
Hitachi H8/300 Software
H8/300 Hitachi Switches

Application Note

R

Jennifer Ediyanto
AE-0059

August 1994

Introduction

Hitachi America provides the Hitachi H8/300
Software Tools to program the Hitachi H8/300
series, H8/300L series, and H8/300H series
microprocessors. These software tools consists of
C compiler, assembler, linker, and debugger.

This paper will provide detailed descriptions on
the command line switches of the Hitachi H8/300
software tools.

This paper uses the following software tools:

• CH38 Cross Compiler

• ASM38 Cross Assembler H8/300

• LNK Linker H8/300

C Cross Compiler

On invocation, the Hitachi C compiler will
preprocess and compile the C program. The
default command to invoke the compiler is:

ch38 source_filename

Example: ch38 test.c

Result:

• Source listing file with .lst extension
• Object file with .obj extension

Rules of the command line:

• Only one C source file with any file extension
can be compiled at one time.

• The switch is not case sensitive, can be
abbreviated, and has to be preceded by a slash
(/).

• If a switch is set to more than one option,
then the list of options has to be separated by
comma and surrounded by a parenthesis. For
example:

/show=(source,object,allocation)

The following command invokes the compiler
with switches:

ch38 [/switch] source_filename

where:

ch38 The name of the compiler. If the
compiler is invoked without any
command line switches, it displays all
the available switches.

/switch Any of the command line switches.
Each switch must be preceded by a
slash (/) and is not case sensitive.

source_filename The name of the input file
which has to be a C source file
with any file extension. Only
one file can be compiled at one
time.

The following are the compiler switches: (The
options in bold characters are the default options
and the underline specifies the abbreviation that
can be used for that option).

H8/300 Hitachi Switches

2 Hitachi

1. optimize
Syntax: /optimize=<level>

<level>: 0 | 1

Turning on the /optimize switch causes the
compiler to optimize the source code by
reducing the code size and execution time. The
following is the value of the optimize switch:

/op=0 Turns the optimization OFF.
/op=1 Turns the optimization ON (default).

Example: ch38 /op=1 test.c

The above command line turns on the
optimization. Please see Listing 1, Listing 2,
Listing 3 for test.c, test1.src, and test2.src files.
Test.c is a simple c program to increment a
variable 'Hitachi' for five times. Test1.src is a
source program which results from turning off
the optimization and Test2.src is a source
program which results from turning on the
optimization. In order to create a source
program, the /op switch need to be accompanied
by /c=a switch.

2. code
Syntax: /code=(<suboption>)

<suboption>:
machinecode | asmcode

Setting the /c switch to asmcode, the compiler
will produce assembly source file that takes the
C filename with .src file extension. By default,
the compiler generates relocatable object file.

/c=a Generates assembly source file.
/c=m Generates relocatable object file
(default).

Example: ch38 /c=a test.c

The above command line will produce assembly
source file. By default, the compiler produces
assembly source code using H8/300 instruction
syntax. Please see Listing 2 for Test1.src as a
sample of assembly source file.

3. list
Syntax: /list [= <listing file name>]

/nolist

Specifying the /list switch will cause the
compiler to produce a program listing file that
contains the following:

• source listing

• section and program size

• symbol information

• cpu mode information

Example: ch38 /l test.c

The above command line will produce a listing
file named Test.lst. By default, the listing
filename is C filename with .lst extension.
Please see Listing 4 for Test.lst file.

4. show
Syntax: /show=(<suboption>, ...)

<suboption>:
source | nosource
object | noobject
statistics | nostatistics
allocation | noallocation
expansion | noexpansion
width = 132 | <numeric value>
length = 60 | <numeric value>

The /show switch controls the information in the
source listing which is a file with .lst file
extension.

The following are options to control the listing
information:
• source source list
• object object list
• statistics statistics information
• allocation symbol allocation information
• expansion include macro expansion
We can specify the negative forms by typing no
before the name of the above options.

Example: ch38 /l=tst.lst /sh=(noso,ob)
test.c

The above command line will generate a listing
file called tst.lst with object listing and no
source code. Please see Listing 5 for Tst.lst file
and compare it with Listing 4 (Test.lst).

H8/300 Hitachi Switches

Hitachi 3

The following are options to control the listing
format:
• width maximum characters per line,

0 or 80-132. Default=132.
• length maximum lines per page,

0, 20-255. Default=60.

5. cpu
Syntax: /cpu=<mode>

<mode>:
300stk | 300reg | 300hn | 300ha

The /cpu switch is important to generate code
for a specific H8/300 family microprocessor.
The 300reg or 300stk options should be used for
H8/300 and H8/300L family microprocessors.
The 300hn or 300ha options are intended for
H8/300H family microprocessors.

/cp=300stk H8/300 stack parameter.
Parameters are passed through the
stack to the called function.

/cp=300reg H8/300 register parameter.
Parameters are passed through the
register to the called function.

/cp=300hn H8/300H in normal mode.
The H8/300H microprocessor is set
to the normal mode.

/cp=300ha H8/300H in advanced mode.
The H8/300H microprocessor is set
to the advanced mode.

Example: ch38 /cp=300ha test.c

We can determine which mode the cpu is set to
by looking at the listing file. To generate the
listing file, we can use the /l switch.

6. debug
Syntax: /debug

/nodebug

The /debug switch will cause the compiler to
produce object file with debugging information.
This debugging information is important to be
able to perform source level debugging during
the debugging time.

/deb Turns debug information ON.

/nodeb Turns debug information OFF
(default).

Example: ch38 /deb test.c

7. section
Syntax: /section=(<suboption>,...)

<suboption>:
program=<section-name> |
const=<section-name> |
data=<section-name> |
bss=<section-name>

Default: p=P, c=C, d=D, b=B

The /section switch will allow users to rename
the default section name.

The following are the options for section names:
p program section name is specified
c constant section name is specified
d data section name is specified
b non-initialized data section name is
specified.

Example: ch38 /se=(p=myp,c=myc) test.c

The above command line will rename the
default program and const sections to myp and
myc.

8. string
Syntax: /string=(<suboption>)

<suboption>:
const |
data

The /string switch will control the output area
for strings in a program. If the string is not
modified in the C program, then users can
specify the compiler to output the string data in
the constant area. When the string is modified
in the C program, specify the data is to be output
to the initialized data area.

The following are the explanation of the
options:
/st=const output to constant area.
(default)
/st=data output to initialized data area.

H8/300 Hitachi Switches

4 Hitachi

Example: ch38 /st=data test.c

9. include
Syntax: /include=(<pathname>,...)

The /include switch will specify the path to the
include file that is included using <> sign in
user's program. If the include file is included
using the quotes "", then the compiler will
search the current directory for the include file.

Example: ch38 /i=(c:\h83\ch38\include)
test.c

10. define
Syntax: /define=(<suboption>,...)

<suboption>:
<macro-name>=<name> |
<macro-name>=<constant> |
<macro-name>

Example: ch38 /def=(mymacro=yours) test.c

Table 1: The Define Switch Options

Item Explanation

Macro name A character string beginning with
an alphabetic letter or an underscore
followed by zero or more alphabetic
letters, underscores, and numbers (0
to 9)

Name A character string beginning with a
letter or an underscore followed by
zero or more alphabetic letters,
underscores, and numbers.

Constant A character string of one or more
numbers, or a character string of one
or more numbers followed by a
period (.) and zero or more numbers.

Cross Assembler

On invocation, the Hitachi Assembler will
assemble the assembly program. The default
command to invoke the assembler is:

asm38 source_filename

Example: asm38 test.src

The above command will produce an object file
with .obj extension only. By default, the list file is
not produced.

The assembly method can be specified using
command line switches when the assembler is
invoked. The following command line invokes the
assembler with switches:

asm38 <input file> [,<input file>...] [/<switch>...]

Rules of the command line:

• When two or more input files are specified, they
are joined together in the order of input and
then assembled as one source file.

• The switch is not case sensitive, can be
abbreviated, and has to be preceded by a slash
(/).

The following are the assembler switches: (The
underlined section is the abbreviated form of the
switches.)

1. cpu
Syntax: /cpu=<cpu type>
<cpu type>: {300HA | 300HN | 300 | 300L}

The CPU switch specifies the object CPU for the
source program to be assembled.

The following are options for the cpu switch:
/cpu=300HA H8/300H advanced mode.
/cpu=300HN H8/300H normal mode.
/cpu=300 H8/300
/cpu=300L H8/300L

Example: asm38 test.src /cp=300

The above command line will set the cpu to
H8/300 mode because the test.src program which
is produced by the compiler is in the H8/300

H8/300 Hitachi Switches

Hitachi 5

instruction syntax. By default, the assembler's cpu
is set to H8/300H advance mode.

2. [no]object
Syntax: /object[=<file name>]

/noobject

This switch specifies either the output of an object
module or the suppression of that output. By
default, the assembler will produce the object
module.

Example: asm38 test.src /o=mytest.obj

The above command line will cause the assembler
to produce the object module that is called mytest
with obj file extension. When the object file name
is omitted, the object module is written to a file
with the same name as the source module, but with
the extension obj.

Example: asm38 test.src /o

The object file produced by the above command is
called 'test.obj'.

3. [no]debug
Syntax: /debug

/nodebug

The debug switch specifies the output of
debugging information. The debugging
information is important because it will enable
users to do symbolic debugging. By default the
debug switch is off and debugging information is
not generated.

Example: asm38 test.src /debug

4. br_relative
Syntax: /br_relative=<bit count>

<bit count>: {8 | 16}

The br switch specifies the default displacement
size used when the branch displacement is a
forward reference value. The br switch is only
valid when the cpu is set to either H8/300H
advanced mode or the H8/300H normal mode.

Example: asm38 test.src /br=8 /cpu=300HA

The above command line will cause the assembler
to have 8 bits displacement size. The defaults are
16 bits for the H8/300H advanced mode, and 8 bits
for the H8/300H normal mode.

5. [no]list
Syntax: /list[=<file name>]

/nolist

The list switch causes the assembler to produce the
assembly listing file. By default, the assembler
does not produce assembly listing file, but only
displays lines that generated errors on the screen.

Example: asm38 test.src /list=test.lis

The above command line will produce an assembly
listing file named test.lis. Please see Listing 6 for
test.lis file.

6. [no]source
Syntax: /source

/nosource

The source switch specifies the output of a source
program listing to the assembly listing. The source
and nosource switches are valid only when the list
switch is on.

When the list switch is turned on, the assembler
will place the source in the assembly listing by
default. If we do not want the source program to be
listed in the assembly listing file, we need to use
nosource switch together with the list switch.

Example: asm38 test.src /nos /list

7. [no]cross_reference
Syntax: /cross_reference

/nocross_reference

The cross_reference switch specifies the output of
a cross_reference information to the assembly
listing. The cross_reference and nocross_reference
switches are valid only when the list switch is on.

When the list switch is turned on, the assembler
will place the cross_reference in the assembly

H8/300 Hitachi Switches

6 Hitachi

listing by default. If we do not want the
cross_reference to be listed in the assembly listing
file, we need to use nocross_reference switch
together with the list switch.

Example: asm38 test.src /nocr /list

8. [no]section
Syntax: /section

/nosection

The section switch specifies the output of section
information to the assembly listing. The section
and nosection switches are valid only when the list
switch is on.

When the list switch is turned on, the assembler
will place the section information in the assembly
listing by default. If when we do not want the
section information to be listed in the assembly
listing file, we need to use nosection switch
together with the list switch.

Example: asm38 test.src /nose /list

9. [no]show
Syntax: /show[=<option>[,<option> ...]]

/noshow[=<option>[,<option> ...]]
<option>: {conditionals | definitions | calls |

expansions | structured | code}

The show switch specifies the output of
preprocessor function source statements to the

source program listing. The show switch is only
valid when the source switch is on.

The following are options for show:

Conditionals: failed conditional expansions.
Definitions: macro definitions.
Calls: macro calls.
Expansions: code from macro expansions.
Structured: structured assembly function

expansions.
Code: object code display lines.

Example:
 asm38 test.src /list=test2.lis /nosh=code

The above command line will assemble test.src
and produce a listing file named test2.lis that does
not contain the object code display lines.

10. lines
Syntax: /lines=<line count>

The lines switch specifies the number of lines per
page in the assembly listing. A line count of
between 20 and 255 lines can be specified. The
lines switch is valid when an assembly listing is
output.

Example: asm38 test.src /list /lines=40

Linker

The following command invokes the linker:

lnk [/sub=<filename>]

where

lnk linker name.
/sub linker switch for loading the linker

command file.
<filename> linker command file.

Example: lnk /sub=test.cmd

The linker command file contains all linker
commands. The linker commands can also be
entered interactively by invoking the linker

without using the /sub switch. Please see Listing 7
for a sample of linker command file called
test.cmd.

The following are the linker commands:

1. debug

The debug command is necessary to include
symbolic information in the absolute file.

2. form <file type>

The form command is to produce the specified
output file type. The output file types are 'a' for

H8/300 Hitachi Switches

Hitachi 7

absolute file and 'r' for relocatable object file. If no
form command is specified, the linker will produce
the absolute file.

Example: form a

The above command will produce an absolute file.

3. input <filename>

The input command is to load the object file
produced by the compiler or assembler.

Example: input test.obj

4. start <section>(<start address>)

The start command sets the starting address of a
specified section.

Example: start P(1000)

The above command sets the starting address of
the code section to H'1000.

5. entry <symbol name>

The entry command sets the address value of a
symbol as the execution start address of the
program.

Example: entry _main

The above command sets main function as the
start address of the program. The symbol is
preceding by the underscore because of the C
calling convention.

6. output <file name>

The output command produces the absolute file
with the specified file name and .abs extension.

Example: output test

The above command will produce an absolute file
called test.abs.

7. print <file name>

The print command produces the linker map file
that contains the information about sections,
symbols, and addresses.

Example: print test

Please see Listing 8 for the generated map file
called test.map.

8. exit

The exit command will exit from the linker.

H8/300 Hitachi Switches

8 Hitachi

Listing 1. Test.c (begin)

/* A simple example of a C program */

main()

{

 int i, Hitachi = 0;

 for (i = 0; i < 5; i++)

 Hitachi = Hitachi + i;

}

Listing 1. Test.c (end)

Listing 2. Test1.src (begin)

; This file is a sample of source program with the optimization OFF

; which result from the following command line:

; ch38 /op=0 /c=a test.c

;

 .EXPORT _main

 .SECTION P,CODE,ALIGN=2

;*** File TEST.C , Line 1 ; block

_main: ; function: main

 PUSH.W R6

 MOV.W SP,R6

 PUSH.W R5

 PUSH.W R4

 SUBS.W #2,SP

 SUBS.W #2,SP

;*** File TEST.C , Line 2 ; block

;*** File TEST.C , Line 3 ; expression statement

 SUB.W R5,R5

 MOV.W R5,@(-8:16,R6)

;*** File TEST.C , Line 5 ; for

 SUB.W R5,R5

 MOV.W R5,@(-6:16,R6)

 BRA L6

L5:

;*** File TEST.C , Line 6 ; expression statement

 MOV.W @(-8:16,R6),R5

 MOV.W @(-6:16,R6),R4

 ADDS.W R4,R5

 MOV.W R5,@(-8:16,R6)

H8/300 Hitachi Switches

Hitachi 9

 MOV.W @(-6:16,R6),R5

 ADDS.W #1,R5

 MOV.W R5,@(-6:16,R6)

L6:

 MOV.W @(-6:16,R6),R5

 CMP.B #5:8,R5L

 SUBX.B #0:8,R5H

 BLT L5

;*** File TEST.C , Line 7 ; block

 ADDS.W #2,SP

 ADDS.W #2,SP

 POP.W R4

 POP.W R5

 POP.W R6

 RTS

 .END

Listing 2. Test1.src (end)

H8/300 Hitachi Switches

10 Hitachi

Listing 3. Test2.src (begin)

; This file is a sample of source program with the optimization ON

; which result from the following command line:

; ch38 /op=1 /c=a test.c

;

 .EXPORT _main

 .SECTION P,CODE,ALIGN=2

;*** File TEST.C , Line 1 ; block

_main: ; function: main

;*** File TEST.C , Line 2 ; block

;*** File TEST.C , Line 5 ; expression statement

 SUB.W R0,R0

;*** File TEST.C , Line 5 ; do

L5:

;*** File TEST.C , Line 5 ; expression statement

 ADDS.W #1,R0

 MOV.W R0,R1

 CMP.B #5:8,R1L

 SUBX.B #0:8,R1H

 BLT L5

;*** File TEST.C , Line 7 ; block

 RTS

 .END

Listing 3. Test2.src (end)

H8/300 Hitachi Switches

Hitachi 11

Listing 4. Test.lst (begin)

; This file is a source listing which result from the following command:

; ch38 /l test.c

;

H8/300 SERIES C COMPILER (Ver. 2.0B)
11-Aug-1994 10:36:50 PAGE 1

************ SOURCE LISTING ************

FILE NAME: TEST.C

 Seq File Line Pi 0----+----1----+----2----+----3----+----4----+----

 1 TEST.C 1 main()

 2 TEST.C 2 {

 3 TEST.C 3 int i, Hitachi = 0;

 4 TEST.C 4

 5 TEST.C 5 for (i = 0; i < 5; i++)

 6 TEST.C 6 Hitachi = Hitachi + i;

 7 TEST.C 7 }

H8/300 SERIES C COMPILER (Ver. 2.0B)
11-Aug-1994 10:36:58 PAGE 1

******* SECTION SIZE INFORMATION *******

PROGRAM SECTION(P): 0x00000E Byte(s)

CONSTANT SECTION(C): 0x000000 Byte(s)

DATA SECTION(D): 0x000000 Byte(s)

BSS SECTION(B): 0x000000 Byte(s)

 TOTAL PROGRAM SIZE: 0x00000E Byte(s)

** ASSEMBLER/LINKAGE EDITOR LIMITS INFORMATION **

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 0

NUMBER OF EXTERNAL DEFINITION SYMBOLS: 1

NUMBER OF INTERNAL/EXTERNAL SYMBOLS: 2

********* CPU MODE INFORMATION *********

cpu=300reg

Listing 4. Test.lst (end)

H8/300 Hitachi Switches

12 Hitachi

Listing 5. Tst.lst (begin)

; This file is a source listing result from combination of listing

; and show switch. The following is the command line:

; ch38 /l=tst.lst /sh=(noso,ob) test.c

;

H8/300 SERIES C COMPILER (Ver. 2.0B)
30-Aug-1994 11:06:56 PAGE 1

************ OBJECT LISTING ************

FILE NAME: TEST.C

SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

 P ;*** File TEST.C , Line 1 ; block

 0000 _main: ; function: main

 ;*** File TEST.C , Line 2 ; block

 ;*** File TEST.C , Line 5 ; expr statement

 0000 1900 SUB.W R0,R0

 ;*** File TEST.C , Line 5 ; do

 0002 L5:

 ;*** File TEST.C , Line 5 ; expr statement

 0002 0B00 ADDS.W #1,R0

 0004 0D01 MOV.W R0,R1

 0006 A905 CMP.B #5:8,R1L

 0008 B100 SUBX.B #0:8,R1H

 000A 4DF6 BLT L5

 ;*** File TEST.C , Line 7 ; block

 000C 5470 RTS

H8/300 SERIES C COMPILER (Ver. 2.0B)
30-Aug-1994 11:06:56 PAGE 1

******* SECTION SIZE INFORMATION *******

PROGRAM SECTION(P): 0x00000E Byte(s)

CONSTANT SECTION(C): 0x000000 Byte(s)

DATA SECTION(D): 0x000000 Byte(s)

BSS SECTION(B): 0x000000 Byte(s)

H8/300 Hitachi Switches

Hitachi 13

 TOTAL PROGRAM SIZE: 0x00000E Byte(s)

** ASSEMBLER/LINKAGE EDITOR LIMITS INFORMATION **

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 0

NUMBER OF EXTERNAL DEFINITION SYMBOLS: 1

NUMBER OF INTERNAL/EXTERNAL SYMBOLS: 2

********* CPU MODE INFORMATION *********

cpu=300reg

Listing 5. Tst.lst (end)

H8/300 Hitachi Switches

14 Hitachi

Listing 6. Test.lis (begin)

; This file is an example of listing file produced by the assembler.

; The following is the command line:

; asm38 test.src /list=test.lis

;

*** H8/300 ASSEMBLER Ver.3.2E *** 10/07/94 11:24:57
PAGE 1

PROGRAM NAME =

 1 1 .EXPORT _main

 2 0000 2 .SECTION P,CODE,ALIGN=2

 3 3 ;*** File TEST.C , Line 1 ;block

 4 0000 4 _main: ;function: main

 5 5 ;*** File TEST.C , Line 2 ; block

 6 6 ;*** File TEST.C , Line 5 ; expr statement

 7 0000 1900 7 SUB.W R0,R0

 8 8 ;*** File TEST.C , Line 5 ; do

 9 0002 9 L5:

 10 10 ;*** File TEST.C , Line 5 ;expr statement

 11 0002 0B00 11 ADDS.W #1,R0

 12 0004 0D01 12 MOV.W R0,R1

 13 0006 A905 13 CMP.B #5:8,R1L

 14 0008 B100 14 SUBX.B #0:8,R1H

 15 000A 4DF6 15 BLT L5

 16 16 ;*** File TEST.C , Line 7 ; block

 17 000C 5470 17 RTS

 18 18 .END

 *****TOTAL ERRORS 0

 *****TOTAL WARNINGS 0

*** H8/300 ASSEMBLER Ver.3.2E *** 10/07/94 11:24:57
PAGE 2

*** CROSS REFERENCE LIST

NAME SECTION ATTR VALUE SEQUENCE

L5 P 00000002 9* 15

P P SCT 00000000 2*

_main P EXPT 00000000 1 4*

*** H8/300 ASSEMBLER Ver.3.2E *** 10/07/94 11:24:57
PAGE 3

*** SECTION DATA LIST

SECTION ATTRIBUTE SIZE START

P REL-CODE 0000E

Listing 6. Test.lis (end)

H8/300 Hitachi Switches

Hitachi 15

Listing 7. Test.cmd (begin)

debug

form a

input test.obj

start P(1000)

entry _main

output test

print test

exit

Listing 7. Test.cmd (end)

H8/300 Hitachi Switches

16 Hitachi

Listing 8. Test.map (begin)

; This file is the linker map file produced by the linker.

; The following is the command line:

; lnk /sub=test.cmd

;

 H SERIES LINKAGE EDITOR Ver. 5.1

LINK COMMAND LINE

LNK /sub=test.cmd

LINK SUBCOMMANDS

debug

form a

input test.obj

start P(1000)

output test

print test

exit

H SERIES LINKAGE EDITOR Ver. 5.1 PAGE : 1

*** LINKAGE EDITOR LINK MAP LIST ***

SECTION NAME START - END LENGTH UNIT NAME MODULE NAME

ATTRIBUTE : CODE NOSHR

P H'00001000 - H'0000100D H'0000000E test test

* TOTAL ADDRESS * H'00001000 - H'0000100D H'0000000E

H SERIES LINKAGE EDITOR Ver. 5.1 PAGE : 1

*** LINKAGE EDITOR EXTERNALLY DEFINED SYMBOLS LIST ***

SYMBOL NAME ADDR TYPE

_main H'00001000 DAT

Listing 8. Test.map (end)

The information in this document has been carefully checked; however, the contents of this document
may be changed and modified without notice. Hitachi America, Ltd. shall assume no responsibility for
inaccuracies, or any problem involving patent infringement caused when applying the descriptions in this
document. This material is protected by copyright laws.  Copyright 1994, Hitachi America, Ltd. All
rights reserved. Printed in U.S.A.

