
HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

Hitachi America, Ltd. TN-0156

Application Engineering
TechNote Jennifer Ediyanto

Bit Clear Using C or Inline Assembly

The GNU C Compiler allows us to clear a bit by using the pointer in C code or inline Assembly. This paper will provide
sample codes in clearing bits.

The following are bit declarations:

struct
{
 int smr:1;
 int scr:1;
 int ssr:1;
 int tdr:1;
} *sci0;

The above is a pointer-type structure declaration that consists of 4 integer-type elements. The pointer structure is named as
sci0 and the elements are named as smr, scr, ssr, and tdr. Each element is one bit wide with the order from the 7th bit to 4th
bit, i.e., smr is the 7th bit. The rest of the bits (3rd bit to 0th bit) are undefined in this structure.

struct
{
 char a;
 char b;
} *j;

The above is a pointer-type structure declaration that consists of 2 character-type elements. The pointer structure is named
as 'j' and the elements are named as 'a' and 'b'. Each element is one bit wide with order from the 7th bit to 6th bit, i.e., 'a' is
the 7th bit. The rest of the bits (5th bit to 0th bit) are undefined in this structure.

The following are three ways to clear the bit:

b()
{
 asm("bclr #7,%X0" : "=U,r" (j->a));
}

The function 'b' contains an inline assembly code to clear the 7th bit of 'j' structure, which is element 'a'. Some symbols in
the inline assembly mean:

bclr bit clear instruction
#7 the 7th bit
%X0 print as byte register
=U operand memory reference
r use as a register
j->a element 'a' of 'j' structure

TN-0156 2

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

m()
{
 sci0->ssr = 0;
}

The function 'm' contains a C statement to clear ssr bit in the sci0 structure. By assigning zero to the sci0 pointer to ssr, this
statement will clear ssr bit (the 5th bit).

a()
{
 j->b &= ~0x40;
}

The function 'a' contains a C statement to clear 'b' bit in the 'j' structure. By using the logical-and (&) with the value of 'not
0x40 (i.e., 0x7F), this statement will clear 'b' bit (the 6th bit) of 'j' structure.

The following are the generated Assembly source:

 16:t.c **** b()
 17:t.c **** {
 18:t.c **** asm("bclr #7,%X0" : "=U,r" (j->a));
 79 0000 6B020000 mov.w @_j,r2
 80 ; #APP
 81 0004 7D207260 bclr #7,@r2
 82 ; #NO_APP
 19:t.c **** }
 89 0008 5470 rts

 21:t.c **** m()
 22:t.c **** {
 23:t.c **** sci0->ssr = 0;
 108 000c 6B020000 mov.w @_sci0,r2
 109 0010 7D207250 bclr #5,@r2
 24:t.c **** }
 116 0014 5470 rts

 27:t.c **** a()
 28:t.c **** {
 29:t.c **** j->b &= ~0x40;
 135 0018 6B020000 mov.w @_j,r2
 136 001c 0B02 adds #1,r2
 137 001e 7D207260 bclr #6,@r2
 30:t.c **** }
 144 0022 5470 rts

The information in this document has been carefully checked; however, the contents of this document may be
changed and modified without notice. Hitachi America, Ltd. shall assume no responsibility for inaccuracies, or any
problem involving a patent infringement caused when applying the descriptions in this document. This material is
protected by copyright laws.  Copyright 1995, Hitachi America, Ltd. All rights reserved. Printed in U.S.A.

