
1

Hitachi Microcomputer Development Environment System

H8S, H8/300 Series

Cross Assembler

Users' Manual

HITACHI

2

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole
or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from accidents
or any other reasons during operation of the user’s unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the characteristics
and performance of Hitachi’s semiconductor products. Hitachi assumes no responsibility for
any intellectual property claims or other problems that may result from applications based on
the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any third
party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning to
use the products in MEDICAL APPLICATIONS.

3

Preface

This manual describes the cross assembler for the H8S and H8/300 series of Hitachi
microprocessors.

This manual consists of three parts: the Language Guide, which describes the programming
methods supported, the Usage Guide, which describes the use of the cross assembler, and the
Appendices.

Appendix D provides a complete listing of the differences between this version and the previous
version, H8/300 Series Cross Assembler version 3. Users who have used H8/300 Series Cross
Assembler version 3 should refer to this appendix.

When developing software for an H8S or H8/300 series microprocessor, the following manuals
should be used as references.

For details on the instruction set:

· H8S/2600 Series and H8S/2000 Series Programming Manual

· H8/300H Series Programming Manual

· H8/300 Series Programming Manual

· H8/300L Series Programming Manual

For details on related software:

· H8S, H8/300 Series C Compiler User's Manual

· H Series Linkage Editor User's Manual

· H Series Librarian User's Manual

· H8S, H8/300 Series Simulator/Debugger User's Manual

· SYSROF File Converter User's Manual

Notes: 1. MS-DOS is an operating system administrated by Microsoft Corporation.

2. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

4

5

Preface ... 2

Language Guide

Section 1 Overview ... 11
1.1 Features ... 11
1.2 Assembler Overview.. 11

Section 2 Rules for Source Statement Coding.. 13
2.1 Source Statements.. 13

2.1.1 Source Statement Types ... 13
2.1.2 Source Statement Structure... 14
2.1.3 Source Statement Field Syntax ... 15
2.1.4 Continuation Lines ... 17

2.2 Symbol .. 18
2.2.1 Symbol Syntax ... 18
2.2.2 Symbol Types... 19
2.2.3 Symbol Reference .. 20

2.3 Values ... 23
2.3.1 Value Types ... 23
2.3.2 Constants.. 25
2.3.3 Location Counter.. 26

2.4 Expressions.. 27
2.4.1 Expression Elements... 27
2.4.2 Operator Precedence Order... 28
2.4.3 Operator Descriptions... 29
2.4.4 Notes on Operator Usage.. 31

2.5 Character Strings ... 32

Section 3 Programming Overview ... 33
3.1 Section... 33
3.2 External Reference and External Definition... 36

Section 4 Executable Instructions .. 37
4.1 Coding Executable Instructions.. 37
4.2 Executable Instruction Operand Sizes and Addressing Formats.. 37

4.2.1 H8S/2600 Series ... 37
4.2.2 H8S/2000 Series ... 42
4.2.3 H8/300H Series .. 46

Section 5 Assembler Directive... 52
5.1 Assembler Directive Types.. 52
5.2 CPU Directives.. 55

6

5.2.1 .CPU CPU Specification... 55
5.3 Section and Location Counter Directives ... 57

5.3.1 .SECTION Section Declaration .. 57
5.3.2 .ORG Location Counter Value Assignment .. 61
5.3.3 .ALIGN Location Counter Value Boundary Alignment 63

5.4 Symbol Directives ... 64
5.4.1 .EQU Symbol Value Assignment.. 64
5.4.2 .ASSIGN Symbol Value Assignment.. 65
5.4.3 .REG Register Alias Assignment .. 67
5.4.4 .BEQU Bit Data Name Assignment .. 69

5.5 Data Area Allocation Directives .. 71
5.5.1 .DATA Integer Data Allocation.. 71
5.5.2 .DATAB Integer Data Block Allocation ... 72
5.5.3 .SDATA Character String Data Allocation ... 73
5.5.4 .SDATAB Character String Data Block Allocation.. 74
5.5.5 .SDATAC Counted Character String Data Allocation... 75
5.5.6 .SDATAZ Zero Terminated Character String Data Allocation............................ 76
5.5.7 .RES Integer Data Area Allocation... 77
5.5.8 .SRES Character string Data Area Allocation .. 78
5.5.9 .SRESC Counted Character string Data Area Allocation 79
5.5.10 .SRESZ Zero Terminated Character String Data Area Allocation 80

5.6 External Reference and External Definition Directives .. 81
5.6.1 .IMPORT External Reference Symbol Declaration... 81
5.6.2 .EXPORT External Definition Symbol Declaration .. 82
5.6.3 .GLOBAL External Reference and External Definition Symbol Declaration 83

5.7 Object Module Directives .. 85
5.7.1 .OUTPUT Object Module and Debugging Information Output Control 85
5.7.2 .DEBUG Debugging Symbol Information Output Control 87
5.7.3 .LINE Changes the File Name and Line Number of Debugging Information..... 88
5.7.4 .DISPSIZE Displacement Size Specification .. 90

5.8 Assembly Listing Directives .. 93
5.8.1 .PRINT Assembly Listing Output Control .. 93
5.8.2 .LIST Source Program Partial Output Control .. 96
5.8.3 .FORM Listing Size Control... 99
5.8.4 .HEADING Listing Heading Specification ... 101
5.8.5 .PAGE New Page ... 102
5.8.6 .SPACE Blank Line Output .. 103

5.9 Other Directives ... 104
5.9.1 .PROGRAM Object Module Name Specification ... 104
5.9.2 .RADIX Radix Specification .. 105
5.9.3 .END Source Program Termination .. 106

Section 6 File Inclusion Function ...108

7

6.1 Overview of the File Inclusion Function .. 108
6.1.1 File Inclusion.. 108

6.2 File Inclusion Preprocessor Directives ... 110
6.2.1 .INCLUDE File Inclusion... 110

Section 7 Conditional Assembly Function ... 111
7.1 Overview of the Conditional Assembly Function ... 111

7.1.1 Preprocessor Variables ... 111
7.1.2 Conditional Assembly .. 112
7.1.3 Iterated Expansion.. 113
7.1.4 Conditional Iterated Expansion... 114

7.2 Conditional Assembly Preprocessor Directives .. 116
7.2.1 .ASSIGNA Integer Preprocessor Variable Assignment 116
7.2.2 .ASSIGNC Character Preprocessor Variable Assignment 118
7.2.3 .AIF Conditional Assembly ... 120
7.2.4 .AREPEAT Iterated Expansion.. 122
7.2.5 .AWHILE Conditional Iterated Expansion.. 123
7.2.6 .ALIMIT Conditional Iterated Expansion Limit... 125
7.2.7 EXITM Expansion Exit .. 126

Section 8 Macros ... 127
8.1 Overview of the Macro Function ... 127

8.1.1 Macro Definitions and Macro Calls .. 127
8.2 Macro Function Related Preprocessor Directives ... 131

8.2.1 .MACRO Macro Definition .. 131
8.2.2 Macro Body.. 134
8.2.3 Macro Call ... 137
8.2.4 .EXITM Expansion Termination... 139
8.2.5 .LEN Character String Manipulation .. 140
8.2.6 .INSTR Character String Manipulation... 141
8.2.7 .SUBSTR Character String Manipulation ... 143

Section 9 Structured Assembly .. 145
9.1 Overview of Structured Assembly.. 145

9.1.1 Conditional Execution (.IF) .. 145
9.1.2 Execution Selection (.SWITCH)... 147
9.1.3 Iteration (.FOR[U])... 149
9.1.4 Iteration (.WHILE)... 151
9.1.5 Iteration (.REPEAT)... 152
9.1.6 Notes on Structured Assembly.. 154

9.2 Structured Assembly Function Directive.. 155
9.2.1 .IF Conditional Execution... 156
9.2.2 .SWITCH Execution Selection ... 160

8

9.2.3 .FOR[U] Iteration ... 165
9.2.4 .WHILE Iteration ... 170
9.2.5 .REPEAT Iteration ... 174
9.2.6 .BREAK Iteration Termination... 177
9.2.7 .CONTINUE Loop Interrupt and Restart .. 178

Usage Guide

Section 1 Overview..180
1.1 Assembler Positioning ... 180
1.2 I/O Organization.. 181

Section 2 Invoking the Assembler ..182
2.1 Command Format.. 182
2.2 H38CPU Environmental Variable.. 182
2.3 Files Used by the Assembler.. 183
2.4 Value Returned to OS.. 184

Section 3 Command Line Options..185
3.1 Types of Command Line Option.. 185
3.2 Command Line Option Concerning the CPU ... 187

3.2.1 CPU CPU Specification.. 187
3.3 Command Line Options Concerning Object Modules .. 189

3.3.1 [NO]OBJECT Object Module Output Control .. 189
3.3.2 [NO]DEBUG Debugging Information Output Control .. 190
3.3.3 BR_RELATIVE Displacement Size Specification.. 191
3.3.4 [NO]OPTIMIZE Optimization Specification .. 193
3.3.5 [NO]EXCLUDE Information Output Control for Unreferenced External Reference
Symbols.. 195
3.3.6 ABORT Change of Values Returned to OS and Object Output Control at Error
Generation .. 196

3.4 Command Line Options Concerning the Assembly Listing .. 198
3.4.1 [NO]LIST Assembly Listing Output Control .. 198
3.4.2 [NO] SOURCE Source Program Listing Output Control..................................... 200
3.4.3 [NO] CROSS_REFERENCE Cross Reference Listing Output Control............... 201
3.4.4 [NO] SECTION Section Information Listing Output Control.............................. 202
3.4.5 [NO]SHOW Source Program Listing Partial Output Control 203
3.4.6 LINES Listing Lines/Page Specification... 206
3.4.7 COLUMNS Listing Columns/Line Specification .. 207

3.5 Command Line Option Concerning File Inclusion ... 208
3.5.1 INCLUDE Include File Directory Specification ... 208

3.6 Command Line Options Concerning Conditional Assembly .. 210
3.6.1 ASSIGNA Integer Preprocessor Variable Definition... 210

9

3.6.2 ASSIGNC Character Preprocessor Variable Definition....................................... 212
3.7 Command Line Options Concerning Command Line Specification.................................. 214

3.7.1 SUBCOMMAND Subcommand File Specification... 214

Appendix A Limitations .. 216

Appendix B Assembly Listing ... 217
B.1 Structure of an Assembly Listing .. 217
B.2 Source Program Listing... 218
B.3 Cross Reference Listing .. 221
B.4 Section Information Listing... 222

Appendix C Error Messages .. 224
C.1 Error Message Types... 224
C.2 Invocation Errors .. 226
C.3 Source Program Errors .. 227
C.4 Fatal Errors ... 239

Appendix D Differences with the Previous Version ... 241
D.1 CPU.. 241
D.2 Address Space Support.. 242
D.3 Source File Extension ... 243
D.4 Added Assembler and Preprocesser Directives.. 244
D.5 Added Command Line Options... 244
D.6 Compatibility of Object Modules .. 245
D.7 Object Module Optimization... 246
D.8 Change of Include Base Directory... 248
D.9 Tag File Output... 249

Appendix E ASCII Code Table.. 250

10

Language Guide

11

Section 1 Overview

 1.1 Features

This cross assembler provides the following features.

1. Object CPUs

This cross assembler generates code for the following CPUs.

¾ H8S/2600 series

¾ H8S/2000 series

¾ H8/300H series

¾ H8/300 series

¾ H8/300L series

2. Preprocessor Functions

The following preprocessor functions are provided. These functions enable source programs
to be coded quickly and efficiently.

¾ File inclusion

¾ Conditional assembly

¾ Macros

¾ Structured assembly

3. Based on Industry Standards

Instruction set and assembler directive naming (mnemonics) forms a unified system based on
the naming standards prescribed in the IEEE 694 specifications.

 1.2 Assembler Overview

The basic function of this assembler is to convert assembler language source programs into
relocatable binary object modules. Output of assembly listings, which show the results of the
assembly process, is also provided.

The following source programs are accepted by this assembler.

· Assembly language source programs produced using an editor

· Assembly language source programs produced by the H8S, H8/300 series C compiler

12

The object modules produced by this assembler are accepted as input by the following software.

· H Series Linkage Editor

· H Series Librarian

· H8S, H8/300 Series Simulator/Debugger

· SYSROF File Converter

13

Section 2 Rules for Source Statement Coding

2.1 Source Statements

A source program is a set of source statements.

A source statement is an ASCII character string of up to 255 characters forming a single line.

2.1.1 Source Statement Types

The following source statement types are recognized by the assembler.

1. Instruction statements

Statements that code executable instructions, assembler directives, preprocessor directives,
and macro instructions.

2. Label statements

Statements that only consist of a label. They are used to indicate branch destinations and data
locations.

3. Comment statements

Statements that onnly consist of a comment, and are used to include notes about the source
program.

4. Blank statementsn

Statements with no notations. They are used to delimit sections of source programs so that
they are easier to read.

14

2.1.2 Source Statement Structure

Source statements consist of the following fields.

1. Label field

Field to code symbols which represent the location of that statement.

2. Operation field

Field to code an executable instructions, an assembler directive, a preprocessor directive, or a
macro instruction.

3. Operand filed

Field to code the operands for the instruction in the operation field.

4. Comment field

Field for comments.

The position of these fields in a source statement is shown in the figure below.

Label Operation Operand Comment

15

 2.1.3 Source Statement Field Syntax

1. Label field

There are three formats for specifying the label field.

a. The label starts in column 1.

b. The label starts in column 1 and ends with a colon(:).

c. The LABEL starts in column 2 or greater and ends with a colon(:).

When there is no need for a symbol, the label field may be left blank.

Examples

LABEL 1

LABEL 2:

LABEL 3:

2. Operation field

There are two formats for specifying the operation field.

a. When there is no entry in the label field:

The operation field starts in column 2 or greater.

b. When there is an entry in the label field:

The operation field starts one or more spaces after the end of the label field.

When there is no need for an instruction, the operation field may be left blank.

Examples
ADD.B R0L,R1L

LABEL1 ADD.B R0L,R1L

LABEL2

16

3. Operand field

There are three formats for specifying the operand field.

a. When one or more operand are required for the operation field instruction:

The operands start one or more spaces or tabs after the instruction.

b. When no operand is required for the operation field instruction:

The operand field is left blank.

c. When there is no entry in the operation field:

The operand field is left blank.

Examples
ADD.B R0L,R1L

NOP

LABEL

4. Comment field

There are two formats for the comment field.

a. When a comment is to be entered:

The comment field starts with a semicolon(;).

b. When no comment is to be entered:

The comment field is left blank.

Examples
ADD.B R0L,R1L ; R1L=R0L+R1L
NOP ; NO OPERAND

LABEL ; LABEL STATEMENT
; This line is a comment statement.

17

2.1.4 Continuation Lines

Source statements can be written over multiple lines.

The operand field comma(,) is taken as a delimiter, and the following operand(s) is/are entered
on the following line. A plus sign (+) must be entered in the first column of the continuation
line.

Example
ADD.B R0L, ; SOURCE OPERAND

+ R1L ; DESTINATION OPERAND

18

2.2 Symbol

Symbols, which are labels that are used to express the position of the source statement in which
they are defined, have the value of the location counter (i.e., the address) of their defining source
statement.

Also, when symbols are assigned values by assembler directives, they hold the assigned value.

2.2.1 Symbol Syntax

1. Characters used in symbols

The following characters can be used in symbols.

¾ Upper and lower case letters (A to Z, a to z)

¾ Numbers (0 to 9)

¾ The underscore character(_)

¾ The dollar sign character ($)

Upper and lower case letters are distinguished.

2. Syntax

Symbols must begin with a letter, an underscore, or a dollar sign.

Symbols can have up to 32 characters.

3. Names that cannot be used as symbols

The following names may not be used as symbols.

¾ Register mnemonics (ER0-ER7, E0-E7, R0-R7, R0H-R7H, R0L-R7L, SP, CCR, EXR,
MACH, MACL)

¾ Operators (STARTOF, SIZEOF, HIGH, LOW, HWORD, LWORD)

¾ The location counter symbol ($)

¾ Internal symbols (_$$00000 to _$$FFFFF)

Note that the same name may not be used as both a symbol and as a section name.

Note: Internal symbols are required for internal processing of the assembler. They are not
output to assembly listings or object modules.

19

2.2.2 Symbol Types

Symbols are classified into the following types depending on the value held by that symbol.

1. Absolute symbols

Symbols whose value is determined at assembly time. There are two types of absolute
symbols.

a. Constant symbols

Symbols whose value is a constant.

b. Absolute address symbols

Symbols whose value is an absolute address.

2. Relative symbols

Symbols whose value cannot be determined at assembly time. The value of these symbols is
determined when the program is linked into an object module by the linkage editor.

There are two types of relative symbols.

a. Relative address symbols

Symbols whose value is a relative address.

b. External reference symbols

Symbols whose value is an external reference.

These values are discussed in section 2.3, Values.

20

2.2.3 Symbol Reference

Symbols can be referenced in the following three ways:

· Forward reference

· Backward reference

· External reference

Supplement: This manual defines forward, backward, and external as shown in figures 2-1 and
2-2.

Reference Point

File

Backward

Forward

Program start

Program end

Figure 2-1 Meaning of Forward and Backward

21

Reference Point

 File 1

File 2

External

Figure 2-2 Meaning of External

· Forward reference

Forward reference means to reference a symbol whose definition follows the line making the
reference in the source program.

Example

.

.

BRA FORWARD ; Branch instruction BRA references symbol

; FORWARD located after this point.

.

.

FORWARD:

.

.

· Backward reference

Backward reference means to reference a symbol whose definition precedes the line making
the reference in the source program.

22

Example

.

.

BACK:

.

.

BRA BACK ; Branch instruction BRA references symbol BACK

; located before this point.

.

.

· External reference

External reference means to reference a symbol defined in another source program when
there are multiple source programs.

23

2.3 Values

2.3.1 Value Types

Values are classified into the following types.

1. Absolute values

Values that can be determined by the assembler at assembly. Absolute values are further
classified as follows:

a. Constant values

(I) Integer constant values

(II)Character constant values

(III) Constant symbol values

b. Absolute address values

(I) Location counter values (addresses) within an absolute addressing section

(II)Location counter values (addresses) within a dummy section

(III) Values of absolute address symbols

2. Relative values

Values which cannot be determined at assembly. These values are determined when the
program is linked into an object module by the linkage editor.

Relative values are further classified as follows:

a. Relative address values

(I) Location counter values (Addresses) within a relative addressing section

(II)Values of relative address symbols

b. External references

Values of external reference symbols

24

Symbol values are also classified according to the form of the reference to that symbol as
follows:

1. Backward reference values

Values of backward reference symbols.

2. Forward reference values

Values of forward reference symbols.

3. External reference values

Values of external reference symbols.

Note: The term "backward reference absolute value" used in this document refers to the
following types of values.

· Integer constant values

· Character constant values

· Values of backward reference constant symbols

· A location counter value in an absolute addressing section ù A location counter value
in a dummy section

· Values of backward reference absolute address symbols

25

2.3.2 Constants

Both integer and character constants are provided.

1. Integer constants

Binary, octal, decimal, and hexadecimal are provided.

Integer constants are expressed as a base and a value.

¾ Binary numbers......................... Expressed as the base "B'" and a binary number

¾ Octal numbers............................ Expressed as the base "Q'" and an octal number.

¾ Decimal numbers....................... Expressed as the base "D'" and a decimal number.

¾ Hexadecimal numbers................ Expressed as the base "H'" and a hexadecimal number.

Normally, decimal is used as the default base when the base is omitted. (See section 5.9.2,
.RADIX.)

Examples
MOV.B #B'00001010:8, R0L

MOV.B #Q'012:8,R0L

MOV.B #D'10:8,R0L

MOV.B #H'0A:8,R0L

2. Character constants

Character constants are coded by enclosing up to four characters in double quotation marks
(").

The characters which can be used in character constants are the ASCII code H'09 (tab) and
ASCII codes from H'20 (space) to H'7E (tilde).

To specify a double quotation mark in a character constant, enter two double quotation marks
in succession.

Examples
.CPU 2600A

MOV.B #"A":8,R0L ;A

MOV.B #"""":8,R1L ;"

MOV.W #"AB":16,R2 ;AB

26

2.3.3 Location Counter

The location counter is referenced by the symbol consisting of a single dollar sign ($).

The value of the location counter is the value (address) of the first location of the source
statement in which it appears. When the location counter is referenced in an absolute addressing
section, an absolute address value is acquired, and when it is referenced in an relative addressing
section, a relative address value is acquired.

Examples
.SECTION A,CODE,LOCATE=H'1000 [1]

ABS .EQU $ [2]

MOV.W R0,R1

.SECTION B,CODE,ALIGN=2 [3]

REL .EQU $ [4]
MOV.W R0,R1

[1] Declares an absolute addressing section.
[2] The "$" symbol will be an absolute address value of H'1000 at this
point.
[3] Declares a relative addressing section.
[4] The "$" symbol will be a relative address value of H'0000 at this
point.

27

2.4 Expressions

2.4.1 Expression Elements

Expressions consist of terms, operators, and parentheses.

1. Terms

A term is one of the following.

¾ A constant

¾ The location counter symbol ($)

¾ A symbol

¾ The result of a calculation specified by a combination of the above terms and operators.

2. Operators

Table 2-1 shows the operators provided by this assembler.Table 2-1 Operator Table

Operator Class Operator Operation Usage

Arithmetic operators + Unary plus +<term>

- Unary minus -<term>

+ Addition <term 1>+<term 2>

- Subtraction <term 1>-<term 2>

* Multiplication <term 1>*<term 2>

/ Division <term 1>/<term 2>

Logical operators ~ Unary negation ~<term>

& Logical and <term 1>&<term 2>

| Logical or <term 1>|<term 2>

~ Exclusive or <term 1>~<term 2>

Segment group operators STARTOF The starting address of a
section group

STARTOF <section name>

SIZEOF he size of a section group SIZEOF <section name>

Extruction operators HIGH Upper byte extraction HIGH <term>

LOW Lower byte extraction LOW <term>

HWORD Upper word extraction HWORD <term>

LWORD Lower word extraction LWORD <term>

Note: The LWORD and LWORD operators can only be used in programs for the H8S/2600,
H8S/2000, and H8/300H in advanced or normal mode. They cannot be used in programs
for the H8/300 and H8/300L series microprocessors.

28

3. Parentheses

Parentheses are used to override the operator precedence order and control the order of
evaluation.

2.4.2 Operator Precedence Order

Table 2-2 gives the operator precedence order.

Table 2-2 Operator Precedence

Operator
Precedence

Operator Association Rule

1 + - ~ STARTOF SIZEOF HIGH LOW HWORD LWORD ¬

2 * / ®

3 + - ®

4 & ®

5 | ~ ®

Notes: 1. The operator precedence 1 operators are the unary operators.
2. When operators of the same precedence are combined, the operations are performed

in the direction indicated by the association rule. Note that "¬" indicates from right to
left in the expression, and that "®" indicates from left to right in the expression.

Examples

10+20/5 Evaluates to 14.

(10+20)/5 Evaluates to 6.

H'0000FFFF½H'00FF00FF&H'0F0F0F0F Evaluates to H'000FFFFF.

(H'0000FFFF½H'00FF00FF)&H'0F0F0F0F Evaluates to H'000F0F0F.

HIGH H'12345678 Evaluates to H'00000056.

LOW HWORD H'12345678 Evaluates to H'00000034.

~H'000000C3 Evaluates to H'FFFFFF3C.

~H'000000C3&H'000000FF Evaluates to H'0000003C.

Note: Decimal is the default base in the above examples.

29

2.4.3 Operator Descriptions

1. The STARTOF operator

Returns the starting address of a section group.

Returns the starting address of the specified section linked by the linkage editor.

2. The SIZEOF operator

Returns the size of a section group.

Returns the size of the specified section linked by the linkage editor.

Examples
.CPU 2600A
.SECTION INIT_RAM, DATA, ALIGN=2
.RES H'100

;
.SECTION INIT_DATA, DATA, ALIGN=2

INIT_BGN .DATA.L STARTOF INIT_RAM [1]
INIT_END .DATA.L STARTOF INIT_RAM + SIZEOF INIT_RAM [2]
;
;

.SECTION MAIN, CODE, ALIGN=2
INITAL:]

MOV.L @INIT_BGN, ER1]
MOV.L @INIT_END, ER2]
MOV.W #0,R3]

LOOP:] The data area of section
CMP.L ER1, ER2] INIT-RAM is initialized
BEQ END] with zero.
MOV.W R3, @ER1]
ADDS.L #1, ER1]
BRA LOOP]

END:]
SLEEP
.END

[1] Returns the starting address of section INIT_RAM.
[2] Returns the end address of section INIT_RAM.

30

3. The HIGH operator

Extracts the high-order byte of the low-order two bytes of a 4-byte value.

H'xx

31 24 23 16 15 8 7 0

Argument
24

Result
31 23 16 15 78 0

H'xxH'OO H'OO H'OO

Examples
LABEL .EQU H'00007FFF

MOV.W #HIGH LABEL, R0 ;R0=H'007F

4. The LOW operator

Extracts the lowest byte of a 4-byte value.

H'xx

31 24 23 16 15 8 7 0

Argument
24

Result
31 23 16 15 78 0

H'xxH'OO H'OO H'OO

5. The HWORD operator

Extracts the high-order two bytes of a 4-byte value.

H'xxxx

31 16 15 0
Argument Result

31 16 15 0

H'OOOO H'xxxx

31

6. The LWORD operator

Extracts the low-order two bytes of a 4-byte value.

H'xxx

31 16 15 0
Argument Result

31 16 15 0

H'0000 H'xxxx

2.4.4 Notes on Operator Usage

1. Operation specifications

All operations are signed 32-bit operations.

Even when the operation arguments are byte (8 bit) or word (16 bit) values, the operation
will be performed as a signed 32-bit operation. As a result, the following cases generate
errors.

Examples

MOV.B #~H'80:8,R0L The expression "#~H'80:8" generates an error.

The expression "~H'80" is calculated as follows:

~ H'80

~H'00000080

H'FFFFFF7F

However, the value H'FFFFFF7F exceeds the range of 8-bit values, and
thus is an error.

Use the following methods to avoid this error.

MOV.B #H'7F:8,R0L Code the result of the operation
directly

MOV.B #~H'80&H'FF:8,R0L Use a logical AND to make
only the lower 8 bits valid.

MOV.B #LOW ~H'80:8,R0L Use the low byte extraction
operation to make only the lower
8 bits valid.

32

2. Arithmetic operations

a. Relative values may not be specified as operands to the multiplication and division
operators. Do not specify relative values as these operands.

b. Zero (0) may not be specified as the divisor with the division operator. Do not use zero as
a divisor.

3. Logical operations

Relative values may not be specified as operands to logical operators. Do not specify relative
values as these operands.

4. Section group operators

Only section names may be specified as the operand of a section group operator. Do not
specify any value other than a section name for these operands.

2.5 Character Strings

Character strings are coded by enclosing the desired characters in double quotation marks (").

The characters which can be used in character strings are the ASCII code H'09 (tab) and ASCII
codes from H'20 (space) to H'7E (tilde).

To specify a double quotation mark in a character string, enter two double quotation marks in
succession.

Examples
.SDATA "ABCDEF" ; ABCDEF

.SDATA "ABC""DE" ; ABC"DE

33

Section 3 Programming Overview

This section describes methods for external reference and external definition, and the section concept
required in programming the various H8S and H8/300 series microprocessors.

 3.1 Section

The section is the organizational unit from which programs are constructed, and is a collection of
instructions or data. Also, the section is the unit in which the linkage editor links the object modules or
allocate them on memory.

When programming, the section attribute and addressing format classification are selected based on
the use of that section and on its location in memory.

1. Section attribute

A section has one of the following section attributes.

a. Code section

Code section hold executable instructions and data whose value will not be changed
during execution.

Code section are allocated to ROM.

b. Data section

Data section hold data areas both for data that will not be changed during program
execution, as well as for data that will be changed during program execution.

The former type of data section is allocated to ROM, and the later to RAM.

c. Stack section

Stack section are regions that contain no initial data, and are used as program stack areas
and working areas.

Stack section are allocated to RAM.

d. Common section

Common section hold data areas both for data that will not be changed during program
execution, as well as for data that will be changed during program execution. Common
section are used when data is shared between partitioned programs.

34

The former type of common data section is allocated to ROM, and the later to RAM.

e. Dummy section

Dummy section are section that hold no initial data, and hold variable structures.

Dummy section are not output to object modules.

2. Addressing format classification

There are two addressing format classifications as follows:

a. Absolute addressing format

In absolute addressing, the address to which the section is allocated is specified in
advance in the source program.

The addresses in an absolute addressing section (section with an absolute addressing
format) are not changed by the linkage editor. They are specified using LOCATE in the
.SECTION assembler directive.

b. Relative addressing format

In relative addressing, the address to which the section is allocated is not specified in
advance in the source program.

The addresses in a relative addressing section (section with a relative addressing format)
are determined when the object modules are linked by the linkage editor.

The boundary alignment value which is used when the linkage editor links the object
modules can be set for relative addressing sections.

The linkage editor determines addresses so that the section address is a multiple of the
boundary alignment value.

The section boundary alignment value is useful when sections must be allocated on even
memory addresses, such as the executable instructions in a code section.

35

A section's attribute and addressing classification are declared using the .SECTION
assembler directive.

Examples

.CPU 2600A

.OUTPUT DBG

SIZE .EQU 8

;

.SECTION A, CODE, ALIGN=2.................................[1]

START]

MOV.L #CONST:32,ER0]

MOV.L #DATA:32,ER1]

MOV.L #SIZE:32,ER2]

LOOP]

CMP.L #0:32,ER2]

BEQ EXIT]

MOV.B @ER0,R3L]

MOV.B R3L,@ER1] Relative addressing code section

ADD.L #1:32, ER0]

ADD.L #1:32, ER1]

SUB.L #1:32,ER2]

BRA LOOP]

EXIT]

SLEEP]

BRA START]

;

.SECTION B, DATA, LOCATE=H'00001000...........[2]

CONST

.DATA.B H'01,H'02,H'03,H'04]

.DATA.B H'05,H'06,H'07,H'08] Absolute addressing data section

;

.SECTION C, STACK, ALIGN=2................................[3]

DATA]

.RES.B SIZE] Relative addressing stack section

;

.END START

 [1] Declares a relative addressing code section
 [2] Declares an absolute addressing data section
 [3] Declares a relative addressing stack section

36

3.2 External Reference and External Definition

When programs are divided into separate programs, a given program will need to call subroutines and
reference data in other programs. Since subroutines are called and data is referenced by referencing
symbols in assembly language programming, symbols defined in other source programs and not in the
current program need to be referenced. Referencing a symbol in another program is called external
reference, and enabling other programs to reference one's own symbols is called external definition.

External reference symbols and external definition symbols are declared using the .IMPORT and
.EXPORT assembler directives.

Examples
External reference symbol declaration External definition symbol declaration
 ½ .CPU 2600A .CPU 2600A

 .OUTPUT DBG .OUTPUT DBG
; ;
 .IMPORT SUBRTN.........[1] .EXPORT SUBRTN..............[2]
 .IMPORT DATA1, DATA2...[1] .EXPORT DATA1, DATA2...[2]
; ;

 .SECTION A, CODE, ALIGN=2 .SECTION A, CODE, ALIGN=2
MAIN SUBRTN

 MOV.L #STACK:32, SP MOV.L ER0,ER2
 MOV.L @DATA1:32, ER0 ADD.L ER1,ER2
 MOV.L @DATA2:32, ER1 RTS
 MOV.L #0:32, ER2 ;
 JSR @ SUBRTN:24 .SECTION C, DATA, ALIGN=1

 SLEEP DATA1
 BRA MAIN .DATA.B H'01

; DATA2
.SECTION B, STACK, ALIGN=2 .DATA.B H'02
.RES.B H'500 ;

STACK .END
;
 . END MAIN

[1] The symbols SUBRTN, DATA1, and DATA2 are external reference symbols.
[2] The symbols SUBRTN, DATA1, and DATA2 are external definition symbols.

37

Section 4 Executable Instructions

4.1 Coding Executable Instructions

Executable instructions are coded as follows:

Label Operation Operand

[Symbol] Mnemonic[.s] [Addressing format[, addressing format]]

s (size): {B½W½L}

1 Label field

A symbol is specified in the label field as necessary.

That symbol will have as its value the location counter (address) at that source statement.

2. Operation field

An executable instruction is specified in the operation field.

The operand size can be specified separated from the instruction mnemonic by a period (.).

The size specifiers are interpreted as follows:

B Byte (1 byte)

W. Word (2 bytes)

L Long word (4 bytes)

The sizes that can be specified differ according to the instruction used.

3 .Operand field

The operands of the executable instruction are specified in the operand field.

The number of operands and the operand addressing formats differ according to the
instruction used.

4.2 Executable Instruction Operand Sizes and Addressing Formats

4.2.1 H8S/2600 Series

1. H8S/2600 advanced mode

Table 4-1 lists the H8S/2600 advanced mode instruction operand sizes.

38

Table 4-1 H8S/2600 Advanced Mode Instruction Operand Sizes

Item
No.

Instruction Size Item
No.

Instruction Size Item
No.

Instruction Size

1 ADD B W L (B) 26 DEC B W L (B) 51 ROTL B W L (B)

2 ADDS L (L) 27 DIVXS B W (B) 52 ROTR B W L (B)

3 ADDX B (B) 28 DIVXU B W (B) 53 ROTXL B W L (B)

4 AND B W L (B) 29 EEPMOV B W (B) 54 ROTXR B W L (B)

5 ANDC B (B) 30 EXTS W L (W) 55 RTE --

6 BAND B (B) 31 EXTU W L (W) 56 RTS --

7 Bcc -- 32 INC B W L (B) 57 SHAL B W L (B)

8 BCLR B (B) 33 JMP -- 58 SHAR B W L (B)

9 BIAND B (B) 34 JSR -- 59 SHLL B W L (B)

10 BILD B (B) 35 LDC B W (B) 60 SHLR B W L (B)

11 BIOR B (B) 36 LDM L (L) 61 SLEEP --

12 BIST B (B) 37 LDMAC L (L) 62 STC B W (B)

13 BIXOR B (B) 38 MAC -- 63 STM L (L)

14 BLD B (B) 39 MOV B W L (B) 64 STMAC L (L)

15 BNOT B (B) 40 MOVFPE B (B) 65 SUB B W L (B)

16 BOR B (B) 41 MOVTPE B (B) 66 SUBS L (L)

17 BSET B (B) 42 MULXS B W (B) 67 SUBX B (B)

18 BSR -- 43 MULXU B W (B) 68 TAS B (B)

19 BST B (B) 44 NEG B W L (B) 69 TRAPA --

20 BTST B (B) 45 NOP -- 70 XOR BW L (B)

21 BXOR B (B) 46 NOT B W L (B) 71 XORC B (B)

22 CLRMAC -- 47 OR B W L (B)

23 CMP B W L (B) 48 ORC B (B)

24 DAA B (B) 49 POP W L (L)

25 DAS B (B) 50 PUSH W L (L)

Notes: () Indicates the default size.
 -- Indicates that no size specification is allowed.

39

Table 4-2 lists the H8S/2600 advanced mode addressing modes.

Table 4-2 H8S/2600 Advanced Mode Addressing Modes

Item No. Addressing Mode Syntax

1 Register direct addressing {ERn ½ En ½ Rn ½ RnH ½ RnL}

2 Register indirect addressing @ERn

3 Register indirect addressing with displacement @(d[:{16 ½ 32}],ERn)

4 Post-increment register indirect addressing @ERn+

5 Pre-decrement register indirect addressing @-ERn

6 Absolute addressing @aa[:{8 ½ 16 ½ 24 ½ 32}]

7 Immediate data addressing #xx[: {8 ½ 16 ½ 32}]

8 Memory indirect addressing @@aa[:8]

9 Program counter relative addressing (branch
instruction displacement)

d[: {8 ½ 16}]

10 Control register CCR, EXR, MACH, MACL

Notes: 1 n....... A register number (0 to 7)
d....... A displacement
aa..... An absolute address
xx...... Immediate data

2 The SP notation (for the stack pointer) is identical to the ER7 notation.
Caution: The "FP" notation is not a register mnemonic. The .REG assembler directive must be used to

use "FP" as a register.

40

2. H8S/2600 normal mode

Table 4-3 lists the H8S/2600 normal mode instruction operand sizes.

Table 4-3 H8S/2600 Normal Mode Instruction Operand Sizes

Item
No.

Instruction Size Item
No.

Instruction Size Item
No.

Instruction Size

1 ADD B W L (B) 26 DEC B W L (B) 51 ROTL B W L (B)

2 ADDS L (L) 27 DIVXS B W (B) 52 ROTR B W L (B)

3 ADDX B (B) 28 DIVXU B W (B) 53 ROTXL B W L (B)

4 AND B W L (B) 29 EEPMOV B W (B) 54 ROTXR B W L (B)

5 ANDC B (B) 30 EXTS W L (W) 55 RTE --

6 BAND B (B) 31 EXTU W L (W) 56 RTS --

7 Bcc -- 32 INC B W L (B) 57 SHAL B W L (B)

8 BCLR B (B) 33 JMP -- 58 SHAR B W L (B)

9 BIAND B (B) 34 JSR -- 59 SHLL B W L (B)

10 BILD B (B) 35 LDC B W (B) 60 SHLR B W L (B)

11 BIOR B (B) 36 LDM L (L) 61 SLEEP --

12 BIST B (B) 37 LDMAC L (L) 62 STC B W (B)

13 BIXOR B (B) 38 MAC -- 63 STM L (L)

14 BLD B (B) 39 MOV B W L (B) 64 STMAC L (L)

15 BNOT B (B) 40 MOVFPE B (B) 65 SUB B W L (B)

16 BOR B (B) 41 MOVTPE B (B) 66 SUBS L (L)

17 BSET B (B) 42 MULXS B W (B) 67 SUBX B (B)

18 BSR -- 43 MULXU B W (B) 68 TAS B (B)

19 BST B (B) 44 NEG B W L (B) 69 TRAPA --

20 BTST B (B) 45 NOP -- 70 XOR B W L (B)

21 BXOR B (B) 46 NOT B W L (B) 71 XORC B (B)

22 CLRMAC -- 47 OR B W L (B)

23 CMP B W L (B) 48 ORC B (B)

24 DAA B (B) 49 POP W L (W)

25 DAS B (B) 50 PUSH W L (W)

Notes: ()...... Indicates the default size.
--...... Indicates that no size specification is allowed.

41

Table 4-4 lists the H8S/2600 normal mode addressing modes.

Table 4-4 H8S/2600 Normal Mode Addressing Modes

Item No. Addressing Mode Syntax

1 Register direct addressing {ERn ½ En ½ Rn ½ RnH ½ RnL}

2 Register indirect addressing @ERn

3 Register indirect addressing with displacement @(d[: 16], ERn)

4 Post-increment register indirect addressing @ERn+

5 Pre-decrement register indirect addressing @-ERn

6 Absolute addressing @aa[: {8 ½ 16}]

7 Immediate data addressing #xx[: {8 ½ 16 ½ 32}]

8 Memory indirect addressing @@aa[:8]

9 Program counter relative addressing

(branch instruction displacement)

d[: {8 ½ 16}]

10 Control register CCR,EXR,MACH,MACL

Notes: 1. n..... A register number (0 to 7)
d...... A displacement
aa..... An absolute address
xx..... Immediate data

2. The SP notation (for the stack pointer) is identical to the ER7 notation.
Caution: The "FP" notation is not a register mnemonic. The REG assembler directive must be

used to use "FP" as a register.

42

4.2.2 H8S/2000 Series

1. H8S/2000 advanced mode

Table 4-5 lists the H8S/2000 advanced mode instruction operand sizes.

Table 4-5 H8S/2000 Advanced Mode Instruction Operand Sizes

Item
No.

Instruction Size Item
No.

Instruction Size Item
No.

Instruction Size

1 ADD B W L (B) 26 DIVXS B W (B) 51 ROTXR B W L (B)

2 ADDS L (L) 27 DIVXU B W (B) 52 RTE --

3 ADDX B (B) 28 EEPMOV B W (B) 53 RTS --

4 AND B W L (B) 29 EXTS W L (W) 54 SHAL B W L (B)

5 ANDC B (B) 30 EXTU W L (W) 55 SHAR B W L (B)

6 BANDB (B) 31 INC B W L (B) 56 SHLL B W L (B)

7 Bcc -- 32 JMP -- 57 SHLR B W L (B)

8 BCLR B (B) 33 JSR -- 58 SLEEP --

9 BIAND B (B) 34 LDC B W (B) 59 STC B W (B)

10 BILD B (B) 35 LDM L (L) 60 STM L (L)

11 BIOR B (B) 36 MOV B W L (B) 61 SUB B W L (B)

12 BIST B (B) 37 MOVFPE B (B) 62 SUBS L (L)

13 BIXOR B (B) 38 MOVTPE B (B) 63 SUBX B (B)

14 BLD B (B) 39 MULXS B W (B) 64 TAS B (B)

15 BNOT B (B) 40 MULXU B W (B) 65 TRAPA --

16 BOR B (B) 41 NEG B W L (B) 66 XOR B W L (B)

17 BSET B (B) 42 NOP -- 67 XORC B (B)

18 BSR -- 43 NOT B W L (B)

19 BST B (B) 44 OR B W L (B)

20 BTST B (B) 45 ORC B (B)

21 BXOR B (B) 46 POP W L (L)

22 CMP B W L (B) 47 PUSH W L (L)

23 DAA B (B) 48 ROTL B W L (B)

24 DAS B (B) 49 ROTR B W L (B)

25 DEC B W L (B) 50 ROTXL B W L (B)

Notes: ()..... Indicates the default size.
--..... Indicates that no size specification is allowed.

43

Table 4-6 lists the H8S/2000 advanced mode addressing modes.

Table 4-6 H8S/2000 Advanced Mode Addressing Modes

Item No. Addressing Mode Syntax

1 Register direct addressing {ERn ½ En ½ Rn ½ RnH ½ RnL}

2 Register indirect addressing @ERn

3 Register indirect addressing with displacement @(d[: {16 ½ 32}], ERn)

4 Post-increment register indirect addressing @ERn+

5 Pre-decrement register indirect addressing @-ERn

6 Absolute addressing @aa[: {8 ½ 16 ½ 24 ½ 32}]

7 Immediate data addressing #xx[: {8 ½ 16 ½ 32}]

8 Memory indirect addressing @@aa[:8]

9 Program counter relative addressing

(branch instruction displacement)

d[: {8 ½ 16}]

10 Control register CCR, EXR

Notes: 1. n..... A register number (0 to 7)
d..... A displacement
aa..... An absolute address
xx..... Immediate data

2. The SP notation (for the stack pointer) is identical to the ER7 notation.
Caution: The "FP" notation is not a register mnemonic. The .REG assembler directive must be

used to use "FP" as a register.

44

2. H8S/2000 normal mode

Table 4-7 lists the H8S/2000 normal mode instruction operand sizes.

Table 4-7 H8S/2000 Normal Mode Instruction Operand Sizes

Item
No.

Instruction Size Item
No.

Instruction Size Item
No.

Instruction Size

1 ADD B W L (B) 26 DIVXS B W (B) 51 ROTXR B W L (B)

2 ADDS L (L) 27 DIVXU B W (B) 52 RTE --

3 ADDX B (B) 28 EEPMOV B W (B) 53 RTS --

4 AND B W L (B) 29 EXTS W L (W) 54 SHAL B W L (B)

5 ANDC B (B) 30 EXTU W L (W) 55 SHAR B W L (B)

6 BAND B (B) 31 INC B W L (B) 56 SHLL B W L (B)

7 Bcc -- 32 JMP -- 57 SHLR B W L (B)

8 BCLR B (B) 33 JSR -- 58 SLEEP --

9 BIAND B (B) 34 LDC B W (B) 59 STC B W (B)

10 BILD B (B) 35 LDM L (L) 60 STM L (L)

11 BIOR B (B) 36 MOV B W L (B) 61 SUB B W L (B)

12 BIST B (B) 37 MOVFPE B (B) 62 SUBS L (L)

13 BIXOR B (B) 38 MOVTPE B (B) 63 SUBX B (B)

14 BLD B (B) 39 MULXS B W (B) 64 TAS B (B)

15 BNOT B (B) 40 MULXU B W (B) 65 TRAPA --

16 BOR B (B) 41 NEG B W L (B) 66 XOR B W L (B)

17 BSET B (B) 42 NOP -- 67 XORC B (B)

18 BSR -- 43 NOT B W L (B)

19 BST B (B) 44 OR B W L (B)

20 BTST B (B) 45 ORC B (B)

21 BXOR B (B) 46 POP W L (W)

22 CMP B W L (B) 47 PUSH W L (W)

23 DAA B (B) 48 ROTL B W L (B)

24 DAS B (B) 49 ROTR B W L (B)

25 DEC B W L (B) 50 ROTXL B W L (B)

Notes: ()..... Indicates the default size.
--..... Indicates that no size specification is allowed.

45

Table 4-8 lists the H8S/2000 normal mode addressing modes.

Table 4-8 H8S/2000 Normal Mode Addressing Modes

Item No. Addressing Mode Syntax

1 Register direct addressing {ERn ½ En ½ Rn ½ RnH ½ RnL}

2 Register indirect addressing @ERn

3 Register indirect addressing with displacement @(d[: {16], ERn)

4 Post-increment register indirect addressing @ERn+

5 Pre-decrement register indirect addressing @-ERn

6 Absolute addressing @aa[: {8 ½ 16}]

7 Immediate data addressing #xx[: {8 ½ 16 ½ 32}]

8 Memory indirect addressing @@aa[:8]

9 Program counter relative addressing (branch
instruction displacement)

d[: {8 ½ 16}]

10 Control register CCR, EXR

Notes: 1. n....... A register number (0 to 7)
d......... A displacement
aa....... An absolute address
xx....... Immediate data

2. The SP notation (for the stack pointer) is identical to the ER7 notation.
Caution: The "FP" notation is not a register mnemonic. The .REG assembler directive must be

used to use "FP" as a register.

46

4.2.3 H8/300H Series

1. H8/300H advanced mode

Table 4-9 lists the H8/300H advanced mode instruction operand sizes.

Table 4-9 H8/300H Advanced Mode Instruction Operand Sizes

Item
No.

Instruction Size Item
No.

Instruction Size Item
No.

Instruction Size

1 ADD B W L (B) 26 DIVXS B W (B) 51 RTE --

2 ADDS L (L) 27 DIVXU B W (B) 52 RTS --

3 ADDX B (B) 28 EEPMOV B W (B) 53 SHAL B W L (B)

4 AND B W L (B) 29 EXTS W L (W) 54 SHAR B W L (B)

5 ANDC B (B) 30 EXTU W L (W) 55 SHLL B W L (B)

6 BAND B (B) 31 INC B W L (B) 56 SHLR B W L (B)

7 Bcc -- 32 JMP -- 57 SLEEP --

8 BCL R B (B) 33 JSR -- 58 STC B W (B)

9 BIAND B (B) 34 LDC B W (B) 59 SUB B W L (B)

10 BILD B (B) 35 MOV B W L (B) 60 SUBS L (L)

11 BIOR B (B) 36 MOVFPE B (B) 61 SUBX B (B)

12 BIST B (B) 37 MOVTPE B (B) 62 TRAPA --

13 BIXOR B (B) 38 MULXS B W (B) 63 XOR B W L (B)

14 BLD B (B) 39 MULXU B W (B) 64 XORC B (B)

15 BNOT B (B) 40 NEG B W L (B)

16 BOR B (B) 41 NOP --

17 BSET B (B) 42 NOT B W L (B)

18 BSR -- 43 OR B W L (B)

19 BST B (B) 44 ORC B (B)

20 BTST B (B) 45 POP W L (L)

21 BXOR B (B) 46 PUSH W L (L)

22 CMP B W L (B) 47 ROTL B W L (B)

23 DAA B (B) 48 ROTR B W L (B)

24 DAS B (B) 49 ROTXL B W L (B)

25 DEC B W L (B) 50 ROTXR B W L (B)

Notes: ()....... Indicates the default size.
--....... Indicates that no size specification is allowed.

47

Table 4-10 lists the H8/300H advanced mode addressing modes.

Table 4-10 H8/300H Advanced Mode Addressing Modes

Item No. Addressing Mode Syntax

1 Register direct addressing [ERn| En | Rn| RnH| RnL}

2 Register indirect addressing @ERn

3 Register indirect addressing with displacement @d[:{16 | 24}], ERn)

4 Post-increment register indirect addressing @ERn+

5 Pre-decrement register indirect addressing @-ERn

6 Absolute addressing @aa[:{8 | 16 | 24}]

7 Immediate data addressing #xx[:{8 |16 |32}]

8 Memory indirect addressing @@aa[:8]

9 Program counter relative addressing (branch
instruction displacement)

d[:{8 | 16}]

10 Condition code register CCR

Notes: 1. n A register number (0 to 7)
d A displacement
aa An absolute address
xx Immediate data

2. The SP notation (for the stack pointer) is identical to the ER7 notation.

Caution: The "FP" notation is not a register mnemonic. The .REG assembler directive must be
used to use "FP" as a register.

48

2. H8/300H normal mode

Table 4-11 lists the H8/300H normal mode instruction operand sizes.

Table 4-11 H8/300H Normal Mode Instruction Operand Sizes

Item No. Instructi
on

Size Item No. Instructi
on

size Item No. Instructi
on

Size

1 ADD B W L
(B)

26 DIVXS B
W

(B) W 51 RTE -

2 ADDS L (L) 27 DIVXU B
W

 (B) 52 RTS -

3 ADDX B (B) 28 EEPMOV B W (B) 53 SHAL B W L (B)

4 AND B W L (B) 29 EXTS W L (W) 54 SHAR B W L (B)

5 ANDC B (B) 30 EXTU W L (W) 55 SHLL B W L (B)

6 BAND B (B) 31 INC B W L (B) 56 SHLR B W L (B)

7 Bcc - 32 JMP - 57 SLEEP --

8 BCLR B (B) 33 JSR - 58 STC B W (B)

9 BIAND B (B) 34 LDC B W (B) 59 SUB B W L (B)

10 BILD B (B) 35 MOV B W L (B) 60 SUBS L (L)

11 BIOR B (B) 36 MOVFPE B (B) 61 SUBX B (B)

12 BIST B (B) 37 MOVTPE B (B) 62 TRAPA -

13 BIXOR B (B) 38 MULXS B W (B) 63 XOR B W L (B)

14 BLD B (B) 39 MULXU B W (B) 64 XORC B (B)

15 BNOT B (B) 40 NEG B W L (B)

16 BOR B (B) 41 NOP -

17 BSET B (B) 42 NOT B W L (B)

18 BSR - 43 OR B W L (B)

19 BST B (B) 44 ORC B (B)

20 BTST B (B) 45 POP W L (W)

21 BXOR B (B) 46 PUSH W L (W)

22 CMP B W L (B) 47 ROTL B W L (B)

23 DAA B (B) 48 ROTR B W L (B)

24 DAS B (B) 49 ROTXL B W L (B)

25 DEC B W L (B) 50 ROTXR B W L (B)

Notes: () Indicate the default size.
- Indicates that no size specification is allowed.

49

Table 4-12 lists the H8/300H normal mode addressing modes.

Table 4-12 H8/300H Normal Mode Addressing Modes

Item No. Addressing Mode Syntax

1 Register direct addressing {ERn | En | Rn | RnH | RnL}

2 Register indirect addressing @ERn

3 Register indirect addressing with displacement @(d[:{16}], ERn)

4 Post-increment register indirect addressing @ERn+

5 Pre-decrement register indirect addressing @-ERn

6 Absolute addressing @aa[:{8 | 16}]

7 Immediate data addressing #xx[: {8 | 16 | 32}]

8 Memory indirect addressing @@aa[:8]

9 Program counter relative addressing (branch
instruction displacement)

d[:{8 | 16}]

10 Control register CCR

Notes: 1. n A register number (0 to 7)
d A displacement
aa An absolute address
xx Immediate data
2. The SP notation (for the stack pointer) is identical to the ER7 notation.

Caution: The "FP" notation is not a register mnemonic. The .REG assembler directive must be
used to use "FP" as a register.

50

4.2.4 H8/300 and H8/300L Series

Table 4-13 lists the H8/300 and H8/300L instruction operand sizes.

Table 4-13 H8/300 and H8/300L Instruction Operand Sizes

Item No. Instructi
on

Size Item No. Instructi
on

Size Item No. Instructi
on

Size

1 ADD B W (B) 26 DIVXU B (B) 51 SHLL B (B)

2 ADDS W (W) 27 EEPMOV - 52 SHLR B (B)

3 ADDX B (B) 28 INC B (B) 53 SLEEP --

4 AND B (B) 29 JMP - 54 STC B (B)

5 ANDC B (B) 30 JSR - 55 SUB B W (B)

6 BAND B (B) 31 LDC B (B) 56 SUBS W (W)

7 Bcc - 32 MOV B W (B) 57 SUBX B (B)

8 BCLR B (B) 33 MOVFPE
B

(B) 58 XOR B (B)

9 BIAND B (B) 34 MOVTPE B (B) 59 XORC B (B)

10 BILD B (B) 35 MULXU B (B)

11 BIOR B (B) 36 NEG B (B)

12 BIST B (B) 37 NOP - -

13 BIXOR B (B) 38 NOT B (B)

14 BLD B (B) 39 OR B (B)

15 BNOT B (B) 40 ORC B (B)

16 BOR B (B) 41 POP W (W)

17 BSET B (B) 42 PUSH W (W)

18 BSR - 43 ROTL B (B)

19 BST B (B) 44 ROTR B (B)

20 BTST B (B) 45 ROTXL B (B)

21 BXOR B (B) 46 ROTXR B (B)

22 CMP B W (B) 47 RTE -

23 DAA B (B) 48 RTS - -

24 DAS B (B) 49 SHAL B (B)

25 DEC B (B) 50 SHAR B (B)

Notes: () Indicates the default size.

- Indicates that no size specification is allowed.

51

Caution: Instructions 33 (MOVFPE) and 34 (MOVTPE) cannot be used in the H8/300L
series.

Table 4-14 lists the H8/300 and H8/300L addressing modes.

Table 4-14 H8/300 and H8/300L Addressing Modes

Item No. Addressing Mode Syntax

1 Register direct addressing {Rn | RnH | RnL}

2 Register indirect addressing @Rn

3 Register indirect addressing with displacement @(d[:16], Rn)

4 Post-increment register indirect addressing @Rn+

5 Pre-decrement register indirect addressing @-Rn

6 Absolute addressing @aa[:{8 | 16}]

7 Immediate data addressing #xx[:8 | 16}]

8 Memory indirect addressing @@aa[:8]

9 Program counter relative addressing (branch instruction
displacement)

d[:[8]

10 Control register CCR

Notes: 1. n A register number (0 to 7)
d A displacement
aa An absolute address
xx Immediate data

2. The SP notation (for the stack pointer) is identical to the R7 notation.

Caution: The "FP" notation is not a register mnemonic. The .REG assembler directive must be
used to use "FP" as a register.

52

Section 5 Assembler Directive

5.1 Assembler Directive Types

Assembler directives (hereafter abbreviated as directives) are instructions that the assembler interprets
and executes. In other words, the assembler assembles the source program according to the
specifications of the directives included in the program.

Table 5-1 gives an overview of the assembler directives.

53

Table 5-1 Assembler Directive List

Item Number Directive Function Manual Section

1 CPU Directives

.CPU CPU specification 5.2.1

2 Section and location counter directives

.SECTION Section declaration 5.3.1

.ORG Location counter value
assignment

5.3.2

.ALIGN Location counter value
boundary alignment

5.3.3

3 Symbol directives

.EQU Symbol value assignment 5.4.1

.ASSIGN Symbol value assignment 5.4.2

.REG Register alias assignment 5.4.3

.BEQU Bit data name assignment 5.4.4

4 Data area allocation directives

.DATA Integer data allocation 5.5.1

.DATAB Integer data block allocation 5.5.2

.SDATA Character string data allocation 5.5.3

.SDATAB Character string data block
allocation

5.5.4

.SDATAC Counted character string data
allocation

5.5.5

.SDATAZ Zero terminated character
string data allocation

5.5.6

.RES Integer data area allocation 5.5.7

.SRES Character string data area
allocation

5.5.8

.SRESC Counted character string data
area allocation

5.5.9

.SRESZ Zero terminated character
string data area allocation

5.5.10

54

Item Number Directive Function Manual Section

5 External reference and external definition directives

.IMPORT External reference symbol
declaration

5.6.1

.EXPORT External definition symbol
declaration

5.6.2

.GLOBAL External reference and external
definition symbol declaration

5.6.3

6 Object module directive

.OUTPUT Object module and debugging
information output control

5.7.1

.DEBUG Debugging information output
control

5.7.2

.LINE Changes the file name and the
line number in debugging
information

5.7.3

.DISPSIZE The displacement size
specification

5.7.4

7 Assembly listing directives

.PRINT Assembly listing output control 5.8.1

.LIST Source program listing partial
output control

5.8.2

.FORM Listing size control 5.8.3

.HEADING Listing heading specification 5.8.4

.PAGE New page 5.8.5

.SPACE Blank line output 5.8.6

8 Other directives

.PROGRAM Object module name
specification

5.9.1

.RADIX Radix specification 5.9.2

.END Source program termination 5.9.3

55

5.2 CPU Directives

5.2.1 .CPU CPU Specification

Format

Label Operation Operand

X .CPU <CPU classification>

[:<address space bit width>]

CPU Classification: {2600A | 2600N ³ 2000A ³ 200HA ³ 300HN ³ 300 ³ 300L

CPU Clarification Address Space Bit Width Default Size

2600A 20, 24 28, 32 32

2000A 20, 24, 28, 32 32

300HA 20, 24 24

Description

This directive specifies the object CPU for the source program.

The address space bit width can be selected only when the CPU for advanced mode is selected. The
accessible space depends on the selected bit width.

The assembler code for the specified CPU.

The CPU classifications are interpreted as follows:

2600A[:32], 2600A:28,

2600A:24, 2600A:20 H8S/2600 advanced mode

2600N ... H8S/2600 normal mode

2000A[:32], 2000A:28,

2000A:24, 2000A:20 H8S/2000 advanced mode

2600N ... H8S/2600 normal mode

300HA [:24], 300HA:20 H8/300H advanced mode

56

300HN .. H8/300H normal mode

300 .. H8/300

300L ... H8/300L

This directive should be used at the beginning of the source program. It is an error for any directive
other than an assembly listing directive to precede the .CPU directive.

This directive is valid only once in a given program.

This directive is valid when there is no "CPU" command line option to the assembler.

If both this directive and the "CPU" command line option are not specified, the CPU classification
specified by the H38CPU environmental variable is valid.

Refer to section 2.2, H38CPU Environmental Variable, in the Usage Guide, for details on using the
H38CPU environmental variable.

Example

.CPU 300HA:20

.SECTION A, CODE, ALIGN=2

MOV.W R0, R1

MOV.W R0, R2

In this example, the source program will be assembled for the 1M mode in H8/300H advanced movd.

57

5.3 Section and Location Counter Directives

5.3.1 .SECTION Section Declaration

Format

Label Operation Operand

X .SECTION <section name> [,<section attribute>

[,<format classification>]]

<section attribute>: {CODE ³ DATA ³ STACK ³
COMMON ³ DUMMY}

<format classification>: {LOCATE=<starting address> ³
ALIGN=<boundary alignment
value>}

Description This directive declares the start of a section or restart to a section.

1. Section start

A section is started, and the section name, attribute, and format classification are specified.

a. Section name

This operand specifies the section name. The syntax for section names is the same as the
syntax for symbols. Note that upper and lower case letters are distinguished in section
names.

b. Section attribute

This operand specifies the section attribute. One of the following section attributes may
be specified.

CODE...................... Code section

DATA...................... Data section

STACK.................... Stack section

COMMON.............. Common section

DUMMY................. Dummy section

CODE is used as the default when no section attribute is specified.

58

c. Format classification

This operand specifies the addressing format classification. The following format
classifications may be specified.

LOCATE=<Starting address> Absolute addressing format

ALIGN=<boundary alignment value>......... Relative addressing format

"ALIGN=2" is used as the default when no format is specified.

In absolute addressing, the starting address of the section is specified.

The starting address must be a backward reference absolute value.

The maximum value of the starting address for each CPU is listed below.

· H8S/2600 advanced mode

2600A[:32]H'FFFFFFFF

2600A:28H'0FFFFFFF

2600A:24H'00FFFFFF

2600A:20H'000FFFFF

· H8S/2600 normal mode

2600NH'0000FFFF

· H8S/2000 advanced mode

2000A [:32]H'FFFFFFFF

2000A:28H'0FFFFFFF

2000A:24...................H'00FFFFFF

2000A:20H'000FFFFF

· H8S/2000 normal mode

2000NH'0000FFFF

· H8/300H advanced mode

300HA [:24]H'00FFFFF

300HA:20H'000FFFFF

59

· H8/300H normal mode

300HNH'0000FFFF

· H8/300

H8/300H'0000FFFF

· H8/300L

H8/300LH'0000FFFF

In relative addressing, the boundary alignment value is specified.

The linkage editor adjusts the starting address of relative addressing section to be a
multiple of the boundary alignment value.

The boundary alignment value must be a backward reference absolute value.

The boundary alignment value must be a power of 2(2n).

If no section has been declared using this directive, the assembler operates with the
following as the default section.

.SECTION P, CODE, ALIGN=2

60

2. Section restart

The assembler restarts a section that was previously declared.

In section restart the section name of a previously declared section is specified. The
originally declared section attribute and format classification are maintained in the restarted
section.

Examples

.SECTION A, CODE, ALIGN=2[1]

MOV.W R0, R1

.SECTION B, DATA, LOCATE=H'1000[2]

DATA1

.DATA.W H'0001

.SECTION A[3]

MOV.W R0, R3

[1] Starts section "A". The section name is "A", the section attribute is code section, and the
format classification is relative addressing with a boundary alignment value of 2.

[2] Starts section "B". The section name is "B", the section attribute is data section, and the
format classification is absolute addressing with a starting address at location H'1000.

[3] This directive restarts section "A". The section name is "A", the section attribute is code
section, and the format classification is relative addressing with a boundary alignment
value of 2.

61

5.3.2 .ORG Location Counter Value Assignment

Format

Label Operation Operands

X .ORG <location counter value>

Description

This directive sets the value of the location counter within the section to the specified value.

The <location counter value> must be a backward reference absolute value or backward reference to
an address value in a relative address section.

The maximum value of the <location counter value> for each CPU is listed below.

· H8S/2600 advanced mode

2600A [:32]H'FFFFFFFF

2600A :28H'0FFFFFFF

2600A :24H'00FFFFFF

2600A :20H'000FFFFF

· H8S/2600 normal mode

2600NH'OOOOFFFF

· H8S/2000 advanced mode

2000A[:32]H'FFFFFFFF

2000A :28H'OFFFFFFF

2000A :24H'OOFFFFFF

2000A :20H'OOOFFFFF

· H8S/2000 normal mode

2000NH'OOOOFFFF

· H8/300H advanced mode

300HA [:24]H'OOFFFFFF

300HA :20H'OOOFFFFF

· H8/300H normal mode

300HNH'OOOOFFFF

· H8/300

300H'OOOOFFFF

· H8/300L

62

300LH'OOOOFFFF

When specified in an absolute addressing section, the specified location counter value must be a
location following (i.e. greater than) the starting address of the section.

When this directive is used in an absolute addressing section, the specified location counter value is an
absolute address, and when used in a relative addressing section, the specified location counter value is
a relative address.

Examples

.SECTION A, DATA, LOCATE = H'0100

DATA1

.DATA.W H'0001

.DATA.W H'0002

.ORG H'0200[1]

DATA2

.DATA.W H'0003

.DATA.W H'0004

[1] The value of the location counter is changed to absolute location H'0200.

.SECTION B, DATA, ALIGN=2

DATA3

.DATA.W H'0001

.DATA.W H'0002

.ORG H'0300[2]

DATA4

.DATA.W H'0003

.DATA.W H'0004

[2] The value of the location counter is changed to relative location H'0300 in section A.

63

 5.3.3 .ALIGN Location Counter Value Boundary Alignment

Format

Label Operation Operands

X .ALIGN <boundary alignment value>

Description

This directive adjusts the value of the location counter to be a multiple of the <boundary alignment
value> parameter.

The boundary alignment value must be a backward reference absolute value.

The boundary alignment value must be a power of 2(2n).

The boundary alignment value is set based on the starting address of a relative addressing section.

The boundary alignment value depends on the selected address space.

Examples

.CPU 2600A

.SECTION A, DATA, ALIGN=2 [1]

DATA1

.DATA.W H'0001

DATA2

.DATA.B H'02 [2]

.ALIGN 2 [3]

DATA3

.DATA.W H'0003

.END

[1] The starting address of the relative addressing section is adjusted to be a multiple of 2 (an
even number) at object module linkage.

[2] The location counter value for the next data becomes an odd location since a single byte of
data is allocated.

[3] The location counter value is adjusted to be a multiple of 2 (an even number).

64

5.4 Symbol Directives

5.4.1 .EQU Symbol Value Assignment

Format

Label Operation Operands

<symbol> .EQU <value>

Description

This directive assigns a value to a symbol.

The value must be either a backward reference absolute value or a backward reference address value.

The value of symbols defined with this directive cannot be changed.

Examples

SYM1 .EQU 1

SYM2 .EQU 2

.SECTION A, CODE, ALIGN=2

MOV.B #SYM1:8,ROL[1]

MOV.B #SYM2:8,R1L[2]

[1] This is the same as "MOV.B#1:8, ROL."

[2] This is the same as "MOV.B#2:8, R1L."

The value 1 is assigned to the symbol SYMI, and the value 2 to the symbol SYM2.

65

5.4.2 .ASSIGN Symbol Value Assignment

Format

Label Operation Operands

<symbol> .ASSIGN <value>

Description

This directive assigns a value to a symbol.

The value must be either a backward reference absolute value or a backward reference address value.

This directive can be used to change the value of a symbol originally defined using this directive.

The values returned when referencing symbols defined with this directive behave as shown in the
example below.

Example
MOV.B #SYM:8,ROLThe value of SYM is O.

SYM .ASSIGN 1

MOV.B #SYM:8, R1LThe value of SYM is 1.

SYM .ASSIGN 2

MOV.B #SYM:8,R2LThe value of SYM is 2.

Symbols defined with this directive cannot be defined to be external symbols.

Symbols defined with this directive cannot be referenced by the simulator/debugged.

66

Examples

SYM1 .ASSIGN 1

SYM2 .ASSIGN 2

.SECTION A, CODE, ALIGN=2

MOV.B #SYM1:8,ROL [1]

MOV.B #SYM2:8,R1L [2]

SYM2 . ASSIGN 3

MOV.B #SYM1:8,R2L [3]

MOV.B #SYM2:8,R3L [4]

[1] This is the same as "MOV.B#1:8, ROL."

[2] This is the same as "MOV.B#2:8, R1L."

[3] This is the same as "MOV.B#1:8, R2L."

[4] This is the same as "MOV.B#3:8, R3L."

The value 1 is assigned to SYM1 and the value 2 to SYM2. The value of SYM2 is then changed to 3.

67

5.4.3 .REG Register Alias Assignment

Format

Label Operation Operands

<symbol> .REG (<register>)

Description

This directive specifies an alias for one or more registers.

An alias is specified in the following ways:

· Single register

One alias is specified for one register. The register alias can be used in any position where a
register can be specified. A general register can be specified as the register.

· Multiple registers

One alias is specified for two or more registers. This specification is allowed only for the
H8S/2600 or H8S/2000 series of CPUs. Multiple registers can be specified as operands of
this directive and the LDM and STM instructions. 32-bit general registers can be specified as
multiple registers.

The following table summarizes how to specify aliases for registers.

Specification Description Examples

Single register One register is specified from
among RO to R7, EO to E7, or
ERO to ER7.

SINGLREG .REG (RO) The alias
SINGLREG is specified for
register RO.

Multiple registers Multiple registers are specified as
a range of registers expressed
with a hyphen(-). If the register
on the left side of the hyphen is
numerically greater than that on
the right side, an error occurs
and this directive is ignored.

RNG1 .REG (ERO-ER3)

 The alias RNG1 is specified for
registers ERO, ER1, ER2, and
ER3.

 RNG2 .REG (ER3-ERO)

 The right register (ERO) is less
than the left register (ER3); an
error occurs. (See note.)

Register alias respecification A defined register alias is
specified as an operand.

ER00 .REG (ER0-ER3) ER01
.REG (ER00)

The alias ER01 is specified for
registers ER0 to ER3.

68

Note: Register combinations are the following:

ERO-ER1, ER2-ER3, ER4-ER5, ER6-ER7, ER0-ER2, ER4-ER6, ER0-ER3, and ER4-ER7.

Register aliases defined by this directive cannot be redefined.

A register alias defined by this directive is valid in all source statements following the defining
directive statement.

Register aliases defined by this directive cannot be defined as external symbols.

Symbols defined by this directive cannot be referenced by the simulator/debugged.

Examples

.CPU 2600A

RLST1: .REG (R0)[1]

RLST2: .REG (ER0-ER2)[2]

MOV.W RLST1,@R6

LDM.L @SP+, (RLST2)

STM.L (RLST2), @-SP

[1] The alias RLST1 is specified for register R0.

[2] The alias RLST2 is specified for registers ERO, ER1, and ER2.

69

 5.4.4 .BEQU Bit Data Name Assignment

Format

Label Operation Operands

<symbol> .BEQU <bit number>, <replacement symbol>

Description

This directive assigns a name to a single memory data bit which will then be used as the object of a bit
manipulation instruction.

The bit data name can then be used as the operand for bit manipulation instructions. The specified bit
data name is replaced with an address of the form #xx,@aa.

Example
BITO .BEQU 0,ADDRESSDefines a bit data name.

BSET.B BITO:8That bit data name is then specified
as the operand of a bit operation
instruction.

Code is generated for the "BSET.B BITO:8" instruction as though it were written "BSET.B
#0,@ADDRESS:8."

The bit number must be a backward reference absolute value.

The bit number must have a value in the range 0 to 7.

When the CPU is H8S/2600 series or H8S/2000 series: A symbol which can be specified in the 8-bit
absolute addressing format @aa:8), 16-bit absolute addressing format @aa:16), or 32-bit absolute
addressing format @aa:32) is specified for the replacement symbol.

When the CPU is H8/300H series, H8/300 series: A symbol which can be specified in the 8-bit
absolute addressing format @aa:8) is specified for the replacement symbol.

The following bit manipulation instructions can use a bit data name.

BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR, BXOR,

BIXOR, BLD, BILD, BST, BIST

70

Bit data names defined with this directive are valid in all source statements following the defining
directive.

Bit data names defined with this directive cannot be defined as external symbols.

Bit data names defined with this directive cannot be referenced by the simulator/debugged.

Examples

.CPU 2600A

AD1 .EQU H'FFFFFF00

AD2 .EQU H'FFFF8000

AD3 .EQU H'FF000000

AD1B0 .BEQU 0,AD1

AD1B1 .BEQU 1,AD1

AD2B2 .BEQU 2,AD2

AD2B3 .BEQU 3,AD2

AD3B4 .BEQU 4,AD3

AD3B5 .BEQU 5,AD3

.SECTION A, CODE,ALIGN=2

BSET.B AD1B0 [1]

BSET.B AD1B1 [2]

BCLR.B AD2B2 [3]

BCLR.B AD2B3 [4]

BNOT.B AD3B4 [5]

BNOT.B AD3B5 [6]

These bit data names refer to the following bits:

AD1B0 Bit 0 of location H'FFFFFF00.

AD1B1 Bit 1 of location H'FFFFFF00.

AD2B2 Bit 2 of location H'FFFF8000.

AD2B3 Bit 3 of location H'FFFF8000.

AD3B4 Bit 4 of location H'FF000000.

AD3B5 Bit 5 of location H'FF000000.

[1] This is the same as "BSET.B#0,@AD1:8".

[2] This is the same as "BSET.B#1,@AD1:8".

[3] This is the same as "BCLR.B#2,@AD2:16".

[4] This is the same as "BCLR.B#3,@AD2:16".

[5] This is the same as "BNOT.B#4,@AD3:32".

71

[6] This is the same as "BNOT.B#5,@AD3:32".

5.5 Data Area Allocation Directives

5.5.1 .DATA Integer Data Allocation

Format

Label Operation Operands

[<symbol>] .DATA[.s] <integer data>[,<integer data> ...]

s(size): {B³W³L}

Description

This directive allocates integer data according to the specified size.

The size specifies are interpreted as follows:

B Byte (1 byte)

W Word (2 bytes)

L Long word (4 bytes)

Byte is taken as the default when a size specification is omitted.

The values which may be specified for the integer data vary with the size as shown below.

B -128 to 255

W -32,768 to 65,535

L -2,147,483,648 to 4,294,967,295

Integer data depends on the selected address space.

Examples

.SECTION A, DATA,ALIGN=2

.DATA.W H'0102,H'0304

.DATA.B H'05,H'06,H'07,H'08

The following data is allocated.

72

01 02 03 04 05 06 07 08

5.5.2 .DATAB Integer Data Block Allocation

Format

Label Operation Operands

[<symbol>] .DATAB[.s] <block count>, <integer data>

s(size):{B³W³L}

Description

This directive allocates <block count> units of integer data in the specified size.

The size specifies are interpreted as follows:

B Byte (1 byte)

W Word (2 bytes)

L Long word (4 bytes)

Byte is taken as the default when a size specification is omitted.

The block count must be a backward reference absolute value.

values of 1 or more can be specified as the block count.

The values which may be specified for the integer data vary with the size as shown below.

B -128 to 255

W -32, 768 to 65, 535

L -2, 147, 483, 648 to 4, 294, 967, 295

The block count depends on the selected address space.

Examples

73

.SECTION A, DATA, ALIGN=2

.DATAB.W 2, H'0102

.DATAB.B 2, H'03

The following data is allocated.

01 02 0301 02 03

5.5. 3 .SDATA Character String Data Allocation

Format

Label Operation Operands

[<symbol>] .SDATA "<character string>"[,

"<character string>"...]

Description

This directive allocates character string data.

Character strings are specified by the character surrounded by double quotation marks.

To specify a double quotation mark in a character string, enter two double quotation marks in
succession.

To specify control codes in character strings, insert the control codes surrounded by angle brackets
(<>) immediately following the character string surrounded by double quotation marks.

"character string"<control code>

Control codes are specified with backward reference absolute values.

Examples

.SECTION A,DATA,ALIGN=2

.SDATA "ABC" "DEF"

.SDATA "GHI" <H'OD><H'OA>

The following data is allocated.

74

A B DC " E 0DGF H I 0A

5.5.4 .SDATAB Character String Data Block Allocation

Format

Label Operation Operands

[<symbol>] .SDATAB <block count>, "<character string>"

Description

This directive allocates <block count> units of character string data.

The block count must be a backward reference absolute value.

Values of 1 or more can be specified as the block count.

The block count depends on the selected address space.

Character strings are specified by the characters surrounded by double quotation marks(").

To specify a double quotation mark in a character string, enter two double quotation marks in
succession(" ").

To specify control codes in character strings, insert the control codes surrounded by angle brackets
(<>) immediately following the character string surrounded by double quotation marks.

"character string"<control code>

Control codes are specified with backward reference absolute values.

Examples

.SECTION A,DATA,ALIGN=2

.SDATAB 2, "A" "B"

.SDATAB 2, "EF"<H'00>

The following data is allocated.

75

A " "B A E FB E F00 00

 5.5.5 .SDATAC Counted Character String Data Allocation

Format

Label Operation Operands

[<symbol>] .SDATAC "<character string>"[,

"<character string>"...]

Description

This directive allocates counted character string data.

When allocating character string data, this directive attaches the count (the number of bytes in the
character string) at the start of the character string data. The count does not include the byte taken by
the count itself.

Character strings are specified by characters surrounded by double quotation marks(").

To specify a double quotation mark in a character string, enter two double quotation marks in
succession(" ").

To specify control codes in character strings, insert the control codes surrounded by angle brackets
(<>) immediately following the character string surrounded by double quotation marks.

"character string"<control code>

Control codes are specified with backward reference absolute values.

Examples

.SECTION A,DATA,ALGIN=2

.SDATAC "AB" "CDE", "FG" <H'0D><H'0A>

The following data is allocated.

06 A CB " E 04D G 0DF 0A

76

5.5.6 .SDATAZ Zero Terminated Character String Data Allocation

Format

Label Operation Operands

[<symbol>] .SDATAZ "<character string>"[,

"<character string>"...]

Description

This directive allocates zero terminated character string data.

When allocating character string data, this directive attaches a single byte with the value 0 at the end
of the allocated data.

Character strings are specified by characters surrounded by double quotation marks(").

To specify a double quotation mark in a character string, enter two double quotation marks in
succession (" ").

To specify control codes in character strings, insert the control codes surrounded by angle brackets
(<>) immediately following the character string surrounded by double quotation marks.

"character string"<control code>

Control codes are specified with backward reference absolute values.

Examples

.SECTION A,DATA,ALIGN=2

.SDATAZ "AB" "CD", "EFG" <H'OD><H'OA>

The following data is allocated.

A B D" C E F00 0DG 0A 00

77

5.5.7 .RES Integer Data Area Allocation

Format

Label Operation Operands

<symbol>] .RES[.s] <area count>

s (size): {B½ W½ L}

Description

This directive reserves (allocates) an integer data area.

An area of <area count> units of data of the specified size is allocated.

The size specifies are interpreted as follows:

B Byte (1 byte)

W Word (2 bytes)

L Long word (4 bytes)

Byte is taken to be the default when the specification is omitted.

The area count must be a backward reference absolute value.

Values of 1 or more can be specified as the area count.

The area count depends on the selected address space.

Examples

.SECTION A, DATA, ALIGN=2

.RES.W 10

.RES.B 255

A20-byte area and a 255-byte area are allocated.

78

5.5.8 .SRES Character string Data Area Allocation

Format

Label Operation Operands

[<symbol>] .SRES <area size>[,<area size>...]

Description

This directive reserves (allocates) character string data areas.

Areas of the specified area size (byte count) are allocated.

The area size must be a backward reference absolute value.

Values of 1 or more can be specified as the area size.

The area size depends on the selected address space.

Examples

.SECTION A,DATA,ALIGN=2

.SRES 10,20,30

.SRES 255

Areas of 10, 20, and 30 bytes, and then an area of 255 bytes, are allocated.

79

5.5.9 .SRESC Counted Character string Data Area Allocation

Format

Label Operation Operands

[<symbol>] .SRESC <area size>[,<area size>...]

Description

This directive reserves (allocates) counted character string data areas.

Areas of the specified area size (byte count) plus 1 (for the count byte) are allocated.

The area size must be a backward reference absolute value.

Values from 0 to 255 can be specified as the area size.

Examples

.SECTION A,DATA,ALIGN=2

.SRESC 10,20,30

.SRESC 255

Areas of 11,21, and 31 bytes, and then an area of 256 bytes, are allocated.

80

 5.5.10 .SRESZ Zero Terminated Character String Data Area Allocation

Format

Label Operation Operands

[<symbol>] .SRESZ <area size>[,<area size> ...]

Description

This directive reserves (allocates) zero terminated character string data areas.

Areas of the specified area size (byte count) plus 1 (for the termination byte) are allocated.

The area size must be a backward reference absolute value.

Values from 0 to 255 can be specified as the area size.

Examples

.SECTION A,DATA,ALIGN=2

.SRESZ 10,20,30

.SRESZ 255

Areas of 11,21, and 31 bytes, and then an area of 256 bytes, are allocated.

81

5.6 External Reference and External Definition Directives

5.6.1 .IMPORT External Reference Symbol Declaration

Format

Label Operation Operands

X .IMPORT <symbol>[,<symbol>...]

Description

This directive declares external reference symbols.

This directive is used when symbols defined in another program are referenced. The symbols defined
in a source program cannot be declared as the external reference symbols within the program.

When symbols are declared to be external reference symbols and referenced externally, it is necessary
for those symbols to be declared to be external definition symbols with the .EXPORT directive in the
defining program.

Examples

.CPU 2600A

.IMPORT PROG [1]

;

.SECTION A, CODE, ALIGN=2

START

MOV.L #STACK:32,SP

MOV.L #'12345678:32,ER0

JSR @PROG:24 [2]

SLEEP

BRA START

;

.SECTION B, STACK, ALIGN=2

.RES.B H'500

STACK

;

.END START

82

[1] PROG is declared to be an external reference symbol.

[2] PROG is referenced.

The symbol PROG is referenced externally in this example.

5.6.2 .EXPORT External Definition Symbol Declaration

Format

Label Operation Operands

X .EXPORT <symbol>[,<symbol>...]

Description

This directive declares external definition symbols.

Symbols defined within a source program are declared to be external definition symbols with this
directive when they are referenced in another program.

The following types of symbols can be declared to be external definition symbols.

Symbols which hold an absolute value

Symbols which hold an address value

Note that symbols defined with the .ASSIGN directive, and symbols which hold an address value in a
dummy section cannot be specified to be external definition symbols.

To reference symbols declared to be external definition symbols with this directive, the referencing
program must declare those symbols to be external reference symbols with the .IMPORT directive.

Examples .CPU 2600A

.EXPORT PROG[1]

;

.SECTION A, CODE, ALIGN=2

PROG[2]

MOV.L ER0, ER1

MOV .L ER0, ER3

RTS

;

.END

83

[1] PROG is declared to be an external definition symbol.

[2] PROG is defined.

The symbol PROG is defined externally in this example.

5.6.3 .GLOBAL External Reference and External Definition Symbol Declaration

Format

Label Operation Operands

X .GLOBAL <symbol>[,<symbol>...]

Description

This directive declares external reference and external definition symbols.

This declaration is used when symbols defined in other source programs are referenced, and also when
symbols defined within the current source program are to be referenced from other source programs.

This directive declares symbols that are not defined in the current source program to be external
reference symbols, and declares symbols defined in the source program to be external definition
symbols.

The following types of symbols can be declared to be external definition symbols.

· Symbols which hold an absolute value.

· Symbols which hold an address value.

Note that symbols defined with the .ASSIGN directive, and symbols which hold an address value in a
dummy segment cannot be specified.

Examples

84

.CPU 2600A

.GLOBAL PROG2[1]

.GLOBAL PROG3

;

.SECTION C,CODE, ALIGN=2

PROG2[2]

MOV.L ER0, ER1

JSR @PROG3:24 [3]

MOV.L ER1, ER2

RTS

;

.END

[1] PROG2 is declared to be an external reference symbol and PROG3 is declared to be an
external definition symbol.

[2] PROG2 is defined.

[3] PROG3 is referenced.

In this program, the symbol PROG2 is taken to be an external definition symbol, and the symbol
PROG3 is taken to be an external reference symbol.

85

5.7 Object Module Directives

5.7.1 .OUTPUT Object Module and Debugging Information Output Control

Format

Label Operation Operands

X .OUTPUT <output classifier>[, <output classifier>]

<output classifier>: {OBJ ³ NOOBJ ³ DBG ³ NODBG}

Description

This directive controls object module and debugging information output.

1. Object module output

This directive can be used to specify the output of an object module or the suppression of
that output.

The output classifiers for this function are interpreted as follows:

OBJOutput

NOOBJOutput suppressed

OBJ is used as the default if neither of these classifiers is specified.

This specification is only valid once in a given source program.

This specification is only valid when the [NO]OBJECT command line option has not been
specified.

2. Debugging information output

This directive can be used to specify the output of debugging information or the suppression
of that output.

The output classifiers for this function are interpreted as follows:

DBGOutput

NODBGOutput suppressed

NODBG is used as the default if neither of these classifiers is specified.

86

This specification is only valid once in a given source program.

This specification is only valid when the [NO]DEBUG command line option has not been
specified.

This specification is only valid when an object module is output.

Examples

.OUTPUT OBJ, DBG

This instruction specifies that both an object module and debugging information are output.

87

5.7.2 .DEBUG Debugging Symbol Information Output Control

Format

Label Operation Operands

X .DEBUG <output classifier>

<output classifier>: {ON ³ OFF}

Description

This directive specifies the output or suppression of symbol information in the debugging information.

This directive is used when only those symbols in the source program that are actually required for
debugging are to be output.

The output classifiers for this function are interpreted as follows:

ONOutput

OFFOutput suppressed

The initial setting of this output classifier is ON.

This directive can be used as many times as desired in a source program, and the specified output
classifier remains valid for all source statements until the next occurrence of the directive.

This specification is only valid when debugging information is output.

Examples

.OUTPUT DBG

.DEBUG OFF

.SECTION A, CODE, ALIGN=2

START

MOV .W @DAT:16, R1

.SECTION B, DATA, ALIGN=2

.DEBUG ON

DAT

.DATA.W H'1234

The symbol DAT will be output to the debugging information.

88

5.7.3 .LINE Changes the File Name and Line Number of Debugging Information

Format

Label Operation Operands

X .LINE ["<file name",] line number

Description

This directive changes the file name and line number of debugging information; it supports C source
level debugging.

This directive is embedded by the C compiler into an assembly source program output by the C
compiler. This enables C source level debugging even after the assembly source program output by the
C compiler is assembled.

The assembler manages the file name and line number specified by this directive beginning with the
line following this directive.

The file name and line number specified by this directive are valid only in the program containing this
directive.

89

> ch38 -cpu=2600a -code=asmcode -debug aaa . c
C source program (aaa . c)

int func() /*1*/

	{ /*2*/

/*3*/int i, j ;

/*4*/j = 0 ;

/*5*/for (i=1 ; i <=10 ; i++) {

/*6*/j += i ;

/*7*/return (j) ;

/*8*/}

Assembly source program

.CPU

.EXPORT

.SECTION P, CODE, ALIGN=2

.LINE

.LINE

.LINE

SUB.W

.LINE

.LINE

MOV.W

2600A

_func

"/asm/code/aaa.c",1

;function : func _func:

2

4

E0 , E0

5

1;16,R0

5

L5 :

ADD:W

.LINE

MOV.W

.LINE

BLE

INC.W

.LINE

.END

RTS

.LINE

6

R0 , E0

5

L5:8

7

E0,R0

8

1,R0

CMP.W 10:16,R0

90

5.7.4 .DISPSIZE Displacement Size Specification

Format

Label Operation Operands

X .DISPSIZE <object item>=<bit count>[,<object item>=<bit count>...]

<object item>: {FBR ³ XBR ³ FRG ³ XRG ³ FWD ³ XTN ³ ALL}

Description

This directive sets the default size for branch instruction displacements, displacements for register
indirect with displacement format addressing, and displacements for forward reference values and
external reference values.

The objects of the settings specified by this directive are displacements which have no displacement
size specification (:8,:16,:24 or:32).

The object items are interpreted as follows:

FBRForward reference branch instructions

XBRExternal reference branch instructions

FRGForward reference register indirect with displacement format addressing
XRGExternal reference register indirect with displacement format addressing

FWDEquivalent to simultaneous specification of FBR and FRG

XTNEquivalent to simultaneous specification of XBR and XRG

ALLEquivalent to simultaneous specification of FBR, FRG, XBR, and XRG

The following bit counts can be specified for the indicated object items.

H8S/2600 advanced modeFBR=8,16, XBR=8,16, FRG=16,32,

XRG=16,32, FWD=16, XTN=16, ALL=16

H8S/2600 normal modeFBR=8,16, XBR=8,16, FRG=16, XRG=16

H8S/2000 advanced modeFBR=8,16, XBR=8,16, FRG=16,32,

XRG=16,32, FWD=16, XTN=16, ALL=16

91

H8S/2000 normal modeFBR=8,16, XBR=8,16, FRG=16, XRG=16

H8/300H advanced modeFBR=8,16, XBR=8,16, FRG=16,24,

XRG=16,24, FWD=16, XTN=16, ALL=16

H8/300H normal modeFBR=8,16, XBR=8,16, FRG=16, XRG=16

H8/300 FBR=8, XBR=8, FRG=16, XRG=16

H8/300LFBR=8, XBR=8, FRG=16, XRG=16

The underlined is the default if nothing is specified.

The bit count must be a backward reference absolute value.

This directive can be used as many times as desired in a source program, and the specified bit count
settings remain valid for all source statements until the next occurrence of the directive.

FBR is valid when neither the OPTIMIZE nor the BR RELATIVE command line option is specified.

This directive is only valid for the H8S/2600, H8S/2000, and H8/300H advanced mode and the
H8S/2600, H8S/2000, and H8/300H normal mode. Since these settings are fixed at FBR=8, XBR=8,
FRG=16, and XRG=16 for the H8/300 and H8/300L, this directive has no meaning for those
processors.

92

Examples

.CPU 2600A

.SECTION A, CODE, ALIGN=2

.DISPSIZE FBR=16 [1]

BRA SYM Equivalent to "BRA SYM:16."

.DISPSIZE FBR=8 [2]

BRA SYM Equivalent to "BRA SYM:8."

SYM

MOV.W R0, R1

[1] Sets the displacement size for forward reference branch instructions to 16 bits.

[2] Sets the displacement size for forward reference branch instructions to 8 bits.

93

5.8 Assembly Listing Directives

5.8.1 .PRINT Assembly Listing Output Control

Format

Label Operation Operands

X .PRINT <output classifier>[,<output classifier>...]

 <output classifier>: {LIST ³ NOLIST ³ SRC ³ NOSRC ³ CREF ³ NOCREF

³ SCT ³ NOSCT}

Description

This directive controls the output of an assembly listing, a source program listing, a cross-reference
listing, and section information listing.

1. Assembly listing output control

This directive can be used to specify the output of an assembly listing or the suppression of
that output.

The output classifiers for this function are interpreted as follows:

LISTOutput

NOLISTOutput suppressed

NOLIST is used as the default when neither of the above is specified.

This specification is only valid once in a given source program.

This specification is valid when the [NO] LIST command line option has not been specified.

2. Source program listing output control

This directive can be used to specify the output of a source program listing or the suppression
of that output.

The output classifiers for this function are interpreted as follows:

SRCOutput

NOSRCOutput suppressed

SRC is used as the default when neither of the above is specified.

94

This specification is only valid once in a given source program.

This specification is valid when the [NO]SOURCE command line option has not been
specified.

This specification is only valid when an assembly listing is output.

3. Cross-reference listing output control

This directive can be used to control the output of a cross-reference listing or the suppression
of that output.

The output classifiers for this function are interpreted as follows:

CREF..................Output

NOCREF............Output suppressed

CREF is used as the default when neither of the above is specified.

This specification is only valid once in a given source program.

This specification is valid when the [NO]CROSS-REFERENCE command line option has
not been specified.

This specification is valid only when an assembly listing is output.

4. Section information listing output control

This directive can be used to specify the output of section information listing or the
suppression of that output.

The output classifiers for this function are interpreted as follows:

SCTOutput

NOSCTOutput suppressed

SCT is used as the default when neither of the above is specified.

95

This specification is only valid once in a given source program.

This specification is valid when the [NO]SECTION command line option has not been
specified.

This specification is valid only when an assembly listing is output.

Examples

.PRINT LIST, SRC, NOCREF, NOSCT

;

.SECTION A, CODE, ALIGN=2

START

MOV.W R0,R1

MOV.W R0,R2

Only a source program listing is output in the assembly listing.

96

5.8.2 .LIST Source Program Partial Output Control

Format

Label Operation Operands

X .LIST <output classifier>[, <output classifier>...]

<output classifier>: {ON ³ OFF ³ COND ³ NOCOND ³ DEF ³ NODEF ³

CALL ³ NOCALL ³ EXP ³ NOEXP ³ STR ³ NOSTR ³

CODE ³ NOCODE}

Description

This directive controls partial output of source statements to the source program listing, partial output
of preprocessor function source statements, and partial output of object code display lines.

1. Source statement partial output control

This directive can be used to specify the partial output of program source statements or the
suppression of that output.

The output classifiers for this function are interpreted as follows:

ONOutput

OFFOutput suppressed

ON is the initial setting of this output classifier.

2. Preprocessor function source statement partial output control

This directive can be used to specify the partial output of preprocessor function source
statements or the suppression of that output.

The output classifiers for this function are interpreted as follows:

CONDFailed conditions are output

NOCONDFailed conditions are not output

DEFDefinitions are output

NODEFDefinitions are not output

CALLCalls are output

NOCALL.........Calls are not output

EXP.................Expansions are output

97

NOEXP............Expansions are not output

STRStructured expansions are output

NOSTRStructured expansions are not output

This specification is only valid when source statement partial output is specified.

COND, DEF, CALL, EXP, and STR are the initial settings of these output classifiers.

These preprocessor functions have the following meanings.

Failed conditionsThe branches of .AIF statements that were not satisfied.

Definitions...........................Macro definition bodies, .AREPEAT and

.AWHILE definition bodies, .INCLUDE

directives, .ASSIGNA and .ASSIGNC directives.

CallsMacro call statements, structured assembly

directives, .AIF and .AENDI directives.

Expansions........................ Macro expansion results, .AREPEAT and

.AWHILE expansion results.

Structured expansions Structured assembly expansion results.

This specification is valid when the [NO]SHOW command line option has not been
specified.

3. Object code display line partial output control

This directive can be used to specify the partial output of sections where the object code
display for directives exceeds the number of source statement lines, or the suppression of that
output.

The output classifiers for this function are interpreted as follows:

CODEOutput

NOCODEOutput suppressed

CODE is the initial setting of this output classifier.

98

This specification is valid when the [NO]SHOW command line option has not been
specified.

This directive is not output to the assembly listing.

This directive can be used as many times as desired in a source program, and the specified
output specified settings remain valid for all source statements until the next occurrence of
the directive.

This specification is valid only when a source program listing is output.

Examples

.PRINT LIST

;

.LIST OFF [1]

.INCLUDE "bbb.h"

.LIST ON [2]

;

.SECTION A, CODE, ALIGN=2

START

MOV.W R0, R1

` MOV.W R0, R2

Output of source statements is suppressed partially in this example. The source statements between [1]
and [2] are not output to the source program listing.

.PRINT LIST

.LIST NOSTR [3]

;

.SECTION A, CODE, ALIGN=2

START

.IF.B (ROL<EQ>R1L) ... [4]

MOV.W R0, R2

.ELSE [4]

MOV.W R0, R3

.ENDI [4]

Suppression of structured expansions is specified at line [3]. As a result, the source statements
expanded at the lines marked [4] will not be output to the source program listing.

99

5.8.3 .FORM Listing Size Control

Format

Label Operation Operand

X .FORM <listing size>[,<listing size>]

<listing size>: {LIN=<number of lines>1 COL=<number of columns>}

Description

This directive specifies the size of the assembly listing.

The listing size specifications used with this function are interpreted as follows:

LIN=<number of lines>The number of lines on a page.

COL=<number of columns>............The number of columns in a line.

The initial listing size settings are LIN=60 and COL=132.

1. Number of lines on a page

This setting specifies the number of lines on a page.

The number of lines is specified with a backward reference absolute value.

The range for the number of lines setting is from 20 to 255. If a value less than 20 is
specified, the value 20 is used, and if a value greater than 255 is specified, 255 is used. No
error is issued in these cases.

This specification is valid when the LINES command line option has not been specified.

2. Number of columns per line

This setting specifies the number of columns per line.

The number of columns is specified with a backward reference absolute value.

The range for the number of columns setting is from 79 to 255. If a value less than 79 is
specified, the value 79 is used, and if a value greater than 255 is specified, 255 is used. No
error is issued in these cases.

100

This specification is valid when the COLUMNS command line option has not been specified.

The specified listing size is valid for pages following the occurrence of this directive.

Examples

.FORM LIN=60, COL=80

This directive sets the assembly listing size to 60 lines per page and 80 columns per line.

101

5.8.4 .HEADING Listing Heading Specification

Format

Label Operation Operands

X .HEADING "<character string>"

Description

This directive specifies the title to be displayed in the source program listing page header.

Character strings are specified by enclosing the desired characters in double quotation marks (").

To specify a double quotation mark in a character string, enter two double quotation marks in
succession (" ").

Up to 60 characters may be specified for the character string. However, no error is displayed if more
than 60 characters are specified.

The page header will be displayed from the page where this directive appears if this directive appears
on the first line, otherwise it will be displayed starting with the following page.

Examples

.HEADING "MODULE NAME = ""MAIN"""

.PRINT LIST

;

.SECTION A, CODE, ALIGN=2

MAIN

MOV.W R0, R1

MOV.W R0, R2

The string MODULE NAME="MAIN" will be displayed as the page header.

102

5.8.5 .PAGE New Page

Format

Label Operation Operands

X .PAGE X

Description

This directive starts a new page in the source program listing.

A new page is not started if this directive appears on the first line of a page.

This directive is not output to the listing.

This specification is valid only when a source program listing is output.

Examples

.PRINT LIST

;

.INCLUDE "bbb.h"

;

.PAGE

.SECTION A, CODE, ALIGN=2 [1]

START

MOV.W R0, R1

MOV.W R0, R2

;

.PAGE

.SECTION B, DATA, ALIGN=2 [2]

DAT

.DATA.W H'0001

.DATA.W H'0002

New pages will be started so that both lines [1] and [2] appear on the first line of the page.

103

5.8.6 .SPACE Blank Line Output

Format

Label Operation Operands

X .SPACE [<number of lines>]

Description

This directive outputs the specified number of blank lines to the source program listing.

The number of lines must be a backward reference absolute value.

The range for the number of lines setting is from 1 to 50. If a value less than 1 is specified, 1 is used,
and if a value greater than 50 is specified, 50 is used. No error is issued in these cases.

A single blank line is output if the line count specification is omitted.

The section of the specified blank lines that exceeds the current page is not output.

No markings whatsoever, including line numbers, are displayed on the blank lines specified by this
directive.

This directive is not output to the listing.

This specification is valid only when a source program listing is output.

Examples

.PRINT LIST

;

.SECTION A, CODE, ALIGN=2

START

MOV.W R0, R1

MOV.W R0, R2 [1]

.SPACE 5

MOV.W R0, R3 [2]

Five blank lines will be inserted in the source program listing between the lines marked [1] and [2] in
the above example.

104

5.9 Other Directives

5.9.1 .PROGRAM Object Module Name Specification

Format

Label Operation Operands

X .PROGRAM <object module name>

Description

This directive assigns a name to the object module.

The object module name is used by the H series linkage editor, the H series librarian, and other support
software.

The syntax used for the object module name is the same as that for symbols.

If this directive is omitted, the main file name of the object file will be used as the object module
name.

This directive is valid only once in a given source program.

Examples

.PROGRAM main

;

.SECTION A, CODE, ALIGN=2

START

MOV.W R0, R1

MOV.W R0, R2

In this example, "main" is specified as the object module name.

105

5.9.2 .RADIX Radix Specification

Format

Label Operation Operands

X .RADIX <radix classifier>

<radix classifier>: {B³Q³D³H}

Description

This directive sets the default radix for integer constants.

The radix classifiers are interpreted as follows:

B Binary

Q Octal

D Decimal

H Hexadecimal

The initial value of the default radix is decimal.

Integer constant expressions that do not include a radix specification are the object of this directive's
specification.

However, this specification does not apply to operands of conditional assembly function directives.
The radix of constants in conditional assembly function directives is taken to be decimal if the
specification is omitted.

When specifying hexadecimal constants without a radix specification, the first digit must be between 0
and 9. Notations whose first character is A to F, are always interpreted to be symbols, and are not
affected by this directive. Attach a leading zero to use such constants.

This directive can be used as many times as desired in a source program, and the specified radix
remains valid for all source statements until the next occurrence of the directive.

Examples

106

.SECTION A, DATA, ALIGN=2

.DATA.W -32768 This is the same as -D'32768.

.DATA.W 65535 This is the same as D'65535.

.RADIX H

.DATA.W 8000 This is the same as H'8000.

.DATA.W 0FFFF This is the same as H'FFFF.

5.9.3 .END Source Program Termination

Format

Label Operation Operands

X .END [<execution start address>]

Description

This directive terminates the source program.

The assembler terminates assembly at the point this directive appears.

The <execution start address> specification is used to specify the simulation execution start address for
the simulator/debugged.

The <execution start address> is set to a code section address.

The <execution start address> must be either an absolute value or an address value.

The <execution start address> depends on the selected address space.

Examples

107

.CPU 2600A

.OUTPUT DBG

;

.SECTION A, CODE, ALIGN=2

START

MOV.L #0:32, ER0

MOV.L #1:32, ER1

MOV.L #2:32, ER2

BRA START

;

.END START

The simulator/debugged will start simulation from the address of the START symbol.

108

Section 6 File Inclusion Function

6.1 Overview of the File Inclusion Function

The file inclusion function allows other files to be inserted into a file at assembly time.

6.1.1 File Inclusion

In file inclusion, the include file, which is specified by an .INCLUDE directive, is inserted directly
following that .INCLUDE directive by the assembler during the assembly process.

109

When the file aaa.mar is assembled, it is assembled with the file bbb.h inserted directly
following the .INCLUDE directive

aaa.mar

.INCLUDE "bbb.h"

;

.SECTION A,CODE,ALIGN=2

MOV.W

bbb.h

; INCLUDE FILE

.INCLUDE "bbb.h"

; INCLUDE FILE

ON .EQU 1

OFF .EQU 0

;

.SECTION A,CODE,ALIGN=2

ON:16,R0

MOV.W #ON:16,R0

ON .EQU 1

OFF .EQU 0

Examples

110

6.2 File Inclusion Preprocessor Directives

6.2.1 .INCLUDE File Inclusion

Format

Label Operation Operands

X .INCLUDE "<file name>"

Description

This directive includes the specified file.

The file name is specified surrounded by double quotation marks (").

The syntax for the file name conforms to the naming rule of the host machine.

If no extension is included in the file name, a file with no extension is used.

It is possible to include other files within an include file. However the nesting depth for file
inclusion is limited to 30 levels.

The directory name specified with this directive can be changed using the INCLUDE command
line option.

Examples

.CPU 2600A

;

.INCLUDE "import.h"

;

.SECTION A, CODE, ALIGN=2

START

MOV.L #STACK:32,SP

JSR @PROG1:24

JSR @PROG2:24

;

.END

The file import.h is included.

111

Section 7 Conditional Assembly Function

7.1 Overview of the Conditional Assembly Function

The conditional assembly function allows the specification of whether a certain part of a source
program should be assembled.

7.1.1 Preprocessor Variables

Preprocessor variables are variables that are mainly used by the conditional assembly function.
Preprocessor variables are either integer or character type variables.

1. Integer preprocessor variables

Integer preprocessor variables are assigned integer values by the .ASSIGNA directive or the
ASSIGNA command line option. Also, they can be reassigned new integer values by the
.ASSIGNA directive.

A backlash and ampersand (\&) are inserted in front of integer preprocessor variables when
they are referenced.

Example
PRE ASSIGNA 1 This integer value 1 is assigned to the variable PRE.

.AIF\&PRE EQ 1 This is the same as: .AIF 1 EQ 1.
MOV.W R0, R1
.AENDI

2. Character preprocessor variables

Character preprocessor variables are assigned character string values by the .ASSIGNC
directive or the ASSIGNC command line option. Also, they can be reassigned new character
values by the.ASSIGNC directive.

A backlash and an ampersand (\&) are inserted at the front of integer preprocessor variables
when they are referenced.

Example
PRE .ASSIGNC "ON". The character string "ON" is assigned to the variable PRE.
.AIF "\&PRE" EQ "ON" This is the same as: .AIF "ON" EQ "ON"
 MOV.W R0, R1
.AENDI

112

7.1.2 Conditional Assembly

The conditional assembly function assembles the statements between .AIF, .AELSE, and .AENDI
directive statements (note that the .AELSE statement may be omitted) according to the condition
specified by the .AIF statement.

1. When the .AIF condition holds:

If the .AIF condition is true, the statements between the .AIF and .AELSE statements are
assembled, and the statements between the .AELSE and .AENDI statements are not
assembled.

When the .AELSE statement is omitted, the statements between the .AIF and .AENDI
statements are assembled.

2. When the .AIF condition is false:

If the .AIF condition is false, the statements between the .AELSE and .AENDI statements are
assembled, and the statements between the .AIF and .AELSE statements are not assembled.

When the .AELSE statement is omitted, the statements between the .AIF and .AENDI
statements are not assembled.

Example
FLAG .ASSIGNA 1...........FLAG is set to 1.

.AIF \&FLAG EQ 1.....The condition is FLAG=1.
MOV.WR0, R1]
MOV.WR2, R3] This section will be assembled.
MOV.WR4, R5]
.AELSE
MOV.WR1, R0]
MOV.WR3, R2] This section will not be assembled.
MOV.WR5, R4]

.AENDI
Since FLAG is 1, the source statements between the .AIF and .AELSE statements are assembled.

113

7.1.3 Iterated Expansion

In iterated expansion, source statements between an .AREPEAT directive and its matching .AENDR
directive are iteratively expanded the number of times specified in the .AREPEAT directive. The
expanded statements are then assembled.

In this example, the statements between the .AREPEAT and .AENDR directives are
iteratively expanded twice and the expanded statements are assembled.

.AREPEAT 2

ADD.B R4L,R5L
.AENDR

ADD.B R0L,R1L
ADD.B R2L,R3L

... This section is

Example

 iterated twice

Expanded code

.AENDR
ADD.B R4L,R5L
ADD.B R2L,R3L
ADD.B R0L,R1L
.AREPEAT 2

ADD.B R4L,R5L
ADD.B R2L,R3L
ADD.B R0L,R1L

ADD.B R0L,R1L
ADD.B R2L,R3L
ADD.B R4L,R5L

114

7.1.4 Conditional Iterated Expansion

In conditional iterated expansion, source statements between an .AWHILE directive and its matching
.AENDW directive are iteratively expanded while the condition specified in the .AWHILE directive is
true. The expanded statements are then assembled.

115

In this example, the statements between the .AWHILE and .AENDW directives are
iteratively expanded while COUNT = 0, and the expanded statements are assembled.

.ASSIGNA 2

INC.B R0L

ADD.B R0L,R1L
ADD.B R0L,R2L

.... COUNT is set to
Example

 2.

 Expanded

COUNT

.AWHILE \&COUNT NE 0

.AENDW
COUNT .ASSIGNA \&COUNT-1

... The condition is
COUNT = 0

.... One is subtracted
 from the value of

 COUNT.

.AENDW

.ASSIGNA \&COUNT-1
INC.B R0L
ADD.B R0L,R2L

.AWHILE \&COUNT NE 0

.ASSIGNA 2

ADD.B R0L,R1L

COUNT

COUNT

statements

ADD.B R0L,R1L
ADD.B R0L,R2L
INC.B R0L
.ASSIGNA \&COUNT-1 COUNT

.ASSIGNA \&COUNT-1

ADD.B R0L,R2L
ADD.B R0L,R1L

COUNT
INC.B R0L

116

7.2 Conditional Assembly Preprocessor Directives

7.2.1 .ASSIGNA Integer Preprocessor Variable Assignment

Format

Label Operation Operands

<preprocessor variable> .ASSIGNA <value>

Description

This directive assigns a value to an integer preprocessor variable.

1. Integer preprocessor variable definition

The syntax of integer preprocessor variables is the same as that for symbols.

The value must be one of the following:

¾ Constant

¾ Preprocessor variable defined before

¾ Expression consisting of the above values

The value of preprocessor variables defined with this directive can be changed by another
instance of this directive.

Defined preprocessor variables are valid in all source statements following the defining
directive.

This specification is valid when no ASSIGNA command line option was specified.

2. Preprocessor variable reference

Preprocessor variables are referenced as follows:

\&<preprocessor variable>[']

The apostrophe (') is included when it is desirable to clearly distinguish the preprocessor
variable from the rest of the source statement.

Referenced integer preprocessor variables are replaced with their assigned values as decimal
integers with the radix specification omitted.

117

Preprocessor variables can be referenced in the following locations.

· .ASSIGNA and .ASSIGNC directives

· .AIF, .AREPEAT, .AWHILE, and .ALIMIT directives

· Macro bodies (source statements between a .MACRO directive and its matching .ENDM
directive.)

Examples

FLAG .ASSIGNA 1...............FLAG is set to 1.

;

.SECTION A, CODE, ALIGN=2

START

.AIF \&FLAG EQ 1............This is the same as ".AIF 1 EQ 1."

MOV .W RO, R2

.AENDI

.AIF \&FLAG EQ 2............This is the same as ".AIF 1 EQ 2."

MOV .W R1, R2

.AENDI

;

FLAG .ASSIGNA 2...............The value of FLAG is changed to 2.

;

.AIF \&FLAG EQ 1............This is the same as ".AIF 2 EQ 1."

MOV .W R3,R5

.AENDI

.AIF \&FLAG EQ 2............This is the same as ".AIF 2 EQ 2."

MOV .W R4,R5

.AENDI

In this example, the integer preprocessor variable FLAG is referenced in .AIF directives.

118

 7.2.2 .ASSIGNC Character Preprocessor Variable Assignment

Format

Label Operation Operands

<preprocessor variable> .ASSIGNC "<character string>"

Description

This directive assigns a value to a character preprocessor variable.

1. Character preprocessor variable definition

The syntax of character preprocessor variables is the same as that for symbols.

Character strings are specified by enclosing the desired characters in double quotation marks
(").

To specify a double quotation mark in a character string, enter two double quotation marks in
succession (" ").

The value of preprocessor variables defined with this directive can be changed by another
instance of this directive.

Defined preprocessor variables are valid in all source statements following the defining
directive.

This specification is only valid when no ASSIGNC command line option is specified.

2. Preprocessor variable reference

Preprocessor variables are referenced as follows:

\&<preprocessor variable>[']

The apostrophe (') is included when it is desirable to clearly distinguish the preprocessor
variable from the rest of the source statement.

Referenced character preprocessor variables are replaced with their assigned character string
excluding the surrounding double quotation marks (").

119

Preprocessor variables can be referenced in the following locations.

· .ASSIGNA and .ASSIGNC directives

· .AIF, .AREPEAT, and .AWHILE directives

· Macro bodies (source statements between a .MACRO directive and its matching .ENDM
directive.)

Examples

FLAG .ASSIGNC "ON".......................[1]

;

.SECTION A, CODE, ALIGN=2

START

.AIF "\&FLAG" EQ "ON"...............[2]

MOV .W RO, R2

.AENDI

.AIF "\&FLAG" EQ "OFF"..............[3]

MOV .W R1, R2

.AENDI

;

FLAG .ASSIGNC "OFF"......................[4]

;

.AIF "\&FLAG" EQ "ON"...............[5]

MOV .W R3, R5

.AENDI

.AIF "\&FLAG" EQ "OFF"..............[6]

MOV .W R4, R5

.AENDI

[1] FLAG is set to the character string ON.

[2] This is the same as .AIF "ON" EQ "ON".

[3] This is the same as .AIF "ON" EQ "OFF".

[4] The value of FLAG is changed to OFF.

[5] This is the same as .AIF "OFF" EQ "ON".

[6] This is the same as .AIF "OFF" EQ "OFF".

In this example, the character preprocessor variable FLAG is referenced in .AIF directives.

120

7.2.3 .AIF Conditional Assembly

Format

Label Operation Operands

X .AIF <term 1><relational perator><term
2>

[X .AELSE X

X .AENDI X

<relational operator>: {EQ ³ NE ³ GT ³ LT ³ GE ³ LE}

Description

This directive specifies conditional assembly.

The section of the statements between .AIF, .AELSE, and .AENDI directives for which the condition
is satisfied are assembled.

The .AELSE directive may be omitted.

The terms are specified with numeric values or character strings. However, numeric values and
character strings cannot be compared. When a numeric value and a character string are compared, the
condition always fails.

Numeric values are specified with backward reference absolute values or preprocessor variables.

Character strings are specified by preprocessor variables or characters surrounded by double quotation
marks (").

To specify a double quotation mark in a character string, enter two double quotation marks in
succession (" ").

The relational operators are interpreted as follows.

EQ <term 1>=<term 2>

NE <term 1>¹<term 2>

GT <term 1>><term 2>

LT <term 1><<term 2>

GE <term 1>³<term 2>

LE <term 1>£<term 2>

121

Examples

 FLAG1 .ASSIGNA 1

.AIF \&FLAG1 EQ 1..............The condition here is FLAG1 = 1.

MOV .W R0, R1]

MOV .W R2, R3] [1]

MOV .W R4, R5]

.AELSE]

MOV .W R1, R0]

MOV .W R3, R2] [2]

MOV .W R5, R4]

.AENDI

Since FLAG1 is 1, the statements [1] are assembled. The statements [2] will not be assembled.

FLAG2 .ASSIGNA 0

.AIF \&FLAG2 EQ 1.............The condition here is FLAG2=1.

.DATA .W H'0001]

.DATA .W H'0002]

.DATA .W H'0003] [3]

.DATA .W H'0004]

.DATA .W H'0005]

.AENDI

Since FLAG2 is not 1, the statements [3] will not be assembled.

122

7.2.4 .AREPEAT Iterated Expansion

Format

Label Operation Operands

X .AREPEAT <count>

X .AENDR X

Description

This directive iterates a part of source program statements.

The statements between the .AREPEAT directive and its matching. AENDR directive are iterated the
specified number of times.

The count must be a backward reference absolute value or a preprocessor variable.

Values of 1 or larger can be specified as the count. No expansion occurs if a value of 0 or smaller is
specified.

Examples

.AREPEAT 2

SHAL .B R0L

SHAL .B R1L

SHAL .B R2L

.AENDR

These source statements will be repeated twice.

.AREPEAT 3

.DATA.W H'0001, H'0002

.DATA.W H'0003, H'0004

.AENDR

These source statements will be repeated three times.

123

7.2.5 .AWHILE Conditional Iterated Expansion

Format

Label Operation Operands

X .AWHILE <term 1><relational operator><term 2>

[X .AENDW X

<relational operator>: {EQ ³ NE ³ GT ³ LT ³ GE ³ LE}

Description

This directive specifies conditional iterated assembly.

The statements between an .AWHILE directive and its matching .AENDW directive are expanded
iteratively while the condition is satisfied.

The terms are specified with numeric values or character strings. However, numeric values and
character strings cannot be compared. When a numeric value and a character string are compared, the
condition always fails.

Numeric values are specified with backward reference absolute values or preprocessor variables.

Character strings are specified by preprocessor variables or characters surrounded by double quotation
marks (").

To specify a double quotation mark in a character string, enter two double quotation marks in
succession (" ").

The relational operators are interpreted as follows.

EQ <term 1>=<term 2>

NE <term 1>¹<term 2>

GT <term 1>><term 2>

LT <term 1><<term 2>

GE <term 1>³<term 2>

LE <term 1>£<term 2>

124

Conditional iterated expansion terminates when the condition finally fails.

When the condition does not fail, expansion is iterated a maximum of 65,535 times. The maximum
iteration count can be specified using the .ALIMIT directive.

Examples

 COUNT .ASSIGNA 2COUNT is set to 2.

.AWHILE \&COUNT NE 0.........The condition is COUNT ¹0.

ADD .B R0L, R1L

ADD .B R0L, R2L

INC .B R0L

COUNT .ASSIGNA \&COUNT-1Subtracts 1 from COUNT.

.AENDW

The source statements will be iteratively expanded while COUNT is not 0.

STOP .ASSIGNA 0STOP is set to 0.

.AWHILE \&STOP LE 10.........The condition is STOP £10.

ADD.B R0L, R1L

ADD.B R0L, R2L

INC.B R0L

STOP .ASSIGNA \&STOP+3Adds 3 to STOP.

.AENDW

The source statements will be iteratively expanded while STOP is 10 or less.

125

7.2.6 .ALIMIT Conditional Iterated Expansion Limit

Format

Label Operation Operands

X .ALIMIT <maximum number of times>

Description

This directive sets the maximum number of times that conditional iterated expansion is to be
performed.

The limit value must be one of the following:

· Constant

· Preprocessor variable defined previously

· Expression consisting of the above values

The conditional iterated expansion limit specified by this directive can be changed by respecifying this
directive. It is valid in all source statements following the defining directive statement.

When this directive is not specified, the default value is 65,535.

Example

COUNT .ASSIGNA 3

.ALIMIT 10The conditional iterated

.AWHILE \&COUNT NE 4 expansion limit is set to 10.

ADD.B R0L, R1L]

ADD.B R0L, R1L]

INC.B R0L] [1]

COUNT .ASSIGNA \&COUNT-1]

.AENDW]

[1] is iteratively expanded while COUNT is not 4.

After 10 iterations, warning message 854 is output and iterated expansion is terminated.

126

7.2.7 EXITM Expansion Exit

Format

Label Operation Operands

X EXITM X

Description

This directive exits from (i.e., terminates) an iterative expansion specified by an .AREPEAT or
.AWHILE directive.

This directive can be specified between an .AREPEAT directive and its matching AENDR directive or
between an .AWHILE directive and its matching .AENDW directive. The expansion will terminate at
the point that this directive appears.

This directive is also used to exit from macro expansions. The positioning of this directive requires
care when iteration and macro expansion are combined.

Examples

COUNT .ASSIGNA 0

WHILE 1 EQ 1 [1]

D.B R0L,R1L

D.B R2L,R3L

COUNT .ASSIGNA \&COUNT+1

IF \&COUNT EQ 2 [2]

XITM

ENDI

ENDW

[1] This specifies an infinite loop expansion.

[2] The condition is COUNT = 2.

When COUNT is updated and the .AIF condition is satisfied, the .EXITM directive will be assembled.
At the point that the .EXITM directive is assembled, the .AWHILE expansion will be terminated.

127

Section 8 Macros

8.1 Overview of the Macro Function

The macro function allows commonly used sequences of instructions to be named and then
recalled simply by specifying that name.

8.1.1 Macro Definitions and Macro Calls

A macro definition defines the statements between a. MACRO directive and its matching.
ENDM statement (the macro body) as a macro instruction, and associates that code with a macro
name.

In a macro call, the macro name is specified in an instruction operation field, and the macro
body is inserted in the program at that location.

128

The macro body is expanded and assembled immediately after the macro call in the source
 program.

.MACRO MC0

MOV.W R4,R5

. ENDM

Example

MOV.W R2,R3

MC0

Macro definition

... Macro call

MOV.W R0,R1

MC0

MOV.W R4,R5
MOV.W R2,R3
MOV.W R0,R1

.MACRO MC0

.ENDM

Macro expansion
MOV.W R0,R1
MOV.W R2,R3
MOV.W R4,R5

129

An important aspect of the macro function is the ability to specify parameters to a macro call.
This allows part of the macro body to be replaced by arbitrary text that differs between macro
calls.

The procedure for using macro parameters is as follows:

1. Declare the formal parameters in the operands of the. MACRO directive.

2. Use the formal parameters in the macro body. Formal parameters must be identified in the
macro body by attaching a back-slash (\) at the front.

3. Specify the macro parameters corresponding to the formal parameters in the macro calls.

130

[1] Declares the formal parameters P1 and P2.

.MACRO MC0 P1,P2

.ENDM

MC0 R2,R3

Example

MOV.W R1,\P2

[2]MOV.W \P1,R0

MOV.W #H'1234,R0
MOV.W R1,R4

MC0 #H'1234,R4

... [1]

... [3]

... [4]

MC0 R2,R3

.ENDM
MOV.W R1,\P2
MOV.W \P1,R0

.MACRO MC0 P1,P2

MOV.W R2,R0
MOV.W R1,R3

MC0 #H'1234,R4

 [5]

 [6]

[2] The formal parameters are referenced in the macro body statements.
[3] The macro parameters R2 and R3 are specified in this macro call.
[4] The macro parameters #H'1234 and R4 are specified in this macro call.
[5] In this macro expansion \P1 is replaced by R2 and \P2 is replaced by R3.
[6] In this macro expansion \P1 is replaced by #H'1234 and \P2 is replaced by R4.

131

8.2 Macro Function Related Preprocessor Directives

8.2.1 .MACRO Macro Definition

Format Label Operation Operands

X .MACRO <macro name> [D <formal parameter>

[,<formal parameter>...]]

X .ENDM X

<formal parameter>: <formal parameter name>[=<default value>]

Description This directive defines a macro instruction.

The source statements (the macro body) between a .MACRO directive and its matching .ENDM
statement are defined as a macro instruction corresponding to the macro name.

The defined macro instruction is recalled by a macro call.

1. Macro name

The macro name is the name associated with the macro instruction, and is used in calls to the
macro.

The syntax for macro names is identical to that for symbols. However, the cross assembler
pre-defined mnemonics for machine instructions, directives (excluding the period), and
preprocessor directives (excluding the period) may not be used. Upper and lower case letters
are not distinguished in macro names.

2. Formal parameters

Formal parameters are specified when it is desired to replace parts of the macro body text at
expansion time. The replacement text is specified by the macro parameters in the macro call.

132

a. Formal parameter syntax

The syntax for formal parameter names is identical to that for symbols. Note that upper
and lower case letters are distinguished in formal parameter names.

b. Formal parameter reference

Formal parameters are used (referenced) in the body of the macro to specify the location
of the replacement text.

The syntax of formal parameter reference in macro bodies is as follows:

\<formal parameter name>[']

The apostrophe (') is included when it is desirable to clearly distinguish the formal
parameter from the rest of the source statement.

3. Formal parameter defaults

Default values for formal parameters can be specified in macro definitions. The default value
specifies the replacement character string for the formal parameter when the corresponding
parameter is omitted in a macro call.

The default value must be surrounded by double quotation marks (") or angle (<>) brackets if
any of the following characters are included in the default value.

¾ Space

¾ Tab

¾ Comma(,)

¾ Semicolon (;)

¾ Double quotation marks(")

¾ Angle brackets (<>)

Default values are inserted with the surrounding double quotation marks or angle brackets
removed in macro expansion.

133

The following limitations apply to macro definitions.

1. Macros cannot be defined in the following locations.Macro bodies (between

¾ MACRO and .ENDM directives)

¾ Between .AREPEAT and .AENDR directives

¾ Between A.WHILE and .AENDW directives

2. The .END directive cannot appear in a macro.

3. No symbol may be inserted in the label field of the .ENDM directive. The .ENDM directive
is ignored if its label field is not blank. No error is generated in this case.

Examples

.MACRO MC0 P1, P2

MOV.W \P1, P2

MOV.W \P2, R3 [1]

MOV.W R4, R5

.ENDM

MC0 R0, R2 [2]

[1] This defines the macro instruction MCO, and declares the formal parameters P1 and P2.

[2] This is a macro call. R0 is specified for the P1 parameter, and R2 for the P2 parameter.

In the macro expansion, \P1 will be replaced by R0, and \P2 by R2.

.MACRO MCO P1 = R0, P2 = R2 [3]

MOV.W \P1, R1

MOV.W \P2, R3

MOV.W R4, R5

.ENDM

MC0 ,R6 [4]

[3] In this macro definition R0 is specified as the default for P1, and R2 as the default for P2.

[4] This is a macro call. In this call the macro parameter for the parameter P1 is omitted. R6 is
specified as the parameter corresponding to the P2 parameter.

In the macro expansion, \P1 will be replaced by R0, and \P2 by R6.

134

8.2.2 Macro Body

Description

The following describes the functions which can be used in a macro body, i.e. in the source
statements between the .MACRO and .ENDM directives.

1. Formal parameter reference

Formal parameters names are used to specify the parts to be replaced by macro parameters in
macro expansion.

The syntax of formal parameter reference in macro bodies is as follows:

\<formal parameter name>[']

The apostrophe (') is included when it is desirable to clearly distinguish the formal parameter
from the rest of the source statement.

Example
.MACRO MC0 P1
MOV.W \P1, R1
.ENDM
MCO R0

2. Preprocessor variable (.ASSIGNA and .ASSIGNC) reference

Preprocessor variables can be referenced inside macro bodies.

The syntax for preprocessor variable reference is as follows:

\&<preprocessor variable name>[']

The apostrophe (') is included when it is desirable to clearly distinguish the preprocessor
variable from the rest of the source statement.

Example
.MACRO MC0
MOV.W \&PRE, R1
.ENDM

PRE .ASSIGNC "R0"
MC0

135

3. Macro generation number

The macro generation number marker is expanded as a 5-digit decimal number (between
00000 and 99999) unique to the macro expansion.

The syntax for specifying the macro generation number marker is as follows:

\@

The macro generation number facility is used to avoid the problem that symbols used within
a macro body will be multiply defined if the macro is expanded multiple times. To avoid this
problem, specify the macro generation number marker as part of any symbol used locally to
a macro. This will result in symbols that are unique to each macro call.

Example
.MACRO MC0
BEQ SYM\@:8
SYM\@
.ENDM
MC0
MC0

4. Macro replacement processing exclusion

When the backlash character (\) appears in a macro body, it specifies macro replacement
processing. Therefore a means for excluding this macro processing is required for cases
where it is necessary to use the backlash character as an ordinary character.

The syntax for macro replacement processing exclusion is as follows:

\(<macro replacement processing excluded character string>)

The backlash and the parentheses will be removed in macro processing.

Note that the character string manipulation functions are also excluded from replacement
processing in macro processing exclusion.

136

Example
.MACRO MC0
\(MOV.B #"\", ROL)
.ENDM
MCO

5. Comments in macros

Comments in macro bodies can be coded as normal comments or as macro internal
comments. When the comments in the macro body are not required in the macro expansion
code, those comments can be coded as macro internal comments to suppress their expansion.

Macro internal comments are coded as follows:

\;<comment>

Example
.MACRO MCO P1
MOV.W\P1, R1 \; \P1:Rn
.ENDM
MCO RO

6. Character string manipulation functions

Character string manipulation functions can be used in the body of a macro.

The following character string manipulation functions are provided.

.LEN Character string length (See section 8.2.5, .LEN.)

.INSTR Character string search (See section 8.2.6,. INSTR.)

.SUBSTR Character string substring (See section 8.2.7,. SUBSTR.)

137

8.2.3 Macro Call

Format Label Operation Operand

[<symbol>] <macro name> [<macro parameter>][,[<macro parameter>]...]

<macro parameter>: [<formal parameter>=]<character string>

Description This form invokes a macro expansion.

Macros must be defined with the .MACRO directive prior to a macro call.

The macro parameters specify strings to be substituted into the macro body during macro
expansion. It is necessary to declare these parameters in advance in the macro definition's.
MACRO statement.

1. Macro parameter specification

Macro parameters can be specified by either positional specification or keyword
specification.

a. Positional specification

In positional specification, the macro parameters are specified in the same order as that of
the formal parameters declared in the macro definition.

b. Keyword specification

In keyword specification, each macro parameter is specified following its corresponding
formal parameter, separated by an equal sign (=).

138

2. Macro parameter syntax

If a macro parameter includes any of the following characters, enclose the parameter in
double quotation marks (") or angle brackets (<>).

¾ Space

¾ Tab

¾ Comma (,)

¾ Semicolon (;)

¾ Double quotation mark (")

¾ Angle brackets (<>)

In macro expansion, the parameters will be substituted with the surrounding double quotation
marks or angle brackets removed.

Examples .MACRO MCO P1, P2

MOV.W \P1, R1

MOV.W \P2, R3 [1]

MOV.W R4, R5

.ENDM

MCO RO, R2 [2]

MCO P1=RO, P2=R2 [3]

[1] Defines the macro "MCO". The formal parameters P1 and P2 are declared.

[2] The macro parameters are specified using positional specification.

[3] The macro parameters are specified using keyword specification.

In both macro expansions (lines [2] and [3] the formal parameter \P1 is replaced by RO, and \P2
by R2.

139

8.2.4 .EXITM Expansion Termination

Format Label Operation Operand

X EXITM X

Description This directive terminates macro expansion.

This directive is specified in the body of a macro, i.e., between a .MACRO directive
and its matching .ENDM directive. When this directive appears during macro
expansion, this macro expansion is terminated.

This directive is also used to terminate. AREPEAT and .AWHILE iterative
expansions. The positioning of this directive requires care when iteration and macro
expansion are combined.

Examples

.MACRO MCO P1

MOV.W RO, R1

MOV.W R2, R3 [1]

MOV.W R4, R5

\P1

MOV.W R6, R7

.ENDM

MCO .EXITM

The .EXITM will be expanded, and the macro expansion will terminate at that point. Only
the statements labelled [1] will be expanded.

140

8.2.5 .LEN Character String Manipulation

Format .LEN [D] ("<character string>")

Description

This function counts the length of the character string given as its argument, and is replaced by
that value as a decimal number with no radix specification.

Character string are specified by enclosing the desired characters in double quotation marks (").

To specify a double quotation mark in a character string, enter two double quotation marks in
succession (" ").

Macro formal parameters and preprocessor variables can be specified in the character string as
shown below.

.LEN ("\<formal parameter>")

.LEN("\&<preprocessor variable>")

This function can only be used inside a macro body, i.e., between a .MACRO directive and its
matching .ENDM directive.

This directive is not replaced when it contains a syntax error. No error is displayed in this case.

Examples .MACRO MCO P1

.SRES .LEN ("\P1")

.ENDM

MC0 ABCDEF [1]

MC0 GHI [2]

[1] This expands to ".SRES 6".

[2] This expands to ".SRES 3".

141

8.2.6 .INSTR Character String Manipulation

Format .INSTR[D]("<character string 1>","<character string 2>"[,<search start position>])

Description

This function searches in character string 1 for character string 2, and is replaced by the
numerical value of the position (with 0 indicating the start of the string 1.) as a decimal number
with no radix specification.

The function call is replaced by--1 if character string 2 does not appear in character string 1.

Character strings are specified by enclosing the desired characters in double quotation marks (").

To specify a double quotation mark in a character string, enter two double quotation marks in
succession (" ").

The <search start position> parameter specifies starting the search at the character position
indicated, with 0 indicating the start of the string 1. Zero (0) is used as the default when omitted.

The <search start position> parameter must be a backward reference absolute value, with a value
of 0 or greater.

Macro formal parameters and preprocessor variables can be specified in the character strings and
as the search start position as shown below.

.INSTR("\<formal parameter>","\<formal parameter>",\<formal parameter>)

.INSTR("\&<preprocessor variable>","\&<preprocessor variable>",\&<preprocessor
variable>)

This function can only be used inside a macro body, i.e., between a .MACRO directive and its
matching. ENDM directive.

This directive is not replaced when it contains a syntax error. No error is displayed in this case.

142

Examples .MACRO MC0 P1

.DATA.W .INSTR("ABCDEFG","\P1",0)

.ENDM

MC0 CDE [1]

MC0 H [2]

[1] This expands to ".DATA.W 2".

[2] This expands to ".DATA.W -1".

143

8.2.7 .SUBSTR Character String Manipulation

Format .SUBSTR[D]("<character string>",<fetch start>,<fetch length>)

Description

This functions fetches from the specified character string a substring starting at the specified
fetch start position of the specified fetch length. The function call is replaced by the fetched
character string surrounded in double quotation marks (").

Character strings are specified by enclosing the desired characters in double quotation marks (").

To specify a double quotation mark in a character string, enter two double quotation marks in
succession (" ").

The <fetch start> and <fetch length> parameters must be backward reference absolute values.

The value of the fetch start position must be 0 or greater.

The value of the fetch length must be 1 or greater.

If illegal or inappropriate values for the <fetch start> and <fetch length> parameters are
specified, the function call is replaced by the null string, i.e. two double quotation marks.

Macro formal parameters and preprocessor variables can be specified in the character string,
fetch start, and fetch length parameter positions as shown below.

.SUBSTR("\<formal parameter>",\<formal parameter>,\<formal parameter>)

.SUBSTR("\&<preprocessor variable>",\&<preprocessor variable>,\&<preprocessor
variable>)

This function can only be used inside a macro body, i.e., between a .MACRO directive and its
matching .ENDM directive.

This directive is not replaced when it contains a syntax error. No error is displayed in this case.

144

Examples

.MACRO MC0 P1

.SDATA .SUBSTR("ABCDEFG",0,\P1)

.ENDM

MC0 2 [1]

MC0 5 [2]

[1] This expands to .SDATA "AB".

[2] This expands to .SDATA "ABCDE".

145

Section 9 Structured Assembly

9.1 Overview of Structured Assembly

The structured assembly functions provided by this assembler expand instructions which perform
testing and iteration.

9.1.1 Conditional Execution (.IF)

The conditional execution statements .IF, .ELSE, and .ENDI expand into a source code that selects
execution of the source statements between the .IF statement and its matching .ELSE and .ENDI
statements according to the condition specified in the .IF statement. (Note that the .ELSE statement is
optional.)

When the instructions expanded for an .IF statement are executed, the following occurs.

1. The condition specified in the .IF statement is tested.

2. If that condition is true, then the source statements between the .IF and .ELSE statements are
executed. If there is no .ELSE statement, the source statements between the .IF and .ENDI
statements are executed.

3. If the .IF condition is false, then the source statements between the .ELSE and .ENDI
statements are executed. If there is no .ELSE statement, then the statements between the .IF
and .ENDI statements are not executed.

146

Note: * Generated code.

In this example, the code will be generated so that when R0L is equal to R1L, the source

MOV.W # 0:16,R5

MOV.W # 0:16,R3
MOV.W # 0:16,R4

... The condition
Example

 is that R0L be
.IF.B (R0L<EQ>R1L)

MOV.W # 0:16,R2

ADD.W R2,R3

ADD.W R2,R5
ADD.W R2,R4

.ELSE

.ENDI

 equal to R1L.

.IF.B (R0L<EQ>R1L)

CMP R0L,R1L
BNE _$I00000

MOV.W # 0:16,R5
MOV.W # 0:16,R4
MOV.W # 0:16,R3

.ELSE

MOV.W # 0:16,R2

BRA _$I00001
_$I00000: .EQU $

.ENDI
ADD.W R2,R5
ADD.W R2,R4
ADD.W R2,R3

_$I00001: .EQU $

*

*

*

statements between the .IF and .ELSE statements are executed, and when R0L is not equal to
R1L, the source statements between the .ELSE and .ENDI statements are executed.

147

9.1.2 Execution Selection (.SWITCH)

The processing selection statements .SWITCH, .CASE, .OTHERS, and .ENDS generate a code that
selects and executes the source statements between .CASE and .BREAK statements or between
.OTHERS and .ENDS statements according to the conditions specified in the .SWITCH and .CASE
statements.

When the instructions expanded for a .SWITCH statement are executed, the following occurs.

1. The condition specified in the .SWITCH and .CASE statements is tested. The .CASE
conditions are tested in the order specified.

2. When the condition specified by a .SWITCH and .CASE combination is satisfied, the source
statements between that .CASE and the corresponding .BREAK statements are executed.

3. If none of the conditions specified by the .SWITCH and .CASE statements are satisfied, the
source statements between the .OTHERS and .ENDS statements are executed.

148

Note: * Generated code.

In this example, the code will be generated so that when R0L is 0, the source statements

MOV.W R1,R4

... The condition
Example

 is that R0L
.SWITCH.B (R0L)

.ENDS

 be 0.

CMP #0,R0L
BNE _$S00000

BRA _$S00001

_$S00000: .EQU $

.ENDS

*

*

*

between the .CASE #0 and .BREAK statements are executed, and when R0L is 1, the source

.CASE # 0

.BREAK

.CASE # 1
MOV.W R2,R4

.BREAK

.OTHERS
MOV.W R3,R4

 be 1.
 is that R0L
... The condition

.SWITCH.B (R0L)

.CASE # 0

MOV.W R1,R4
.BREAK

.CASE # 1

CMP = 1,R0L
BNE _$S00002

MOV.W R2,R4
.BREAK

.OTHERS

MOV.W R3,R4

BRA _$S00001

_$S00002: .EQU $

_$S00001: .EQU $

*

*

*

statements between the .CASE #1 and .BREAK statements are executed. In all other cases,
the source statements between the .OTHERS and .ENDS statements are executed.

149

9.1.3 Iteration (.FOR[U])

The processing iteration statements .FOR[U] and .ENDF generate a code that iteratively executes the
source statements between the .FOR[U] and .ENDF statements while the condition specified in the
.FOR[U] statement holds.

There are two forms of the .FOR[U] statement: the .FOR statement, which iterates using a signed
range test, and the .FORU statement, which iterates using an unsigned range test.

The loop counter and the loop counter initial, final, and increment values are specified in the .FOR[U]
statement.

When the instructions expanded for a .FOR[U] statement are executed, the following occurs.

1. The loop counter is initialized.

2. The loop counter continuation condition is tested.

3. If the condition holds, the source statements between the .FOR[U] and .ENDF statements are
executed, and the loop counter value is updated by increment value.

4. If the condition fails, the source statements between the .FOR[U] and .ENDF statements are
not executed, and the loop is terminated.

150

Note: * Generated code.

In this case, the code will be generated so that while R0L is less than or equal to 5, the source

... This statement
Example

 specifies that
.FOR.B (R0L= #1, #5, #1)

.ENDF

 R0L is used as

MOV #1,R0L
BRA _$F00002

ADD #1,R0L
_$F00001: .EQU $

*

*

statements between the .FOR and .ENDF statements are interatively executed.

 initial value of
 counter with an
 the loop

 increment of 1.
 of 5, and an
 1, a final value

 R0L be less than
 condition is that
 The continuation

 or equal to 5.

ADD.W R1,R3
ADD.W R1,R4

ADD.W R1,R2

ADD.W R1,R5
ADD.W R1,R6

_$F00000 : .EQU $

.FOR.B (R0L= #1, #5, #1)

ADD.W R1,R2

ADD.W R1,R6
ADD.W R1,R5
ADD.W R1,R4
ADD.W R1,R3

.ENDF

_$F00002: .EQU $
CMP #5,R0L
BLE _$F00000

_$F00003: .EQU $

151

9.1.4 Iteration (.WHILE)

The processing iteration statements .WHILE and .ENDW generate a code that iteratively executes the
source statements between the .WHILE and .ENDW statements while the condition specified in the
.WHILE statement holds.

When the instructions expanded for a .WHILE statement are executed, the following occurs.

1. The condition is tested.

2. If the condition holds, the source statements between the .WHILE and .ENDW statements
are executed.

3. If the condition fails, the source statements between the .WHILE and .ENDW statements are
not executed, and the loop terminates.

ADD. W R1,R2

... The condition

Example

 is that 5 be

.ENDW

 greater than R0L.

.WHILE.B (# 5 <GT>R0L)

INC. B R0L

.WHILE.B (# 5<GT>R0L)

CMP # 5, R0L

_$W00000: .EQU $

BGE _$W00001
*

*

ADD.W R1 , R2

INC. B R0L

.ENDW

BRA _$W00000

_$W00001: .EQU $

Note: *Generated code.
In this case, the code will be generated so that while 5 is greater than R0L, the source
statements between the .WHILE and .ENDW statements are interatively executed.

152

9.1.5 Iteration (.REPEAT)

The processing iteration statements .REPEAT and .UNTIL generate a code that iteratively executes
the source statements between the .REPEAT and .UNTIL statements until the condition specified in
the .UNTIL statement holds.

When the instructions expanded for a .REPEAT statement are executed, the following occurs.

1. The source statements between the .REPEAT and .UNTIL statements are executed.

2. The condition is tested.

3. If the condition fails, the source statements between the .REPEAT and .UNTIL statements
are executed.

4. If the condition holds, the loop terminates.

153

... The condition

Example

 is that 5 be less

 than R0L.

*

*

Note: *Generated code.
In this case, the code is generated so that until 5 is less than R0L, the source
statements between the.REPAET and UNTIL statements are iteratively executed.

.REPEAT

ADD. W R1,R2

INC. B R0L

.UNTIL. B (#5<LT>ROL)

.REPEAT

.UNTIL. B (#5<LT>R0L)

ADD. W R1,R2

INC. B R0L

_$R00000: .EQU $

_$R00000: .EQU $

CMP #5,R0L

BLE _$R00000

_$R00000: .EQU $

154

9.1.6 Notes on Structured Assembly

1. The structured assembly function expands the structured assembly directives into predetermined
instructions and symbols, and performs no optimizations whatsoever. Thus the values that can be
specified as arguments to these directives are limited by the specifications of the instructions that are
generated. Furthermore, there are cases where inefficient code and/or unnecessary symbols are
generated.

Example
.IF .B (R0L<LT>#10) The generated instruction will cause an error.
MOV .W R1, R2
.ENDI

The .IF directive is expanded into a CMP instruction, and since this statement is expanded into the
statement CMP R0L, #10, an error occurs. To avoid this problem, code the above statement as
follows:

IF .B (#10<GT>R0L) This is expanded into CMP#10, R0L.
MOV .W R1, R2
ENDI

2. The structured assembly statements generate symbols of the forms shown below.

.IF -$I00000 to -$I99999

.SWITCH -$S00000 to -$S99999

.FOR[U] -$F00000 to -$F99999

.WHILE-$W00000 to -$W99999

.REPEAT -$R00000 to -$R99999

Accordingly, symbols of these forms cannot be used as user symbols.

155

9.2 Structured Assembly Function Directive

The condition codes used in structured assembly are listed in table 9-1. Refer to this table in
conjunction with the descriptions of the structured assembly function directives that follow.

Table 9-1 Condition Codes

Item Condition
Codes

Comparison Type Condition Code
Specification Type

1 <EQ> <term 1>=<term 2> Z=1

2 <NE> <term 1>=<term 2> Z=0

3 <GT> <term 1>=<term 2> (signed comparison) ZÚ (NÅV)=0

4 <LT> <term 1>=<term 2> (signed comparison) NÅV=1

5 <GE> <term 1>=<term 2> (signed comparison) NÅV=0

6 <LE> <term 1>=<term 2> (signed comparison) ZÚ (NÅV)=1

7 <HI> <term 1>=<term 2> (unsigned comparison) CÚZ=0

8 <LO><CS> <term 1>=<term 2> (unsigned comparison) C=1

9 <HS><CC> <term 1>=<term 2> (unsigned comparison) C=0

10 <LS> <term 1>=<term 2> (unsigned comparison) CvZ=1

11 <VC> V=0

12 <VS> V=1

13 <PL> N=0

14 <MI> N=1

15 <T> Always true

16 <F> Always false

Notes: N The CCR (condition code register) N (negative) flag

Z The CCR Z (zero) flag

V The CCR V (overflow) flag

C The CCR C (carry) flag

v Logical or

Å Logical exclusive or

156

9.2.1 .IF Conditional Execution

Format Label Operation Operands

X .IF[.s] [: d] {(<term 1> <cc> <term 2>) | (<cc>)}

[X .ELSE[:d] X]

X .ENDI X

s (size): {B | W | L}

d (branch size): {8 | 16}

cc (condition code):
{EQ|NE|GT|LT|GE|LE|HI|LO|HS|LS|CC|CS|VC|VS|PL| MI|T|F}

Description

Source statements are selected and executed based on the result of testing the condition specified in the
.IF statement.

When the condition holds, the source statements between the .IF and the .ELSE statements are
executed, and when the condition fails, the source statements between the .ELSE and the .ENDI
statements are executed.

The .ELSE statement may be omitted. When omitted, the source statements between the .IF and the
.ENDI statements are executed if the condition holds.

There are two types of conditions as follows:

1. Comparison type

In the comparison type, a decision is made based on a condition code based comparison of
two terms.

The terms must have addressing modes that can be used with the CMP instruction.

2. Condition code specification type

In the condition code specification type, a decision is made based on the specified CCR
(condition code register) state.

The size specifies the size of the terms compared in a comparison type condition. It has no meaning
with condition code specification type conditions.

157

The size specifiers are interpreted as follows:

B Byte (1 byte)

W Word (2 bytes)

L Long word (4 bytes)

Byte is taken as the default when the size specifier is omitted.

The branch size can be specified on both the .IF and the .ELSE statements.

The .IF branch size specifies the branch size from the .IF statement to the .ELSE or .ENDI statement.

The .ELSE branch size specifies the branch size from the .ELSE statement to the .ENDI statement.

The following branch sizes can be specified.

8 8 bits

16 16 bits

Refer to section 5.7.4, DISPSIZE in the Language Guide, and section 3.3.3, BR_RELATIVE and
section 3.3.4, [NO]OPTIMIZE in the Usage Guide, for the setting used when the branch size
specification is omitted.

Refer to table 9-1, Condition Codes, for details on the condition code conditions.

Limitations

1. "L" cannot be specified as the size with the H8/300 and H8/300L processors.

2. The value 16 cannot be specified as the branch size with the H8/300 and H8/300L
processors.

3. The size of the code generated by the source statements between an .IF statement and an
.ELSE statement, between an .ELSE statement and an .ENDI statement, or between an .IF
statement and an .ENDI statement (when the .ELSE statement is omitted) cannot exceed the
range corresponding to the specified branch size.

158

The maximum source code size for the different branch sizes are as follows:

8 About 100 bytes

16 About 32,700 bytes

4. When this directive is used, symbols from _$I00000 to _$I99999 may be generated. Thus
these symbols should not be used in programs which use the .IF directive.

Examples

.IF .B (R0L <EQ> R1L)

ADD.B #1:8, R0L

MOV.W R2, R3

MOV.W R4, R5 [1]

.ELSE

ADD.B #1:8, R1L

MOV.W R3, R2

MOV.W R5, R4 [2]

.ENDI

This is an example of the comparison type condition.

When ROL is equal to R1L, statements [1] will be executed, and when R0L is not equal to
R1L, statements [2] will be executed.

.IF .B (#H'10 <LT> R0L)

MOV.W R1, R2

MOV.W R1, R3

MOV.W R1, R4 [3]

.ENDI

This is an example of the comparison type condition.

Statements [3] will be executed when H'10 is less than R0L (under a signed comparison).

159

.IF (<NE>)

ADD.B #5:8, R0L [4]

.ELSE

MOV.B R0L, R1L [5]

.ENDI

This is an example of the condition code specification type condition.

When the CCR (condition code register) Z (zero) flag is 0, statement [4] will be executed,
and when 1, statement [5] will be executed.

.IF (<VS>)

MOV.B #0:8, R0L

MOV.B #0:8, R1L

MOV.B #0:8, R2L [6]

.ENDI

This is an example of the condition code specification type condition.

When the CCR (condition code register) V (overflow) flag is 1, statements [6] will be
executed.

.IF.B (#0 <LE>R0L)

.IF.B (#50<GE>R0L)

MOV.B R0L, R1L

MOV.B R0L, R2L

MOV.B R0L, R3L [7]

.ENDI

.ENDI

This is an example of a nested .IF construction.

If the condition 0£R0L£50 holds under signed comparison, then statements [7] will be
executed.

160

9.2.2 .SWITCH Execution Selection

Format Label Operation Operands

X .SWITCH[.s] {(<register>)|(CCR)}

X .CASE[:d] {<term>|<cc>}

[X .BREAK[:d] X]

X .CASE[:d} {<term>|<cc>}

[X .BREAK[:d] X]

M

[X .OTHERS X]

X .ENDS X

s (size): {B | W | L}

d (branch size): {8 | 16}

cc (condition code): {EQ | NE | GT | LT | GE | LE | HI | LO | HS |
LS | CC | CS | VC | VS | PL | MI | T | F}

Description

Source statements are selected and executed based on the result of testing the conditions specified in
the .SWITCH and .CASE statements.

When the condition specified by a .SWITCH statement and a corresponding .CASE statement are
satisfied, the source statements between that .CASE statement and its corresponding .BREAK
statement are executed. When no .CASE condition is satisfied, the source statements between the
.OTHERS and the .ENDS statements are executed.

The .SWITCH and .CASE conditions are tested in order.

When a .BREAK statement is omitted, execution continues to the statements between the next .CASE
and .BREAK, or to the following statements between .OTHERS and .ENDS.

161

There are two types of conditions as follows:

1. Comparison type

In the comparison type, a register and a term are tested for equality.

The register is specified in the .SWITCH statement.

The term is specified in the .CASE statement using an addressing mode that can be used as
the source operand in the CMP instruction.

2. Condition code specification type

In the condition code specification type, a decision is made based on the specified CCR
(condition code register) state.

CCR is specified in the .SWITCH statement.

The condition code(s) are specified in the .CASE statement(s).

The size specifies the size of the terms compared in a comparison type condition. It has no
meaning with condition code specification type conditions.

The size specifiers are interpreted as follows:

B Byte (1 byte)

W Word (2 bytes)

L Long word (4 bytes)

Byte is taken as the default when the size specifier is omitted.

The branch size can be specified on both the .CASE and the .BREAK statements.

The .CASE branch size specifies the branch size from the .CASE statement to the next
.CASE, .OTHERS, or .ENDS statement.

The .BREAK branch size specifies the branch size from the .BREAK statement to the .ENDS
statement.

162

The following branch sizes can be specified.

8 8 bits

16 16 bits

Refer to section 5.7.4, .DISPSIZE in the Language Guide, and section 3.3.3,
BR_RELATIVE and section 3.3.4, [NO]OPTIMIZE in the Usage Guide, for the setting used
when the branch size specification is omitted.

Refer to table 9-1, Condition Codes, for details on the condition code conditions.

Limitations

1. "L" cannot be specified as the size with the H8/300 and H8/300L processors.

2. The value 16 cannot be specified as the branch size with the H8/300 and H8/300L
processors.

3. The size of the code generated by the source statements corresponding to each .CASE
statement and the size of the code between a .BREAK statement and corresponding .ENDS
statement cannot exceed the range corresponding to the specified branch size.

The maximum source code size for the different branch sizes are as follows:

8 About 100 bytes

16 About 32,700 bytes

4. When this directive is used, symbols from _$S00000 to _$S99999 may be generated. Thus
these symbols should not be used in programs which use the .SWITCH directive.

163

Examples

.SWITCH.B (R0L)

.CASE #0

MOV.W R1, R4 [1]

.BREAK

.CASE #1

MOV.W R2, R4 [2]

.BREAK

.OTHERS

MOV.W R3, R4 [3]

.ENDS

This is an example of the comparison type condition.

When R0L is equal to 0, statement [1] will be executed, and when R0L is equal to 1, statement [2] will
be executed, and in all other cases, statement [3] will be executed.

.SWITCH (CCR)

.CASE <CS>

MOV.W R0, R3 [4]

.BREAK

.CASE <MI>

MOV.W R1, R3 [5]

.ENDS

This is an example of the condition code type condition.

When the CCR (condition code register) C (carry) flag is 1, statement [4] will be executed, and when
the N (negative) flag is 1, statement [5] will be executed.

164

.SWITCH.B (R0L)

.CASE #0

.CASE #1

.CASE #2

MOV.W R1, R3 [6]

.BREAK

.CASE #3

MOV.W R2, R3 [7]

.ENDS

This is an example of omitting the .BREAK statement.

When R0L is equal to 0, 1, or 2, statement [6] will be executed, and when R0L is 3, statement [7] will
be executed.

165

9.2.3 .FOR[U] Iteration

Format Label Operation Operands

X .FOR [U] [.s] [:d] (<loop counter>=<initial value>,<final
value>[,[{+ | - }]<increment value>]

X .ENDF X

s (size): {B | W | L}

d (branch size): {8 | 16}

Description

The condition specified by the loop counter and final value is tested, and the source statements
between the .FOR[U] and .ENDF statements are iterated while that condition is true.

There are two forms of the .FOR[U] statement: the .FOR statement, which iterates using a signed
range test, and the .FORU statement, which iterates using an unsigned range test.

The size specification specifies the size of the loop counter, initial value, final value and increment
value.

The size specifiers are interpreted as follows:

B Byte (1 byte)

W Word (2 bytes)

L Long word (4 bytes)

Byte is taken as the default when the size specifier is omitted.

The branch size specifies the branch size from the .FOR[U] statement to the .ENDF statement.

The following branch sizes can be specified.

8 8 bits

16 16 bits

Refer to section 5.7.4, .DISPSIZE in the Language Guide, and section 3.3.3, BR_RELATIVE and
section 3.3.4, [NO]OPTIMIZE in the Usage Guide, for the setting used when the branch size
specification is omitted.

166

The operands are interpreted as follows:

1. <loop counter>=<initial value>

This specifies the loop counter's initial value.

The loop counter must be a register.

The initial value must have an addressing mode that can be specified as the source operand
of the MOV instruction.

2. <final value>

The final value is the value which is compared with the loop counter.

There are two types of iteration conditions as follows:

Positive increment direction <loop counter>£<final value>

Negative increment direction <loop counter>³<final value>

The final value must have an addressing mode that can be specified as the source operand of
the CMP instruction.

(3) <increment value>

The increment value is the amount the loop counter is incremented or decremented on each
loop iteration.

The increment direction is specified by a plus (+) to indicate a positive increment direction
and a minus (-) to indicate a negative decrement direction.

Plus (+) is taken as the default when no increment direction is specified.

The increment value must have an addressing mode that can be specified as the source
operand for the ADD and SUB instructions.

The value +#1 is used as the default when no increment value is specified.

167

The following table indicates the possible ranges of the loop counter value. Pay careful attention to the
loop counter range, since infinite loops can result from inappropriate values.

Directive Increment Direction Size Loop Counter Range (initial value to final
value)

.FOR + B -128 to 126

W -32,768 to 32,766

L -2,147,483,648 to 2,147,483,646

- B 127 to -127

W 32,767 to -32,767

L 2,147,483,647 to -2,147,483,647

.FORU + B 0 to 254

W 0 to 4,294,967,294

- B 255 to 1

W 65,535 to 1

L 4,294,967,295 to 1

Limitations

1. "L" cannot be specified as the size with the H8/300 and H8/300L processors.

2. The value 16 cannot be specified as the branch size with the H8/300 and H8/300L
processors.

3. The size of the code generated by the source statements between a .FOR[U] statement and its
corresponding .ENDF statement cannot exceed the range corresponding to the specified
branch size.

The maximum source code size for the different branch sizes are as follows:

8...............About 100 bytes

16.............About 32,700 bytes

168

4. When this directive is used, symbols from _$F00000 to _$F99999 may be generated. Thus
these symbols should not be used in programs which use the .FOR[U] directive.

Examples

.FOR.B (R0L = #1, #10, +#1)

ADD.B R0L, R1L [1]

.ENDF

This is an example of a .FOR loop.

The loop counter is R0L, the initial value is #1, the final value is #10, and the increment value is +#1.

Statement [1] will be iterated while R0L is less than or equal to 10 under a signed comparison.

.FOR.W (R0=R1, R2, -R3)

ADD.B #1:8, R5L [2]

.ENDF

This is an example of a .FOR loop.

The loop counter is R0, the initial value is R1, the final value is R2, and the increment value is -R3.

Statement [2] will be iterated while R0 is greater than or equal to R2 under a signed comparison.

169

.FORU.B (R0L= #1, #200, +#1)

ADD.W R1, R2

ADD.W R3, R4

ADD.W R5, R6 [3]

.ENDF

This is an example of a .FORU loop.

The loop counter is R0L, the initial value is #1, the final value is #200, and the increment value is +#1.

Statement [3] will be iterated while R0L is less than or equal to 200 under an unsigned comparison.

.FORU.L (ER0= #H'00000100, #H'000001FC, +#4)

MOV.L @ER0, ER2

MOV.L ER2, @(H'00001100:32, ER1)

ADDS.L #4, ER1 [4]

.ENDF

This is an example of a .FORU loop.

The loop counter is ER0, the initial value is #H'00000100, the final value is #H'000001FC, and the
increment value is +#4.

Statement [4] will be iterated while ER0 is less than or equal to #H'000001FC under an unsigned
comparison.

.FOR.B (R0L = #1, #10, +#1) [5]

.FOR.B (R1L = #1, #10, +#1) [6]

MOV.B R0L, R2L

ADD.B R1L, R2L

MOV.B R2L, @ER3

ADDS.L #1, ER3

.ENDF [6]

.ENDF [5]

This is an example of nested .FOR loops.

.FOR loop [6] is iterated by .FOR loop [5].

170

9.2.4 .WHILE Iteration

Format Label Operation Operands

X .WHILE[.s] [:d] {(<term 1><term 2>) ³ (<cc>)}

X .ENDW X

s(size): {B ³ W ³ L}

d (branch size): {8 ³ 16}

cc (condition code): {EQ ³ NE ³ GT ³ LT ³ GE ³HI ³ LE ³ HI ³ LO ³ HS ³ LS ³
CC ³ CS ³ VC ³ VS ³ PL ³ MI ³ T ³ F}

Description

The condition specified in the .WHILE statement is tested, and the source statements between the
.WHILE and .ENDW statements are iterated while that condition is true.

There are two types of conditions as follows:

1. Comparison type

In the comparison type, a decision is made based on a condition code based comparison of
two terms.

The terms must have addressing modes that can be used with the CMP instruction.

2. Condition code specification type

In the condition code specification type, a decision is made based on the specified CCR
(condition code register) state.

The size specifies the size of the terms compared in a comparison type condition. It has no meaning
with condition code specification type conditions.

171

The size specifiers are interpreted as follows:

B Byte (1 byte)

W Word (2 bytes)

L Long word (4 bytes)

Byte is taken as the default when the size specifier is omitted.

The branch size specifies the branch size from the .WHILE statement to the .ENDW statement.

The following branch sizes can be specified.

8 8 bits

16 16 bits

Refer to section 5.7.4 .DISPSIZE in the Language Guide, and section 3.3.3, BR_RELATIVE and
section 3.3.4, [NO]OPTIMIZE in the Usage Guide, for the setting used when the branch size
specification is omitted.

Refer to table 9-1, Condition Codes, for details on the condition code conditions.

Limitations

1. "L" cannot be specified as the size with the H8/300 and H8/300L processors.

2. The value 16 cannot be specified as the branch size with the H8/300 and H8/300L
processors.

3. The size of the code generated by the source statements between a .WHILE statement and its
corresponding .ENDW statement cannot exceed the range corresponding to the specified
branch size.

The maximum source code size for the different branch sizes are as follows:

8 About 100 bytes

16 About 32,700 bytes

4. When this directive is used, symbols from_$W00000 to _$W99999 may be generated. Thus
these symbols should not be used in programs which use the .WHILE directive.

172

Examples

.WHILE.B (#50 <GT>R0L)

ADD.W R1, R2

SUB.W R1, R3

ADD.B #1:8, R0L [1]

.ENDW

This is an example of the comparison type condition.

Statements [1] will be iterated while 50 is greater than R0L under signed comparison.

.WHILE .W (R0<LS>R1)

SUB.B R2L, R3L

SUB.B R2L, R4L

SUB.W R5, R1 [2]

.ENDW

This is an example of the comparison type condition.

Statements [2] will be iterated while R0 is less than or equal to R1 under unsigned
comparison.

.WHILE (<NE>)

MOV.L @ER2, ER4

MOV.L ER4, @ER3

ADDS.L #4, ER2

ADDS.L #4, ER3

SUB.B R1L, R0L [3]

.ENDW

This is an example of the condition code specification type condition.

Statements [3] will be iterated while the CCR (condition code register) Z (zero) flag is 0.

173

.WHILE (<PL>)

MOV.L ER2, @ER1

ADDS.L #4, ER1

MOV.L ER3, @ER1

ADDS.L #4, ER1

ADD.W #-1, R0 [4]

.ENDW

This is an example of the condition code specification type condition.

Statements [4] will be iterated while the CCR (condition code register) N (negative) flag is 0.

.WHILE.L (#H'000200<HI>ER0) [5]

MOV.B #0:8, R2L

MOV.B #H'FF:8, R3L

.WHILE.B (#H'00<NE>R3L [6]

MOV.B @ER0, R3L

ADDS.L #1, ER0

ADD.B #1:8, R2L

.ENDW [6]

MOV.B R2L, @ER1

ADDS.L #1, ER1

.ENDW [5]

This is an example of nested .WHILE loops.

.WHILE loop [6] will be iterated by .WHILE loop [5].

174

9.2.5 .REPEAT Iteration

Format Label Operation Operands

X .REPEAT X

X .UNTIL[.s] {(<Term 1><cc><term 2>) ³ (<cc>)}

s(size): {B ³ W ³ L}

cc (condition code): {EQ ³ NE ³ GT ³ LT ³ GE ³ LE ³ HI ³ LO ³ HS ³ LS ³ CC
³ CS ³ VC ³ VS ³ PL ³ MI ³ T ³ F}

Description

The source statements between the .REPEAT and .UNTIL statements are iterated until the condition
specified in the .UNTIL statement is satisfied.

The source statements between the .REPEAT and the .UNTIL statements are executed at least once so
that the .UNTIL condition can be tested.

There are two types of conditions as follows:

1. Comparison type

In the comparison type, a decision is made based on a condition code based comparison of
two terms.

The terms must have addressing modes that can be used with the CMP instruction.

2. Condition code specification type

In the condition code specification type, a decision is made based on the specified CCR
(condition code register) state.

The size specifies the size of the terms compared in a comparison type condition. It has no
meaning with condition code specification type conditions.

175

The size specifiers are interpreted as follows:

B............Byte (1 byte)

W...........Word (2 bytes)

L............Long word (4 bytes)

Byte is taken as the default when the size specifier is omitted.

Refer to table 9-1, Condition Codes, for details on the condition code conditions.

Limitations

1. "L" cannot be specified as the size with the H8/300 and H8/300L processors.

2. The size of the code generated by the source statements between the .REPEAT statement and
its corresponding .UNTIL statement cannot exceed the following limitations.

H8S/2600 advanced mode.............About 32,700 bytes

H8S/2600 normal mode.................About 32,700 bytes

H8S/2000 advanced mode..............About 32,700 bytes

H8S/2000 normal mode.................About 32,700 bytes

H8/300H advanced mode...............About 32,700 bytes

H8/300H normal mode..................About 32,700 bytes

H8/300...About 100 bytes

H8/300L...About 100 bytes

3. When this directive is used, symbols from_$R00000 to _$R99999 may be generated. Thus
these symbols should not be used in programs which use the .REPEAT directive.

Examples

.REPEAT

MOV.L @ER0, ER2

MOV.L ER2, @ER1

ADDS.L #4, ER0

ADDS.L #4, ER1 [1]

.UNTIL.L (#H'001000<LS>ER0)

This is an example of the comparison type condition.

Statements [1] will be iterated until H'001000 is less than or equal to ER0 under unsigned comparison.

176

.REPEAT

ADD.W R2, R3

ADD.W R2, R4

SUB.B R1L, R0L [2]

.UNTIL (<EQ>)

This is an example of the condition code specification type condition.

Statements [2] will be iterated until the CCR (condition code register) Z (zero) flag is 1.

177

9.2.6 .BREAK Iteration Termination

Format Label Operation Operands

X .BREAK[:d] X

d (branch size): {8 ³ 16}

Description

The .BREAK statement terminates .FOR[U], .WHILE, and .REPEAT loops, exiting the loop without
executing the source statements following the .BREAK statement. More specifically, the .BREAK
statement executes an unconditional jump to the .ENDF, .ENDW, or .UNTIL statement that closes the
corresponding .FOR[U], .WHILE, or .REPEAT loop, thus terminating the processing.

The branch size specifies the branch size from the .BREAK statement to the corresponding .ENDF,
.ENDW, or .UNTIL statement.

The following branch sizes can be specified.

8.................8 bits

16...............16 bits

Refer to section 5.7.4, .DISPSIZE in the Language Guide, and section 3.3.3, BR_RELATIVE and
section 3.3.4, [NO]OPTIMIZE in the Usage Guide, for the setting used when the branch size
specification is omitted.

This directive can also be used with the .SWITCH directive.

Refer to section 9.2.2, .SWITCH, for details on use of the .SWITCH directive.

Limitation The value 16 cannot be specified as the branch size with the H8/300 and
H8/300L processors.

Example

.WHILE ()

.IF.B (#10 <LE>R0L)

.BREAK

.ENDI

ADD.W R1, R2

INC.B R0L

.ENDW

The iteration will terminate when 10 is less than or equal to R0L.

178

9.2.7 .CONTINUE Loop Interrupt and Restart

Format Label Operation Operands

X .CONTINUE[:d} X

d (branch size): {8 ³ 16}

Description

The .CONTINUE statement restarts loop processing without executing the remaining source
statements in the .FOR[U], .WHILE, and .REPEAT loops. More specifically, the .CONTINUE
statement branches unconditionally to the loop test point in a .FOR[U], .WHILE, or .REPEAT loop.

The branch size specifies the branch size from the .CONTINUE statement to the corresponding
.ENDF, .WHILE, or .UNTIL statement.

The following branch sizes can be specified.

8.................8 bits

16...............16 bits

Refer to section 5.7.4, .DISPSIZE in the Language Guide, and section 3.3.3, BR_RELATIVE and
section 3.3.4, [NO]OPTIMIZE in the Usage Guide, for the setting used when the branch size
specification is omitted.

Limitation The value 16 cannot be specified as the branch size with the H8/300 and H8/300L
processors.

Example

.WHILE.B (#10<GT>R0L)

INC.B R0L

INC.B R1L

.IF.B (#10<LT>R1L)

.CONTINUE

.ENDI

ADD.W R2, R3 [1]

.ENDW

Statement [1] will not be executed when 10 is less than R1L.

179

Usage Guide

180

Section 1 Overview

1.1 Assembler Positioning

Figure 1-1 shows the position of the assembler in the program development process.

Editor

C Ianguage
source program

C compiler Assembly Ianguage
source program

Assembler

Librarian
Object module

SYSROF file converter

Object
module

Library fileLinkage editor

S-format load
module

Object converterIn-circuit emulatorSimulator/debugger

CPU information
analysis program

file
CPU information

Load module

Path for linking object modules generated by this new
version to those generated by the previous version.

Figure 1-1 Assembler Positioning

181

1.2 I/O Organization

Figure 1-2 shows the assembler I/O organization.

Assembler

Assembly language
source program

Object module Assembly listing

Figure 1-2 I/O Organization

182

Section 2 Invoking the Assembler

2.1 Command Format

The assembler is invoked from the command line, with the input file, output file, and other
parameters specified on the same command line. The assembly method can also be specified
using command line options.

The format of the command line that invokes the assembler is shown below.

>asm38 D<input file>[,<input file>...] [[D]-<command line option>[[D]-<command line
option>...]]

[1] [2] [3]

[1] The assembler invocation command

[2] The specification of the source file(s) to be assembled. When two or more input files are
specified, they are divided with a comma (,). They are joined together in the order of input
and then assembled as one source file.

[3] Command line option specifications

Example
> asm38 aaa.mar-cpu=2600a -list -debug
This command line assembles the source file aaa.mar.

Note: When using MS-DOS, command line options can be divided with hyphens (-) or slashes
(/).

2.2 H38CPU Environmental Variable

The assembler assembles source files for the CPU classification specified by the H38CPU
environmental variable.

The CPU classification is specified as follows:

· UNIX

¾ C Shell

setenv H38CPU* CPU classification [:Bit width of address space]

¾ Bourne/Korn Shell

H38CPU* = CPU classification [:Bit width of address space] export H38CPU*

· MS-DOS

SET H38CPU* = CPU classification [:Bit width of address space]

183

Note: This environmental variable must be specified in capital letters.

The CPU classifications that can be specified are 2600A, 2600N, 2000A, 2000N, 300HA,
300HN, 300, and 300L. If the CPU classification is an advanced mode, the bit width of the
address space can be specified.

The bit width of address spaces are listed in table 2-1.

Table 2-1 Bit Width of Address Spaces

CPU Classification Bit Width of Address Space Default Size

2600A 32,28,24,20 32

2000A 32,28,24,20 32

300HA 24,20 24

The CPU classification specified by the H38CPU environmental variable is valid only when
neither the CPU command line option nor the .CPU directive has been specified.

2.3 Files Used by the Assembler

The assembler uses the following three types of file.

1. Source files

These are the files that holds source programs.

2. Object files

These are object module output files.

3. Assembly listing files

These are files that hold the generated assembly listings.

The following defaults are used when the extension is omitted in file specifications.

· Source files.. xxx.mar or xxx.src

· Object files.. xxx.obj

· Assembly listing files.......................... xxx.lis

Note: When using MS-DOS, the file extension is specified in capital letters.

184

2.4 Value Returned to OS

The assembler returns assemble results to the OS (Operating System) as a return value.

Values that can be returned to the OS are listed in table 2-2.

Table 2-2 Values Returned to OS

Return Value

Assemble Result MS-DOS UNIX

Normal completion 0 0

Warning 0 0

Error 2 1

Fatal error 4 1

The values returned to the OS can be changed by specifying an ABORT command line option.
Refer to section 3.3.6, ABORT, in the Usage Guide, for details on specifying the ABORT
command line options.

185

Section 3 Command Line Options

3.1 Types of Command Line Option

The assembly method can be specified using command line options when the assembler is
invoked.

Table 3-1 lists the command line options

186

Table 3-1 Command Line Options

Item Command Line Option Function

Reference
Section

1 Option concerning the CPU

CPU CPU specification 3.2.1

2 Options concerning object
modules

[NO]OBJECT Object module output 3.3.1

[NO]DEBUG Debugging information output 3.3.2

BR_RELATIVE Displacement size specification 3.3.3

[NO]OPTIMIZE Optimization specification 3.3.4

[NO]EXCLUDE Unreferenced external reference symbols
information output

3.3.5

ABORT Change of values returned to OS and
object output control at error generation

3.3.6

3 Options concerning the assembly listing

[NO]LIST Assembly listing output 3.4.1

[NO]SOURCE Source program listing output 3.4.2

[NO]CROSS_REFERENCE Cross reference listing output 3.4.3

[NO]SECTION Section information listing output 3.4.4

[NO]SHOW Source program listing partial output 3.4.5

LINES Listing lines/page specification 3.4.6

COLUMNS Listing columns/line specification 3.4.7

4 Option concerning file inclusion

INCLUDE Include file directory specification 3.5.1

5 Options concerning
conditional assembly

ASSIGNA Integer preprocessor variable definition 3.6.1

ASSIGNA Character preprocessor variable definition 3.6.2

6 Option concerning command line specification

SUBCOMMAND Subcommand file specification 3.7.1

187

3.2 Command Line Option Concerning the CPU

3.2.1 CPU CPU Specification

Format

CPU=<CPU type>[:<address space bit width>]

<CPU type>: {2600A ½ 2600N ½ 2000A ½ 300HA ½ 300HN³300 ½ 300L}

CPU Classification Address Space Bit Widths Default Size

2600A 32,28,24,20 32

2000A 32,28,24,20 32

300HA 24,20 24

The underlined part is the abbreviated form of this option.

Description

The CPU command line option specifies the object CPU for the source program to be assembled.

The address space bit width can be selected only when the CPU for advanced mode is selected.
The accessible space depends on the selected bit width.

CPU=2600A [:32}............... H8S/2600 advanced mode

CPU=2600A :28.................. H8S/2600 advanced mode

CPU=2600A :24.................. H8S/2600 advanced mode

CPU=2600A :20.................. H8S/2600 advanced mode

CPU=2600N........................ H8S/2600 normal mode

CPU=2000A [:32]............... H8S/2000 advanced mode

CPU=2000A :28.................. H8S/2000 advanced mode

CPU=2000A :20.................. H8S/2000 advanced mode

CPU=2000N........................ H8S/2000 normal mode

CPU=300HA [:24]............... H8S/300H advanced mode

CPU=300HA :20................. H8S/300H advanced mode

188

CPU=300HN....................... H8S/300H normal mode

CPU=300............................ H8/300

CPU=300L.......................... H8/300L

The assembler assembles the program for the specified CPU.

Relationship with Assembler Directives

CPU=<CPU type>[:<address space bit width>]....The CPU type specified
by

CPU command line option

Specification omitted --- .CPU<CPU type>......The .CPU type specified

by .CPU directive

Specification omitted H38CPU environmental variable.......The CPU
type

of the H38

CPU

environmental

variable

Specification omitted Error message 933

Examples

> asm38 aaa.mar-cpu=2600a:32

The source program will be assembled for the 4G mode in H8S/2600 advanced mode.

> asm38 aaa.mar-cpu=2600a:28

The source program will be assembled for the 256M mode in H8S/2600 advanced mode.

> asm38 aaa.mar-cpu=2600a:24

The source program will be assembled for the 16M mode in H8S/2600 advanced mode.

> asm38 aaa.mar-cpu=2600a:20

The source program will be assembled for the 1M mode in H8S/2600 advanced mode.

189

3.3 Command Line Options Concerning Object Modules

3.3.1 [NO]OBJECT Object Module Output Control

Format

OBJECT[=<file name>]

NOOBJECT

The underlined part is the abbreviated form of this option.

Description

This command line option specifies either the output of an object module or the suppression of
that output.

OBJECT.......................... Output

NOOBJECT..................... Output suppressed

The file name specifies the name of the file to which the object module is written.

When omitted, the object module is written to a file with the same name as the source module,
but with the extension ".obj."

If the extension is omitted, the extension ".obj" is used.

Do not use the same file name and extension as the source program for the object module.

Relationship with Assembler Directives

OBJECT... Output

NOOBJECT.. Output suppressed

Specification omitted-.OUTPUT OBJ......................... Output

.OUTPUT NOOBJ................... Output suppressed

Specification omitted Output

Examples

> asm38 aaa.mar-object

An object module will be output. Its file name will be aaa.obj.

190

> asm38 aaa.mar-noobject

No object module will be output.

3.3.2 [NO]DEBUG Debugging Information Output Control

Format

DEBUG

NODEBUG

The underlined part is the abbreviated form of this option.

Description

This command line option specifies the output of debugging information or the suppression of
that output.

DEBUG Output

NODEBUG Output suppressed

This command line option is valid when an object module is output.

Relationship with Assembler Directives

DEBUG .. Output

NODEBUG .. Output suppressed

Specification omitted-.OUTPUT DBG Output

.OUTPUT NODBG Output suppressed

.Specification omitted Output suppressed

Examples

> asm38 aaa.mar-debug

Debugging information will be output.

> asm38 aaa.mar-nodebug

No debugging information will be output.

191

3.3.3 BR_RELATIVE Displacement Size Specification

Format

BR_RELATIVE=<bit count>

<bit count>: {8½ 16}

The underlined part is the abbreviated form of this option.

Description

This command line option specifies the default displacement size used when the branch
displacement is a forward reference value.

BR_RELATIVE=8 8 bits

BR_RELATIVE=16 16 bits

When the OPTIMIZE command line option is not specified, displacements with no displacement
size (:8 or :16) are the objects of this command line option.

This command line option is valid when the object CPU is either the H8S/2600, H8S/2000, and
H8/300H advanced mode or the H8S/2600, H8S/2000, and H8/300H normal mode.

The displacement size is set to 8 bits in the H8/300 and H8/300L.

Relationship with Assembler Directives

OPTIMIZE command line option

NOOPTIMIZE command line option -BR_RELATIVE=<bit count> ... The BR_RELATIVE bit

 count

Specification omitted .DISPSIZE FBR=<bit count> The .DISPSIZE bit count

Specification omitted ... The defaults are 16 bits for

 the H8S/2600, H8S/2000,

 and H8/300H advanced

 mode, and 8 bits for the

 H8S/2600, H8S/2000,

192

 and H8/300H normal mode.

The underlined option is the default setting.

Refer to section 3.3.4, [NO]OPTIMIZE in the Usage Guide, for details on displacement size
optimization.

Examples

> asm38 aaa.mar-br_relative=16

In this example, the forward reference branch instruction default displacement size is set to be
16 bits.

> asm38 aaa.mar-br_relative=8

In this example, the forward reference branch instruction default displacement size is set to be 8
bits.

193

3.3.4 [NO]OPTIMIZE Optimization Specification

Format

OPTIMIZE

NOOPTIMIZE

The underlined part is the abbreviated form of this option.

Description

This command line option specifies whether or not to optimize the displacement size in the
register-indirect-with-displacement addressing mode and the absolute address size in the
absolute addressing mode.

This command line option is valid for executable instructions that do not specify displacement
size (:8 or :16) nor absolute address storage size (:8, :16, :24, or :32).

OPTIMIZE The sizes are optimized.

NOOPTIMIZE The sizes are not optimized.

The displacement size is determined as follows, depending on the PC relative displacement
value type.

When the CPU classification is H8S/2600 advanced mode and OPTIMIZE is not specified:

Displacement value-Absolute value --32,768 to 32,767 16 bits*

Relative value .. 16 bits

External reference value 16 bits

When the CPU classification is H8S/2600 advanced mode and OPTIMIZE is specified:

Displacement value--Absolute value-128 to 127 8 bits

-32,768 to-129, 128 to 32,767 16 bits

Relative value .. 16 bits

External reference value 16 bits

* This is valid when the referenced absolute symbol is defined after the referencing instruction.

194

Relationship with Assembler Directives

OPTIMIZE ... Optimized bit count

NOOPTIMIZE-BR_RELATIVE <bit count>= The BR_RELATIVE bit count

Specification omitted-.DISPSIZE FBR=<bit count> The .DISPSIZE bit count

Specification omitted 8 bits

The underlined option is the default setting.

The OPTIMIZE command line option takes priority over command line option BR_RELATIVE
and directive .DISPSIZE concerning object module output.

Examples

> asm38 aaa.mar-optimize

The object module will be optimized.

> asm38 aaa.mar-nooptimize

The object module will not be optimized.

195

3.3.5 [NO]EXCLUDE Information Output Control for Unreferenced External

Reference Symbols

Format

EXCLUDE

NOEXCLUDE

The underlined part is the abbreviated form of this option.

Description

This command line option specifies the output of debugging information on unreferenced
external reference symbols, or the suppression of that output.

EXCLUDE Output suppressed

NOEXCLUDE Output

The underlined option is the default setting.

The object module size can be reduced by suppressing output of information on unreferenced
external reference symbols.

Examples

> asm38 aaa.mar-exclude

Information on unreferenced external reference symbols will not be output.

> asm38 aaa.mar-noexclude

Information on unreferenced external reference symbols will be output.

196

3.3.6 ABORT Change of Values Returned to OS and Object Output Control at Error

Generation

Format

ABORT=<error level>

<error level>: {WARNING I ERROR}

The underlined part is the abbreviated form of this option.

Description

This command line option changes the values returned to the OS according to the error level
specification and assemble results.

The values returned to the OS are shown in the following table:

Value returned to OS when ABORT is Specified

Number of Errors ABORT=WARNING ABORT=ERROR

Warning Error Fatal Error MS-DOS UNIX MS-DOS UNIX

0 0 0 0 0 0 0

1 or more 0 0 2 1 0 0

- 1 or more 0 2 1 2 1

- - 1 or more 4 1 4 1

The return values for the underlined error level are the default settings. This command line
option suppresses object module output when the return value to the OS is 1 or more.

This command line option is valid only when an object module has been specified to be output
by the .OUTPUT directive or [NO]OBJECT command line option.

Examples

> asm38 aaa.mar -abort=warning

If an error issuing a warning occurs:

· MS-DOS

Because the return value to the OS is 2, an object module will not be output.

· UNIX

Because the return value to the OS is 1, an object module will not be output.

197

> asm38 aaa.mar -abort=error

If no error or fatal error occurs:

· MS-DOS

Because the return value to the OS is 0, an object module will be output.

· UNIX

Because the return value to the OS is 0, an object module will be output.

198

3.4 Command Line Options Concerning the Assembly Listing

3.4.1 [NO]LIST Assembly Listing Output Control

Format

LIST[=<file name>]

NOLIST[=<file name>]

The underlined part is the abbreviated form of this option.

Description

This command line option specifies the output of an assembly listing, or the suppression of that
output.

LIST .. Output

NOLIST .. Output suppressed

The file name specifies the file to which the assembly listing is output.

When the file name is omitted, the following defaults are used:

LIST A file with the same name as the source file, but with the extension ".lis.

"NOLIST Lines which generated errors are displayed on the screen.

If the extension is omitted from the file name specification, the extension ".lis" is used.

If a file name is specified with the NOLIST command line option, only lines which generate an
error will be output to that file as an assembly listing.

Do not use the same file name and extension as the source program for the assembly listing.

Relationship with Assembler Directives

LIST ... Output

NOLIST ... Output suppressed

Specification omitted -- .PRINT LIST ... Output

.PRINT NOLIST Output suppressed

Specification omitted Output suppressed

199

Examples

> asm38 aaa.mar -list

An assembly listing will be output. The file name will be "aaa.lis".

> asm38 aaa.mar -nolist

No assembly listing will be output.

200

3.4.2 [NO] SOURCE Source Program Listing Output Control

Format

SOURCE

NOSOURCE

The underlined part is the abbreviated form of this option.

Description

This command line option specifies the output of a source program listing to the assembly
listing, or the suppression of that output.

SOURCE Output

NOSOURCE Output suppressed

This command line option is valid when an assembly listing is output.

Relationship with Assembler Directives

SOURCE ... Output

NOSOURCE ... Output suppressed

Specification omitted -- .PRINT SRC ... Output

.PRINT NOSRC Output suppressed

Specification omitted Output

Examples

> asm38 aaa.mar -list -source

A source program listing will be output with the assembly listing.

> asm38 aaa.mar -list -nosource

No source program listing will be output with the assembly listing.

201

3.4.3 [NO] CROSS_REFERENCE Cross Reference Listing Output Control

Format

CROSS_REFERENCE

NOCROSS_REFERENCE

The underlined part is the abbreviated form of this option.

Description

This command line option specifies the output of a cross reference listing to the assembly listing,
or the suppression of that output.

CROSS_REFERENCE Output

NOCROSS_REFERENCE Output suppressed

This command line option is valid when an assembly listing is output.

Relationship with Assembler Directives

CROSS_REFERENCE Output

NOCROSS_REFERENCE Output suppressed

Specification omitted -- .PRINT CREF .. Output

.PRINT NOCREF Output suppressed

Specification omitted Output

Examples

> asm38 aaa.mar -list -cross_reference

A cross reference listing will be output with the assembly listing.

> asm38 aaa.mar -list -nocross_reference

No cross reference listing will be output with the assembly listing.

202

3.4.4 [NO] SECTION Section Information Listing Output Control

Format

SECTION

NOSECTION

The underlined part is the abbreviated form of this option.

Description

This command line option specifies the output of a section information listing to the assembly
listing, or the suppression of that output.

SECTION ... Output

NOSECTION Output suppressed

This command line option is valid when an assembly listing is output.

Relationship with Assembler Directives

SECTION .. Output

NOSECTION ... Output suppressed

Specification omitted -- .PRINT SCT Output

.PRINT NOSCT .. Output suppressed

Specification omitted Output

Examples

> asm38 aaa.mar -list -section

A section information listing will be output with the assembly listing.

> asm38 aaa.mar -list -nosection

No section information listing will be output with the assembly listing.

203

3.4.5 [NO]SHOW Source Program Listing Partial Output Control

Format

SHOW[=<output classifier>[,<output classifier>...]]

NOSHOW[=<output classifier>[,<output classifier>...]]

<output classifier>: {CONDITIONALS ½ DEFINITIONS ½ CALLS ½

EXPANSIONS ½ STRUCTURED ½ CODE}

The underlined part is the abbreviated form of this option.

When using the MS-DOS, multiple output classifiers are enclosed within parentheses.

Description

This command line option specifies the partial output of preprocessor function source statements
to the source program listing, or the suppression of that output. It is also used to specify the
partial output of object code display lines to the source program listing, or the suppression of
that output.

SHOWOutput

NOSHOWOutput suppressed

The output classifiers are interpreted as follows:

CONDITIONALSFailed conditional expansions

DEFINITIONSDefinitions

CALLS ..Calls

EXPANSIONSExpansions

STRUCTUREDStructured assembly function expansions

CODE ...Object code display lines

More specifically these classifiers specify the following output:

Failed conditional expansions .. .AIF clauses that were not expanded.

204

Definitions Macro definitions, .AREPEAT and .A WHILE definitions,

.INCLUDE directives, and

.ASSIGNA and .ASSIGNC directives.

Calls Macro call statements,

structured assembly directives,

.AIF and .AENDI directives.

Expansions Code resulting from macro expansions Code resulting from

AREPEAT and .A WHILE expansions.

Structured assembly function expansions ... Code resulting from structured assembly

 expansions.

Object code display lines Code sections where the bject code display for

 directives exceeds the number of source

... statement lines.

These command line options result in the inclusion (or the suppression) of the output for the
output classifiers specified. When no output classifiers are specified, SHOW results in the
inclusion of output for all items, and NOSHOW results in the suppression of output for all items.

This command line option is valid when a source program listing is output.

Relationship with Assembler Directives

SHOW=<output classifier> ... Output

NOSHOW=<output classifier> ... Output suppressed

Specification omitted -.LIST <output classifier> (output) Output

.LIST <output classifier> (output suppression) Output suppressed

Specification omitted ... Output

Examples

>asm38 aaa.mar - list - show

In this example, all items will be output to the assembly listing.

205

> asm38 aaa.mar - list - noshow=expansions, structured

In this example, expansions and structured assembly expansions will bot be output to the
assembly listing.

> asm38 aaa.mar - list - noshow=code

In this example, object code display lines exceeding the number of source statement lines will
not be output to the assembly listing.

206

3.4.6 LINES Listing Lines/Page Specification

Format

LINES=<line count>

The underlined part is the abbreviated form of this option.

Description

This command line option specifies the number of lines per page in the assembly listing.

A line count of between 20 and 255 lines can be specified.

This command line option is valid when an assembly listing is output.

Relationship with Assembler Directives

LINES=<line count> ... The line count from the LINES command

 line option

Specification omitted .FORM LIN= <line count> The line count from the .FORM directive

Specification omitted ... 60 lines

Example

> asm38 aaa.mar - list - lines=40

In this example, the assembly listing will have 40 lines per page.

207

3.4.7 COLUMNS Listing Columns/Line Specification

Format

COLUMNS=<column count>

The underlined part is the abbreviated form of this option.

Description

This command line option specifies the number of columns (characters) on a line in the
assembly listing.

A column count of between 79 and 255 columns can be specified.

This command line option is valid when an assembly listing is output.

Relationship with Assembler Directives

COLUMNS=<column count> The column count from the

 COLUMNS command line option

Specification omitted .FORM COL= <column count> The column count from

 the omitted .FORM directive

Specification omitted ... 132 columns

Example

> asm38 aaa.mar - list - columns=80

In this example, the assembly listing will have 80 columns per line.

208

3.5 Command Line Option Concerning File Inclusion

3.5.1 INCLUDE Include File Directory Specification

Format

INCLUDE=<directory name>[,<directory name> ...]

The underlined part is the abbreviated form of this option.

Description

This command line option specifies the directory name of the file to be included.

The syntax of the directory name must conform to the standard file name syntax of the host
machine.

Any number of directory names can be specified, but they must be specified within one
command line.

The assembler searches the directory for the include file in the order in which they are specified
in the command line. When the include file is found in a directory, the directories specified
afterwards are not searched.

Relationship with Assembler Directives

INCLUDE = <directory name> 1) <directory name>

 specified by

 .INCLUDE directive

 2) <directory name>*

 specified by

 INCLUDE option

Specification omitted <directory name>

 specified by

 .INCLUDE directive

Note: The directory specified with the INCLUDE option is added before the directory specified
with the .INCLUDE directive.

209

Examples

> asm38 aaa.mar - include=/usr/tmp,/tmp (UNIX)

> asm38 aaa.mar - include=\usr\tmp,\tmp (MS-DOS)

(.INCLUDE "file.h" is specified in aaa.mar.)

In this example, file.h will be searched for in the current directory, in/usr/tmp, and in/tmp in this
order.

210

3.6 Command Line Options Concerning Conditional Assembly

3.6.1 ASSIGNA Integer Preprocessor Variable Definition

Format

ASSIGNA=<preprocessor variable name>=<integer constant> [,<preprocessor variable
name>=<integer constant>...]

The underlined part is the abbreviated form of this option.

Description

This command line option assigns an integer constant to a preprocessor variable.

The syntax of integer preprocessor variables is the same as that of symbols. However, when
using UNIX, a backslash (\) must be added in front of a dollar mark ($) in a preprocessor
variable name.

Integer constants are usually prefixed with a radix (B', Q', D', or H'). When omitted, the radix is
assumed to be decimal. When using UNIX, a backslash (\) must be added in front of the radix
apostrophe (').

Values from - 2,147,483,648 to 4,294,967,295 can be assigned for integer constants. However,
negative values must not be specified in decimal (D').

Relationship with Assembler Directives

ASSIGNA=<preprocessor variable name> -.ASSIGNA*=<preprocessor variable name>
=<integer constant> ... <integer constant> specified by
ASSIGNA option

Specification omitted .. <integer constant> specified by ASSIGNA
option

Specification omitted --.ASSIGNA= <preprocessor variable name>

 =<integer constant> ... <integer constant> specified by

 .ASSIGNA directive

Note:

When a value is assigned to a preprocessor variable with this ASSIGNA command line option, a
value assigned to the preprocessor variable with the .ASSIGNA directive becomes
invalid.

211

Examples

> asm38 aaa.mar - assigna=x=0

In this example, 0 is assigned to preprocessor variable x. All references (\&x) to preprocessor
variable x become 0 in the source program.

> asm38 aaa.mar - assigna=_\$=H\'FF (UNIX)

> asm38 aaa.mar - assigna=_$=H'FF (MS-DOS)

In this example, H'FF is assigned to preprocessor variable_$. All references (&_$) to
preprocessor variable_$ become H'FF in the source program.

212

3.6.2 ASSIGNC Character Preprocessor Variable Definition

Format

ASSIGNC=<preprocessor variable name>="<character string>"...]

[,<preprocessor variable name>="<character string>"...]

The underlined part is the abbreviated form of this option.

Description

This command line option assigns a character string to a preprocessor variable.

The syntax of character preprocessor variables is the same as that of symbols. However, when
using UNIX, a backslash (\) must be added in front of a dollar mark ($) in a preprocessor
variable name.

Character strings are specified by enclosing them in double quotation marks (").

When using UNIX, a backslash (\) must be added in front of each of the following symbols in
character strings. In addition, if any one of the symbols is preceded or followed by a character
string, that character string must be enclosed with double quotation marks (").

· Exclamation (!)

· Double quotation (")

· Dollar ($)

· Back quotation(`)

Up to 255 characters (bytes) can be specified for a character string.

213

Relationship with Assembler Directives

ASSIGNC=<preprocessor variable name> ="<character string>"-- .ASSIGNC*<preprocessor
variable name><character string> .. ="<character string>" speciefed
by

 ASSIGNC option

Specification omitted ...<character string>specified by

 ASSIGNC option

Specification omitted -- .ASSIGNC= <preprocessor. variable name>.="<character
string>"... <character string> specified
by

 .ASSIGNC directive

Note:

When a character string is assigned to a preprocessor variable with this ASSIGNC command line
option, a character string assigned to the preprocessor variable with the .ASSIGNC
directive becomes invalid.

Examples

> asm38 aaa.mar -assignc=X="OK"

In this example, character string OK is assigned to preprocessor variable x.All references (\&x)
to preprocessor variable x become OK in the source program.

> asm38 aaa.mar -aasignc=_\$="ON"\!"OFF" (UNIX)

> asm38 aaa.mar -assignc=_$="ON!OFF" (MS-DOS)

In this example, character string ON!OFF is assigned to preprocessor variable _$.All references
(\&_$) to preprocessor variable _$ become ON!OFF in the source program.

214

3.7 Command Line Options Concerning Command Line Specification

3.7.1 SUBCOMMAND Subcommand File Specification

Format

SUBCOMMAND=<subcommand file>

The underlined part is the abbreviated form of this option.

Description

This command line option specifies a subcommand file that includes an input file name and a
command line option to be expanded in the command line.

The subcommand file format is as follows:

· An input file name and command line options in the same order as specified on a normal
command line.

· One input file or command line option for each line.

Note:

This command line option must be specified at the end of a command line and cannot be
specified in a subcommand file.

Examples

> asm38 aaa.mar -subcommand=aaa.sub

The subcommand file contents are expanded in a command line and assembled.

Contents of

aaa.sub
bbb.mar
-list
-noobj

The expanded example becomes as follows:

> asm38 aaa.mar, bbb.mar -list -noobj

215

Appendices

216

Appendix A Limitations

Table A-1 lists the limitations on source programs.

Table A-1 Source Program Limitations

Number Item Limitation

1 Character set ASCII characters only

2 Number of characters per line Up to 255 characters

3 Lines assembled Up to 65,535 lines (including lines generated by
expansions)

4 Character constants Up to 4 characters

5 Symbol length Up to 32 characters

6 Number of symbols Up to 65,535 symbols

7 Number of external reference
symbols

Up to 65,535 symbols

8 Number of external definition
symbols

Up to 65,535 symbols

9 Maximum section size* H8S/2600 advanced mode H'FFFFFFFF bytes

H8S/2600 normal mode H'00010000 bytes

H8S/2600 advanced mode H'FFFFFFFF bytes

H8S/2000 normal mode H'00010000 bytes

H8/300H advanced mode H'01000000 bytes

H8/300H normal mode H'00010000 bytes

H8/300 H'0000FFFF bytes

H8/300L H'0000FFFF bytes

10 Number of sections Up to 65,535 sections

11 File inclusion Up to 30 nesting levels

*: Maximum section size depends on the specified address space.

217

Appendix B Assembly Listing

B.1 Structure of an Assembly Listing

An assembly listing has the following structure.

1. Source program listing

Displays information related to the source program.

2. Cross reference listing

Displays information related to the symbols in the source program.

3 Section information listing

Displays information related to the section in the source program.

218

B.2 Source Program Listing

The source program listing includes the following information.

(1) The listing line number

(2) The location counter value

The location counter value is displayed as an absolute address in absolute addressing
sections, and as a relative address in relative addressing sections.

(3) The object code

(4) The source line number

This is the line number of the source statement in the source program file. These line
numbers are not displayed for source statements generated by the assembler.

(5) The expansion type

This specifies the type of preprocessor function source statement.

The expansion types are interpreted as follows:

I File include

C Expansions due to true conditional assembly conditions, iteration expansions, and

 conditional iteration expansions

M Macro expansions

S Structured assembly expansions

The inclusion nesting level is also displayed for expansion type I.

(6) The source statement

219

*** H8S, H8/300 ASSEMBLER Ver. 1.0 *** 06/10/94 17:15:00 PAGE 1

PROGRAM NAME =

1 1 .CPU 2600A

2 2 ;

3 00000000 3 .SECTION AAA, CODE, ALIGN=2

4 00000000 4 START

5 00000000 7A0700000000 5 MOV.L #STACK:32,SP

6 00000006 F800 6 MOV.B #0:8,R0L

7 00000008 6AA800000000 7 MOV.B R0L,@ANS:32

8 0000000E 7A0200001000 8 MOV.L #DATA:32,ER2

9 9 .FOR.B(R1L=#1,#8,+#1)

10 00000014 F901 S MOV #1,R1L

11 00000016 5800000A S BRA

_$F00002

12 0000001A S _$F00000: .EQU $

13 0000001A 6828 10 MOV.B @ER2,R0L

14 0000001C 0B02 11 ADDS.L #1,ER2

15 0000001E 5E000000 12 JSR @CHANGE:24

16 13 .ENDF

17 00000022 S _$F00001: .EQU $

18 00000022 8901 S ADD #1,R1L

19 00000024 S _$F00002: EQU $

20 00000024 A908 S CMP #8,R1L

21 00000026 4FF2 S BLE

_$F00000

22 00000028 S _$F00003: .EQU $

23 00000028 0180 14 SLEEP

24 0000002A 40D4 15 BRA START

25 16 ;

26 0000002C 17 CHANGE

27 0000002C 6A2900000000 18 MOV.B @ANS:32, R1L

28 19 .IF.B (R1L<LT>R0L)

29 00000032 1C98 S CMP R1L, R0L

30 00000034 58F00006 S BLE _$I00000

31 00000038 6AA800000000 20 MOV.B R0L, @ANS:32

32 21 .ENDI

33 0000003E S _$I00000: .EQU $

34 0000003E S _$I00001: .EQU $

220

35 0000003E 5470 22 RTS

36 23 ;

37 00001000 24 .SECTION BBB, DATA, LOCATE=H'00001000

38 00001000 25 DATA

39 00001000 03020405 26 .DATA.B H'03, H'02, H'04, H'05

40 00001004 01080607 27 .DATA.B H'01, H'08, H'06, H'07

41 28 ;

42 00000000 29 .SECTION CCC, DATA, ALIGN=2

43 00000000 30 ANS

44 00000000 00000001 31 .RES.B 1

45 32 ;

46 00000000 33 .SECTION DDD, STACK, ALIGN=2

47 00000000 00000500 34 .RES.B H'500

48 00000500 35 STACK

49 36 ;

50 00000000 37 .END START

(1) (2) (3) (4) (5) (6)

*****TOTAL ERRORS 0

*****TOTAL WARNINGS 0

Figure B-1 Source Program Listing Example

221

B.3 Cross Reference Listing

The cross reference listing contains the following information.

(1) The symbol name

(2) The section name

This column specifies the name of a section consisting of various symbols. Up to 8
characters can be displayed.

(3) The symbol attribute

This column specifies the symbol attribute. The entries are interpreted as follows.

No entry Symbol defined as a label

EQU Symbol defined with the .EQU directive

ASGN Symbol defined with the .ASSIGN directive

IMPT External definition symbol

EXPT External definition symbol

SCT Section name

REG Symbol defined with the .REG directive

MDEF Multiply defined symbol

UDEF Undefined symbol

(4) The symbol's value

This entry indicates the symbol's value, displayed as an 8-digit hexadecimal number.

(5) ymbol definition and reference line numbers

This entry displays the listing line numbers where the symbol is defined and referenced. The
definition line is marked with an asterisk (*).

222

*** H8S, H8/300 ASSEMBLER VER. 1.0 *** 06\10\94 17:15:00 PAGE 2

*** CROSS REFERENCE LIST

NAME SECTION ATTR VALUE SEQUENCE

AAA AAA SCT 00000000 3*

ANS CCC 00000000 7 27 31

43*

BBB BBB SCT 00001000 37*

CCC CCC SCT 00000000 42*

CHANGE AAA 0000002C 15 26*

DATA BBB 00001000 8 38*

DDD DDD SCT 00000000 46*

STACK DDD 00000500 5 48*

START AAA 00000000 4* 24 50

_$F00000 AAA EQU 0000001A 12* 21

_$F00001 AAA EQU 00000022 17*

_$F00002 AAA EQU 00000024 11 19*

_$F00003 AAA EQU 00000028 22*

_$I00000 AAA EQU 0000003E 30 33*

_$I00001 AAA EQU 0000003E 34*

(1) (2) (3) (4) (5)

Figure B-2 Cross Reference Listing Example

B.4 Section Information Listing

The section information listing displays the following information.

(1) The section name

(2) The section attribute

This entry indicates the section attribute. The format classifier and section attribute are
displayed.

a. Format classifier

ABS Absolute addressing format

REL Relative addressing format

b. Section attribute

CODE..........Code section

DATA..........Data section

STACK..........Stack section

COMMON..........Common section

223

DUMMY..........Dummy section

(3) Section size

This entry indicates the section size as a hexadecimal number.

(4) Section starting address

This entry displays the starting address for an absolute addressing section. Nothing is
displayed for relative addressing section.

*** H8S, H8/300 ASSEMBLER Ver. 1.0 *** 06/10/94 17:15:00 PAGE 3

*** SECTION DATA LIST

SECTION ATTRIBUTE SIZE START

AAA REL-CODE 0000040

BBB ABS-DATA 0000008 001000

CCC REL-DATA 0000001

DDD REL-STACK 000500

(1) (2) (3) (4)

Figure B-3 Section information Listing Example

224

Appendix C Error Messages

C.1 Error Message Types

There are three types of error messages.

1. Invocation errors

These are errors on the command line that was used to invoke the assembler.

These errors include file specification errors and command line option errors.

The source program is not assembled when a command line error occurs.

The display format is as follows:

¾ MS-DOS

<file name> <line number> <message>

¾ UNIX

"<file name>", line <line number> : <message>

Invocation error numbers range from 0 to 99.

2. Source program error

These are syntax errors in the source program, and are displayed immediately following the
source statement that caused the error.The display format is as follows:

· MS-DOS

Screen display <file name> <line number> <message>

Assembly listing *****ERROR <error number> (<file name>)

 *****WARNING <error number> (<file name>)

¾ UNIX

Screen display "<file name>", line <line number> : <message>

Assembly *****ERROR <error number> (<file name>)

 *****WARNING <error number> (<file name>)

Source program error numbers are classified as follows.

1 xx errors General source program syntax errors

2 xx errors Symbol errors

3 xx errors Operation and operand errors

4 xx errors Expression errors

5 xx errors Assembler directive errors

6 xx errors Preprocessor directive errors

8 xx errors General source program warnings

3. Fatal errors

These are errors related to the assembler operating environment, and include such situations
as insufficient memory for the source program size and insufficient disk capacity.

225

Source program assembly is terminated on the occurrence of a fatal error.

The display format is as follows:

¾ MS-DOS

<file name><line number><message>

¾ UNIX

"<file name>", line <line number> : <message>

Fatal error numbers are in the nine hundreds.

226

C.2 Invocation Errors

Table C-1 lists invocation errors and recommended corrective actions.

Table C-1 Invocation Errors

10 Message:
Meaning:
Corrective action:

NO INPUT FILE SPECIFIED
No input file specification was provided.
Specify an input file.

20 Message:
Meaning:
Corrective action:

CANNOT OPEN FILE <file name>
The assembler could not open the file as specified.
Reexamine the file name and directory path.

30 Message:
Meaning:
Corrective action:

INVALID COMMAND PARAMETER
There was an error in a command line option or subcommand file
contents.
Reexamine the command line options and subcommand file contents.

40 Message:
Meaning:
Corrective action:

CANNOT ALLOCATE MEMORY
The assembler ran out of memory while processing the input file.
This error should not occur in normal operation. Please contact your
Hitachi sales or technical representative.

50 Message:
Meaning:
Corrective action:
Supplement:

COMPLETED FILE NAME TOO LONG <file name>
The file name including the directory was too long.
Simplify the directory structure.
This message is handled as a warning, and assembly will continue. It is
possible that the simulator debugger may not operate correctly following
the appearance of this message.

227

C.3 Source Program Errors

Table C-2 lists source program errors and recommended corrective actions.

Table C-2 Source Program Errors (1)

100 Message:
Meaning:
Corrective action:

OPERATION TOO COMPLEX
An expression was too complex.
Simplify the expression.

101 Message:
Meaning:
Corrective action:

SYNTAX ERROR IN SOURCE STATEMENT
Source statement syntax error.
Reexamine the whole source statement.

102 Message:
Meaning:
Corrective action:

SYNTAX ERROR IN DIRECTIVE
Source statement syntax error.
Reexamine the whole source statement.

103 Message:
Meaning:
Corrective action:

.END NOT FOUND
No. END statement.
Add an .END statement to the program.

104 Message:
Meaning:
Corrective action:

LOCATION COUNTER OVERFLOW
The location counter value (address) exceeded the maximum value.
Reduce the size of the program.

105 Message:
Meaning:
Corrective action:

ILLEGAL INSTRUCTION IN STACK SECTION
An instruction that cannot be used in a stack section was specified.
Remove the instruction.

106 Message:
Meaning:
Corrective action:

TOO MANY ERRORS
Number of errors is too large: message display terminated.
Reexamine all source statements.

108 Message:
Meaning:
Corrective action:

ILLEGAL CONTINUATION LINE
Illegal continuation line is specified.
Correct the syntax of the continuation line.

109 Message:
Meaning:
Corrective action:

LINE NUMBER OVERFLOW
The number of statements in the program exceeded 65,535.
Divide the program into smaller sections.

200 Message:
Meaning:
Corrective action:

UNDEFINED SYMBOL REFERENCE
An undefined symbol was referenced.
Define the symbol.

201 Message:
Meaning:
Corrective action:

ILLEGAL SYMBOL OR SECTION NAME
A register mnemonic, operator, or the location counter symbol was
used as a symbol or as a section name.
Correct the symbol or section name.

228

Table C-2 Source Program Errors(2)

202 Message:
Meaning:
Corrective action:

ILLEGAL SYMBOL OR SECTION NAME
Error in a symbol or a section name.
Correct the symbol or section name.

300 Message:
Meaning:
Corrective action:

ILLEGAL MNEMONIC
Error in an instruction mnemonic.
Correct the instruction mnemonic.

301 Message:
Meaning:
Corrective action:

TOO MANY OPERANDS OR ILLEGAL COMMENT
Too many operands to an instruction, or comment syntax error.
Correct the operands or the comment.

304 Message:
Meaning:
Corrective action:

LACKING OPERANDS
Too few operands specified for an instruction.
Correct the operands.

306 Message:
Meaning:
Corrective action:

SYNTAX ERROR IN REGISTER LIST
Error specifying multiple registers.
Specify the register list correctly.

307 Message:
Meaning:

Corrective action:

ILLEGAL ADDRESSING MODE
An addressing mode not allowed for the instruction operand was
specified.
Correct the operand's addressing mode.

308 Message:
Meaning:
Corrective action:

SYNTAX ERROR IN OPERAND
Instruction operand syntax error.
Correct the operand.

400 Message:
Meaning:

Corrective action:

CHARACTER CONSTANT TOO LONG
More than four characters were specified in a character
constant.
Correct the character constant.

402 Message:
Meaning:
Corrective action:
Supplement:
of range portion.

ILLEGAL VALUE IN OPERAND
Out of range value specified in an instruction operand.
Correct the value.
Object code will be generated for the operand except for the out

403 Message:
Meaning:
Corrective action:

ILLEGAL OPERATION FOR RELATIVE VALUE
Multiplication or logical operation applied to relative value.
Correct the expression.

229

Table C-2 Source Errors(3)

404
.

Message:
Meaning:

Corrective action:

ILLEGAL IMMEDIATE DATA
Relative value specified where immediate data #1, #2, #4, #0 to
3, or #0 to 7 is required
Relative values cannot be specified. Correct the value.

407 Message:
Meaning:
Corrective action:

MEMORY OVERFLOW
Memory overflow during expression evaluation.
Simplify the expression.

408 Message:
Meaning:
Corrective action:

DIVISION BY ZERO
Divide by 0.
Correct the expression.

409 Message:
Meaning:
Corrective action:

REGISTER IN EXPRESSION
Register was specified in an expression.
Correct the expression.

411 Message:
Meaning:

Corrective action:

INVALID START OF/SIZE OF OPERAND
START OF or SIZE OF operator was applied to an item other
than a section name
Correct the expression.

500 Message:
Meaning:
Corrective action:

SYMBOL NOT FOUND
No symbol specified in label field of directive requiring a symbol.
Specify in the label field.

501 Message:
Meaning:

Corrective action:

ILLEGAL ADDRESS VALUE IN OPERAND
Out of range value was specified in. SECTION or, .ORG
statement.
Correct the value.

502 Message:
Meaning:

Corrective action:

ILLEGAL SYMBOL IN OPERAND
Relative or forward reference value specified where a backward
reference absolute value is required.
Correct the value.

503 Message:
Meaning:

Corrective action:

UNDEFINED EXPORT SYMBOL
Symbol defined externally with .EXPORT not defined within
program.
Remove the symbol from the .EXPORT statement.

504 Message:
Meaning:

Corrective action:

INVALID RELATIVE SYMBOL IN OPERAND
External reference value or forward reference value specified in
.EQU or .ASSIGN statement, or relative value which cannot be
expressed as the offset from a section starting address
specified.
Correct the value.

230

Table C-2 Source Program Errors(4)

505 Message:
Meaning:
Corrective action:

ILLEGAL OPERAND
Error in directive operand.
Correct the operand.

506 Message:
Meaning:
Corrective action:

ILLEGAL OPERAND
Error in directive operand.
Correct the operand.

508 Message:
Meaning:
Corrective action:

ILLEGAL VALUE IN OPERAND
Out of range value in directive operand.
Correct the value.

510 Message:
Meaning:

Corrective action:

ILLEGAL BOUNDARY VALUE
Error in boundary adjustment value in .SECTION or .ALIGN
statement.
Correct the boundary alignment value.

511 Message:
Meaning:
Corrective action:

ILLEGAL DISPLACEMENT SIZE
Error in .DISPSIZE bit count.
Correct the bit count.

512 Message:
Meaning:
Corrective action:

ILLEGAL EXECUTION START ADDRESS
Error in .END execution start address.
Correct the execution start address.

513 Message:
Meaning:
Corrective action:

ILLEGAL REGISTER NAME
Error in .REG register name.
Correct the register name.

514 Message:
Meaning:

Corrective action:

INVALID EXPORT SYMBOL
Symbol that cannot be defined externally specified in .EXPORT
or GLOBAL statement.
Remove the symbol from the .EXPORT or .GLOBAL statement.

516 Message:
Meaning:
Corrective action:

EXCLUSIVE DIRECTIVES
Inconsistency in directive specification.
Reexamine the related directives.

517 Message:
Meaning:

Corrective action:

INVALID VALUE IN OPERAND
External reference value or forward reference value specified in
.ORG directive, or relative address value from different section
specified.
Correct the value.

231

Table C-2 Source Program Errors (5)

518 Message:
Meaning:

Corrective action:

INVALID IMPORT SYMBOL
Symbol defined within the program specified in .IMPORT
statement.
Remove the symbol from the external reference specification.

520 Message:
Meaning:

Corrective action:

ILLEGAL .CPU DIRECTIVE POSITION
.CPU directive specified at point other than start of program, or
multiple. CPU directives.
Move the .CPU directive to the start of the program and confirm
that there is only one .CPU directive in the program.

521 Message:
Meaning:

Corrective action:

Supplement:

ILLEGAL SYMBOL IN OPERAND
A location counter value or a symbol whose value is an address
specified as a constant value operand while in the OPTIMIZE
option was specified.

Correct the value.

Specify the NOOPTIMIZE option when using a location counter
value or a symbol whose value is an address.

523 Message:
Meaning:
Corrective action:

ILLEGAL OPERAND
An Illegal operand in directive
Correct the illegal operand in the directive

524 Message:
Meaning:

Corrective action:

ILLEGAL ADDRESSING SPACE SIZE
An illegal bit width for address space was specified in the .CPU
directive operand.
Correct the bit width for address space.

525 Message:
Meaning:

Corrective action:

ILLEGAL .LINE DIRECTIVE POSITION
.LINE directive was specified in macro expansion or conditional
iterated expansion
Remove the .LINE directive

601 Message:
Meaning:
Corrective action:

INVALID DELIMITER
Delimiter character error.
Reexamine the whole source statement.

602 Message:
Meaning:
Corrective action:

INVALID CHARACTER STRING FORMAT
Character string error.
Reexamine the whole source statement.

603 Message:
Meaning:
Corrective action:

SYNTAX ERROR IN SOURCE STATEMENT
Source statement syntax error.
Reexamine the whole source statement.

232

Table C-2 Source Errors (6)

604 Message:
Meaning:

Corrective action:

ILLEGAL SYMBOL IN OPERAND
Undefined symbol, relative value, or forward reference value
specified for operand requiring a backward reference absolute
value.
Correct the value.

610 Message:
Meaning:
Corrective action:

MULTIPLE MACRO NAMES
Macro name reused in macro definition (.MACRO directive).
Correct the macro name.

611 Message:
Meaning:
Corrective action:

MACRO NAME NOT FOUND
Macro name not specified (.MACRO directive).
Specify a macro name in the name field of the .MACRO
directive.

612 Message:
Meaning:
Corrective action:
Supplement:

ILLEGAL MACRO NAME
Error in macro name (.MACRO directive).
Correct the macro name.
Executable instruction mnemonics, assembler directives (with
period removed), and preprocessor directives (with period
removed) cannot be used as macro names.

613 Message:
Meaning:

Corrective action:

ILLEGAL .MACRO DIRECTIVE POSITION
.MACRO directive appears in macro body (between .MACRO
and .ENDM directives), between .AREPEAT and .AENDR
directives, or between .AWHILE and .AENDW directives.
Remove the .MACRO directive.

614 Message:
Meaning:

Corrective action:

MULTIPLE MACRO PARAMETERS
Formal parameter repeated in macro definition (.MACRO
directives) formal parameter definitions.
Correct the formal parameters.

615 Message:
Meaning:

Corrective action:

ILLEGAL .END DIRECTIVE POSITION
.END directive appears in macro body (between .MACRO and
.ENDM directives).
Remove the .END directive.

616 Message:
Meaning:

Corrective action:

MACRO DIRECTIVES MISMATCH
An .ENDM directive appeared without preceding .MACRO
directive, or an .EXITM directive appeared outside of a macro
body (between .MACRO and .ENDM directives), outside of
.AREPEAT and .AENDR directives), or outside of .AWHILE and
.AENDW directives.
Remove the .ENDM or .EXITM directives.

233

Table C-2 Source Program Error (7)

618 Message:
Meaning:
Corrective action:

MACRO EXPANSION TOO LONG
Macro expansion generated line with over 255 characters.
Correct the definition or call so that the line is less
than 255 characters.

619 Message:
Meaning:

Corrective action:
Supplement:

ILLEGAL MACRO PARAMETER
Macro parameter formal parameter name error in macro call, or
error in formal parameter in a macro body (between .MACRO
and .ENDM directives).
Correct the formal parameter.
When there is an error in a formal parameter in a macro body,
the error will be discovered and flagged during macro
expansion.

620 Message:
Meaning:
Corrective action:

UNDEFINED PREPROCESSOR VARIABLE
Reference to an undefined preprocessor variable.
Define the preprocessor variable.

621 Message:
Meaning:
Corrective action:

ILLEGAL .END DIRECTIVE POSITION
.END directive in macro expansion.
Remove the .END directive.

622 Message:
Meaning:
Corrective action:

`)' NOT FOUND
Matching parenthesis missing in macro processing exclusion.
Supply the missing macro processing exclusion parenthesis.

623 Message:
Meaning:
Corrective action:

SYNTAX ERROR IN STRING FUNCTION
Syntax error in character string manipulation function.
Correct the character string manipulation function.

624 Message:
Meaning:

Corrective action:

MACRO PARAMETERS MISMATCH
Too many positional specification macro parameters in macro
call.
Correct the number of macro parameters.

630 Message:
Meaning:
Corrective action:

SYNTAX ERROR IN OPERAND
Syntax error in structured assembly directive operand.
Reexamine the directive.

631 Message:
Meaning:

Corrective action:

END DIRECTIVE MISMATCH
Terminating preprocessor directive does not agree with
matching directive.
Reexamine the preprocessor directives.

632 Message:
Meaning:
Corrective action:

SYNTAX ERROR IN OPERAND
Error in structured assembly directive operand condition code.
Correct the condition code.

234

Table C-2 Source Program Errors (8)

633 Message:
Meaning:

Corrective action:

ILLEGAL .BREAK OR .CONTINUE DIRECTIVE POSITION
.BREAK or .CONTINUE directive outside .FOR[U] and .ENDF, .WHILE
and .ENDW, or .REPEAT and .UNTIL directive ranges.
Remove the .BREAK or .CONTINUE directive.

634 Message:
Meaning:

Corrective action:

EXPANSION TOO LONG
Line over 255 characters generated by structured assembly
expansion.
Correct the structured assembly expansion to generate lines of less
than 255 characters.

640 Message:
Meaning:
Corrective action:

SYNTAX ERROR IN OPERAND
Syntax error in conditional assembly directive operand.
Reexamine the whole source statement.

641 Message:
Meaning:
Corrective action:

INVALID RELATIONAL OPERATOR
Error in conditional assembly directive relational operator.
Correct the relational operator.

642 Message:
Meaning:

Corrective action:

ILLEGAL .END DIRECTIVE POSITION
.END directive between .AREPEAT and .AENDR directives or between
.AWHILE and .AENDW directives.
Remove the .END directive.

643 Message:
Meaning:

Corrective action:

DIRECTIVE MISMATCH
.AENDR or .AENDW directive does not form proper pair with
.AREPEAT or .AWHILE directive.
Reexamine the preprocessor directives.

644 Message:
Meaning:

Corrective action:

ILLEGAL .AENDW OR .AENDR DIRECTIVE POSITION
.AENDW or .AENDR directive appears between .AIF and .AENDI
directives.
Remove the .AENDW or .AENDR directive.

645 Message:
Meaning:

Corrective action:

EXPANSION TOO LONG
Line over 255 characters generated by .AREPEAT or .AWHILE
expansion.
Correct the .AREPEAT or .AWHILE to generate lines of less than 255
characters.

650 Message:
Meaning:
Corrective action:

INVALID INCLUDE FILE
Error in .INCLUDE file name.
Correct the file name.

651 Message:
Meaning:
Corrective action:

CANNOT OPEN INCLUDE FILE
Could not open .INCLUDE file.
Correct the file name.

235

Table C-2 Source Program Errors (9)

652 Message:
Meaning:
Corrective action:

INCLUDE NEST TOO DEEP
File inclusion nesting exceeded 30 levels.
Limit the nesting to 30 or fewer levels.

653 Message:
Meaning:
Corrective action:

SYNTAX ERROR IN OPERAND
Syntax error in .INCLUDE operand.
Correct the operand.

660 Message:
Meaning:
Corrective action:

.ENDM NOT FOUND
Missing .ENDM directive following .MACRO.
Insert an .ENDM directive.

661 Message:
Meaning:

Corrective action:

END DIRECTIVE NOT FOUND
Terminating directives insufficient for specified structured assembly
directives.
Insert the required terminating directives.

662 Message:
Meaning:
Corrective action:

ILLEGAL .END DIRECTIVE POSITION
.END directive appears between .AIF and .AENDI directives.
Remove the .END directive.

663 Message:
Meaning:
Corrective action:

ILLEGAL .END DIRECTIVE POSITION
.END directive appears in .INCLUDE file.
Remove the .END directive.

664 Message:
Meaning:
Corrective action:

ILLEGAL .END DIRECTIVE POSITION
.END directive appears between .AIF and .AENDI directives.
Remove the .END directive.

665 Message:
Meaning:

Corrective action:
Supplement:

ILLEGAL SYMBOL IN OPERAND
A symbol which is not a preprocessor variable is specified in a
preprocessor directive while the OPTIMIZE option is specified.
Correct the specification.
Use the NOOPTIMIZE option when specifying a symbol which is not a
preprocessor variable.

800 Message:
Meaning:
Corrective action:
Supplement:

SYMBOL NAME TOO LONG
Symbol exceeds 32 characters.
Correct the symbol.
Only the first 32 characters are valid in a symbol.

801 Message:
Meaning:
Corrective action:

MULTIPLE SYMBOLS
Repeated symbol in symbol definition position.
Correct the symbol.

236

Table C-2 Source Program Errors (10)

805 Message:
Meaning:

Corrective action:

ILLEGAL OPERATION SIZE
Error in branch size specification (:8 or :16) in structured assembly
statement.
Correct the branch size.

807 Message:
Meaning:
Corrective action:

ILLEGAL OPERATION SIZE
Error in instruction size specification.
Correct the size specification.

808 Message:
Meaning:
Corrective action:
Supplement:

ILLEGAL CONSTANT SIZE
Error in integer constant interpretation size (.xx).
Correct the interpretation size.
The interpretation size can be either byte (.B) or word (.W).
The value is interpreted as a 1 or 2 byte signed quantity, respectively.

810 Message:
Meaning:
Corrective action:

TOO MANY OPERANDS
Too many instruction operands.
Correct the operands.

811 Message:
Meaning:
Corrective action:

ILLEGAL SYMBOL DEFINITION
Symbol specified in label field.
Remove the symbol.

812 Message:
Meaning:
Corrective action:
Supplement:

SECTION OR MODULE NAME TOO LONG
Section or module name exceeds 32 characters.
Correct the section or module name.
Only the first 32 characters are valid.

813 Message:
Meaning:

Corrective action:
Supplement:

SECTION ATTRIBUTE MISMATCH
Different section attribute or format classifier specified on section re-
entry.
Correct the section attribute or format classifier.
The "Locate=<starting address>" specification is invalid for reentry to an
absolute section.

814 Message:
Meaning:
Corrective action:
Supplement:

ILLEGAL OBJECT CODE SIZE
Error in allocation size (:8, :16, :24 or :32).
Correct the allocation size.
Although notations of the form "#xx:2" and "#xx;3" are used in the
manuals, these notations cannot be used with the assembler.

815 Message:
Meaning:
Corrective action:

MULTIPLE MODULE NAMES
Multiple module name specifications (.PROGRAM).
Specify the module name exactly once.

237

Table C-2 Source Program Errors (11)

816 Message:
Meaning:
Corrective action:

START ODD ADDRESS
Even-sized byte data or data region allocated from an odd address.
Correct the address specification to be an even number.

817 Message:
Meaning:

Corrective action:

Supplement:

OPERATION SIZE MISMATCH
Either an @-SP or an @SP + addressing mode specified for byte size
instruction (.B).
This instruction form cannot be used, since the stack pointer would
take on an odd value.
Object code will be generated ignoring the @-SP or @SP+ addressing
mode specification.

825 Message:
Meaning:
Corrective action:

ILLEGAL INSTRUCTION IN DUMMY SECTION
Instruction illegal in dummy section specified in dummy section.
Remove the instruction.

830 Message:
Meaning:

Corrective action:
Supplement:

OPERATION SIZE MISMATCH
ERn or Rn specified in byte size (.B) instruction, or ERn specified in
word size (.W) instruction.
Correct the register specification.
Code will be generated with RnL for the byte size case, and Rn for the
word size case.

832 Message:
Meaning:

Corrective action:

MULTIPLE `P' DEFINITIONS
P was defined as a symbol before the default section P was
referenced.
Do not use P as a symbol in programs that use P for the default
section.

835 Message;
Meaning:
Corrective action:
Supplement:

ILLEGAL VALUE IN OPERAND
Out of range value in instruction operand.
Correct the value.
Object code will be generated with the out of range part of the value
ignored.

836 Message:
Meaning:

Corrective action:
Supplement:

CONSTANT SIZE OVERFLOW
Out of range value for specified interpretation size (.B or .W) in integer
constant.
Correct the value.
The interpretation size can be either byte (.B) or word (.W). The value
is interpreted as a 1-or 2-byte signed quantity, respectively.

837 Message:
Meaning:
Corrective action:

SOURCE STATEMENT TOO LONG
Source statement too long (over 255 characters).
Rewrite the source statement to within 255 characters.

238

Table C-2 Source Program Errors (12)

850 Message:
Meaning:
Corrective action:

ILLEGAL SYMBOL DEFINITION
Symbol specified in preprocessor directive label field.
Remove the symbol.

851 Message:
Meaning:
Corrective action:

MACRO SERIAL NUMBER OVERFLOW
Macro generation counter exceeded 99999.
Reduce the number of macro calls.

852 Message:
Meaning:

Corrective action:

UNNECESSARY CHARACTER
Characters appear after the end of the operands in a preprocessor
directive.
Correct the operand(s).

853 Message:
Meaning:

Corrective action:
Supplement:

NEGATIVE IMMEDIATE VALUE
Negative immediate value (#-xx) specified as .FOR[U] directive
increment value.
Correct the specification to the -#xx format.
The .FOR[U] loop will be expanded as such.

854 Message:
Meaning:

Corrective action:

.AWHILE ABORTED BY .ALIMIT
Expansion was terminated because the maximum number of iterated
expansion specified by the .ALIMIT directive was exceeded.
Check the iterated expansion condition.

239

C.4 Fatal Errors

Table C-3 lists the fatal errors and recommended corrective actions.

Table C-3 Fatal Errors (1)

900 Message:
Meaning:
Corrective action:

FILE NAME TOO LONG
The file name including the directory was too long.
Simplify the directory structure.

901 Message:
Meaning:
Corrective action:

SOURCE FILE INPUT ERROR
Input error reading source file.
Check the amount of free disk space.

902 Message:
Meaning:
Corrective action:

MEMORY OVERFLOW
Memory overflow.
Divide the program into smaller modules.

903 Message:
Meaning:
Corrective action:

LISTING FILE OUTPUT ERROR
Output error writing listing file.
Check the amount of free disk space.

904 Message:
Meaning:
Corrective action:

OBJECT FILE OUTPUT ERROR
Output error writing object file.
Check the amount of free disk space.

905 Message:
Meaning:
Corrective action:

MEMORY OVERFLOW
Memory overflow.
Divide the program into smaller modules.

906 Message:
Meaning:
Corrective action:

MEMORY OVERFLOW
Memory overflow.
Divide the program into smaller modules.

907 Message:
Meaning:
Corrective action:

MEMORY OVERFLOW
Memory overflow.
Divide the program into smaller modules.

908 Message:
Meaning:
Corrective action:

SECTION OVERFLOW
The number of section exceeded 65,535.
Divide the program into smaller modules.

909 Message:
Meaning:
Corrective action:

SYMBOL OVERFLOW
The number of symbols exceeded 65,535.
Divide the program into smaller modules.

240

Table C-3 Fatal Errors (2)

910 Message:
Meaning:
Corrective action:

SOURCE LINE NUMBER OVERFLOW
The number of lines in the assembly listing exceeded 65,535.
Divide the program into smaller modules.

911 Message:
Meaning:
Corrective action:

IMPORT SYMBOL OVERFLOW
The number of external reference symbols exceeds 65,535.
Reduce the number of external reference symbols.

912 Message:
Meaning:
Corrective action:

EXPORT SYMBOL OVERFLOW
The number of external reference symbols exceeds 65,535.
Reduce the number of external definition symbols.

933 Message:
Meaning:
Corrective action:

LACKING CPU SPECIFICATION
CPU classification not specified.
Specify the CPU classification with the CPU command line option,
.CPU directive, or H38CPU environmental variable.

935 Message:
Meaning:
Corrective action:

SUBCOMMAND FILE INPUT ERROR
Input error in subcommand file.
Check if disk has sufficient capacity.

954 Message:
Meaning:
Corrective action:

MEMORY OVERFLOW
Not enough memory space.
Divide the source program.

Please contact your Hitachi sales or technical representative if a fatal error cannot be avoided
with the recommended measures.

241

Appendix D Differences with the Previous Version

This chapter describes the differences between the new version of this cross assembler (H8S,
H8/300 Series Cross Assembler Ver. 1) and the previous version (H8/300 Series Cross
Assembler Ver.3).

D.1 CPU

In addition to the function of assembling source programs for the H8/300H series, H8/300 series,
and H8/300L series CPUs, the new version of this assembler also assembles programs for the
H8S/2600 series and H8S/2000 series CPUs.

The CPU classification is specified with the CPU command line option or the .CPU directive in
the previous version. In the new version, it can also be specified with the H38CPU
environmental variable.

Because the H38CPU environmental variable in the assembler is the same as that in the C
compiler and simulator/debugger, it can be shared by various development tools.

The priority taken when different CPU values are specified with the CPU command line option,
.CPU directive, and H38CPU environmental variable, is as follows:

1 CPU command line option

2. .CPU directive

3. H38CPU environmental variable

Note: In the previous version, source program assembly defaults to the H8/300H advanced
mode CPU when the CPU specification is omitted. However, in the new version, an error
occurs; the CPU classification must be specified with the CPU command line option,
CPU directive, or H38CPU environmental variable.

242

D.2 Address Space Support

This new version supports assemble functions for the 1M mode and 16M mode in the H8/300H
advanced mode, as well as for the 1M mode, 16M mode, 256M mode, and 4G mode in the
H8S/2600 and H8S/2000 advanced modes of the new CPU classifications.

The mode is specified as follows:

· For 1M mode, specify: 20 for address space bit width at CPU classification specification.

· For 16M mode, specify :24 for address space bit width at CPU classification specification.

· For 256M mode, specify :28 for address space bit width at CPU classification specification.

· For 4G mode, specify :32 for address space bit width at CPU classification specification.

In the new version, the accessible address space differs according to the specified bit width of
the address space.

Accessible address spaces are listed in table D-1.

Table D-1 Accessible Address Spaces (1)

CPU Valid in

Previous Absolute Addressing Absolute Addressing

Version Address Space Mode Range @aa:8) Mode Range @aa:16)

300 H'0-H'FFFF H'FF00-H'FFFF H'0-H'FFFF

300L H'0-H'FFFF H'FF00-H'FFFF H'0-H'FFFF

300HN H'0-H'FFFF H'FF00-H'FFFF H'0-H'FFFF

300HA* H'0-H'FFFFFF H'FFFF00-H'FFFFFF H'0-H'7FFF,
H'FF8000-H'FFFFFF

Note: The default setting of address space bit width is the same as that of 300HA:24.

243

Table D-1 Accessible Address Spaces (2)

CPU Valid in Absolute Addressing Mode Absolute Addressing

New Version Address Space Range (@aa:8) Mode Range (@aa:16)

300HA:20 H'0-H'FFFFF H'FFF00-H'FFFFF H'0-H'7FFF,
H'F8000-H'FFFFF

300HA:24 H'0-H'FFFFFF H'FFFF00-H'FFFFFF H'0-H'7FFF,
H'FF8000-H'FFFFFF

2600N, H'0-H'FFFF H'FF00-H'FFFF H'0-H'FFFF

2000N

2600A:20, H'0-H'FFFFF H'FFF00-H'FFFFF H'0-H'7FFF,

2000A;20 H'F8000-H'FFFFF

2600A:24, H'0-H'FFFFF H'FFF00-H'FFFFF H'O-H'7FF,

2000A:24 H'F8000-FFFFF

2600a:28, H'0-H'FFFFFF H'FFFF00-H'FFFFFFF H'0-H'7FFF,

2000A:28 H'FFF8000-H'FFFFFFFF

2600A:32, H'0-H'FFFFF H'FFF00-H'FFFFF H'O-H'7FF,

2000A32 H'F8000-FFFFF

2600A, H'0-H'FFFFFFFF H'FFFFFF00-H'FFFFFFFF H'0-H'7FFF,

2000A* H'FFFF8000-H'FFFFFFFF

Note: The default setting of address space bit width is the same as that of 2600A:32 and
2000A:32.

D.3 Source File Extension

While the previous version assumes a source file extension of .mar, the new version uses .mar or
.src as the default. In other words, the new version of the assembler uses .mar or .src as the
extension when the extension is omitted from the source file specification, in the priority of .mar
first and .src second.

Example

> asm 38 aaa
When file aaa.mar exists, file aaa.mar is assembled.
When file aaa.mar does not exist, file aaa.src is assembled.

244

D.4 Added Assembler and Preprocesser Directives

The new assembler and assembly directives in the new version are listed in table D-2.

Table D-2 Added Assembler and Preprocesser Directives

Assembler or

Preprocesser Directive Function

.LINE Changes the file name and line number of debugging information

.ALIMIT Sets conditional iterated expansion limit

D.5 Added Command Line Options

The new command line options in the new version are listed in table D-3.

Table D-3 Added Command Line Options

Command Line Option Function

INCLUDE Include file directory specification

ASSIGNA Integer preprocessor variable definition

ASSIGNC Character preprocessor variable definition

[NO]OPTIMIZE Optimization specification

[NO]EXCLUDE Output control of information on unreferenced external reference
symbols

ABORT Change of values returned to OS and object output control at error
generation

SUBCOMMAND Subcommand file specification

245

D.6 Compatibility of Object Modules

Object modules generated in the new version are different from those in the previous version.
When linking object modules generated by the new version with those generated by the previous
version, the output format of object modules generated by either the new or previous version
must be converted by the SYSROF file converter included in the assembler system.

Figure D-1 shows how compatibility can be achieved between object modules.

Assembler

Assembly language
source program

Assembler

Assembly language
source program object module

Previous

SYSROF file converter

New object
moduleUnlinkable

SYSROF file converter

New object
module

New object
module

Linkable

Linkable

Previous
object
module module

object
Previous

Figure D-1 Object Module Compatibility

246

D.7 Object Module Optimization

The new version has a function whereby the assembler optimizes the size of instructions in the
object code when the size specification is omitted for the displacement in the PC relative
addressing mode or the register-indirect-with-displacement addressing mode, or in the absolute
address storage in the absolute addressing mode.

In case of H8/300H, because the previous version assumes 8 bits as the default size for forward-
reference absolute values, the user needed to specify the size as 16 bits in the source program
wherever an error occurred. However, the new version automatically selects the most optimal
size from 8 bits or 16 bits for forward-reference absolute values.

Table D-4 shows the differences in displacement size.

Table D-4 Displacement Size Difference

Displacement Size

Reference Method Value Type Previous
Version

New Version
with Non-
optimization

New Version
with
Optimization

Backward
reference

Absolute value 8/16 bits 8/16 bits 8/16 bits

Backward
reference

Relative value 16 bits 16 bits 16 bits

Backward
reference

External reference
value

16 bits 16 bits 16 bits

Forward reference Absolute value 8 bits 8 bits 8/16 bits

Forward reference Relative value 16 bits 16 bits 16 bits

Forward reference External reference
value

16 bits 16 bits 16 bits

247

Example
.CPU 300HA
.SECTION A, CODE, LOCATE=H'001000
CMP #10, R0L
BEQ LAB1[1]
BLT LAB2[2]
MOV R1L, R2L

LAB1:
MOV R3L, R4L
.ORG H'002000

LAB2:
MOV R5L, R6L
.END

[1] Both the previous and new versions generate an object code with an 8-bit displacement
size.
[2] The previous version generates an error, while the new version with optimization
generates an object code with a 16-bit displacement size.

248

D.8 Change of Include Base Directory

When searching for include files, the previous version sets the search-start directory to the
directory in which the assembler was initiated in, whereas the new version sets it to the read-
destination directory.

Figure D-2 shows the base of the relative directory.

dir0

dir1

dir2

dir2

aaa.src(.include"./dir1/bbb.inc")
Entering asm38 aaa.src initiates
the assembler

bbb.inc(.include"./dir2/ccc.inc")

ccc.inc
(file read in the new version)

(file read in the previous version)
ccc.inc

Figure D-2 Base of Relative Directory

In figure D-2, the assembler is initiated by entering asm 38 aaa.src while in directory dir0. Then
include file 1 (./dir1/bbb.inc) specified by the relative directory is read into file aaa.src by the
.INCLUDE directive. Include file 2 (./dir2/ccc.inc) specified by the relative directory is read into
include file 1 (bbb.inc) by the .INCLUDE directive.

In this case, include file 2 (./dir2/ccc.inc), whose base directory is the assembler initiating
directory (dir0), is read in the previous version, while in the new version, include file 2
(./dir2/ccc.inc), whose base directory is the directory (dir 1) containing include file 1 (bbb.inc),
is read.

Note: MS-DOS directories are divided with a backlash (\).

249

D.9 Tag File Output

The previous version outputs a tag file when detecting at assembly an error for which an error
message or warning message will be issued, but the new version does not.

To create a tag file, send the output to a file using redirection.

Examples
> asm 38 aaa.mar > & aaa.tag (UNIX)
> asm 38 aaa.mar > aaa.tag (MS-DOS)
Error and warning information are output to file aaa.tag.

250

Appendix E ASCII Code Table

Table E-1 ASCII Codes

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F SI

SO

CR

FF

VT

LF

HT

BS

BEL

ACK

ENQ

EOT

ETX

STX

SOH

NUL

US

RS

GS

FS

ESC

SUB

EM

CAN

ETB

SYN

NAK

DC4

DC3

DC2

DC1

DLE

/

.

-

,

+

*

)

(

,

&

%

$

"

!

SP

>

=

<

;

:

9

8

7

6

5

4

3

2

1

0

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

@

_

ˆ

]

\

[

Z

Y

X

W

V

U

T

S

R

Q

P

o

n

m

l

k

j

i

h

g

f

e

d

c

b

a

`

DEL

z

y

x

w

v

u

t

s

r

q

p

Upper 4 bits

Lower 4 bits
0 1 2 3 4 5 6 7

ü

˜

Characters within regions surrounded by double lines can be used in source programs.

	Language Guide
	Section 1 Overview
	1.1 Features
	1.2 Assembler Overview

	Section 2 Rules for Source Statement Coding
	2.1 Source Statements
	2.2 Symbol
	2.3 Values
	2.4 Expressions
	2.5 Character Strings

	Section 3 Programming Overview
	3.1 Section
	3.2 External Reference and External Definition

	Section 4 Executable Instructions
	4.1 Coding Executable Instructions
	4.2 Executable Instruction Operand Sizes and Addressing Formats

	Section 5 Assembler Directive
	5.1 Assembler Directive Types
	5.2 CPU Directives
	5.3 Section and Location Counter Directives
	5.4 Symbol Directives
	5.5 Data Area Allocation Directives
	5.6 External Reference and External Definition Directives
	5.7 Object Module Directives
	5.8 Assembly Listing Directives
	5.9 Other Directives

	Section 6 File Inclusion Function
	6.1 Overview of the File Inclusion Function
	6.2 File Inclusion Preprocessor Directives

	Section 7 Conditional Assembly Function
	7.1 Overview of the Conditional Assembly Function
	7.2 Conditional Assembly Preprocessor Directives

	Section 8 Macros
	8.1 Overview of the Macro Function
	8.2 Macro Function Related Preprocessor Directives

	Section 9 Structured Assembly
	9.1 Overview of Structured Assembly
	9.2 Structured Assembly Function Directive

	Usage Guide
	Section 1 Overview
	1.1 Assembler Positioning
	1.2 I/O Organization

	Section 2 Invoking the Assembler
	2.1 Command Format
	2.2 H38CPU Environmental Variable
	2.3 Files Used by the Assembler
	2.4 Value Returned to OS

	Section 3 Command Line Options
	3.1 Types of Command Line Option
	3.2 Command Line Option Concerning the CPU
	3.3 Command Line Options Concerning Object Modules
	3.4 Command Line Options Concerning the Assembly Listing
	3.5 Command Line Option Concerning File Inclusion
	3.6 Command Line Options Concerning Conditional Assembly
	3.7 Command Line Options Concerning Command Line Specification

	Appendices
	Appendix A Limitations
	Appendix B Assembly Listing
	B.1 Structure of an Assembly Listing
	B.2 Source Program Listing
	B.3 Cross Reference Listing
	B.4 Section Information Listing

	Appendix C Error Messages
	C.1 Error Message Types
	C.2 Invocation Errors
	C.3 Source Program Errors
	C.4 Fatal Errors

	Appendix D Differences with the Previous Version
	D.1 CPU
	D.2 Address Space Support
	D.3 Source File Extension
	D.4 Added Assembler and Preprocesser Directives
	D.5 Added Command Line Options
	D.6 Compatibility of Object Modules
	D.7 Object Module Optimization
	D.8 Change of Include Base Directory
	D.9 Tag File Output

	Appendix E ASCII Code Table

