
HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

Hitachi America, Ltd. TN-0202

Application Engineering
TechNote Cristian Tomescu

Implementing software delay loops on the H8/300

The H8/300 family has a concise set of 57 RISC-like instructions that can operate on bit, byte, or word data using up to
eight possible addressing modes (although most instructions normally use less than the maximum number of addressing
modes).  These instructions act upon the CPU general registers (R0-R7), the CPU control register (CCR), the program
counter (PC), the memory (either internal/external ROM/RAM memory or memory-mapped on-chip peripheral registers),
or on none of the above.  Most of the time, these instructions are being used by the programmer for a "direct" task within
his program flow.  However, the need of using instructions for no direct purpose but to induce a needed delay in the
program sometimes arises.

In this endeavor, the programmer must properly select instructions that would not disturb any previous program conditions.
Specifically,  the CPU registers, the user external/internal memory values, and the on-chip peripheral register values should
be held unchanged.  Also, no instructions that alter the CCR flags should be used.  Of course, there are instances where the
programmer will not use a certain CPU register or not care about a certain flag, and in which case he/she can choose a
wider range of instructions to achieve the desired delay;  however, in this technote, only the instructions that will not alter
any  previous conditions or registers will be discussed.

Before implementing the desired delay,  2 factors should be taken into considerations:  the internal running frequency of the
processor and the number of clock cycles the chosen delay instruction is executed.  The table below shows the instructions
that can be used to implement software delays and their execution time in clock states (and their execution has no effect
upon either registers or condition flags).

Instructions Operation Execution time
NOP no operation 2 states
BRN never branch 4 states
BRA always branch 4 states
Bcc conditional branch 4 states
BCLR, BSET, BIST, BNOT, BST register-direct bit operation 2 states

register-indirect bit operation 8 states
absolute address bit operation 8 states

ANDC #H'FF,CCR AND CCR contents with 1's 2 states
ORC #H'00,CCR OR CCR contents with 0's 2 states
BSR address and RTS at address branch at address and return 6 + 8 = 14 states
JSR address and RTS at address jump at address and return 8 + 8 = 16 states
JMP location and instruction at location absolute address jump 6 states

memory indirect jump 8 states

1. The Bcc (conditional branch) instructions can be used if the user makes sure that the branch conditions are not
satisfied; then, the branch will be ignored.

2. BCLR and BSET can be used if the user makes sure that they act upon an already cleared or, respectively,  set register
bit.

3. BIST, BNOT, and BST can be used if the user makes sure that they act upon memory locations that are not utilized by
the program.

4. ANDC #H'FF,CCR  and ORC #H'00,CCR can be used since it does not alter the contents of the CPU control register.
5. BSR and JSR cannot be used alone since they change the PC contents.
6. JMP and BRA are used in conjunction with other instructions above.



TN-0202 2

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

If the programmer does not care about the status flags but still wants to keep the register contents intact, the following
additional instructions may be utilized:

Instructions Operation Execution time
ADD.B #0,RnL(H) add 0 to register 2 states
AND #H'FF,RnL(H) AND register with 1's 2 states
BTST, BOR, BXOR, BLD, BIXOR, BIOR, register-direct bit operation 2 states
BILD, BIAND, BAND register-indirect bit operation 6 states

absolute address bit operation 6 states
CMP.B or CMP.W compare register with source 2 states
MOV Rn,Rn move a register into itself 2 states
MOV.B #0,RnL(H) move a 0 into register 2 states
MOV.W #0,Rn move a 0 into register 4 states
OR #0,RnL(H) OR register with 0's 2 states
PUSH and POP push and pop register into stack 6 + 6 = 12 states
SUB #0,RnL(H) subtract 0 from register 2 states

The bit instructions in the table above only alter the value of the carry flag and not the register contents.

Example 1:  Let's say a delay of 2.2us is needed in a H8/300-based system running at 10MHz before a sleep condition
should occur.  This translates into a 22 clock states delay.  Also, no register contents as well as condition flags may be
altered.  Given the possibilities above, multiple approaches are possible.  However, a programmer can implement this delay
using 4 instructions in the following way:

JSR address 1
Address 1:

RTS ; 8 + 8 = 16 states delay
BRN ; 4 states delay
NOP ; 2 states delay
SLEEP

Example 2:  The same delay (2.2us) is needed for a H8/300-based system running at 10MHz before a sleep condition should
occur.  This means that a delay of 11 states is needed.  The programmer does not care whether or not the condition flags are
changed.  This delay may be implemented using 3 instructions as follows:

JSR address 1
Address 1:

RTS ; 16 states delay
BTST #n,@RnL(H) ; 6 states delay
SLEEP

The information in this document has been carefully checked; however, the contents of this document may be
changed and modified without notice. Hitachi America, Ltd. shall assume no responsibility for inaccuracies, or any
problem involving a patent infringement caused when applying the descriptions in this document. This material is
protected by copyright laws.  Copyright 1995, Hitachi America, Ltd. All rights reserved. Printed in U.S.A.


