Microsoft DirectX 9.0 SDK Update (October 2004)

Matrix.Transformation Method

Language:

Note: This documentation is preliminary and is subject to change.

Builds a transformation matrix.

Definition

Visual Basic .NET Public Shared Function Transformation( _
    ByVal scalingCenter As Vector3, _
    ByVal scalingRotation As Quaternion, _
    ByVal scalingFactor As Vector3, _
    ByVal rotationCenter As Vector3, _
    ByVal rotation As Quaternion, _
    ByVal translation As Vector3 _
) As Matrix
C# public static Matrix Transformation(
    Vector3 scalingCenter,
    Quaternion scalingRotation,
    Vector3 scalingFactor,
    Vector3 rotationCenter,
    Quaternion rotation,
    Vector3 translation
);
Managed C++ public: static Matrix Transformation(
    Vector3 scalingCenter,
    Quaternion scalingRotation,
    Vector3 scalingFactor,
    Vector3 rotationCenter,
    Quaternion rotation,
    Vector3 translation
);
JScript .NET public static function Transformation(
    scalingCenter : Vector3,
    scalingRotation : Quaternion,
    scalingFactor : Vector3,
    rotationCenter : Vector3,
    rotation : Quaternion,
    translation : Vector3
) : Matrix;

Parameters

scalingCenter Microsoft.DirectX.Vector3. A Vector3 structure that identifies the scaling center point.
scalingRotation Microsoft.DirectX.Quaternion. A Quaternion structure that specifies the scaling rotation. Use Quaternion.Identity to specify no scaling.
scalingFactor Microsoft.DirectX.Vector3. A Vector3 structure that is the scaling vector.
rotationCenter Microsoft.DirectX.Vector3. A Vector3 structure that is a point identifying the center of rotation.
rotation Microsoft.DirectX.Quaternion. A Quaternion structure that specifies the rotation. Use Quaternion.Identity to specify no rotation.
translation Microsoft.DirectX.Vector3. A Vector3 structure that represents the translation. Use Vector3.Empty to specify no translation.

Return Value

Microsoft.DirectX.Matrix . Resulting Matrix structure.

Remarks

The Transformation method calculates the transformation matrix using the following formula, with matrix concatenation evaluated in left-to-right order.

M out = (Msc)-1 * (Msr)-1 * Ms * Msr * Msc * (Mrc)-1 * Mr * Mrc * Mt

where:

For 3-D affine transformations, use AffineTransformation.

See Also


© 2004 Microsoft Corporation. All rights reserved. Terms of use.

Feedback? Please provide us with your comments on this topic.
For more help, visit the DirectX Developer Center