
Olectra Chart
2D DLL
Programmer’s Guide & Reference Manual

Version 1.1

TM

260 King Street East
Toronto, Ontario, Canada M5A 1K3
(416) 594-1026
www.klg.com

June 1996 RefNo: 2DLLPR-CH/11-06/96

Copyright  1996 by KL Group Inc. All rights reserved.

Olectra and Olectra Chart are trademarks of KL Group Inc.

Microsoft, MS-DOS, Visual Basic, and Windows are registered trademarks, and Windows NT is a
trademark of Microsoft Corporation.

All other products, names, and services are trademarks or registered trademarks of their respective
companies or organizations.

Printed in Canada on recycled paper.

iii

Table of Contents

Preface . 1
Introduction. . 1
Assumptions . 2
Typographical Conventions Used in This Manual 2
Overview of Manual . 2
Related Documents . 3

Part I: Using the Chart

1 Getting Started: Developing a Simple Olectra Chart Program . . 7
1.1 Introduction . 7
1.2 A Basic Plot . 7
1.3 Loading Data From a File 10
1.4 Changing Chart Type 11
1.5 Adding Header, Footer and Labels 12
1.6 Inverting and Transposing the Chart 13
1.7 Putting it all Together 14

2 Olectra Chart Basics .15
2.1 Terminology . 15
2.2 Property Setting and Retrieving 15
2.3 USE_DEFAULT Properties 17
2.4 Pointer Properties 18
2.5 String Properties 18
2.6 Font Properties . 19
2.7 Programming with C++ 19
2.8 Distributing Olectra Chart Applications 20

3 Programming Olectra Chart .21
3.1 Property Summary 21
3.2 Axis Labelling and Annotation 26

Annotation Method 27

iv Contents

Point-labels and Set-labels 28
Value-labels . 31
Time-axis Labels 33

3.3 Axis Controls . 36
Axis Numbering 36
Axis and Data Bounds 39
Origin . 39
Annotation/Title Rotation and Placement 41
Other Axis Controls 42

3.4 Positioning Graph Areas 44
3.5 3D Effect . 45
3.6 Header, Footer and Legend Display 46
3.7 Data Styles . 48
3.8 Special Bar Chart Properties 52
3.9 Special Pie Chart Properties 54
3.10 Foreground and Background Colors 55
3.11 Markers . 57
3.12 Area Borders . 58
3.13 Double Buffering . 59
3.14 Output and Printing 59

4 Olectra Chart Data . 61
4.1 Getting Data into Charts 61
4.2 The XrtData Structure 62
4.3 Changing the Data 66
4.4 Example Using Static Data 67

5 Programming User Interaction . 69
5.1 Default User Interaction 69
5.2 Overview of Action Maps and Messages 69
5.3 Starting User Interaction 71
5.4 Updating User Interaction 71

Scaling, Translation, and Zooming 72
Rotation . 73

5.5 Ending User Interaction 73
5.6 Programming Actions 73

Changing the Action Maps 74
Disabling and Disallowing Interactions 75
Calling Actions Directly 76

5.7 Interacting with Chart Data 76
5.8 Window Resizing 80

Contents v

6 Advanced Programming Topics .83
6.1 Adding a Second Y-axis 83
6.2 Combination Charts 84
6.3 Adding Text Areas 85
6.4 Batching Property Updates 90
6.5 Fast Update Procedures 90

Part II: Reference Appendices

A Property Reference .95
A.1 Control Synopsis 95
A.2 Properties . 95

B Procedures and Methods Reference 117

C Macros . 143

D Message Reference. 145

E Data Types . 149

F Sample Code . 159
F.1 PANEL.C . 160

Index . 163

vi Contents

1

Preface
Introduction ■ Assumptions

Typographical Conventions Used in This Manual
Overview of Manual ■ Related Documents

Introduction

Olectra Chart Control
Windows contains many different pre-defined controls such as buttons, scrollbars,
and list boxes. Conceptually, Olectra Chart adds a new control class to Windows.
The chart control displays data graphically in a window and can interact with a user.

The chart control has properties that determine how the chart will look and behave.
Writing programs using Olectra Chart is similar to writing any other kind of
Windows program; you now have one more control to work with.

Olectra Chart has properties which allow control of:

■ Chart type (plot, area, bar, stacking-bar, pie, or combination).

■ Header and footer positioning, border style, text, font, and color.

■ Data styles: line colors and patterns, fill colors and patterns, line thickness, point
style, size, and colors.

■ Legend positioning, orientation, border style, anchor, font, and color.

■ Chart positioning, border style, color, width, height, and 3D effect.

■ Axis labelling using Point-labels, Set-labels, Value-labels, or Time-labels.

■ Axis and data minimums and maximums, axis numbering methods, numbering
and ticking increments, grid increments, font, origins, axis directions and
precisions.

■ Data transposition and axis inversion.

■ Placement of axes, annotation, and origins.

■ Markers and Text Areas.

Olectra Chart also provides several procedures and methods which:

■ Allocate and load data structures containing the numbers to be displayed.

2 Preface

■ Display new data very quickly in certain circumstances.

■ Assist the developer in dealing with user-events.

■ Assist the developer with setting and getting indexed properties.

Assumptions

This manual assumes that the reader is proficient with the C language and the
Windows API. C concepts such as “an array of char *” and “pointer to a structure”
must be understood before beginning to program Windows and Olectra Chart
applications. An understanding of basic Windows programming concepts such as
event-driven programming and programming Windows controls is required before
continuing with this manual. See page 3 for information on Windows programming
references.

Typographical Conventions Used in This Manual

Overview of Manual

Part I describes how to use Olectra Chart.

Bold ■ Chart property and method names.
■ Language-specific keywords, constants, variables, and

function names.
■ Commands that you enter at a command prompt.

Italic Text ■ Parameter names and information you specify.
■ New terms as they are introduced, and to emphasize

important words.
■ Figure and table titles.
■ The names of other documents referenced in this manual,

such as the Getting Started with Olectra Chart booklet.

UPPERCASE ■ File and directory names, key names, and key sequences.

Monospace ■ Code examples, variables in body text, and error text.

...[XYY2].. Many Olectra Chart properties used to specify axis information
are similar for the X-, Y-, and Y2-axis. The syntax [XYY2]
used in an property name refers to one of all of the X, Y, or Y2
versions of this property.
For example, “XRT_XNUM, XRT_YNUM, and
XRT_Y2NUM” is shortened to “XRT_[XYY2]NUM”.

Preface 3

Chapter 1, “Getting Started: Developing a Simple Olectra Chart Program”, should
be read by all programmers learning Olectra Chart. It provides a quick introduction
to Olectra Chart programming.

Chapter 2, “Olectra Chart Basics”, provides basic information that you need to know
before starting to develop applications with Olectra Chart.
It gives basic terminology and some programming approaches which apply to many
properties.

Chapter 3, “Programming Olectra Chart”, provides programming information for
most Olectra Chart properties.

Chapter 4, “Olectra Chart Data”, provides details on how to get data into charts.

Chapter 5, “Programming User Interaction”, provides programming information for
handling user interaction.

Chapter 6, “Advanced Programming Topics”, discusses more advanced and less
commonly-used aspects of Olectra Chart.

Part II contains detailed technical reference information in a number of appendices.

Appendix A , “Property Reference”, provides a concise reference of all Olectra
Chart properties in alphabetical order.

Appendix B , “Procedures and Methods Reference”, lists all Olectra Chart
procedures, methods, and convenience routines in alphabetical order.

Appendix C , “Macros”, lists the convenience macros.

Appendix D , “Message Reference”, provides a reference of Olectra Chart’s
notification messages.

Appendix E , “Data Types”, lists the Olectra Chart data structures.

Appendix F , “Sample Code”, provides complete listings of one example program
discussed in this manual, and briefly describes all of the sample programs included
with Olectra Chart.

Related Documents

The following documents are useful references for Windows application
development:

■ Programming Windows 3.1 by Charles Petzold, Microsoft Press.

■ Windows 3.1 SDK and Windows 3.1 API online documentation, Microsoft
Corporation.

■ Advanced Windows Programming by Jeffrey Richter, Microsoft Press.

■ Win32 SDK and Win32 API online documentation, Microsoft Corporation.

4 Preface

Part
I

Using the
Chart

7

1
Getting Started: Developing a Simple

Olectra Chart Program

Introduction ■ A Basic Plot
Loading Data From a File ■ Changing Chart Type

Adding Header, Footer and Labels ■ Inverting and Transposing the Chart
Putting it all Together

1.1 Introduction

This chapter allows you to immediately try out Olectra Chart by compiling and
running an example application. This application graphs the 1963 Quarterly
Expenses and Revenues for “Michelle’s Microchips”, a small company a little ahead
of its time.

The data to be displayed is shown in the following table:

1.2 A Basic Plot

Figure 2 lists our starting point, PLOT1.C. This minimal Windows program creates a
dialog window, loads the data from a file, and then sets it to the chart control that
plots the data. This program is located in Olectra Chart’s
\CHART\2D\DEMOS\DLL\SDK\PLOT1 directory.

Q1 Q2 Q3 Q4

Expenses 150.0 175.0 160.0 170.0

Revenue 125.0 100.0 225.0 300.0

8 Part I ■ Using the Chart

When PLOT1.C is compiled and run, the window shown in Figure 1 displays.

Figure 1 The Plot1 window

Most of the code in PLOT1.C should be familiar to Windows programmers. For
example, lines 57–70 set the window class information, and lines 72–73 create the
main dialog window.

The statements on lines 15 to 17 get the window handle and chart handle. Line 20
uses the chart handle to allocate space for the XrtData structure (pointed to by
my_data) and loads that structure with the data from the MM63.DAT file. Line 21 sets
the chart’s XRT_DATA property to my_data by calling the XrtSetValues() method.

Olectra Chart provides two methods for setting any chart property: XrtSetValues()
and XrtSetPropString(). Correspondingly, two methods retrieve the current value of
chart properties: XrtGetValues() and XrtGetPropString(). See the next chapter for
more details on property setting/retrieving.

Olectra Chart supports five different types of charts: plots, area charts, bar charts,
stacking bar charts, and pie charts. The type is specified with the XRT_TYPE
property which must be XRT_TYPE_AREA, XRT_TYPE_PLOT, XRT_TYPE_BAR,
XRT_TYPE_STACKING_BAR or XRT_TYPE_PIE. Because XRT_TYPE_PLOT is the
default, we do not have to specify the XRT_TYPE property in PLOT1.C.

Chapter 1 ■ Getting Started: Developing a Simple Olectra Chart Program 9

continues on next page...

1 #include <windows.h>
2 #include <olch2d.h>
3 #include "plot1.h"
4
5 long WINAPI
6 WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
7 {
8 static HWND hwndXrt2D;
9 static HXRT2D hChart;
10 static XrtData *my_data;
11
12 switch (msg) {
13 case WM_INITDIALOG:
14 /* Get graph handle */
15 hwndXrt2D = GetDlgItem(hWnd, IDGRAPH);
16 hChart = XrtCreate();
17 XrtAttachWindow(hChart, hwndXrt2D);
18
19 /* Allocate and load data, set it to graph’s Data property */
20 my_data = XrtMakeDataFromFile((LPSTR) "mm63.dat", NULL);
21 XrtSetValues(hChart,XRT_DATA, my_data, NULL);
22 break;
23
24 case WM_CLOSE:
25 XrtDestroyData(my_data, TRUE);
26 DestroyWindow(hWnd);
27 break;
28
29 case WM_DESTROY:
30 PostQuitMessage(0);
31 break;
32
33 case XRTN_PALETTECHANGED:
34 SendMessage(XrtGetWindow(hChart), WM_QUERYNEWPALETTE, 0, 0);
35 break;
36
37 case WM_QUERYNEWPALETTE:
38 case WM_PALETTECHANGED:
39 SendMessage(XrtGetWindow(hChart), msg, wParam, lParam);
40 break;
41
42 default:
43 return FALSE;
44 }
45 return TRUE;
46 }
47
48 int PASCAL
49 WinMain(HANDLE hInstance, HANDLE hPrevInstance, LPSTR lpszCmdLine, int nCmdShow)
50 {
51 static char szAppName[] = "plot1";
52 HWND hWnd;
53 MSG msg;
54 WNDCLASS wc;
55 DLGPROC dlgprc;
56

10 Part I ■ Using the Chart

Figure 2 PLOT1.C listing

1.3 Loading Data From a File

A common task in any Olectra Chart program is to load the chart data (called a
dataset) into a format that the chart can use. To allocate and load the data from a file,
use the XrtMakeDataFromFile() function.1

Figure 3 shows the contents of the MM63.DAT file. This file is in a format that
XrtMakeDataFromFile() understands. Lines beginning with a ‘#’ symbol are treated
as comments. The first line tells XrtMakeDataFromFile() that the data which follows
is in XRT_DATA_ARRAY style, and is made up of 2 sets of 4 points.

1. A more general way is to allocate an XrtData structure using the XrtMakeData() procedure, and then to populate this
structure with data using C code.

57 if (!hPrevInstance) {
58 wc.style = CS_HREDRAW | CS_VREDRAW;
59 wc.lpfnWndProc = WndProc;
60 wc.cbClsExtra = 0;
61 wc.cbWndExtra = 0;
62 wc.hInstance = hInstance;
63 wc.hIcon = LoadIcon (hInstance, IDI_APPLICATION);
64 wc.hCursor = LoadCursor (NULL, IDC_ARROW);
65 wc.hbrBackground = GetStockObject (WHITE_BRUSH);
66 wc.lpszMenuName = NULL;
67 wc.lpszClassName = szAppName;
68
69 if (!RegisterClass(&wc)) return FALSE;
70 }
71
72 dlgprc = (DLGPROC) MakeProcInstance((FARPROC)WndProc, hInstance);
73 hWnd = CreateDialog(hInstance, szAppName, 0, dlgprc);
74
75 ShowWindow(hWnd, nCmdShow);
76
77 while (GetMessage(&msg, NULL, 0, 0)) {
78 if (!IsDialogMessage(hWnd, &msg)) {
79 TranslateMessage(&msg);
80 DispatchMessage(&msg);
81 }
82 }
83 return msg.wParam;
84 }

Chapter 1 ■ Getting Started: Developing a Simple Olectra Chart Program 11

Figure 3 The MM63.DAT file

The MM63.DAT file defines 2 sets of 4 points. Line 3 in the file defines the X-values
(i.e. points) shared by both of the sets (Y-values). In this case, each X-value
corresponds to one of the columns of Quarterly Results. Lines 5 and 7 in
MM63.DAT define each of the sets of Y-values.

There are two types of chart data: ARRAY and GENERAL. Use ARRAY when the
sets of Y-values share common X-values. Use GENERAL when the Y-values do not
share common X-values, or when all sets do not have the same number of values.
GENERAL data may only be displayed in a plot or area chart; it cannot be displayed
as a bar chart or pie chart.

1.4 Changing Chart Type

A powerful feature of Olectra Chart is the ability to change the chart type
independently of any other property.1 We will change the type of the chart from plot
to bar by setting the chart’s XRT_TYPE property as follows:

XrtSetValues(hChart, XRT_TYPE, XRT_TYPE_BAR, NULL);

Figure 4 displays the resulting chart.

Figure 4 Changing chart type from plot to bar

1. Although there are interdependencies between some properties, most are completely orthogonal. Interdependencies are
documented in Appendix A on page 95, “Property Reference”.

ARRAY 2 4
X-values
1.0 2.0 3.0 4.0
Y-values set 1
150.0 175.0 160.0 170.0
Y-values set 2
125.0 100.0 225.0 300.0

12 Part I ■ Using the Chart

1.5 Adding Header, Footer and Labels

The chart produced by PLOT1.C is not very useful. There is no header, footer, or
legend, and the X-axis labelling is not meaningful. Olectra Chart always tries to
display a reasonable chart even if very few properties have been specified.1 We’ll
change the code to set some other chart properties.

Properties may be changed at any time during the execution of the program with
XrtSetValues() or XrtSetPropString(). You may ask for the current value of any
property with XrtGetValues() or XrtGetPropString().

To add a header, footer, legend, and meaningful X-axis labels, a few more properties
will be added to the XrtSetValues() call. The following lines specify a header and
footer to display above and below the chart:

XRT_HEADER_STRINGS, header_strings,
XRT_FOOTER_STRINGS, footer_strings,

Both of these properties take a NULL-terminated array of strings as their value.
These must be defined elsewhere, for example:

static char *header_strings[] = { "Michelle’s
Microchips", NULL };

static char *footer_strings[] = { "1963 Quarterly
Results", NULL };

Header, footer and legend strings use the default typeface, Arial. The header is
centered above the chart and the footer is centered below it by default. Also, by
default, the legend is located to the right of the chart.

All array data used with a chart should be thought of as n sets of m points. In this case,
there are 2 sets of 4 points. Labels for each of the sets and each of the points can be
specified as follows:

static char *set_labels[] = { "Expenses",
"Revenue", NULL };

static char *point_labels[] = { "Q1", "Q2",
"Q3", "Q4", NULL };

The chart will use the Set-labels in the legend automatically. To use the Point-labels
for the X-axis, we need to set XRT_XANNOTATION_METHOD to
XRT_ANNO_POINT_LABELS. All the changed chart properties are set with the
following call:

XrtSetValues(hChart,
XRT_DATA, my_data,
XRT_TYPE, XRT_TYPE_BAR,
XRT_HEADER_STRINGS, header_strings,
XRT_FOOTER_STRINGS, footer_strings,
XRT_SET_LABELS, set_labels,
XRT_POINT_LABELS, point_labels,
XRT_XANNOTATION_METHOD, XRT_ANNO_POINT_LABELS,
NULL);

1. The defaults calculated by Olectra Chart can change quite frequently, for example by changes in the data or in the size of
the chart control.

Chapter 1 ■ Getting Started: Developing a Simple Olectra Chart Program 13

The resulting window is shown below in Figure 5.

Figure 5 The Bar2 window

1.6 Inverting and Transposing the Chart

Two commonly-used but sometimes confusing chart properties are
XRT_INVERT_ORIENTATION and XRT_TRANSPOSE_DATA.

XRT_INVERT_ORIENTATION inverts the orientation of the axes. Most charts
display the X-axis horizontally and the Y-axis vertically. It is often appropriate,
however, to invert the sense of the X- and Y-axes.

XRT_TRANSPOSE_DATA switches the meaning of the sets and points in the dataset.
Transposing the dataset defined by the MM63.DAT file (2 sets, each with 4 points)
results in 4 sets, each with 2 points.1 Figure 6 shows the effect of both properties.

Figure 6 Inverting axes (left) and transposing data (right)

1. Not all datasets are meaningful when transposed.

14 Part I ■ Using the Chart

1.7 Putting it all Together

In PANEL.C, the concepts developed in this chapter are brought together in one
program. When PANEL.C is compiled and run, the window in Figure 7 displays.
PANEL.C is located in Olectra Chart’s \CHART\2D\DEMOS\DLL\SDK\PANEL
directory.

The user can change how Michelle’s Microchips data is displayed by clicking on one
or more of the button controls at the top of the window.

Figure 7 The Panel window

Each button control has code that is invoked when the button is clicked, as shown by
the following code for the invert toggle button:

case WM_COMMAND:
switch (wParam) {
case IDINV:

/* invert the axes of the chart */
wCheck = IsDlgButtonChecked(hWnd, IDINV);
CheckDlgButton(hWnd, IDINV, !wCheck);
XrtSetValues(hChart,

XRT_INVERT_ORIENTATION, !wCheck,
NULL);

break;

The complete PANEL.C program is listed in Appendix F on page 159.

15

2
Olectra Chart Basics

Terminology ■ Property Setting and Retrieving
USE_DEFAULT Properties ■ Pointer Properties

String Properties ■ Font Properties
Programming with C++ ■ Distributing Olectra Chart Applications

Conceptually, Olectra Chart adds a new control to the pre-defined Windows control
classes (such as Button, ScrollBar, and ListBox). A Windows programmer
manipulates this control similarly to other controls.

2.1 Terminology

Figure 8 shows the major components of the chart control. There are four major
areas in every chart: Header, Footer, Legend and Graph. Each area has its own
origin, width and height. In Figure 8, each area has been drawn with a plain, 2-pixel-
wide border.

2.2 Property Setting and Retrieving

To set the value of chart properties, use either the XrtSetValues() or
XrtSetPropString() procedure. To retrieve the current value of chart properties, use
either the XrtGetValues() or XrtGetPropString() procedure.

SetValues / GetValues
XrtSetValues() and XrtGetValues() allow you to set or get any number of properties
at once. The following example sets three chart properties to the values contained in
the my_data, bg, and fg variables:

XrtSetValues(hChart,
XRT_DATA, my_data,
XRT_BACKGROUND_COLOR, bg,
XRT_FOREGROUND_COLOR, fg,
NULL);

16 Part I ■ Using the Chart

Figure 8 Graph Areas

To retrieve values using XrtGetValues(), pass the address of the variable to contain
the value retrieved, for example:

XrtGetValues(hChart,
XRT_DATA, &my_data,
XRT_BACKGROUND_COLOR, &bg,
XRT_FOREGROUND_COLOR, &fg,
NULL);

Make sure that each variable is of the proper type before calling XrtGetValues(). The
resource value types are listed at the start of Chapter 3.

SetPropString / GetPropString
XrtSetPropString() and XrtGetPropString() allow you to set or get a property value
as a string. This is particularly useful for setting fonts, colors, and datastyles. Olectra

Graph
Height

Graph Width

Header
Origin

Graph
Origin

Graph
Area

Legend
Origin

Footer
Origin

Y Title

X Title

Y2 Title

1st Y-axis

2nd Y-axis

Data
Area

Control Width

Control
Height

Chapter 2 ■ Olectra Chart Basics 17

Chart converts a string to/from the data type of the property. The following example
sets the axis font:

XrtSetPropString(hChart,
XRT_AXIS_FONT, "Times,10,Bold");

To retrieve a value using XrtGetPropString(), pass the address of the variable to
contain the value retrieved, for example:

char *my_font;
XrtGetPropString(hChart,

XRT_AXIS_FONT, &my_font);
...
XrtFreePropString(my_font);

Use XrtFreePropString() to free the string allocated by XrtGetPropString() after use.

2.3 USE_DEFAULT Properties

Many Olectra Chart properties have corresponding USE_DEFAULT properties, for
example, XRT_YNUM and XRT_YNUM_USE_DEFAULT.

USE_DEFAULT properties are Booleans that determine if Olectra Chart should
calculate a default value for the property.

If, for example, XRT_YNUM_USE_DEFAULT is TRUE, every time a chart is drawn,
Olectra Chart will go to considerable effort to determine a reasonable default value.
It will consider the size of the graph area, the value of XRT_YPRECISION, and
possibly other factors. If, on the other hand XRT_YNUM_USE_DEFAULT is FALSE,
Olectra Chart will use the last specified value of XRT_YNUM as the XRT_YNUM
value.

Attempts to set a USE_DEFAULT property to FALSE will be ignored by Olectra
Chart unless the corresponding property has been explicitly set or previously
calculated by the control. A side effect of setting any property that has a
corresponding USE_DEFAULT property is that the USE_DEFAULT property will be
set to FALSE.

The following code will force the value of XRT_YNUM to whatever its current value
is. It will also have the side effect of setting XRT_YNUM_USE_DEFAULT to FALSE.

double ynum;
XrtGetValues(hChart, XRT_YNUM, &ynum, NULL);
XrtSetValues(hChart, XRT_YNUM, ynum, NULL);

The following code will revert back to the default behavior, which is to have Olectra
Chart calculate a default value for XRT_YNUM when it draws the chart.

XrtSetValues(hChart,
XRT_YNUM_USE_DEFAULT, TRUE,
NULL);

18 Part I ■ Using the Chart

2.4 Pointer Properties

Many Olectra Chart properties return pointers to structures or characters when used
in an XrtGetValues() call. A program should never use this pointer to change any
data in memory. Everything the pointer points to should be considered “read-only”.
The convenience routines XrtDupDataStyles() and XrtDupStrings() can be used to
make copies of some types of data. These copies can be freed with
XrtFreeDataStyles() and XrtFreeStrings().

The only exceptions to this rule are the XRT_DATA and XRT_DATA2 properties.
These properties should always point to XrtData structures which exist in program
memory.

Each chart makes its own copy of all data passed through a pointer property (except
for XRT_DATA and XRT_DATA2).

For example, if a program wants to interchange the first header string with the first
footer string, the following code could be used:

char **hs, **fs, **myhs, **myfs, *tmp;
XrtGetValues(hChart,/* Get read-only ptrs */

XRT_HEADER_STRINGS, &hs,
XRT_FOOTER_STRINGS, &fs,
NULL);

myhs = XrtDupStrings(hs); /* Make copies */
myfs = XrtDupStrings(fs);

tmp = myfs[0]; /* Interchange 1st */
myfs[0] = myhs[0];
myhs[0] = tmp;

XrtSetValues(hChart,/* Reset them */
XRT_HEADER_STRINGS, myhs,
XRT_FOOTER_STRINGS, myfs,
NULL);

XrtFreeStrings(myhs);/* Free my copies */
XrtFreeStrings(myfs);

2.5 String Properties

Several properties take strings or an array of strings as their values, for example,
XRT_XTITLE and XRT_POINT_LABELS.

Be sure that only displayable characters are specified for these properties. Attempts
to display strings containing ASCII control characters (such as ‘\n’) may lead to
unusual behavior.

If your application is using standard library routines such as fgets() to obtain its data,
it will have to strip the trailing \r\n from each string before using the string as a value
for an Olectra Chart property.

Chapter 2 ■ Olectra Chart Basics 19

2.6 Font Properties

If you are using Microsoft Windows 3.1, you should always cast the property value
to an int when setting font properties. For example:

HFONT hfont;

XrtSetValues(hChart, XRT_HEADER_FONT, (int)hfont, NULL);

2.7 Programming with C++

Olectra Chart provides two C++ interfaces to the control:

1. MFC — For use within version 2.0 or greater of MFC, subclassed from the CWnd
visual object class.

2. OWL — For use within version 2.5 or greater of OWL, subclassed from the
TControl ObjectWindows class.

To use the MFC classes, include the OCH2DMFC.H header file and
OCH2DMFC.CPP source file in your application. Both files are located in Olectra
Chart’s \INCLUDE directory. The \CHART\2D\DEMOS\DLL\MFC directory
contains a simple MFC example program.

To use the OWL classes, include the OCH2DOWL.H header file and
OCH2DOWL.CPP source file in your application. Both files are located in Olectra
Chart’s \INCLUDE directory. The \CHART\2D\DEMOS\DLL\OWL directory
contains a simple OWL example program.

The MFC and OWL implementations create the following classes:

MFC Class OWL Class Methods

CChart2D TChart2D ■ A constructor that creates the chart object.
■ A destructor that calls DestroyWindow().
■ A method for each of the C procedures that take an

chart control as its first argument. For example, the
method for XrtGetNthPointLabel() is
GetNthPointLabel().

■ A method to set each settable property. For example,
the method to set XRT_TYPE is SetType().

■ A method to retrieve each property. For example, the
method to retrieve
XRT_BACKGROUND_COLOR is
GetBackgroundColor().

20 Part I ■ Using the Chart

2.8 Distributing Olectra Chart Applications

You can freely distribute any applications that you create with Olectra Chart. An
Olectra Chart application needs its dynamic link library present on the system it is
run on.

Distributing 32-bit Applications

When distributing 32-bit applications, you may only distribute the OLCH2D32.DLL
dynamic link library.

Distributing 16-bit Applications

When distributing 16-bit applications, you may only distribute the OLCH2D16.DLL
dynamic link library.

CChart2DData TChart2DData ■ A constructor that calls one of XrtMakeData(),
XrtMakeDataFromFile(), or XrtDataCopy().

■ A destructor that calls XrtDestroyData().
■ A method for most of the C procedures that take an

XrtData structure as its first argument. For example,
the method for XrtArrDataAppendPts() is
ArrDataAppendPts(). Methods do not exist for
XrtDataExtract() or XrtDataConcat().

■ Inline methods for XrtData macros.
■ Overloaded = operator to perform XrtDataCopy().
■ Casting support for (XrtData *).

CChart2DTextArea TChart2DTextArea ■ A constructor that calls XrtTextCreate().
■ A destructor that calls XrtTextDestroy().
■ A method for each of the C procedures that take an

XrtTextHandle structure as its second argument.
For example, the method for XrtTextUpdate() is
TextUpdate().

MFC Class OWL Class Methods

21

3
Programming Olectra Chart

Property Summary ■ Axis Labelling and Annotation
Axis Controls ■ Positioning Graph Areas

3D Effect ■ Header, Footer and Legend Display
Data Styles ■ Special Bar Chart Properties

Special Pie Chart Properties ■ Foreground and Background Colors
Markers ■ Area Borders

Double Buffering ■ Output and Printing

3.1 Property Summary

This section summarizes all of the Olectra Chart properties. It is not necessary to
remember all the properties in order to program Olectra Chart effectively. For most
charts, many properties may be left with their default settings.

The use of most properties is described in this chapter. Appendix A on page 95
contains a reference of all Olectra Chart properties.

22 Part I ■ Using the Chart

Figure 9 Chart Properties

Figure 10 Data Properties

Property Type

XRT_DATA_AREA_BACKGROUND_COLOR COLORREF
XRT_GRAPH_BACKGROUND_COLOR COLORREF
XRT_GRAPH_BORDER XrtBorder (enum)
XRT_GRAPH_BORDER_WIDTH int
XRT_GRAPH_DEPTH int
XRT_GRAPH_FOREGROUND_COLOR COLORREF
XRT_GRAPH_HEIGHT int
XRT_GRAPH_HEIGHT_USE_DEFAULT BOOL
XRT_GRAPH_INCLINATION int
XRT_GRAPH_MARGIN_BOTTOM int
XRT_GRAPH_MARGIN_BOTTOM_USE_DEFAULT BOOL
XRT_GRAPH_MARGIN_LEFT int
XRT_GRAPH_MARGIN_LEFT_USE_DEFAULT BOOL
XRT_GRAPH_MARGIN_RIGHT int
XRT_GRAPH_MARGIN_RIGHT_USE_DEFAULT BOOL
XRT_GRAPH_MARGIN_TOP int
XRT_GRAPH_MARGIN_TOP_USE_DEFAULT BOOL
XRT_GRAPH_ROTATION int
XRT_GRAPH_WIDTH int
XRT_GRAPH_WIDTH_USE_DEFAULT BOOL
XRT_GRAPH_[XY] int
XRT_GRAPH_[XY]_USE_DEFAULT BOOL
XRT_TYPE XrtType (enum)
XRT_TYPE2 XrtType (enum)

Property Type

XRT_DATA XrtData *
XRT_DATA2 XrtData *
XRT_FRONT_DATASET int
XRT_TRANSPOSE_DATA BOOL
XRT_[XYY2]MAX double
XRT_[XYY2]MAX_USE_DEFAULT BOOL
XRT_[XYY2]MIN double
XRT_[XYY2]MIN_USE_DEFAULT BOOL

Chapter 3 ■ Programming Olectra Chart 23

Figure 11 Labelling Properties

Figure 12 Data Style Properties

Figure 13 Marker Properties

Property Type

XRT_POINT_LABELS char * *
XRT_POINT_LABELS2 char * *
XRT_SET_LABELS char * *
XRT_SET_LABELS2 char * *
XRT_TIME_BASE time_t
XRT_TIME_FORMAT char *
XRT_TIME_FORMAT_USE_DEFAULT BOOL
XRT_TIME_UNIT XrtTimeUnit (enum)
XRT_[XYY2]ANNOTATION_METHOD XrtAnnoMethod (enum)
XRT_[XYY2]LABELS XrtValueLabel * *

Property Type

XRT_DATA_STYLES XrtDataStyle * *
XRT_DATA_STYLES2 XrtDataStyle * *
XRT_DATA_STYLES_USE_DEFAULT BOOL
XRT_DATA_STYLES2_USE_DEFAULT BOOL

Property Type

XRT_MARKER_DATASET int
XRT_MARKER_DATA_STYLE XrtDataStyle *
XRT_MARKER_DATA_STYLE_USE_DEFAULT BOOL
XRT_[XY]MARKER double
XRT_XMARKER_SET int
XRT_XMARKER_POINT int
XRT_[XY]MARKER_SHOW BOOL

24 Part I ■ Using the Chart

Figure 14 Axis Properties

Figure 15 Bar Properties

Property Type

XRT_AXIS_BOUNDING_BOX BOOL
XRT_AXIS_FONT HFONT
XRT_INVERT_ORIENTATION BOOL
XRT_[XY]ANNO_PLACEMENT XrtAnnoPlacement (enum)
XRT_[XYY2]ANNOTATION_ROTATION XrtRotate (enum)
XRT_[XYY2]AXIS_MAX double
XRT_[XYY2]AXIS_MAX_USE_DEFAULT BOOL
XRT_[XYY2]AXIS_MIN double
XRT_[XYY2]AXIS_MIN_USE_DEFAULT BOOL
XRT_[XYY2]AXIS_SHOW BOOL
XRT_[XYY2]AXIS_LOGARITHMIC BOOL
XRT_[XYY2]AXIS_REVERSED BOOL
XRT_[XY]GRID double
XRT_[XY]GRID_USE_DEFAULT BOOL
XRT_[XY]GRID_DATA_STYLE XrtDataStyle *
XRT_[XY]GRID_DATA_STYLE_USE_DEFAULT BOOL
XRT_[XYY2]NUM double
XRT_[XYY2]NUM_USE_DEFAULT BOOL
XRT_[XYY2]NUM_METHOD XrtNumMethod (enum)
XRT_[XY]ORIGIN double
XRT_[XY]ORIGIN_USE_DEFAULT BOOL
XRT_[XY]ORIGIN_PLACEMENT XrtOriginPlacement (enum)
XRT_[XYY2]PRECISION int
XRT_[XYY2]PRECISION_USE_DEFAULT BOOL
XRT_[XYY2]TITLE char *
XRT_[XYY2]TITLE_ROTATION XrtRotate (enum)
XRT_[XYY2]TICK double
XRT_[XYY2]TICK_USE_DEFAULT BOOL
XRT_YAXIS_CONST double
XRT_YAXIS_MULT double

Property Type

XRT_BAR_CLUSTER_OVERLAP int
XRT_BAR_CLUSTER_WIDTH int

Chapter 3 ■ Programming Olectra Chart 25

Figure 16 Pie Properties

Figure 17 Header and Footer Properties

Property Type

XRT_OTHER_DATA_STYLE XrtDataStyle *
XRT_OTHER_DATA_STYLE_USE_DEFAULT BOOL
XRT_OTHER_LABEL char *
XRT_PIE_MIN_SLICES int
XRT_PIE_ORDER XrtPieOrder (enum)
XRT_PIE_THRESHOLD_METHOD XrtPieThresholdMethod (enum)
XRT_PIE_THRESHOLD_VALUE double

Property Type

XRT_HEADER_ADJUST XrtAdjust (enum)
XRT_HEADER_BACKGROUND_COLOR COLORREF
XRT_HEADER_BORDER XrtBorder (enum)
XRT_HEADER_BORDER_WIDTH int
XRT_HEADER_FOREGROUND_COLOR COLORREF
XRT_HEADER_STRINGS char * *
XRT_HEADER_FONT HFONT
XRT_HEADER_HEIGHT int
XRT_HEADER_WIDTH int
XRT_HEADER_[XY] int
XRT_HEADER_[XY]_USE_DEFAULT BOOL

XRT_FOOTER_ADJUST XrtAdjust (enum)
XRT_FOOTER_BACKGROUND_COLOR COLORREF
XRT_FOOTER_BORDER XrtBorder (enum)
XRT_FOOTER_BORDER_WIDTH int
XRT_FOOTER_FOREGROUND_COLOR COLORREF
XRT_FOOTER_STRINGS char * *
XRT_FOOTER_FONT HFONT
XRT_FOOTER_HEIGHT int
XRT_FOOTER_WIDTH int
XRT_FOOTER_[XY] int
XRT_FOOTER_[XY]_USE_DEFAULT BOOL

26 Part I ■ Using the Chart

Figure 18 Legend Properties

Figure 19 Other Properties

3.2 Axis Labelling and Annotation

A variety of properties combine to determine how the axes are annotated, and what
text appears beside each element in the legend. To understand how and why Olectra
Chart operates the way it does, it is important to distinguish between the two types of
X-axis used in graphing1: continuous and discrete.

Continuous X-axis
A chart’s X-axis is continuous when spacing variations between points along the axis
are important. Charts displaying general (as opposed to array) data always have a

1. Although pie charts don’t have axes, they behave like discrete X-axis charts.

Property Type

XRT_LEGEND_ANCHOR XrtAnchor (enum)
XRT_LEGEND_BACKGROUND_COLOR COLORREF
XRT_LEGEND_BORDER XrtBorder (enum)
XRT_LEGEND_BORDER_WIDTH int
XRT_LEGEND_FONT HFONT
XRT_LEGEND_FOREGROUND_COLOR COLORREF
XRT_LEGEND_HEIGHT int
XRT_LEGEND_ORIENTATION XrtAlign (enum)
XRT_LEGEND_SHOW BOOL
XRT_LEGEND_WIDTH int
XRT_LEGEND_[XY] int
XRT_LEGEND_[XY]_USE_DEFAULT BOOL

Property Type

XRT_BACKGROUND_COLOR COLORREF
XRT_FOREGROUND_COLOR COLORREF
XRT_BORDER_WIDTH int
XRT_DEBUG BOOL
XRT_DOUBLE_BUFFER BOOL
XRT_HEIGHT int
XRT_NAME char *
XRT_REPAINT BOOL
XRT_BORDER XrtBorder (enum)
XRT_WIDTH int

Chapter 3 ■ Programming Olectra Chart 27

continuous X-axis. Plots and area charts have a continuous X-axis only if the data
they display is not transposed (XRT_TRANSPOSE_DATA is FALSE) and the axis is
not annotated with Point-labels. Bar and stacking bar charts never have a continuous
X-axis.

When the X-axis is continuous, it can be annotated by any method except Point-
labels and the legend always displays Set-labels.

Discrete X-axis
A chart’s X-axis is discrete when spacing variations between points along the axis are
not important. Bar and stacking bar charts always have a discrete X-axis. Plots and
area charts have a discrete X-axis if they are transposed (XRT_TRANSPOSE_DATA
is TRUE) or are annotated with Point-labels. Charts displaying general (as opposed to
array) data never have a discrete X-axis.

When the X-axis is discrete, it can only be annotated with Point-labels (or Set-labels
if transposed) and the legend displays Set-labels (or Point-labels if transposed).

Continuous Y-axis
The Y- and Y2-axes are always continuous.

3.2.1 Annotation Method

X-Axis
There are four ways to annotate the X-axis. The method used is determined by the
value of XRT_XANNOTATION_METHOD. It can be one of the following:

The following sections describe how to use each type of annotation. For each
annotation method, Olectra Chart makes use of some axis properties and ignores

XRT_ANNO_VALUES
(default)

Olectra Chart chooses appropriate X-axis
annotation based on the data. Data may be in
array or general format. The X-axis is
continuous.

XRT_ANNO_POINT_LABELS Olectra Chart evenly spaces the points across
the X-axis and annotates them with any
supplied Point-labels. The X-axis is discrete.
The data must be in array format.

XRT_ANNO_VALUE_LABELS Olectra Chart annotates the axis using the
value-string pairs supplied as Value-labels. The
X-axis is continuous. Data may be in array or
general format.

XRT_ANNO_TIME_LABELS Olectra Chart interprets the X-values as time
units, and annotates the X-axis with Time-
labels. The X-axis is continuous. Data may be
in array or general format.

28 Part I ■ Using the Chart

others. The following table shows the relationship between each annotation method
and the axis properties, for the X-axis.

Y- and Y2-Axes
There are two ways to annotate the Y- and Y2-axis. The method used is determined
by XRT_[YY2]ANNOTATION_METHOD. It can be one of the following:

3.2.2 Point-labels and Set-labels

Point-labels and Set-labels label the rows and columns of XRT_DATA_ARRAY data.
If the data is XRT_DATA_GENERAL, Point-labels are ignored, and Set-labels are
used to label the various lines of data.

Consider the POP.DAT file listed in Figure 20. It is in a form suitable for loading
with XrtMakeDataFromFile(). It defines a 3 by 5 array of values which are the
historical and projected population of 3 cities. Since XrtMakeDataFromFile()
requires X-values to be present, “fake” X-values have been entered in the POP.DAT
file.

X-Axis Classification Axis Properties Used

Annotation
Method Axis Type

X
R

T
_Y

A
N

N
O

_P
LA

C
E

M
E

N
T

X
R

T
_X

A
X

IS
_M

A
X

X
R

T
_X

A
X

IS
_M

A
X

_U
S

E
_D

E
F

A
U

LT

X
R

T
_X

A
X

IS
_M

IN

X
R

T
_X

A
X

IS
_M

IN
_U

S
E

_D
E

F
A

U
LT

X
R

T
_X

A
X

IS
_L

O
G

A
R

IT
H

M
IC

X
R

T
_X

A
X

IS
_R

E
V

E
R

S
E

D

X
R

T
_X

G
R

ID

X
R

T
_X

G
R

ID
_U

S
E

_D
E

F
A

U
LT

X
R

T
_X

N
U

M

X
R

T
_X

N
U

M
_M

E
T

H
O

D

X
R

T
_X

N
U

M
_U

S
E

_D
E

F
A

U
LT

X
R

T
_X

O
R

IG
IN

X
R

T
_X

O
R

IG
IN

_P
LA

C
E

M
E

N
T

X
R

T
_X

O
R

IG
IN

_U
S

E
_D

E
F

A
U

LT

X
R

T
_X

P
R

E
C

IS
IO

N

X
R

T
_X

P
R

E
C

IS
IO

N
_U

S
E

_D
E

F
A

U
LT

X
R

T
_X

T
IC

K

X
R

T
_X

T
IC

K
_U

S
E

_D
E

F
A

U
LT

Values Continuous ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Point-labels Discrete ✔

Value-labels Continuous ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Time-labels Continuous ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

XRT_ANNO_VALUES (default) Olectra Chart chooses appropriate axis
annotation from the dataset.

XRT_ANNO_VALUE_LABELS Olectra Chart annotates the axis using the
value-string pairs supplied as Value-labels. Data
may be in array or general format.

Chapter 3 ■ Programming Olectra Chart 29

Figure 20 The POP.DAT File

Using Olectra Chart terminology, there are “3 sets of 5 points”. The Set-labels are the
city names, and the Point-labels are the year names. When this file is used to create
an XrtData structure called pop, the following code can be used to define the labels
(the result is shown in Figure 21):

static char *sl[] = { "Mexico City", "Tokyo",
"New York", NULL };

static char *pl[] = { "60", "70", "80", "90",
"2000", NULL };

XrtSetValues(hChart,
XRT_XANNOTATION_METHOD, XRT_ANNO_POINT_LABELS,
XRT_DATA, pop,
XRT_SET_LABELS sl,
XRT_POINT_LABELS,pl,
NULL);

Figure 21 Point-label X-axis Annotation and Set-label Legend Text

ARRAY 3 5

X Samples (One for the beginning of each decade 1960 to 2000)
1 2 3 4 5
Mexico
5 8 14 19 24
Tokyo
11 15 18 21 22
New York
14 16 15.5 15.2 15.4

4

6

8

10

12

14

16

18

20

22

24

60 70 80 90 2000

Mexico City
Tokyo
New York

30 Part I ■ Using the Chart

As an alternative to using the XRT_SET_LABELS and XRT_POINT_LABELS
properties, individual labels can be accessed with the SetNth and GetNth methods,
which are documented in Appendix B on page 117. For example:

char buffer[100];
/* Note that index is zero-based */
sprintf(buffer, "Third Set-label is %s",

XrtGetNthSetLabel(hChart, 2));
MessageBox(hWnd, buffer, "Information", MB_OK);

/* Make 3rd Point-label "eighty" */
XrtSetNthPointLabel(hChart, 2, "eighty");

It is sometimes useful to transpose the sets and points. When
XRT_TRANSPOSE_DATA is TRUE, Olectra Chart will consider the rows and
columns to be switched, and the Point-labels and Set-labels to be switched.

If the data for a chart is in XRT_DATA_GENERAL format, it does not make sense to
define Point-labels or to transpose the data. In this case, Olectra Chart will ignore
XRT_POINT_LABELS and XRT_TRANSPOSE_DATA when displaying charts.

Figure 22 and Figure 23 illustrate how Point-labels and Set-labels interact with data
transposition.

Figure 22 Use of Point-labels/Set-labels on different chart types

When and then and
Graph Type XRT_TRANSPOSE_DATA Legend annotation X-Axis annotation

is is comes from: comes from:

Bar/Stack Bar FALSE Set-labels Point-labels
Bar/Stack Bar TRUE Point-labels Set-labels

Pie FALSE Set-labels Point-labels1

Pie TRUE Point-labels Set-labels2

Plot/Area FALSE Set-labels (depends)3

Plot/Area TRUE Point-labels Set-labels

1. Point-labels are used to annotate each pie.

2. Set-labels are used to annotate each pie.

3. This could be a continuous graph. X annotation depends on XRT_XANNOTATION_METHOD.

Chapter 3 ■ Programming Olectra Chart 31

Figure 23 Effects of Transposing on Point-labels and Set-labels

3.2.3 Value-labels

When XRT_[XYY2]ANNOTATION_METHOD is XRT_ANNO_VALUE_LABELS,
Olectra Chart uses text strings you specify to label the axis. Use “Value-labels” to
label significant axis values. Each Value-label is defined by an XrtValueLabel
structure:

typedef struct {
double value;
char *string;

} XrtValueLabel;

value defines the X-, Y-, or Y2-value at which to display the label, and string is the
text to display. An entire array of Value-labels can be programmed for an axis using
XRT_[XYY2]LABELS. Alternatively, the XrtSetValueLabel() and
XrtGetValueLabel() procedures can be used to access individual Value-labels.

Plot:

FALSE TRUE

All of the Graphs above have:

Set-labels = “Mexico City”, “Tokyo”, “New York”

Point-labels = “60”, “70”, “80”, “90”, “2000”

Pie:

Stacking Bar:

Bar:

XRT_TRANSPOSE_DATA

32 Part I ■ Using the Chart

Value-labels should be used whenever it is important to honor the data’s X-or Y-
values, and custom axis annotation is required. For example, to put a custom Value-
label of “foobar” on the X-axis at X=7.43, the following code could be used:

XrtValueLabelmylabel;
my_label.value = 7.43;
my_label.string = "foobar";
XrtSetValueLabel(hChart, XRT_AXIS_X, &mylabel);

The XrtGetValueLabel() method takes a pointer to an XrtValueLabel structure, and
returns a pointer to another XrtValueLabel structure. The returned structure is filled
in with the value-string pair of the Value-label that is closest to the value in the
structure that was passed in. If there are no Value-labels, it returns NULL. The
following example finds the closest Value-label to X=5.0:

XrtValueLabel my_label, *closest_label;
char buffer[100];
my_label.value = 5.0;
closest_label = XrtGetValueLabel(hChart,

XRT_AXIS_X, &my_label);
if (closest_label == NULL)

MessageBox(hWnd, "No X-axis Value-labels
exist!", "Error", MB_OK);

else {
sprintf(buffer, "Closest is at %f, text is %s",

closest_label->value,
closest_label->string);

MessageBox(hWnd, buffer, "Information”, MB_OK);
}

To clear all Value-labels for an axis, set XRT_[XYY2]LABELS to NULL.

To delete a particular Value-label, set its string to NULL. Beware of floating-point
round-off errors when deleting Value-labels. The best way to delete a Value-label is
to first get it, set the string to NULL, and then set it again. The following example
deletes the label closest to X=5.0:

XrtValueLabellabel, *label_ptr;

label.value = 5.0;
label_ptr = XrtGetValueLabel(hChart,

XRT_AXIS_X, &label);
if (label_ptr == NULL)

MessageBox(hWnd, "No labels to delete!",
"Error", MB_ICONEXCLAMATION | MB_OK);

else {
label = *label_ptr;
label.string = NULL;
XrtSetValueLabel(hChart, XRT_AXIS_X, &label);

}

Common uses for Value-labels include annotating particular dates on the X-axis and
replacing Y-values with more meaningful text. Figure 24 shows an example of
Value-labels on both axes.

Chapter 3 ■ Programming Olectra Chart 33

Figure 24 Using Value-labels to Annotate axes

3.2.4 Time-axis Labels

Time-axis Overview
Olectra Chart provides special support for an X-axis that represents the time
dimension. Properties that are used to specify and control a time-axis are:

Time-axis Criteria
The time-axis is ideal for applications that graph something measured in seconds,
minutes, hours, days, weeks, months or years. Several criteria must be met before
you can use a time-axis:

■ The X-axis must be continuous (that is, the chart must be either a plot or area
chart, and XRT_TRANSPOSE_DATA must be FALSE).

XRT_TIME_BASE Specifies the moment in time your X-
values begin measuring.

XRT_TIME_UNIT Specifies the time units the X-values are
measured in.

XRT_TIME_FORMAT Specifies the formatting style used for
annotating the time-axis.

XRT_TIME_FORMAT_USE_DEFAULT Specifies that the time format should be
calculated dynamically.

XRT_XANNOTATION_METHOD Specifies the method used for annotating
the X-axis. Set this to
XRT_ANNO_TIME_LABELS for Time-
labels.

Start of Day

Morning Break

Lunch Time

Afternoon Break

Daily Shutdown

End of Day

Machine A Machine B Machine C

Machine Status Tuesday, May 31, 1994

Broken Idle Running Stolen

34 Part I ■ Using the Chart

■ The time range represented by the axis must be greater than the beginning of the
year 1970 and less than the year 2038.

■ The annotation resolution desired must not be less than one second.

If your needs do not meet these criteria, you will have to use another method for
annotating the X-axis, such as Value-labels.

Time Units
When you set XRT_XANNOTATION_METHOD to XRT_ANNO_TIME_LABELS
on a continuous X-axis chart, Olectra Chart will interpret the X-values in your data
using time units. Seconds are the default time unit, so if your X-values range from a
low of 20 to a high of 55, Olectra Chart will draw an X-axis that spans 35 seconds.1

You can set a different time unit using the XRT_TIME_UNIT property. Valid values
are: XRT_TMUNIT_SECONDS, XRT_TMUNIT_MINUTES,
XRT_TMUNIT_HOURS, XRT_TMUNIT_DAYS, XRT_TMUNIT_WEEKS,
XRT_TMUNIT_MONTHS and XRT_TMUNIT_YEARS.

Time Base
The data’s X-values will be measured relative to the time base. For example, if the X-
values are days in 1993, (9 means Jan. 10, 31 is Feb. 1 etc.) you will need to set the
time base to the beginning of the 1993 year. The XRT_TIME_BASE defines the time
from which your X-values begin measuring. This property is a long that dynamically
defaults to Jan. 1, 1970 in your time zone. It represents the number of seconds since
Jan. 1, 1970 GMT. Since your data is quite likely to begin at a different time, you will
almost always have to set this property when using a time-axis.

The XrtMakeTime() procedure is useful for converting a normal date and time into
the number of seconds since Jan. 1, 1970. For example, if the base time for your data
is April 19, 1993, 08:30:05, you could use the following code to set the time base:

long tval;
 struct tm ltime;

 /* Set time base to April 19, 1993, 08:30:05 */
tval = XrtMakeTime(93, 4-1, 19, 8, 30, 5);
XrtSetValues(hChart, XRT_TIME_BASE, tval, NULL);

Once you have set XRT_TIME_UNIT and XRT_TIME_BASE, you can use the
XrtTimeToValue() procedure to convert a time stored as a time_t to its equivalent
position on the Time-axis. The XrtValueToTime() procedure converts a Time-axis
position to its equivalent time_t value.

Time Format
Olectra Chart uses the value of the string specified by XRT_TIME_FORMAT and
your system’s ANSI C standard function strftime() for formatting the time-axis labels.
Since strftime() does vary slightly from system to system, you should read your

1. This assumes that you haven’t fixed the value of XRT_XAXIS_MIN, XRT_XAXIS_MAX, XRT_XMIN or
XRT_XMAX.

Chapter 3 ■ Programming Olectra Chart 35

system’s documentation to understand the details of how this string is interpreted. A
summary is provided with the XRT_TIME_FORMAT description in Appendix A.

To let Olectra Chart calculate an appropriate time format by default, set
XRT_TIME_FORMAT_USE_DEFAULT to TRUE.

The following table shows some examples of how the time 06:55:50 on Monday
April 12, 1993 could be formatted:

To display tick marks at the time annotation, set XRT_XTICK_USE_DEFAULT to
TRUE.

Time-axis Example
The TIME.C program, located in Olectra Chart’s
\CHART\2D\DEMOS\DLL\SDK\TIME directory, reads in the file
\CHART\2D\SAMPLES\TIME.DAT. This data file has 12 X-values ranging from 0
to 11, representing the 12 months of the year 1992. When TIME.C is compiled and
run, the window below appears:

Figure 25 Chart created by the TIME.C program

Time Format String Example

%Y 1993

%b %y Apr 93

%b Apr

%b %d Apr 12

%a %d Mon 12

%a Mon

%a %H:00 Mon 06:00

%H:%M 06:55

%H:%M:%S 06:55:50

36 Part I ■ Using the Chart

Figure 26 The TIME.DAT data file

3.3 Axis Controls

This section describes how to program the chart axes, including numbering, titling,
and visual attributes. This section concentrates on the X- and Y-axes. Information on
using a second Y-axis (Y2) is found in section 6.1 on page 83.

3.3.1 Axis Numbering

Numbering Method
XRT_[XYY2]NUM_METHOD specifies the method used to number the axis when
annotation method is XRT_ANNO_VALUES. Valid values are:

When XRT_NUM_ROUND, Olectra Chart numbers the axes by analyzing the data
to be charted, determining numbering increment, ticking increment, and
appropriate numbering precision. Then it rounds the numbering and draws the axis.
This method usually provides the most pleasing numbering.

When XRT_NUM_PRECISION, numbering is done the same as described above,
except the numbering is not rounded.

XRT_NUM_ROUND
(default)

Axis numbering is rounded to values whose most-
significant digit ends in 1, 2, or 5. It uses the value of
XRT_[XYY2]PRECISION to format the annotation.

XRT_NUM_PRECISION Axis numbering is calculated using the value of
XRT_[XYY2]PRECISION, as well as
XRT_[XYY2]NUM and XRT_[XYY2]TICK.

ARRAY 2 12
x values, for jan to dec 1992.
0 1 2 3 4 5 6 7 8 9 10 11
y values line 1
150 175 160 170 180 190 195 190 185 190 190 195
y values line 2
125 100 225 300 250 275 200 225 230 220 275 300

Chapter 3 ■ Programming Olectra Chart 37

Figure 27 “Precision” and “Rounded” Axis Numbering

Precision
XRT_[XYY2]PRECISION serves two purposes, depending on the axis numbering
method used:

■ If XRT_[XYY2]NUM_METHOD is XRT_NUM_ROUND, it specifies only the
formatting of the axis numbering.

■ If XRT_[XYY2]NUM_METHOD is XRT_NUM_PRECISION, it in large part
controls the axis numbering.

Positive values of XRT_[XYY2]PRECISION indicate the number of places after the
decimal place. Negative values indicate the (positive) number of zeros to use before
the decimal place.

For example, if XRT_XPRECISION is -3 and XRT_YPRECISION is 2, the X-axis
numbering will be multiples of 1000 and the Y-axis numbering will be shown to 2
decimal places.

When XRT_[XYY2]PRECISION_USE_DEFAULT is TRUE, Olectra Chart
determines appropriate precision at run-time.

Numbering Increment
The XRT_[XYY2]NUM property is used to specify the interval between annotations
along the axis. For example, if XRT_YNUM is 3.2, Olectra Chart will annotate every
3.2 units along the Y-axis, starting at the origin.

Tick Increment
XRT_[XYY2]TICK is similar to XRT_[XYY2]NUM except that ticks are drawn
instead of increment-labels. Numbering increments do not have to be multiples of
tick increments. The following table shows how X-axis tick and grid increments

0

10

20

30

1,000 2,000 5,000 10,000

0

4

8

12

16

20

24

28

1,000 2,000 5,000 10,000

38 Part I ■ Using the Chart

interact with the various X-axis annotation methods (described in section 3.2 on page
26).

Be careful when explicitly setting the numbering, ticking and grid increment
properties. If they are set too small, charts or axes may be illegible. To allow Olectra
Chart to determine appropriate numbering and tick increments, set the
USE_DEFAULT properties to TRUE.

Figure 28 Axis with Numbering Increment Set too Small

Logarithmic Axes
To convert from a linear to a log10 axis, set XRT_[XYY2]AXIS_LOGARITHMIC to
TRUE. Since logarithmic axes are only capable of plotting values greater than zero,
any data values less than or equal to zero are treated as holes (that is, as missing data
values). It is not possible to set the numbering increment, ticking increment, or
precision for a logarithmic axis. Axis or data minimum/maximum or origin cannot
be set less than or equal to zero.

Logarithmic X-axes are subject to the following additional rules:

■ The X-axis must be continuous.

■ The X-axis annotation method cannot be XRT_ANNO_TIME_LABELS.

Figure 29 Linear and Logarithmic Axes

X-axis
Annotation
Method

When
USE_DEFAULT
is TRUE

When USE_DEFAULT
is FALSE, and
Grid/Tick = 0.0

When USE_DEFAULT is
FALSE, and
Grid/Tick = 0.0

Point-labels ticks and grid-
lines display at
labels

ticks display at labels, no
grid-lines

ticks and grid-lines display
at labels

Value-labels or
Time-labels

ticks and grid-
lines display at
labels

no ticks
no grid-lines

tick and grid values are
honored

Chapter 3 ■ Programming Olectra Chart 39

3.3.2 Axis and Data Bounds

By default, Olectra Chart displays all data in the XrtData structure. It determines the
extent of the axes (XRT_[XYY2]AXIS_MIN and XRT_[XYY2]AXIS_MAX) based on
the minimum and maximum data values XRT_[XYY2]MIN and XRT_[XYY2]MAX),
the origin, and the numbering increment. You can frame the chart data by either
specifying new bounds for the axes or new bounds for the data. Generally, framing
the axis gives better results than framing the data, due to the way Olectra Chart
calculates axis extents.

Axis Min and Max
XRT_[XYY2]AXIS_MIN and XRT_[XYY2]AXIS_MAX specify the minimum and
maximum axis values to be displayed. Use these properties to frame a chart display
precisely at particular axis values. For example, the following code “zooms” in on the
center of a chart by a factor of 2:

double xmax, xmin, ymax, ymin;
double xmax2, xmin2, ymax2, ymin2;
XrtGetValues(hChart,

XRT_XAXIS_MIN, &xmin,
XRT_XAXIS_MAX, &xmax,
XRT_YAXIS_MIN, &ymin,
XRT_YAXIS_MAX, &ymax,
NULL);

xmin2 = xmin + (xmax - xmin) / 4.0;
xmax2 = xmax - (xmax - xmin) / 4.0;
ymin2 = ymin + (ymax - ymin) / 4.0;
ymax2 = ymax - (ymax - ymin) / 4.0;
XrtSetValues(hChart,

XRT_YAXIS_MIN, xmin2,
XRT_XAXIS_MAX, xmax2,
XRT_YAXIS_MIN, ymin2,
XRT_YAXIS_MAX, ymax2,
NULL);

Olectra Chart will override any invalid hard-coded axis bounds by setting the
corresponding USE_DEFAULT property to TRUE. For example, if
XRT_YAXIS_MAX is -20 (and XRT_YAXIS_MAX_USE_DEFAULT is FALSE) and
XRT_YAXIS_LOGARITHMIC is set to TRUE, XRT_YAXIS_MAX_USE_DEFAULT
will be set to TRUE because logarithmic axes can only display values greater than
zero.

Data Min and Max
XRT_[XYY2]MAX and XRT_[XYY2]MIN specify the minimum and maximum data
values to be displayed. Use these properties when you want to frame a chart display
at particular data values.

3.3.3 Origin

Origin Coordinates
You can specify the coordinates of the origin with XRT_[XY]ORIGIN. For example,
to force the Y-axis to cross the X-axis at X=10, set XRT_XORIGIN to 10.0.

40 Part I ■ Using the Chart

Figure 30 Axes with Origin (10, -3), X Precision is -1, Y Precision is 3

Origin Placement
You can set the placement of the axis origins on plot, area, and bar charts with
XRT_[XY]ORIGIN_PLACEMENT. Valid values are:

This property is ignored when XRT_[XY]ORIGIN_USE_DEFAULT is FALSE; setting
an origin explicitly overrides this property.

Figure 31 Effect of Origin Placements

XRT_ORIGIN_AUTO
(default)

For plot/area charts, the origin is placed at the minimum
axis value or at zero if the dataset contains positive and
negative values. For bar charts, the origin is placed at
zero.

XRT_ORIGIN_ZERO Origin is placed at 0.

XRT_ORIGIN_MIN Origin is placed at the minimum axis value.

XRT_ORIGIN_MAX Origin is placed at the maximum axis value.

−20

−10

0

10

20

30

40

2 3 4 5 6

−20

−10

0

10

20

30

40

1 2 3 4 5 6 −20

−10

0

10

20

30

40
1 2 3 4 5 6

YOriginPlacement = _ORIGIN_AUTO YOriginPlacement = _ORIGIN_MIN YOriginPlacement = _ORIGIN_MAX

Chapter 3 ■ Programming Olectra Chart 41

3.3.4 Annotation/Title Rotation and Placement

Title Rotation
The title on the vertical axes (that is, the Y- and Y2-axis unless
XRT_INVERT_ORIENTATION is TRUE) can be rotated 90 degrees counter-
clockwise by setting XRT_[XYY2]TITLE_ROTATION to XRT_ROTATE_90.1

You can also rotate titles 270 degrees counter-clockwise by setting the rotation
property to XRT_ROTATE_270. 270-degree rotation usually looks best on the Y2-
axis. To return to horizontal titles, set the rotation property to
XRT_ROTATE_NONE.

Titles on the horizontal axis (that is, the X-axis unless
XRT_INVERT_ORIENTATION is TRUE) cannot be rotated.

Annotation Rotation
Axis annotation can be rotated using XRT_[XYY2]ANNOTATION_ROTATION.

Figure 32 Rotating Annotation and Title by 90 Degrees

Annotation/Title Placement
You can control the placement of axis annotation and titles with
XRT_[XY]ANNO_PLACEMENT. You can fix each axis’ annotation/title at the
origin, the axis minimum, or the axis maximum. Valid values are:

1. The axis font (specified by XRT_AXIS_FONT) must be scalable (e.g. TrueType) when rotating the annotation/title.
Olectra Chart cannot rotate raster or bitmap fonts.

XRT_ANNO_AUTO
(default)

Annotation is placed automatically. For plot and area
charts, annotation is placed at the origin. For bar and
stacking-bar charts, annotation is placed at the end of the
axis closest to the origin.

XRT_ANNO_ORIGIN Annotation is placed at the origin.

XRT_ANNO_MIN Annotation is placed at the minimum axis value.

42 Part I ■ Using the Chart

XRT_YANNO_PLACEMENT is ignored on dual-axis charts and discrete X-axis
charts.

Figure 33 Placing X-Axis Annotation at Y-Origin and Y-Maximum

3.3.5 Other Axis Controls

Ignored Properties
All axis properties are ignored when XRT_TYPE is XRT_TYPE_PIE. Most X-axis
properties are ignored on charts with a discrete X-axis (see section 3.2 on page 26 for
a definition). The only axis properties not ignored are XRT_XTITLE,
XRT_XAXIS_SHOW, XRT_XGRID_DATA_STYLE and
XRT_XGRID_DATA_STYLE_USE_DEFAULT.

Title
The XRT_[XYY2]TITLE property may be used to specify a title for each axis.

Orientation
When XRT_INVERT_ORIENTATION is FALSE, all the X-axis properties apply to
the horizontal axis, and the Y-axis properties apply to the vertical axis. When
XRT_INVERT_ORIENTATION is TRUE, the X-axis is vertical, and the Y-axis is
horizontal.

Margins
You can adjust the space between the axes and the edge of the graph area with the
margin properties (XRT_GRAPH_MARGIN_TOP,
XRT_GRAPH_MARGIN_BOTTOM, XRT_GRAPH_MARGIN_LEFT and
XRT_GRAPH_MARGIN_RIGHT). Each property specifies the number of pixels
between one edge of the graph area and its axis. By default, Olectra Chart calculates
margins automatically (the USE_DEFAULT properties are TRUE), setting enough
space to display axis annotation and titles.

Margins can be used to:

■ Line up the axes of several chart controls; for example, use
XRT_GRAPH_MARGIN_LEFT to line up several charts along the Y-axis.

XRT_ANNO_MAX Annotation is placed at the maximum axis value.

−20

0

20

40

60

80

100

Item 1 Item 2 Item 3 Item 4 Item 5

−20

0

20

40

60

80

100
Item 1 Item 2 Item 3 Item 4 Item 5

Chapter 3 ■ Programming Olectra Chart 43

■ Scale a chart; for example, “zoom in” by setting all the Margin properties to
negative values, “zoom out” by setting them to positive values.

■ Translate a chart; for example, increase XRT_GRAPH_MARGIN_TOP and
decrease XRT_GRAPH_MARGIN_BOTTOM by the same amount to shift the
chart down in the graph area.

Figure 34 Using Margins to scale a chart within the graph area

Grid-lines
XRT_[XY]GRID specifies the spacing between grid-lines. By default, these properties
are 0.0, resulting in no grid-lines at all. If XRT_[XY]GRID_USE_DEFAULT is TRUE,
XRT_[XY]GRID will track XRT_[XY]NUM. On discrete X-axis charts, X grid-lines
will appear at each X-axis label. The style of the grid is determined by
XRT_[XY]GRID_DATA_STYLE and
XRT_[XY]GRID_DATA_STYLE_USE_DEFAULT. See the table on page 38 for
information on how X-axis grid-lines interact with the various X-axis Annotation
Methods (which are discussed in section 3.2).

Axes Font
By default, the font used for axes numbering and titles is 12-point Arial. You may
change the font to any font available on your system using the XRT_AXIS_FONT
property. Changing the axes font is similar to changing the header, footer or legend
font, as discussed in section 3.6 on page 46.

Reversed Axis
You can change the direction of the X-, Y-, and Y2-axes by setting
XRT_[XYY2]AXIS_REVERSED to TRUE.

X-axis—Reversal is only allowed if the X-axis is continuous. A similar effect can be
achieved on charts with a discrete X-axis by reversing the order of the Point-labels
and the data.

Y- and Y2-axis—Once a relationship has been specified between the Y- and Y2- axis,
you can only specify the direction of the Y-axis. If the relationship multiplier is
negative, the direction of the Y2-axis will be the opposite of the Y-axis.

110

120

130

140

150

Yen

0.80

0.90

1.00

1.10

1.20

$US

Dec 30 Jan 13 Jan 27 Feb 10 Feb 24

Value of Stock

(000,000s)

110

120

130

140

150

Yen

0.80

0.90

1.00

1.10

1.20

$US

Dec 30Jan 13 Jan 27 Feb 10 Feb 24

Value of Stock

(000,000s)

Value of Stock

(000,000s)

44 Part I ■ Using the Chart

Figure 35 Normal and Reversed X- and Y-axes

Axis Show
XRT_[XYY2]AXIS_SHOW specifies whether Olectra Chart should draw the axis at
all. If FALSE, the axis will not be drawn.

Bounding Box
To cause a box to be drawn which surrounds the axes, set
XRT_AXIS_BOUNDING_BOX to TRUE.

3.4 Positioning Graph Areas

Each of the four areas (header, footer, legend and graph) will by default be
positioned by Olectra Chart at run-time. The default positioning for each area
depends on a large number of factors, including:

■ The control’s current width and height.

■ The size of the legend, header and footer areas. These, in turn, depend on the
text and fonts being used.

■ The value of the XRT_LEGEND_ANCHOR property.

■ The positioning of areas which have been explicitly positioned by the user
program.

Olectra Chart’s default positioning algorithms will size and position the header,
footer and legend areas first. The graph area will be sized and positioned to fit into
the largest remaining rectangular area.

A program can determine and adjust area positioning through the use of the
positioning properties.

0.80

0.90

1.00

1.10

1.20

K
ilo

m
e

te
rs

 b
e

lo
w

 S
e

a
 L

e
ve

l

Dec 30 Jan 13 Jan 27 Feb 10 Feb 24

Submarine Sightings

0.80

0.90

1.00

1.10

1.20

K
ilo

m
e

te
rs

 b
e

lo
w

 S
e

a
 L

e
ve

l

Dec 30Jan 13Jan 27Feb 10Feb 24

Submarine Sightings

Chapter 3 ■ Programming Olectra Chart 45

Figure 36 Area Positioning Properties

When used in an XrtGetValues() call, positioning properties will return the values
used the last time the chart was displayed. These properties do not have meaningful
values until they are either explicitly set, or a chart has been displayed at least once.

A program should not explicitly set any of the positioning properties unless it is
prepared to recalculate them when the control’s size changes. See section 5.8 on
page 80 for more information on handling window resizing.

In some situations, it may be worthwhile to explicitly set some or all of the
positioning properties. For example, if the program will be displaying data that
changes in real-time, the default positioning may change slightly with each redisplay.
These small positioning changes could distract the user. In this situation, the
program should use one of the following strategies:

■ Hardcode all the positioning properties. Window resizing should not be allowed.

or

■ Let Olectra Chart calculate default positioning for all areas when the chart first
displays, and for the first display after any window resize. After the first display,
explicitly set the positioning properties to the values calculated by Olectra Chart.

3.5 3D Effect

Data in bar, stacking-bar and pie charts can be displayed with a three-dimensional
appearance by setting the XRT_GRAPH_DEPTH, XRT_GRAPH_INCLINATION
and XRT_GRAPH_ROTATION properties. These properties have no effect on plots,
area charts and combination charts.

Chart depth is the apparent depth as a percentage of chart width. Inclination is the
eye’s position above the X-axis, measured in degrees. Rotation is the number of
degrees the eye is positioned to the right of the Y-axis. Rotation has no effect on pie
charts.

XRT_HEADER_X XRT_HEADER_Y (XRT_HEADER_WIDTH) (XRT_HEADER_HEIGHT)
XRT_FOOTER_X XRT_FOOTER_Y (XRT_FOOTER_WIDTH) (XRT_FOOTER_HEIGHT)
XRT_LEGEND_X XRT_LEGEND_Y (XRT_LEGEND_WIDTH) (XRT_LEGEND_HEIGHT)
XRT_GRAPH_X XRT_GRAPH_Y XRT_GRAPH_WIDTH XRT_GRAPH_HEIGHT
(Properties in Parentheses are Read-Only)

46 Part I ■ Using the Chart

Figure 37 3D Effect on Bar Charts with Depth equal to 30

Figure 38 3D Effect on Pie Charts with Depth equal to 30

3.6 Header, Footer and Legend Display

Unless a program has explicitly positioned areas, Olectra Chart will always attempt
to display the header at the top, and the footer at the bottom of the window. The
default legend position depends on the value of the XRT_LEGEND_ANCHOR
property. See section 3.4 on page 44 for details on overriding the default area
positioning.

Image Not Available
Figure 37 is not available due to technical difficulties.
The printed version of this manual does contain the correct image.

Image Not Available
Figure 38 is not available due to technical difficulties.
The printed version of this manual does contain the correct image.

Chapter 3 ■ Programming Olectra Chart 47

Header & Footer Text
The header and footer areas can both contain multiple lines of text. The text will be
aligned within the area, depending on the value of the XRT_HEADER_ADJUST or
XRT_FOOTER_ADJUST property. The values XRT_ADJUST_LEFT,
XRT_ADJUST_RIGHT and XRT_ADJUST_CENTER cause the text to be left-
justified, right-justified or centered. XRT_ADJUST_CENTER is the default.

The text for the header and footer areas is specified using the
XRT_HEADER_STRINGS and XRT_FOOTER_STRINGS properties. Both of these
properties have NULL-terminated arrays of strings as their values.

The code below will set two header lines and left-adjust them:

static char *hs[] = { "Experiment A Results",
"Last 60 Days", NULL };

XrtSetValues(hChart,
XRT_HEADER_STRINGS, hs,
XRT_HEADER_ADJUST, XRT_ADJUST_LEFT,
NULL);

Legend
The text displayed in the legend corresponds to either the Set-labels or the Point-
labels. If the data is transposed, the Point-labels are used. Otherwise the Set-labels
are used. For more information on Point-labels and Set-labels, see section 3.2.2 on
page 28.

By default, Olectra Chart will attempt to list the legend contents vertically, and
position the legend to the right of the graph area.

The legend layout is controlled through the XRT_LEGEND_ORIENTATION
property. It may be either XRT_ALIGN_VERTICAL or
XRT_ALIGN_HORIZONTAL. If the legend is too large to fit in one row or column,
Olectra Chart will attempt to layout the legend in several rows or columns.

The default legend positioning relative to the graph area is controlled with the
XRT_LEGEND_ANCHOR property. Valid values correspond to the eight points of
the compass: XRT_ANCHOR_NORTH, XRT_ANCHOR_SOUTH,
XRT_ANCHOR_EAST, XRT_ANCHOR_WEST, XRT_ANCHOR_NORTHWEST,
XRT_ANCHOR_NORTHEAST, XRT_ANCHOR_SOUTHEAST, and
XRT_ANCHOR_SOUTHWEST.

Font Specification
A font may be specified for each of the header, footer and legend areas and also for
the axes annotation. Olectra Chart can use any font available on the system at
runtime.

Use the CreateFont() or CreateFontIndirect() Windows API call to create an
HFONT structure for use with Olectra Chart’s font properties. The Windows API
EnumFontFamilies() function determines which fonts are available on the system.
Consult your Windows programming documentation for further details on finding
and setting fonts.

48 Part I ■ Using the Chart

Another way to set a font property is to use the XrtSetPropString() function. This
allows you to avoid creating and destroying an HFONT or LOGFONT structure and
set a font using a simple string, such as “Arial,24,Italic”.

The following example uses both methods to set font properties:

/* Use CreateFont() to set Header font */
HFONT hFont;
hFont = CreateFont(24, 0, 0, 0, 0, /* Set only Size & */

0, 0, 0, 0, 0, 0, 0, 0, "MS Serif"); /* Typeface */
XrtSetValues(hChart, XRT_HEADER_FONT, hFont, NULL);
DeleteObject(hFont);

/* Use XrtSetPropString() to set Legend font */
XrtSetPropString(hChart, XRT_LEGEND_FONT,

"Times,12,bold");

For information on setting font properties in the Windows 3.1 environment, refer to
section 2.6 on page 19.

3.7 Data Styles

How a data value looks when it is displayed (i.e. color, line pattern, fill pattern, point
style, line thickness etc.) depends on the data style that has been defined for that data
value.

For example, the values in the third set of data will be rendered on screen using the
third data style. If the data is transposed, the values of the third point in each set of
data will be rendered using the third data style.

Default Data Styles
If XRT_DATA_STYLES_USE_DEFAULT is TRUE, the chart will use its default data
styles. Even after setting explicit data styles, a program may again use default data
styles by setting XRT_DATA_STYLES_USE_DEFAULT to TRUE.

The XrtDataStyle structure is declared in the OLCH2DCM.H header file:

typedef struct {
XrtLinePattern lpat; /* line pattern */
XrtFillPattern fpat; /* fill pattern */
COLORREF color; /* color */
int width; /* line width */
XrtPoint point; /* point style */
COLORREF pcolor; /* point color */
int psize; /* point size */

} XrtDataStyle;

The XrtDataStyle data structure contains all the information about how a set of data
will be represented graphically. The fields are broken down as follows:

 lpat The line pattern used for plots. Must be one of the XRT_LPAT_
constants listed in Figure 39.

Chapter 3 ■ Programming Olectra Chart 49

Figure 39 Line Patterns

 fpat The fill pattern used in area charts and bar and pie charts. Must
be one of the XRT_FPAT_ constants listed in Figure 40.

 color The color used when drawing lines in plots and for fills in area
charts and bar and pie charts. This is a valid Windows color
value. See section 3.10 on page 55 for details of color
specification.

 width The line width used for plots. Must be greater than or equal to
1. Line width must be 1 when using a dashed or dotted line
pattern on Windows 3.x and Windows 95.

 point The point style used for plots. Must be one of the
XRT_POINT_ constants listed in Figure 41.

 pcolor The point color used for points in plots. This is a valid
Windows color value. See section 3.10 on page 55 for details of
color specification.

 psize The size of points that appear in plots. Must be greater than or
equal to 0. A size of 0 will result in no point being drawn. A point
size is a relative measure. Do not assume that a point size of 12
means that the point’s glyph will be exactly 12 pixels from top to
bottom.

 XRT_LPAT_NONE
 XRT_LPAT_SOLID
 XRT_LPAT_LONG_DASH
 XRT_LPAT_DOTTED
 XRT_LPAT_SHORT_DASH
 XRT_LPAT_LSL_DASH
 XRT_LPAT_DASH_DOT

50 Part I ■ Using the Chart

Figure 40 Fill Patterns

Figure 41 Point Styles

Explicitly Setting Data Styles
It is usually satisfactory to use Olectra Chart’s default data styles. If a program
explicitly sets any data styles, it is responsible for ensuring that the data style colors
are different from the graph area and data area background colors.

A side effect of setting any data style element explicitly is that the
XRT_DATA_STYLES_USE_DEFAULT property will be set to FALSE. Olectra Chart
will use the default data styles for any sets of data without an explicit data style. The
most straightforward way to set data styles in a program is shown in Figure 42.

 XRT_FPAT_NONE
 XRT_FPAT_SOLID
 XRT_FPAT_25_PERCENT
 XRT_FPAT_50_PERCENT
 XRT_FPAT_75_PERCENT
 XRT_FPAT_HORIZ_STRIPE
 XRT_FPAT_VERT_STRIPE
 XRT_FPAT_45_STRIPE
 XRT_FPAT_135_STRIPE
 XRT_FPAT_DIAG_HATCHED
 XRT_FPAT_CROSS_HATCHED
 XRT_WFPAT_BDIAGONAL
 XRT_WFPAT_FDIAGONAL
 XRT_WFPAT_HORIZONTAL
 XRT_WFPAT_VERTICAL
 XRT_WFPAT_CROSS
 XRT_WFPAT_DIAGCROSS

 XRT_POINT_NONE
 XRT_POINT_DOT
 XRT_POINT_BOX
 XRT_POINT_TRI
 XRT_POINT_DIAMOND
 XRT_POINT_STAR
 XRT_POINT_VERT_LINE
 XRT_POINT_HORIZ_LINE
 XRT_POINT_CROSS
 XRT_POINT_CIRCLE
 XRT_POINT_SQUARE

Chapter 3 ■ Programming Olectra Chart 51

Figure 42 Setting Data Styles

Accessing Data Styles
Data styles are accessed through the XRT_DATA_STYLES property and/or through
the XrtSetNthDataStyle() and XrtGetNthDataStyle() methods.

XRT_DATA_STYLES can be used to get or set the entire array of data styles. When
used with XrtGetValues(), the returned array pointer should be considered read-
only. The XrtDupDataStyles() convenience routine may be used to duplicate the

static XrtDataStyle color_styles[] = {
/* 0 */ { XRT_LPAT_SOLID, XRT_FPAT_SOLID, RGB(255,0,0), 1, XRT_POINT_TRI,

RGB(255,0,255), XRT_DEFAULT_POINT_SIZE },
/* 1 */ { XRT_LPAT_SOLID, XRT_FPAT_SOLID, RGB(255,192,128), 1, XRT_POINT_BOX,

RGB(128,255,128), XRT_DEFAULT_POINT_SIZE },
/* 2 */ { XRT_LPAT_SOLID, XRT_FPAT_SOLID, RGB(0,255,0), 1, XRT_POINT_DOT,

RGB(128,128,255), XRT_DEFAULT_POINT_SIZE },
/* 3 */ { XRT_LPAT_SOLID, XRT_FPAT_SOLID, RGB(128,255,223), 1,

XRT_POINT_DIAMOND, RGB(255,0,0), XRT_DEFAULT_POINT_SIZE },
/* 4 */ { XRT_LPAT_SOLID, XRT_FPAT_SOLID, RGB(0,0,255), 1, XRT_POINT_STAR,

RGB(255,0,0), XRT_DEFAULT_POINT_SIZE },
/* 5 */ { XRT_LPAT_SOLID, XRT_FPAT_SOLID, RGB(255,0,255), 1, XRT_POINT_TRI,

RGB(128,128,255), XRT_DEFAULT_POINT_SIZE },
/* 6 */ { XRT_LPAT_SOLID, XRT_FPAT_SOLID, RGB(192,255,0), 1, XRT_POINT_BOX,

RGB(255,0,255), XRT_DEFAULT_POINT_SIZE },
/* 7 */ { XRT_LPAT_SOLID, XRT_FPAT_SOLID, RGB(128,128,255), 1, XRT_POINT_DOT,

RGB(128,255,255), XRT_DEFAULT_POINT_SIZE },
};

static XrtDataStyle *my_dstyles_ptr[] = {
&color_styles[0],
&color_styles[1],
&color_styles[2],
&color_styles[3],
&color_styles[4],
&color_styles[5],
&color_styles[6],
&color_styles[7],
NULL

};

...
HWND hwndXrt2D;
HXRT2D hChart;

...
hChart = XrtCreateWindow(““, 5,5,300,200,hWnd, hInstance);
hwndXrt2D = XrtGetWindow(hChart);

...
XrtSetValues(hChart, XRT_DATA_STYLES, my_dstyles_ptr, NULL);

52 Part I ■ Using the Chart

returned data styles array pointer. For example, to set all line widths to 5-pixels thick,
the following code could be used:

int i;
XrtDataStyle **ds, **myds;
XrtGetValues(hChart, XRT_DATA_STYLES, &ds, NULL);
myds = XrtDupDataStyles(ds);
for(i=0; myds[i]; i++){

myds[i]->width = 5;
}
XrtSetValues(hChart,

XRT_DATA_STYLES, myds,
NULL);

XrtFreeDataStyles(myds);

A program can get a pointer to a particular XrtDataStyle structure using
XrtGetNthDataStyle(). For example, if hChart is a plot of the population data in
Figure 20, the following code will print out the line thickness being used for the set of
Tokyo data, and double it:

XrtDataStyle *dstyle, my_dstyle;
char buffer[50];
dstyle = XrtGetNthDataStyle(hChart, 1);
sprintf(buffer, "line width for 2nd set of data:

%d", dstyle->width);
MessageBox(hWnd, buffer, "Information", MB_OK);
my_dstyle = * dstyle;
my_dstyle.width = my_dstyle.width * 2;
XrtSetNthDataStyle(hChart, 1, &my_dstyle);

3.8 Special Bar Chart Properties

Bar charts have two special properties that control exactly how the bars are sized and
spaced. Bar charts have their bars grouped into clusters. When the data is not
transposed, there is a cluster for each point. When the data is transposed, there is a
cluster for each set.

Cluster Width
In non-stacking bar charts, bars are grouped into clusters. To specify how much of
the available cluster space should be occupied by the bars, use the
XRT_BAR_CLUSTER_WIDTH property. By default,
XRT_BAR_CLUSTER_WIDTH is 50, which means that the bars will occupy 50% of
the available cluster space.

Cluster Overlap
The spacing between bars in the same cluster is controlled using the
XRT_BAR_CLUSTER_OVERLAP property. Cluster overlap is specified as a
percentage of the bar’s width.

Chapter 3 ■ Programming Olectra Chart 53

Figure 43 Cluster Width in Bar Charts and Stacking Bar Charts

Stacking Bar Charts
Data will be displayed as a stacking bar chart when XRT_TYPE is set to
XRT_TYPE_STACKING_BAR. In stacking bar charts, all data values less than zero
are treated as zero. Since stacking bar charts have only one bar per cluster,
XRT_BAR_CLUSTER_OVERLAP has no effect.

Figure 44 Cluster Overlap

Maximum Cluster Width is 1/3 of total available. Maximum Cluster Width is 1/5 of total available.

54 Part I ■ Using the Chart

3.9 Special Pie Chart Properties

Pie charts are significantly different from plots and bar charts since they do not have
the notion of a 2-dimensional grid which is common to plots and bar charts. Pie
charts also introduce the concept of an other category, into which all values below a
specified threshold are grouped.

Olectra Chart will draw a pie chart comparing each point across all sets. To begin,
the sum of all of the first points is calculated (then all of the second points etc.). Then
the percentage of the sum is calculated for each point. It is suggested that data
structures with large numbers of points not be displayed as pie charts. Negative data
values are treated as zero when displayed in a pie chart.

To compare the relative sizes of each of the points within a set, make
XRT_TRANSPOSE_DATA TRUE. This will also cause the Point-labels to appear in
the legend.

Because of the unique nature of pie charts, Olectra Chart defines a few properties
which pertain only to charts when XRT_TYPE is XRT_TYPE_PIE.

Other Slice Threshold
There are two factors which contribute to threshold interpretation. Threshold method
and threshold value determine which values will be displayed with their own slice, and
which will contribute to the other slice.

If XRT_PIE_THRESHOLD_METHOD is XRT_PIE_SLICE_CUTOFF, Olectra Chart
will examine the value of XRT_PIE_THRESHOLD_VALUE. All data values whose
percentage of the total is less than the threshold value are grouped into the other slice.

If XRT_PIE_THRESHOLD_METHOD is XRT_PIE_PERCENTILE, as many of the
smallest data values as necessary are grouped into the other slice so that the other slice
is less than or equal to the threshold value percent of the total.

The XRT_PIE_THRESHOLD_VALUE defines a floating-point value between 0.0 and
100.0. To disable creation of the other slice, set XRT_PIE_THRESHOLD_VALUE to
0.0.

An example of various threshold methods is shown in Figure 45.

Other Slice Label
The label used to annotate the other slice is determined by XRT_OTHER_LABEL. By
default, the other slice is labelled “Other”. This property can be used to specify a
more appropriate label.

Other Slice Data Style
XRT_OTHER_DATA_STYLE specifies the data style to be used for displaying the
other pie slice. See section 3.7 on page 48 for more information on the XrtDataStyle
structure. By default, Olectra Chart renders the other slice on pie charts in a solid fill
pattern of yellow. An application can go back to using the default data style for the
other slice by setting XRT_OTHER_DATA_STYLE_USE_DEFAULT to TRUE.

Chapter 3 ■ Programming Olectra Chart 55

Figure 45 Threshold Methods

Pie Ordering
The order of pie slices around the pie is determined by XRT_PIE_ORDER. It must
be one of XRT_PIEORDER_ASCENDING, XRT_PIEORDER_DESCENDING or
XRT_PIEORDER_DATA_ORDER. If it is XRT_PIEORDER_DATA_ORDER, the
slices not contributing to other are displayed in the same order that they appear in the
data. The other slice is always the last slice in any ordering.

Minimum Slices
Finally, XRT_PIE_MIN_SLICES specifies a minimum number of slices to display.
This property has precedence over the threshold method and value. If, for example,
XRT_PIE_MIN_SLICES is set to 5, Olectra Chart will always try to display 5 slices
before grouping any data into the other slice.

All-Zero Pies
If all of a pie’s data values are zero (or negative), no pie will be drawn and it will not
be possible to set a marker on the pie. Also, the XrtPick() procedure will indicate the
correct pie index (as if the pie had been drawn), but the slice index will always be
zero. XrtPick() will always return a non-zero distance value for all-zero pies.

3.10 Foreground and Background Colors

Olectra Chart supports the specification of colors for the window background and
foreground, as well as for the lines, fill patterns and points that represent data in the

No Threshold
Value = 0.0

Slice Cutoff
Value = 8.0

Percentile
Value = 30.0

56 Part I ■ Using the Chart

chart itself. Olectra Chart will choose default colors for the application, so simple
applications need not concern themselves with color specification.

Background Colors
The window background color is specified through the
XRT_BACKGROUND_COLOR property. It is white by default.

Each of the header, footer, legend and graph areas also have a background color
which is XRT_DEFAULT_COLOR (transparent) by default. For example, the
property to change the legend background color is
XRT_LEGEND_BACKGROUND_COLOR. The data area of the chart also has its
own background color, specified by XRT_DATA_AREA_BACKGROUND_COLOR.

Foreground Colors
The window foreground color is black by default, and is specified with the
XRT_FOREGROUND_COLOR property. It will be used as the foreground color for
each of the header, footer, legend and graph areas, unless a different foreground
color is specified for one or more of these areas. For example, to specify a different
header foreground color, use the XRT_HEADER_FOREGROUND_COLOR
property.

Data Colors
Data styles specify the colors used for graphed data (among other things). For
information on customizing data styles, see section 3.7 on page 48.

Specifying Colors
All color properties take a valid Windows color reference as their value. Use
XrtSetValues() to set a property to a color reference created with the RGB macro.

Alternately, use XrtSetPropString() to set a property to a named color string, as
shown by the following example:

XrtSetPropString(hChart,
XRT_BACKGROUND_COLOR,"skyblue");

Olectra Chart recognizes over 200 colors (ranging from “Aquamarine” to
“YellowGreen”). A list of recognized colors can be found in the file OC_COLOR.H,
located in Olectra Chart’s \INCLUDE directory.

Palette Handling
Because the charts created by Olectra Chart look best when rendered using solid
colors, Olectra Chart automatically adds new solid colors to the Windows palette
when creating the chart or changing color properties. This saves the programmer the
step of allocating a new color in the palette before setting a color property. If the
palette is full, the color is set to the nearest palette color or by dithering the closest
palette colors, depending on the macro or function you used to specify the color.

Once a chart is created, an application should not update or change the Windows
palette directly. Changes to any of the chart’s colors should be made by updating the
appropriate chart properties (such as XRT_BACKGROUND_COLOR and
XRT_DATA_STYLES).

Chapter 3 ■ Programming Olectra Chart 57

The Windows color palette is a shared resource. In some situations, the number of
colors in use by all the applications being displayed is more than the number of
palette entries available. In this case, the colors in some windows will “flash” to
inappropriate colors as the user uses different applications.

Palette Notification Message
To ensure proper color palette handling, your application needs to handle the
XRTN_PALETTECHANGED notification message, as well as
WM_QUERYNEWPALETTE and WM_PALETTECHANGED. The
XRTN_PALETTECHANGED message is sent to a chart’s parent window after the
chart control has changed its color palette. Refer to Appendix D for more
information on this message.

The PLOT1 example program in Chapter 1 shows how to handle these messages for
single-chart applications. See the STOCK example in Olectra Chart’s
\CHART\2D\DEMOS\DLL\SDK\STOCK directory and the MSDN articles
“Palette Awareness” and “The Palette Manager: How & Why” for help with
multiple-chart applications.

3.11 Markers

Markers provide an application with a way to identify a particular data element on
the screen, or a particular value in a plot. There are many potential uses for markers,
but the most likely one is to provide feedback to the application user when a
particular part of a chart is selected with the mouse.

Plots, area charts, bar charts and stacking bar charts support the notion of both an X-
and Y-marker. On plots, area charts and bar charts, the X-marker is a line drawn
across the graph area perpendicular to the X-axis. On stacking bar charts, the X-
marker is a short line drawn through one of the bar blocks. The Y-marker is a line
drawn across the graph area perpendicular to the Y-axis. The thickness, color and
style of line is defined by XRT_MARKER_DATA_STYLE. By default, it is a black, 1-
pixel wide, dashed line.

Pie charts support the notion of just one marker: a line drawn from the center of the
pie and extending outward through the center of the selected slice.

For combination charts (see section 6.2 on page 84), specify the marker dataset using
XRT_MARKER_DATASET.

Marker Performance
Updating the marker positioning properties occurs very quickly. This is because
Olectra Chart does not repaint the entire chart window to reposition the markers.
Marker performance is improved by setting XRT_DOUBLE_BUFFER to TRUE.
Generally though, chart performance is improved by turning double-buffering off.

X-marker Positioning
The position of the X-marker is defined by setting both the XRT_XMARKER_SET
and XRT_XMARKER_POINT, or the XRT_XMARKER properties.

58 Part I ■ Using the Chart

XRT_XMARKER_SET and XRT_XMARKER_POINT must be used when positioning
the X-marker on discrete X-axis charts, and may be used for continuous X-axis
charts. (See section 3.2 on page 26 for a definition of discrete and continuous axis.)
XRT_XMARKER_SET and XRT_XMARKER_POINT are indices into the XrtData
structure that together define the data point through which the X-marker will be
drawn.

On continuous X-axis charts, the X-marker position may also be specified through
the use of the XRT_XMARKER floating-point property. In this case, the
XRT_XMARKER value is the X-axis value through which the marker will be drawn.

Y-marker Positioning
The Y-marker is positioned through the XRT_YMARKER floating-point property. It
specifies the value on the Y-axis through which the Y-marker will be drawn. This
property is ignored when the chart is a pie.

Neither X- nor Y-markers will appear unless the appropriate
XRT_[XY]MARKER_SHOW property is set to TRUE.

3.12 Area Borders

Each of the 4 graph areas (header, footer, legend and graph) may be enhanced with a
border. There is a Border and a Border Width property for each of these areas (for
example, XRT_GRAPH_BORDER and XRT_GRAPH_BORDER_WIDTH). In
addition, you can specify a border for the entire control.

The Border properties may be set to any of: XRT_BORDER_NONE,
XRT_BORDER_3D_OUT, XRT_BORDER_3D_IN, XRT_BORDER_ETCHED_IN,
XRT_BORDER_ETCHED_OUT, XRT_BORDER_SHADOW or
XRT_BORDER_PLAIN. The width of the border (in pixels) is controlled with the
corresponding Border Width property. The width must be between 0 and 20.

Figure 46 Border Types

Chapter 3 ■ Programming Olectra Chart 59

3.13 Double Buffering

Double buffering is a graphics technique which will reduce the amount of flashing
perceived by a user when a chart changes.

When XRT_DOUBLE_BUFFER is TRUE, every time Olectra Chart changes a chart it
will:

■ allocate (if necessary) and clear an off-screen bitmap.

■ render the complete chart to the off-screen bitmap.

■ copy the off-screen bitmap to the screen.

When XRT_DOUBLE_BUFFER is FALSE, every time Olectra Chart changes a chart
it will clear the screen image (possibly causing a visual flash) and then render the
complete image to the visible window (possibly allowing the user to see the chart
being drawn piece by piece).

By default, XRT_DOUBLE_BUFFER is TRUE. However, setting it to FALSE can
improve the graphing performance and reduce memory requirements.

3.14 Output and Printing

Many applications need to provide the user with a way to get a hardcopy of a chart.
Olectra Chart provides several procedures which may be used to output chart
representations to files or printers. These procedures work correctly even when the
chart window is obscured by other windows.

Output/Printing Procedures
The procedures listed below are fully documented in Appendix B on page 117:

Printing Charts
To print a chart using the standard Windows Print dialog box, call XrtPrint(). This
procedure allows you to specify the image format and the size/position as described
above; its only difference is that it displays the Print dialog box.

XrtDrawToClipboard() Outputs a chart image to the Windows clipboard
using the graphics format you specify.

XrtDrawToDC() Outputs a chart image to any device context (DC)
at the scale and graphics format you specify.

XrtDrawToFile() Outputs a chart image to a file using the graphics
format you specify.

XrtPrint() Outputs a chart image to a printer, using the
Windows Print dialog box.

60 Part I ■ Using the Chart

XrtDrawToDC()
Use the XrtDrawToDC() procedure for more complex chart output. For instance, to
print several charts on one page, call XrtDrawToDC() for each chart, using the top,
left, width and height arguments to specify each chart’s different size/position. Figure
47 shows using XrtDrawToDC() for a printing function that prints a chart to the
default printer without using the Windows Print dialog box.

Figure 47 Non-interactive chart printing procedure

BOOL
printGraph(HXRT2D hChart)
{

PRINTDLGpd;
DOCINFO di;
HDC hdc;
TEXTMETRIC tm;
RECT rect;

memset ((void *) &pd, 0, sizeof(pd));
pd.lStructSize = sizeof(pd);
pd.hwndOwner = NULL;
pd.Flags = PD_RETURNDC | PD_RETURNDEFAULT;
pd.hInstance = NULL;
PrintDlg(&pd);
hdc = pd.hDC;

if (!hdc) {
return (FALSE);

}

di.cbSize = sizeof(di);
di.lpszDocName = "My Graph";
di.lpszOutput = NULL;

StartDoc(hdc, &di);
StartPage(hdc);

GetTextMetrics(hdc, &tm);

/* Define graph size and output graph */
rect.left = tm.tmAveCharWidth * 2;
rect.top = (tm.tmHeight + tm.tmExternalLeading) * (3);
rect.right = tm.tmAveCharWidth * 42;
rect.bottom = (tm.tmHeight + tm.tmExternalLeading) * (25);

XrtDrawToDC(hChart, hdc, XRT_DRAW_METAFILE, XRT_DRAWSCALE_NONE,
 rect.left, rect.top, rect.right-rect.left, rect.bottom-rect.top)

EndPage(hdc);
EndDoc(hdc);
DeleteDC(hdc);
return (TRUE);

}

61

4
Olectra Chart Data
Getting Data into Charts ■ The XrtData Structure
Changing the Data ■ Example Using Static Data

4.1 Getting Data into Charts

Data to be displayed can originate from diverse sources: files, databases, real-time
data feeds, or even unrelated processes running on the machine.

Perhaps the most difficult task facing an Olectra Chart developer is retrieving the
data to be displayed, and inserting it into an XrtData structure for displaying. This
section discusses the XrtData structure in detail and offers several examples of
allocating and loading the XrtData structure.

Data from a File
If the data exists in a file (and it does not need to be changed or updated in real time)
there are two options to consider. The first option is to massage the data so that the
file conforms to a syntax understood by XrtMakeDataFromFile(). This procedure
will allocate the XrtData structure and load it with data from a named file.
XrtMakeDataFromFile() is documented in Appendix B on page 117.

Another approach is to allocate an XrtData structure using XrtMakeData(), and
populate it with data by reading the data file (perhaps using fgets() or fscanf()). When
the structure is loaded, the chart can be created and the XRT_DATA property set to
point to the XrtData structure.

Fast Update Procedures
For some types of real-time applications, particularly when creating a strip-chart that
has data continually being added to it, or a scatter plot which is receiving new points,
the Fast Update procedures will be helpful. See section 6.5 on page 90 for more
information.

62 Part I ■ Using the Chart

Responsibility for XrtData
It is the application’s responsibility to allocate and destroy all required XrtData
structures. Olectra Chart does not make a copy of the data, instead it references data
in the application’s memory which is pointed to by XRT_DATA.

If Olectra Chart has to repaint the chart window, it will use the data pointed to by
XRT_DATA.

4.2 The XrtData Structure

When Olectra Chart begins to draw a chart, it uses the data values located in the
XrtData structure pointed to by the XRT_DATA property.

The XrtData structure is defined in the OLCH2DCM.H header file. (It is also listed
in Appendix E.) The XrtData structure itself is defined as a union of XrtArray and
XrtGeneral:

typedef union {
XrtArray a;
XrtGeneral g;

} XrtData;

When XrtMakeData() and XrtMakeDataFromFile() allocate XrtData structures, they
initialize the type field to XRT_DATA_ARRAY or XRT_DATA_GENERAL. They
also initialize the hole field to XRT_HUGE_VAL. The type and hole field are
common to both a and g elements.

Holes in the Data
Whenever Olectra Chart sees a Y-value in the dataset equal to the value in the hole
field, it considers that data value to be missing, that is, a hole. By default, hole is
XRT_HUGE_VAL. You can set the hole value to the value in your dataset that
represents missing data.

To initialize a particular value for hole when using XrtMakeDataFromFile(), insert
“HOLE <value>” as the second line in the data file.

Figure 48 Example of a Data Hole in a Plot

0

20

40

60

80

100

120

1 2 3 4 5

Chapter 4 ■ Olectra Chart Data 63

Array Data
The XrtArray structure contains a type field (always XRT_DATA_ARRAY), a hole
value field, integers defining the number of sets and number of points, and an
XrtArrayData structure:

typedef struct {
XrtDataType type;/*=XRT_DATA_ARRAY*/
double hole;
int nsets;
int npoints;
XrtArrayData data;

} XrtArray;

The XrtArrayData structure contains a pointer to an array of X-values, and a pointer
to an array of pointers to Y-values:

typedef struct {
double *xp;
double **yp;

} XrtArrayData;

Figure 49 The XrtArrayData Structure

General Data
The XrtGeneral structure contains a type field (always XRT_DATA_GENERAL), a
hole value field, an integer defining the number of sets, and a pointer to an array of
XrtGeneralData structures:

typedef struct {
XrtDataType type; /*=XRT_DATA_GENERAL*/
double hole;
int nsets;
XrtGeneralData *data;

} XrtGeneral;

[y0,0 y0,1 y0,2 . . . y0,npoints - 1]data.yp

[y1,0 y1,1 y1,2 . . . y1,npoints - 1]

[y2,0 y2,1 y2,2 . . . y2,npoints - 1]

[ynsets - 1,0 . . ynsets - 1,npoints - 1]

. . .

[yp0

yp1

yp2

ypnsets - 1]

[x0 x1 x2 . . . xnpoints - 1]data.xp

P
o

in
t

0

P
o

in
t

1

P
o

in
t

2

L
as

t
P

o
in

t

Set 0

Set 1

Set 2

Last
Set

64 Part I ■ Using the Chart

The XrtGeneralData structure contains an integer defining how many points are in
the set, followed by a pointer to an array of X-values and a pointer to an array of Y-
values:

typedef struct {
int npoints,
double *xp;
double *yp;

} XrtGeneralData;

Figure 50 The XrtGeneralData Structure

Convenience Macros
There are a number of convenience macros in OLCH2DCM.H (and listed in
Appendix C on page 143) that facilitate accessing pieces of the XrtData structure.

Macros for accessing array structures are prefixed with arr_. General structure
macros are prefixed gen_. For example, arr_xel(j) accesses the jth X-value in an
XrtArrayData structure located below an XrtData structure.

The following code fragment uses some of the convenience macros to read the
values in both an XRT_DATA_ARRAY and XRT_DATA_GENERAL XrtData
structure and place them in a text buffer:

[np2,

data

[X0 X1 X2 . . . Xnp2 - 1]*xp,
*yp

[Y0 Y1 Y2 . . . Ynp2 - 1]]

[np0,
[X0 X1 X2 . . . Xnp0 - 1]*xp,

*yp
[Y0 Y1 Y2 . . . Ynp0 - 1]]

[np1,
[X0 X1 X2 . . . Xnp1 - 1]*xp,

*yp
[Y0 Y1 Y2 . . . Ynp1 - 1]]

[npnsets - 1,
[X0 X1 X2 . . . Xnpnsets-1- 1]

*xp,
*yp

[Y0 Y1 Y2 . . . Ynpnsets-1- 1]
]

. . .

P
o

in
t

0

P
o

in
t

1

P
o

in
t

2

Set 0

Set 1

Set 2

Last
Set

Chapter 4 ■ Olectra Chart Data 65

Figure 51 XrtData structure Output Routines

Convenience Procedures
There are a number of XrtData structure manipulation convenience procedures
included with Olectra Chart. These procedures are fully described in Appendix B on
page 117.

static int
pr_arr(XrtData *d, char *buffer)
{
/* Reads elements of XRT_DATA_ARRAY type XrtData Structure into a buffer */

int i, j;
int numChars = 0;
numChars = sprintf(buffer, "Printing array data with %d sets,

%d points\n", d->arr_nsets, d->arr_npoints);
numChars += sprintf(buffer + numChars, "X-Values:\n");
for (j = 0; j < d->arr_npoints; j++)

numChars += sprintf(buffer + numChars, "%f\t", d->arr_xel(j));
for (i = 0; i < d->arr_nsets; i++) {

numChars += sprintf(buffer + numChars, "Y %d Values:\n", i);
for (j = 0; j < d->arr_npoints; j++)

numChars += sprintf(buffer + numChars, "%f\t",
d->arr_yel(i,j));

numChars += sprintf(buffer + numChars, "\n");
}
return numChars;

}

static int
gen_arr(XrtData *d, char *buffer)
{
/* Read elements of XRT_DATA_GENERAL type XrtData structure into a buffer */

int i, j;
int numChars = 0;
numChars = sprintf(buffer, "Printing general data with %d sets.\n",

d->gen_nsets);
for (i = 0; i < d->gen_nsets; i++) {

numChars += sprintf(buffer + numChars, "Sets %d Values:\n", i);
for (j = 0; j < d->gen_npoints(i); j++)

numChars += sprintf(buffer + numChars, "(%f, %f)\t",
d->gen_xel(i,j), d->gen_yel(i,j));

numChars += sprintf(buffer + numChars, "\n");
}
return numChars;

}

static int
pr_data(XrtData *d, char *buffer)
{

if (XrtGetDataType(d) == XRT_DATA_ARRAY) /* is array */
return pr_arr(d, buffer);

else /* is general */
return pr_gen(d, buffer);

}

66 Part I ■ Using the Chart

4.3 Changing the Data

Olectra Chart makes it easy to change data while keeping chart characteristics
unchanged. Programs can create a large number of XrtData structures and then
switch among them by setting the XRT_DATA property to point to the current data.

The code in Figure 52 sets the XRT_DATA property to point to the appropriate data
and updates the header text.

Figure 52 Changing Datasets in a message handler

The strategy for changing data in real-time is just as simple. First, create a new
XrtData structure and populate it with the new data (or update the structure that is
currently being displayed). Second, tell the chart to use the new data by setting the
XRT_DATA property.

XrtDataSort() Sorts the points in each set by increasing X-value.

XrtDataCopy() Creates a copy of an XrtData structure.

XrtGenDataAppendPt() Appends an (x,y) value to the end of a set of data in a
General XrtData structure.

XrtArrDataAppendPts() Appends a column of points to an Array XrtData structure.

XrtGenDataRemovePt() Removes a point from a General XrtData structure.

XrtArrDataRemovePts() Removes a point from each set in an Array data structure.

XrtDataRemoveSet() Removes a set from an XrtData structure.

XrtDataExtractSet() Creates a new XrtData structure loaded with one set of
data from an existing XrtData structure.

XrtDataConcat() Creates a new XrtData structure by concatenating two
existing XrtData structures.

static char *dec_header[] = { "DEC", NULL, };
case WM_COMMAND:

switch (wParam) {
case ID_DEC:

CheckRadioButton(hWnd, ID_DEC, ID_IBM, ID_DEC);
XrtSetValues(hChart,

XRT_DATA, dec0990,
XRT_HEADER_STRINGS, dec_header,
NULL);

break;

Chapter 4 ■ Olectra Chart Data 67

4.4 Example Using Static Data

If the data to be displayed is known at compile time, it can simply be defined in static
variables and then copied into an XrtData structure for displaying.

The example below defines the values to be displayed in static C variables xdata[]
and ydata[]. The code simply allocates an XrtData structure of the correct size, and
copies the static values into the structure.

Figure 53 Loading Data Structure from Static C Variables

#define NSETS 3
#define NPOINTS 5
static double xdata[NPOINTS] = { 1,2,3,4,5,}; /* Array data placeholders */
static double ydata[NSETS][NPOINTS] = {

{5, 8, 14, 19, 24 },/* mexico */
{11, 15, 18, 21, 22 },/* tokyo */
{14, 16, 15.5, 15.2, 15.4} /* new york */

};
static char *sl[] = { "Mexico", "Tokyo", "New York", NULL, };
static char *pl[] = { "60", "70", "80", "90", "2000", NULL, };
...
static HXRT2D hChart;
static XrtData *pop;
int i, j;
...
switch (msg) {
case WM_CREATE:

// Create graph control
hChart = XrtCreateWindow(““, 5,5,500,300,hWnd, hInstance);
// Get data
pop = XrtMakeData(XRT_DATA_ARRAY, NSETS, NPOINTS, TRUE);
for (i=0; i < NPOINTS; i++) {

pop->arr_xel(i) = xdata[i];
for (j=0; j < NSETS; j++) {

pop->arr_yel(j, i) = ydata[j][i];
}

}
XrtSetValues(hChart,

XRT_DATA, pop,
XRT_SET_LABELS, sl,
XRT_POINT_LABELS,pl,
XRT_XANNOTATION_METHOD,XRT_ANNO_POINT_LABELS,
NULL);

break;
...

68 Part I ■ Using the Chart

69

5
Programming User Interaction

Default User Interaction ■ Overview of Action Maps and Messages
Starting User Interaction ■ Updating User Interaction

Ending User Interaction ■ Programming Actions
Interacting with Chart Data ■ Window Resizing

This chapter describes the user-interaction features of Olectra Chart—how a user can
interact with the chart and how an application can control interaction.

5.1 Default User Interaction

By default, the user can scale, translate, and zoom into all types of charts. 3-D1 bar,
stacking bar, and pie charts can also be rotated by the user. An application can also
define action maps which manipulate a chart programmatically. Figure 54 shows the
user interactions enabled by Olectra Chart’s default action maps. Note that if you
have a three-button mouse, holding down the middle mouse button is equivalent to
simultaneously holding down the left and right mouse buttons.

5.2 Overview of Action Maps and Messages

Olectra Chart’s default action maps define user events that cause some interactive
action within the control. You can customize user interaction through the following
mechanisms:

■ Action maps—An application can change or remove the default actions.

1. 3D charts must have a depth (XRT_GRAPH_DEPTH) greater than zero to allow interactive rotation.

70 Part I ■ Using the Chart

Figure 54 Olectra Chart’s Default Action Maps

■ Messages—An application can be notified as a user interacts with the control by
defining message handler procedures that are called before, during, and after
user interaction. A message handler procedure can affect each interaction in
such ways as disallowing or constraining it. See the section on each interaction
for details on using its callback.

Three Interaction Stages
Olectra Chart’s default user interaction passes through three stages:

■ Starting user interaction

Value of Stock

(000,000s)

0.80

0.90

1.00

Dec 30 Jan 13 Jan 27

Value of Stock

(000,000s)

Value of Stock

(000,000s)

110

120

130

140

150

Yen

0.80

0.90

1.00

1.10

1.20

$US

Dec 30 Jan 13 Jan 27 Feb 10 Feb 24

Value of Stock

(000,000s)

Value of Stock

(000,000s)
■ Move mouse down

to increase the
graph’s size

■ Move mouse up to
decrease the
graph’s size

Scaling
■ Press Ctrl and hold

down both mouse
buttons

■ Move mouse to
shift the graph

Translation
■ Press Shift and

hold down both
mouse buttons

■ Move mouse to
select the area to
zoom into

Zooming
■ Press Ctrl and hold

down the left
mouse button

0

10

20

30

1,000 2,000 5,000 10,000
0

10

20

30

1,000 2,000 5,000 10,000

■ Move mouse left
and right to change
the rotation angle
(bars only)

■ Move mouse up
and down to
change the
inclination angle

Rotation
(3D bar/pie
charts only)

■ Hold down both
mouse buttons

■ All scaling,
translation, and
zooming removed;
displays default
graph margins

Return to
Default

■ Press “r”

0.80

0.90

1.00

Dec 30 Jan 13 Jan 27

Value of Stock

(000,000s)

Value of Stock

(000,000s)

110

120

130

140

150

Yen

0.80

0.90

1.00

1.10

1.20

$US

Dec 30 Jan 13 Jan 27 Feb 10 Feb 24

Value of Stock

(000,000s)

Chapter 5 ■ Programming User Interaction 71

■ Updating user interaction, and

■ Ending user interaction

An interaction must pass through these stages in sequence, and an application can be
notified by messages during each stage. Each stage is described in the following
sections.

5.3 Starting User Interaction

The XRTN_MODIFY_START message is passed to the window’s message handler to
notify the application that a user interaction is about to begin. Figure 55 illustrates
this.

Figure 55 XRT_ACTION_MODIFY_START Action

Disabling All User Interaction
You can use the XRTN_MODIFY_START message to disable any user interaction
regardless of the action maps installed. The window’s message handler is passed the
following message:

XRTN_MODIFY_START:
hWnd = (HWND) wParam;
mcb = (XrtModifyCallbackStruct *) lParam;

typedef struct {
BOOL doit;

} XrtModifyCallbackStruct;

Set the doit parameter of this structure to FALSE (when the action is
XRT_ACTION_MODIFY_START) to disable all user interactions. When doit is
FALSE, all “update” actions are disabled until the next XRTN_MODIFY_START message is
passed.

5.4 Updating User Interaction

One of several action routines is called to notify the application that a user
interaction is about to be updated. None of these routines updates the chart unless
the interaction has successfully passed through the ModifyStart() action.

One of several messages is passed to notify the application that a user interaction is
about to be updated. No action can update the chart unless the interaction has
successfully passed through the XRT_ACTION_MODIFY_START action.

Shift <Btn2Down>

Event

XRT_ACTION_

Action

Ctrl <Btn2Down>

<Btn2Down>

Ctrl <Btn1Down>

Proceed to
Update
Stage

No YesIs
doit = True?

Pass message
XRTN_MODIFY_START

to message handler
MODIFY_START

72 Part I ■ Using the Chart

5.4.1 Scaling, Translation, and Zooming

The XRT_ACTION_SCALE action updates interactive scaling of the chart. The
XRT_ACTION_TRANSLATE action updates interactive translation of the chart. The
XRT_ACTION_ZOOM_END action zooms into the chart at the area defined by the
“zoom rubberband” (defined by the XRT_ACTION_ZOOM_UPDATE action).
These routines all alter the Margin properties1. Figure 56 illustrates these action
routines .

Figure 56 Scale, Translate and Zoom Actions

Controlling Interaction
You can use the XRTN_TRANSFORM message to control scaling, translation, or
zooming. The following message is passed to the window’s message handler:

XRTN_TRANSFORM:
hWnd = (HWND) wParam;
tcb = (XrtTransformCallbackStruct *) lParam;

typedef struct {
BOOL reset;/* Read-only */
int left_margin;
int right_margin;
int top_margin;
int bottom_margin;
BOOL doit;

} XrtTransformCallbackStruct;

A Transform action can change the left_margin, right_margin, top_margin,
bottom_margin, and doit parameters, which are then applied to the chart. For
example, to constrain scaling, examine and change the margin parameters.

Resetting Interactions
The XRT_ACTION_RESET action restores all Margin properties to their default
values, setting their corresponding USE_DEFAULT properties to TRUE.

The XRTN_TRANSFORM message is sent to the window’s message handler. An
application can deny a reset by setting doit to FALSE.

1. The Margin properties are specified by XRT_GRAPH_MARGIN_BOTTOM, XRT_GRAPH_MARGIN_TOP,
XRT_GRAPH_MARGIN_LEFT, and XRT_GRAPH_MARGIN_RIGHT.

XRT_ACTION_TRANSLATE

Ctrl <Btn2Motion>

Event Action

Shift <Btn2Motion>

Ctrl <Btn1Up>

Apply new values
(from callback

struct) to graph

YesIs
doit = True?

XRT_ACTION_SCALE

XRT_ACTION_ZOOM_END

Pass message
to message

handler

Pass message
XRTN_TRANSFORM
to message handler

Chapter 5 ■ Programming User Interaction 73

5.4.2 Rotation

The XRT_ACTION_ROTATE action updates interactive rotation of the chart. Only
3-D bar, stacking bar and pie charts with XRT_GRAPH_DEPTH greater than zero
can be interactively rotated. This routine alters the XRT_GRAPH_ROTATION and
XRT_GRAPH_INCLINATION properties. Figure 57 illustrates this action routine.

Figure 57 XRT_ACTION_ROTATE Action

Controlling Rotation
You can use the XRT_ACTION_ROTATE action to control rotation. The following
message is sent to the window’s message handler:

XRTN_ROTATE:
hWnd = (HWND) wParam;
tcb = (XrtRotateCallbackStruct *) lParam;

typedef struct {
int rotation;
int inclination;
BOOL doit;

} XrtRotateCallbackStruct;

A Rotate action can change the rotation, inclination, and doit parameters.

5.5 Ending User Interaction

The XRT_ACTION_MODIFY_END action notifies the application that a user
interaction has finished. The message XRTN_MODIFY_END is sent:

XRTN_MODIFY_END:
hWnd = (HWND) wParam;

Note that no structure is passed.

5.6 Programming Actions

All Olectra Chart actions are customizable: you can determine which Microsoft
Windows message should call a particular action, and decide on the appropriate
steps to perform in each case.

Only mouse messages and the WM_KEYDOWN and WM_KEYUP messages are
recognized.

Pass message
XRTN_ROTATE

to message handler

Event Action

Apply new values
(from callback

struct) to graph

YesIs
doit = True?<Btn2Motion>

XRT_ACTION_
ROTATE

74 Part I ■ Using the Chart

5.6.1 Changing the Action Maps

An action map is a mapping of a particular Windows message to a predefined action.
Each action map consists of three parts: the Windows message, any modifier flags,
and the keycode (only if WM_KEYDOWN or WM_KEYUP).

The following messages are recognized:

WM_LBUTTONDBLCLK double-click left mouse button

WM_MBUTTONDBLCLK double-click both mouse buttons

WM_RBUTTONDBLCLK double-click right mouse button

WM_LBUTTONDOWN press left mouse button

WM_MBUTTONDOWN press both mouse buttons

WM_RBUTTONDOWN press right mouse button

WM_LBUTTONUP release left mouse button

WM_MBUTTONUP release both mouse buttons

WM_RBUTTONUP release right mouse button

WM_MOUSEMOVE move mouse

WM_KEYDOWN press key

WM_KEYUP release key

Note that if you have a three-button mouse, holding down the middle mouse button
is equivalent to simultaneously holding down the left and right mouse buttons.

Modifier Flags
The following modifier flags are recognized:

MK_LBUTTON left mouse button

MK_MBUTTON both mouse buttons

MK_RBUTTON right mouse button

MK_ALT Alt key

MK_SHIFT Shift key

MK_CONTROL Ctrl key

All actions are normalized to match the event sent by Microsoft Windows. For
example, MK_LBUTTON is added to the modifier flags if a WM_LBUTTONDOWN
message is sent.

Recognized Keycodes
Any valid VK_ value is treated as a recognized keycode. Note the following,
however:

■ All alphabetic characters are forced to upper case.

■ MK_SHIFT must appear in the modifier if capitals are desired.

Chapter 5 ■ Programming User Interaction 75

■ The CapsLock key toggles the meaning of the MK_SHIFT modifier.

Determining Action Mappings
To determine which action is mapped to a particular Microsoft Windows message,
use the XrtGetAction() function. For example, the following code determines which
action is mapped to the left mouse button down message:

XrtAction action;

action = XrtGetAction(hXrt2D, WM_LBUTTONDOWN, 0, 0);

Any unmapped action returns XRT_ACTION_NONE.

To return the entire list of action maps, call XrtGetActionList(). The pointer returned
points to read-only memory.

Programming Action Mappings
To program an action mapping, call XrtSetAction(). For example, the following code
removes all previously defined actions:

XrtActionItem *item, *next;

item = XrtGetActionList(hChart);
for (; item; item = next) {

next = item->next;
XrtSetAction(hChart, item->msg, item->modifier,

item->keycode, XRT_ACTION_NONE);
}

Setting an action mapping to XRT_ACTION_NONE removes the action.

The following example uses the left mouse button plus the Alt key for rotation
instead of both mouse buttons:

/* remove all use of both mouse buttons */
XrtSetAction(hChart, WM_MBUTTONDOWN, 0, 0, XRT_ACTION_NONE);
XrtSetAction(hChart, WM_MOUSEMOVE, MK_MBUTTON, 0,

XRT_ACTION_NONE);
XrtSetAction(hChart, WM_MBUTTONUP, 0, 0, XRT_ACTION_NONE);

/* reprogram for Alt+Left */
XrtSetAction(hChart, WM_LBUTTONDOWN, MK_ALT, 0,

XRT_ACTION_MODIFY_START);
XrtSetAction(hChart, WM_MOUSEMOVE, MK_LBUTTON|MK_ALT, 0,

XRT_ACTION_ROTATE);
XrtSetAction(hChart, WM_LBUTTONUP, MK_ALT, 0,

XRT_ACTION_MODIFY_END);

5.6.2 Disabling and Disallowing Interactions

The easiest way to disallow interactions with charts is to catch the
XRTN_MODIFY_START message, and set the doit element in the passed structure to
FALSE. Another approach is to remove all action mappings, as shown in the
previous section.

To remove individual interactions, use XrtSetAction() to set the desired interaction
to XRT_ACTION_NONE.

76 Part I ■ Using the Chart

5.6.3 Calling Actions Directly

To call a chart action directly, use XrtCallAction(). This function expects four
arguments:

■ The chart handle

■ The action to be called

■ The X- and Y-coordinates of the window location at which the action is to be
called

When an action is invoked, the window coordinates specified by XrtCallAction()
must be contained within the graph area.

5.7 Interacting with Chart Data

Microsoft Windows notifies applications about user interaction with controls by
passing messages to the application in its message loop. An application built using
Olectra Chart can add a message handling procedure to react to events that happen
over a chart control. (For details on message handling, consult your Microsoft
Windows programming documentation.)

Some messages include the pixel coordinates of the event within the MSG structure.
Olectra Chart provides procedures for mapping the pixel coordinates of a message
to:

■ set and point indices of the data displayed closest to the event coordinates.

■ chart coordinates.

XrtPick()
XrtPick() provides an easy mechanism for the programmer to discover “what the
user is pointing at” when he or she clicks the mouse on a chart.

The XrtPick() procedure takes a chart handle, dataset specification, (x,y) pixel
coordinates, a pointer to an XrtPickResult structure and a focus hint as arguments. It
fills in the XrtPickResult structure with information about the data values closest to
the specified pixel coordinates on the specified chart.

XrtRegion
XrtPick(

HXRT2D graph,
XrtDsGroup ds_group,
int pix_x,
int pix_y,
XrtPickResult *pick,
XrtFocus focus
)

ds_group indicates which dataset the pick results will apply to. In combination charts
it can be set to XRT_DATASET1 or XRT_DATASET2 to restrict the pick results to
one of the datasets. If set to XRT_DATASET1 | XRT_DATASET2, the closest point

Chapter 5 ■ Programming User Interaction 77

from either of the datasets will be returned. When the chart is not a combination
chart, set this to XRT_DATASET1.

focus can be XRT_XFOCUS or XRT_YFOCUS to constrain the search for the closest
point in the direction of the X- or Y-axis. To search for the closest point in cartesian
space, set focus to XRT_XFOCUS | XRT_YFOCUS.

XrtPick() returns one of the values described below:

The XrtPickResult structure is defined as:

typedef struct {
 int pix_x, pix_y;

int dataset;
 int set, point;
 int distance;

} XrtPickResult;

The fields are broken down as follows:

XRT_RGN_NOWHERE The given pixel coordinates are not close enough to
anything to be picked. In this case the XrtPickResult
structure is not filled in.

XRT_RGN_IN_GRAPH The given pixel coordinates are close to one of the
displayed data values in the chart. In this case, the set
and point values in the XrtPickResult structure
identify the closest data. distance indicates how close
the picked data is to the pixel coordinates.

XRT_RGN_IN_LEGEND The given pixel coordinates are close to one of the
elements in the legend area. In this case, if sets are
displayed in the legend, set will indicate which set is
closest (point will be XRT_RGN_IN_LEGEND).
Otherwise, points are displayed in the legend, so
point is the closest point and set is
XRT_RGN_IN_LEGEND. distance indicates how
close the picked data is to the pixel coordinates.

XRT_RGN_IN_HEADER The given pixel coordinates are not in the chart, but
are in the header area. The XrtPickResult structure is
not filled in.

XRT_RGN_IN_FOOTER The given pixel coordinates are not in the chart, but
are in the footer area. The XrtPickResult structure is
not filled in.

pix_x The x pixel coordinate passed to XrtPick().

pix_y The y pixel coordinate passed to XrtPick().

78 Part I ■ Using the Chart

Things are slightly more complex when the picked element corresponds to the other
slice of a pie. If the pie’s data is transposed, then set indicates the selected set, and
point is XRT_OTHER_SLICE. Otherwise set is XRT_OTHER_SLICE and point
indicates the selected point.

The code in Figure 58 determines the chart data closest to the point clicked and puts
information about it in the chart’s header.

XrtUnpick()
The XrtUnpick() procedure is the opposite of XrtPick(). It determines the pixel
coordinate of a data point and set. It is provided for advanced applications that want
to draw on top of a chart. See Appendix B on page 117 for more details.

Figure 58 Using XrtPick() when user clicks on graph area

dataset Either XRT_DATASET1 or XRT_DATASET2 to indicate which
dataset the results apply to.

set The set index of the data element displayed closest to the pixel
coordinates. This can be XRT_RGN_NOWHERE if no data is
displayed

point The point index of the data element is displayed closest to the
pixel coordinates. This can be XRT_RGN_NOWHERE if no
data is displayed.

distance The screen distance (in pixels) between the given pixel
coordinates and the on-screen display of the data indexed by
set and point, as determined by focus.

case WM_LBUTTONDOWN:
POINT pnt;
XrtPickResult p;
int rc;
char *nhs[2], buffer[100];

pnt = MAKEPOINT(lParam);
rc = XrtPick(hChart, XRT_DATASET1, pnt.x, pnt.y, &p,

XRT_XFOCUS | XRT_YFOCUS);
if (rc == XRT_RGN_IN_GRAPH) {

XrtGetValues(hChart, XRT_DATA, &tmp_data, NULL);
sprintf(buffer, "Set %d, Point %d -- Y-value: %.2f",

p.set, p.point,
tmp_data->arr_yel(p.set, p.point));

nhs[0] = buffer;
nhs[1] = NULL;
XrtSetValues(hChart, XRT_HEADER_STRINGS, nhs, NULL);

}
break;

Chapter 5 ■ Programming User Interaction 79

XrtMap()
The XrtMap() procedure maps from pixel coordinates to chart coordinates (i.e. it
maps from pixel space to chart space). It takes a chart handle, an axis specification,
(x,y) pixel coordinates and a pointer to a map structure and writes the pixel
coordinates, axis specification and the floating-point chart coordinates into the map
structure.

Calling XrtMap() with yaxis set to 1 maps to the chart coordinates defined by the first
Y-axis. Setting yaxis to 2 maps to the chart coordinates defined by the second Y-axis.

XrtRegion
XrtMap(

HXRT2D graph,
int yaxis,
int pix_x,
int pix_y,
XrtMapResult *map
)

XrtMap() returns XRT_RGN_NOWHERE, XRT_RGN_IN_FOOTER,
XRT_RGN_IN_HEADER or XRT_RGN_IN_GRAPH.

The XrtMapResult structure is defined as follows:

typedef struct {
 int pix_x, pix_y;

int yaxis;
 double x, y;

} XrtMapResult;

The fields are broken down as follows:

The code in Figure 59 determines the chart coordinates of a left mouse down and a
left mouse up event. It then zooms the plot in on the rectangular area specified. It
assumes the existence of fmin() and fmax(), which return the floating-point minimum
or maximum of their arguments.

pix_x The x coordinate passed into XrtMap().

pix_y The y coordinate passed into XrtMap().

yaxis The axis specification passed into XrtMap().

x The mapped chart coordinate X-value. A mapped X-value is
not defined for discrete X-axis charts. In this case, x is
XRT_HUGE_VAL.

y The mapped chart coordinate Y-value. If the chart is a pie
chart, y is XRT_HUGE_VAL.

80 Part I ■ Using the Chart

Figure 59 Using XrtMap() to zoom in on a chart

XrtUnmap()
The XrtUnmap() procedure is the opposite of XrtMap(). It maps from chart
coordinates to pixel coordinates. It is provided for advanced applications that want
to draw on top of a chart. See Appendix B on page 117 for more details.

5.8 Window Resizing

Most applications should allow the user to resize a window containing a chart
control, and have the chart adjust to the new window size.

static BOOL bButtonDown = FALSE;
POINT pnt;
XrtMapResult m;
static double x1, y1;
int rc;
...
case WM_LBUTTONDOWN:

pnt = MAKEPOINT(lParam);
rc = XrtMap(hChart, XRT_DATASET1, pnt.x, pnt.y, &m);
if (rc == XRT_RGN_IN_GRAPH) {

x1 = m.x;
y1 = m.y;
SetCapture(hWnd);
bButtonDown = TRUE;

}
break;

case WM_LBUTTONUP:
if (!bButtonDown) break;
ReleaseCapture();
bButtonDown = FALSE;
pnt = MAKEPOINT(lParam);
rc = XrtMap(hChart, 1, pnt.x, pnt.y, &m);
if (rc == XRT_RGN_IN_GRAPH) {

XrtSetValues(hChart,
XRT_XAXIS_MIN, fmin(x1, m.x),
XRT_XAXIS_MAX, fmax(x1, m.x),
XRT_YAXIS_MIN, fmin(y1, m.y),
XRT_YAXIS_MAX, fmax(y1, m.y),
NULL);

}
break;

Chapter 5 ■ Programming User Interaction 81

To resize the chart when the user resizes the window containing it, change the chart
control’s size in a WM_SIZE message handler, for example:

case WM_SIZE:
{

int width = LOWORD(lParam);
int height = HIWORD(lParam);

SetWindowPos(hwndXrt2D, NULL, 0, 0, width, height,
SWP_NOMOVE | SWP_NOZORDER);

break;
}

Repaint & Resize Messages
An application can find out when the chart control is repainted or resized by
checking for the XRTN_REPAINTED or XRTN_RESIZED notification messages.
These messages contain information in the lParam parameter. See Appendix D on
page 145 for complete details. The resize message is sent after the chart is resized.
The repaint message is sent after the chart is redrawn.

An application can use these messages to draw onto the chart image using Windows
API functions. Another use is to adjust the control properties, depending on the size
of the chart control.

The following message handler uses XRTN_RESIZED to remove the legend from the
chart when it gets too small:

case XRTN_RESIZED:
cb = (XrtCallbackStruct *) lParam;
if (cb->width <= 300) {

XrtSetValues(hChart,
XRT_LEGEND_SHOW, FALSE,

 NULL);
} else {

XrtSetValues(hChart,
XRT_LEGEND_SHOW, TRUE,

 NULL);
}
break;

82 Part I ■ Using the Chart

83

6
Advanced Programming Topics

Adding a Second Y-axis ■ Combination Charts
Adding Text Areas ■ Batching Property Updates

Fast Update Procedures

6.1 Adding a Second Y-axis

The left-most Y-axis is called the first Y-axis or primary Y-axis in Olectra Chart. It is
possible to add a second Y-axis (Y2) to the right-hand side of the chart. If the chart is
inverted, the first Y-axis is at the bottom, and the second Y-axis is at the top. If the X-
axis is reversed the position of the Y-axes is switched.

There are two ways to create a second Y-axis on a chart. The simplest way is to
specify a relationship between the first and second Y-axis. A second way is to create
a combination chart by attaching a second dataset. Combination charts are discussed
in section 6.2 on page 84.

Specifying a Relationship
A relationship between the Y-axes is specified using the XRT_YAXIS_MULT and
XRT_YAXIS_CONST properties. Olectra Chart will create the second Y-axis from
the first Y-axis using the equation:

Y2 = (Y1 * XRT_YAXIS_MULT) + XRT_YAXIS_CONST

For example, if a chart is plotting temperatures that have been measured in degrees
Celsius, the following code would create a second Y-axis for Fahrenheit:

XrtSetValues(hChart,
XRT_YAXIS_CONST, 32.0,
XRT_YAXIS_MULT, 9.0/5.0,
XRT_Y2PRECISION,0,
XRT_Y2TITLE, “Fahrenheit",
NULL);

To eliminate the second Y-axis, disable the relationship by setting
XRT_YAXIS_MULT to 0.0.

84 Part I ■ Using the Chart

XRT_Y2AXIS_LOGARITHMIC is ignored if a relationship is specified between the
Y-axes.

Precision Issues
When XRT_Y2PRECISION_USE_DEFAULT is TRUE, Olectra Chart handles all Y2-
axis precision issues. However, if you are explicitly setting Y2-axis precision, it is
important to allow enough digits. Setting the precision too small may cause
unexpected behavior, such as the disappearance of Y2 annotation. In general, the Y2
precision should be at least as many digits as the maximum of:

■ the number of digits of Y1 precision plus the implied precision of
XRT_YAXIS_MULT.

■ the implied precision of XRT_YAXIS_CONST.

Figure 60 Second Y-axis Showing a Linear Relationship

6.2 Combination Charts

Combination charts have two datasets displayed in the same graph area. Plot, area,
bar and stacking bar charts can all be used in combination charts.

A combination chart has a second dataset attached to it using the XRT_DATA2
property. The second chart type is set using XRT_TYPE2 (defaults to
XRT_TYPE_BAR). By default, the first chart will display in front (i.e. closer to the
viewer). This can be switched by setting XRT_FRONT_DATASET to
XRT_DATASET2. Markers can also be used with combination charts. The
XRT_MARKER_DATASET property determines which dataset is used for marker
positioning.

Special Rules
There are several special rules that apply just to combination charts:

■ If either of the combined charts has a discrete X-axis, the combination chart is
also discrete. (See section 3.2 on page 26 for a definition of discrete X-axis.)

■ Since both charts share the same X-axis, discrete combination chart datasets
must have the same number of points. (If XRT_TRANSPOSE_DATA is TRUE
they must have the same number of sets.)

Chapter 6 ■ Advanced Programming Topics 85

■ When the combination chart is discrete, the first chart’s Point-labels are used to
annotate the X-axis. (If XRT_TRANSPOSE_DATA is TRUE the first chart’s Set-
labels are used.)

■ If either chart is a pie chart, the second chart will not be displayed.

Second Y-axis
The minimum, maximum, numbering increment, ticking increment and precision of
the second chart is programmable using the Y2 versions of the axis properties. The
second Y-axis can be logarithmic if no axis relationship has been specified.

Second Data Styles
Data styles for the second chart are programmed using the XRT_DATA_STYLES2
and XRT_DATA_STYLES2_USE_DEFAULT properties.

Legend
The legend in a combination chart with XRT_TRANSPOSE_DATA set to FALSE is a
concatenation of each chart’s Set-labels. If the data is transposed, then each chart’s
Point-labels are concatenated for the legend. Point-labels and Set-labels for the
second chart are programmed using XRT_POINT_LABELS2 and
XRT_SET_LABELS2. NULL labels or zero-length strings are not included in the
legend.

Figure 61 Combination Plot and Bar Chart

6.3 Adding Text Areas

A text area is an independent rectangular region which can be attached to the chart
in one of four ways:

86 Part I ■ Using the Chart

■ at a particular pixel.

■ at a data (x, y) value in the graph area (either dataset).

■ to a (set, point) in the graph area (either dataset).

■ to a (set, point, Y-value) in the graph area (either dataset).

Text areas support the following elements:

■ any valid Windows font.

■ background and foreground colors.

■ strings (the content).

■ text adjustment (Left, Center, Right).

■ border type and border width.

■ anchor position (relative to the attach position).

■ offset along anchor direction from attachment position.

■ option of drawing a connecting line to attachment position.

Any number of text areas may be attached to the chart. These areas can be
dynamically created and destroyed, attached and detached, queried and updated.
Text areas are drawn on top of other chart elements; Olectra Chart does not
rearrange other chart elements to make room for the text areas.

XrtTextDesc
This structure is the basis of all attached text, and completely describes a text area’s
state:

typedef struct { /* Attached text structure */
 XrtTextPosition position;
 char ** strings;
 XrtAnchor anchor;
 int offset;
 int connected;
 XrtAdjust adjust;
 COLORREF fore_color;
 COLORREF back_color;
 XrtBorder border;
 int border_width;
 HFONT font;

XrtRectangle coords; /* Read-only */
} XrtTextDesc;

The fields are broken down as follows:

position Specifies the position of attachment. This is described later in
this section.

strings A pointer to a NULL-terminated list of strings displayed in the
text area.

Chapter 6 ■ Advanced Programming Topics 87

Text Area Performance
It is highly recommended that you batch around the creation or manipulation of
multiple text-areas. See section 6.4 on page 90 for information on batching.

Managing Text Areas
To create and attach a text area, fill in an XrtTextDesc structure and pass it to
XrtTextCreate():

XrtTextHandle
XrtTextCreate(

HXRT2D hChart,
XrtTextDesc *textd
)

anchor Indicates how to position the text area relative to the text
attachment position. In addition to compass positions
(XRT_ANCHOR_NORTH, XRT_ANCHOR_SOUTHEAST,
etc.), two additional anchors are allowed. If
XRT_ANCHOR_HOME, the text area will be centered over
the attachment position. If XRT_ANCHOR_BEST, Olectra
Chart will determine the best location to attach the text.

offset Specifies a distance in the anchor direction to offset the final
text area position.

connected If TRUE, a line is drawn from the text area to the attachment
position.

adjust Specifies how to adjust the strings within the text area. Must be
XRT_ADJUST_LEFT, XRT_ADJUST_RIGHT or
XRT_ADJUST_CENTER.

fore_color Specifies the name of the color to use for the foreground of the
text area. If XRT_DEFAULT_COLOR, it uses the control
foreground color.

back_color Specifies the name of the color to use for the background of the
text area. If XRT_DEFAULT_COLOR, the text area is
transparent.

border Specifies the type of border to use around the text area.

border_width Specifies the thickness of the border, in pixels. Must be
between 0 and 20.

font Specifies the font to use in this text area. If NULL, the axes font
is used.

coords Specifies the pixel coordinates of the text area’s bounding box,
filled in by the XrtTextDetail() procedure. This is a read-only
member—you cannot use it to change the size of the text area.

88 Part I ■ Using the Chart

XrtTextCreate() returns a handle to the text area. This can be used in subsequent
calls to text area management procedures. To detach or reattach the text area using
XrtTextDetach() and XrtTextAttach():

void
XrtTextDetach(

HXRT2D hChart,
XrtTextHandle handle
)

void
XrtTextAttach(

HXRT2D hChart,
XrtTextHandle handle
)

You can avoid managing the text handles currently attached to the chart with
XrtGetTextHandles(). This procedure returns the number of text areas defined, and
allocates and fills in a NULL-terminated list of text handles (free this list after use by
calling XrtFreeTextHandles()). To get all current text area handles, call
XrtGetTextHandles():

int
XrtGetTextHandles(

HXRT2D hChart,
XrtTextHandle **list /* Returned */
)

To modify the text area in any way, including moving it, modify the fields in the
structure and call XrtTextUpdate():

void
XrtTextUpdate(

HXRT2D hChart,
XrtTextHandle handle,
XrtTextDesc *textd
)

The XrtTextDetail() procedure is used to get back a filled-in XrtTextDesc given its
handle. It returns 1 if handle is a valid text area and 0 otherwise. In addition to all of
the programmer-specified fields, XrtTextDetail() also fills in the coords section of the
XrtTextDesc structure. The XrtRectangle structure contains x, y, width and height
fields.

int
XrtTextDetail(

HXRT2D hChart,
XrtTextHandle handle,
XrtTextDesc *textd
)

Finally, to permanently remove a text area, use XrtTextDestroy():

void
XrtTextDestroy(

HXRT2D hChart,
XrtTextHandle handle
)

Chapter 6 ■ Advanced Programming Topics 89

Positioning Text Areas
The XrtTextPosition field in the XrtTextDesc structure specifies the manner and
location used to attach the text area. It is a C union of four structures, each of which
contains the fields necessary to describe the attachment. Note how the first field of
each structure specifies the type of attachment:

typedef union {
struct {

XrtAttachType type;
int x, y;

} pixel;
struct {

XrtAttachType type;
int dataset;
double x, y;

} value;
struct {

XrtAttachType type;
int dataset;
int set, point;

} data;
struct {

XrtAttachType type;
int dataset;
int set, point;
double y;

} data_value;
} XrtTextPosition;

The attachment type is one of the following:

typedef enum {
XRT_TEXT_ATTACH_PIXEL,
XRT_TEXT_ATTACH_VALUE,
XRT_TEXT_ATTACH_DATA,
XRT_TEXT_ATTACH_DATA_VALUE,

} XrtAttachType;

Positioning using Pixel
XRT_TEXT_ATTACH_PIXEL is supported on all chart types at all times. In this case,
the text area will be attached at the specified pixel location. The origin is at the top
left corner of the chart window for the purposes of specifying pixel coordinates.

Positioning using Value
XRT_TEXT_ATTACH_VALUE is only supported when the X-axis is continuous.
Any part of the text area that falls outside of the graph area is clipped.

Positioning using Data
XRT_TEXT_ATTACH_DATA is supported on all chart types. dataset should always
be set to 1, unless text is being positioned on the second dataset in a combination
chart. set and point are indices into the data set. The exact location of the text
depends on the chart type:

Plot, Area Position is the pixel at which the specified data is plotted.

90 Part I ■ Using the Chart

Any part of the text area that falls outside of the graph area is clipped.

Positioning using Data-Value
XRT_TEXT_ATTACH_DATA_VALUE is supported on all chart types except pies.
In this case, the set and point indices are used to determine the x component of the
positioning, and value is used for the Y component. This is most useful for discrete
X-axis charts. Any part of the text area that falls outside of the graph area is clipped.

6.4 Batching Property Updates

Normally, property changes take effect immediately after the property is set. If you
prefer to make several changes to the control’s properties before causing a repaint,
set XRT_REPAINT to FALSE. All property changes will be batched until
XRT_REPAINT is set to TRUE.

It is recommended that you batch around the creation or updating of multiple text
areas.

6.5 Fast Update Procedures

Normally, when adding new data to a chart, you simply update the chart’s XrtData
structure(s) and reset the XRT_DATA and/or XRT_DATA2 properties. Whenever
this happens, Olectra Chart examines the entire data and repaints the entire graph
area.

The Fast Update procedures provide an alternative and potentially much faster way
to add new data to existing charts. The fast update procedures will only be faster if
the new data falls within the chart’s current axes bounds. If any of the new data falls
outside these bounds, the entire chart will be repainted.1

1. Fast Update procedures trigger XRTN_REPAINTED events only when new data falls outside the axes bounds.

Bar If the bar’s value is above the origin, the position is at the
middle top of the front face of the bar. If the value is below the
origin, the position will be at the middle bottom of the front
face.

Stacking Bar Position is in the center of the front face of the specified portion
of the stacking bar.

Pie Position is at the center of the arc of the specified slice. Use
XRT_OTHER_SLICE to index the pie’s other slice.

Chapter 6 ■ Advanced Programming Topics 91

The Fast Update procedures are fully documented in Appendix B on page 117. The
following is a brief description of the procedures:

To use the Fast Update procedures you should:

■ Add the new points to the chart’s existing XrtData structure referenced by the
XRT_DATA or XRT_DATA2 property.

■ Optionally call the appropriate CheckAxisBounds procedure if you want to
know in advance if the update will be fast or regular speed.

■ Call the appropriate Fast Update procedure to perform the update.

Any non-solid line patterns (like dashed or dotted) are not guaranteed to be
continued correctly using Fast Update. You should use solid lines if this is important
to your application.

The following code sample shows how a scrolling strip chart is implemented using
the Fast Update procedures:

XrtArrDataFastUpdate() This procedure charts new points that have been added
to each set in an array dataset.

XrtGenDataFastUpdate() This procedure charts new points that have been added
to one set in a general dataset.

XrtArrCheckAxisBounds() This procedure examines new points that have been
added to each set in an array dataset, and determines
which (if any) axes bounds would be exceeded if these
new points were displayed.

XrtGenCheckAxisBounds() This procedure examines new points that have been
added to one set in a general dataset, and determines
which (if any) axes bounds would be exceeded if these
new points were displayed.

XrtArrDataShiftPts() This procedure copies existing points (in all sets) to the
left. Use when axis bounds have been exceeded.
Shifted-out points are set to the hole value.

XrtGenDataShiftPts() This procedure copies existing points (in one set) to the
left. Use when axis bounds have been exceeded.
Shifted-out points are set to the hole value.

92 Part I ■ Using the Chart

Figure 62 Scrolling Strip Chart Code

On line 1, new data points are added to the chart’s XrtData structure (which must be
the current value of the chart’s XRT_DATA property).

Line 2 checks to see if the new points fit within the current axes bounds. If they do,
the Fast update procedure is called (line 4). Otherwise, the entire dataset is shifted
downward (lines 6-11), and then graphed (line 12-16).

01 if (XrtArrDataAppendPts(data, new_xvalue, new_yvector)) {
02 bound = XrtArrCheckAxisBounds(hChart, 1, 1); /* new points fit in axes? */
03 if ((bound & XRT_GTX) == 0) { /* less than xmax? */
04 XrtArrDataFastUpdate(hChart, 1, 1); /* Fast Update */
05 } else {
06 new_numpoints = data->arr_npoints - increment;
07 /* shift x values */
08 XrtArrDataShiftPts(data, 0, increment, new_numpoints);
09 data->npoints = new_numpoints;
10 xmin = data->arr_xel(0);
11 xmax = data->arr_xel(new_numpoints) + increment * x_increment;
12 XrtSetValues(hChart, /* repaint with new axis */
13 XRT_DATA, data,
14 XRT_XMIN, xmin,
15 XRT_XMAX, xmax,
16 NULL);
17 }
18 }

Part
II

Reference
Appendices

95

A
Property Reference

Control Synopsis
Properties

This appendix lists all of the Olectra Chart properties in alphabetical order. Listed
after the property name are its data type and default value.

A.1 Control Synopsis
Include File: \INCLUDE\OLCH2D.H

Class Name: “OlectraChart2D”

A.2 Properties

XRT_AXIS_BOUNDING_BOX BOOL FALSE
When TRUE, Olectra Chart will draw a box inside the graph area bounding the chart’s data
area, that is, the axes, all displayed data, and the grid-lines.

XRT_AXIS_FONT HFONT Arial, 12 pt
Specifies the font to be used for the axes numbering, annotation and titles. If the Arial
TrueType font is not available on the system, the System font is used. If you are using
Microsoft Windows 3.1, cast the value to an int when setting this property.

XRT_BACKGROUND_COLOR COLORREF RGB(255,255,255)
Specifies the window background color. The value is a Windows color reference. See section
3.10 on page 55 for details of color specification. This color will be inherited as the default
background color for the chart, data area, header, footer and legend.

96 Part II ■ Reference Appendices

XRT_BAR_CLUSTER_OVERLAP int 100
Specifies the overlap between bars in a cluster, as a percentage of the bar width. A setting of 0
will cause the bars in the cluster to completely overlap each other. A setting of 100 will cause
the bars to be fitted next to each other. The value must be between 0 and 200. The actual bar
width is determined at run-time by Olectra Chart and depends on a number of factors,
including the current window size. Since stacking bars have only one bar in each cluster, this
property is meaningless when XRT_TYPE is XRT_TYPE_STACKING_BAR.

XRT_BAR_CLUSTER_WIDTH int 50
Specifies the amount of space to be used for the bars in a cluster, as a percentage of the total
amount of space assigned to the cluster. The value must be between 0 and 100. Setting the
value to 100 will cause the bars to abut the bars in the next cluster.

XRT_BORDER XrtBorder (enum) XRT_BORDER_NONE
Specifies the style of border used to enclose the chart. Valid styles are XRT_BORDER_NONE,
XRT_BORDER_3D_IN, XRT_BORDER_3D_OUT, XRT_BORDER_ETCHED_IN,
XRT_BORDER_ETCHED_OUT, XRT_BORDER_SHADOW, and XRT_BORDER_PLAIN.

XRT_BORDER_WIDTH int 0
Specifies the width of the 3D border around the chart control, in pixels. Must be between 0
and 20. When set to 0 (the default), this border is not visible.

XRT_DATA XrtData * none
XRT_DATA2 XrtData * none

Specifies the data to be displayed. The XrtData structure should be allocated using the
procedure XrtMakeData() or XrtMakeDataFromFile(). XRT_DATA2 is used to specify the
data for the second chart in a combination chart. The Data properties, unlike all other Olectra
Chart properties, are not copied by the control. It is the application’s responsibility to allocate
and deallocate these data structures.

XRT_DATA_AREA_BACKGROUND_COLOR COLORREF XRT_DEFAULT_COLOR
Specifies the background color of the chart’s data area. When XRT_DEFAULT_COLOR, the
data area background is transparent. The value is a Windows color reference. See section 3.10
on page 55 for details of color specification. This property is ignored in pie charts.

XRT_DATA_STYLES XrtDataStyle ** dynamic
XRT_DATA_STYLES2 XrtDataStyle ** dynamic

The XrtDataStyle structure defines a line pattern, fill pattern, color, line width, point style,
point size and point color for each set of data. Olectra Chart will only create default XrtData
styles as required at drawing time throughout the life of the chart object.

Use XRT_DATA_STYLES to determine what data styles are currently being used, or to define
the data styles to be used. The list of styles is terminated with a NULL pointer.

When used with XrtGetValues(), a pointer to an array of XrtDataStyle structures is returned.
The length of the array is the larger of: the most sets of data graphed so far in the life of the
chart object, and the highest index of any data style specified so far by the program.

XRT_DATA_STYLES2 is used to access the second chart’s data styles in a combination chart.

Appendix A ■ Property Reference 97

XRT_DATA_STYLES_USE_DEFAULT BOOL TRUE
XRT_DATA_STYLES2_USE_DEFAULT BOOL TRUE

When TRUE, Olectra Chart’s default data styles values are used for the chart. When explicit
data styles are provided, Olectra Chart sets this property to FALSE.

XRT_DATA_STYLES2_USE_DEFAULT applies to the second chart’s data styles in a
combination chart.

XRT_DEBUG BOOL FALSE
Specifies whether to send warning messages to a debug window. When set to FALSE, only
property conversion errors are output.

XRT_DOUBLE_BUFFER BOOL TRUE
When TRUE, chart updates are first rendered into an off-screen bitmap, then copied to the
display area. This reduces flashing as similar charts are displayed on the screen. Setting to
FALSE will cause charts to be rendered directly to the display and will result in less memory
used.

XRT_FOOTER_ADJUST XrtAdjust (enum) XRT_ADJUST_CENTER
Specifies how multiple footer text lines should be adjusted within the footer area. Must be one
of XRT_ADJUST_CENTER, XRT_ADJUST_LEFT or XRT_ADJUST_RIGHT.

XRT_FOOTER_BACKGROUND_COLOR COLORREF XRT_DEFAULT_COLOR
Specifies the footer area background color. When XRT_DEFAULT_COLOR, the footer
background is transparent. The value is a Windows color reference. See section 3.10 on page
55 for details of color specification.

XRT_FOOTER_BORDER XrtBorder (enum) XRT_BORDER_NONE
Specifies the style of border used to identify the footer area. Valid styles are
XRT_BORDER_NONE, XRT_BORDER_3D_IN, XRT_BORDER_3D_OUT,
XRT_BORDER_ETCHED_IN, XRT_BORDER_ETCHED_OUT, XRT_BORDER_SHADOW,
and XRT_BORDER_PLAIN.

XRT_FOOTER_BORDER_WIDTH int 2
Specifies the width of the footer area border in pixels. Must be between 0 and 20.

XRT_FOOTER_FONT HFONT Arial, 12 pt
Specifies the font to use for the footer strings. If the Arial TrueType font is not available on the
system, the System font is used. If you are using Microsoft Windows 3.1, cast the value to an
int when setting this property.

XRT_FOOTER_FOREGROUND_COLOR COLORREF XRT_DEFAULT_COLOR
Specifies the footer area foreground color. When XRT_DEFAULT_COLOR, the window
foreground color is used. The value is a Windows color reference. See section 3.10 on page 55
for details of color specification.

98 Part II ■ Reference Appendices

XRT_FOOTER_STRINGS char ** none
Specifies the text to be displayed in the footer area.

XRT_FOOTER_HEIGHT int dynamic
XRT_FOOTER_WIDTH int dynamic

Contains the width and height of the footer area in pixels. NOTE: This property cannot be set.

XRT_FOOTER_X int centered under chart
XRT_FOOTER_Y int centered under chart

Specifies the (X,Y) coordinates of the top left corner of the footer area. A side-effect of setting
these properties is that the corresponding USE_DEFAULT property is set to FALSE.

XRT_FOOTER_X_USE_DEFAULT BOOL TRUE
XRT_FOOTER_Y_USE_DEFAULT BOOL TRUE

When TRUE, XRT_FOOTER_X and XRT_FOOTER_Y values are determined by Olectra
Chart at render-time. When explicit XRT_FOOTER_X and XRT_FOOTER_Y values are
provided, Olectra Chart sets these Booleans to FALSE. You cannot set these properties to
FALSE unless you have previously provided XRT_FOOTER_X or XRT_FOOTER_Y values.

XRT_FOREGROUND_COLOR COLORREF RGB(0,0,0)
Specifies the window foreground color. The value is a Windows color reference. See section
3.10 on page 55 for details of color specification. This color will be inherited as the default
foreground color for the header, footer, and legend text, as well as the chart axes.

XRT_FRONT_DATASET int XRT_DATASET1
Specifies which dataset is displayed in front (i.e. closer to the viewer) in a combination chart.
Valid values are XRT_DATASET1 and XRT_DATASET2.

XRT_GRAPH_BACKGROUND_COLOR COLORREF XRT_DEFAULT_COLOR
Specifies the graph area background color. When XRT_DEFAULT_COLOR, the chart is
transparent. The value is a Windows color reference. See section 3.10 on page 55 for details of
color specification.

XRT_GRAPH_BORDER XrtBorder (enum) XRT_BORDER_NONE
Specifies the style of border used to identify the graph area. Valid styles are
XRT_BORDER_NONE, XRT_BORDER_3D_IN, XRT_BORDER_3D_OUT,
XRT_BORDER_ETCHED_IN, XRT_BORDER_ETCHED_OUT, XRT_BORDER_SHADOW,
and XRT_BORDER_PLAIN.

XRT_GRAPH_BORDER_WIDTH int 2
Specifies the width of the graph area border in pixels. Must be between 0 and 20.

XRT_GRAPH_DEPTH int 0
Specifies the apparent chart depth as a percentage of chart width when a 3D effect is desired.
Chart depth, and either inclination or rotation must be non-zero for a 3D effect to appear.
Must be between 0 and 500. This has no effect on plots, area charts and combination charts.

Appendix A ■ Property Reference 99

XRT_GRAPH_FOREGROUND_COLOR COLORREF XRT_DEFAULT_COLOR
Specifies the graph area foreground color. When XRT_DEFAULT_COLOR, the window
foreground color is used. The value is a Windows color reference. See section 3.10 on page 55
for details of color specification.

XRT_GRAPH_INCLINATION int 0
Specifies the apparent degree of inclination of the eye-point above the X-axis when a 3D effect
is desired. Chart depth, and either inclination or rotation must be non-zero for a 3D effect to
appear. Must be between 0 and 45. This has no effect on plots, area charts and combination
charts.

XRT_GRAPH_MARGIN_BOTTOM int dynamic
Specifies the pixel offset (with respect to the bottom of the graph area) that the data area
should be drawn. If XRT_GRAPH_MARGIN_BOTTOM_USE_DEFAULT is TRUE, Olectra
Chart calculates the value of this property based on the space required for the annotation and
titles. A side-effect of setting this property is that the corresponding USE_DEFAULT property
is set to FALSE. This property must be between XRT_MIN_MARGIN and
XRT_MAX_MARGIN.

XRT_GRAPH_MARGIN_BOTTOM_USE_DEFAULT BOOL TRUE
When TRUE, XRT_GRAPH_MARGIN_BOTTOM is determined by Olectra Chart at render-
time. When you set XRT_GRAPH_MARGIN_BOTTOM, this property is set to FALSE. You
cannot set this property to FALSE unless a value for XRT_GRAPH_MARGIN_BOTTOM has
been provided or calculated.

XRT_GRAPH_MARGIN_LEFT int dynamic
Specifies the pixel offset (with respect to the left side of the graph area) that the data area
should be drawn. If XRT_GRAPH_MARGIN_LEFT_USE_DEFAULT is TRUE, Olectra Chart
calculates the value of this property based on the space required for the annotation and titles.
A side-effect of setting this property is that the corresponding USE_DEFAULT is set to FALSE.

XRT_GRAPH_MARGIN_LEFT_USE_DEFAULT BOOL TRUE
When TRUE, XRT_GRAPH_MARGIN_LEFT is determined by Olectra Chart at render-time.
When you set XRT_GRAPH_MARGIN_LEFT, this property is set to FALSE. You cannot set
this property to FALSE unless a value for XRT_GRAPH_MARGIN_LEFT has been provided
or calculated.

XRT_GRAPH_MARGIN_RIGHT int dynamic
Specifies the pixel offset (with respect to the right side of the graph area) that the data area
should be drawn. If XRT_GRAPH_MARGIN_RIGHT_USE_DEFAULT is TRUE, Olectra
Chart calculates the value of this property based on the space required for the annotation and
titles. A side-effect of setting this property is that the corresponding USE_DEFAULT is set to
FALSE.

XRT_GRAPH_MARGIN_RIGHT_USE_DEFAULT BOOL TRUE
When TRUE, XRT_GRAPH_MARGIN_RIGHT is determined by Olectra Chart at render-
time. When you set XRT_GRAPH_MARGIN_RIGHT, this property is set to FALSE. You

100 Part II ■ Reference Appendices

cannot set this property to FALSE unless a value for XRT_GRAPH_MARGIN_RIGHT has
been provided or calculated.

XRT_GRAPH_MARGIN_TOP int dynamic
Specifies the pixel offset (with respect to the top of the graph area) that the data area should be
drawn. If XRT_GRAPH_MARGIN_TOP_USE_DEFAULT is TRUE, Olectra Chart calculates
the value of this property based on the space required for the annotation and titles. A side-
effect of setting this property is that the corresponding USE_DEFAULT is set to FALSE.

XRT_GRAPH_MARGIN_TOP_USE_DEFAULT BOOL TRUE
When TRUE, XRT_GRAPH_MARGIN_TOP is determined by Olectra Chart at render-time.
When you set XRT_GRAPH_MARGIN_TOP, this property is set to FALSE. You cannot set
this property to FALSE unless a value for XRT_GRAPH_MARGIN_TOP has been provided or
calculated.

XRT_GRAPH_ROTATION int 0
Specifies the apparent degree of rotation of the eye-point to the right of the Y-axis when a 3D
effect is desired. Chart depth, and either inclination or rotation must be non-zero for a 3D
effect to appear. Must be between 0 and 45. Chart rotation has no effect on pie charts, plots,
area charts and combination charts.

XRT_GRAPH_HEIGHT int dynamic
XRT_GRAPH_WIDTH int dynamic

Specifies the width and height of the graph area in pixels. A side-effect of setting these
properties is that the corresponding USE_DEFAULT property is set to FALSE.

The graph area is the area surrounding the axis and annotation, but does not include the
header, footer and legend. To adjust the size of the whole chart control use a Windows API
function like SetWindowPos().

XRT_GRAPH_WIDTH_USE_DEFAULT BOOL TRUE
XRT_GRAPH_HEIGHT_USE_DEFAULT BOOL TRUE

When TRUE, XRT_GRAPH_WIDTH and XRT_GRAPH_HEIGHT values are determined by
Olectra Chart at render-time. When explicit XRT_GRAPH_WIDTH and
XRT_GRAPH_HEIGHT values are provided, Olectra Chart sets these Booleans to FALSE.
You cannot set these properties to FALSE unless you have previously provided
XRT_GRAPH_WIDTH or XRT_GRAPH_HEIGHT values.

XRT_GRAPH_X int dynamic
XRT_GRAPH_Y int dynamic

Specifies the (X,Y) coordinates of the top left corner of the graph area. A side-effect of setting
these properties is that the corresponding USE_DEFAULT property is set to FALSE.

XRT_GRAPH_X_USE_DEFAULT BOOL TRUE
XRT_GRAPH_Y_USE_DEFAULT BOOL TRUE

When TRUE, XRT_GRAPH_X and XRT_GRAPH_Y values are determined by Olectra Chart
at render-time. When explicit XRT_GRAPH_X and XRT_GRAPH_Y values are provided,

Appendix A ■ Property Reference 101

Olectra Chart sets these Booleans to FALSE. You cannot set these properties to FALSE unless
you have previously provided XRT_GRAPH_X or XRT_GRAPH_Y values.

XRT_HEADER_ADJUST XrtAdjust (enum) XRT_ADJUST_CENTER
Specifies how multiple header text lines should be adjusted within the header area. Must be
one of XRT_ADJUST_CENTER, XRT_ADJUST_LEFT or XRT_ADJUST_RIGHT.

XRT_HEADER_BACKGROUND_COLOR COLORREF XRT_DEFAULT_COLOR
Specifies the header area background color. When XRT_DEFAULT_COLOR, the header is
transparent. The value is a Windows color reference. See section 3.10 on page 55 for details of
color specification.

XRT_HEADER_BORDER XrtBorder (enum) XRT_BORDER_NONE
Specifies the style of border used to identify the header area. Valid styles are
XRT_BORDER_NONE, XRT_BORDER_3D_IN, XRT_BORDER_3D_OUT,
XRT_BORDER_ETCHED_IN, XRT_BORDER_ETCHED_OUT, XRT_BORDER_SHADOW,
and XRT_BORDER_PLAIN.

XRT_HEADER_BORDER_WIDTH int 2
Specifies the width of the header area border in pixels. Must be between 0 and 20.

XRT_HEADER_FONT HFONT Arial, 12 pt
Specifies the font to use for the header strings. If the Arial TrueType font is not available on
the system, the System font is used. If you are using Microsoft Windows 3.1, cast the value to
an int when setting this property.

XRT_HEADER_FOREGROUND_COLOR COLORREF XRT_DEFAULT_COLOR
Specifies the header area foreground color. When XRT_DEFAULT_COLOR, the window
foreground color is used. The value is a Windows color reference. See section 3.10 on page 55
for details of color specification.

XRT_HEADER_STRINGS char ** none
Specifies the text to be displayed in the header area.

XRT_HEADER_HEIGHT int dynamic
XRT_HEADER_WIDTH int dynamic

Contains the height and width of the header area in pixels. NOTE: This property cannot be
set.

XRT_HEADER_X int centered above chart
XRT_HEADER_Y int centered above chart

Specifies the (X,Y) coordinates of the top left corner of the header area. A side-effect of setting
these properties is that the corresponding USE_DEFAULT property is set to FALSE.

102 Part II ■ Reference Appendices

XRT_HEADER_X_USE_DEFAULT BOOL TRUE
XRT_HEADER_Y_USE_DEFAULT BOOL TRUE

When TRUE, XRT_HEADER_X and XRT_HEADER_Y values are determined by Olectra
Chart at render-time. When explicit XRT_HEADER_X and XRT_HEADER_Y values are
provided, Olectra Chart sets these Booleans to FALSE. You cannot set these properties to
FALSE unless you have previously provided XRT_HEADER_X or XRT_HEADER_Y values.

XRT_HEIGHT int size of created window
Specifies the height of the control window.

XRT_INVERT_ORIENTATION BOOL FALSE
Inverts the normal interpretation of X and Y. When TRUE, causes X-values to be graphed
against the vertical axis, and Y-values to be graphed against the horizontal axis. Bar and
stacking bar charts will render horizontally. This property has no effect on pie charts.

XRT_LEGEND_ANCHOR XrtAnchor (enum) XRT_ANCHOR_EAST
Specifies where to anchor the legend to the window. Valid values are:
XRT_ANCHOR_NORTH, XRT_ANCHOR_SOUTH, XRT_ANCHOR_EAST,
XRT_ANCHOR_WEST, XRT_ANCHOR_NORTHWEST, XRT_ANCHOR_NORTHEAST,
XRT_ANCHOR_SOUTHWEST, and XRT_ANCHOR_SOUTHEAST.

XRT_LEGEND_BACKGROUND_COLOR COLORREF XRT_DEFAULT_COLOR
Specifies the legend area background color. When XRT_DEFAULT_COLOR, the legend
background is transparent. The value is a Windows color reference. See section 3.10 on page
55 for details of color specification.

XRT_LEGEND_BORDER XrtBorder (enum) XRT_BORDER_NONE
Specifies the style of border used to identify the legend area. Valid styles are
XRT_BORDER_NONE, XRT_BORDER_3D_IN, XRT_BORDER_3D_OUT,
XRT_BORDER_ETCHED_IN, XRT_BORDER_ETCHED_OUT, XRT_BORDER_SHADOW,
and XRT_BORDER_PLAIN.

XRT_LEGEND_BORDER_WIDTH int 2
Specifies the width of the legend area border in pixels. Must be between 0 and 20.

XRT_LEGEND_FONT HFONT Arial, 12 pt
Specifies the font to be used in the legend. If the Arial TrueType font is not available on the
system, the System font is used. If you are using Microsoft Windows 3.1, cast the value to an
int when setting this property.

XRT_LEGEND_FOREGROUND_COLOR COLORREF XRT_DEFAULT_COLOR
Specifies the legend area foreground color. When XRT_DEFAULT_COLOR, the window
foreground color is used. The value is a Windows color reference. See section 3.10 on page 55
for details of color specification.

Appendix A ■ Property Reference 103

XRT_LEGEND_ORIENTATION XrtAlign (enum) XRT_ALIGN_VERTICAL
Specifies the orientation of the legend. Valid values are XRT_ALIGN_HORIZONTAL and
XRT_ALIGN_VERTICAL.

XRT_LEGEND_SHOW BOOL TRUE
Determines if the legend will be displayed.

XRT_LEGEND_HEIGHT int dynamic
XRT_LEGEND_WIDTH int dynamic

Contains the height and width of the legend area in pixels. NOTE: This property cannot be set.

XRT_LEGEND_X int depends on anchor
XRT_LEGEND_Y int depends on anchor

Specifies the (X,Y) coordinates of the top left corner of the legend area. A side-effect of setting
these properties is that the corresponding USE_DEFAULT property is set to FALSE.

XRT_LEGEND_X_USE_DEFAULT BOOL TRUE
XRT_LEGEND_Y_USE_DEFAULT BOOL TRUE

When TRUE, XRT_LEGEND_X and XRT_LEGEND_Y values are determined by Olectra
Chart at render-time. When explicit XRT_LEGEND_X and XRT_LEGEND_Y values are
provided, Olectra Chart sets these Booleans to FALSE. You cannot set these properties to
FALSE unless you have previously provided XRT_LEGEND_X or XRT_LEGEND_Y values.

XRT_MARKER_DATASET int XRT_DATASET1
Specifies which dataset the markers should be positioned through in combination charts.
Change XRT_MARKER_DATASET to XRT_DATASET2 to position through the second
dataset using XRT_XMARKER_POINT, XRT_XMARKER_SET and XRT_[XY]MARKER.

XRT_MARKER_DATA_STYLE XrtDataStyle * black, dashed
Specifies the XrtDataStyle to be used when rendering the X- and Y-markers. In particular, line
style, color and width elements of the XrtDataStyle structure are used. If never specified,
Olectra Chart will use a black, 1-pixel wide dashed line for the markers.

XRT_MARKER_DATA_STYLE_USE_DEFAULT BOOL TRUE
When TRUE, the default marker data style will be used. When explicit data styles values are
provided, Olectra Chart sets this property to FALSE.

XRT_NAME char * dynamic
Specifies the name of a particular chart instance. By default, Olectra Chart generates a unique
name for each chart created.

XRT_OTHER_DATA_STYLE XrtDataStyle * yellow, solid
Specifies the XrtDataStyle to be used when rendering the other slice on pie charts. In
particular, color and fill pattern elements of the XrtDataStyle structure are used.

104 Part II ■ Reference Appendices

XRT_OTHER_DATA_STYLE_USE_DEFAULT BOOL TRUE
When TRUE, the other data style is determined by Olectra Chart at run-time. It is guaranteed
to be unique if XRT_DATA_STYLES_USE_DEFAULT is TRUE. When an explicit other data
style is provided, Olectra Chart sets this Boolean to FALSE.

XRT_OTHER_LABEL char * “Other”
Specifies the label of the other slice in a pie chart. By default, the other slice is labelled “Other”.
Attempting to set this property to an invalid value (such as NULL, or a zero-length string)
results in Olectra Chart using the string “Other”.

XRT_PIE_MIN_SLICES int 1
Specifies the minimum number of slices (including the other slice) to attempt to display in pie
charts.

XRT_PIE_ORDER XrtPieOrder (enum) XRT_PIEORDER_DATA_ORDER
Specifies the order that pie slices should be displayed in. Must be one of
XRT_PIEORDER_DESCENDING, XRT_PIEORDER_ASCENDING or
XRT_PIEORDER_DATA_ORDER.

XRT_PIE_THRESHOLD_METHOD XrtPieThresholdMethod XRT_PIE_SLICE_CUTOFF
Specifies the threshold method used to determine which point values will be grouped into the
other slice in pie charts. Must be either XRT_PIE_SLICE_CUTOFF or XRT_PIE_PERCENTILE.

If XRT_PIE_SLICE_CUTOFF, all point values with a percentage less than the value of
XRT_PIE_THRESHOLD_VALUE will be grouped into the other slice.

If XRT_PIE_PERCENTILE, as many of the smallest points as necessary are grouped together
into the other slice, providing that the other slice is less than or equal to the
XRT_PIE_THRESHOLD_VALUE. For example, if you want the other slice to be no more than
5% of the total, set XRT_PIE_THRESHOLD_METHOD to XRT_PIE_PERCENTILE, and set
XRT_PIE_THRESHOLD_VALUE to 5.0.

Note that XRT_PIE_MIN_SLICES has precedence over XRT_PIE_THRESHOLD_METHOD.

XRT_PIE_THRESHOLD_VALUE double 0.0
Specifies the threshold value associated with XRT_PIE_THRESHOLD_METHOD. Must be
between 0.0 and 100.0. Set to 0.0 to disable other slice creation.

XRT_POINT_LABELS char ** NULL
XRT_POINT_LABELS2 char ** NULL

Specifies the string to render against the associated point value in discrete X-axis charts. When
Point-labels are being used, Olectra Chart will:

■ ignore the data X-values and X-axis Value-labels;
■ space the points evenly across the X-axis; and

Appendix A ■ Property Reference 105

■ ignore the XRT_XAXIS_MIN, XRT_XAXIS_MAX, XRT_XMIN, XRT_XMAX,
XRT_XNUM_METHOD, XRT_XNUM, XRT_XORIGIN, XRT_XPRECISION and
XRT_XTICK properties.

Setting this property will have no effect unless XRT_XANNOTATION_METHOD is set to
XRT_ANNO_POINT_LABELS. To clear all Point-labels, set this property to NULL.

XRT_POINT_LABELS2 is used to access the second chart’s Point-labels in a combination
chart. These Point-labels are used in the legend when the chart is transposed.

XRT_REPAINT BOOL TRUE
When this property is TRUE, any changes made to the control are rendered immediately. To
batch changes to the control, set this property to FALSE, make the changes, and then set this
property to TRUE again.

XRT_SET_LABELS char ** NULL
XRT_SET_LABELS2 char ** NULL

Specifies the string to render against the associated set value. To clear all Set-labels, set
XRT_SET_LABELS to NULL.

XRT_SET_LABELS2 is used to access the second chart’s Set-labels in a combination chart.
These Set-labels are used in the legend when the chart is not transposed.

XRT_TIME_BASE time_t dynamic
Specifies the offset of time data since Jan. 1, 1970 GMT. The default value is Jan. 1, 1970 in
your time zone. For example, if your time zone is EST, this property defaults to 18000 (since
EST is 5 hours west of Greenwich). This is used whenever XRT_XANNOTATION_METHOD
is XRT_ANNO_TIME_LABELS.

The XrtMakeTime() method is helpful when calculating suitable values for this property.

XRT_TIME_FORMAT char * dynamic
Specifies the format string for Time-axis labels. This property is only used when
XRT_XANNOTATION_METHOD is XRT_ANNO_TIME_LABELS. Olectra Chart uses the
string specified by this property with your system’s ANSI C standard function strftime().
Please check your system documentation for complete details on the formatting options. The
following is a summary of ANSI formatting options:

%% same as the “percent” character (%)

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c appropriate date and time representation

%d day of month (01 - 31)

%H hour (00 - 23)

%I hour (01 - 12)

%j day number of year (001 - 366)

106 Part II ■ Reference Appendices

%m month number (01 - 12)

%M minute (00 - 59)

%p equivalent of either AM or PM

%S seconds (00 - 61), allows for leap seconds

%U week number of year (00 - 53), Sunday is the first day of week 1

%w weekday number (0 - 6), Sunday = 0

%W week number of year (00 - 53), Monday is the first day of week 1

%x appropriate date representation

%X appropriate time representation

%y year within century (00 - 99)

%Y year as ccyy (for example 1986)

%Z time zone name or no characters if no time zone exists

When NULL, Olectra Chart will generate a default format based on the range of data and the
value of XRT_TIME_UNIT.

XRT_TIME_FORMAT_USE_DEFAULT BOOL TRUE
When TRUE, Olectra Chart will calculate a default time format dynamically. When an explicit
time format is provided, Olectra Chart sets this BOOL to FALSE.

XRT_TIME_UNIT XrtTimeUnit (enum) XRT_TMUNIT_SECONDS
Use this property to tell Olectra Chart how to interpret the X-values in data attached to the
chart when XRT_XANNOTATION_METHOD is XRT_ANNO_TIME_LABELS. Valid values
are XRT_TMUNIT_SECONDS, XRT_TMUNIT_MINUTES, XRT_TMUNIT_HOURS,
XRT_TMUNIT_DAYS, XRT_TMUNIT_WEEKS, XRT_TMUNIT_MONTHS and
XRT_TMUNIT_YEARS.

For example, if data with X-values ranging from 0 to 4 has been attached to the chart, and if
XRT_TIME_UNIT is set to XRT_TMUNIT_WEEKS, Olectra Chart will annotate the X-axis
with the four week period of time, beginning at the time specified by XRT_TIME_BASE.

XRT_TRANSPOSE_DATA BOOL FALSE
For XRT_DATA_ARRAY data, this property transposes sets with points. This property is not
used by Olectra Chart when rendering XRT_DATA_GENERAL data.

XRT_TYPE XrtType (enum) XRT_TYPE_PLOT
XRT_TYPE2 XrtType (enum) XRT_TYPE_BAR

Determines the chart type. XRT_TYPE2 determines the chart type for the second chart in a
combination. Valid values are XRT_TYPE_AREA, XRT_TYPE_BAR,
XRT_TYPE_STACKING_BAR, XRT_TYPE_PLOT, and XRT_TYPE_PIE.

XRT_WIDTH int size of created window
Specifies the height of the control window.

Appendix A ■ Property Reference 107

XRT_XANNO_PLACEMENT XrtAnnoPlacement (enum) XRT_ANNO_AUTO
XRT_YANNO_PLACEMENT XrtAnnoPlacement (enum) XRT_ANNO_AUTO

Specifies the placement of the axis annotation and title with respect to the perpendicular axis.
When XRT_ANNO_AUTO, the annotation and title are placed at the origin (or at the end of
the axis closest to the origin for bar charts). XRT_YANNO_PLACEMENT is ignored when the
X-axis is discrete, or on dual-axis charts.

Other values are: XRT_ANNO_ORIGIN, which places the annotation/title along the origin;
XRT_ANNO_MIN, which places annotation/title at the axis minimum; and
XRT_ANNO_MAX, which places annotation/title at the axis maximum.

XRT_XANNOTATION_METHOD XrtAnnoMethod (enum) XRT_ANNO_VALUES
XRT_YANNOTATION_METHOD XrtAnnoMethod (enum) XRT_ANNO_VALUES
XRT_Y2ANNOTATION_METHOD XrtAnnoMethod (enum) XRT_ANNO_VALUES

Specifies the method used to annotate the X-, Y- and Y2-axes. For the X-axis, any of the four
annotation methods can be specified; these are XRT_ANNO_VALUES,
XRT_ANNO_POINT_LABELS, XRT_ANNO_VALUE_LABELS,
XRT_ANNO_TIME_LABELS. For the Y- and Y2-axes, only are XRT_ANNO_VALUES and
XRT_ANNO_VALUE_LABELS are valid; attempting to set to an invalid value results in
XRT_ANNO_VALUES being used.

When the annotation method is set to XRT_ANNO_VALUES, Olectra Chart annotates the
axis at appropriate intervals along the axis using the chart’s X- or Y-values.

When the annotation method is set to XRT_ANNO_VALUE_LABELS, the value of
XRT_[XYY2]LABELS is used to annotate the axis.

When XRT_XANNOTATION_METHOD is set to XRT_ANNO_POINT_LABELS, Point-labels
are used to annotate the X-axis. Note that Point-labels can only be used when the X-axis is
discrete. Therefore, XRT_XANNOTATION_METHOD only applies to plots and area charts
when XRT_TRANSPOSE_DATA is FALSE.

When XRT_XANNOTATION_METHOD is set to XRT_ANNO_TIME_LABELS, Time-labels
are used to annotate the X-axis.

XRT_XANNOTATION_ROTATION XrtRotate (enum) XRT_ROTATE_NONE
XRT_YANNOTATION_ROTATION XrtRotate (enum) XRT_ROTATE_NONE
XRT_Y2ANNOTATION_ROTATION XrtRotate (enum) XRT_ROTATE_NONE

Use this property to rotate axis annotation text. When set to XRT_ROTATE_90 or
XRT_ROTATE_270, axis annotations are rotated either 90 or 270 degrees counterclockwise.

Rotation is not allowed if the axis font (specified by XRT_AXIS_FONT) is a raster font. Using
rotated text can slow down the real-time performance of the chart control dramatically, and is
therefore not recommended for charts that may need to be updated many times per second.

XRT_XAXIS_LOGARITHMIC BOOL FALSE
XRT_YAXIS_LOGARITHMIC BOOL FALSE
XRT_Y2AXIS_LOGARITHMIC BOOL FALSE

When TRUE, Olectra Chart charts the data against a logarithmic axis. All data values less than
or equal to zero will be displayed as holes (missing data values). It is not possible to set
XRT_[XYY2]TICK, XRT_[XYY2]NUM or XRT_[XYY2]PRECISION for a logarithmic axis.
Since logarithmic axes can only chart values greater than zero, setting

108 Part II ■ Reference Appendices

XRT_[XYY2]AXIS_MIN, XRT_[XYY2]AXIS_MAX, XRT_[XYY2]MIN, XRT_[XYY2]MAX or
XRT_[XY]ORIGIN less than or equal to zero forces its corresponding USE_DEFAULT
property to TRUE.

XRT_XAXIS_LOGARITHMIC is ignored when the X-axis is discrete or the X-axis annotation
method is XRT_ANNO_TIME_LABELS. XRT_[XYY2]AXIS_LOGARITHMIC is ignored on
pie charts.

XRT_XAXIS_MAX double dynamic
XRT_YAXIS_MAX double dynamic
XRT_Y2AXIS_MAX double dynamic

Specifies the maximum value of the axis. Chart data is clipped to the smaller of
XRT_[XYY2]AXIS_MAX and XRT_[XYY2]MAX. A side-effect of setting this property is that
the corresponding USE_DEFAULT property is set FALSE.

Unless set explicitly, the value of this property is derived from the values of
XRT_[XYY2]MAX, XRT_[XY]ORIGIN, XRT_[XYY2]NUM and XRT_[XYY2]NUM_METHOD,
and falls on an integral multiple of XRT_[XYY2]NUM.

NOTE: When its corresponding USE_DEFAULT property is FALSE, any change in the axis
properties that makes XRT_[XYY2]AXIS_MAX invalid causes Olectra Chart to set the
USE_DEFAULT property to TRUE. This forces the axis bounds to be recalculated, which deals
with all invalid cases.

XRT_[XYY2]AXIS_MAX is ignored in pie charts. XRT_XAXIS_MAX is ignored when the X-
axis is discrete. If a relationship exists between the first and second Y-axis, the default for
XRT_Y2AXIS_MAX is calculated from XRT_YAXIS_MAX.

XRT_XAXIS_MAX_USE_DEFAULT BOOL TRUE
XRT_YAXIS_MAX_USE_DEFAULT BOOL TRUE
XRT_Y2AXIS_MAX_USE_DEFAULT BOOL TRUE

When TRUE, Olectra Chart will calculate the maximum axis value. When you explicitly set
XRT_[XYY2]AXIS_MAX, this property is set to FALSE. You cannot set this property to FALSE
unless a value for XRT_[XYY2]AXIS_MAX has been provided or calculated.

NOTE: When FALSE, any change in the axis properties that makes XRT_[XYY2]AXIS_MAX
invalid causes Olectra Chart to set the USE_DEFAULT property to TRUE, forcing the axis
bounds to be recalculated.

XRT_XAXIS_MIN double dynamic
XRT_YAXIS_MIN double dynamic
XRT_Y2AXIS_MIN double dynamic

Specifies the minimum value of the axis. Chart data is clipped to the larger of
XRT_[XYY2]AXIS_MIN and XRT_[XYY2]MIN. A side-effect of setting this property is that the
corresponding USE_DEFAULT property is set to FALSE.

Unless set explicitly, the value of this property is derived from the values of XRT_[XYY2]MIN,
XRT_[XY]ORIGIN, XRT_[XYY2]NUM and XRT_[XYY2]NUM_METHOD properties, and falls
on an integral multiple of XRT_[XYY2]NUM.

NOTE: When its corresponding USE_DEFAULT property is FALSE, any change in the axis
properties that makes XRT_[XYY2]AXIS_MIN invalid causes Olectra Chart to set the

Appendix A ■ Property Reference 109

USE_DEFAULT property to TRUE. This forces the axis bounds to be recalculated, which deals
with all invalid cases.

XRT_[XYY2]AXIS_MIN is ignored in pie charts. XRT_XAXIS_MIN is ignored when the X-axis
is discrete. If a relationship exists between the first and second Y-axis, the default for
XRT_Y2AXIS_MIN is calculated from XRT_YAXIS_MIN.

XRT_XAXIS_MIN_USE_DEFAULT BOOL TRUE
XRT_YAXIS_MIN_USE_DEFAULT BOOL TRUE
XRT_Y2AXIS_MIN_USE_DEFAULT BOOL TRUE

When TRUE, Olectra Chart will calculate the minimum axis value. When you explicitly set
XRT_[XYY2]AXIS_MIN, this property is set to FALSE. You cannot set this property to FALSE
unless a value for XRT_[XYY2]AXIS_MIN has been provided or calculated.

NOTE: When FALSE, any change in the axis properties that makes XRT_[XYY2]AXIS_MIN
invalid causes Olectra Chart to set the USE_DEFAULT property to TRUE, forcing the axis
bounds to be recalculated.

XRT_XAXIS_REVERSED BOOL FALSE
XRT_YAXIS_REVERSED BOOL FALSE
XRT_Y2AXIS_REVERSED BOOL FALSE

When TRUE, Olectra Chart will draw and annotate the X-, Y-, or Y2-axis in the reverse
direction. This is commonly used to cause the X-axis annotation to increase from right to left
or the Y-axis annotation to increase downward. The X-axis may be reversed only if it is
continuous.

XRT_Y2AXIS_REVERSED is ignored when XRT_YAXIS_MULT is non-zero. If a positive
multiplier is specified, the second Y-axis will have the same direction as the first Y-axis. If a
negative multiplier is specified, the second Y-axis will have the opposite direction to the first.

XRT_XAXIS_SHOW BOOL TRUE
XRT_YAXIS_SHOW BOOL TRUE
XRT_Y2AXIS_SHOW BOOL FALSE

Determines if the axis should be displayed.

All Y2-axis properties are ignored unless a second dataset has been attached (using
XRT_DATA2) or XRT_YAXIS_MULT is non-zero.

XRT_XGRID double 0.0
XRT_YGRID double 0.0

Specifies the X- or Y-axis increment between grid-lines, starting from zero. A side-effect of
setting these properties is that the corresponding USE_DEFAULT property is set to FALSE.

On charts with a discrete X-axis, the X grid-lines will be drawn through each label.

No grid-lines are displayed when the value is 0.0.

110 Part II ■ Reference Appendices

XRT_XGRID_DATA_STYLE XrtDataStyle * dotted line
XRT_YGRID_DATA_STYLE XrtDataStyle * dotted line

Specifies the XrtDataStyle to be used when rendering the X and Y grid-lines. In particular,
line style, color and width elements of the XrtDataStyle structure are used. If not specified,
Olectra Chart will use a 1-pixel wide dotted line in the chart foreground color.

A side-effect of setting these properties is that the corresponding USE_DEFAULT property is
set to FALSE.

XRT_XGRID_DATA_STYLE_USE_DEFAULT BOOL TRUE
XRT_YGRID_DATA_STYLE_USE_DEFAULT BOOL TRUE

When TRUE, the default grid data style will be used. When explicit data styles are provided,
Olectra Chart sets this Boolean to FALSE.

XRT_XGRID_USE_DEFAULT BOOL FALSE
XRT_YGRID_USE_DEFAULT BOOL FALSE

When TRUE, XRT_XGRID and XRT_YGRID values are determined by Olectra Chart at
render-time. When explicit XRT_XGRID and XRT_YGRID values are provided, Olectra
Chart sets these Booleans to FALSE. You cannot set these properties to FALSE unless you
have previously provided XRT_XGRID or XRT_YGRID values.

When XRT_[XY]GRID_USE_DEFAULT is TRUE, the default XRT_[XY]GRID is the value of
XRT_[XY]NUM.

XRT_XLABELS XrtValueLabel ** NULL
XRT_YLABELS XrtValueLabel ** NULL
XRT_Y2LABELS XrtValueLabel ** NULL

These properties supply the labels for the X-, Y-, and Y2-axis when the value of
XRT_[XYY2]ANNOTATION_METHOD is XRT_ANNO_VALUE_LABELS. The property
value is a NULL-terminated array of pointers to XrtValueLabel structures. Each structure
contains a Value-label pair.

XRT_XLABELS is only valid when the X-axis is continuous.

When used in an XrtGetValues() call, a NULL pointer is returned if there are no Value-labels
defined. The returned Value-labels are sorted by their X- or Y-value.

XRT_XMARKER double undefined
XRT_YMARKER double undefined

Specifies position of the markers in chart coordinates. Specifying XRT_XMARKER is only
meaningful on continuous X-axis charts. A marker will not be displayed by Olectra Chart
until this property is explicitly set, and the corresponding MarkerShow property is TRUE.

When positioning markers on combination charts, set XRT_MARKER_DATASET
appropriately before using these properties.

XRT_XMARKER_POINT int undefined
XRT_XMARKER_SET int undefined

Specifies the indices of the data set and point through which the X-marker should be drawn.
This is the only way of specifying a marker on pie charts, and the only way of specifying an X-

Appendix A ■ Property Reference 111

marker on discrete X-axis charts. A marker will not be displayed by Olectra Chart until this
property is explicitly set, and the corresponding MarkerShow property is TRUE.

When positioning markers on combination charts, set XRT_MARKER_DATASET
appropriately before using these properties.

XRT_XMARKER_SHOW BOOL FALSE
XRT_YMARKER_SHOW BOOL FALSE

Specifies whether the corresponding marker should be displayed or not. In addition to setting
these Booleans TRUE, the marker position must be explicitly set by the program before
markers will be shown. Use XRT_[XY]MARKER and/or XRT_XMARKER_SET and/or
XRT_XMARKER_POINT to set the marker position.

XRT_XMAX double dynamic
XRT_YMAX double dynamic
XRT_Y2MAX double dynamic

Specifies the value of the high end of the X, Y and Y2 data. Data values greater than this value
will not be displayed. A side-effect of setting these properties is that the corresponding
USE_DEFAULT property is set to FALSE.

XRT_[XYY2]MAX is ignored in pie charts. XRT_XMAX is ignored on discrete X-axis charts.

In bar charts, attempts to set XRT_[XYY2]MAX to a value less than the Y origin will be
ignored.

If a relationship exists between the first and second Y-axis, then the default for XRT_Y2MAX
is calculated from XRT_YMAX.

XRT_XMAX_USE_DEFAULT BOOL TRUE
XRT_YMAX_USE_DEFAULT BOOL TRUE
XRT_Y2MAX_USE_DEFAULT BOOL TRUE

When TRUE, XRT_[XYY2]MAX values are determined by Olectra Chart at render-time.
When explicit XRT_[XYY2]MAX values are provided, Olectra Chart sets these Booleans to
FALSE. You cannot set these properties to FALSE unless you have previously provided
XRT_[XYY2]MAX values.

XRT_XMIN double dynamic
XRT_YMIN double dynamic
XRT_Y2MIN double dynamic

Specifies the value of the low end of the X, Y and Y2 data. Data values less than this value will
not be displayed. A side-effect of setting these properties is that the corresponding
USE_DEFAULT property is set to FALSE.

XRT_[XYY2]MIN is ignored in pie charts. XRT_XMIN is ignored on discrete X-axis charts.

In bar charts, attempts to set XRT_[XYY2]MIN to a value greater than the Y origin will be
ignored.

If a relationship exists between the first and second Y-axis, then the default for XRT_Y2MIN is
calculated from XRT_YMIN.

112 Part II ■ Reference Appendices

XRT_XMIN_USE_DEFAULT BOOL TRUE
XRT_YMIN_USE_DEFAULT BOOL TRUE
XRT_Y2MIN_USE_DEFAULT BOOL TRUE

When TRUE, XRT_[XYY2]MIN values are determined by Olectra Chart at render-time. When
explicit XRT_[XYY2]MIN values are provided, Olectra Chart sets these Booleans to FALSE.
You cannot set these properties to FALSE unless you have previously provided
XRT_[XYY2]MIN values.

XRT_XNUM double dynamic
XRT_YNUM double dynamic
XRT_Y2NUM double dynamic

Specifies the increment between axis-numbering. A side-effect of setting these properties is
that the corresponding USE_DEFAULT property is set to FALSE.

XRT_[XYY2]NUM is ignored when the axis is logarithmic, and in pie charts. XRT_XNUM is
ignored when the X-axis is discrete or logarithmic.

The default value XRT_[XYY2]NUM is derived from the data unless the corresponding
XRT_[XYY2]TICK has been explicitly set. In this case, the numbering increment will default
to twice the tick increment.

XRT_XNUM_USE_DEFAULT BOOL TRUE
XRT_YNUM_USE_DEFAULT BOOL TRUE
XRT_Y2NUM_USE_DEFAULT BOOL TRUE

When TRUE, XRT_[XYY2]NUM values are determined by Olectra Chart at render-time.
When explicit XRT_[XYY2]NUM values are provided, Olectra Chart sets these Booleans to
FALSE. You cannot set these properties to FALSE unless you have previously provided
XRT_[XYY2]NUM values.

XRT_XNUM_METHOD XrtNumMethod (enum) XRT_NUM_ROUND
XRT_YNUM_METHOD XrtNumMethod (enum) XRT_NUM_ROUND
XRT_Y2NUM_METHOD XrtNumMethod (enum) XRT_NUM_ROUND

Specifies the method used to calculate axis numbering. These properties control the default
value of the XRT_[XYY2]NUM properties. If the value is XRT_NUM_PRECISION, the current
value of the axis precision (XRT_[XYY2]PRECISION) is used to derive the value of
XRT_[XYY2]NUM. If the value is XRT_NUM_ROUND, then rounded numbers are chosen
(most significant digit is 1, 2 or 5). In either case, the current value of the axis precision is used
to format the numbers.

XRT_XORIGIN double dynamic
XRT_YORIGIN double dynamic

Specifies where the axis should be rendered. For example, setting X origin to 5.0 will cause
the Y-axis to cross the X-axis at X=5.0. A side-effect of setting these properties is that the
corresponding USE_DEFAULT property is set to FALSE.

XRT_[XY]ORIGIN is ignored in pie charts. XRT_XORIGIN is ignored on discrete X-axis
charts.

The Y-origin can only be set on the first Y-axis.

Appendix A ■ Property Reference 113

XRT_XORIGIN_USE_DEFAULT BOOL TRUE
XRT_YORIGIN_USE_DEFAULT BOOL TRUE

When TRUE, Olectra Chart calculates the values of XRT_[XY]ORIGIN at render-time. When
explicit XRT_XORIGIN and XRT_YORIGIN values are provided, Olectra Chart sets these
Booleans to FALSE. You cannot set these properties to FALSE unless you have previously
provided XRT_[XY]ORIGIN values.

XRT_XORIGIN_PLACEMENT XrtOriginPlacement (enum) XRT_ORIGIN_AUTO
XRT_YORIGIN_PLACEMENT XrtOriginPlacement (enum) XRT_ORIGIN_AUTO

Specifies the location of the origin. When XRT_ORIGIN_AUTO, Olectra Chart places the
origin as follows:

■ Plot/area charts—origin placed at the axis minimum or at zero if the dataset has both posi-
tive and negative values.

■ Bar charts—origin placed at zero.
Stacking bar charts always have their origin at zero. Attempts to set it elsewhere are ignored.
XRT_[XY]ORIGIN_PLACEMENT is ignored in pie charts.

Other values are: XRT_ORIGIN_ZERO, which places the origin at zero; XRT_ORIGIN_MIN,
which places the origin at the axis minimum; and XRT_ORIGIN_MAX, which places the
origin at the axis maximum.

This property is ignored if you set an explicit origin with XRT_[XY]ORIGIN.

XRT_XPRECISION int dynamic
XRT_YPRECISION int dynamic
XRT_Y2PRECISION int dynamic

This property defines the number of digits of precision after the decimal point to be used for
axis-numbering. If 0 or less, axis-numbers will all be integers. Olectra Chart will also use the
precision to determine working values for the axis’ origin, min, max, num and tick increments.
If, for example, XRT_XORIGIN is set to 1.45 and XRT_XPRECISION is 0, Olectra Chart will
draw the Y-axis at X=1. If the XRT_XPRECISION is subsequently changed to 2, Olectra Chart
will draw the Y-axis at X=1.45.

Negative precision values indicates precision in powers of 10. For example, setting
XRT_YPRECISION to -2 will cause all Y-axis numbering to be multiples of 100.

A side effect of setting these properties is that the corresponding USE_DEFAULT property is
set to FALSE.

XRT_XPRECISION_USE_DEFAULT BOOL TRUE
XRT_YPRECISION_USE_DEFAULT BOOL TRUE
XRT_Y2PRECISION_USE_DEFAULT BOOL TRUE

When TRUE, Olectra Chart calculates appropriate values for XRT_[XYY2]PRECISION
automatically at render-time. When explicit XRT_[XYY2]PRECISION values are provided,
Olectra Chart sets these Booleans to FALSE. You cannot set these properties to FALSE unless
you have previously provided XRT_[XYY2]PRECISION values.

114 Part II ■ Reference Appendices

XRT_XTICK double dynamic
XRT_YTICK double dynamic
XRT_Y2TICK double dynamic

Specifies the increment between axis-ticks. A side-effect of setting these properties is that the
corresponding USE_DEFAULT property is set to FALSE.

XRT_[XYY2]TICK is ignored in pie charts or if the axis is logarithmic. XRT_XTICK is ignored
when the X-axis is discrete or logarithmic.

The default XRT_[XYY2]TICK value is derived from the data unless the corresponding
XRT_[XYY2]NUM has been explicitly set. In this case, the tick increment will default to half
the numbering increment.

When the X annotation method is Value-labels or Time-labels, and if
XRT_XTICK_USE_DEFAULT is TRUE, ticks will display at each label. Otherwise
XRT_XTICK_USE_DEFAULT is FALSE, so the specified X tick increment will be honored. If
the increment is zero, no ticks will display.

XRT_XTICK_USE_DEFAULT BOOL TRUE
XRT_YTICK_USE_DEFAULT BOOL TRUE
XRT_Y2TICK_USE_DEFAULT BOOL TRUE

When TRUE, XRT_[XYY2]TICK values are determined by Olectra Chart at render-time.
When explicit XRT_[XYY2]TICK values are provided, Olectra Chart sets these Booleans to
FALSE. You cannot set these properties to FALSE unless you have previously provided
XRT_[XYY2]TICK values.

XRT_XTITLE char * NULL
XRT_YTITLE char * NULL
XRT_Y2TITLE char * NULL

Specifies the title to display on the X-, Y- and Y2-axis. These properties are ignored on pie
charts.

XRT_XTITLE_ROTATION XrtRotate (enum) XRT_ROTATE_NONE
XRT_YTITLE_ROTATION XrtRotate (enum) XRT_ROTATE_NONE
XRT_Y2TITLE_ROTATION XrtRotate (enum) XRT_ROTATE_NONE

Use this property to rotate the title text. It can only be applied to vertically-oriented axes (Y or
Y2 unless XRT_INVERT_ORIENTATION is TRUE). When set to XRT_ROTATE_NONE, the
title is centered above or below the axis. When set to XRT_ROTATE_90 or
XRT_ROTATE_270, the title is rotated either 90 or 270 degrees counterclockwise and is
centered to the left or right of the vertical axis.

Rotation is not allowed if the axis font (specified by XRT_AXIS_FONT) is a raster font. Using
rotated text can slow down the real-time performance of the chart control dramatically, and
therefore is not recommended for charts that need to be updated many times per second.

Appendix A ■ Property Reference 115

XRT_YAXIS_CONST double 0.0
Used in conjunction with XRT_YAXIS_MULT to specify a relationship between the first and
second Y-axis. To indicate that no relationship exists between the two Y-axes, set
XRT_YAXIS_MULT to 0.0.

For example, if the first Y-axis is degrees Celsius, and the second Y-axis is degrees Fahrenheit,
set XRT_YAXIS_MULT to 9.0/5.0, and set XRT_YAXIS_CONST to 32.0.

XRT_YAXIS_MULT double 0.0
Used in conjunction with XRT_YAXIS_CONST to specify a relationship between the first and
second Y-axes. To indicate that no relationship exists between the two Y-axes, set
XRT_YAXIS_MULT to 0.0.

For example, if the first Y-axis is degrees Celsius, and the second Y-axis is degrees Fahrenheit,
set XRT_YAXIS_MULT to 9.0/5.0, and set XRT_YAXIS_CONST to 32.0.

116 Part II ■ Reference Appendices

117

B
Procedures and Methods Reference

This appendix lists the Olectra Chart procedures and methods in alphabetical order.

XrtArrCheckAxisBounds()
Determines if additional array data will require a chart repaint.

int
XrtArrCheckAxisBounds(

HXRT2D hChart,
int dataset,
int numpoints
)

hChart is the chart handle. dataset indicates whether data is being added to the chart’s
first or second dataset and should be either 1 or 2. numpoints is the number of points
that have been added to each set in the dataset.

Before calling this procedure, a chart control must have already been created and
must have an array type XrtData structure attached to it using either the XRT_DATA
or XRT_DATA2 property.

To use this procedure, first add numpoints additional data values to each set in the
array. XrtArrDataAppendPts() is a useful convenience routine to use for this
purpose. Be sure to add the points to the XrtData structure currently being pointed to
by the control’s XRT_DATA or XRT_DATA2 property.

Once you’ve added the additional data, call XrtArrCheckAxisBounds(). If all of the
additional data falls within the current axes bounds, this routine will return 0.
Otherwise, a bit pattern is returned indicating which axis bounds were exceeded by
the new data:

#define XRT_LTX 0x01 /* New data < X axis min */
#define XRT_GTX 0x02 /* New data > X axis max */
#define XRT_LTY 0x04 /* New data < Y axis min */
#define XRT_GTY 0x08 /* New data > Y axis max */

The returned value can be used in a scrolling strip chart application to determine
when to scroll the “data window.”

118 Part II ■ Reference Appendices

XrtArrDataAppendPts()
Appends a new point to each of the sets in an Array structure.

int
XrtArrDataAppendPts(

XrtData *data,
double xval,
double *yvector
)

xval is the new X-value. yvector points to an array of Y-values (one for each set).
XrtArrDataAppendPts() returns 1 on success and 0 on failure.

XrtArrDataFastUpdate()
Displays additional array data in an existing chart as quickly as possible.

int
XrtArrDataFastUpdate(

HXRT2D hChart,
int dataset,
int numpoints
)

hChart is the chart handle. dataset indicates whether data is being added to the chart’s
first or second dataset and should be either 1 or 2. numpoints is the number of points
that have been added to each set in the dataset.

Before calling this procedure, a chart control must have already been created and
must have an array type XrtData structure attached to it using either the XRT_DATA
or XRT_DATA2 property.

To use this procedure, first add numpoints additional data values to each set in the
array. XrtArrDataAppendPts() is a useful convenience routine for this purpose. Be
sure to add the points to the XrtData structure currently being pointed to by the
control’s XRT_DATA or XRT_DATA2 property.

Once you’ve added the additional data, call XrtArrDataFastUpdate(). This routine
will graph the newly added points. If a fast data update is possible, the new points
will be added extremely quickly, otherwise a chart repaint will take place (as if you
had simply reset the XRT_DATA or XRT_DATA2 property). This routine returns 0 if
a chart repaint was required, and 1 if a fast update was possible.

You can determine ahead of time if a fast update is possible by using the
XrtArrCheckAxisBounds() procedure.

XrtArrDataRemovePts()
Removes the point indexed by point from all the sets in an Array structure.

int
XrtArrDataRemovePts(

XrtData *data,
int point
)

 XrtArrDataRemovePts() returns 1 on success and 0 on failure.

Appendix B ■ Procedures and Methods Reference 119

XrtArrDataShiftPts()
Copies a block of points in an Array structure. Points in all sets are shifted. Shifted-
out points are set to the hole value.

int
XrtArrDataShiftPts(

XrtData *data,
int dest,
int src,
int npoints
)

src specifies the first point in the block to be shifted; npoints specifies the size of the
block. dest specifies the point to shift the block to. src and dest are zero-based.

The npoints element of the XrtData structure is not changed. This function returns 1
on success and 0 on failure.

XrtAttachWindow()
Attaches a window to a chart. Returns True if the attach was successful.

BOOL
XrtAttachWindow(

HXRT2D hChart,
HWND hWnd,
)

hChart is the chart handle. hWnd is the window handle.

XrtCallAction()
Calls an action explicitly at a given window coordinate. All coordinates should be
within the graph area of the control. Any notification messages normally triggered
by this action are called.

void
XrtCallAction(

HXRT2D hChart,
XrtAction action,
int x,
int y
)

hChart is the chart handle. action is the action to be called. x and y specify the window
coordinate.

XrtComputePalette()
Asks the chart to recompute its palette based on the current system palette.

void
XrtComputePalette(

HXRT2D hChart,
)

hChart is the chart handle.

120 Part II ■ Reference Appendices

XrtCreate()
Creates a chart without creating a window for it. Returns the chart handle.

HXRT2D
XrtCreate(void)

XrtCreateWindow()
Creates a window and a chart and attaches the two. Returns the chart handle.

HXRT2D
XrtCreateWindow(

LPCTSTR lpWindowName,
int x, y,
int nWidth, nHeight,
HWND hWndParent,
HINSTANCE hInstance
)

lpWindowName is a pointer to the window name. x and y are the horizontal and
vertical position of the window. nWidth and nHeight are the width and height of the
window. hWndParent is a handle to the parent or owner window. hInstance is a handle
to the application instance.

XrtDataConcat()
Returns a new XrtData structure created by concatenating two existing XrtData
structures pointed to by data1 and data2.

XrtData *
XrtDataConcat(

XrtData *data1,
XrtData *data2
)

XrtDataConcat() returns NULL on failure. The type of the result is dependent on the
types of data1 and data2:

When concatenating an Array with an Array, an Array will be returned if both
arrays have the same number of points per set, and both have the same X-values.
Otherwise a General will be returned.

If either data1 or data2 has zero points or sets, it will be treated as if it were a NULL
pointer.

data1 data2 Result

NULL anything data2

anything NULL data1

General General General

General Array General

Array General General

Array Array General or Array

Appendix B ■ Procedures and Methods Reference 121

XrtDataCopy()
Returns an exact replica of the XrtData structure passed in.

XrtData *
XrtDataCopy(

XrtData *data
)

XrtDataCopy() returns NULL on failure.

XrtDataExtractSet()
Returns a new XrtData structure containing a copy of the set indexed by set of the
structure pointed to by data.

XrtData *
XrtDataExtractSet(

XrtData *data,
int set
)

The returned structure is the same type (Array or General) as the structure pointed to
by data. XrtDataExtractSet() returns NULL on failure.

XrtDataRemoveSet()
Removes the set indexed by set from either an Array or General data structure.

int
XrtDataRemoveSet(

XrtData *data,
int set
)

XrtDataSort()
Sorts the points in each set by increasing X-value.

int
XrtDataSort(

XrtData *data
)

XrtDataSort() returns 0 on failure and 1 on success.

XrtDeleteNthPointLabel()
XrtDeleteNthPointLabel2()
Deletes the nth Point-label. XrtDeleteNthPointLabel2() operates on the second set of
Point-labels used in combination charts.

void
XrtDeleteNthPointLabel(

HXRT2D hChart,
int index,
)

hChart is the chart handle. The (zero-based) index specifies the index of the Point-
label to be deleted. All Point-labels with index greater than index are shifted down.

122 Part II ■ Reference Appendices

XrtDeleteNthSetLabel()
XrtDeleteNthSetLabel2()
Deletes the nth Set-label. XrtDeleteNthSetLabel2() operates on the second set of Set-
labels used in combination charts.

void
XrtDeleteNthSetLabel(

HXRT2D hChart,
int index,
)

hChart is the chart handle. The (zero-based) index specifies the index of the Set-label
to be deleted. All Set-labels with index greater than index are shifted down.

XrtDestroyData()
Destroys an XrtData structure. Use it only for structures created with XrtMakeData()
and XrtMakeDataFromFile().

void
XrtDestroyData(

XrtData *data,
BOOL all
)

data is the structure to be destroyed. If all is TRUE, then any space allocated for data
values is also freed.

If data is in use by any chart, it will be automatically detached.

XrtDetachWindow()
Detaches a chart from its window. Returns the window handle.

HWND
XrtDetachWindow(

HXRT2D hChart
)

hChart is the chart handle.

XrtDrawToClipboard()
Copies a chart to the Windows clipboard as a bitmap or metafile.

BOOL
XrtDrawToClipboard(

HXRT2D hChart,
XrtDrawFormat format
)

hChart is the chart handle to output. format is the graphics format to use and can be:
XRT_DRAW_BITMAP for a Windows bitmap (BMP); XRT_DRAW_METAFILE for
a Windows metafile (WMF); or XRT_DRAW_ENHMETAFILE (Windows 95 and
Windows NT applications only) for an enhanced metafile (EMF).

Appendix B ■ Procedures and Methods Reference 123

XrtDrawToDC()
Outputs a chart to any device context as a bitmap or metafile.

BOOL
XrtDrawToDC(

HXRT2D hChart,
HDC hdc,
XrtDrawFormat format,
XrtDrawScale scale,
long left, top, width, height
)

hChart is the chart handle to output. hdc is a device context handle. format is the
graphics format to use and can be: XRT_DRAW_BITMAP for a Windows bitmap
(BMP); XRT_DRAW_METAFILE for a Windows metafile (WMF); or
XRT_DRAW_ENHMETAFILE (Windows 95 and Windows NT applications only) for an
enhanced metafile (EMF). scale specifies the scaling to perform when printing, and is
one of XRT_DRAWSCALE_NONE (no scaling), XRT_DRAWSCALE_TOWIDTH
(scale to width specified by width, preserving aspect ratio and ignoring height),
XRT_DRAWSCALE_TOHEIGHT (scale to height specified by height, preserving
aspect ratio and ignoring width), XRT_DRAWSCALE_TOFIT (scale to minimum of
height or width, preserving aspect ratio), XRT_DRAWSCALE_TOMAX (enlarge to
size of page regardless of aspect ratio). left is the offset from the left of the page. top is
the offset from the top of the page. width specifies the width to scale to; to use the
existing window width, set width to 0. height specifies the height to scale to; to use the
existing window height, set height to 0.

XrtDrawToFile()
Outputs a chart to a file as a bitmap or metafile.

BOOL
XrtDrawToFile(

HXRT2D hChart,
char *filename,
XrtDrawFormat format
)

hChart is the chart handle to output. format is the graphics format to use and can be:
XRT_DRAW_BITMAP for a Windows bitmap (BMP); XRT_DRAW_METAFILE for
a Windows metafile (WMF); or XRT_DRAW_ENHMETAFILE (Windows 95 and
Windows NT applications only) for an enhanced metafile (EMF).

XrtDupDataStyles()
Duplicates an array of XrtDataStyle structures.

XrtDataStyle **
XrtDupDataStyles(

XrtDataStyle **ds
)

XrtDupDataStyles() returns a pointer to the duplicate array.

124 Part II ■ Reference Appendices

XrtDupStrings()
Duplicates an array of strings.

char **
XrtDupStrings(

char **s
)

XrtDupStrings() returns a pointer to the duplicate array.

XrtDupValueLabels()
This routine returns a copy of the passed Value-labels.

XrtValueLabel **
XrtDupValueLabels(

XrtValueLabel **label
)

XrtFreeDataStyles()
Frees the memory used by an array of XrtDataStyle structures.

void
XrtFreeDataStyles(

XrtDataStyle **ds
)

XrtFreePropString()
Frees the memory used by a string allocated by XrtGetPropString().

void
XrtFreePropString(

char *str
)

XrtFreeStrings()
Frees the memory used by an array of strings.

void
XrtFreeStrings(

char **s
)

XrtFreeTextHandles()
Frees the memory used by an array of handles to text areas.

void
XrtFreeTextHandles(

XrtTextHandle *list
)

XrtFreeValueLabels()
Frees the memory used by a set of Value-labels.

void
XrtFreeValueLabels(

XrtValueLabel **label
)

Appendix B ■ Procedures and Methods Reference 125

XrtGenCheckAxisBounds()
Determines if additional general data will require a chart repaint.

int
XrtGenCheckAxisBounds(

HXRT2D hChart,
int dataset,
int set,
int numpoints
)

hChart is the chart handle. dataset indicates whether data is being added to the chart’s
first or second dataset and should be either 1 or 2. numpoints is the number of points
that have been added to the set indexed by set.

Before calling this procedure, a chart control must have already been created and
must have a general type XrtData structure attached to it using either the
XRT_DATA or XRT_DATA2 property.

To use this procedure, first add numpoints additional data values to one of the sets in
the general dataset. XrtGenDataAppendPt() is a useful convenience routine for this
purpose. Be sure to add the points to the XrtData structure currently being pointed to
by the control’s XRT_DATA or XRT_DATA2 property.

Once you’ve added the additional data, call XrtGenCheckAxisBounds(). If all of the
additional data falls within the current axes bounds, this routine will return 0.
Otherwise, a bit pattern is returned indicating which axes bounds were exceeded by
the new data:

#define XRT_LTX 0x01 /* New data < X axis min */
#define XRT_GTX 0x02 /* New data > X axis max */
#define XRT_LTY 0x04 /* New data < Y axis min */
#define XRT_GTY 0x08 /* New data > Y axis max */

The returned value can be used in a scrolling strip chart application to determine
when to scroll the “data window.”

XrtGenDataAppendPt()
Appends the (x,y) value xval and yval to the end of the set indexed by set.

int
XrtGenDataAppendPt(

XrtData *data,
int set,
double xval,
double yval
)

XrtGenDataAppendPt() returns 1 on success and 0 on failure. data must point to a
General structure.

126 Part II ■ Reference Appendices

XrtGenDataFastUpdate()
Displays additional general data in an existing chart as quickly as possible.

int
XrtGenDataFastUpdate(

HXRT2D hChart,
int dataset,
int set,
int numpoints
)

hChart is the chart handle. dataset indicates whether data is being added to the chart’s
first or second dataset and should be either 1 or 2. numpoints is the number of points
that have been added to the set indexed by set.

Before calling this procedure, a chart control must have already been created and
must have a general type XrtData structure attached to it using either the
XRT_DATA or XRT_DATA2 property.

To use this procedure, first add numpoints additional data values to one of the sets in
the general dataset. XrtGenDataAppendPt() is a useful convenience routine for this
purpose. Be sure to add the points to the XrtData structure currently being pointed to
by the control’s XRT_DATA or XRT_DATA2 property.

Once you’ve added the additional data, call XrtGenDataFastUpdate(). This routine
will graph the newly added points. If a fast data update is possible, the new points
will be added extremely quickly, otherwise a chart repaint will take place (as if you
had simply reset the XRT_DATA or XRT_DATA2 property.) This routine returns 0 if
a chart repaint was required, and 1 if a fast update was possible.

You can determine ahead of time if a fast update is possible by using the
XrtGenCheckAxisBounds() procedure.

XrtGenDataRemovePt()
Removes the value indexed by set and point from a General structure.

int
XrtGenDataRemovePt(

XrtData *data,
int set,
int point
)

XrtGenDataRemovePt() returns 1 on success and 0 on failure.

XrtGenDataShiftPts()
Copies a block of points in one set of a General structure. Shifted-out points are set to
the hole value.

int
XrtGenDataShiftPts(

XrtData *data,
int set,
int dest,
int src,
int npoints
)

Appendix B ■ Procedures and Methods Reference 127

set is the set to shift points within; src specifies the first point in the block to be shifted;
npoints specifies the size of the block. dest specifies the point to shift the block to. set,
dest, and src, are all zero-based.

The sets’s npoints element of the XrtData structure is not changed. This function
returns 1 on success and 0 on failure.

XrtGetAction()
Returns the action that is bound to this window event. If there is no action bound,
XRT_ACTION_NONE is returned.

XrtAction
XrtGetAction(

HXRT2D hChart,
UINT msg,
UINT modifier,
UINT keycode
)

hChart is the chart handle. msg is the message for this window event. The following
messages are recognized:

WM_LBUTTONDBLCLK double-click left mouse button

WM_MBUTTONDBLCLK double-click both mouse buttons

WM_RBUTTONDBLCLK double-click right mouse button

WM_LBUTTONDOWN press left mouse button

WM_MBUTTONDOWN press both mouse buttons

WM_RBUTTONDOWN press right mouse button

WM_LBUTTONUP release left mouse button

WM_MBUTTONUP release both mouse buttons

WM_RBUTTONUP release right mouse button

WM_MOUSEMOVE move mouse

WM_KEYDOWN press key

WM_KEYUP release key

modifier specifies the modifier flags, if any. The following modifier flags are
recognized:

MK_LBUTTON left mouse button

MK_MBUTTON both mouse buttons

MK_RBUTTON right mouse button

MK_ALT Alt key

MK_SHIFT Shift key

MK_CONTROL Ctrl key

128 Part II ■ Reference Appendices

All actions are normalized to match the event sent by Microsoft Windows. For
example, MK_LBUTTON is added to the modifier flags if a WM_LBUTTONDOWN
message is sent.

keycode is the keycode. Any valid VK_ value is treated as a recognized keycode. All
alphabetic characters are forced to upper case. MK_SHIFT must appear in the
modifier if capitals are desired. The CapsLock key toggles the meaning of the
MK_SHIFT modifier.

XrtGetActionList()
Returns a pointer to the entire list of actions used by the control. The list is stored as
a linked list, and must not be modified in any way.

XrtActionItem *
XrtGetActionList(

HXRT2D hChart,
)

hChart is the chart handle.

XrtGetHandle()
Retrieves the chart attached to a window.

HXRT2D
XrtGetHandle(

HWND hWnd
)

hWnd is the window handle.

XrtGetNthDataStyle()
XrtGetNthDataStyle2()
Returns a pointer to the nth data style currently being used by the chart.

XrtDataStyle *
XrtGetNthDataStyle(

HXRT2D hChart,
int index
)

hChart is the chart handle.The (zero-based) index specifies which data style should be
returned. The default data style for index will be returned if index is larger than the
number of currently defined data styles. The pointer returned by this method should
be considered read-only.

XrtGetNthDataStyle2() operates on the second set of data styles used in combination
charts.

XrtGetNthFooterString()
Returns a pointer to the nth footer string currently being used by the chart.

char *
XrtGetNthFooterString(

HXRT2D hChart,
int index
)

Appendix B ■ Procedures and Methods Reference 129

hChart is the chart handle. The (zero-based) index specifies which footer string should
be returned. The default footer string for index will be returned if index is larger than
the number of currently defined footer strings. The pointer returned by this method
should be considered read-only.

XrtGetNthHeaderString()
Returns a pointer to the nth header string currently being used by the chart.

char *
XrtGetNthHeaderString(

HXRT2D hChart,
int index
)

hChart is the chart handle. The (zero-based) index specifies which header string
should be returned. The default header string for index will be returned if index is
larger than the number of currently defined header strings. The pointer returned by
this method should be considered read-only.

XrtGetNthPointLabel()
XrtGetNthPointLabel2()
Returns a pointer to the nth Point-label currently being used by the chart.

char *
XrtGetNthPointLabel(

HXRT2D hChart,
int index
)

hChart is the chart handle. The (zero-based) index specifies which Point-label should
be returned. If index is larger than the number of currently defined Point-labels, then
NULL is returned. The pointer returned by this method should be considered read-
only.

XrtGetNthPointLabel2() operates on the second set of Point-labels used in
combination charts.

XrtGetNthSetLabel()
XrtGetNthSetLabel2()
Returns a pointer to the nth Set-label currently being used by the chart.

char *
XrtGetNthSetLabel(

HXRT2D hChart,
int index
)

hChart is the chart handle. The (zero-based) index specifies which Set-label should be
returned. If index is larger than the number of currently defined Set-labels, then
NULL is returned. The pointer returned by this method should be considered read-
only.

XrtGetNthSetLabel2() operates on the second set of Set-labels used in combination
charts.

130 Part II ■ Reference Appendices

XrtGetPalette()
Retrieves a chart’s color palette.

HPALETTE
XrtGetPalette(

HXRT2D hChart
)

hChart is the chart handle.

XrtGetPropString()
Retrieves the current value of a chart property as a string.

BOOL
XrtGetPropString(

HXRT2D hChart,
int property,
char **str /* Returned */
)

hChart is the chart handle. property specifies any Olectra Chart property; str is a
pointer to a string returned with the value of the property. str must be freed after use
by calling XrtFreePropString().

XrtGetTextHandles()
Determines the text handles currently defined for the chart. XrtGetTextHandles()
returns the total number attached.

int
XrtGetTextHandles(

HXRT2D hChart,
XrtTextHandle **list /* Returned */
)

hChart is the chart handle. list is a NULL-terminated list of text handles returned.
This list must be freed after use by calling XrtFreeTextHandles().

XrtGetValueLabel()
Determines the Value-label closest to the label you specify, on either the X-, Y-, or
Y2-axis.

XrtValueLabel *
XrtGetValueLabel(

HXRT2D hChart,
XrtAxis axis,
XrtValueLabel *label
)

hChart is the chart handle. axis must be either XRT_AXIS_X, XRT_AXIS_Y, or
XRT_AXIS_Y2; the value element in the XrtValueLabel structure pointed to by label
should be filled in before calling this procedure. This procedure returns a pointer to
an existing XrtValueLabel structure that has the closest value (to the one passed in). If
an invalid axis is specified, or there are no Value-labels defined, NULL is returned.
The pointer returned by this procedure should be considered read-only.

Appendix B ■ Procedures and Methods Reference 131

XrtGetValues()
Retrieves the current value of one or more chart properties.

void
XrtGetValues(

HXRT2D hChart,
...,
NULL
)

hChart is the chart handle. ... is one or more property-value pairs. Each pair consists
of a property name and a pointer to a variable for its value. Olectra Chart writes the
current value of the property to this variable. The list is terminated by NULL.

XrtGetWindow()
Retrieves the window attached to a chart.

HWND
XrtGetWindow(

HXRT2D hChart
)

hChart is the chart handle.

XrtInsertNthDataStyle()
Inserts a new data style which becomes the nth data style.

void
XrtInsertNthDataStyle(

HXRT2D hChart,
int index,
XrtDataStyle *ds
int dataset
)

hChart is the chart handle. The (zero-based) index specifies the index of the new data
style. All data styles with index greater than or equal to index are shifted up. ds points
to an XrtDataStyle structure containing the new data style to be used. Olectra Chart
makes its own copy of the data style pointed to by ds. dataset is either 1 or 2,
indicating that either the first or second set of data styles is to be operated on.

A side effect of using this method is that XRT_DATA_STYLES_USE_DEFAULT is set
to FALSE.

XrtInsertNthPointLabel()
XrtInsertNthPointLabel2()
Inserts a new Point-label which becomes the nth Point-label.
XrtInsertNthPointLabel2() operates on the second set of Point-labels used in
combination charts.

void
XrtInsertNthPointLabel(

HXRT2D hChart,
int index,
char *s
)

132 Part II ■ Reference Appendices

hChart is the chart handle. The (zero-based) index specifies the index of the new
Point-label. All Point-labels with index greater than or equal to index are shifted up. s
is the string to be used. Olectra Chart makes its own copy of the characters pointed
to by s.

XrtInsertNthSetLabel()
XrtInsertNthSetLabel2()
Inserts a new Set-label which becomes the nth Set-label. XrtInsertNthSetLabel2()
operates on the second set of Set-labels used in combination charts.

void
XrtInsertNthSetLabel(

HXRT2D hChart,
int index,
char *s
)

hChart is the chart handle. The (zero-based) index specifies the index of the new Set-
label. All Set-labels with index greater than or equal to index are shifted up. s is the
string to be used. Olectra Chart copies the characters pointed to by s.

XrtMakeData()
Procedure used to allocate an empty XrtData structure. XRT_HUGE_VAL is used as
the hole value.

XrtData *
XrtMakeData(

XrtDataType data_style,
int nsets,
int npoints,
BOOL all
)

data_style must be either XRT_DATA_GENERAL or XRT_DATA_ARRAY. If all is
TRUE, then space for the data values is also allocated, otherwise only the structure
and pointers are allocated. When the style is XRT_DATA_GENERAL, npoints refers
to the maximum number of points in each set.

XrtMakeDataFromFile()
Procedure which will allocate an XrtData structure and load it with data read in from
a text file.

XrtData *
XrtMakeDataFromFile(

char *filename,
char *errbuf
)

filename is the filename of the data file. If XrtMakeDataFromFile() encounters any
errors, it will return NULL, and will write an error message in errbuf. If errbuf is
NULL, error messages will be written to a debug window. errbuf should be at least
100 bytes.

Lines in the file beginning with a “#” symbol in the first position are treated as
comments and ignored. The first non-comment line must begin with either

Appendix B ■ Procedures and Methods Reference 133

“ARRAY” or “GENERAL” followed by 2 integers specifying the number of sets
(nsets) and the number of points (npoints) in each set. (If GENERAL is specified, the
second integer specifies the maximum number of points in each set.) The two integers
may optionally be followed by the character “T” to indicate that the data which
follows is transposed.

The second non-comment line can optionally specify a hole value with the text
“HOLE <value>”. When Olectra Chart sees this value in the dataset, it treats that
point as missing. The default hole value is XRT_HUGE_VAL.

If ARRAY is specified, the next npoints values are treated as the X-values. The
following npoints values are treated as the first set’s Y-values. The following npoints
values are treated as the second set’s Y-values, etc.

ARRAY DATA
An example of an ARRAY specification follows:

The Michelle’s Microchips mm63 file
ARRAY 2 4
HOLE 10000
X-values
1.0 2.0 3.0 4.0
Y-values line 1 - Expenses
150.0 175.0 160.0 170.0
Y-values line 2
125.0 100.0 225.0 300.0 - Revenue

ARRAY DATA with “T”
An example of the same array data in transposed form follows:

The Michelle’s Microchips mm63 file transposed
ARRAY 2 4 T
X-values Y1 ExpensesY2 Revenues
1.0 150.0 125.0
2.0 175.0 100.0
3.0 160.0 225.0
4.0 170.0 300.0

If GENERAL is specified, each of the set definitions begins with an integer specifying
the number of points in the set, followed by each of the set’s X-values, followed by
each of the set’s Y-values.

134 Part II ■ Reference Appendices

GENERAL DATA
An example of a GENERAL specification follows:

3 lines, max 5 points each
GENERAL 3 5
HOLE 10000
line 1, 3 points
3
1 3 5
5 14 24
line 2, 5 points
5
1 2 3 4 5
11 15 18 21 22.
line 3, 2 points
2
2 4
16 15.2

GENERAL DATA with “T”
GENERAL data may also be specified with the “T” transpose option.

3 lines, max 5 points each, transposed
GENERAL 3 5 T
line 1, 3 points
3
X Y
1 5
3 14
5 24
line 2, 5 points
5
X Y
1 11
2 15
3 18
4 21
5 22
line 3, 2 points
2
X Y
2 16
4 15.2

XrtMakeTime()
Converts time information into a long integer (representing the number of seconds
since January 1, 1970).

long
XrtMakeTime(

int yr,
int mon,
int day,
int hr,
int min,
int sec,
)

Appendix B ■ Procedures and Methods Reference 135

yr is the year minus 1900. mon is a value from 0 to 11 representing the month. day is
the day of the month. hr is a value from 0 to 23 representing the hour of the day. min
and sec are the minute and second.

XrtMap()
Maps a pixel coordinate to a chart coordinate.

XrtRegion
XrtMap(

HXRT2D hChart,
int yaxis,
int pix_x,
int pix_y,
XrtMapResult *map
)

Used by an application to determine the chart coordinates corresponding to pix_x
and pix_y (in the chart whose handle is specified by hChart). Set yaxis to 1 for the
coordinate system defined by the first Y-axis, or set to 2 for the second Y-axis.
Results are returned in map. Typically used in an event handling procedure.

XrtPick()
Picks the displayed data that is closest to the given pixel coordinate.

XrtRegion
XrtPick(

HXRT2D hChart,
XrtDsGroup ds_group,
int pix_x,
int pix_y,
XrtPickResult *pick,
XrtFocus focus
)

Used by an application to determine what data (in terms of set and point) is displayed
closest to the pixel at (pix_x, pix_y) in the chart whose handle is specified by hChart.
Results are returned in pick. Typically used in an event handling procedure.

The ds_group parameter is used to tell XrtPick() which dataset to use in combination
charts. When calling XrtPick() on a single chart, set this to XRT_DATASET1. On
combination charts, set it to XRT_DATASET1 or XRT_DATASET2 to restrict pick
results to one of the datasets. Setting it to XRT_DATASET1 | XRT_DATASET2
causes XrtPick() to consider both datasets.

The focus parameter indicates the method used by the XrtPick() routine to determine
the closest set and point. Setting focus to XRT_XFOCUS means that only the distance
along the X-axis is used to determine “closeness”. Setting it to XRT_YFOCUS means
that only the distance along the Y-axis is used. Setting it to XRT_XFOCUS |
XRT_YFOCUS means that both the X- and Y-axis distance is used.

136 Part II ■ Reference Appendices

XrtPrint()
Outputs a chart to a printer using the Windows Print dialog box.

BOOL
XrtPrint(

HXRT2D hChart,
XrtDrawFormat format,
XrtDrawScale scale,
long left, top, width, height
)

hChart is the chart handle. format is the graphics format to use and can be:
XRT_DRAW_BITMAP for a Windows bitmap (BMP); XRT_DRAW_METAFILE for
a Windows metafile (WMF); or XRT_DRAW_ENHMETAFILE (Windows 95 and
Windows NT applications only) for an enhanced metafile (EMF). scale specifies the
scaling to perform when printing, and is one of XRT_DRAWSCALE_NONE (no
scaling), XRT_DRAWSCALE_TOWIDTH (scale to width specified by width,
preserving aspect ratio and ignoring height), XRT_DRAWSCALE_TOHEIGHT (scale
to height specified by height, preserving aspect ratio and ignoring width),
XRT_DRAWSCALE_TOFIT (scale to minimum of height or width, preserving aspect
ratio), XRT_DRAWSCALE_TOMAX (enlarge to size of page regardless of aspect
ratio). left is the offset from the left of the page. top is the offset from the top of the
page. width specifies the width to scale to; to use the existing window width, set width
to 0. height specifies the height to scale to; to use the existing window height, set height
to 0.

XrtRemoveNthDataStyle()
Removes the nth data style.

void
XrtRemoveNthDataStyle(

HXRT2D hChart,
int index,
int dataset
)

hChart is the chart handle. The (zero-based) index specifies the index of the data style
to be removed. All data styles with index greater than index are shifted down. dataset
is either 1 or 2, indicating that either the first or second set of data styles is to be
operated on.

XrtSaveDataToFile()
Writes data stored in an XrtData structure to a text file in a format suitable for use
with XrtMakeDataFromFile().

int
XrtSaveDataToFile(

XrtData *data,
char *filename,
char *errbuf
)

data is the structure containing the data to be written. filename is the filename of the
file to be written. If any errors are encountered, messages will be written to errbuf
(which should be at least 100 bytes long). If errbuf is NULL, messages will be written

Appendix B ■ Procedures and Methods Reference 137

to a debug window. This procedure returns 1 on success and 0 on failure.
XrtSaveDataToFile() writes the hole value in the XrtData structure to the second line
of the file.

XrtSetAction()
Programs an action for the Microsoft Windows event. Any previous action for this
event is replaced.

void
XrtSetAction(

HXRT2D hChart,
UINT msg,
UINT modifier,
UINT keycode,
XrtAction action
)

hChart is the chart handle. msg is the message for this window event. modifier specifies
the modifier flags, if any. keycode is the keycode. action is the new action for this event;
if action is XRT_ACTION_NONE, the action mapping is completely removed.

XrtSetNthDataStyle()
XrtSetNthDataStyle2()
Sets the nth data style. XrtSetNthDataStyle2() operates on the second set of data
styles used in combination charts.

void
XrtSetNthDataStyle(

HXRT2D hChart,
int index,
XrtDataStyle *ds
)

hChart is the chart handle. The (zero-based) index specifies which data style should be
changed. ds points to an XrtDataStyle structure containing the new data style to be
used. Olectra Chart makes its own copy of the data style pointed to by ds.

A side effect of using this method is that XRT_DATA_STYLES_USE_DEFAULT is set
to FALSE.

XrtSetNthFooterString()
Sets the nth footer string.

void
XrtSetNthFooterString(

HXRT2D hChart,
int index,
char *s
)

hChart is the chart handle. The (zero-based) index specifies which footer string should
be changed. s is the new string to be used. Olectra Chart makes its own copy of the
characters pointed to by s.

138 Part II ■ Reference Appendices

XrtSetNthHeaderString()
Sets the nth header string.

void
XrtSetNthHeaderString(

HXRT2D hChart,
int index,
char *s
)

hChart is the chart handle. The (zero-based) index specifies which header string
should be changed. s is the new string to be used. Olectra Chart makes its own copy
of the characters pointed to by s.

XrtSetNthPointLabel()
XrtSetNthPointLabel2()
Sets the nth Point-label. XrtSetNthPointLabel2() operates on the second set of Point-
labels used in combination charts.

void
XrtSetNthPointLabel(

HXRT2D hChart,
int index,
char *s
)

hChart is the chart handle. The (zero-based) index specifies which Point-label should
be changed. s is the new string to be used. Olectra Chart makes its own copy of the
characters pointed to by s.

XrtSetNthSetLabel()
XrtSetNthSetLabel2()
Sets the nth Set-label. XrtSetNthSetLabel2() operates on the second set of Set-labels
used in combination charts.

void
XrtSetNthSetLabel(

HXRT2D hChart,
int index,
char *s
)

hChart is the chart handle. The (zero-based) index specifies which Set-label should be
changed. s is the new string to be used. Olectra Chart copies the characters pointed
to by s.

XrtSetPropString()
Sets a chart property to the value represented by a string.

BOOL
XrtSetPropString(

HXRT2D hChart,
int property,
char *str
)

Appendix B ■ Procedures and Methods Reference 139

hChart is the chart handle. property specifies any Olectra Chart property; str is a
pointer to a string representation to set the property to.

XrtSetValueLabel()
Defines a new Value-label, on either the X-, Y-, or Y2-axis.

void
XrtSetValueLabel(

HXRT2D hChart,
XrtAxis axis,
XrtValueLabel *label
)

hChart is the chart handle. axis must be either XRT_AXIS_X, XRT_AXIS_Y, or
XRT_AXIS_Y2; the value and string elements in the XrtValueLabel structure pointed
to by label should be filled in before calling this procedure. This procedure adds the
new Value-label to the chart. Olectra Chart copies the XrtValueLabel pointed to by
label.

XrtSetValues()
Sets one or more chart properties.

void
XrtSetValues(

HXRT2D hChart,
...,
NULL
)

hChart is the chart handle. ... is one or more property-value pairs. Each pair consists
of a property name and a variable (must be the same data type as the property)
containing its new value. Olectra Chart sets the property to the value. The list is
NULL-terminated.

XrtTextAttach()
Attaches a text area to a chart.

void
XrtTextAttach(

HXRT2D hChart,
XrtTextHandle handle
)

XrtTextCreate()
Used to create a new text area. Returns the text area’s handle. See section 6.3 on
page 85 for information on text areas.

XrtTextHandle
XrtTextCreate(

HXRT2D hChart,
XrtTextDesc *textd
)

140 Part II ■ Reference Appendices

XrtTextDestroy()
Destroys a text area.

void
XrtTextDestroy(

HXRT2D hChart,
XrtTextHandle handle
)

XrtTextDetach()
Detaches a text area from a chart.

void
XrtTextDetach(

HXRT2D hChart,
XrtTextHandle handle
)

XrtTextDetail()
Retrieves text area information. Returns 1 if handle is valid, and 0 otherwise.

int
XrtTextDetail(

HXRT2D hChart,
XrtTextHandle handle,
XrtTextDesc *textd
)

XrtTextUpdate()
Updates text area information.

void
XrtTextUpdate(

HXRT2D hChart,
XrtTextHandle handle,
XrtTextDesc *textd
)

XrtTimeToValue()
Converts a time_t value to a value representing its position on the Time-axis.

double
XrtTimeToValue(

HXRT2D hChart,
time_t value
)

hChart is the chart handle. value is the time value to be converted.

Appendix B ■ Procedures and Methods Reference 141

XrtUnmap()
Unmaps from a chart coordinate to a pixel coordinate.

void
XrtUnmap(

HXRT2D hChart,
int yaxis,
double x,
double y,
XrtMapResult *map
)

Used by an application to determine the pixel coordinates corresponding to chart
coordinate (x, y) in the chart whose handle is specified by hChart. Set yaxis to 1 to
unmap from the coordinate system defined by the first Y-axis, or set to 2 for the
second Y-axis. Results are returned in the pix_x and pix_y elements of the structure
pointed to by map. pix_x and pix_y values of -1 are returned for unmap requests that
are out of range. In non-transposed discrete charts, pix_x will be -1. In transposed
discrete charts, pix_y will be -1.

XrtUnpick()
Determines a pixel coordinate given a dataset set and point.

void
XrtUnpick(

HXRT2D hChart,
int dataset,
int set,
int point,
XrtPickResult *pick
)

Used by an application to determine the pixel coordinates at which a data element is
displayed (in the chart whose handle is specified by hChart).

Set dataset to XRT_DATASET1 unless unpicking from the second dataset of a
combination chart. set and point are indices into the dataset.

Results are returned in the pix_x and pix_y elements of the structure pointed to by
pick. Both pix_x and pix_y will be -1 if the data is out of range.

XrtValueToTime()
Converts a position on the Time-axis to its equivalent time_t value.

time_t
XrtValueToTime(

HXRT2D hChart,
double value
)

hChart is the chart handle. value is the Time-axis position to be converted.

142 Part II ■ Reference Appendices

143

C
Macros

The following macros are provided for convenience in accessing various portions of
the XrtData structure. They are defined in OLCH2DCM.H, located in Olectra
Chart’s \INCLUDE directory.

Macro Name Definition

arr_nsets a.nsets

arr_npoints a.npoints

arr_data a.data

arr_hole a.hole

arr_xdata arr_data.xp

arr_ydata arr_data.yp

arr_xel(j) arr_xdata[j]

arr_yel(i, j) arr_ydata[i][j]

gen_nsets g.nsets

gen_data g.data

gen_hole g.hole

gen_npoints(i) gen_data[i].npoints

gen_xdata(i) gen_data[i].xp

gen_ydata(i) gen_data[i].yp

gen_xel(i, j) gen_xdata(i)[j]

gen_yel(i, j) gen_ydata(i)[j]

XrtGetDataType(xrt_data) (xrt_data->g.type)

144 Part II ■ Reference Appendices

145

D
Message Reference

This appendix lists the Olectra Chart messages in alphabetical order.

XRTN_MODIFY_END
Sent to a chart’s parent window to indicate that user interaction has ended:

XRTN_MODIFY_END:
hWnd = (HWND) wParam;

wParam is the window handle.

XRTN_MODIFY_START
Sent to a chart’s parent window to indicate that a user interaction is about to begin:

XRTN_MODIFY_START:
hWnd = (HWND) wParam;
mcb = (XrtModifyCallbackStruct *) lParam;

typedef struct {
BOOL doit;

} XrtModifyCallbackStruct;

wParam is the window handle. lParam is a pointer to a modification message
structure. In this structure, the doit element indicates whether the user interaction is
to be permitted; set doit to FALSE to disallow this user interaction.

XRTN_PALETTECHANGED
Sent to a chart’s parent window after the chart control has changed its color palette.

XRTN_PALETTECHANGED:
hWnd = (HWND) wParam;

wParam is the window handle.

146 Part II ■ Reference Appendices

XRTN_PROPERTIES
Sent to a chart’s parent window to indicate that the user has requested to activate the
property page:

XRTN_PROPERTIES:
hWnd = (HWND) wParam;
pcb = (XrtPropertiesCallbackStruct *) lParam;

typedef struct {
int x;
int y;

} XrtPropertiesCallbackStruct;

wParam is the window handle. lParam is a pointer to a modification message
structure. In this structure, the x and y elements indicate the coordinates at which the
event occurred.

XRTN_REPAINTED
Sent to a window after the chart control has been redrawn:

XRTN_REPAINTED:
hWnd = (HWND) wParam;
cb = (XrtCallbackStruct *) lParam;

typedef struct {
HDC hdc;
RECT rectDamaged;

} XrtCallbackStruct;

wParam is the window handle. lParam is a pointer to a repaint message structure. In
this structure, hdc is the handle to the device context, and rectDamaged is the rectangle
that has been repainted.

XRTN_RESIZED
Sent to a window after the chart control has changed size:

XRTN_RESIZED:
hWnd = (HWND) wParam;
rcb = (XrtResizeCallbackStruct *) lParam;

typedef struct {
int width;
int height;

} XrtResizeCallbackStruct;

wParam is the window handle. lParam is a pointer to a resize message structure. In
this structure, width is the new width of the control, and height is the new height of the
control.

Appendix D ■ Message Reference 147

XRTN_ROTATE
Sent to a window when the user attempts to perform a rotation operation:

XRTN_ROTATE:
hWnd = (HWND) wParam;
rcb = (XrtRotateCallbackStruct *) lParam;

typedef struct {
int rotation;
int inclination;
BOOL doit;

} XrtRotateCallbackStruct;

wParam is the window handle. lParam is a pointer to a rotation message structure. In
this structure, rotation and inclination are the proposed values for the
XRT_GRAPH_ROTATION and XRT_GRAPH_INCLINATION properties; they can
be modified by the message handler. The doit element indicates whether the rotation
is to be permitted; set doit to FALSE to disallow this rotation.

XRTN_TRANSFORM
Sent to a window when the user attempts to perform a scaling, translation, or
zooming operation:

XRTN_TRANSFORM:
hWnd = (HWND) wParam;
tcb = (XrtTransformCallbackStruct *) lParam;

typedef struct {
BOOL reset;/* Read-only */
int left_margin;
int right_margin;
int top_margin;
int bottom_margin;
BOOL doit;

} XrtTransformCallbackStruct;

wParam is the window handle. lParam is a pointer to a transformation message
structure. In this structure, left_margin, right_margin, top_margin and bottom_margin are
the proposed values for the Margin properties (XRT_GRAPH_MARGIN_BOTTOM,
etc.); they can be modified to limit the scope of the transformation. The doit element
indicates whether the transformation is to be permitted; set doit to FALSE to disallow
this transformation.

148 Part II ■ Reference Appendices

149

E
Data Types

This appendix lists the Olectra Chart data types in alphabetical order. The C
language definition of structures is also provided.

XrtAdjust
Enumeration used by the XRT_FOOTER_ADJUST and XRT_HEADER_ADJUST
properties:

XRT_ADJUST_LEFT
XRT_ADJUST_RIGHT
XRT_ADJUST_CENTER

XrtAlign
Enumeration used with the XRT_LEGEND_ORIENTATION property:

XRT_ALIGN_VERTICAL
XRT_ALIGN_HORIZONTAL

XrtAnchor
Enumeration used with the XRT_LEGEND_ANCHOR property and for text areas:

XRT_ANCHOR_NORTH
XRT_ANCHOR_SOUTH
XRT_ANCHOR_EAST
XRT_ANCHOR_WEST
XRT_ANCHOR_NORTHWEST
XRT_ANCHOR_NORTHEAST
XRT_ANCHOR_SOUTHWEST
XRT_ANCHOR_SOUTHEAST
XRT_ANCHOR_HOME
XRT_ANCHOR_BEST

XRT_ANCHOR_HOME and XRT_ANCHOR_BEST are for use in text areas only.

150 Part II ■ Reference Appendices

XrtAnnoMethod
Enumeration used to define methods for X-, Y-, and Y2-axis annotation. Used with
the XRT_[XYY2]ANNOTATION_METHOD property:

XRT_ANNO_VALUES
XRT_ANNO_POINT_LABELS
XRT_ANNO_VALUE_LABELS
XRT_ANNO_TIME_LABELS

XrtAnnoPlacement
Enumeration used with the XRT_[XY]ANNO_PLACEMENT property to select the
location of axis annotation:

XRT_ANNO_AUTO
XRT_ANNO_ORIGIN
XRT_ANNO_MIN
XRT_ANNO_MAX

XrtArray
The structure defining XrtData when type is XRT_DATA_ARRAY:

typedef struct {
XrtDataType type;/*=XRT_DATA_ARRAY */
double hole;
int nsets;
int npoints;
XrtArrayData data;

} XrtArray;

XrtArrayData
The structure defining data values within an XrtArray structure:

typedef struct {
double *xp;
double **yp;

} XrtArrayData;

XrtAttachType
Enumeration used to specify the type of text area attachment:

XRT_TEXT_ATTACH_PIXEL
XRT_TEXT_ATTACH_VALUE
XRT_TEXT_ATTACH_DATA
XRT_TEXT_ATTACH_DATA_VALUE

XrtAxis
Enumeration used to specify an axis. Used with XrtGetValueLabel() and
XrtSetValueLabel():

XRT_AXIS_X
XRT_AXIS_Y
XRT_AXIS_Y2

Appendix E ■ Data Types 151

XrtBorder
Enumeration used by XRT_HEADER_BORDER, XRT_FOOTER_BORDER,
XRT_LEGEND_BORDER, and XRT_GRAPH_BORDER and text
areas:

XRT_BORDER_NONE
XRT_BORDER_3D_OUT
XRT_BORDER_3D_IN
XRT_BORDER_ETCHED_IN
XRT_BORDER_ETCHED_OUT
XRT_BORDER_SHADOW
XRT_BORDER_PLAIN

XrtCallbackStruct
Structure that defines the information passed to the message handler when the chart
control has been redrawn:

typedef struct {
HDC hdc;
RECT rectDamaged;

} XrtCallbackStruct;

XrtData
The structure defining data for use with XRT_DATA. It is a union of either array data
or general data:

typedef union {
XrtArray a;
XrtGeneral g;

} XrtData;

XrtDataStyle
The structure defining how a particular set of data will appear when graphed:

typedef struct {
XrtLinePattern lpat; /* line pattern */
XrtFillPattern fpat; /* fill pattern */
COLORREF color; /* color */
int width; /* line width */
XrtPoint point; /* point style */
COLORREF pcolor; /* point color */
int psize; /* point size */
COLORREF resh; /* reserved */
COLORREF ress; /* reserved */

} XrtDataStyle;

XrtDataType
Enumeration used for defining the type of an XrtData structure:

XRT_DATA_ARRAY
XRT_DATA_GENERAL

152 Part II ■ Reference Appendices

XrtDrawFormat
Enumeration used to specify chart output format with the XrtDrawToClipboard(),
XrtDrawToDC(), XrtDrawToFile(), and XrtPrint() procedures:

XRT_DRAW_BITMAP
XRT_DRAW_METAFILE
XRT_DRAW_ENHMETAFILE

XrtDrawScale
Enumeration used to specify the scaling factor to use when printing the chart:

XRT_DRAWSCALE_NONE
XRT_DRAWSCALE_TOWIDTH
XRT_DRAWSCALE_TOHEIGHT
XRT_DRAWSCALE_TOFIT
XRT_DRAWSCALE_MAX

XrtFillPattern
Enumeration of various fill patterns used within an XrtDataStyle structure:

XRT_FPAT_NONE
XRT_FPAT_SOLID
XRT_FPAT_25_PERCENT
XRT_FPAT_50_PERCENT
XRT_FPAT_75_PERCENT
XRT_FPAT_HORIZ_STRIPE
XRT_FPAT_VERT_STRIPE
XRT_FPAT_45_STRIPE
XRT_FPAT_135_STRIPE
XRT_FPAT_DIAG_HATCHED
XRT_FPAT_CROSS_HATCHED
XRT_WFPAT_BDIAGONAL
XRT_WFPAT_FDIAGONAL
XRT_WFPAT_HORIZONTAL
XRT_WFPAT_VERTICAL
XRT_WFPAT_CROSS
XRT_WFPAT_DIAGCROSS

XrtGeneral
The structure defining XrtData when type is XRT_DATA_GENERAL:

typedef struct {
XrtDataType type; /*=XRT_DATA_GENERAL*/
double hole;
int nsets;
XrtGeneralData *data;

} XrtGeneral;

XrtGeneralData
The structure defining the data values within an XrtGeneral structure:

typedef struct {
int npoints;
double *xp;
double *yp;

} XrtGeneralData;

Appendix E ■ Data Types 153

XrtLinePattern
Enumeration of various line patterns, used within an XrtDataStyle structure:

XRT_LPAT_NONE
XRT_LPAT_SOLID
XRT_LPAT_LONG_DASH
XRT_LPAT_DOTTED
XRT_LPAT_SHORT_DASH
XRT_LPAT_LSL_DASH
XRT_LPAT_DASH_DOT

XrtMapResult
Structure used to pass information about mapped pixel coordinates:

typedef struct {
int pix_x, pix_y;
int yaxis;
double x, y;

} XrtMapResult;

XrtNumMethod
Enumeration used with the XRT_[XYY2]NUM_METHOD property to determine
how to calculate axis annotation:

XRT_NUM_PRECISION
XRT_NUM_ROUND

XrtOriginPlacement
Enumeration used to select the way in which the default origin is chosen:

XRT_ORIGIN_AUTO
XRT_ORIGIN_ZERO
XRT_ORIGIN_MIN
XRT_ORIGIN_MAX

XrtPickResult
Structure used to pass information about picked pixel coordinates:

typedef struct {
int pix_x, pix_y;
int dataset;
int set, point;
int distance;

} XrtPickResult;

XrtPieOrder
Enumeration of pie ordering styles:

XRT_PIEORDER_ASCENDING
XRT_PIEORDER_DESCENDING
XRT_PIEORDER_DATA_ORDER

XrtPieThresholdMethod
Enumeration of pie threshold methods:

XRT_PIE_SLICE_CUTOFF
XRT_PIE_PERCENTILE

154 Part II ■ Reference Appendices

XrtPoint
Enumeration of various point styles used in XrtDataStyle:

XRT_POINT_NONE
XRT_POINT_DOT
XRT_POINT_BOX
XRT_POINT_TRI
XRT_POINT_DIAMOND
XRT_POINT_STAR
XRT_POINT_VERT_LINE
XRT_POINT_HORIZ_LINE
XRT_POINT_CROSS
XRT_POINT_CIRCLE
XRT_POINT_SQUARE

XrtPropertiesCallbackStruct
Structure that defines the information passed to the message handler when the user
clicks the right mouse button to activate the property page:

typedef struct {
int x;
int y;

} XrtPropertiesCallbackStruct;

XrtRectangle
Structure used to define the bounding box of a text area:

typedef struct {
int x;
int y;
int width;
int height;

} XrtRectangle;

XrtRegion
Enumeration of map or pick results. Returned by XrtMap() and XrtPick():

XRT_RGN_NOWHERE
XRT_RGN_IN_GRAPH
XRT_RGN_IN_LEGEND
XRT_RGN_IN_FOOTER
XRT_RGN_IN_HEADER

XrtResizeCallbackStruct
Structure that defines the information passed to the message handler when the chart
control changes size:

typedef struct {
int width;
int height;

} XrtResizeCallbackStruct;

Appendix E ■ Data Types 155

XrtRotate
Enumeration used to define counter-clockwise rotation in degrees. Used with title
and annotation rotation properties:

XRT_ROTATE_NONE
XRT_ROTATE_90
XRT_ROTATE_270

XrtRotateCallbackStruct
Structure that defines the information passed to the message handler when the user
rotates a chart:

typedef struct {
int rotation;
int inclination;

} XrtRotateCallbackStruct;

XrtTextDesc
Structure used to specify a text area:

typedef struct {
XrtTextPosition position;
char ** strings;
XrtAnchor anchor;
int offset;
int connected;
XrtAdjust adjust;
COLORREF fore_color;
COLORREF back_color;
XrtBorder border;
int border_width;
HFONT font;
XrtRectangle coords; /* read-only */

} XrtTextDesc;

156 Part II ■ Reference Appendices

XrtTextPosition
Union used to specify the position of a text area:

typedef union {
struct {
XrtAttachType type;
int x, y;

} pixel;
struct {

XrtAttachType type;
int dataset;
double x, y;

} value;
struct {

XrtAttachType type;
int dataset;
int set, point;

} data;
struct {

XrtAttachType type;
int dataset;
int set, point;
double y;

} data_value;
} XrtTextPosition;

XrtTimeUnit
Enumeration used to define time units. Used with XRT_TIME_UNIT:

XRT_TMUNIT_SECONDS
XRT_TMUNIT_MINUTES
XRT_TMUNIT_HOURS
XRT_TMUNIT_DAYS
XRT_TMUNIT_WEEKS
XRT_TMUNIT_MONTHS
XRT_TMUNIT_YEARS

XrtTransformCallbackStruct
Structure that defines the information passed to the message handler when the user
scales, translates or zooms a chart:

typedef struct {
int left_margin;
int right_margin;
int top_margin;
int bottom_margin;
BOOL doit;

} XrtTransformCallbackStruct;

XrtType
Enumeration used to define chart types. Used with XRT_TYPE:

XRT_TYPE_PLOT
XRT_TYPE_BAR
XRT_TYPE_PIE
XRT_TYPE_STACKING_BAR
XRT_TYPE_AREA

Appendix E ■ Data Types 157

XrtValueLabel
The structure defining a single Value-label for the X-, Y-, or Y2-axis. Used with the
XRT_[XYY2]LABELS property.

typedef struct {
double value;
char *string;

} XrtValueLabel;

158 Part II ■ Reference Appendices

159

F
Sample Code

PANEL.C

This appendix describes Olectra Chart’s sample code and provides a listing of one
program.

C Examples
Olectra Chart provides the following examples, located in Olectra Chart’s
\CHART\2D\DEMOS\DLL\SDK directory. There is a directory for each program.

■ PLOT1 displays a very basic chart that you can use to learn some Olectra Chart
basics. It is the starting point for the discussion in Chapter 1.

■ PANEL displays a simple chart that the user can manipulate by clicking on
several buttons. It is the ending point for the discussion in Chapter 1.

■ CASHFLOW displays an income and expenses report broken down by category.

■ STOCK displays a simple stock-market simulation using two charts (one for
stock prices, the other for volume). This program also shows how to create a
combination chart and use the Fast Update functions to quickly add points to it.

■ TIME shows how to label the X-axis using Time-axis labels. The chart interprets
X-values as months.

MFC Example
Olectra Chart provides a simple program that uses the MFC classes. It is located in
Olectra Chart’s \CHART\2D\DEMOS\DLL\MFC directory.

OWL Example
Olectra Chart provides a simple program that uses the OWL classes. It is located in
Olectra Chart’s \CHART\2D\DEMOS\DLL\OWL directory.

F.1 PANEL.C

The PANEL.C program defines a window containing several button controls. A
chart is created below the buttons. Message handlers are registered for the buttons.

160 Part II ■ Reference Appendices

When the user clicks a button, the message handler runs and changes a chart
property.

When run, the window in Figure 7 on page 14 displays.

#include <windows.h>
#include <olch2d.h>
#include "panel.h"

/* Text Strings for the graph */
char *header_strings[] = { "Michelle’s Microchips", NULL };
char *footer_strings[] = { "1963 Quarterly Results", NULL };

/* Label Strings */
char *set_labels[] = { "Expenses", "Revenue", NULL };
char *point_labels[] = { "Q1", "Q2", "Q3", "Q4", NULL };

long WINAPI
WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

static HWND hwndXrt2D;
static HXRT2D hChart;
static XrtData *my_data;
UINT wCheck;

switch (msg) {
case XRTN_PALETTECHANGED:

SendMessage(XrtGetWindow(hChart), WM_QUERYNEWPALETTE, 0, 0);
break;

case WM_QUERYNEWPALETTE:
case WM_PALETTECHANGED:

SendMessage(XrtGetWindow(hChart), msg, wParam, lParam);
break;

case WM_INITDIALOG:
hwndXrt2D = GetDlgItem(hWnd, IDGRAPH);
hChart = XrtCreate();
XrtAttachWindow(hChart, hwndXrt2D);
my_data = XrtMakeDataFromFile((LPSTR) "mm63.dat", NULL);
XrtSetValues(hChart,

XRT_DATA, my_data,
XRT_HEADER_STRINGS,header_strings,
XRT_FOOTER_STRINGS, footer_strings,
XRT_SET_LABELS, set_labels,
XRT_POINT_LABELS,point_labels,
XRT_XANNOTATION_METHOD,XRT_ANNO_POINT_LABELS,
NULL);

CheckRadioButton(hWnd, IDBAR, IDPLOT, IDPLOT);
SetFocus(hWnd);
break;

case WM_COMMAND:
/* check which button clicked and set graph properties appropriately */
switch (wParam) {
case IDBAR:

/* change the graph to a bar chart */
CheckRadioButton(hWnd, IDBAR, IDPLOT, wParam);

Appendix F ■ Sample Code 161

XrtSetValues(hChart, XRT_TYPE, XRT_TYPE_BAR, NULL);
break;

case IDPLOT:
/* change the graph to a plot graph */
CheckRadioButton(hWnd, IDBAR, IDPLOT, wParam);
XrtSetValues(hChart, XRT_TYPE, XRT_TYPE_PLOT, NULL);
break;

case IDTRAN:
/* transpose the points and sets of the graph */
wCheck = IsDlgButtonChecked(hWnd, IDTRAN);
CheckDlgButton(hWnd, IDTRAN, !wCheck);
XrtSetValues(hChart, XRT_TRANSPOSE_DATA, !wCheck, NULL);
break;

case IDINV:
/* invert the axes of the graph */
wCheck = IsDlgButtonChecked(hWnd, IDINV);
CheckDlgButton(hWnd, IDINV, !wCheck);
XrtSetValues(hChart, XRT_INVERT_ORIENTATION, !wCheck, NULL);
break;

}
break;

case WM_SIZE:
{

int width;
int height;
RECT rect;

width = LOWORD(lParam);
height = HIWORD(lParam);

GetWindowRect(hwndXrt2D, &rect);
SetWindowPos(hwndXrt2D, NULL, rect.left, rect.top,

width , height - rect.top + 23, SWP_NOMOVE);
}
break;

case WM_CLOSE:
XrtDestroyData(my_data, TRUE);
DestroyWindow(hWnd);

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return FALSE;

}
return TRUE;

}

int PASCAL
WinMain(HANDLE hInstance, HANDLE hPrevInstance, LPSTR lpszCmdLine, int nCmdShow)
{

static char szAppName[] = "panel";
HWND hWnd;
MSG msg;

162 Part II ■ Reference Appendices

WNDCLASS wc;
DLGPROC dlgprc;
if (!hPrevInstance) {

wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon (hInstance, IDI_APPLICATION);
wc.hCursor = LoadCursor (NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = szAppName;
if (!RegisterClass(&wc)) return FALSE;

}
dlgprc = (DLGPROC) MakeProcInstance((FARPROC)WndProc, hInstance);
hWnd = CreateDialog(hInstance, szAppName, 0, dlgprc);
ShowWindow(hWnd, nCmdShow);
while (GetMessage(&msg, NULL, 0, 0)) {

if (!IsDialogMessage(hWnd, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
return msg.wParam;

}

163

3D effect 45

A
action maps

changing 74
action maps and messages 69
actions

programming 73
adding a second Y-axis 83
annotating axes 27
annotation

overview 26
placing 41
rotating 41
setting font 43

annotation methods
Point-labels 27
Time-labels 27
Value-labels 27, 28
values 27, 28

arr_data macro 143
arr_hole macro 143
arr_npoints macro 143
arr_nsets macro 143
arr_xdata macro 143
arr_xel() macro 143
arr_ydata macro 143
arr_yel() macro 143
ARRAY 133
ARRAY DATA 133
ARRAY data

discussion of 11
Array data 63
ARRAY DATA with “T” 133
axis

annotation methods 27
bounding box 44
continuous, definition of 26
discrete, definition of 27
font 43
grid-lines 43
inverting orientation 42
labelling, overview 26
logarithmic 38
margins 42
minimum and maximum 39
numbering increment 37

numbering method 36
placing annotation and titles 41
precision 37
reversing direction of 43
rotating annotation 41
rotating titles 41
tick increment 37
title 42

axis bounds 39
axis properties, summary 24

B
background colors 56

chart 56
data area 56
footer 56
header 56
legend 56
window 56

bar chart properties 24
bar charts

3D effect 45
cluster overlap 52
cluster width 52
special properties 52
stacking type 53

border
footer 58
graph 58
header 58
legend 58
Text area 58

C
C++

MFC header file 19
OWL header file 19

C++ classes
CChart2D 19
CChart2DData 20
CChart2DTextArea 20
TChart2D 19
TChart2DData 20
TChart2DTextArea 20

callback structures

Index

164 Index

Properties 154
Resize 154
Rotate 155
Transform 156

CASHFLOW demo 159
changing action maps 74
changing chart data 66
chart

foreground color 56
margins 42
output 59
positioning 45

chart area positioning, properties 45
chart data 61
chart data area

background color 56
chart properties, summary 22
chart types 8

XRT_TYPE_AREA 8
XRT_TYPE_BAR 8
XRT_TYPE_PIE 8
XRT_TYPE_PLOT 8
XRT_TYPE_STACKING_BAR 8

class information 95
class name 95
color field, in XrtDataStyle 49
colors

background 56
foreground 56
palette notification message 57
specifying 56

combination charts
chart types 84
legend 85
marker dataset 57
overview 84
second Data style 85
special rules 84
using Y2-axis 85

continuous X-axis, definition 26
control

class name 95
include file 95
synopsis 95

controlling interactive rotate 73
controlling interactive scale, transform, zoom 72

D
data

Array 63
attaching to chart 61
changing 66
convenience macros 64
convenience procedures 65
default hole value 62
General 63
holes 62
setting hole value 62

static 67
XrtData structure 62

data area
background color 56

data from a file 61
data properties, summary 22
Data style properties, summary 23
Data styles 48

accessing 51
combination charts 85
default 48
fill patterns 50
grid 43
line patterns 49
marker 57
pie chart other slice 54
point styles 50
setting 50

data types, listing of 149
dataset, definition of 10
default user interactions 69
demo programs, discussion of 159
disabling all user interaction 71
disabling user interactions 75
discrete X-axis, definition 27
Distributing Olectra Chart Applications 20
double buffering chart updates 59
dual Y-axis

on combination charts 85
overview 83
relationship 83

F
Fast Update functions

XRTN_REPAINTED message triggering 90
Fast Update procedures 90

example 91
use of 91
XrtArrCheckAxisBounds() 91
XrtArrDataFastUpdate() 91
XrtArrDataShiftPts() 91
XrtGenCheckAxisBounds() 91
XrtGenDataFastUpdate() 91
XrtGenDataShiftPts() 91

fill patterns 50
fonts

and Microsoft Windows 3.1 19
setting, annotation/title 43
specifying 47

footer
border 58
font 47
foreground color 56
justification 47
positioning 45
text 47

footer area, definition 15
footer properties, summary 25

Index 165

foreground colors 56
chart 56
footer 56
header 56
legend 56
window 56

fpat field, in XrtDataStyle 49
framing chart display 39

G
gen_data macro 143
gen_hole macro 143
gen_npoints() macro 143
gen_nsets macro 143
gen_xdata() macro 143
gen_xel() macro 143
gen_ydata() macro 143
gen_yel() macro 143
GENERAL 133
GENERAL DATA 134
GENERAL data

discussion of 11
General data 63

transposing 30
use of Point-labels 30

GENERAL DATA with “T” 134
getting data into charts 61
graph

border 58
graph area, definition 15
graph areas

illustration 16
positioning 44

grid-lines
Data style 43
setting 43

H
header

border 58
font 47
foreground color 56
justification 47
positioning 45
text 47

header area, definition 15
header properties, summary 25
help support, see Getting Started booklet
holes in data 62

default hole value 62

I
include file, Olectra Chart 95
introduction to Olectra Chart

summary of features 1
inverting chart orientation 42

K
keycodes recognized 74

L
labelling axes, overview 26
labelling properties, summary 23
labels

other pie slice 54
placing 41
rotating 41
setting font 43

legend
border 58
combination charts 85
font 47
foreground color 56
orientation 47
positioning 45, 47
text 47

legend area, definition 15
legend properties, summary 26
line patterns 49
loading data from file 10
logarithmic axes 38

rules for X-axis 38
lpat field, in XrtDataStyle 48

M
macros 64

arr_data 143
arr_hole 143
arr_npoints 143
arr_nsets 143
arr_xdata 143
arr_xel() 143
arr_ydata 143
arr_yel() 143
gen_data 143
gen_hole 143
gen_npoints() 143
gen_nsets 143
gen_xdata() 143
gen_xel() 143
gen_ydata() 143
gen_yel() 143
XrtGetDataType() 143

marker properties, summary 23
markers 57

combination charts 84
performance issues 57
use in pie charts 57

166 Index

X-marker positioning 57
Y-marker positioning 58

MFC
header file 19

MFC C++ demo 159
MFC classes

CChart2D 19
CChart2DData 20
CChart2DTextArea 20

Microsoft Windows 3.1 and fonts 19
missing data values 62
modifier flags 74

N
numbering axes, methods 36
numbering increment 37
numbering precision 37

O
Olectra Chart

basic terminology 16
class information 95
class name 95
features summary 1
include file 95

OlectraChart2D, class name 95
orientation of chart 42
origin

placing 40
setting coordinates 39

other pie slice
Data style 54
disabling 54
labelling 54
threshold 54

outputting charts 59
OWL

header file 19
OWL C++ demo 159
OWL classes

TChart2D 19
TChart2DData 20
TChart2DTextArea 20

P
palette notification message 57
PANEL demo 159
PANEL.C 160
pcolor field, in XrtDataStyle 49
performance improvement

property updating 90
pie chart properties, summary 25
pie charts

3D effect 45

differences 54
disabling other slice 54
minimum slices 55
ordering of pies 55
other slice Data style 54
other slice label 54
other slice threshold 54
special properties 54
zero values 55

placing annotation and title 41
placing origins 40
PLOT1 demo 159
PLOT1.C

discussion of 7
listing of MM63.DAT file 11

point field, in XrtDataStyle 49
point styles 50
point, discussion of 11
Point-labels 30

definition of 28
use of 28

positioning axis in chart 42
positioning chart areas

strategies 45
positioning graph areas 44
positioning origins 40
precision 37
printing charts 59
programming actions 73
properties

batching updates 90
pointer 18
retrieving values 15
setting values 15
string 18
USE_DEFAULT 17

Properties callback structure 154
property summary

axis 24
bar chart 24
chart 22
data 22
Data style 23
footer 25
header 25
labelling 23
legend 26
marker 23
pie chart 25

psize field, in XrtDataStyle 49

R
Repaint message 81
resetting interactions 72
Resize callback structure 154
Resize message 81
resizing windows 80
reversing axis direction 43

Index 167

Rotate callback structure 155
rotating annotation and title 41
rotation, interactive 69

S
sample code 159
scaling, interactive 69
second Y-axis 83

relationship 83
set, discussion of 11
Set-labels 30

definition of 28
use of 28

specifying fonts 47
stacking bar charts 53
static data 67
STOCK demo 159
support, see Getting Started booklet

T
technical support, see Getting Started booklet
terminology of Olectra Chart 16
Text areas

batching creation/updates 90
border 58
creating and attaching 87
destroying 88
detaching 88
list of text handles 88
modifying 88
overview 85
performance issues 87
positioning 89
reattaching 88

tick increment 37
TIME demo 159
TIME.C example 35
Time-axis

criteria for use 33
example of use 35
format 34
time base 34
time units 34

Time-axis Labels 33
Time-axis, overview 33
Time-labels 33

overview 33
titles

placing 41
rotating 41
rotation along X-axis, limitation 41

titling an axis 42
Transform callback structure 156
translation, interactive 69
translations and actions

disabling 71

rotation 69
scaling 69
translation 69
zoom 69

U
user interaction

controlling rotate 73
controlling scale, translate, zoom 72
customizing 69
disabling all 71
ending 73
resetting 72
rotation 69
scaling 69
starting 71
translation 69
updating 71
zooming 69

user interaction, default 69
user interaction, programming

three stages 70

V
Value-labels

clearing 32
deleting 32
getting 32
setting 32
uses for 32

Value-labels, definition 31

W
width field, in XrtDataStyle 49
windows, resizing 80

X
XRT_AXIS_BOUNDING_BOX 44, 95
XRT_AXIS_FONT 43, 95
XRT_BACKGROUND_COLOR 56, 95
XRT_BAR_CLUSTER_OVERLAP 52, 96

limitation on stacking bar charts 53
XRT_BAR_CLUSTER_WIDTH 52, 96
XRT_BORDER 96
XRT_BORDER_WIDTH 96
XRT_DATA 62, 66, 96
XRT_DATA_AREA_BACKGROUND_COLOR 56,

96
XRT_DATA_GENERAL

transposing data 30
use of Point-labels 30

XRT_DATA_STYLES 51, 96
XRT_DATA_STYLES_USE_DEFAULT 48, 97

168 Index

XRT_DATA_STYLES2 85, 96
XRT_DATA_STYLES2_USE_DEFAULT 85, 97
XRT_DATA2 84, 96
XRT_DEBUG 97
XRT_DOUBLE_BUFFER 59, 97
XRT_FOOTER_ADJUST 47, 97
XRT_FOOTER_BACKGROUND_COLOR 97
XRT_FOOTER_BORDER 58, 97
XRT_FOOTER_BORDER_WIDTH 58, 97
XRT_FOOTER_FONT 97
XRT_FOOTER_FOREGROUND_COLOR 97
XRT_FOOTER_HEIGHT 98
XRT_FOOTER_STRINGS 47, 98
XRT_FOOTER_WIDTH 98
XRT_FOOTER_X 98
XRT_FOOTER_X_USE_DEFAULT 98
XRT_FOOTER_Y 98
XRT_FOOTER_Y_USE_DEFAULT 98
XRT_FOREGROUND_COLOR 56, 98
XRT_FRONT_DATASET 84, 98
XRT_GRAPH_BACKGROUND_COLOR 98
XRT_GRAPH_BORDER 58, 98
XRT_GRAPH_BORDER_WIDTH 58, 98
XRT_GRAPH_DEPTH 45, 73, 98
XRT_GRAPH_FOREGROUND_COLOR 99
XRT_GRAPH_HEIGHT 100
XRT_GRAPH_HEIGHT_USE_DEFAULT 100
XRT_GRAPH_INCLINATION 45, 73, 99
XRT_GRAPH_MARGIN_BOTTOM 42, 99
XRT_GRAPH_MARGIN_BOTTOM_USE_DEFAUL

T 99
XRT_GRAPH_MARGIN_LEFT 42, 99
XRT_GRAPH_MARGIN_LEFT_USE_DEFAULT 99
XRT_GRAPH_MARGIN_RIGHT 42, 99
XRT_GRAPH_MARGIN_RIGHT_USE_DEFAULT

99
XRT_GRAPH_MARGIN_TOP 42, 100
XRT_GRAPH_MARGIN_TOP_USE_DEFAULT 100
XRT_GRAPH_ROTATION 45, 73, 100
XRT_GRAPH_WIDTH 100
XRT_GRAPH_WIDTH_USE_DEFAULT 100
XRT_GRAPH_X 100
XRT_GRAPH_X_USE_DEFAULT 100
XRT_GRAPH_Y 100
XRT_GRAPH_Y_USE_DEFAULT 100
XRT_HEADER_ADJUST 47, 101
XRT_HEADER_BACKGROUND_COLOR 101
XRT_HEADER_BORDER 58, 101
XRT_HEADER_BORDER_WIDTH 58, 101
XRT_HEADER_FONT 101
XRT_HEADER_FOREGROUND_COLOR 101
XRT_HEADER_HEIGHT 101
XRT_HEADER_STRINGS 47, 101
XRT_HEADER_WIDTH 101
XRT_HEADER_X 101
XRT_HEADER_X_USE_DEFAULT 102
XRT_HEADER_Y 101
XRT_HEADER_Y_USE_DEFAULT 102
XRT_HEIGHT 102
XRT_INVERT_ORIENTATION 13, 42, 102

XRT_LEGEND_ANCHOR 47, 102
XRT_LEGEND_BACKGROUND_COLOR 102
XRT_LEGEND_BORDER 58, 102
XRT_LEGEND_BORDER_WIDTH 58, 102
XRT_LEGEND_FONT 102
XRT_LEGEND_FOREGROUND_COLOR 102
XRT_LEGEND_HEIGHT 103
XRT_LEGEND_ORIENTATION 47, 103
XRT_LEGEND_SHOW 103
XRT_LEGEND_WIDTH 103
XRT_LEGEND_X 103
XRT_LEGEND_X_USE_DEFAULT 103
XRT_LEGEND_Y 103
XRT_LEGEND_Y_USE_DEFAULT 103
XRT_MARKER_DATA_STYLE 57, 103
XRT_MARKER_DATA_STYLE_USE_DEFAULT

103
XRT_MARKER_DATASET 57, 84, 103
XRT_NAME 103
XRT_OTHER_DATA_STYLE 54, 103
XRT_OTHER_DATA_STYLE_USE_DEFAULT 104
XRT_OTHER_LABEL 54, 104
XRT_PIE_MIN_SLICES 55, 104
XRT_PIE_ORDER 55, 104
XRT_PIE_THRESHOLD_METHOD 54, 104
XRT_PIE_THRESHOLD_VALUE 54, 104
XRT_POINT_LABELS 30, 104

ignored 30
XRT_POINT_LABELS2 104
XRT_REPAINT 90, 105
XRT_SET_LABELS 30, 105
XRT_SET_LABELS2 105
XRT_TIME_BASE 33, 105
XRT_TIME_FORMAT 33, 105
XRT_TIME_FORMAT_USE_DEFAULT 33, 106
XRT_TIME_UNIT 33, 106
XRT_TRANSPOSE_DATA 13, 30, 106

effect on Point-labels and Set-labels 30
ignored 30

XRT_TYPE 8, 11, 53, 54, 106
XRT_TYPE2 84, 106
XRT_WIDTH 106
XRT_XANNO_PLACEMENT 41, 107
XRT_XANNOTATION_METHOD 12, 27, 30, 107

Point-labels 29
Time-labels 33
Value-labels 31

XRT_XANNOTATION_ROTATION 41, 107
XRT_XAXIS_LOGARITHMIC 38, 107
XRT_XAXIS_MAX 39, 108
XRT_XAXIS_MAX_USE_DEFAULT 108
XRT_XAXIS_MIN 39, 108
XRT_XAXIS_MIN_USE_DEFAULT 109
XRT_XAXIS_REVERSED 43, 109
XRT_XAXIS_SHOW 44, 109
XRT_XGRID 43, 109
XRT_XGRID_DATA_STYLE 43, 110
XRT_XGRID_DATA_STYLE_USE_DEFAULT 43,

110
XRT_XGRID_USE_DEFAULT 43, 110

Index 169

XRT_XLABELS 31, 110
XRT_XMARKER 57, 110
XRT_XMARKER_POINT 57, 110
XRT_XMARKER_SET 57, 110
XRT_XMARKER_SHOW 58, 111
XRT_XMAX 39, 111
XRT_XMAX_USE_DEFAULT 111
XRT_XMIN 39, 111
XRT_XMIN_USE_DEFAULT 112
XRT_XNUM 37, 112
XRT_XNUM_METHOD 36, 112
XRT_XNUM_USE_DEFAULT 112
XRT_XORIGIN 39, 112
XRT_XORIGIN_PLACEMENT 40, 113
XRT_XORIGIN_USE_DEFAULT 113
XRT_XPRECISION 37, 113
XRT_XPRECISION_USE_DEFAULT 37, 113
XRT_XTICK 37, 114
XRT_XTICK_USE_DEFAULT 114
XRT_XTITLE 42, 114
XRT_XTITLE_ROTATION 41, 114
XRT_Y2ANNOTATION_METHOD 28, 107

Value-labels 31
XRT_Y2ANNOTATION_ROTATION 41, 107
XRT_Y2AXIS_LOGARITHMIC 38, 107

relationship between Y-axes 84
XRT_Y2AXIS_MAX 39, 108
XRT_Y2AXIS_MAX_USE_DEFAULT 108
XRT_Y2AXIS_MIN 39, 108
XRT_Y2AXIS_MIN_USE_DEFAULT 109
XRT_Y2AXIS_REVERSED 43, 109
XRT_Y2AXIS_SHOW 44, 109
XRT_Y2LABELS 31, 110
XRT_Y2MAX 111
XRT_Y2MAX_USE_DEFAULT 111
XRT_Y2MIN 111
XRT_Y2MIN_USE_DEFAULT 112
XRT_Y2NUM 37, 112
XRT_Y2NUM_METHOD 36, 112
XRT_Y2NUM_USE_DEFAULT 112
XRT_Y2PRECISION 37, 83, 113
XRT_Y2PRECISION_USE_DEFAULT 37, 113
XRT_Y2TICK 37, 114
XRT_Y2TICK_USE_DEFAULT 114
XRT_Y2TITLE 42, 114
XRT_Y2TITLE_ROTATION 41, 114
XRT_YANNO_PLACEMENT 41, 107
XRT_YANNOTATION_METHOD 28, 107

Value-labels 31
XRT_YANNOTATION_ROTATION 41, 107
XRT_YAXIS_CONST 83, 115
XRT_YAXIS_LOGARITHMIC 38, 107
XRT_YAXIS_MAX 39, 108
XRT_YAXIS_MAX_USE_DEFAULT 108
XRT_YAXIS_MIN 39, 108
XRT_YAXIS_MIN_USE_DEFAULT 109
XRT_YAXIS_MULT 83, 115
XRT_YAXIS_REVERSED 43, 109
XRT_YAXIS_SHOW 44, 109
XRT_YGRID 43, 109

XRT_YGRID_DATA_STYLE 43, 110
XRT_YGRID_DATA_STYLE_USE_DEFAULT 43,

110
XRT_YGRID_USE_DEFAULT 43, 110
XRT_YLABELS 31, 110
XRT_YMARKER 58, 110
XRT_YMARKER_SHOW 58, 111
XRT_YMAX 39, 111
XRT_YMAX_USE_DEFAULT 111
XRT_YMIN 39, 111
XRT_YMIN_USE_DEFAULT 112
XRT_YNUM 37, 112
XRT_YNUM_METHOD 36, 112
XRT_YNUM_USE_DEFAULT 112
XRT_YORIGIN 39, 112
XRT_YORIGIN_PLACEMENT 40, 113
XRT_YORIGIN_USE_DEFAULT 113
XRT_YPRECISION 37, 113
XRT_YPRECISION_USE_DEFAULT 37, 113
XRT_YTICK 37, 114
XRT_YTICK_USE_DEFAULT 114
XRT_YTITLE 42, 114
XRT_YTITLE_ROTATION 41, 114
XrtAdjust 149
XrtAlign 149
XrtAnchor 149
XrtAnnoMethod 150
XrtAnnoPlacement 150
XrtArray structure 63, 150
XrtArrayData structure 63, 150
XrtArrCheckAxisBounds() 91, 117
XrtArrDataAppendPts() 118
XrtArrDataFastUpdate() 91, 118
XrtArrDataRemovePts() 118
XrtArrDataShiftPts() 91, 119
XrtAttachType 150
XrtAttachWindow() 119
XrtAxis 150
XrtBorder 151
XrtCallAction() 76, 119
XrtCallbackStruct structure 151
XrtComputePalette() 119
XrtCreate() 120
XrtCreateWindow() 120
XrtData structure 62, 151

display of 39
example of use 8
programming responsibilities 62

XrtDataConcat() 120
XrtDataCopy() 121
XrtDataExtractSet() 121
XrtDataRemoveSet() 121
XrtDataSort() 121
XrtDataStyle structure 48, 151

color field 49
fpat field 49
lpat field 48
pcolor field 49
point field 49
psize field 49

170 Index

width field 49
XrtDataType 151
XrtDeleteNthPointLabel() 121
XrtDeleteNthPointLabel2() 121
XrtDeleteNthSetLabel() 122
XrtDeleteNthSetLabel2() 122
XrtDestroyData() 122
XrtDetachWindow() 122
XrtDrawFormat 152
XrtDrawScale 152
XrtDrawToClipboard() 59, 122, 152
XrtDrawToDC() 60, 123, 152
XrtDrawToFile() 59, 123, 152
XrtDupDataStyles() 51, 123

use of with pointer properties 18
XrtDupStrings() 124

use of with pointer properties 18
XrtDupValueLabels() 124
XrtFillPattern 152
XrtFreeDataStyles() 124

use of with pointer properties 18
XrtFreePropString() 17, 124
XrtFreeStrings() 124

use of with pointer properties 18
XrtFreeTextHandles() 88, 124
XrtFreeValueLabels() 124
XrtGenCheckAxisBounds() 91, 125
XrtGenDataAppendPt() 125
XrtGenDataFastUpdate() 91, 126
XrtGenDataRemovePt() 126
XrtGenDataShiftPts() 91, 126
XrtGeneral structure 63, 152
XrtGeneralData structure 64, 152
XrtGetAction() 75, 127
XrtGetActionList() 75, 128
XrtGetDataType() macro 143
XrtGetHandle() 128
XrtGetNthDataStyle() 51, 128
XrtGetNthDataStyle2() 128
XrtGetNthFooterString() 128
XrtGetNthHeaderString() 129
XrtGetNthPointLabel() 30, 129
XrtGetNthPointLabel2() 30, 129
XrtGetNthSetLabel() 30, 129
XrtGetNthSetLabel2() 30, 129
XrtGetPalette() 130
XrtGetPropString() 8, 12, 16, 130
XrtGetTextHandles() 88, 130
XrtGetValueLabel() 31, 130
XrtGetValues() 8, 12, 15, 131
XrtGetWindow() 131
XrtInsertNthDataStyle() 131
XrtInsertNthPointLabel() 131
XrtInsertNthPointLabel2() 131
XrtInsertNthSetLabel() 132
XrtInsertNthSetLabel2() 132
XrtLinePattern 153
XrtMakeData() 132
XrtMakeDataFromFile() 10, 132, 136
XrtMakeTime() 105, 134

XrtMap() 79, 135, 154
example of use 80

XrtMapResult structure 79, 153
XRTN_MODIFY_END message 73, 145
XRTN_MODIFY_START message 71, 145
XRTN_PALETTECHANGED message 57, 145
XRTN_PROPERTIES message 146
XRTN_REPAINTED message 81, 146

during Fast Update 90
XRTN_RESIZED message 81, 146
XRTN_ROTATE message 147
XRTN_TRANSFORM message 72, 147
XrtNumMethod 153
XrtOriginPlacement 153
XrtPick() 76, 135, 154

example of use 78
use with pie charts 78

XrtPickResult structure 76, 153
XrtPieOrder 153
XrtPieThresholdMethod 153
XrtPoint 154
XrtPrint() 59, 136, 152
XrtPropertiesCallbackStruct structure 154
XrtRectangle structure 154
XrtRegion 154
XrtRemoveNthDataStyle() 136
XrtResizeCallbackStruct structure 154
XrtRotate 155
XrtRotateCallbackStruct structure 73, 155
XrtSaveDataToFile() 136
XrtSetAction() 75, 137
XrtSetNthDataStyle() 51, 137
XrtSetNthDataStyle2() 137
XrtSetNthFooterString() 137
XrtSetNthHeaderString() 138
XrtSetNthPointLabel() 30, 138
XrtSetNthPointLabel2() 30, 138
XrtSetNthSetLabel 30
XrtSetNthSetLabel() 138
XrtSetNthSetLabel2() 30, 138
XrtSetPropString() 8, 12, 16, 48, 56, 138
XrtSetValueLabel() 31, 139
XrtSetValues() 8, 12, 15, 56, 139
XrtTextAttach() 88, 139
XrtTextCreate() 87, 139
XrtTextDesc structure 86, 155

XrtTextPosition field 89
XrtTextDestroy() 88, 140
XrtTextDetach() 88, 140
XrtTextDetail() 88, 140
XrtTextPosition structure 156
XrtTextUpdate() 88, 140
XrtTimeToValue() 140
XrtTimeUnit 156
XrtTransformCallbackStruct structure 72, 156
XrtType 156
XrtUnmap() 80, 141
XrtUnpick() 78, 141
XrtValueLabel structure 31, 157
XrtValueToTime() 141

Index 171

Y
Y2-axis

relationship to Y-axis 83
removing 83

Y2-axis, use of 83

Z
zooming, interactive 69

172 Index

