrt3dMakeIrGridData()
Procedure used to allocate an empty Xrt3dData structure for irregularly gridded
data. To allocate space for regularly gridded data, use Xrt3dMakeGridData().

Xrt3dData *
Xrt3dMakeIrGridData(

int numx, numy,
double noval,
BOOL all
)

numx and numy specify the number of elements in the grid in the X and Y directions
and should always be ≥ 1. noval defines the value that Olectra Chart will treat as a
data hole. If all is TRUE, then space for the data values, and the xgrid and ygrid arrays
is also allocated. Otherwise, only the structure itself is allocated, and the passed
values are assigned to the structure.

Xrt3dMap()
Maps a pixel coordinate to a chart coordinate.

Xrt3dRegion
Xrt3dMap(

HXRT3D hChart,
int pix_x, pix_y,
Xrt3dMapResult *map
)

Used by an application to determine the chart coordinates corresponding to pix_x
and pix_y (for the chart whose handle is specified by hChart). Results are returned in
map. Typically used in an event handling procedure.

114 Part II ■ Reference Appendices

Xrt3dPick()
Picks the displayed data that is closest to the given pixel coordinate.

Xrt3dRegion
Xrt3dPick(

HXRT3D hChart,
int pix_x, pix_y,
Xrt3dPickResult *pick
)

Used by an application to determine what data (in terms of grid point indices) is
displayed closest to the pixel at (pix_x, pix_y) for the chart whose handle is specified
by hChart. Results are returned in pick. This is typically used in an event handling
procedure.

Xrt3dPrint()
Outputs a chart to a printer using the Windows Print dialog box.

BOOL
Xrt3dPrint(

HXRT3D hChart,
Xrt3dDrawFormat format,
Xrt3dDrawScale scale,
long left, top, width, height
)

hChart is the chart control to output. format is the graphics format to use and can be:
XRT3D_DRAW_BITMAP for a Windows bitmap (BMP);
XRT3D_DRAW_METAFILE for a Windows metafile (WMF); or
XRT3D_DRAW_ENHMETAFILE (Windows 95 and Windows NT applications only) for
an enhanced metafile (EMF). scale specifies the scaling to perform when printing,
and is one of XRT3D_DRAWSCALE_NONE (no scaling),
XRT3D_DRAWSCALE_TOWIDTH (scale to width specified by width, preserving
aspect ratio and ignoring height), XRT3D_DRAWSCALE_TOHEIGHT (scale to
height specified by height, preserving aspect ratio and ignoring width),
XRT3D_DRAWSCALE_TOFIT (scale to minimum of height or width, preserving
aspect ratio), XRT3D_DRAWSCALE_TOMAX (enlarge to size of page regardless of
aspect ratio). left is the offset from the left of the page. top is the offset from the top of
the page. width specifies the width to scale to; to use the existing window width, set
width to 0. height specifies the height to scale to; to use the existing window height, set
height to 0.

Xrt3dResetContourStyles()
Specifies that Olectra Chart is to return to using the default contour styles.

void
Xrt3dResetContourStyles(

HXRT3D hChart,
)

hChart is the chart handle.

Appendix C ■ Procedures and Methods Reference 115

Xrt3dSaveDataToFile()
Procedure which writes out the data stored in an Xrt3dData structure to a text file, in
a format suitable for use with Xrt3dMakeDataFromFile().

int
Xrt3dSaveDataToFile(

Xrt3dData *data,
char *filename,
char *errbuf
)

data must point to a valid Xrt3dData structure. filename is the filename of the data file.
If Xrt3dMakeDataFromFile() encounters any errors, it will return NULL, and will
write an error message in errbuf. If errbuf is NULL, error messages will be written to
stderr. errbuf should be at least 100 bytes. This procedure returns 1 on success and 0
on failure.

Xrt3dSetAction()
Programs an action for the Microsoft Windows event. Any previous action for this
event is replaced.

void
Xrt3dSetAction(

HXRT3D hChart,
UINT msg,
UINT modifier,
UINT keycode,
Xrt3dAction action
)

hChart is the chart handle. msg is the message for this window event. modifier specifies
the modifier flags, if any. keycode is the keycode. action is the new action for this event;
if action is XRT3D_ACTION_NONE, the action mapping is completely removed.

Xrt3dSetNthContourStyle()
Sets the nth contour style.

void
Xrt3dSetNthContourStyle(

HXRT3D hChart,
int index,
Xrt3dContourStyle *cs,
BOOL used
)

hChart is the chart handle. The (zero-based) index specifies which contour style
should be changed. cs points to an Xrt3dContourStyle structure containing the new
contour style.

Remember that the subset of contour styles actually used will depend on the number
of levels (nlevels) in the distribution. If used is TRUE, index refers only to the contour
styles in use at this time. If used is FALSE index refers to the array of all contour styles
defined.

Olectra Chart makes its own copy of the contour style pointed to by cs.

116 Part II ■ Reference Appendices

Xrt3dSetNthDataLabel()
Sets the nth data label.

void
Xrt3dSetNthDataLabel(

HXRT3D hChart,
Xrt3dAxis axis,
int index,
char *label
)

hChart is the chart handle. axis identifies the axis to be labelled. index is the 0-indexed
number of the new label. label is the value of the new label. If index is greater than the
number of labels in use, all intervening labels are assigned an empty string.

Xrt3dSetNthFooterString()
Sets the nth footer string.

void
Xrt3dSetNthFooterString(

HXRT3D hChart,
int index,
char *s
)

hChart is the chart handle. The (zero-based) index specifies which footer string should
be changed. s is the new string to be used. Olectra Chart makes its own copy of the
characters pointed to by s.

Xrt3dSetNthHeaderString()
Sets the nth header string.

void
Xrt3dSetNthHeaderString(

HXRT3D hChart,
int index,
char *s
)

hChart is the chart handle. The (zero-based) index specifies which header string
should be changed. s is the new string to be used. Olectra Chart makes its own copy
of the characters pointed to by s.

Xrt3dSetNthLegendString()
Sets the nth legend string.

void
Xrt3dSetNthLegendString(

HXRT3D hChart,
int index,
char *s
)

hChart is the chart handle. The (zero-based) index specifies which legend string
should be changed. s is the new string to be used. Olectra Chart makes its own copy
of the characters pointed to by s.

Appendix C ■ Procedures and Methods Reference 117

Xrt3dSetPropString()
Sets a chart property to the value represented by a string.

BOOL
Xrt3dSetPropString(

HXRT3D hChart,
int property,
char *str
)

hChart is the chart handle. property specifies any Olectra Chart property; str is a
pointer to a string representation to set the property to.

Xrt3dSetValueLabel()
Defines, replaces or deletes a value label.

void
Xrt3dSetValueLabel(

HXRT3D hChart,
Xrt3dAxis axis,
Xrt3dValueLabel *vlabel
)

hChart is the chart handle. axis identifies the axis to be labelled. vlabel points to an
Xrt3dValueLabel structure which has the value and label elements filled in. If value is
the same as an existing value label for this axis, the new label replaces the existing
label; if the new label is NULL, then the existing value label is deleted.

Due to round-off error locate the value label to be deleted or modified using
Xrt3dGetValueLabel().

Xrt3dSetValues()
Sets one or more chart properties.

void
Xrt3dSetValues(

HXRT3D hChart,
...,
NULL
)

hChart is the chart handle. ... is one or more property-value pairs. Each pair consists
of a property name and a variable (must be the same data type as the property)
containing its new value. Olectra Chart sets the property to the value. The list is
terminated by NULL.

Xrt3dSetXYColor()
Defines, replaces or deletes a color in a bar chart.

void
Xrt3dSetXYColor(

HXRT3D hChart,
int xindex, yindex,
char *color
)

118 Part II ■ Reference Appendices

hChart is the chart handle. xindex and yindex specify the bar or set of bars to which the
color will be applied. If xindex is -1, color is applied to all bars which are along the
column defined by yindex; if yindex is -1, color is applied to all bars which are along the
row defined by xindex; if both xindex and yindex are -1, the color is applied to all the
bars in the chart.

Color requests are applied in the order they are specified. For instance, a request to
assign the color blue to (-1, 3), followed by a request to assign the color red to (2, 3)
results in bars in column 3 being blue, except the bar at xindex 2, which is red.

Olectra Chart will not keep more than one entry per (xindex, yindex) in its internal list
of XYColors. If Xrt3dSetXYColor() is called with a color of NULL, the matching
entry is removed from the list. Otherwise, any call to Xrt3dSetXYColor() places the
new entry at the end of the list, and removes any duplicates from the list.

This procedure only has effect when XRT3D_TYPE is XRT3D_TYPE_BAR, and
XRT3D_DRAW_SHADED is TRUE, and XRT3D_DRAW_ZONES is FALSE.

Xrt3dTextCreate()
Creates a text object. Returns its handle.

HXRT3DTEXT
Xrt3dTextCreate(void)

Xrt3dTextDestroy()
Destroys a text object.

void
Xrt3dTextDestroy(

HXRT3DTEXT text
)

Xrt3dTextGetValues()
Retrieves the current value of one or more text object properties.

void
Xrt3dTextGetValues(

HXRT3DTEXT text,
...,
NULL
)

text is a text object handle. ... is one or more property-value pairs. Each pair consists
of a property name and a pointer to a variable for its value. Olectra Chart writes the
current value of the property to this variable. The list is terminated by NULL.

Xrt3dTextSetValues()
Sets one or more text object properties.

void
Xrt3dTextSetValues(

HXRT3DTEXT text,
...,
NULL
)

Appendix C ■ Procedures and Methods Reference 119

text is a text object handle. ... is one or more property-value pairs. Each pair consists
of a property name and a variable (must be the same data type as the property)
containing its new value. Olectra Chart sets the property to the value. The list is
terminated by NULL.

Xrt3dUnmap()
Unmaps from a chart coordinate to a pixel coordinate.

void
Xrt3dUnmap(

HXRT3D hChart,
double x, y, z,
Xrt3dMapResult *map
)

Used by an application to determine the pixel coordinates corresponding to the
chart coordinate (x, y, z) in the chart whose handle is specified by hChart. Results are
returned in the pix_x and pix_y elements of the structure pointed to by map.

pix_x and pix_y values of -1 are returned for unmap requests that are out of range.

Xrt3dUnpick()
Determines a pixel coordinate given a point on the surface grid.

void
Xrt3dUnpick(

HXRT3D hChart,
int xindex, yindex,
Xrt3dPickResult *pick
)

Used by an application to determine the pixel coordinates at which a data value is
displayed (in the chart whose handle is specified by hChart). xindex and yindex are
indices of the grid coordinate to be unpicked.

Results are returned in the pix_x and pix_y elements of the structure pointed to by
pick. Both pix_x and pix_y will be -1 if the data is out of range.

Xrt3dZInterpolate()
Determines a Z-value of any point on the surface.

double
Xrt3dZInterpolate(

HXRT3D hChart,
double x, y
)

This procedure returns an estimate of the surface value at (x, y) calculated using
bilinear interpolation. hChart is the chart handle.

120 Part II ■ Reference Appendices

121

D
Message Reference

This appendix lists the Olectra Chart messages in alphabetical order.

XRT3DN_MODIFY_END
Sent to a chart’s parent window to indicate that user interaction has ended:

XRT3DN_MODIFY_END:
hWnd = (HWND) wParam;

wParam is the window handle.

XRT3DN_MODIFY_START
Sent to a chart’s parent window to indicate that a user interaction is about to begin:

XRT3DN_MODIFY_START:
hWnd = (HWND) wParam;
mcb = (Xrt3dModifyCallbackStruct *) lParam;

typedef struct {
BOOL doit;

} Xrt3DModifyCallbackStruct;

wParam is the window handle. lParam is a pointer to a modification message
structure. In this structure, the doit element indicates whether the user interaction is
to be permitted; set doit to FALSE to disallow this user interaction.

XRT3DN_PALETTECHANGED
Sent to a chart’s parent window after the chart control has changed its color palette.

XRT3DN_PALETTECHANGED:
hWnd = (HWND) wParam;

wParam is the window handle.

122 Part II ■ Reference Appendices

XRT3DN_PROPERTIES
Sent to a chart’s parent window to indicate that the user has requested to activate the
property page:

XRT3DN_PROPERTIES:
hWnd = (HWND) wParam;
pcb = (Xrt3dPropertiesCallbackStruct *) lParam;

typedef struct {
int x;
int y;

} Xrt3dPropertiesCallbackStruct;

wParam is the window handle. lParam is a pointer to a modification message
structure. In this structure, the x and y elements indicate the coordinates at which the
event occurred.

XRT3DN_REPAINTED
Sent to a window after the chart control has been redrawn:

XRT3DN_REPAINTED:
hWnd = (HWND) wParam;
cb = (Xrt3dCallbackStruct *) lParam;

typedef struct {
HDC hdc;
RECT rectDamaged;

} Xrt3dCallbackStruct;

wParam is the window handle. lParam is a pointer to a repaint message structure. In
this structure, hdc is the handle to the device context, and rectDamaged is the rectangle
that has been repainted.

XRT3DN_RESIZED
Sent to a window after the chart control has changed size:

XRT3DN_RESIZED:
hWnd = (HWND) wParam;
rcb = (Xrt3dResizeCallbackStruct *) lParam;

typedef struct {
int width;
int height;

} Xrt3dResizeCallbackStruct;

wParam is the window handle. lParam is a pointer to a resize message structure. In
this structure, width is the new width of the control, and height is the new height of the
control.

Appendix D ■ Message Reference 123

XRT3DN_ROTATE
Sent to a window when the user attempts to perform a rotation operation:

XRT3DN_ROTATE:
hWnd = (HWND) wParam;
rcb = (Xrt3dRotateCallbackStruct *) lParam;

typedef struct {
double xrotation;
double yrotation;
double zrotation;
BOOL doit;

} Xrt3dRotateCallbackStruct;

wParam is the window handle. lParam is a pointer to a rotation message structure. In
this structure, xrotation, yrotation and zrotation are the proposed values for the
XRT3D_[XYZ]ROTATION properties; they can be modified by the message handler.
The doit element indicates whether the rotation is to be permitted; set doit to FALSE
to disallow this rotation.

XRT3DN_TRANSFORM
Sent to a window when the user attempts to perform a scaling, translation, or
zooming operation:

XRT3DN_TRANSFORM:
hWnd = (HWND) wParam;
tcb = (Xrt3dTransformCallbackStruct *) lParam;

typedef struct {
BOOL reset;/* Read-only */
double scale;
double xtranslate;
double ytranslate;
BOOL doit;

} Xrt3dTransformCallbackStruct;

wParam is the window handle. lParam is a pointer to a transformation message
structure. In this structure, scale, xtranslate and ytranslate are the proposed values for
the XRT3D_VIEW_SCALE, XRT3D_VIEW_XTRANSLATE and
XRT3D_VIEW_YTRANSLATE properties; they can be modified to limit the scope
of the transformation. The doit element indicates whether the transformation is to be
permitted; set doit to FALSE to disallow this transformation.

124 Part II ■ Reference Appendices

125

E
Data Types

This appendix lists the Olectra Chart data types in alphabetical order. The C
language definition of structures is also provided.

Xrt3dAction
Enumeration used to specify Olectra Chart actions, used in user interaction.

XRT3D_ACTION_NONE
XRT3D_ACTION_MODIFY_START
XRT3D_ACTION_MODIFY_END
XRT3D_ACTION_MODIFY_CANCEL
XRT3D_ACTION_ROTATE
XRT3D_ACTION_SCALE
XRT3D_ACTION_TRANSLATE
XRT3D_ACTION_ZOOM_START
XRT3D_ACTION_ZOOM_UPDATE
XRT3D_ACTION_ZOOM_END
XRT3D_ACTION_ZOOM_CANCEL
XRT3D_ACTION_RESET
XRT3D_ACTION_PROPERTIES
XRT3D_ACTION_ROTATE_XAXIS
XRT3D_ACTION_ROTATE_YAXIS
XRT3D_ACTION_ROTATE_ZAXIS
XRT3D_ACTION_ROTATE_EYE
XRT3D_ACTION_ROTATE_FREE

Xrt3dActionItem
Structure used by Xrt3dGetActionList() to return the list of actions used by the
control.

typedef struct tag_Xrt3dActionItem {
UINT msg;
UINT modifier;
UINT keycode;
Xrt3dAction action;
struct tag_Xrt3dActionItem *next;

} Xrt3dActionItem;

126 Part II ■ Reference Appendices

Xrt3dAdjust
Enumeration used by the XRT3D_FOOTER_ADJUST and
XRT3D_HEADER_ADJUST properties:

XRT3D_ADJUST_LEFT
XRT3D_ADJUST_RIGHT
XRT3D_ADJUST_CENTER

Xrt3dAlign
Enumeration used with the XRT3D_LEGEND_ORIENTATION property:

XRT3D_ALIGN_VERTICAL
XRT3D_ALIGN_HORIZONTAL

Xrt3dAnchor
Enumeration used with the XRT3D_LEGEND_ANCHOR property:

XRT3D_ANCHOR_NORTH
XRT3D_ANCHOR_SOUTH
XRT3D_ANCHOR_EAST
XRT3D_ANCHOR_WEST
XRT3D_ANCHOR_NORTHWEST
XRT3D_ANCHOR_NORTHEAST
XRT3D_ANCHOR_SOUTHWEST
XRT3D_ANCHOR_SOUTHEAST

Xrt3dAnnoMethod
Enumeration used to specify the XRT3D_[XYZ]ANNO_METHOD:

XRT3D_ANNO_VALUES
XRT3D_ANNO_DATA_LABELS
XRT3D_ANNO_VALUE_LABELS

Xrt3dAxis
Enumeration used to specify an axis.

XRT3D_AXIS_X
XRT3D_AXIS_Y
XRT3D_AXIS_Z
XRT3D_AXIS_NONE
XRT3D_AXIS_EYE

Xrt3dBarFormat
Enumeration used to specify the XRT3D_[XY]BAR_FORMAT:

XRT3D_BAR_FIXED
XRT3D_BAR_HISTOGRAM

Xrt3dBorder
Enumeration used by the XRT3D_HEADER_BORDER,
XRT3D_FOOTER_BORDER, XRT3D_LEGEND_BORDER and

Appendix E ■ Data Types 127

XRT3D_GRAPH_BORDER properties, and the text object’s
XRT3D_TEXT_BORDER property:

XRT3D_BORDER_NONE
XRT3D_BORDER_3D_IN
XRT3D_BORDER_3D_OUT
XRT3D_BORDER_ETCHED_IN
XRT3D_BORDER_ETCHED_OUT
XRT3D_BORDER_SHADOW
XRT3D_BORDER_PLAIN

Xrt3dCallbackStruct
Structure that defines the information passed to the message handler when the chart
control has been redrawn:

typedef struct {
HDC hdc;
RECT rectDamaged;

} Xrt3dCallbackStruct;

Xrt3dContourStyle
The structure defining how a particular contour and zone are displayed:

typedef struct {
char *fill_color; /*for zoning*/
char *line_color; /*line color*/
int line_width; /*line width*/
Xrt3dLinePattern lpat; /*2D contours only*/

} Xrt3dContourStyle;

Xrt3dData
The structure defining data for use with XRT3D_SURFACE_DATA and with
XRT3D_ZONE_DATA. It is a union of two data structures:

typedef union {
Xrt3dGridData g;
Xrt3dIrGridData ig;

} Xrt3dData;

Xrt3dDataType
Enumeration used for defining the type of an Xrt3dData structure:

XRT3D_DATA_GRID
XRT3D_DATA_IRGRID

Xrt3dDistnMethod
Enumeration used for defining the distribution method used when DrawContours
and/or DrawZones is TRUE. There are currently two methods:

XRT3D_DISTN_LINEAR
XRT3D_DISTN_FROM_TABLE

128 Part II ■ Reference Appendices

Xrt3dDistnTable
The structure used to define custom distributions:

typedef struct {
int nentries;
double *entry;

} Xrt3dDistnTable

Xrt3dDrawFormat
Enumeration used to specify the print format to use when printing the chart:

XRT3D_DRAW_BITMAP
XRT3D_DRAW_METAFILE
XRT3D_DRAW_ENHMETAFILE

Xrt3dDrawScale
Enumeration used to specify the scaling factor to use when printing the chart:

XRT3D_DRAWSCALE_NONE
XRT3D_DRAWSCALE_TOWIDTH
XRT3D_DRAWSCALE_TOHEIGHT
XRT3D_DRAWSCALE_TOFIT
XRT3D_DRAWSCALE_MAX

Xrt3dGridData
The structure defining Xrt3dData when the type is XRT3D_DATA_GRID:

typedef struct {
Xrt3dDataType type; /*XRT3D_DATA_GRID*/
int numx, numy;
double noval;
double xstep, ystep;
double xorig, yorig;
double **values;

} Xrt3dGridData;

Xrt3dInterpMethod
Enumeration used to define the interpolation method in Xrt3dDataWindow():

XRT3D_INTERP_LINEAR_SPLINE
XRT3D_INTERP_CUBIC_SPLINE

Xrt3dIrGridData
The structure defining Xrt3dData when the type is XRT3D_DATA_IRGRID:

typedef struct {
Xrt3dDataType type; /*XRT3D_DATA_IRGRID*/
int numx, numy;
double noval;
double *xgrid, *ygrid;
double **values;

} Xrt3dIrGridData;

Appendix E ■ Data Types 129

Xrt3dLegendStyle
Enumeration of various legend styles, used with the XRT3D_LEGEND_STYLE
property:

XRT3D_LEGEND_STYLE_STEPPED
XRT3D_LEGEND_STYLE_CONTINUOUS

Xrt3dLinePattern
Enumeration of various line patterns, used within an Xrt3dContourStyle structure:

XRT3D_LPAT_NONE
XRT3D_LPAT_SOLID
XRT3D_LPAT_LONG_DASH
XRT3D_LPAT_DOTTED
XRT3D_LPAT_SHORT_DASH
XRT3D_LPAT_LSL_DASH
XRT3D_LPAT_DASH_DOT

Xrt3dMapResult
Structure used to pass information about mapped pixel coordinates:

typedef struct {
int pix_x, pix_y;
double x, y, z;

} Xrt3dMapResult;

Xrt3dModifyCallbackStruct
Structure that defines the information passed to the message handler when a user
interaction starts:

typedef struct {
BOOL doit;

} Xrt3dModifyCallbackStruct;

Xrt3dPickResult
Structure used to pass information about picked pixel coordinates:

typedef struct {
int pix_x, pix_y;
int xindex, yindex;
int distance;

} Xrt3dPickResult;

Xrt3dPreviewMethod
Enumeration used to specify how interactive rotations are to be presented to the
user:

XRT3D_PREVIEW_CUBE
XRT3D_PREVIEW_FULL

Xrt3dPropertiesCallbackStruct
Structure that defines the information passed to the message handler when the user
clicks the right mouse button to activate the property page:

typedef struct {
int x;
int y;

} Xrt3dPropertiesCallbackStruct;

130 Part II ■ Reference Appendices

Xrt3dRegion
Enumeration of map or pick results. Returned by Xrt3dMap() and Xrt3dPick():

XRT3D_RGN_NOWHERE
XRT3D_RGN_IN_GRAPH
XRT3D_RGN_IN_LEGEND
XRT3D_RGN_IN_FOOTER
XRT3D_RGN_IN_HEADER

Xrt3dResizeCallbackStruct
Structure that defines the information passed to the message handler when the chart
control changes size:

typedef struct {
int width;
int height;

} Xrt3dResizeCallbackStruct;

Xrt3dRotateCallbackStruct
Structure that defines the information passed to the message handler when the user
rotates a chart:

typedef struct {
double xrotation;
double yrotation;
double zrotation;
BOOL doit;

} Xrt3dRotateCallbackStruct;

Xrt3dStrokeFont
Enumeration of stroke font names. Used by XRT3D_AXIS_STROKE_FONT and
XRT3D_AXIS_TITLE_STROKE_FONT:

XRT3D_SF_CYRILLIC_COMPLEX
XRT3D_SF_GOTHIC_ENGLISH
XRT3D_SF_GOTHIC_GERMAN
XRT3D_SF_GOTHIC_ITALIAN
XRT3D_SF_GREEK_COMPLEX
XRT3D_SF_GREEK_COMPLEX_SMALL
XRT3D_SF_GREEK_SIMPLEX
XRT3D_SF_ITALIC_COMPLEX
XRT3D_SF_ITALIC_COMPLEX_SMALL
XRT3D_SF_ITALIC_TRIPLEX
XRT3D_SF_ROMAN_COMPLEX
XRT3D_SF_ROMAN_COMPLEX_SMALL
XRT3D_SF_ROMAN_DUPLEX
XRT3D_SF_ROMAN_SIMPLEX
XRT3D_SF_ROMAN_TRIPLEX
XRT3D_SF_SCRIPT_COMPLEX
XRT3D_SF_SCRIPT_SIMPLEX

Appendix E ■ Data Types 131

Stroke Font Name Glyphs

Cyrillic Complex

Gothic English

Gothic German

Gothic Italian

Greek Complex

Greek Complex Small

Greek Simplex

Italic Complex

132 Part II ■ Reference Appendices

Italic Complex Small

Italic Triplex

Roman Complex

Roman Complex Small

Roman Duplex

Roman Simplex

Roman Triplex

Script Complex

Stroke Font Name Glyphs

Appendix E ■ Data Types 133

Xrt3dTextAttachMethod
Enumeration used to specify how Olectra Chart text objects are attached to the
chart:

XRT3D_ATTACH_INDEX
XRT3D_ATTACH_PIXEL
XRT3D_ATTACH_POINT

Xrt3dTransformCallbackStruct
Structure that defines the information passed to the message handler when the user
scales, translates or zooms a chart:

typedef struct {
double scale;
double xtranslate;
double ytranslate;
BOOL doit;

} Xrt3dTransformCallbackStruct;

Xrt3dType
Enumeration used to specify the XRT3D_TYPE:

XRT3D_TYPE_SURFACE
XRT3D_TYPE_BAR

Xrt3dValueLabel
Structure used to supply value labels for an axis:

typedef struct {
double value;
char *label;

} Xrt3dValueLabel;

Xrt3dXYColor
Structure used to specify coloring of individual bars.

typedef struct {
int xindex;
int yindex;
COLORREF *color;

} Xrt3dXYColor;

Xrt3dZoneMethod
Enumeration used to specify the zone filling method:

XRT3D_ZONE_CONTOURS
XRT3D_ZONE_CELLS

Script Simplex

Stroke Font Name Glyphs

134 Part II ■ Reference Appendices

135

F
Sample Code

SIMPLE.C

This appendix provides an overview of the sample code included with Olectra
Chart. There are two types of programming samples—examples and demos.
Examples are short programs that illustrate specific features of the control. Demos are
more complete applications that illustrate several features working together. Most
common Olectra Chart programming tasks are covered in the examples and demos.

This appendix describes Olectra Chart’s sample code and provides a listing of a
program.

C Examples
Olectra Chart provides the following examples, located in Olectra Chart’s
\CHART\3D\DEMOS\DLL\SDK directory. There is a directory for each program.

■ SIMPLE is the example program discussed in Chapter 1.

■ PROFILE is a program that displays a two-dimensional profile of a three-
dimensional surface.

MFC Example
Olectra Chart provides a simple program that uses the MFC classes. It is located in
Olectra Chart’s \CHART\3D\DEMOS\DLL\MFC directory.

OWL Example
Olectra Chart provides a simple program that uses the OWL classes. It is located in
Olectra Chart’s \CHART\3D\DEMOS\DLL\OWL directory.

136 Part II ■ Reference Appendices

F.1 SIMPLE.C

This program is the simple Olectra Chart program discussed in Chapter 1.

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <olch3d.h>

Xrt3dData* pData3d = NULL;

HANDLE ghInst;
HWND gMainHwnd;
HXRT3D hChart;
HBRUSH hbrushBack;
HANDLE hDrawMesh;
HANDLE hDrawShaded;
HANDLE hDrawContours;
HANDLE hDrawZones;

/* calculate the 3d data for the chart */
Xrt3dData *
CalculateGrid()
{

int i, j;
int nRows = 20;
int nColumns = 20;
double x, y;

Xrt3dGridData *pGridData = (Xrt3dGridData *)
Xrt3dMakeGridData(nRows, nColumns, XRT3D_HUGE_VAL,

8.0 / (nRows - 1), 8.0 / (nColumns - 1),
-3.0, -3.0, TRUE);

if (!pGridData) {
 return (Xrt3dData*) NULL;
}

for (i = 0; i < nRows; i++) {
 x = pGridData->xorig + i * pGridData->xstep;

for (j = 0; j < nColumns; j++) {
 y = pGridData->yorig + j * pGridData->ystep;

pGridData->values[i][j] = 3*x*y - x*x*x - y*y*y;
}

}

return (Xrt3dData*) pGridData;
}

/* Create all the controls used in the main windows */
void CreateControls(HWND parent)
{

HDC hdc;
TEXTMETRIC tm;
int cxChar, cyChar;
int controlWidth;
COLORREF crBack;

hdc = GetDC(parent) ;

Appendix F ■ Sample Code 137

SetMapMode(hdc, MM_TEXT);
SelectObject(hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
GetTextMetrics(hdc, &tm) ;
cxChar = tm.tmAveCharWidth ;
cyChar = tm.tmHeight + tm.tmExternalLeading ;

controlWidth = cxChar * 16;
ReleaseDC(parent, hdc) ;

/*
 * Create the 3d chart and their controls.
 * The size and position of the chart will be recalculated
 * during the WM_SIZE message.
 */

hChart = Xrt3dCreateWindow(“simple”, 0, 0, 0, 0, parent, ghInst);
hDrawMesh = CreateWindow(“BUTTON”, “DrawMesh”,

WS_VISIBLE | WS_CHILD | BS_AUTOCHECKBOX,
cxChar, cyChar/2, controlWidth, cyChar,
parent, NULL, ghInst, NULL);

hDrawShaded = CreateWindow(“BUTTON”, “DrawShaded”,
WS_VISIBLE | WS_CHILD | BS_AUTOCHECKBOX,
cxChar+4+controlWidth, cyChar/2, controlWidth, cyChar,
parent, NULL, ghInst, NULL);

hDrawContours = CreateWindow(“BUTTON”, “DrawContours”,
WS_VISIBLE | WS_CHILD | BS_AUTOCHECKBOX,
cxChar+4+(controlWidth*2), cyChar/2, controlWidth, cyChar,
parent, NULL, ghInst, NULL);

hDrawZones = CreateWindow(“BUTTON”, “DrawZones”,
WS_VISIBLE | WS_CHILD | BS_AUTOCHECKBOX,
cxChar+4+(controlWidth*3), cyChar/2, controlWidth, cyChar,
parent, NULL, ghInst, NULL);

/*
 * get the current background color used by the demo
 * and use that color for the background of the rest of the window
 */
Xrt3dGetValues(hChart, XRT3D_BACKGROUND_COLOR, &crBack, NULL);
hbrushBack = CreateSolidBrush(crBack);

#ifdef _WIN32
SetClassLong(gMainHwnd, GCL_HBRBACKGROUND, (long) hbrushBack);

#else
SetClassWord(gMainHwnd, GCW_HBRBACKGROUND, (WORD) hbrushBack);

#endif
}

/* Resize/reposition the chart based on the new size of the main window
*/
void SizeChart(HWND hwnd, int width, int height)
{

HDC hdc;
TEXTMETRIC tm;
int cyChar;
int chartHeight;
int chartWidth;
int controlHeight;

hdc = GetDC(hwnd);
SetMapMode(hdc, MM_TEXT);

138 Part II ■ Reference Appendices

SelectObject(hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
GetTextMetrics(hdc, &tm) ;
ReleaseDC(hwnd, hdc);

cyChar = tm.tmHeight + tm.tmExternalLeading ;
controlHeight = cyChar * 2;
chartWidth = width;
chartHeight = height - (controlHeight * 4);

/* place chart in bottom portion of window */
SetWindowPos(Xrt3dGetWindow(hChart), HWND_BOTTOM, 0,

(controlHeight * 2),
 chartWidth, chartHeight, SWP_SHOWWINDOW | SWP_NOZORDER);

InvalidateRect(gMainHwnd, NULL, TRUE);
}

/* draw routine */
void DrawChart(HWND hwnd, HDC hdc)
{

TEXTMETRIC tm;
RECT rect;
HBRUSH hbrush;
int cxChar, cyChar;
int chartWidth;
int controlHeight;

SetMapMode(hdc, MM_TEXT);
SelectObject(hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
GetTextMetrics(hdc, &tm) ;
cxChar = tm.tmAveCharWidth ;
cyChar = tm.tmHeight + tm.tmExternalLeading ;

controlHeight = cyChar * 2;
GetClientRect(hwnd, &rect);
chartWidth = rect.right - rect.left;

/* place controls in top portion of window */
MoveToEx(hdc, 0, controlHeight, NULL);
LineTo(hdc, chartWidth, controlHeight);

#ifdef _WIN32
hbrush = CreateSolidBrush(GetSysColor(COLOR_BTNFACE));

#else
hbrush = CreateSolidBrush(GetSysColor(COLOR_WINDOW));

#endif
rect.left = 0;
rect.top = 0;
rect.right = chartWidth;
rect.bottom = controlHeight;
FillRect(hdc, &rect, hbrush);
DeleteObject(hbrush);

ShowWindow(hDrawMesh, SW_SHOW);
ShowWindow(hDrawShaded, SW_SHOW);
ShowWindow(hDrawContours, SW_SHOW);
ShowWindow(hDrawZones, SW_SHOW);

}

/* Main window WndProc */

Appendix F ■ Sample Code 139

LRESULT CALLBACK MainWndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM
lParam)
{

HWND hwndCtrl;
HDC hdc;
PAINTSTRUCT ps;
int nCheck;

switch(msg) {

 case WM_COMMAND:

 /* handle commands */
 switch(LOWORD(wParam)) {

 /* handle messages from check buttons */
 default:

#ifdef _WIN32
 hwndCtrl = (HWND)lParam;

#else
 hwndCtrl = (HWND)LOWORD(lParam);

#endif
 if (hwndCtrl == hDrawMesh) {
 nCheck = (int) SendMessage(hwndCtrl, BM_GETCHECK, 0, 0L);
 Xrt3dSetValues(hChart, XRT3D_DRAW_MESH, nCheck, NULL);
 }
 else if (hwndCtrl == hDrawShaded) {
 nCheck = (int) SendMessage(hwndCtrl, BM_GETCHECK, 0, 0L);
 Xrt3dSetValues(hChart, XRT3D_DRAW_SHADED, nCheck, NULL);
 }
 else if (hwndCtrl == hDrawContours) {
 nCheck = (int) SendMessage(hwndCtrl, BM_GETCHECK, 0, 0L);
 Xrt3dSetValues(hChart, XRT3D_DRAW_CONTOURS, nCheck,

NULL);
 }
 else if (hwndCtrl == hDrawZones) {
 nCheck = (int) SendMessage(hwndCtrl, BM_GETCHECK, 0, 0L);
 Xrt3dSetValues(hChart, XRT3D_DRAW_ZONES, nCheck, NULL);
 }
 break;
 }
 return(0);

 case WM_SIZE:
 /* resize the chart */
 SizeChart(hwnd, (int) LOWORD(lParam), (int) HIWORD(lParam));
 return(0);

 case WM_PAINT:
 hdc = BeginPaint(hwnd, &ps);
 DrawChart(hwnd, hdc);
 EndPaint(hwnd, &ps);
 break;

 /*
 * To properly handle colors the chart needs to be
 * notified about any system palette changes.
 */
 case XRT3DN_PALETTECHANGED:
 SendMessage(Xrt3dGetWindow(hChart), WM_QUERYNEWPALETTE, 0, 0);

140 Part II ■ Reference Appendices

 break;

 case WM_QUERYNEWPALETTE:
 /* Make sure the window is at the top of the Z-order so that
 the background palettes can be realized before any other
 application gets a chance to realize a palette.
 */
 /* In Windows for Workgroups, this message can be received
 before the window is moved to the top of the Z-order
 causing the first WM_PALETTECHANGED message to be sent
 not to this window but the window which was “previously”
 at the top of the Z-order.
 */
 BringWindowToTop(hwnd);

 SendMessage(Xrt3dGetWindow(hChart), WM_QUERYNEWPALETTE, 0, 0);
 break;

 case WM_PALETTECHANGED:
 SendMessage(Xrt3dGetWindow(hChart), msg, wParam, lParam);
 break;

 case WM_DESTROY:
 PostQuitMessage(0);
 return(0);
}

return(DefWindowProc(hwnd, msg, wParam, lParam));
}

/* Entry point for main program */
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)
{

WNDCLASS wc;
MSG msg;

memset(&wc, 0, sizeof(wc));
wc.lpfnWndProc = (WNDPROC) MainWndProc;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(hInstance, “simpleicon”);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject(BLACK_BRUSH);
wc.lpszMenuName = (LPSTR) “Menu”;
wc.lpszClassName = (LPSTR) “Chart3D_Simple”;

if (!RegisterClass(&wc)) {
 MessageBox(NULL, “Cannot RegisterClass()”,
 “Err! - TEST”, MB_OK | MB_ICONEXCLAMATION);
 return(FALSE);
}

ghInst = hInstance;

/* create main window */
gMainHwnd = CreateWindow(“Chart3D_Simple”,

“Olectra Chart 3D - Simple”,
 WS_OVERLAPPEDWINDOW, 0, 0, 700, 400, NULL, NULL, ghInst, NULL);
if (!gMainHwnd) {

Appendix F ■ Sample Code 141

 return 0;
}

/* create all controls in main window */
CreateControls(gMainHwnd);

/* calculate and set the 3d data for the chart */
pData3d = CalculateGrid();
Xrt3dSetValues(hChart, XRT3D_SURFACE_DATA, pData3d, NULL);
Xrt3dSetValues(hChart, XRT3D_XAXIS_TITLE, “X Axis”, NULL);
Xrt3dSetValues(hChart, XRT3D_YAXIS_TITLE, “Y Axis”, NULL);
Xrt3dSetValues(hChart, XRT3D_ZAXIS_TITLE, “Z Axis”, NULL);
SendMessage(hDrawMesh, BM_SETCHECK, 1, 0L);

ShowWindow(gMainHwnd, nCmdShow);
UpdateWindow(gMainHwnd);

while (GetMessage(&msg, NULL, 0, 0)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
}

/* remember to free up memory */
Xrt3dDestroyData(pData3d, TRUE);

DeleteObject(hbrushBack);

return(msg.wParam);
}

142 Part II ■ Reference Appendices

143

15 chart types 24
4D charts 65, 66

creating 65

A
action maps

changing 58
action maps and messages 55
actions

calling directly 60
determining mappings 59
disabling 60
modifier flags 59
programming 58
programming mappings 60
recognized keycodes 59

axis
displaying 34
font and size 34
labelling 38
minimum/maximum bounds 34
scaling 38
title 34

axis labels
data labels method 39
value labels method 39
value method 39

axis properties, summary 21

B
background color

Text Object 70
background colors 43

chart 43
data area 43
footer 43
header 43
legend 43
window 43

bar chart properties, summary 22
bar charts

4D 66
coloring 31

batching property updates 15
border types 42

borders 42
Text Object 70

C
C++

MFC header file 16
OWL header file 16

C++ classes
CChart3d 16
CChart3dData 16
TChart3d 16
TChart3dData 16

callback structures
Modify 129
Properties 129
Resize 130
Rotate 130
Transform 133

changing action maps 58
chart

foreground color 43
grid lines 39
output 44
perspective effect 35
positioning of areas 41

chart data area
background color 43

chart mesh
colors 36
filtering 36
hidden lines 37

chart properties, summary 21
chart surface

colors 37
solid 37

chart types 24
4D 65, 66
contours 26
contours and zones 28
DrawContours 25
DrawMesh 24
DrawShaded 25
DrawZones 25
mesh 26
mesh and contour 27
mesh and shaded 27
mesh and zones 27

Index

144 Index

mesh, contours, zones 28
mesh, shaded, contours 28
mesh, shaded, contours, zones 29
mesh, shaded, zones 28
shaded 26
shaded and contour 27
shaded and zones 27
shaded, contours, zones 28
zones 26

class name 79
colors

background 43
bar charts 31
chart mesh 36
chart surface 37
foreground 43
palette handling 43
palette notification message 44
specifying 43
Text Object 70

contour charts 26
contour styles

customizing 73, 74
line patterns 74
usage tips 75

contours 25
contours and zones charts 28
control

class name 79
include file 79
synopsis 79

controlling interactive rotate 58
controlling interactive scale, transform, zoom 57

D
data

application responsibility 49
changing 49
convenience procedures 51
example of setting a value 51
input from file 48
irregular grid 50
overview of Xrt3dData structure 47
real-time performance 49
regular grid 49

data area
background color 43

data display properties, summary 20
default user interactions 53
disabling all user interaction 56
disabling and disallowing interactions 60
Distributing Olectra Chart Applications 16
distribution table, customizing 70
double buffering 44
DrawContours property 25
DrawMesh property 24
DrawShaded property 25
DrawZones property 25

DrawZones with DrawShaded 29

E
example programs, discussion of 135

F
fonts

and Microsoft Windows 3.1 15
header, footer and legend 40
Text Object 70

footer
border 42
font 40
foreground color 43
positioning 41
text 40

footer area, definition of 11
foreground color

Text Object 70
foreground colors 43

chart 43
footer 43
header 43
legend 43
window 43

G
graph

border 42
positioning 41

graph area, definition of 11
graph areas

illustration of 12
positioning property summary 41

grid lines 39
Grid text objects 67

characteristics 67

H
header

border 42
font 40
foreground color 43
positioning 41
text 40

header area, definition of 11
header/footer properties, summary 22
help support, see Getting Started booklet
holes in data 48

Index 145

I
include file, Olectra Chart 79
introduction to Olectra Chart 1
irregular grid data 50

L
legend

4D charts 67
anchor 35
bar chart colors 31
border 35, 42
customizing contents 35
explicit positioning 35
font 40
foreground color 43
layout 34
orientation 34
positioning 35, 41
style 35

legend area, definition of 11
legend properties, summary 23
line patterns 74

M
manual, overview of 2
mesh

colors 36
filtering 36
hidden lines 37

mesh and contour charts 27
mesh and shaded charts 27
mesh and zones charts 27
mesh charts 26
mesh, contours, zones charts 28
mesh, shaded, contours charts 28
mesh, shaded, contours, zones charts 29
mesh, shaded, zones charts 28
MFC

header file 16
MFC C++ demo 135
MFC classes

CChart3d 16
CChart3dData 16

Microsoft Windows 3.1 and fonts 15
miscellaneous properties, summary 23
Modify callback structure 129

N
nentries, Xrt3dDistnTable structure 71
nlevels 71, 73, 75
noval element of Xrt3dData structure 48

O
Olectra Chart

basic terminology 12
class name 79
include file 79
introduction 7
introduction to 1
overview of manual 2

Olectra Chart Text Object
attachment methods 67
characteristics of Grid types 67
characteristics of Pixel type 68
definition of 67
intersecting multiple objects 68
positioning 69
property summary 24, 68
removing 70
types 67

OlectraChart3D, class name 79
outputting charts 44
OWL

header file 16
OWL C++ demo 135
OWL classes

TChart3d 16
TChart3dData 16

P
palette notification message 44
perspective effect 35
Pixel text objects 67

characteristics 68
pointer properties, specifying 14
positioning graph areas, strategies 42
printing charts 44
PROFILE example program 135
programming action mappings 60
programming actions 58
properties

batching updates 15
pointer 14
retrieving values 12
setting values 12
USE_DEFAULT 13

Properties callback structure 129
property summary

axis 21
bar charts 22
chart 21
data display 20
header/footer 22
legend 23
miscellaneous 23

146 Index

R
real-time performance 49
regular grid data 49
Repaint message 64
resetting interactions 57
Resize callback structure 130
Resize message 64
resizing windows 63
Rotate callback structure 130
rotating, interactive 53

S
sample code 135
scale of axis 38
scaling, interactive 53
shaded and contour charts 27
shaded and zones charts 27
shaded charts 26
shaded, contours, zones charts 28
simple example 7
SIMPLE example program 135
SIMPLE.C 7
stroke fonts, listing of 130
support, see Getting Started booklet
surface

colors 37
solid 37

surface charts
4D 65
creating 4D 65

T
technical support, see Getting Started booklet
terminology of Olectra Chart 12
Text Object

attachment methods 67
characteristics of Grid types 67
characteristics of Pixel type 68
definition 67
intersecting multiple objects 68
positioning 69
property summary 24, 68
removing 70
types of 67

Transform callback structure 133
translation, interactive 53
translations and actions

disabling 56
rotating 53
scaling 53
translation 53
zoom 53

types of charts 24

U
USE_DEFAULT properties 13
user interaction

controlling rotate 58
controlling scale, translate, zoom 57
customizing 55
disabling all 56
ending 58
resetting 57
rotating 53
scaling 53
starting 55
three stages 55
translation 53
updating 56
with chart data 61
zooming 53

user interaction, default 53

W
Windows integration 11
windows, resizing 63

X
XRT3D_AXIS_STROKE_FONT 34, 79
XRT3D_AXIS_STROKE_SIZE 79
XRT3D_AXIS_TITLE_STROKE_SIZE 80
XRT3D_BACKGROUND_COLOR 43, 80
XRT3D_BORDER 80
XRT3D_BORDER_WIDTH 80
XRT3D_CONTOUR_STYLES 25, 80
XRT3D_DATA_AREA_BACKGROUND_COLOR

43, 81
XRT3D_DEBUG 81
XRT3D_DISTN_METHOD 25, 70, 81
XRT3D_DISTN_TABLE 25, 81, 103
XRT3D_DOUBLE_BUFFER 44, 81
XRT3D_DRAW_CONTOURS 81
XRT3D_DRAW_HIDDEN_LINES 25, 37, 82
XRT3D_DRAW_MESH 82
XRT3D_DRAW_SHADED 82
XRT3D_DRAW_ZONES 82
XRT3D_FOOTER_ADJUST 40, 83
XRT3D_FOOTER_BACKGROUND_COLOR 83
XRT3D_FOOTER_BORDER 83
XRT3D_FOOTER_BORDER_WIDTH 83
XRT3D_FOOTER_FONT 83
XRT3D_FOOTER_FOREGROUND_COLOR 83
XRT3D_FOOTER_HEIGHT 83
XRT3D_FOOTER_STRINGS 40, 83
XRT3D_FOOTER_WIDTH 83
XRT3D_FOOTER_X 83
XRT3D_FOOTER_X_USE_DEFAULT 84
XRT3D_FOOTER_Y 83
XRT3D_FOOTER_Y_USE_DEFAULT 84

Index 147

XRT3D_FOREGROUND_COLOR 43, 84
XRT3D_GRAPH_BACKGROUND_COLOR 84
XRT3D_GRAPH_BORDER 84
XRT3D_GRAPH_BORDER_WIDTH 84
XRT3D_GRAPH_FOREGROUND_COLOR 84
XRT3D_GRAPH_HEIGHT 84
XRT3D_GRAPH_HEIGHT_USE_DEFAULT 84
XRT3D_GRAPH_WIDTH 84
XRT3D_GRAPH_WIDTH_USE_DEFAULT 84
XRT3D_GRAPH_X 85
XRT3D_GRAPH_X_USE_DEFAULT 85
XRT3D_GRAPH_Y 85
XRT3D_GRAPH_Y_USE_DEFAULT 85
XRT3D_HEADER_ADJUST 40, 85
XRT3D_HEADER_BACKGROUND_COLOR 85
XRT3D_HEADER_BORDER 85
XRT3D_HEADER_BORDER_WIDTH 85
XRT3D_HEADER_FONT 85
XRT3D_HEADER_FOREGROUND_COLOR 43,

85
XRT3D_HEADER_HEIGHT 86
XRT3D_HEADER_STRINGS 40, 85
XRT3D_HEADER_WIDTH 86
XRT3D_HEADER_X 86
XRT3D_HEADER_X_USE_DEFAULT 86
XRT3D_HEADER_Y 86
XRT3D_HEADER_Y_USE_DEFAULT 86
XRT3D_HEIGHT 86
XRT3D_LEGEND_ANCHOR 41, 86
XRT3D_LEGEND_BACKGROUND_COLOR 86
XRT3D_LEGEND_BORDER 86
XRT3D_LEGEND_BORDER_WIDTH 86
XRT3D_LEGEND_FONT 86
XRT3D_LEGEND_FOREGROUND_COLOR 87
XRT3D_LEGEND_HEIGHT 88
XRT3D_LEGEND_LABEL_FUNC 72, 87
XRT3D_LEGEND_ORIENTATION 34, 87
XRT3D_LEGEND_SHOW 34, 87
XRT3D_LEGEND_STRINGS 67, 72, 87
XRT3D_LEGEND_STYLE 35, 87
XRT3D_LEGEND_WIDTH 88
XRT3D_LEGEND_X 88
XRT3D_LEGEND_X_USE_DEFAULT 88
XRT3D_LEGEND_Y 88
XRT3D_LEGEND_Y_USE_DEFAULT 88
XRT3D_MESH_BOTTOM_COLOR 25, 36, 88
XRT3D_MESH_TOP_COLOR 25, 36, 88
XRT3D_NAME 88
XRT3D_NUM_DISTN_LEVELS 70, 88
XRT3D_PERSPECTIVE_DEPTH 35, 88
XRT3D_PREVIEW_METHOD 56, 88
XRT3D_PROJECT_ZMAX 32, 89
XRT3D_PROJECT_ZMIN 32, 89
XRT3D_REPAINT 15, 89
XRT3D_SOLID_SURFACE 37, 89
XRT3D_SURFACE_BOTTOM_COLOR 37, 89
XRT3D_SURFACE_DATA 14, 49, 89
XRT3D_SURFACE_TOP_COLOR 37, 89
XRT3D_TEXT_ADJUST 68, 95
XRT3D_TEXT_ATTACH_INDEX_X 95

XRT3D_TEXT_ATTACH_INDEX_Y 95
XRT3D_TEXT_ATTACH_METHOD 67, 95
XRT3D_TEXT_ATTACH_PIXEL_X 95
XRT3D_TEXT_ATTACH_PIXEL_Y 95
XRT3D_TEXT_ATTACH_POINT_X 96
XRT3D_TEXT_ATTACH_POINT_Y 96
XRT3D_TEXT_ATTACH_POINT_Z 96
XRT3D_TEXT_BACKGROUND 70
XRT3D_TEXT_BACKGROUND_COLOR 96
XRT3D_TEXT_BORDER 70, 96
XRT3D_TEXT_BORDER_WIDTH 70, 96
XRT3D_TEXT_FONT 70, 96
XRT3D_TEXT_FOREGROUND 70
XRT3D_TEXT_FOREGROUND_COLOR 96
XRT3D_TEXT_LINE_SHOW 69, 96
XRT3D_TEXT_OFFSET_X 97
XRT3D_TEXT_OFFSET_Y 97
XRT3D_TEXT_PLANE 69, 97
XRT3D_TEXT_SHOW 70, 97
XRT3D_TEXT_STRINGS 68, 97
XRT3D_TEXT_STROKE_FONT 70, 97
XRT3D_TEXT_STROKE_SIZE 70, 97
XRT3D_TYPE 29, 89
XRT3D_VIEW_NORMALIZED 89
XRT3D_VIEW_SCALE 90
XRT3D_VIEW_XTRANSLATE 90
XRT3D_VIEW_YTRANSLATE 90
XRT3D_WIDTH 90
XRT3D_XANNO_METHOD 39, 90
XRT3D_XAXIS_SHOW 34, 90
XRT3D_XAXIS_TITLE 90
XRT3D_XBAR_FORMAT 90
XRT3D_XBAR_SPACING 91
XRT3D_XDATA_LABELS 91
XRT3D_XGRID_LINES 39, 91
XRT3D_XMAX 34, 91
XRT3D_XMAX_USE_DEFAULT 34, 92
XRT3D_XMESH_FILTER 36, 92
XRT3D_XMESH_SHOW 92
XRT3D_XMIN 34, 92
XRT3D_XMIN_USE_DEFAULT 34, 92
XRT3D_XROTATION 57, 93
XRT3D_XSCALE 38, 93
XRT3D_XTITLE 34
XRT3D_XVALUE_LABELS 93
XRT3D_XY_COLORS 31, 93
XRT3D_YANNO_METHOD 39, 90
XRT3D_YAXIS_SHOW 34, 90
XRT3D_YAXIS_TITLE 90
XRT3D_YBAR_FORMAT 90
XRT3D_YBAR_SPACING 91
XRT3D_YDATA_LABELS 91
XRT3D_YGRID_LINES 39, 91
XRT3D_YMAX 34, 91
XRT3D_YMAX_USE_DEFAULT 34, 92
XRT3D_YMESH_FILTER 36, 92
XRT3D_YMESH_SHOW 92
XRT3D_YMIN 34, 92
XRT3D_YMIN_USE_DEFAULT 34, 92
XRT3D_YROTATION 57, 93

148 Index

XRT3D_YSCALE 38, 93
XRT3D_YTITLE 34
XRT3D_YVALUE_LABELS 93
XRT3D_Z_ONE_DATA 14
XRT3D_ZANNO_METHOD 39, 90
XRT3D_ZAXIS_SHOW 34, 90
XRT3D_ZAXIS_TITLE 90
XRT3D_ZGRID_LINES 39, 91
XRT3D_ZMAX 34, 91
XRT3D_ZMAX_USE_DEFAULT 34, 92
XRT3D_ZMIN 34, 92
XRT3D_ZMIN_USE_DEFAULT 34, 92
XRT3D_ZONE_DATA 25, 93

use of as 4D bar chart 66
use of for 4D charts 65

XRT3D_ZONE_METHOD 33, 93
XRT3D_ZORIGIN 25, 29, 94
XRT3D_ZROTATION 57, 93
XRT3D_ZSCALE 38, 93
XRT3D_ZTITLE 34
XRT3D_ZVALUE_LABELS 93
Xrt3dAction 125
Xrt3dActionItem 125
Xrt3dAdjust 126
Xrt3dAlign 126
Xrt3dAnchor 126
Xrt3dAnnoMethod 39, 126
Xrt3dAttachWindow() 99
Xrt3dAxis 126
Xrt3dBarFormat 126
Xrt3dBorder 126
Xrt3dCallAction() 60, 99
Xrt3dCallbackStruct structure 127
Xrt3dComputePalette() 99
Xrt3dComputeZValue 63
Xrt3dComputeZValue() 100
Xrt3dContourStyle structure 73, 100, 101, 105, 109,

115, 127
fill_color 73
line_color 73
line_width 73
lpat 74

Xrt3dContourStylesFromFile() 100
Xrt3dContourStylesToFile() 101
Xrt3dCreate() 101
Xrt3dCreateWindow() 101
Xrt3dData structure 47, 103, 112, 113, 127

application responsibility 49
changing data 49
convenience procedures 51
description of 49
example of setting 51
input from file 48
irregular grid 50
overview 47
regular grid 49
use of as 4D surface 65

Xrt3dDataCopy() 101
Xrt3dDataShaded() 102
Xrt3dDataSmooth() 102

Xrt3dDataType 127
Xrt3dDataWindow() 102
Xrt3dDestroyData() 103
Xrt3dDetachWindow() 103
Xrt3dDistnIndex() 103
Xrt3dDistnMethod 127
Xrt3dDistnTable structure 70, 81, 103, 104, 105,

128
Xrt3dDistnTableFromFile() 103
Xrt3dDistnTableToFile() 104
Xrt3dDrawFormat 128
Xrt3dDrawScale 128
Xrt3dDrawToClipboard() 104
Xrt3dDrawToDC() 45, 104
Xrt3dDrawToFile() 45, 105
Xrt3dDupContourStyles() 14, 74, 105
Xrt3dDupDistnTable() 14, 105
Xrt3dDupStrings() 14, 106
Xrt3dDupValueLabels() 14, 106
Xrt3dDupXYColors() 14, 106
Xrt3dFreeContourStyles() 106
Xrt3dFreeDistnTable() 106
Xrt3dFreePropString() 13, 106
Xrt3dFreeStrings() 107
Xrt3dFreeValueLabels() 107
Xrt3dFreeXYColors() 107
Xrt3dGetAction() 59, 107
Xrt3dGetActionList() 59, 108
Xrt3dGetDistnTable() 108
Xrt3dGetHandle() 109
Xrt3dGetNthContourStyle() 75, 109
Xrt3dGetNthDataLabel() 109
Xrt3dGetNthFooterString() 109
Xrt3dGetNthHeaderString() 110
Xrt3dGetNthLegendString() 110
Xrt3dGetPalette() 110
Xrt3dGetPropString() 12, 13, 110
Xrt3dGetValueLabel() 39, 111
Xrt3dGetValues() 12, 111
Xrt3dGetWindow() 111
Xrt3dGetXYColor() 31, 111
Xrt3dGridData structure 49, 128
Xrt3dInterpMethod 128
Xrt3dIrGridData structure 50, 128
Xrt3dLegendStyle 129
Xrt3dLinePattern 73, 129
Xrt3dMakeDataFromFile() 50, 112
Xrt3dMakeGridData() 50, 113
Xrt3dMakeIrGridData() 113
Xrt3dMap() 62, 113
Xrt3dMapResult structure 62, 129
Xrt3dModifyCallbackStruct structure 129
XRT3DN_MODIFY_END message 121
XRT3DN_MODIFY_START message 55, 56, 60,

121
XRT3DN_PALETTECHANGED message 44, 121
XRT3DN_PROPERTIES message 122
XRT3DN_REPAINTED message 122
XRT3DN_RESIZED message 122
XRT3DN_ROTATE message 123

Index 149

XRT3DN_TRANSFORM message 57, 123
Xrt3dPick() 61, 114
Xrt3dPickResult structure 61, 129
Xrt3dPreviewMethod 129
Xrt3dPrint() 45, 114
Xrt3dPropertiesCallbackStruct structure 129
Xrt3dRegion 130
Xrt3dResetContourStyles() 114
Xrt3dResizeCallbackStruct structure 130
Xrt3dRotateCallbackStruct structure 58, 130
Xrt3dSaveDataToFile() 115
Xrt3dSetAction() 60, 115
Xrt3dSetNthContourStyle() 115
Xrt3dSetNthDataLabel() 116
Xrt3dSetNthFooterString() 116
Xrt3dSetNthHeaderString() 116
Xrt3dSetNthLegendString() 116
Xrt3dSetPropString() 12, 13, 40, 43, 117
Xrt3dSetValueLabel() 39, 117
Xrt3dSetValues() 12, 43, 117
Xrt3dSetXYColor 31
Xrt3dSetXYColor() 117
Xrt3dStrokeFont 130
Xrt3dTextAttachMethod 133
Xrt3dTextCreate() 118
Xrt3dTextDestroy() 118
Xrt3dTextGetValues() 118
Xrt3dTextSetValues() 118
Xrt3dTransformCallbackStruct structure 57, 133
Xrt3dType 133
Xrt3dUnmap() 63, 119
Xrt3dUnpick() 62, 119
Xrt3dValueLabel structure 39, 133
Xrt3dXYColor structure 31, 133
Xrt3dZInterpolate() 119
Xrt3dZoneMethod 133

Z
zone charts 26
zooming, interactive 53

150 Index

