
HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

Hitachi America, Ltd. TN-0203

Application Engineering
TechNote Sam Darwin

32/16 Divide for H8/300 Family

Hitachi's H8/300 family is currently equipped with a 16/8 bit divide command called DIVXU. This command performs
unsigned division on values in two specified registers, and produces an 8-bit result and 8-bit remainder which are placed
back into a register upon completion.

The code offered in this technote may be used to perform 32/16 division, and it differs in a number of ways from the
'DIVXU' command, besides the fact that it allows calculation with larger numbers. First of all, the numbers to be
calculated are held in RAM memory space instead of in registers. Thus, in order to use this routine as a subroutine within
a larger program, the programmer must place the desired dividend and divisor within the specificed memory area.

Secondly, this code may be used as signed or unsigned division, as it does not modify any flags. If the user wishes, he may
include the necessary compare instructions in order to set certain flags. Moreover, this code does not incorporate the
DIVXU command at all, but rather uses a bit by bit method of calculation. There is no simple way to use the DIVXU
command repeatedly in order to create a 32/16 divide, although it may initially appear that there would be. The following
example illustrates the process used here, and it will be explained further on the next pages.

0010 0110 ---> divisor dividend

after shifting stage we have:

1000 1100

Compare 1100 to 1000. Since 1000 is smaller
subtraction occurs.

 1
1000 1100
 -1000
 0100

The result of the subtraction becomes the new dividend

 1
1000 0100

Shift, and repeat

 11
1000 1000
 -1000
 0

result

Example division:

TN-0203 2

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

L o a d d iviso r a n d
d ivid e n d in to m e m o ry.

lo o k a t n e xt b yte
su b tra c t

S h if t d ivid e n d a n d re su l t b a c k to
n o rm a l, b a se d o n nu m b e r o f p re vio u s

sh ifts o f the d iviso r a n d d ivid e n d .

Ye s

D ivid e n d >d iviso r?

sp e cia l su b tra ct

d o n e

sta rt

M S B o f d iviso r = 1 ?

3 2 sh if ts co m p le te ?

C h e c k sh ifts

E n d

Ye s

N o
S h if t d iviso r

le ft.

M S B o f d ivid e n d = 1 ? S h if t d ivid e n d
a n d re su l t le ft.N o

N o .

Ye s.

S p e cia l
su b tra c t?Ye s.

N o .

Ye s.

D ivid e n d =d iviso r?

Ye s.

N o .

N o .

se t te ste r b it

d o n e

Division Flowchart

TN-0203 3

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

First of all, the divisor is shifted until there is a one in the highest order bit position. Long-division is accompished through
a series of subtractions that begin with the highest order digits, and progress towards the lower digits. Thus, the dividend is
also shifted until there is a one in the highest order digit. In all cases, zeros will be shifted on the right side.

Subtraction, and 'Special Subtraction'

Before the subtracting stage, we must determine if a subtraction is possible. Is the dividend larger than the divisor? We can
determine this by comparing the most significant 8 bits of the dividend and divisor. If the dividend is larger, a one belongs
in the highest order digit of the result, and the subtraction occurs. If the two 8-bit numbers are equal, then the comparison
must continue by comparing the next 8 bits of the two numbers. If the divisor is larger, we know that the subtraction should
not take place and that a zero should be placed in the proper digit of the result. We also know that the next digit of the
result should be a one, and that a subtraction will be allowed. Is this certain? It must be, due to the fact that both the
dividend and the divisor have a one in their highest order bit, and if the divisor is larger than the dividend in the current
comparison, it will not be after a shifting of one bit to the right. This is extremely important to understand, as it is a
common situation in division. It shall be referred to here as 'special subtraction', and can be explained again in slightly
different terms: if the divisor is larger than the dividend then a subtraction would result in a negative value. Let's use the
example of 1100 - 1111. We don't want this to happen and so no subtraction occurs. The program puts a zero in the result
instead of a one, and then shifts the dividend just like normal. The shift yields 11000, so that a subtract is now appropriate.
Of course, the highest order "1" has been shifted out of the picture, but we can remember that it should still be there by
setting a flag which has been named the "tester bit" for this program. When the subtraction occurs the carry bit will be set,
but this really is of no concern. As you can see, this subtract will always be allowed, since a 10000 is bigger than even a
1111.

The dividend is shifted in every cycle and the result is created bit by bit depending upon whether or not the subtraction took
place. The comparison is made, and if it is allowed then the divisor is subtracted from the dividend and the cooresponding
result bit is set. The shifting and subtracting continues until the dividend is smaller than the divisor, and what is left in the
dividend is aptly called "the remainder". How do we know when this has finally happened? The program knows that the
division is completed when the divisor is larger than the dividend, and finds this out through the comparision that is done
in every cycle. The two numbers are compared, and if the divisor is larger than the dividend then the number of shifts are
also examined. If these two factors in conjunction indicate that the divisor is truly large than the remaining dividend, the
division is complete.

All that is left to do after this is to finish shifting the result and the remainder, so that they are back in their original
positions. All of the shifting that has been done throughout the calculating has left the correct results in both the remainder
and the result, but the decimal point is out of whack, so to speak. It is necessary to shift the numbers back, as many times as
they were initially shifted forward. Another way of accomplishing this is to continue to shift them forward until a total of
thirty-two shifts have occurred (and wrapping the highest order bits around, so they are not "shoved off the edge").

Some additional shifting needs to be done on the result to account for the shifting of the divisor at the beginning. The
divisor was shifted in order to make the calculations possible, but it also affects how large the divisor appeared to be. Is it 10
or 100, for instance? This can only be determined by the number of shifts it experienced at the beginning, and the result
must be duly compensated by an equal amount of shifting at the end of the computations.

Consider for a moment the most basic of division algorithms: the divisor is subtracted repeatedly from the dividend, and
the number of times this is allowed will be the final result of the calculation. Such an option is very simple to understand,
but will take a tremendous amount of time for the processor to implement. Thus, it becomes necessary to create an
algorithm with both subtracting and shifting to create the result one digit at a time. The next question now becomes, how
should this be done to reduce the calculation time to a minimum. The divisor, the dividend, or both may be shift, values
must be compared, etc. In other words, there are quite a number of different ways to implement this algorithm. The one
presented here works and is efficient, but should not be taken for the only answer.

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

DIVIDE.S

divid0 .equ h'02 ;dividend - 32 bits
divid1 .equ h'00
divid2 .equ h'00
divid3 .equ h'00
divis0 .equ h'02 ;divisor - 16 bits
divis1 .equ h'00
remain0 .equ h'FF00 ;memory location of remainder
remain1 .equ h'FF01
remain2 .equ h'FF02
remain3 .equ h'FF03
vis0 .equ h'FF10 ;memory location of divisor
vis1 .equ h'FF11
result0 .equ h'FF20 ;memory location of result
result1 .equ h'FF21
result2 .equ h'FF22
result3 .equ h'FF23

.section div,text, locate= 00

.ORG h'00

.data.w start ;jump to start of program

.ORG h'02A
start: mov.w #h'ff80,R7 ;initialize stackpointer, to this?

mov.b #h'00,R5l ;used as test bit and result bit later
mov.b #h'00,R1h ;for later use
mov.b #h'10,R4l ;for counting divisor shifts
mov.b #h'00,R4h ;counting dividend, result shifts

mov.b #divid0,R1l ;put data into dividend
mov.b R1l,@remain0
mov.b #divid1,R1l
mov.b R1l,@remain1
mov.b #divid2,R1l
mov.b R1l,@remain2
mov.b #divid3,R1l
mov.b R1l,@remain3

mov.b #divis0,R1l ;put data into divisor
mov.b R1l,@vis0
mov.b #divis1,R1l
mov.b R1l,@vis1

mov.b #h'00,R1l ;clear result area
mov.b R1l,@result0
mov.b R1l,@result1
mov.b R1l,@result2
mov.b R1l,@result3

dov: btst #h'7,@vis1 ;test divisor,
bne a ;shift it left
mov.b @vis0,R2l
shal.b R2l
mov.b R2l,@vis0
mov.b @vis1,R2l
rotxl R2l
mov.b R2l,@vis1
inc.b R4l ;count shifts
jmp @dov

TN-0203 5

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

a: btst #h'7,@remain3 ;test dividend
bne b

shif: mov.b @remain0,R2l ;shift dividend left
shal.b R2l
mov.b R2l,@remain0
mov.b @remain1,R2l
rotxl R2l
mov.b R2l,@remain1
mov.b @remain2,R2l
rotxl R2l
mov.b R2l,@remain2
mov.b @remain3,R2l
rotxl R2l
mov.b R2l,@remain3

bld #h'01,R5l ;load carry
mov.b @result0,R2l ;shift result left
rotxl.b R2l
mov.b R2l,@result0
bclr #h'01,r5l ;clear bit afterwards
mov.b @result1,R2l
rotxl R2l
mov.b R2l,@result1
mov.b @result2,R2l
rotxl R2l
mov.b R2l,@result2
mov.b @result3,R2l
rotxl R2l
mov.b R2l,@result3

inc.b R4h ;count shifts
cmp.b #h'20,R4h
beq done ;if more than 32 shifts
btst #h'0,R5l ;test bit for special case
bne b
jmp @a

b: cmp.b R4l,R4h
bls fd
jmp @done

fd: btst #h'0,R5l ;special case
bne subtr

comp: mov.b @remain3,R2h ;put remainder into R2h
mov.b @vis1,R2l ;put divisor into R2l
cmp.b R2l,R2h ;compare values
bls comp2 ;if divisor>=remainder, branch

subtr: bclr #h'0,R5l ;clear special bit
bset #h'1,R5l ;set result bit

sub: mov.b @remain3,R3h ;do subtract
mov.b @remain2,R3l
mov.b @vis1,R2h
mov.b @vis0,R2l
sub.w R2,R3
mov.b R3h,@remain3
mov.b R3l,@remain2
jmp @a

TN-0203 6

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

comp2: cmp.b R2l,R2h ;are they equal?
bne comp3
mov.b @remain2,R2h ;check next lower byte
mov.b @vis0,R2l
cmp.b R2l,R2h
bls comp4
jmp @subtr ;subtract, since it is allowed

comp4: cmp.b R2l,R2h ;are they equal?
bne comp3
jmp @subtr ;in the case of equality, do the subtraction

comp3: cmp.b R4h,R4l
bls done ;
bset #h'0,R5l
jmp @shif

done: cmp.b #h'20,R4h ;
beq fini
add.b #h'1,R4h ;increment

;shift result by 1
bld #h'01,R5l ;load carry
mov.b @result0,R2l
shal.b R2l
mov.b R2l,@result0
bclr #h'01,r5l ;clear bit afterwards
mov.b @result1,R2l
rotxl R2l
mov.b R2l,@result1
mov.b @result2,R2l
rotxl R2l
mov.b R2l,@result2
mov.b @result3,R2l
rotxl R2l
mov.b R2l,@result3

;shift remainder
bld #h'07,@remain3
mov.b @remain0,R2l
rotxl R2l
mov.b R2l,@remain0
mov.b @remain1,R2l
rotxl R2l
mov.b R2l,@remain1
mov.b @remain2,R2l
rotxl R2l
mov.b R2l,@remain2
mov.b @remain3,R2l
rotxl R2l
mov.b R2l,@remain3
jmp @done

fini: bld #h'07,@result3
mov.b @result0,R2l
rotxl R2l
mov.b R2l,@result0
bclr #h'01,r5l ;clear bit afterwards
mov.b @result1,R2l
rotxl R2l
mov.b R2l,@result1
mov.b @result2,R2l
rotxl R2l

TN-0203 7

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

mov.b R2l,@result2
mov.b @result3,R2l
rotxl R2l
mov.b R2l,@result3
cmp.b #h'00,R4l
beq over
dec.b R4l
jmp @fini

over: nop
jmp @over

The information in this document has been carefully checked; however, the contents of this document may be
changed and modified without notice. Hitachi America, Ltd. shall assume no responsibility for inaccuracies, or any
problem involving a patent infringement caused when applying the descriptions in this document. This material is
protected by copyright laws.  Copyright 1994, Hitachi America, Ltd. All rights reserved. Printed in U.S.A.

