
H8/300 Family
Application Note
16x16 Multiply Tom Hampton

INTRODUCTION
The H8/300 CPU core is very powerful considering that it is
an 8-bit architecture. Part of its power comes from the flexible
instruction set, which allows for many byte and word opera-
tions. Part of its power also comes from the ability of the
architecture to allow use of the general purpose register as
either 16-bit or 8-bit registers as needed. While the instruction
set is extremely powerful in its ability to handle bit-wide and
byte-wide data, it only has a small number of instructions
(other than data transfer) that allow operations on word-wide
data.

One of the instructions that is noticeably missing is in the
arithmetic area. While the CPU has the capability of doing an
8x8 unsigned multiply, it lacks the capability of doing a 16x16
unsigned multiply. Even though this instruction does not
exist, the function can be easily implemented using the
instructions currently available.

In this application note, we will examine a routine that
provides the user with a 16x16 unsigned multiply function as
well as perform it in a very short amount of time. In perform-
ing this operation, we will make use of the flexible instruction
set as well as the architecture’s flexibility to be used as either
byte-wide or word-wide registers. Only five general purpose
registers are used in this routine, including the two that pass
the parameters. No fancy tricks were used, but it was impor-
tant to pay special attention to the manner in which the
multiply instruction operated on the registers.

This instruction requires that the destination operand be
contained in the lower half of a 16-bit register even though the
entire register will be used to hold the results. For this reason,
it was necessary to use other register for working registers and
temporary storage.

MULTIPLICATION PROCEDURES

STANDARD PROCEDURE

If one examines the normal procedure of a 16-bit multiply
operation (see Figure 1), it would be easy to see the steps that
would be taken if the H8/300 CPU had a 16-bit unsigned
multiply instruction. The first step would be to multiply the
16-bits of one operand by the lower “digit” of the second
operand, thus potentially yielding a 24-bit response. The
second step would be to multiply the same 16-bit one operand
by the higher “digit” of the second operand, which could yield
yet another 24-bit response. The final step would be to add

these 24-bit responses together in the proper sequence (with
required shifting) to form a 32-bit result. This is the procedure
that we are all used to for multiplication.

MODIFIED PROCEDURE

Since the H8/300 CPU does not have a 16-bit multiply
instruction, the normal procedure cannot be used. Instead we
must modify the procedure to account for the creation of only
16-bit intermediate results (see Figure 2). In this procedure,
we must multiply the individual 8-bit “pieces” of the operand
to form intermediate results. This requires four steps since we
actually have four bytes of operand data that we must multiply
together. The results of these pieces of intermediate data must
then be added together in the proper sequence (with shifting)
to form the final 32-bit result.

SOFTWARE DESCRIPTION
The routine written to perform the 16x16 unsigned multiply
function is shown in Listing 1. You may wish to refer to this
listing during the following discussions. The routine occupies
only 38 bytes of code space while executing in 8.6 µsec. One
of the first things to note in this routine is that no registers are
saved even though some of the general purpose registers are

AA BB

CC DD

AADD BBDD

AACC BBCC

N1 N2 N3 N4

X

Figure 1: Standard Multiplica-
tion Procedure

May , 1991

H8/300 Family Application Note

used for performing the function. If the user decides it is
important to save the current state of the working registers,
then it is easy to add “push” instructions at the beginning of the
routine to save the data, and “pop” instructions at the end of
the routine to restore the data. As we discuss this routine, we
will examine the modified procedure in detail as well as an
example of data used in the execution of the routine.

Before the routine is called, the user must place the two 16-bit
operands to be multiplied in registers R1 and R2 (see Figure
3). For this discussion, R1 will contain the “multiplier” and R2
will contain the “multiplicand.” The result will be returned in
these same registers, so if the original operands are to be used
later, it is also up to the user to save them elsewhere. In our
example, we will use the data H’37DF and H’40FF for the
multiply routine.

The first step we must perform in this routine is to prepare the
destination working registers (R3 and R4, only R4 requires
clearing) and also to save the multiplicand into a temporary
register (R5) because we will need it again later (see Figure 4).
This is performed with the following instructions:

AA BB

CC DD

AADD

BBDD

AACC

BBCC

N1 N2 N3 N4

X

AA BB

CC DD

R1

R2

LH LH

37 DF

40 FF

AA BB

CC DD

R1

R2

LH LH

37 DF

40 FF

CC DD 40 FF

R3

R4

R5

XX XXXXXX

00 00 00 00

mov.w #0,r4
mov.w r2,r5

In the next step, we perform the multiplication of the two low-
bytes of the multiplier and multiplicand (see Figure 5). This
result (H'DE21), which exists in R2, is then placed into our
destination registers (R3 and R4, only R3 is required at this
time). This is performed with the following instructions:

mulxu r1l,r2
mov.w r2,r3

Our original multiplicand that used to be in R2 is no longer
valid since R2 has been corrupted because of the multiply
instruction. In the third step (see Figure 6), we must retrieve
the high-byte of the saved multiplicand and place it into the
lower half of register R2. Remember that the destination
operand must exist in the lower half of the register in order for
the multiply instruction to execute. This is performed with the
following instruction:

mov.w r5,r2

AA BB R1

R2

LH LH

37 DF

CC DD 40 FF

R3

R4

R5

00 00 00 00

DE 21

DE 21

BB*DD

BB*DD

Figure 3:Parameter Passing

Figure 5: Step 2

Figure 4: Step 1
Figure 2: Modified

Multiplication Procedure

Application Note H8/300 Family

The fourth step now multiplies the upper half of the multipli-
cand by the lower half of the multiplier. This result (H'37C0)
is added to the previous result (see Figure 7), but not directly
to it since some shifting of the results must be performed. We
must add the low byte of this result (R2L) with the high byte
of the previous result (R3H). We must then add the high byte
of this result with the carry-over from the previous addition
and place the result in R4L. This generates a 32-bit result of
H'00389E21 (H'37C000 + H'DE21). This is performed with
the following instructions:

mulxu r1h,r2
add.b r2l,r3h
addx r2h,r4l

We have now performed an 8x16 multiply function, but that
is not what we wanted to do, but we are halfway through.
Again our original multiplicand that was in R2 is no longer
valid, so we must retrieve it from storage (see Figure 8). This
is performed with the following instruction:

mov.w r5,r2

The sixth step now multiplies the upper half of the multiplier
with the lower half of the multiplicand. The result of this
operation (H'36C9) is also added to the previous result, again
with some shifting performed (see Figure 9). We must add the
low byte of this result (R2L) with the high byte of the previous
result (R3H). We must then add the high byte of this result with
the carry-over from the previous addition and the current
value in R4L, and place the result in R4L. The carry-over from
this addition is placed into R4H. This alters our previous 32-
bit result to be H'006F6721 (H'00389E21 + H'36C900). This
is performed with the following instructions:

mulxu r1h,r2
add.b r2l,r3h
addx r2h,r4l
addx #0,r4h

AA BB R1

R2

LH LH

37 DF

CC DD 40 FF

R3

R4

R5

00 00 00 00

DE

DE 21BB*DD

40CCXX

AA BB R1

R2

LH LH

37 DF

CC DD 40 FF

R3

R4

R5

00 00

21BB*DD

BB*CC

9E

38

CC DD 40 FF

AA BB R1

R2

LH LH

37 DF

CC DD 40 FF

R3

R4

R5

00 00

21BB*DD

BB*CC

BB*CC

37 CD

9E

38

AA BB R1

R2

LH LH

37 DF

CC DD 40 FF

R3

R4

R5

00

21BB*DD

BB*CC

AA*DD 36 C9

67

6F00

AA*DDNN

Figure 6: Step 3 Figure 8: Step 5

Figure 7: Step 4

Figure 9: Step 6

H8/300 Family Application Note

Again our original multiplicand that was in R2 is no longer
valid, so we must retrieve it from storage (see Figure 10). We
must retrieve the high-byte of the saved multiplicand and
place it into the lower half of register R2. Remember that the
destination operand must exist in the lower half of the register
in order for the multiply instruction to execute. This is
performed with the following instruction:

mov.b r5h,r2l

In the eigth step (the final one of our multiplcation itself) we
multiply the upper byte of the multiplicand by the upper byte
of the multiplier (see Figure 11). This result (H'0DC0) is then
added to the upper word (R4) of the previous results to provide
our final answer, H'0E2F6721 (H'006F6721 + H'0DC00000).
At this time we also move the result to registers R1 and R2 for
return to the calling program (see Figure 12). This is per-
formed by the following instructions:

mulxu r1h,r2
add.w r4,r2
mov.w r3,r1
rts

AA BB R1

R2

LH LH

37 DF

CC DD 40 FF

R3

R4

R5

00

21BB*DD

BB*CC

36

67

6F00

AA*DDNN

CC 40XX

AA BB R1

R2

LH LH

37 DF

CC DD 40 FF

R3

R4

R5

00

21BB*DD

BB*CC

67

6F00

AA*DDNN

AA*CC 0D C0

R1

R2

LH LH

40 FF

R3

R4

R5

00

2167

6F

0E 2F

N4N3

N1 N2

67 21

Figure 10 Step 7

Figure 11: Step 8a

Figure 12: Step 8b

Application Note H8/300 Family
Listing 1: 16x16 Multiply Routine

*** H8/300 ASSEMBLER VER 1.1 *** 05/01/91 12:20:11 PAGE 1
PROGRAM NAME =

 1 ;H8/300 CPU 16x16 Multiply Routine
 2
 3 ;This routine uses strictly registers to maintain all
 4 ;storage facilities and for calculation.
 5
 6 ;Register Usage
 7 ;Entry:
 8 ; R1 = Multiplier
 9 ; R2 = Multiplicand
 10 ; R3,R4 = Temporary Result
 11 ; R5 = Temporary Storage
 12 ;Exit:
 13 ; R1 = Result, LSW
 14 ; R2 = Result, MSW
 15
 16 ;Pictorial Description:
 17 ; R2H R2L
 18 ; R1H R1L
 19 ; —————
 20 ; R2L*R1L
 21 ; R2H*R1L
 22 ; R2L*R1H
 23 ; R2H*R1H
 24 ; —————————
 25 ; - - R E S U L T - -
 26
 27 P C 0000 mult16:
 28 P C 0000 79040000 step1: mov.w #0,r4 ;clear result register
 29 P C 0004 0D25 mov.w r2,r5 ;save multiplicand
 30
 31 P C 0006 5092 step2: mulxu r1l,r2 ;multiplier(L) x multiplicand(L)
 32 P C 0008 0D23 mov.w r2,r3 ;1. R3 <— R2L*R1L
 33
 34 P C 000A 0C5A step3: mov.b r5h,r2l ;retrieve multiplicand(H)
 35
 36 P C 000C 5092 step4: mulxu r1l,r2 ;multiplier(L) x multiplicand(H)
 37 P C 000E 08A3 add.b r2l,r3h ;2. R3H <— R3H + (R2H*R1L)L
 38 P C 0010 0E2C addx r2h,r4l ; R4L <— (R2H*R1L)H + CY
 39
 40 P C 0012 0D52 step5: mov.w r5,r2 ;retrieve multiplicand
 41
 42 P C 0014 5012 step6: mulxu r1h,r2 ;multiplier(H) x multiplicand(L)
 43 P C 0016 08A3 add.b r2l,r3h ;3. R3H <— R3H + (R2L*R1H)L
 44 P C 0018 0E2C addx r2h,r4l ; R4L <— R4L + (R2L*R1H)H + CY
 45 P C 001A 9400 addx #0,r4h ; R4H <— CY
 46
 47 P C 001C 0C5A step7: mov.b r5h,r2l ;retrieve multiplicand(H)
 48
 49 P C 001E 5012 step8: mulxu r1h,r2
 50 P C 0020 0942 add.w r4,r2 ;4. R2 <— R4 + (R2H*R1H)
 51 P C 0022 0D31 mov.w r3,r1 ;setup return results
 52
 53 P C 0024 5470 rts ;return
 54
 55 .end
 *****TOTAL ERRORS 0
 *****TOTAL WARNINGS 0

