OMC952723009

H8S2600 Series, H8S/2000Series

Programming Manual

Preface

The H8S/2600 Series and the H8S/2000 Series are built around an H8S/2000 CPU core.

The H8S/2600 and H8S/2000 CPUs have the same internal 32-bit architecture. Both CPUs
execute basic instructions in one state, have sixteen 16-bit registers, and have a concise, optimized
instruction set. They can address a 16-Mbyte linear address space.Programs coded in the high-
level language C can be compiled to high-speed executable code.

For easy migration, the instruction set is upward-compatible with the H8/300H, H8/300, and
H8/300L Series at the object-code level.

The H85/2600 CPU is upward-compatible with the H8S/2000 CPU at the object-code level, and
supports sum of products instructions.

Thismanual gives details of the H8S/2600 and H8S/2000 instructions and can be sued with all
microcontrollersin the H8S/2600 Series and the H8S/2000 Series.

For hardware details, refer to the relevant microcontroller hardware manuals.

SECHON L CPU ...ttt 1
O Y= 4V 1 SRS 1
L11 FEAIUMES....cecec e s 1
1.1.2 Differences between H8S/2600 CPU and H8S/2000 CPU.........ccccovvrveurererennnn 2
1.1.3 Differences from H8/300 CPUccccereireineeneeseresesesre s 3
1.1.4 Differencesfrom HB/300H CPUccooiiiiiiiieeeeee e 3
1.2 CPU OpErating MOES.......ccceirieiirieiirieirieisteist sttt 5
1.3 AQArESS SPACE.....c.ciuiirtiirterieie ettt bbbttt 10
N S = o [(= g @0 1o U= 4 o] o 1O 11
LAAL OVEIVIEW. ottt sttt sttt n e 11
142 GeNEral REQISIEIS.....coiiireeteriere sttt sttt ettt b e sae b sae e s 12
1.4.3 CONrol REJISIEIS......eeueeeeeeteeieeie ettt sttt e e e e e eae b saesaesbesbesaeseeseees 13
144 Initial REQISIEr VEIUES........ccccirieiireciirieceee ettt 15
15 DA FOMMELS.......eeeiei ettt ettt e b e e sae e et e sar e e b e sareenneesanas 16
151 General Register Data FOrMALS........cccovvireieriereneseeseeeeee e st 16
152 Memory Data FOrMELS........ccuiiiiiiiiie st s 18
1.6 INSITUCHION SEL ...ttt 19
L1iB. 1 OVEIVIBW ..ttt ettt et e e et et et e se et ebeebesaesaeebesbesaeasenees 19
1.6.2 Instructionsand Addressing MOES..........cccoueerierininenneneee e 20
1.6.3 Tableof Instructions Classified by FUNCLION..........cccoiriinnienneneenec e 22
1.6.4 BasiCINSruCtion FOMMELS.........ccovermrreieirenrereireserere e 32
1.7 Addressing Modes and Effective Address Calculationcccoceeeeereviecesceseseseseens 33
Section 2 INStruction DESCIIPLIONS............coierierrieeineeeeeee e 41
21 Tablesand SYMDBOIS.......ccooiiiiiii e 41
211 Assembly-Language FOrMEL..........ccoirirrinininieineenieesieeseeese e 42
225 B2 © o - (o] o RS 43
2.1.3 CONAItiON COUL.......crveuererereriereiresieiee et b et 45
214 INSrUCHION FOMMELcoevevieeeireeeirieesi e 45
215 Register SPECITiCalioN.o iiiiiiiieese et 46
2.1.6 BitDataAccessin Bit Manipulation INSIrUCtioNS.........cccoeeveerirninniecees 47
2.2 INSrUCiON DESCITPLIONS.cuiieiiitiirtiiri ettt bbbt 47
2201 (1) ADD (B) coeiretieereereeenene et 48
220 (2) ADD (W) ottt 49
221 (3) ADD (L) tiiteuttririeieienerisie ettt b e 50
222 ADDS ... bbb bbb bbb 51
223 ADDX .ttt ettt ettt e e 52
224 (1) AND (B) cooeveeeeeeeereeeeeeieseessssseeesssessessssssssessssssssesssesssssssssssessses s essssessansean 53

2.24(2) AND (W) oo seeeeeeeeeeseseseeeseesseesesesesseseessssseeeessesssssesssseeeeeenes 54

2.24(3)
2.25(1)
2.25(2)
226
227
2238
229
2.2.10
2211
2212
2213
2.2.14
2215
2.2.16
2217
2.2.18
2.2.19
2.2.20
2221
2222
2.2.23 (1)
2.2.23(2)
2.2.23(3)
2.2.24
2225
2.2.26 (1)
2.2.26 (2)
2.2.26 (3)
2.2.27 (1)
2.2.27(2)
2.2.28 (1)
2.2.28(2)
2.2.29 (1)
2.2.29(2)
2.2.30 (1)
2.2.30 (2)
2.2.31(1)
2.2.31(2)
2.2.32 (1)
2.2.32(2)
2.2.32(3)

N AN SRS 55
ANDC ...ttt e e b sare e e eare e areas 56
ANDC ...ttt et s b e st sreeeare e areas 57
2N A 58
o oSS 60
[T O I RO SRTRR 62
[T N R 64
T 1 I 5 PSR 66
BIOR ...ttt ettt e ae e b e be e be s et e e ae et e e sreenareenreas 68
T] 70
BIXOR ..ottt sttt ettt e sa e st b e abe b e e abeebe et e sbeenreereenas 72
BLD ettt bbb e e ab e b e b e ere e beereenas 74
271 L@ 1 TR 76
ST SRS 78
3 RS 80
S 82
B ST ettt et b e b et e b e beere e beereenas 84
[IS [T 86
(23 O T 88
CLRMALC ...ttt ettt et ettt st e b sab e e sreesane e sbesenreebessnns 20
L0811 {2) TSRS 91
CIMP (W) ottt e e st sr e see st neesneneenaeneens 92
L3 1 (SSRS 93
DAA et b e b b e et e be e beebeenbeereenas 94
[N T 96
D= O (= R 98
= O (Y) TS 99
3 =) S 100
DR QS (=) 101
DIVXS (W) ettt st st e e sae st s re st sresn et nes 103
DIVXU (B) c.veveiieeeiieesieisiesesiesestesesteseste e e saesessesessenessesessesessesessesessessssessesens 105
DIVXU (W) ettt st sttt s ne e es 107
L Y@ A {2) S 109
EEPMOV (W) ettt ettt seeneense s 110
D ST 07 112
D IS () I 113
EXTU (W) ottt sttt ettt ettt st et et naene 114
)G I U () TP 115
L O (= S 116
N O L SO 117
L\ L 118

3 X< < TN Y | = S 119
p3 XY RN < = S 120
XX L R0 ok (=) P 122
XX L) N0 ok (=) Do 123
XX tc) R o 1) F oo 124
2.2.35 () LDC (W) eoreeeeeeeeeeeeeeeeeeeeeeeeeeesesesseeeseeseesesessessessssssssss e seeesessssssssenes 126
p3 X< I o) R 128
3 X< T N 01 Y)N R 130
3 X S - R 131
XX L RO VA (=) T 134
2.2.39(2) MOV (W).eroooeeeeeeeeeeeeeeeeeeeeeeeeseseseeeeseeseeeessessessssssssss e seeesesessssseenes 135
3 X e N LAV () o 136
3 X YO N[OV A (=) T 137
2.2.39 (5) MOV (W)errrrreeeeeeeeeeeeeeeeeeeeeeeeeesesseeeeeeseeseeeesessessssesssesses e eeeeeeeesesseeeee 139
XX XD N LSV () N oo 141
XX X N LS VA (=) T 143
2.2.39(8) MOV (W).erooomeeeeeeeeeeeeeeeeeeeeeeesesesseeeseeseeeeeesessesssssseses s seeeeessssssseenes 145
2.2.39(9) MOV (L) e eeeeeeseeesesseeeseesseeeesesessesssssse s seeesesessssseenes 147
3 X Y [0V, = = 149
X X AR Y [0V 1 = =S 150
2.2.482 (1) MULXS (B) ceeeeeereeeeeereeeeeeeeeeeeeeeesesesseeeeeessesseesessesssssssssssesssseseeeessesesessssssssenes 151
2.2.42 (2) MULXS (W) et eeeeeseseseeeeseeseessessessessssssesessssssseseessesesesssssssssseees 152
3 X T R LU (U (=) W 153
2.2.43(2) MULXU (W) eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeesessessssssesss e seeesessssssssenes 154
3 XY NN NN =X (=) P 155
X XY) NN =X\) P 156
XXV N NN = X () N 157
p3 X LI Lo = T 158
3 XX R N0 1 (=) T 159
2.2.46 (2) NOT (W) eoeoeeeeeeeeeeeeseeeeeeeeeeeeeesesesesseeeseeseeeeeseesessessssssssessesseeeeeeeeeseeesessssssssenes 160
2.2.46 (3) NOT (L) crereeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeesesesseeeseessseeeseesessesssssssse s eeeeeeeeeeeeseesesesseenes 161
X X N R (=) N 162
XX A N N) N 163
XX e N (1) S 164
2248 (1) ORC ..oooooroeeeeseeeeeeeeeeeeeeeeeeeeeeeesssesssseeesseseesse et seeeeessssessneees 165
X XL X N e)= c T 166
2.2.49 (1) POP (W)..oreeeseeeeeeeeeeeeeeeeeeeeeeeeeeeesesseeeeeeseeeseesessesssssss s eeeeeeeeeeeseesesseeee 167
XXX R = 0 = () N 168
2.2.50 (1) PUSH (W) ..o eeeeesesesseeeeeessessessessessssssssessesseeeseeeeeseeesesessssssenes 169
2.2.50 (2) PUSH (L) ceeeeseeeeeeeeeeeeeeeeeseeesssesesseeeseeseesseseessesssssssssssssssseseessesesssssssssssseees 170
3 X RGN R = 0 1 () T 171

2.251(2)
2.251(3)
2.2.51 (4)
2.2.51 (5)
2.2.51 (6)
2.2.52 (1)
2.2.52(2)
2.252(3)
2.2.52 (4)
2.2.52 (5)
2.2.52 (6)
2.2.53 (1)
2.253(2)
2.253(3)
2.2.53 (4)
2.2.53(5)
2.2.53 (6)
2.2.54 (1)
2.2.54(2)
2.2.54(3)
2.2.54 (4)
2.2.54 (5)
2.2.54 (6)
2.2.55

2.2.56

2.257 (1)
2.257(2)
2.257 (3)
2.2.57 (4)
2.2.57 (5)
2.2.57 (6)
2.258 (1)
2.258(2)
2.2.58 (3)
2.2.58 (4)
2.2.58 (5)
2.2.58 (6)
2.2.59 (1)
2.2.59 (2)
2.2.59 (3)
2.2.59 (4)

............................... 172
ROTL (B 172
ROTL (W) 173
ROTL (W) 17
ROTL (L) 175
ROTL (L) 178
ROTR (B) L 17
ROTR (B) 178
ROTR (W) 179
ROTR (W) 190
ROTR (L] 181
ROTR (L) 162
ROTL (B) 163
ROTL (B) 164
ROTL (W) 185
ROTL (W) 196
ROTXL (L) 167
ROTXL (L) 168
ROTXR (B) 169
ROTXR (B) 190
ROTXR (W) 191
ROTXR (W) 192
ROTXR (L) 192
ROTXR (L) 194
R 195
RIS 197
SHAL (B 198
SHAL (B 199
SHAL (W) 20
T 201
SHAL (L) 202
HAL (L) 208
SHAR (B) 21
SHAR (B) v 205
AR (W) 26
SHAR (W) 207
SHAR (L) 208
SHAR (L) 209
SHLL (B)c 210
SHLL (B) 2
HLL (W) 212
SHLL (W) coeeoveeeeeeeeseeeeeeeeseeeeeeeessss e

X XX N | H I (1) S 214

2.2.59 (B) SHLL (L) seveteeeereeeeierereeie ettt ettt ettt et 215
2.2.60 (1) SHLR (B) .eieeutteereririeniresieienesesieieesesesesie sttt st bebenenesens 216
2.2.60 (2) SHLR (B).eeeveteereeurenerisietenesesieseesesesessesesesietesesesseseseesessssesessssssesessssesenessens 217
2.2.60 (3) SHLR (W) ettt 218
2.2.60 (4) SHLR (W) ettt sttt 219
2.2.60 (5) SHLR (L) ctettreetirietirieeriee ettt sas s sssse s ssanessesnsas 220
2.2.60 (B) SHLR (L) coveueuiereeieiererisie ettt ettt et 221
2261 SLEEP. ... ettt nenn 222
B) TS 1 1 O (=) ST 223
2.2.62(2) STC (B).eeereererrererriririereetesiesesissesissesseessesessesessessssessssessesessesessssessenessansssenseses 224
2.2.62 (3) STC (W) eueitieetireetireete ettt ettt sttt e s enessensenas 225
2.2.62 (4) STC (W) eueitiieieietireeesie sttt sttt s s s e st se st esessanessanessensnsin 227
2.2.63 STM ettt sttt e et neenenenn 229
2264 STMAC ... ettt sttt e bt ebeseebesaetesaeresaeseseas 231
2.2.65 (1) SUB (B) eeoeeeieieereeeeeenesisietenesestesesesesesessesesesieteeseseeseseesessssenesessssesesessesenenssens 232
2.2.65(2) SUB (W) oottt ettt enan 234
2.2.65(3) SUB (L) teueeeeeeeireetirieiiseeiesieteseeesiesesteessees et sas s st ssese e senessensnnas 235
2.2.66 SUBS ...ttt sttt et s et nenenn 236
2.2.67 SUBX ..ttt ste sttt ettt sttt a st ettt st ene st ene st e et nenne e enn 237
2.2.68 TA S et ae st et ne et ne st e ee 238
2.2.69 TRAPA oo b et 239
2270 (1) XOR (B).uereeerrirerrireriereeieseesesissestesessesesseessesessessssessesessesessssessesessenessansssenseses 241
2270 (2) XOR (W) wetieetieetirieie et seeteseesestesesse s se e s ssesesaesessesessanessanessensssensnsas 242
2270 (3) XOR (L) teueerereerireeriseeierieresieseseesestssesseessesessessssessesessesessesessessssssessessssansssesseses 243
2 (T O 1 (TR 244
B) T = (TP 245
2.3 INSrUCtION SEL SUMIMEIYc.oiviuiiiieiiiiiniiieeiee ettt bbb 246
2.3.1 Instructions and Addressing MOES.........cccevueiverereeieeeeieeeseses e 246
2.3.2 INSITUCHION SEL.....cuiiieeieiirireeiet et b e 248
24 INSTUCHION COUES.......c.eiveeieeiirteeist ettt 264
25 Operation COOE ME@D......coiiirieiriiiritesi ettt bbb 275
26 Number of States Required for INStruction EXECULIONcoevireeneineicneneseesieene 279
2.7 Condition Code MOdifiCatioN.......cccueurieeiieirise e 290
2.8 Bus States During INStruction EXECULION.........c.cccvieierieniese e eesese e 295
SeCtioN 3 ProCeSSING SLALES........ccocvcieeecccc et 309
N R @ = oV TP 309
I S C S RS <SSR 310
3.3 EXCeption-Handling SEALE.........ccouiiuireriiiriieere e 311

3.3.1 Typesof Exception Handling and Their Priofity........cccoeeeievienienieninveseseinieens 311

3.3.2 Reset EXCeption HandlinNgccceveiuinienierieieeeee et 312

3.3.3 TTACR e e e e 312
3.3.4 Interrupt Exception Handling and Trap Instruction Exception Handling........... 312
34 Program EXECULION SEALEccciuiirieiriiiriiiee ettt 313
35 BUSREEASEA SEAEceieeeieeiieieeeree s 314
3.6 POWEr-DOWN SEALE........cciiiiiicee e 314
3.6.1 SIEEP IMOUE......eceeeieeee et bbb et 314
3.6.2 Software Standby MOEcoveiriirieirieeee e 314
3.6.3 Hardware Standby MOTe.........cooiiriiiiiieeee s 314
Section 4 BasSiC TIMING ...ttt 315
A1 OVEIVIEW. .ottt b et bbb bbbt e b bt p b ne s 315
42 On-Chip Memory (ROM, RAM)...ccoiiiuiiririneenererieieere st 315
4.3 On-Chip Supporting Module ACCESS TIMINGcccrrerereririerieieriee et 317
4.4 External Address Space ACCESS TIMINGcocieerererereeereee st 318

Sectionl CPU

1.1 Overview

The H8S/2600 CPU and the H8S/2000 CPU are high-speed central processing units with a
common an internal 32-hit architecture. Each CPU is upward-compatible with the H8/300 and
H8/300H CPUs. The H8S/2600 CPU and H8S/2000 CPU have sixteen 16-bit general registers, can
address a 4-Gbyte linear address space, and are ideal for realtime control.

1.1.1 Features
The H85/2600 CPU and H8S/2000 CPU have the following features.
» Upward-compatible with H8/300 and H8/300H CPUs
— Can execute H8/300 and H8/300H object programs
» General-register architecture

— Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit
registers)

* Sixty-nine basic instructions (H8S/2000 CPU has sixty-five)

— 8/16/32-bit arithmetic and logic instructions

— Multiply and divide instructions

— Powerful bit-manipulation instructions

— Multiply-and-accumulate instruction (H85/2600 CPU only)

» Eight addressing modes

— Register direct [Rn]

— Register indirect [@ERnN]

— Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]

— Register indirect with post-increment or pre-decrement [@ERnN+ or @—ERnN]
— Absolute address [@aa:8, @aa: 16, @aa: 24, or @aa:32)

— Immediate [#xx:8, #xx:16, or #xx:32]

— Program-counter relative [@(d:8,PC) or @(d:16,PC)]

— Memory indirect [@@aa:8]

* 4-Gbyte address space

— Program: 16 Mbytes
— Data: 4 Ghytes

» High-speed operation

— All frequently-used instructions execute in one or two states
— Maximum clock frequency: 20 MHz
— 8/16/32-hit register-register add/subtract : 50 ns

— 8 x 8-bit register-register multiply : 150 ns (H8S2000 CPU: 600 ns)
— 16 + 8-hit register-register divide : 600 ns

— 16 x 16-hit register-register multiply : 200 ns (H8S2000 CPU: 1000 ns)
— 32+ 16-hit register-register divide : 1000 ns

e Two CPU operating modes

— Normal mode
— Advanced mode

* Power-down modes

— Transition to power-down state by SLEEP instruction
— CPU clock speed selection

1.1.2 Differences between H8/2600 CPU and H85/2000 CPU
Differences between the H8S5/2600 CPU and the H8S/2000 CPU are as follows.
* Register configuration

— The MAC register is supported only by the H8S/2600 CPU.
For details, see sectionl.4, Register Configuration.

* Basicinstructions

— The MAC, CLRMAC, LDMAC, and STMAC instructions are supported only by the
H8S/2600 CPU.
For details, see section 1.6, Instruction Set, and Section 2, Instruction Descriptions.

e Number of states required for execution

— The number of states required for execution of the MULXU and MULXS instructions
For details, see section 2.6, Number of States Required for Execution.

In addition, there may be defferences in address spaces, EXR register functions, power-down
states, and so on. For details, refer to the relevant microcontroller hardware manual.

1.1.3 Differencesfrom H8/300 CPU

In comparison with the H8/300 CPU, the H85/2600 CPU and H85/2000 CPU have the following
enhancements.

e Moregeneral registers and control registers
— Eight 16-bit registers and one 8-bit control register have been added.
» Expanded address space

— Norma mode supports the same 64-kbyte address space as the H8/300 CPU.
— Advanced mode supports a maximum 4-Gbyte address space.

* Enhanced addressing

— The addressing modes have been enhanced to make effective use of the 4-Gbyte address
space.

* Enhanced instructions

— Addressing modes of bit-manipulation instructions have been enhanced.

— Signed multiply and divide instructions have been added.

— A multiply-and-accumulate instruction has been added. (H8S/2600CPU only)
— Two-bit shift and rotate instructions have been added.

— Instructions for saving and restoring multiple registers have been added.

— A test and set instruction has been added.

» Higher speed
— Basic instructions execute twice as fast.
1.1.4 Differencesfrom H8/300H CPU

In comparison with the H8/300H CPU, the H8S/2600 CPU and H8S/2000 CPU have the following
enhancements.

» Additional control register
— One 8-bit control register has been added.
e Expanded address space

— Advanced mode supports a maximum 4-Gbyte data address space.

Enhanced instructions

— Addressing modes of bit-manipulation instructions have been enhanced.

— A multiply-and-accumulate instruction has been added (H85/2600 CPU only).
— Two-bit shift and rotate instructions have been added.

— Instructions for saving and restoring multiple registers have been added.

— A test and set instruction has been added.

Higher speed

— Basic instructions execute twice as fast.

1.2 CPU Operating Modes

Like the H8/300H CPU, the H8S/2600 CPU has two operating modes. normal and advanced.
Normal mode supports a maximum 64-kbyte address space. Advanced mode supports a maximum
4-Gbyte total address space, of which up to 16 Mbytes can be used for program code and up to 4
Gbytes for data. The mode is selected with the mode pins of the microcontroller. For further
information, refer to the relevant microcontroller hardware manual.

Maximum 64 kbytes, program
—{ Normal mode h
and data areas combined

CPU operating modes li

Maximum 16-Mbyte program
area and 4-Gbyte data area,
maximum 4 Gbytes for program
and data areas combined

—' Advanced mode

Figure1-1 CPU Operating Modes

(1) Normal Mode: The exception vector table and stack have the same structure as in the H8/300
CPU.

Address Space: A maximum address space of 64 kbytes can be accessed, asin the H8/300 CPU.

Extended Registers (En): The extended registers (EO to E7) can be used as 16-hit registers, or as
the upper 16-bit segments of 32-bit registers. When En is used as a 16-bit register it can contain
any value, even when the corresponding general register (RO to R7) is used as an address register.
If the general register isreferenced in the register indirect addressing mode with pre-decrement
(@-Rn) or post-increment (@Rn+) and a carry or borrow occurs, however, the value in the
corresponding extended register will be affected.

Instruction Set: All additional instructions and addressing modes not found in the H8/300 CPU
can be used. Only the lower 16 bits of effective addresses (EA) are valid.

Exception Vector Tableand Memory Indirect Branch Addresses: In norma mode the top area
starting at H'0000 is allocated to the exception vector table. One branch address is stored per

16 bits (figure 1-2). The exception vector table differs depending on the microcontroller. Refer to
the relevant microcontroller hardware manual for further information.

H'0000
H'0001
H'0002
H'0003
H'0004 | |
H0005 | (Reserved for system use) --{ ,
H'0006 Exception

Ho0007 | 17 vector table
H'0008
H'0009
H'000A
H'000B

- -- Power-on reset exception vector - -

L-- Manual reset exception vector ---

Exception vector 1

Exception vector 2

O

Figure1-2 Exception Vector Table (Normal Mode)

The memory indirect addressing mode (@@aa:8) employed in the IMP and JSR instructions uses
an 8-bit absolute address included in the instruction code to specify a memory operand that
contains a branch address. In normal mode the operand is a 16-bit word operand, providing a
16-bit branch address. Branch addresses can be stored in the top area from H'0000 to H'O0FF. Note
that this areais also used for the exception vector table.

Stack Structure: When the program counter (PC) is pushed onto the stack in a subroutine call,
and the PC, condition-code register (CCR), and extended control register (EXR) are pushed onto
the stack in exception handling, they are stored as shown in figure 1-3. When EXR isinvalid, itis
not pushed onto the stack. For details, see the relevant hardware manual.

\/\ \/_\

SP—~| PC Sp— EXR"®
(16 bits) -2 Reserved*1"3
(SP—) CCR
\/\ CCR™
- - PC -
(16 bits)
(a) Subroutine Branch (b) Exception Handling

Notes: 1. When EXR is not used it is not stored on the stack.
2. SP when EXR is not used.
3. Ignored on return.

Figure1-3 Stack Structurein Normal Mode

(2) Advanced Mode: In advanced mode the data address spaceis larger than for the H8/300H
CPU.

Address Space: The 4-Gbyte maximum address space provides linear access to a maximum
16 Mbytes of program code and maximum 4 Gbytes of data

Extended Registers (En): The extended registers (EO to E7) can be used as 16-hit registers, or as
the upper 16-bit segments of 32-bit registers or address registers.

Instruction Set: All instructions and addressing modes can be used.

Exception Vector Tableand Memory Indirect Branch Addresses: In advanced mode the top
area starting at H'00000000 is allocated to the exception vector table in units of 32 bits. In each

32 hits, the upper 8 bits are ignored and a branch address is stored in the lower 24 bits (figure 1-4).
The exception vector table differs depending on the microcontroller. Refer to the relevant
microcontroller hardware manual for further information.

H'00000000 Reserved N
"~ Power-on reset exception vector]
H'00000003
H00000004 | | Reserved |
© Manual reset exception vector]
H'00000008
"1 > Exception vector table
H'0000000B | o
(Reserved for system use) -- -1
H'0000000C | o
H00000010 | Reseved |
o Exception vector 1 o

Figure1-4 Exception Vector Table (Advanced M ode)

The memory indirect addressing mode (@@aa:8) employed in the IMP and JSR instructions uses
an 8-hit absolute address included in the instruction code to specify a memory operand that
contains a branch address. In advanced mode the operand is a 32-bit longword operand, providing
a 32-bit branch address. The upper 8 bits of these 32 bits are areserved areathat is regarded as
H'00. Branch addresses can be stored in the top area from H'00000000 to H'000000FF. Note that
thisareais also used for the exception vector table.

Stack Structure: In advanced mode, when the program counter (PC) is pushed onto the stack in a
subroutine call, and the PC, condition-code register (CCR), and extended control register (EXR)
are pushed onto the stack in exception handling, they are stored as shown in figure 1-5. When
EXRisinvalid, it is not pushed onto the stack. For details, see the relevant hardware manual.

\/\ \/\

Sp— EXR"1
sP—~| Reserved ‘2 Reserved™1*3
(SP—) CCR
PC
Lo (24 hits) I L PC .
|- (24 bits)
(@) Subroutine Branch (b) Exception Handling

Notes: 1. When EXR is not used it is not stored on the stack.
2. SP when EXR is not used.
3. Ignored on return.

Figure1-5 Stack Structurein Advanced Mode

1.3 Address Space

Figure 1-6 shows a memory map of the H8S/2600 CPU. The H85/2600 CPU provides linear
access to a maximum 64-kbyte address space in normal mode, and a maximum 4-Gbyte address
space in advanced mode. The address space differs depending on the operating mode. For details,
refer to the relevant microcontroller hardware manual.

H'0000 H'00000000
HFFFF Program area
H'OOFFFFFF | .]
Data area
H'FFFFFFFF
(@) Normal Mode (b) Advanced Mode

Figure1-6 Memory Map

10

1.4 Register Configuration
1.4.1 Overview

The CPUs have the internal registers shown in figure 1-7. There are two types of registers. general
registers and control registers. The H8S/2000 CPU does not support the MAC register.

General Registers (Rn) and Extended Registers (En)

15 07 07 0
ERO EO ROH ROL
ER1 El R1H R1L
ER2 E2 R2H R2L
ER3 E3 R3H R3L
ER4 E4 R4H RAL
ER5 E5 R5H R5L
ER6 E6 R6H R6L
ER7 (SP) E7 R7H R7L

Control Registers (CR)
23 0
| PC |

76543210
EXR [T]|-|—|-|-[12]iz]io]

76543210
ccr [1ulH]U|N]z]v c]

63 41 32
i tensi | MACH
MAC Sign extension ‘
MACL

31 0
Legend
SP: Stack pointer H: Half-carry flag
PC: Program counter u: User bit
EXR: Extended control register N: Negative flag
T: Trace bit Z: Zero flag
12 to 10: Interrupt mask bits V: Overflow flag
CCR: Condition-code register C: Carry flag
I: Interrupt mask bit MAC: Multiply-accumulate register

ul: User bit or interrupt mask bit

Figure1l-7 CPU Registers

11

1.4.2 General Registers

The CPUs have eight 32-bit general registers. These general registers are all functionally alike and
can be used as both address registers and data registers. When a general register is used as a data
register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. When the genera registers are used
as 32-bit registers or address registers, they are designated by the letters ER (ERO to ER7).

The ER registers divide into 16-bit general registers designated by the letters E (EO to E7) and R
(RO to R7). These registers are functionally equivalent, providing a maximum sixteen 16-bit
registers. The E registers (EO to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers designated by the letters RH (ROH to R7H) and
RL (ROL to R7L). These registers are functionally equivalent, providing a maximum sixteen 8-bit
registers.

Figure 1-8 illustrates the usage of the general registers. The usage of each register can be selected
independently.

« Address registers

» 32-bit registers « 16-bit registers ¢ 8-bit registers
E registers (extended registers)
(EO to E7)

ER registers RH registers
(ERO to ER7) (ROH to R7H)
R registers

(RO to R7)
RL registers
(ROL to R7L)

Figure1-8 Usage of General Registers

12

General register ER7 has the function of stack pointer (SP) in addition to its general-register
function, and is used implicitly in exception handling and subroutine calls. Figure 1-9 showsthe
stack.

/\/

Free area

SP (ER7) —»

Stack area

/\/

Figure1-9 Stack

1.4.3 Control Registers

The control registers are the 24-bit program counter (PC), 8-bit extended control register (EXR),
8-bit condition-code register (CCR), and 64-bit multiply-accumulate register (MAC).

(1) Program Counter (PC): This 24-bit counter indicates the address of the next instruction the
CPU will execute. The length of all CPU instructionsis 16 bits (one word) or amultiple of 16 bits,
so the least significant PC bit isignored. When an instruction is fetched, the least significant PC bit
isregarded as 0.

(2) Extended Control Register (EXR): This 8-bit register contains the trace bit (T) and three
interrupt mask bits (12 to 10).

Bit 7—Trace Bit (T): Selects trace mode. When this bit is cleared to O, instructions are executed
in sequence. When this hit is set to 1, atrace exception is generated each time an instruction is
executed.

Bits 6 to 3—Reserved: These bits are reserved.

Bits 2 to O—Interrupt Mask Bits (I12to 10): These bits designate the interrupt mask level (0 to
7). For details refer to the relevant microcontroller hardware manual.

13

Operations can be performed on the EXR hits by the LDC, STC, ANDC, ORC, and XORC
instructions. All interrupts, including NMI, are disabled for three states after one of these
instructions is executed, except for STC.

(3) Condition-Code Register (CCR): This 8-hit register containsinternal CPU status
information, including an interrupt mask bit (1) and half-carry (H), negative (N), zero (2),
overflow (V), and carry (C) flags.

Bit 7—Interrupt Mask Bit (1): Masks interrupts other than NMI when set to 1. (NMI is accepted
regardless of the | bit setting.) The | bit is set to 1 by hardware at the start of an exception-handling
sequence.

Bit 6—User Bit or Interrupt Mask Bit (Ul): Can be written and read by software using the
LDC, STC, ANDC, ORC, and XORC instructions. This bit can also be used as an interrupt mask
bit. For details refer to the relevant microcontroller hardware manual .

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMPB, or NEG.B
instruction is executed, thisflag is set to 1 if thereisacarry or borrow at bit 3, and cleared to 0
otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is
set to 1if thereisacarry or borrow at bit 11, and cleared to O otherwise. When the ADD.L,
SUB.L, CMPL, or NEG.L instruction is executed, the H flag is set to 1 if thereisacarry or
borrow at bit 27, and cleared to O otherwise.

Bit 4—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC, and
XORC ingtructions.

Bit 3—Negative Flag (N): Storesthe value of the most significant bit (sign bit) of data.
Bit 2—Zero Flag (Z): Set to 1 to indicate zero data, and cleared to O to indicate non-zero data.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to O at other
times.

Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

e Add instructions, to indicate a carry
e Subtract instructions, to indicate a borrow
» Shift and rotate instructions, to store the value shifted out of the end bit

The carry flag is also used as a bit accumulator by bit manipulation instructions.

Some instructions leave some or all of the flag bits unchanged. For the action of each instruction
on the flag bits, refer to the detailed descriptions of the instructions starting in section 2.2.1.

14

Operations can be performed on the CCR hits by the LDC, STC, ANDC, ORC, and XORC
instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch
(Bcc) instructions.

(4) Multiply-Accumulate Register (MAC): The MAC register is supported only by the
H8S/2600 CPU. This 64-hit register stores the results of multiply-and-accumulate operations. It
consists of two 32-bit registers denoted MACH and MACL. The lower 10 bits of MACH are valid;
the upper bits are asign extension.

1.4.4 Initial Register Values

Reset exception handling loads the CPU’s program counter (PC) from the vector table, clears the
trace bitin EXR to 0, and sets the interrupt mask bitsin CCR and EXR to 1. The other CCR bits
and the general registers are not initialized. In particular, the stack pointer (ER7) isnot initialized.
The stack pointer should therefore be initialized by an MOV.L instruction executed immediately
after areset.

15

1.5 Data Formats

The CPUs can process 1-hit, 4-bit (BCD), 8-bit (byte), 16-hit (word), and 32-bit (longword) data.
Bit-manipulation instructions operate on 1-bit data by accessing bitn (n=0, 1, 2, ..., 7) of byte
operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit
BCD data.

15.1 General Register Data Formats

Figure 1-10 shows the data formats in general registers.

Data Type Register Number Data Format
1-bit data RnH 7 0
7]6[5]4[3]2[1]o] Dontcare
1-bit data rRo 7 0
| Dontcare [7]6[5]4]3]2[1]0]
4-bit BCD data RnH 7 43 O
| Upper | Lower | Dontcare
4-bit BCD data rRo 7 4 3 0
| Dontcare | Upper | Lower |
Byte data RnH 7 o
L1 iG] Donteare |
MSB Lsg T
Byte data rRo.. 7 0
: Don't care | : : :
""""""""""" MSB LSB

Figure1-10 General Register Data Formats

16

Word data Rn

15 0
MSB LSB
Word data En
15 0
MSB LSB

31 16 15 0
MSB En Rn LSB
Legend

ERn: General register ER
En: General register E
Rn: General register R
RnH: General register RH
RnL: General register RL
MSB: Most significant bit
LSB: Least significant bit

Figure1-10 General Register Data Formats (cont)

17

15.2 Memory Data Formats

Figure 1-11 shows the data formats in memory. The CPU can access word data and longword data
in memory, but word or longword data must begin at an even address. If an attempt is made to
access word or longword data at an odd address, no address error occurs but the least significant
bit of the addressis regarded as 0, so the access starts at the preceding address. This aso appliesto

instruction fetches.
Data Type Data Format
Address e
7 0
1-bit data Address L 6|/ 5/4(3|2|1]0
Byte data AddressL |MSB: @ i . . ISB
Word data Address 2M |wsB: ¢ 1 11
Address2M+1| | | | | | | lLsB
Longword data Address 2N |wsB @ ¢ 1
Address2N+1| 1 110
Address 2N + 2 ! : : : | | |
Address2N+3| @ 1 1 . SB

Figure1-11 Memory Data Formats

When the stack pointer (ER7) is used as an address register to access the stack, the operand size
should be word size or longword size.

18

1.6 Instruction Set
1.6.1 Overview

The H8S/2600 CPU has 69types of instructions, while the H8S/2000 CPU has 65 types. The
instructions are classified by function as shown in table 1-1. For a detailed description of each
instruction, see section 2.2, Instruction Descriptions.

Table1-1 Instruction Classification

Function Instructions Size Types
Data transfer MOV BWL 5

POP*2, PUSH*2 WL

LDM, STM L

MOVFPE, MOVTPE B
Arithmetic ADD, SUB, CMP, NEG BWL 19
operations ADDX, SUBX, DAA, DAS B

INC, DEC BWL

ADDS, SUBS L

MULXU, DIVXU, MULXS, DIVXS BW

EXTU, EXTS WL

TAS B

MAC, LDMAC, STMAC, CLRMAC*1 — 471
Logic operations AND, OR, XOR, NOT BWL 4
Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR BWL 8
Bit manipulation BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, B 14

BIAND, BOR, BIOR, BXOR, BIXOR
Branch Bcc3, JMP, BSR, JSR, RTS — 5
System control TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP — 9
Block data transfer EEPMOV — 1

H8S/2600 CPU: Total 69 types H8S/2000 CPU: Total 65 types

Notes: B—byte size; W—word size; L—longword size.

1. The MAC, LDMAC, STMAC, and CLRMAC instructions are supported only by the
H8S/2600 CPU.

2. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W Rn, @-SP.
POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and MOV.L ERn,
@-SP.

3. Bcc is the generic designation of a conditional branch instruction.

19

(014

1.6.2 Instructions and Addressing M odes

Table 1-2 indicates the combinations of instructions and addressing modes that the H8S/2600 CPU and H8S/2000 CPU can use.

Table1-2 Combinations of I nstructions and Addressing M odes

Addressing Modes

+
j
i i | g | & G
Function Instruction i} & @ g g -
£ 3 & z o 2 N 9 < 2 g
% c i) z . g g g g)) Q
14 ® ® ® ® ® ® ® ® ® ® ® |
Data MOV BWL BWL BWL BWL BWL BWL B BWL — BWL — — — —
transfer POP, PUSH _ _ _ _ _ — — — — — — WL
LDM, STM — — — — — — — — — _ — _ _ L
MOVEPE, — — — — — — — B — — — — — —
MOVTPE
Arithmetic ADD, CMP BWL BWL — — — — — — — — — — — —
Operations SUB WL BWL —_ J— J— p— J— p— p— . — — _ _
ADDX, SUBX B B — —_ —_ — — — — — — _ _ _
ADDS, SUBS — L — —_ —_ — — — — — — _ _ _
INC, DEC WL BWL — — — — — — — — — — — —
DAA, DAS — B — —_ —_ — — — — — — _ _ _
MULXU, — BW — —_ —_ — — — — — — _ _ _
DIVXU
MULXS, — BW — — — — — — — — _ _ _ _
DIVXS
NEG —_ BWL — — — —_ —_ — — — — — — _
EXTU, EXTS — WL — —_ —_ — — — — — — _ _ _
TAS — — B — — — — — — — — — — —
MAC* — — — — —) — — — — — — — —
CLRMAC — — — — — — — — — — — — — o
LDMAC", — L — —_ —_ — — — — — — _ _ _
STMAC*

Note: *Supported only by the H8S/2600 CPU

T¢

Table 1-2 Combinations of I nstructions and Addressing M odes (cont)

Addressing Modes

+
jo
Function Instruction & & @ o Q -
© of c © < N o S o
el el g5 S| % ||| é&
3 - w e Z I]]] < =) 2 ®
#* 4 ® ® ® ® ® ® ® ® ® ® ®
Logic AND, OR, BWL BWL — — — — — — — — — — — _
operations | XOR
NOT — BWL — — — — — — — — — — — —
Shift — BWL — — — — — — — — — — —
Bit manipulation — B B — — — B B — B — — _ _
Branch Bcc, BSR — — — — — — — — — — @) @) — —
JMP, JSR — — — — — — — — @) — —_ — o) —
RTS — — — — — — — — — — — — — O
System TRAPA — — — — — — — — — — — — — o)
control RTE _ . . - - _ - _ _ _ — — — o
SLEEP — — — — — — — — — — — _ — ®)
LDC B B w w w w — w — w — — — —
STC — B w w w w — w — w — — — —
ANDC, B — — — — — — — — — — _ — _
ORC, XORC
NOP — — — — — — — — — — — — — O
Block data transfer — — — — — — — — — — — — — BW
Legend
B: Byte
W: Word

L: Longword

1.6.3 Table of Instructions Classified by Function

Table 1-3 summarizes the instructions in each functional category. The notation used in table 1-3 is
defined next.

Operation Notation

Rd General register (destination)*

Rs General register (source)*

Rn General register*

ERnN General register (32-bit register)

MAC Multiply-accumulate register (32-bit register)
(EAd) Destination operand

(EAS) Source operand

EXR Extended control register

CCR Condition-code register

N (negative) flag in CCR
Z (zero) flag in CCR
V (overflow) flag in CCR

C C (carry) flag in CCR

PC Program counter

SP Stack pointer

#MM Immediate data

disp Displacement

+ Addition

- Subtraction

X Multiplication

- Division

O Logical AND

O Logical OR

O Logical exclusive OR

- Move

- Logical not (logical complement)
:8/:16/:24/32 8-, 16-, 24-, or 32-bit length

Note: * General registers include 8-bit registers (ROH to R7H, ROL to R7L), 16-bit registers (RO to
R7, EO to E7), and 32-hit registers (ERO to ER7).

22

Table 1-3 Instructions Classified by Function

Type Instruction Size* Function
Data transfer MOV B/W/L (EAs) - Rd, Rs - (EAd)

Moves data between two general registers or between a
general register and memory, or moves immediate data
to a general register.

MOVFPE B (EAs) - Rd
Moves external memory contents (addressed by
@aa:16) to a general register in synchronization with an
E clock.

MOVTPE B Rs - (EAs)
Moves general register contents to an external memory
location (addressed by @aa:16) in synchronization with
an E clock.

POP Wi/L @SP+ - Rn
Pops a register from the stack. POP.W Rn is identical to
MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L
@SP+, ERN.

PUSH WiL Rn - @-SP
Pushes a register onto the stack. PUSH.W Rn is
identical to MOV.W Rn, @-SP. PUSH.L ERn is identical
to MOV.L ERn, @-SP.

LDM L @SP+ - Rn (register list)
Pops two or more general registers from the stack.

STM L Rn (register list) -~ @—-SP

Pushes two or more general registers onto the stack.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

23

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
Arithmetic ADD B/W/L RdzRs - Rd, Rdz#MM - Rd
operations SUB Performs addition or subtraction on data in two general

registers, or on immediate data and data in a general
register. (Immediate byte data cannot be subtracted
from byte data in a general register. Use the SUBX or
ADD instruction.)

ADDX B Rd+Rs+C - Rd, Rd+#MM+C - Rd

SUBX Performs addition or subtraction with carry or borrow on
byte data in two general registers, or on immediate data
and data in a general register.

INC BW/L Rdz1l - Rd, Rd+2 - Rd

DEC Increments or decrements a general register by 1 or 2.
(Byte operands can be incremented or decremented by
1 only)

ADDS L Rd+1 - Rd, Rd+2 -~ Rd, Rd+4 - Rd

SUBS Adds or subtracts the value 1, 2, or 4 to or from data in
a 32-bit register.

DAA B Rd decimal adjust - Rd

DAS Decimal-adjusts an addition or subtraction result in a
general register by referring to the CCR to produce 4-bit
BCD data.

MULXU B/W Rd xRs - Rd

Performs unsigned multiplication on data in two general
registers: either 8 bits x 8 bits - 16 bits or 16 bits x
16 bits - 32 bits.

MULXS B/W Rd xRs - Rd
Performs signed multiplication on data in two general
registers: either 8 bits x 8 bits - 16 bits or 16 bits x
16 bits - 32 bits.

DIVXU B/W Rd+Rs - Rd
Performs unsigned division on data in two general
registers: either 16 bits + 8 bits - 8-bit quotient and
8-bit remainder or 32 bhits + 16 bits - 16-bit quotient
and 16-bit remainder.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

24

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
Arithmetic DIVXS B/W Rd+Rs - Rd
operations Performs signed division on data in two general

registers: either 16 bits + 8 bits - 8-bit quotient and 8-
bit remainder or 32 bits + 16 bits - 16-bit quotient and
16-bit remainder.

CMP B/W/L Rd-Rs, Rd-#MM
Compares data in a general register with data in
another general register or with immediate data, and
sets CCR bhits according to the result.

NEG B/W/L O0-Rd - Rd
Takes the two’s complement (arithmetic complement) of
data in a general register.

EXTU WI/L Rd (zero extension) - Rd
Extends the lower 8 bits of a 16-bit register to word size,
or the lower 16 bits of a 32-bit register to longword size,
by padding with zeros on the left.

EXTS WI/L Rd (sign extension) - Rd
Extends the lower 8 bits of a 16-bit register to word size,
or the lower 16 bits of a 32-bit register to longword size,
by extending the sign bit.

TAS B @ERd -0, 1 - (<bit 7> of @ERd)
Tests memory contents, and sets the most significant bit
(bit 7) to 1.

MAC — (EAs) x (EAd) + MAC - MAC

Performs signed multiplication on memory contents and
adds the result to the multiply-accumulate register. The
following operations can be performed:

16 bits x 16 bits +32 bits — 32 bits, saturating
16 bits x 16 bits + 42 bits — 42 bits, non-saturating
Supported by H8S/2600 CPU only

CLRMAC — 0 - MAC
Clears the multiply-accumulate register to zero.
Supported by H8S/2600 CPU only

LDMAC L Rs - MAC, MAC - Rd

STMAC Transfers data between a general register and the
multiply-accumulate register.
Supported by H8S/2600 CPU only.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

25

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Logic operations AND B/W/L RdORs - Rd, RdO#MM - Rd
Performs a logical AND operation on a general register
and another general register or immediate data.

OR B/W/L RdORs - Rd, RdO#IMM - Rd
Performs a logical OR operation on a general register
and another general register or immediate data.

XOR B/W/IL RdAdORs - Rd, RdO#MM - Rd
Performs a logical exclusive OR operation on a general
register and another general register or immediate data.

NOT B/W/L - (Rd) - (Rd)
Takes the one’s complement of general register
contents.

Shift operations SHAL B/W/L Rd (shift) - Rd

SHAR Performs an arithmetic shift on general register
contents. 1-bit or 2-bit shift is possible.

SHLL B/W/L Rd (shift) - Rd

SHLR Performs a logical shift on general register contents.
1-bit or 2-bit shift is possible.

ROTL B/W/L Rd (rotate) - Rd

ROTR Rotates general register contents.
1-bit or 2-bit rotation is possible.

ROTXL B/W/L Rd (rotate) -~ Rd

ROTXR Rotates general register contents through the carry bit.

1-bit or 2-bit rotation is possible.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

26

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size*

Function

Bit-manipulation BSET B
instructions

1 - (<bit-No.> of <EAd>)

Sets a specified bit in a general register or memory
operand to 1. The bit number is specified by 3-bit
immediate data or the lower three bits of a general
register.

BCLR B

0 - (<bit-No.> of <EAd>)

Clears a specified bit in a general register or memory
operand to 0. The bit number is specified by 3-bit
immediate data or the lower three bits of a general
register.

BNOT B

= (<bit-No.> of <EAd>) - (<bit-No.> of <EAd>)

Inverts a specified bit in a general register or memory
operand. The bit number is specified by 3-bit immediate
data or the lower three bits of a general register.

BTST B

= (<bit-No.> of <EAd>) - Z

Tests a specified bit in a general register or memory
operand and sets or clears the Z flag accordingly. The
bit number is specified by 3-bit inmediate data or the
lower three bits of a general register.

BAND B

BIAND B

C O(<bit-No.> of <EAd>) - C

ANDs the carry flag with a specified bit in a general
register or memory operand and stores the result in the
carry flag.

C 0= (<bit-No.> of <EAd>) - C

ANDs the carry flag with the inverse of a specified bit in
a general register or memory operand and stores the
result in the carry flag.

The bit number is specified by 3-bit immediate data.

BOR B

BIOR B

C O(<bit-No.> of <EAd>) - C

ORs the carry flag with a specified bit in a general
register or memory operand and stores the result in the
carry flag.

C O~ (<bit-No.> of <EAd>) -~ C

ORs the carry flag with the inverse of a specified bit in a
general register or memory operand and stores the
result in the carry flag.

The bit number is specified by 3-bit immediate data.

Note: * Size refers to the operand size.
B: Byte

27

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
Bit-manipulation BXOR B C O (<bit-No.> of <EAd>) - C
instructions Exclusive-ORs the carry flag with a specified bit in a

general register or memory operand and stores the
result in the carry flag.

BIXOR B C O = (<bhit-No.> of <EAd>) - C
Exclusive-ORs the carry flag with the inverse of a
specified bit in a general register or memory operand
and stores the result in the carry flag.

The bit number is specified by 3-bit immediate data.

BLD B (<bit-No.> of <EAd>) - C
Transfers a specified bit in a general register or memory
operand to the carry flag.

BILD B = (<bit-No.> of <EAd>) - C
Transfers the inverse of a specified bit in a general
register or memory operand to the carry flag.

The bit number is specified by 3-bit immediate data.

BST B C - (<bit-No.> of <EAd>)
Transfers the carry flag value to a specified bit in a
general register or memory operand.

BIST B = C - (<bit-No.> of <EAd>)
Transfers the inverse of the carry flag value to a
specified bit in a general register or memory operand.

The bit number is specified by 3-bit immediate data.

Note: * Size refers to the operand size.

B: Byte

28

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
Branch Bcc — Branches to a specified address if a specified condition
instructions is true. The branching conditions are listed below.
Mnemonic Description Condition
BRA(BT) Always (true) Always
BRN(BF) Never (false) Never
BHI High coz=0
BLS Low or same coz=1
BCC(BHS) Carry clear Cc=0
(high or same)
BCS(BLO) Carry set (low) c=1
BNE Not equal Z=0
BEQ Equal zZ=1
BVC Overflow clear V=0
BVS Overflow set V=1
BPL Plus N=0
BMI Minus N=1
BGE Greater or equal NOV=0
BLT Less than NOV=1
BGT Greater than ZONNOWV)=0
BLE Less or equal ZONNOV)=1
JMP — Branches unconditionally to a specified address.
BSR — Branches to a subroutine at a specified address.
JSR — Branches to a subroutine at a specified address.
RTS — Returns from a subroutine

29

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

System control TRAPA — Starts trap-instruction exception handling.

instructions RTE — Returns from an exception-handling routine.
SLEEP — Causes a transition to a power-down state.
LDC B/IW (EAs) » CCR, (EAs) — EXR

Moves the source operand contents or immediate data
to CCR or EXR. Although CCR and EXR are 8-bit
registers, word-size transfers are performed between
them and memory. The upper 8 bits are valid.

STC B/W CCR - (EAd), EXR - (EAd)
Transfers CCR or EXR contents to a general register or
memory. Although CCR and EXR are 8-bit registers,
word-size transfers are performed between them and
memory. The upper 8 bits are valid.

ANDC B CCR O#IMM - CCR, EXR O#IMM - EXR
Logically ANDs the CCR or EXR contents with
immediate data.

ORC B CCR O#IMM - CCR, EXR O#IMM - EXR
Logically ORs the CCR or EXR contents with immediate
data.

XORC B CCR U #IMM - CCR, EXR O #IMM - EXR

Logically exclusive-ORs the CCR or EXR contents with
immediate data.

NOP — PC+2 - PC
Only increments the program counter.

Note: * Size refers to the operand size.

B: Byte
W: Word

30

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
Block data EEPMOV.B — if R4L # 0 then
transfer Repeat @ER5+ -~ @ERG6+
instruction R4L -1 - R4L
UntiilR4L =0
else next;
EEPMOV.W — if R4 # 0 then
Repeat @ER5+ -~ @ERG6+
R4-1 - R4
UntilR4=0
else next;

Transfers a data block according to parameters set in
general registers R4L or R4, R5, and R6.

R4L or R4: size of block (bytes)
ERS5: starting source address
ERG6: starting destination address

Execution of the next instruction begins as soon as the
transfer is completed.

31

1.6.4 Basic Instruction Formats

The H85/2600 instructions consist of 2-byte (1-word) units. An instruction consists of an operation
field (op field), aregister field (r field), an effective address extension (EA field), and a condition
field (cc).

Operation Field: Indicates the function of the instruction, the addressing mode, and the operation
to be carried out on the operand. The operation field always includes the first four bits of the
instruction. Some instructions have two operation fields.

Register Field: Specifies a general register. Address registers are specified by 3 bits, data registers
by 3 bits or 4 bits. Some instructions have two register fields. Some have no register field.

Effective Address Extension: Eight, 16, or 32 bits specifying immediate data, an absolute
address, or a displacement.

Condition Field: Specifies the branching condition of Bcc instructions.

Figure 1-12 shows examples of instruction formats.

(1) Operation field only

op NOP, RTS, etc.

(2) Operation field and register fields

op m rm ADD.B Rn, Rm, etc.

(3) Operation field, register fields, and effective address extension

op m m

MOV @(d:16, Rn), Rm, etc.

EA (disp)

(4) Operation field, effective address extension, and condition field

op cc EA (disp) BRA d:8, etc

Figure1-12 Instruction Formats

32

1.7 Addressing M odes and Effective Address Calculation

Addressing M odes: The CPUs support the eight addressing modes listed in table 1-4. Each
instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the
register direct and immediate modes. Data transfer instructions can use al addressing modes
except program-counter relative and memory indirect. Bit manipulation instructions use register
direct, register indirect, or absolute addressing mode to specify an operand, and register direct
(BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a
bit number in the operand.

Table1-4 Addressing Modes

No. Addressing Mode Symbol
1 Register direct Rn
2 Register indirect @ERnN
3 Register indirect with displacement @(d:16,ERn)/@(d:32,ERN)
4 Register indirect with post-increment @ERN+
Register indirect with pre-decrement @-ERn
5 Absolute address @aa:8/@aa:16/@aa:24/@aa:32
6 Immediate #xx:8/#xx: 16/#xx:32
7 Program-counter relative @(d:8,PC)/@(d:16,PC)
8 Memory indirect @@aa:8

1 Register Direct—Rn: The register field of the instruction specifies an 8-, 16-, or 32-bit general
register containing the operand. ROH to R7H and ROL to R7L can be specified as 8-bit registers.
RO to R7 and EO to E7 can be specified as 16-bit registers. ERO to ER7 can be specified as 32-hit
registers.

2 Register Indirect—@ERnN: The register field of the instruction code specifies an address
register (ERn) which contains the address of the operand in memory. If the addressis a program
instruction address, the lower 24 bits are valid and the upper 8 bits are all assumed to be 0 (H'00).

3 Register Indirect with Displacement—@(d: 16, ERn) or @(d:32, ERn): A 16-bit or 32-hit
displacement contained in the instruction is added to an address register (ERn) specified by the

register field of the instruction, and the sum gives the address of a memory operand. A 16-bit

displacement is sign-extended when added.

33

4 Register Indirect with Post-Increment or Pre-Decrement—@ERN+ or @—ERnN:
» Register indirect with post-increment—@ERN+

The register field of the instruction code specifies an address register (ERn) which contains the
address of amemory operand. After the operand is accessed, 1, 2, or 4 is added to the address
register contents and the sum is stored in the address register. The value added is 1 for byte
access, 2 for word access, or 4 for longword access. For word or longword access, the register
value should be even.

* Register indirect with pre-decrement—@-ERn

Thevalue 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field
in the instruction code, and the result becomes the address of a memory operand. The result is
also stored in the address register. The value subtracted is 1 for byte access, 2 for word access,
or 4 for longword access. For word or longword access, the register value should be even.

5 Absolute Address—@aa: 8, @aa: 16, @aa: 24, or @aa:32: The instruction code contains the
absolute address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits
long (@aa:16), 24 bitslong (@aa:24), or 32 bits long (@aa:32).

To access data, the absol ute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 bits
(@aa:32) long. For an 8-bit absolute address, the upper 24 bits are all assumed to be 1 (H'FFFF).
For a 16-bit absolute address the upper 16 hits are asign extension. A 32-hit absolute address can
access the entire address space.

A 24-bit absolute address (@aa: 24) indicates the address of a program instruction. The upper 8 bits
are al assumed to be 0 (H'00).

Table 1-5 indicates the accessible absol ute address ranges.

Table 1-5 Absolute Address Access Ranges

Absolute Address Normal Mode Advanced Mode
Data address 8 bits (@aa:8) H'FF00 to H'FFFF H'FFFFFF00 to H'FFFFFFFF

16 bits (@aa:16) H'0000 to HFFFF H'00000000 to H'00007FFF,
H'FFFF8000 to H'FFFFFFFF

32 bits (@aa:32) H'00000000 to H'FFFFFFFF

Program instruction 24 bits (@aa:24) H'00000000 to H'00FFFFFF
address

For further details on the accessible range, refer to the relevant microcontroller hardware manual.

34

6 Immediate—#xx:8, #xx:16, or #xx:32: The instruction contains 8-hit (#xx:8), 16-bit (#xx:16),
or 32-hit (#xx:32) immediate data as an operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit
manipul ation instructions contain 3-bit immediate data in the instruction code, specifying a bit
number. The TRAPA instruction contains 2-bit immediate data in itsinstruction code, specifying a
vector address.

7 Program-Counter Relative—@(d:8, PC) or @(d: 16, PC): This modeis used in the Bcc and
BSR instructions. An 8-hit or 16-bit displacement contained in the instruction is sign-extended and
added to the 24-bit PC contents to generate a branch address. Only the lower 24 bits of this branch
address are valid; the upper 8 bits are all assumed to be 0 (H'00). The PC value to which the
displacement is added is the address of the first byte of the next instruction, so the possible
branching range is—126 to +128 bytes (63 to +64 words) or —32766 to +32768 bytes (—16383 to
+16384 words) from the branch instruction. The resulting value should be an even number.

8 Memory Indirect—@@aa: 8: This mode can be used by the IMP and JSR instructions. The
second byte of the instruction specifies a memory operand by an 8-bit absolute address. This
memory operand contains a branch address. The upper bits of the absolute address are all assumed
to be 0, so the address range is 0 to 255 (H'0000 to H'00FF in normal mode, H'00000000 to
H'000000FF in advanced maode). In normal mode the memory operand is aword operand and the
branch addressis 16 bits long. In advanced mode the memory operand is alongword operand, the
first byte of which is assumed to be all 0 (H'00).

Note that the first part of the address range is also the exception vector area. For further details
refer to the relevant microcontroller hardware manual.

_/\ _/_\

Specified - Specified —~ Reserved
by @aa:8 | Branch address ----- by @aa:8

/\

Branch address

(@) Normal Mode (b) Advanced Mode

Figure1-13 Branch Address Specification in Memory Indirect Mode

35

If an odd address is specified in word or longword memory access, or as a branch address, the least
significant bit isregarded as 0, causing data to be accessed or an instruction code to be fetched at
the address preceding the specified address. (For further information, see section 1.5.2, Memory
Data Formats.)

(2) Effective Address Calculation: Table 1-6 indicates how effective addresses are calculated in
each addressing mode. In normal mode the upper 8 bits of the effective address areignored in
order to generate a 16-bit address.

36

LE

Table 1-6 Effective Address Calculation

n.

Operand Size

Byte
Word 2
Longword 4

No. Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA)
1 Register direct (Rn)
n-- Operand is general register contents.
m | rn
2 Register indirect (@ERN) 31 0 31
>| General register contents |——>|
3 Register indirect with displacement
@(d:16, ERn) or @(d:32, ERnN) 31 0
=| General register contents
‘ 31
(o [T T o | e
31 0
| Sign extension ‘ disp
4 Register indirect with post-increment or
pre-decrement
* Register indirect with post-increment @ERN+ |31 0 31
>| General register contents —>|
A
[[r] | [—
« Register indirect with pre-decrement @—-ERn 31

8¢

Table1-6 Effective Address Calculation (cont)

No. Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA)

5 Absolute address

@aa8 31 87

“ abs | H'FFFFFF ‘

31 16 15

| op ‘ abs | | Sign extension ‘

31 24 23

| op ‘ abs | | H'00 ‘

op 31

abs | |

6 Immediate #xx:8/#xx:16/#xx:32

‘ Operand is immediate data.

op IMM

6€

Table 1-6 Effective Address Calculation (cont)

No. Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA)
7 Program-counter relative 23 0
| PC contents
@(d:8, PC)/@(d:16, PC)
op disp 23 0
Sign ;
| extension ‘ disp 31 24 23 /
T | Hoo |
8 Memory indirect @ @aa:8
« Normal mode
31 87 VY 0
H'000000 ‘ abs | 31 16 15
| H'0000 ‘
15 0 T
Memory contents
« Advanced mode
31 87 Y ©
H'000000 ‘ abs |
31 23 0 31 24 23
Reserved Memory contents | | H'00 ‘

40

Section 2 Instruction Descriptions

2.1 Tablesand Symbols

This section explains how to read the tables in section 2.2, describing each instruction. Note that
the descriptions of some instructions extend over more than one page.

[1]
(2]
(3]
(4]

(5]
(6]

[7]
(8]

(9]

[1] Mnemonic (Full Name) [2] Type
[3] Operation [6] Condition Code

[4] Assembly-L anguage For mat

[5] Operand Size

[7] Description

[8] Available Registers

[9] Operand Format and Number of States Required for Execution

[10] Notes

Mnemonic (Full Name): Gives the full and mnemonic names of the instruction.
Type: Indicates the type of instruction.
Operation: Describes the instruction in symbolic notation. (See section 2.1.2, Operation.)

Assembly-Language Format: Indicates the assembly-language format of the instruction.
(See section 2.1.1, Assembler Format.)

Operand Size: Indicates the available operand sizes.

Condition Code: Indicates the effect of instruction execution on the flag bits in the CCR.
(See section 2.1.3, Condition Code.)

Description: Describes the operation of the instruction in detail.

Available Registers: Indicates which registers can be specified in the register field of the
instruction.

Operand Format and Number of States Required for Execution: Shows the addressing
modes and instruction format together with the number of states required for execution.

[10]Notes: Gives notes concerning execution of the instruction.

41

2.1.1 Assembly-L anguage Format

Example: ADD. B <EAs>, Rd

L Destination operand

Source operand

Mnemonic

Size

The operand sizeis byte (B), word (W), or longword (L). Some instructions are restricted to a
limited set of operand sizes.

The symbol <EA> indicates that two or more addressing modes can be used. The H8S/2600 CPU
supports the eight addressing modes listed next. Effective address calculation is described in
section 1.7, Addressing Modes and Effective Address Calculation.

Symbol Addressing Mode

Rn Register direct

@ERN Register indirect

@(d:16, ERn)/@(d:32, ERN) Register indirect with displacement (16-bit or 32-bit)
@ERN+/@-ERn Register indirect with post-increment or pre-decrement
@aa:8/@aa:16/@aa:24/@aa:32 Absolute address (8-bit, 16-bit, 24-bit, or 32-bit)
HXX:8/HXX:16/#xX:32 Immediate (8-bit, 16-bit, or 32-bit)

@(d:8, PC)/@(d:16, PC) Program-counter relative (8-bit or 16-bit)

@@aa:8 Memory indirect

The suffixes :8, :16, :24, and :32 may be omitted. In particular, if the :8, :16, :24, or :32
designation is omitted in an absolute address or displacement, the assembler will optimize the
length according to the value range. For details, refer to the H8S, H8/300 Series cross assembler
user’s manual.

42

2.1.2 Operation

The symbols used in the operation descriptions are defined as follows.

Rd General register (destination)*

Rs General register (source)*

Rn General register*

ERnN General register (32-bit register)

MAC Multiply-accumulate register (32-bit register)

(EAd) Destination operand

(EASs) Source operand

EXR Extended control register

CCR Condition-code register

N N (negative) flag in CCR

V4 Z (zero) flag in CCR
V (overflow) flag in CCR

C C (carry) flag in CCR

PC Program counter

SP Stack pointer

#IMM Immediate data

disp Displacement

+ Add

- Subtract

X Multiply

- Divide

O Logical AND

O Logical OR

O Logical exclusive OR

- Transfer from the operand on the left to the operand on the right, or transition from the
state on the left to the state on the right

- Logical NOT (logical complement)

() <> Contents of effective address of the operand

Note: * General registers include 8-bit registers (ROH to R7H and ROL to R7L), 16-bit registers
(RO to R7 and EO to E7), and 32-bit registers (ERO to ER7).

43

2.1.3 Condition Code

The symbols used in the condition-code description are defined as follows.

Symbol Meaning

0 Changes according to the result of instruction execution
* Undetermined (no guaranteed value)

0 Always cleared to 0

Always set to 1

— Not affected by execution of the instruction

VAN Varies depending on conditions; see the notes

For details on changes of the condition code, see section 2.7, Condition Code Modification.
2.1.4 Instruction Format

The symbols used in the instruction format descriptions are listed below.

Symbol Meaning

IMM Immediate data (2, 3, 8, 16, or 32 bits)

abs Absolute address (8, 16, 24, or 32 hits)

disp Displacement (8, 16, or 32 bits)

rs, rd, Register field (4 bits). The symbols rs, rd, and rn correspond to operand symbols
Rs, Rd, and Rn.

ers, erd, ern Register field (3 bits). The symbols ers, erd, and ern correspond to operand

symbols ERs, ERd, and ERn.

44

2.1.5 Register Specification

Address Register Specification: When ageneral register is used as an address register [@ERnN,
@(d:16, ERn), @(d:32, ERn), @ERN+, or @—ERN], the register is specified by a 3-bit register
field (ersor erd).

Data Register Specification: A general register can be used as a 32-bit, 16-bit, or 8-bit data
register.

When used as a 32-bit register, it is specified by a 3-bit register field (ers, erd, or ern).

When used as a 16-bit register, it is specified by a 4-bit register field (rs, rd, or rn). The lower 3
bits specify the register number. The upper bit is set to 1 to specify an extended register (En) or
cleared to O to specify ageneral register (Rn).

When used as an 8-bit register, it is specified by a 4-bit register field (rs, rd, or rn). The lower 3
bits specify the register number. The upper bit is set to 1 to specify alow register (RnL) or cleared
to 0 to specify ahigh register (RnH). Thisis shown next.

Address Register

32-Bit Register 16-Bit Register 8-Bit Register

Register General Register General Register General

Field Register Field Register Field Register

000 ERO 0000 RO 0000 ROH

001 ER1 0001 R1 0001 R1H

111 ER7 0111 R7 0111 R7H
1000 EO 1000 ROL
1001 El 1001 R1L
1111 E7 1111 R7L

45

2.1.6 Bit Data Accessin Bit Manipulation Instructions

Bit datais accessed asthen-th bit (n=0, 1, 2, 3, ..., 7) of abyte operand in a general register or
memory. The bit number is given by 3-bit immediate data, or by the lower 3 bits of agenera
register value.

Example1: Tosetbit3inR2H to 1

BSET R1L, R2H

RIL | | Dontcare | 0.1 1
Bit number
R2H|0 11 1 0]0]1 0 1]
Setto 1

Example 2: Toload bit 5 at address H'FFFFO2 into the bit accumulator

BLD #5, @H'FFFF02

#5

HFFFFO2 |1 /0 [1]0/0 1 10

ﬁ\/ C

Load

v

The operand size and addressing mode are as indicated for register or memory operand data.

46

2.2 Instruction Descriptions

The instructions are described starting in section 2.2.1.

a7

2.2.1(1) ADD (B)

ADD (ADD Binary)

Add Binary

Operation
Rd + (EAs) - Rd

Assembly-L anguage For mat
ADD. B <EAs>, Rd

Operand Size
Byte

Condition Code

H: Setto lif thereisacarry at bit 3;
otherwise cleared to 0.

N: Setto 1if theresult is negative; otherwise
cleared to 0.
Z. Settolif theresult iszero; otherwise
cleared to 0.
V: Setto 1if anoverflow occurs; otherwise
cleared to 0.

C. Settolif thereisacarry at bit 7;
otherwise cleared to 0.

Description

This instruction adds the source operand to the contents of an 8-bit register Rd (destination

operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | States
Immediate ADD.B #xx:8, Rd 8 ird IMM 1
Register direct ADD.B Rs, Rd 0o 8 rs i rd 1
Notes

48

2.2.1(2) ADD (W)

ADD (ADD Binary)

Add Binary

Operation
Rd + (EAs) - Rd

Assembly-L anguage For mat
ADD. W <EAs>, Rd

Condition Code

H: Setto lif thereisacarry at bit 11;
otherwise cleared to 0.

N: Setto 1if theresult isnegative; otherwise
cleared to 0.

Z. Settolif theresult iszero; otherwise

Operand Size cleared to 0.
Word V: Setto 1if an overflow occurs; otherwise
cleared to 0.
C: Settolif thereisacarry at bit 15;
otherwise cleared to 0.
Description

This instruction adds the source operand to the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: ROtoR7, EOto E7
Rs: ROtoR7,EOQto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte ‘ 4th byte | States
Immediate ADD.W | #xx:16,Rd | 7 : 9 1 i IMM 2
Register direct ADD.W Rs, Rd 0 9 rs rd ‘ 1
Notes

49

2.2.1(3) ADD (L)

ADD (ADD Binary)

Add Binary

Operation
ERd + (EAs) - ERd

Condition Code

Assembly-L anguage For mat H: Settolif thereisacarry at bit 27,
ADD. L <EAs>, ERd otherwise cleared to 0.
N: Setto 1if theresult is negative; otherwise
cleared to 0.
Z. Settolif theresult iszero; otherwise
Operand Size cleared to 0.
Longword V: Setto 1if anoverflow occurs; otherwise
cleared to 0.
C: Settolif thereisacarry at bit 31;
otherwise cleared to 0.
Description

This instruction adds the source operand to the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: EROto ER7
ERs: EROto ERY

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of

Mode 2nd byte | 3rd byte | 4th byte | 5thbyte | 6th byte |States
Immediate ADD.L | #xx:32, ERd 1 :Oierd IMM 3
Register direct ADD.L ERs, ERd 1§ers§0§erd ‘ ‘ ‘ 1

Notes

50

2.2.2 ADDS

ADDS (ADD with Sign extension)

Add Binary Address Data

Operation Condition Code

Rd+1 - ERd

Rd+2 _ ERd I U HUN Z V C

Rd+4 _ ERd (=== =T

Assembly-L anguage For mat H: Previous value remains unchanged.

ADDS #1, ERd N: Previous value remains unchanged.

ADDS #2, ERd Z: Previous value remains unchanged.

ADDS #4. ERd V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Longword

Description

Thisinstruction adds the immediate value 1, 2, or 4 to the contents of a 32-bit register ERd
(destination operand). Unlike the ADD instruction, it does not affect the condition code flags.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte | States
Register direct ADDS #1, ERd 0 B 0 :0:erd 1
Register direct ADDS #2, ERd 0 B 8 EO%erd 1
Register direct ADDS #4, ERd 0 B 9 ioﬁerd 1

Notes

51

2.2.3 ADDX

ADDX (ADD with eXtend carry)

Add with Carry

Operation
Rd+ (EAs)+C - Rd

Assembly-L anguage For mat
ADDX <EAs>, Rd

Operand Size
Byte

Condition Code

H: Setto lif thereisacarry at bit 3;
otherwise cleared to 0.

N: Setto 1if theresult is negative; otherwise

cleared to O.

Z: Settolif theresult is zero; otherwise

cleared to 0.

V: Setto 1if anoverflow occurs; otherwise

cleared to 0.

C. Settolif thereisacarry at bit 7;
otherwise cleared to 0.

Description

This instruction adds the source operand and carry flag to the contents of an 8-bit register Rd
(destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | States
Immediate ADDX #xx:8, Rd 9 | rd IMM 1
Register direct ADDX Rs, Rd 0 E |rs 1
Notes

52

2.2.4 (1) AND (B)

AND (AND logical)

Logical AND

Operation
Rd O(EAS) - Rd

Assembly-L anguage For mat
AND. B <EAs>, Rd

Condition Code

H: Previous value remains unchanged.

N: Setto 1if theresult isnegative; otherwise
cleared to O.

Z: Settolif theresult iszero; otherwise
cleared to 0.

Operand Size V: Always cleared to 0.
Byte C: Previous value remains unchanged.
Description

Thisinstruction ANDSs the source operand with the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Immediate AND.B #xx:8,Rd | E | rd IMM 1
Register direct AND.B Rs, Rd 16 rs i ord 1

Notes

53

2.2.4(2) AND (W)

AND (AND logical) Logical AND

Operation Condition Code
Rd O(EAS) - Rd

= ===l o]
Assembly-L anguage For mat H: Previous value remains unchanged.
AND. W <EAs>, Rd N: Setto 1if theresultis negative; otherwise
cleared to 0.
Z: Settolif theresultiszero; otherwise
cleared to 0.
Operand Size V: Alwayscleared to 0.
Word C: Previous value remains unchanged.

Description

Thisinstruction ANDSs the source operand with the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: ROtoR7, EOto E7
Rs. ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Immediate ANDW | #xx:16,Rd | 7 | 9 6 : rd IMM 2
Register direct AND.W Rs, Rd 6 6 rs rd 1
Notes

54

2.2.4(3) AND (L)

AND (AND logical) Logical AND

Operation Condition Code
ERd O (EAs) — ERd

= ===l o]
Assembly-L anguage For mat H: Previous value remains unchanged.
AND. L <EAs>. ERd N: Setto 1if theresultis negative; otherwise
cleared to 0.
Z: Settolif theresultis zero; otherwise
cleared to 0.
Operand Size V: Always cleared to 0.
Longword C: Previous value remains unchanged.
Description

Thisinstruction ANDSs the source operand with the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: EROto ER7
ERs. EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of
Mode 1st byte | 2nd byte | 3rd byte ‘ 4th byte ‘ 5th byte ‘ 6th byte States
Immediate AND.L |#xx:32,ERd| 7 : A | 6 :Oerd IMM

Register direct AND.L ERs,ERd | 0 1| F:0]6:6 ‘Oﬁersﬁoﬁerd‘ ‘

Notes

55

2.25(1) ANDC

ANDC (AND Control register)

Logical AND with CCR

Operation
CCRO#IMM - CCR

Assembly-L anguage For mat

Condition Code

| U HUN Z V C
Lo lelefefe ofele]

Stores the corresponding bit of the result.

I:
ANDC #xx:8, CCR Ul: Storesthe corresponding bit of the result.
H: Storesthe corresponding bit of the result.
U: Storesthe corresponding bit of the result.
N: Storesthe corresponding bit of the result.
Operand Size Z: Storesthe corresponding bit of the result.
Byte V: Storesthe corresponding bit of the result.
C: Storesthe corresponding bit of the result.
Description

Thisinstruction ANDs the contents of the condition-code register (CCR) with immediate data and
stores the result in the condition-code register. No interrupt requests, including NMI, are accepted
immediately after execution of thisinstruction.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte States
Immediate ANDC | #xx:8,CCR| 0 : 6 IMM 1
Notes

56

2.25(2) ANDC

ANDC (AND Control register)

Logical AND with EXR

Operation
EXR O#IMM - EXR

Condition Code

Assembly-L anguage For mat H: Previous value remains unchanged.

ANDC #xx:8, EXR N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Byte

Description

Thisinstruction ANDs the contents of the extended control register (EXR) with immediate data
and stores the result in the extended control register. No interrupt requests, including NMI, are
accepted for three states after execution of thisinstruction.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Immediate ANDC | #xx:8,EXR| 0 : 1 4 ;1 0 i 6 IMM 2
Notes

57

2.2.6 BAND

BAND (Bit AND) Bit L ogical AND

Operation Condition Code

<bi > < >) -
C O(<bit No.> of <EAd>) - C Il U HUN Z V C

(=== === =]

Assembly-L anguage For mat H: Previous value remains unchanged.

BAND #xx:3. <EAd> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Storestheresult of the operation.

Operand Size

Byte

Description

Thisinstruction ANDs a specified bit in the destination operand with the carry flag and stores the
result in the carry flag. The bit number is specified by 3-bit immediate data. The destination
operand contents remain unchanged.

Specified by #xx:3

BitNo. 7 ! 0
\ - \

<EAd> —

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

58

69

Operand Format and Number of States Required for Execution

Instruction Format

Addressing) No. of
. Mnemonic| Operands

Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BAND | #3,Rd | 7 | 6 |0IMM 1
direct :

Register BAND |#xx3,@ERd | 7 | C 7 06 |0IMM 0O 3
indirect : : :

Absolute BAND |#xx:3, @aa:8 | 7 @ E abs 7 06 |oiMM 0 3
address : HE

Absolute BAND |#xx:3, @aa:16| 6 : A | 1 0 abs 7 1 6 |0IMM O 4
address : : :

Absolute BAND |#xx3, @aa32| 6 i A | 3 | 0 abs 7 6 |0IMM 0 | 5
address : H

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(aNnv 1g) anvg

ANV [eolbo g

dNvd 9¢'¢

2.2.7 Bcc

Bcc (Branch conditionally)

Conditional Branch

Operation

If condition istrue, then
PC +disp - PC

else next;

Condition Code

Assembly-L anguage For mat H: Previous value remains unchanged.

Bcc disp N: Previous value remains unchanged.

L Condition field Z: Previous value remains unchanged.

V: Previous value remains unchanged.

Operand Size C: Previous value remains unchanged.
Description

If the condition specified in the condition field (cc) is true, a displacement is added to the program
counter (PC) and execution branches to the resulting address. If the condition is false, the next
instruction is executed. The PC value used in the address calculation is the starting address of the
instruction immediately following the Bec instruction. The displacement is asigned 8-bit or 16-bit
value. The branch destination address can be located in the range from —126 to +128 bytes or

—32766 to +32768 bytes from the Bcc instruction.

Mnemonic Meaning cc Condition Signed/Unsigned*
BRA (BT) Always (true) 0000 | True

BRN (BF) Never (false) 0001 | False

BHI High 0010 | Cz=0 X >Y (unsigned)

BLS Low or Same 0011 | Cz=1 X <Y (unsigned)

BCC (BHS) | Carry Clear (High or Same) 0100 | C=0 X =Y (unsigned)

BCS (BLO) Carry Set (LOw) 0101 | C=1 X <Y (unsigned)

BNE Not Equal 0110 | Zz=0 X #Y (unsigned or signed)
BEQ EQual 0111 Z=1 X =Y (unsigned or signed)
BVvC oVerflow Clear 1000 | V=0

BVS oVerflow Set 1001 | vV=1

BPL PLus 1010 | N=0

BMI Minus 1011 N=1

BGE Greater or Equal 1100 | NOV=0 X =Y (signed)

BLT Less Than 1101 NOV=1 X <Y (signed)

BGT Greater Than 1110 ZONOV) =0 | X>Y (signed)

BLE Less or Equal 1111 ZOANOV) =1 | X <Y (signed)

Note: * If the immediately preceding instruction is a CMP instruction, X is the general register
contents (destination operand) and Y is the source operand.

60

2.2.7 Bcc

Bcc (Branch conditionally) Conditional Branch

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of

Mode P 1st byte | 2nd byte | 3rd byte | 4thbyte | States
Program-counter | g, BT d:8 4 0 dlsp : 2
relative d:16 5 8 0 : 0 disp 3
Program-counter | pon BF) d:8 4 1 dlsp \ 2
relative d:16 5 8 1 :0 disp 3
Program-counter | o, d:8 4 2 disp ‘ 2
relative d:16 5 8 2 0 disp 3
Program-counter BLS d:8 4 3 disp \ 2
relative d:16 5 8 3 10 disp 3
Program-counter | g .. (BHS) d:8 4 4 dlsp \ 2
relative d:16 5 8 4 0 disp 3
Program-counter | g-g (BLO) d:8 4 5 dl;p ‘ 2
relative d:16 5 8 5 : 0 disp 3
Program-counter BNE d:8 4 6 disp \ 2
relative d:16 5 8 6 : 0 disp 3
Program-counter BEQ d:8 4 7 disp \ 2
relative d:16 5 8 7 i 0 disp 3
Program-counter d:8 4 8 disp ‘ 2
. BVC : -
relative d:16 5 8 8 : 0 disp 3
Program-counter BVS d:8 4 9 disp \ 2
relative d:16 5 8 9 : 0 disp 3
Program-counter | g d:8 4 A disp \ 2
relative d:16 5 8 A 0 disp 3
Program-counter | g d:8 4 B disp ‘ 2
relative d:16 5 8 B : 0 disp 3
Program-counter BGE d:8 4 C disp \ 2
relative d:16 5 8 cC i 0 disp 3
Program-counter | g+ d:8 4 D disp \ 2
relative d:16 5 8 D |0 disp 3
Program-counter | o d:8 4 E disp ‘ 2
relative d:16 5 8 E : 0 disp 3
Program-counter BLE d:8 4 F disp \ 2
relative d:16 5 8 F : 0 disp 3
Notes

1. The branch destination address must be even.
2. Inmachinelanguage BRA, BRN, BCC, and BCS areidentical to BT, BF, BHS, and BLO,
respectively.

61

228 BCLR

BCLR (Bit CLeaR) Bit Clear

Operation Condition Code
0 - (<bhit No.> of <EAd>)

I U H U N Z V C
(=]

Assembly-L anguage For mat H: Previous value remains unchanged.

BCLR #xx:3, <EAd> N: Previous value remaj: ns unchanged.

BCLR Rn, <EAd> Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Byte

Description

Thisinstruction clears a specified bit in the destination operand to 0. The bit number can be
specified by 3-bit immediate data, or by the lower three bits of an 8-bit register Rn. The specified
bit is not tested. The condition-code flags are not altered.

Specified by #xx:3 or Rn

BitNo. 7 | 0
\ \ \ \ \

<EAd> —»|

O —»

Available Registers

Rd: ROL toR7L, ROH to R7H
ERd: EROto ER7

Rn: ROL toR7L, ROH to R7H

62

€9

Operand Format and Number of States Required for Execution

i Instruction Format

Addredsslng Mnemonic | Operands No. of
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BCLR #oc3,Rd | 7 1 2 |0IMM 1
direct

Register BCLR |#xx:3,@ERd | 7 : D 7 i 2 oMM O 4
indirect G

Absolute BCLR |#xx3 @aa8| 7 | F abs 7 2 |oiMM O 4
address .

Absolute BCLR |#xx3 @aa1l6| 6 | A | 1 | 8 abs 7 ¢ 2 |omM o 5
address : :

Absolute BCLR |#xx:3, @aa32| 6 : A | 3 : 8 abs 7 52 oMM 0 | 6
address : :

Register BCLR Rn, Rd 6 2 | m:rd 1
direct

Register BCLR | RR,@ERd | 7 : D 6 i 2 |m: o0 4
indirect :

Absolute BCLR | Rn,@aa8 | 7 | F abs 6 2 |m:o 4
address :

Absolute BCLR | Rn,@aal6 | 6 : A | 1 i 8 abs 6 i 2 | m:o 5
address : :

Absolute BCLR | Rn,@aa32 | 6 A | 3 : 8 abs 6 2| mio| 6
address : :

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(gee 1D 1ug) Y109

1es|0 1id

47109 8¢¢

2.29 BIAND

BIAND (Bit Invert AND) Bit L ogical AND

Operation Condition Code

= (<hi > of < =)l -
C O [~ (<bit No.> of <EAd>)] - C | U HUN Z V C

(=== === =]

Assembly-L anguage For mat H: Previous value remains unchanged.

Bl AND #xx:3. <EAd> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Storestheresult of the operation.

Operand Size

Byte

Description

Thisinstruction ANDs the inverse of a specified bit in the destination operand with the carry flag
and stores the result in the carry flag. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Specified by #xx:3

Bit No. 7 L 0
<EAd> —» \ 77\ \ \
Invert
re
C O — c

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

64

99

Operand Format and Number of States Required for Execution

Instruction Format

Addressing M ! d No. of
Mode* nemonic| Operands States
1st byte | 2nd byte | 3rd byte | 4th byte 5th byte 6th byte 7th byte 8th byte

Register BIAND | #w3,Rd | 7 | 6 |LIMM rd 1
direct F

Register BIAND |#xx3,@ERd | 7 | C 7 i 6 [1IMM 0 3
indirect : : :

Absolute BIAND | #xx:3, @aa8 | 7 : E abs 7 6 |LiMM O 3
address : F

Absolute BIAND |#xx:3, @aa:l6| 6 : A | 1 | 0 abs 7 16 |1iMM o 4
address : P

Absolute BIAND |#xx:3, @aa32| 6 | A | 3 i 0 abs 7 i 6 |1iMM 0 5
address : : :

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(QNV ¥enu| 1g) anvig

ANV [eolbo g

dNVvId 6¢¢

2210 BILD

BILD (Bit Invert LoaD)

Bit L oad

Operation
= (<bit No.> of <EAd>) - C

Condition Code

| U HUN Z V C
(== l=]=]=]=]=] e]

Assembly-L anguage For mat H: Previous value remains unchanged.
Bl LD #xx:3. <EAd> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Loaded with the inverse of the specified
Operand Size bit.
Byte
Description

Thisinstruction loads the inverse of a specified bit from the destination operand into the carry flag.
The bit number is specified by 3-bit immediate data. The destination operand contents remain

unchanged.

Bit No. 7

Specified by #xx:3

<EAd> —»|

1 Invert ——» C

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

66

19

Operand Format and Number of States Required for Execution

Addressing |,) d Instruction Format No. of
Mode* nemonic| Operands States
1st byte | 2nd byte | 3rd byte | 4th byte 5th byte 6th byte 7th byte 8th byte

Register BILD w3, Rd | 7 07 |1IMME rd 1
direct : : :

Register BILD |#xx3,@ERd| 7 | C 7 17 |1iMM 0 3
indirect : : :

Absolute BILD |#xx3,@aa8| 7 | E abs 7 7 |iMM o 3
address : F

Absolute BILD |#xx3, @aal6| 6 : A | 1 | 0 abs 7 17 |1mM o 4
address : .

Absolute BILD |#xx3,@aa32| 6 | A | 3 i 0 abs 7 17 |iMM o 5
address : : : :

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(geo1eAul NG) A1IG

peon 1g

aTig oree

2.2.11 BIOR

BIOR (Bit Invert inclusive OR)

Bit Logical OR

Operation
C O[~ (<bit No.> of <EAd>)] - C

Condition Code

| U HUN Z V C
(== l=]=]=]=]=] e]

Assembly-L anguage For mat H: Previous value remains unchanged.

Bl OR #xx:3. <EAd> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Storestheresult of the operation.

Operand Size

Byte

Description

Thisinstruction ORs the inverse of a specified bit in the destination operand with the carry flag
and stores the result in the carry flag. The bit number is specified by 3-bit immediate data. The

destination operand contents remain unchanged.

Specified by #xx:3

Bit No. 7

<EAd> — |

] ;

Invert

E— C

Available Registers

Rd: ROL toR7L, ROH to R7H
ERd: EROto ER7

68

69

Operand Format and Number of States Required for Execution

Instruction Format

Addressing M ! d No. of
Mode* nemonic| Operands States
1st byte | 2nd byte | 3rd byte | 4th byte 5th byte 6th byte 7th byte 8th byte

Register BIOR | #x3,Rd | 7 | 4 |LIMM rd 1
direct F

Register BIOR |#xx3 @ERd | 7 : C 7 04 |1mM o 3
indirect : : :

Absolute BIOR |#xx3, @aa8| 7 ' E | abs 7 04 |umm o 3
address : F

Absolute BIOR |#x3, @aa1l6| 6 | A | 1 0 abs 7 0 4 |1MM 0 4
address : .

Absolute BIOR |#xx:3, @aa32| 6 : A | 3 : 0 abs 7 14 |1MM 0 5
address : P

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(dOoaAnsnpul 1eAU| 1Ig) HO 19

dO [eobo g

4019 T1'¢e

2212 BIST

BIST (Bit Invert STore) Bit Store

Operation Condition Code
- C - (<bit No.> of <EAd>)

I U H U N Z V C
(=]

Assembly-L anguage For mat H: Previous value remains unchanged.

Bl ST #xx:3. <EAd> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Byte

Description

Thisinstruction stores the inverse of the carry flag in a specified bit location in the destination
operand. The bit number is specified by 3-bit immediate data. Other bits in the destination operand
remain unchanged.

Specified by #xx:3
Bit No. 7 L 0

<EAd> —» \ N \ \ \

C — Invert

Available Registers

Rd: ROL toR7L, ROH to R7H
ERd: EROto ER7

70

T

Operand Format and Number of States Required for Execution

i Instruction Format

Addresslng Mnemonic | Operands No. of
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BIST #oc3,Rd | 6 : 7 |LIMM rd 1
direct .

Register BIST |#xx3,@ERd| 7 | D 6 7 |1IMM 0 4
indirect : ; :

Absolute BIST |#xx3, @aa8| 7 @ F abs 6 7 |1IMM 0 4
address : N

Absolute BIST |#xx3, @aal6| 6 : A | 1 | 8 abs 6 i 7 |1IMM 0 5
address : :

Absolute BIST |#xx3,@aa32| 6 | A | 3 | 8 abs 6 7 |1iMM 0 | 6
address : :

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(@Jo1s 1AUI 1IG) 1SI9

2.01S 1Ig

1Sid ¢tree

2.2.13 BIXOR

BIXOR (Bit Invert eXclusive OR) Bit Exclusive Logical OR

Operation Condition Code

= (<bi > < =)l -
C O [~ (<bit No.> of <EAd>)] — C |l U HUN Z V C

(=== === =]

Assembly-L anguage For mat H: Previous value remains unchanged.

Bl XOR #xx:3. <EAd> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Storestheresult of the operation.

Operand Size

Byte

Description

Thisinstruction exclusively ORs the inverse of a specified bit in the destination operand with the
carry flag and stores the result in the carry flag. The bit number is specified by 3-bit immediate
data. The destination operand contents remain unchanged.

Specified by #xx:3
BitNo. 7 i 0
<EAd> — | —7‘ | |

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

72

€L

Operand Format and Number of States Required for Execution

i Instruction Format

Ad'slredsslng Mnemonic | Operands No. of

ode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BIXOR | #0c3,Rd | 7 | 5 |1IMM rd 1
direct .
Register BIXOR |#xx3, @ERd | 7 : C 7 i 5 |1IMM 0 3
indirect o
Absolute BIXOR |#xx3, @aa:8 | 7 : E abs 7 5 |1iMM O 3
address .
Absolute BIXOR |#xx3, @aa:l6| 6 . A | 1 : 0 abs 7 i 5 |1IMM 0 4
address : : :
Absolute BIXOR |#xx3,@aa32| 6 : A | 3 : 0 abs 7 i 5 |1iMM 0 | 5
address : : :

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(doansnpxe 1eAU| 11g) HOXId

O [eoiBoJaAsnPx3 1g

d0XI19 €1°¢¢

2214 BLD

BLD (Bit LoaD) Bit Load

Operation Condition Code

<Bit No.> of <EAd>) - C
(<BitNo>o) | U HUN Z V C

(=== === =]

Assembly-L anguage For mat H: Previous value remains unchanged.

BLD #xx:3. <EAd> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Loaded from the specified hit.

Operand Size

Byte

Description

Thisinstruction loads a specified bit from the destination operand into the carry flag. The bit
number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Specified by #xx:3

BitNo. 7 ! 0
\ - \

<EAd> —»|

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

74

7

Operand Format and Number of States Required for Execution

i Instruction Format

Addresslng Mnemonic | Operands No. of
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BLD w3, Rd | 7 0 7 |0IMM: rd 1
direct : N

Register BLD |#xx3,@ERd| 7 | C 7 17 |oiMM 0 3
indirect : : :

Absolute BLD |#xx3,@aa8| 7 | E abs 7 17 |oiIMM 0O 3
address : N

Absolute BLD |#xx3,@aal6| 6 . A | 1 i 0 abs 7 07 |0IMM 0 4
address : : :

Absolute BLD |#xx3,@aa32| 6 i A | 3 i 0 abs 7 17 [oiMM 0 | 5
address : : : :

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(geo111g) g

peon g

a’g viee

2.2.15 BNOT

BNOT (Bit NOT) Bit NOT
Operation Condition Code

= (<bit No.> of <EAd>) - (bit No. of

<EAd>)

I U H U N Z V C
(=]

H: Previous value remains unchanged.
Assembly-L anguage For mat N: Previous value remains unchanged.
BNOT #xx:3, <EAd> Z: Prev?ous value remaj: ns unchanged.
BNOT Rn, <EAd> V: Previous value remains unchanged.
C: Previous value remains unchanged.
Operand Size
Byte
Description

Thisinstruction inverts a specified bit in the destination operand. The bit number is specified by 3-
bit immediate data or by the lower 3 bits of an 8-bit register Rn. The specified bit is not tested. The
condition code remains unchanged.

Specified by #xx:3 or Rn

BitNo. 7 | 0
\ T T 1

Wl

8RN

<EAd> —»

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

Rn: ROL to R7L, ROH to R7H

76

L)

Operand Format and Number of States Required for Execution

i Instruction Format

Addresslng Mnemonic | Operands No. of
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BNOT | #x3,Rd | 7 | 1 |0IMM: 1
direct

Register BNOT |#xx3,@ERd | 7 : D 7 1 |oMM 0 4
indirect : I

Absolute BNOT |#xx:3, @aa8| 7 : F abs 7 01 |oMM 0 4
address : R

Absolute BNOT |#xx:3, @aail6| 6 : A | 1 i 8 abs 7 0 1 [0IMM 0 5
address : : :

Absolute BNOT |#xx3, @aa32| 6 : A | 3 | 8 abs 7 1 |omM o0 | 6
address .

Register | ot RLRE | 6 01 | minrd 1
direct :

Register BNOT | Rn,@ERd | 7 : D 6 i1 | m:io 4
indirect :

Absolute BNOT | Rn,@aa8 | 7 : F abs 6 01 |m:o 4
address :

Absolute | gNoT | Rn@aait6 | 6 0 A | 1 8 abs 6 1 |mio 5
address : : :

Absolute BNOT | Rn,@aa32 | 6 | A | 3 : 8 abs 61 |m: 0| 6
address : :

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(LON 11g) LONg

1ON 19

1ONgd GT¢'¢

2.2.16 BOR

BOR (Bit inclusive OR) Bit Logical OR

Operation Condition Code

<bi > < >) -
C O(<bit No.> of <EAd>) - C Il U HUN Z V C

(=== === =]

Assembly-L anguage For mat H: Previous value remains unchanged.

BOR #xx:3. <EAd> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Storestheresult of the operation.

Operand Size

Byte

Description

Thisinstruction ORs a specified bit in the destination operand with the carry flag and stores the
result in the carry flag. The bit number is specified by 3-bit immediate data. The destination
operand contents remain unchanged.

Specified by #xx:3

BitNo. 7 | 0
\ I \

<EAd> —»

Available Registers

Rd: ROL toR7L, ROH to R7H
ERd: EROto ER7

78

6.

Operand Format and Number of States Required for Execution

Instruction Format

Ad'slredsslng Mnemonic | Operands No. of
ode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BOR #Hox3,Rd | 7 4 |0dMM rd 1
direct .

Register BOR |#03,@ERd | 7 | C 7 4 oMM 0 3
indirect : ; :

Absolute BOR |#xx3,@aa8| 7 : E abs 7 4 |oimm 0 3
address : N

Absolute BOR |#xx:3, @aal6| 6 . A | 1 : 0 abs 7 0 4 |0IMM O 4
address : : :

Absolute BOR |#xx3, @aa32| 6 A | 3 . 0 abs 7 0 4 |omM o | 5
address : .

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(doaasnpul 1g) Hog

dO [eo1bo g

H40d 91¢’¢

2217 BSET

BSET (Bit SET)

Bit Set

Operation
1 - (<bit No.> of <EAd>)

Condition Code

I U H U N Z V C
(=]

Assembly-L anguage For mat H: Previous value remains unchanged.

BSET #xx:3. <EAd> N: Previous value remains unchanged.

BSET Rn. <EAd> Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Byte

Description

Thisinstruction sets a specified bit in the destination operand to 1. The bit number can be
specified by 3-bit immediate data, or by the lower three bits of an 8-bit register Rn. The specified
bit is not tested. The condition code flags are not altered.

Bit No.

7

Specified by #xx:3 or Rn

<EAd> —»

=

Available Registers

Rd: ROL toR7L, ROH to R7H
ERd: EROto ER7

Rn: ROL toR7L, ROH to R7H

80

18

Operand Format and Number of States Required for Execution

i Instruction Format

Ad'slredsslng Mnemonic | Operands No. of

ode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BSET | #x3,Rd | 7 = 0 |0IMM 1
direct
Register BSET |#x:3,@ERd | 7 : D 7 10 |0MM O 4
indirect I
Absolute | pser |3, @aa8 | 7 0 F | abs | 7 i 0 |0IMM 0O 4
address N
Absolute BSET |#xx3,@aal6| 6 : A | 1 | 8 abs 7 0 0 [0IMM 0 5
address : : :
Absolute BSET |#xx3,@aa32| 6 : A | 3 | 8 abs 7 0 |omM o0 | 6
address .
Register BSET R,RA | 6 00 | minrd 1
direct :
Register BSET | RN, @ERd | 7 : D 6 0 |m:&o 4
indirect : :
Absolute BSET Rn. @aa:8 7 E abs 6 0 m: o 4
address : :
Absolute BSET Rn, @aa:16 6 A 18 abs 6 0 m: o0 5
address : : :
Absolute BSET | Rn,@aa32 | 6 : A | 3 | 8 abs 6 0 |m:5 0| 6
address : :

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(L3S 1g) 1359

1S g

13S9 .T1¢¢

2.2.18 BSR

BSR (Branch to SubRoutine)

Branch to Subroutine

Operation

PC - @-SP
PC +disp - PC

Condition Code

Assembly-L anguage For mat H: Previous value remains unchanged.

BSR disp N: Previous value remaj: ns unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Description

Thisinstruction branches to a subroutine at a specified address. It pushes the program counter
(PC) value onto the stack as a restart address, then adds a specified displacement to the PC value
and branches to the resulting address. The PC value pushed onto the stack is the address of the
instruction following the BSR instruction. The displacement is a signed 8-bit or 16-bit value, so
the possible branching range is —126 to +128 bytes or —32766 to +32768 bytes from the address of

the BSR instruction.

Operand Format and Number of States Required for Execution

Addressing i Instruction Format No. of States
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte | 4th byte | Normal | Advanced
Program-counter BSR d:8 5 5 disp 3 4
relative d:16 5:C| 00 disp 4 5

82

2.2.18 BSR

BSR (Branch to SubRoutine) Branch to Subroutine

Notes

The stack structure differs between normal mode and advanced mode. In normal mode only the
lower 16 bits of the program counter are pushed onto the stack.

N
TN Reserved
PC ! ; \ —__J PC ! ; \ —_J
23 16 15 87 0 23 16 15 87 0
Normal mode Advanced mode

83

2219 BST

BST (Bit STore) Bit Store

Operation Condition Code
C - (<bit No.> of <EAd>)

I U H U N Z V C
(=]

Assembly-L anguage For mat H: Previous value remains unchanged.

BST #xx:3. <EAd> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Byte

Description

Thisinstruction stores the carry flag in a specified bit location in the destination operand. The bit
number is specified by 3-bit immediate data.

Specified by #xx:3

BitNo. 7 | 0
\ I \

<EAd> —»

Available Registers

Rd: ROL toR7L, ROH to R7H
ERd: EROto ER7

84

a8

Operand Format and Number of States Required for Execution

i Instruction Format

Addresslng Mnemonic | Operands No. of
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BST #xx3,Rd | 6 . 7 |0IMM rd 1
direct .

Register BST |#w3,@ERd | 7 | D 6 i 7 |oimM 0 4
indirect I

Absolute BST |#x3 @aa8| 7 : F abs 6 0 7 |0IMM 0O 4
address N

Absolute BST |#x3, @aal6| 6 i A | 1 | 8 abs 6 ;7 oMM 0 5
address : :

Absolute BST |#xx3, @aa32| 6 | A | 3 : 8 abs 6 7 |0IMM 0 | 6
address R

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(@Jlols 1g9) 1s9g

2.01S 1

1S9 61¢'¢

2.2.20 BTST

BTST (Bit TeST) Bit Test

Operation Condition Code

- (<Bit No.> of <EAd>) - Z
(<BitNo>o) I UU H U N Z V C

(=== == =]

Assembly-L anguage For mat H: Previous value remains unchanged.
BTST #xx:3, <EAd> N: Previous value remains unchanged.
BTST Rn, <EAd> Z: Settolif the specified bit is zero;

otherwise cleared to 0.
V: Previous value remains unchanged.
Operand Size C: Previous vaue remains unchanged.

Byte

Description

Thisinstruction tests a specified bit in the destination operand and sets or clears the zero flag
according to the result. The bit number can be specified by 3-bit immediate data, or by the lower
three bits of an 8-hit register Rn. The destination operand contents remain unchanged.

Specified by #xx:3 or Rn

BitNo. 7 L 0
<EAd> —» \ \ \ \ \
v
Test

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

Rn: ROL to R7L, ROH to R7H

86

/8

Operand Format and Number of States Required for Execution

. Instruction Format
Address*mg Mnemonic| Operands No. of
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BTST | #w3,Rd | 7 i 3 |0dMM: rd 1
direct H

Register BTST |#x3,@ERd| 7 : C |olerd: 0 | 7 i 3 |0iIMM: O 3
indirect : : : : :

Absolute BTST |#xx:3,@aa8| 7 : E abs 7 0 3 |oiumM: 0 3
address : .

Absolute BTST |#xx3,@aal6| 6 : A | 1 : 0 abs 7 0 3 |0IMM 0 4
address : : P

Absolute BTST |#xx3,@aa:32| 6 @ A | 3 0 abs 7 3 |oimMi 0 | 5
address : .

Register :

. BTST Rn, Rd 6 3 m : rd 1
direct :

Register BTST | Rn,@ERd | 7 : C [0erd: 0 | 6 : 3 | m : 0 3
indirect I

Absolute BTST RN, @aa:8 7 E abs 6 3 m 0 3
address

Absolute BTST |Rn@aal6 | 6 : A | 1 0 abs 6 03 | m:o 4
address : ;

Absolute | gror | Rn,@aa32 | 6 0 A | 3 0 abs 6 3 |mio| s
address : : :

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(1seL1g) 1S19

o1 1ud

1S1d9 0¢¢¢

2.2.21 BXOR

BXOR (Bit eXclusive OR) Bit Exclusive Logical OR

Operation Condition Code

<hi > < >) -
C O (<bit No.> of <EAd>) -~ C Il U HUN Z V C

(=== === =]

Assembly-L anguage For mat H: Previous value remains unchanged.

BXOR #xx:3. <EAd> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Storestheresult of the operation.

Operand Size

Byte

Description

Thisinstruction exclusively ORs a specified bit in the destination operand with the carry flag and
stores the result in the carry flag. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Specified by #xx:3

BitNo. 7 L 0
<EAd> —» \ \ \ \
v
C O — C

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

88

68

Operand Format and Number of States Required for Execution

i Instruction Format

Ad'slredsslng Mnemonic | Operands No. of

ode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8th byte |States
Register BXOR | #x3,Rd | 7 : 5 |0IMM: rd 1
direct .
Register BXOR |#xx3, @ERd | 7 & C 7 i 5 |oiMM 0 3
indirect I
Absolute BXOR |#xx3, @aa8 | 7 : E abs 7 05 oMM 0 3
address N
Absolute BXOR |#xx3, @aa:l6| 6 . A | 1 : 0 abs 7 i 5 |0IMM O 4
address : : :
Absolute BXOR |#xx3, @aa32| 6 : A | 3 : 0 abs 7 15 jomMM 0 | 5
address : .

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(doansnpxe 1g) HoX4g

O [eoiBoJaAsnPx3 1g

40X4a 1¢¢'¢

2222 CLRMAC

CLRMAC (CLeaR MAC register) I nitialize Multiply-Accumulate Register

Operation Condition Code
0 - MACH, MACL

Assembly-L anguage For mat H: Previous value remains unchanged.

CLRVAC N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Description

Thisinstruction simultaneously clears registers MACH and MACL.
It is supported only by the H8S/2600 CPU

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
— CLRMAC — 0 1 A0 2
Notes

Execution of thisinstruction also clears the overflow flag in the multiplier to O.

90

2.2.23(1) CMP (B)

CMP (CoM Pare)

Compare

Operation
Rd — (EAS), set/clear CCR

Assembly-L anguage For mat
CWP. B <EAs>, Rd

Condition Code

H: Setto1if thereisaborrow at bit 3;
otherwise cleared to 0.

N: Setto 1if theresult isnegative; otherwise
cleared to 0.

Z. Settolif theresult iszero; otherwise

Operand Size cleared to 0.
B V: Setto 1if an overflow occurs; otherwise
yte
cleared to 0.
C. Settolif thereisaborrow at bit 7;
otherwise cleared to 0.
Description

This instruction subtracts the source operand from the contents of an 8-bit register Rd (destination
operand) and sets or clears the condition code bits according to the result. The contents of the 8-bit

register Rd remain unchanged

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate CMP.B #xx:8, Rd A i IMM 1
Register direct CMP.B Rs, Rd 1 i Cc s i 1

Notes

91

2.2.23(2) CMP (W)

CMP (CoM Pare)

Compare

Operation

Rd — (EAS), set/clear CCR

Condition Code

Assembly-L anguage For mat
CWP. W <EAs>, Rd

H: Setto 1lif thereisaborrow at bit 11;

otherwise cleared to 0.

N: Setto 1if theresult is negative; otherwise

cleared to O.

Operand Size
Word

cleared to O.

Z: Settolif theresultiszero; otherwise

V. Setto 1 if an overflow occurs; otherwise

cleared to 0.

C: Settolif thereisaborrow at bit 15;

otherwise cleared to 0.

Description

This instruction subtracts the source operand from the contents of a 16-bit register Rd (destination
operand) and sets or clears the condition code bits according to the result. The contents of the 16-
bit register Rd remain unchanged.

Available Registers

Rd: ROtoR7, EOto E7
Rs. ROtoR7,EOto E7

Operand Format and Number of States Required for Execution

Instruction Format

Addressing . No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte ‘ 4th byte | States
Immediate CMPW | #xx:16,Rd| 7 i 9 2 i IMM 2
Register direct CMP.W Rs, Rd 1 D rs rd ‘ 1

Notes

92

2.2.23(3) CMP (L)

CMP (CoM Pare)

Compare

Operation
ERd — (EAS), set/clear CCR

Condition Code

Assembly-L anguage For mat H: Setto 1if thereisaborrow at bit 27;
CWP. L <EAs>, ERd otherwise cleared to 0.
N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z. Settolif theresult iszero; otherwise
Operand Size cleared to 0.
Longword V: Settolif anoverflow occurs; otherwise
cleared to 0.
C. Settolif thereisaborrow at bit 31;
otherwise cleared to 0.
Description

This instruction subtracts the source operand from the contents of a 32-bit register ERd
(destination operand) and sets or clears the condition code bits according to the result. The
contents of the 32-bit register ERd remain unchanged.

Available Registers

ERd: EROto ER7
ERs: EROto ER7

Operand Format and Number of States Required for Execution

Addressing | pinemonic Operands Instruction Format No. of
Mode States
2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte
Immediate CMPL | #xx:32, ERd 2 iOerd IMM 3
Register direct CMP.L ERs, ERd 1iers:Oierd ‘ ‘ ‘ 1

Notes

93

2.2.24 DAA

DAA (Decimal Adjust Add)

Decimal Adjust

Operation
Rd (decimal adjust) -~ Rd

Condition Code

u H U N Z V C

*

— el
Assembly-L anguage For mat H: Undetermined (no guaranteed value).
DAA Rd N: Setto 1if the adjusted result is negative;
otherwise cleared to 0.
Z. Settolif the adjusted result is zero;
otherwise cleared to 0.
Operand Size V: Undetermined (no guaranteed value).
Byte C: Settolif thereisacarry at bit 7;
otherwise left unchanged.
Description

Given that the result of an addition operation performed by an ADD.B or ADDX instruction on
4-bit BCD datais contained in an 8-bit register Rd and the carry and half-carry flags, the DAA
instruction adjusts the contents of the 8-bit register Rd (destination operand) by adding H'00, H'06,

H'60, or H'66 according to the table below.

C Flag Upper 4 Bits H Flag Lower 4 Bits value Added C Flag
before before before before (Hexadecimal) after
Adjustment | Adjustment Adjustment Adjustment Adjustment
0 0to9 0 0to9 00 0
0 0to8 0 AtoF 06 0
0 0to9 1 0to3 06 0
0 AtoF 0 0Oto9 60 1
0 9toF 0 AtoF 66 1
0 AtoF 1 O0to3 66 1
1 lto2 0 0to9 60 1
1 lto2 0 AtoF 66 1
1 1to3 1 O0to3 66 1

94

2.2.24 DAA

DAA (Decimal Adjust Add) Decimal Adjust

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Register direct DAA Rd 0 : F 0 i rd 1
Notes

Valid results (8-bit register Rd contentsand C, V, Z, N, and H flags) are not assured if this
instruction is executed under conditions other than those described above.

95

2.2.25 DAS

DAS (Decimal Adjust Subtract)

Decimal Adjust

Operation
Rd (decimal adjust) -~ Rd

Condition Code

u H U N Z V C

*

=l le][]
Assembly-L anguage For mat H: Undetermined (no guaranteed value).
DAS Rd N: Setto 1if the adjusted result is negative;
otherwise cleared to 0.
Z. Settolif the adjusted result is zero;
otherwise cleared to 0.
Operand Size V: Undetermined (no guaranteed value).
Byte C: Previous value remains unchanged.
Description

Given that the result of a subtraction operation performed by a SUB.B, SUBX.B, or NEG.B
instruction on 4-bit BCD datais contained in an 8-hit register Rd and the carry and half-carry
flags, the DAS instruction adjusts the contents of the 8-bit register Rd (destination operand) by
adding H'00, H'FA, H'AO, or H'9A according to the table below.

C Flag Upper 4 Bits H Flag Lower 4 Bits Value Added C Flag
before before before before (Hexadecimal) after
Adjustment | Adjustment Adjustment Adjustment Adjustment
0 0to9 0 0to9 00 0
0 Oto 8 1 6toF FA 0
1 7t0F 0 0to9 A0 1
1 6toF 1 6toF 9A 1

Available Registers
Rd: ROL to R7L, ROH to R7H

96

2.2.25 DAS

DAS (Decimal Adjust Subtract) Decimal Adjust

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Register direct DAS Rd 1 F 0 :rd 1
Notes

Valid results (8-bit register Rd contentsand C, V, Z, N, and H flags) are not assured if this
instruction is executed under conditions other than those described above.

97

2.2.26 (1) DEC (B)

DEC (DECrement) Decrement

Operation Condition Code
Rd-1 - Rd

Assembly-L anguage For mat H: Previous value remains unchanged.
DEC. B Rd N: Setto 1if theresult is negative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if anoverflow occurs; otherwise
Byte cleared to O.

C: Previous value remains unchanged.

Description

This instruction decrements an 8-bit register Rd (destination operand) and stores the result in the
8-hit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Register direct DEC.B Rd 1 : A 0 : rd 1
Notes

An overflow is caused by the operation H'80 -1 - H'7F.

98

2.2.26 (2) DEC (W)

DEC (DECrement) Decrement
Operation Condition Code
Rd-1 - Rd
Rd—2 - Rd I U HUN Z V C
EEEERERE
Assembly-L anguage For mat H: Previous value remains unchanged.
DEC. W #1. Rd N: Setto 1if theresult isnegative; otherwise
DEC. W #2. Rd cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if an overflow occurs; otherwise
Word cleared to O.
C: Previous value remains unchanged.
Description

This instruction subtracts the immediate value 1 or 2 from the contents of a 16-bit register Rd
(destination operand) and stores the result in the 16-bit register Rd.

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Register direct DEC.W #1, Rd 1B 5 i rd 1
Register direct | DEC.W #2, Rd 1 B | D 1
Notes

An overflow is caused by the operations H'8000 — 1 — H'7FFF, H'8000 —2 - H'7FFE, and
H'8001 -2 - H'7FFF.

99

2.2.26 (3) DEC (L)

DEC (DECrement) Decrement
Operation Condition Code

ERd-1 - ERd

ERd—2 . ERd I U H U N Z V C

Assembly-L anguage For mat H: Previous value remains unchanged.
DEC. L #1. ERd N: Setto 1if theresultisnegative; otherwise
DEC. L #2, ERd cleared t.o 0. . .
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if an overflow occurs; otherwise
Longword cleared to O.

C: Previous value remains unchanged.

Description

This instruction subtracts the immediate value 1 or 2 from the contents of a 32-bit register ERd
(destination operand) and stores the result in the 32-bit register ERd.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
" Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct DEC.L #1, ERd 1 B 7 i0ierd 1
Register direct DEC.L #2,ERd | 1 = B | F i0lerd 1
Notes

An overflow is caused by the operations H'80000000 — 1 — H'7FFFFFFF, H'80000000 — 2 -
H'7FFFFFFE, and H'80000001 — 2 - H'7FFFFFFF.

100

2.2.27 (1) DIVXS(B)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operation Condition Code

Rd+Rs - Rd | U HUN Z V C

(=== e =]

Assembly-L anguage For mat H: Previous value remains unchanged.
DI VXS. B Rs, Rd N: Setto 1if the quotient is negative;
otherwise cleared to 0.
Z: Settolif thedivisor iszero; otherwise

cleared to 0.
Operand Size V: Previous value remains unchanged.
Byte C: Previous value remains unchanged.
Description

Thisinstruction divides the contents of a 16-bit register Rd (destination operand) by the contents
of an 8-bit register Rs (source operand) and stores the result in the 16-bit register Rd. The division
is signed. The operation performed is 16 bits + 8 bits — 8-bit quotient and 8-bit remainder. The
quotient is placed in the lower 8 bits of Rd. The remainder is placed in the upper 8 bits of Rd. The
sign of the remainder matches the sign of the dividend.

Rd Rs Rd
Dividend ‘ + ‘ Divisor ‘ - ‘Remainder‘ Quotient ‘
16 bits 8 bits 8 bits 8 bits

Valid results are not assured if division by zero is attempted or an overflow occurs.

Available Registers

Rd: ROto R7, EOto E7
Rs: ROL to R7L, ROH to R7H

101

2.2.27 (1) DIVXS(B)

DIVXS (DIVide eXtend as Signed) Divide Signed
Operand Format and Number of States Required for Execution
Addressing . Instruction Format No. of
Mnemonic | Operands ’
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | DIVXS.B Rs, Rd 0 1 D : 0 5 i1 rs i ord 13

Notes

The N flag isset to 1 if the dividend and divisor have different signs, and cleared to O if they have

the same sign. The N flag may therefore be set to 1 when the quotient is zero.

102

2.2.27 (2) DIVXS (W)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operation Condition Code

ERd = Rs ~ ERd | U HUN Z V C

(=== e =]

Assembly-L anguage For mat H: Previous value remains unchanged.
DI VXS. W Rs, ERd N: Setto 1if the quotient is negative;
otherwise cleared to 0.
Z: Settolif thedivisor iszero; otherwise

cleared to 0.
Operand Size V: Previous value remains unchanged.
Word C: Previous value remains unchanged.

Description

Thisinstruction divides the contents of a 32-bit register ERd (destination operand) by the contents
of a 16-bit register Rs (source operand) and stores the result in the 32-bit register ERd. The
division is signed. The operation performed is 32 bits + 16 bits — 16-bit quotient and 16-bit
remainder. The quotient is placed in the lower 16 bits (Rd) of the 32-bit register ERd. The
remainder is placed in the upper 16 bits (Ed). The sign of the remainder matches the sign of the
dividend.

ERd Rs ERd
Dividend ‘ + ‘ Divisor ‘ - ‘Remainder‘ Quotient ‘
32 bits 16 bits 16 bits 16 bits

Valid results are not assured if division by zero is attempted or an overflow occurs.

Available Registers

ERd: EROto ER7
Rss ROtoR7,EOtoE7

103

2.2.27 (2) DIVXS (W)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operand Format and Number of States Required for Execution

i Instruction Format
Addressing Mnemonic | Operands No. of

Mode 1st byte 2nd byte 3rd byte 4th byte | States

Register direct DIVXS.W | Rs, ERd 0 : 1 D: O 5 : 3 rs iOierd| 21

Notes

TheN flag isset to 1 if the dividend and divisor have different signs, and cleared to O if they have
the same sign. The N flag may therefore be set to 1 when the quotient is zero.

104

2.2.28 (1) DIVXU (B)

DIVXU (DIVide eXtend as Unsigned) Divide

Operation Condition Code

Rd+Rs - Rd | U HUN Z V C

(=== e =]

Assembly-L anguage For mat H: Previous value remains unchanged.
DI VXU. B Rs, Rd N: Setto 1if thedivisor isnegative;
otherwise cleared to 0.
Z: Settolif thedivisor iszero; otherwise

cleared to 0.
Operand Size V: Previous value remains unchanged.
Byte C: Previous value remains unchanged.
Description

Thisinstruction divides the contents of a 16-bit register Rd (destination operand) by the contents
of an 8-bit register Rs (source operand) and stores the result in the 16-bit register Rd. The division
is unsigned. The operation performed is 16 bits + 8 bits — 8-bit quotient and 8-bit remainder. The
quotient is placed in the lower 8 bits of Rd. The remainder is placed in the upper 8 bits of Rd.

Rd Rs Rd
Dividend ‘ + ‘ Divisor ‘ - ‘Remainder‘ Quotient ‘
16 bits 8 bits 8 bits 8 bits

Valid results are not assured if division by zero is attempted or an overflow occurs.

Available Registers

Rd: ROtoR7, EOto E7
Rs: ROL to R7L, ROH to R7H

105

2.2.28 (1) DIVXU (B)

DIVXU (DIVide eXtend as Unsigned) Divide

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte | States
Register direct DIVXU.B Rs, Rd 5 1 rs i rd 12
Notes

106

2.2.28 (2) DIVXU (W)

DIVXU (DIVide eXtend as Unsigned) Divide

Operation Condition Code

ERd = Rs ~ ERd | U HUN Z V C

(=== e =1
Assembly-L anguage For mat H: Previous value remains unchanged.
DI VXU. W Rs, ERd N: Setto 1if thedivisor isnegative;

otherwise cleared to 0.
Z: Settolif thedivisor iszero; otherwise

cleared to 0.
Operand Size V: Previous value remains unchanged.
Word C: Previous value remains unchanged.

Description

Thisinstruction divides the contents of a 32-bit register ERd (destination operand) by the contents
of a 16-bit register Rs (source register) and stores the result in the 32-bit register ERd. The
division isunsigned. The operation performed is 32 bits + 16 bits — 16-bit quotient and 16-bit
remainder. The quotient is placed in the lower 16 bits (Rd) of the 32-bit register ERd. The
remainder is placed in the upper 16 bits of (Ed).

ERd Rs ERd
Dividend ‘ + ‘ Divisor ‘ - ‘Remainder‘ Quotient ‘
32 bits 16 bits 16 bits 16 bits

Valid results are not assured if division by zero is attempted or an overflow occurs.

Available Registers

ERd: EROto ER7
Rss ROtoR7,EOtoE7

107

2.2.28 (2) DIVXU (W)

DIVXU (DIVide eXtend as Unsigned) Divide

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct DIVXUW | Rs, ERd 5 : 3 rs :0:erd 20
Notes

108

2.2.29 (1) EEPMOV (B)

EEPMOV (MOVe datato EEPROM) Block Data Transfer
Operation Condition Code
if R4L # O then
repeat @ER5+ - @ERG+ | U HUNZVC
R4L -1 - R4L |_‘_‘_‘_‘_‘_‘_‘_|
until R4L =0

else next: H: Previous value remains unchanged.
N: Previous value remains unchanged.

Assembly-L anguage For mat Z: Previous value remains unchanged.

EEPMOV. B V. Prev? ous value remaJ: ns unchanged.
C: Previous value remains unchanged.

Operand Size

Description

Thisinstruction performs a block data transfer. It moves data from the memory location specified
in ER5 to the memory location specified in ER6, increments ER5 and ER6, decrements R4L, and
repeats these operations until R4L reaches zero. Execution then proceeds to the next instruction.
The data transfer is performed a byte at atime, with RAL indicating the number of bytesto be
transferred. The byte symbol in the assembly-language format designates the size of R4L (and
limits the maximum number of bytes that can be transferred to 255). No interrupts are detected
while the block transfer isin progress.

When the EEPMOV.B instruction ends, R4L contains 0 (zero), and ER5 and ERG6 contain the last
transfer address + 1.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands

Mode istbyte | 2ndbyte | 3rdbyte | 4thbyte | States

— EEPMOV.B 7 B |5 :C |5 :9 |8 :F|4+2n

Note: * nis the initial value of R4L. Although n bytes of data are transferred, 2(n + 1) data accesses are
performed, requiring 2(n + 1) states. (n =0, 1, 2, ..., 255).

Notes

Thisinstruction first reads the memory locations indicated by ER5 and ERG, then carries out the
block data transfer.

109

2.2.29 (2) EEPMOV (W)

EEPMOV (MOVedatato EEPROM) Block Data Transfer
Operation Condition Code
if R4 £ 0then
repeat @ERS+ . @ERG+ | U HUNZVC
R4—1 - Re (== 1=1=]=[=[=]-]
until R4=0
else next; H: Previous vaue remains unchanged.
N: Previous vaue remains unchanged.
Assembly-L anguage For mat Z: Previous value remains unchanged.
EEPMOV. W V: Previous value remains unchanged.
C: Previous value remains unchanged.
Operand Size
Description

Thisinstruction performs a block data transfer. It moves data from the memory location specified
in ERS to the memory location specified in ER6, increments ER5 and ER6, decrements R4, and
repeats these operations until R4 reaches zero. Execution then proceeds to the next instruction.
The data transfer is performed a byte at atime, with R4 indicating the number of bytesto be
transferred. The word symbol in the assembly-language format designates the size of R4 (allowing
amaximum 65535 bytesto be transferred). All interrupts are detected while the block transfer isin
progress.

If no interrupt occurs while the EEPMOV.W instruction is executing, when the EEPMOV.W
instruction ends, R4 contains 0 (zero), and ER5 and ER6 contain the last transfer address + 1.

If an interrupt occurs, interrupt exception handling begins after the current byte has been
transferred. R4 indicates the number of bytes remaining to be transferred. ER5 and ER6 indicate
the next transfer addresses. The program counter value pushed onto the stack in interrupt
exception handling is the address of the next instruction after the EEPMOV.W instruction.

e Seethe note on EEPMOV.W and interrupts.

110

2.2.29 (2) EEPMOV (W)

EEPMOV (MOVedatato EEPROM) Block Data Transfer

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands

Mode istbyte | 2ndbyte | 3rdbyte | 4thbyte | States

— EEPMOV.W 7 B | D4 |59 |8 :iF|4+2n

Note: * nis the initial value of R4. Although n bytes of data are transferred, 2(n + 1) data accesses are
performed, requiring 2(n + 1) states. (n =0, 1, 2, ..., 65535).

Notes

Thisinstruction first reads memory at the addresses indicated by ER5 and ER6, then carries out
the block data transfer.

EEPMOV.W Instruction and Interrupt

If an interrupt request occurs while the EEPMOV.W instruction is being executed, interrupt
exception handling is carried out after the current byte has been transferred. Register contents are
then asfollows:

ERS5: address of the next byte to be transferred
ERG6: destination address of the next byte
R4: number of bytes remaining to be transferred

The program counter value pushed on the stack in interrupt exception handling is the address of
the next instruction after the EEPMOV.W instruction. Programs should be coded as follows to
allow for interrupts during execution of the EEPMOV.W instruction.

Example:
L1: EEPMOV. W
MOV. W R4, R4
BNE L1
Interrupt requests other than NMI are not accepted if they are masked in the CPU.
During execution of the EEPMOV.B instruction no interrupts are accepted, including NMI.

111

2.2.30 (1) EXTS (W)

EXTS (EXTend as Signed) Sign Extension

Operation Condition Code
(<Bit 7> of Rd) - (<bits 15 to 8> of Rd)

(===l]o]-]
Assembly-L anguage For mat
EXTS. W Rd H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise
cleared to O.
Operand Size Z. Settolif theresultis zero; otherwise
Word cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction copies the sign of the lower 8 bitsin a 16-bit register Rd in the upward direction
(copies Rd hit 7 to bits 15 to 8) to extend the data to signed word data.

Rd Rd
Bit 15 7 0 Bit 15 7 0
| Don'’t care | — | Sign extension
8 bits T 8 bits 8 bits 8 bits
Sign bit

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Register direct | EXTS.W Rd 17 D :rd 1
Notes

112

2.2.30 (2) EXTS(L)

EXTS (EXTend as Signed) Sign Extension

Operation Condition Code
(<Bit 15> of ERd) - (<bits 31 to 16> of ERd)

(=== [=[:l:T0]—]
Assembly-L anguage For mat
EXTS. L ERd H: Previous value remains unchanged.
N: Setto 1if theresult isnegative; otherwise
cleared to O.
Operand Size Z: Settolif theresultis zero; otherwise
Longword cleared to 0.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction copies the sign of the lower 16 bitsin a 32-bit register ERd in the upward
direction (copies ERd bit 15 to bits 31 to 16) to extend the data to signed longword data.

ERd ERd
Bit 31 15 0 Bit 31 15 0
| Don't care | — | Sign extension
16 bits T 16 bits 16 bits 16 bits
Sign bit

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2nd byte | 3rd byte 4th byte | States
Register direct EXTS.L ERd 1: 7 F :0Oerd 1
Notes

113

2.2.31 (1) EXTU (W)

EXTU (EXTend as Unsigned) Zero Extension

Operation Condition Code
0 - (<hits 15 to 8> of Rd)

Assembly-L anguage For mat
EXTU. W Rd H: Previous vaue remains unchanged.
N: Alwayscleared to 0.
Z: Setto 1if theresult iszero; otherwise
Operand Size cleared to O.
Word V: Alwqys cleared to 0..
C: Previous value remains unchanged.

Description
This instruction extends the lower 8 bitsin a 16-bit register Rd to word data by padding with
zeros. That is, it clears the upper 8 bits of Rd (bits 15 to 8) to O.
Rd Rd
Bit 15 7 0 Bit 15 7 0
Don't care | — | Zero extension
8 bits 8 bits 8 bits 8 bits

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct EXTU.W Rd 107 5 rd 1
Notes

114

2.2.31(2) EXTU (L)

EXTU (EXTend as Unsigned) Zero Extension

Operation Condition Code
0 - (<bits 31 to 16> of ERd)

Assembly-L anguage For mat
EXTU. L ERd H: Previous value remains unchanged.
N: Alwayscleared to 0.
Z: Settolif theresult iszero; otherwise
Operand Size cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.

Longword

Description
Thisinstruction extends the lower 16 bits (general register Rd) in a 32-bit register ERd to
longword data by padding with zeros. That is, it clears the upper 16 bits of ERd (bits 31 to 16) to O.
ERd ERd
Bit 31 15 0 Bit 31 15 0
Don't care | — | Zero extension |
16 bits 16 bits 16 bits 16 bits

Available Registers
ERd: EROtoER7Y

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct EXTU.L ERd 107 7 :0:erd 1
Notes

115

2.2.32 (1) INC (B)

INC (INCrement) I ncrement

Operation Condition Code
Rd+1 - Rd

Assembly-L anguage For mat H: Previous value remains unchanged.
I NC. B Rd N: Setto 1if theresult is negative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if anoverflow occurs; otherwise
Byte cleared to O.

C: Previous value remains unchanged.

Description

Thisinstruction increments an 8-bit register Rd (destination operand) and stores the result in the
8-hit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Register direct INC.B Rd 0 : A 0 : rd 1
Notes

An overflow is caused by the operation H'7F + 1 - H'80.

116

2.2.32(2) INC (W)

INC (INCrement) Increment
Operation Condition Code
Rd+1 - Rd
Rd+2 - Rd I U HUN Z V C
EEEERERE
Assembly-L anguage For mat H: Previous value remains unchanged.
| NC. W #1. Rd N: Setto 1if theresult isnegative; otherwise
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if an overflow occurs; otherwise
Word cleared to O.
C: Previous value remains unchanged.
Description

Thisinstruction adds the immediate value 1 or 2 to the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct INC.W #1, Rd 0 : B 5 i rd 1
Register direct | INC.W #2Rd | 0 . B | D 1
Notes

An overflow is caused by the operations H'7FFF + 1 . H'8000, H'7FFF + 2 - H'8001, and
H'7FFE + 2 - H'8000.

117

2.2.32(3) INC (L)

INC (INCrement) I ncrement
Operation Condition Code

ERd+1 - ERd

ERd+2 - ERd | U HUNZVC

Assembly-L anguage For mat H: Previous value remains unchanged.
I NC. L #1. ERd N: Setto 1if theresultisnegative; otherwise
I NC. L #2,ERd cleared t.o 0. . .
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if an overflow occurs; otherwise
Longword cleared to O.

C: Previous value remains unchanged.

Description

This instruction adds the immediate value 1 or 2 to the contents of a 32-bit register ERd
(destination operand) and stores the result in the 32-bit register ERd.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte | States
Register direct INC.L #1, ERd 0 B 7 i0ierd 1
Register direct INC.L #2, ERd 0 B F éoéerd 1
Notes

An overflow is caused by the operations H'7FFFFFFF + 1 - H'80000000, H'7FFFFFFF + 2 -
H'80000001, and H'7FFFFFFE + 2 - H'80000000.

118

2233 IMP

IJMP (JuMP)

Unconditional Branch

Operation

Effective address - PC

Condition Code

Assembly-L anguage For mat H: Previous value remains unchanged.

IVP <EA> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Description

This instruction branches unconditionally to a specified effective address.

Available Registers
ERn: EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of States
Mode 1st byte 2nd byte | 3rd byte 4th byte Normal ‘ Advanced
Register indirect JMP @ERn 5: 9 |0em: O 2
Absolute address JMP @aa:24 5 A abs 3
Memory indirect JMP @@aa:8 5 B abs 4 ‘ 5

Notes

The structure of the branch address and the number of states required for execution differ between
norma mode and advanced mode.

119

2.2.34 ISR

JSR (Jump to SubRoutine) Jump to Subroutine

Operation Condition Code

PC - @-SP
Effective address — PC

Assembly-L anguage For mat H: Previous value remains unchanged.

JSR <EA> N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Description

This instruction pushes the program counter onto the stack as a return address, then branchesto a
specified effective address. The program counter value pushed onto the stack is the address of the
instruction following the JSR instruction.

Available Registers
ERn: EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of States
Mode 1st byte 2nd byte | 3rd byte 4th byte Normal Advanced
Register indirect JSR @ERn 5: D |[0Oem O 3 4
Absolute address JSR @aa:24 5 E abs 4 5
Memory indirect JSR @@aa:8 5 F abs 4 6

120

2.2.34 ISR

JSR (Jump to SubRoutine) Jump to Subroutine

Notes

The stack structure differs between normal mode and advanced mode. In normal mode only the
lower 16 bits of the program counter are pushed onto the stack.

N
N
Reserved
PC ! ! ‘ I PC , j ‘ N
23 16 15 87 0 23 16 15 87 0
Normal mode Advanced mode

121

2.2.35(1) LDC (B)

LDC (LoaD to Control register) Load CCR

Operation Condition Code

<EAs> - CCR
I U H UN Z V C

EEEIERERENEAERED

Assembly-L anguage For mat I: Loaded from the corresponding bit in the

LDC. B <EAs>, CCR source operand.
H: Loaded from the corresponding bit in the
Operand Size source operand.
Byte N: Loaded from the corresponding bit in the
source operand.
Z: Loaded from the corresponding bit in the
source operand.
V: Loaded from the corresponding bit in the
source operand.
C: Loaded from the corresponding bit in the
source operand.
Description

Thisinstruction loads the source operand contents into the condition-code register (CCR).

No interrupt requests, including NMI, are accepted immediately after execution of this instruction.

Available Registers
Rs. ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate LDC.B |#xx:8,CCR| 0 i 7 IMM 1
Register direct LDC.B Rs, CCR 0 3 0 i rs 1

Notes

122

2.2.35(2) LDC (B)

LDC (LoaD to Control register)

Load EXR

Operation
<EAs> - EXR

Condition Code

Assembly-L anguage For mat H: Previous value remains unchanged.
LDC. B <EAs>. EXR N: Previous value remains unchanged.

Z: Previous value remains unchanged.
Operand Size V: Previous value remains unchanged.
Byte C: Previous value remains unchanged.
Description

This instruction loads the source operand contents into the extended control register (EXR).

No interrupt requests, including NMI, are accepted for three states after execution of this

instruction.

Available Registers
Rs. ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate LDC.B |#xx:8,EXR| 0 @ 1 4 i1 0 7 IMM 2
Registerdirect | LDCB | RS,EXR | 0 : 3 | 1 ' rs 1

Notes

123

2.2.35(3) LDC (W)

LDC (LoaD to Control register)

Load CCR

Operation
(EAs) » CCR

Assembly-L anguage For mat
LDC. W <EAs>, CCR

Condition Code

| U HUN Z V C
Lelelefelefofs o]

I: Loaded from the corresponding bit in the

source operand.
H: Loaded from the corresponding bit in the
Operand Size source operand. . N
N: Loaded from the corresponding bit in the
Word source operand.
Z: Loaded from the corresponding bit in the
source operand.
V: Loaded from the corresponding bit in the
source operand.
C: Loaded from the corresponding bit in the
source operand.
Description

This instruction |oads the source operand contents into the condition-code register (CCR).
Although CCR is a byte register, the source operand is word size. The contents of the even address

are loaded into CCR.

No interrupt requests, including NMI, are accepted immediately after execution of this instruction.

Available Registers
ERs. EROto ER7

124

TN

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic Operands
Mode 1st byte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte | 7th byte | 8th byte | 9th byte |10th byte |States
Regi : : : o
Register LDC.W @ERSs, CCR 0:1|4:0|6: 9 |oersi 0 3
indirect FS
Register LDCW |@(d:16,ERs),CCR| 0 : 1 | 4 : 0 | 6 : F [olersi 0 disp 4
indirect with o
displace- HE :
ment LDCW |@(d32,ERs),CCR| 0 © 1 | 4 0 | 7 : 8 oierss 0 | 6 :B | 2:0 disp 6
Register :
indirect with Do
post- LDC.W @ERs+, CCR 0 1 4 0 6 D |0:ers: O 4
increment :
LDC.W @aa:16, CCR 0 1 4 0 6 B 0 0 abs 4
Absolute :
address
LDC.W @aa:32, CCR 0 1 4 0 6 B 2 :0 abs 5
Notes

(JosiBe |011U0D 01 de0 1) DA

H0D peo]

(M) 2a1 (€)seze

2.2.35(4) LDC (W)

LDC (LoaD to Control register)

Load EXR

Operation
(EAs) - EXR

Assembly-L anguage For mat
LDC. W <EAs>, EXR

Operand Size
Word

Condition Code

I U H UN Z V C

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Description

This instruction |oads the source operand contents into the extended control register (EXR).

Although EXR is a byte register, the source operand is word size. The contents of the even address

are loaded into EXR.

No interrupt requests, including NMI, are accepted for three states after execution of this

instruction.

Available Registers
ERs. EROto ER7

126

LT

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic Operands
Mode 1st byte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte | 7th byte | 8th byte | 9th byte |10th byte |States
Register LDC.W @ERS, EXR 0:1|4:1|6: 9 [persi 0 3
indirect FS
Register LDCW |@(d:16,ERs),EXR| O : 1 | 4 : 1 | 6 : F [olersi 0 disp 4
indirect with o
displace- HE :
ment LDCW |@(d:32,ERS),EXR| 0 © 1 | 4 1 | 7 : 8 [oierss 0 | 6 :B | 2:0 disp 6
Register :
indirect with Do
post- LDC.W @ERs+, EXR 0 1 4 1 6 D |0:ers: O 4
increment :
LDC.W @aa:16, EXR 0 1 4 1 6 B 0 0 abs 4
Absolute :
address
LDC.W @aa:32, EXR 0 1 4 1 6 B 2 :0 abs 5
Notes

(JosiBe |011U0D 01 de0 1) DA

dX3 peo]

(M) 0a1 w)sezz

2.2.36 LDM

LDM (LoaD to Multipleregisters)

Restore Data from Stack

Operation
@SP+ - ERn (register list)

Assembly-L anguage For mat

Condition Code

I U H UN Z V C

LDM L @SP+, <register list> H: Previous value remains unchanged.
N: Previous vaue remains unchanged.
Operand Size Z: Previous value remains unchanged.
Longword V: Prev! ous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction restores data saved on the stack to a specified list of registers. Registers are
restored in descending order of register number.

Two, three, or four registers can be restored by one LDM instruction. The following ranges can be

specified in the register list.

Tworegisters: ERO-ER1, ER2-ERS, ER4-ER5, or ER6-ER7

Threeregisters: ERO-ER2 or ER4-ER6
Four registers: ERO-ER3 or ER4-ER7

Available Registers
ERn: EROto ER7

128

2.2.36 LDM

LDM (LoaD to Multipleregisters)

Restore Data from Stack

Operand Format and Number of States Required for Execution

Ad%gzzing Mnemonic| Operands Instruction Format gjtc;tg;
1st pyte 2nd :byte 3rd :byte 4th E)y:te
- LDM.L ggijléRn+l) 0 1 1 0 6 D 7 %O%ern+l 7
_ LDM.L (%gsjiszz) 0 1 2 0 6 D 7 %O%ern+2 9
- LDM.L (@égtszms) 0 1 3 0 6 D 7 %0%ern+3 1
Notes

129

2.2.37 LDMAC

LDMAC (LoaD to MAC register) Load MAC Register
Operation Condition Code

ErRS*MACH | UHUNZV C
ERs -~ MACL |_‘_‘_‘_‘_‘_‘_‘_|

H: Previous vaue remains unchanged.
Assembly-L anguage For mat N: Previous vaue remains unchanged.
LDMAC ERs, MAC register Z Previ ousvalue rema? ns unchanged.
V: Previous value remains unchanged.
Operand Size C: Previous value remains unchanged.
Longword
Description

This instruction moves the contents of a general register to a multiply-accumulate register (MACH
or MACL). If thetransfer isto MACH, only the lowest 10 bits of the general register are
transferred.

Supported only by the H8S/2600 CPU.

Available Registers
ERs. EROto ER7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct | LDMAC |ERs,MACH| 0 : 3 2 ‘0ers 2
Register direct LDMAC |ERs,MACL| 0 i 3 3 Olers 2
Notes

Execution of thisinstruction clears the overflow flag in the multiplier to 0.

130

2.2.38 MAC

MAC (Multiply and ACcumulate)

Multiply and Accumulate

Operation Condition Code

(EAN) x (EAm) + MAC register —

MAC register I U HUN Z V C
* * *

ERn +2 - ERn |_‘_‘_‘_‘___ _|

ERm+ 2 - ERm

H: Previous value remains unchanged.
Assembly-L anguage For mat N: Previous value remains unchanged.
MAC @ERn+, @ERm+ Z: Previous value remains unchanged.

V: Previous value remains unchanged.
Operand Size C: Previous value remains unchanged.
Description

Thisinstruction performs signed multiplication on two 16-bit operands at addresses given by the
contents of general registers ERn and ERm, adds the 32-bit product to the contents of the MAC
register, and stores the sum in the MAC register. After this operation, ERn and ERm are both
incremented by 2.

The operation can be carried out in saturating or non-saturating mode, depending on the MACS hit
in asystem control register. (SY SCR)

See the relevant hardware manual for further information.

In non-saturating mode, MACH and MACL are concatenated to store a 42-bit result. The value of
bit 41 is copied into the upper 22 bits of MACH as a sign extension.

In saturating mode, only MACL isvalid, and the result is limited to the range from H'80000000
(minimum value) to H'7FFFFFFF (maximum value). If the result overflows in the negative
direction, H'80000000 (the minimum value) is stored in MACL. If the result overflowsin the
positive direction, H'7FFFFFFF (the maximum value) is stored in MACL. MACH retainsits
previous contents.

Thisinstruction is supported only by the H8S/2600 CPU.

131

2.2.38 MAC

MAC (Multiply and ACcumulate) Multiply and Accumulate

Operand Format and Number of States Required for Execution

; Instruction Format
Addressing Mnemonic| Operands No. of
Mode 1st byte 2nd byte 3rd byte 4th byte States
Register : : : : D
indirect with MAC @ERn+, 0 i1 6 : 0 6 : D |0iem 0 erm| 4
. @ERmM+ : : : : H
post-increment : : : : L

Notes

Flags (N, Z, V) indicating the result of the MAC instruction can be set in the condition-code
register (CCR) by the STMAC instruction.

Further Explanation of Instructions Using Multiplier
1. Modification of flags
The multiplier has N-MULT, Z-MULT, and V-MULT flags that indicate the results of MAC

instructions. These flags are separated from the condition-code register (CCR). The values of
these flags can be set inthe N, Z, and V flags of the CCR only by the STMAC instruction.

N-MULT and Z-MULT are modified only by MAC instructions. V-MULT retains avalue
indicating whether an overflow has occurred in the past, until it is cleared by execution of the
CLRMAC or LDMAC instruction.

The setting and clearing conditions for these flags are given below.

e N-MULT (negative flag)

Saturating mode Set when bit 31 of register MACL is set to 1 by execution of a
MAC instruction

Cleared when bit 31 of register MACL is cleared to 0 by
execution of a MAC instruction

Non-saturating mode | Set when bit 41 of register MACH is set to 1 by execution of a
MAC instruction

Cleared when bit 41 of register MACH is cleared to 0 by
execution of a MAC instruction

132

2.2.38 MAC

MAC (Multiply and ACcumulate) Multiply and Accumulate

e Z-MULT (zeroflag)

Saturating mode

Set when register MACL is cleared to 0 by execution of a MAC
instruction

Cleared when register MACL is not cleared to 0 by execution
of a MAC instruction

Non-saturating mode

Set when registers MACH and MACL are both cleared to 0 by
execution of a MAC instruction

Cleared when register MACH or MACL is not cleared to
0 by execution of a MAC instruction

e V-MULT (overflow flag)

Saturating mode

Set when the result of the MAC instruction overflows the range
from H'80000000 (minimum) to H'7FFFFFFF (maximum)

Cleared when a CLRMAC or LDMAC instruction is executed
Note: Not cleared when the result of the MAC instruction is
within the above range

Non-saturating mode

Set when the result of the MAC instruction overflows the range
from H'20000000000 (minimum) to H'1FFFFFFFFFF
(maximum)

Cleared when a CLRMAC or LDMAC instruction is executed
Note: Not cleared when the result of the MAC instruction is
within the above range

The N-MULT, Z-MULT, and V-MULT flags are not modified by switching between
saturating and non-saturating modes, or by execution of a multiply instruction (MULXU

or MULXS).
2. Example

CLRVAC
MAC @Rl+, @R2+

MAC @R1+, @R2+ ~ M Overflow occurs

MAC @R1+, @R2+ 0 Result=0

NCP

STMAC MACH,ER3 M CCR(N=0,Z=1,V=1)

CLRVAC

STMAC MACH, ER3 <M CCR(N=0,Z=1,V=0)

133

2.2.39 (1) MOV (B)

MOV (MOVedata)

Move

Operation
Rs - Rd

Assembly-L anguage For mat

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if thetransferred datais negative;

MOV. B Rs, Rd :
otherwise cleared to 0.
Z: Settolif thetransferred datais zero;
otherwise cleared to 0.
Operand Size V. Always cleared to O.
Byte C: Previous value remains unchanged.
Description

Thisinstruction transfers one byte of datafrom an 8-bit register Rs to an 8-bit register Rd, tests the
transferred data, and sets condition-code flags according to the result.

Available Registers

Rs: ROL to R7L, ROH to R7H
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | States
Register direct MOV.B Rs, Rd 0 :C | rs:ird 1

Notes

134

2.2.39 (2) MOV (W)

MOV (MOVedata)

Move

Operation
Rs - Rd

Assembly-L anguage For mat

Condition Code

H: Previous value remains unchanged.
N: Setto 1if thetransferred datais negative;

MOV. W Rs, Rd -
otherwise cleared to 0.
Z: Settolif thetransferred datais zero;
otherwise cleared to 0.
Operand Size V: Always cleared to 0.
Word C: Previous value remains unchanged.
Description

Thisinstruction transfers one word of datafrom a 16-bit register Rs to a 16-bit register Rd, tests
the transferred data, and sets condition-code flags according to the result.

Available Registers

Rd: ROtoR7, EOto E7
Rs: ROtoR7,EOQto E7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct MOV.W Rs, Rd 0 : D | rs:rd 1

Notes

135

2.2.39 (3) MOV (L)

MOV (MOVedata)

Move

Operation
ERs - ERd

Assembly-L anguage For mat
MOV. L ERs, ERd

Condition Code

H: Previous vaue remains unchanged.

N: Setto 1if thetransferred datais negative;
otherwise cleared to 0.

Z: Settolif thetransferred datais zero;
otherwise cleared to 0.

Operand Size V: Always cleared to 0.
Longword C: Previous value remains unchanged.
Description

This instruction transfers one word of data from a 32-bit register ERs to a 32-bit register ERd, tests
the transferred data, and sets condition-code flags according to the result.

Available Registers

ERd: EROto ER7
ERs: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct MOV.L ERs,ERd | 0 | F |liersiOierd 1
Notes

136

2.2.39 (4) MOV (B)

MOV (MOVedata) Move

Operation Condition Code

(EAS9) -~ Rd | U HUNZ V C
===l s 0]~

Assembly-L anguage For mat H: Previous value remains unchanged.

MOV. B <EAs>, Rd N: Setto 1if thetransferred datais negative;

otherwise cleared to 0.
Z. Settolif thetransferred datais zero;
otherwise cleared to 0.
Operand Size V. AlW&yS cleared to O.
C: Previous value remains unchanged.

Byte

Description

Thisinstruction transfers the source operand contents to an 8-bit register Rd, tests the transferred
data, and sets condition-code flags according to the result.

Available Registers

Rd: ROL to R7L, ROH to R7H
ERs. EROto ER7

137

8¢ET

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
de Mnemonic| Operands States
Mo 1st byte | 2nd byte | 3rd byte | 4th byte 5th byte 6th byte 7th byte 8th byte

Immediate | MOV.B | #8Rd | F :rd | IMM 1
Register A

Lo MOV.B @ERSs, Rd 6 8 |O:ers: rd 2
indirect .

Register @(d:16, ERs), Lo)

indirect MOV.B Rd 6 E Ogersg rd disp 3
with :

displace- movg |@UES2ERS).| ;i g 6 A | 2 i disp 5
ment Rd :

Register

indirect :

with post- MOV.B @ERs+, Rd 6 : C 3
increment

MOV.B @aa:8, Rd 2 rd abs 2
Absolute MOV.B | @aa:16,Rd | 6 @ A 0 ird abs 3
address :
MOV.B @aa:32, Rd 6 : A 2 i abs 4

Notes

The MOV.B @ER7+, Rd instruction should never be used, because it leaves an odd value in the stack pointer (ER7).
For detailsrefer to section 3.3, Exception-Handling State, or to the relevant hardware manual .

For the @aa:8/@aa: 16 access range, refer to the relevant microcontroller hardware manual.

(erepaAOIN) AOIN

SN0

(@) A\OW (W) 6E2C

2.2.39 (5) MOV (W)

MOV (MOVedata)

Move

Operation
(EAs) - Rd

Assembly-L anguage For mat
MOV. W <EAs>, Rd

Condition Code

| U HUN Z V C
===l s 0]~

H: Previous value remains unchanged.

N: Setto 1if thetransferred datais negative;
otherwise cleared to O.

Z: Settolif thetransferred datais zero;
otherwise cleared to 0.

Operand Size V: Always cleared to 0.
Word C: Previous value remains unchanged.
Description

Thisinstruction transfers the source operand contents to a 16-bit register Rd, tests the transferred
data, and sets condition-code flags according to the result.

Available Registers

Rd: ROtoR7,EOto E7
ERs. EROto ER7

139

ovT

Operand Format and Number of States Required for Execution

(erepaAOIN) AOIN
(M) AOW () 6E2C

Addressing) Instruction Format No. of
Mode Mnemonic | Operands States
1st byte | 2nd byte | 3rd byte ‘ 4th byte 5th byte 6th byte 7th byte 8th byte
Immediate | MOV.W | #16,Rd | 7 © 9 | 0 | rd IMM 2
Register
indirect MOV.W @ERs, Rd 6 9 rd 2
Register @(d:16, ERs), : ;
indirect MOV.W Rd 6 F ford disp 3
with
displace- movw | @S2 ERS) o i g 0|6 :iB| 2 im disp 5
ment Rd
Register
indirect :
with post- MOV.W @ERs+, Rd 6 D rd 3
increment
MOV.W @aa:16, Rd 6 B 0 rd abs 3
Absolute : :
address : :
MOV.W @aa:32, Rd 6 : B 2 . abs 4
Notes

1. Thesource operand <EAs> must be located at an even address.
2. Inmachine language, MOV.W @ER7+, Rd isidentical to POPW Rd.

SN0

2.2.39 (6) MOV (L)

MOV (MOVedata)

Move

Operation
(EAs) - ERd

Assembly-L anguage For mat
MOV. L <EAs>, ERd

Condition Code

| U HUN Z V C
===l s 0]~

H: Previous value remains unchanged.

N: Setto 1if thetransferred datais negative;
otherwise cleared to O.

Z: Settolif thetransferred datais zero;
otherwise cleared to 0.

Operand Size V: Always cleared to 0.
Longword C: Previous value remains unchanged.
Description

Thisinstruction transfers the source operand contents to a specified 32-bit register (ERd), tests the
transferred data, and sets condition-code flags according to the result. The first memory word
located at the effective addressis stored in extended register Ed. The next word is stored in general

register Rd.
/_\/
MSB «—EA
LSB
4 ‘ A i L
ERd Ed R&H | Rd |

Available Registers

ERs. EROto ER7
ERd: EROto ER7

141

(44"

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic Operands
Mode 1st byte | 2nd byte | 3rd byte ‘4th byte ‘ 5th byte ‘ 6th byte | 7th byte | 8th byte | 9th byte |10th byte |States

Immediate MOV.L #xx:32, Rd 7 5 A | 0 i0erd IMM 3
Register MOV.L @ERs, ERd 0oi1]0i0]| 69 persoier 4
indirect : : o
Register MOV.L |@(d:16,ERs),ERd| 0 i 1 | 0 i 0 | 6 | F |olersiOerd disp 5
indirect with : : o
displace- : : . :
ment MOV.L @(d:32,ERs), ERd | O 1 0 0 7 8 Ogersg 0 6 B 2 disp 7
Register H
indirect MOV.L @ERs+, ERd 0:1]0:0] 6 : D |oersioerd 5
with post- : : FE
increment FE

MOV.L @aa:16, ERd 0 1 0 0 6 B abs 5
Absolute
address

MOV.L @aa:32, ERd 0 1 0 0 6 B abs 6
Notes

1. The source operand <EAs> must be located at an even address.
2. Inmachinelanguage, MOV.L @R7+, ERd isidentical to POPL ERd.

(erepaAOIN) AOIN

SN0

(1) AOW (©)6£22

2.2.39 (7) MOV (B)

MOV (MOVedata) Move

Operation Condition Code

Rs — (BAQ) | U HUNZ V C
===l s 0]~

Assembly-L anguage For mat H: Previous value remains unchanged.

MOV. B Rs, <EAd> N: Setto 1if thetransferred datais negative;

otherwise cleared to 0.
Z. Settolif thetransferred datais zero;
otherwise cleared to 0.
Operand Size V. AlW&yS cleared to O.
C: Previous value remains unchanged.

Byte

Description

Thisinstruction transfers the contents of an 8-bit register Rs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rs: ROL to R7L, ROH to R7H
ERd: EROto ERY

143

144"

Operand Format and Number of States Required for Execution

Addressing M) Instruction Format No. of
de nemonic| Operands States
Mo 1st byte | 2nd byte | 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte

Regi :
Register MOV.B Rs, @ERd 6 8 |lierd: rs 2
indirect : :
Register Rs, H .
indirect MOV.B @(d:16, ERd) 6 E lgerd§ rs disp 3
with — H
displace- Rs, - : : "
ment MOV.B @(d:32, ERd) 7 8 Oierd§ 0 6 : A A rs disp 5
Register
indirect MOVB | Rs,@-Erd | 6 | C |llerdi rs 3
with pre- R
decrement

MOV.B Rs, @aa:8 3 rs abs 2
Absol

bsolute MOV.B | Rs,@aal6 | 6 . A | 8 i rs abs 3

address

MOV.B Rs, @aa:32 6 A A s abs 4
Notes

1. TheMOV.B Rs, @-ER?7 instruction should never be used, because it leaves an odd value in the stack pointer
(ERY). For details refer to section 3.3, Exception Handling Stete, or to the relevant hardware manual.
2. Execution of MOV.B RnL, @—ERn or MOV.B RnH, @—ERn first decrements ERn by one, then transfers the
designated part (RnL or RnH) of the resulting ERn value.

(erepaAOIN) AOIN

SN0

(@) A\OW @)6g22

2.2.39 (8) MOV (W)

MOV (MOVedata)

Move

Operation
Rs - (EAd)

Assembly-L anguage For mat
MOV. W Rs, <EAd>

Condition Code

| U HUN Z V C
===l s 0]~

H: Previous value remains unchanged.

N: Setto 1if thetransferred datais negative;
otherwise cleared to O.

Z: Settolif thetransferred datais zero;
otherwise cleared to 0.

Operand Size V: Always cleared to 0.
Word C: Previous value remains unchanged.
Description

Thisinstruction transfers the contents of a 16-bit register Rs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rs: ROtoR7,EOtoE7
ERd: EROto ERY

145

T

Operand Format and Number of States Required for Execution

Addressing M) Instruction Format No. of
de nemonic| Operands States
Mo 1st byte | 2nd byte | 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte
Register : :
indirect MOV.W Rs, @ERd 6 9 2
Register Rs, .
indirect MOV.W @(d:16, ERd) 6 F dISp 3
with : : :
displace- Rs, : : A
ment MOV.W @(d:32, ERd) 7 8 0 6 B A rs disp 5
Register
indirect :
with pre- MOV.W Rs, @-ERd 6 : D rs 3
decrement
MOVW | Rs,@aail6 | 6 : B | 8 | rs abs 3
Absolute :
address
MOV.W Rs, @aa:32 6 B A s abs 4
Notes

1. Thedestination operand <EAd> must be located at an even address.
2. Inmachine language, MOV.W Rs, @—ER?7 isidentica to PUSH.W Rs.
3. When MOV.W Rn, @-ERn is executed, the transferred value comes from (value of ERn before execution) — 2.

(erepaAOIN) AOIN

SN0

(M) AOW (8)6£2C

2.2.39(9) MOV (L)

MOV (MOVedata)

Move

Operation
ERs - (EAd)

Assembly-L anguage For mat
MOV. L ERs, <EAd>

Condition Code

| U HUN Z V C
===l s 0]~

H: Previous value remains unchanged.

N: Setto 1if thetransferred datais negative;
otherwise cleared to O.

Z: Settolif thetransferred datais zero;
otherwise cleared to 0.

Operand Size V: Always cleared to 0.
Longword C: Previous value remains unchanged.
Description

Thisinstruction transfers the contents of a 32-bit register ERs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result. The
extended register (ES) contents are stored at the first word indicated by the effective address. The
genera register (Rs) contents are stored at the next word.

/__/

MSB — EA

LSB

2|VVV

ERs Es

RsH

Available Registers

ERs. EROto ER7
ERd: EROto ER7

147

214"

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte | 7th byte | 8th byte | 9th byte |10th byte |States
Register MOV.L ERs, @ERd 01| 0i0] 6 9 |terd0ers 4
indirect : : : P
Register MOV.L |ERs, @(d:16,ERd)| 0 : 1 | 0 i 0 | 6 : F disp 5
indirect with : : :
displace- : : : P
ment MOVL |ERs, @@32ER)| 0 (1 |0 0 |78 6B | A Oers disp 7
Register
indirect MOV.L ERSs, @-ERd oi1|l0i0|6:iD 5
with pre- : :
decrement
MOV.L ERs, @aa:16 oi1/0i0|6:8B abs 5
Absolute : :
address : : :
MOV.L ERs, @aa:32 0 1 0 0 6 B abs 6
Notes

1. Thedestination operand <EAd> must be located at an even address.
2. Inmachine language, MOV.L ERs, @-ER7 isidentical to PUSH.L ERs.
3. When MOV.L ERn, @-ERn is executed, the transferred value is (value of ERn before execution) — 4.

(erepaAOIN) AOIN

SN0

(1) AOW (B) 6522

2.2.40 MOVFPE

MOVFPE (MOVe From Peripheral with E clock) Move Datawith E Clock
Operation Condition Code
(EAs) - Rd

Synchronized with E clock

= ===l o]
Assembly-L anguage For mat H: Previous value remains unchanged.
MOVFPE @aa:16, Rd N: Setto 1if thetransferred datais negative;

otherwise cleared to 0.
Z. Settolif thetransferred datais zero;
otherwise cleared to 0.
Operand Size V. AlW&yS cleared to O.
C: Previous value remains unchanged.

Byte

Description

Thisinstruction transfers memory contents specified by a 16-bit absolute address to a general
register Rd in synchronization with an E clock, tests the transferred data, and sets condition-code
flags according to the resullt.

Note: Avoid using thisinstruction in microcontrollers without an E clock output pin, or in single-
chip mode.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Absolute MOVFPE |@aa:16,Rd| 6 @ A 4 % rd abs *
address : :
Notes

1. Thisinstruction cannot be used with addressing modes other than the above, and cannot transfer
word data or longword data.

2. The number of states required for execution is variable. For details, refer to the relevant
microcontroller hardware manual.

149

2.241 MOVTPE

MOVTPE (MOVe To Peripheral with E clock) Move Data with E Clock

Operation Condition Code

Rs - (EAd)

Synchronized with E clock | U HUNZVEC
===l o]

Assembly-L anguage For mat H: Previous value remains unchanged.

MOVTPE Rs, @aa:16 N: Setto 1if thetransferred datais negative;

otherwise cleared to 0.
Z. Settolif thetransferred datais zero;
otherwise cleared to 0.
Operand Size V. Always cleared to O.
C: Previous value remains unchanged.

Byte

Description

Thisinstruction transfers the contents of a general register Rs (source operand) to a destination
location specified by a 16-hit absolute address in synchronization with an E clock, tests the
transferred data, and sets condition-code flags according to the result.

Note: Avoid using thisinstruction in microcontrollers without an E clock output pin, or in single-
chip mode.

Available Registers
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | States
Absolute MOVTPE |Rs, @aa:16| 6 : A C irs abs *
address : :
Notes

1. Thisinstruction cannot be used with addressing modes other than the above, and cannot transfer
word data or longword data.

2. The number of states required for execution isvariable. For details, refer to the relevant
microcontroller hardware manual.

150

2.2.42 (1) MULXS (B)

MULXS (MULtiply eXtend as Signed) Multiply Signed
Operation Condition Code
Rd x Rs - Rd
I U HUN Z V C
(=== =T e =]
Assembly-L anguage For mat
MULXS. B Rs Rd H: Previous value remains unchanged.
N: Setto 1if theresult isnegative; otherwise
cleared to O.
Operand Size Z: Settolif theresultis zero; otherwise
Byte cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction multiplies the lower 8 bits of a 16-bit register Rd (destination operand) by the
contents of an 8-hit register Rs (source operand) as signed data and stores the result in the 16-bit
register Rd. If Rd is one of general registers RO to R7, Rs can be the upper part (RdH) or lower
part (RdL) of Rd. The operation performed is 8 bits x 8 bits - 16 bits signed multiplication.

Rd Rs Rd
‘ Don't care‘ Multiplicand ‘ X ‘ Multiplier ‘ - ‘ Product
8 bits 8 bits 16 bits

Available Registers

Rd: ROtoR7, EOto E7
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Register direct | MULXS.B Rs, Rd 0 i1 cC 0 5 0 rs i ord 4
Notes

The number of states in the H8S/2000 CPU is 13.

151

2.2.42 (2) MULXS (W)

MULXS (MULtiply eXtend as Signed) Multiply Signed

Operation Condition Code
ERd x Rs - ERd

(=== [=]-]
Assembly-L anguage For mat
MULXS. W Rs, ERd H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise
cleared to O.
Operand Size Z. Settolif theresultis zero; otherwise
Word cleared to O.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction multiplies the lower 16 bits of a 32-hit register ERd (destination operand) by the
contents of a 16-hit register Rs (source operand) as signed data and stores the result in the 32-bit
register ERd. Rs can be the upper part (Ed) or lower part (Rd) of ERd. The operation performed is
16 bits x 16 bits - 32 bits signed multiplication.

ERd Rs ERd
‘ Don't care ‘ Multiplicand ‘ X Multiplier - ‘ Product
16 bits 16 bits 32 bits

Available Registers

ERd: EROto ER7
Rs. ROtoR7,EOtoE7

Operand Format and Number of States Required for Execution

i Instruction Format
Addressing Mnemonic | Operands No. of

Mode 1st byte 2nd byte 3rd byte 4th byte | States

Register direct | MULXS.W | Rs, ERd 0 : 1 cC: o0 5 2 rs :0ierd| 5

Notes
The number of states in the H8S/2000 CPU is 21.

152

2.2.43 (1) MULXU (B)

MULXU (MULtiply eXtend as Unsigned) Multiply

Operation Condition Code
RdxRs - Rd

Assembly-L anguage For mat

MULXU. B Rs Rd H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
Operand Size V: Previous value remains unchanged.
Byte C: Previous value remains unchanged.
Description

Thisinstruction multiplies the lower 8 bits of a 16-bit register Rd (destination operand) by the
contents of an 8-bit register Rs (source operand) as unsigned data and stores the result in the 16-bit
register Rd. If Rd is one of general registers RO to R7, Rs can be the upper part (RdH) or lower
part (RdL) of Rd. The operation performed is 8 bits x 8 bits - 16 bits unsigned multiplication.

Rd Rs Rd
‘ Don't care‘ Multiplicand ‘ X ‘ Multiplier ‘ - ‘ Product ‘
8 bits 8 bits 16 bits

Available Registers

Rd: ROtoR7, EOto E7
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Register direct | MULXU.B Rs, Rd 5 0 rs : rd 3
Notes

The number of statesin the H8S/2000 CPU is 12.

153

2.2.43 (2) MULXU (W)

MULXU (M ULtiply eXtend as Unsigned) Multiply

Operation Condition Code
ERd x Rs - ERd

Assembly-L anguage For mat

MULXU. W Rs, ERd H: Previous vaue remains unchanged.
N: Previous vaue remains unchanged.
Z: Previous value remains unchanged.
Operand Size V: Previous value remains unchanged.
Word C: Previous value remains unchanged.
Description

This instruction multiplies the lower 16 bits of a 32-hit register ERd (destination operand) by the
contents of a 16-bit register Rs (source operand) as unsigned data and stores the result in the 32-bit
register ERd. Rs can be the upper part (Ed) or lower part (Rd) of ERd. The operation performed is
16 bits x 16 bits - 32 hits unsigned multiplication.

ERd Rs ERd
‘ Don't care ‘ Multiplicand ‘ X Multiplier - ‘ Product
16 bits 16 bits 32 bits

Available Registers

ERd: EROto ER7
Rs. ROtoR7,EOtoE7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct | MULXU.W | Rs, ERd 5 : 2 rs :0:erd 4
Notes

The number of states in the H8S/2000 CPU is 20.

154

2.2.44 (1) NEG (B)

NEG (NEGate) Negate Binary Signed
Operation Condition Code
0-Rd - Rd
I U H UN Z V C
==l l=lelefe]r]
Assembly-L anguage For mat H: Setto lif thereisaborrow at bit 3;
NEG B Rd otherwise cleared to 0.
N: Setto 1if theresult isnegative; otherwise
cleared to O.
Z: Settolif theresult is zero; otherwise
Operand Size cleared to O.
B V: Setto 1if an overflow occurs; otherwise
yte
cleared to 0.
C. Settolif thereisaborrow at bit 7;
otherwise cleared to 0.
Description

This instruction takes the two's complement of the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd (subtracting the register contents from H'00).
If the original contents of Rd were H'80, however, the result remains H'80.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct NEG.B Rd 17 8 : rd 1
Notes

An overflow occursif the original contents of Rd were H'80.

155

2.2.44 (2) NEG (W)

NEG (NEGate) Negate Binary Signed

Operation Condition Code
0—-Rd - Rd

Assembly-L anguage For mat H: Setto 1if thereisaborrow at bit 11;
NEG. W Rd otherwise cleared to 0.
N: Setto 1if theresult is negative; otherwise
cleared to 0.
Z. Settolif theresult iszero; otherwise
Operand Size cleared to O.
Word V: Settolif anoverflow occurs; otherwise
cleared to O.

C: Settolif thereisaborrow at bit 15;
otherwise cleared to 0.

Description

This instruction takes the two’s complement of the contents of a 16-hit register Rd (destination
operand) and stores the result in the 16-bit register Rd (subtracting the register contents from
H'0000). If the origina contents of Rd were H'8000, however, the result remains H'8000.

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct NEG.W Rd 17 9 i 1
Notes

An overflow occursif the original contents of Rd were H'8000.

156

2.2.44 (3) NEG (L)

NEG (NEGate) Negate Binary Signed
Operation Condition Code
0-ERd - ERd
I U H UN Z V C
= =T []
Assembly-L anguage For mat H: Setto 1if thereisaborrow at bit 27;
NEG L ERd otherwise cleared to 0.
N: Setto 1if theresult isnegative; otherwise
cleared to O.
Z: Settolif theresult is zero; otherwise
Operand Size cleared to 0.
Longword V: Setto 1if an overflow occurs; otherwise
cleared to 0.
C. Settolif thereisaborrow at bit 31;
otherwise cleared to 0.
Description

This instruction takes the two's complement of the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd (subtracting the register contents from
H'00000000). If the original contents of ERd were H'80000000, however, the result remains
H'80000000.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct NEG.L ERd 107 B :O:erd 1
Notes

An overflow occursif the original contents of ERd were H'80000000.

157

2.2.45 NOP

NOP (No OPeration) No Operation

Operation Condition Code
PC+2 - PC

Assembly-L anguage For mat H: Previous value remains unchanged.

NOP N: Previous vaue remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Description

This instruction only increments the program counter, causing the next instruction to be executed.
Theinternal state of the CPU does not change.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte States
— NOP 0 : 0 0 i 0 1
Notes

158

2.2.46 (1) NOT (B)

NOT (NOT = logical complement)

Logical Complement

Operation Condition Code
I U HUN Z V C
===l s 0]~
Assembly-L anguage For mat H: Previous value remains unchanged.
NOT. B Rd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V. Alwayscleared to 0.
Byte C: Previous value remains unchanged.
Description

This instruction takes the one’s complement of the contents of an 8-bit register Rd (destination

operand) and stores the result in the 8-bit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Register direct NOT.B Rd 17 0 i rd 1
Notes

159

2.2.46 (2) NOT (W)

NOT (NOT = logical complement)

L ogical Complement

Operation

Assembly-L anguage For mat
NOT. W Rd

Condition Code

H: Previous vaue remains unchanged.

N: Setto 1if theresult is negative; otherwise
cleared to O.

Z: Settolif theresult iszero; otherwise
cleared to O.

Operand Size V: Alwayscleared to 0.
Word C: Previous value remains unchanged.
Description

This instruction takes the one’s complement of the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte States
Register direct NOT.W Rd 17 1 1
Notes

160

2.2.46 (3) NOT (L)

NOT (NOT = logical complement)

Logical Complement

Operation
- ERd - ERd

Assembly-L anguage For mat
NOT. L ERd

Condition Code

H: Previous value remains unchanged.

N: Setto 1if theresult isnegative; otherwise
cleared to O.

Z: Settolif theresult iszero; otherwise
cleared to 0.

Operand Size V: Always cleared to 0.
Longword C: Previous value remains unchanged.
Description

This instruction takes the one’'s complement of the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct NOT.L ERd 1 : 7 3 iOierd 1
Notes

161

2.2.47 (1) OR (B)

OR (inclusive OR logical)

Logical OR

Operation

Rd O(EAS) - Rd

Assembly-L anguage For mat
OR B <EAs>, Rd

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise

cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to O.
Operand Size V: Always cleared to 0.
Byte C: Previous value remains unchanged.
Description

This instruction ORs the source operand with the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Immediate OR.B #xx8Rd | C | rd IMM 1
Register direct OR.B Rs, Rd 10 4 rs : rd 1

Notes

162

2.2.47 (2) OR (W)

OR (inclusive OR logical)

Logical OR

Operation

Rd O(EAS) - R

d

Condition Code

Assembly-L anguage For mat
OR W <EAs>, Rd

H: Previous value remains unchanged.
N: Setto 1if theresult isnegative; otherwise

cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to O.
Operand Size V: Always cleared to 0.
Word C: Previous value remains unchanged.
Description

Thisinstruction ORs the source operand with the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: ROtoR7, EOto E7
Rs: ROtoR7,EOQto E7

Operand Format and Number of States Required for Execution

Instruction Format

Addressing . No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte ‘ 4th byte States
Immediate ORW | #xx16,Rd| 7 i 9 4 i rd IMM 2
Register direct OR.W Rs, Rd 6 4 rs rd ‘ 1

Notes

163

2.2.47 (3) OR (L)

OR (inclusive OR logical) Logical OR

Operation Condition Code
ERd O(EASs) - ERd

===l o]
Assembly-L anguage For mat H: Previous value remains unchanged.
OR. L <EAs>. ERd N: Setto 1if theresult is negative; otherwise
cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to O.
Operand Size V: Alwayscleared to 0.
Longword C: Previous value remains unchanged.
Description

This instruction ORs the source operand with the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: EROto ER7
ERs: EROto ER7

Operand Format and Number of States Required for Execution

Addressing | pMnemonic Operands Instruction Format No. of
Mode ist byte | 2nd byte | 3rd byte ‘ 4th byte ‘ 5th byte ‘ 6th byte |States
Immediate ORL |#w32,ERd| 7 | A | 4 :Oerd IMM 3
Registerdirect | ORL | ERS,ERd | 0 1 | F . 0 | 6 : 4 |oers0erd] | 2
Notes

164

2.2.48 (1) ORC

ORC (inclusive OR Control register)

Logical OR with CCR

Operation
CCRO#IMM - CCR

Assembly-L anguage For mat

Condition Code

| U HUN Z V C
e lelefole efele]

Stores the corresponding bit of the result.

I:
ORC #xx:8, CCR Ul: Storesthe corresponding bit of the result.
H: Storesthe corresponding bit of the result.
U: Storesthe corresponding bit of the result.
N: Storesthe corresponding bit of the result.
Operand Size Z: Storesthe corresponding bit of the result.
Byte V: Storesthe corresponding bit of the result.
C: Storesthe corresponding bit of the result.
Description

Thisinstruction ORs the contents of the condition-code register (CCR) with immediate data and
stores the result in the condition-code register. No interrupt requests, including NMI, are accepted
immediately after execution of thisinstruction.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Immediate ORC |#xx:8,CCR| 0 | 4 IMM 1
Notes

165

2.2.48 (2) ORC

ORC (inclusive OR Control register) Logical OR with EXR

Operation Condition Code
EXRO#MM - EXR

Assembly-L anguage For mat H: Storesthe corresponding bit of the result.
ORC #xx:8, EXR N: Stores tEe correspongi ng Eit 011: t:e resu:t.
Z: Storesthe corresponding bit of the result.
(Example)) o . 9 .
41 FF. EXR V. Storesthe corresponding bit of the result.
' C: Storesthe corresponding bit of the result.
Operand Size
Byte
Description

This instruction ORs the contents of the extended control register (EXR) with immediate data and
stores the result in the extended control register. No interrupt requests, including NMI, are
accepted for three states after execution of thisinstruction (EXR rewrite instruction).

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Immediate ORC |#8EXR| 0 : 1 | 4 i 1 | 0 | 4 IMM 2
Notes

166

2.2.49 (1) POP (W)

POP (POP data) Pop Data from Stack

Operation Condition Code

@S+ - Rn | U HUNZ V C
(=== [=[:l:T0]—]

Assembly-L anguage For mat H: Previous value remains unchanged.

POP. W Rn N: Setto 1if thetransferred datais negative;

otherwise cleared to 0.
Z: Settolif thetransferred datais zero;
otherwise cleared to 0.

Operand Size V: Always cleared to 0.
Word C: Previous value remains unchanged.
Description

Thisinstruction restores data from the stack to a 16-bit general register Rn, tests the restored data,
and sets condition-code flags according to the result.

Available Registers
Rn: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rd byte | 4thbyte | States
— POP.W Rn 6 | D 7 im 3
Notes

POPW Rnisidentical to MOV.W @SP+, Rn.

167

2.2.49 (2) POP (L)

POP (POP data)

Pop Data from Stack

Operation
@SP+ - ERn

Assembly-L anguage For mat
POP. L ERn

Condition Code

H: Previous vaue remains unchanged.

N: Setto 1if thetransferred datais negative;
otherwise cleared to 0.

Z: Settolif thetransferred datais zero;
otherwise cleared to 0.

Operand Size V: Always cleared to 0.
Longword C: Previous value remains unchanged.
Description

This instruction restores data from the stack to a 32-bit genera register ERn, tests the restored
data, and sets condition-code flags according to the result.

Available Registers
ERn: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
— POP.L ERn 0 : 1 0: 0 6 : D 7 :Oem| 5
Notes

POPL ERnisidentica to MOV.L @SP+, ERn.

168

2.2.50 (1) PUSH (W)

PUSH (PUSH data) Push Data on Stack

Operation Condition Code

Rn - @-SP | U HUNZ V C
(=== [=[:l:T0]—]

Assembly-L anguage For mat H: Previous value remains unchanged.

PUSH. W Rn N: Setto 1if thetransferred datais negative;

otherwise cleared to 0.
Z: Settolif thetransferred datais zero;
otherwise cleared to 0.

Operand Size V: Always cleared to 0.
Word C: Previous value remains unchanged.
Description

Thisinstruction saves data from a 16-bit register Rn onto the stack, tests the saved data, and sets
condition-code flags according to the result.

Available Registers
Rn: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | States
— PUSH.W Rn 6 : D F im 3
Notes

1. PUSH.W Rnisidentical to MOV.W Rn, @-SP.
2. When PUSH.W R7 or PUSH.W E7 is executed, the value saved on the stack isthe R7 or E7
value after effective address calculation (after ER7 is decremented by 2).

169

2.2.50 (2) PUSH (L)

PUSH (PUSH data)

Push Data on Stack

Operation
ERNn . @-SP

Assembly-L anguage For mat
PUSH. L ERn

Condition Code

H: Previous vaue remains unchanged.

N: Setto 1if thetransferred datais negative;
otherwise cleared to 0.

Z: Settolif thetransferred datais zero;
otherwise cleared to 0.

Operand Size V: Always cleared to 0.
Longword C: Previous value remains unchanged.
Description

This instruction pushes data from a 32-bit register ERn onto the stack, tests the saved data, and
sets condition-code flags according to the result.

Available Registers
ERn: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
— PUSH.L ERn 0 : 1 0: 0 6 : D F :Oem| 5
Notes

1. PUSH.L ERnisidentical to MOV.L ERn, @-SP.
2. When PUSH.L ERY is executed, the value saved on the stack is the ER7 value after effective
address calculation (after ER7 is decremented by 4).

170

2.251(1) ROTL (B)

ROTL (ROTate L &ft)

Rotate

Operation
Rd (left rotation) — Rd

Condition Code

Assembly-L anguage For mat
ROTL. B Rd

H: Previous value remains unchanged.
N: Setto 1if theresult isnegative; otherwise

cleared to O.
Z: Settolif theresultis zero; otherwise
cleared to O.
Operand Size V: Always cleared to 0.
Byte C: Receivesthe previousvaluein bit 7.
Description

Thisinstruction rotates the bitsin an 8-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 7) isrotated to the least significant bit (bit 0), and also copied to the carry

flag.

MSB

LSB

C

b7

bo

Available Registers

Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct ROTL.B Rd 102 8 i rd 1

Notes

171

2.251(2) ROTL (B)

ROTL (ROTate L€ft) Rotate

Operation Condition Code
Rd (left rotation) — Rd

[—=[=[=ls]s]o]s]
Assembly-L anguage For mat H: Previous value remains unchanged.
ROTL. B #2. Rd N: Setto 1if theresult is negative; otherwise
(Example) cleared to O.
Z: lif th Iti : otherwi
ROTL. B #2, R1L Set to 1 if the result is zero; otherwise
cleared to O.
Operand Size V: Alwa_lyscleared to_O. o
C: Receivesthe previousvaluein bit 6.
Byte
Description

This instruction rotates the bits in an 8-bit register Rd (destination operand) two bitsto the left.
The most significant two bits (bits 7 and 6) are rotated to the least significant two bits (bits 1 and
0), and bit 6 is aso copied to the carry flag.

MSB LSB

Cc b7 b6 bl bO

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct | ROTL.B #2, Rd 102 cC i 1
Notes

172

2.251(3) ROTL (W)

ROTL (ROTate L €ft) Rotate

Operation Condition Code
Rd (left rotation) — Rd

== ==l 0]
Assembly-L anguage For mat H: Previous value remains unchanged.
ROTL. W Rd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Alwayscleared to 0.
Word C: Receivesthe previousvaluein bit 15.

Description

Thisinstruction rotates the bitsin a 16-bit register Rd (destination operand) one bit to the |left. The
most significant bit (bit 15)is rotated to the least significant bit (bit 0), and also copied to the carry
flag.

MSB LSB

C b15 b0

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Register direct | ROTL.W Rd 12 9 :rd 1
Notes

173

2.251(4) ROTL (W)

ROTL (ROTate L eft)

Rotate

Operation
Rd (left rotation) — Rd

Assembly-L anguage For mat

Condition Code

H: Previous vaue remains unchanged.

ROTL. W #2, Rd N Settolifth i ; Herwi
: to 1if the result is negative; otherwise

(Example) “
ROTL. W #2 R3 cleared to O.

’ ' Z. Settolif theresultis zero; otherwise
Operand Size cleared 0 0.

V: Alwayscleared to 0.

Word C: Receivesthe previousvauein bit 14.
Description

This instruction rotates the bitsin a 16-bit register Rd (destination operand) two bitsto the left.
The most significant two bits (bits 15 and 14) are rotated to the least significant two bits (bits 1
and 0), and bit 14 is also copied to the carry flag.

MSB

LSB

C b15 b14

bl boO

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte States
Register direct | ROTL.W #2, Rd 12 D :rd 1

Notes

174

2.251(5) ROTL (L)

ROTL (ROTate L &ft)

Rotate

Operation

ERd (l€eft rotation) — ERd

Assembly-L anguage For mat

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult isnegative; otherwise

ROTL. L ERd
cleared to O.
Z: Settolif theresultis zero; otherwise
cleared to O.
Operand Size V: Always cleared to 0.
Longword C. Receivesthe previousvauein bit 31.
Description

Thisinstruction rotates the bitsin a 32-bit register ERd (destination operand) one bit to the left.
The most significant bit (bit 31) is rotated to the least significant bit (bit 0), and also copied to the

carry flag.

MSB

LSB

Cc

b31

bo

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct ROTL.L ERd 1 2 B :0:erd 1

Notes

175

2.251(6) ROTL (L)

ROTL (ROTate L€ft) Rotate

Operation Condition Code
ERd (l€ft rotation) — ERd

===l o]
Assembly-L anguage For mat H: Previous value remains unchanged.
ROTL. L #2 ERd N: Setto 1if theresult is negative; otherwise
cleared to O.
Operand Size Z: Settolif theresult iszero; otherwise
Longword cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvauein bit 30.
Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) two bits to the | eft.
The most significant two bits (bits 31 and 30) are rotated to the least significant two bits (bits 1
and 0), and bit 30 is also copied to the carry flag.

MSB LSB

C b31 b30 bl b0

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct ROTL.L #2, ERd 1 2 F :O:erd 1
Notes

176

2.252 (1) ROTR (B)

ROTR (ROTate Right) Rotate

Operation Condition Code
Rd (right rotation) —» Rd

== ==l 0]
Assembly-L anguage For mat H: Previous value remains unchanged.
ROTR. B Rd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Always cleared to 0.
Byte C: Receivesthe previousvaluein bit O.
Description

Thisinstruction rotates the bits in an 8-bit register Rd (destination operand) one bit to the right.
Theleast significant bit (bit 0) is rotated to the most significant bit (bit 7), and also copied to the

carry flag.

MSB LSB

b7 bO C

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Register direct | ROTR.B Rd 13 8 i 1
Notes

177

2.252(2) ROTR (B)

ROTR (ROTate Right)

Rotate

Operation

Rd (right rotation) —» Rd

Assembly-L anguage For mat

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise

ROTR. B #2, Rd
cleared to O.
Operand Size Z. Settolif theresultis zero; otherwise
Byte cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvauein bit 1.
Description

This instruction rotates the bitsin an 8-bit register Rd (destination operand) two bits to the right.
The least significant two bits (bits 1 and 0) are rotated to the most significant two bits (bits 7 and
6), and bit 1 is also copied to the carry flag.

MSB

LSB

b7 b6

bl bO C

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct ROTR.B #2, Rd 1 3 cC o 1

Notes

178

2.252(3) ROTR (W)

ROTR (ROTate Right)

Rotate

Operation Condition Code
Rd (right rotation) —» Rd

== ==l 0]
Assembly-L anguage For mat H: Previous value remains unchanged.
ROTR. W Rd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Alwayscleared to 0.
Word C: Receivesthe previousvaluein bit O.

Description

Thisinstruction rotates the bits in a 16-bit register Rd (destination operand) one bit to the right.
The least significant bit (bit 0) is rotated to the most significant bit (bit 15), and also copied to the

carry flag.

MSB LSB

b15 bO C

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Register direct | ROTR.W Rd 13 9 i 1
Notes

179

2.252 (4) ROTR (W)

ROTR (ROTate Right)

Rotate

Operation

Rd (right rotation) —» Rd

Assembly-L anguage For mat

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise

ROTR. W #2, Rd
cleared to O.
Operand Size Z. Settolif theresultis zero; otherwise
Word cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvauein bit 1.
Description

This instruction rotates the bitsin a 16-bit register Rd (destination operand) two bits to the right.
The least significant two bits (bits 1 and 0) are rotated to the most significant two bits (bits 15 and
14), and bit 1 is also copied to the carry flag.

MSB

LSB

b15 bl4

bl bO C

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct ROTR.W #2, Rd 1 3 D :rd 1

Notes

180

2.252(5) ROTR (L)

ROTR (ROTate Right)

Rotate

Operation

ERd (right rotation) — ERd

Assembly-L anguage For mat

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult isnegative; otherwise

ROTR. L ERd
cleared to O.
Z: Settolif theresultis zero; otherwise
cleared to O.
Operand Size V: Always cleared to 0.
Longword C. Receivesthe previousvauein bit 0.
Description

Thisinstruction rotates the bits in a 32-bit register ERd (destination operand) one bit to the right.
The least significant bit (bit 0) is rotated to the most significant bit (bit 31), and also copied to the

carry flag.

MSB

LSB

b31

b0 C

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct ROTR.L ERd 1: 3 B :O:erd 1

Notes

181

2.252(6) ROTR (L)

ROTR (ROTate Right)

Rotate

Operation
ERd (right rotation) — ERd

Assembly-L anguage For mat
ROTR. L #2, ERd

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise
cleared to O.

Operand Size Z. Settolif theresultis zero; otherwise
Longword cleared to O.

V: Alwayscleared to 0.

C: Receivesthe previousvauein bit 1.
Description

This instruction rotates the bitsin a 32-bit register ERd (destination operand) two bits to the right.
The least significant two bits (bits 1 and 0) are rotated to the most significant two bits (bits 31 and
30), and bit 1 isalso copied to the carry flag.

MSB

LSB

b31 b30

bl bO C

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte | States
Register direct ROTR.L #2, ERd 1: 3 F :Oerd 1
Notes

182

2.253(1) ROTXL (B)

ROTXL (ROTate with eXtend carry Left)

Rotate through Carry

Operation

Rd (l€ft rotation through carry flag) — Rd

Assembly-L anguage For mat

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult isnegative; otherwise

ROTXL. B Rd
cleared to O.
Z: Settolif theresultis zero; otherwise
cleared to O.
Operand Size V. Always cleared to O.
Byte C: Receivesthe previousvaluein bit 7.
Description

Thisinstruction rotates the bitsin an 8-bit register Rd (destination operand) one bit to the left
through the carry flag. The carry flag isrotated into the least significant bit (bit 0). The most
significant bit (bit 7) rotates into the carry flag.

MSB LSB
C b7 b0
Available Registers
Rd: ROL to R7L, ROH to R7H
Operand Format and Number of States Required for Execution
Addressing . Instruction Format No. of
Mnemonic | Operands '
Mode istbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct | ROTXL.B Rd 1 : 2 0 :ird 1

Notes

183

2.253(2) ROTXL (B)

ROTXL (ROTate with eXtend carry L eft)

Rotate through Carry

Operation

Rd (left rotation through carry flag) —» Rd

Assembly-L anguage For mat
ROTXL. B #2, Rd

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise

cleared to O.
Operand Size Z. Settolif theresultis zero; otherwise
Byte cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvaluein bit 6.
Description

This instruction rotates the bits in an 8-bit register Rd (destination operand) two bitsto the left
through the carry flag. The carry flag rotates into bit 1, bit 7 rotates into bit 0, and bit 6 rotates into

the carry flag.

MSB

LSB

b7

b6

bl bO

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | ROTXL.B #2, Rd 1 : 2 4 1

Notes

184

2.253(3) ROTXL (W)

ROTXL (ROTate with eXtend carry Left)

Rotate through Carry

Operation
Rd (l€ft rotation through carry flag) — Rd

Assembly-L anguage For mat

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult isnegative; otherwise

ROTXL. W Rd
cleared to 0.
Z: Settolif theresult is zero; otherwise
cleared to 0.
Operand Size V: Alwayscleared to 0.
Word C: Receivesthe previousvaluein bit 15.
Description

Thisinstruction rotates the bitsin a 16-bit register Rd (destination operand) one bit to the left
through the carry flag. The carry flag isrotated into the least significant bit (bit 0). The most

significant bit (bit 15) rotates into the carry flag.

MSB LSB
c b15 b0
Available Registers
Rd: ROto R7, EOto E7
Operand Format and Number of States Required for Execution
Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Register direct | ROTXL.W Rd 102 1 i 1
Notes

185

2.2.53 (4) ROTXL (W)

ROTXL (ROTate with eXtend carry L eft)

Rotate through Carry

Operation

Rd (left rotation through carry flag) —» Rd

Assembly-L anguage For mat
ROTXL. W #2, Rd

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise
cleared to O.

Operand Size Z. Settolif theresultis zero; otherwise
Word cleared to O.

V: Alwayscleared to 0.

C: Receivesthe previousvauein bit 14.
Description

This instruction rotates the bits in a 16-bit register Rd (destination operand) two bitsto the left
through the carry flag. The carry flag rotates into bit 1, bit 15 rotates into bit O, and bit 14 rotates
into the carry flag.

MSB LSB
C bl5 bl4 bl bO
Available Registers
Rd: ROtoR7,EQto E7
Operand Format and Number of States Required for Execution
Addressing . Instruction Format No. of
Mnemonic | Operands '
Mode istbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct | ROTXL.W #2, Rd 1 : 2 5 : rd 1

Notes

186

2.253(5) ROTXL (L)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry

Operation Condition Code
ERd (I€eft rotation through carry flag) - ERd

== ==l 0]
Assembly-L anguage For mat H: Previous value remains unchanged.
ROTXL. L ERd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresultis zero; otherwise
cleared to 0.
Operand Size V: Always cleared to 0.
Longword C. Receivesthe previousvauein bit 31.
Description

Thisinstruction rotates the bitsin a 32-bit register ERd (destination operand) one bit to the left
through the carry flag. The carry flag isrotated into the least significant bit (bit 0). The most
significant bit (bit 31) rotates into the carry flag.

MSB LSB

C b31 bO

Available Registers
ERd: EROto ER7Y

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct ROTXL.L ERd 1 2 3 :0erd 1
Notes

187

2.253(6) ROTXL (L)

ROTXL (ROTate with eXtend carry L eft)

Rotate through Carry

Operation

ERd (I€ft rotation through carry flag) - ERd

Assembly-L anguage For mat

ROTXL. L #2, ERd

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise
cleared to O.

Operand Size Z. Settolif theresultis zero; otherwise
Longword cleared to O.

V: Alwayscleared to 0.

C: Receivesthe previousvauein bit 30.
Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) two bits to the | eft
through the carry flag. The carry flag rotates into bit 1, bit 31 rotates into bit O, and bit 30 rotates
into into the carry flag.

MSB LSB
C b31 b30 bl b0
Available Registers
ERd: EROto ER7
Operand Format and Number of States Required for Execution
Addressing . Instruction Format No. of
Mnemonic | Operands)
Mode 1stbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct ROTXL.L | #2, ERd 1 2 7 :Oerd 1

Notes

188

2.254 (1) ROTXR (B)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation Condition Code
Rd (right rotation through carry flag) — Rd

== ==l 0]
Assembly-L anguage For mat H: Previous value remains unchanged.
ROTXR. B Rd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Always cleared to 0.
Byte C: Receivesthe previousvaluein bit O.
Description

Thisinstruction rotates the bits in an 8-bit register Rd (destination operand) one bit to the right
through the carry flag. The carry flag isrotated into the most significant bit (bit 7). The least
significant bit (bit 0) rotates into the carry flag.

MSB LSB

b7 bo C

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | States
Register direct | ROTXR.B Rd 1 : 3 0 :rd 1
Notes

189

2.254(2) ROTXR (B)

ROTXR (ROTatewith eXtend carry Right)

Rotate through Carry

Operation
Rd (right rotation through carry flag) —» Rd

Assembly-L anguage For mat
ROTXR. B #2, Rd

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise
cleared to O.

Operand Size Z. Settolif theresultis zero; otherwise
Byte cleared to O.

V: Alwayscleared to 0.

C: Receivesthe previousvauein bit 1.
Description

This instruction rotates the bitsin an 8-bit register Rd (destination operand) two bits to the right
through the carry flag. The carry flag rotates into bit 6, bit O rotates into bit 7, and bit 1 rotates into

the carry flag.

MSB

LSB

Cc b7 b6

bl bO

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct | ROTXR.B #2,Rd 1 : 3 4 rd 1

Notes

190

2.254 (3) ROTXR (W)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation Condition Code
Rd (right rotation through carry flag) — Rd

== ==l 0]
Assembly-L anguage For mat H: Previous value remains unchanged.
ROTXR. W Rd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Alwayscleared to 0.
Word C: Receivesthe previousvaluein bit O.

Description

Thisinstruction rotates the bits in a 16-bit register Rd (destination operand) one bit to the right
through the carry flag. The carry flag isrotated into the most significant bit (bit 15). The least
significant bit (bit 0) rotates into the carry flag.

MSB LSB

b15 bo C

Available Registers
Rd: ROto R7,EQOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | States
Register direct | ROTXR.W Rd 1 : 3 1 :rd 1
Notes

191

2.2.54 (4) ROTXR (W)

ROTXR (ROTatewith eXtend carry Right)

Rotate through Carry

Operation

Rd (right rotation through carry flag) —» Rd

Assembly-L anguage For mat
ROTXR. W #2, Rd

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise
cleared to O.

Operand Size Z. Settolif theresultis zero; otherwise
Word cleared to O.

V: Alwayscleared to 0.

C: Receivesthe previousvauein bit 1.
Description

This instruction rotates the bitsin a 16-bit register Rd (destination operand) two bits to the right
through the carry flag. The carry flag rotates into bit 14, bit O rotates into bit 15, and bit 1 rotates
into the carry flag.

MSB LSB
C b15 bi4 bl bO
Available Registers
Rd: ROtoR7,EQto E7
Operand Format and Number of States Required for Execution
Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Register direct | ROTXR.W | #2, Rd 1 : 3 5 : rd 1

Notes

192

2.254 (5) ROTXR (L)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation Condition Code
ERd (right rotation through carry flag) -~ ERd

== ==l 0]
Assembly-L anguage For mat H: Previous value remains unchanged.
ROTXR. L ERd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Always cleared to 0.
Longword C: Receivesthe previousvaluein bit O.
Description

Thisinstruction rotates the bitsin a 32-bit register ERd (destination operand) one bit to the right
through the carry flag. The carry flag isrotated into the most significant bit (bit 31). The least
significant bit (bit 0) rotates into the carry flag.

MSB LSB

b31 bo C

Available Registers
ERd: EROto ER7Y

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct ROTXR.L ERd 1 : 3 3 :0erd 1
Notes

193

2.2.54(6) ROTXR (L)

ROTXR (ROTatewith eXtend carry Right) Rotate through Carry

Operation Condition Code
ERd (right rotation through carry flag) - ERd

===l o]
Assembly-L anguage For mat H: Previous value remains unchanged.
ROTXR. L #2 ERd N: Setto 1if theresult is negative; otherwise
cleared to O.
Operand Size Z: Settolif theresult iszero; otherwise
Longword cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvauein bit 1.
Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) two bits to the right
through the carry flag. The carry flag rotates into bit 30, bit O rotates into bit 31, and bit 1 rotates
into the carry flag.

MSB LSB

Cc b31 b30 bl bO

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct ROTXR.L | #2,ERd 1: 3 7 :Oerd 1
Notes

194

2255 RTE

RTE (ReTurn from Exception)

Return from Exception Handling

Operation Condition Code
'g@fﬁig’:ﬁhd | UHUNZV C
@SP+ . PC Lofefefofofefe]e]
* When EXR isvalid
@SP+ . EXR I: Restored from the corresponding bit on
@SP+ _ CCR the stack.
@SP+ . PC Ul: Restored from the corresponding bit on
the stack.
Assembly-L anguage For mat H: Restored from the corresponding bit on
RTE the stack.
U: Restored from the corresponding bit on
the stack.
N: Restored from the corresponding bit on
the stack.
Operand Size Z: Restored from the corresponding bit on
— the stack.
V: Restored from the corresponding bit on
the stack.
C: Restored from the corresponding bit on
the stack.
Description

This instruction returns from an exception-handling routine by restoring the EXR, condition-code
register (CCR) and program counter (PC) from the stack. Program execution continues from the

address restored to the program counter. The CCR and PC contents at the time of execution of this
instruction are lost. If the extended control regiser (EXR) isvalid, it isalso restored (and the

existing EXR contents are |lost).

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
— RTE 5 6 7 0 5*

Note:* Six states when EXR isvalid.

195

2.2.55 RTE

RTE (ReTurn from Exception) Return from Exception Handling

Notes
The stack structure differs between norma mode and advanced mode.

N >~
Don't care CCR I—:| CCR I—:|
TN v v g y v y
PC [Undet | 3 \ PC | i i |
Normal mode 23 16 15 87 0 Advanced mode 23 16 15 87 0

196

2256 RTS

RTS (ReTurn from Subroutine)

Return from Subroutine

Operation
@SP+ - PC

Condition Code

Assembly-L anguage For mat H: Previous value remains unchanged.

RTS N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Description

This instruction returns from a subroutine by restoring the program counter (PC) from the stack.
Program execution continues from the address restored to the program counter. The PC contents at
the time of execution of thisinstruction are lost.

Operand Format and Number of States Required for Execution

Addressing i Instruction Format No. of States
Mnemonic | Operands
Mode 1st Byte |2nd Byte| 3rd Byte | 4th Byte | Normal | Advanced
— RTS 5:4]7:0 4 5
Notes

The stack structure and number of states required for execution differ between normal mode and
advanced mode. In normal mode, only the lower 16 bits of the program counter are restored.

/\/ /\/
Don't care
N v y N v 4 y
PC \ Undet. ; \ PC ‘ : 3
Normal mode 23 16 15 87 0 Advanced mode 23 16 15 87

197

2.2.57 (1) SHAL (B)

SHAL (SHift Arithmetic L eft) Shift Arithmetic

Operation Condition Code
Rd (left arithmetic shift) —» Rd

Assembly-L anguage For mat H: Previous value remains unchanged.
SHAL. B Rd N: Setto 1if theresult is negative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if anoverflow occurs; otherwise
Byte cleared to O.

C: Receivesthe previousvauein bit 7.

Description

This instruction shifts the bitsin an 8-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 7) shiftsinto the carry flag. The least significant bit (bit 0) is cleared to 0.

MSB < LSB

0

C b7 b0

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | SHAL.B Rd 1:0 8 : rd 1
Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

198

2.257(2) SHAL (B)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation Condition Code
Rd (left arithmetic shift) -~ Rd

RN
Assembly-L anguage For mat H: Previous value remains unchanged.
SHAL. B #2, Rd N: Setto 1if theresult isnegative; otherwise
cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if an overflow occurs; otherwise
Byte cleared to O.
C: Receivesthe previousvaluein bit 6.
Description

Thisinstruction shifts the bitsin an 8-bit register Rd (destination operand) two bits to the left. Bit
6 shiftsinto the carry flag. Bits0 and 1 are cleared to O.

MSB < LSB
0 0 <0
C b7 b6 bl b

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | SHAL.B #2, Rd 1:0 C 1
Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

199

2.2.57 (3) SHAL (W)

SHAL (SHift Arithmetic L eft) Shift Arithmetic

Operation Condition Code
Rd (left arithmetic shift) —» Rd

Assembly-L anguage For mat H: Previous value remains unchanged.
SHAL. W Rd N: Setto 1if theresult is negative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if anoverflow occurs; otherwise
Word cleared to O.

C: Receivesthe previousvauein bit 15.

Description

This instruction shifts the bitsin a 16-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 15) shiftsinto the carry flag. The least significant bit (bit 0) is cleared to O.

MSB < LSB

0

C b15 b0

Available Registers
Rd: ROtoR7,EOQto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Register direct | SHAL.W Rd 1 :0 9 : rd 1
Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

200

2.2.57 (4) SHAL (W)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation Condition Code
Rd (left arithmetic shift) -~ Rd

RN
Assembly-L anguage For mat H: Previous value remains unchanged.
SHAL. W #2, Rd N: Setto 1if theresult isnegative; otherwise
cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if an overflow occurs; otherwise
Word cleared to O.
C: Receivesthe previousvaluein bit 14.
Description

Thisinstruction shifts the bitsin a 16-bit register Rd (destination operand) two bits to the left. Bit
14 shiftsinto the carry flag. Bits 0 and 1 are cleared to O.

MSB < LSB
0 0 <0
C b15 bl4 bl b

Available Registers
Rd: ROto R7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Register direct | SHAL.W #2, Rd 1 :0 D :rd 1
Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

201

2.2.57 (5) SHAL (L)

SHAL (SHift Arithmetic L eft) Shift Arithmetic

Operation Condition Code
ERd (left arithmetic shift) -~ ERd

Assembly-L anguage For mat H: Previous value remains unchanged.
SHAL. L ERd N: Setto 1if theresult is negative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if anoverflow occurs; otherwise
Longword cleared to O.

C: Receivesthe previousvauein bit 31.

Description

This instruction shifts the bitsin a 32-bit register ERd (destination operand) one bit to the left. The
most significant bit (bit 31) shiftsinto the carry flag. The least significant bit (bit 0) is cleared to O.

MSB < LSB

«—20

C b31 o]0]

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHAL.L ERd 1: 0 B :Oerd 1
Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

202

2.257(6) SHAL (L)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation Condition Code
ERd (left arithmetic shift) — ERd

RN
Assembly-L anguage For mat H: Previous value remains unchanged.
SHAL. L #2, ERd N: Setto 1if theresult isnegative; otherwise
cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Setto 1if an overflow occurs; otherwise
Longword cleared to O.
C: Receivesthe previousvaluein bit 30.
Description

Thisinstruction shifts the bitsin a 32-bit register ERd (destination operand) two bits to the | eft. Bit
30 shiftsinto the carry flag. Bits 0 and 1 are cleared to O.

MSB < LSB
0 0 <0
C b31 b30 bl b0

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHAL.L #2, ERd 1: 0 F :Oerd 1
Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

203

2.258 (1) SHAR (B)

SHAR (SHift Arithmetic Right)

Shift Arithmetic

Operation

Rd (right arithmetic shift) —» Rd

Assembly-L anguage For mat

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise

SHAR. B Rd
cleared to O.
Z. Settolif theresultis zero; otherwise
cleared to O.
Operand Size V. Alwayscleared to 0.
Byte C: Receivesthe previousvauein bit O.
Description

Thisinstruction shifts the bitsin an 8-bit register Rd (destination operand) one bit to the right. Bit
0 shiftsinto the carry flag. Bit 7 shiftsinto itself. Since bit 7 remains unaltered, the sign does not

change.
MSB > LSB
b7 b0 C

Available Registers
Rd: ROL to R7L, ROH to R7H
Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of

Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct | SHAR.B Rd 101 8 : rd 1

Notes

204

2.258(2) SHAR (B)

SHAR (SHift Arithmetic Right)

Shift Arithmetic

Operation
Rd (right arithmetic shift) —» Rd

Condition Code

Assembly-L anguage For mat

H: Previous value remains unchanged.
N: Setto 1if theresult isnegative; otherwise

SHAR. B #2, Rd
cleared to O.
Z: Settolif theresultis zero; otherwise
cleared to O.
Operand Size V: Always cleared to 0.
Byte C: Receivesthe previousvaluein bit 1.
Description

Thisinstruction shifts the bitsin an 8-bit register Rd (destination operand) two bits to the right. Bit
1 shiftsinto the carry flag. The most significant three bits (bits 7, 6, and 5) all receive the previous
value of bit 7. Since bit 7 remains unaltered, the sign does not change.

MSB

A\

LSB

b7 b6 b5

bl bO C

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing

Mode Mnemonic | Operands

Instruction Format

No. of
States

Register direct SHAR.B #2, Rd

1st byte 2nd byte 3rd byte 4th byte
1 1 cC :rd

Notes

205

2.2.58(3) SHAR (W)

SHAR (SHift Arithmetic Right)

Shift Arithmetic

Operation

Rd (right arithmetic shift) —» Rd

Assembly-L anguage For mat

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise

SHAR. W Rd
cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to O.
Operand Size V: Always cleared to 0.
Word C: Receivesthe previousvauein bit O.
Description

Thisinstruction shifts the bitsin a 16-bit register Rd (destination operand) one bit to the right. Bit
0 shiftsinto the carry flag. Bit 15 shiftsinto itself. Since bit 15 remains unaltered, the sign does

not change.

MSB

LSB

v

b15

b0 C

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte States
Register direct | SHAR.W Rd 101 9 :rd 1

Notes

206

2.2.58 (4) SHAR (W)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation Condition Code
Rd (right arithmetic shift) —» Rd

== ==l 0]
Assembly-L anguage For mat H: Previous value remains unchanged.
SHAR. W #2, Rd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Alwayscleared to 0.
Word C: Receivesthe previousvaluein bit 1.

Description

Thisinstruction shifts the bitsin a 16-bit register Rd (destination operand) two hits to the right. Bit
1 shiftsinto the carry flag. The most significant three bits (bits 15, 14, and 13) all receive the
previous value of bit 15. Since bit 15 remains unaltered, the sign does not change.

MSB

A\

LSB

b15 bl4 b13 bl bO C

Available Registers
Rd: ROto R7,EQOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | SHAR.W #2, Rd 1 :1 D : rd 1
Notes

207

2.258(5) SHAR (L)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation Condition Code
ERd (right arithmetic shift) -~ ERd

===l o]
Assembly-L anguage For mat H: Previous value remains unchanged.
SHAR. L ERd N: Setto 1if theresult is negative; otherwise
cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to O.
Operand Size V: Always cleared to 0.
Longword C: Receivesthe previousvauein bit O.
Description

This instruction shifts the bitsin a 32-bit register ERd (destination operand) one bit to the right.
Bit O shiftsinto the carry flag. Bit 31 shiftsinto itself. Since bit 31 remains unaltered, the sign
does not change.

MSB LSB

v

b31 b0 C

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHAR.L ERd 101 B :Oerd 1
Notes

208

2.258(6) SHAR (L)

SHAR (SHift Arithmetic Right)

Shift Arithmetic

Operation

ERd (right arithmetic shift) - ERd

Condition Code

Assembly-L anguage For mat

SHAR. L #2, ERd

H: Previous value remains unchanged.

N: Setto 1if theresult isnegative; otherwise

cleared to O.
Z: Settolif theresultis zero; otherwise
cleared to O.
Operand Size V: Always cleared to 0.
Longword C. Receivesthe previousvauein bit 1.
Description

Thisinstruction shifts the bitsin a 32-bit register ERd (destination operand) two bits to the right.
Bit 1 shiftsinto the carry flag. The most significant three bits (bits 31, 30, and 29) all receive the
previous value of bit 31. Since bit 31 remains unaltered, the sign does not change.

MSB

> LSB

b31 b30 b29

bl bO C

Available Registers
ERd: EROto ER7Y

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHAR.L #2, ERd 101 F :Oerd 1

Notes

209

2.259 (1) SHLL (B)

SHLL (SHift Logical Left) Shift Logical

Operation Condition Code

Rd (left logical shift) - Rd | UHUN 2z V ¢

(===l]o]:]
Assembly-L anguage For mat H: Previous value remains unchanged.
SHLL. B Rd N: Setto 1if theresult is negative; otherwise
cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to O.
Operand Size V: Alwayscleared to 0.
Byte C: Receivesthe previousvauein bit 7.
Description

This instruction shifts the bitsin an 8-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 7) shiftsinto the carry flag. The least significant bit (bit 0) is cleared to 0.

MSB < LSB

0

C b7 b0

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct SHLL.B Rd 1 :0 0 : rd 1
Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

210

2.259 (2) SHLL (B)

SHLL (SHift Logical Left) Shift Logical

Operation Condition Code
Rd (left logical shift) — Rd

== ==l 0]
Assembly-L anguage For mat H: Previous value remains unchanged.
SHLL. B #2. Rd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to 0.
Operand Size V: Always cleared to 0.
Byte C: Receivesthe previousvaluein bit 6.
Description

Thisinstruction shifts the bitsin an 8-bit register Rd (destination operand) two bits to the left. Bit
6 shiftsinto the carry flag. Bits0 and 1 are cleared to O.

MSB < LSB

0 0 «—0

C b7 b6 bl b0

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Register direct SHLL.B #2, Rd 1 :0 4 :rd 1
Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

211

2.2.59 (3) SHLL (W)

SHLL (SHift Logical Left) Shift Logical

Operation Condition Code

Rd (left logical shift) - Rd | UHUN 2z V ¢

(===l]o]:]
Assembly-L anguage For mat H: Previous value remains unchanged.
SHLL. W Rd N: Setto 1if theresult is negative; otherwise
cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to O.
Operand Size V: Alwayscleared to 0.
Word C: Receivesthe previousvauein bit 15.
Description

This instruction shifts the bitsin a 16-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 15) shiftsinto the carry flag. The least significant bit (bit 0) is cleared to O.

MSB < LSB

0

C b15 b0

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | States
Register direct | SHLL.W Rd 1 :0 1 :rd 1
Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

212

2.2.59 (4) SHLL (W)

SHLL (SHift Logical Left) Shift Logical

Operation Condition Code
Rd (left logical shift) — Rd

(=== [=[:l:]0]:]
Assembly-L anguage For mat
SHLL. W #2, Rd H: Previous value remains unchanged.
N: Setto 1if theresult isnegative; otherwise
cleared to O.
Operand Size Z: Settolif theresultis zero; otherwise
Word cleared to 0.
V: Alwayscleared to 0.
C: Receivesthe previousvaluein bit 14.
Description

Thisinstruction shifts the bitsin a 16-bit register Rd (destination operand) two bits to the left. Bit
14 shiftsinto the carry flag. Bits 0 and 1 are cleared to O.

MSB < LSB
0 0 <0
C b1l5 bl4 bl b0

Available Registers
Rd: ROtoR7,EQto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | SHLL.W #2, Rd 1:0 5 :rd 1
Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

213

2259 (5) SHLL (L)

SHLL (SHift Logical Left) Shift Logical

Operation Condition Code

ERd (left logical shift) — ERd L U HUNZ2ZV c

===l o]
Assembly-L anguage For mat H: Previous value remains unchanged.
SHLL. L ERd N: Setto 1if theresult is negative; otherwise
cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to O.
Operand Size V: Always cleared to 0.
Longword C: Receivesthe previousvauein bit 31.
Description

This instruction shifts the bitsin a 32-bit register ERd (destination operand) one bit to the left. The
most significant bit (bit 31) shiftsinto the carry flag. The least significant bit (bit 0) is cleared to O.

MSB < LSB

0

C b31 b0

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHLL.L ERd 1: 0 3 :Oerd 1
Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

214

2.2.59 (6) SHLL (L)

SHLL (SHift Logical Left) Shift Logical

Operation Condition Code
ERd (left logical shift) -» ERd

[[—[:T:[o]]
Assembly-L anguage For mat H: Previous value remains unchanged.
SHLL. L #2. ERd N: Setto 1if theresult isnegative; otherwise
cleared to 0.
Z: Settolif theresultis zero; otherwise
cleared to 0.
Operand Size V: Always cleared to 0.
Longword C. Receivesthe previousvauein bit 30.
Description

Thisinstruction shifts the bitsin a 32-bit register ERd (destination operand) two bits to the | eft. Bit
30 shiftsinto the carry flag. Bits 0 and 1 are cleared to O.

MSB < LSB

0 0 «—0

C b31 b30 bl b0

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHLL.L #2, ERd 1: 0 7 :Oierd 1
Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

215

2.2.60 (1) SHLR (B)

SHLR (SHift Logical Right)

Shift Logical

Operation

Rd (right logical shift) —» Rd

Assembly-L anguage For mat

Condition Code

I Ul

H UN Z V C

== ——o0/:j0f:]

H: Previous vaue remains unchanged.

SHLR. B Rd N: Alwayscleared to 0.
Z: Settolif theresultiszero; otherwise
cleared to O.
V: Alwayscleared to 0.
Operand Size C: Receivesthe previousvauein bit 0.
Byte
Description

Thisinstruction shifts the bitsin an 8-bit register Rd (destination operand) one bit to theright. The
least significant bit (bit 0) shiftsinto the carry flag. The most significant bit (bit 7) is cleared to O.

MSB > LSB
00—
b7 b0 C

Available Registers
Rd: ROL to R7L, ROH to R7H
Operand Format and Number of States Required for Execution

Addressing Instruction Format No. of

Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | SHLR.B Rd 11 0 : rd 1

Notes

216

2.2.60 (2) SHLR (B)

SHLR (SHift Logical Right) Shift Logical

Operation Condition Code
Rd (right logical shift) —» Rd

= —=—fof:]o]
Assembly-L anguage For mat H: Previous value remains unchanged.
SHLR. B #2 Rd N: Always cleared to 0.
Z: Settolif theresultis zero; otherwise
cleared to 0.
V: Alwayscleared to 0.
Operand Size C: Recelvesthe previousvaluein bit 1.
Byte
Description

Thisinstruction shifts the bitsin an 8-bit register Rd (destination operand) two bits to the right. Bit
1 shiftsinto the carry flag. Bits 7 and 6 are cleared to O.

MSB > LSB
0—» O 0
b7 b6 bl bO C

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | SHLR.B #2, Rd 11 4 : rd 1
Notes

217

2.2.60 (3) SHLR (W)

SHLR (SHift Logical Right)

Shift Logical

Operation

Rd (right logical shift) —» Rd

Assembly-L anguage For mat

Condition Code

I Ul

H UN Z V C

== ——o0/:j0f:]

H: Previous vaue remains unchanged.

SHLR. W Rd N: Alwayscleared to 0.
Z: Settolif theresultiszero; otherwise
cleared to O.
V: Alwayscleared to 0.
Operand Size C: Receivesthe previousvauein bit 0.
Word
Description

Thisinstruction shifts the bitsin a 16-bit register Rd (destination operand) one bit to theright. The
least significant bit (bit 0) shiftsinto the carry flag. The most significant bit (bit 15) is cleared to O.

MSB > LSB
00—
b15 b0 C
Available Registers
Rd: ROtoR7,EOQto E7
Operand Format and Number of States Required for Execution
Addressing . Instruction Format No. of
Mnemonic | Operands '
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | SHLR.W Rd 11 1 :rd 1

Notes

218

2.2.60 (4) SHLR (W)

SHLR (SHift Logical Right) Shift Logical

Operation Condition Code
Rd (right logical shift) —» Rd

= —=—fof:]o]
Assembly-L anguage For mat H: Previous value remains unchanged.
SHLR. W #2. Rd N: Always cleared to 0.
Z: Settolif theresultis zero; otherwise
cleared to 0.
V: Alwayscleared to 0.
Operand Size C: Recelvesthe previousvaluein bit 1.
Word
Description

Thisinstruction shifts the bitsin a 16-bit register Rd (destination operand) two hits to the right. Bit

1 shiftsinto the carry flag. Bits 15 and 14 are cleared to O.

MSB > LSB
0O— 0 0
b15 bl4 bl bO C

Available Registers
Rd: ROtoR7,EQto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | SHLR.W #2, Rd 1 1 5 : rd 1
Notes

219

2.2.60 (5) SHLR (L)

SHLR (SHift Logical Right) Shift Logical

Operation Condition Code

ERd (right logical shift) -» ERd I U HUN Z V C

[=[—[—[—fof:]o]:]
Assembly-L anguage For mat H: Previous value remains unchanged.
Z: Setto 1if theresult iszero; otherwise
cleared to O.
V: Alwayscleared to 0.
Operand Size C: Receivesthe previousvauein bit 0.
Longword
Description

This instruction shifts the bitsin a 32-bit register ERd (destination operand) one bit to the right.
The least significant bit (bit 0) shiftsinto the carry flag. The most significant bit (bit 31) is cleared
to 0.

MSB LSB

A\

b31 b0 C

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHLR.L ERd 101 3 :0erd 1
Notes

220

2.2.60 (6) SHLR (L)

SHLR (SHift Logical Right) Shift Logical

Operation Condition Code
ERd (right logical shift) -~ ERd

= —=—fof:]o]
Assembly-L anguage For mat H: Previous value remains unchanged.
SHLR. L #2 ERd N: Always cleared to 0.
Z: Settolif theresultis zero; otherwise
cleared to 0.
V: Alwayscleared to 0.
Operand Size C: Recelvesthe previousvaluein bit 1.
Longword
Description

Thisinstruction shifts the bitsin a 32-bit register ERd (destination operand) two bits to the right.
Bit 1 shiftsinto the carry flag. Bits 31 and 30 are cleared to O.

MSB > LSB

0—» O 0

b31 b30 bl bO C

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHLR.L #2, ERd 101 7 :O:erd 1
Notes

221

2.2.61 SLEEP

SLEEP (SLEEP)

Power-Down M ode

Operation
Program execution state — power-down mode

Condition Code

Assembly-L anguage For mat H: Previous value remains unchanged.

SLEEP N: Previous vaue remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Description

When the SLEEP instruction is executed, the CPU enters a power-down mode. Its internal state
remains unchanged, but the CPU stops executing instructions and waits for an exception-handling
reguest. When it receives an exception-handling request, the CPU exits the power-down mode and
begins the exception-handling sequence. Interrupt requests other than NMI cannot end the power-

down mode if they are masked in the CPU.

Available Registers

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
— SLEEP 0 : 8 : 0 2
Notes

For information about power-down modes, see the relevant microcontroller hardware manual.

2.2.62 (1) STC (B)

STC (STorefrom Control register) Store CCR

Operation Condition Code
CCR - Rd

Assembly-L anguage For mat H: Previous value remains unchanged.
STC. B CCR. Rd N: Previous value remains unchanged.

Z: Previous value remains unchanged.
Operand Size V: Previous value remains unchanged.
Byte C: Previous value remains unchanged.
Description

Thisinstruction copies the CCR contents to an 8-bit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct STC.B CCR,Rd | 0 : 2 0 :rd 1
Notes

223

2.2.62(2) STC (B)

STC (STorefrom Control register)

Store EXR

Operation
EXR - Rd

Condition Code

Assembly-L anguage For mat H: Previous value remains unchanged.
STC. B EXR. Rd N: Previous value remains unchanged.

Z: Previous value remains unchanged.
Operand Size V: Previous value remains unchanged.
Byte C: Previous value remains unchanged.
Description

This instruction copies the EXR contents to an 8-bit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Register direct STC.B EXR, Rd 0 : 2 1 :rd 1

Notes

224

2.2.62(3) STC (W)

STC (STorefrom Control register) Store CCR

Operation Condition Code

CCR - (EAd
(EAD) I U H UN Z V C

Assembly-L anguage For mat |—‘—‘—‘—‘_‘_‘_‘_ |
STC. W CCR, <EAd>

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Word Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction copies the CCR contents to a destination location. Although CCR is abyte
register, the destination operand is aword operand. The CCR contents are stored at the even
address. Undetermined data is stored at the odd address.

Available Registers
ERd: EROto ER7

225

9¢¢

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic Operands
Mode 1st byte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte | 7th byte | 8th byte | 9th byte |10th byte |States
Register sTCW CCR, @ERd 01| 4i0| 69 [ed 0 3
indirect [
Register STC.W |CCR, @(d:16,ERd)| 0 1 4 0 6 F 1§erd§ 0 disp 4
indirect with o
displace- R :
ment STCW |CCR @(32.ERd)| O : 1 | 4 : 0 | 7 :8 foerd 0| 6:B| A:O disp 6
Register HE
indirect STCW | CCR@ERd | 0 i1 | 4 0| 6 : D [terd 0 4
with pre- I
decrement
STCW | CCR@aal6 | 0 i 1 | 4 : 0|6 :B|8:0 abs 4
Absolute :
address
STC.W CCR, @aa:32 0 1 4 0 6 B A: 0 abs 5
Notes

(P351691 |0.1U0D WoOU}BI0IS) OIS

d0D98101S

(M) 21S (g)29Ce

2.2.62(4) STC (W)

STC (STorefrom Control register) Store EXR

Operation Condition Code

EXR - (EAd
(EAD) I U H UN Z V C

Assembly-L anguage For mat |—‘—‘—‘—‘_‘_‘_‘_ |
STC. W EXR, <EAd>

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Word Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction copies the EXR contents to a destination location. Although EXR is a byte
register, the destination operand is aword operand. The EXR contents are stored at the even
address. Undetermined data is stored at the odd address.

Available Registers
ERd: EROto ER7

227

8¢¢

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic Operands
Mode 1st byte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte | 7th byte | 8th byte | 9th byte |10th byte |States
Register sTCW EXR, @ERd 01| 4i1|6: 09 fed o 3
indirect : Lo
Register STC.W |EXR, @(d:16, ERd) | 0 1 4 1 6 F 1§erd§ 0 disp 4
indirect with o
displace- H :
ment STCW |EXR @32 ERd)| 0 : 1 | 4 i1 | 7:8 oed 0| 6 B| A0 disp 6
Register HE
indirect sTCW EXR, @—ERd 0.1 | 4:1| 6D [terd 0 4
with pre- I
decrement
STCW | EXR, @aail6 01|41 |6:B|8io0 abs 4
Absolute :
address
STC.W EXR, @aa:32 0 1 4 1 6 B A: 0 abs 5
Notes

(P351691 |0.1U0D WoOU}BI0IS) OIS

dX33101S

(M) 21S (W) 29ee

2.2.63 STM

STM (STorefrom Multipleregisters)

Store Data on Stack

Operation
ERn (register list) -~ @-SP

Assembly-L anguage For mat

Condition Code

I U H UN Z V C

STM L <register list>, @-SP H: Previous value remains unchanged.
N: Previous value remains unchanged.
Operand Size Z: Previous value remains unchanged.
Longword V. Prev! ous value remq ns unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction saves a group of registers specified by aregister list onto the stack. The registers
are saved in ascending order of register number.

Two, three, or four registers can be saved by one STM instruction. The following ranges can be

specified in the register list.

Tworegisters: ERO-ER1, ER2-ER3, ER4-ERS, or ER6-ER7

Threeregisters. ERO-ER2 or ER4-ER6
Four registers: ERO-ER3 or ER4-ER7

Available Registers
ERn: EROto ER7

229

2.2.63 STM

STM (STorefrom Multiple registers)

Store Data on Stack

Operand Format and Number of States Required for Execution

Addressing Mnemonic| Operands Instruction Format No. of
Mode 1st byte 2nd byte 3rd byte 4th byte States
~ STM.L gﬁg;ER””)' 0 1 1 0 6 D F o em | 7
~ stmL | EREERM2 o 1 2 0 6 D F o em | 9
_ smi | EROERND. 1 3 0 6 D F o em | 11
Notes

When ERY7 is saved, the value after effective address calculation (after ER7 is decremented by 4)
is saved on the stack.

230

2.2.64 STMAC

STMAC (STorefrom MAC register) Store Data from MAC Register
Operation Condition Code
MACH - ERd

Il U H UN Z V C
. === [=]
MACL - ERd

H: Previous value remains unchanged.

A bly-L anguage Format N: Settolif aMAC instruction resulted in a

STMAC MAC register, ERd negative MAC register value; otherwise
- cleared to O.
Operand Size Z. Settolif aMAC instructionresultedina
Longword zero MAC register value; otherwise
cleared to 0.

V: Settolif aMAC instruction resulted in
an overflow; otherwise cleared to 0.
C: Previous value remains unchanged.

Description

This instruction moves the contents of a multiply-accumulate register (MACH or MACL) to a
genera register. If the transfer isfrom MACH, the upper 22 bits transferred to the general register
areasign extension.

Thisinstruction is supported by the H8S/2600 CPU only.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct STMAC |MACH,ERd| 0 @ 2 2 iOiers 1
Register direct | STMAC |MACL,ERd| 0 : 2 | 3 iOiers 1
Notes

Execution of thisinstruction copiesthe N, Z, and V flag values from the multiplier to the
condition-code register (CCR). If the STMAC instruction is executed after a CLRMAC or
LDMAC instruction with no intervening MAC instruction, the V flag will be 0 and the N and Z
flags will have undetermined values.

231

2.2.65(1) SUB (B)

SUB (SUBtract binary)

Subtract Binary

Operation Condition Code
Rd—Rs - Rd

Assembly-L anguage For mat H: Setto 1if thereisaborrow at bit 3;
SUB. B Rs, Rd otherwise cleared to 0.
N: Setto 1if theresult is negative; otherwise
cleared to 0.
Z. Settolif theresult iszero; otherwise
Operand Size cleared to 0.
Byte V: Settolif anoverflow occurs; otherwise

cleared to 0.

C. Settolif thereisaborrow at bit 7;
otherwise cleared to 0.

Description

This instruction subtracts the contents of an 8-bit register Rs (source operand) from the contents of
an 8-bit register Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct SUB.B Rs, Rd 1 : 8 rs : rd 1

232

2.2.65(1) SUB (B)

SUB (SUBtract binary) Subtract Binary

Notes

The SUB.B instruction can operate only on general registers. Immediate data can be subtracted
from general register contents by using the SUBX instruction. Before executing SUBX #xx:8, Rd,
first set the Z flag to 1 and clear the C flag to 0. The following coding examples can aso be used
to subtract nonzero immediate data#IMM.

(1) ORC #H 05, CCR
SUBX #(1 MA-1), Rd
(2) ADD #(0-I M), Rd
XORC #H 01, CCR

233

2.2.65(2) SUB (W)

SUB (SUBtract binary)

Subtract Binary

Operation

Rd—(EAs) - Rd

Condition Code

Assembly-L anguage For mat
SUB. W <EAs>, Rd

H: Settolif thereisaborrow at bit 11;
otherwise cleared to 0.
N: Setto 1if theresult is negative; otherwise
cleared to 0.

Operand Size

Word

cleared to 0.
V: Settolif anoverflow occurs; otherwise
cleared to O.
C:. Settolif thereisaborrow at bit 15;
otherwise cleared to 0.

Z: Settolif theresultiszero; otherwise

Description

This instruction subtracts a source operand from the contents of a 16-hit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: ROtoR7, EOto E7
Rs: ROtoR7,EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte ‘ 4th byte | States
Immediate SUBW | #xx:16,Rd | 7 | 9 3 i IMM 2
Register direct SUB.W Rs, Rd 1 9 rs rd ‘ 1

Notes

234

2.2.65(3) SUB (L)

SUB (SUBtract binary) Subtract Binary

Operation Condition Code
ERd - (EAs) - ERd

==l l=lelefe]r]
Assembly-L anguage For mat H: Setto 1if thereisaborrow at bit 27;
SUB. L <EAs>. ERd otherwise cleared to O.
N: Setto 1if theresult isnegative; otherwise
cleared to O.
Z: Settolif theresult is zero; otherwise
Operand Size cleared to 0.
Longword V: Setto 1if an overflow occurs; otherwise
cleared to 0.
C. Settolif thereisaborrow at bit 31;
otherwise cleared to 0.
Description

This instruction subtracts a source operand from the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: EROto ER7
ERs. EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of
Mode States
1st byte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte
Immediate SUB.L |#xx:32,ERd| 7 : A | 3 iOerd IMM 3
Register direct SUB.L ERs,ERd | 1 i A |liersiOerd ‘ ‘ ‘ 1
Notes

235

2.2.66 SUBS

SUBS (SUBtract with Sign extension)

Subtract Binary Address Data

Operation
Rd-1 - ERd

Rd-2 - ERd
Rd-4 - ERd

Condition Code

Assembly-L anguage For mat H: Previous value remains unchanged.

SUBS #1, ERd N: Previous value remains unchanged.

SUBS #2, ERd Z: Previous value remains unchanged.

SUBS #4, ERd V: Previous value remains unchanged.
C: Previous value remains unchanged.

Operand Size

Longword

Description

This instruction subtracts the immediate value 1, 2, or 4 from the contents of a 32-bit register ERd
(destination operand). Unlike the SUB instruction, it does not affect the condition-code flags.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct SUBS #1, ERd 1 B 0 goierd 1
Register direct SUBS #2, ERd 1: B 8 0ierd 1
Register direct SUBS #4, ERd 1 B 9 %O%erd 1
Notes

236

2.2.67 SUBX

SUBX (SUBtract with eXtend carry)

Subtract with Borrow

Operation
Rd—(EAs)-C - Rd

Assembly-L anguage For mat
SUBX <EAs>, Rd

Condition Code

H: Setto1if thereisaborrow at bit 3;
otherwise cleared to 0.

N: Setto 1if theresult isnegative; otherwise
cleared to 0.

Z. Settolif theresult iszero; otherwise

Operand Size cleared to 0.
B V: Setto 1if an overflow occurs; otherwise
yte
cleared to 0.
C. Settolif thereisaborrow at bit 7;
otherwise cleared to 0.
Description

This instruction subtracts the source operand and carry flag from the contents of an 8-bit register
Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Immediate SUBX #xx:8,Rd | B | rd IMM 1
Register direct SUBX Rs, Rd 1 E rs i rd 1

Notes

237

2.2.68 TAS

TAS (Test And Set)

Test and Set

Operation

@ERd -0 - set/clear CCR
1 - (<bit 7> of @ERd)

Assembly-L anguage For mat
TAS @ERd

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise
cleared to O.

Operand Size Z. Settolif theresultis zero; otherwise
Byte cleared to O.

V: Alwayscleared to 0.

C: Previous value remains unchanged.
Description

This instruction tests a memory operand by comparing it with zero, and sets the condition-code
register according to the result. Then it sets the most significant bit (bit 7) of the operand to 1.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register indirect TAS @ERd 0o : 1 E : O 7 ¢ B |0ierd: C 4
Notes

238

2.2.69 TRAPA

TRAPA (TRAP Always)

Trap Unconditionally

Operation
* When EXRisinvalid
PC - @-SP

CCR - @-SP
<Vector> - PC

* When EXRisvalid

Condition Code

| U HUNZ V C
| 1

See instruction set table.

PC . @-SP IUI gé\évayssettol.
CCR - @-SP + Seenote. |
EXR » @-SP H: Previous value remains unchanged.
N: Previous value remains unchanged.
<Vector> - PC . .
Z: Previous value remains unchanged.
Assembly-L anguage For mat V: Previous value remains unchanged.
TRAPA #x:2 C: Previous value remains unchanged.
Operand Size
Description

Thisinstruction pushes the program counter (PC) and condition-code register (CCR) onto the
stack, then setsthe | bit to 1. If the extended control register (EXR) isvalid, EXR is also saved
onto the stack, but bits12 to 10 are not modified. Next execution branches to a new address given
by the contents of the vector address corresponding to the specified vector number. The PC value
pushed onto the stack is the starting address of the next instruction after the TRAPA instruction.

Vector Address

x Normal Mode Advanced Mode

0 H'0010 to H'0011 H'000020 to H'000023
1 H'0012 to H'0013 H'000024 to H'000027
2 H'0014 to H'0015 H'000028 to H'00002B
3 H'0016 to H'0017 H'00002C to H'00002F

239

2.2.69 TRAPA

TRAPA (TRAP Always) Trap Unconditionally

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Register direct TRAPA #x:2 5 : 7 |00:IMM: O 7*

*Eight stateswhen EXR isvalid.

Notes
The Ul bit is set to 1 when used as an interrupt mask bit, but retains its previous value when used
asauser bit. For details, see the relevant microcontroller hardware manual .

The stack and vector structure differ between normal mode and advanced mode, and depending on
whether EXR isvalid or invalid.

240

2.2.70 (1) XOR (B)

XOR (eXclusive OR logical)

Exclusive Logical OR

Operation
Rd O (EAs) - Rd

Assembly-L anguage For mat
XOR. B <EAs>, Rd

Condition Code

H: Previous value remains unchanged.

N: Setto 1if theresult isnegative; otherwise
cleared to O.

Z: Settolif theresult iszero; otherwise
cleared to 0.

Operand Size V: Always cleared to 0.
Byte C: Previous value remains unchanged.
Description

Thisinstruction exclusively ORs the source operand with the contents of an 8-bit register Rd
(destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rd byte | 4thbyte | States
Immediate XOR.B #xx:8, Rd D | rd IMM 1
Register direct XOR.B Rs, Rd 15 rs i rd 1

Notes

241

2.2.70 (2) XOR (W)

XOR (eXclusive OR logical)

Exclusive L ogical OR

Operation

Rd O (EAs) - Rd

Assembly-L anguage For mat
XOR. W <EAs>, Rd

Condition Code

H: Previous vaue remains unchanged.
N: Setto 1if theresult is negative; otherwise

cleared to O.
Z: Settolif theresult iszero; otherwise
cleared to O.
Operand Size V: Alwayscleared to 0.
Word C: Previous value remains unchanged.
Description

Thisinstruction exclusively ORs the source operand with the contents of a 16-bit register Rd
(destination operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: ROtoR7, EOto E7
Rs: ROtoR7,EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte ‘ 4th byte | States
Immediate XORW | #xx:16,Rd | 7 : 9 5 ¢ rd IMM 2
Register direct XOR.W Rs, Rd 6 5 rs rd ‘ 1

Notes

242

2.2.70 (3) XOR (L)

XOR (eXclusive OR logical) Exclusive Logical OR

Operation Condition Code
ERd O (EAs) - ERd

= ===l o]
Assembly-L anguage For mat H: Previous value remains unchanged.
XOR. L <EAs>. ERd N: Setto 1if theresultis negative; otherwise
cleared to 0.
Z: Settolif theresultis zero; otherwise
cleared to 0.
Operand Size V: Always cleared to 0.
Longword C: Previous value remains unchanged.
Description

Thisinstruction exclusively ORs the source operand with the contents of a 32-bit register ERd
(destination operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: EROto ER7
ERs. EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of
Mode 1stb States
yte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte
Immediate XORL |#xx:32,ERd| 7 : A | 5 :Oerd IMM 3
Register direct | XORL | ERs,ERd | 0 : 1 | F . 0 | 6 | 5 |oersigerd] | 2
Notes

243

2.2.71 (1) XORC

XORC (eXclusive OR Control register)

Exclusive Logical OR with CCR

Operation

CCRIO#MM - CCR

Assembly-L anguage For mat
XORC #xx:8, CCR

Operand Size

Byte

Condition Code

OsNzcITCw

| U HUN Z V C
Lelelefelefofs o]

Stores the corresponding bit of the result.

. Stores the corresponding bit of the result.

Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding hit of the result.
Stores the corresponding bit of the result.

Description

Thisinstruction exclusively ORs the contents of the condition-code register (CCR) with
immediate data and stores the result in the condition-code register. No interrupt requests, including
NMI, are accepted immediately after execution of thisinstruction.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate XORC #xx:8,CCR| 0 : 5 IMM 1
Notes

244

2.2.71(2) XORC

XORC (eXclusive OR Control register) Exclusive Logical OR with EXR

Operation Condition Code
EXRO#MM - EXR

Assembly-L anguage For mat H: Previous value remains unchanged.
XORC #xx:8. EXR N: Previous value remains unchanged.

Z: Previous value remains unchanged.
Operand Size V: Previous value remains unchanged.
Byte C: Previous value remains unchanged.
Description

Thisinstruction exclusively ORs the contents of the extended control register (EXR) with
immediate data and stores the result in the extended control register. No interrupt requests,
including NMI, are accepted for three states after execution of thisinstruction.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate XORC | #xx8,EXR| 0 : 1 4 11 0 : 5 IMM 2
Notes

245

2.3 Instruction Set Summary
2.3.1 Instructionsand Addressing M odes

Table2-1 Instruction Set Summary

e

Addressing Mode
+
=
unction nstruction x x ® 5 o -
© of c © < o o < 0
£ S & ® ® = N © © o g
% c mi z 3 | g g g g z z Q
#* 04 ® ® ® ® ® ® ® ® ® ® ® |
Data MOV BWL BWL BWL BWL BWL BWL B BWL — BWL — — — —
transfer POP, PUSH _ _ . _ - _ _ — — — WL
LDM, STM — — — — — — — — — — — _ _ L
MOVEPE, — — — — — — — B — — — — — —
MOVTPE
Arithmetic ADD, CMP BWL BWL — — — — — — — — — — — —
operations SUB WL BWL _ _ _ _ _ — — — — — — —
ADDX, SUBX B B — —_ —_ — — — — — — _ _ —
ADDS, SUBS — L — —_ —_ — — — — — — _ _ —
INC, DEC WL BWL —_ —_ — — — — — — — — — —
DAA, DAS — B — —_ —_ — — — — — — _ — —
MULXU, — BW — —_ —_ — — — — — — _ — —
DIVXU,
MULXS,
DIVXS
NEG — BWL — — — — — — — — — _ _ _
EXTU, EXTS — WL — — — — — — — _ _ _ _ _
TAS — — B — — — — — — — — — — —
MAC* — — — — — @) — — — — — — — —
CLRMAC* — — — — — — — — _ _ _ _ _ @)
LDMAC*, — L — — — — — — — _ _ _ _ _
STMAC*

Note: *These instructions are supported only by the H8S/2600 CPU.

Lve

Table2-1 Instruction Set Summary (cont)

Addressing Mode

+
C
Function Instruction & & @ o Q -
© of c © < o a S ©
el 2l el g 5| S| %8 ||| é&
3 - w e = I]]] < Z Z ®
o ® ® ® ® ® ® ® ® ® ® ®
Logic AND, OR, BWL BWL — — — — — — — — — — _ _
operations | XOR
NOT — BWL — — — — — — — — — — — —
Shift operations — BWL — — — — — — — — — — _
Bit manipulation — B B — — — B B — B — — — _
Branch Bcc, BSR — — — — — — — — — — @) @) — —_
JMP, JSR — — — — — — — — @) — — — o) —
RTS — — — — — — — — — — — — — O
System TRAPA — — — — — — — — — — — — — o)
control RTE o . . - - - - _ _ _ _ — — o
SLEEP — — — — — — — — — — — — — ©)
LDC B B w w w w — w — w — — — —
STC — B w w w w — w — w — — — —
ANDC, B — — — — — — — — — — — —_ —
ORC, XORC
NOP — — — — — — — — — — — — — O
Block data transfer — — — — — — — — — — — — — BW
Legend
B: Byte
W: Word

L: Longword

2.3.2 Instruction Set

Table2-2 Instruction Set

(1) Data Transfer Instructions

8v¢

Addressing Mode and Instruction Length (Bytes)
é Condition Code No. of States
Mnemonic Size w Operation
IRC, ~
c | 0| & 8| g
x| | B2 % 8|20
£ & ® ® ® ® ® ® | I |HIN|Z |V Normal |Advanced
MOV MOV.B #xx:8,Rd B 2 #xx:8 - Rd8 — = t |0 1
MOV.B Rs,Rd B 2 Rs8 - Rd8 —|— 1|0 1
MOV.B @ERs,Rd B 2 @ERs - Rd8 —|—|t]|t]O 2
MOV.B @(d:16, ERs), Rd B 4 @(d:16,ERs) - Rd8 — =]t]t]0 3
MOV.B @(d:32,ERs),Rd B 8 @(d:32,ERs) -~ Rd8 —|—|t]t]0 5
MOV.B @ERs+,Rd B 2 @ERs - Rd8,ERs32+1 - ERs32 —|— 1|0 3
MOV.B @aa:8,Rd B 2 @aa:8 - Rd8 —|—|t]|t]O 2
MOV.B @aa:16,Rd B 4 @aa:16 » Rd8 —|—]t]t]0 3
MOV.B @aa:32,Rd B 6 @aa:32 - Rd8 —|—|t]|t]O 4
MOV.B Rs,@ERd B 2 Rs8 . @ERd — =]t]]o0 2
MOV.B Rs,@(d:16,ERd) B 4 Rd8 - @(d:16,ERd) —|—]t]t]0 3
MOV.B Rs,@(d:32,ERd) B 8 Rd8 - @(d:32,ERd) — =]t]t]0 5
MOV.B Rs,@-ERd B 2 ERd32-1 - ERd32,Rs8 -~ @ERd —|—]t]t]0 3
MOV.B Rs,@aa:8 B 2 Rs8 - @aa:8 —|—]t]t]0 2
MOV.B Rs,@aa:16 B 4 Rs8 - @aa:16 —|—|t]|t]O 3
MOV.B Rs,@aa:32 B 6 Rs8 - @aa:32 —|—]t]t]0 4
MOV.W #xx:16,Rd W 4 #xx:16 - Rd16 — = t |0 2
MOV.W Rs,Rd w 2 Rs16 - Rd16 — =]ttt]0 1
MOV.W @ERs,Rd i\ 2 @ERs - Rd16 —|— 1|0 2
MOV.W @(d:16,ERs),Rd w 4 @(d:16,ERs) - Rd16 — =]t]t]0 3
MOV.W @(d:32,ERs),Rd w 8 @(d:32,ERs) ~ Rd16 —|—|t]t]0 5
MOV.W @ERs+,Rd W 2 ERs - Rd16,ERs32+2 -~ @ERd32 —|— 1|0 3
MOV.W @aa:16,Rd w 4 @aa:16 - Rd16 —|—|t |t]O 3
MOV.W @aa:32,Rd w 6 @aa:32-Rd16 —|—]t]t]0 4
MOV.W Rs,@ERd i\ 2 Rs16 - @ERd —|— 1|0 2
MOV.W Rs,@(d:16,ERd) w 4 Rs16 - @(d:16,ERd) — =]t]t]0 3
MOV.W Rs,@(d:32,ERd) w 8 Rs16 - @(d:32,ERd) —|—|t |t]0 5
MOV.W Rs,@-ERd W 2 ERd32-2 -~ ERd32,Rs16 - @ERd —|— 1|0 3
MOV.W Rs,@aa:16 w 4 Rs16 - @aa:16 —|—|t |t]O 3
MOV.W Rs,@aa:32 W 6 Rs16 - @aa:32 —|—|t |t]0 4

6v7¢

Table2-2 Instruction Set (cont)

(1) Data Transfer Instructions

Addressing Mode and Instruction Length (Bytes)

;C: Condition Code No. of States
Mnemonic Size L Operation
|9 ~
c | & 8| g
x| c|E|l2|4%|g|=|0
X g ® ® ® ® ® ® | H|N|Z |V Normal |Advanced
MOV MOV.L #xx:32,Rd L 6 #xx:32 - Rd32 — | 110 3
MOV.L ERs,ERd L 2 ERs32 - ERd32 —|t]t |0 1
MOV.L @ERs,ERd L 4 @ERs - ERd32 — ! 110 4
MOV.L @(d:16,ERs),ERd L 6 @(d:16,ERs) - ERd32 —|t]t |0 5
MOV.L @(d:32,ERs),ERd L 10 @(d:32,ERs) -~ ERd32 —|t |t]o0 7
MOV.L @ERs+,ERd L 4 @ERs - ERd32,ERs32+4 — @ERs32 —|t]t |0 5
MOV.L @aa:16,ERd L 6 @aa:16 - ERd32 — ! 110 5
MOV.L @aa:32,ERd L 8 @aa:32 - ERd32 —|t]t |0 6
MOV.L ERs,@ERd L 4 ERs32 - @ERd — ! 110 4
MOV.L ERs,@(d:16,ERd) L 6 ERs32 - @(d:16,ERd) RN 5
MOV.L ERs,@(d:32,ERd) L 10 ERs32 - @(d:32,ERd) —|t |t]o0 7
MOV.L ERs,@-ERd L 4 ERd32-4 - ERd32,ERs32 ~ @ERd R 5
MOV.L ERs,@aa:16 L 6 ERs32 - @aa:16 — |1 1|0 5
MOV.L ERs,@aa:32 L 8 ERs32 - @aa:32 — |t]t]0 6
POP POP.W Rn W 2 @SP - Rn16,SP+2 -, SP — ! 110 3
POP.L ERn L 4 @SP - ERN32,SP+4 - SP R 5
PUSH PUSH.W Rn W 2 SP-2-,SP,Rn16 - @SP —| ¢ 110 3
PUSH.L ERn L 4 SP-4_ SP,ERN32 - @SP —|t]t |0 5
LDM LDM.L @SP+,(ERm-ERN) L 4 (@SP - ERN32,SP+4 -, SP) repeat until — === 7/9/11 []
end of register list
ST™M STM.L (ERm-ERnN),@-SP L 4 (SP-4 - SP,ERN32 - @SP) repeat until — === 7/9/11 []
end of register list
MOVFPE | MOVFPE@aa:16,Rd B 4 @aa:16 - Rd (synchronized with — |t |t]O O
E clock)
MOVTPE | MOVTPE Rs,@aa:16 B 4 Rs - @aa:16 (synchronized with — 1 1|0 O
E clock)

0S¢

Table 2-2 Instruction Set (cont)

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (Bytes)

z Condition Code No. of States
Mnemonic Size w Operation
|9 ~
c | | & 2|
x| | E|2 49|80
S & ® ® ® ® ® ® HIN|Z |V Normal |Advanced
ADD ADD.B #xx:8,Rd B 2 Rd8+#xx:8 -~ Rd8 RN 1
ADD.B Rs,Rd B 2 Rd8+Rs8 — Rd8 I EEEERE 1
ADD.W #xx:16,Rd W 4 Rd16+#xx:16 -~ Rd16] 1 1 2
ADD.W Rs,Rd w 2 Rd16+Rs16 - Rd16 O]zt 1
ADD.L #xx:32,ERd L 6 ERd32+#xx:32 - ERd32] 1 1 3
ADD.L ERs,ERd L 2 ERd32+ERs32 - ERd32 O] 1 1 1
ADDX ADDX #xx:8,Rd B 2 Rd8+#xx:8+C - Rd8 oy [0 1
ADDX Rs,Rd B 2 Rd8+Rs8+C - Rd8 2 T I 1
ADDS ADDS #1,ERd L 2 ERd32+1 - ERd32 — | — | —|— 1
ADDS #2,ERd L 2 ERd32+2 - ERd32 — | — | — | — 1
ADDS #4,ERd L 2 ERd32+4 - ERd32 — | —|—|— 1
INC INC.B Rd B 2 Rd8+1 - Rd8 — |1 1 1 1
INC.W #1,Rd W 2 Rd16+1 - Rd16 — |t ! ! 1
INC.W #2,Rd i\ 2 Rd16+2 - Rd16 — |1 1 1 1
INC.L #1,ERd L 2 ERd32+1 - ERd32 — |t ! ! 1
INC.L #2,ERd L 2 ERd32+2 - ERd32 — |1 1 1 1
DAA DAA Rd B 2 Rd8 decimal adjust — Rd8 *le | | * 1
SuB SUB.B Rs,Rd B 2 Rd8-Rs8 - Rd8 IR ERE 1
SUB.W #xx:16,Rd W 4 Rd16—#xx:16 -~ Rd16] ! ! 2
SUB.W Rs,Rd W\ 2 Rd16-Rs16 — Rd16 O] 1 1 1
SUB.L #xx:32,ERd L 6 ERd32—#xx:32 -~ ERd32] ! ! 3
SUB.L ERs,ERd L 2 ERd32-ERs32 - ERd32 O] 1 1 1
SUBX SUBX #xx:8,Rd B 2 Rd8—#xx:8—-C - Rd8 NI 1
SUBX Rs,Rd B 2 Rd8-Rs8-C - Rd8 2 T A 1
SUBS SUBS #1,ERd L 2 ERd32-1 - ERd32 — | — | —|— 1
SUBS #2,ERd L 2 ERd32-2 - ERd32 — == |— 1
SUBS #4,ERd L 2 ERd32-4 - ERd32 — | —|—|— 1
DEC DEC.B Rd B 2 Rd8-1 - Rd8 — |1 1 1 1
DEC.W #1,Rd W 2 Rd16-1- Rd16 — |t ! ! 1
DEC.W #2,Rd W\ 2 Rd16-2 - Rd16 — |1 1 1 1
DEC.L #1,ERd L 2 ERd32-1- ERd32 — |t ! ! 1
DEC.L #2,ERd L 2 ERd32-2 . ERd32 — |1 1 1 1

TG¢

Table2-2 Instruction Set (cont)

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (Bytes)

é Condition Code No. of States
Mnemonic Size w Operation
|9 ~
c 5 & 8 it
Bl B8
i g ® 6 é) ® 6 ® | I |{H|{N|Z |V |C]| Normal |Advanced
DAS DAS Rd B 2 Rd8 decimal adjust - Rd8 — ||| = 1
MULXU MULXU.B Rs,Rd B 2 Rd8xRs8 - Rd16 — === |—|— 3(12*%)
(unsigned operation)
MULXU.W Rs,ERd w 2 Rd16xRs16 - ERd32 — == == 1— 4 (20%)
(unsigned operation)
MULXS MULXS.B Rs,Rd B 4 Rd8xRs8 - Rd16 — | =t == 4 (13*%)
(signed operation)
MULXS.W Rs,ERd w 4 Rd16xRs16 - ERd32 — =t |=]= 5 (21*)
(signed multiplication)
DIVXU DIVXU.B Rs,Rd B 2 Rd16+Rs8 - Rd16 (RdH: remainder, e I 12
RdL: quotient) (unsigned division)
DIVXU.W Rs,ERd w 2 ERd32+Rs16 » ERd32 (Ed: remainder, | — |— | | |— | — 20
Rd: quotient) (unsigned division)
DIVXS DIVXS.B Rs,Rd B 4 Rd16+Rs8 -~ Rd16 (RdH: remainder, —|—|1g|/g|—|— 13
RdL: quotient) (signed division)
DIVXS.W Rs,ERd W 4 ERd32+Rs16 — ERd32 (Ed: remainder, | — |— | |0 |— | — 21
Rd: quotient) (signed division)
CMP CMP.B #xx:8,Rd B 2 Rd8—#xx:8 — |t ! ! ! 1
CMP.B Rs,Rd B 2 Rd8-Rs8 AR ERERE: 1 1
CMP.W #xx:16,Rd W 4 Rd16—#xx:16 — 0] ! ! ! 2
CMP.W Rs,Rd W 2 Rd16-Rs16 — gl]t] 1 1
CMP.L #xx:32,ERd L 6 ERd32—#xx:32 — 0] ! ! ! 3
CMP.L ERs,ERd L 2 ERd32-ERs32 — 10| t t ? 1
NEG NEG.B Rd B 2 0-Rd8 - Rd8 — |t ! ! ! 1
NEG.W Rd w 2 0-Rd16 ~ Rd16 AR ERERE: 1 1
NEG.L ERd L 2 0-ERd32 - ERd32 — |t ! ! ! 1
EXTU EXTU.W Rd W 2 0 (<bits 15 to 8> of Rd16) —|—|0 |1t |0 |— 1
EXTU.L ERd L 2 0 (<bits 31 to 16> of ERd32) —|—]0]t |0]|— 1
EXTS EXTS.W Rd w 2 (<bit 7> of Rd16) - (<bits 15 to 8> —|—|t]t |0 |— 1
of Rd16)
EXTS.L ERd L 2 (<bit 15> of ERd32) - (<bits 31t0 16> |— |—| t | ¢t |0 | — 1
of ERd32)
TAS TAS @ERd B 4 @ERd-0 - set CCR, 1 - (<bit 7> of — =t 110 | — 4
@ERd)

Note: *For the H8S/2000 CPU.

[AST4

Table 2-2 Instruction Set (cont)

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (Bytes)

z Condition Code No. of States
Mnemonic Size w Operation
z |9 ~
c | | & 2|
x| .| Bz %] gl3|0
S & ® ® ® ® ® ® HIN|Z |V Normal |Advanced
MAC* MAC @ERn+,@ERm+ — 4 @ERNx@ERmM+MAC - MAC (signed — === 4
multiplication) ooio
ERN+2 - ERN,ERM+2 - ERmM
CLRMAC* | CLRMAC — 0-MACH, MACL — | —|—|— 2
LDMAC* LDMAC ERs,MACH L 2 ERs - MACH —|—|—|— 2
LDMAC ERs,MACL L 2 ERs - MACL — | —|—|— 2
STMAC* STMAC MACH,ERd L 2 MACH - ERd — |t |t |t 1
STMAC MACL,ERd L 2 MACL - ERd — |1 H H 1

Note: *These instructions are supported only by the H8S/2600 CPU.

€46¢

Table2-2 Instruction Set (cont)

(3) Logic Operation Instructions

Addressing Mode and Instruction Length (Bytes)

;C: Condition Code No. of States
Mnemonic Size w Operation
=] 9® ~
< | 5 & | g
x| | &2 /4 g|l2|¢
& g ® ® ® ® ® ® | HIN|Z |V Normal |Advanced
AND AND.B #xx:8,Rd B 2 Rd8[#xx:8 — Rd8 — |t t |0 1
AND.B Rs,Rd B 2 Rd8ORs8 - Rd8 —|t]t |0 1
AND.W #xx:16,Rd W 4 Rd16[#xx:16 - Rd16 — |t 110 2
AND.W Rs,Rd W 2 Rd1600Rs16 - Rd16 — |t 110 1
AND.L #xx:32,ERd L 6 ERd32[#xx:32 - ERd32 — |t 110 3
AND.L ERs,ERd L 4 ERd32CERs32 - ERd32 — |t 110 2
OR OR.B #xx:8,Rd B 2 Rd8[#xx:8 - Rd8 — |t t |0 1
OR.B Rs,Rd B 2 Rd8ORs8 - Rd8 —|t]t |0 1
OR.W #xx:16,Rd W 4 Rd16[#xx:16 - Rd16 — |t 110 2
OR.W Rs,Rd W 2 Rd1600Rs16 - Rd16 — |t 110 1
OR.L #xx:32,ERd L 6 ERd32[#xx:32 - ERd32 — |t 110 3
OR.L ERs,ERd L 4 ERd32CERs32 - ERd32 — |t 110 2
XOR XOR.B #xx:8,Rd B 2 Rd8[#xx:8 - Rd8 — |t t |0 1
XOR.B Rs,Rd B 2 Rd80Rs8 - Rd8 —|t]t |0 1
XOR.W #xx:16,Rd W 4 Rd160#xx:16 - Rd16 — |t 1|0 2
XOR.W Rs,Rd W 2 Rd160Rs16 - Rd16 — |t 110 1
XOR.L #xx:32,ERd L 6 ERd320#xx:32 - ERd32 — |t 1|0 3
XOR.L ERs,ERd L 4 ERd320ERs32 - ERd32 — |t 110 2
NOT NOT.B Rd B 2 - Rd8 - Rd8 — |1 1|0 1
NOT.W Rd W 2 - Rd16 -~ Rd16 —|t]t |0 1
NOT.L ERd L 2 - Rd32 - Rd32 —|]t |0 1

4514

Table 2-2 Instruction Set (cont)

(4) Shift Instructions

Addressing Mode and Instruction Length (Bytes)

z Condition Code No. of States
Mnemonic Size w Operation
|9 ~
c | 0| & 2|
x Els|Ylg|2|o
S ® ® ® ® ® ® ‘ I |H|IN|Z |V |C]| Normal |[Advanced
SHAL SHAL.B Rd — =t |t [t]
SHAL.B #2,Rd — =t |t ||
SHAL.W Rd [+ f—0 | —|—|]t |t
SHAL.W #2,Rd C MSB+————LSB — | —1? ! !
SHAL.L ERd — =]t | !

SHAL.L #2,ERd

SHAR SHAR.B Rd

SHAR.B #2,Rd

SHAR.W Rd
SHAR.W #2,Rd

MSB——
SHAR.L ERd LsB C

SHAR.L #2,ERd

SHLL SHLL.B Rd

SHLL.B #2,Rd

SHLL.W Rd
SHLL.W #2,Rd

e N N B

C MSB+—LSB — =t |t

SHLL.L ERd

SHLL.L #2,ERd

SHLR SHLR.B Rd

SHLR.B #2,Rd

SHLR.W Rd
SHLR.W #2,Rd

0—f] |—|—

MSB——*LSB C — =

SHLR.L ERd

O |0 |0 O|0 |0 |« |«

SHLR.L #2,ERd

ROTXL ROTXL.B Rd

ROTXL.B #2,Rd

ROTXLW R lg——J -]~ [+ [° [
ROTXLW #2,Rd C MSB< LSB — =l !
ROTXL.L ERd — =]t 3 3

N NN NN ININN(N(NN(NINNNININNININ(NN(N(N N[N NN N] RN

ririgs|slo|jo|ririg|ls|lojo|iririsiSsloo/ririg|soo|r|rissolw
RiRrkr RrRRIRP|IRP,RRPIRRIRPRIRIRPIRIR|IPL RRIRIR(R|RL R(RR

OO0 O0O|0OO|0O|0O O|O0O|0O|O|0O OO|O|O OO0 O|O (O« |«

ROTXL.L #2,ERd

GS¢

Table2-2 Instruction Set (cont)

(4) Shift Instructions

Addressing Mode and Instruction Length (Bytes)

Condition Code No. of States

Mnemonic Size Operation

Normal |Advanced

@-ERn/@ERN+

@ERnN
@(d,ERn)
@aa
@(d,PC)
@@aa

T

z

N

<

o

#XX

ROTXR | ROTXR.BRd

ROTXR.B #2,Rd

ROTXR.W Rd
ROTXR.W #2,Rd

] [-

MSB+———LSB C —

ROTXR.L ERd

ROTXR.L #2,ERd

ROTL ROTL.B Rd

ROTL.B #2,Rd

ROTL.W Rd
ROTL.W #2,Rd

B — -

MSB¢+——LSB S —

ROTL.L ERd

ROTL.L #2,ERd

ROTR ROTR.B Rd

ROTR.B #2,Rd

ROTR.W Rd
ROTR.W #2,Rd

b:m —|=

MSB——*LSB

ROTR.L ERd

rirlglS|lw|w|ir|r|g|S|lo|w|r|r|S|S | m|w
NN N (NN NN NN NN IN N [N N [N S| R
o|lo|o o|lo|o|o|o|o o|o|o|o|o|o o|o|o
N R N N e o e e e N e e P N L L

ROTR.L #2,ERd

9g6¢

Table 2-2 Instruction Set (cont)

(5) Bit Manipulation Instructions

Mnemonic

Size

Addressing Mode and Instruction Length (Bytes)

#XX

@-ERN/@ERN+

Rn

@ERnN
@(d.ERn)
@aa
@(d,PC)
@@aa

Operation

No. of States

Normal |Advanced

BSET

BSET #xx:3,Rd

(#xx:3 of Rd8) ~ 1

BSET #xx:3,@ERd

IS

(#xx:3 of @ERd) ~ 1

BSET #xx:3,@aa:8

(#xx:3 of @aa:8) -1

BSET #xx:3,@aa:16

(#xx:3 of @aa:16) — 1

BSET #xx:3,@aa:32

(#xx:3 of @aa:32) -1

BSET Rn,Rd

(Rn8 of Rd8) 1

BSET Rn,@ERd

(Rn8 of @ERd) -1

BSET Rn,@aa:8

(Rn8 of @aa:8) — 1

BSET Rn,@aa:16

(Rn8 of @aa:16) ~ 1

BSET Rn,@aa:32

(Rn8 of @aa:32) — 1

BCLR

BCLR #xx:3,Rd

(#xx:3 of Rd8) 0

BCLR #xx:3,@ERd

(#xx:3 of @ERd) 0

BCLR #xx:3,@aa:8

(#xx:3 of @aa:8) -0

BCLR #xx:3,@aa:16

(#xx:3 of @aa:16) — 0

BCLR #xx:3,@aa:32

(#xx:3 of @aa:32) -0

BCLR Rn,Rd

(Rn8 of Rd8) —0

BCLR Rn,@ERd

(Rn8 of @ERd) — 0

BCLR Rn,@aa:8

(Rn8 of @aa:8) —0

BCLR Rn,@aa:16

(Rn8 of @aa:16) -0

BCLR Rn,@aa:32

(Rn8 of @aa:32) —0

BNOT

BNOT #xx:3,Rd

(#xx:3 of Rd8) — [(#xx:3 of Rd8)]

BNOT #xx:3,@ERd

(#xx:3 of @ERd) — [~ (#xx:3 of @ERd)]

BNOT #xx:3,@aa:8

(#xx:3 of @aa:8) — [~ (#xx:3 of @aa:8)]

BNOT #xx:3,@aa:16

(#xx:3 of @aa:16) — [~ (#xx:3 of @aa:16)]

BNOT #xx:3,@aa:32

(#xx:3 of @aa:32) — [~ (#xx:3 of @aa:32))

BNOT Rn,Rd

(Rn8 of Rd8) — [(Rn8 of Rd8)]

BNOT Rn,@ERd

(Rn8 of @ER) — [~ (Rn8 of @ERd)]

BNOT Rn,@aa:8

(Rn8 of @aa:8) — [~ (Rn8 of @aa:8)]

BNOT Rn,@aa:16

(Rn8 of @aa:16) ~ [~ (Rn8 of @aa:16)]

BNOT Rn,@aa:32

{osiivvinfivsiyiveinfusiyivelyfvelyiivelyfveiyivelnfiusiyivelyfusiuively usiyively Rus i fvelg fusiiively Rusiivelg uv i fvely usiiively Rus i ively Rus i ve)

(Rn8 of @aa:32) — [~ (Rn8 of @aa:32)]

olulddlPrjog|ddRr|lolg|ddlRlOlOM MR O|O|AM|DMPR|O|O|M|D|P

JASTA

Table2-2 Instruction Set (cont)

(5) Bit Manipulation Instructions

Addressing Mode and Instruction Length (Bytes)

é Condition Code No. of States
Mnemonic Size w Operation
| 9® ~
c 5 & 8 it
x| | E|l=2/4lg|l2|e
i g ® ® ® ® ® ® H|N|Z |V |C| Normal |[Advanced
BTST BTST #xx:3,Rd B 2 (#xx:3 of Rd8) -~ Z — =]t |— = 1
BTST #xx:3,@ERd B 4 (#xx:3 of @ERd) -~ Z —|— |t |—|— 3
BTST #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)-~Z — | — |t |—=|— 3
BTST #xx:3,@aa:16 B 6 (#xx:3 of @aa:16) -Z —|— |t |—|— 4
BTST #xx:3,@aa:32 B 8 (#xx:3 of @aa:32) ~Z — =]t |— = 5
BTST Rn,Rd B 2 (Rn8 of Rd8) -~ Z — | =t | —|— 1
BTST Rn,@ERd B 4 (Rn8 of @ERd) ~ Z — =]t |—|— 3
BTST Rn,@aa:8 B 4 (Rn8 of @aa:8)~Z —|— |t |—|— 3
BTST Rn,@aa:16 B 6 (Rn8 of @aa:16)-Z — | — |t |—=|— 4
BTST Rn,@aa:32 B 8 (Rn8 of @aa:32) -Z — =]t |—|— 5
BLD BLD #xx:3,Rd B 2 (#xx:3 of Rd8) . C — | — == 1
BLD #xx:3,@ERd B 4 (#xx:3 of @ERd) -~ C —|—|—|— 3
BLD #xx:3,@aa:8 B 4 (#xx:3 of @aa:8) -~ C — === 3
BLD #xx:3,@aa:16 B 6 (#xx:3 of @aa:16) - C —|—|—|— 4
BLD #xx:3,@aa:32 B 8 (#xx:3 of @aa:32) - C —|— == 5
BILD BILD #xx:3,Rd B 2 - (#xx:3 of Rd8) . C — | === ¢ 1
BILD #xx:3,@ERd B 4 - (#xx:3 of @ERd) -~ C —|— == 3
BILD #xx:3,@aa:8 B 4 - (#xx:3 of @aa:8) -~ C —|—|—|— 3
BILD #xx:3,@aa:16 B 6 - (#xx:3 of @aa:16) - C —|— == 4
BILD #xx:3,@aa:32 B 8 - (#xx:3 of @aa:32) - C —|— == 5
BST BST #xx:3,Rd B 2 C - (#xx:3 of Rd8) — === 1
BST #xx:3,@ERd B 4 C - (#xx:3 of @ERd24) — === | = 4
BST #xx:3,@aa:8 B 4 C - (#xx:3 of @aa:8) — === 4
BST #xx:3,@aa:16 B 6 C - (#xx:3 of @aa:16) — === | = 5
BST #xx:3,@aa:32 B 8 C - (#xx:3 of @aa:32) — = === 6
BIST BIST #xx:3,Rd B 2 - C - (#xx:3 of Rd8) — | —|—|—|— 1
BIST #xx:3,@ERd B 4 - C- (#xx:3 of @ERd24) — | === 4
BIST #xx:3,@aa:8 B 4 - C- (#xx:3 of @aa:8) — === | = 4
BIST #xx:3,@aa:16 B 6 - C- (#xx:3 of @aa:16) — === = 5
BIST #xx:3,@aa:32 B 8 = C- (#xx:3 of @aa:32) — = === 6

8G¢

Table 2-2 Instruction Set (cont)

(5) Bit Manipulation Instructions

Mnemonic

Size

Addressing Mode and Instruction Length (Bytes)

#XX

@-ERN/@ERN+

Rn

@ERnN
@(d.ERn)
@aa
@(d,PC)
@@aa

Operation

No. of States

Normal |Advanced

BAND

BAND #xx:3,Rd

CO#xx:3 of Rd8) -~ C

BAND #xx:3,@ERd

IS

C(#xx:3 of @ERd24) .C

BAND #xx:3,@aa:8

CO#xx:3 of @aa:8) - C

BAND #xx:3,@aa:16

CO(#xx:3 of @aa:16) -~ C

BAND #xx:3,@aa:32

CO#xx:3 of @aa:32) - C

BIAND

BIAND #xx:3,Rd

CL] - (#xx:3 of Rd8)| - C

BIAND #xx:3,@ERd

C - (#xx:3 of @ERd24)]-C

BIAND #xx:3,@aa:8

CL] - (#xx:3 of @aa:8)] - C

BIAND #xx:3,@aa:16

C[] - (#xx:3 of @aa:16)]-C

BIAND #xx:3,@aa:32

CL] - (#xx:3 of @aa:32)] - C

BOR

BOR #xx:3,Rd

CO#xx:3 of Rd8) -~ C

BOR #xx:3,@ERd

C(#xx:3 of @ERd24) .C

BOR #xx:3,@aa:8

CO#xx3: of @aa:8)-C

BOR #xx:3,@aa:16

CO(#xx3: of @aa:16) -~ C

BOR #xx:3,@aa:32

CO#xx3: of @aa:32) - C

BIOR

BIOR #xx:3,Rd

CI - (#xx:3 of Rd8)| - C

BIOR #xx:3,@ERd

C - (#xx:3 of @ERd24)]-C

BIOR #xx:3,@aa:8

CL] -~ (#xx:3 of @aa:8)] - C

BIOR #xx:3,@aa:16

C[] - (#xx:3 of @aa:16)]-C

BIOR #xx:3,@aa:32

CL] - (#xx:3 of @aa:32)] - C

BXOR

BXOR #xx:3,Rd

CO(#xx:3 of Rd8) - C

BXOR #xx:3,@ERd

CO(#xx:3 of @ERA24) . C

BXOR #xx:3,@aa:8

CO(#xx:3 of @aa:8) -~ C

BXOR #xx:3,@aa:16

CO(#xx:3 of @aa:16) - C

BXOR #xx:3,@aa:32

CO(#xx:3 of @aa:32) -~ C

BIXOR

BIXOR #xx:3,Rd

CI[- (#xx:3 of Rd8)] - C

BIXOR #xx:3,@ERd

C[= (#xx:3 of @ERd24)]-C

BIXOR #xx:3,@aa:8

Cl[l = (#xx:3 of @aa:8)]~C

BIXOR #xx:3,@aa:16

o

C[I = (#xx:3 of @aa:16)] - C

BIXOR #xx:3,@aa:32

{esiuiiveinvs vl fusiyivelyfvelyiivelgveiyivelnfiveiyivelyusiuively usiyively us i fvely usiively Rus i ivelg uv i fvelg uviiively Rus i ively Ruviive)

C[- (#xx:3 of @aa:32)] - C

Odlwlwik|abdw | w(FR|lOdMw|lw|krlOdlw(w(k[o|dw | w(kFloa|d|lw|w(k

65¢

Table2-2 Instruction Set (cont)

(6) Branch Instructions

Addressing Mode and Instruction Length (Bytes)

é Condition Code No. of States
Mnemonic Size w Operation
|9 ~
o c (@]
x S:C_, L-g’ & < 95 (@% Branch
k3 g ® ® @ ® ® | ® | Condition HIN|Z |V Normal |Advanced

Bcc BRA d:8(BT d:8) — 2 if condition is true then | Always — | — | — | — 2
BRA d:16(BT d:16) — 4 PC - PC+d — == | = 3
BRN d:8(BF d:8) — 2 else next; Never —|—|—|— 2
BRN d:16(BF d:16) — 4 === 3
BHI d:8 — 2 Clz=0 — === 2
BHI d:16 — 4 — === 3
BLS d:8 — 2 Clz=1 — === 2
BLS d:16 — 4 — === 3
BCC d:8(BHS d:8) — 2 c=0 JE U D 2
BCC d:16(BHS d:16) — 4 — === 3
BCS d:8(BLO d:8) — 2 c=1 === 2
BCS d:16(BLO d:16) — 4 — === 3
BNE d:8 — 2 Z=0 — === 2
BNE d:16 — 4 — === 3
BEQ d:8 — 2 z=1 — === 2
BEQ d:16 — 4 — === 3
BVC d:8 — 2 V=0 — === 2
BVC d:16 — 4 — === 3
BVS d:8 — 2 V=1 — === 2
BVS d:16 — 4 — === 3
BPL d:8 — 2 N=0 — === 2
BPL d:16 — 4 — === 3
BMI d:8 — 2 N=1 — === 2
BMI d:16 — 4 — === 3
BGE d:8 — 2 NOV=0 el el el 2
BGE d:16 — 4 — === 3
BLT d:8 — 2 NOV=1 — === 2
BLT d:16 — 4 — === 3
BGT d:8 — 2 ZNDOV)=0 — === 2
BGT d:16 — 4 — === 3
BLE d:8 — 2 ZONDOV)=1 — === 2
4 3

BLE d:16

09¢

Table 2-2 Instruction Set (cont)

(6) Branch Instructions

Addressing Mode and Instruction Length (Bytes)

é Condition Code No. of States
Mnemonic Size w Operation
|9 ~
o = O
x E::J -<U:JI i ot E:_f é Branch
7 &g ® | © @5 ‘@3 ® | © Condition HIN|Z |V Normal |Advanced
IMP JMP @ERn — 2 PC—Em — ===
JMP @aa:24 — 4 PC —aa:24 — ===
JMP @@aa:8 — 2 PC - @aa:8 — === 4 5
BSR BSR d:8 — 2 PC - @-SP,PC - PC+d:8 — === 3 4
BSR d:16 — 4 PC- @-SP,PC - PC+d:16 ol il il 4 5
JSR JSR @ERn — 2 PC - @-SP,PC —ERnN — === 3 4
JSR @aa:24 — 4 PC - @-SP,PC —aa:24 — === 4 5
JSR @@aa:8 — 2 PC - @-SP,PC —aa:8 — === 4 6
RTS RTS — PC - @SP+ === 4 5

T9¢

Table2-2 Instruction Set (cont)

(7) System Control Instructions

Addressing Mode and Instruction Length (Bytes)

;C: Condition Code No. of States
Mnemonic Size w Operation
=] 9® ~
c | 0| & | g
x| | &2 /4 g|l2|¢
& g ® ® ® ® ® ® HIN|Z |V Normal |Advanced
TRAPA TRAPA #x:2 — PC - @-SP,CCR - @-SP, — = — | — 70 8]
EXR - @-SP,<vector> - PC
RTE RTE — EXR - @SP+,CCR - @SP+, N A A 50
PC - @SP+

SLEEP SLEEP — Transition to power-down state — === 2
LDC LDC #xx:8,CCR B 2 #xx:8 -CCR IR ERE 1

LDC #xx:8,EXR B 4 #xx:8 - EXR — === 2

LDC Rs,CCR B 2 Rs8 - CCR IR ERE 1

LDC Rs,EXR B 2 Rs8 -~ EXR — | —|—|— 1

LDC @ERs,CCR W 4 @ERs - CCR IR ERE: 3

LDC @ERs,EXR w 4 @ERs - EXR — === 3

LDC @(d:16,ERs),CCR w 6 @(d:16,ERs) -~ CCR NN 4

LDC @(d:16,ERs),EXR w 6 @(d:16,ERs) - EXR — === 4

LDC @(d:32,ERs),CCR W 10 @(d:32,ERs) - CCR IR ERE: 6

LDC @(d:32,ERs),EXR w 10 @(d:32,ERs) - EXR — === 6

LDC @ERs+,CCR W 4 @ERs - CCR,ERs32+2 - ERs32 IR ERE: 4

LDC @ERs+,EXR w 4 @ERs - EXR,ERs32+2 - ERs32 — == — 4

LDC @aa:16,CCR W 6 @aa:16 - CCR IR ERE: 4

LDC @aa:16,EXR w 6 @aa:16 -EXR — | —|—|— 4

LDC @aa:32,CCR W 8 @aa:32-CCR IR ERE: 5

LDC @aa:32,EXR w 8 @aa:32-EXR — | —|—|— 5

29¢

Table 2-2 Instruction Set (cont)

(7) System Control Instructions

Addressing Mode and Instruction Length (Bytes)
z Condition Code No. of States
Mnemonic Size w Operation
|9 ~
c | 0| & 2|
x| .| Bz %] gl3|0
S & ® ® ® ® ® ® HIN|Z |V Normal |Advanced
STC STC CCR,Rd B 2 CCR-Rd8 —|—|—|— 1
STC EXR,Rd B 2 EXR - Rd8 — | — | = |— 1
STC CCR,@ERd W 4 CCR- @ERd —|—|—|— 3
STC EXR,@ERd W\ 4 EXR - @ERd — | — | = |— 3
STC CCR,@(d:16,ERd) w 6 CCR - @(d:16,ERd) — === 4
STC EXR,@(d:16,ERd) W 6 EXR - @(d:16,ERd) — === 4
STC CCR,@(d:32,ERd) w 10 CCR - @(d:32,ERd) — === 6
STC EXR,@(d:32,ERd) W 10 EXR - @(d:32,ERd) — === 6
STC CCR,@-ERd W 4 ERd32-2 - ERd32,CCR - @ERd — | — | —|— 4
STC EXR,@-ERd i\ 4 ERd32-2 . ERd32,EXR - @ERd — | — | = |— 4
STC CCR,@aa:16 w 6 CCR- @aa:16 — === 4
STC EXR,@aa:16 i\ 6 EXR - @aa:16 — | — | = |— 4
STC CCR,@aa:32 W 8 CCR- @aa:32 —|—|—|— 5
STC EXR,@aa:32 w 8 EXR - @aa:32 — == |- 5
ANDC ANDC #xx:8,CCR B 2 CCR[#xx:8-CCR RN 1
ANDC #xx:8,EXR B 4 EXR#xx:8 - EXR — | — | = |— 2
ORC ORC #xx:8,CCR B 2 CCR[#xx:8-CCR RN 1
ORC #xx:8,EXR B 4 EXR#xx:8 - EXR — === 2
XORC XORC #xx:8,CCR B 2 CCRO#xx:8 - CCR RN 1
XORC #xx:8,EXR B 4 EXRO#xx:8 - EXR — | — | = |— 2
NOP NOP — PC - PC+2 — | — | = |— 1

€9¢

Table2-2 Instruction Set (cont)

(8) Block Transfer Instructions

Addressing Mode and Instruction Length (Bytes)
é Condition Code No. of States
Mnemonic Size = 5 Operation
c| & ¢ 9 s
< F | ¥|lg|2|9
el o ® é) §1 & o | I |H|N|Z|V]|C]| Normal |Advanced
EEPMOV | EEPMOV.B — 4 | ifRALZ0 ——l=l=1=1= 442072
Repeat @ER5+ - @ER6+
R5+1-R5
R6+1-R6
R4L-1 - RAL
Until R4L=0
else next;
EEPMOV.W — 4 | ifR4%0 — == === 4+2n*2
Repeat @ER5+ — @ER6+
R5+1-R5
R6+1-R6
R4-1-R4
Until R4=0
else next;
Notes: 1. The number of states is the number of states required for execution when the instruction and its operands are located in
on-chip memory.
2. nis the initial setting of R4L or R4.
[] Seven states for saving or restoring two registers, nine states for three registers, or eleven states for four registers.
[0 The number of states required for execution of an instruction that transfers data in synchronization with the E clock is variable.
[J Setto 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.
[] Setto 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.
[J Retains its previous value when the result is zero; otherwise cleared to 0.
[J Setto 1 when the divisor is negative; otherwise cleared to 0.
[0 Setto 1 when the divisor is zero; otherwise cleared to 0.
[] Setto 1 when the quotient is negative; otherwise cleared to O.
[0 MAC instruction results are indicated in the flags when the STMAC instruction is executed.
[] One additional state is required for execution when EXR is valid.

¥9¢

2.4 Instruction Codes

Table 2-3 Instruction Codes
Instruction Mnemonic Size Instruction Format
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte
ADD ADD.B #xx:8,Rd B| 8 : rd IMM
ADD.B Rs,Rd B 0 8 rs iord
ADD.W #xx:16,Rd w| 7 9 1 rd MM
ADD.W Rs,Rd w 0 9 rs rd
ADD.L #xx:32,ERd L] 7 A : IMM
ADD.L ERs,ERd L] o A
ADDS ADDS #1,ERd L 0 B :
ADDS #2,ERd L 0 B :
ADDS #4,ERd L 0 B :
ADDX ADDX #xx:8,Rd B| 9 rd IMM
ADDX Rs,Rd B| o E rs ©ord
AND AND.B #xx:8,Rd B| E rd IMM
AND.B Rs,Rd B | 1 6 s 1o
AND.W #xx:16,Rd wl| 7 9 6 rd IMM
AND.W Rs,Rd W 6 6 rs @ ord
AND.L #xx:32,ERd L] 7 A 6 0 erd IMM
AND.L ERs,ERd L] o i 1| F o 6 6 |Oers:0erd
ANDC ANDC #xx:8,CCR B| o 6 IMM i
ANDC #xx:8,EXR B| 0 1 4 01 0: 6 IMM
BAND BAND #xx:3,Rd B| 7 6 |0IMM: rd
BAND #xx:3, @ERd B | 7 Cc |oierd: o0 7 1 6 [0iMM: 0
BAND #xx:3,@aa:8 B 7 E abs 7 5 6 [0IMM: 0
BAND #xx:3,@aa:16 B| 6 A 1 : 0 abs 7 6 |0:IMM O
BAND #xx:3,@aa:32 B 6 A 3 10 abs 7 6 O IMM§ 0
Bce BRA d:8 (BT d:8) —| a4 0 disp |
BRA d:16 (BT d:16) 5 8 0 i 0 disp
BRN d:8 (BF d:8) 4 1 disp |
BRN d:16 (BF d:16) — | s 8 110 disp
BHI d:8 — | a 2 disp \
BHI d:16 — | s 8 2 10 disp
BLS d:8 —| 4 3 disp |
BLS d:16 —| s 8 3 00 disp
BCC d:8 (BHS d:8) —| 4 4 disp |

S9¢

Table 2-3 Instruction Codes (cont)

Instruction Format

Instruction Mnemonic Size
1st byte 2nd byte 3rd byte ‘ 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte
Bcc BCC d:16 (BHS d:16) — 8 4 10 disp
BCS d:8 (BLO d:8) — | a 5 disp |
BCS d:16 (BLO d:16) — | 5 8 5 0 disp
BNE d:8 — | 4 6 disp |
BNE d:16 — | 5 8 6 : 0 disp
BEQ d:8 — | a 7 disp |
BEQ d:16 — 5 8 7 .0 disp
BVC d:8 — | a 8 disp |
BVC d:16 — | 5 8 8 0 disp
BVS d:8 — | 4 9 disp |
BVS d:16 — | 5 8 9 o0 disp
BPL d:8 — | a A disp |
BPL d:16 — 5 8 A 0 disp
BMI d:8 — | a B disp |
BMI d:16 — | 5 8 B ! 0 disp
BGE d:8 — | 4 c disp |
BGE d:16 — | 5 8 c o0 disp
BLT d:8 — | a D disp |
BLT d:16 — 5 8 D : 0 disp
BGT d:8 — | a E disp |
BGT d:16 — | 5 8 E 0 disp
BLE d:8 — | a F disp |
BLE d:16 — | 5 8 F i o disp
BCLR BCLR #xx:3,Rd B 7 2 |0iMM: rd
BCLR #xx:3,@ERd B 7 D |0ierd! O 7 2 |0IMM:
BCLR #xx:3,@aa:8 B 7 F abs 7 2 |oiIMM:
BCLR #xx:3,@aa:16 B 6 A 8 abs 2 |0:IMM: 0
BCLR #xx:3,@aa:32 B 6 A 3 8 abs 7 2 0 gIMMg 0
BCLR Rn,Rd B 6 2 m : rd
BCLR Rn,@ERd B 7 D |oierd: O 6 1 2 m
BCLR Rn,@aa:8 B 7 F abs 6 : 2 m
BCLR Rn,@aa:16 B 6 A 1 : 8 abs 2 m 0
BCLR Rn,@aa:32 B 6 A 3 8 abs 6 2 m 0

99¢

Table 2-3 Instruction Codes (cont)

Instruction Mnemonic Size Instruction Format
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

BIAND BIAND #xx:3,Rd B 7 1 6 |1IMM!

BIAND #xx:3,@ERd B | 7 C |oierd: © 7 6 |1iIMM: 0

BIAND #xx:3,@aa:8 B 7 E abs 7 6 [1iIMM: 0O

BIAND #xx:3,@aa:16 B 6 A 110 abs 7 1 6 [1IMM 0

BIAND #xx:3,@aa:32 B| 6 A 3 1o abs 7 6 [11MMI 0
BILD BILD #xx:3,Rd B 7 7 [1iMMi rd

BILD #xx:3,@ERd B 7 C |oierd: © 7 7 |1iMMmi 0

BILD #xx:3,@aa:8 B 7 E abs 7 7 [1iMM: 0

BILD #xx:3,@aa:16 B 6 A 1 :0 abs 7 7 |1IMM: 0

BILD #xx:3,@aa:32 B 6 A 3 0 abs 7 7 gIMMg 0
BIOR BIOR #xx:3,Rd B 7 4 |1IMM: rd

BIOR #xx:3,@ERd B 7 C |oierd: © 7 4 [1iMmi 0

BIOR #xx:3,@aa:8 B 7 E abs 7 4 [1IMM: 0

BIOR #xx:3,@aa:16 B 6 A 1:0 abs 7 1 4 [1IMM 0

BIOR #xx:3,@aa:32 B 6 A 3 10 abs 7 4 §IMM§ 0
BIST BIST #xx:3,Rd B 6 7 |10MMi rd

BIST #xx:3,@ERd B 7 D |[o0ierd: O 6 : 7 |LIMM: 0

BIST #xx:3,@aa:8 B 7 F abs 6 : 7 |1iIMM: 0

BIST #xx:3,@aa:16 B 6 A 1 8 abs 6 7 1§IMM§ 0

BIST #xx:3,@aa:32 B| 6 A 3 18 abs 6 7 [1immi o
BIXOR BIXOR #xx:3,Rd B 7 5 [1iMM! rd

BIXOR #xx:3,@ERd B 7 C |oierd: © 7 5 |1IMMi 0

BIXOR #xx:3,@aa:8 B 7 E abs 7 5 [1iMM: 0

BIXOR #xx:3,@aa:16 B 6 A 1 :0 abs 7 0 5 |1LIMM: 0

BIXOR #xx:3,@aa:32 B 6 A 3 0 abs 7 5 gIMMg 0
BLD BLD #xx:3,Rd B 7 7 oMM rd

BLD #xx:3,@ERd B 7 C |oierd: © 7 7 |oimMmi 0

BLD #xx:3,@aa:8 B 7 E abs 7 7 |oiMMm: 0

BLD #xx:3,@aa:16 B 6 A 110 abs 7 1 7 [0oiIMM: 0

BLD #xx:3,@aa:32 B 6 A 3 10 abs 7 7 §IMM§ 0
BNOT BNOT #xx:3,Rd B 7 1 O%IMME rd

BNOT #xx:3,@ERd B 7 D |[oierd: O 7 1 1 |0IMM: 0

BNOT #xx:3,@aa:8 B 7 F abs 7 © 1 |0iIMM: 0

BNOT #xx:3,@aa:16 B 6 A 1 8 abs 7 1 OglMMg 0

BNOT #xx:3,@aa:32 B | 6 A 3 ;8 abs 7 1 IMM: 0

BNOT Rn,Rd B 6 1 m i

19¢

Table 2-3 Instruction Codes (cont)

Instruction Format

Instruction Mnemonic Size
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

BNOT BNOT Rn,@ERd B 7 ¢ D O:erd: O 6 1 m 0

BNOT Rn,@aa:8 B 7 F abs 6 1 m 0

BNOT Rn,@aa:16 B 6 A 1 8 abs 1 m 0

BNOT Rn,@aa:32 B 6 A 3 8 abs 6 1 m 0
BOR BOR #xx:3,Rd B 7 4 [0IMM: rd

BOR #xx:3,@ERd B 7 (03 0 erd 0 7 4 OglMMg 0

BOR #xx:3,@aa:8 B 7 E abs 7 4 |0iIMM: 0O

BOR #xx:3,@aa:16 B 6 A 1 0 abs 4 0:IMM: 0

BOR #xx:3,@aa:32 B 6 A 3 0 abs 7 4 |0:IMM: O
BSET BSET #xx:3,Rd B 7 0 0 IMM rd

BSET #xx:3,@ERd B | 7 D |0ierd: O 7 0 |0iIMM: ©

BSET #xx:3,@aa:8 B 7 F abs 7 0 |0iIMM: O

BSET #xx:3,@aa:16 B 6 A 1 : 8 abs 0 |0:IMM: O

BSET #xx:3,@aa:32 B 6 A 3 8 abs 7 0 0:IMM: 0

BSET Rn,Rd B 6 0 m rd

BSET Rn,@ERd B 7 D O:erd: 0 6 0 m 0

BSET Rn,@aa:8 B 7 F abs 6 0 m 0

BSET Rn,@aa:16 B 6 A i 8 abs 0 m 0

BSET Rn,@aa:32 B 6 A 3 8 abs 6 0 m 0
BSR BSR d:8 — | s 5 disp

BSR d:16 — 5 (03 0 0 disp
BST BST #xx:3,Rd B 6 7 0 §IMM§ rd

BST #xx:3,@ERd B | 7 D |0ierd: 0 6 7 |0iIMM: 0

BST #xx:3,@aa:8 B 7 F abs 6 7 |oiIMM: 0

BST #xx:3,@aa:16 B 6 A 1 : 8 abs 7 |0:IMM: O

BST #xx:3,@aa:32 B 6 A 3 : 8 abs 6 7 0:IMM: 0
BTST BTST #xx:3,Rd B 7 3 0 §IMM§ rd

BTST #xx:3,@ERd B 7 C O erd: 0 7 3 0 glMMg 0

BTST #xx:3,@aa:8 B 7 E abs 7 3 |0iIMM: 0

BTST #xx:3,@aa:16 B 6 A 1 10 abs 3 [0:IMM: O

BTST #xx:3,@aa:32 B 6 A 3 0 abs 7 3 |0:IIMM: O

BTST Rn,Rd B 6 3 m : rd

BTST Rn,@ERd B 7 C |O:erd 0 6 3 m 0

BTST Rn,@aa:8 B 7 E abs 6 3 m 0

BTST Rn,@aa:16 B 6 A 20 abs 3 m 0

BTST Rn,@aa:32 B 6 A 3 0 abs 6 3 m 0

89¢

Table 2-3 Instruction Codes (cont)

Instruction Mnemonic Size Instruction Format
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte
BXOR BXOR #xx:3,Rd B 7 1 5 |0IMM rd
BXOR #xx:3,@ERd B | 7 C |oierd: © 7 1 5 |0IMM: 0
BXOR #xx:3,@aa:8 B 7 E abs 7 ¢ 5 |0iIMM: 0
BXOR #xx:3,@aa:16 B 6 A 1 0 abs 7 5 OglMMg 0
BXOR #xx:3,@aa:32 B | 6 A 3 10 abs 7 ¢ 5 [oumm: 0
CLRMAC" | CLRMAC —] o0 1)
CMP CMP.B #xx:8,Rd B | A rd IMM
CMP.B Rs,Rd B 1 c rs :ord
CMP.W #xx:16,Rd w | 7 9 2 i IMM
CMP.W Rd,Rd w| 1 D rs :ord
CMP.L #xx:32,ERd L 7 A : IMM
CMP.L ERs,ERd L 1 F :
DAA DAA Rd B 0 F 0 i rd
DAS DAS Rd B 1 F 0 i rd
DEC DEC.B Rd B| 1 A | o0 :d
DEC.W #1,Rd w| 1 B 5
DEC.W #2,Rd wW| 1 :8B | D :
DEC.L #1,ERd L 1 B 7 i0:
DEC.L #2,ERd L 1 B F @0
DIVXS DIVXS.B Rs,Rd B 0 1 D : 0O 5 rs 1o
DIVXS.W Rs,ERd w| o 1 D i 0 5 1 3 rs :0:erd
DIVXU DIVXU.B Rs,Rd B 5 1 rs ¢ ord
DIVXU.W Rs,ERd w 5 3 rs O erd
EEPMOV | EEPMOV.B — | 7 B 5 i C 5 9 8 F
EEPMOV.W — | 7 B D 4 5 9 8 F
EXTS EXTS.W Rd w1 7 D rd
EXTS.L ERd L 1 7 F :
EXTU EXTU.W Rd w| 1 7 5
EXTU.L ERd L 1 7 7 :
INC INC.B Rd B 0 A 0 rd
INC.W #1,Rd w| o B 5 rd
INC.W #2,Rd w| o B D rd
INC.L #1,ERd L 0 B 7 :
INC.L #2,ERd L 0 B F

Table 2-3 Instruction Codes (cont)

Instruction

Mnemonic

Size

Instruction Format

2nd byte

3rd byte

4th byte

5th byte

6th byte

7th byte

8th byte

oth byte

10th byte

JMP

JMP @ERn

1st byte

‘ein: 0

JMP @aa:24

abs

JMP @aa:8

abs

JSR

JSR @ERnN

‘ein: 0

JSR @aa:24

abs

JSR @@aa:8

abs

LDC

69¢

LDC #xx:8,CCR

IMM

LDC #xx:8,EXR

IMM

LDC Rs,CCR

@

LDC Rs,EXR

@

LDC @ERs,CCR

ers:

LDC @ERs,EXR

lers:

LDC @(d:16,ERs),CCR

ters:

disp

LDC @(d:16,ERs),EXR

Lers:

disp

LDC @(d:32,ERs),CCR

LDC @(d:32,ERs),EXR

LDC @ERs+,CCR

LDC @ERs+,EXR

ojlolojlojlo|o|Oo|O

LDC @aa:16,CCR

LDC @aa:16,EXR

LDC @aa:32,CCR

@
@
o|lo|o|o|o|o|o|lo|o|o|o

abs

LDC @aa:32,EXR

abs

LDM

LDM.L @SP+,(ERn—-ERN+1

10kern+l

LDM.L @SP+,(ERn—-ERn+2

:0%ermn+2

LDM.L @SP+,(ERn—ERn+3

o|lojo|ojo|lo|lo|o|o|N|[N|lolo|o|o
O|O|O 0@ W@ O|0|0|0| M|T|©O|©

N[~ ~N|Nv (v ool
o

0 §ern+3

LDMAC*

LDMAC ERS,MACH

0
1
0
1
0
1
0
1
0
1
0
1
0
0
0

LDMAC ERs,MACL

[l el ol - - - S S - A A - S S R A R

MAC*

MAC @ERn+@ERm+

Plwlwr|lrlPrlkrlkriRPIRP|IRP|IRP|P|IP|PIRP|P w|w|kr|~N|TI MO T]|>]|©

olw(Nlw|vkr[als|slslslslnlsls|nss|r|ols

0

‘ern:0:erm

MOV

MOV.B #xx:8,Rd

IMM

MOV.B Rs,Rd

MOV.B @ERs,Rd

MOV.B @(d:16,ERs),Rd

MOV.B @(d:32,ERs),Rd

disp

MOV.B @ERs+,Rd

o|o|o|o

MOV.B @aa:8,Rd

MOV.B @aa:16,Rd

W W W@ W W || @

o|N|o|N|lo|jo|o|TM|o|o|o|o|o|o|lo|lo|o|o|o|o|o|o|o|o|o|o|jo|o|jo|o|lu|la|ja|a|a|ld

04¢

Table 2-3 Instruction Codes (cont)

Instruction Mnemonic Size Instruction Format
1st byte 2nd byte 3rd byte ‘ 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte
MOV MOV.B @aa:32,Rd B 6 : A 2 1 d abs
MOV.B Rs,@ERd B | 6 8 |lierd rs \
MOV.B Rs,@(d:16,ERd) B 6 E |lierd! rs disp
MOV.B Rs,@(d:32,ERd) B 7 8 |0ierd 0 6 © A A s disp
MOV.B Rs,@-ERd B 6 C |lierd: rs
MOV.B Rs,@aa:8 B 3 rs abs
MOV.B Rs,@aa:16 B 6 A 8 . rs abs
MOV.B Rs,@aa:32 B 6 A Cors abs
MOV.W #xx:16,Rd w | 7 9 0 i IMM
MOV.W Rs,Rd w | o D rs i ord
MOV.W @ERs,Rd W 6 9 |Oiers: rd
MOV.W @(d:16,ERs),Rd | W | 6 F |olersi rd disp
MOV.W @(d:32,ERs),Rd w 7 8 |Oiers 0 6 B 2 rd disp
MOV.W @ERs+,Rd w| 6 D |oiersi rd
MOV.W @aa:16,Rd W | 6 B 0 i abs
MOV.W @aa:32,Rd W | 6 B 2 i abs
MOV.W Rs,@ERd W 6 9 |lierd: rs
MOV.W Rs,@(d:16,ERd) w 6 F |lierd: rs disp
MOV.W Rs,@(d:32,ERd) w 7 8 |0 erdi 0 6 B A rs disp
MOV.W Rs,@—-ERd w| 6 D |[tierd: rs
MOV.W Rs,@aa:16 w | 6 B 8 rs abs
MOV.W Rs,@aa:32 w 6 B A 1S abs
MOV.L #xx:32,Rd L 7 A IMM
MOV.L ERs,ERd L 0 F :
MOV.L @ERSs,ERd L 0 1 0 0 6 9 |Oiers:O:erd
MOV.L @(d:16,ERs),ERd | L 0 1 0 0 6 F |0iers:0ierd disp
MOV.L @(d:32,ERs),ERd* | L 0 1 0 0 7 8 0* ers: 0 6 : B 2 :0:erd disp
MOV.L @ERs+,ERd L 0 1 0 0 6 D |OiersiO:erd
MOV.L @aa:16,ERd L 0 1 0 0 6 B 0 0 erd abs
MOV.L @aa:32,ERd L 0 1 0 0 6 B :0:erd abs
MOV.L ERs,@ERd L 0 1 0 0 6 9 “erd:0: ers
MOV.L ERs,@(d:16,ERd) | L 0 1 0 0 6 F lerdi0:ers disp
MOV.L ERs,@(d:32,ERd) | L 0 1 0 0 7 8 0 6 ° B A 0 ers disp
MOV.L ERs,@-ERd L 0 1 0 0 6 D ierd:0; ers
MOV.L ERs,@aa:16 L 0o i1 00 6 : B 8 : abs
MOV.L ERs,@aa:32 L] o : 1 0 : 0 6 . B A 0ers abs

Note: * The MOV.L ERS,@ (d: 32, ERd) instruction will operate with bit 7 of the 4th byte set to either 1 or 0.

Tl¢C

Table 2-3 Instruction Codes (cont)

Instruction Format

Instruction Mnemonic Size
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

MOVFPE | MOVFPE @aa:16,Rd B| 6 : A 4 abs
MOVTPE MOVTPE Rs,@aa:16 B 6 A C s abs
MULXS MULXS.B Rs,Rd B 0 1 C 0 5 0 s rd

MULXS.W Rs,ERd w | o 1 c . o 5 1 2 rs :0ierd
MULXU MULXU.B Rs,Rd B 5 0

MULXU.W Rs,ERd w 5 2
NEG NEG.B Rd B 1 7

NEG.W Rd w 1 7

NEG.L ERd L 1 7
NOP NOP — | o0 0 :
NOT NOT.B Rd B 1 7

NOT.W Rd wl 117

NOT.L ERd L 1 7
OR OR.B #xx:8,Rd B C rd IMM

OR.B Rs,Rd B 1 4 rs i ord

OR.W #xx:16,Rd w 7 9 4 rd IMM

OR.W Rs,Rd w 6 4 rs ¢ ord

OR.L #xx:32,ERd L 7 A 4 :0‘erd IMM

OR.L ERs,ERd L 0 1 F 0 6 4 |O:ers:0:erd
ORC ORC #xx:8,CCR B 0 4 IMM

ORC #xx:8,EXR B 0 1 4 11 0 4 IMM
POP POP.W Rn w 6 D 7 m

POP.L ERNn L 0 1 0 0 6 D 7 :0:emn
PUSH PUSH.W Rn w 6 D F m

PUSH.L ERn L 0 1 0 0 6 D F 0 ern
ROTL ROTL.B Rd B 1 2 8 rd

ROTL.B #2,Rd B 1 2 C rd

ROTL.W Rd w 1 2 9 rd

ROTL.W #2,Rd w 1 2 D rd

ROTL.L ERd L 1 2 B :

ROTL.L #2,ERd L 1 2 F :
ROTR ROTR.B Rd B 1 3 8 rd

ROTR.B #2,Rd B 1 3 C rd

ROTR.W Rd w 1 3 9 rd

ROTR.W #2,Rd w 1 3 D rd

cle

Table2-3 Instruction Codes (cont)

Instruction

Mnemonic

Size

Instruction Format

3rd byte

4th byte

5th byte

6th byte

oth byte

10th byte

ROTR

ROTR.L ERd

1st byte

2nd byte

erd

7th byte

8th byte

ROTR.L #2,ERd

ROTXL

ROTXL.B Rd

ROTXL.B #2,Rd

ROTXL.W Rd

ROTXL.W #2,Rd

ROTXL.L ERd

ROTXL.L #2,ERd

ROTXR

ROTXR.B Rd

ROTXR.B #2,Rd

ROTXR.W Rd

ROTXR.W #2,Rd

ROTXR.L ERd

ROTXR.L #2,ERd

rirls|ls|lw|lo|r|rsS|S|o|wo|r|lr

RTE

RTE

RTS

RTS

SHAL

SHAL.B Rd

SHAL.B #2,Rd

SHAL.W Rd

SHAL.W #2,Rd

SHAL.L ERd

SHAL.L #2,ERd

SHAR

SHAR.B Rd

SHAR.B #2,Rd

SHAR.W Rd

SHAR.W #2,Rd

SHAR.L ERd

SHAR.L #2,ERd

SHLL

SHLL.B Rd

SHLL.B #2,Rd

SHLL.W Rd

SHLL.W #2,Rd

SHLL.L ERd

SHLL.L #2,ERd

SHLR

SHLR.B Rd

SHLR.B #2,Rd

wlwrir|gsloolr|irssloolrrsS s o

Plrlr|Pr|RrP|rRIRRP|RPIRP|P|IP|RP|rRR(RPIR|P|lO|a|lkr|rRPRIRP|RP|[P|RP|P|R|R|RP|RP|[R|F

PP O0O|0O|lCOIC|IO|F|F|FPIPIPIPIO|O|COICIC|IC|R|O|WIWIWIW|IWIWININININININ W W

AlOIN|WO|RP|MOTM OO0 M| U(©O|0|N|N|N|w Ok dMoO|IN|w O|k|IMoO|lT

€l¢

Table 2-3 Instruction Codes (cont)

Instruction

Mnemonic

Size

Instruction Format

1st byte

2nd byte

3rd byte

4th byte

5th byte

6th byte

7th byte

8th byte

oth byte

10th byte

SHLR

SHLR.W Rd

rd

SHLR.W #2,Rd

rd

SHLR.L ERd

:erd

SHLR.L #2,ERd

rlrls|s

SLEEP

SLEEP

STC

STC.B CCR,Rd

STC.B EXR,Rd

STC.W CCR,@ERd

STC.W EXR,@ERd

STC.W CCR,@(d:16,ERd)

STC.W EXR,@(d:16,ERd)

STC.W CCR,@(d:32,ERd)

disp

STC.W EXR,@(d:32,ERd)

disp

STC.W CCR,@-ERd

STC.W EXR,@-ERd

rlr|lo|lo|r|r|r]|r
]
I=h

STC.W CCR,@aa:16

STC.W EXR,@aa:16

STC.W CCR,@aa:32

abs

STC.W EXR,@aa:32

lo|o|lo|o|o|o|o|o|o|o|lo|o

abs

ST™M

STM.L (ERn-ERn+1),@-SF

STM.L (ERn-ERN+2),@-SH

STM.L (ERn—ERn+3),@-SH

o|lojo|ojo|lo|lo|o|o|N|[N|lolo|o|o
O|O|O 0@ W@ O|0|0|0| M|T|©O|©

*

STMAC

STMAC MACH,ERd

STMAC MACL,ERd

[N NN RN R P NG I N NG I N N N NG NG N N N N S S R R

suB

SUB.B Rs,Rd

SUB.W #xx:16,Rd

IMM

SUB.W Rs,Rd

SUB.L #xx:32,ERd

SUB.L ERs,ERd

SUBS

SUBS #1,ERd

SUBS #2,ERd

SUBS #4,ERd

[R RN A I S R RN R N N e I e I e e e e I e e e N e TS R IR I e T T

SUBX

SUBX #xx:8,Rd

S

SUBX Rs,Rd

m

TAS

TAS @ERd

foe IR e e I8 I 2N I el Il Nl Bl B = = I 2 I el N ol Bl ol - - 1= - B B I - - - - - v Il

O:erd:

C

TRAPA

TRAPA #x:2

g|lo|r|T|rR|FP|P|P|IN|P|N|FP|O|O|l0|0o|0o|0|0O|O|O|0|0|0|0O|O|O|O|O|O|O|O|R|F|FR|F

vic

Table 2-3 Instruction Codes (cont)

Instruction Mnemonic Size Instruction Format
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

XOR XOR.B #xx:8,Rd B D ! rd IMM

XOR.B Rs,Rd B 1 5 rs i ord

XOR.W #xx:16,Rd w 7 9 5 rd IMM

XOR.W Rs,Rd w 6 5 rs :ord

XOR.L #xx:32,ERd L 7 A 5 O erd IMM

XOR.L ERs,ERd L 0 1 F 0 6 5 0 ers 0 erd
XORC XORC #xx:8,CCR B 0 : 5 IMM

XORC #xx:8,EXR B 0 i1 4 11 0 : 5 IMM

Note: *These instructions are supported by the H8S/2600 CPU only.

Legend
IMM:
abs:
disp:

rs, rd, rn:

Immediate data (2, 3, 8, 16, or 32 bhits)

Absolute address (8, 16, 24, or 32 bits)

Displacement (8, 16, or 32 bits)

Register field (4 bits specifying an 8-bit or 16-bit register. The symbols rs, rd, and rn correspond to operand symbols Rs, Rd,
and Rn.)

ers, erd, ern, erm: Register field (3 bits specifying an address register or 32-bit register. The symbols ers, erd, ern, and erm correspond to operand

symbols ERs, ERd, ERn, and ERm.)

The register fields specify general registers as follows.

Address Register

32-Bit Register 16-Bit Register 8-Bit Register
Register General Register General Register General
Field Register Field Register Field Register
000 ERO 0000 RO 0000 ROH
001 ER1 0001 R1 0001 R1H
111 ER7 0111 R7 0111 R7H
1000 EO 1000 ROL

1001 E1 1001 RIL

1111 E7 1111 R7L

G/l¢

2.5 Operation Code Map

Table 2-4 shows an operation code map.

Table2-4 Operation Code Map (1)

Operation Code: . Instruction when most significant bit of BH is 0.
1st byte 2nd byte
-«——— nstruction when most significant bit of BH is 1.
AH | AL | BH ‘ BL
AL
> 0 1 2 3 4 5 6 7 8 9 A B c D E F
0 | NOP |[Table24(2)|STC Loc ORC | XORC | ANDC | LDC ADD Table 2-4 (2)|Table 2-4 (2) MoV ADDX |Table 2-4 (2)
STMACY_—TDMACY
1 [Table 2-4 (2)|Table 2-4 (2)[Table 244 (2) Table 2-4(2)) OR XOR | AND |Table24() SuB Table 2-4 (2)|Table 2-4 (2) CMP SUBX |Table 24 (2)
2
MOV.B
3
4 | BRA BRN BHI BLS BCC BCS BNE BEQ BVC BVS ‘ BPL ‘ BM| BGE BLT ‘ BGT ‘ BLE
5 | MULXU | DIVXU | MULXU | DIVXU | RTS BSR RTE | TRAPA [Table2-4(2) P BSR ISR
6 OR XOR mp | BST Gor MoV Table 2-4 (2) MoV
BSET | BNOT | BCLR | BTST
BOR_— |BXOR— |BAND — | BLD
7 aorl R e o P | Mov ‘Table2-4(2)TabIeZ-4(2) EEPMOV‘ Table 2-4 (2)
8 ADD
9 ADDX
A CMP
B SUBX
c OR
D XOR
E AND
F MOV

Note: *These instructions are supported by the H8S/2600 CPU only.

9/¢

Table 2-4 Operation Code Map (2)

Operation Code:
1st byte 2nd byte
AH ‘ AL BH ‘ BL
BHI ¢ 1 ‘ 2 ‘ 3 4 5 6 7 8 9 A B c D E F
AH AL
01 MOV LDM s |51 MAC* SLEEP CLRMAC" Table 2-4 (3)[Table 2-4 (3)| TAS [Table 2-4 (3)
0A INC ADD
0B ADDS ‘ INC ‘ ‘ INC ADDS ‘ INC ‘ ‘ INC
OF DAA MOV
10 SHLL SHLL SHLL SHAL SHAL SHAL
11 SHLR SHLR SHLR SHAR SHAR SHAR
12 ROTXL ROTXL ROTXL ROTL ROTL ROTL
13 ROTXR ROTXR ROTXR ROTR ROTR ROTR
17 NOT NOT ‘ ‘ EXTU EXTU NEG NEG ‘ ‘ EXTS EXTS
1A DEC SuB
1B SUBS ‘ DEC ‘ ‘ DEC SUBS ‘ DEC ‘ ‘ DEC
1F DAS BNE CMP
58 BRA BRN BHI BLS BCC BCS ‘ ‘ BEQ BVC BVS BPL BMI BGE BLT ‘ BGT ‘ BLE
6A MOV [Table2-4(4) MOV [Table 2-4 (4) MOVFPE MOV MOV MOVTPE
79 MOV ADD CMP SUB OR XOR AND
7A MOV ADD CMP SUB OR XOR

Note: *These instructions are supported by the H8S/2600 CPU only.

Ll¢C

Table 2-4 Operation Code Map (3)

Operation Code:
1st byte 2nd byte 3rd byte 4th byte @:Instruction when most significant bit of DH is 0.
AH AL BH ‘ BL CH ‘ cL DH DL Instruction when most significant bit of DH is 1.
AHALBHBLCH 0 1 2 3 4 5 6 7 9 A B C D E F
01C05 MULXS MULXS
01D05 DIVXS DIVXS
01F06 OR XOR AND
7Cro6™1 BTST
*1 BOR BXOR BAND BLD
T BTST BIOR|_—BIXOR__—BIAND|_— BILD
" -
7Dr06 BSET BNOT BCLR BIST
7007 BSET | BNOT | BCLR
7Eaa6 2 BTST
2 BOR BXOR BAND BLD
TEaal BTST BIOR |_—BIXOR_—BIAND__— BILD
> -
TFaab BSET BNOT BCLR BIST
7Faa7 2 BSET | BNOT | BCLR

Notes: 1. The letter “r" indicates a register field.
2. The letters “aa” indicate an absolute address field.

8.¢

Table 2-4 Operation Code Map (4)

Operation Code:
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte
AH AL BH ‘ BL CH ‘ CL DH DL EH EL FH ‘ FL
Instruction when most significant bit of FH is 0.
Instruction when most significant bit of FH is 1.
EL
0 1 2 3 4 5 6 7 9 A B C
[AHALBHBLCHCLDHDLEH
6A10aaaat”
6AL0aaaal” ®TST lsor_—BX0R —1aAND — lpiD
BIOR BIXOR BIAND BILD
6A18aaaat” BST
- BSET BNOT BCLR BIST
6A18aaaa’
Operation Code:
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte
AH AL BH BL CH CL DH DL EH EL FH ‘ FL GH ‘ GL HH ‘ HL
Instruction when most significant bit of HH is 0.
Instruction when most significant bit of HH is 1.
EL
0 1 2 3 4 5 6 7 8 9 A B C D
AHALBHBL ... FHFLGH
6A30aaaaaaaat”
BTST
* BOR BXOR BAND BLD
6A30aaaaaaaal BIOR |_BIXOR|—BIAND|_— BILD
6A38aaaaaaaab” BST BIST
—| BSET BNOT BCLR
6A38aaaaaaaa’

Note: * The letters “aa” indicate an absolute address field.

2.6 Number of States Required for Instruction Execution

The tables in this section can be used to cal culate the number of states required for instruction
execution by the CPU. Table 2-6 indicates the number of instruction fetch, data read/write, and
other cycles occurring in each instruction. Table 2-5 indicates the number of states required for
each cycle, depending on its size. The number of states required for each cycle depends on the
product. See the hardware manuals for the relevant product for details. The number of states
required for execution of an instruction can be calculated from these two tables as follows:

Execution states=1x G +JIx Sj+ K xS +L x§ + M x G, + N x G

Examples: Advanced mode, program code and stack located in external memory, on-chip
supporting modules accessed in two states with 8-bit bus width, external devices accessed in three
states with one wait state and 16-bit bus width.

1. BSET #0, @FFFFC7:8
From table 2-6:
I=L=2, J=K=M=N=0
From table 2-5:
S =4, S =2
Number of statesrequired for execution=2x4+2x2=12
2. JSR @@30
From table 2-6:
I=J=K=2, L=M=N=0
From table 2-5:
S=5)=5=4

Number of statesrequired for execution=2x4+2x4+2x4=24

279

Table2-5 Number of States per Cycle

Access Conditions

On-Chip Supporting

External Device

Module 8-Bit Bus 16-Bit Bus

On-Chip 8-Bit 16-Bit 2-State 3-State 2-State 3-State
Cycle Memory Bus Bus Access Access Access Access
Instruction fetch S, 1 2n n 4 6 +2m 2 3+m*
Branch address read S,
Stack operation Sk
Byte data access S, n 2 3+m
Word data access Sy 2n 4 6 +2m
Internal operation SN 1 1 1 1 1 1 1

Note: * For the MOVFPE and MOVTPE instructions, refer to the relevant microcontroller hardware manual.

Legend

m: Number of wait states inserted into external device access
n: Number of states required for access to an on-chip supporting module. For the specific number, refer to the
relevant microcontroller hardware manual.

280

Table2-6 Number of Cyclesin Instruction Execution

Instruction

Mnemonic

Instruction
Fetch

Branch
Address Stack Byte Data Word Data Internal
Read Operation Access Access Operation

J K L M N

ADD

ADD.B #xx:8,Rd
ADD.B Rs,Rd
ADD.W #xx:16,Rd
ADD.W Rs,Rd
ADD.L #xx:32,ERd
ADD.L ERs,ERd

ADDS

ADDS #1/2/4,ERd

ADDX

ADDX #xx:8,Rd
ADDX Rs,Rd

AND

AND.B #xx:8,Rd
AND.B Rs,Rd
AND.W #xx:16,Rd
AND.W Rs,Rd
AND.L #xx:32,ERd
AND.L ERs,ERd

ANDC

ANDC #xx:8,CCR
ANDC #xx:8,EXR

BAND

BAND #xx:3,Rd
BAND #xx:3,@ERd
BAND #xx:3,@aa:8
BAND #xx:3,@aa:16
BAND #xx:3,@aa:32

[=

Bcce

BRA d:8 (BT d:8)
BRN d:8 (BF d:8)
BHI d:8

BLS d:8

BCC d:8 (BHS d:8)
BCS d:8 (BLO d:8)
BNE d:8

BEQ d:8

BVC d:8

BVS d:8

BPL d:8

BMI d:8

BGE d:8

BLT d:8

BGT d:8

BLE d:8

BRA d:16 (BT d:16)
BRN d:16 (BF d:16)

NN RN RNONNRNNMNRNMNRNMRNONNONNRNNNNDNRNNNDE NN RN RN OWRNERRRR[RPIP®ORN PR R

281

Table2-8 Number of Cyclesin Instruction Execution (cont)

Instruction

Mnemonic

Instruction
Fetch

Branch
Address
Read

Stack
Operation

Byte Data Word Data

Access Access

Internal
Operation

J

K

L

M

N

Bcc

BHI d:16
BLS d:16
BCC d:16 (BHS d:16)
BCS d:16 (BLO d:16)
BNE d:16
BEQ d:16
BVC d:16
BVS d:16
BPL d:16
BMI d:16
BGE d:16
BLT d:16
BGT d:16
BLE d:16

[e = T = T e S S N Y

BCLR

BCLR #xx:3,Rd
BCLR #xx:3,@ERd
BCLR #xx:3,@aa:8
BCLR #xx:3,@aa:16
BCLR #xx:3,@aa:32
BCLR Rn,Rd

BCLR Rn,@ERd
BCLR Rn,@aa:8
BCLR Rn,@aa:16
BCLR Rn,@aa:32

N N NN

N N NN

BIAND

BIAND #xx:3,Rd
BIAND #xx:3,@ERd
BIAND #xx:3,@aa:8
BIAND #xx:3,@aa:16
BIAND #xx:3,@aa:32

[SRS =

BILD

BILD #xx:3,Rd
BILD #xx:3,@ERd
BILD #xx:3,@aa:8
BILD #xx:3,@aa:16
BILD #xx:3,@aa:32

[SRS =

BIOR

BIOR #xx:8,Rd
BIOR #xx:8, @ERd
BIOR #xx:8,@aa:8
BIOR #xx:8,@aa:16
BIOR #xx:8,@aa:32

AW NN P OONDNDPRPEODNMDNDPRPE ONMNDE R ODNDMDNDERPINDNDDNDDNDDNDDNDDNDNDNDDNDDNDDNDDNDDNDNDN

[SRS =

282

Table2-8 Number of Cyclesin Instruction Execution (cont)

Instruction

Mnemonic

Instruction
Fetch

Branch
Address
Read

Byte Data Word Data Internal
Access Access Operation

J

L M N

BIST

BIST #xx:3,Rd
BIST #xx:3,@ERd
BIST #xx:3,@aa:8
BIST #xx:3,@aa:16
BIST #xx:3,@aa:32

N N NN

BIXOR

BIXOR #xx:3,Rd
BIXOR #xx:3,@ERd
BIXOR #xx:3,@aa:8
BIXOR #xx:3,@aa:16
BIXOR #xx:3,@aa:32

[=

BLD

BLD #xx:3,Rd
BLD #xx:3,@ERd
BLD #xx:3,@aa:8
BLD #xx:3,@aa:16
BLD #xx:3,@aa:32

[=

BNOT

BNOT #xx:3,Rd
BNOT #xx:3,@ERd
BNOT #xx:3,@aa:8
BNOT #xx:3,@aa:16
BNOT #xx:3,@aa:32
BNOT Rn,Rd

BNOT Rn,@ERd
BNOT Rn,@aa:8
BNOT Rn,@aa:16
BNOT Rn,@aa:32

N N NN

N N NN

BOR

BOR #xx:3,Rd
BOR #xx:3,@ERd
BOR #xx:3,@aa:8
BOR #xx:3,@aa:16
BOR #xx:3,@aa:32

[=

BSET

BSET #xx:3,Rd
BSET #xx:3,@ERd
BSET #xx:3,@aa:8
BSET #xx:3,@aa:16
BSET #xx:3,@aa:32
BSET Rn,Rd

BSET Rn,@ERd
BSET Rn,@aa:8
BSET Rn,@aa:16
BSET Rn,@aa:32

AW NN PEFEP DM OODNMNDNDPRPE ODNMNDNDRPRPE ONMNDE B ODNMDNDPRPIDARONDMNDERPRARO®NOMDNDEPIB_AO®WNDNNDNPR

N N NN

N N NN

283

Table2-8 Number of Cyclesin Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic | J K L M N

BSR BSR d:8 Normal

Advanced

BSR d:16 Normal

1
2
1
2

Advanced

BST BST #xx:3,Rd
BST #xx:3,@ERd
BST #xx:3,@aa:8
BST #xx:3,@aa:16
BST #xx:3,@aa:32

N N NN

BTST BTST #xx:3,Rd
BTST #xx:3,@ERd
BTST #xx:3,@aa:8
BTST #xx:3,@aa:16
BTST #xx:3,@aa:32
BTST Rn,Rd
BTST Rn,@ERd
BTST Rn,@aa:8
BTST Rn,@aa:16
BTST Rn,@aa:32

[S S =

[S S =

BXOR #xx:3,@ERd
BXOR #xx:3,@aa:8
BXOR #xx:3,@aa:16
BXOR #xx:3,@aa:32

[SRS =

CLRMAC CLRMAC

CMP CMP.B #xx:8,Rd
CMP.B Rs,Rd
CMP.W #xx:16,Rd
CMP.W Rs,Rd
CMP.L #xx:32,ERd
CMP.L ERs,ERd

DAA DAA Rd

DAS DAS Rd

DEC DEC.BRd
DEC.W #1/2,Rd
DEC.L #1/2,ERd

DIVXS DIVXS.B Rs,Rd
DIVXS.W Rs,ERd

11
19

DIVXU DIVXU.B Rs,Rd
DIVXU.W Rs,ERd

11

2
2
2
2
1
2
2
3
4
1
2
2
3
4
1
2
2
3
4
BXOR BXOR #xx:3,Rd 1
2
2
3
4
1
1
1
2
1
3
1
1
1
1
1
1
2
2
1
1 19

284

Table2-8 Number of Cyclesin Instruction Execution (cont)

Instruction

Mnemonic

Instruction
Fetch

Branch
Address
Read

Stack
Operation

Byte Data Word Data

Access

Access

Internal
Operation

J

K

L

M

N

EEPMOV

EEPMOV.B
EEPMOV.W

2n + 21
2n + 21

EXTS

EXTS.W Rd
EXTS.L ERd

EXTU

EXTU.W Rd
EXTU.L ERd

INC

INC.B Rd
INC.W #1/2,Rd
INC.L #1/2,ERd

JMP

JMP @ERnN
JMP @aa:24

JMP @@aa:8

Normal

Advanced

JSR

JSR @ERn

Normal

Advanced

JSR @aa:24

Normal

Advanced

JSR @@aa:8

Normal

Advanced

NP, [N |N|FP

LDC

LDC #xx:8,CCR
LDC #xx:8,EXR
LDC Rs,CCR
LDC Rs,EXR
LDC @ERs,CCR
LDC @ERs,EXR

LDC @(d:16,ERs),CCR
LDC @(d:16,ERs),EXR
LDC @(d:32,ERs),CCR
LDC @(d:32,ERs),EXR

LDC @ERs+,CCR
LDC @ERs+,EXR
LDC @aa:16,CCR
LDC @aa:16,EXR
LDC @aa:32,CCR
LDC @aa:32,EXR

R R R R R R R R R R BB

LDM

LDM.L @SP+,(ERn—-ERn+1)
LDM.L @SP+,(ERn-ERn+2)
LDM.L @SP+,(ERn—-ERn+3)

LDMAC*

LDMAC ERs,MACH
LDMAC ERs,MACL

P R INDNDN N D O WNDNDOOOCaO®WWDNDDNRRPRPDNDPRININMNNDNINDINNDNINDNDDNDERPRPIFLR PP RPRPIDDN

N

285

Table2-8 Number of Cyclesin Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic | J K L M N

MAC* MAC @ERn+,@ERm+ 2

MOV MOV.B #xx:8,Rd
MOV.B Rs,Rd
MOV.B @ERs,Rd
MOV.B @(d:16,ERs),Rd
MOV.B @(d:32,ERs),Rd
MOV.B @ERs+,Rd
MOV.B @aa:8,Rd
MOV.B @aa:16,Rd
MOV.B @aa:32,Rd
MOV.B Rs,@ERd
MOV.B Rs,@(d:16,ERd)
MOV.B Rs,@(d:32,ERd)
MOV.B Rs,@—-ERd
MOV.B Rs,@aa:8
MOV.B Rs,@aa:16
MOV.B Rs,@aa:32
MOV.W #xx:16,Rd
MOV.W Rs,Rd
MOV.W @ERs,Rd
MOV.W @(d:16,ERs),Rd
MOV.W @(d:32,ERs),Rd
MOV.W @ERs+,Rd
MOV.W @aa:16,Rd
MOV.W @aa:32,Rd
MOV.W Rs,@ERd
MOV.W Rs,@(d:16,ERd)
MOV.W Rs,@(d:32,ERd)
MOV.W Rs,@-ERd
MOV.W Rs,@aa:16
MOV.W Rs,@aa:32
MOV.L #xx:32,ERd
MOV.L ERs,ERd
MOV.L @ERs,ERd
MOV.L @(d:16,ERs),ERd
MOV.L @(d:32,ERs),ERd
MOV.L @ERs+,ERd
MOV.L @aa:16,ERd
MOV.L @aa:32,ERd
MOV.L ERs,@ERd
MOV.L ERs,@(d:16,ERd)

I i a e = T T = T = S =

W N R WNOWN R ®WN R DBNRONRDBENRRNDONRRPRAENRONRRBENRR R[N
R S e = T e s =

N DN DN NN DNDDN

286

Table2-8 Number of Cyclesin Instruction Execution (cont)

Instruction

Mnemonic

Instruction
Fetch

Branch
Address
Read

Stack
Operation

Byte Data Word Data
Access

Access

Internal
Operation

J

K

L

M

N

MOV

MOV.L ERs,@(d:32,ERd)
MOV.L ERs,@-ERd
MOV.L ERs,@aa:16
MOV.L ERs,@aa:32

N N NN

MOVFPE

MOVFPE @:aa:16,Rd

MOVTPE

MOVTPE Rs,@:aa:16

12

MULXS

MULXS.B Rs,Rd H8S/2600
H8S/2000

10

MULXS.W Rs,ERd H8S/2600
H8S/2000

18

MULXU

MULXU.B Rs,Rd H8S/2600
H8S/2000

10

MULXU.W Rs,ERd H8S/2600
H8S/2000

18

NEG

NEG.B Rd
NEG.W Rd
NEG.L ERd

NOP

NOP

NOT

NOT.B Rd
NOT.W Rd
NOT.L ERd

OR

OR.B #xx:8,Rd
OR.B Rs,Rd
OR.W #xx:16,Rd
OR.W Rs,Rd
OR.L #xx:32,ERd
OR.L ERs,ERd

ORC

ORC #xx:8,CCR
ORC #xx:8,EXR

POP

POP.W Rn
POP.L ERn

PUSH

PUSH.W Rn
PUSH.L ERn

N B[N B

R RR e

ROTL

ROTL.B Rd
ROTL.B #2,Rd
ROTL.W Rd
ROTL.W #2,Rd
ROTL.L ERd
ROTL.L #2,ERd

ROTR

ROTR.B Rd
ROTR.B #2,Rd
ROTR.W Rd
ROTR.W #2,Rd
ROTR.L ERd
ROTR.L #2,ERd

287

Table2-8 Number of Cyclesin Instruction Execution (cont)

Instruction

Mnemonic

Instruction
Fetch

Branch
Address
Read

Stack Byte Data Word Data Internal
Operation Access Access Operation

J

K L M N

ROTXL

ROTXL.B Rd
ROTXL.B #2,Rd
ROTXL.W Rd
ROTXL.W #2,Rd
ROTXL.L ERd
ROTXL.L #2,ERd

ROTXR

ROTXR.B Rd
ROTXR.B #2,Rd
ROTXR.W Rd
ROTXR.W #2,Rd
ROTXR.L ERd
ROTXR.L #2,ERd

RTE

RTE

2/3*1 1

RTS

RTS Normal

Advanced

SHAL

SHAL.B Rd
SHAL.B #2,Rd
SHAL.W Rd
SHAL.W #2,Rd
SHAL.L ERd
SHAL.L #2,ERd

SHAR

SHAR.B Rd
SHAR.B #2,Rd
SHAR.W Rd
SHAR.W #2,Rd
SHAR.L ERd
SHAR.L #2,ERd

SHLL

SHLL.B Rd
SHLL.B #2,Rd
SHLL.W Rd
SHLL.W #2,Rd
SHLL.L ERd
SHLL.L #2,ERd

SHLR

SHLR.B Rd
SHLR.B #2,Rd
SHLR.W Rd
SHLR.W #2,Rd
SHLR.L ERd
SHLR.L #2,ERd

SLEEP

SLEEP

RPlRPr PR R R RRP PR RRPRRRPRRPRRRRPIRPRRPRRPBPINIVINIRER R PR R R(R R R R P BR

288

Table2-8 Number of Cyclesin Instruction Execution (cont)

Instruction

Mnemonic

Instruction
Fetch

Branch
Address
Read

Stack
Operation

Byte Data Word Data Internal

Access

Access Operation

J

K

L

M N

STC

STC.B CCR,Rd

STC.B EXR,Rd

STC.W CCR,@ERd
STC.W EXR,@ERd
STC.W CCR,@(d:16,ERd)
STC.W EXR,@(d:16,ERd)
STC.W CCR,@(d:32,ERd)
STC.W EXR,@(d:32,ERd)
STC.W CCR,@-ERd
STC.W EXR,@-ERd
STC.W CCR,@aa:16
STC.W EXR,@aa:16
STC.W CCR,@aa:32
STC.W EXR,@aa:32

R R R R R R R R R R BB

STM

STM.L (ERn-ERn+1),@-SP
STM.L(ERN-ERN+2),@-SP
STM.L(ERN-ERN+3),@-SP

STMAC*

STMAC MACH,ERd
STMAC MACL,ERd

suB

SUB.B Rs,Rd
SUB.W #xx:16,Rd
SUB.W Rs,Rd
SUB.L #xx:32,ERd
SUB.L ERs,ERd

SUBS

SUBS #1/2/4,ERd

SUBX

SUBX #xx:8,Rd
SUBX Rs,Rd

TAS

TAS @ERd

TRAPA

TRAPA #x:2 Normal

2/371

Advanced

2/371

XOR

XOR.B #xx:8,Rd
XOR.B Rs,Rd
XOR.W #xx:16,Rd
XOR.W Rs,Rd
XOR.L #xx:32,ERd
XOR.L ERs,ERd

XORC
XORC

XORC #xx:8,CCR
XORC #xx:8,EXR

N P IN W P NP FPINDNNNRFP RPRPIPP ORPDNPRPIRFPPINDNDNDNDEDOWDNDNDNDOOO®W®WNDDNR P

Notes: *These instructions are supported by the H8S/2600 CPU only.

1. 2 when EXR is invalid, 3 when EXR is valid.
2. 5 for concatenated execution, 4 otherwise.

289

2.7 Condition Code Modification

This section indicates the effect of each CPU instruction on the condition code. The notation used
in the table is defined bel ow.

m= [31for longword operands
15 for word operands
7 for byte operands
Si Thei-th bit of the source operand
Di Thei-th bit of the destination operand
Ri Thei-th bit of the result
Dn The specified bit in the destination operand
— Not affected
0 Modified according to the result of the instruction (see definition)
0 Always cleared to 0
1 Alwayssetto 1
* Undetermined (no guaranteed value)
Z Z flag before instruction execution

c C flag before instruction execution

290

Table2-7 Condition Code Modification

Instruction

H

Definition

ADD

!

H=Sm-4-Dm-4 + Dm-4 - Rm—4 + Sm—4 -

N =Rm
Z=Rm-Rm—1 - -RO
V=Sm-Dm:-Rm+Sm-Dm:Rm

C=Sm-Dm+Dm-Rm+Sm -Rm

Rm—4

ADDS

ADDX

H=Sm-4-Dm-4 + Dm-4 - Rm—4 + Sm—4 -

N =Rm
Z=7-Rm- ... -RO
V=Sm-Dm:-Rm+Sm-Dm:Rm

C=Sm-Dm+Dm-Rm+Sm -Rm

Rm—4

AND

N =Rm
Z=Rm-Rm-1-..... -RO

ANDC

Stores the corresponding bits of the result.

No flags change when the operand is EXR.

BAND

C=C'"-Dn

Bcc

BCLR

BIAND

BILD

BIOR

c=C'-Dn
C=Dn
C=C'+Dn

BIST

BIXOR

C=C -Dn+C -Dn

BLD

C=Dn

BNOT

BOR

C=C'+Dn

BSET

BSR

BST

BTST

BXOR

Z=Dn
C=C'-Dn+C'-Dn

CLRMAC*

CMP

H=Sm-4 -Dm-4 + Dm—4 - Rm—-4 + Sm-4 -

N =Rm
Z=Rm-Rm-1-..-R0O
V=Sm:Dm:Rm+Sm Dm:Rm

C=Sm-Dm+Dm:-Rm+Sm-Rm

Rm-4

291

Table2-7 Condition Code Madification (cont)

Instruction H N Z Definition
DAA * 3 ;) N =Rm
Z=Rm-Rm-1 - ... -RO
C: decimal arithmetic carry
DAS * ottt N =Rm
Z=Rm-Rm-1- ... -RO
C: decimal arithmetic borrow
DEC — ¢ ¢ N =Rm
Z=Rm-Rm-1- ... -RO
V =Dm-Rm
DIVXS — N=Sm-Dm+Sm - Dm
Z=8m-Sm-1-..... - S0
DIVXU — t 1 N =Sm
Z=8m-Sm-1-..... - S0
EEPMOV —_ — =
EXTS — t N =Rm
Z=Rm-Rm-1 - ... -RO
EXTU — 0 Z=Rm-Rm-1-.... -RO
INC — t 1 N =Rm
Z=BRm-Rm-1-..... RO
V=Dm - Rm
IMP - - —
JSR _—— —
LDC ot e Stores the corresponding bits of the result.
No flags change when the operand is EXR.
LDM _—— —
LDMAC* —_ — =
MAC* - - —
MOV — ¢ ¢ N =Rm
Z=Rm-Rm-1- ... -RO
MOVFPE — 1 ? N =Rm
Z=Rm-Rm-1 - ... -RO
MOVTPE — 1 ! N =Rm
Z=Rm-Rm-1-..... -RO
MULXS — ! ; N =R2m
Z=R2m-R2m—1 - -RO

292

Table2-7 Condition Code Modification (cont)

Instruction H N z Vv C Definition
MULXU _ — = — —
NEG Tt e t ot H=Dm-4 + Rm-4
N =Rm
Z=Rm-Rm-1 - ... -RO
V=Dm-Rm
C=Dm+Rm
NOP —_ — = — —
NOT — ! ! 0o — N =Rm
Z=Rm-Rm-1- ... -RO
OR — 1t t 0 — N =Rm
Z=Rm-Rm-1- ... -RO
ORC R Stores the corresponding bits of the result.

No flags change when the operand is EXR.

POP — 3 0o — N =Rm

Z=Rm-Rm-1-..... -RO
PUSH — 1t t 0 — N =Rm

Z=Rm-Rm-1- ... -RO
ROTL — ¢t t 0 N =Rm

Z=Rm -Rm-1 - ... -RO

C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
ROTR — ¢t t 0 N =Rm

Z=Rm -Rm-1 - ... -RO

C = DO (1-bit shift) or C = D1 (2-bit shift)
ROTXL — ¢t t 0 N =Rm

Z=Rm -Rm-1 - ... -RO

C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
ROTXR — ¢t t 0 N =Rm

Z=Rm -Rm-1 - ... -RO

C = DO (1-bit shift) or C = D1 (2-bit shift)
RTE R Stores the corresponding bits of the result.
RTS _— - - —
SHAL — 3 Tt N =Rm

Z=Rm-Rm-1-...... -RO

V = Dm - Dm-1 + Dm - Dm=1 (1-bit shift)
V =Dm - Dm-1 - Dm-2 + Dm - Dm—1 - Dm—2 (2-bit shift)
C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)

293

Table2-7 Condition Code Madification (cont)

Instruction H N z Vv C Definition

SHAR — 1t t 0 N =Rm
Z=Rm-Rm-1 - ... -RO
C = DO (1-bit shift) or C = D1 (2-bit shift)

SHLL — 1t t 0 N =Rm
Z=Rm-Rm-1- ... -RO
C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)

SHLR — 0 t 0 N =Rm
Z=Rm-Rm-1- ... -RO
C = DO (1-bit shift) or C = D1 (2-bit shift)

SLEEP _ — = — —

STC —_ = = = —

ST™M _ = = = —

STMAC* — 1t t t — N = 1 if MAC instruction resulted in negative value in MAC register
Z =1 if MAC instruction resulted in zero value in MAC register
V =1 if MAC instruction resulted in overflow

suB oot H = Sm—4 - Dm—4 + Dm—4 - Rm—4 + Sm—4 - Rm—4
N =Rm
Z=Bm-Rm-1-...... ‘RO
V=Sm-Dm-Rm +Sm-Dm :Rm
C=Sm-Dm+Dm Rm+Sm:-Rm

SUBS - - = - —

SUBX oot H = Sm—4 - Dm—4 + Dm—4 - Rm—4 + Sm—4 - Rm—4
N =Rm
Z=Z-Rm - ... -RO
V=Sm-Dm-Rm +Sm-Dm - Rm
C=Sm-Dm+Dm Rm+Sm-Rm

TAS —t t+ 0 — N =Dm
Z=Dm-Dm-1-..... -DO

TRAPA —_ = = = —

XOR — t t+ 0 — N =Rm
Z=Rm-Rm-1 - ... -RO

XORC Tttt t ot Stores the corresponding bits of the result.

No flags change when the operand is EXR.

Note: *These instructions are supported by the H8S/2600 CPU only.

294

2.8 Bus States During I nstruction Execution

Table 2-8 indicates the types of cycles that occur during instruction execution by the CPU. See
table 2-5 for the number of states per cycle.

How to Read the Table:

Order of execution

Instruction 1 2 3 4 5 6 7 8 9

Internal operation,

JMP @aa:24 R:W 2nd 1 state R:W EA

T— End of instruction

Read effective address (word-size read)

No read or write

Read 2nd word of current instruction
(word-size read)

Legend

R:B Byte-size read

R:W Word-size read

W:B Byte-size write

W:wW Word-size write

2nd Address of 2nd word (3rd and 4th bytes)

3rd Address of 3rd word (5th and 6th bytes)
4th Address of 4th word (7th and 8th bytes)
5th Address of 5th word (9th and 10th bytes)

NEXT Address of next instruction

EA Effective address

VEC Vector address

295

Figure 2-1 shows timing waveforms for the address bus and the RD and WR (HWR or LWR)
signals during execution of the above instruction with an 8-bit bus, using three-state access with no
walit states.

Address bus :x X X X X
RD A [[7\ /7 /
WR (FWR or ‘ - f f
LWR) High level
| R:W 2nd Internal R:W EA |
| operation |
| ‘ ! ‘
Fetching ' Fetching . Fetching Fetching
3rd byte 4th byte 1st byte of 2nd byte of
of instruction of instruction instruction at instruction at

jump address jump address

Figure2-1 AddressBus, RD, and WR (HWR or LWR) Timing
(8-Bit Bus, Three-State Access, No Wait States)

296

L6¢

Table 2-8 Instruction Execution Cycles

Instruction 1 2 3 4 5
ADD.B #xx:8,Rd R:W NEXT
ADD.B Rs,Rd R:W NEXT
ADD.W #xx:16,Rd R:W 2nd R:W NEXT
ADD.W Rs,Rd R:W NEXT
ADD.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
ADD.L ERs,ERd R:W NEXT
ADDS #1/2/4,ERd R:W NEXT
ADDX #xx:8,Rd R:W NEXT
ADDX Rs,Rd R:W NEXT
AND.B #xx:8,Rd R:W NEXT
AND.B Rs,Rd R:W NEXT
AND.W #xx:16,Rd R:W 2nd R:W NEXT
AND.W Rs,Rd R:W NEXT
AND.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
AND.L ERs,ERd R:W 2nd R:W NEXT
ANDC #xx:8,CCR R:W NEXT
ANDC #xx:8,EXR R:W 2nd R:W NEXT
BAND #xx:3,Rd R:W NEXT
BAND #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BAND #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BAND #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT
BAND #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT
BRA d:8 (BT d:8) R:W NEXT R:W EA
BRN d:8 (BF d:8) R:W NEXT R:W EA
BHI d:8 R:W NEXT R:W EA
BLS d:8 R:W NEXT R:W EA
BCC d:8 (BHS d:8) R:W NEXT R:W EA
BCS d:8 (BLO d:8) R:W NEXT R:W EA
BNE d:8 R:W NEXT R:W EA
BEQ d:8 R:W NEXT R:W EA
BVC d:8 R:W NEXT R:W EA
BVS d:8 R:W NEXT R:W EA
BPL d:8 R:W NEXT R:W EA
BMI d:8 R:W NEXT R:W EA
BGE d:8 R:W NEXT R:W EA
BLT d:8 R:W NEXT R:W EA
BGT d:8 R:W NEXT R:W EA

86¢

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4
BLE d:8 R:W NEXT R:W EA
BRA d:16 (BT d:16) R:W 2nd Internal operation, |R:W EA
1 state
BRN d:16 (BF d:16) R:W 2nd Internal operation, |R:W EA
1 state
BHI d:16 R:W 2nd Internal operation, |R:W EA
1 state
BLS d:16 R:W 2nd Internal operation, |R:W EA
1 state
BCC d:16 (BHS d:16) R:W 2nd Internal operation, |R:W EA
1 state
BCS d:16 (BLO d:16) R:W 2nd Internal operation, |R:W EA
1 state
BNE d:16 R:W 2nd Internal operation, |R:W EA
1 state
BEQ d:16 R:W 2nd Internal operation, |R:W EA
1 state
BVC d:16 R:W 2nd Internal operation, |R:W EA
1 state
BVS d:16 R:W 2nd Internal operation, |R:W EA
1 state
BPL d:16 R:W 2nd Internal operation, |R:W EA
1 state
BMI d:16 R:W 2nd Internal operation, |R:W EA
1 state
BGE d:16 R:W 2nd Internal operation, |R:W EA
1 state
BLT d:16 R:W 2nd Internal operation, |R:W EA
1 state
BGT d:16 R:W 2nd Internal operation, |R:W EA
1 state
BLE d:16 R:W 2nd Internal operation, |R:W EA
1 state
BCLR #xx:3,Rd R:W NEXT
BCLR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BCLR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BCLR #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA

66¢

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5
BCLR #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA
BCLR Rn,Rd R:W NEXT
BCLR Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BCLR Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BCLR Rn,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA
BCLR Rn,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA
BIAND #xx:3,Rd R:W NEXT
BIAND #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BIAND #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BIAND #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT
BIAND #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT
BILD #xx:3,Rd R:W NEXT
BILD #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BILD #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BILD #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT
BILD #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT
BIOR #xx:3,Rd R:W NEXT
BIOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BIOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BIOR #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT
BIOR #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT
BIST #xx:3,Rd R:W NEXT
BIST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BIST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BIST #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA
BIST #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA
BIXOR #xx:3,Rd R:W NEXT
BIXOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BIXOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BIXOR #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT
BIXOR #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT
BLD #xx:3,Rd R:W NEXT
BLD #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BLD #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BLD #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT
BLD #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT
BNOT #xx:3,Rd R:W NEXT

00€e

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5
BNOT #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BNOT #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BNOT #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA
BNOT #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA
BNOT Rn,Rd R:W NEXT
BNOT Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BNOT Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BNOT Rn,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA
BNOT Rn,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA
BOR #xx:3,Rd R:W NEXT
BOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BOR #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT
BOR #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:BEA R:W NEXT
BSET #xx:3,Rd R:W NEXT
BSET #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BSET #xx:3,@aa:8 R:W 2nd R:BEA R:W NEXT W:B EA
BSET #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA
BSET #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA
BSET Rn,Rd R:W NEXT
BSET Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BSET Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BSET Rn,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA
BSET Rn,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA
BSR d:8 Normal R:W NEXT R:W EA W:W stack
Advanced |R:W NEXT R:W EA W:W stack (H) W:W stack (L)
BSR d:16 Normal R:W 2nd Internal operation, |R:W EA W:W stack
1 state
Advanced |R:W 2nd Internal operation, |R:W EA W:W stack (H) W:W stack (L)
1 state
BST #xx:3,Rd R:W NEXT
BST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BST #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA
BST #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA
BTST #xx:3,Rd R:W NEXT
BTST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

TOE

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6
BTST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BTST #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT
BTST #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT
BTST Rn,Rd R:W NEXT
BTST Rn,@ERd R:W 2nd R:B EA R:W NEXT
BTST Rn,@aa:8 R:W 2nd R:B EA R:W NEXT
BTST Rn,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT
BTST Rn,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT
BXOR #xx:3,Rd R:W NEXT
BXOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BXOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BXOR #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT
BXOR #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT
CLRMAC* R:W NEXT Internal operation,

1 state

CMP.B #xx:8,Rd R:W NEXT
CMP.B Rs,Rd R:W NEXT
CMP.W #xx:16,Rd R:W 2nd R:W NEXT
CMP.W Rs,Rd R:W NEXT
CMP.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
CMP.L ERs,ERd R:W NEXT
DAA Rd R:W NEXT
DAS Rd R:W NEXT
DEC.B Rd R:W NEXT
DEC.W #1/2,Rd R:W NEXT
DEC.L #1/2,ERd R:W NEXT
DIVXS.B Rs,Rd R:W 2nd R:W NEXT Internal operation, 11 states
DIVXS.W Rs,ERd R:W 2nd R:W NEXT Internal operation, 19 states
DIVXU.B Rs,Rd R:W NEXT Internal operation, 11 states
DIVXU.W Rs,ERd R:W NEXT Internal operation, 19 states
EEPMOV.B R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W NEXT
EEPMOV.W R:W 2nd R:B EAs "1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W NEXT
EXTS.W Rd R:W NEXT ~[Repeated n times*3 M.
EXTS.L ERd R:W NEXT
EXTU.W Rd R:W NEXT
EXTU.L ERd R:W NEXT
INC.B Rd R:W NEXT

c0g

Table 2-8 Instruction Execution Cycles (cont)

1 state

Instruction 1 2 3 4 5 6
INC.W #1/2,Rd R:W NEXT
INC.L #1/2,ERd R:W NEXT
JMP @ERn R:W NEXT R:W EA
JMP @aa:24 R:W 2nd Internal operation, |R:W EA
1 state
JMP @@aa:8 Normal R:W NEXT R:W aa:8 Internal operation, |R:W EA
1 state
Advanced |R:W NEXT R:W aa:8 R:W aa:8 Internal operation, | R:W EA
1 state
JSR @ERnN Normal R:W NEXT R:W EA W:W stack
Advanced |R:W NEXT R:W EA W:W stack (H) W:W stack (L)
JSR @aa:24 Normal R:W 2nd Internal operation, |R:W EA W:W stack
1 state
Advanced |R:W 2nd Internal operation, |R:W EA W:W stack (H) W:W stack (L)
1 state
JSR @@aa:8 Normal R:W NEXT R:W aa:8 W:W stack R:W EA
Advanced |R:W NEXT R:W aa:8 R:W aa:8 W:W stack (H) W:W stack (L) R:W EA
LDC #xx:8,CCR R:W NEXT
LDC #xx:8,EXR R:W 2nd R:W NEXT
LDC Rs,CCR R:W NEXT
LDC Rs,EXR R:W NEXT
LDC @ERs,CCR R:W 2nd R:W NEXT R:W EA
LDC @ERs,EXR R:W 2nd R:W NEXT R:W EA
LDC @(d:16,ERs),CCR R:W 2nd R:W 3rd R:W NEXT R:W EA
LDC @(d:16,ERs),EXR R:W 2nd R:W 3rd R:W NEXT R:W EA
LDC @(d:32,ERs),CCR R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT R:W EA
LDC @(d:32,ERs),EXR R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT R:W EA
LDC @ERs+,CCR R:W 2nd R:W NEXT Internal operation, |R:W EA
1 state
LDC @ERs+,EXR R:W 2nd R:W NEXT Internal operation, | R:W EA
1 state
LDC @aa:16,CCR R:W 2nd R:W 3rd R:W NEXT R:W EA
LDC @aa:16,EXR R:W 2nd R:W 3rd R:W NEXT R:W EA
LDC @aa:32,CCR R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA
LDC @aa:32,EXR R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA
LDM.L @SP+,(ERn—-ERn+1) R:W 2nd R:W NEXT Internal operation, |R:W stack (H) *3 |R:W stack (L) 3

€0¢€

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5
LDM.L @SP+,(ERN—-ERN+2) R:W 2nd R:W NEXT Internal operation, | R:W stack (H) 3 |R:W stack (L) “3
1 state
LDM.L @SP+,(ERn—-ERn+3) R:W 2nd R:W NEXT Internal operation, |R:W stack (H) *3 |R:W stack (L) *3
1 state
LDMAC ERs,MACH* R:W NEXT Internal operation, ~[Repeated ntimes™3 M.
1 state
LDMAC ERs,MACL* R:W NEXT Internal operation,
1 state
MAC @ERn+,@ERm+* R:W 2nd R:W NEXT R:W EAn R:W EAm
MOV.B #xx:8,Rd R:W NEXT
MOV.B Rs,Rd R:W NEXT
MOV.B @ERs,Rd R:W NEXT R:B EA
MOV.B @(d:16,ERs),Rd R:W 2nd R:W NEXT R:B EA
MOV.B @(d:32,ERs),Rd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:B EA
MOV.B @ERs+,Rd R:W NEXT Internal operation, |R:B EA
1 state
MOV.B @aa:8,Rd R:W NEXT R:B EA
MOV.B @aa:16,Rd R:W 2nd R:W NEXT R:B EA
MOV.B @aa:32,Rd R:W 2nd R:W 3rd R:W NEXT R:B EA
MOV.B Rs,@ERd R:W NEXT W:B EA
MOV.B Rs,@(d:16,ERd) R:W 2nd R:W NEXT W:B EA
MOV.B Rs,@(d:32,ERd) R:W 2nd R:W 3rd R:W 4th R:W NEXT W:B EA
MOV.B Rs,@-ERd R:W NEXT Internal operation, |W:B EA
1 state
MOV.B Rs,@aa:8 R:W NEXT W:B EA
MOV.B Rs,@aa:16 R:W 2nd R:W NEXT W:B EA
MOV.B Rs,@aa:32 R:W 2nd R:W 3rd R:W NEXT W:B EA
MOV.W #xx:16,Rd R:W 2nd R:W NEXT
MOV.W Rs,Rd R:W NEXT
MOV.W @ERs,Rd R:W NEXT R:W EA
MOV.W @(d:16,ERs),Rd R:W 2nd R:W NEXT R:W EA
MOV.W @(d:32,ERs),Rd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA
MOV.W @ERs+,Rd R:W NEXT Internal operation, |R:W EA
1 state
MOV.W @aa:16,Rd R:W 2nd R:W NEXT R:W EA
MOV.W @aa:32,Rd R:W 2nd R:W 3rd R:W NEXT R:B EA
MOV.W Rs,@ERd R:W NEXT W:W EA

¥0€

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7
MOV.W Rs,@(d:16,ERd) R:W 2nd R:W NEXT W:W EA
MOV.W Rs,@(d:32,ERd) R:W 2nd R:W 3rd R:E 4th R:W NEXT W:W EA
MOV.W Rs,@-ERd R:W NEXT Internal operation, | W:W EA
1 state
MOV.W Rs,@aa:16 R:W 2nd R:W NEXT W:W EA
MOV.W Rs,@aa:32 R:W 2nd R:W 3rd R:W NEXT W:W EA
MOV.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
MOV.L ERs,ERd R:W NEXT
MOV.L @ERs,ERd R:W 2nd R:W NEXT R:W EA R:W EA+2
MOV.L @(d:16,ERs),ERd R:W 2nd R:W 3rd R:W NEXT R:W EA R:W EA+2
MOV.L @(d:32,ERs),ERd R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT R:W EA R:W EA+2
MOV.L @ERs+,ERd R:W 2nd R:W NEXT Internal operation, | R:W EA R:W EA+2
1 state
MOV.L @aa:16,ERd R:W 2nd R:W 3rd R:W NEXT R:W EA R:W EA+2
MOV.L @aa:32,ERd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA R:W EA+2
MOV.L ERs,@ERd R:W 2nd R:W NEXT W:W EA W:W EA+2
MOV.L ERs,@(d:16,ERd) R:W 2nd R:W 3rd R:W NEXT W:W EA W:W EA+2
MOV.L ERs,@(d:32,ERd) R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT W:W EA W:W EA+2
MOV.L ERs,@-ERd R:W 2nd R:W NEXT Internal operation, |W:W EA W:W EA+2
1 state
MOV.L ERs,@aa:16 R:W 2nd R:W 3rd R:W NEXT W:W EA W:W EA+2
MOV.L ERs,@aa:32 R:W 2nd R:W 3rd R:W 4th R:W NEXT W:W EA W:W EA+2
MOVFPE @aa:16,Rd R:W 2nd Internal operation, |R:W 4 EA
1 state
MOVTPE Rs,@aa:16 R:W 2nd Internal operation, |W:B *4 EA
1 state
MULXS.B Rs,Rd H8S/2600 |R:W 2nd R:W NEXT Internal operation, 2 states
H8S/2000 |R:W 2nd R:W NEXT Internal operation, 11 states
MULXS.W Rs,ERd H8S/2600 |R:W 2nd R:W NEXT Internal operation, 3 states
H8S/2000 |R:W 2nd R:W NEXT Internal operation, 19 states
MULXU.B Rs,Rd H8S/2600 |R:W NEXT Internal operation, 2 states
H8S/2000 |R:W NEXT Internal operation, 11 states
MULXU.W Rs,ERd H8S/2600 |R:W NEXT Internal operation, 3 states
H8S/2000 |R:W NEXT Internal operation, 19 states
NEG.B Rd R:W NEXT
NEG.W Rd R:W NEXT
NEG.L ERd R:W NEXT
NOP R:W NEXT
NOT.B Rd R:W NEXT
NOT.W Rd R:W NEXT
NOT.L ERd R:W NEXT

S0¢€

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5
OR.B #xx:8,Rd R:W NEXT
OR.B Rs,Rd R:W NEXT
OR.W #xx:16,Rd R:W 2nd R:W NEXT
OR.W Rs,Rd R:W NEXT
OR.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
OR.L ERs,ERd R:W 2nd R:W NEXT
ORC #xx:8,CCR R:W NEXT
ORC #xx:8,EXR R:W 2nd R:W NEXT
POP.W Rn R:W NEXT Internal operation, |R:W EA
1 state
POP.L ERNn R:W 2nd R:W NEXT Internal operation, |R:W EA R:W EA+2
1 state
PUSH.W Rn R:W NEXT Internal operation, |W:W EA
1 state
PUSH.L ERNn R:W 2nd R:W NEXT Internal operation, |W:W EA W:W EA+2
1 state
ROTL.B Rd R:W NEXT
ROTL.B #2,Rd R:W NEXT
ROTL.W Rd R:W NEXT
ROTL.W #2,Rd R:W NEXT
ROTL.L ERd R:W NEXT
ROTL.L #2,ERd R:W NEXT
ROTR.B Rd R:W NEXT
ROTR.B #2,Rd R:W NEXT
ROTR.W Rd R:W NEXT
ROTR.W #2,Rd R:W NEXT
ROTR.L ERd R:W NEXT
ROTR.L #2,ERd R:W NEXT
ROTXL.B Rd R:W NEXT
ROTXL.B #2,Rd R:W NEXT
ROTXL.W Rd R:W NEXT
ROTXL.W #2,Rd R:W NEXT
ROTXL.L ERd R:W NEXT
ROTXL.L #2,ERd R:W NEXT

90€

Table2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5

ROTXR.B Rd R:W NEXT

ROTXR.B #2,Rd R:W NEXT

ROTXR.W Rd R:W NEXT

ROTXR.W #2,Rd R:W NEXT

ROTXR.L ERd R:W NEXT

ROTXR.L #2,ERd R:W NEXT

RTE R:W NEXT R:W stack (EXR) |R:W stack (H) R:W stack (L) Internal operation, |R:W *5

1 state
RTS Normal |R:W NEXT R:W stack Internal operation, |R:W 5
1 state
Advanced |R:W NEXT R:W stack (H) R:W stack (L) Internal operation, | R:W *5
1 state

SHAL.B Rd R:W NEXT

SHAL.B #2,Rd R:W NEXT

SHAL.W Rd R:W NEXT

SHAL.W #2,Rd R:W NEXT

SHAL.L ERd R:W NEXT

SHAL.L #2,ERd R:W NEXT

SHAR.B Rd R:W NEXT

SHAR.B #2,Rd R:W NEXT

SHAR.W Rd R:W NEXT

SHAR.W #2,Rd R:W NEXT

SHAR.L ERd R:W NEXT

SHAR.L #2,ERd R:W NEXT

SHLL.B Rd R:W NEXT

SHLL.B #2,Rd R:W NEXT

SHLL.W Rd R:W NEXT

SHLL.W #2,Rd R:W NEXT

SHLL.L ERd R:W NEXT

SHLL.L #2,ERd R:W NEXT

SHLR.B Rd R:W NEXT

SHLR.B #2,Rd R:W NEXT

SHLR.W Rd R:W NEXT

SHLR.W #2,Rd R:W NEXT

SHLR.L ERd R:W NEXT

SHLR.L #2,ERd R:W NEXT

L0€

Table 2-8 Instruction Execution Cycles (cont)

1 state

1 state

Instruction 1 2 3 4 5 6 7
SLEEP R:W NEXT Internal operation,
1 state
STC CCR,Rd R:W NEXT
STC EXR,Rd R:W NEXT
STC CCR,@ERd R:W 2nd R:W NEXT W:W EA
STC EXR,@ERd R:W 2nd R:W NEXT W:W EA
STC CCR,@(d:16,ERd) R:W 2nd R:W 3rd R:W NEXT W:W EA
STC EXR,@(d:16,ERd) R:W 2nd R:W 3rd R:W NEXT W:W EA
STC CCR,@(d:32,ERd) R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT W:W EA
STC EXR,@(d:32,ERd) R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT W:W EA
STC CCR,@-ERd R:W 2nd R:W NEXT Internal operation, \W:W EA
1 state
STC EXR,@-ERd R:W 2nd R:W NEXT Internal operation, | W:W EA
1 state
STC CCR,@aa:16 R:W 2nd R:W 3rd R:W NEXT W:W EA
STC EXR,@aa:16 R:W 2nd R:W 3rd R:W NEXT W:W EA
STC CCR,@aa:32 R:W 2nd R:W 3rd R:W 4th R:W NEXT W:W EA
STC EXR,@aa:32 R:W 2nd R:W 3rd R:W 4th R:W NEXT W:W EA
STM.L(ERn-ERn+1),@-SP R:W 2nd R:W NEXT Internal operation, |W:W stack (H) “3 |W:W stack (L) *3
1 state
STM.L(ERN-ERn+2),@-SP R:W 2nd R:W NEXT Internal operation, |W:W stack (H) *3 |W:W stack (L) *3
1 state
STM.L(ERn-ERN+3),@-SP R:W 2nd R:W NEXT Internal operation, |W:W stack (H) *3 |W:W stack (L) *3
1 state
STMAC MACH,ERd* R:W NEXT ~@ Repeated ntimes"3 .
STMAC MACL,ERd* R:W NEXT
SUB.B Rs,Rd R:W NEXT
SUB.W #xx:16,Rd R:W 2nd R:W NEXT
SUB.W Rs,Rd R:W NEXT
SUB.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
SUB.L ERs,ERd R:W NEXT
SUBS #1/2/4,ERd R:W NEXT
SUBX #xx:8,Rd R:W NEXT
SUBX Rs,Rd R:W NEXT
TAS @ERd R:W 2nd R:W NEXT R:B EA W:B EA
TRAPA #x:2 Normal R:W NEXT Internal operation, |W:W stack (L) W:W stack (H) W:W stack (EXR) [R:W VEC Internal operation, |R:W *8

80¢€

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8

TRAPA #x:2 (cont) | Advanced |R:W NEXT Internal operation, |W:W stack (L) W:W stack (H) W:W stack (EXR) [R:W VEC R:W VEC+2 Internal operation, |R:W *8
1 state 1 state

XOR.B #xx8,Rd R:W NEXT

XOR.B Rs,Rd R:W NEXT

XOR.W #xx:16,Rd R:W 2nd R:W NEXT

XOR.W Rs,Rd R:W NEXT

XOR.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

XOR.L ERs,ERd R:W 2nd R:W NEXT

XORC #xx:8,CCR R:W NEXT

XORC #xx:8,EXR R:W 2nd R:W NEXT

Reset exception Normal R:W VEC Internal operation, |R:W €

handling 1 state

Advanced |R:W VEC R:W VEC+2 Internal operation, |R:W *6
1 state
Interrupt exception | Normal R:W *7 Internal operation, |W:W stack (L) W:W stack (H) W:W stack (EXR) |R:W VEC Internal operation, | R:W *8
handling 1 state 1 state
Advanced |R:W *7 Internal operation, |W:W stack (L) W:W stack (H) W:W stack (EXR) |R:W VEC R:W VEC+2 Internal operation, |R:W *8

1 state 1 state

Notes: *These instructions are supported by the H8S/2600 CPU only.

1. EAs is the contents of ER5. EAd is the contents of ERG.

EAs is the contents of ER5. EAd is the contents of ER6. Both registers are incremented by 1 after execution of the instruction. n is the initial

value of R4L or R4. If n = 0, these bus cycles are not executed.

N o o

Start address after return.

Start address of the program.

operation is replaced by an internal operation.

8. Start address of the interrupt-handling routine.

Repeated two times to save or restore two registers, three times for three registers, or four times for four registers.

For the number of states required for byte-size read or write, refer to the relevant microcontroller hardware manual.

Prefetch address, equal to two plus the PC value pushed onto the stack. In recovery from sleep mode or software standby mode the read

Section 3 Processing States

3.1 Overview

The CPU has five main processing states. the reset state, exception handling state, program
execution state, bus-rel eased state, and power-down state. Figure 3-1 shows a diagram of the
processing states. Figure 3-2 indicates the state transitions.

Reset state

The CPU and all on-chip supporting modules have been
initialized and are stopped.

Exception-handling
state

A transient state in which the CPU changes the normal
processing flow in response to a reset, interrupt, or trap

instruction.
Processing Program execution
states state

The CPU executes program instructions in sequence.

Bus-released state

The external bus has been released in response to a bus
request signal from a bus master other than the CPU.

Sleep mode

Software standby

Power-down state

mode
CPU operation is stopped
mode

Note: * The power-down state also includes a medium-speed mode, module stop mode, etc.

Figure3-1 Processing States

309

End of bus request

Bus request
Program execution
state
End of bus
SLEEP
request Bus instruction
¢ with
reques SLEEP \ SSBY =0
] instruction
with
Bus-released state SSBY =1
Request for AR VN
E)r(]geg{ion exception : —
handiing handling Sleep mode
Interrupt
request
Exception-handling state
Iy External interrupt Software standby mode

RES = high

Notes: 1. From any state except hardware standby mode, a transition to the reset state occurs whenever RES
goes low.
2. From any state, a transition to hardware standby mode occurs when STBY goes low.

Figure3-2 State Transitions

3.2 Reset State

When the RES input goes low all current processing stops and the CPU enters the reset state. Reset
exception handling starts when the RES signal changes from low to high.

The reset state can also be entered by awatchdog timer overflow. For details, refer to the relevant
microcontroller hardware manual.

310

3.3 Exception-Handling State

The exception-handling state is atransient state that occurs when the CPU alters the normal
processing flow due to areset, interrupt, or trap instruction. The CPU fetches a start address
(vector) from the exception vector table and branches to that address.

3.3.1 Typesof Exception Handling and Their Priority

Exception handling is performed for traces, resets, interrupts, and trap instructions. Table 3-1
indicates the types of exception handling and their priority. Trap instruction exception handling is
always accepted, in the program execution state.

Exception handling and the stack structure differ according to the interrupt control mode set in
SYSCR.

Table3-1 Exception Handling Typesand Priority

Priority ~ Type of Exception Detection Timing Start of Exception Handling
High Reset Synchronized with clock Exception handling starts
immediately when RES changes
from low to high
Trace End of instruction When the trace (T) bit is setto 1,
execution or end of the trace starts at the end of the
exception-handling current instruction or current
sequence*! exception-handling sequence
Interrupt End of instruction When an interrupt is requested,
execution or end of exception handling starts at the
exception-handling end of the current instruction or
sequence*? current exception-handling
sequence
Trap instruction When TRAPA instruction Exception handling starts when a
is executed trap (TRAPA) instruction is
Low executed*3

Notes: 1. Traces are enabled only in interrupt control modes 2 and 3. Trace exception-handling is
not executed at the end of the RTE instruction.
2. Interrupts are not detected at the end of the ANDC, ORC, XORC, and LDC instructions,
or immediately after reset exception handling.
3. Trap instruction exception handling is always accepted, in the program execution state.

For details on interrupt control modes, exception sources, and exception handling, refer to the
relevant microcontroller hardware manual.

311

3.3.2 Reset Exception Handling

After the RES pin has gone low and the reset state has been entered, reset exception handling starts
when RES goes high again. When reset exception handling starts the CPU fetches a start address
(vector) from the exception vector table and starts program execution from that address. All
interrupts, including NMI, are disabled during reset exception handling and after it ends.

3.3.3 Trace

Traces are enabled only in interrupt control modes 2 and 3. Trace mode is entered when the T bit
of EXRisset to 1. When trace mode is established, trace exception handling starts at the end of
each instruction.

At the end of atrace exception-handling sequence, the T bit of EXR is cleared to 0 and trace mode
is cleared. Interrupt masks are not affected.

The T bit saved on the stack retains its value of 1, and when the RTE instruction is executed to
return from the trace exception-handling routine, trace mode is entered again. Trace exception-
handling is not executed at the end of the RTE instruction.

Trace mode is not entered in interrupt control modes 0 and 1, regardless of the state of the T bit.
3.3.4 Interrupt Exception Handling and Trap I nstruction Exception Handling

When interrupt or trap-instruction exception handling begins, the CPU references the stack pointer
(ER7) and pushes the program counter and other control registers onto the stack. Next, the CPU
aters the settings of the interrupt mask bits in the control registers. Then the CPU fetches a start
address (vector) from the exception vector table and execution branches to that address.

Figure 3-3 shows the stack after exception handling ends, for the case of interrupt mode 1 in
advanced mode.

312

Normal mode

SP— CCR
CCR*
PC

(16 bits)

w

(@) Interrupt control modes 0& 1

Note: *Ignored when returning.

Advanced mode

SP— CCR

o PC I
(24 bits)

w

(c) Interrupt control modes 0& 1

Note: *Ignored when returning.

SP—

J\

EXR

Reserved*

CCR

CCR*

PC
(16 bits)

w

(b) Interrupt control modes 2 & 3

SP—

J\

EXR

Reserved*

CCR

- - PC R
(24 bits)

w

(d) Interrupt control modes 2 & 3

Figure3-3 Stack Structureafter Exception Handling (Example)

3.4 Program Execution State

In this state the CPU executes program instructions in sequence.

313

3.5 Bus-Released State

Thisis astate in which the bus has been released in response to a bus request from a bus master
other than the CPU. While the busis released, the CPU halts except for internal operations.

Bus masters other than the CPU may include the direct memory access controller (DMAC) and
datatransfer controller (DTC).

For further details, refer to the relevant microcontroller hardware manual.

3.6 Power-Down State

The power-down state includes both modes in which the CPU stops operating and modes in which
the CPU does not stop. There are three modes in which the CPU stops operating: sleep mode,
software standby mode, and hardware standby mode. There are also two other power-down modes:
medium-speed mode and module stop mode. In medium-speed mode the CPU and other bus
masters operate on a medium-speed clock. Module stop mode permits halting of the operation of
individual modules, other than the CPU. For details, refer to the relevant microcontroller hardware
manual.

3.6.1 Sleep Mode

A transition to sleep mode is made if the SLEEP instruction is executed while the software standby
bit (SSBY) in the system control register (SY SCR) is cleared to 0. In sleep mode, CPU operations
stop immediately after execution of the SLEEP instruction. The contents of CPU registers are
retained.

3.6.2 Software Standby Mode

A transition to software standby mode is made if the SLEEP instruction is executed while the
SSBY bitin SYSCRis set to 1. In software standby mode, the CPU and clock halt and all on-chip
operations stop. The on-chip supporting modules are reset, but as long as a specified voltageis
supplied, the contents of CPU registers and on-chip RAM are retained. The I/O ports also remain
in their existing states.

3.6.3 Hardware Standby Mode

A transition to hardware standby mode is made when the STBY pin goes low. In hardware standby
mode, the CPU and clock halt and all on-chip operations stop. The on-chip supporting modules are
reset, but as long as a specified voltage is supplied, on-chip RAM contents are retained.

314

Section 4 Basic Timing

4.1 Overview

The CPU isdriven by a system clock, denoted by the symbol @. The period from one rising edge of
@ to the next isreferred to as a“ state.” The memory cycle or bus cycle consists of one, two, or
three states. Different methods are used to access on-chip memory, on-chip supporting modules,
and the external address space. Refer to the relevant microcontroller hardware manual for details.

4.2 On-Chip Memory (ROM, RAM)

On-chip memory is accessed in one state. The data bus is 16 bits wide, permitting both byte and
word access. Figure 4-1 shows the on-chip memory access cycle. Figure 4-2 shows the pin states.

Read ! !

access | 1
Internal data bus { Readdata)
Internal write signal N\ '/

Write !

access ‘

Write data >—

N

Figure4-1 On-Chip Memory Access Cycle

315

Address bus : Unchanged

AS High
RD High
FWR, TWR T
Data bus 3High-impedance statei

Figure4-2 Pin Statesduring On-Chip Memory Access

316

4.3 On-Chip Supporting Module Access Timing

The on-chip supporting modules are accessed in two states. The data busis either 8 bits or 16 hits
wide, depending on the particular on-chip register being accessed. Figure 4-3 shows the access
timing for the on-chip supporting modules. Figure 4-4 shows the pin states.

Bus cycle

Internal address bus

Internal read signal N\

Address

Read

access / \
Internal data bus \ Read data >—
Internal write signal \ /

Write

access f 3
Internal data bus < Write data >—

Figure4-3 On-Chip Supporting Module Access Cycle

317

Bus cycle

Address bus | Unchgnged |
AS Hijgh
RD High
HWR, LWR High
Data bus High-impedance state

Figure4-4 Pin Statesduring On-Chip Supporting Module Access

4.4 External Address Space Access Timing

The external address space is accessed with an 8-bit or 16-bit data bus width in atwo-state or
three-state bus cycle. Figure 4-5 shows the read timing for two-state and three-state access. Figure
4-6 shows the write timing for two-state and three-state access. In three-state access, wait states
can beinserted. For further details, refer to the relevant microcontroller hardware manual.

318

wwwwwwwwwwwwwwwwwwwww > 7/_/
A
o]
[
©
™ o]
= B
a4
>< ﬁ T
i e R R SRR U R A AR A
8
[
b o 2
o 5 Y <
(A 12 " o & 3
7] k= <
o S
8 4
@ %) <
3 o]
S S S I R S R s .y Lo
o k=])]
© [
[J] < (]
o B
T
<
Yl > o] Y. ... >
(2] (2]
a a
o a 0 g
5 2
3 @ [= b 3 @ [= T
s < < i a s < < i fat

319

(b) Three-State Access
Figure4-5 External Device Access Timing (Read Timing)

Write cycle

T2

T1

Address

Address bus

>_

Write data

Data bus

(&) Two-State Access

Write cycle
T2 T3

T1

Address

Address bus

Write data

Data bus

(b) Three-State Access

Figure4-6 External Device Access Timing (Write Timing)

320

	Section 1 CPU
	1.1 Overview
	1.2 CPU Operating Modes
	1.3 Address Space
	1.4 Register Configuration
	1.5 Data Formats
	1.6 Instruction Set
	1.7 Addressing Modes and Effective Address Calculation

	Section 2 Instruction Descriptions
	2.1 Tables and Symbols
	2.2 Instruction Descriptions
	2.3 Instruction Set Summary
	2.4 Instruction Codes
	2.5OperationCodeMap
	2.6 Number of States Required for Instruction Execution
	2.7 Condition Code Modification
	2.8 Bus States During Instruction Execution

	Section 3 Processing States
	3.1 Overview
	3.2 Reset State
	3.3 Exception-Handling State
	3.4 Program Execution State
	3.5 Bus-Released State
	3.6 Power-Down State

	Section 4 Basic Timing
	4.1 Overview
	4.2 On-Chip Memory (ROM, RAM)
	4.3 On-Chip Supporting Module Access Timing
	4.4 External Address Space Access Timing

