
HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

Hitachi America, Ltd. TN-0155

Application Engineering
TechNote Carol Jacobson

Working with Multi-Processor Serial Control

Newly released products from the H8/300 family including the H8/338, H8/329 series and 300H products incorporate multi-
processor bit (also called 9th bit or wake-up mode) support for asynchronous serial communications. The concept behind
MPB operation is to allow a master to communicate with several receivers on a single serial chain by assigning each
receiver assigned an ID code.

SLAVE C

RxD
TxD

SLAVE B

ScK

In this example the master communicates
with Slave A while Slaves B & C are idle.

MASTER

SLAVE A

RECEIVER

All receivers must in some way monitor each frame transmitted on the bus. When the receivers detect a frame with the
MPB bit set= 1, they "wake-up" and compare the frame data to their own IDs. A receiver only captures asynchronous data
frames preceded by a frame containing the its own ID. The subsequent data frames have the MPB cleared to 0. The MPB
bit, therefore, differentiates an ID frame from a data frame.

For Example: A serial stream to send three bytes of data to two different receivers might look as follows,

s 8-bit ID Byte MPB Stop s 8-bit Data Byte MPB Stop s8-bit Data Byte MPB Stop
1 D0 -- D7 1 1 1 D0 -- D7 0 1 1 D0 -- D7 0 1

1st ID Frame 1st Data Frame 2nd Data Frame

s 8-bit Data Byte MPB Stop s 8-bit ID Byte MPB Stop s8-bit Data Byte MPB Stop
1 D0 -- D7 0 1 1 D0 -- D7 1 1 1 D0 -- D7 0 1

3rd Data Frame 2nd ID Frame 1st Data Frame

s 8-bit ID Byte MPB Stop s 8-bit Data Byte MPB Stop
1 D0 -- D7 0 1 1 D0 -- D7 0 1

2nd Data Frame 3rd Data Frame

When operating in MPB mode, SCI on-chip circuitry automatically receives and evaluates each frame without interfering
with CPU performance. When the SCI detects a frame with MPB set = 1, the internal circuit clears the multi-processor
interrupt enable bit (MPIE), sets the MPB bit in the Serial Status Register (SSR) and allows the receive-end (RxI) and
receive-error (ERI) interrupts. In this way the SCI and CPU ignore data not preceded by the correct ID byte.

2 TN-0155

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

After the byte with MPB= 1 has shifted into the Receive Data Register, the MPIE bit is cleared and the SCI issues a RxI
interrupt (assuming there were no errors). The interrupt handler routine should compare this first byte to the receiver's own
ID. If there is a mis-match, subsequent data is not meant for this receiver. In this case, the interrupt handler should re-set
the MPIE bit to disable receiver interrupts and prevent data from moving into the RDR. Hardware continues to evaluate the
MPB of each frame on the bus.

If the ID matches the receivers ID, the CPU can return to the main routine until the first data byte causes another RxI
interrupt. As long as MPIE remains clear, hardware does not evaluate the MPB bit of a frame. After receiving each byte,
the interrupt handler must also evaluate the MPB bit of the SSR to determine whether the byte is data or another ID byte. If
the MPB is high, the frame received is another ID byte that should be compared to the receivers own. In this way, the SCI
and CPU continue to receive data until either detecting another receiver's ID or transmission halts.

TRANSMITTER

When using MPB format the transmitter must insert the correct MPB bit into each frame. For the H8 products this
requires two steps: software must select MPB format and software must set the correct MPBT bit value in the Serial Status
Register. When sending an ID frame the MPBT bit must be set high to send a frame with MPB= 1. Before sending data,
software must clear MPBT to send MPB= 0 with each frame.

Software Example

The following software examples demonstrate MPB operation. In these examples the slave receiver executes a main routine
(represented as a sleep / bra loop) until interrupted by the RxI. The RxI interrupt handler performs an ID check, clears the
MPIE bit and re-transmits the ID byte back to the master (this step is not part of the MPB protocol and not required) before
returning to 'MAIN'. The master follows the ID frame with data frames containing the lower byte of slave RAM addresses.
As the slave receiver captures each frame it reads the address, fetches data stored at the address and sends the data back to
the master. Slave transmissions to the master are not preceded by an ID frame as the master expects to receive the data and
does not need to be interrupted.

TN-0155 3

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

Microtec Research ASMH83 Version 1.0A Jul 28 17:52:58 1993 Page 1

Command line: C:\ASMH83\ASMH83.EXE -l tn_338.src
Line Addr
1 ; SLAVE RECEIVER MPB ROUTINE
2
3 ;This routine executes an asyncronous slave receiver operation with multi-processor
4 ;bit control. The slave CPU remains in the main routine until the SCI detects a data
5 ;frame with MPB= 1. As long as MPB=0, the SCI ignors the incomming frame. Although
6 ;the receive interrupts are enabled, the SCI prevents the interrupt from occurring until MPB= 1.
7 ;When MPB= 1 the SCI allows REI & ERI interrupts and begins to receive data. The SCI
8 ;interrupts the CPU to fetch the data after each byte received .
9
10 ;In this example a master transmitter sends the slave receiver an ID frame. The slave receiver
11 ;compares the ID to it's own. If there is a match, the slave echo's the ID back to the master.
12 ;
13 ;The master receives the echoed ID and begins to send data frames containing the lower
14 ;half of an addddress in the slave's RAM the master wants to read. The slave CPU pre-loads
15 ;R0H with the upper address byte, H'FE. Up to 256 bytes of data can be read beginning
at
16 ;H'FE00. The slave fetches the data, transmits the data back to the master then returns to the
17 ;main routine until the next interrupt.
18
19 ;The receiver must check the MPB bit of each frame to determine whether the frame is a data

20 ;frame (in this case containing address bytes) or another ID frame.
21
22
23 .include "c:\demos\h8338.inc"
23.161
24
25 0500 start .equ h'500
26 FF80 stack .equ h'ff80
27 00FE data_stack .equ h'fe ;upper address of data destination
pointer
28 000A sys_ID .equ h'0A ;receivers ID
29
30 .org start
31
32 0500 7907 FF80 mov.w #stack,r7
33 0504 0700 ldc #0,ccr ;enable interrupts
34 0506 F804 mov.b #h'04,r0l
35 0508 38D8 mov.b r0l,@sci0_smr ;8 bits per char, MPB mode
36 050A 38C3 mov.b r0l,@stcr ;enable MPB
37
38 050C F872 mov.b #h'72,r0l
39 050E 38DA mov.b r0l,@sci0_scr ;enable external clock, set RE, TE, MPIE & REI
40
41 0510 0180 main: sleep ;wait for REI interrupt (this could also be

continuation to
42 0512 40FC bra main ;a main routine)
43
44
45 0514 6DF0 MPB: push r0 ;this is an interrupt routine so we store the
used registers
46 0516 7EDC 7310 btst #1,@sci0_ssr ;look for MPB= 1, if MPB = 1 check for
receivers ID
47 051A 4612 bne chk_ID
48

49 051C F0FE mov.b #h'fe,r0h ;restore the upper address byte
50 051E 28DD mov.b @sci0_rdr,r0l ;get the lower address byte
51
52 0520 7FDC 7260 bclr #6,@sci0_ssr ;clear RDRF
53
54 0524 6808 mov.b @r0,r0l ;get the data at the address
received
55
56 0526 5E00 054A jsr @send_r0l ;send the data byte
57 052A 6D70 pop r0
58 rte ;return to main routine
59
60 chk_ID:
61 052E 28DD mov.b @sci0_rdr,r0l ;get the character
62 0530 7FDC 7260 bclr #6,@sci0_ssr ;clear RDRF
63
64 0534 A80A cmp #sys_ID,r0l ;If the ID doesn't match the data isn't for
this receiver.
65 0536 4608 bne again ;Return to the MPB loop or
to a main routine.
66
67 0538 5E00 054A jsr @send_r0l ;If it is this receiver's ID re-transmit the
ID back
68 053C 6D70 pop r0
69 053E 5670 rte ;return to main routine
70
71 0540 1B87 again: subs.w #2,r7 ;reset the stack pointer from the
sub-routine jump
72 0542 7FDA 7030 bset #3,@sci0_scr ;reset the MPIE bit to disable
receiver
73 0546 6D70 pop r0
74 0548 5670 rte ;return to the main routine
75
76 send_r0l:
77

4 TN-0155

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

78 054A 7EDC 7370 btst #7,@sci0_ssr ;verify TDRE= 1, TDR is empty
79 054E 47FA beq send_r0l
80
81 0550 38DB mov.b r0l,@sci0_tdr ;move the data into TDR.
82 0552 7FDC 7270 bclr #7,@sci0_ssr ;clear TDRE
83
84 0556 5470 rts
85
86 .org h'0038
87 0038 0514 R .data.w MPB
88 .end

 Errors: 0, Warnings: 0

Microtec Research ASMH83 Version 1.0A Jul 28 18:45:54 1993 Page 1

Command line: C:\ASMH83\ASMH83.EXE -l tn_t.src
Line Addr
1 ;
2 ;
3 ; MASTER TRANSMITTER MPB ROUTINE
4
5
6
7 ;This routine controls the MASTER Transmitter for an MPB asynchronous serial bus. This example
8 ;was designed to operate as a sub-routine. Two registers are stored and recalled, R0 and R6.
9
10 ;The masters PWM drives the bus serial clock.
11
12 ;The master, in this case an H8/338, sends an ID frame to one of it's receivers (also an H8/338) to
13 ;request information stored in the slaves RAM, beginning at address FE01. The slave receives and
14 ;recognizes it's own ID then echoes the ID back to the master. The master begins transmitts a data
15 ;frame containing an address in slave RAM. As the slave receives each address, it fetches the
16 ;requested data and sends it to the master.
17
18 ;The master continues to send data frames (MPB= 0) containing addresses until it's buffer is
19 ;filled (in this case when R6= buffer_end = h'fdbf)
20
21 8400 MPB_transmit .equ h'8400
22 FF80 stack .equ h'ff80
23 FDD0 data_store .equ h'fdd0
24 000A sys_ID .equ h'0a
25 00E0 buffer_end .equ h'e0
26
27 .include "c:\demos\h8338.inc"
27.161
28
29 .org MPB_transmit
30
31 8400 7907 FF80 mov.w #stack,r7
32 8404 5E00 8408 main: jsr @start
33
34 ;initialize a pwm for the clock source
35
36 start:
37 8408 6DF0 push r0
38 840A 6DF6 push r6
39
40 ;set-up the PWM for a 100K clock
41
42 840C F800 mov.b h'00,r0l
43 840E 38A0 mov.b 0l,@pwm0_tcr ;set for phi/2, bit clock = phi/32
44 8410 F87D mov.b h'7d,r0l
45 8412 38A1 mov.b 0l,@pwm0_dtr ;50% duty cycle
46 ;initialize the SCI
47 8414 F804 mov.b h'04,r0l
48 8416 38D8 mov.b 0l,@sci0_smr ;set for 8-bits, with MPB
49 8418 38C3 mov.b 0l,@stcr ;nable MPB
50 841A 7906 FDD0 mov.w data_store,r6 initialize data pointer
51
52 ;send ID byte
53 841E 7FA0 7070 bset 7,@pwm0_tcr start the clock
54 8422 F832 mov.b h'32,r0l
55 8424 38DA mov.b 0l,@sci0_scr enable external clock & set TE & RE
56
57 ;Note: MPIE is not set here. MPIE "wakes-up" a serial port when an ID frame is received. In the
case
58 ;of the bus master, the SCI port is already active and in control of the bus.
59
60 8426 7FDC 7000 bset 0,@sci0_ssr set the MPBT bit to send the ID
byte
61 842A F80A mov.b sys_ID,r0l set-up the receivers ID
62
63 842C 5E00 8458 jsr @tdre send the ID frame
64 8430 5E00 8466 jsr @receive look for ID returned
65
66 8434 A00A cmp.b sys_ID,r0h ;If it's the ID the master sent
continue.
67 8436 4704 beq ours ;If it's not the ID sent, set
flags& 68 8438 5A00 2134 jmp @stop ;This could also be an error
handling routine
69

TN-0155 5

HITACHI
Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Parkway • Brisbane, CA 94005-1819 • (415) 589-8300

70 843C 7FDC 7200 ours: bclr #0,@sci0_ssr ;clear the MPBT bit for data
(addr.) byte1 8440 F801 mov.b #h'01,r0l ;set-up the first address location
72
73 8442 5E00 8458 send: jsr @tdre ;send the address
74 8446 5E00 8466 jsr @receive ;receive the data
75
76 844A 6CE0 mov.b r0h,@-r6 ;store the data
77 844C 0A08 inc r0l ;set the next address
78 844E A8E0 cmp.b #buffer_end,r0l ;look for the end of the buffer
79 8450 46F0 bne send
80
81 8452 6D76 pop r6
82 8454 6D70 pop r0
83 8456 5470 rts ;return to the calling routine
84
85 8458 7EDC 7370 tdre: btst #7,@sci0_ssr
86 845C 47FA beq tdre
87 845E 38DB mov.b r0l,@sci0_tdr ;send the byte
88 8460 7FDC 7270 bclr #7,@sci0_ssr ;clear TDRE
89 8464 5470 rts
90
91 receive:
92 8466 7EDC 7360 btst #6,@sci0_ssr ;look for RDRF = 1
93 846A 47FA beq receive
94 846C 20DD mov.b @sci0_rdr,r0h
95 846E 7FDC 7260 bclr #6,@sci0_ssr ;clear RDRF
96 8472 5470 rts
97
98 .org 8500
99
100 2134 7900 FFFF stop: mov.w #h'ffff,r0 ;loop in this routine if ID
received doesn't match
101 2138 40FA bra stop ;the ID sent
102
103 .end

 Errors: 0, Warnings: 0

The information in this document has been carefully checked; however, the contents of this document may be
changed and modified without notice. Hitachi America, Ltd. shall assume no responsibility for inaccuracies, or any
problem involving a patent infringement caused when applying the descriptions in this document. This material is
protected by copyright laws.  Copyright 1993, Hitachi America, Ltd. All rights reserved. Printed in U.S.A.

