H8/300 tools

Embedded Software Development: H8/300 tools
Application Note

Balu Donthi H ITACH I ? Augﬁsgggj

INTRODUCTION

An embedded computer system is "hidden The Hitachisoftware development tools for the
computer” within a "system". An embedded H8/300 microcontroller family consists of a C
system often consists of a micro-computer andcompiler, Assembler, Linker, Librarian &
peripheral hardware which can bged to perform Simulator Debugger. The application program
certain specific tasks.The "system” may be a shown in this application note has been
home appliance, automotive, telephone, networlcustomized to execute othe H8/300series
controller,toy, elevator, etcThe applications are simulator debugger.

innumerable ancendless. It is not a computer

system inthe traditional context, i.e., where aFollowing software tools have been used for the
software program can bedeveloped on the tutorialin this application note.

computer and can beised to control itself.

Therefore, thesoftware program to control an CH38 | C Cross Compiler | v2.0B
embedded systenhas to beleveloped on a ASM38 | Macro Assembler v3.2E
"traditional” computer system. ,

LNK Linker v5.1
This application noteprovides a tutorial on the LBR Librarian v1.2B

usage of Hitachi software development tools for
the H8/300 microcontrollefamily and explains
the customizationhat has to benade to different
software routines to controlthe embedded
computer.

SD38 Simulator Debugger | v2.4

Software Development Issues: Embedded Systems Vs Native Systems

Following customizationhas to be madehen and thestack pointer should be initialized
developing software for embedded systems. In a to the stack area.

traditional computersystem(native development « The variables altered by the program should
environment) these operations aresually be located inthe RAM and theconstant
performed by the operating system: variables should be located in the ROM.

If the application progranusesthe run-
time libraries then thdow levelroutines
have to be customized forthe I/O
operations.
In a native development environmehe software
developer doerot have tavorry about any of the
aboveoperations since the operatiagstem in the
computer takes care of performing these
operations. Figure.l gives a pictorial

» The resetvector for the micro-controller
should be setup dbat itpoints to the entry
point in the program.

 The interrupt vectors for the micro-
controller have to be setup.

» The stackand heagspaces required for the
application program should be allocated

Embedded Software Development: H8/300 tools

representation of
embedded system.

the progranilow

in an

Setup Vectors

]

Initialize Stack,
Heap, Bss & Data
Sections

l

Initialize the C
runtime library

l

Application
Program

Execute

l

Close open files
and resources

Wait Loop

Figure.1 Program Flow in an Embedded System

Sections generated by the compiler

The compiler normally generates tliellowing

sections when a C program is compiled, they are:

P - Program or Code section
C- Constants section
D- Initialized Data section (located in ROM)

2 Hitachi

B- Uninitialized Data (or BSS) section
The other sectionsthat are needed for the
application program have to be created in the
startup routine. In this tutorialarious sections
needed forthe application i.evect, stack, heap
and the "ram" data secti¢Bection-R)are created
in the startup and other initialization routines.
The startup routine copies the variable data located
in ROM (Section Dgenerated by the compiler) to
the RAM (Section R) atthe application startup
time.

Initializing Vectors

In an embedded system the microcontroliestors
should be initialized first. The H8/300 micro-
controller has 48ytes of memoryreserved for
vectors space,i.e., for reset vectors, illegal
instructions, IRQs, Interruptand other on chip
peripherals. Thevectors are located at address
H'0000. In the example initializationode, only
the resetvectorsare initialized but there ispace
allocated foithe user to setupectorsthat areused
by the applicationRefer tothefile "vectbl.src" for
the vector table initialization.

Sample vector initialization:

.SECTION VECT,DATA,LOCATE=H'0000
IMPORT __ENTRY
.DATA.W ENTRY ;Power On Reset PC

.DATA.W (STARTOF STACK) + (SIZEOF STACK)
; Power On Reset SP

.DATA.W __ENTRY ; Manual Reset PC

.DATA.W (STARTOF STACK) + (SIZEOF STACK)
; Manual Reset SP

Initialization of Stack

The stack area isised each time a function is
called and isdeallocated when the function
returns. The stack pointer should be initialized
before calling a subroutine or ankigh level C
function. The compiledoesnot create a STACK
section so the uséias todefine a section, allocate
stack spacand initialize theStack pointer. The
reset vector points tthe location _ ENTRY and
this label is defined in thdile "start.src”. In the
sample application 2Kb of stack is allocated. This

Embedded Software Development: H8/300 tools

number can be increased or decreased based on tagplication program thereforéhey have to be
application. located inthe RAM beforeprogram execution.

These initial values are modified by the
Example assembly code for section declaration angpplication program thereforéhey have to be
call to the initialization routines are shown below: |ocated inthe RAM beforeprogram execution.
The function _INITSCT()accesseghe starting

.SECTION STACK, STACK, ALIGN=2 . o
addressesand size of the uninitialized data

.RES.B H'800 ;2K stack

SECTION P. CODE. ALIGN=2 initializes it to 0. The function _INITSCT(@lso
ENTRY: ' copiesthe initialvalues fromthe data section "D"

MOV.W #(STARTOF STACK) + (SIZEOF to data section "R".

STACK), R15 ; Initialize stack (SP)

MOV.W_ #INIT, R2 Initializing the data for the RunTime

JMP @R2 .

NOP Library

-END The standard C function library is included with

the compiler, if the application progranses any
Also, in the file start.src there is a constants qf these functionthan some ofthe dataused by
section whicthas the start addreasd thesize of the runtime libraries has to be initialized. If the
Data section (D) in ROM, Data section (R) in gpplication programdoes not use any of the
RAM and theBSS sectionwhich is the standard C library functionshan this code (
uninitialized data section. Ahis point the thread _INITLIB()) can be eliminated to make the
of execution is transferred to the routine _INIT. application program smaller in size. The function

_INITLIB() initializes the error checking variable
Initialization of Data Sections "errno” to 0. This variable can kehecked for
successful execution of library functions. If the call
to a library function has been succes#fianerrno
has 0 and if it did notomplete successfullghan
this value is set to 1.

The function _INIT is thehigh level function
which calls all the initialization functions,
application routineand close routine. Once the
application hadeen executethe _CLOSEALL()

routine closesall the files, resourcesand than The _INITLIB() function calls _INIT_IOLIB() and
waits in a loop for a hardware reset. _INIT_OTHERLIB functions. As the name
suggests the _INIT_IOLIB function initializes _iob

rce for the function _INIT: . . -
Source for the function _ data structure which isised by functions like

void _INIT(void) PRINTF, SCANF, FOPEN, FCLOSE, etc. If the
application programdoes not use any of the
_INITSCT(): standard library functiondor the input/output
_INITLIB(); operationsthan these initializationsmay not be
mca”g)si _ performed. The_ iob structure is defined in the
gt AO: stdio.h header file and thefunction
) " _INIT_IOLIB() is defined in the init.c file.

The uninitialized data sectiofB) has to be Sample initialization of _iob structure:
initialized to O before program execution

according to the C language specificatiofiis 1* Clears buffer */

operation is performed through the startup routine. fp -> _bufptr = NULL;

The initialized data section (D) contains data with /* Clears buffer counter */

initial values. After linking the application fp -> _bufent = 0;

program thesenitial values are located in the I* Clears buffer length */

ROM. Theseinitial values are modified by the fp -> _buflen = 0;

Hitachi 3

Embedded Software Development

/* Clears base pointer */
fp -> _bufbase = NULL;
/* Clears /O flags */

fp -> _ioflagl = 0;

fp -> _ioflag2 = 0;

fp -> _iofd = 0;

The function_INIT_IOLIB() also initializes the
standard input (stdin)for "Nodata buffering”,
and "disabled file access".The standaradutput
(stdout) and standard error (stderr) aiso
opened and initialized for "no data buffering".

The _INIT_OTHERLIB() function setghe initial
value of random number generator function
(rand()) to 0 and also sdtse pointer (_s1lptysed

in the strtok() (converts strings to tokens) to O.
This initialization need not beerformed if the
rand() andstrtok() functions are naised by the
application.

Application Program "sieve.c"

The application programised for our tutorial is
sieve.c.The sieve.cprogram is Eratosthen&ieve
prime number calculation program. It hasen
scaled down with MAX_PRIME set to 17 instead
of 8091. This progranusesthe printf runtime

library function to display these prime numbers on

the console (stdout)The printf routine alsoises

various resources like heap, other library routines

for formatting the data arfthally calls the "write"
routine. The write routine is not supplied with the
runtime libraryand has to be written by theser.
In this tutorial a sample write() function is
provided in thelowsrc.c file. The write routine

also calls the _charput() function which outputs a

character to theconsole (stdout)The _charput
routine has to beustomized to suit the hardware
requirements. However, for this tutorial the
_charput routine habeen modified to work with
the SDSH simulator debugger.

The lowsrc.c has thew levell/O functions which
can becustomized by the user. Thekev level
functions areused bythe C runtime library
functions. Also, present in tHewsrc.c file is the
read() function which is called by Input functions
in the runtime library like scanf(). The read

4 Hitachi

: H8/300 tools

function calls the _charget() routine, this routine is
also customized to work witthe SD38 simulator
debugger. Both the routines _charpad _charget
are written inassemblyanguage and can beund

in the lowlvl.src file. The code forinitializing the
heap section can be found in the lowsrc.c file.

Application Program
SIEVE.C

PRINTF()

FORMATING OF
DATA

Write()
Inlowsrc.c

}

_Charput()
Assembly function
in lowlvl.src

CONSOLE

OUTPUT
stdout

Program Flow for printing to the CONSOLE

Closing the Files & Resources

After the execution of the application éaver the
_CLOSE() function is called to closell the
opened resources and files. This function is located
in the lowsrc.c file, it access#se _iob structure to
locate all the opened filesand resourcesthan
closesthem. Onceall thefiles are closed the

Embedded Software Development: H8/300 tools

program goes into a wait loop waiting for a environment variable should point to a disk with

hardware reset. enough space (depends othe application
program). TheHLNK_LIBRARY1 environment
Creating a CPU information file variable is used by the linkand itshould point to
one of the run-time libraries supplied with the
A CPU information file has to bereated for the compiler. HLNK_LIBRARY?2 and

SD38 debugger beforéoading the application) Nk LIBRARY3 environment variables are
program. Thisfile can be created by using the gy ajjaple for use witlthe user libraries. All the
CIA utility. Using this utility you can setup the gjrectories containing the compiler, assembler and
CPU type, address bstze, datéus sizememory gimylator debugger executables should be specified
wait states and memory map. in the DOS path. Thedefault installation location

for the H8/30Mtools isc:\hitachi, if thetools are
installed in this directory than the following
environment variables should be set.

The utility can be invoked by typing

cia sieve.cpu<cr>

% 1 *
f* Select HB/300 CPU by typing */ set CH38=c:\hitachi\ch38\include

? 3<cr>
/* Select 16 bit Address Bus */ set CH38TMP=c:\
BIT SIZE 16 ? 16 set HLNK_LIBRARY1=c:\hitachi\ch38\lib
/* Enter a comment */ \ch38reg.lib
COMMENT?:CPU information file for set PATH=c:\hitachi\ch38\bin;

Sieve program c:\hitachi\asm38;

' . . \hitachi\sd38;

/* Setup a RAM area for simulation */) C rachiisdss, . o
wxk MAP MENU *** Batch file sieve.bat for building the application:
0:ROM 1:EXTERNAL 2:RAM 3:1/0 4:EEPROM .

END sieve.bat
2) ch38 /debug sieve.c
/* Setup RAM from 0 thru H'ffff */ shc /debug init.c
*RAM AREA START ADDRESS? 0000 END asma38 start.src /debug /cpu=300

ADDRESS? ffff asm38 lowlvl.src /debug /cpu=300

/* Set the RAM wait state to 0 */
STATE COUNT ? 1

/* Set the Data Bus Size to 8 */

DATA BUS SIZE? 8

/* Exit from the CIA utility */

* RAM AREA START ADDRESS? . <cr>

Ink -sub=sieve.cmd

The invocation of the compiler is "ch3&hd the
"/debug" option is necessary to includd the
symbol information in the outputobject. The
invocation of the assembler is "asm3®id the
"/debug” option is required for including the
Building the Application Program symbolinformation in theobjectfile. The default
output by the compiler is a fecatable object &
the optimizations are ON by default. To get a
summary ofall theavailable compiler options,
invoke the compiler without any options i.e.
"ch38". The output of the assembler is also a re
locatable object sall theobjectsare linked using
the linker "Ink".

A batch file sieve.bahasbeen provided wittihis
tutorial which compiles, assemblasd links the
startup files withthe application progranBefore
executing the batch file the installationlocation
should be determined andthe environment
variables needed for the software toolshould
be set.

A linker command file is provided with the
tutorial, it has all the commandaseeded to
perform the link operations.

The environment variabl€H38 must point to the
directory whereall the headefiles supplied with
the compiler are located. TheCH38TMP

Hitachi 5

Embedded Software Development: H8/300 tools

sieve.cmd trap_address h'FE

/* This command is necessary for symbol information o

in output */ 3) Load the application program
debug load sieve.abs

/* Specifies linker output to be a absolute file i.e. : P

SYSROF object */ 4) Display the application map.
form a map

/* Loads the sieve.obj into linkéf

input sieve.obj 5) Display the C source code.
/* Loads the start.obj into linker/ da 1000

input start.obj

/* Loads the init.obj into linket/ 6) Single Step through the C code.
input init.obj s
/* Loads the lowlvl.obj into linker/
input lowlvl.obj 7) Display the micro-controller registers.

/* Creates a new section for Initialized d&ta

register
rom (D,R)
/* Locates const section at 0x1000 & stack section at 8) Look at the symbol information
0x9000*/

symbol
start P,D,C(1000),B,R,STACK(9000)

* Specifies the starting point of application to be at 9) Execute the application program
the label _ ENTRY¢/

entry _ ENTRY go

" . . .
[* Specifies the output of linker to be sieve.&bs At this point the application program starts

executingand the primeaumbers are printed on
I* Specifies the linker map file to be sieve.mép the console.The prograngoesinto a loop after
print sieve execution. To break the program out of thep,
/* Starts the linking operation and exits out of the ~ Please type "t.

linker after the link is ovet/
EXIT

output sieve

For complete information onthe usage of
compiler, assembleand simulatodebugger tools

Executing the Application Program please refer to the respective user manuals.

All the library functions havéeen customized so
that they can be executed withthe H8/300
Simulator Debugger SD38. Pleasethoough the
following steps for gettingfamiliar with the
various simulator debugger commands and
running the application program.

1) Invoke the debugger by typing
sd38 /cpu=sieve.cpu sieve.abs

2) Set the trap for Simulated 1/0O

6 Hitachi

Embedded Software Development: H8/300 tools

Appendix Source Listings for the Startup files and Application Program

Listing 1.start.src (begin)

,/ xxxxxxx
:I* File: start.src

;/* Description: Sets the stack pointer and calls _INIT function *

R
; The following section is needed for initializing the vars section &

; clearing the non-initialized section

*/

.SECTION D,DATA,ALIGN=2
.SECTION R,DATA,ALIGN=2
.SECTION B,DATA,ALIGN=2
.SECTION C,DATA,ALIGN=2

_ D_ROM .DATA.W (STARTOF D) ; Start address of section D
_ D _BGN .DATA.W (STARTOF R) ; Start address of section R
__D_END .DATA.W (STARTOF R)+ (SIZEOF D) ; End address of section R
_ B_BGN .DATA.W (STARTOF B) ; Start address of section B

__B_END .DATA.W (STARTOF B) + (SIZEOF B) ; End address of section B

.EXPORT __D_ROM
.EXPORT __D_BGN
.EXPORT __D_END
.EXPORT __B_BGN
.EXPORT __B_END
EXPORT __ENTRY
IMPORT __INIT

.SECTION STACK, STACK, ALIGN=4
.RES.B H'800 ;2K stack

.SECTION P, CODE, ALIGN=2

__ENTRY:
MOV.W #(STARTOF STACK) + (SIZEOF STACK), R7 ;Initialize stack (SP)

MOV.W #__INIT, R2
JMP @R2

NOP

.END

Listing 1start.src (end)

Hitachi 7

Embedded Software Development: H8/300 tools

Listing 2.vectbl.src (begin)

[FRFRFRRR Rk Rk kR Rk kR Rk kR Rk kR kR ok kR kR kR R kR ke ek /
/* File: VECTBL.SRC */

:I* Initailizes the vector table */

;/* */

[FRFRFRRR R Rk Rk kR Rk kR Rk R kR Rk Rk R kR kR R Rk kR Rk /

.SECTION STACK,STACK
.SECTION VECT,DATA,LOCATE=H'0000
IMPORT _ENTRY
reset .dataw __ENTRY ;Power On Reset PC, vect 0
resrvl .data.w O vect 1
resrv2 .data.w 0O :vect 2

pervec .res.w H'37 ; reserved for other peripheral vectors

.end

Listing 2.vectbl.src(end)

Listing 3.INIT.C (begin)

cicieieieieieieieiaieiaieiaiaisiaiaiaiaiaiaiaiaiaiaiaiaialaiaiaiaiaiaiaioioioioioioioiaioioioioioioiioii i /

/* File: INIT.C

/* Description: Main application function, performs initializations, */

I* calls application and closes files and waits for reset */
P hhiiisiohoboieshiiidohohoieesiiiiiohodohchiiiidodeheiiiidiieeesiiddhoddeiiii /

#include <stdlib.h>
#include <stdio.h>

#include <stddef.h>
#define _NFILE 20

extern char *_slptr;

extern void srand(unsigned int);

void _CLOSEALL(void);

extern void main(void);

void _INITSCT(void);

void _INITLIB(void);

void _INIT_IOLIB(void);

void _INIT_OTHERLIB(void);

/* Declares FILE-type data in the C language */

8 Hitachi

*/

Embedded Software Development: H8/300 tools

extern int *D_ROM, *B_BGN, *B_END, *D_BGN, *D_END;

void _INIT(void)

{
_INITSCT();
_INITLIB();
main();
_CLOSEALLY();
for(;;);

}

void _INITLIB(void)
{

errno=0;

_INIT_IOLIB();
_INIT_OTHERLIB();

}

void _INIT_IOLIB(void)

{
FILE *fp;

/* Initialize FILE-type data */
for (fp =_iob; fp<_iob+_NFILE; fp++)

{

fp -> _bufptr = NULL;
fp -> _bufent = 0;

fp -> _buflen = 0;

fp -> _bufbase = NULL;
fp -> _ioflagl = O;

fp -> _ioflag2 = 0O;

fp -> _iofd = 0;
}

/* Opens standard 1/O file */

if (freopen("stdin", "r", stdin) == NULL) /* Opens standard input

file */

stdin->_ioflag1=0xff;

/* Disables file access */

stdin->_ioflagl |= _IOUNBUF ; /* No data buffering */

if (freopen("stdout", "w", stdout) == NULL) /*Opens standard output

file */

stdout -> _ioflag1=0xff;

stdout -> _ioflagl |= _IOUNBUF ;

Hitachi 9

Embedded Software Development: H8/300 tools

if (freopen("stderr", "w", stderr) == NULL) /* opens standard error

file */
stderr -> _ioflagl = Oxff;
stderr -> _ioflagl |= _IOUNBUF;
}
void _INITSCT(void)
{
int *p, *q;
/* Non-initialized area is initialized to zeros */
for (p =_B_BGN; p <= _B_END; p++)
{
*pzo;
}
/* Initialized data is copied from ROM to RAM */
for (p =_D_BGN, g = _D_ROM; p <= _D_END,; p++, g++)
{
*p = *q;
}
}

void _INIT_OTHERLIB(void)

{

}

srand(1); /* Sets initial value when rand function is used */
_s1ptr=NULL; /*Initializes the pointer used in the strtok function*/

void _CLOSEALL(void)

{

inti;
for (i=0; i < _NFILE; i++)
if(_iob[i]._ioflagl & (_IOREAD | _IOWRITE |_IORW))

fclose(& _iobli]);

/
*
J*

lowsrc.c: */
*/

/*
*/
/*

H8/300-series simulator debugger interface routine

- Only standard I/O files (stdin, stdout, stderr) are supported */

/

/

#include <string.h>
[* file number */

10 Hitachi

Embedded Software Development: H8/300 tools

#define STDIN O [* Standard input (console) */
#define STDOUT 1 /* Standard output (console) */
#define STDERR 2 /* Standard error output (console) */
#define FLMIN O /* Minium file number */
#define FLMAX 3 /* Maximum number of files */
/* file flag */

#define O_RDONLY 0x0001 /* Read only *
#define O_WRONLY 0x0002 [* Write only *
#define O_RDWR 0x0004 /* Both read and write */

/* special character code */

#define CR 0x0d [* Carriage return */
#define LF Ox0a /* Line feed */

/* size of area managed by sbrk */

#define HEAPSIZE 1024

[rrkkkkidckkkdckkkkkokok *hkkhkhkkhkhkhhkhkhrkhkhrk /

/* Declaration of reference function */
/* Reference of assembly program in which the simulator debugger input of */
[* ouput characters to the console */

/ * * /

extern void ___charput(char); /* One character input

*/

extern char __charget(void); /* One character output

*/

/ /

/* Definition of static variable: */

/* Definition of static variables used in low-level interface routines */
/ /
char flmod[FLMAX]; /* Open file mode specification area */

static union {
long dummy; /* Dummy for 4-byte boundary */
char heap[HEAPSIZE];/*Declaration of the area managed by
sbrk*/

theap_area ;

static char *brk=(char *)&heap_area;/*End address of area assigned by sbrk*/

/ * ok /
/¥ open:file open */
1* Return value: File number (Pass) */

Hitachi 11

Embedded Software Development: H8/300 tools

I* -1 (Failure) */
[rrxriiiikkkxk ik koo koo koo /
int open(char *name, [* File name */
int mode) * File mode */
{
/* Check mode depending on file name and return file numbers
if(strcmp(name,"stdin")==0) { /* Standard input file */
if((mode&O_RDONLY) == 0)
return -1;
flmod[STDIN]=mode;
return STDIN;
}
else if(strcmp(name,"stdout")==0) { /* Standard output file */
if((mode&O_WRONLY)==0)
return -1,
flmod[STDOUT]=mode;
return STDOUT,
}
else if(strcmp(name,"stderr")==0) { /* Standard error file */
if((mode&O_WRONLY)==0)
return -1;
flmod[STDERR]=mode;
return STDERR;
}
else
return -1;
}
/ /
/¥ close: File close */
1* Return value: 0 (Pass) */
1* -1 (Failure) */
/ /
int close(int fileno) * File number */
{
if(fleno<FLMIN || FLMAX<fileno) /* File number range check
return -1;
flmodf[fileno] = 0;
return O; /* File mode reset */
}
/ xx /
/* read:Data read */
/¥ Return value:Number of read characters (Pass) */
1* -1 (Failure) */
/ kb k ke /

12 Hitachi

*/

*

Embedded Software Development: H8/300 tools

int read(int fileno, /* File number */
char *buf, /* Destination buffer address
*/
unsigned int count) /* Number of read characters
*/
{

unsigned int i;
/* Check mode according to file name and stores each character in buffer */

if(fimod[fileno] & O_RDONLY || fimod[fileno] & O_RDWR) {
for(i=count; i>0; i--) {
*buf=charget();
if(*buf==CR) /*Line feed character replacement */

*buf=LF;
buf++;
}
return count;
}
else
return -1;
}
/ ikl /
/* write: Data Write */
/¥ Return value:Number of write characters (Pass) */
1* -1 (Failure) */
/ /
int write(int fileno, [* File number */
char *buf, [* destination buffer address */
unsigned int count) /* Number of write characters */
{
unsigned int i;

char c;
/* Check mode according to file name and output each character */

if(fimod[fileno] &O_WRONLY || flmod(fileno] &0_RDWR) {
for(i=count; i>0; i--) {

c=*buf++;
charput (c);
}
return count;
}
else
return -1;
}
/ /
/¥ Iseek : Definition of file read/write position */
[* Return value:offset from the top of file read/write position */
1* -1 (Failure) */
/¥ (Iseek is not supported in the console input/output) */

Hitachi 13

Embedded Software Development: H8/300 tools

[rrxriiikkkkk koo koo /
long Iseek(int fileno, /* File number
*/

long offset, /* Read/Write position
*/

int base) [* Origin of offset
*/
{

return -1;
}
cieieicieieieieieieioieiaiaisieiaiaieiaiaiaiaiaiaiaiaiaialaiaiaioiaiaioiaioioioiaioioioioioioioioiioiiii i /
/¥ sbrk:Data write */
/* Return value: Start addresss of the assigneed area (Pass) */
/* -1 (Failure)*/
[rrrrkikkkek ko Rk kR Rk Rk kkkkk /
char *sbrk(unsigned long size) [* Assigned area size
*/
{
char *p;

if(brk+size>heap_area.heap+HEAPSIZE) /* Empty area size
*/
return (char *) -1;

p=brk ;

brk += size;
return p;

}

Listing 3.INIT.C (end)

14 Hitachi

Embedded Software Development: H8/300 tools

Listing 4.SIEVE.C (begin)

/**/

/* sieve.c -- Eratosthenes Sieve prime number calculation */
/* scaled down with MAX_PRIME set to 17 instead of 8091 */
fihiiiaiohoboiesishiiidodohieesiiiiiododehciiiiidodeeiiiiiieeesiiiidddodeiiiid /

#include <stdio.h>
#define MAX_ITER 1
#define MAX_PRIME 17

char flags[MAX_PRIME];

main ()
{
register int i,k;
int prime,count,iter;
for (iter = 1;iter<=MAX_ITER;iter++)
{
count = 0;
for(i = 0; ikMAX_PRIME; i++)
flags[i] = 1;
for(i = 0; i<kMAX_PRIME; i++)
if(flagsli])
{
prime=i+i+3;
k =i+ prime;
while (k < MAX_PRIME)
{
flags[k] = O;
k += prime;
}
count++;
printf(" prime %d = %d\n", count, prime);
}
}
printf("\n%d primes\n",count);
}

Listing 4.SIEVE.C (end)

Hitachi 15

Embedded Software Development: H8/300 tools

Listing 5.LOWLVL.SRC (begin)

: lowlvl.src
; H8/300-series simulator debugger interface routines to input or output a
; single character.

1

1

: lowlvl.src
; 300 series simulator debugger interface routines to input or output a
; single character.

1

.CPU 300

.EXPORT _charput

.EXPORT _charget

.EXPORT __INIT_LOWLEVEL

SIM_IO: .EQU H'00FE ; Trap address

.SECTION P, CODE, ALIGN=2

; this routine may differ for different environments and here is used
; as a dummy
__INIT_LOWLEVEL:

RTS

NOP

; _charput: single character output
; C interface: charput(char)

1

1

_charput:
MOV.W #A_DATA,R4 ; Address of Data
MOV.B ROL,@R4 ; char parameter is passed in ROL
MOV.W #A PARM,R1 ; Pointer to Address of Data
MOV.W R4,@R1 ; Initializing Pointer to Address of Data

16 Hitachi

Embedded Software Development: H8/300 tools

MOV.W @putc,RO : H'0102 is moved into RO
MOV.W #SIM_IO,R2 ; H'FE is moved into R2

JSR @R2 ;Delayed branching, outputs a char to
:console
NOP
RTS
_charget: ; Gets 1 character from console

MOV.W #A_PARM,R1 ; Pointer to Address of Data

MOV.W #A_DATA,RO ; Address of Data

MOV.W RO,@R1 ; Initializing Pointer to Address of Data

MOV.W @getc,RO ; H'0101 system call addr into RO

MOV.W #SIM_IO,R2 ; H'FE is moved into R2

JSR @R2 ; Delayed branching, gets a char from
:console

NOP ;

MOV.W #A PARM,R1 ;

MOV.W @R1,RO ;

MOV.B @RO,RO ;

RTS ;
NOP ;
ALIGN 4

A_DATA: .DATA.W DATA
A_PARM: .DATA.W PARM
A_FNO: .DATA.W FILENO
F_putc: .DATA.W H'0108
F_getc: .DATA.W H'0107
putc: .DATA.W H'0102 ; outputs 1 Character to simulated output

getc: .DATA.W H'0101 ; gets 1 character from console, sim input

1

1

: 1/0O buffer destination

.SECTION B,DATA,ALIGN=2
PARM: .RES.W 1
FILENO: .RES.B 1
DATA: .RESB 1

.END

Listing 5.LOWLVL.SRC (end)

Hitachi 17

Embedded Software Development: H8/300 tools

Listing 6.SIEVE.BAT (begin)

REM [#xiksiiikiiiiikikik ikttt */
REM /* File: SIEVE.BAT */
REM /* Description: Batch file to build the SIEVE Application */
REM /* to execute on the H8/300 simulator Debugger
*/
REM [#xkksiiikikiiidkik kit)

ch38 /debug sieve.c

ch38 /debug init.c

asm38 start.src /debug /cpu=300
asm38 lowlvl.src /debug /cpu=300
Ink /sub=sieve.cmd

Listing 6.SIEVE.BAT (end)

Listing 7.SIEVE.CMD (begin)

,/ xxxxxxxxxxxxxxxxxxxxxxxx /

/% File: SIEVE.CMD */
;/* Description: Links all the relocatable objects for sieve application */

,/ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

debug

form a

input sieve.obj

input start.obj

input init.obj

input lowlvl.obj

rom (D,R)

start P,D,C(1000),B,R,STACK(9000)
entry _ ENTRY

output sieve

print sieve

EXIT

Listing 7.SIEVE.CMD (end)

The information in this document has been carefully checked; however, the contents of this d
may be changed and modified without notice. Hitachi America, Ltd. shall assume no responsil
inaccuracies, or any problem involving patent infringement caused when applying the description
document. This material is protected by copyright lawsCopyright 1994, Hitachi America, Ltd. A
rights reserved. Printed in U.S.A.

pcument
ility for

s in this
|

18 Hitachi

