
1

H8 and SH Series

SuperH RISC Engine

Linkage Editor

User Manual

2

Preface

This manual explains how to use the H Series Linkage Editor, version 5 (Ver.5).

The nine sections and one appendix of this manual cover the following subject matter:

Section 1 Overview

Section 2 Linkage Editor Functions

Section 3 Executing the Linkage Editor

Section 4 Linkage Editor Options and Subcommands

Section 5 Input to the Linkage Editor

Section 6 Output from the Linkage Editor

Section 7 Error Messages

Section 8 Restrictions

Section 9 Object Format Conversion

Appendix A Example of Use of Linkage Editor

Installation of the Linkage Editor is covered in the Installation Guide supplied with the Linkage
Editor.

3

Users are encouraged to consult the user’s manuals for other programs in the H Series cross-
software system. Revelant manuals include:

• H Series Librarian User’s Manual

• H8/300 Series Cross Assembler User’s Manual

• H8/500 Series Cross Assembler User’s Manual

• H32 Series Cross Assembler User’s Manual

• SH Series Cross Assembler User’s Manual

• H8/300 Series C Compiler User’s Manual

• H8/500 Series C Compiler User’s Manual

• H32 C Compiler User’s Manual

• SH Series C Compiler User’s Manual

4

Notes:

• The following symbols have special meaning in this manual

<item>: <specification item>

{ }: One of the items between brackets is to be selected.

[]: The enclosed item is optional (i.e. can be omitted).

...: The preceding item can be repeated.

∆: Blanks space(s) or tab(s)

RET: Press the return (Enter) key.

UNIX is an operating system administrated by the UNIX System Laboratories (United States).

MS-DOS is an operating system administrated by the Microsoft Corporation (United States).

5

Contents

Section 1 Overview ..7
1.1 Linkage Editor Functions ... 8
1.2 Object Module and Load Module... 8
1.3 Unit and Section .. 9

Section 2 Linkage Editor Functions..11
2.1 Module Linkage... 11

2.1.1 Section Linkage .. 11
2.1.2 Inclusion from Library Files ... 21
2.1.3 Exclusion of Module Linking.. 23

2.2 Address Resolution .. 24
2.2.1 Import Symbol Resolution .. 24
2.2.2 Address Resolution within a Module... 26
2.2.3 Suppressing the Listing of Unresolved Symbols.. 28

2.3 Load Module File Re-Input.. 28
2.3.1 Automatic Unit Exchange... 30
2.3.2 Forced Unit Exchange... 32

2.4 Multilinkage .. 32
2.5 Debugging Support .. 34
2.6 Address Check ... 35
2.7 Support of Storing Program in ROM.. 35

Section 3 Executing the Linkage Editor..38
3.1 Command Line Format .. 40
3.2 Executing by Command Line... 42
3.3 Controlling by Subcommands .. 43

3.3.1 Executing in Interactive Mode .. 44
3.3.2 Executing from a Subcommand File ... 45

3.4 Linkage Editor Termination ... 46

Section 4 Linkage Editor Options and Subcommands.......................................47
4.1 Option and Subcommand Formats.. 48
4.2 List of Options and Subcommands... 50
4.3 File Control.. 57

4.3.1 INPUT - Specifies Input Files INPUT... 57
4.3.2 OUTPUT-Specifies an Output File OUTPUT.. 59
4.3.3 LIBRARY-Specifies Library Files LIBRARY .. 60
4.3.4 PRINT-Specifies a List File PRINT ... 61
4.3.5 EXCLUDE-Excludes Modules from Linking EXCLUDE 62

6

4.4 Memory Allocation.. 63
4.4.1 START-Specifies Start Address and Linkage Order of Sections START............. 63
4.4.2 ENTRY-Specifies Execution Start Address ENTRY... 66
4.4.3 AUTOPAGE-Specifies Autopaging Function AUTOPAGE................................ 67
4.4.4 CPU-Specifies Address Check Using a CPU Information File CPU 68
4.4.5 ROM-Specifies Support of Storing Program in ROM<t>ROM............................ 69

4.5 Execution Control .. 71
4.5.1 EXCHANGE-Forcibly Replaces Units EXCHANGE.. 71
4.5.2 SUBCOMMAND-Specifies a Subcommand File<t>SUBCOMMAND............... 72
4.5.3 FORM-Specifies Output Load Module File Format FORM................................. 73
4.5.4 DEBUG-Specifies Output of Debugging Information DEBUG 74
4.5.5 END-Specifies End of Subcommand Input END... 75
4.5.6 EXIT-Specifies End of Linkage Operation.. 76
4.5.7 ABORT-Specifies Forced End of Linkage Operation<t>ABORT 77
4.5.8 ECHO-Specifies Subcommand File Echo-Back<t>ECHO 78
4.5.9 UDF - Specifies Display of Undefined Symbols UDF... 79

4.6 Debugging Support .. 80
4.6.1 LIST-Displays Interim Linkage Information LIST.. 80
4.6.2 RENAME-Changes the Names of Units, Export Symbols, or Import Symbols
RENAME.. 81
4.6.3 DELETE-Deletes Units or Export Symbols DELETE... 83
4.6.4 DEFINE-Forcibly Defines an Import Symbol DEFINE....................................... 85

Section 5 Input to the Linkage Editor...87
5.1 Object Module Files... 87
5.2 Relocatable Load Module Files.. 87
5.3 Library Files .. 87
5.4 Default Library Files.. 87

Section 6 Output from the Linkage Editor..89
6.1 Linkage Lists ... 89
6.2 Load Module File .. 99
6.3 Console Messages.. 100

Section 7 Error Messages...102

Section 8 Restrictions...114

Section 9 Object Format Conversion..115
9.1 Executing the Object Format Conversion... 115
9.2 Error Messages .. 118

Appendix A Example of Use of Linkage Editor ...120

7

Section 1 Overview

The growing need for large-scale, complex microcomputer programs has led to the common
practice of developing a program in separate parts and using a high-level language. In
generating a program in this fashion, a compiler or an assembler is used to convert source
programs into object modules. After that, a linkage editor is employed to link and edit the
modules into one load module file.

The H Series Linkage Editor inputs object module files output by an assembler or C compiler,
links and edits them, and generates a single load module file.

Figure 1-1 illustrates the program development procedure using the Linkage Editor.

Figure 1-1 Program Development Procedure

8

.The linkage editor has the following features:

(1) Linkage can be executed by command-line specifications or by subcommands. These two
methods allow flexible control over the Linkage Editor to match the desired application.

(2) The load module file output by the Linkage Editor can be re-input and re-edited to generate a
new load module file.

(3) Data used by a simulator/debugger or in-circuit emulator in symbolic debugging can be
specified for inclusion in the load module file.

1.1 Linkage Editor Functions

The Linkage Editor provides the following five basic functions.

Module Linkage: The module linkage function links and edits object modules output by a
compiler or assembler.

Address Resolution: The address resolution function determines absolute addresses for external
reference symbols so that references can be made between modules. It also determines absolute
addresses for relative addresses.

Load Module File Re-input: The re-input function enables a load module file output by the
Linkage Editor to be input again.

Multilinkage: The multilinkage function enables the linkage process to be carried out multiple
times during one execution of the Linkage Editor.

Debugging Support: The debugging support function allows display of interim linkage results
and provisional correction of errors.

1.2 Object Module and Load Module

An object module is output as a result of compiling or assembling a source program. A load
module is obtained by using the Linkage Editor to link object modules.

There are two load module formats: absolute and relocatable. An absolute load module has been
assigned absolute addresses, and is in executable form. It does not contain relocation
information for relinking and relocation. A relocatable load module has been assigned relative
addresses and contains relocation information. This information enables the relocatable load
module to be re-input into the Linkage Editor for relinking and relocation. The load module
format is selected by the FORM option or subcommand. For details on the FORM option and
subcommand, refer to section 4.5.3, "FORM -- Specifies Output Load Module File Format."

9

Object modules, absolute load modules, and relocatable load modules are collectively referred to
as modules in this manual.

Modules are either page type or non-page type, depending on the H series microcomputer. The
two types differ as to the method of assigning addresses when modules are linked. H8/500
Series modules are page type, whereas H8/300 Series, H32 Series, and SH Series modules are
non-page type. When the Linkage Editor is used to link modules, page type and non-page type
modules may not be linked together.

1.3 Unit and Section

A unit in a module refers to a compile unit or assembly unit. An object module output by a
compiler or assembler consists of a single unit. A load module which represents multiple object
modules that have been linked by the Linkage Editor contains more than one unit.

A unit is divided into sections. The Linkage Editor processes one section at a time.

The interrelation among module, unit, and section is illustrated in figure 1-2.

Figure 1-2 Interrelation among Module, Unit, and Section

A section has a name for identification, an attribute describing its content and usage, and a
format: either absolute or relocatable. Even if two sections have the same name, they are treated
as separate sections when their attributes or formats are different.

Section attributes and formats are classified as follows.

10

(1) Attributes

 Code: An area containing instructions or constants.

 Data: A variable area with values that are changed by the program.

 Stack: A stack or work area which cannot be initialized.

 Common: A variable area used in common by multiple modules.

 Dummy: Used, for example, to define the structure of a variable area; does not generate
any actual object code.

(2) Formats

 Absolute: A section in which absolute addresses have already been assigned.

 Relocatable: A section in which absolute addresses have not yet been assigned.

11

Section 2 Linkage Editor Functions

This section gives a more detailed description of the basic functions provided by the Linkage
Editor. The following discussion and examples will make reference to various options and
subcommands used to control the Linkage Editor. Additional information on these options and
subcommands can be found in section 3, "Executing the Linkage Editor," and section 4,
"Linkage Editor Options and Subcommands."

2.1 Module Linkage

The Linkage Editor reads modules from specified input files and links these modules to generate
one load module. Modules are linked by each section, a section being the smallest complete part
making up a module.

2.1.1 Section Linkage

A section is linked only if it is relocatable. Since absolute sections have already been assigned
absolute addresses, no further linking is performed. Relocatable sections are linked according to
the procedure described below.

(1) Grouping of sections with the same name

Sections having the same name but found in more than one unit are grouped.

Figure 2-1 Grouping Sections Having the Same Name

12

A warning message is output when sections have the same name but different attributes.
Such sections are then processed as separate sections.

(2) Linking of sections with the same name

Sections having the same name are linked in one of three ways, depending on their attributes.

(a) Simple linkage

Sections with the code, data, or stack attribute and having the same name are allocated
consecutively, in the order in which the modules were input.

Figure 2-2 Simple Linkage

(b) Common linkage

Sections with the common attribute and having the same name are allocated at the same
address. The address area allocated is equal to the size of the largest section.

Figure 2-3 Common Linkage

13

(c) Dummy linkage

Sections with the dummy attribute are not linked, because they do not have any actual
existence in the object module file.

Figure 2-4 Dummy Linkage

(3) Linking of different sections

If a section linking order is specified when the Linkage Editor is executed, sections are
linked in that order. If the section linking order is not specified, sections are linked in the
order in which they were input.

14

(a) With a specified linkage order

Figure 2-5 Example of Section Linkage with a Specified Linkage Order

15

The section linkage order can be specified only when the load module output by the Linkage
Editor has the absolute format. The linkage order is specified using the START option or
subcommand.

(b) Without a specified linkage order

Figure 2-6 Example of Section Linkage without a Specified Linkage Order

16

Sections having the same name but different attributes are linked in the order in which they
are input.

Figure 2-7 Example of Section Linkage for Same Section Name but Different Attributes

(4) Address assignment

Addresses are assigned to each section. Absolute addresses are assigned when the output load
module file has the absolute format. The section linkage order and start address can be
specified using the START option or subcommand. Absolute addresses are assigned to each
section in order, beginning with the start address. If no start address is specified, absolute
addresses are assigned beginning from address zero.

If sections with absolute format are linked to sections with relocatable format, the same
absolute address may be assigned to more than one section. In that case, the Linkage Editor
displays a warning message.

17

When page type modules are linked, if addresses are assigned section by section, one section
may overlap a page boundary. In this case the Linkage Editor will display a warning
message. However, executing a load module one of whose sections overlaps a page boundary
is extremely troublesome. For this reason the Linkage Editor is provided with an autopaging
function, which prevents any section in a unit from overlapping the page boundary by
allocating the section to the top of the next page. Use of this function is designated by means
of the AUTOPAGE option or subcommand. The different methods of assigning addresses to
page type modules are shown in figure 2-8 (neither autopaging nor start address specified),
figure 2-9 (autopaging specified, start address not specified), and figure 2-10 (autopaging and
start address specified).

When the output load module file has the relocatable format, addresses in each section are
assigned relative to the beginning of the section. The output format is specified using the
FORM option or subcommand.

18

Figure 2-8 Linking of Page Type Modules
(Neither Autopaging nor Start Address Specified)

19

Figure 2-9 Linking of Page Type Modules
(Autopaging Specified, Start Address Not Specified)

20

Figure 2-10 Linking of Page Type Modules
(Autopaging and Start Address Specified)

21

2.1.2 Inclusion from Library Files

The Linkage Editor can link object modules and relocatable load modules input from library
files created with the H Series Librarian, and include these modules in the output load module.
Inclusion from library files can be accomplished in either of the following two ways.

(1) Inclusion by Specifying the Module Name: Particular modules in a library file can be
included by specifying the library file name and module name when input file names are
specified. Input file names are specified on the command line or by the INPUT subcommand.

(2) Automatic Inclusion: After all specified modules have been input, the Linkage Editor
begins resolving external reference symbols (after this, external reference symbol is called
"import symbol"). If an import symbol is not defined in any of the modules, the Linkage
Editor searches the specified library files. If it finds a module defining the unresolved import
symbol, the Linkage Editor automatically inputs and links this module. If the unresolved
import symbol is not defined in any of these library files, the Linkage Editor searches one or
more default library files defined in advance by the user. Again, if it finds a module defining
the unresolved import symbol, the Linkage Editor automatically inputs and links this
module.

If no module in the default libraries defines the unresolved import symbol, an undefined import
symbol error occurs.

A detailed explanation of default libraries is given in section 5.4, "Default Library Files."

Library files are classified into system library files and user library files. The Linkage Editor
first searches user library files. When modules containing externally defined symbols (after this,
externally defined symbol is called "export symbol") of the same name exist both in a specified
system library file and in a user library file, the module in the user library file is linked. The
order in which two or more user library files or system library files are searched depends on the
order in which they are specified.

For a library file can contain both page type and non-page type modules. If both types of
modules are input into the Linkage Editor at the same time, an error will occur. Care must
therefore be taken both when creating library files and when specifying them.

Library files are specified using the LIBRARY option or subcommand. On the designation of
library files as system files or user files, see the H Series Librarian User's Manual.

An example of the order of module linking when library files are specified is given below.

22

(1) Object modules a and b are input by the INPUT subcommand.

Figure 2-11 Example of Module Linking (Input Object Modules)

(2) Library files lib1, lib2, and lib3 are input in that order by the LIBRARY subcommand.

Figure 2-12 Example of Module Linking (Input Library Files)

(3) The Linkage Editor first collects all import symbols declared in the input files, then searches
for export symbols in the first specified library. If a symbol is found, the module defining it
is linked.

If two or more symbols are declared in separate modules in the same library, the modules are
linked in their order of appearance in the library. If a symbol is not found in that library, the
next specified library is searched.

In the above example, modules are linked in the following order.

23

Figure 2-13 Example of Module Linking (Output Load Module)

2.1.3 Exclusion of Module Linking

An option or subcommand can be used to select whether or not to link modules that define non-
referenced import symbols. In the following coding example symbol abc is declared as an import
symbol, but is not referenced in any executable statement. If exclusion is specified, the module
defining symbol abc in a library file will not be linked.

Figure 2-14 Example of Module Containing Non-Referenced Import Symbol

In a C-language program, import symbols are described by an extern declaration, but these
symbols are not necessarily referenced. (For example, a large number of non-referenced import
symbols are declared in stdio.h.) The exclusion function can reduce program size by excluding
unnecessary modules. Exclusion of such modules is specified by the EXCLUDE option or
subcommand.

24

2.2 Address Resolution

When a source program is assembled, the absolute addresses of certain symbols cannot be
decided. These include symbols imported from another module and symbols in relocatable
sections of the same module. The Linkage Editor determines absolute addresses for these
symbols and sets the absolute addresses to the reference positions.

2.2.1 Import Symbol Resolution

When importing symbols from a separate module, the assembler outputs import information in
the object program. It also declares export of symbols that can be imported in other modules. As
a result, export information is output in the object program. The Linkage Editor relates this
import and export information. In addition, it uses address information specified by options or
subcommands to determine absolute addresses for the export symbols, and replaces
corresponding import symbols with the absolute addresses.

The example given in figure 2-15 illustrates how import symbols are resolved. The modules,
sections, and subcommands used in the figure are explained below.

(1) Module a

 This module consists of one section, section X, having a size of 5000 (hexadecimal)
bytes.

 Symbol S4 in module b is imported at position A1.

 Symbol S2 in module b is imported at position A2.

(2) Module b

 This module consists of sections X and Y.

 The size of section X is 2000 (hexadecimal) bytes.

 The size of section Y is 3000 (hexadecimal) bytes.

 S1 is the start of section Y. S2 is located 1000 (hexadecimal) bytes from S1.

 S3 is the start of section X. S4 is located 1200 (hexadecimal) bytes from S3.

(3) Module c

 This module consists of one section, section Z, having a size of 4000 (hexadecimal)
bytes.

 Symbol S3 in module b is imported at position C1.

 Symbol S1 in module b is imported at position C2.

25

(4) Subcommands
INPUT∆a,b,c

START∆X,Y,Z(10000)

EXIT

Three modules a, b, and c are input to the Linkage Editor. Sections are linked in the order X, Y,
Z. The start address is 10000 (hexadecimal).

Figure 2-15 Resolution of Import Symbols

26

2.2.2 Address Resolution within a Module

When a symbol defined in a relocatable section of a module is referenced within the same
module, the assembler expresses the symbol address as a relative address from the start of the
section. The Linkage Editor uses this relative address value and address information specified by
options or subcommands to decide the absolute address. It then replaces the relative address with
the absolute addresses.

The example given in figure 2-16 illustrates the resolution of addresses within a module. The
modules, sections, and subcommands used in the figure are explained below.

(1) Module a

 This module consists of one section, section X, having a size of 5000 (hexadecimal)
bytes.

(2) Module b

 This module consists of sections X, Y, and Z.

 The size of the section X is 6000 (hexadecimal) bytes.

 The size of the section Y is 1000 (hexadecimal) bytes.

 The size of the section Z is 2000 (hexadecimal) bytes.

 B1 references S1.

 B2 references S3.

 B3 references S2.

 S1 is located 3000 (hexadecimal) bytes from the start of section X.

 S2 is located 4500 (hexadecimal) bytes from the start of section X.

 S3 is located 5000 (hexadecimal) bytes from the start of section X.

(3) Subcommands
INPUT∆a, b

START∆X, Y, Z(10000)

EXIT

27

Two modules a and b are input to the Linkage Editor. Sections are linked in the order X, Y, Z.
The start address is 10000 (hexadecimal).

Figure 2-16 Address Resolution within a Module

28

2.2.3 Suppressing the Listing of Unresolved Symbols

For a relocatable load module, the display of unresolved symbol names can be suppressed. This
can be selected by the UDF option or subcommand.

2.3 Load Module File Re-Input

Load module files have to be recreated using the Linkage Editor when a program has been
modified or import symbols remain unresolved. The re-input function eliminates the need to
specify each object module separately. By simply specifying the existing load module file and
the object module files that were modified (or the object module files containing the export
symbols), this function will recreate the load module file.

If modules are to be replaced, the re-input function carries out the replacement on a unit basis. A
detailed explanation of unit replacement is given in section 2.3.1, "Automatic Unit Exchange."

The load module file to be re-input can be specified on the command line or using the INPUT
subcommand.

Only load module files in relocatable format can be re-input. The FORM option or
subcommand is used to specify the relocatable format when creating a load module file.

An overview of the load module file re-input function is shown in figure 2-17.

29

Figure 2-17 Load Module File Re-Input Function

Load module file a and object module files b and c are input to the Linkage Editor, which
outputs a new load module file d. Load module file d consists of units U1, U2, U3, U4, U5, and
U6.

30

2.3.1 Automatic Unit Exchange

When the Linkage Editor finds units with the same name in two or more modules, it gives
inclusion priority to the unit in the module that was specified first. To replace units in a load
module file, first specify files containing the replacement units, then specify the relevant load
module file. This will produce the same result as using the EXCHANGE subcommand. This
function is called automatic unit exchange.

By using automatic unit exchange, new load module files can be created by simply changing the
specified order of file input. This feature is convenient when it is necessary to modify programs
frequently, such as during debugging.

An example of the procedure for automatic unit exchange is shown in figure 2-18.

31

Figure 2-18 Automatic Unit Exchange

(1) Automatic Exchange: Object module files c and b and load module file a are input in that
order. Unit U2 in load module file a is not included by the Linkage Editor since unit U2 in
load module file c has already been input.

(2) No Automatic Exchange: Load module file a and object module files b and c are input in
that order. Unit U2 in load module file c is not included by the Linkage Editor since unit U2
in load module file a has already been input.

32

2.3.2 Forced Unit Exchange

In addition to using automatic unit exchange, the EXCHANGE subcommand can also be
employed to specify the units to be replaced. This function is called forced unit exchange.

By specifying the following subcommands, the result of forced unit exchange will be the same
as that of the automatic unit exchange shown in figure 2-18.

In this example of forced unit exchange, the Linkage Editor inputs units U1, U2, U3, and U4 in
load module file a and unit U5 in object module file b, then forcibly replaces the unit U2 already
input with unit U2 in object module file c. Load module file d output by the Linkage Editor
contains units U1, U3, and U4 from file a, unit U5 from file b, and unit U2 from file c. Thus
load module file d has the same unit configuration as load module file d shown in the example
of automatic file exchange in figure 2-18.

2.4 Multilinkage

The Linkage Editor can handle up to 256 input files in one link ge process. When there are
multiple input files, one way to link them is to re-input the load module file. The multilinkage
function allows several linkage processes to be completed with just one execution of the Linkage
Editor, instead of executing it separately for each linkage process.

The END subcommand indicates the end of one linkage process when multilinkage is
performed. The end of the final linkage process, however, is specified by the EXIT
subcommand.

An example of a multilinkage operation is shown in figure 2-19.

33

Note: When the default library is used during multi-linkage process, the modules in the default
library are linked in the first linkage process. When the modules must be linked in the
final linkage process, specify the NOLIBRARY command in the processes except the
final process.

Figure 2-19 Multilinkage Function

34

2.5 Debugging Support

Debugging support functions are used to confirm the interim linkage results at the program
debugging stage and to make provisional recovery from errors in load module files. Debugging
support functions include displaying interim linkage information as well as defining, changing,
and deleting export and import symbol names. A brief explanation of each function is given
below.

(1) Display of Interim Linkage Information: This function is used during subcommand input
when it is desired to see information about the load module being processed by the Linkage
Editor. Specifying the LIST subcommand outputs interim linkage information to the standard
output device.

Three types of linkage information are displayed.

(a) Linkage map

(b) Unresolved import symbols

(c) Export symbols

(2) Change and Deletion of Unit Names, Export Symbol Names, and Import Symbol Names:
These functions make it possible to change or delete any duplicated names of units, export
symbols, and import symbols. Noted that names of import symbols cannot be deleted.

Names are changed by the RENAME subcommand and are deleted by the DELETE
subcommand.

(3) Forced Definition of Import Symbols: This function is used to define provisional values for
import symbols. The values defined with this function are valid only for the linkage
operation being processed.

The forced definition of these symbol values is specified using the DEFINE option or
subcommand.

35

2.6 Address Check

When an absolute load module is created with the Linkage Editor, addresses must be assigned to
sections in accordance with the target CPU memory map. If not, the load module cannot be
loaded to memory.

The address check function provided with the Linkage Editor confirms the validity of section
address assignments on the basis of CPU memory map information (hereinafter called "CPU
information"). This CPU information is read from a specified file.

To execute an address check, the CPU option or subcommand is used to specify the CPU
information file. The CPU information file is created using the CPU information analysis
program (CIA) included in the H8/300 series Simulator/Debugger. Note that the CPU
information analysis program is not available for CPUs other than the H8/300 and SH series;
thus the address check function can be used only with this series.

Regarding the method of creating a CPU information file, refer to the H8/300 Series or SH
Series Simulator/Debugger User's Manual or the SH Series Simulator/Debugger User's Manual.

2.7 Support of Storing Program in ROM

When a user program is coded in C language and the load module is to be stored in ROM, data
sections having initial value (D sections) will also be stored in ROM. To assist the user, the
Linkage Editor carry out the following operations.

36

(1) An area of the same size as the D section (called the D' section) is reserved in the RAM area
of the output load module. The memory map of the load module looks like this:

Figure 2-20 Memory Map for Storing Program in ROM

(2) When a variable declared in the D section is referenced, its address is changed to point to the
RAM area. The variable address becomes:

Starting address of D section + relative address within section

The ROM ability support function changes this to:

Starting address of D' section + relative address within section

Example: MOV @a, R0

The address of symbol "a" declared in the D section becomes (x) + (y) as shown below. This
address is also stored on the object code.

Figure 2-21 Symbol Address for Storing Program in ROM

37

(3) Data is copied from ROM to RAM in the start-up routine.

The copy process is included in the start-up routine. The procedure for including this process
is fcdescribed in the C Compiler User's Manual.

38

Section 3 Executing the Linkage Editor

To execute the Linkage Editor, first starts Linkage Editor by entering a command line. This
command line specifies the names of files to be input, and also specifies options giving various
instructions to the Linkage Editor. If these instructions are sufficient, the Linkage Editor can be
executed using the command line alone. If further instruction are needed, they can be given in
subcommands.

Command Line Specification: This method executes linkage simply by specifying the input
files and options on the command line. It is used when only a few files are to be input and the
linkage operation is relatively straightforward.

Specifying Subcommands: This method, in addition to a command line, uses subcommands to
control the Linkage Editor. The subcommands specify files to be input and output, and execution
control parameters for the Linkage Editor. This method is used when a large number of files or
modules are specified, when the order in which sections are to be linked specified, or when
multilinkage function is used. There are two ways of specifying subcommands: One is direct
input from the keyboard or other input device in interactive mode and the other is input from a
subcommand file.

UNIX System: File names are specified in the following format:

Path name main file name file type

 ① ② ③

① Path name

Specify the directory path of the directory containing the file, using slashes (/) to delimit
directory names. The default value is the current directory.

② Main file name

Specify the name of the file.

③ File type

Specify the type of file separated from the main file name by a period (.).

The general rules of file naming for the Linkage Editor conform to the operating-system (OS)
rules.

The OS shell (command interpreter) checks the command line before passing control to the
Linkage Editor. Use characters that the OS allows on the command line.

39

40

PC System: Before using this Linkage Editor, set the MS-DOS configuration file
(CONFIG.SYS) with the editor as follows.

FILES=20

SHELL=a:¥command.com a:¥ /p

① The number of files that is allowed to open at one time during Linkage Editor
operation.

② Directory path specification that is required when COMMAND.COM is re-loaded.

If both the input file and the output file have the same name, the input file data will be damaged.
Take care that the input and output files do not have the same name.

3.1 Command Line Format

The following format is used for the Linkage Editor command line.

UNIX System:

lnk ∆ [<input file name>[,<input file name>]...]

[[∆]-<option name>[[∆]-<option name>...]]RET

PC System:

LNK[<input file name> [(<module name>[,<module name>...])]

[,<input file name>[(<module name>[,<module name>...])]]...]

[[∆]/<option name> [[∆]/<option name>...]]RET

(1) Command Name: "lnk" is input to start up the Linkage Editor.

(2) Input File Names: Names of files to be input in the Linkage Editor are specified. These may
be object module files or relocatable load module files. When more than one file is specified,
the names are delimited by a comma (,).

If the file type is not specified with the input file name, the Linkage Editor automatically
assumes that the type is ".obj." In MS-DOS system, up to 256 files can be input in one
linkage process. However the maximum number of characters that can be input in a line is
255, and therefore 256 files can not be specified in one line. When many files must be
specified, use the subcommand.

(3) Module Name (Only for PC System): When the library file is specified as the input file,
specify the module name. The module name must be preceded by the library file name and

41

must be specified in the parentheses. If the input file is the object module file or the load
module file, do not specify the module name.

42

(4) Option Names: Each option name must be preceded by a hyphen (-). When an option name
follows an input file name or another option name, one or more spaces or tabs may be
inserted to delimit the names, or they may be entered continuously. Option names are
described in detail in section 4, "Linkage Editor Options and Subcommands."

(5) Specifying the Mode of Execution: Command line specification determines whether linkage
is to be executed by the command line only or subcommands are to be used as well.

(a) Specifying execution by command line: If one or more input files are specified on the
command line and no subcommand file is specified, module linkage will be executed
according to the command line only.

(b) Specifying subcommands: If no input files are specified on the command line, or a
subcommand file is specified, control of the Linkage Editor will be controlled by the
subcommands.

3.2 Executing by Command Line

In this method, input files are specified on the command line, and the Linkage Editor executes
module linkage according to the information specified in the command line alone. Output files
and other instructions to the Linkage Editor are specified in the form of options. Command line
execution is sufficient for performing linkage operations when the number of input files is small,
and when there is no need for detailed instructions to the Linkage Editor such as regarding the
order in which sections are to be linked. Examples of execution by command line only are given
below. For details on options in these examples, see section 4, "Linkage Editor Options and
Subcommands."

EXAMPLE 1 (UNIX system):

% Ink ∆add, sub, mul, div ∆-OUTPUT=arith ∆-ENTRY=main RET

Four files "add.obj," "sub.obj," "mul.obj," and "div.obj" are to be input to the Linkage Editor.
These are to be linked and output as absolute load module file "arith.abs." Exports symbol
"main" is specified as the start address for execution of the output load module file. No linkage
list is to be output.

EXAMPLE 2 (MS-DOS system):

>LNK∆MAIN, KEY, DISPLAY, PRINT/OUTPUT=CALC/PRINT=CALC/FORM=R/DEBUG RET

Four files "MAIN.OBJ," "KEY.OBJ," "DISPLAY.OBJ," and "PRINT.OBJ" are to be input to the
Linkage Editor. These are to be linked and output as relocatable load module file "CALC.REL."
Debugging information is to be incorporated in this load module file. Linkage list "CALC.MAP"
is to be output.

43

3.3 Controlling by Subcommands

When a large number of files or modules must be input, or when complex section linking is to
be performed, the command line alone may not be sufficient to contain all the specifications. In
such cases, subcommands are used to control the Linkage Editor. Subcommands may be entered
one at a time in interactive mode, from the keyboard or other standard input device, or a
subcommand file consisting of a group of subcommands may be created in advance, and
subcommands may be entered from this subcommand file.

(1) Interactive Mode: Can be used when the number of subcommands is relatively small. This
method is also useful when the Linkage Editor is employed during program debugging,
where it is desired to check interim linkage results or make provisional recovery from errors.

(2) Subcommand File: A subcommand file is used to control the Linkage Editor when the
number of subcommands is large, or the procedures to be carried out are mostly routine. A
subcommand file is used by specifying the SUBCOMMAND option on the command line.
The name of the subcommand file to be input is specified as a parameter of the
SUBCOMMAND option.

The Linkage Editor can use a subcommand file even when subcommands are input
interactively. Specify the SUBCOMMAND subcommand with the subcommand file name as
a parameter.

Note: In PC system, input all command lines and subcommand lines by capital letters.

44

3.3.1 Executing in Interactive Mode

In this method, subcommands required for Linkage Editor operations are input directly from the
standard input device. Execution proceeds by this method when no input files are specified on
the command line and the SUBCOMMAND option is not specified. It is used when the number
of subcommands to be input is relatively small, or when it is desired to confirm linkage results
while inputting subcommands, as in the first stage of program debugging. When the debugging
support function is used, this method of execution is the most suitable.

An example showing input of subcommands in interactive mode is given below. Functions of the
subcommands listed here are detailed in section 4, "Linkage Editor Options and Subcommands."

EXAMPLE:

%lnk RET.............................. ①

: INPUT ∆main RET...................... ②

: INPUT ∆send, receive, exchange RET... ③

: INPUT ∆account RET................... ④

: LIBRARY ∆syslib RET.................. ⑤

: PRINT ∆ # RET........................ ⑥

: FORM∆R RET.......................... ⑦

: EXIT RET............................ ⑧

① Command line, starting up the Linkage Editor in interactive mode.

② Inputs object module file "main.obj."

③ Inputs three object module files "send.obj," "receive.obj," and "exchange.obj."

④ Inputs object module file "account.obj."

⑤ Inputs library file "syslib.lib."

⑥ Outputs linkage list to standard output device.

⑦ Creates a load module in relocatable format.

⑧ Outputs load module file "main.rel" and ends the linkage operation.

45

3.3.2 Executing from a Subcommand File

In this method, a subcommand file is used which has been created in advance and which
contains the subcommands necessary for Linkage Editor operations. This subcommand file is
specified as a parameter of the SUBCOMMAND option or subcommand. This method is used
when the number of subcommands to be specified is large, or the same linkage process is carried
out repeatedly routine. It saves trouble to input subcommands from the keyboard each time.

A subcommand file is created using an editor. An example of executing from a subcommand file
is given below. Functions of the subcommands listed here are detailed in section 4, "Linkage
Editor Options and Subcommands."

EXAMPLE 1 (UNIX system):

%lnk ∆-SUBCOMMAND=prglnk.sub RET............................ ①

Contents of subcommand file "prglnk.sub":

OUTPUT∆function ... ②

INPUT∆sin, cos, tan.. ③

INPUT∆asin, acos, atan..................................... ④

INPUT∆hsin, hcos, htan..................................... ⑤

INPUT∆log, log10... ⑥

FORM∆A... ⑦

EXIT... ⑧

① Command line, starting up the Linkage Editor and entering subcommands from subcommand
file "prglnk.sub."

② Names the output file as "function." Either ".rel" or ".abs" is assumed, because the file type is
omitted.

③ Inputs object module files "sin.obj," "cos.obj," and "tan.obj."

④ Inputs object module files "asin.obj," "acos.obj," and "atan.obj."

⑤ Inputs object module files "hsin.obj," "hcos.obj," and "htan.obj."

⑥ Inputs object module files "log.obj" and "log10.obj."

⑦ Creates a load module in absolute format. The file type for the output file name becomes
".abs."

⑧ Outputs load module file "function.abs" and ends the linkage operation.

46

EXAMPLE 2:

%Ink RET............................. ①

:SUBCOMMAND pgmlnk.sub RET........... ②

① Command line, starting up the Linkage Editor. Module linkage is executed interactively,
because no parameters are specified.

② Inputs subcommands from "pgmlnk.sub."

If there is no EXIT subcommand in the subcommand file, the Linkage Editor waits for further
subcommand input.

3.4 Linkage Editor Termination

When terminated, the Linkage Editor returns an error level to the system as a return code.
Execution of a command file can be controlled by this return code.

The return code has the following values, depending on the error level.

Normal termination 0

Warning 0

Error 1

Fatal error 1

47

Section 4 Linkage Editor Options and Subcommands

Options and subcommands specify file names and give the Linkage Editor various instructions,
such as the order in which sections are to be linked. Options and subcommands have four types
of functions: File control, memory allocation, execution control, and debugging support. These
functions may be used independently or in combination to edit load modules in various ways.

(1) File Control Functions: File control functions specifies input files and output files to the
Linkage Editor. Input files include object module files, relocatable load module files and
library files. Output files are load module files and list files.

(2) Memory Allocation Functions: Memory allocation functions can tell the Linkage Editor the
order in which sections are to be linked and give their starting addresses. They can also
specify the address at which the output load module is to start executing. These functions are
used to change the order in which sections are linked, or to create a load module that is to
execute from a specified address.

(3) Execution Control Functions: Execution control functions specify the form in which the
Linkage Editor is to input and output information, and end Linkage Editor operations. These
are used to input subcommands from a subcommand file, or to incorporate debugging
information in a load module.

(4) Debugging Support Functions: Debugging support functions display contents of a load
module during a linkage operation, or change information such as export and import symbol
names, etc. These are useful at the program debugging stage, for confirming interim linkage
results, or for provisional recovery from errors.

Options and subcommands have the same names and have equivalent functions, but are specified
using different formats. Moreover, there are some specifications which can be made only with
either subcommands or options. Section 4.1, "Option and Subcommand Formats," and section
4.2, "List of Options and Subcommands," should accordingly be read carefully.

For details on the functions and means of specifying each option and subcommand, refer to
sections 4.3, "File Control," through 4.6, "Debugging Support."

48

4.1 Option and Subcommand Formats

Each option or subcommand consists of a name and parameters, which together must not exceed
255 characters.

(1) Option and Subcommand Structure:

(a) Name: The name part gives the name of the option or subcommand. For details, see
section 4.2, "List of Options and Subcommands."

(b) Parameters: The parameter part gives information such as the name of files on which
the option or subcommand operates, and address values. There are different requirements
and methods of specification depending on the option or subcommand. See sections 4.3,
"File Control," 4.4, "Memory Allocation," 4.5, "Excution Control," and 4.5, "Debugging
Support."

Options and subcommands differ as to the way of separating the name from the
parameters. Options use an equals sign (=), while subcommands use one or more spaces
or tabs.

Option format

<Name>=<parameters>

Subcommand format

<Name>∆<parameters>

EXAMPLES:

-OUTPUT=loadf....................option

OUTPUT∆loadf....................subcommand

In these examples, "OUTPUT" is the name, and "loadf" is the parameter.

(2) Continuation Specification for a Subcommand: When a subcommand is too long to be
specified on one line, a continuation specifier is used. This is an ampersand (&) at the end of
the line. It must always be placed in between two parameters; if it is placed within a
parameter, it will be interpreted as part of the parameter. If a character (other than a space or
tab) is typed after the ampersand, an error will occur and the subcommand will not be
continued.

If continuation is specified in interactive mode, a hyphen (-) appears as a prompt for further
input.

49

EXAMPLES:

: INPUT ∆ obj00, lib (mod0,mod1), & RET

-obj01, obj02 RET →Continuation specifier

: INPUT ∆ obj00, lib (mod0, mod1), ob& RET

: Not a continuation line

Processed under the file name ob& due to specification within parameter

(3) Specifying Comments in a Subcommand File: A comment specifier is used when it is to
add notes or other comments in a subcommand file. The specifier is a semicolon (;) placed
on a subcommand line, indicating that the rest of the line is a comment. At least one space or
tab must set off the semicolon from the subcommand name or parameter.

When a semicolon is placed at the beginning of a subcommand line, the entire line is taken
as a comment.

EXAMPLES:

; EXAMPLE OF LINKAGE SUBCOMMAND

...............The entire line is a comment.

LIBRARY∆syslib ∆; INDICATES LIBRARY FILE

..........."INDICATES LIBRARY FILE" is a comment.

INPUT∆object.rel;abc

 "object.rel;abc" is treated as one parameter.

50

4.2 List of Options and Subcommands

There are 15 options and 23 subcommands. The options and subcommands are listed in table 4-
1.

Options and subcommands may be written either in upper-case or lower-case letters.

51

Table 4-1 List of Options and Subcommands

No. Type Option/
Subcommand Name

Function Option Sub-
command

Section

1 File control INPUT Specifies input file No Yes 4.3.1

OUTPUT*

(NOOUTPUT
Specifies output file Yes Yes 4.3.2

LIBRARY
(NOLIBRARY)*

Specifies library file Yes Yes 4.3.3

PRINT (NOPRINT)* Specifies list file Yes Yes 4.3.4

EXCLUDE
(NOEXCLUDE)*

Excludes modules
from linking

Yes Yes 4.3.5

2 Memory
allocation

START Specifies section
starting address and
linking order

Yes Yes 4.4.1

ENTRY Specifies execution
start address

Yes Yes 4.4.2

AUTOPAGE
(NOAUTOPAGE)*

Specifies automatic
paging

Yes Yes 4.4.3

CPU Specifies address
check

Yes Yes 4.4.4

ROM Specifies support of
storing program in
ROM

Yes Yes 4.4.5

3 Execution
control

EXCHANGE Substitutes units No Yes 4.5.1

SUBCOMMAND Specifies
subcommand file

Yes Yes 4.5.2

FORM Specifies format of
output load module file

Yes Yes 4.5.3

DEBUG (NODEBUG)* Specifies output of
debugging information

Yes Yes 4.5.4

END Terminates
subcommand input

No Yes 4.5.5

EXIT Terminates linkage
operation

No Yes 4.5.6

ABORT<t> Aborts linkage
operation

No Yes 4.5.7

ECHO*(NOECHO) Specifies
subcommand file
echo-back

Yes Yes 4.5.8

UDF* (NOUDF) Specifies display of Yes Yes 4.5.9

52

No. Type Option/
Subcommand Name

Function Option Sub-
command

Section

undefined symbols

Notes: 1.The shortest permissible abbreviated forms are underlined.
2. Yes and No in the table indicate whether an item can be used as an option or

subcommand.
3. An asterisk indicates the default option or subcommand.

53

Table 4-1 List of Options and Subcommands (cont)

No. Type Option/
Subcommand
Name

Function Option Sub-
command

Section

4 Debugging
support

LIST Displays interim
linkage information

No Yes 4.6.1

RENAME Changes name of
unit, export
symbol, or import
symbol

No Yes 4.6.2

DELETE Deletes unit or
export symbol

No Yes 4.6.3

DEFINE Forcibly defines
import symbol

Yes Yes 4.6.4

Notes: 1. The shortest permissible abbreviated forms are underlined.
2. Yes and No in the table indicate whether an item can be used as an option or
subcommand.
3. An asterisk indicates the default option or subcommand.

(1) Negative Form of Options and Subcommands: For some options and subcommands a
negative form starting with "NO" may be specified. Parameters cannot be specified with
negative-form options and subcommand. There are eight negative option/subcommand
forms, as follows:

(a) NOOUTPUT............Suppresses output of load module file

(b) NOLIBRARY...........Specifies non-use of a library file

(c) NOPRINT.................Suppresses output of a list file

(d) NOEXCLUDE.........Specifies linking of modules

(e) NOAUTOPAGE......Suppresses automatic paging

(f) NODEBUG...............Suppresses output of debugging information

(g) NOECHO.................Suppresses echo-back of a subcommand file

(h) NOUDF....................Suppresses display of undefined symbols

(2) Option Default:When an option is omitted, the following are the default choices.

(a) OUTPUT (no parameters)

(b) NOLIBRARY

(c) NOPRINT

(d) NOEXCLUDE

(e) NOAUTOPAGE

(f) FORM=A

(g) NODEBUG

54

(h) ECHO

(i) UDF

55

(3) Abbreviating Option and Subcommand Names: Names of options and subcommands may
be abbreviated to the point where the name can still be distinguished from other names. For
example, consider the name "DEBUG."

D........................Cannot be distinguished from DELETE or DEFINE, so an error occurs

DE.....................Cannot be distinguished from DELETE or DEFINE, so an error occurs

DEB..................Recognized as DEBUG

DEBU...............Recognized as DEBUG

DEBUG............Recognized as DEBUG

DEBUGS..........No such name, so an error occurs

(4) Range of Validity of Options: When only a command line is specified, linkage is executed
based only on the options specified. When subcommands are specified, options specified in
the command line remain valid up to the first END subcommand specified (or up to the
EXIT subcommand when no END is specified). However, if subcommands are specified
which conflict with the function of an option, an error message is displayed, the option
becomes invalid, and execution proceeds according to the subcommand specification. After
the first END subcommand, all subsequent subcommand specifications are valid.

EXAMPLE:

%lnk∆ -NOOUTPUT RET} .} The NOOUTPUT option is in effect,

. }so no output file is created.

. }

:END RET }

. }

.. }

:OUTPUT ∆ loadfile RET } The OUTPUT subcommand is now valid,

. }so output file "loadfile.abs" is created.

. }

56

In the following sections the format below is used to describe each option and subcommand.

57

4.3 File Control

4.3.1 INPUT - Specifies Input Files INPUT

Format Name Option Subcommand Negative Form

None INPUT None

Parameters <Input file name>[(<module name>[,<module name>...])]

 [,<Input file name> [(<module name>[,<module name>...])]...]

Function Specifies files and modules to be input.

Explanation (1) Outline of functions:

• The files specified by parameters, or the specified modules in those files, are input to
the Linkage Editor.

• Three kinds of files can be specified object module files, load module files, and
library files.

• Modules may be specified only for library files, in which case only the specified
modules from the library file will be input.

• If the file type is omitted from a file name, the Linkage Editor will automatically
assume the type as follows.

No module name specified............".obj"

Module name specified................".lib"

(2) Restrictions in use:

• Among load module files, only relocatable load modules may be specified. If an
absolute load module is specified, an error will occur and the file will not be input.

• If a module other than that in a library file is specified, an error will occur and the file
will not be input.

• The maximum number of input files that may be treated in one linkage process is 256,
including library files. If more than 256 files are specified, an error will occur, and
only the first 256 files specified will be input. To process more than 256 files, use the
multilinkage function.

• Page type and non-page type modules may not be input at the same time. If both
types of modules are input together, an error will occur and the Linkage Editor will
stop execution.

Examples INPUT∆main

Inputs the object module file "main.obj."

58

INPUT∆funclib (sin, cos), tan.o

Inputs the modules "sin" and "cos" from library file "funclib.lib," and
inputs the object module file "tan.o."

59

4.3.2 OUTPUT-Specifies an Output File OUTPUT

Format Name Option Subcommand Negative Form

OUTPUT OUTPUT NOOUTPUT

Parameters [<Output file name>]

Function Specifies a load module output file name.

Explanation

(1) Outline of functions:

• Outputs the load module generated by the Linkage Editor to the specified file.

• If the file type is omitted from the file name, the Linkage Editor will automatically
assign a file type according to the format of the load module file, as follows.

• Absolute format ".abs"

• Relocatable format ".rel"

• The format of the load module file is specified using the FORM option or
subcommand. If no specification is made, absolute format is used.

• If no output file name is specified using the OUTPUT option or subcommand, the
output file is given the name of the first specified input file plus the above file type.

• If the NOOUTPUT option or subcommand is specified, no load module file will be
output.

(2) Restrictions in use:

• No parameters may be specified with the NOOUTPUT option or subcommand.

• If an output file name is specified, it must be different from all input file names.

Examples -OUTPUT=prgload

Outputs load module file "prgload.abs" (or "prgload.rel").

-OUTPUT

Outputs load module file with the name of the first specified object
module file plus ".abs" (or ".rel").

OUTPUT∆main.10

Outputs load module file "main.10."

60

4.3.3 LIBRARY-Specifies Library Files LIBRARY

Format Name Option Subcommand Negative Form

LIBRARY LIBRARY NOLIBRARY

Parameters <Library file name>[,<library file name>...]

Function Specifies input library files.

Explanation

(1) Outline of functions:

• Specifies library files which the Linkage Editor is to search if there are unresolved
import symbols after linkage operations among specified input files are completed.

• If both user library files and system library files are specified, the Linkage Editor will
search the user library files first.

• If no file type is specified with the library file name, the Linkage Editor automatically
assumes this to be ".lib."

• If the NOLIBRARY option or subcommand is specified, there will be no input from a
library file (including default libraries). When linkage is controlled by subcommand
specification, however, the range of validity of this option is limited. For details see
"Range of Validity of Options" under section 4.2.

(2) Restrictions in use:

• Only library files created using the H Series Librarian may be input to the Linkage
Editor.

• The maximum number of input files that may be treated in one linkage operation is
256, including library files. If more than 256 files are specified, an error will occur,
and only the first 256 files specified will be input. To process more than 256 files, use
the multilinkage function.

• Page type and non-page type modules may not be input at the same time. If both types
of modules are input together, an error will occur and the Linkage Editor will stop
execution.

• No parameters may be specified with the NOLIBRARY option or subcommand.

Examples -LIBRARY=syslib.

Specifies library file "syslib."

LIBRARY∆system, debug

Specifies library files "system.lib" and "debug.lib."

61

4.3.4 PRINT-Specifies a List File

PRINT

Format Name Option Subcommand Negative Form

PRINT PRINT NOPRINT

Parameters {<List file name>}

{#
}

Function Specifies a list file for output of linkage list.

Explanation

(1) Outline of functions:

• Outputs a linkage list to the specified list file.

• If the parameter "#" is specified, the list file is output to the standard output device.

• If no PRINT option or subcommand is specified, or if the NOPRINT option or
subcommand is specified, the linkage list will not be output.

• If no file type is specified with the list file name, the Linkage Editor will
automatically assume this to be ".map."

• On the contents of the linkage list, see section 6.1, "Linkage Lists."

(2) Restrictions in use:

• No parameters may be specified with the NOPRINT option or subcommand.

Examples -PRINT=linkage

Outputs a linkage list to list file "linkage.map."

PRINT∆earth.prn

Outputs a linkage list to list file "earth.prn."

62

4.3.5 EXCLUDE-Excludes Modules from Linking EXCLUDE

Format Name Option Subcommand Negative Form

EXCLUDE EXCLUDE NOEXCLUDE

Parameters None

Function Specifies that modules defining non-referenced import symbols should not be
linked.

Explanation

(1) Outline of functions:

• If an import symbol is not referenced, the module defining it is not linked.

• When the NOEXCLUDE option or subcommand is specified, modules defining
non-referenced import symbols are linked. The defining modules are also linked if the
EXCLUDE option or subcommand is omitted.

(2) Restrictions in use:

• The EXCLUDE subcommand cannot be used after input files have been specified by
the INPUT or EXCHANGE subcommand.

• The EXCLUDE option or subcommand can be specified only when the output load
module is in absolute format. When the multilinkage function is used to create an
absolute load module in the final linkage process, if the default library function is also
used, the modules from the default library will be included in the first linkage process.
If you want the default library to be included in the last linkage process, specify the
NOLIBRARY subcommand for the intermediate linkage processes.

Examples -EXCLUDE

If an import symbol is not referenced, the module defining it is not linked.

63

4.4 Memory Allocation

4.4.1 START-Specifies Start Address and Linkage Order of Sections START

Format Name Option Subcommand Negative Form

START START None

Param-
eters

Option <Section name>[,<section name>...][/[<page address>:]<start address>]

UNIX: [,<section name>[,<section name>...][/[<page address>:]<start address>]...]

MS-
DOS:

<Section name>[,<section name>...][([<page address>:]<start address>)]
[,<section name>[,<section name>...][([<page address>:]<start
address>)]...]

Sub- { /[<page address>:]<start address> }

com- <Section name>[,<section name>...] [{
}]

mand { ([<page address>:]<start address>)}

{ /[<page address>:]<start address> }

[,<section name>[,<section name>...] [{
}]...]

 {([<page address>:]<start address>)}

Function Specifies the order in which sections are linked, and their start addresses.

Explanation

(1) Outline of functions:

• Sections are allocated from the specified address and in the specified order.

• If the start address is not specified and only the section linkage order is specified, and
sections are assigned addresses starting from zero.

• Page address may be specified only for page type modules. If the page address is not
specified, it is assumed to be zero.

• The page address and start address are specified in hexadecimal notation.

• When sections not specified in the parameters are input, those sections are assigned
after the series of sections with the highest specified start address.

• If no START option or subcommand is specified, sections will be allocated to
addresses starting from zero in the order of appearance.

• The START option or subcommand can be specified more than once.

(2) Restrictions in use:

• If the load module to be output is in relocatable format, the START option or
subcommand may not be used.

64

• If a page address is specified for non-page type modules, an error will occur and the
Linkage Editor will stop execution.

• Hexadecimal numbers must start with numbers 0 through 9.

EX: 0ABCD..............proper designation

ABCDincorrect designation

• Page addresses may be assigned in the range from 0 through 0FF (hexadecimal).

• The range of start addresses that may be specified varies with the H Series model.

H8/500 Series: 0 through 0FFFF (hexadecimal)

H8/300 Series: 300HA* 0 through 0FFFFFF (hexadecimal)

Others 0 through 0FFFF (hexadecimal)

H32 Series: 0 through 0FFFFFFFF (hexadecimal)

SH Series: 0 through 0FFFFFFFF (hexadecimal)

Note: *"300HA" indicates the advanced mode of H8/300 Series.

65

Examples -START=CODE, DATA, BSS, STACK

Sections are linked in the order "CODE," "DATA," "BSS," "STACK," and
are allocated to addresses starting from zero.

-START=CONTROL, BANK0, BANK1/OF00

Sections are linked in the order "CONTROL," "BANK0," "BANK1," and
are allocated to addresses starting from 0F00 (hexadecimal).

START∆RAM0, RAM1 (8000), ROM1, ROM2 (1000), ROM0

Sections "RAM0" and "RAM1" are linked in that order and are allocated
addresses starting from 8000 (hexadecimal). Sections "ROM1" and
"ROM2" are linked in that order and are allocated to addresses starting
from 1000 (hexadecimal). Section "ROM0" is allocated to addresses
starting from zero.

66

4.4.2 ENTRY-Specifies Execution Start Address ENTRY

Format Name Option Subcommand Negative Form

ENTRY ENTRY None

Parameters <Export symbol>

Function Specifies the start address for executing a load module.

Explanation

(1) Outline of functions:

• Sets the address value of an export symbol as the execution start address of a load
module to be output.

• If no ENTRY option or subcommand is specified and the output load module format
is absolute, the execution start address becomes the start address of the first code
section in the output load module.

(2) Restrictions in use:

• If an ENTRY option or subcommand is specified more than once, the last specified
address is valid.

Examples -ENTRY=PRG_ENT

The address of export symbol "PRG_ENT" is set as the execution start
address.

ENTRY∆MAIN

The address of export symbol "MAIN" is set as the execution start address.

67

4.4.3 AUTOPAGE-Specifies Autopaging FunctionAUTOPAGE

Format Name Option Subcommand Negative Form

AUTOPAGE AUTOPAGE NOAUTOPAGE

Parameters None

Function Specifies autopaging in assignment of addresses to page type modules.

Explanation

(1) Outline of functions:

• When a page type module is linked, addresses are assigned by automatic paging.

• If the AUTOPAGE option or subcommand is not specified, or if the NOAUTOPAGE
option or subcommand is specified, addresses are not assigned by automatic paging.

(2) Restrictions in use:

• The AUTOPAGE option or subcommand may not be specified when linking non-page
type modules are linked. Such specification will result in an error, and the Linkage
Editor will stop execution.

• If the NOAUTOPAGE option or subcommand is specified when page type modules
are linked, sections may overlap page boundaries. If overlap occurs, the Linkage
Editor displays a warning.

Examples AUTOPAGE

Addresses are assigned by autopaging.

-NOAUTOPAGE

Addresses are assigned without regard to page boundaries.

68

4.4.4 CPU-Specifies Address Check Using a CPU Information File CPU

Format Name Option Subcommand Negative Form

CPU CPU None

Parameters <CPU information file name>

Function Specifies execution of an address check using a CPU information file.

Explanation

(1) Outline of functions:

• The validity of addresses assigned to each section is checked, based on CPU
information. In the following cases the section address assignment is regarded as
invalid, and the Linkage Editor displays a warning. The sections, however, are output
to the load module file without changing the addresses.

• (a) When sections are assigned addresses in areas other than memory.

• (b) When one section is assigned to addresses overlapping memory areas having
different memory types and attributes.

• If no file type is specified with the CPU information file, the Linkage Editor will
automatically assume this to be ".cpu."

(2) Restrictions in use:

• In the following cases the Linkage Editor displays a warning message, and the CPU
option or subcommand is invalid.

• (a) Relocatable format is specified as the load module output format with the
FORM option or subcommand.

• (b) The information format of the CPU information file is invalid.

• (c) A CPU information file is specified for linkage processing of object modules
not for the H8/300 or SH series.

• When a CPU option or subcommand is specified more than once, a warning message
is displayed, and only the last-specified file is valid.

Examples -CPU=cinf

Inputs CPU information file "cinf.cpu."

CPU∆c300.inf

Inputs CPU information file "c300.inf."

69

4.4.5 ROM-Specifies Support of Storing Program in ROM<t>ROM

Format Name Option Subcommand Negative Form

ROM ROM None

Parameters UNIX: <Section 1>/<Section
2>[,<Section 1>/<Section 2>...]

PC: (<Section 1>,<Section
2>)[(<Section 1>,<Section 2>),...]

<Section 1>: section name of
source initialized data area in
ROM

<Section 2>: section name of
destination initialized data area in
RAM

Function Reserves a RAM area for updating initialized data values stored in ROM.

Explanation

(1) Outline of functions:

• In the output load module, a section with the same section size as the specified section
1 is reserved as section 2. Section 2 has the same section attributes as section 1.

• References to symbols declared in section 1 are relocated to addresses in section 2.
Specify a relocatable section as section 1.

• Up to ten pairs of section is 1 and section 2 pairs can be specified.

• For details of the support of storing program in ROM, see section 2.7, "Support of
Storing Program in ROM."

(2) Restrictions in use:

• The ROM option or subcommand cannot be specified when the output load module
has the relocatable format.

• If two sections have the same name and this name is specified as section 1, the section
input first is selected.

• An error occurs if section 1 does not exist.

• A dummy section cannot be specified as section 1.

• When an existing section is specified as section 2, the following conditions must be
satisfied.

(a) The size of section 2 in each unit is 0.

(b) Section 2 is the relocatable section.

(c) Both section 1 and section 2 have the same attribute.

70

• The ROM option and subcommand are available in Linkage Editor Ver. 4 and later.

Examples UNIX:-ROM=D/RAM_SCT

PC:/ROM=(D, RAM_SCT)

Section RAM_SCT, equal in size to section D, is reserved in the output
load module. References to symbols allocated to section D are relocated to
addresses on RAM_SCT.

71

4.5 Execution Control

4.5.1 EXCHANGE-Forcibly Replaces Units EXCHANGE

Format Name Option Subcommand Negative Form

None EXCHANGE None

Parameters <Input file name>[(<unit name>[,<unit name>...])]

Function Replaces units in an input file by units of the same name in the load module being
processed by the Linkage Editor.

Explanation

(1) Outline of functions:

• Units in the specified input file are replaced by units of the same name in the load
module being processed by the Linkage Editor.

• An object module file or load module file may be specified as the input file.

• If a load module is specified as the input file without specifying unit names, all the
units in that load module file will be usable for replacement.

• If no file type is given with the input file name, the Linkage Editor will automatically
assume ".obj" as the file type.

• Replacement of units takes place after all input files have been included. If more than
one EXCHANGE subcommand is specified, units will be replaced in the order of
specification.

(2) Restrictions in use:

• An absolute load module may not be specified. If an absolute load module is
specified, an error will occur, and the file will not be input.

• A library file may not be specified as the input file. If a library file is specified, an
error will occur, and the file will not be input.

Examples EXCHANGE∆datain

Replaces units in the object module file "datain.obj" by units of the same
name in the load module file being processed.

EXCHANGE∆function.rel(tan,atan)

Replaces the units "tan" and "atan" in relocatable load module file
"function.rel" by units of the same name in the load module file being
processed.

72

4.5.2 SUBCOMMAND-Specifies a Subcommand File<t>SUBCOMMAND

Format Name Option Subcommand Negative Form

SUBCOMMAND SUBCOMMAND None

Parameters <Subcommand file name>

Function Specifies a subcommand file for input.

Explanation

(1) Outline of functions:

• Subcommands are input from the specified subcommand file.

• If the SUBCOMMAND option is not specified on the command line, and no input file
is specified there, the Linkage Editor will link modules according to the
subcommands input in interactive mode.

• If the SUBCOMMAND option is not specified on the command line but one or more
input files are specified there, the Linkage Editor will link modules according to the
command line specification.

(2) Restrictions in use:

• When a subcommand and file is specified on the command line together with input
files or other options, the subcommand file is executed as the last option, regardless of
its specification position. For example:

UNIX: lnk in1, in2 - SUB = linkage.sub - FORM = R

 ① ② ③

PC: LNK In1, In2 / SUB = LINKAGE.SUB / FORM = R

 ① ② ③

This command line is interpreted and executed in the order ③, ②, ①. If FORM=A is
specified in linkage.sub, FORM=A is valid (because it is interpreted afterward).

• The SUBCOMMAND subcommand cannot be specified in a subcommand file.

Example. -SUBCOMMAND=linkage.sub

Subcommand file "linkage.sub" is input, and the Linkage

Editor links modules according to the contents of this file.

73

4.5.3 FORM-Specifies Output Load Module File Format FORM

Format Name Option Subcommand Negative Form

FORM FORM None

Parameters {A}

{R}

Function Specifies the output load module file format as either absolute or relocatable.

Explanation

(1) Outline of functions:

• If parameter "A" is specified, the load module file will be output in absolute format.

• If parameter "R" is specified, the load module file will be output in relocatable
format.

• If no FORM option or subcommand is specified, the load module will be output in
absolute format.

(2) Restrictions in use:

• The parameter "R" cannot be specified when the ROM or START option or
subcommand is specified.

Examples -FORM=R

The load module file is output in relocatable format.

FORM∆A

The load module file is output in absolute format.

74

4.5.4 DEBUG-Specifies Output of Debugging Information DEBUG

Format Name Option Subcommand Negative Form

DEBUG DEBUG NODEBUG

Parameters None

Function Specifies incorporation of debugging information in the output load module file.

Explanation

(1) Outline of functions:

• Incorporates debugging information in the output load module file. This information
is required for symbolic debugging using the Simulator/Debugger.

• If no DEBUG option or subcommand is specified, or if the NODEBUG option or
subcommand is specified, debugging information will not be incorporated in the
output load module file.

(2) Restrictions in use:

• If the NOOUTPUT option or subcommand is specified, specification of a DEBUG
option or subcommand has no meaning.

Examples DEBUG

Debugging information is incorporated in the output load module file.

-NODEBUG

Debugging information is not incorporated in the output load module file.

75

4.5.5 END-Specifies End of Subcommand Input END

Format Name Option Subcommand Negative Form

None END None

Parameters None

Function Temporarily ends input of subcommands and begins linkage operation (after which
subcommand input is resumed).

Explanation

(1) Outline of functions:

• Temporarily ends input of subcommands and begins a linkage operation. After the
linkage operation is completed, the Linkage Editor is initialized and subcommand
input is resumed.

• When the multilinkage function is used to perform multiple linkage operations with
one execution of the Linkage Editor, the END subcommand indicates the end of one
linkage process.

• When the multilinkage function is not used, or when specifying the end of the final
linkage process in a multilinkage operation, use the EXIT subcommand in place of
the END subcommand.

(2) Restrictions in use:

• If, for a single linkage process, the END subcommand is specified without specifying
input files, an error will occur.

Example END

Temporarily ends subcommand input and begins a linkage operation.

76

4.5.6 EXIT-Specifies End of Linkage Operation

Format Name OptionSubcommand Negative Form

None EXIT None

Parameters None

Function Ends subcommand input and begins linkage operation (subcommand input is not
resumed).

Explanation Outline of functions:

• Ends subcommand input and begins linkage operation. After the linkage operation is
completed, ends the Linkage Editor execution.

• When execution is controlled from a subcommand file, if no EXIT subcommand is
specified, the Linkage Editor waits for further subcommand input.

• If, for a single linkage process, the EXIT subcommand is specified without specifying
input files, an error will occur.

Example EXIT

• Ends subcommand input and begins linkage operation.

77

4.5.7 ABORT-Specifies Forced End of Linkage Operation<t>ABORT

Format Name Option Subcommand Negative Form

None ABORT None

Parameters None

Function Specifies forced end of linkage operation.

Explanation Outline of functions:

• Forcibly ends Linkage Editor operation.

• The ABORT subcommand is useful to interrupt Linkage Editor operation when a
mistake such as subcommand input mistake has been made.

Example ABORT

Brings Linkage Editor execution to a forced end.

78

4.5.8 ECHO-Specifies Subcommand File Echo-Back<t>ECHO

Format Name Option Subcommand Negative Form

ECHO ECHO NOECHO

Parameters None

Function Can select whether or not to suppress echo-back of subcommands when a subcommand file
is executed.

Explanation Outline of functions:

• The ECHO option or subcommand displays subcommands on the console when a
subcommand file is executed. Subcommands are displayed even if the ECHO option
or subcommand is not specified.

• The NOECHO option or subcommand suppresses display of subcommands on the
console when a subcommand file is executed.

Examples -ECHO

Subcommands executed will be displayed on the console when a
subcommand file is executed.

79

4.5.9 UDF - Specifies Display of Undefined Symbols UDF

Format Name Option Subcommand Negative Form

UDF UDF NOUDF

Parameters None

Function Specifies whether to display a warning message when an undefined symbol
remains.

Explanation

(1) Outline of functions:

• Warning message 105 is displayed if an undefined symbol remains when a
relocatable load module is created. This message is also displayed if an undefined
symbol remains when the UDF option or subcommand is omitted.

• When the NOUDF option or subcommand is specified, a warning message is not
displayed if there is an undefined symbol when a relocatable load module is created.

(2) Restrictions in use:

• The NOUDF option or subcommand is ignored when an absolute load module is
created.

Examples -FORM=R-NOUDF

A warning message will not be displayed if there is an undefined symbol
when the relocatable load module is created.

80

4.6 Debugging Support

4.6.1 LIST-Displays Interim Linkage Information LIST

Format Name Option Subcommand Negative Form

None LIST None

Parameters {M}

{U}

{X}

Function Displays linkage information of an input file.

Explanation

(1) Outline of functions:

• Outputs linkage information to the standard output device concerning the files
currently being input.

• Content of the displayed information depends on the specified parameters, as follows.

M........Displays a link map

U........Displays unresolved import symbols

X........Displays export symbols

(2) Restrictions in use:

• To display linkage information according to the input files, the information displayed
is restricted as follows.

• When parameter M is specified.

The start address of a relocatable section is always 0.

• When parameter U is specified

The display shows import symbols for which there is no corresponding export symbol in the
input files specified in INPUT subcommands up to the location of the LIST subcommand.

Examples LIST∆M

Displays a linkage map for the load module being processed.

LIST∆U

Displays unresolved import symbols in the load module being processed.

81

4.6.2 RENAME-Changes the Names of Units, Export Symbols, or Import Symbols

RENAME

Format Name Option Subcommand Negative Form

None RENAME None

Parameters {UN=<unit name 1> (<unit name 2>)}

{ER=<unit name>.<import symbol 1>}

{(<import symbol 2>)}

{ED=<unit name>.<export symbol 1>}

{(<export symbol 2>)}

{UN=<unit name 1>(<unit name 2>)}

{ER=<unit name>.<import symbol 1>}

{ , } { (<import symbol 2>) } ...}

{ED=<unit name>.<export symbol 1>}

{(<export symbol 2>)}

Function Changes the names of units, export symbols or import symbols in input files.

Explanation (1) Outline of functions:

• Changes the names of each specified unit, export symbol, or import symbol in input
files to the name designated in parentheses ("()").

• In the case of a unit, the unit name specified following "UN=" is changed to the unit
name in parentheses.

• In the case of an import symbol, the symbol name specified following "ER=" is
changed to the name in parentheses. The import symbol name is preceded by the
name of the unit in which the symbol exists, and is set off from the unit name by a
period (.).

• In the case of an export symbol, the symbol name specified following "ED=" is
changed to the name in parentheses. The export symbol name is preceded by the name
of the unit in which the symbol exists, and is set off from the unit name by a period
(.).

82

Explanation (2) Restrictions in use:

• The RENAME subcommand will affect the input files specified only in the first
INPUT subcommand after the RENAME subcommand.

• Only the following five subcommands may be specified immediately after the
RENAME subcommand:

(a) INPUT subcommand

(b) EXCHANGE subcommand

(c) RENAME subcommand

(d) DELETE subcommand

(e) ABORT subcommand

When more than one RENAME subcommands are specified, or when RENAME and
DELETE subcommands are specified together, operation takes place in the order of
specification.

Examples RENAME∆UN=datalist (dataIst1)

Unit "datalist" is renamed as "data1st1."

RENAME∆ED=cnt1.TRUNK (P_TRUNK),ER=cnt11.REC_DATA
(RECV_DATA)

Export symbol "TRUNK" in unit "cntl" is changed to "P_TRUNK."
Likewise, import symbol "REC_DATA" in unit "cntl1" is changed to
"RECV_DATA."

83

4.6.3 DELETE-Deletes Units or Export Symbols DELETE

Format Name Option Subcommand Negative Form

None DELETE None

Parameters {UN=<unit name>}

{ED=<unit name>.<export symbol name>}

(,{UN=<unit name>}...)

[,{ED=<unit name>.<export symbol name>} ...]

Function Specifies deletion of units or export symbols from input files.

Explanation

(1) Outline of functions:

• Deletes the specified units or export symbols from input files.

• In the case of a unit, the unit specified following "UN=" is deleted.

• In the case of an export symbol, the symbol specified following "ED=" is deleted. The
export symbol name is set off by a period (.) from the name of the unit in which it
exists.

(2) Restrictions in use:

• The DELETE subcommand will not affect input files already specified. This
subcommand must be specified prior to specification of the input files in which the
name of the unit or externally defined symbol to be deleted is found.

• The following five subcommands may be specified immediately after the DELETE
subcommand:

(a) INPUT subcommand

(b) EXCHANGE subcommand

(c) DELETE subcommand

(d) RENAME subcommand

(e) ABORT subcommand

• When RENAME and DELETE subcommands are specified together, operation takes
place in the order of specification.

Examples DELETE∆UN=snap_unit

Deletes unit "snap_unit."

DELETE∆UN=dummy,ED=main.DUMMY_ENTER

84

Deletes unit "dummy." Also, deletes export symbol "DUMMY_ENTER"
in unit "main."

85

4.6.4 DEFINE-Forcibly Defines an Import Symbol DEFINE

Format Name Option Subcommand Negative Form

DEFINE DEFINE None

Param-
eter

Option
UNIX: <Import symbol name>/

{<numeric value>}
{[<page address>:]<address>}
{<export symbol name>}

{<numeric value>}

[,<import symbol name>/ {[<page address>:]<address>}...]

{<export symbol name>}

MS- {<numeric value>}

DOS: <Import symbol name>({[<page address>:]<address>})

{<export symbol name>}

{<numeric value>}

[,<Import symbol name>({[<page address>:]<address>})...]

{<export symbol name>}

Sub- {/}{<numeric value>}{ }

com- <Import symbol name> { } {[<page address>:]<address>}{ }

mand {(}{<export symbol name>} {)}\

{/}{<numeric value>}{ }

[,<import symbol name> {[<pageaddress>:]<address>}...]

{(}{<export symbol name>}{)}

Note: Specify a right parenthesis ")" only if the preceding numeric value, address, or externally
defined symbol name is delimited by a left parenthesis "(."

Function Specifies forced definition of import symbols.

Explanation

(1) Outline of functions:

• Forcibly defines each specified import symbol with the specified numeric value,
address or export symbol value.

• Page address can be specified only for page type modules. If the page address is not
specified, zero is assumed.

• Numeric values, page addresses, and addresses are specified in hexadecimal notation.

86

(2) Restrictions in use:

• When the assigned value is that of an export symbol, it must be one that has already
been defined.

• If a page address is specified for non-page type modules, an error will occur and the
Linkage Editor will stop execution.

• Hexadecimal numbers must start with the numbers 0 through 9.

• The range of page addresses is 0 through 0FF (hexadecimal).

• The range of addresses that may be specified varies with the H Series model.

H8/500 Series: 0 through 0FFFF (hexadecimal)

H8/300 Series: 300HA* 0 through 0FFFFFF (hexadecimal)

Others 0 through 0FFFF (hexadecimal)

H32 Series: 0 through 0FFFFFFFF (hexadecimal)

SH Series: 0 through 0FFFFFFFF (hexadecimal)

Note: * "300HA" indicates the advanced mode of H8/300 Series.

Explanation

• Values defined by the DEFINE subcommand cannot be used in relocatable load
modules.

• When the EXCLUDE option or subcommand is specified, non-referenced import
symbols specified by the DEFINE subcommand are ignored.

Examples -DEFINE=PORT10/0E8

Defines undefined import symbol "PORT10" as a symbol having the value
0E8 (hexadecimal).

DEFINE∆MAIN_RTN (PRG_EXIT)

Defines undefined import symbol "MAIN_RTN" as having the same value
as export symbol "PRG_EXIT."

87

Section 5 Input to the Linkage Editor

5.1 Object Module Files

The Linkage Editor can accept as input the object module files output by the H Series C Compiler or
Assembler.

5.2 Relocatable Load Module Files

Relocatable load module files output by this Linkage Editor may be re-input. Absolute load module
files may not be re-input.

5.3 Library Files

Library files created using the H Series Librarian may be input to the Linkage Editor. Modules in
library files may be specified individually, or the LIBRARY option or subcommand may be used to
input modules contained in library files automatically. See further under section 4.3.3,
"LIBRARY-Specifies Library Files."

5.4 Default Library Files

A library file created by the H Series Librarian can be input implicitly without specifying the
LIBRARY option or subcommand. This is called the default library function.

A default library is input when the following three conditions are satisfied:

• A logical name reserved as a default library name is assigned to the library file before the
library files is input to the Linkage Editor.

• The NOLIBRARY option or subcommand is not specified.

• An unresolved import symbol remains after the libraries specified by the LIBRARY option
or subcommand have been searched.

The Linkage Editor inputs the library files assigned to the following logical names in the order 1, 2, 3,
and searches for modules that define unresolved import symbols.

1. HLNK_LIBRARY 1

2. HLNK_LIBRARY 2

3. HLNK_LIBRARY 3

88

The user can specify library files corresponding to these logical names by using the setenv command
for UNIX system and the SET command for PC system of the operating system of the operating
system.

EXAMPLE:

UNIX system:

% setenv HLNK_LIBRARY1 user.lib

PC system:

> SET HLNK_LIBRARY1=USER.LIB

User library user.lib is assigned to the logical name HLNK_LIBRARY1.

89

Section 6 Output from the Linkage Editor

6.1 Linkage Lists

When the PRINT option or subcommand or the LIST subcommand is specified, the contents of a
load module file being processed are output to the standard output device or to a file, as follows.

(1) Input information (PRINT only)

(2) Link map list (PRINT or LIST M)

(3) Export symbol list (PRINT or LIST X)

(4) Unresolved import list (PRINT or LIST U)

(5) RENAME/DELETE list (PRINT only)

(6) DEFINE list (PRINT only)

The formats in which these lists are output are shown below.

90

(1) Input Information: Information input as command line parameters, interactive mode
subcommands, or subcommand files is output in the format shown in figure 6-1.

Figure 6-1 Typical Output of Input Information

① Shows the character string input on the command line.

② Shows the character strings input as subcommands in interactive mode, or input from a
subcommand file. Also shows error messages or informative messages in response to this
input.

91

(2) Link Map List:

(a) When the PRINT option or subcommand is specified, information on each section is
output in the format shown in figure 6-2.

Figure 6-2 Typical Link Map List Output Using PRINT

92

(b) When parameter "M" is specified in the LIST subcommand, information on each file is
output in the format shown in figure 6-3.

Figure 6-3 Typical Link Map List Output Using LIST

① Shows section names in the order in which sections are linked.

② Shows the attribute as follows.

DATA: data or common section

CODE: code section

DUMMY: dummy section

STACK: stack section

RESV: reserved

UNDEF: undefined
***** : unused

③ Shows the following link attributes.

SHR: common link

NOSHR: simple link

DUMMY: dummy link

UNDEF: link attribute undefined
***** : unused

93

④ Displayed for a section related to the support of storing program in ROM.

ROM ROM section (section 1 in the ROM option or subcommand)

RAM RAM section (section 2 in the ROM option or subcommand)

94

⑤ Shows start address and end address of the object in hexadecimal notation. In the case of
page type modules, the page address and address are separated by a colon (:) as follows.

⑥ Shows size of object in hexadecimal notation.

⑦ Shows unit name.

⑧ Shows module name.

⑨ Shows start address and end address of the section.In the case of page type modules, the page
address and address are separated by a colon (:) as follows.

⑩ Shows total size of the section.

(11) Shows the file name (LIST only).

95

(3) Export Symbols List: This list is output when there are export symbols.

(a) When the PRINT option or subcommand is specified, a list is output in the format shown
in figure 6-4.

Figure 6-4 Typical Export Symbol List Output Using PRINT

(b) When paramenter "X" is specified by the LIST subcommand, a list is output as shown in
figure 6-5.

Figure 6-5 Typical Export Symbol List Output Using LIST

① Shows export symbols in alphabetical order.

② Shows the value of each export symbol in hexadecimal notation. In the case of page type
modules, the page address and address are separated by a colon (:) as follows.

96

③ Shows the type of symbol as follows.

DAT: data/variable name

EQU: symbol name defined as constant value

ENT: entry name

*** : undefined/unused

(4) Unresolved Import Symbol List: This list is output only when there are undefined symbols
remain.

(a) When the PRINT option or subcommand is specified, a list is output in the format shown
in figure 6-6.

Figure 6-6 Typical Unresolved Import Symbol List Output Using PRINT

(b) When parameter "U" is specified by the LIST command, a list is output as shown in
figure 6-7.

97

Figure 6-7 Typical Unresolved Import Symbol List Output Using LIST

① Shows name of file containing undefined symbol.

② Shows name of module containing undefined symbol.

③ Shows name of unit containing undefined symbol.

④ Shows undefined symbol names in alphabetical order.

⑤ Shows undefined symbol attributes as follows.

DAT: data/variable name

ENT: entry name

*** : undefined/unused

98

(5) RENAME/DELETE List: When RENAME or DELETE subcommands are used to change
the name of units or symbols or delete units or symbols, specification of the PRINT option or
subcommand results in output of a list in the format shown in figure 6-8.

Figure 6-8 Typical RENAME/DELETE List

① Shows names of files containing the unit or symbol to be renamed or deleted in the order
input.

② Shows the unit name. If the unit was renamed or deleted, the old unit name is shown.

③ Shows the name before changed.

④ Shows the name after changed. No name is shown in case of a DELETE.

⑤ Shows the type specified by subcommand, as follows.

UN: unit name

ED: export symbol

ER: import symbol

⑥ Shows whether the subcommand was a RENAME or a DELETE.

99

(6) DEFINE List: When an import symbol is forcibly defined using the DEFINE option or
subcommand, specification of the PRINT option or subcommand results in output of a list in
the format shown in figure 6-9.

Figure 6-9 Typical DEFINE List

① Shows forcibly defined symbol name.

② Shows the name of the export symbol which is specified.

③ Shows the value of the defined symbol in hexadecimal notation. In the case of page type
modules, the page address and address are separated by a colon (:) as follows.

6.2 Load Module File

The Linkage Editor links a number of object modules or relocatable load module files and
outputs them as a single load module file. Depending on the specification made with the FORM
option or subcommand, the load module file is output in either absolute or relocatable format. A
detailed explanation of the FORM option and subcommand is given in section 4.5.3, "FORM-
Specifies Output Load Module File Format."

100

6.3 Console Messages

The Linkage Editor shows the following messages on the standard output device.

(1) Opening Message: This is displayed when Linkage Editor command name "LNK" is input.

H SERIES LINKAGE EDITOR Ver. 5.0B

Copyright (C) Hitachi, Ltd. 1989

Licensed Material of Hitachi, Ltd.

(2) Normal Completion Message: This is displayed when the load module file editing has been
completed normally.

LINKAGE EDITOR COMPLETED

(3) Abort Message: This is displayed when the load module file editing is ended before
completion, due either to an error or to specification of an ABORT subcommand.

LINKAGE EDITOR ABORT

(4) Subcommand Request Prompt: In interactive mode, a colon (:) indicates that the Linkage
Editor is waiting for subcommand input.

:

(5) Subcommand Continuation Prompt: When continuation of a subcommand is specified
during interactive mode execution, a hyphen (-) indicates that the Linkage Editor is waiting
for continuation of the input.

-

101

(6) Informative Message: Informative messages indicate the result of Linkage Editor
processing, for example when units are replaced or when an export symbol is renamed. The
messages are output in the following format.

A list of informative messages is given in table 6-1.

Table 6-1 List of Informative Messages

No. (Informative message)

(Meaning of message)

1 <Unit name 1> IS REPLACED WITH <unit name 2>(<file name>)

<Unit name 1> has been replaced by <unit name 2> from <file name>.

2 <External name 1> IS RENAMED TO <external name 2>

Name of <external name 1> has been changed to that of <external name 2>.

3 <External name> IS DELETED

<External name> has been deleted.

4 DUPLICATE UNIT-(<unit name>) IN (<file name>) IS DELETED

More than one units of the same name <unit name> have been found, and the unit of that name in
<file name> has been deleted.

5 <External name> CANNOT DEFINED

<External name> could not be found, and therefore could not be forcibly defined.

6 <External name>/<unit name> CANNOT RENAMED

<External name> or <unit name> could not be found, and therefore could not be renamed.

7 <Externally defined name>/<unit name> CANNOT DELETED

<Externally defined name> or <unit name> could not be found, and therefore could not be deleted.

8 <Unit name> CANNOT REPLACED

<Unit name> could not be found, and therefore could not be replaced.

102

Section 7 Error Messages

When options or subcommands are specified incorrectly, or if an error is detected during the
linkage process, an error message is output. The Linkage Editor outputs error messages in the
following form.

Error Number: The first digit indicates the level of the error (xx represent the second and third digits).

1xx: Warning Processing of the particular module is skipped.

2xx: Error In the case of input from the command line or a subcommand file, processing is
stopped. In interactive mode, processing of the subcommand is stopped when the
error is detected, and the next subcommand is requested.

3xx: Fatal error Processing is stopped.

A list of errors is given below in tables 7-1, 7-2, and 7-3 in the following format.

Error Number Error Message Additional Information

Nature of Error

Linkage Editor actions and corrective actions

Notation used in table: --: No additional information

103

Table 7-1 List of Warning Messages

104

101 DUPLICATE OPTION/SUBCOMAND Option/subcommand
name

The same option or subcommand was specified more than
once.

Only the last-specified option or subcommand is valid.

102 TOO LONG IDENTIFIER UP TO 32 Name

Name of a unit, section, or symbol over 32 characters was
specified.

Name is valid up to 32nd character. The rest is ignored.

104 DUPLICATE SYMBOL Symbol name

The same export symbol is defined more than once.

Only the first appearing symbol is valid.

105 UNDEFINED EXTERNAL SYMBOL Unit name, Symbol
name

An undefined symbol was imported.

The import is invalid, and zero is assumed as the value.

106 REDEFINED SYMBOL Symbol name

A previously defined symbol was defined using the DEFINE
subcommand or option.

The DEFINE specification is invalid.

107 SECTION ATTRIBUTE MISMATCH Section name

Two sections with the same name but different attributes or
boundary alignment were input.

The sections are processed as separate sections.

108* RELOCATION SIZE OVERFLOW Unit name, Section
name-offset value

Relocation result exceeds the relocation size.

Result is rounded off to fit the relocation size.

109 ENTRY POINT MULTIPLY DEFINED --

Execution start addresses were specified in more than one
object modules.

The first appearing execution start address is valid.

110 SECTION ADDRESS EXCEED PAGE BOUNDARY Section name

A section overlaps a page boundary.

Specify AUTOPAGE option or subcommand.

111 DUPLICATE SECTION NAME Section name

Same section name was specified in options or subcommands.

105

The first section is valid.

112 ILLEGAL CPU INFORMATION FILE FORMAT --

The file format of the CPU information file is not correct.

The CPU option or subcommand specification is invalid.

106

Table 7-1 List of Warning Messages (cont)

113 CONFLICTING DEVICE TYPE --

The specified CPU information file is for a different CPU from
that for which the input object module is intended.

The CPU information file specification is invalid.

114 SECTION IS NOT IN SAME MEMORY AREA Section name:
xxxx-yyyy

A section overlaps different memory areas. Addresses xxxx to
yyyy are not allocated to one memory area.

The section is output to the load module without change.

115 INACCESSIBLE ADDRESS RANGE Section name

A section was assigned to a memory area that cannot be used.

The section is output to the load module without change.

116 INVALID CPU OPTION/SUBCOMMAND --

The CPU option or subcommand was specified for a relocatable
load module file.

The CPU option or subcommand specification is invalid.

117 ADDRESS SPACE DUPLICATE --

Sections overlap.

The load module is output as is.

118 INVALID UDF OPTION/SUBCOMMAND --

The NOUDF option or subcommand was specified for an
absolute output load module.

The NOUDF option or subcommand is invalid.

119 RELOCATION VALUE IS ODD Unit name, section
name-offset value

Relocation value for the displacement is odd.

The LSB is rounded down to fit to the relocation size.

Note:* Warning message 108 is output if a data size designated at assembly or compile is
exceeded as a result of address resolution by the Linkage Editor.

Example:

Assembler source program (example.src)

107

.section secl, code In this example the value assigned

label .equ $ to the label during linking is 1000,

. which exceeds the 1-byte data size,

. and therefore warning message 108

. is output. The upper byte (10) of

.data.b label ; 1 byte data 1000 is disregarded, leaving 0

. (zero) as the data value.

Assembly and linkage commands

asm8 example

lnk example-start=secl/1000

108

Table 7-2 List of Error Messages

201 ILLEGAL SUBCOMMAND/OPTION --

An illegal subcommand (or option) was specified.

Specify a valid subcommand (or option).

202 SYNTAX ERROR --

Syntax of the specified subcommand and (or option) is incorrect.

Check the syntax and re-specify the subcommand (or option).

203 TOO LONG SUBCOMMAND LINE --

Length of the subcommand entry exceeds 255 characters.

Re-specify, keeping the length within 255 characters.

204 ILLEGAL SUBCOMMAND SEQUENCE --

Order of subcommand specification is invalid.

Check the order of subcommand specification and re-specify.

207 ILLEGAL SECTION NAME Section name

The specified section name is invalid.

Specify a proper section name.

208 ILLEGAL SYMBOL NAME Symbol name

The specified symbol name is invalid.

Specify a proper symbol name.

210 TOO MANY INPUT FILES --

Attempt was made to input more than 256 input files at one time.

Create a relocatable load module file, then specify the remaining input files by re-inputting
the load module file.

211 CANNOT FOUND FILE File name

The specified file cannot be found.

Check the specified file name, then re-specify.

212 CANNOT FOUND UNIT Unit name

The specified unit cannot be found.

Check the specified unit name, then re-specify.

213 CANNOT FOUND MODULE Module name

The specified module cannot be found.

Check the specified module name, then re-specify.

214 DUPLICATE START ADDRESS SPECIFIED --

The same start address was specified more than once.

Change the start address, then re-input.

109

110

Table 7-2 List of Error Messages (cont)

216 PAGE ADDRESS EXCEEDED --

A page address exceeds the permitted range.

Check the page address and re-specify.

217 SUBCOMMAND COMMAND IN SUBCOMMAND FILE --

The SUBCOMMAND subcommand appeared in a subcommand file.

Remove the SUBCOMMAND subcommand from the subcommand file.

219 INVALID ADDRESS address

The specified address exceeds the permitted range.

The specified address exceeds the address range of the specified device. Check the value of the
specified address, then re-execute.

220 TOO MANY ROM COMMANDS --

More than 10 pairs of section names were specified in a ROM subcommand.

Specify 10 pairs or less.

Table 7-3 List of Fatal Error Messages

301 ILLEGAL COMMAND PARAMETER --

An improper command parameter was specified.

Check the command parameters and re-execute.

302 CANNOT OPEN FILE File name

The file cannot be opened.

Check the specified file name. If the file name is correct, the disk may be full, or there may be a
disk hardware problem. After checking the problem, re-execute.

303 CANNOT READ INPUT FILE File name

The file cannot be input.

Check the specified file name. If the file name is correct, the disk may be full, or there may be a
disk hardware problem. After checking the problem, re-execute.

304 CANNOT WRITE OUTPUT FILE File name

The file cannot be output.

Check the specified file name. If the file name is correct, the disk may be full, or there may be a
disk hardware problem. After checking the problem, re-execute.

305 CANNOT CLOSE FILE File name

The file cannot be closed.

Check the specified file name. If the file name is correct, the disk may be full, or there may be a
disk hardware problem. After checking the problem, re-execute.

111

Table 7-2 List of Error Messages (cont)

306 ILLEGAL FILE FORMAT File name

The specified file format is incorrect.

Check the file contents and specified file name, then
re-execute. This message is output when the object file format
is illegal, for example because there are two or more import
symbols with the same name in the same unit, or two external
symbol names were made identical by the RENAME
subcommand.

307 ILLEGAL RECORD FORMAT File name

There is an illegal record in the specified file, or division by
zero occurred.

Check the source program contents. Re-assemble or
re-compile, then re- execute

308 SECTION ADDRESS OVERFLOW Section name of the specified device

The address allocated to a section exceeds the allowable
range.

The address allocated to the section exceeds the address
range of the specified device.

Change the section start address or rearrange the user
program, then re-execute.

309 ADDRESS OVERFLOW --

The specified address exceeds the address range allowed for
the particular CPU.

Check the specified address, then re-execute.

310 MEMORY OVERFLOW --

There is no space remaining in the Linkage Editor's usable
memory.

Expand the memory or alter the user program, then
re-execute.

311 PROGRAM ERROR nnn

There is an error in the Linkage Editor program.

The Linkage Editor is inoperable. Check the program error
number (nnn), then contact your Hitachi representative.

312 ILLEGAL START ADDRESS ALIGNMENT Address

The specified address conflicts with the boundary alignment
number of the object module.

Check the boundary alignment number of the object module,
then re-execute.

112

314 CANNOT FOUND SECTION Section name

The specified section name cannot be found.

Check the section name, then re-specify.

319 AUTOPAGE SPECIFIED AT NON-PAGE TYPE --

The AUTOPAGE option/subcommand was specified when
non-page type files were input.

Check the input file contents, then re-specify.

113

Table 7-3 List of Fatal Error Messages (cont)

321 PAGE ADDRESS OVERFLOW --

The page address overflows the allowable range

Change the section start address or the user program so that the page address will be
within the allowable range of 0-0FF (hexadecimal), then re-execute.

322 PAGE ADDRESS SPECIFIED AT NON-PAGE TYPE --

For a non-page type input file, a page address was specified with the START or DEFINE
option/subcommand.

Check the specified file name and option or subcommand content, then re-execute.

323 SECTION SPECIFIED AT ROM OPTION Section name

/SUBCOMMAND DOES NOT EXIST

A section specified in a ROM command does not exist.

Check the section name, and specify again.

325 ILLEGAL START SECTION Section name

A section specified by a START command has an illegal attribute.

Check the section attributes, and re-specify.

326 CANNOT READ --

Input failed from a file (including the standard input device).

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

327 SYMBOL ADDRESS OVERFLOW Symbol name

The address assigned to a symbol exceeded the permitted range for the specified device.

Change the section start address or rearrange the user program, then re-execute.

328 ILLEGAL ROM SECTION Section name

Section 2 specified in a ROM subcommand or option is invalid.

The size of section 2 is not 0, section 2 is the absolute section or the attribute of section 2
is different from that of section 1. Check the size and attribute of section 2, and re-specify.

114

Section 8 Restrictions

Restrictions on the Linkage Editor are shown in table 8-1. If the numerical restrictions are
exceeded, linkage operations cannot be performed.

Table 8-1 Restrictions on Linkage Editor Processing

No. Item Restrictions Remarks

1 Number of input files Max 256

2 Input file formats • Object module file output by
assembler or compiler

• Relocatable load module file

• Library file created using
librarian

3 Address/notation Hexadecimal only H8/300 Series:
(300HA*:0-0FFFFFF
(Others:0-0FFFF

Range of specification varies with
H Series model

H8/500 Series: 0-0FFFF
H32 Series: 0-
0FFFFFFFF
SH Series: 0-0FFFFFFFF

4 Names of modules,
units, sections,
symbols

Up to 32 characters

5 Length of options or
subcommands

Up to 255 characters

6 Number of modules,
units, sections, export
symbols, import
symbols

Max 65,535 Assumes no prior
restrictions on memory of
system on which Linkage
Editor is executed.

Note: * "300HA" indicates the advanced mode of H8/300 Series.

115

Section 9 Object Format Conversion

In order for the load modules output by the Linkage Editor to be input into an emulator or
PROM programmer, they must first be converted to S-type object format using the Object
Format Converter.

9.1 Executing the Object Format Conversion

The command line format for starting the Object Format Converter is as follows.

cnvs ∆<Input file name>[∆<output file name>] RET

Command Name: The Object Format Converter is started up by specifying the command
"cnvs."

Input File Name: The name of an absolute-format load module file to be input to the Object
Format Converter is specified. Relocatable load module files cannot be specified.

If the file type is omitted from the file name, the Object Format Converter automatically
assumes this to be ".abs" when it inputs the file.

Output File Name: The name of the S-type object file to be output by the Object Format
Converter is specified. If the file type is omitted from the file name, the Object Format
Converter automatically assumes this to be ".mot" when it outputs the file.

Examples of command line specification are given below.

% cnvs ∆progl.lmd ∆progl.sty RET........ ①

% cnvs ∆prog1 ∆prog1 RET................ ②

① File "prog1.lmd" is input, and file "progl.sty" is output.

② File "prog1.abs" is input, and file "prog1.mot" is output.

The S-type object format is shown in figure 9-1.

116

Figure 9-1 S-Type Object Format

117

Figure 9-1 S-Type Object Format (cont)

118

9.2 Error Messages

When errors are made in command specification, or when an error is detected during the
conversion process, the Object Format Converter outputs error messages in the following format.

A list of error messages is given below in table 9-1 in the following format.

Error Number Error Message Additional Information

Nature of Error

Converter actions and corrective actions

Notation used in table: --: No additional information

119

Table 9-1 Object Format Converter Error Messages

301 INVALID COMMAND PARAMETER --

An improper command parameter was specified.

Check the command parameters and re-execute.

302 FILE NOT FOUND File name

The specified file cannot be found.

Check the directory and the specified file name, then re-execute.

303 CANNOT OPEN FILE File name

File cannot be opened.

Check the specified file name. If the file name is correct, the disk may be full, or there
may be a disk hardware problem. After checking the problem, re-execute.

304 CANNOT READ FILE File name

File cannot be input.

Check the specified file name. If the file name is correct, there may be a disk hardware
problem. After checking the problem, re-execute.

305 CANNOT WRITE FILE File name

File cannot be output.

Check the specified file name. If the file name is correct, the disk may be full, or there
may be a disk hardware problem. After checking the problem, re-execute.

306 CANNOT CLOSE FILE File name

File cannot be closed.

Check the specified file name. If the file name is correct, the disk may be full, or there
may be a disk hardware problem. After checking the problem, re-execute.

307 ILLEGAL FILE FORMAT File name

The specified file format is incorrect.

Check the file contents, then re-execute.

308 ILLEGAL FILE NAME File name

An illegal file name was specified.

Specify a legal file name.

309 MEMORY OVERFLOW --

There is insufficient memory available for use by the Object Format Converter.

Expand the memory or revise the user program, then re-execute.

120

Appendix A Example of Use of Linkage Editor

In this sample application, the 11 object modules and one library file shown in table A-1 are
input into the Linkage Editor.

Table A-1 List of Input Files

No. File Name Type of File

1 main.obj Object module file

2 init.obj

3 cmndanl.obj

4 cmndprc.obj

5 table.obj

6 term.obj

7 keyin.obj

8 file.obj

9 printer.obj

10 display.obj

11 commu.obj

12 function.lib Library file

Library file "function.lib" consists of the 14 modules listed in table A-2.

121

Table A-2 List of Modules in Library File

No. Module Name

1 mvdata

2 upshft

3 comp

4 expr

5 rmargin

6 lmargin

7 sum

8 number

9 zerosprs

10 ascbin

11 binasc

12 cnvbcd

13 portio

14 dos

Linkage Execution:Input the following command to execute module linkage. In this example,
subcommands are input from subcommand file "exlink.sub," and execution is controlled by
these subcommands.

lnk∆-SUBCOMMAND=exlink.sub RET

The contents of subcommand file "exlink.sub" are shown in figure A-1.

122

Figure A-1 Subcommand File "exlink.sub"

As figure A-1 shows, two linkage processes are carried out, using the multilinkage function. In
the first linkage process, six object module files and the library file are input, and relocatable
load module file "program1.rel" and linkage list "program1.map" are output. In the second
linkage process, load module file "program1.rel" is re-input, and the remaining object module
files are input. The output is absolute load module file "example.abs" and linkage list
"example.map."

Linkage list, "program1.map" output in the first linkage process is shown in figure A-2. Linkage
list "example.map" output in the second linkage process is shown in figure A-3.

123

Figure A-2 Linkage List "program1.map" (Input Information)

124

Figure A-2 Linkage List "program1.map" (Link Map List)

125

Figure A-2 Linkage List "program1.map" (Link Map List) (cont)

126

Figure A-2 Linkage List "program1.map" (Export Symbol List)

127

Figure A-2 Linkage List "program1.map" (Undersolved Import Symbol List)

128

Figure A-3 Linkage List "example.map" (Input Information)

129

Figure A-3 Linkage List "example.map" (Link Map List)

130

Figure A-3 Linkage List "example.map" (Link Map List) (cont)

131

Figure A-3 Linkage List "example.map" (Link Map List) (cont)

132

Figure A-3 Linkage List "example.map" (Export Symbol List)

	Section 1 Overview
	1.1 Linkage Editor Functions
	1.2 Object Module and Load Module
	1.3 Unit and Section

	Section 2 Linkage Editor Functions
	2.1 Module Linkage
	2.2 Address Resolution
	2.3 Load Module File Re-Input
	2.4 Multilinkage
	2.5 Debugging Support
	2.6 Address Check
	2.7 Support of Storing Program in ROM

	Section 3 Executing the Linkage Editor
	3.1 Command Line Format
	3.2 Executing by Command Line
	3.3 Controlling by Subcommands
	3.4 Linkage Editor Termination

	Section 4 Linkage Editor Options and Subcommands
	4.1 Option and Subcommand Formats
	4.2 List of Options and Subcommands
	4.3 File Control
	4.4 Memory Allocation
	4.5 Execution Control
	4.6 Debugging Support

	Section 5 Input to the Linkage Editor
	5.1 Object Module Files
	5.2 Relocatable Load Module Files
	5.3 Library Files
	5.4 Default Library Files

	Section 6 Output from the Linkage Editor
	6.1 Linkage Lists
	6.2 Load Module File
	6.3 Console Messages

	Section 7 Error Messages
	Section 8 Restrictions
	Section 9 Object Format Conversion
	9.1 Executing the Object Format Conversion
	9.2 Error Messages

	Appendix A Example of Use of Linkage Editor

