
H8/330
Application Note
Power-Down Operation Tom Hampton

INTRODUCTION
The H8/330 devices have three different power-down states
of operation that significantly reduce power consumption by
stopping some (or all) of the on-chip functions. These three
modes differ not only for power consumption reduction, but
also in how the entry and exit methods. Figure 1 shows a
simple flow chart of the processing states for the H8/300 CPU.

This flow chart describes the processing sequence for all
exception processing as well as power-down modes of opera-
tion. Table 1 shows power consumption during all modes of
operation while Table 2 shows an overview of the individual
modes for power-down operation.

Figure 1: H8/330 Processing States

Typical Maximum Frequency

Normal

12 25 mA 6MHz

16 30 mA 8MHz

20 40 mA 10MHz

Sleep Mode

8 15 mA 6MHz

10 20 mA 8MHz

12 25 mA 10MHz

Standby Modes 0.01 5.0 µA

Mode Entrance Clock CPU CPU
Registers

On-Chip
Peripherals

On-Chip
RAM

I/O Ports Exiting

Sleep
Mode

Execute
SLEEP
Instruction

Run Halt Held Run Held Held Interrupt
RES
STBY

Software
Standby
Mode

SSBY=1,
Execute
SLEEP
Instruction

Halt Halt Held Halt and
Initialized

Held Held NMI
IRQ2-IRQ0
RES
STBY

Hardware
Standby
Mode

STBY pin
Active

Halt Halt Not Held Halt and
Initialized

Held High
Impedance

STBY high,
then pulse
RES

Table 1: H8/330 Power Consumption

Table 2: H8/330 Power-Down Modes

March, 1991

H8/330 Application Note

The H8/330 device remains in this mode of operation since the
STBY pin remains active, despite the state of any other inputs
(including RES). The only way to remove the H8/330 from
this mode of operation is with the following sequence:

1. release the STBY pin to the inactive state,

2. reset the device by pulsing the RES pin (see Figure 2 for
the timing relationships on performing this function).

Since you are resetting the H8/330, you probably will only use
this mode of operation when the H8/330 is used to initialize
some external devices and then go to sleep until the external
devices requires operations from the H8/330. Because the
on-chip RAM is maintained during this mode of operation,
you can place software semaphores in the RAM that will allow
the initialization routines of the H8/330 to decide whether to
do a complete re-initialization (as from a power-on condition)
or a re-initialization of only itself (as in waking up from the
hardware standby mode).

HARDWARE STANDBY MODE
The “Hardware Standby” mode of power-down operation is
controlled by an external input pin (STBY) on the H8/330.
When the input to the STBY pin is made active, the H8/330
enters the hardware standby mode after completion of the
current instruction.

Operation of the CPU and all on-chip peripherals are stopped
completely during this mode of operation. The system oscil-
lator is also stopped, to reduce power consumption to its
minimum, so that no clock is supplied to any of the parts (CPU
or peripherals) of the H8/330. Not only is the system clock
stopped, but all the I/O ports on the H8/330 are placed into a
high-impedance state. This inhibits the I/O ports from dribing
or sourcing any external devices.

Only the on-chip RAM of the H8/330 is maintained during this
mode of operation. Whatever values are placed into this RAM
area are retained while nothing else is saved. (For further
power reduction savings while still maintaining RAM data,
please refer to the Special Considerations section later in this
document.)

SOFTWARE STANDBY MODE
The software standby mode of operation is very similar to the
hardware standby mode, the same power consumption sav-
ings are available in either mode. Like the hardware standby
mode of operation, the CPU and all on-chip peripherals are
stopped completely during the software standby mode. The
difference between the two modes is how they are entered and
exited, and in how the CPU’s registers and the I/O ports are
handled.

The software standby mode of operation is controlled via
software operation instead of hardware. There are two
power-down functions controlled in software by program-

ming the System Control Register (See Figure 3); the entering
of the software standby mode and the time delay when leaving
the software standby mode.

This mode of operation is entered by setting the “software
standby bit” (SSBY) in the System Control Register (SYSCR)
and then executing the SLEEP instruction. When the SLEEP
instruction is executed, the SSBY bit is tested to find its value.
If this bit is not set, then the H8/330 enters the “Sleep” mode
of operation (discussed later in this document). If this bit is set,
then the H8/330 enters the software standby mode of opera-
tion.

Figure 2: Exiting Hardware Standby Mode

Application Note H8/330

Figure 3: System Control Register

Before executing the SLEEP instruction, the user must pro-
gram not only the SSBY bit in the SYSCR, but also the
“Standby Timer Select” (STS

2
-STS

0
) bits. Since the on-chip

oscillator is stopped during this mode of operation, enough
time must be allowed to allow the oscillator to re-start (AC
parameter t

OSC2
). The user can control this time by program-

ming these three bits. By setting them to different values, the
user controls how many clock cycles the CPU delays between
recognizing the external interrupt signal and starting the
exception processing service routine (see Table 3).

Unlike the hardware standby mode, this mode of operation
maintains the registers of the CPU. This allows program
execution to continue at the location following the SLEEP
instruction when the H8/330 is released from the software
standby mode. Also during this mode of operation, the I/O
ports are maintained in their current states instead of being
re-initialized. But, the on-chip peripherals (such as timers,
serial channel, etc.) are reset and must be re-initialized
whenever the H8/330 is released from software standby mode.

Since the on-chip peripherals are not operating during the
software standby mode, it is only external interrupts (NMI or
IRQ

2
-IRQ

0
) that can awaken the H8/330 and return it to its

normal operating sequence. This is handled just like any other
exception sequence. The interrupting device is serviced after
the oscillator settling time delay by the exception processing
routine and operation is returned to the location following the
SLEEP instruction.

This mode is probably the most useful of the power-down
modes of operation because it offers the most power consump-
tion savings. The CPU and on-chip peripherals are stopped
while external devices (and on-chip I/O ports) are still allowed
to function. This allows the user to have the rest of his system
monitor external events while the CPU remains inactive.

Of course, you can always leave the software standby mode
of operation by resetting the H8/330 or by entering the
hardware standby mode.

Settling
Time

System Clock Frequency (MHz)

STS2 STS STS0 10 8 6 4 2 1 0.5

0 0 0 8192 0.8 1.0 1.3 2.0 4.1 8.2 16.4

0 0 1 16384 1.6 2.0 2.7 4.1 8.2 16.4 32.8

0 1 0 32768 3.3 4.1 5.5 8.2 16.4 32.8 65.5

0 1 1 65536 6.6 8.2 10.9 16.4 32.8 65.5 131.1

1 - - 131072 13.1 16.4 21.8 32.8 65.5 131.1 262.1

Table 3: Standby Timer Select Values

H8/330 Application Note

SLEEP MODE
The “Sleep” mode of power-down operation is controlled by
software. During this mode, operation of the H8/300 CPU
core is halted while the rest of the on-chip functions remain
active. Because of this, the “Sleep” mode offers the least
amount of power consumption savings.

This mode of operation is controlled by executing the SLEEP
instruction during the normal program operation. When this
occurs, the H8/300 CPU is placed into a “halt” state with no
further activity taking place. This halt state is similar to the
situation where the CPU may be in an indefinite “wait” state
except that no control signals are active.

Since the CPU is halted, no change in the I/O ports will occur
(meaning that their current values will be held). Though the
CPU is no longer running, all values in the registers are held
in their current state. By doing this, the CPU is allowed to
continue its operations directly from the location following
the SLEEP instruction (after processing a return from the
sleep mode).

Though the CPU is halted, the system clock is still allowed to
run. This means that the on-chip peripherals can still function;
the timers, the serial channel, the A/D converter, and the
Dual-Port RAM can still do all their normal operations. In fact
the H8/330 device gets out of the sleep mode of operation.

Whenever any of the on-chip peripherals generate an interrupt
or an external interrupt is input to the device, the CPU is
awakened from its sleep mode and processing continues as
normal (see Figure 1 for flow details). The interrupting device
is serviced during the exception processing routine and opera-
tion is returned to the location following the SLEEP instruc-
tion.

Like the Software Standby Mode, you can always leave the
sleep mode of operation by resetting the H8/330 or by entering
the hardware standby mode.

SPECIAL CONSIDERATIONS

RAM R ETENTION

The H8/330 also offers the ability for the user to maintain the
contents of the on-chip RAM and CPU registers with a low
voltage input to the device.

During either of the standby modes (hardware or software) of
operation, the user can drop his supply voltage to +2.0 volts
DC and still be assured that the contents of the on-chip RAM
will not be lost. To use this feature correctly, the user must
ensure that he disables the on-chip RAM (by clearing the
RAME bit in the SYSCR) just before entering the standby
mode. While in the standby modes of operation, the user can
now reduce his supply voltage (thus further reducing current
consumption in his system). During the software standby
mode of operation, the user cannot only maintain the RAM
contents but also the contents of the CPU’s registers while the
low voltage is applied.

Before releasing the H8/330 from either standby mode of
operation, it is the responsibility of the user to ensure that the
proper operating voltage (V

CC
=+5.0V ±10%) be available.

EXTERNAL OSCILLATOR

In most systems (or microcontrollers), it is the oscillator that
is the main concern when attempting to reduce power con-
sumption. Though peripheral and CPU functions are stopped,
since the oscillator continues to operate small power savings
are observed. The H8/330 overcomes this concern by provid-
ing its own on-chip oscillator that is stopped during the
standby mode of operation.

If your system uses an external oscillator to drive the H8/330
device and you still wish to enjoy the power consumption
savings that the H8/330 offers, you still can. In instances such
as this, the H8/330 would accept the external clock input and
stop the internal clock from being provide to the on-chip
peripherals during the power-down modes. Here the oscillator
stabilization time (AC parameter t

OSC2
) becomes effectively 0

ms. You can now program the Standby Timer Select bits in the
SYSCR to “000” to reduce the delay when coming out of the
software standby mode to its absolute minimum.

Application Note H8/330
APPLICATION EXAMPLE

SOFTWARE STANDBY MODE

In this example, we will use the NMI input to suggest when
the H8/330 should be in a power-down state. Since the NMI
input is high, we would like the H8/330 to continue normal
operations. When the NMI input goes low, we want to enter
the software standby mode. This is possible because we can
sense both edges of the NMI input on the H8/330. For the sake
of programming the Standby Timer Select bits, lets assume
that the H8/330 is operating at a clock frequency of 6MHz. In
discussion of the software, we will talk only about program-
ming that is required and not discuss peripheral initialization
at all (refer to Figure 4 for a flow chart of the operations
sequence).

During the normal operating sequence, the H8/330 would go
through the process of initializing all its peripherals and other
functions for normal operation. Since the System Control
Register defaults to having the NMI edge selection for falling
edge, no programming of that bit is necessary at this time. We
will take this opportunity to program the SYSCR for the
proper STS values. We know that the t

OSC2
 value is 10 msec

from the AC characteristics of the H8/330. This calculates out
to 60,000 t-states at 6MHz. To allow for this number of clock
cycles, we must program STS

2
-STS

0
 to a value of “011.” This

will allows 10.9 msec to elapse for oscillator stabilization.

Whenever the falling edge of the NMI signal is recognized,
the H8/330 will begin the processing of the NMI
exception processing service routine. During this ser-
vice routine we must do three basic operations; figure
out whether we are going into or out of software standby
mode, change the state of the NMI edge selection, and
execute the SLEEP instruction (if we are going into the
standby mode). Optionally we could also enable or
disable the on-chip RAM if we were going to reduce
voltage to the H8/330. After that we would return from
this exception processing service routine to our normal
operation (a flow chart of the NMI service routine is
shown in Figure 5).

For our discussion of the software, please refer to
Listing 1. In the main routine, the only thing we really
need to do is to program the SYSCR with the values
necessary for the NMI edge selection and the standby
timer selection (for oscillator stabilization time). Ini-
tially we want to capture the falling edge of the NMI
input and set the STS bits for a count of 65536. This
requires the programming of “101110X1” into the
SYSCR (refer to Figure 3 for a description). With this
programmed into the SYSCR, we can continue with our
normal processing.

Whenever the falling edge of the NMI signal is ob-
served (see Figure 6), the H8/330 will begin processing
the NMI exception processing service routine. Since
this routine must handle both placing the H8/330 into

the software standby mode as well as recovering from it, we
must first decide which one it is. To do this we can test the state
of the NMIEG bit. If this bit is a “0,” then we can assume that
we have detected the falling edge and that we are going to go

Figure 4: Application Example
Processing Flowchart

Res et
I n i t i al i z at i on

Power - On NMI S er v i ce
S t ar t- up Rout i ne

Code

Set SYSCR
f or SOFTWARE

Sof twar e ST ANDBY MODE
S t andby

Oper at i on

NMI Fal l i ng NMI S er v i ce
Edge Rout i ne

Cont i nue Nor mal NMI R i s i ng Edge

Oper at i ons

Ret ur n f r om
Except i on

Ret ur n f r om
Except i on

H8/330 Application Note

into the software standby mode. Before we execute the
SLEEP instruction we would need to program the NMIEG bit
to “1” so that we can now monitor for the rising edge of the
NMI signal. Optionally, if we are going to reduce the V

CC
 level

we would need to clear the RAME bit in the SYSCR now
before we execute the SLEEP instruction.

After executing the SLEEP instruction the H8/330 is now in
the software standby mode of operation awaiting the input of
the rising edge on the NMI signal. When the rising edge is
detected (see Figure 7), the H8/330 starts the internal counter
for the standby timer and delays further processing until the
counter has timed out. At this point the H8/330 begins
processing the NMI exception processing service routine
again.

We still need to test the NMIEG bit to decide whether we are
going into the standby mode or coming out of it. If this bit is
a “1,” then we can assume that we are coming out of the
standby mode. Here, we would want to change the NMI edge
selection from rising edge to falling edge. If we had disabled
the on-chip RAM, we would want to make sure that we
re-enabled it for use. Afterward we merely return from the
NMI service routine (which incidentally returns us to the NMI
service routine that we were performing to go into standby
mode).

Figure 7: Application Example
NMI Rising Edge Timing

Figure 6: Application Example
NMI Falling Edge Timing

Figure 5: Application Software Flowchart
(NMI Service Routine)

NMI S er v i ce
Rout i ne

Goi ng T O Yes
S t andby
Mode ?

No

S et NMI
Edge S et NMI

Sel ect i on Edge t o
t o Fal l i ng R i s i ng Edge

Edge

Enabl e Di s abl e
On- Ch i p RAM On- Ch i p RAM

Ret ur n f r om
Except i on

Application Note H8/330

;H8/330 Power-Down Application Example

;NMI Service Routine

nmi_service:
btst.b #2,@h’ffc4 ;test nmieg bit in SYSCR
beq falling_edge ;going into power-down

;coming out of power-down
rising_edge:

bclr.b #2,@h’ffc4 ;set nmieg for falling edge
bset.b #0,@h’ffc4 ;enable on-chip RAM
rte ;return from processing

; to previous NMI routine

;going into power-down
falling_edge:

bset.b #2,@h’ffc4 ;set nmieg for rising edge
bclr.b #0,@h’ffc4 ;disable on-chip RAM
sleep ;go to power-down mode
rte ;return from processing

; to normal operation

.end

Listing 1: Application Example
NMI Service Routine

