The Cygnus C Support Library

Full Configuration

[ibcl.4
May 1993

Steve Chamberlain
Roland Pesch
Cygnus Support

sac@cygnus.com, doc@cygnus.com The Cygnus C Support Library
Copyright © 1992, 1993, 1994, 1995, 1996 Cygnus Support

i bc’ includes software developed by the University of California, Berke-
ley and its contributors.

1'i be’ includes software developed by Martin Jackson, Graham Haley
and Steve Chamberlain of Tadpole Technology and released to Cygnus.

Ii bc’ uses floating point converstion software developed at AT&T, which
includes this copyright information:

The author of this software is David M. Gay.
Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any pur-
pose without fee is hereby granted, provided that this entire notice is
included in all copies of any software which is or includes a copy or modi-
fication of this software and in all copies of the supporting documentation
for such software.

THIS SOFTWARE ISBEING PROVIDED "AS IS", WITHOUT ANY EX-
PRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE
AUTHOR NOR AT&T MAKES ANY REPRESENTATION OR WAR-
RANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF
THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PUR-
POSE.

J

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, subject to the terms
of the GNU General Public License, which includes the provision that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

1 SystemCalls....... ... 1
1.1 Definitions for OSinterface 1

1.2 Reentrant covers for OS subroutines..................... 6

2 Variable ArgumentLists....................... 9
2.1 ANSI-standard macros, ‘stdarg. h'....................... 9

2.1.1 Initialize variable argumentlist............... 10

2.1.2 Extract a value from argument list............ 11

2.1.3 Abandon a variable argument list 12

2.2 Traditional macros, ‘varargs. h’.............c.ocienn.. 12

2.2.1 Declare variable arguments.................... 13

2.2.2 Initialize variable argumentlist............... 14

2.2.3 Extract a value from argument list............ 15

2.2.4 Abandon a variable argumentlist............. 16

INdeX ... e 17

cygnus support i

Cygnus C Support Library, Full

17 January 1996

Chapter 1: System Calls

1 System Calls

The C subroutine library depends on a handful of subroutine calls for
operating system services. If you use the C library on a system that
complies with the POSIX.1 standard (also known as IEEE 1003.1), most
of these subroutines are supplied with your operating system.

If some of these subroutines are not provided with your system—in the
extreme case, if you are developing software for a “bare board” system,
without an OS—you will at least need to provide do-nothing stubs (or
subroutines with minimal functionality) to allow your programs to link
with the subroutinesinli bc. a.

1.1 Definitions for OS interface

This is the complete set of system definitions (primarily subroutines)
required; the examples shown implement the minimal functionality re-
quired to allow | i bc to link, and fail gracefully where OS services are
not available.

Graceful failure is permitted by returning an error code. A minor compli-
cation arises here: the C library must be compatible with development
environments that supply fully functional versions of these subroutines.
Such environments usually return error codes in a global errno. How-
ever, the Cygnus C library provides a macro definition for er rno in the
header file ‘errno. h’, as part of its support for reentrant routines (see
(undefined) “Reentrancy,” page (undefined)).

The bridge between these two interpretations of errno is straightfor-
ward: the C library routines with OS interface calls capture the errno
values returned globally, and record them in the appropriate field of the
reentrancy structure (so that you can query them using the er r no macro
from ‘errno. h’).

This mechanism becomes visible when you write stub routines for OS
interfaces. You must include ‘er r no. h’, then disable the macro, like this:
#i ncl ude <errno. h>
#undef errno
extern int errno;
The examples in this chapter include this treatment of er r no.

_exit Exit a program without cleaning up files. If your system
doesn’t provide this, it is best to avoid linking with subrou-
tines that require it (exi t, syst em).

cl ose Close a file. Minimal implementation:
int close(int file){
return -1,

cygnus support 1

Cygnus C Support Library, Full

environ

execve

fork

f st at

getpi d

isatty

}

A pointer to a list of environment variables and their values.
For a minimal environment, this empty list is adequate:
char *__env[1] ={ 0 };
char **environ = __env;

Transfer control to a new process. Minimal implementation
(for a system without processes):
#i ncl ude <errno. h>
#undef errno
extern int errno;
i nt execve(char *nanme, char **argv, char **env){
er r no=ENOVEM
return -1,

}

Create a new process. Minimal implementation (for a system
without processes):
#i ncl ude <errno. h>
#undef errno
extern int errno;
int fork() {
err no=EAGAI N,
return -1;

}

Status of an open file. For consistency with other minimal
implementations in these examples, all files are regarded
as character special devices. The ‘sys/stat. h’ header file
required is distributed in the ‘i ncl ude’ subdirectory for this
C library.
#i ncl ude <sys/stat. h>
int fstat(int file, struct stat *st) {
st->st _node = S | FCHR;
return O;

}

Process-1D; this is sometimes used to generate strings un-
likely to conflict with other processes. Minimal implementa-
tion, for a system without processes:
int getpid() {
return 1;
}

Query whether output stream is a terminal. For consistency
with the other minimal implementations, which only support
output to st dout , this minimal implementation is suggested:

17 January 1996

ki |

[ink

| seek

read

shrk

Chapter 1: System Calls

int isatty(int file){
return 1;
}

Send a signal. Minimal implementation:
#i ncl ude <errno. h>
#undef errno
extern int errno;
int kill(int pid, int sig){
errno=El NVAL;
return(-1);

}

Establish a new name for an existing file. Minimal imple-
mentation:
#i ncl ude <errno. h>
#undef errno
extern int errno;
int link(char *old, char *new)({
errno=EM.I NK;
return -1;

}

Set position in a file. Minimal implementation:
int Iseek(int file, int ptr, int dir){
return O;
}

Read from a file. Minimal implementation:
int read(int file, char *ptr, int len){
return O;
}

Increase program data space. As mal | oc and related func-
tions depend on this, it is useful to have a working imple-
mentation. The following suffices for a standalone system;
it exploits the symbol end automatically defined by the GNU
linker.

cygnus support 3

Cygnus C Support Library, Full

caddr _t sbrk(int incr){
extern char end; /* Defined by the linker */
static char *heap_end;
char *prev_heap_end;

if (heap_end == 0) {
heap_end = &end;
}
prev_heap_end = heap_end;
heap_end += incr;
return (caddr_t) prev_heap_end;

}
st at Status of a file (by name). Minimal implementation:
int stat(char *file, struct stat *st) {
st->st _node = S | FCHR
return O;
}
tines Timing information for current process. Minimal implemen-
tation:
int times(struct tms *buf){
return -1,
}
unl i nk Remove a file’s directory entry. Minimal implementation:
#i ncl ude <errno. h>
#undef errno
extern int errno;
i nt unlink(char *nane)
er r no=ENCENT;
return -1,
}
wai t Wait for a child process. Minimal implementation:
#i ncl ude <errno. h>
#undef errno
extern int errno;
int wait(int *status) {
er r no=ECHI LD;
return -1,
}
wite Write a character to a file. ‘1i bc’ subroutines will use this
system routine for output to all files, including st dout —so
if you need to generate any output, for example to a serial
port for debugging, you should make your minimal wri t e ca-
pable of doing this. The following minimal implementation
4 17 January 1996

Chapter 1: System Calls

is an incomplete example; it relies on a wri t echar subrou-
tine (not shown; typically, you must write this in assembler
from examples provided by your hardware manufacturer) to
actually perform the output.
int wite(int file, char *ptr, int len){
int todo;

for (todo = 0; todo < len; todo++) {
writechar(*ptr++);

}

return | en;

cygnus support

Cygnus C Support Library, Full

1.2 Reentrant covers for OS subroutines

Since the system subroutines are used by other library routines that
require reentrancy, ‘l i bc. a’ provides cover routines (for example, the
reentrant version of fork is _fork_r). These cover routines are consis-
tent with the other reentrant subroutines in this library, and achieve
reentrancy by using a reserved global data block (see (undefined) “Reen-
trancy,” page (undefined)).

A reentrant version of open. It takes a pointer to the global

_open_r
data block, which holds er r no.
int _open_r(void *reent,
const char *file, int flags, int npde);
_close_r Areentrant version of cl ose. It takes a pointer to the global
data block, which holds er r no.
int _close_r(void *reent, int fd);
_Iseek_r Areentrant version of | seek. It takes a pointer to the global
data block, which holds er r no.
off t _Iseek r(void *reent,
int fd, off _t pos, int whence);
_read_r A reentrant version of r ead. It takes a pointer to the global
data block, which holds er r no.
long _read_r(void *reent,
int fd, void *buf, size_t cnt);
_wite_r Areentrantversion of wite. It takes a pointer to the global
data block, which holds er r no.
long _wite_r(void *reent,
int fd, const void *buf, size_t cnt);
_fork_r A reentrant version of f or k. It takes a pointer to the global
data block, which holds er r no.
int _fork_r(void *reent);
_wait_r A reentrant version of wai t . It takes a pointer to the global
data block, which holds er r no.
int wait_r(void *reent, int *status);
_stat_r A reentrant version of st at . It takes a pointer to the global
data block, which holds er r no.
int _stat_r(void *reent,
const char *file, struct stat *pstat);
_fstat_r Areentrantversion of f st at . It takes a pointer to the global
data block, which holds er r no.
int fstat_r(void *reent,
int fd, struct stat *pstat);
6

17 January 1996

Chapter 1: System Calls

_link_r A reentrant version of | i nk. It takes a pointer to the global
data block, which holds er r no.
int _link_r(void *reent,
const char *old, const char *new);

_unlink_r
A reentrant version of unl i nk. It takes a pointer to the global
data block, which holds er r no.
int _unlink_r(void *reent, const char *file);

_sbrk_r A reentrant version of sbrk. It takes a pointer to the global
data block, which holds er r no.
char *_sbrk_r(void *reent, size_t incr);

cygnus support 7

Cygnus C Support Library, Full

8 17 January 1996

Chapter 2: Variable Argument Lists

2 Variable Argument Lists

The pri nt f family of functions is defined to accept a variable number of
arguments, rather than a fixed argument list. You can define your own
functions with a variable argument list, by using macro definitions from
either ‘st darg. h’ (for compatibility with ANSI C) or from ‘varargs. h’
(for compatibility with a popular convention prior to ANSI C).

2.1 ANSI-standard macros, ‘st darg. h’

In ANSI C, a function has a variable number of arguments when its
parameter list ends in an ellipsis (. ..). The parameter list must also
include at least one explicitly named argument; that argument is used
to initialize the variable list data structure.

ANSI C defines three macros (va_st art,va_ar g, and va_end) to operate
on variable argument lists. ‘stdarg. h’ also defines a special type to
represent variable argument lists: this type is called va_l i st .

cygnus support 9

Cygnus C Support Library, Full

2.1.1 Initialize variable argument list

Synopsis

#i ncl ude <stdarg. h>

voi d va_start(va_list ap, rightnpst);
Description
Use va_st art toinitialize the variable argument list ap, so that va_arg
can extract values from it. right npst is the name of the last explicit
argument in the parameter list (the argument immediately preceding
the ellipsis ‘. . .’ that flags variable arguments in an ANSI C function
header). You can only use va_start in a function declared using this
ellipsis notation (not, for example, in one of its subfunctions).
Returns
va_start does not return a result.

Portability
ANSI C requires va_start .

10 17 January 1996

Chapter 2: Variable Argument Lists

2.1.2 Extract a value from argument list

Synopsis

#i ncl ude <stdarg. h>

type va_arg(va_list ap, type);
Description
va_ar g returns the next unprocessed value from a variable argument
list ap (which you must previously create with va_start). Specify the
type for the value as the second parameter to the macro, t ype.

You may pass ava_l i st object ap to a subfunction, and use va_ar g from
the subfunction rather than from the function actually declared with an
ellipsis in the header; however, in that case you may only use va_arg
from the subfunction. ANSI C does not permit extracting successive
values from a single variable-argument list from different levels of the
calling stack.

There is no mechanism for testing whether there is actually a next
argument available; you might instead pass an argument count (or some
other data that implies an argument count) as one of the fixed arguments
in your function call.

Returns
va_ar g returns the next argument, an object of type t ype.

Portability
ANSI C requires va_arg.

cygnus support 11

Cygnus C Support Library, Full

2.1.3 Abandon a variable argument list

Synopsis
#i ncl ude <stdarg. h>
voi d va_end(va_list ap);
Description
Use va_end to declare that your program will not use the variable argu-
ment list ap any further.

Returns
va_end does not return a result.

Portability
ANSI C requires va_end.

2.2 Traditional macros, ‘varargs. h’

If your C compiler predates ANSI C, you may still be able to use vari-
able argument lists using the macros from the ‘var ar gs. h’ header file.
These macros resemble their ANSI counterparts, but have important
differences in usage. In particular, since traditional C has no decla-
ration mechanism for variable argument lists, two additional macros
are provided simply for the purpose of defining functions with variable
argument lists.

As with ‘st darg. h’, the type va_l i st is used to hold a data structure
representing a variable argument list.

12 17 January 1996

Chapter 2: Variable Argument Lists

2.2.1 Declare variable arguments

Synopsis

#i ncl ude <varargs. h>

function(va_ali st)

va_dcl
Description
To use the ‘varargs. h’ version of variable argument lists, you must
declare your function with a call to the macro va_al i st as its argument
list, and use va_dcl as the declaration. Do not use a semicolon after
va_dcl .
Returns
These macros cannot be used in a context where a return is syntactically
possible.
Portability
va_al i st and va_dc/ were the most widespread method of declaring
variable argument lists prior to ANSI C.

cygnus support 13

Cygnus C Support Library, Full

2.2.2 Initialize variable argument list

Synopsis
#i ncl ude <varargs. h>
va_list ap;
va_start(ap);
Description
With the ‘var ar gs. h’ macros, use va_st art toinitialize a data structure
ap to permit manipulating a variable argument list. ap must have the
type va_al i st.
Returns
va_start does not return a result.
Portability
va_start is also defined as a macro in ANSI C, but the definitions are
incompatible; the ANSI version has another parameter besides ap.

14 17 January 1996

Chapter 2: Variable Argument Lists

2.2.3 Extract a value from argument list

Synopsis

#i ncl ude <varargs. h>

type va_arg(va_list ap, type);
Description
va_ar g returns the next unprocessed value from a variable argument
list ap (which you must previously create with va_start). Specify the
type for the value as the second parameter to the macro, t ype.

Returns
va_ar g returns the next argument, an object of type t ype.

Portability
The va_ar g defined in ‘var ar gs. h’ has the same syntax and usage as the
ANSI C version from ‘st dar g. h'.

cygnus support 15

Cygnus C Support Library, Full

2.2.4 Abandon a variable argument list

Synopsis
#i ncl ude <varargs. h>
va_end(va_list ap);
Description
Use va_end to declare that your program will not use the variable argu-
ment list ap any further.

Returns
va_end does not return a result.

Portability
The va_end defined in ‘var ar gs. h' has the same syntax and usage as the
ANSI C version from ‘st darg. h'.

16 17 January 1996

Index

Index
_ L
Closer . 6 link........... 3
eXI b 1 linkingtheClibrary................... 1
ForKor 6 Iseek.....ooiiiiiiii 3
fstat or ... 6
LT nK_r 7 O
I seek_r ... 6 . .
OPENT oo 6 OS interface subroutines............... 1
read r ..o 6
ShrKor 7 R
Stat r o 6 read. 3
unlinkor .o 7
AL e 6
Wt e 6 S
shrko 3
stat ... 4
C StUDS ..o 1
CloSe. ..o 1 subroutines for OS interface........... 1
E
. T
EBNVITON . i e 2)
errno global vs macro................. 1 LIMBS... 4
EXECVE ottt 2
U
F unlink ... 4
fork. . oo 2
fstat ... 2V
vaalist 13
G _ (V2= -1 o 11, 15
getpid ... 2 vadel v 13
vaend. ... 12,16
| vastart ... 10, 14
isatty ..o 2
w
K WAL o 4
KLl 3 Wite. . . 4
cygnus support 17

Cygnus C Support Library, Full

The body of this manual is set in
pncr at 10.95pt,
with headings in pncb at 10.95pt
and examples in pcrr.
pncri at 10.95pt and
pcrro
are used for emphasis.

18

17 January 1996

	1 System Calls
	1.1 Definitions for OS interface
	1.2 Reentrant covers for OS subroutines

	2 Variable Argument Lists
	2.1 ANSI-standard macros, ‘stdarg.h’
	2.2 Traditional macros, ‘varargs.h’

	Index

