
D
iff

Comparing and Merging Files
diff, diff3, sdiff, cmp, and patch

Edition 1.3, for diff 2.7 and patch 2.1
September 1993

by David MacKenzie, Paul Eggert, and Richard Stallman

Copyright c
 1992, 1993, 1994, 1995, 1996 Free Software Foundation,
Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the en-
tire resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation ap-
proved by the Foundation.

D
iff

Short Contents
Overview . 1
1 What Comparison Means . 3
2 diff Output Formats . 9
3 Comparing Directories . 29
4 Making diff Output Prettier . 31
5 diff Performance Tradeoffs . 33
6 Comparing Three Files . 35
7 Merging From a Common Ancestor 39
8 Interactive Merging with sdiff . 45
9 Merging with patch . 47
10 Tips for Making Patch Distributions 53
11 Invoking cmp . 55
12 Invoking diff . 57
13 Invoking diff3 . 65
14 Invoking patch . 69
15 Invoking sdiff . 77
16 Incomplete Lines . 81
17 Future Projects . 83
Concept Index . 87

c y g n u s s u p p o r t i

Comparing and Merging Files

ii 16 January 1996

D
iff

Table of Contents

Overview . 1

1 What Comparison Means . 3
1.1 Hunks . 3
1.2 Suppressing Differences in Blank and Tab Spacing 4
1.3 Suppressing Differences in Blank Lines 5
1.4 Suppressing Case Differences . 5
1.5 Suppressing Lines Matching a Regular Expression 5
1.6 Summarizing Which Files Differ . 6
1.7 Binary Files and Forcing Text Comparisons 6

2 diff Output Formats . 9
2.1 Two Sample Input Files . 9
2.2 Showing Differences Without Context . 9

2.2.1 Detailed Description of Normal Format 10
2.2.2 An Example of Normal Format 11

2.3 Showing Differences in Their Context 11
2.3.1 Context Format . 11

2.3.1.1 Detailed Description of Context Format
. 12

2.3.1.2 An Example of Context Format 12
2.3.1.3 An Example of Context Format with

Less Context . 13
2.3.2 Unified Format . 14

2.3.2.1 Detailed Description of Unified Format
. 14

2.3.2.2 An Example of Unified Format 14
2.3.3 Showing Which Sections Differences Are in 15

2.3.3.1 Showing Lines That Match Regular
Expressions . 15

2.3.3.2 Showing C Function Headings 16
2.3.4 Showing Alternate File Names 16

2.4 Showing Differences Side by Side . 16
2.5 Controlling Side by Side Format . 17

2.5.1 An Example of Side by Side Format 18
2.6 Making Edit Scripts . 18

2.6.1 ed Scripts . 18
2.6.1.1 Detailed Description of ed Format 19
2.6.1.2 Example ed Script . 19

2.6.2 Forward ed Scripts . 20
2.6.3 RCS Scripts . 20

c y g n u s s u p p o r t iii

Comparing and Merging Files

2.7 Merging Files with If-then-else . 21
2.7.1 Line Group Formats . 21
2.7.2 Line Formats . 24
2.7.3 Detailed Description of If-then-else Format 26
2.7.4 An Example of If-then-else Format 27

3 Comparing Directories . 29

4 Making diff Output Prettier 31
4.1 Preserving Tabstop Alignment . 31
4.2 Paginating diff Output . 31

5 diff Performance Tradeoffs 33

6 Comparing Three Files . 35
6.1 A Third Sample Input File . 35
6.2 Detailed Description of diff3 Normal Format 35
6.3 diff3 Hunks . 36
6.4 An Example of diff3 Normal Format 37

7 Merging From a Common Ancestor 39
7.1 Selecting Which Changes to Incorporate 39
7.2 Marking Conflicts . 40
7.3 Generating the Merged Output Directly 41
7.4 How diff3 Merges Incomplete Lines . 42
7.5 Saving the Changed File . 42

8 Interactive Merging with sdiff 45
8.1 Specifying diff Options to sdiff . 45
8.2 Merge Commands . 45

9 Merging with patch . 47
9.1 Selecting the patch Input Format . 47
9.2 Applying Imperfect Patches . 48

9.2.1 Applying Patches with Changed White Space . . 48
9.2.2 Applying Reversed Patches . 48
9.2.3 Helping patch Find Inexact Matches 49

9.3 Removing Empty Files . 50
9.4 Multiple Patches in a File . 50
9.5 Messages and Questions from patch . 51

10 Tips for Making Patch Distributions 53

iv 16 January 1996

D
iff

11 Invoking cmp . 55
11.1 Options to cmp . 55

12 Invoking diff. 57
12.1 Options to diff . 57

13 Invoking diff3 . 65
13.1 Options to diff3 . 65

14 Invoking patch . 69
14.1 Applying Patches in Other Directories 69
14.2 Backup File Names . 70
14.3 Reject File Names . 71
14.4 Options to patch . 71

15 Invoking sdiff . 77
15.1 Options to sdiff . 77

16 Incomplete Lines . 81

17 Future Projects . 83
17.1 Suggested Projects for Improving GNU diff and patch

. 83
17.1.1 Handling Changes to the Directory Structure

. 83
17.1.2 Files that are Neither Directories Nor Regular

Files . 83
17.1.3 File Names that Contain Unusual Characters

. 84
17.1.4 Arbitrary Limits . 84
17.1.5 Handling Files that Do Not Fit in Memory . . . 84
17.1.6 Ignoring Certain Changes . 84

17.2 Reporting Bugs . 85

Concept Index . 87

c y g n u s s u p p o r t v

Comparing and Merging Files

vi 16 January 1996

D
iff

Overview

Overview

Computer users often find occasion to ask how two files differ. Per-
haps one file is a newer version of the other file. Or maybe the two files
started out as identical copies but were changed by different people.

You can use the diff command to show differences between two files,
or each corresponding file in two directories. diff outputs differences
between files line by line in any of several formats, selectable by com-
mand line options. This set of differences is often called a diff or patch.
For files that are identical, diff normally produces no output; for binary
(non-text) files, diff normally reports only that they are different.

You can use the cmp command to show the offsets and line numbers
where two files differ. cmp can also show all the characters that differ
between the two files, side by side. Another way to compare two files
character by character is the Emacs command M-x compare-windows.
See section “Other Window” in The GNU Emacs Manual, for more infor-
mation on that command.

You can use the diff3 command to show differences among three
files. When two people have made independent changes to a common
original, diff3 can report the differences between the original and the
two changed versions, and can produce a merged file that contains both
persons’ changes together with warnings about conflicts.

You can use the sdiff command to merge two files interactively.
You can use the set of differences produced by diff to distribute

updates to text files (such as program source code) to other people. This
method is especially useful when the differences are small compared to
the complete files. Given diff output, you can use the patch program
to update, or patch, a copy of the file. If you think of diff as subtracting
one file from another to produce their difference, you can think of patch
as adding the difference to one file to reproduce the other.

This manual first concentrates on making diffs, and later shows how
to use diffs to update files.

gnu diff was written by Mike Haertel, David Hayes, Richard Stall-
man, Len Tower, and Paul Eggert. Wayne Davison designed and imple-
mented the unified output format. The basic algorithm is described in
“An O(ND) Difference Algorithm and its Variations”, Eugene W. Myers,
Algorithmica Vol. 1 No. 2, 1986, pp. 251–266; and in “A File Compar-
ison Program”, Webb Miller and Eugene W. Myers, Software—Practice
and Experience Vol. 15 No. 11, 1985, pp. 1025–1040. The algorithm was
independently discovered as described in “Algorithms for Approximate
String Matching”, E. Ukkonen, Information and Control Vol. 64, 1985,
pp. 100–118.

c y g n u s s u p p o r t 1

Comparing and Merging Files

gnu diff3 was written by Randy Smith. gnu sdiff was written by
Thomas Lord. gnu cmp was written by Torbjorn Granlund and David
MacKenzie.

patchwas written mainly by Larry Wall; the gnu enhancements were
written mainly by Wayne Davison and David MacKenzie. Parts of this
manual are adapted from a manual page written by Larry Wall, with his
permission.

2 16 January 1996

D
iff

Chapter 1: What Comparison Means

1 What Comparison Means

There are several ways to think about the differences between two
files. One way to think of the differences is as a series of lines that were
deleted from, inserted in, or changed in one file to produce the other file.
diff compares two files line by line, finds groups of lines that differ, and
reports each group of differing lines. It can report the differing lines in
several formats, which have different purposes.

gnu diff can show whether files are different without detailing the
differences. It also provides ways to suppress certain kinds of differences
that are not important to you. Most commonly, such differences are
changes in the amount of white space between words or lines. diff
also provides ways to suppress differences in alphabetic case or in lines
that match a regular expression that you provide. These options can
accumulate; for example, you can ignore changes in both white space
and alphabetic case.

Another way to think of the differences between two files is as a
sequence of pairs of characters that can be either identical or different.
cmp reports the differences between two files character by character,
instead of line by line. As a result, it is more useful than diff for
comparing binary files. For text files, cmp is useful mainly when you
want to know only whether two files are identical.

To illustrate the effect that considering changes character by charac-
ter can have compared with considering them line by line, think of what
happens if a single newline character is added to the beginning of a file.
If that file is then compared with an otherwise identical file that lacks
the newline at the beginning, diff will report that a blank line has been
added to the file, while cmp will report that almost every character of the
two files differs.

diff3 normally compares three input files line by line, finds groups
of lines that differ, and reports each group of differing lines. Its output
is designed to make it easy to inspect two different sets of changes to the
same file.

1.1 Hunks

When comparing two files, diff finds sequences of lines common
to both files, interspersed with groups of differing lines called hunks.
Comparing two identical files yields one sequence of common lines and
no hunks, because no lines differ. Comparing two entirely different files
yields no common lines and one large hunk that contains all lines of both
files. In general, there are many ways to match up lines between two
given files. diff tries to minimize the total hunk size by finding large

c y g n u s s u p p o r t 3

Comparing and Merging Files

sequences of common lines interspersed with small hunks of differing
lines.

For example, suppose the file ‘F’ contains the three lines ‘a’, ‘b’, ‘c’,
and the file ‘G’ contains the same three lines in reverse order ‘c’, ‘b’, ‘a’. If
diff finds the line ‘c’ as common, then the command ‘diff F G’ produces
this output:

1,2d0
< a
< b
3a2,3
> b
> a

But if diff notices the common line ‘b’ instead, it produces this output:
1c1
< a

> c
3c3
< c

> a

It is also possible to find ‘a’ as the common line. diff does not always
find an optimal matching between the files; it takes shortcuts to run
faster. But its output is usually close to the shortest possible. You
can adjust this tradeoff with the ‘--minimal’ option (see Chapter 5 “diff
Performance,” page 33).

1.2 Suppressing Differences in Blank and Tab
Spacing

The ‘-b’ and ‘--ignore-space-change’ options ignore white space at
line end, and considers all other sequences of one or more white space
characters to be equivalent. With these options, diff considers the
following two lines to be equivalent, where ‘$’ denotes the line end:

Here lyeth muche rychnesse in lytell space. -- John Heywood$
Here lyeth muche rychnesse in lytell space. -- John Heywood $

The ‘-w’ and ‘--ignore-all-space’ options are stronger than ‘-b’.
They ignore difference even if one file has white space where the other
file has none. White space characters include tab, newline, vertical tab,
form feed, carriage return, and space; some locales may define additional
characters to be white space. With these options, diff considers the
following two lines to be equivalent, where ‘$’ denotes the line end and
‘ˆM’ denotes a carriage return:

Here lyeth muche rychnesse in lytell space.-- John Heywood$
He relyeth much erychnes seinly tells pace. --John Heywood ˆM$

4 16 January 1996

D
iff

Chapter 1: What Comparison Means

1.3 Suppressing Differences in Blank Lines

The ‘-B’ and ‘--ignore-blank-lines’ options ignore insertions or
deletions of blank lines. These options normally affect only lines that
are completely empty; they do not affect lines that look empty but con-
tain space or tab characters. With these options, for example, a file
containing

1. A point is that which has no part.

2. A line is breadthless length.
-- Euclid, The Elements, I

is considered identical to a file containing
1. A point is that which has no part.
2. A line is breadthless length.

-- Euclid, The Elements, I

1.4 Suppressing Case Differences

gnu diff can treat lowercase letters as equivalent to their uppercase
counterparts, so that, for example, it considers ‘Funky Stuff’, ‘funky
STUFF’, and ‘fUNKy stuFf’ to all be the same. To request this, use the ‘-i’
or ‘--ignore-case’ option.

1.5 Suppressing Lines Matching a Regular
Expression

To ignore insertions and deletions of lines that match a regular ex-
pression, use the ‘-I regexp’ or ‘--ignore-matching-lines=regexp’ op-
tion. You should escape regular expressions that contain shell metachar-
acters to prevent the shell from expanding them. For example, ‘diff -I
’ˆ[0-9]’’ ignores all changes to lines beginning with a digit.

However, ‘-I’ only ignores the insertion or deletion of lines that con-
tain the regular expression if every changed line in the hunk—every
insertion and every deletion—matches the regular expression. In other
words, for each nonignorable change, diff prints the complete set of
changes in its vicinity, including the ignorable ones.

You can specify more than one regular expression for lines to ignore
by using more than one ‘-I’ option. diff tries to match each line against
each regular expression, starting with the last one given.

c y g n u s s u p p o r t 5

Comparing and Merging Files

1.6 Summarizing Which Files Differ

When you only want to find out whether files are different, and you
don’t care what the differences are, you can use the summary output
format. In this format, instead of showing the differences between the
files, diff simply reports whether files differ. The ‘-q’ and ‘--brief’
options select this output format.

This format is especially useful when comparing the contents of two
directories. It is also much faster than doing the normal line by line
comparisons, because diff can stop analyzing the files as soon as it
knows that there are any differences.

You can also get a brief indication of whether two files differ by using
cmp. For files that are identical, cmp produces no output. When the files
differ, by default, cmp outputs the byte offset and line number where
the first difference occurs. You can use the ‘-s’ option to suppress that
information, so that cmp produces no output and reports whether the
files differ using only its exit status (see Chapter 11 “Invoking cmp,”
page 55).

Unlike diff, cmp cannot compare directories; it can only compare two
files.

1.7 Binary Files and Forcing Text Comparisons

If diff thinks that either of the two files it is comparing is binary (a
non-text file), it normally treats that pair of files much as if the summary
output format had been selected (see Section 1.6 “Brief,” page 6), and
reports only that the binary files are different. This is because line by
line comparisons are usually not meaningful for binary files.

diff determines whether a file is text or binary by checking the first
few bytes in the file; the exact number of bytes is system dependent, but
it is typically several thousand. If every character in that part of the file
is non-null, diff considers the file to be text; otherwise it considers the
file to be binary.

Sometimes you might want to force diff to consider files to be text.
For example, you might be comparing text files that contain null char-
acters; diff would erroneously decide that those are non-text files. Or
you might be comparing documents that are in a format used by a word
processing system that uses null characters to indicate special format-
ting. You can force diff to consider all files to be text files, and compare
them line by line, by using the ‘-a’ or ‘--text’ option. If the files you
compare using this option do not in fact contain text, they will proba-
bly contain few newline characters, and the diff output will consist of

6 16 January 1996

D
iff

Chapter 1: What Comparison Means

hunks showing differences between long lines of whatever characters
the files contain.

You can also force diff to consider all files to be binary files, and
report only whether they differ (but not how). Use the ‘--brief’ option
for this.

In operating systems that distinguish between text and binary files,
diff normally reads and writes all data as text. Use the ‘--binary’
option to force diff to read and write binary data instead. This option
has no effect on a Posix-compliant system like gnu or traditional Unix.
However, many personal computer operating systems represent the end
of a line with a carriage return followed by a newline. On such systems,
diff normally ignores these carriage returns on input and generates
them at the end of each output line, but with the ‘--binary’ option diff
treats each carriage return as just another input character, and does not
generate a carriage return at the end of each output line. This can be
useful when dealing with non-text files that are meant to be interchanged
with Posix-compliant systems.

If you want to compare two files byte by byte, you can use the cmp
program with the ‘-l’ option to show the values of each differing byte in
the two files. With gnu cmp, you can also use the ‘-c’ option to show the
ASCII representation of those bytes. See Chapter 11 “Invoking cmp,”
page 55, for more information.

If diff3 thinks that any of the files it is comparing is binary (a non-
text file), it normally reports an error, because such comparisons are
usually not useful. diff3 uses the same test as diff to decide whether
a file is binary. As with diff, if the input files contain a few non-
text characters but otherwise are like text files, you can force diff3 to
consider all files to be text files and compare them line by line by using
the ‘-a’ or ‘--text’ options.

c y g n u s s u p p o r t 7

Comparing and Merging Files

8 16 January 1996

D
iff

Chapter 2: diff Output Formats

2 diffOutput Formats

diff has several mutually exclusive options for output format. The
following sections describe each format, illustrating how diff reports
the differences between two sample input files.

2.1 Two Sample Input Files

Here are two sample files that we will use in numerous examples to
illustrate the output of diff and how various options can change it.

This is the file ‘lao’:
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

so we may see their outcome.
The two are the same,
But after they are produced,

they have different names.

This is the file ‘tzu’:
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their outcome.

The two are the same,
But after they are produced,

they have different names.
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

In this example, the first hunk contains just the first two lines of ‘lao’,
the second hunk contains the fourth line of ‘lao’ opposing the second and
third lines of ‘tzu’, and the last hunk contains just the last three lines of
‘tzu’.

2.2 Showing Differences Without Context

The “normal” diff output format shows each hunk of differences
without any surrounding context. Sometimes such output is the clear-
est way to see how lines have changed, without the clutter of nearby

c y g n u s s u p p o r t 9

Comparing and Merging Files

unchanged lines (although you can get similar results with the context
or unified formats by using 0 lines of context). However, this format is no
longer widely used for sending out patches; for that purpose, the context
format (see Section 2.3.1 “Context Format,” page 11) and the unified for-
mat (see Section 2.3.2 “Unified Format,” page 14) are superior. Normal
format is the default for compatibility with older versions of diff and
the Posix standard.

2.2.1 Detailed Description of Normal Format

The normal output format consists of one or more hunks of differences;
each hunk shows one area where the files differ. Normal format hunks
look like this:

change-command
< from-file-line
< from-file-line. ..

> to-file-line
> to-file-line. ..

There are three types of change commands. Each consists of a line
number or comma-separated range of lines in the first file, a single
character indicating the kind of change to make, and a line number or
comma-separated range of lines in the second file. All line numbers are
the original line numbers in each file. The types of change commands
are:

‘lar’ Add the lines in range r of the second file after line l of the
first file. For example, ‘8a12,15’ means append lines 12–15
of file 2 after line 8 of file 1; or, if changing file 2 into file 1,
delete lines 12–15 of file 2.

‘fct’ Replace the lines in range f of the first file with lines in range
t of the second file. This is like a combined add and delete,
but more compact. For example, ‘5,7c8,10’ means change
lines 5–7 of file 1 to read as lines 8–10 of file 2; or, if changing
file 2 into file 1, change lines 8–10 of file 2 to read as lines
5–7 of file 1.

‘rdl’ Delete the lines in range r from the first file; line l is where
they would have appeared in the second file had they not
been deleted. For example, ‘5,7d3’ means delete lines 5–7 of
file 1; or, if changing file 2 into file 1, append lines 5–7 of file
1 after line 3 of file 2.

10 16 January 1996

D
iff

Chapter 2: diff Output Formats

2.2.2 An Example of Normal Format

Here is the output of the command ‘diff lao tzu’ (see Section 2.1
“Sample diff Input,” page 9, for the complete contents of the two files).
Notice that it shows only the lines that are different between the two
files.

1,2d0
< The Way that can be told of is not the eternal Way;
< The name that can be named is not the eternal name.
4c2,3
< The Named is the mother of all things.

> The named is the mother of all things.
>
11a11,13
> They both may be called deep and profound.
> Deeper and more profound,
> The door of all subtleties!

2.3 Showing Differences in Their Context

Usually, when you are looking at the differences between files, you
will also want to see the parts of the files near the lines that differ, to
help you understand exactly what has changed. These nearby parts of
the files are called the context.

gnu diff provides two output formats that show context around the
differing lines: context format and unified format. It can optionally show
in which function or section of the file the differing lines are found.

If you are distributing new versions of files to other people in the
form of diff output, you should use one of the output formats that show
context so that they can apply the diffs even if they have made small
changes of their own to the files. patch can apply the diffs in this case by
searching in the files for the lines of context around the differing lines;
if those lines are actually a few lines away from where the diff says they
are, patch can adjust the line numbers accordingly and still apply the
diff correctly. See Section 9.2 “Imperfect,” page 48, for more information
on using patch to apply imperfect diffs.

2.3.1 Context Format

The context output format shows several lines of context around the
lines that differ. It is the standard format for distributing updates to
source code.

To select this output format, use the ‘-C lines’, ‘--context[=lines]’,
or ‘-c’ option. The argument lines that some of these options take is

c y g n u s s u p p o r t 11

Comparing and Merging Files

the number of lines of context to show. If you do not specify lines, it
defaults to three. For proper operation, patch typically needs at least
two lines of context.

2.3.1.1 Detailed Description of Context Format

The context output format starts with a two-line header, which looks
like this:

*** from-file from-file-modification-time
--- to-file to-file-modification time

You can change the header’s content with the ‘-L label’ or
‘--label=label’ option; see Section 2.3.4 “Alternate Names,” page 16.

Next come one or more hunks of differences; each hunk shows one
area where the files differ. Context format hunks look like this:

*** from-file-line-range ****

from-file-line
from-file-line. ..

--- to-file-line-range ----
to-file-line
to-file-line. ..

The lines of context around the lines that differ start with two space
characters. The lines that differ between the two files start with one of
the following indicator characters, followed by a space character:

‘!’ A line that is part of a group of one or more lines that changed
between the two files. There is a corresponding group of lines
marked with ‘!’ in the part of this hunk for the other file.

‘+’ An “inserted” line in the second file that corresponds to noth-
ing in the first file.

‘-’ A “deleted” line in the first file that corresponds to nothing
in the second file.

If all of the changes in a hunk are insertions, the lines of from-file
are omitted. If all of the changes are deletions, the lines of to-file are
omitted.

2.3.1.2 An Example of Context Format

Here is the output of ‘diff -c lao tzu’ (see Section 2.1 “Sample diff
Input,” page 9, for the complete contents of the two files). Notice that up
to three lines that are not different are shown around each line that is
different; they are the context lines. Also notice that the first two hunks
have run together, because their contents overlap.

12 16 January 1996

D
iff

Chapter 2: diff Output Formats

*** lao Sat Jan 26 23:30:39 1991
--- tzu Sat Jan 26 23:30:50 1991

*** 1,7 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;
! The Named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
--- 1,6 ----

The Nameless is the origin of Heaven and Earth;
! The named is the mother of all things.
!

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,

*** 9,11 ****
--- 8,13 ----

The two are the same,
But after they are produced,

they have different names.
+ They both may be called deep and profound.
+ Deeper and more profound,
+ The door of all subtleties!

2.3.1.3 An Example of Context Format with Less Context

Here is the output of ‘diff --context=1 lao tzu’ (see Section 2.1
“Sample diff Input,” page 9, for the complete contents of the two files).
Notice that at most one context line is reported here.

*** lao Sat Jan 26 23:30:39 1991
--- tzu Sat Jan 26 23:30:50 1991

*** 1,5 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;
! The Named is the mother of all things.

Therefore let there always be non-being,
--- 1,4 ----

The Nameless is the origin of Heaven and Earth;
! The named is the mother of all things.
!

Therefore let there always be non-being,

*** 11 ****
--- 10,13 ----

they have different names.
+ They both may be called deep and profound.

c y g n u s s u p p o r t 13

Comparing and Merging Files

+ Deeper and more profound,
+ The door of all subtleties!

2.3.2 Unified Format

The unified output format is a variation on the context format that
is more compact because it omits redundant context lines. To select this
output format, use the ‘-U lines’, ‘--unified[=lines]’, or ‘-u’ option.
The argument lines is the number of lines of context to show. When it
is not given, it defaults to three.

At present, onlygnu diff can produce this format and only gnu patch
can automatically apply diffs in this format. For proper operation, patch
typically needs at least two lines of context.

2.3.2.1 Detailed Description of Unified Format

The unified output format starts with a two-line header, which looks
like this:

--- from-file from-file-modification-time
+++ to-file to-file-modification-time

You can change the header’s content with the ‘-L label’ or
‘--label=label’ option; see See Section 2.3.4 “Alternate Names,”
page 16.

Next come one or more hunks of differences; each hunk shows one
area where the files differ. Unified format hunks look like this:

@@ from-file-range to-file-range @@
line-from-either-file
line-from-either-file. ..

The lines common to both files begin with a space character. The
lines that actually differ between the two files have one of the following
indicator characters in the left column:

‘+’ A line was added here to the first file.

‘-’ A line was removed here from the first file.

2.3.2.2 An Example of Unified Format

Here is the output of the command ‘diff -u lao tzu’ (see Section 2.1
“Sample diff Input,” page 9, for the complete contents of the two files):

--- lao Sat Jan 26 23:30:39 1991
+++ tzu Sat Jan 26 23:30:50 1991
@@ -1,7 +1,6 @@
-The Way that can be told of is not the eternal Way;

14 16 January 1996

D
iff

Chapter 2: diff Output Formats

-The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
-The Named is the mother of all things.
+The named is the mother of all things.
+
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,
@@ -9,3 +8,6 @@
The two are the same,
But after they are produced,

they have different names.
+They both may be called deep and profound.
+Deeper and more profound,
+The door of all subtleties!

2.3.3 Showing Which Sections Differences Are in

Sometimes you might want to know which part of the files each change
falls in. If the files are source code, this could mean which function
was changed. If the files are documents, it could mean which chapter
or appendix was changed. gnu diff can show this by displaying the
nearest section heading line that precedes the differing lines. Which
lines are “section headings” is determined by a regular expression.

2.3.3.1 Showing Lines That Match Regular Expressions

To show in which sections differences occur for files that are
not source code for C or similar languages, use the ‘-F regexp’ or
‘--show-function-line=regexp’ option. diff considers lines that
match the argument regexp to be the beginning of a section of the file.
Here are suggested regular expressions for some common languages:

‘ˆ[A-Za-z_]’
C, C++, Prolog

‘ˆ(’ Lisp

‘ˆ@\(chapter\|appendix\|unnumbered\|chapheading\)’
Texinfo

This option does not automatically select an output format; in order
to use it, you must select the context format (see Section 2.3.1 “Context
Format,” page 11) or unified format (see Section 2.3.2 “Unified Format,”
page 14). In other output formats it has no effect.

The ‘-F’ and ‘--show-function-line’ options find the nearest un-
changed line that precedes each hunk of differences and matches the
given regular expression. Then they add that line to the end of the line

c y g n u s s u p p o r t 15

Comparing and Merging Files

of asterisks in the context format, or to the ‘@@’ line in unified format. If
no matching line exists, they leave the output for that hunk unchanged.
If that line is more than 40 characters long, they output only the first 40
characters. You can specify more than one regular expression for such
lines; diff tries to match each line against each regular expression,
starting with the last one given. This means that you can use ‘-p’ and
‘-F’ together, if you wish.

2.3.3.2 Showing C Function Headings

To show in which functions differences occur for C and similar lan-
guages, you can use the ‘-p’ or ‘--show-c-function’ option. This option
automatically defaults to the context output format (see Section 2.3.1
“Context Format,” page 11), with the default number of lines of context.
You can override that number with ‘-C lines’ elsewhere in the command
line. You can override both the format and the number with ‘-U lines’
elsewhere in the command line.

The ‘-p’ and ‘--show-c-function’ options are equivalent to
‘-F’ˆ[_a-zA-Z$]’’ if the unified format is specified, otherwise ‘-c
-F’ˆ[_a-zA-Z$]’’ (see Section 2.3.3.1 “Specified Headings,” page 15).
gnu diff provides them for the sake of convenience.

2.3.4 Showing Alternate File Names

If you are comparing two files that have meaningless or uninformative
names, you might want diff to show alternate names in the header of
the context and unified output formats. To do this, use the ‘-L label’ or
‘--label=label’ option. The first time you give this option, its argument
replaces the name and date of the first file in the header; the second time,
its argument replaces the name and date of the second file. If you give
this option more than twice, diff reports an error. The ‘-L’ option does
not affect the file names in the pr header when the ‘-l’ or ‘--paginate’
option is used (see Section 4.2 “Pagination,” page 31).

Here are the first two lines of the output from ‘diff -C2 -Loriginal
-Lmodified lao tzu’:

*** original
--- modified

2.4 Showing Differences Side by Side

diff can produce a side by side difference listing of two files. The
files are listed in two columns with a gutter between them. The gutter
contains one of the following markers:

16 16 January 1996

D
iff

Chapter 2: diff Output Formats

white space
The corresponding lines are in common. That is, either the
lines are identical, or the difference is ignored because of
one of the ‘--ignore’ options (see Section 1.2 “White Space,”
page 4).

‘|’ The corresponding lines differ, and they are either both com-
plete or both incomplete.

‘<’ The files differ and only the first file contains the line.

‘>’ The files differ and only the second file contains the line.

‘(’ Only the first file contains the line, but the difference is ig-
nored.

‘)’ Only the second file contains the line, but the difference is
ignored.

‘\’ The corresponding lines differ, and only the first line is in-
complete.

‘/’ The corresponding lines differ, and only the second line is
incomplete.

Normally, an output line is incomplete if and only if the lines that it
contains are incomplete; See Chapter 16 “Incomplete Lines,” page 81.
However, when an output line represents two differing lines, one might
be incomplete while the other is not. In this case, the output line is
complete, but its the gutter is marked ‘\’ if the first line is incomplete,
‘/’ if the second line is.

Side by side format is sometimes easiest to read, but it has limitations.
It generates much wider output than usual, and truncates lines that are
too long to fit. Also, it relies on lining up output more heavily than
usual, so its output looks particularly bad if you use varying width fonts,
nonstandard tab stops, or nonprinting characters.

You can use the sdiff command to interactively merge side by side
differences. See Chapter 8 “Interactive Merging,” page 45, for more
information on merging files.

2.5 Controlling Side by Side Format

The ‘-y’ or ‘--side-by-side’ option selects side by side format. Be-
cause side by side output lines contain two input lines, they are wider
than usual. They are normally 130 columns, which can fit onto a tradi-
tional printer line. You can set the length of output lines with the ‘-W
columns’ or ‘--width=columns’ option. The output line is split into two
halves of equal length, separated by a small gutter to mark differences;

c y g n u s s u p p o r t 17

Comparing and Merging Files

the right half is aligned to a tab stop so that tabs line up. Input lines
that are too long to fit in half of an output line are truncated for output.

The ‘--left-column’ option prints only the left column of two common
lines. The ‘--suppress-common-lines’ option suppresses common lines
entirely.

2.5.1 An Example of Side by Side Format

Here is the output of the command ‘diff -y -W 72 lao tzu’ (see Sec-
tion 2.1 “Sample diff Input,” page 9, for the complete contents of the two
files).

The Way that can be told of is <
The name that can be named is <
The Nameless is the origin of The Nameless is the origin of
The Named is the mother of all | The named is the mother of all

>
Therefore let there always be Therefore let there always be

so we may see their subtlet so we may see their subtlet
And let there always be being And let there always be being

so we may see their outcome so we may see their outcome
The two are the same, The two are the same,
But after they are produced, But after they are produced,

they have different names. they have different names.
> They both may be called deep
> Deeper and more profound,
> The door of all subtleties!

2.6 Making Edit Scripts

Several output modes produce command scripts for editing from-file
to produce to-file.

2.6.1 ed Scripts

diff can produce commands that direct the ed text editor to change
the first file into the second file. Long ago, this was the only output mode
that was suitable for editing one file into another automatically; today,
with patch, it is almost obsolete. Use the ‘-e’ or ‘--ed’ option to select
this output format.

Like the normal format (see Section 2.2 “Normal,” page 9), this output
format does not show any context; unlike the normal format, it does not
include the information necessary to apply the diff in reverse (to produce
the first file if all you have is the second file and the diff).

If the file ‘d’ contains the output of ‘diff -e old new’, then the com-
mand ‘(cat d && echo w) | ed - old’ edits ‘old’ to make it a copy of ‘new’.

18 16 January 1996

D
iff

Chapter 2: diff Output Formats

More generally, if ‘d1’, ‘d2’, . . ., ‘dN’ contain the outputs of ‘diff -e
old new1’, ‘diff -e new1 new2’, . . ., ‘diff -e newN-1 newN’, respectively,
then the command ‘(cat d1 d2 . .. dN && echo w) | ed - old’ edits ‘old’
to make it a copy of ‘newN’.

2.6.1.1 Detailed Description of ed Format

The ed output format consists of one or more hunks of differences.
The changes closest to the ends of the files come first so that commands
that change the number of lines do not affect how ed interprets line
numbers in succeeding commands. ed format hunks look like this:

change-command
to-file-line
to-file-line. ..
.

Because ed uses a single period on a line to indicate the end of input,
gnu diff protects lines of changes that contain a single period on a line
by writing two periods instead, then writing a subsequent ed command
to change the two periods into one. The ed format cannot represent an
incomplete line, so if the second file ends in a changed incomplete line,
diff reports an error and then pretends that a newline was appended.

There are three types of change commands. Each consists of a line
number or comma-separated range of lines in the first file and a single
character indicating the kind of change to make. All line numbers are
the original line numbers in the file. The types of change commands are:

‘la’ Add text from the second file after line l in the first file. For
example, ‘8a’ means to add the following lines after line 8 of
file 1.

‘rc’ Replace the lines in range r in the first file with the following
lines. Like a combined add and delete, but more compact.
For example, ‘5,7c’ means change lines 5–7 of file 1 to read
as the text file 2.

‘rd’ Delete the lines in range r from the first file. For example,
‘5,7d’ means delete lines 5–7 of file 1.

2.6.1.2 Example ed Script

Here is the output of ‘diff -e lao tzu’ (see Section 2.1 “Sample diff
Input,” page 9, for the complete contents of the two files):

c y g n u s s u p p o r t 19

Comparing and Merging Files

11a

They both may be called deep and profound.

Deeper and more profound,

The door of all subtleties!
.

4c

The named is the mother of all things.

.
1,2d

2.6.2 Forward ed Scripts

diff can produce output that is like an ed script, but with hunks
in forward (front to back) order. The format of the commands is also
changed slightly: command characters precede the lines they modify,
spaces separate line numbers in ranges, and no attempt is made to
disambiguate hunk lines consisting of a single period. Like ed format,
forward ed format cannot represent incomplete lines.

Forward ed format is not very useful, because neither ed nor patch
can apply diffs in this format. It exists mainly for compatibility with
older versions of diff. Use the ‘-f’ or ‘--forward-ed’ option to select it.

2.6.3 RCS Scripts

The RCS output format is designed specifically for use by the Revi-
sion Control System, which is a set of free programs used for organizing
different versions and systems of files. Use the ‘-n’ or ‘--rcs’ option
to select this output format. It is like the forward ed format (see Sec-
tion 2.6.2 “Forward ed,” page 20), but it can represent arbitrary changes
to the contents of a file because it avoids the forward ed format’s prob-
lems with lines consisting of a single period and with incomplete lines.
Instead of ending text sections with a line consisting of a single period,
each command specifies the number of lines it affects; a combination
of the ‘a’ and ‘d’ commands are used instead of ‘c’. Also, if the second
file ends in a changed incomplete line, then the output also ends in an
incomplete line.

Here is the output of ‘diff -n lao tzu’ (see Section 2.1 “Sample diff
Input,” page 9, for the complete contents of the two files):

d1 2
d4 1
a4 2
The named is the mother of all things.

20 16 January 1996

D
iff

Chapter 2: diff Output Formats

a11 3
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

2.7 Merging Files with If-then-else

You can use diff to merge two files of C source code. The output of
diff in this format contains all the lines of both files. Lines common
to both files are output just once; the differing parts are separated by
the C preprocessor directives #ifdef name or #ifndef name, #else, and
#endif. When compiling the output, you select which version to use by
either defining or leaving undefined the macro name.

To merge two files, use diff with the ‘-D name’ or ‘--ifdef=name’
option. The argument name is the C preprocessor identifier to use in the
#ifdef and #ifndef directives.

For example, if you change an instance of wait (&s) to waitpid
(-1, &s, 0) and then merge the old and new files with the
‘--ifdef=HAVE_WAITPID’ option, then the affected part of your code
might look like this:

do {
#ifndef HAVE_WAITPID

if ((w = wait (&s)) < 0 && errno != EINTR)
#else /* HAVE_WAITPID */

if ((w = waitpid (-1, &s, 0)) < 0 && errno != EINTR)
#endif /* HAVE_WAITPID */

return w;
} while (w != child);

You can specify formats for languages other than C by using line
group formats and line formats, as described in the next sections.

2.7.1 Line Group Formats

Line group formats let you specify formats suitable for many appli-
cations that allow if-then-else input, including programming languages
and text formatting languages. A line group format specifies the output
format for a contiguous group of similar lines.

For example, the following command compares the TeX files ‘old’ and
‘new’, and outputs a merged file in which old regions are surrounded
by ‘\begin{em}’-‘\end{em}’ lines, and new regions are surrounded by
‘\begin{bf}’-‘\end{bf}’ lines.

diff \
--old-group-format=’\begin{em}

%<\end{em}

c y g n u s s u p p o r t 21

Comparing and Merging Files

’ \
--new-group-format=’\begin{bf}

%>\end{bf}
’ \

old new

The following command is equivalent to the above example, but it is a
little more verbose, because it spells out the default line group formats.

diff \
--old-group-format=’\begin{em}

%<\end{em}
’ \

--new-group-format=’\begin{bf}
%>\end{bf}
’ \

--unchanged-group-format=’%=’ \
--changed-group-format=’\begin{em}

%<\end{em}
\begin{bf}
%>\end{bf}
’ \

old new

Here is a more advanced example, which outputs a diff listing with
headers containing line numbers in a “plain English” style.
diff \
--unchanged-group-format=’’ \
--old-group-format=’-------- %dn line%(n=1?:s) deleted at %df:
%<’ \
--new-group-format=’-------- %dN line%(N=1?:s) added after %de:
%>’ \
--changed-group-format=’-------- %dn line%(n=1?:s) changed at %df:
%<-------- to:
%>’ \
old new

To specify a line group format, use diff with one of the options listed
below. You can specify up to four line group formats, one for each kind of
line group. You should quote format, because it typically contains shell
metacharacters.

‘--old-group-format=format’
These line groups are hunks containing only lines from the
first file. The default old group format is the same as the
changed group format if it is specified; otherwise it is a format
that outputs the line group as-is.

‘--new-group-format=format’
These line groups are hunks containing only lines from the
second file. The default new group format is same as the
the changed group format if it is specified; otherwise it is a
format that outputs the line group as-is.

22 16 January 1996

D
iff

Chapter 2: diff Output Formats

‘--changed-group-format=format’
These line groups are hunks containing lines from both files.
The default changed group format is the concatenation of the
old and new group formats.

‘--unchanged-group-format=format’
These line groups contain lines common to both files. The
default unchanged group format is a format that outputs the
line group as-is.

In a line group format, ordinary characters represent themselves;
conversion specifications start with ‘%’ and have one of the following
forms.

‘%<’ stands for the lines from the first file, including the trailing
newline. Each line is formatted according to the old line
format (see Section 2.7.2 “Line Formats,” page 24).

‘%>’ stands for the lines from the second file, including the trailing
newline. Each line is formatted according to the new line
format.

‘%=’ stands for the lines common to both files, including the trail-
ing newline. Each line is formatted according to the un-
changed line format.

‘%%’ stands for ‘%’.

‘%c’C’’ where C is a single character, stands for C. C may not be a
backslash or an apostrophe. For example, ‘%c’:’’ stands for
a colon, even inside the then-part of an if-then-else format,
which a colon would normally terminate.

‘%c’\O’’ where O is a string of 1, 2, or 3 octal digits, stands for the
character with octal code O. For example, ‘%c’\0’’ stands for
a null character.

‘Fn’ where F is a printf conversion specification and n is one of
the following letters, stands for n’s value formatted with F.

‘e’ The line number of the line just before the group
in the old file.

‘f’ The line number of the first line in the group in
the old file; equals e + 1.

‘l’ The line number of the last line in the group in
the old file.

‘m’ The line number of the line just after the group
in the old file; equals l + 1.

c y g n u s s u p p o r t 23

Comparing and Merging Files

‘n’ The number of lines in the group in the old file;
equals l - f + 1.

‘E, F, L, M, N’
Likewise, for lines in the new file.

The printf conversion specification can be ‘%d’, ‘%o’, ‘%x’, or
‘%X’, specifying decimal, octal, lower case hexadecimal, or
upper case hexadecimal output respectively. After the ‘%’ the
following options can appear in sequence: a ‘-’ specifying
left-justification; an integer specifying the minimum field
width; and a period followed by an optional integer specifying
the minimum number of digits. For example, ‘%5dN’ prints
the number of new lines in the group in a field of width 5
characters, using the printf format "%5d".

‘(A=B?T:E)’
If A equals B then T else E. A and B are each either a decimal
constant or a single letter interpreted as above. This format
spec is equivalent to T if A’s value equals B’s; otherwise it is
equivalent to E.
For example, ‘%(N=0?no:%dN) line%(N=1?:s)’ is equivalent
to ‘no lines’ if N (the number of lines in the group in the the
new file) is 0, to ‘1 line’ if N is 1, and to ‘%dN lines’ otherwise.

2.7.2 Line Formats

Line formats control how each line taken from an input file is output
as part of a line group in if-then-else format.

For example, the following command outputs text with a one-column
change indicator to the left of the text. The first column of output is ‘-’
for deleted lines, ‘|’ for added lines, and a space for unchanged lines.
The formats contain newline characters where newlines are desired on
output.

diff \
--old-line-format=’-%l

’ \
--new-line-format=’|%l

’ \
--unchanged-line-format=’ %l

’ \
old new

To specify a line format, use one of the following options. You should
quote format, since it often contains shell metacharacters.

‘--old-line-format=format’
formats lines just from the first file.

24 16 January 1996

D
iff

Chapter 2: diff Output Formats

‘--new-line-format=format’
formats lines just from the second file.

‘--unchanged-line-format=format’
formats lines common to both files.

‘--line-format=format’
formats all lines; in effect, it sets all three above options
simultaneously.

In a line format, ordinary characters represent themselves; conver-
sion specifications start with ‘%’ and have one of the following forms.

‘%l’ stands for the the contents of the line, not counting its trail-
ing newline (if any). This format ignores whether the line is
incomplete; See Chapter 16 “Incomplete Lines,” page 81.

‘%L’ stands for the the contents of the line, including its trailing
newline (if any). If a line is incomplete, this format preserves
its incompleteness.

‘%%’ stands for ‘%’.

‘%c’C’’ where C is a single character, stands for C. C may not be a
backslash or an apostrophe. For example, ‘%c’:’’ stands for
a colon.

‘%c’\O’’ where O is a string of 1, 2, or 3 octal digits, stands for the
character with octal code O. For example, ‘%c’\0’’ stands for
a null character.

‘Fn’ where F is a printf conversion specification, stands for the
line number formatted with F. For example, ‘%.5dn’ prints
the line number using the printf format "%.5d". See Sec-
tion 2.7.1 “Line Group Formats,” page 21, for more about
printf conversion specifications.

The default line format is ‘%l’ followed by a newline character.
If the input contains tab characters and it is important that they line

up on output, you should ensure that ‘%l’ or ‘%L’ in a line format is just
after a tab stop (e.g. by preceding ‘%l’ or ‘%L’ with a tab character), or you
should use the ‘-t’ or ‘--expand-tabs’ option.

Taken together, the line and line group formats let you specify many
different formats. For example, the following command uses a format
similar to diff’s normal format. You can tailor this command to get fine
control over diff’s output.

diff \
--old-line-format=’< %l

’ \
--new-line-format=’> %l

c y g n u s s u p p o r t 25

Comparing and Merging Files

’ \
--old-group-format=’%df%(f=l?:,%dl)d%dE

%<’ \
--new-group-format=’%dea%dF%(F=L?:,%dL)

%>’ \
--changed-group-format=’%df%(f=l?:,%dl)c%dF%(F=L?:,%dL)

%<---
%>’ \

--unchanged-group-format=’’ \
old new

2.7.3 Detailed Description of If-then-else Format

For lines common to both files, diff uses the unchanged line group
format. For each hunk of differences in the merged output format, if the
hunk contains only lines from the first file, diff uses the old line group
format; if the hunk contains only lines from the second file, diff uses
the new group format; otherwise, diff uses the changed group format.

The old, new, and unchanged line formats specify the output format
of lines from the first file, lines from the second file, and lines common
to both files, respectively.

The option ‘--ifdef=name’ is equivalent to the following sequence of
options using shell syntax:

--old-group-format=’#ifndef name
%<#endif /* not name */
’ \
--new-group-format=’#ifdef name
%>#endif /* name */
’ \
--unchanged-group-format=’%=’ \
--changed-group-format=’#ifndef name
%<#else /* name */
%>#endif /* name */
’

You should carefully check the diff output for proper nesting. For
example, when using the the ‘-D name’ or ‘--ifdef=name’ option, you
should check that if the differing lines contain any of the C preproces-
sor directives ‘#ifdef’, ‘#ifndef’, ‘#else’, ‘#elif’, or ‘#endif’, they are
nested properly and match. If they don’t, you must make corrections
manually. It is a good idea to carefully check the resulting code any-
way to make sure that it really does what you want it to; depending on
how the input files were produced, the output might contain duplicate
or otherwise incorrect code.

The patch ‘-D name’ option behaves just like the diff ‘-D name’ option,
except it operates on a file and a diff to produce a merged file; See
Section 14.4 “patch Options,” page 71.

26 16 January 1996

D
iff

Chapter 2: diff Output Formats

2.7.4 An Example of If-then-else Format

Here is the output of ‘diff -DTWO lao tzu’ (see Section 2.1 “Sample
diff Input,” page 9, for the complete contents of the two files):

#ifndef TWO
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
#endif /* not TWO */
The Nameless is the origin of Heaven and Earth;
#ifndef TWO
The Named is the mother of all things.
#else /* TWO */
The named is the mother of all things.

#endif /* TWO */
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

so we may see their outcome.
The two are the same,
But after they are produced,

they have different names.
#ifdef TWO
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
#endif /* TWO */

c y g n u s s u p p o r t 27

Comparing and Merging Files

28 16 January 1996

D
iff

Chapter 3: Comparing Directories

3 Comparing Directories

You can use diff to compare some or all of the files in two di-
rectory trees. When both file name arguments to diff are directo-
ries, it compares each file that is contained in both directories, ex-
amining file names in alphabetical order. Normally diff is silent
about pairs of files that contain no differences, but if you use the
‘-s’ or ‘--report-identical-files’ option, it reports pairs of identi-
cal files. Normally diff reports subdirectories common to both direc-
tories without comparing subdirectories’ files, but if you use the ‘-r’ or
‘--recursive’ option, it compares every corresponding pair of files in the
directory trees, as many levels deep as they go.

For file names that are in only one of the directories, diff normally
does not show the contents of the file that exists; it reports only that the
file exists in that directory and not in the other. You can make diff act
as though the file existed but was empty in the other directory, so that it
outputs the entire contents of the file that actually exists. (It is output as
either an insertion or a deletion, depending on whether it is in the first
or the second directory given.) To do this, use the ‘-N’ or ‘--new-file’
option.

If the older directory contains one or more large files that are not in
the newer directory, you can make the patch smaller by using the ‘-P’
or ‘--unidirectional-new-file’ option instead of ‘-N’. This option is
like ‘-N’ except that it only inserts the contents of files that appear in
the second directory but not the first (that is, files that were added). At
the top of the patch, write instructions for the user applying the patch
to remove the files that were deleted before applying the patch. See
Chapter 10 “Making Patches,” page 53, for more discussion of making
patches for distribution.

To ignore some files while comparing directories, use the ‘-x pattern’
or ‘--exclude=pattern’ option. This option ignores any files or subdi-
rectories whose base names match the shell pattern pattern. Unlike in
the shell, a period at the start of the base of a file name matches a wild-
card at the start of a pattern. You should enclose pattern in quotes so
that the shell does not expand it. For example, the option ‘-x ’*.[ao]’’
ignores any file whose name ends with ‘.a’ or ‘.o’.

This option accumulates if you specify it more than once. For example,
using the options ‘-x ’RCS’ -x ’*,v’’ ignores any file or subdirectory
whose base name is ‘RCS’ or ends with ‘,v’.

If you need to give this option many times, you can instead put
the patterns in a file, one pattern per line, and use the ‘-X file’ or
‘--exclude-from=file’ option.

c y g n u s s u p p o r t 29

Comparing and Merging Files

If you have been comparing two directories and stopped partway
through, later you might want to continue where you left off. You can do
this by using the ‘-S file’ or ‘--starting-file=file’ option. This com-
pares only the file file and all alphabetically later files in the topmost
directory level.

30 16 January 1996

D
iff

Chapter 4: Making diff Output Prettier

4 Making diffOutput Prettier

diff provides several ways to adjust the appearance of its output.
These adjustments can be applied to any output format.

4.1 Preserving Tabstop Alignment

The lines of text in some of the diff output formats are preceded by
one or two characters that indicate whether the text is inserted, deleted,
or changed. The addition of those characters can cause tabs to move to
the next tabstop, throwing off the alignment of columns in the line. gnu
diff provides two ways to make tab-aligned columns line up correctly.

The first way is to have diff convert all tabs into the correct number
of spaces before outputting them; select this method with the ‘-t’ or
‘--expand-tabs’ option. diff assumes that tabstops are set every 8
columns. To use this form of output with patch, you must give patch
the ‘-l’ or ‘--ignore-white-space’ option (see Section 9.2.1 “Changed
White Space,” page 48, for more information).

The other method for making tabs line up correctly is to add a tab
character instead of a space after the indicator character at the beginning
of the line. This ensures that all following tab characters are in the same
position relative to tabstops that they were in the original files, so that
the output is aligned correctly. Its disadvantage is that it can make long
lines too long to fit on one line of the screen or the paper. It also does
not work with the unified output format, which does not have a space
character after the change type indicator character. Select this method
with the ‘-T’ or ‘--initial-tab’ option.

4.2 Paginating diff Output

It can be convenient to have long output page-numbered and time-
stamped. The ‘-l’ and ‘--paginate’ options do this by sending the diff
output through the pr program. Here is what the page header might
look like for ‘diff -lc lao tzu’:

Mar 11 13:37 1991 diff -lc lao tzu Page 1

c y g n u s s u p p o r t 31

Comparing and Merging Files

32 16 January 1996

D
iff

Chapter 5: diff Performance Tradeoffs

5 diffPerformance Tradeoffs

gnu diff runs quite efficiently; however, in some circumstances you
can cause it to run faster or produce a more compact set of changes.
There are two ways that you can affect the performance of gnu diff by
changing the way it compares files.

Performance has more than one dimension. These options improve
one aspect of performance at the cost of another, or they improve perfor-
mance in some cases while hurting it in others.

The way that gnu diff determines which lines have changed al-
ways comes up with a near-minimal set of differences. Usually it is
good enough for practical purposes. If the diff output is large, you
might want diff to use a modified algorithm that sometimes produces
a smaller set of differences. The ‘-d’ or ‘--minimal’ option does this;
however, it can also cause diff to run more slowly than usual, so it is
not the default behavior.

When the files you are comparing are large and have small
groups of changes scattered throughout them, you can use the ‘-H’ or
‘--speed-large-files’ option to make a different modification to the
algorithm that diff uses. If the input files have a constant small den-
sity of changes, this option speeds up the comparisons without changing
the output. If not, diff might produce a larger set of differences; how-
ever, the output will still be correct.

Normally diff discards the prefix and suffix that is common to both
files before it attempts to find a minimal set of differences. This makes
diff run faster, but occasionally it may produce non-minimal output.
The ‘--horizon-lines=lines’ option prevents diff from discarding the
last lines lines of the prefix and the first lines lines of the suffix. This
gives diff further opportunities to find a minimal output.

c y g n u s s u p p o r t 33

Comparing and Merging Files

34 16 January 1996

D
iff

Chapter 6: Comparing Three Files

6 Comparing Three Files
Use the program diff3 to compare three files and show any differ-

ences among them. (diff3 can also merge files; see Chapter 7 “diff3
Merging,” page 39).

The “normal” diff3 output format shows each hunk of differences
without surrounding context. Hunks are labeled depending on whether
they are two-way or three-way, and lines are annotated by their location
in the input files.

See Chapter 13 “Invoking diff3,” page 65, for more information on
how to run diff3.

6.1 A Third Sample Input File

Here is a third sample file that will be used in examples to illustrate
the output of diff3 and how various options can change it. The first two
files are the same that we used for diff (see Section 2.1 “Sample diff
Input,” page 9). This is the third sample file, called ‘tao’:

The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their result.

The two are the same,
But after they are produced,

they have different names.

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

6.2 Detailed Description of diff3 Normal Format

Each hunk begins with a line marked ‘====’. Three-way hunks have
plain ‘====’ lines, and two-way hunks have ‘1’, ‘2’, or ‘3’ appended to
specify which of the three input files differ in that hunk. The hunks
contain copies of two or three sets of input lines each preceded by one or
two commands identifying where the lines came from.

Normally, two spaces precede each copy of an input line to distinguish
it from the commands. But with the ‘-T’ or ‘--initial-tab’ option,
diff3 uses a tab instead of two spaces; this lines up tabs correctly. See
Section 4.1 “Tabs,” page 31, for more information.

Commands take the following forms:

c y g n u s s u p p o r t 35

Comparing and Merging Files

‘file:la’ This hunk appears after line l of file file, and contains no
lines in that file. To edit this file to yield the other files,
one must append hunk lines taken from the other files. For
example, ‘1:11a’ means that the hunk follows line 11 in the
first file and contains no lines from that file.

‘file:rc’ This hunk contains the lines in the range r of file file. The
range r is a comma-separated pair of line numbers, or just
one number if the range is a singleton. To edit this file to yield
the other files, one must change the specified lines to be the
lines taken from the other files. For example, ‘2:11,13c’
means that the hunk contains lines 11 through 13 from the
second file.

If the last line in a set of input lines is incomplete (see Chapter 16
“Incomplete Lines,” page 81), it is distinguished on output from a full
line by a following line that starts with ‘\’.

6.3 diff3 Hunks

Groups of lines that differ in two or three of the input files are called
diff3 hunks, by analogy with diff hunks (see Section 1.1 “Hunks,”
page 3). If all three input files differ in a diff3 hunk, the hunk is
called a three-way hunk; if just two input files differ, it is a two-way
hunk.

As with diff, several solutions are possible. When comparing the
files ‘A’, ‘B’, and ‘C’, diff3 normally finds diff3 hunks by merging the
two-way hunks output by the two commands ‘diff A B’ and ‘diff A C’.
This does not necessarily minimize the size of the output, but exceptions
should be rare.

For example, suppose ‘F’ contains the three lines ‘a’, ‘b’, ‘f’, ‘G’ contains
the lines ‘g’, ‘b’, ‘g’, and ‘H’ contains the lines ‘a’, ‘b’, ‘h’. ‘diff3 F G H’ might
output the following:

====2
1:1c
3:1c

a
2:1c

g
====
1:3c

f
2:3c

g
3:3c

h

36 16 January 1996

D
iff

Chapter 6: Comparing Three Files

because it found a two-way hunk containing ‘a’ in the first and third files
and ‘g’ in the second file, then the single line ‘b’ common to all three files,
then a three-way hunk containing the last line of each file.

6.4 An Example of diff3 Normal Format

Here is the output of the command ‘diff3 lao tzu tao’ (see Sec-
tion 6.1 “Sample diff3 Input,” page 35, for the complete contents of the
files). Notice that it shows only the lines that are different among the
three files.

====2
1:1,2c
3:1,2c

The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.

2:0a
====1
1:4c

The Named is the mother of all things.
2:2,3c
3:4,5c

The named is the mother of all things.

====3
1:8c
2:7c

so we may see their outcome.
3:9c

so we may see their result.
====
1:11a
2:11,13c

They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

3:13,14c

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

c y g n u s s u p p o r t 37

Comparing and Merging Files

38 16 January 1996

D
iff

Chapter 7: Merging From a Common Ancestor

7 Merging From a Common Ancestor

When two people have made changes to copies of the same file, diff3
can produce a merged output that contains both sets of changes together
with warnings about conflicts.

One might imagine programs with names like diff4 and diff5 to
compare more than three files simultaneously, but in practice the need
rarely arises. You can use diff3 to merge three or more sets of changes
to a file by merging two change sets at a time.

diff3 can incorporate changes from two modified versions into a
common preceding version. This lets you merge the sets of changes
represented by the two newer files. Specify the common ancestor version
as the second argument and the two newer versions as the first and third
arguments, like this:

diff3 mine older yours

You can remember the order of the arguments by noting that they are in
alphabetical order.

You can think of this as subtracting older from yours and adding
the result to mine, or as merging into mine the changes that would turn
older into yours. This merging is well-defined as long as mine and
older match in the neighborhood of each such change. This fails to be
true when all three input files differ or when only older differs; we call
this a conflict. When all three input files differ, we call the conflict an
overlap.

diff3 gives you several ways to handle overlaps and conflicts. You
can omit overlaps or conflicts, or select only overlaps, or mark conflicts
with special ‘<<<<<<<’ and ‘>>>>>>>’ lines.

diff3 can output the merge results as an ed script that that can be
applied to the first file to yield the merged output. However, it is usually
better to have diff3 generate the merged output directly; this bypasses
some problems with ed.

7.1 Selecting Which Changes to Incorporate

You can select all unmerged changes from older to yours for merging
into mine with the ‘-e’ or ‘--ed’ option. You can select only the nonover-
lapping unmerged changes with ‘-3’ or ‘--easy-only’, and you can select
only the overlapping changes with ‘-x’ or ‘--overlap-only’.

The ‘-e’, ‘-3’ and ‘-x’ options select only unmerged changes, i.e.
changes where mine and yours differ; they ignore changes from older
to yours where mine and yours are identical, because they assume that
such changes have already been merged. If this assumption is not a safe

c y g n u s s u p p o r t 39

Comparing and Merging Files

one, you can use the ‘-A’ or ‘--show-all’ option (see Section 7.2 “Marking
Conflicts,” page 40).

Here is the output of the command diff3 with each of these three
options (see Section 6.1 “Sample diff3 Input,” page 35, for the complete
contents of the files). Notice that ‘-e’ outputs the union of the disjoint
sets of changes output by ‘-3’ and ‘-x’.

Output of ‘diff3 -e lao tzu tao’:
11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.
8c

so we may see their result.
.

Output of ‘diff3 -3 lao tzu tao’:
8c

so we may see their result.
.

Output of ‘diff3 -x lao tzu tao’:
11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.

7.2 Marking Conflicts

diff3 can mark conflicts in the merged output by bracketing them
with special marker lines. A conflict that comes from two files A and B is
marked as follows:

<<<<<<< A
lines from A
=======
lines from B
>>>>>>> B

A conflict that comes from three files A, B and C is marked as follows:
<<<<<<< A
lines from A
||||||| B
lines from B
=======
lines from C
>>>>>>> C

The ‘-A’ or ‘--show-all’ option acts like the ‘-e’ option, except that
it brackets conflicts, and it outputs all changes from older to yours,
not just the unmerged changes. Thus, given the sample input files (see

40 16 January 1996

D
iff

Chapter 7: Merging From a Common Ancestor

Section 6.1 “Sample diff3 Input,” page 35), ‘diff3 -A lao tzu tao’ puts
brackets around the conflict where only ‘tzu’ differs:

<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao

And it outputs the three-way conflict as follows:
<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

The ‘-E’ or ‘--show-overlap’ option outputs less information than the
‘-A’ or ‘--show-all’ option, because it outputs only unmerged changes,
and it never outputs the contents of the second file. Thus the ‘-E’ option
acts like the ‘-e’ option, except that it brackets the first and third files
from three-way overlapping changes. Similarly, ‘-X’ acts like ‘-x’, except
it brackets all its (necessarily overlapping) changes. For example, for
the three-way overlapping change above, the ‘-E’ and ‘-X’ options output
the following:

<<<<<<< lao
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

If you are comparing files that have meaningless or uninformative
names, you can use the ‘-L label’ or ‘--label=label’ option to show
alternate names in the ‘<<<<<<<’, ‘|||||||’ and ‘>>>>>>>’ brackets. This
option can be given up to three times, once for each input file. Thus
‘diff3 -A -L X -L Y -L Z A B C’ acts like ‘diff3 -A A B C’, except that the
output looks like it came from files named ‘X’, ‘Y’ and ‘Z’ rather than from
files named ‘A’, ‘B’ and ‘C’.

7.3 Generating the Merged Output Directly

With the ‘-m’ or ‘--merge’ option, diff3 outputs the merged file di-
rectly. This is more efficient than using ed to generate it, and works
even with non-text files that ed would reject. If you specify ‘-m’ without
an ed script option, ‘-A’ (‘--show-all’) is assumed.

c y g n u s s u p p o r t 41

Comparing and Merging Files

For example, the command ‘diff3 -m lao tzu tao’ (see Section 6.1
“Sample diff3 Input,” page 35 for a copy of the input files) would output
the following:

<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

so we may see their result.
The two are the same,
But after they are produced,

they have different names.
<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

7.4 How diff3 Merges Incomplete Lines

With ‘-m’, incomplete lines (see Chapter 16 “Incomplete Lines,”
page 81) are simply copied to the output as they are found; if the merged
output ends in an conflict and one of the input files ends in an incom-
plete line, succeeding ‘|||||||’, ‘=======’ or ‘>>>>>>>’ brackets appear
somewhere other than the start of a line because they are appended to
the incomplete line.

Without ‘-m’, if an ed script option is specified and an incomplete line
is found, diff3 generates a warning and acts as if a newline had been
present.

7.5 Saving the Changed File

Traditional Unix diff3 generates an ed script without the trailing ‘w’
and and ‘q’ commands that save the changes. System V diff3 generates
these extra commands. gnu diff3 normally behaves like traditional
Unix diff3, but with the ‘-i’ option it behaves like System V diff3 and
appends the ‘w’ and ‘q’ commands.

42 16 January 1996

D
iff

Chapter 7: Merging From a Common Ancestor

The ‘-i’ option requires one of the ed script options ‘-AeExX3’, and is
incompatible with the merged output option ‘-m’.

c y g n u s s u p p o r t 43

Comparing and Merging Files

44 16 January 1996

D
iff

Chapter 8: Interactive Merging with sdiff

8 Interactive Merging with sdiff

With sdiff, you can merge two files interactively based on a side-
by-side ‘-y’ format comparison (see Section 2.4 “Side by Side,” page 16).
Use ‘-o file’ or ‘--output=file’ to specify where to put the merged text.
See Chapter 15 “Invoking sdiff,” page 77, for more details on the options
to sdiff.

Another way to merge files interactively is to use the Emacs Lisp
package emerge. See section “emerge” in The GNU Emacs Manual, for
more information.

8.1 Specifying diff Options to sdiff

The following sdiff options have the same meaning as for diff. See
Section 12.1 “diff Options,” page 57, for the use of these options.

-a -b -d -i -t -v
-B -H -I regexp

--ignore-blank-lines --ignore-case
--ignore-matching-lines=regexp --ignore-space-change
--left-column --minimal --speed-large-files
--suppress-common-lines --expand-tabs
--text --version --width=columns

For historical reasons, sdiff has alternate names for some options.
The ‘-l’ option is equivalent to the ‘--left-column’ option, and similarly
‘-s’ is equivalent to ‘--suppress-common-lines’. The meaning of the
sdiff ‘-w’ and ‘-W’ options is interchanged from that of diff: with sdiff,
‘-w columns’ is equivalent to ‘--width=columns’, and ‘-W’ is equivalent
to ‘--ignore-all-space’. sdiff without the ‘-o’ option is equivalent to
diff with the ‘-y’ or ‘--side-by-side’ option (see Section 2.4 “Side by
Side,” page 16).

8.2 Merge Commands

Groups of common lines, with a blank gutter, are copied from the first
file to the output. After each group of differing lines, sdiff prompts
with ‘%’ and pauses, waiting for one of the following commands. Follow
each command with RET.

‘e’ Discard both versions. Invoke a text editor on an empty
temporary file, then copy the resulting file to the output.

‘eb’ Concatenate the two versions, edit the result in a temporary
file, then copy the edited result to the output.

c y g n u s s u p p o r t 45

Comparing and Merging Files

‘el’ Edit a copy of the left version, then copy the result to the
output.

‘er’ Edit a copy of the right version, then copy the result to the
output.

‘l’ Copy the left version to the output.

‘q’ Quit.

‘r’ Copy the right version to the output.

‘s’ Silently copy common lines.

‘v’ Verbosely copy common lines. This is the default.

The text editor invoked is specified by the EDITOR environment vari-
able if it is set. The default is system-dependent.

46 16 January 1996

D
iff

Chapter 9: Merging with patch

9 Merging with patch

patch takes comparison output produced by diff and applies the dif-
ferences to a copy of the original file, producing a patched version. With
patch, you can distribute just the changes to a set of files instead of
distributing the entire file set; your correspondents can apply patch to
update their copy of the files with your changes. patch automatically
determines the diff format, skips any leading or trailing headers, and
uses the headers to determine which file to patch. This lets your cor-
respondents feed an article or message containing a difference listing
directly to patch.

patch detects and warns about common problems like forward
patches. It saves the original version of the files it patches, and saves
any patches that it could not apply. It can also maintain a patchlevel.h
file to ensures that your correspondents apply diffs in the proper order.

patch accepts a series of diffs in its standard input, usually separated
by headers that specify which file to patch. It applies diff hunks (see
Section 1.1 “Hunks,” page 3) one by one. If a hunk does not exactly match
the original file, patch uses heuristics to try to patch the file as well as it
can. If no approximate match can be found, patch rejects the hunk and
skips to the next hunk. patch normally replaces each file f with its new
version, saving the original file in ‘f.orig’, and putting reject hunks (if
any) into ‘f.rej’.

See Chapter 14 “Invoking patch,” page 69, for detailed information on
the options to patch. See Section 14.2 “Backups,” page 70, for more in-
formation on how patch names backup files. See Section 14.3 “Rejects,”
page 71, for more information on where patch puts reject hunks.

9.1 Selecting the patch Input Format

patch normally determines which diff format the patch file uses
by examining its contents. For patch files that contain particularly
confusing leading text, you might need to use one of the following options
to force patch to interpret the patch file as a certain format of diff. The
output formats listed here are the only ones that patch can understand.

‘-c’
‘--context’

context diff.

‘-e’
‘--ed’ ed script.

c y g n u s s u p p o r t 47

Comparing and Merging Files

‘-n’
‘--normal’

normal diff.

‘-u’
‘--unified’

unified diff.

9.2 Applying Imperfect Patches

patch tries to skip any leading text in the patch file, apply the diff,
and then skip any trailing text. Thus you can feed a news article or
mail message directly to patch, and it should work. If the entire diff
is indented by a constant amount of white space, patch automatically
ignores the indentation.

However, certain other types of imperfect input require user inter-
vention.

9.2.1 Applying Patches with Changed White Space

Sometimes mailers, editors, or other programs change spaces into
tabs, or vice versa. If this happens to a patch file or an input file, the
files might look the same, but patch will not be able to match them
properly. If this problem occurs, use the ‘-l’ or ‘--ignore-white-space’
option, which makes patch compare white space loosely so that any
sequence of white space in the patch file matches any sequence of white
space in the input files. Non-white-space characters must still match
exactly. Each line of the context must still match a line in the input file.

9.2.2 Applying Reversed Patches

Sometimes people run diff with the new file first instead of second.
This creates a diff that is “reversed”. To apply such patches, give patch
the ‘-R’ or ‘--reverse’ option. patch then attempts to swap each hunk
around before applying it. Rejects come out in the swapped format.
The ‘-R’ option does not work with ed scripts because there is too little
information in them to reconstruct the reverse operation.

Often patch can guess that the patch is reversed. If the first hunk
of a patch fails, patch reverses the hunk to see if it can apply it that
way. If it can, patch asks you if you want to have the ‘-R’ option set; if it
can’t, patch continues to apply the patch normally. This method cannot
detect a reversed patch if it is a normal diff and the first command

48 16 January 1996

D
iff

Chapter 9: Merging with patch

is an append (which should have been a delete) since appends always
succeed, because a null context matches anywhere. But most patches
add or change lines rather than delete them, so most reversed normal
diffs begin with a delete, which fails, and patch notices.

If you apply a patch that you have already applied, patch thinks
it is a reversed patch and offers to un-apply the patch. This could be
construed as a feature. If you did this inadvertently and you don’t want
to un-apply the patch, just answer ‘n’ to this offer and to the subsequent
“apply anyway” question—or type C-c to kill the patch process.

9.2.3 Helping patch Find Inexact Matches

For context diffs, and to a lesser extent normal diffs, patch can detect
when the line numbers mentioned in the patch are incorrect, and it
attempts to find the correct place to apply each hunk of the patch. As
a first guess, it takes the line number mentioned in the hunk, plus or
minus any offset used in applying the previous hunk. If that is not the
correct place, patch scans both forward and backward for a set of lines
matching the context given in the hunk.

First patch looks for a place where all lines of the context match. If it
cannot find such a place, and it is reading a context or unified diff, and
the maximum fuzz factor is set to 1 or more, then patch makes another
scan, ignoring the first and last line of context. If that fails, and the
maximum fuzz factor is set to 2 or more, it makes another scan, ignoring
the first two and last two lines of context are ignored. It continues
similarly if the maximum fuzz factor is larger.

The ‘-F lines’ or ‘--fuzz=lines’ option sets the maximum fuzz factor
to lines. This option only applies to context and unified diffs; it ignores
up to lines lines while looking for the place to install a hunk. Note that
a larger fuzz factor increases the odds of making a faulty patch. The
default fuzz factor is 2; it may not be set to more than the number of
lines of context in the diff, ordinarily 3.

If patch cannot find a place to install a hunk of the patch, it writes
the hunk out to a reject file (see Section 14.3 “Rejects,” page 71, for
information on how reject files are named). It writes out rejected hunks
in context format no matter what form the input patch is in. If the input
is a normal or ed diff, many of the contexts are simply null. The line
numbers on the hunks in the reject file may be different from those in
the patch file: they show the approximate location where patch thinks
the failed hunks belong in the new file rather than in the old one.

As it completes each hunk, patch tells you whether the hunk suc-
ceeded or failed, and if it failed, on which line (in the new file) patch
thinks the hunk should go. If this is different from the line number

c y g n u s s u p p o r t 49

Comparing and Merging Files

specified in the diff, it tells you the offset. A single large offset may
indicate that patch installed a hunk in the wrong place. patch also tells
you if it used a fuzz factor to make the match, in which case you should
also be slightly suspicious.

patch cannot tell if the line numbers are off in an ed script, and can
only detect wrong line numbers in a normal diff when it finds a change
or delete command. It may have the same problem with a context diff
using a fuzz factor equal to or greater than the number of lines of context
shown in the diff (typically 3). In these cases, you should probably look
at a context diff between your original and patched input files to see
if the changes make sense. Compiling without errors is a pretty good
indication that the patch worked, but not a guarantee.

patch usually produces the correct results, even when it must make
many guesses. However, the results are guaranteed only when the patch
is applied to an exact copy of the file that the patch was generated from.

9.3 Removing Empty Files

Sometimes when comparing two directories, the first directory con-
tains a file that the second directory does not. If you give diff the ‘-N’
or ‘--new-file’ option, it outputs a diff that deletes the contents of this
file. By default, patch leaves an empty file after applying such a diff.
The ‘-E’ or ‘--remove-empty-files’ option to patch deletes output files
that are empty after applying the diff.

9.4 Multiple Patches in a File

If the patch file contains more than one patch, patch tries to apply
each of them as if they came from separate patch files. This means
that it determines the name of the file to patch for each patch, and
that it examines the leading text before each patch for file names and
prerequisite revision level (see Chapter 10 “Making Patches,” page 53,
for more on that topic).

For the second and subsequent patches in the patch file, you can give
options and another original file name by separating their argument
lists with a ‘+’. However, the argument list for a second or subsequent
patch may not specify a new patch file, since that does not make sense.

For example, to tell patch to strip the first three slashes from the
name of the first patch in the patch file and none from subsequent
patches, and to use ‘code.c’ as the first input file, you can use:

patch -p3 code.c + -p0 < patchfile

50 16 January 1996

D
iff

Chapter 9: Merging with patch

The ‘-S’ or ‘--skip’ option ignores the current patch from the patch
file, but continue looking for the next patch in the file. Thus, to ignore
the first and third patches in the patch file, you can use:

patch -S + + -S + < patch file

9.5 Messages and Questions from patch

patch can produce a variety of messages, especially if it has trouble
decoding its input. In a few situations where it’s not sure how to proceed,
patch normally prompts you for more information from the keyboard.
There are options to suppress printing non-fatal messages and stopping
for keyboard input.

The message ‘Hmm...’ indicates that patch is reading text in the patch
file, attempting to determine whether there is a patch in that text, and
if so, what kind of patch it is.

You can inhibit all terminal output from patch, unless an error occurs,
by using the ‘-s’, ‘--quiet’, or ‘--silent’ option.

There are two ways you can prevent patch from asking you any
questions. The ‘-f’ or ‘--force’ option assumes that you know what
you are doing. It assumes the following:
� skip patches that do not contain file names in their headers;
� patch files even though they have the wrong version for the ‘Prereq:’

line in the patch;
� assume that patches are not reversed even if they look like they are.

The ‘-t’ or ‘--batch’ option is similar to ‘-f’, in that it suppresses
questions, but it makes somewhat different assumptions:
� skip patches that do not contain file names in their headers (the

same as ‘-f’);
� skip patches for which the file has the wrong version for the ‘Prereq:’

line in the patch;
� assume that patches are reversed if they look like they are.

patch exits with a non-zero status if it creates any reject files. When
applying a set of patches in a loop, you should check the exit status, so
you don’t apply a later patch to a partially patched file.

c y g n u s s u p p o r t 51

Comparing and Merging Files

52 16 January 1996

D
iff

Chapter 10: Tips for Making Patch Distributions

10 Tips for Making Patch Distributions

Here are some things you should keep in mind if you are going to
distribute patches for updating a software package.

Make sure you have specified the file names correctly, either in a
context diff header or with an ‘Index:’ line. If you are patching files in
a subdirectory, be sure to tell the patch user to specify a ‘-p’ or ‘--strip’
option as needed. Take care to not send out reversed patches, since these
make people wonder whether they have already applied the patch.

To save people from partially applying a patch before other patches
that should have gone before it, you can make the first patch in the patch
file update a file with a name like ‘patchlevel.h’ or ‘version.c’, which
contains a patch level or version number. If the input file contains the
wrong version number, patch will complain immediately.

An even clearer way to prevent this problem is to put a ‘Prereq:’ line
before the patch. If the leading text in the patch file contains a line that
starts with ‘Prereq:’, patch takes the next word from that line (normally
a version number) and checks whether the next input file contains that
word, preceded and followed by either white space or a newline. If not,
patch prompts you for confirmation before proceeding. This makes it
difficult to accidentally apply patches in the wrong order.

Since patch does not handle incomplete lines properly, make sure
that all the source files in your program end with a newline whenever
you release a version.

To create a patch that changes an older version of a package into
a newer version, first make a copy of the older version in a scratch
directory. Typically you do that by unpacking a tar or shar archive of
the older version.

You might be able to reduce the size of the patch by renaming or
removing some files before making the patch. If the older version of the
package contains any files that the newer version does not, or if any
files have been renamed between the two versions, make a list of rm and
mv commands for the user to execute in the old version directory before
applying the patch. Then run those commands yourself in the scratch
directory.

If there are any files that you don’t need to include in the patch
because they can easily be rebuilt from other files (for example, ‘TAGS’
and output from yacc and makeinfo), replace the versions in the scratch
directory with the newer versions, using rm and ln or cp.

Now you can create the patch. The de-facto standard diff format
for patch distributions is context format with two lines of context, pro-
duced by giving diff the ‘-C 2’ option. Do not use less than two lines

c y g n u s s u p p o r t 53

Comparing and Merging Files

of context, because patch typically needs at least two lines for proper
operation. Give diff the ‘-P’ option in case the newer version of the
package contains any files that the older one does not. Make sure to
specify the scratch directory first and the newer directory second.

Add to the top of the patch a note telling the user any rm and mv
commands to run before applying the patch. Then you can remove the
scratch directory.

54 16 January 1996

D
iff

Chapter 11: Invoking cmp

11 Invoking cmp

The cmp command compares two files, and if they differ, tells the first
byte and line number where they differ. Its arguments are as follows:

cmp options. .. from-file [to-file]

The file name ‘-’ is always the standard input. cmp also uses the
standard input if one file name is omitted.

An exit status of 0 means no differences were found, 1 means some
differences were found, and 2 means trouble.

11.1 Options to cmp

Below is a summary of all of the options that gnu cmp accepts. Most
options have two equivalent names, one of which is a single letter pre-
ceded by ‘-’, and the other of which is a long name preceded by ‘--’.
Multiple single letter options (unless they take an argument) can be
combined into a single command line word: ‘-cl’ is equivalent to ‘-c -l’.

‘-c’ Print the differing characters. Display control characters as
a ‘ˆ’ followed by a letter of the alphabet and precede char-
acters that have the high bit set with ‘M-’ (which stands for
“meta”).

‘--ignore-initial=bytes’
Ignore any differences in the the first bytes bytes of the input
files. Treat files with fewer than bytes bytes as if they are
empty.

‘-l’ Print the (decimal) offsets and (octal) values of all differing
bytes.

‘--print-chars’
Print the differing characters. Display control characters as
a ‘ˆ’ followed by a letter of the alphabet and precede char-
acters that have the high bit set with ‘M-’ (which stands for
“meta”).

‘--quiet’
‘-s’
‘--silent’

Do not print anything; only return an exit status indicating
whether the files differ.

‘--verbose’
Print the (decimal) offsets and (octal) values of all differing
bytes.

c y g n u s s u p p o r t 55

Comparing and Merging Files

‘-v’
‘--version’

Output the version number of cmp.

56 16 January 1996

D
iff

Chapter 12: Invoking diff

12 Invoking diff

The format for running the diff command is:
diff options. .. from-file to-file

In the simplest case, diff compares the contents of the two files
from-file and to-file. A file name of ‘-’ stands for text read from the
standard input. As a special case, ‘diff - -’ compares a copy of standard
input to itself.

If from-file is a directory and to-file is not, diff compares the file
in from-file whose file name is that of to-file, and vice versa. The
non-directory file must not be ‘-’.

If both from-file and to-file are directories, diff compares corre-
sponding files in both directories, in alphabetical order; this comparison
is not recursive unless the ‘-r’ or ‘--recursive’ option is given. diff
never compares the actual contents of a directory as if it were a file. The
file that is fully specified may not be standard input, because standard
input is nameless and the notion of “file with the same name” does not
apply.

diff options begin with ‘-’, so normally from-file and to-file may
not begin with ‘-’. However, ‘--’ as an argument by itself treats the
remaining arguments as file names even if they begin with ‘-’.

An exit status of 0 means no differences were found, 1 means some
differences were found, and 2 means trouble.

12.1 Options to diff

Below is a summary of all of the options that gnu diff accepts.
Most options have two equivalent names, one of which is a single letter
preceded by ‘-’, and the other of which is a long name preceded by ‘--’.
Multiple single letter options (unless they take an argument) can be
combined into a single command line word: ‘-ac’ is equivalent to ‘-a
-c’. Long named options can be abbreviated to any unique prefix of
their name. Brackets ([and]) indicate that an option takes an optional
argument.

‘-lines’ Show lines (an integer) lines of context. This option does
not specify an output format by itself; it has no effect unless
it is combined with ‘-c’ (see Section 2.3.1 “Context Format,”
page 11) or ‘-u’ (see Section 2.3.2 “Unified Format,” page 14).
This option is obsolete. For proper operation, patch typically
needs at least two lines of context.

‘-a’ Treat all files as text and compare them line-by-line, even if
they do not seem to be text. See Section 1.7 “Binary,” page 6.

c y g n u s s u p p o r t 57

Comparing and Merging Files

‘-b’ Ignore changes in amount of white space. See Section 1.2
“White Space,” page 4.

‘-B’ Ignore changes that just insert or delete blank lines. See
Section 1.3 “Blank Lines,” page 5.

‘--binary’
Read and write data in binary mode. See Section 1.7 “Bi-
nary,” page 6.

‘--brief’ Report only whether the files differ, not the details of the
differences. See Section 1.6 “Brief,” page 6.

‘-c’ Use the context output format. See Section 2.3.1 “Context
Format,” page 11.

‘-C lines’
‘--context[=lines]’

Use the context output format, showing lines (an integer)
lines of context, or three if lines is not given. See Sec-
tion 2.3.1 “Context Format,” page 11. For proper operation,
patch typically needs at least two lines of context.

‘--changed-group-format=format’
Use format to output a line group containing differing lines
from both files in if-then-else format. See Section 2.7.1 “Line
Group Formats,” page 21.

‘-d’ Change the algorithm perhaps find a smaller set of changes.
This makes diff slower (sometimes much slower). See Chap-
ter 5 “diff Performance,” page 33.

‘-D name’ Make merged ‘#ifdef’ format output, conditional on the pre-
processor macro name. See Section 2.7 “If-then-else,” page 21.

‘-e’
‘--ed’ Make output that is a valid ed script. See Section 2.6.1 “ed

Scripts,” page 18.

‘--exclude=pattern’
When comparing directories, ignore files and subdirectories
whose basenames match pattern. See Chapter 3 “Compar-
ing Directories,” page 29.

‘--exclude-from=file’
When comparing directories, ignore files and subdirectories
whose basenames match any pattern contained in file. See
Chapter 3 “Comparing Directories,” page 29.

58 16 January 1996

D
iff

Chapter 12: Invoking diff

‘--expand-tabs’
Expand tabs to spaces in the output, to preserve the align-
ment of tabs in the input files. See Section 4.1 “Tabs,”
page 31.

‘-f’ Make output that looks vaguely like an ed script but has
changes in the order they appear in the file. See Section 2.6.2
“Forward ed,” page 20.

‘-F regexp’
In context and unified format, for each hunk of differences,
show some of the last preceding line that matches regexp.
See Section 2.3.3.1 “Specified Headings,” page 15.

‘--forward-ed’
Make output that looks vaguely like an ed script but has
changes in the order they appear in the file. See Section 2.6.2
“Forward ed,” page 20.

‘-h’ This option currently has no effect; it is present for Unix
compatibility.

‘-H’ Use heuristics to speed handling of large files that have nu-
merous scattered small changes. See Chapter 5 “diff Perfor-
mance,” page 33.

‘--horizon-lines=lines’
Do not discard the last lines lines of the common prefix and
the first lines lines of the common suffix. See Chapter 5
“diff Performance,” page 33.

‘-i’ Ignore changes in case; consider upper- and lower-case let-
ters equivalent. See Section 1.4 “Case Folding,” page 5.

‘-I regexp’
Ignore changes that just insert or delete lines that match
regexp. See Section 1.5 “Specified Folding,” page 5.

‘--ifdef=name’
Make merged if-then-else output using name. See Section 2.7
“If-then-else,” page 21.

‘--ignore-all-space’
Ignore white space when comparing lines. See Section 1.2
“White Space,” page 4.

‘--ignore-blank-lines’
Ignore changes that just insert or delete blank lines. See
Section 1.3 “Blank Lines,” page 5.

c y g n u s s u p p o r t 59

Comparing and Merging Files

‘--ignore-case’
Ignore changes in case; consider upper- and lower-case to be
the same. See Section 1.4 “Case Folding,” page 5.

‘--ignore-matching-lines=regexp’
Ignore changes that just insert or delete lines that match
regexp. See Section 1.5 “Specified Folding,” page 5.

‘--ignore-space-change’
Ignore changes in amount of white space. See Section 1.2
“White Space,” page 4.

‘--initial-tab’
Output a tab rather than a space before the text of a line in
normal or context format. This causes the alignment of tabs
in the line to look normal. See Section 4.1 “Tabs,” page 31.

‘-l’ Pass the output through pr to paginate it. See Section 4.2
“Pagination,” page 31.

‘-L label’ Use label instead of the file name in the context format (see
Section 2.3.1 “Context Format,” page 11) and unified format
(see Section 2.3.2 “Unified Format,” page 14) headers. See
Section 2.6.3 “RCS,” page 20.

‘--label=label’
Use label instead of the file name in the context format (see
Section 2.3.1 “Context Format,” page 11) and unified format
(see Section 2.3.2 “Unified Format,” page 14) headers.

‘--left-column’
Print only the left column of two common lines in side by side
format. See Section 2.5 “Side by Side Format,” page 17.

‘--line-format=format’
Use format to output all input lines in if-then-else format.
See Section 2.7.2 “Line Formats,” page 24.

‘--minimal’
Change the algorithm to perhaps find a smaller set of
changes. This makes diff slower (sometimes much slower).
See Chapter 5 “diff Performance,” page 33.

‘-n’ Output RCS-format diffs; like ‘-f’ except that each command
specifies the number of lines affected. See Section 2.6.3
“RCS,” page 20.

‘-N’
‘--new-file’

In directory comparison, if a file is found in only one directory,
treat it as present but empty in the other directory. See
Chapter 3 “Comparing Directories,” page 29.

60 16 January 1996

D
iff

Chapter 12: Invoking diff

‘--new-group-format=format’
Use format to output a group of lines taken from just the
second file in if-then-else format. See Section 2.7.1 “Line
Group Formats,” page 21.

‘--new-line-format=format’
Use format to output a line taken from just the second file
in if-then-else format. See Section 2.7.2 “Line Formats,”
page 24.

‘--old-group-format=format’
Use format to output a group of lines taken from just the
first file in if-then-else format. See Section 2.7.1 “Line Group
Formats,” page 21.

‘--old-line-format=format’
Use format to output a line taken from just the first file in if-
then-else format. See Section 2.7.2 “Line Formats,” page 24.

‘-p’ Show which C function each change is in. See Section 2.3.3.2
“C Function Headings,” page 16.

‘-P’ When comparing directories, if a file appears only in the
second directory of the two, treat it as present but empty in
the other. See Chapter 3 “Comparing Directories,” page 29.

‘--paginate’
Pass the output through pr to paginate it. See Section 4.2
“Pagination,” page 31.

‘-q’ Report only whether the files differ, not the details of the
differences. See Section 1.6 “Brief,” page 6.

‘-r’ When comparing directories, recursively compare any sub-
directories found. See Chapter 3 “Comparing Directories,”
page 29.

‘--rcs’ Output RCS-format diffs; like ‘-f’ except that each command
specifies the number of lines affected. See Section 2.6.3
“RCS,” page 20.

‘--recursive’
When comparing directories, recursively compare any sub-
directories found. See Chapter 3 “Comparing Directories,”
page 29.

‘--report-identical-files’
Report when two files are the same. See Chapter 3 “Compar-
ing Directories,” page 29.

‘-s’ Report when two files are the same. See Chapter 3 “Compar-
ing Directories,” page 29.

c y g n u s s u p p o r t 61

Comparing and Merging Files

‘-S file’ When comparing directories, start with the file file. This
is used for resuming an aborted comparison. See Chapter 3
“Comparing Directories,” page 29.

‘--sdiff-merge-assist’
Print extra information to help sdiff. sdiff uses this option
when it runs diff. This option is not intended for users to
use directly.

‘--show-c-function’
Show which C function each change is in. See Section 2.3.3.2
“C Function Headings,” page 16.

‘--show-function-line=regexp’
In context and unified format, for each hunk of differences,
show some of the last preceding line that matches regexp.
See Section 2.3.3.1 “Specified Headings,” page 15.

‘--side-by-side’
Use the side by side output format. See Section 2.5 “Side by
Side Format,” page 17.

‘--speed-large-files’
Use heuristics to speed handling of large files that have nu-
merous scattered small changes. See Chapter 5 “diff Perfor-
mance,” page 33.

‘--starting-file=file’
When comparing directories, start with the file file. This
is used for resuming an aborted comparison. See Chapter 3
“Comparing Directories,” page 29.

‘--suppress-common-lines’
Do not print common lines in side by side format. See Sec-
tion 2.5 “Side by Side Format,” page 17.

‘-t’ Expand tabs to spaces in the output, to preserve the align-
ment of tabs in the input files. See Section 4.1 “Tabs,”
page 31.

‘-T’ Output a tab rather than a space before the text of a line in
normal or context format. This causes the alignment of tabs
in the line to look normal. See Section 4.1 “Tabs,” page 31.

‘--text’ Treat all files as text and compare them line-by-line, even
if they do not appear to be text. See Section 1.7 “Binary,”
page 6.

‘-u’ Use the unified output format. See Section 2.3.2 “Unified
Format,” page 14.

62 16 January 1996

D
iff

Chapter 12: Invoking diff

‘--unchanged-group-format=format’
Use format to output a group of common lines taken from
both files in if-then-else format. See Section 2.7.1 “Line
Group Formats,” page 21.

‘--unchanged-line-format=format’
Use format to output a line common to both files in if-then-
else format. See Section 2.7.2 “Line Formats,” page 24.

‘--unidirectional-new-file’
When comparing directories, if a file appears only in the
second directory of the two, treat it as present but empty in
the other. See Chapter 3 “Comparing Directories,” page 29.

‘-U lines’
‘--unified[=lines]’

Use the unified output format, showing lines (an integer)
lines of context, or three if lines is not given. See Sec-
tion 2.3.2 “Unified Format,” page 14. For proper operation,
patch typically needs at least two lines of context.

‘-v’
‘--version’

Output the version number of diff.

‘-w’ Ignore white space when comparing lines. See Section 1.2
“White Space,” page 4.

‘-W columns’
‘--width=columns’

Use an output width of columns in side by side format. See
Section 2.5 “Side by Side Format,” page 17.

‘-x pattern’
When comparing directories, ignore files and subdirectories
whose basenames match pattern. See Chapter 3 “Compar-
ing Directories,” page 29.

‘-X file’ When comparing directories, ignore files and subdirectories
whose basenames match any pattern contained in file. See
Chapter 3 “Comparing Directories,” page 29.

‘-y’ Use the side by side output format. See Section 2.5 “Side by
Side Format,” page 17.

c y g n u s s u p p o r t 63

Comparing and Merging Files

64 16 January 1996

D
iff

Chapter 13: Invoking diff3

13 Invoking diff3

The diff3 command compares three files and outputs descriptions of
their differences. Its arguments are as follows:

diff3 options. .. mine older yours

The files to compare are mine, older, and yours. At most one of these
three file names may be ‘-’, which tells diff3 to read the standard input
for that file.

An exit status of 0 means diff3 was successful, 1 means some con-
flicts were found, and 2 means trouble.

13.1 Options to diff3

Below is a summary of all of the options that gnu diff3 accepts.
Multiple single letter options (unless they take an argument) can be
combined into a single command line argument.

‘-a’ Treat all files as text and compare them line-by-line, even
if they do not appear to be text. See Section 1.7 “Binary,”
page 6.

‘-A’ Incorporate all changes from older to yours into mine, sur-
rounding all conflicts with bracket lines. See Section 7.2
“Marking Conflicts,” page 40.

‘-e’ Generate an ed script that incorporates all the changes from
older to yours into mine. See Section 7.1 “Which Changes,”
page 39.

‘-E’ Like ‘-e’, except bracket lines from overlapping changes’ first
and third files. See Section 7.2 “Marking Conflicts,” page 40.
With ‘-e’, an overlapping change looks like this:

<<<<<<< mine
lines from mine
=======
lines from yours
>>>>>>> yours

‘--ed’ Generate an ed script that incorporates all the changes from
older to yours into mine. See Section 7.1 “Which Changes,”
page 39.

‘--easy-only’
Like ‘-e’, except output only the nonoverlapping changes.
See Section 7.1 “Which Changes,” page 39.

‘-i’ Generate ‘w’ and ‘q’ commands at the end of the ed script for
System V compatibility. This option must be combined with

c y g n u s s u p p o r t 65

Comparing and Merging Files

one of the ‘-AeExX3’ options, and may not be combined with
‘-m’. See Section 7.5 “Saving the Changed File,” page 42.

‘--initial-tab’
Output a tab rather than two spaces before the text of a line
in normal format. This causes the alignment of tabs in the
line to look normal. See Section 4.1 “Tabs,” page 31.

‘-L label’
‘--label=label’

Use the label label for the brackets output by the ‘-A’, ‘-E’
and ‘-X’ options. This option may be given up to three times,
one for each input file. The default labels are the names
of the input files. Thus ‘diff3 -L X -L Y -L Z -m A B C’ acts
like ‘diff3 -m A B C’, except that the output looks like it came
from files named ‘X’, ‘Y’ and ‘Z’ rather than from files named
‘A’, ‘B’ and ‘C’. See Section 7.2 “Marking Conflicts,” page 40.

‘-m’
‘--merge’ Apply the edit script to the first file and send the result to

standard output. Unlike piping the output from diff3 to ed,
this works even for binary files and incomplete lines. ‘-A’ is
assumed if no edit script option is specified. See Section 7.3
“Bypassing ed,” page 41.

‘--overlap-only’
Like ‘-e’, except output only the overlapping changes. See
Section 7.1 “Which Changes,” page 39.

‘--show-all’
Incorporate all unmerged changes from older to yours into
mine, surrounding all overlapping changes with bracket
lines. See Section 7.2 “Marking Conflicts,” page 40.

‘--show-overlap’
Like ‘-e’, except bracket lines from overlapping changes’ first
and third files. See Section 7.2 “Marking Conflicts,” page 40.

‘-T’ Output a tab rather than two spaces before the text of a line
in normal format. This causes the alignment of tabs in the
line to look normal. See Section 4.1 “Tabs,” page 31.

‘--text’ Treat all files as text and compare them line-by-line, even
if they do not appear to be text. See Section 1.7 “Binary,”
page 6.

‘-v’
‘--version’

Output the version number of diff3.

66 16 January 1996

D
iff

Chapter 13: Invoking diff3

‘-x’ Like ‘-e’, except output only the overlapping changes. See
Section 7.1 “Which Changes,” page 39.

‘-X’ Like ‘-E’, except output only the overlapping changes. In
other words, like ‘-x’, except bracket changes as in ‘-E’. See
Section 7.2 “Marking Conflicts,” page 40.

‘-3’ Like ‘-e’, except output only the nonoverlapping changes.
See Section 7.1 “Which Changes,” page 39.

c y g n u s s u p p o r t 67

Comparing and Merging Files

68 16 January 1996

D
iff

Chapter 14: Invoking patch

14 Invoking patch

Normally patch is invoked like this:
patch <patchfile

The full format for invoking patch is:
patch options. .. [origfile [patchfile]] [+ options. .. [origfile]]. ..

If you do not specify patchfile, or if patchfile is ‘-’, patch reads
the patch (that is, the diff output) from the standard input.

You can specify one or more of the original files as orig arguments;
each one and options for interpreting it is separated from the others with
a ‘+’. See Section 9.4 “Multiple Patches,” page 50, for more information.

If you do not specify an input file on the command line, patch tries to
figure out from the leading text (any text in the patch that comes before
the diff output) which file to edit. In the header of a context or unified
diff, patch looks in lines beginning with ‘***’, ‘---’, or ‘+++’; among those,
it chooses the shortest name of an existing file. Otherwise, if there is an
‘Index:’ line in the leading text, patch tries to use the file name from
that line. If patch cannot figure out the name of an existing file from
the leading text, it prompts you for the name of the file to patch.

If the input file does not exist or is read-only, and a suitable RCS
or SCCS file exists, patch attempts to check out or get the file before
proceeding.

By default, patch replaces the original input file with the patched ver-
sion, after renaming the original file into a backup file (see Section 14.2
“Backups,” page 70, for a description of how patch names backup files).
You can also specify where to put the output with the ‘-o output-file’
or ‘--output=output-file’ option.

14.1 Applying Patches in Other Directories

The ‘-d directory’ or ‘--directory=directory’ option to patch
makes directory directory the current directory for interpreting both
file names in the patch file, and file names given as arguments to other
options (such as ‘-B’ and ‘-o’). For example, while in a news reading
program, you can patch a file in the ‘/usr/src/emacs’ directory directly
from the article containing the patch like this:

| patch -d /usr/src/emacs

Sometimes the file names given in a patch contain leading directories,
but you keep your files in a directory different from the one given in the
patch. In those cases, you can use the ‘-p[number]’ or ‘--strip[=number]’
option to set the file name strip count to number. The strip count tells
patch how many slashes, along with the directory names between them,

c y g n u s s u p p o r t 69

Comparing and Merging Files

to strip from the front of file names. ‘-p’ with no number given is equiva-
lent to ‘-p0’. By default, patch strips off all leading directories, leaving
just the base file names, except that when a file name given in the patch
is a relative file name and all of its leading directories already exist,
patch does not strip off the leading directory. (A relative file name is one
that does not start with a slash.)

patch looks for each file (after any slashes have been stripped) in
the current directory, or if you used the ‘-d directory’ option, in that
directory.

For example, suppose the file name in the patch file is
‘/gnu/src/emacs/etc/NEWS’. Using ‘-p’ or ‘-p0’ gives the entire file
name unmodified, ‘-p1’ gives ‘gnu/src/emacs/etc/NEWS’ (no leading
slash), ‘-p4’ gives ‘etc/NEWS’, and not specifying ‘-p’ at all gives ‘NEWS’.

14.2 Backup File Names

Normally, patch renames an original input file into a backup file by
appending to its name the extension ‘.orig’, or ‘˜’ on systems that do not
support long file names. The ‘-b backup-suffix’ or ‘--suffix=backup-
suffix’ option uses backup-suffix as the backup extension instead.

Alternately, you can specify the extension for backup files with the
SIMPLE_BACKUP_SUFFIX environment variable, which the options over-
ride.

patch can also create numbered backup files the way gnu Emacs
does. With this method, instead of having a single backup of each file,
patch makes a new backup file name each time it patches a file. For
example, the backups of a file named ‘sink’ would be called, successively,
‘sink.˜1˜’, ‘sink.˜2˜’, ‘sink.˜3˜’, etc.

The ‘-V backup-style’ or ‘--version-control=backup-style’ option
takes as an argument a method for creating backup file names. You
can alternately control the type of backups that patch makes with the
VERSION_CONTROL environment variable, which the ‘-V’ option overrides.
The value of the VERSION_CONTROL environment variable and the argu-
ment to the ‘-V’ option are like thegnuEmacs version-controlvariable
(see Section 14.2 “The GNU Emacs Manual,” page 70, for more informa-
tion on backup versions in Emacs). They also recognize synonyms that
are more descriptive. The valid values are listed below; unique abbrevi-
ations are acceptable.

‘t’
‘numbered’

Always make numbered backups.

70 16 January 1996

D
iff

Chapter 14: Invoking patch

‘nil’
‘existing’

Make numbered backups of files that already have them,
simple backups of the others. This is the default.

‘never’
‘simple’ Always make simple backups.

Alternately, you can tell patch to prepend a prefix, such as a di-
rectory name, to produce backup file names. The ‘-B backup-prefix’
or ‘--prefix=backup-prefix’ option makes backup files by prepending
backup-prefix to them. If you use this option, patch ignores any ‘-b’
option that you give.

If the backup file already exists, patch creates a new backup file
name by changing the first lowercase letter in the last component of
the file name into uppercase. If there are no more lowercase letters in
the name, it removes the first character from the name. It repeats this
process until it comes up with a backup file name that does not already
exist.

If you specify the output file with the ‘-o’ option, that file is the one
that is backed up, not the input file.

14.3 Reject File Names

The names for reject files (files containing patches that patch could
not find a place to apply) are normally the name of the output file with
‘.rej’ appended (or ‘#’ on systems that do not support long file names).

Alternatively, you can tell patch to place all of the rejected patches
in a single file. The ‘-r reject-file’ or ‘--reject-file=reject-file’
option uses reject-file as the reject file name.

14.4 Options to patch

Here is a summary of all of the options that patch accepts. Older
versions of patch do not accept long-named options or the ‘-t’, ‘-E’, or
‘-V’ options.

Multiple single-letter options that do not take an argument can be
combined into a single command line argument (with only one dash).
Brackets ([and]) indicate that an option takes an optional argument.

‘-b backup-suffix’
Use backup-suffix as the backup extension instead of
‘.orig’ or ‘˜’. See Section 14.2 “Backups,” page 70.

c y g n u s s u p p o r t 71

Comparing and Merging Files

‘-B backup-prefix’
Use backup-prefix as a prefix to the backup file name. If
this option is specified, any ‘-b’ option is ignored. See Sec-
tion 14.2 “Backups,” page 70.

‘--batch’ Do not ask any questions. See Section 9.5 “patch Messages,”
page 51.

‘-c’
‘--context’

Interpret the patch file as a context diff. See Section 9.1
“patch Input,” page 47.

‘-d directory’
‘--directory=directory’

Makes directory directory the current directory for inter-
preting both file names in the patch file, and file names given
as arguments to other options. See Section 14.1 “patch Di-
rectories,” page 69.

‘-D name’ Make merged if-then-else output using format. See Sec-
tion 2.7 “If-then-else,” page 21.

‘--debug=number’
Set internal debugging flags. Of interest only to patch patch-
ers.

‘-e’
‘--ed’ Interpret the patch file as an ed script. See Section 9.1 “patch

Input,” page 47.

‘-E’ Remove output files that are empty after the patches have
been applied. See Section 9.3 “Empty Files,” page 50.

‘-f’ Assume that the user knows exactly what he or she is do-
ing, and do not ask any questions. See Section 9.5 “patch
Messages,” page 51.

‘-F lines’ Set the maximum fuzz factor to lines. See Section 9.2.3
“Inexact,” page 49.

‘--force’ Assume that the user knows exactly what he or she is do-
ing, and do not ask any questions. See Section 9.5 “patch
Messages,” page 51.

‘--forward’
Ignore patches that patch thinks are reversed or already
applied. See also ‘-R’. See Section 9.2.2 “Reversed Patches,”
page 48.

72 16 January 1996

D
iff

Chapter 14: Invoking patch

‘--fuzz=lines’
Set the maximum fuzz factor to lines. See Section 9.2.3
“Inexact,” page 49.

‘--help’ Print a summary of the options that patch recognizes, then
exit.

‘--ifdef=name’
Make merged if-then-else output using format. See Sec-
tion 2.7 “If-then-else,” page 21.

‘--ignore-white-space’
‘-l’ Let any sequence of white space in the patch file match any

sequence of white space in the input file. See Section 9.2.1
“Changed White Space,” page 48.

‘-n’
‘--normal’

Interpret the patch file as a normal diff. See Section 9.1
“patch Input,” page 47.

‘-N’ Ignore patches that patch thinks are reversed or already
applied. See also ‘-R’. See Section 9.2.2 “Reversed Patches,”
page 48.

‘-o output-file’
‘--output=output-file’

Use output-file as the output file name. See Section 14.4
“patch Options,” page 71.

‘-p[number]’
Set the file name strip count to number. See Section 14.1
“patch Directories,” page 69.

‘--prefix=backup-prefix’
Use backup-prefix as a prefix to the backup file name. If
this option is specified, any ‘-b’ option is ignored. See Sec-
tion 14.2 “Backups,” page 70.

‘--quiet’ Work silently unless an error occurs. See Section 9.5 “patch
Messages,” page 51.

‘-r reject-file’
Use reject-file as the reject file name. See Section 14.3
“Rejects,” page 71.

‘-R’ Assume that this patch was created with the old and new files
swapped. See Section 9.2.2 “Reversed Patches,” page 48.

‘--reject-file=reject-file’
Use reject-file as the reject file name. See Section 14.3
“Rejects,” page 71.

c y g n u s s u p p o r t 73

Comparing and Merging Files

‘--remove-empty-files’
Remove output files that are empty after the patches have
been applied. See Section 9.3 “Empty Files,” page 50.

‘--reverse’
Assume that this patch was created with the old and new files
swapped. See Section 9.2.2 “Reversed Patches,” page 48.

‘-s’ Work silently unless an error occurs. See Section 9.5 “patch
Messages,” page 51.

‘-S’ Ignore this patch from the patch file, but continue looking for
the next patch in the file. See Section 9.4 “Multiple Patches,”
page 50.

‘--silent’
Work silently unless an error occurs. See Section 9.5 “patch
Messages,” page 51.

‘--skip’ Ignore this patch from the patch file, but continue looking for
the next patch in the file. See Section 9.4 “Multiple Patches,”
page 50.

‘--strip[=number]’
Set the file name strip count to number. See Section 14.1
“patch Directories,” page 69.

‘--suffix=backup-suffix’
Use backup-suffix as the backup extension instead of
‘.orig’ or ‘˜’. See Section 14.2 “Backups,” page 70.

‘-t’ Do not ask any questions. See Section 9.5 “patch Messages,”
page 51.

‘-u’
‘--unified’

Interpret the patch file as a unified diff. See Section 9.1
“patch Input,” page 47.

‘-v’ Output the revision header and patch level of patch.

‘-V backup-style’
Select the kind of backups to make. See Section 14.2 “Back-
ups,” page 70.

‘--version’
Output the revision header and patch level of patch, then
exit.

‘--version=control=backup-style’
Select the kind of backups to make. See Section 14.2 “Back-
ups,” page 70.

74 16 January 1996

D
iff

Chapter 14: Invoking patch

‘-x number’
Set internal debugging flags. Of interest only to patch patch-
ers.

c y g n u s s u p p o r t 75

Comparing and Merging Files

76 16 January 1996

D
iff

Chapter 15: Invoking sdiff

15 Invoking sdiff

The sdiff command merges two files and interactively outputs the
results. Its arguments are as follows:

sdiff -o outfile options. .. from-file to-file

This merges from-file with to-file, with output to outfile. If
from-file is a directory and to-file is not, sdiff compares the file in
from-filewhose file name is that of to-file, and vice versa. from-file
and to-file may not both be directories.

sdiff options begin with ‘-’, so normally from-file and to-file
may not begin with ‘-’. However, ‘--’ as an argument by itself treats the
remaining arguments as file names even if they begin with ‘-’. You may
not use ‘-’ as an input file.

An exit status of 0 means no differences were found, 1 means some
differences were found, and 2 means trouble.

sdiff without ‘-o’ (or ‘--output’) produces a side-by-side difference.
This usage is obsolete; use ‘diff --side-by-side’ instead.

15.1 Options to sdiff

Below is a summary of all of the options that gnu sdiff accepts.
Each option has two equivalent names, one of which is a single letter
preceded by ‘-’, and the other of which is a long name preceded by ‘--’.
Multiple single letter options (unless they take an argument) can be
combined into a single command line argument. Long named options
can be abbreviated to any unique prefix of their name.

‘-a’ Treat all files as text and compare them line-by-line, even
if they do not appear to be text. See Section 1.7 “Binary,”
page 6.

‘-b’ Ignore changes in amount of white space. See Section 1.2
“White Space,” page 4.

‘-B’ Ignore changes that just insert or delete blank lines. See
Section 1.3 “Blank Lines,” page 5.

‘-d’ Change the algorithm to perhaps find a smaller set of
changes. This makes sdiff slower (sometimes much slower).
See Chapter 5 “diff Performance,” page 33.

‘-H’ Use heuristics to speed handling of large files that have nu-
merous scattered small changes. See Chapter 5 “diff Perfor-
mance,” page 33.

c y g n u s s u p p o r t 77

Comparing and Merging Files

‘--expand-tabs’
Expand tabs to spaces in the output, to preserve the align-
ment of tabs in the input files. See Section 4.1 “Tabs,”
page 31.

‘-i’ Ignore changes in case; consider upper- and lower-case to be
the same. See Section 1.4 “Case Folding,” page 5.

‘-I regexp’
Ignore changes that just insert or delete lines that match
regexp. See Section 1.5 “Specified Folding,” page 5.

‘--ignore-all-space’
Ignore white space when comparing lines. See Section 1.2
“White Space,” page 4.

‘--ignore-blank-lines’
Ignore changes that just insert or delete blank lines. See
Section 1.3 “Blank Lines,” page 5.

‘--ignore-case’
Ignore changes in case; consider upper- and lower-case to be
the same. See Section 1.4 “Case Folding,” page 5.

‘--ignore-matching-lines=regexp’
Ignore changes that just insert or delete lines that match
regexp. See Section 1.5 “Specified Folding,” page 5.

‘--ignore-space-change’
Ignore changes in amount of white space. See Section 1.2
“White Space,” page 4.

‘-l’
‘--left-column’

Print only the left column of two common lines. See Sec-
tion 2.5 “Side by Side Format,” page 17.

‘--minimal’
Change the algorithm to perhaps find a smaller set of
changes. This makes sdiff slower (sometimes much slower).
See Chapter 5 “diff Performance,” page 33.

‘-o file’
‘--output=file’

Put merged output into file. This option is required for
merging.

‘-s’
‘--suppress-common-lines’

Do not print common lines. See Section 2.5 “Side by Side
Format,” page 17.

78 16 January 1996

D
iff

Chapter 15: Invoking sdiff

‘--speed-large-files’
Use heuristics to speed handling of large files that have nu-
merous scattered small changes. See Chapter 5 “diff Perfor-
mance,” page 33.

‘-t’ Expand tabs to spaces in the output, to preserve the align-
ment of tabs in the input files. See Section 4.1 “Tabs,”
page 31.

‘--text’ Treat all files as text and compare them line-by-line, even
if they do not appear to be text. See Section 1.7 “Binary,”
page 6.

‘-v’
‘--version’

Output the version number of sdiff.

‘-w columns’
‘--width=columns’

Use an output width of columns. See Section 2.5 “Side by
Side Format,” page 17. Note that for historical reasons, this
option is ‘-W’ in diff, ‘-w’ in sdiff.

‘-W’ Ignore horizontal white space when comparing lines. See
Section 1.2 “White Space,” page 4. Note that for historical
reasons, this option is ‘-w’ in diff, ‘-W’ in sdiff.

c y g n u s s u p p o r t 79

Comparing and Merging Files

80 16 January 1996

D
iff

Chapter 16: Incomplete Lines

16 Incomplete Lines

When an input file ends in a non-newline character, its last line is
called an incomplete line because its last character is not a newline. All
other lines are called full lines and end in a newline character. Incom-
plete lines do not match full lines unless differences in white space are
ignored (see Section 1.2 “White Space,” page 4).

An incomplete line is normally distinguished on output from a full line
by a following line that starts with ‘\’. However, the RCS format (see
Section 2.6.3 “RCS,” page 20) outputs the incomplete line as-is, without
any trailing newline or following line. The side by side format normally
represents incomplete lines as-is, but in some cases uses a ‘\’ or ‘/’ gutter
marker; See Section 2.4 “Side by Side,” page 16. The if-then-else line
format preserves a line’s incompleteness with ‘%L’, and discards the new-
line with ‘%l’; See Section 2.7.2 “Line Formats,” page 24. Finally, with
the ed and forward ed output formats (see Chapter 2 “Output Formats,”
page 9) diff cannot represent an incomplete line, so it pretends there
was a newline and reports an error.

For example, suppose ‘F’ and ‘G’ are one-byte files that contain just ‘f’
and ‘g’, respectively. Then ‘diff F G’ outputs

1c1
< f
\ No newline at end of file

> g
\ No newline at end of file

(The exact message may differ in non-English locales.) ‘diff -n F G’
outputs the following without a trailing newline:

d1 1
a1 1
g

‘diff -e F G’ reports two errors and outputs the following:
1c
g
.

c y g n u s s u p p o r t 81

Comparing and Merging Files

82 16 January 1996

D
iff

Chapter 17: Future Projects

17 Future Projects

Here are some ideas for improving gnu diff and patch. The gnu

project has identified some improvements as potential programming
projects for volunteers. You can also help by reporting any bugs that
you find.

If you are a programmer and would like to contribute something
to the gnu project, please consider volunteering for one of these
projects. If you are seriously contemplating work, please write to
‘gnu@prep.ai.mit.edu’ to coordinate with other volunteers.

17.1 Suggested Projects for Improving GNU diff
and patch

One should be able to use gnu diff to generate a patch from any
pair of directory trees, and given the patch and a copy of one such tree,
use patch to generate a faithful copy of the other. Unfortunately, some
changes to directory trees cannot be expressed using current patch for-
mats; also, patch does not handle some of the existing formats. These
shortcomings motivate the following suggested projects.

17.1.1 Handling Changes to the Directory Structure

diff and patch do not handle some changes to directory structure.
For example, suppose one directory tree contains a directory named ‘D’
with some subsidiary files, and another contains a file with the same
name ‘D’. ‘diff -r’ does not output enough information for patch to
transform the the directory subtree into the file.

There should be a way to specify that a file has been deleted without
having to include its entire contents in the patch file. There should also
be a way to tell patch that a file was renamed, even if there is no way
for diff to generate such information.

These problems can be fixed by extending the diff output format to
represent changes in directory structure, and extending patch to under-
stand these extensions.

17.1.2 Files that are Neither Directories Nor Regular Files

Some files are neither directories nor regular files: they are unusual
files like symbolic links, device special files, named pipes, and sockets.
Currently, diff treats symbolic links like regular files; it treats other
special files like regular files if they are specified at the top level, but

c y g n u s s u p p o r t 83

Comparing and Merging Files

simply reports their presence when comparing directories. This means
that patch cannot represent changes to such files. For example, if you
change which file a symbolic link points to, diff outputs the difference
between the two files, instead of the change to the symbolic link.

diff should optionally report changes to special files specially, and
patch should be extended to understand these extensions.

17.1.3 File Names that Contain Unusual Characters

When a file name contains an unusual character like a newline or
white space, ‘diff -r’ generates a patch that patch cannot parse. The
problem is with format of diff output, not just with patch, because with
odd enough file names one can cause diff to generate a patch that is
syntactically correct but patches the wrong files. The format of diff
output should be extended to handle all possible file names.

17.1.4 Arbitrary Limits

gnu diff can analyze files with arbitrarily long lines and files that
end in incomplete lines. However, patch cannot patch such files. The
patch internal limits on line lengths should be removed, and patch
should be extended to parse diff reports of incomplete lines.

17.1.5 Handling Files that Do Not Fit in Memory

diff operates by reading both files into memory. This method fails if
the files are too large, and diff should have a fallback.

One way to do this is to scan the files sequentially to compute hash
codes of the lines and put the lines in equivalence classes based only on
hash code. Then compare the files normally. This does produce some
false matches.

Then scan the two files sequentially again, checking each match to see
whether it is real. When a match is not real, mark both the “matching”
lines as changed. Then build an edit script as usual.

The output routines would have to be changed to scan the files se-
quentially looking for the text to print.

17.1.6 Ignoring Certain Changes

It would be nice to have a feature for specifying two strings, one in
from-file and one in to-file, which should be considered to match.
Thus, if the two strings are ‘foo’ and ‘bar’, then if two lines differ only

84 16 January 1996

D
iff

Chapter 17: Future Projects

in that ‘foo’ in file 1 corresponds to ‘bar’ in file 2, the lines are treated
as identical.

It is not clear how general this feature can or should be, or what
syntax should be used for it.

17.2 Reporting Bugs

If you think you have found a bug in gnu cmp, diff, diff3, sdiff, or
patch, report it by electronic mail to ‘bug-gnu-utils@prep.ai.mit.edu’.
Send as precise a description of the problem as you can, including sample
input files that produce the bug, if applicable.

Because Larry Wall has not released a new version of patch since
mid 1988 and the gnu version of patch has been changed since
then, please send bug reports for patch by electronic mail to both
‘bug-gnu-utils@prep.ai.mit.edu’ and ‘lwall@netlabs.com’.

c y g n u s s u p p o r t 85

Comparing and Merging Files

86 16 January 1996

D
iff

Concept Index

Concept Index

!
‘!’ output format . 11

+
‘+-’ output format . 14

<
‘<’ output format . 9
‘<<<<<<<’ for marking conflicts 40

A
aligning tabstops. 31
alternate file names 16

B
backup file names . 70
binary file diff . 6
binary file patching 84
blank and tab difference suppression. . . 4
blank line difference suppression 5
brief difference reports 6
bug reports . 85

C
C function headings 16
C if-then-else output format 21
case difference suppression 5
cmp invocation . 55
cmp options . 55
columnar output . 16
comparing three files. 35
conflict . 39
conflict marking . 40
context output format 11

D
diagnostics from patch 51
diff invocation . 57
diff merging . 45
diff options . 57
diff sample input . 9

diff3 hunks. 36
diff3 invocation . 65
diff3 options . 65
diff3 sample input 35
directories and patch. 69
directory structure changes 83

E
ed script output format 18
empty files, removing 50

F
file name alternates 16
file names with unusual characters . . . 84
format of diff output 9
format of diff3 output 35
formats for if-then-else line groups. . . . 21
forward ed script output format 20
full lines . 81
function headings, C 16
fuzz factor when patching 49

H
headings . 15
hunks . 3
hunks for diff3 . 36

I
if-then-else output format 21
ifdef output format. 21
imperfect patch application 48
incomplete line merging 42
incomplete lines . 81
inexact patches . 49
interactive merging 45
introduction . 3
invoking cmp . 55
invoking diff . 57
invoking diff3 . 65
invoking patch . 69
invoking sdiff . 77

c y g n u s s u p p o r t 87

Comparing and Merging Files

L
large files . 84
line formats . 24
line group formats . 21

M
merge commands . 45
merged diff3 format 41
merged output format 21
merging from a common ancestor 39
merging interactively 45
messages from patch 51
multiple patches . 50

N
newline treatment by diff 81
normal output format 9

O
options for cmp . 55
options for diff . 57
options for diff3 . 65
options for patch . 71
options for sdiff . 77
output formats . 9
overlap . 39
overlapping change, selection of. 39
overview of diff and patch 1

P
paginating diff output 31
patch input format 47
patch invocation . 69
patch making tips . 53
patch messages and questions 51
patch options . 71
patching directories 69
performance of diff 33
projects for directories 83

R
RCS script output format 20
regular expression matching headings

. 15
regular expression suppression 5
reject file names . 71
removing empty files 50
reporting bugs . 85
reversed patches . 48

S
sample input for diff. 9
sample input for diff3 35
script output formats 18
sdiff invocation . 77
sdiff options . 77
sdiff output format. 45
section headings . 15
side by side . 16
side by side format . 17
special files . 83
specified headings . 15
summarizing which files differ 6
System V diff3 compatibility 42

T
tab and blank difference suppression. . . 4
tabstop alignment . 31
text versus binary diff 6
tips for patch making 53
two-column output . 16

U
unified output format 14
unmerged change . 39

W
white space in patches 48

88 16 January 1996

	Overview
	1 What Comparison Means
	1.1 Hunks
	1.2 Suppressing Differences in Blank and Tab Spacing
	1.3 Suppressing Differences in Blank Lines
	1.4 Suppressing Case Differences
	1.5 Suppressing Lines Matching a Regular Expression
	1.6 Summarizing Which Files Differ
	1.7 Binary Files and Forcing Text Comparisons

	2 diff Output Formats
	2.1 Two Sample Input Files
	2.2 Showing Differences Without Context
	2.3 Showing Differences in Their Context
	2.4 Showing Differences Side by Side
	2.5 Controlling Side by Side Format
	2.6 Making Edit Scripts
	2.7 Merging Files with If-then-else

	3 Comparing Directories
	4 Making diff Output Prettier
	4.1 Preserving Tabstop Alignment
	4.2 Paginating diff Output

	5 diff Performance Tradeoffs
	6 Comparing Three Files
	6.1 A Third Sample Input File
	6.2 Detailed Description of diff3 Normal Format
	6.3 diff3 Hunks
	6.4 An Example of diff3 Normal Format

	7 Merging From a Common Ancestor
	7.1 Selecting Which Changes to Incorporate
	7.2 Marking Conflicts
	7.3 Generating the Merged Output Directly
	7.4 How diff3 Merges Incomplete Lines
	7.5 Saving the Changed File

	8 Interactive Merging with sdiff
	8.1 Specifying diff Options to sdiff
	8.2 Merge Commands

	9 Merging with patch
	9.1 Selecting the patch Input Format
	9.2 Applying Imperfect Patches
	9.3 Removing Empty Files
	9.4 Multiple Patches in a File
	9.5 Messages and Questions from patch

	10 Tips for Making Patch Distributions
	11 Invoking cmp
	11.1 Options to cmp

	12 Invoking diff
	12.1 Options to diff

	13 Invoking diff3
	13.1 Options to diff3

	14 Invoking patch
	14.1 Applying Patches in Other Directories
	14.2 Backup File Names
	14.3 Reject File Names
	14.4 Options to patch

	15 Invoking sdiff
	15.1 Options to sdiff

	16 Incomplete Lines
	17 Future Projects
	17.1 Suggested Projects for Improving GNU diff and patch
	17.2 Reporting Bugs

	Concept Index

