
Embed With GNU
Using the GNU Tools on Embedded Systems

Winter 1996
Draft

Cygnus Support

Copyright c
 1993, 1994, 1995, 1996 Cygnus Support
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

1 Supported targets . 1
1.1 Hitachi H8/300 targets . 2

1.1.1 What to call the tools . 2
1.1.2 Compiling on Hitachi H8/300 targets 2

1.1.2.1 Compiler options . 3
1.1.2.2 Predefined preprocessor macros 3
1.1.2.3 Assembler options . 4
1.1.2.4 Calling conventions . 5

1.1.3 Debugging on Hitachi H8/300 targets 6
1.1.4 Loading on specific target architectures 7

1.1.4.1 Hitachi H8/300 boards 7
1.1.4.2 E7000 in-circuit emulators 9

1.1.5 Further documentation . 9
1.2 Hitachi SH targets . 10

1.2.1 What to call the tools . 10
1.2.2 Compiling on Hitachi SH targets 10

1.2.2.1 Compiler options . 10
1.2.2.2 Predefined preprocessor macros 11
1.2.2.3 Assembler options . 12
1.2.2.4 Calling conventions 13

1.2.3 Debugging on Hitachi SH targets 14
1.2.4 Further documentation . 15

1.3 MIPS targets . 16
1.3.1 What to call the tools . 16
1.3.2 Compiling on MIPS targets . 16

1.3.2.1 Compiler options . 16
1.3.2.2 Predefined preprocessor macros 19
1.3.2.3 Assembler options . 20
1.3.2.4 Calling conventions 23

1.3.3 Debugging on MIPS targets . 24
1.3.4 I/O for specific target architectures 26
1.3.5 Further documentation . 30

1.4 Motorola m68k targets . 31
1.4.1 What to call the tools . 31
1.4.2 Compiling on Motorola m68k targets 31

1.4.2.1 Compiler options . 31
1.4.2.2 Predefined preprocessor macros 33
1.4.2.3 Assembler options . 33
1.4.2.4 Calling conventions 35

1.4.3 Debugging on Motorola m68k targets 35
1.5 Sparc targets . 37

c y g n u s s u p p o r t i

Embed with GNU

1.5.1 What to call the tools . 37
1.5.2 Compiling on Sparc targets . 37

1.5.2.1 Compiler options . 38
1.5.2.2 Predefined preprocessor macros 40
1.5.2.3 Assembler options . 40
1.5.2.4 Calling conventions 42

1.5.3 Debugging on Sparc targets . 42
1.5.4 Loading on specific target architectures 44
1.5.5 Further documentation . 44

Index . 45

ii 23 January 1996

Chapter 1: Supported targets

1 Supported targets

This document describes programming practices and options for several
of the embedded targets supported by the Cygnus Developer’s Kit. This
document is currently draft status, as the tools themselves are evolving
to meet the needs of our customers. It is also incomplete, as new targets
are added to our matrix frequently (see section “Overview” in Release
Notes).

c y g n u s s u p p o r t 1

Embed with GNU

1.1 Hitachi H8/300 targets

1.1.1 What to call the tools

Cross-development tools in the Cygnus Developer’s Kit are normally
installed with names that reflect the target machine, so that you can
install more than one set of tools in the same binary directory.
The target name, constructed with the --target option to configure, is
used as a prefix to the program name. For example, the compiler for the
Hitachi h8/300 (called simply gcc in native configurations) is called:

h8300-hms-gcc

Likewise, the Hitachi h8/300-configured gdb is called:
h8300-hms-gdb

For dos-hosted toolchains, the tools are simply called by their standard
names, e.g., gcc, gdb, etc.

1.1.2 Compiling on Hitachi H8/300 targets

The Hitachi h8/300 target family toolchain controls variances in code
generation directly from the command line.
When you run GCC, you can use command-line options to choose whether
to take advantage of the extra Hitachi h8/300 machine instructions, and
whether to generate code for hardware or software floating point.

Using C++ for the Hitachi H8/300

This special release includes support for the C++ language. This support
may in certain circumstances add up to 5k to the size of your executables.
The new C++ support involves new startup code that runs C++ initial-
izers before ‘main()’ is invoked. If you have a replacement for the file
‘crt0.o’ (or if you call ‘main()’ yourself) you must call ‘_main()’ before
calling ‘main()’.
You may need to run these C++ initializers even if you do not write in
C++ yourself. This could happen, for instance, if you are linking against
a third-party library which itself was written in C++. You may not be
able to tell that it was written in C++ because you are calling it with C
entry points prototyped in a C header file. Without these initializers,
functions written in C++ may malfunction.

2 23 January 1996

Chapter 1: Supported targets

If you are not using any third-party libraries, or are otherwise certain
that you will not require any C++ constructors you may suppress them
by adding the following definition to your program:

int __main() {}

1.1.2.1 Compiler options

When you run GCC, you can use command-line options to choose machine-
specific details. For information on all the GCC command-line options,
see section “GNU CC Command Options” in Using GNU CC.

General GCC options

-mh Generate code for the h8/300h chip.
-mint32 Use 32-bit integers when compiling for the h8/300h.

-g The compiler debugging option ‘-g’ is essential to see in-
terspersed high-level source statements, since without de-
bugging information the assembler cannot tie most of the
generated code to lines of the original source file.

Floating point subroutines

The Hitachi h8/300 has no floating point support. Two kinds of floating
point subroutines are useful with GCC:
1. Software implementations of the basic functions (floating-point mul-

tiply, divide, add, subtract), for use when there is no hardware
floating-point support.

2. General-purpose mathematical subroutines.
The Developer’s Kit from Cygnus Support includes an implementa-
tion of the standard C mathematical subroutine library. See section
“Mathematical Functions” in The Cygnus C Math Library.

1.1.2.2 Predefined preprocessor macros

GCC defines the following preprocessor macros for the Hitachi h8/300
configurations:

Any Hitachi h8/300 architecture:
__H8300__

The Hitachi h8/300h architecture:
__H8300H__

c y g n u s s u p p o r t 3

Embed with GNU

1.1.2.3 Assembler options

To use the gnu assembler, gas, to assemble GCC output, configure GCC
with the ‘--with-gnu-as’ switch (as it is in Cygnus distributions) or with
the -mgas option below.

General GAS options

-mgas Compile using gas to assemble GCC output.

-Wa If you invoke gas through the gnu C compiler (version 2),
you can use the ‘-Wa’ option to pass arguments through to
the assembler. One common use of this option is to exploit
the assembler’s listing features. Assembler arguments that
you specify with gcc -Wa must be separated from each other
(and the ‘-Wa’) by commas.

-L The additional assembler option ‘-L’ preserves local labels,
which may make the listing output more intelligible to hu-
mans.

For example, in the following commandline:
$ h8300-hms-gcc -c -g -O -Wa,-alh,-L file.c

the assembler option -ahl requests a listing with high-level language
and assembly language interspersed, -L preserves local labels, while
the compiler debugging option -g gives the assembler the necessary
debugging information.

GAS options for listing output

Use these options to enable listing output from the assembler (the letters
after ‘-a’ may be combined into one option, e.g., ‘-aln’):

-a By itself, ‘-a’ requests listings of high-level language source,
assembly language, and symbols.

-ah Request a high-level language listing.

-al Request an output-program assembly listing.

-as Request a symbol table listing.

-ad Omit debugging directives from the listing.

High-level listings require that a compiler debugging option like ‘-g’ be
used, and that assembly listings (‘-al’) be requested also.

4 23 January 1996

Chapter 1: Supported targets

GAS listing-control directives

Use these listing-control assembler directives to control the appearance
of the listing output (f you do not request listing output with one of the
‘-a’ options, these listing-control directives have no effect):

.list Turn on listings from this point on.

.nolist Turn off listings from this point on.

.psize linecount , columnwidth
Describe the page size for your output (the default is 60,
200). gas generates form feeds after printing each group
of linecount lines. To avoid these automatic form feeds,
specify 0 as the linecount.

.eject Skip to a new page (issue a form feed).

.title Use heading as the title (this is the second line of the listing
output, directly after the source file name and pagenumber)
when generating assembly listings.

.sbttl Use subheading as the subtitle (this is the third line of the
listing output, directly after the title line) when generating
assembly listings.

-an Turn off all forms processing.

1.1.2.4 Calling conventions

The Hitachi h8/300 passes the first three words of arguments in reg-
isters ‘R0’ through ‘R2’. All remaining arguments are pushed onto the
stack, last to first, so that the lowest numbered argument not passed in
a register is at the lowest address in the stack. The registers are always
filled, so a double word argument starting in ‘R2’ would have the most
significant word in ‘R2’ and the least significant word on the stack.
Function return values are stored in ‘R0’ and ‘R1’. Registers ‘R0’ through
‘R2’ can be used for temporary values.
When a function is compiled with the default options, it must return
with registers ‘R3’ through ‘R6’ unchanged.
Note that functions compiled with different calling conventions cannot
be run together without some care.

c y g n u s s u p p o r t 5

Embed with GNU

1.1.3 Debugging on Hitachi H8/300 targets

gdb needs to know these things to talk to your Hitachi h8/300:
1. that you want to use one of the following interfaces:

‘target remote’, gdb’s generic debugging protocol. Use this for
the Hitachi low-cost evaluation board (lcevb) running cmon.
‘target hms’, the interface to h8/300 eval boards running the
HMS monitor.
‘target e7000’, the e7000 in-circuit emulator for the Hitachi
h8/300.
‘target sim’, the simulator, which allows you to run gdb re-
motely without an external device.

2. what serial device connects your host to your Hitachi board (the first
serial device available on your host is the default).

3. if you are using a Unix host, what speed to use over the serial device.

Use one of these gdb commands to specify the connection to your target
board:

target interface port
To run a program on the board, start up gdb with the name of
your program as the argument. To connect to the board, use
the command ‘target interface port’, where interface is
an interface from the list above and port is the name of the
serial port connected to the board. If the program has not
already been downloaded to the board, you may use the load
command to download it. You can then use all the usual gdb
commands.
For example, this sequence connects to the target board
through a serial port, and loads and runs a program called
prog through the debugger:

host$ h8300-hms-gdb prog
GDB is free software and ...
(gdb) target remote /dev/ttyb
...
(gdb) load
...
(gdb) run

target interface hostname:portnumber
You can specify a TCP/IP connection instead of a serial
port, using the syntax hostname:portnumber (assuming your
board is connected so that this makes sense; for instance, to
a serial line managed by a terminal concentrator).

6 23 January 1996

Chapter 1: Supported targets

gdb also supports:

set remotedebug n
You can see some debugging information about communica-
tions with the board by setting the remotedebug variable.

1.1.4 Loading on specific target architectures

Cygnus supports downloading to h8/300 boards and e7000 in-circuit
emulators.

1.1.4.1 Hitachi H8/300 boards

You can use the gdb remote serial protocol to communicate with a Hi-
tachi h8/300 board. See section “The gdb remote serial protocol” in
Debugging with GDB, for more details. Note that the Hitachi lcevb
running cmon has the stub already built-in.
Use the special gdb command:

device port

if you need to explicitly set the serial device. The default port is the first
available port on your host. This is only necessary on Unix hosts, where
it is typically something like ‘/dev/ttya’.
The following sample session illustrates the steps needed to start a pro-
gram under gdb control on an h8/300, using a dos host. The example
uses a sample h8 program called ‘t.x’. The procedure is the same for
other Hitachi chips in the series.
1. Hook up your development board. In the full example below, we use

a board attached to serial port COM1.
2. Call gdb with the name of your program as the argument.

gdb filename

gdb prompts you, as usual, with the prompt:
(gdb)

3. Use two special commands to begin your debugging session:
target hms port

to specify cross-debugging to the Hitachi board, and
load filename

to download your program to the board. load displays the names
of the program’s sections. (If you want to refresh gdb data on sym-
bols or on the executable file without downloading, use the gdb
commands file or symbol-file).

c y g n u s s u p p o r t 7

Embed with GNU

These commands, and load itself, are described in section “Commands
to specify files” in Debugging with GDB.

C:\H8\TEST> gdb t.x
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.
There is absolutely no warranty for GDB; type "show warranty"
for details.
GDB 4.15-96q1, Copyright 1994 Free Software Foundation, Inc...
(gdb) target hms com1
Connected to remote H8/300 HMS system.
(gdb) load t.x
.text : 0x8000 .. 0xabde ***********
.data : 0xabde .. 0xad30 *
.stack : 0xf000 .. 0xf014 *

At this point, you’re ready to run or debug your program. Now you can
use all of the usual gdb commands:

break Set breakpoints.

run Start your program.

print Display data.

continue Resume execution after stopping at a breakpoint.

help Dislay full information about gdb commands.

Note: Remember that operating system facilities aren’t available on your
development board. For example, if your program hangs, you can’t send
an interrupt—but you can press the reset switch.
Use the reset button on the development board:
� to interrupt your program (don’t use Ctrl-C on the dos host—it has

no way to pass an interrupt signal to the development board).
� to return to the gdb command prompt after your program finishes

normally. The communications protocol provides no other way for
gdb to detect program completion.

In either case, gdb sees the effect of a reset on the development board
as a “normal exit” of your program.

8 23 January 1996

Chapter 1: Supported targets

1.1.4.2 E7000 in-circuit emulators

You can use the e7000 in-circuit emulator to develop code for either the
Hitachi h8/300 or the h8/300h. Use one of these forms of the ‘target
e7000’ command to connect gdb to your e7000:

target e7000 port speed
Use this form if your e7000 is connected to a serial port.
The port argument identifies what serial port to use (for
example, ‘com2’). The third argument is the line speed in bits
per second (for example, ‘9600’).

target e7000 hostname
If your e7000 is installed as a host on aTCP/IPnetwork, you
can just specify its hostname; gdb uses telnet to connect.

The monitor command set makes it difficult to load large amounts of
data over the network without using ftp. We recommend you try not
to issue load commands when communicating over Ethernet; use the
ftpload command instead.

1.1.5 Further documentation

The following manual provides extensive documentation on the Hitachi
h8/300. They are produced by and available from Hitachi Microsystems;
contact your Field Application Engineer for details.

H8/300 Microcomputer User’s Manual
Semiconductor Design & Development Center, 1992

c y g n u s s u p p o r t 9

Embed with GNU

1.2 Hitachi SH targets

1.2.1 What to call the tools

Cross-development tools in the Cygnus Developer’s Kit are normally
installed with names that reflect the target machine, so that you can
install more than one set of tools in the same binary directory.
The target name, constructed with the --target option to configure, is
used as a prefix to the program name. For example, the compiler for the
Hitachi sh (called simply gcc in native configurations) is called:

sh-hms-gcc

Likewise, the Hitachi sh-configured gdb is called:
sh-hms-gdb

For dos-hosted toolchains, the tools are simply called by their standard
names, e.g., gcc, gdb, etc.

1.2.2 Compiling on Hitachi SH targets

The Hitachi sh target family toolchain controls variances in code gener-
ation directly from the command line.
When you run GCC, you can use command-line options to choose whether
to take advantage of the extra Hitachi sh machine instructions, and
whether to generate code for hardware or software floating point.

1.2.2.1 Compiler options

When you run GCC, you can use command-line options to choose machine-
specific details. For information on all the GCC command-line options,
see section “GNU CC Command Options” in Using GNU CC.

GCC options for architecture and code generation

-g The compiler debugging option ‘-g’ is essential to see in-
terspersed high-level source statements, since without de-
bugging information the assembler cannot tie most of the
generated code to lines of the original source file.

-mshl Generate little-endian Hitachi sh COFF output.

-m1 Generate code for the Hitachi sh-1 chip. This is the default
behavior for the Hitachi sh configuration.

-m2 Generate code for the Hitachi sh-2 chip.

10 23 January 1996

Chapter 1: Supported targets

-m3 Generate code for the Hitachi sh-3 chip.

-mhitachi
Use Hitachi’s calling convention rather than that for GCC.
The registers ‘MACH’ and ‘MACL’ are saved with this setting
(see Section 1.2.2.4 “Calling conventions,” page 13).

-mspace Generate small code rather than fast code. By default, gcc
generates fast code rather than small code.

-mb Generate big endian code. This is the default.

-ml Generate little endian code.

-mrelax Do linker relaxation. For the Hitachi sh, this means the
‘jsr’ instruction can be converted to the ‘bsr’ instruction.
‘-mrelax’ replaces the obsolete option ‘-mbsr’.

-mbigtable
Generate jump tables for switch statements using four-byte
offsets rather than the standard two-byte offset. This op-
tion is necessary when the code within a switch statement
is larger than 32k. If the option is needed and not supplied,
the assembler will generate errors.

Floating point subroutines

Two kinds of floating point subroutines are useful with GCC:
1. Software implementations of the basic functions (floating-point mul-

tiply, divide, add, subtract), for use when there is no hardware
floating-point support.

2. General-purpose mathematical subroutines.
The Developer’s Kit from Cygnus Support includes an implementa-
tion of the standard C mathematical subroutine library. See section
“Mathematical Functions” in The Cygnus C Math Library.

1.2.2.2 Predefined preprocessor macros

GCC defines the following preprocessor macros for the Hitachi sh config-
urations:

Any Hitachi sh architecture:
__sh__

Hitachi sh architecture with little-endian numeric representation:
__LITTLE_ENDIAN__

Big-endian numeric representation is the default in Hitachi sh architec-
ture.

c y g n u s s u p p o r t 11

Embed with GNU

1.2.2.3 Assembler options

To use the gnu assembler, gas, to assemble GCC output, configure GCC
with the ‘--with-gnu-as’ switch (as it is in Cygnus distributions) or with
the -mgas option below.

General GAS options

-mgas Compile using gas to assemble GCC output.

-Wa If you invoke gas through the gnu C compiler (version 2),
you can use the ‘-Wa’ option to pass arguments through to
the assembler. One common use of this option is to exploit
the assembler’s listing features. Assembler arguments that
you specify with gcc -Wa must be separated from each other
(and the ‘-Wa’) by commas.

-L The additional assembler option ‘-L’ preserves local labels,
which may make the listing output more intelligible to hu-
mans.

For example, in the following commandline:
$ sh-hms-gcc -g -O -Wa,-alh,-L file.c

the assembler option -ahl requests a listing with high-level language
and assembly language interspersed, -L preserves local labels, while
the compiler debugging option -g gives the assembler the necessary
debugging information.

GAS options for listing output

Use these options to enable listing output from the assembler (the letters
after ‘-a’ may be combined into one option, e.g., ‘-aln’):

-a By itself, ‘-a’ requests listings of high-level language source,
assembly language, and symbols.

-ah Request a high-level language listing.

-al Request an output-program assembly listing.

-as Request a symbol table listing.

-ad Omit debugging directives from the listing.

High-level listings require that a compiler debugging option like ‘-g’ be
used, and that assembly listings (‘-al’) be requested also.

12 23 January 1996

Chapter 1: Supported targets

GAS listing-control directives

Use these listing-control assembler directives to control the appearance
of the listing output (f you do not request listing output with one of the
‘-a’ options, these listing-control directives have no effect):

.list Turn on listings from this point on.

.nolist Turn off listings from this point on.

.psize linecount , columnwidth
Describe the page size for your output (the default is 60,
200). gas generates form feeds after printing each group
of linecount lines. To avoid these automatic form feeds,
specify 0 as the linecount.

.eject Skip to a new page (issue a form feed).

.title Use heading as the title (this is the second line of the listing
output, directly after the source file name and pagenumber)
when generating assembly listings.

.sbttl Use subheading as the subtitle (this is the third line of the
listing output, directly after the title line) when generating
assembly listings.

-an Turn off all forms processing.

1.2.2.4 Calling conventions

The Hitachi sh passes the first four words of arguments in registers ‘R4’
through ‘R7’. All remaining arguments are pushed onto the stack, last
to first, so that the lowest numbered argument not passed in a register
is at the lowest address in the stack. The registers are always filled, so
a double word argument starting in ‘R7’ would have the most significant
word in ‘R7’ and the least significant word on the stack.
Function return values are stored in ‘R0’. Register ‘R15’ has a reserved
use. Registers ‘R0’ through ‘R7’, ‘T’, ‘MACH’ and ‘MACL’ can be used for
temporary values.
When a function is compiled with the default options, it must return
with registers ‘R8’ through ‘R14’ unchanged.
The ‘-mhitachi SH’ switch makes the ‘MACH’ and ‘MACL’ registers caller-
saved, which is compatible with the Hitachi sh tool chain at the expense
of performance.
Note that functions compiled with different calling conventions cannot
be run together without some care.

c y g n u s s u p p o r t 13

Embed with GNU

1.2.3 Debugging on Hitachi SH targets

gdb needs to know these things to talk to your Hitachi sh:
1. that you want to use one of the following:

‘target remote’, gdb’s generic debugging protocol. Use
‘src/gdb/config/sh/stub.c’ to connect to the sh chip. See
section “Using and Porting GNU GCC” in Using and Porting
GNU GCC.
‘target e7000’, the e7000 in-circuit emulator for the Hitachi sh.
‘target hms’, the HMS rom monitor on sh and h8/300 boards.
‘target sim’, the simulator, which allows you to run gdb re-
motely without an external device.

2. what serial device connects your host to your Hitachi sh board (the
first serial device available on your host is the default).

3. what speed to use over the serial device.

The last two pieces of information are not needed for ‘target sim’, as the
simulator is built in.
Use one of these gdb commands to specify the connection to your target
board:

target hms port
To run a program on the board, start up gdb with the name
of your program as the argument. To connect to the board,
use the command ‘target hms port’, where port is the name
of the serial port connected to the board. If the program has
not already been downloaded to the board, you may use the
load command to download it. You can then use all the usual
gdb commands.
For example, this sequence connects to the target board
through a serial port, and loads and runs a program called
prog through the debugger:

host$ sh-hms-gdb prog
GDB is free software and ...
(gdb) target hms /dev/ttyb
...
(gdb) load
...
(gdb) run

target hms hostname:portnumber
You can specify a TCP/IP connection instead of a serial
port, using the syntax hostname:portnumber (assuming your
board is connected so that this makes sense; for instance, to
a serial line managed by a terminal concentrator).

14 23 January 1996

Chapter 1: Supported targets

gdb also supports:

set remotedebug n
You can see some debugging information about communica-
tions with the board by setting the remotedebug variable.

1.2.4 Further documentation

The following manuals provide extensive documentation on the Hitachi
sh. They are produced by and available from Hitachi sh Microsystems;
contact your friendly Field Application Engineer for details.

SH Microcomputer User’s Manual
Semiconductor Design & Development Center, 1992

Hitachi SH2 Programming Manual
Semiconductor and Integrated Circuit Division, 1994

c y g n u s s u p p o r t 15

Embed with GNU

1.3 MIPS targets

Cygnus currently supports the idt/mips, both R3xxx and R4xxx.

1.3.1 What to call the tools

Cross-development tools in the Cygnus Developer’s Kit are normally
installed with names that reflect the target machine, so that you can
install more than one set of tools in the same binary directory.
The target name, constructed with the --target option to configure, is
used as a prefix to the program name. For example, the compiler for the
idt/mips (called simply gcc in native configurations) is called by one of
these names, depending on which configuration you have installed:

mips-idt-ecoff-gcc
If configured for big-endian byte ordering.

mipsel-idt-ecoff-gcc
If configured for little endian byte ordering.

Likewise, the mips-configured gdb is called:
mips-idt-gdb

For dos-hosted toolchains, the tools are simply called by their standard
names, e.g., gcc, gdb, etc.

1.3.2 Compiling on MIPS targets

The mips target family toolchain controls variances in code generation
directly from the command line.
When you run GCC, you can use command-line options to choose whether
to take advantage of the extra mips machine instructions, and whether
to generate code for hardware or software floating point.

1.3.2.1 Compiler options

When you run GCC, you can use command-line options to choose machine-
specific details. For information on all the GCC command-line options,
see section “GNU CC Command Options” in Using GNU CC.
There are a great many compiler options for specific mips targets. The
following are those options that can be used on all mips targets.
Note: The compiler options ‘-mips2’, ‘-mips3’ and ‘-mips4’ cannot be
used on the mips r3000.

16 23 January 1996

Chapter 1: Supported targets

GCC options for architecture and code generation

-g The compiler debugging option ‘-g’ is essential to see in-
terspersed high-level source statements, since without de-
bugging information the assembler cannot tie most of the
generated code to lines of the original source file.

-mcpu=r3000
-mcpu=cputype

Since most idt boards are based on the mips r3000, the de-
fault for this particular configuration is ‘-mcpu=r3000’.
In the general case, use this option on any mips platform
to assume the defaults for the machine type cputype when
scheduling instructions. The default cputype on other mips
configurations is ‘default’, which picks the longest cycle
times for any of the machines, in order that the code run at
reasonable rates on any mips cpu. Other choices for cputype
are ‘r2000’, ‘r3000’, ‘r4000’, ‘r6000’, ‘r4400’, ‘r4600’, ‘r4650’,
‘r8000’, and ‘orion’. While picking a specific cputype will
schedule things appropriately for that particular chip, the
compiler will not generate any code that does not meet level
1 of the mips ISA (Instruction Set Architecture) unless you
use the ‘-mips2’, ‘-mips3’, or ‘mips4’ switch.

-mips1 Generate code that meets level 1 of the mips ISA.

-mips2 Generate code that meets level 2 of the mips ISA.

-mips3 Generate code that meets level 3 of the mips ISA.

-mips4 Generate code that meets level 4 of the mips ISA.

-meb Generate big endian code.

-mel Generate little endian code.

-mad Generate multiply-add instructions, which are part of the
mips 4650.

-m4650 Generate multiply-add instructions along with single-float
code.

-mfp64 Select the 64-bit floating point register size.

-mfp32 Select the 32-bit floating point register size.

-mgp64 Select the 64-bit general purpose register size.

-mfp32 Select the 32-bit general purpose register size.

-mlong64 Make long integers 64 bits long, rather than the default of 32
bits long. This works only if you’re generating 64-bit code.

c y g n u s s u p p o r t 17

Embed with GNU

-G num Put global and static items less than or equal to num bytes into
the small .data or .bss sections instead of into the normal
.data and .bss sections. This allows the assembler to emit
one-word memory reference instructions based on the global
pointer (gp or $28),instead of on the normal two words used.
By default, num is 8. When you specify another value, gcc
also passes the ‘-G num’ switch to the assembler and linker.

GCC options for floating point

These options select software or hardware floating point.

-msoft-float
Generate output containing library calls for floating point.
The ‘mips-idt-ecoff’ configuration of ‘libgcc’ (an auxiliary
library distributed with the compiler) include a collection of
subroutines to implement these library calls.
In particular, this GCC configuration generates subroutine
calls compatible with the US Software “gofast r3000” float-
ing point library, giving you the opportunity to use either
the ‘libgcc’ implementation or the US Software version. idt
includes the gofast library in their idt c 5.0 package; you
can also order libraries separately from idt as the “idt kit”.
of how to use GCC to link with the gofast library.
To use the ‘libgcc’ version, you need nothing special; GCC
links with ‘libgcc’ automatically after all other object files
and libraries.
Because the calling convention for mips architectures de-
pends on whether or not hardware floating-point is installed,
‘-msoft-float’ has one further effect: GCC looks for sub-
routine libraries in a subdirectory ‘soft-float’, for any li-
brary directory in your search path. (Note: This does not
apply to directories specified using the ‘-l’ option.) With the
Cygnus Developer’s Kit, you can select the standard libraries
as usual with ‘-lc’ or ‘-lm’, because the ‘soft-float’ versions
are installed in the default library search paths.

Warning: Treat ‘-msoft-float’ as an “all or noth-
ing” proposition. If you compile any module of a
program with ‘-msoft-float’, it’s safest to compile
all modules of the program that way—and it’s es-
sential to use this option when you link.

18 23 January 1996

Chapter 1: Supported targets

-mhard-float
Generate output containing floating point instructions, and
use the corresponding mips calling convention. This is the
default.

-msingle-float
Generate code for a target that only has support for single
floating point values, such as the mips 4650.

Floating point subroutines

Two kinds of floating point subroutines are useful with GCC:
1. Software implementations of the basic functions (floating-point mul-

tiply, divide, add, subtract), for use when there is no hardware
floating-point support.
When you indicate that no hardware floating point is available (with
the GCC option ‘-msoft-float’, GCC generates calls compatible with
the US Software gofast library. If you do not have this library,
you can still use software floating point; ‘libgcc’, the auxiliary li-
brary distributed with GCC, includes compatible—though slower—
subroutines.

2. General-purpose mathematical subroutines.
The Developer’s Kit from Cygnus Support includes an implementa-
tion of the standard C mathematical subroutine library. See section
“Mathematical Functions” in The Cygnus C Math Library.

1.3.2.2 Predefined preprocessor macros

GCC defines the following preprocessor macros for the idt/mips configu-
rations:

Any mips architecture:
__mips__

mips architecture with big-endian numeric representation:
__MIPSEB__

mips architecture with little-endian numeric representation:
__MIPSEL__

c y g n u s s u p p o r t 19

Embed with GNU

1.3.2.3 Assembler options

To use the gnu assembler, gas, to assemble GCC output, configure GCC
with the ‘--with-gnu-as’ switch (as it is in Cygnus distributions) or with
the -mgas option below.
gas for mips architectures supports the mips r2000, r3000, and r4000
processors.

General GAS options

-mgas Compile using gas to assemble GCC output.

-Wa If you invoke gas through the gnu C compiler (version 2),
you can use the ‘-Wa’ option to pass arguments through to
the assembler. One common use of this option is to exploit
the assembler’s listing features. Assembler arguments that
you specify with gcc -Wa must be separated from each other
(and the ‘-Wa’) by commas.

-L The additional assembler option ‘-L’ preserves local labels,
which may make the listing output more intelligible to hu-
mans.

For example, in the following commandline:
$ mips-idt-ecoff-gcc -c -g -O -Wa,-alh,-L file.c

the assembler option -ahl requests a listing with high-level language
and assembly language interspersed, -L preserves local labels, while
the compiler debugging option -g gives the assembler the necessary
debugging information.

GAS options for listing output

Use these options to enable listing output from the assembler (the letters
after ‘-a’ may be combined into one option, e.g., ‘-aln’):

-a By itself, ‘-a’ requests listings of high-level language source,
assembly language, and symbols.

-ah Request a high-level language listing.

-al Request an output-program assembly listing.

-as Request a symbol table listing.

-ad Omit debugging directives from the listing.

High-level listings require that a compiler debugging option like ‘-g’ be
used, and that assembly listings (‘-al’) be requested also.

20 23 January 1996

Chapter 1: Supported targets

GAS listing-control directives

Use these listing-control assembler directives to control the appearance
of the listing output (f you do not request listing output with one of the
‘-a’ options, these listing-control directives have no effect):

.list Turn on listings from this point on.

.nolist Turn off listings from this point on.

.psize linecount , columnwidth
Describe the page size for your output (the default is 60,
200). gas generates form feeds after printing each group
of linecount lines. To avoid these automatic form feeds,
specify 0 as the linecount.

.eject Skip to a new page (issue a form feed).

.title Use heading as the title (this is the second line of the listing
output, directly after the source file name and pagenumber)
when generating assembly listings.

.sbttl Use subheading as the subtitle (this is the third line of the
listing output, directly after the title line) when generating
assembly listings.

-an Turn off all forms processing.

GAS options for MIPS

The mips configurations of gas support three special options, and ac-
cept one other for command-line compatibility. See section “Command-
Line Options” in Using the GNU Assembler as, for information on the
command-line options available with all configurations of the gnu as-
sembler.

-G num This option sets the largest size of an object that will be
referenced implicitly with the gp register. It is only accepted
for targets that use ecoff format. The default value is 8.

-EB
-EL Any mips configuration of gas can select big-endian or little-

endian output at run time (unlike the othergnu development
tools, which must be configured for one or the other). Use
‘-EB’ to select big-endian output, and ‘-EL’ for little-endian.

-nocpp This option is ignored. It is accepted for command-line com-
patibility with other assemblers, which use it to turn off C
style preprocessing. With gas, there is no need for ‘-nocpp’,
because the gnu assembler itself never runs the C prepro-
cessor.

c y g n u s s u p p o r t 21

Embed with GNU

GAS directives for debugging information

mips ecoff gas supports several directives used for generating debug-
ging information which are not supported by traditional mips assem-
blers:

.def .endef .dim

.file .scl .size

.tag .type .val

.stabd .stabn .stabs

The debugging information generated by the three .stab directives can
only be read by gdb, not by traditional mips debuggers (this enhance-
ment is required to fully support C++ debugging). These directives are
primarily used by compilers, not assembly language programmers. See
section “Assembler Directives” in Using as, for full information on all
gas directives.

MIPS ECOFF object code

The assembler supports some additional sections for a mips ECOFF tar-
get besides the usual .text, .data and .bss. The additional sections
are:

.rdata For readonly data

.sdata For small data

.sbss For small common objects

When assembling for ECOFF, the assembler uses the $gp ($28) register
to form the address of a small object. Any object in the .sdata or .sbss
section is considered small in this sense.
Using small ECOFF objects requires linker support, and assumes that
the $gp register has been correctly initialized (normally done automati-
cally by the startup code).
Note: mips ECOFF assembly code must not modify the $gp register.

Options for MIPS ECOFF object code

GCC -G For external objects, or for objects in the .bss section, you can
use the GCC ‘-G’ option to control the size of objects addressed
via $gp; the default value is 8, meaning that a reference to
any object eight bytes or smaller will use $gp.

-G 0 Passing ‘-G 0’ to gas prevents gas from using the $gp register
on the basis of object size (the assembler uses $gp for objects
in .sdata or sbss in any case).

22 23 January 1996

Chapter 1: Supported targets

Directives for MIPS ECOFF object code

.comm

.lcomm The size of an object in the .bss section is set by the .comm
or .lcomm directive that defines it.

.extern The size of an external object may be set with the .extern
directive. For example:

.extern sym,4

declares that the object at sym is 4 bytes in length, while
leaving sym otherwise undefined.

1.3.2.4 Calling conventions

Arguments on mips architectures are not split, so that if a double word
argument starts in ‘R7’, the entire word gets pushed onto the stack in-
stead of being split between ‘R7’ and the stack.
The following calling convention for mips architectures depends on
whether or not hardware floating-point is installed. Even if it is, themips
uses the registers for integer arguments whenever the first argument is
an integer. The mips uses the registers for floating-point arguments only
for floating-point arguments and only if the first argument is a floating
point.
The following calling convention for the mips also depends on whether
you’re using standard 32-bit mode or Cygnus Support’s 64-bit mode;
32-bit mode only allows the mips to use even numbered registers, while
64-bit mode allows themips to use both odd and even numbered registers.
Note that functions compiled with different calling conventions cannot
be run together without some care.

Registers used for integer arguments

If the first argument is an integer, the mips uses these registers for all
arguments:
� The mips passes the first four words of arguments in registers ‘R4’

through ‘R7’, which are also called registers ‘A0’ through ‘A3’.

If the function return values are integers, they’re stored in ‘R2’ and ‘R3’.

c y g n u s s u p p o r t 23

Embed with GNU

Registers used for floating-point arguments

If the first argument is a floating-point, the mips uses these registers for
floating-point arguments:
� In 32-bit mode, the mips passes the first four words of arguments in

registers ‘F12’ and ‘F14’.
� In 64-bit mode, the mips passes the first four words of arguments in

registers ‘F12’ through ‘F15’.

If the function return value is a floating-point, it’s stored in ‘F0’.

Calling conventions used for integer arguments

These conventions apply to integer arguments:
‘R0’ is hardwired to the value 0. ‘R1’, which is also called ‘AT’, is reserved
as the assembler’s temporary register. ‘R26’ through ‘R29’ and ‘R31’ have
reserved uses. Registers ‘R2’ through ‘R15’, ‘R24’, and ‘R25’ can be used
for temporary values.
When a function is compiled with the default options, it must return
with ‘R16’ through ‘R23’ and ‘R30’ unchanged.

Calling conventions used fo floating-point arguments

These conventions apply to floating-point arguments:
None of the registers has a reserved use.
� In 32-bit mode, ‘F0’ through ‘F18’ can be used for temporary values.

When a function is compiled with the default options it must return
with ‘F20’ through ‘F30’ unchanged.

� In 64-bit mode, ‘F0’ through ‘F19’ can be used for temporary values.
When a function is compiled with the default options it must return
with ‘F20’ through ‘F31’ unchanged.

1.3.3 Debugging on MIPS targets

gdb needs to know these things to talk to your mips:
1. what serial device connects your host to your mips board (the first

serial device available on your host is the default).
2. what speed to use over the serial device.

24 23 January 1996

Chapter 1: Supported targets

mips-idt-ecoff-gdb uses the mips remote serial protocol to connect
your development host machine to the target board. On the target board
itself, the idt program IDT/sim implements the same protocol. (IDT/sim
runs automatically whenever the board is powered up.)
Use one of these gdb commands to specify the connection to your target
board:

target mips port
To run a program on the board, start up gdb with the name of
your program as the argument. To connect to the board, use
the command ‘target mips port’, where port is the name of
the serial port connected to the board. If the program has not
already been downloaded to the board, you may use the load
command to download it. You can then use all the usual gdb
commands.
For example, this sequence connects to the target board
through a serial port, and loads and runs a program called
prog through the debugger:

host$ mips-idt-ecoff-gdb prog
GDB is free software and ...
(gdb) target mips /dev/ttyb
...
(gdb) load
...
(gdb) run

target mips hostname:portnumber
You can specify a TCP/IP connection instead of a serial port,
using the syntax hostname:portnumber (assuming your idt
board is connected so that this makes sense; for instance, to
a serial line managed by a terminal concentrator).

gdb also supports these special commands for idt/mips targets:

set mipsfpu off
If your target board does not support the mips floating point
coprocessor, you should use the command ‘set mipsfpu off’
(you may wish to put this in your ‘.gdbinit’ file). This tells
gdb how to find the return value of functions which return
floating point values. It also allows gdb to avoid saving the
floating point registers when calling functions on the board.
If you neglect to do this, calls into your program, such as
‘print strlen("abc")’, will fail.

c y g n u s s u p p o r t 25

Embed with GNU

set remotedebug n
You can see some debugging information about communica-
tions with the board by setting the remotedebug variable. If
you set it to 1 using ‘set remotedebug 1’ every packet will
be displayed. If you set it to 2 every character will be dis-
played. You can check the current value at any time with the
command ‘show remotedebug’.

1.3.4 I/O for specific target architectures

Before you can use the Cygnus Developer’s Kit to build your programs
for idt boards, you need a C library and C run-time initialization code.
Unless you already have suitable libraries of your own, you must inte-
grate the Cygnus C libraries with low-level code supplied by idt. This
low-level code initializes the C run-time environment, and describes the
hardware interface to the Cygnus C libraries.
To begin with, make sure you have the following C and assembly source
files from idt:
C source files:

drv_8254.c sys.c

idt_int_hand.c syscalls.c

idtfpip.c timer_int_hand.c

sbrk.c

C header files:
dpac.h idtio.h

excepthdr.h idtmon.h
fpip.h iregdef.h

i8254.h saunder.h

idt_entrypt.h setjmp.h

idtcpu.h

Assembler files:
idt_csu.S lnkexit.S

idt_except.S lnkhelp.S

idtfpreg.S lnkinstal.S
idtmem.S lnkio.S

idttlb.S lnkioctl.S

idtwbf.S lnkjmp.S

lnkatb.S lnkmem.S

lnkcach.S lnknimp.S
lnkchar.S lnkprint.S

lnkcio.S lnksbrk.S

lnkcli.S lnkstr.S

Note: For concreteness, these example commands assume the mips (big-
endian) variant of the configuration; if you ordered tools configured

26 23 January 1996

Chapter 1: Supported targets

for little-endian object code, type ‘mipsel’ wherever the examples show
‘mips’.
Follow these steps to integrate the low-level idt code with your Cygnus
Developer’s Kit:

1. idt supplies the C run-time initialization code in the file ‘idt_csu.S’.
Since gnu cc expects to find the initialization module under the
name crt0.o, rename the source file to match:

$ mv idt_csu.S crt0.S

2. Edit the contents of ‘crt0.S’. A few more instructions are needed to
ensure correct initialization, and to ensure that your programs exit
cleanly. At the end of the file (after a comment including the text
‘END I/O initialization’), look for these lines:

jal main

ENDFRAME(start)

Insert ‘move ra,zero’ before ‘jal main’ to mark the top of the stack
for the debugger, and add two lines after the call to main to call the
exit routine (before the ‘ENDFRAME(start)’), so that the end of the
file looks like this:

move ra,zero
jal main

move a0,v0
jal exit

ENDFRAME(start)

3. Edit ‘syscalls.c’, the interface to the low-level routines required by
the C library, to remove the leading underbar from two identifiers:
a. Rename _kill to kill;
b. Rename _getpid to getpid.

4. Edit ‘lnksbrk.S’ to remove the definition of _init_sbrk; this defini-
tion is not needed, since it is available in ‘sbrk.c’. Delete the lines
marked with ‘-’ at the left margin below:

.text

-FRAME(_init_sbrk,sp,0,ra)
- j ra
-ENDFRAME(_init_sbrk)
-
-
-
FRAME(_init_file,sp,0,ra)

j ra
ENDFRAME(_init_file)

c y g n u s s u p p o r t 27

Embed with GNU

5. Use your Cygnus Developer’s Kit to assemble the ‘.S’ files, like this
(use the compiler driver gcc to permit C preprocessing).

$ mips-idt-ecoff-gcc -g -c *.S

6. Compile the ‘.c’ files.
One particular C source file, ‘drv_8254.c’ requires two special pre-
processor symbol definitions: ‘-DCLANGUAGE -DTADD=0xBF800000’.
Be careful to type the constant value for ‘TADD’ accurately; the correct
value is essential to allow the idt board to communicate over its
serial port.
The two special preprocessor definitions make no difference to the
other C source files, so you can compile them all with one call to the
compiler, like this:

$ mips-idt-ecoff-gcc -g -O \
-DCLANGUAGE -DTADD=0xBF800000 -c *.c

(The example is split across two lines simply due to formatting con-
straints; you can type it on a single line instead of two lines linked
by a ‘\’, of course.)

7. Add the new object files to the C library archive, ‘libc.a’, from
your Cygnus Developer’s Kit. Assuming you installed the Kit in
‘/usr/cygnus/’ as we recommend:

$ mips-idt-ecoff-ar rvs /usr/cygnus/progressive-94q1/\
H-host/mips-idt-ecoff/lib/libc.a *.o

As before, you can omit the ‘\’ and type a single line. ‘H-host’
stands for the string that identifies your host configuration; for ex-
ample, on a sparc computer running SunOS 4.1.3, you’d actually
type ‘H-sparc-sun-sunos4.1.3’.

Linking with the GOFAST library

The gofast library is available with two interfaces; GCC ‘-msoft-float’
output places all arguments in registers, which (for subroutines using
double arguments) is compatible with the interface identified as “Inter-
face 1: all arguments in registers” in the gofast documentation. For
full compatibility with all gofast subroutines, you need to make a slight
modification to some of the subroutines in the gofast library.
If you purchase and install the gofast library, you can link your code to
that library in a number of different ways, depending on where and how
you install the library.
To focus on the issue of linking, the following examples assume
you’ve already built object modules with appropriate options (including
‘-msoft-float’).

28 23 January 1996

Chapter 1: Supported targets

This is the simplest case; it assumes that you’ve installed the gofast
library as the file ‘fp.a’ in the same directory where you do development,
as shown in the gofast documentation:

$ mips-idt-ecoff-gcc -o prog prog.o ... -lc fp.a

In a shared development environment, this example may be more
realistic; it assumes you’ve installed the gofast library as ‘uss-
dir/libgofast.a’, where ussdir is any convenient directory on your
development system:

$ mips-idt-ecoff-gcc -o program program.o ... \
-lc -Lussdir -lgofast

Finally, you can eliminate the need for a ‘-L’ option with a little more
setup, using an environment variable like this (the example assumes
you use a command shell compatible with the Bourne shell):

$ LIBRARY_PATH=ussdir; export LIBRARY_PATH
$ mips-idt-ecoff-gcc -o program program.o ... -lc -lgofast

As for the previous example, the gofast library here is installed in ‘uss-
dir/libgofast.a’. The environment variable LIBRARY_PATH instructs
GCC to look for the library in ussdir. (The syntax shown here for setting
the environment variable is the Unix Bourne Shell, ‘/bin/sh’, syntax;
adjust as needed for your system.)
Notice that all the variations on linking with the gofast library ex-
plicitly include ‘-lc’ before the gofast library. ‘-lc’ is the standard C
subroutine library; normally, you don’t have to specify this, since linking
with that library is automatic.
When you link with an alternate software floating-point library, however,
the order of linking is important. In this situation, specify ‘-lc’ to the
left of the gofast library, to ensure that standard library subroutines
also use the gofast floating-point code.

Full compatibility with the GOFAST library

The GCC calling convention for functions whose first and second argu-
ments have type float is not completely compatible with the definitions
of those functions in the gofast library, as shipped.
These functions are affected:

fpcmp fpadd fpsub fpmul fpdiv fpfmod
fpacos fpasin fpatan fpatan2 fppow

Since the gofast library is normally shipped with source, you can make
these functions compatible with the GCC convention by adding this in-
struction to the beginning of each affected function, then rebuilding the
library:

move $5,$6

c y g n u s s u p p o r t 29

Embed with GNU

1.3.5 Further documentation

For information about the mips instruction set, see MIPS RISC Archi-
tecture, by Kane and Heindrich (Prentice-Hall).
For information about idt’s IDT/sim board monitor program, see
IDT/sim 4.0 Reference Manual (IDT#703-00146-001/A).
For information about US Software’s floating point library, see U S Soft-
ware GOFAST R3000 Floating Point Library (United States Software
Corporation).

30 23 January 1996

Chapter 1: Supported targets

1.4 Motorola m68k targets

1.4.1 What to call the tools

Cross-development tools in the Cygnus Developer’s Kit are normally
installed with names that reflect the target machine, so that you can
install more than one set of tools in the same binary directory.
The target name, constructed with the --target option to configure, is
used as a prefix to the program name. For example, the compiler for the
Motorola m68k (called simply gcc in native configurations) is called by
one of these names, depending on which configuration you have installed:

m68k-coff-gcc
m68k-aout-gcc

Likewise, the m68k-configured gdb is called by one of these names:
m68k-coff-gdb
m68k-aout-gdb

For dos-hosted toolchains, the tools are simply called by their standard
names, e.g., gcc, gdb, etc.

1.4.2 Compiling on Motorola m68k targets

The Motorola m68k target family toolchain controls variances in code
generation directly from the command line.
When you run GCC, you can use command-line options to choose whether
to take advantage of the extra Motorola m68k machine instructions, and
whether to generate code for hardware or software floating point.

1.4.2.1 Compiler options

When you run GCC, you can use command-line options to choose machine-
specific details. For information on all the GCC command-line options,
see section “GNU CC Command Options” in Using GNU CC.

c y g n u s s u p p o r t 31

Embed with GNU

GCC options for architecture and code generation

-g The compiler debugging option ‘-g’ is essential to see in-
terspersed high-level source statements, since without de-
bugging information the assembler cannot tie most of the
generated code to lines of the original source file.

-m68000 Generate code for the Motorola m68000.

-m68020 Generate code for the Motorola m68020.

-m68030 Generate code for the Motorola m68030.

-m68040 Generate code for the Motorola m68040. Also enables code
generation for the 68881 FPU by default.

-m68332 Generate code for the Motorola cpu32 family, of which the
Motorola m68332 is a member.

GCC options for floating point

-msoft-float
Generate output containing library calls for floating point.
The Motorola configurations of ‘libgcc’ include a collection
of subroutines to implement these library calls.

-m68881 Generate code for the Motorola m68881 FPU. See compiler
option ‘-m68040’ above.

Floating point subroutines

Two kinds of floating point subroutines are useful with GCC:
1. Software implementations of the basic functions (floating-point mul-

tiply, divide, add, subtract), for use when there is no hardware
floating-point support.

2. General-purpose mathematical subroutines.
The Developer’s Kit from Cygnus Support includes an implementa-
tion of the standard C mathematical subroutine library. See section
“Mathematical Functions” in The Cygnus C Math Library.

32 23 January 1996

Chapter 1: Supported targets

1.4.2.2 Predefined preprocessor macros

GCC defines the following preprocessor macros for the Motorola m68k
configurations:

Any Motorola m68k architecture:
__mc68000__

Any Motorola m68010 architecture:
__mc68010__

Any Motorola m68020 architecture:
__mc68020__

Any Motorola m68030 architecture:
__mc68030__

Any Motorola m68040 architecture:
__mc68040__

Any Motorola m68332 architecture:
__mc68332__

Any Motorola m68881 architecture:
__HAVE_68881__

1.4.2.3 Assembler options

To use the gnu assembler, gas, to assemble GCC output, configure GCC
with the ‘--with-gnu-as’ switch (as it is in Cygnus distributions) or with
the -mgas option below.

General GAS options

-mgas Compile using gas to assemble GCC output.

-Wa If you invoke gas through the gnu C compiler (version 2),
you can use the ‘-Wa’ option to pass arguments through to
the assembler. One common use of this option is to exploit
the assembler’s listing features. Assembler arguments that
you specify with gcc -Wa must be separated from each other
(and the ‘-Wa’) by commas.

-L The additional assembler option ‘-L’ preserves local labels,
which may make the listing output more intelligible to hu-
mans.

For example, in the following commandline:

c y g n u s s u p p o r t 33

Embed with GNU

$ m68k-coff-gcc -c -g -O -Wa,-alh,-L file.c

the assembler option -ahl requests a listing with high-level language
and assembly language interspersed, -L preserves local labels, while
the compiler debugging option -g gives the assembler the necessary
debugging information.

GAS options for listing output

Use these options to enable listing output from the assembler (the letters
after ‘-a’ may be combined into one option, e.g., ‘-aln’):

-a By itself, ‘-a’ requests listings of high-level language source,
assembly language, and symbols.

-ah Request a high-level language listing.

-al Request an output-program assembly listing.

-as Request a symbol table listing.
-ad Omit debugging directives from the listing.

High-level listings require that a compiler debugging option like ‘-g’ be
used, and that assembly listings (‘-al’) be requested also.

GAS listing-control directives

Use these listing-control assembler directives to control the appearance
of the listing output (f you do not request listing output with one of the
‘-a’ options, these listing-control directives have no effect):

.list Turn on listings from this point on.

.nolist Turn off listings from this point on.

.psize linecount , columnwidth
Describe the page size for your output (the default is 60,
200). gas generates form feeds after printing each group
of linecount lines. To avoid these automatic form feeds,
specify 0 as the linecount.

.eject Skip to a new page (issue a form feed).

.title Use heading as the title (this is the second line of the listing
output, directly after the source file name and pagenumber)
when generating assembly listings.

.sbttl Use subheading as the subtitle (this is the third line of the
listing output, directly after the title line) when generating
assembly listings.

-an Turn off all forms processing.

34 23 January 1996

Chapter 1: Supported targets

1.4.2.4 Calling conventions

The Motorola m68k pushes all arguments onto the stack, last to first, so
that the lowest numbered argument not passed in a register is at the
lowest address in the stack.
Function return values for integers are stored in ‘D0’ and ‘D1’. ‘A7’ has
a reserved use. Registers ‘A0’, ‘A1’, ‘D0’, ‘D1’ ‘F0’, and ‘F1’ can be used for
temporary values.
When a function is compiled with the default options, it must return
with registers ‘D2’ through ‘D7’ and registers ‘A2’ through ‘A6’ unchanged.
If you have floating-point registers, then registers ‘F2’ through ‘F7’ must
also be unchanged.
Note that functions compiled with different calling conventions cannot
be run together without some care.

1.4.3 Debugging on Motorola m68k targets

gdb needs to know these things to talk to your Motorola m68k:
1. that you want to use one of the following interfaces:

‘target rom68k’, the rom monitor for the IDP board.
‘target cpu32bug’, the rom monitor for other Motorola boards,
such as the Motorola Business Card Computer, BCC.
‘target est’, the EST Net/300 emulator.
‘target remote’, gdb’s generic debugging protocol.

2. what serial device connects your host to your m68k board (the first
serial device available on your host is the default).

3. what speed to use over the serial device.

Use these gdb commands to specify the connection to your target board:

target interface serial-device
To run a program on the board, start up gdb with the name
of your program as the argument. To connect to the board,
use the command ‘target interface serial-device’, where
interface is an interface from the list above and serial-
device is the name of the serial port connected to the board.
If the program has not already been downloaded to the board,
you may use the load command to download it. You can then
use all the usual gdb commands.
For example, this sequence connects to the target board
through a serial port, and loads and runs a program called
prog through the debugger:

c y g n u s s u p p o r t 35

Embed with GNU

host$ m68k-coff-gdb prog
GDB is free software and ...
(gdb) target cpu32bug /dev/ttyb
...
(gdb) load
...
(gdb) run

target m68k hostname:portnumber
You can specify a TCP/IP connection instead of a serial
port, using the syntax hostname:portnumber (assuming your
board is connected so that this makes sense; for instance, to
a serial line managed by a terminal concentrator).

gdb also supports:

set remotedebug n
You can see some debugging information about communica-
tions with the board by setting the remotedebug variable.

36 23 January 1996

Chapter 1: Supported targets

1.5 Sparc targets

The Cygnus Developer’s Kit supports both the sparc and the Fujitsu
SPARClite families. For the compiler in particular, special configuration
options allow you to use special software floating-point code for the sparc
MB86930 chip, as well as defaulting command-line options to use special
Fujitsu SPARClite features.
For the Fujitsu SPARClite, the CDK currently supports boards ex930,
ex931, ex932, ex933, ex934, and ex936.

1.5.1 What to call the tools

Cross-development tools in the Cygnus Developer’s Kit are normally
installed with names that reflect the target machine, so that you can
install more than one set of tools in the same binary directory.
The target name, constructed with the --target option to configure,
is used as a prefix to the program name. For example, the compiler for
the sparc (called simply gcc in native configurations) is called by one of
these names, depending on which configuration you have installed:

sparc-aout-gcc
sparc-coff-gcc

Likewise, the sparc-configured gdb is called:
sparc-aout-gdb

The compiler for the Fujitsu SPARClite is called by one of these names,
depending on which configuration you have installed:

sparclite-aout-gcc
sparclite-coff-gcc

Likewise, the SPARClite-configured gdb is called by one of these names:
sparclite-aout-gdb
sparclite-coff-gdb

For dos-hosted toolchains, the tools are simply called by their standard
names, e.g., gcc, gdb, etc.

1.5.2 Compiling on Sparc targets

The sparc target family toolchain controls variances in code generation
directly from the command line.
When you run GCC, you can use command-line options to choose whether
to take advantage of the extra sparc machine instructions, and whether
to generate code for hardware or software floating point.

c y g n u s s u p p o r t 37

Embed with GNU

1.5.2.1 Compiler options

When you run GCC, you can use command-line options to choose machine-
specific details. For information on all the GCC command-line options,
see section “GNU CC Command Options” in Using GNU CC.

GCC options for architecture and code generation

The CDK supports the machine-dependent options for sparc in ad-
dition to special compiler command-line options available for Fujitsu
SPARClite. Both kinds of options are described in section “SPARC Op-
tions” in Using GNU CC.

-g The compiler debugging option ‘-g’ is essential to see in-
terspersed high-level source statements, since without de-
bugging information the assembler cannot tie most of the
generated code to lines of the original source file.

-mv8 ‘-mv8’ gives you sparc v8 code. The only difference from v7
code is that the compiler emits the integer multiply (smul
and umul) and integer divide (sdiv and udiv) instructions
which exist in sparc v8 but not in sparc v7.

-mf930 Generate code specifically intended for the sparc MB86930,
a Fujitsu SPARClite chip without an FPU. This option is
equivalent to the combination ‘-msparclite -mno-fpu’.
‘-mf930’ is the default when the compiler is configured specif-
ically for Fujitsu SPARClite.

-mf934 Generate code specifically for the sparc MB86934, a Fujitsu
SPARClite chip with an FPU. This option is equivalent to
‘-msparclite’.

-mflat Does not use register windows in function calls.

-msparclite
The sparc configurations of GCC generate code for the com-
mon subset of the instruction set: the v7 variant of the sparc
architecture.
‘-msparclite’ (which is on automatically for any of the Fu-
jitsu SPARClite configurations) gives you SPARClite code.
This adds the integer multiply (smul and umul, just as in
sparc v8), integer divide-step (divscc), and scan (scan) in-
structions which exist in SPARClite but not in sparc v7.
Using ‘-msparclite’ when you run the compiler does not,
however, give you floating point code that uses the entry
points for US Software’s gofast library.

38 23 January 1996

Chapter 1: Supported targets

The following command line options are available for both the sparc
and the Fujitsu SPARClite configurations of the compiler. See section
“SPARC Options” in Using GNU CC.

GCC options for floating point

When you run the compiler, you can specify whether to compile for hard-
ware or software floating point configurations with these GCC command-
line options:

-mfpu
-mhard-float

Generate output containing floating point instructions. This
is the default.

-msoft-float
-mno-fpu Generate output containing library calls for floating point.

The sparc configurations of ‘libgcc’ include a collection of
subroutines to implement these library calls.
In particular, the Fujitsu SPARClite GCC configurations gen-
erate subroutine calls compatible with the US Software
‘goFast.a’ floating point library, giving you the opportunity
to use either the ‘libgcc’ implementation or the US Software
version.
To use the US Software library, simply include ‘-lgoFast’ on
the GCC command line.
To use the ‘libgcc’ version, you need nothing special; GCC
links with ‘libgcc’ automatically after all other object files
and libraries.

Floating point subroutines

Two kinds of floating point subroutines are useful with GCC:
1. Software implementations of the basic functions (floating-point mul-

tiply, divide, add, subtract), for use when there is no hardware
floating-point support.
When you indicate that no hardware floating point is available
(with either of the GCC options ‘-msoft-float’ or ‘-mno-fpu’), the
Fujitsu SPARClite configurations of GCC generate calls compatible
with the U.S. Software gofast library. If you do not have this li-
brary, you can still use software floating point; ‘libgcc’, the auxiliary
library distributed with GCC, includes compatible—though slower—
subroutines.

c y g n u s s u p p o r t 39

Embed with GNU

2. General-purpose mathematical subroutines.
The Developer’s Kit from Cygnus Support includes an implementa-
tion of the standard C mathematical subroutine library. See section
“Mathematical Functions” in The Cygnus C Math Library.

1.5.2.2 Predefined preprocessor macros

GCC defines the following preprocessor macros for the sparc configura-
tions:

Any sparc architecture:
__sparc__

Any Fujitsu SPARClite architecture:
__sparclite__

1.5.2.3 Assembler options

To use the gnu assembler, gas, to assemble GCC output, configure GCC
with the ‘--with-gnu-as’ switch (as it is in Cygnus distributions) or with
the -mgas option below.

General GAS options

-mgas Compile using gas to assemble GCC output.

-Wa If you invoke gas through the gnu C compiler (version 2),
you can use the ‘-Wa’ option to pass arguments through to
the assembler. One common use of this option is to exploit
the assembler’s listing features. Assembler arguments that
you specify with gcc -Wa must be separated from each other
(and the ‘-Wa’) by commas.

-L The additional assembler option ‘-L’ preserves local labels,
which may make the listing output more intelligible to hu-
mans.

For example, in the following commandline:
$ sparc-coff-gcc -c -g -O -Wa,-alh,-L file.c

the assembler option -ahl requests a listing with high-level language
and assembly language interspersed, -L preserves local labels, while
the compiler debugging option -g gives the assembler the necessary
debugging information.

40 23 January 1996

Chapter 1: Supported targets

GAS options for listing output

Use these options to enable listing output from the assembler (the letters
after ‘-a’ may be combined into one option, e.g., ‘-aln’):

-a By itself, ‘-a’ requests listings of high-level language source,
assembly language, and symbols.

-ah Request a high-level language listing.

-al Request an output-program assembly listing.

-as Request a symbol table listing.

-ad Omit debugging directives from the listing.

High-level listings require that a compiler debugging option like ‘-g’ be
used, and that assembly listings (‘-al’) be requested also.

GAS listing-control directives

Use these listing-control assembler directives to control the appearance
of the listing output (f you do not request listing output with one of the
‘-a’ options, these listing-control directives have no effect):

.list Turn on listings from this point on.

.nolist Turn off listings from this point on.

.psize linecount , columnwidth
Describe the page size for your output (the default is 60,
200). gas generates form feeds after printing each group
of linecount lines. To avoid these automatic form feeds,
specify 0 as the linecount.

.eject Skip to a new page (issue a form feed).

.title Use heading as the title (this is the second line of the listing
output, directly after the source file name and pagenumber)
when generating assembly listings.

.sbttl Use subheading as the subtitle (this is the third line of the
listing output, directly after the title line) when generating
assembly listings.

-an Turn off all forms processing.

c y g n u s s u p p o r t 41

Embed with GNU

GAS options for the Fujitsu SPARClite

When configured for sparc, gas recognizes the additional Fujitsu
SPARClite machine instructions that GCC can generate:

-Asparclite
A flag to the gnu assembler (configured for sparc) explic-
itly selects this particular sparc architecture. The sparc
assembler automatically selects the Fujitsu SPARClite ar-
chitecture whenever it encounters one of the SPARClite-only
instructions (divscc or scan).

1.5.2.4 Calling conventions

The sparc passes the first six words of arguments in registers ‘R8’
through ‘R13’. All remaining arguments are stored in a reserved block
on the stack, last to first, so that the lowest numbered argument not
passed in a register is at the lowest address in the stack. The registers
are always filled, so a double word argument starting in ‘R13’ would have
the most significant word in ‘R13’ and the least significant word on the
stack.
Function return values are stored in ‘R8’. ‘R0’ is hardwired so that it
always has the value 0. ‘R14’ and ‘R15’ have reserved uses. Registers ‘R1’
through ‘R7’ can be used for temporary values.
When a function is compiled with the default options, it must return
with registers ‘R16’ through ‘R29’ unchanged.
Note that functions compiled with different calling conventions cannot
be run together without some care.

1.5.3 Debugging on Sparc targets

gdb needs to know these things to talk to your sparc or Fujitsu
SPARClite:
1. that you want to use:

‘target remote’, gdb’s generic debugging protocol.
2. what serial device connects your host to your sparc board (the first

serial device available on your host is the default).
3. what speed to use over the serial device.

Use one of these gdb commands to specify the connection to your sparc
target board:

42 23 January 1996

Chapter 1: Supported targets

target sparclite serial-device
To run a program on the board, start up gdb with the name
of your program as the argument. To connect to the board,
use the command ‘target sparclite serial-device’, where
serial-device is the name of the serial port connected to the
board. If the program has not already been downloaded to
the board, use the load command to download it.
For example, this sequence connects to the target board
through a serial port, and loads and runs a program called
prog through the debugger:

(gdb) target sparclite com1
[SPARClite appears to be alive]
(gdb) load
[Loading section .text at 0x40000000 (9160 bytes)]
[Loading section .data at 0x400023c8 (96 bytes)]
[Starting hello at 0x40000020]

target sparclite allows loading, but no other operations.
This sequence uses target remote to debug:

(gdb) target remote com1
Remote debugging using com1
breakinst () ../sparcl-stub.c:975
975 }
(gdb) s
main () hello.c:50
50 writez(1, "Got to here\n");
(gdb)

target sparclite hostname:portnumber
You can specify a TCP/IP connection instead of a serial
port, using the syntax hostname:portnumber (assuming your
SPARClite board is connected so that this makes sense; for
instance, to a serial line managed by a terminal concentra-
tor).

gdb also supports:

set remotedebug n
You can see some debugging information about communica-
tions with the board by setting the remotedebug variable.

c y g n u s s u p p o r t 43

Embed with GNU

1.5.4 Loading on specific target architectures

The sparc eval boards use a host-based terminal program to load and
execute programs on the target. This program, pciuh, is relatively new
and it replaces the previous ROM monitor, which had the shell in the ROM.
To use the gdb remote serial protocol to communicate with a Fu-
jitsu SPARClite board, link your programs with the “stub” module
‘sparc-stub.c’; this module manages the communication with gdb. See
section “The GDB remote serial protocol” in Debugging with GDB, for
more details.

1.5.5 Further documentation

See SPARClite User’s Manual (Fujitsu Microelectronics, Inc. Semicon-
ductor Division, 1993) for full documentation of the SPARClite family,
architecture, and instruction set.

44 23 January 1996

Index

Index

A
architecture and code generation options,

Hitachi SH . 10
architecture and code generation options,

MIPS . 17
architecture and code generation options,

Motorola m68k 32
architecture and code generation options,

Sparc . 38
assembler options, Hitachi H8/300 4
assembler options, Hitachi SH 12
assembler options, MIPS 20
assembler options, Motorola m68k 33
assembler options, Sparc 40

C
calling conventions, Hitachi H8/300 5
calling conventions, Hitachi SH 13
calling conventions, MIPS 23
calling conventions, Motorola m68k . . . 35
calling conventions, Sparc 42
compiler options, Hitachi H8/300. 3
compiler options, Hitachi SH 10
compiler options, MIPS 16
compiler options, Motorola m68k 31
compiler options, Sparc 38
compiling, Hitachi H8/300 targets. 2
compiling, Hitachi SH targets 10
compiling, MIPS targets 16
compiling, Motorola m68k targets 31
compiling, Sparc targets 37
conventions, calling, Hitachi H8/300 . . . 5
conventions, calling, Hitachi SH 13
conventions, calling, MIPS 23
conventions, calling, Motorola m68k . . 35
conventions, calling, Sparc 42

D
debugging, Hitachi H8/300 targets 6
debugging, Hitachi SH targets 14
debugging, MIPS targets. 24
debugging, Motorola m68k targets 35
debugging, Sparc targets. 42

documentation on Hitachi H8/300 targets
. 9

documentation on Hitachi SH targets
. 15

documentation on MIPS targets 30
documentation on Sparc targets 44

F
floating point options, MIPS 18
floating point options, Motorola m68k

. 32
floating point options, Sparc 39
floating point subroutines, Hitachi

H8/300 . 3
floating point subroutines, Hitachi SH

. 11
floating point subroutines, MIPS. 19
floating point subroutines, Motorola

m68k . 32
floating point subroutines, Sparc. 39
Fujitsu SPARClite tools, naming 37
full compatibility with the GOFAST

library . 29

G
gas directives for debugging 22
gdb, using on Hitachi H8/300 targets. . . 6
gdb, using on Hitachi SH targets 14
gdb, using on MIPS targets 24
gdb, using on Motorola m68k targets . . 35
gdb, using on Sparc targets 42
gdb, using with GAS on MIPS 22
GOFAST library, full compatibility with

. 29
GOFAST library, linking with 28

H
Hitachi H8/300 targets 2
Hitachi SH targets . 10

I
I/O on MIPS targets 26

c y g n u s s u p p o r t 45

Embed with GNU

L
library, GOFAST, full compatibility with

. 29
library, GOFAST, linking with 28
linking with the GOFAST library 28
loading on E7000 in-curcuit emulators

. 9
loading on Hitachi H8/300 boards 7
loading on Hitachi H8/300 targets. 7
loading on Sparc targets 44

M
macros, preprocessor, Hitachi H8/300 . . 3
macros, preprocessor, Hitachi SH 11
macros, preprocessor, MIPS 19
macros, preprocessor, Motorola m68k

. 33
macros, preprocessor, Sparc 40
MIPS targets . 16
Motorola m68k targets 31

N
naming Fujitsu SPARClite tools 37
naming Hitachi H8/300 tools 2
naming Hitachi SH tools 10
naming MIPS tools 16
naming Motorola m68k tools 31
naming Sparc tools 37

O
options, architecture and code

generation, Hitachi SH 10
options, architecture and code

generation, MIPS 17
options, architecture and code

generation, Motorola m68k 32
options, architecture and code

generation, Sparc 38
options, assembler, Hitachi H8/300. 4
options, assembler, Hitachi SH 12
options, assembler, MIPS 20
options, assembler, Motorola m68k . . . 33
options, assembler, Sparc 40
options, compiler, Hitachi H8/300 3
options, compiler, Hitachi SH 10

options, compiler, MIPS 16
options, compiler, Motorola m68k 31
options, compiler, Sparc 38
options, floating point, MIPS 18
options, floating point, Motorola m68k

. 32
options, floating point, Sparc 39

P
preprocessor macros, Hitachi H8/300. . . 3
preprocessor macros, Hitachi SH 11
preprocessor macros, MIPS 19
preprocessor macros, Motorola m68k

. 33
preprocessor macros, Sparc 40

R
register handling, Hitachi H8/300 5
register handling, Hitachi SH 13
register handling, MIPS 23
register handling, Motorola m68k 35
register handling, Sparc 42
reset button . 8

S
Sparc targets . 37
Sparc tools, naming 37
subroutines, floating point, Hitachi

H8/300 . 3
subroutines, floating point, Hitachi SH

. 11
subroutines, floating point, MIPS 19
subroutines, floating point, Motorola

m68k . 32
subroutines, floating point, Sparc 39
supported targets . 1

T
targets, supported . 1
tools, naming, Fujitsu SPARClite 37
tools, naming, Hitachi H8/300 2
tools, naming, Hitachi SH. 10
tools, naming, MIPS 16
tools, naming, Motorola m68k 31
tools, naming, Sparc 37

46 23 January 1996

	1 Supported targets
	1.1 Hitachi H8/300 targets
	1.2 Hitachi SH targets
	1.3 MIPS targets
	1.4 Motorola m68k targets
	1.5 Sparc targets

	Index

