Hitachi America, Ltd. T™N-0203
Application Engineering

TechNote Sam Darwir

32/16 Divide for H8/300 Family

Hitachi's H8/300 family is currently equipped with a 16/8 bit divide command called DIVXU. This command p
unsigned division on values in two specified registers, and produces an 8-bit result and 8-bit remainder which
back into a register upon completion.

The code offered in this technote may be used to perform 32/16 division, and it differs in a number of ways

'DIVXU' command, besides the fact that it allows calculation with larger numbers. Figdt, dhe numbers to He

brforms
hre placed

from the

calculated are held in RAM memory space instead of in registers. Thus, in order to use this routine as a subroytine within

a larger program, the programmer must place the desired dividend and divisor within the specificed memory areg.

Secondly, this code may be used as signed or unsigned division, as it does not modify any flags. If the user wistes, he may

include the necessary compare instructions in order to set certain flags. Moreover, this code does not inco
DIVXU command atall, but ratheruses a bit by bit method of calculation. There is no simple way to udel\hd)
command repeatedly in order to create a 32/16 divide, although it may initially appear that there would be. The
example illustrates the process used here, and it will be explained further on the next pages.

Example division:

result

0010 | 0110 ---> divisor dividend

after shifting stage we have:
1000 | 1100

Compare 1100 to 1000. Since 1000 is smaller
subtraction occurs.

1

1000! 1100
-1000

0100

The result of the subtraction becomes the new dividend

1
1000/ 0100

Shift, and repeat

11
1000/| 1000
-1000
0

porate the

following

HITACHI

Hitachi America, Ltd. « San Francisco Center « 2000 Sierra Point Parkway * Brisbane, CA 94005-1819 « (415) 589-8300



Load divisor and
dividend into memory.

Shift divisor
left.

MSB of divisor = 1?

Shift dividend
and result left.

special subtract

Special
subtract?

set tester bit

subtract

look at next byte

done

“

A al

Shift dividend and result back to
normal, based on number of previous
shifts of the divisor and dividend.

Division Flowchart

TN-0203
HITACHI

Hitachi America, Ltd. « San Francisco Center « 2000 Sierra Point Parkway * Brisbane, CA 94005-1819 « (415) 589-8300




First of all, the divisor is shifted until there is a one in the highest order bit position. Long-division is accompishecll through

a series of subtractions that begin with the highest order digits, and progress towards the lowdihdigjithe dividend i
also shifted until there is a one in the highest order digit. In all cases, zeros will be shifted on the right side.

Subtraction, and 'Special Subtraction’

Before the subtracting stage, we must determine if a subtraction is possible. Is the dividend larger than the divisg
determine this by comparing the most significant 8 bits of the dividaeddivisor. If the dividend is larger, a obelongd
in the highest order digit of the reswdd thesubtraction occurs. If thsvo 8-bit numbers are equahen thecomparisor
must continue by comparing the next 8 bits of the two numbers. If the divisor is larger, we know that the subtracti
not take placeand that aero should be placed in the proper digit of the result. Wekalsw that the next digit of th
result should be a onand that aubtraction will be allowed. Ithis certain? It musbe, due tahe fact that both thg
dividendand thedivisor have a one itheir highest order biand if thedivisor is largerthan thedividend in the currer]
comparison, it will not be after a shifting of one bit to tight. This isextremelyimportant to understand, as it if
common situation in division. Bhall be referred to here as 'special subtractiond, can bexplained again islightly
different terms: if the divisor is largénan thedividendthen asubtraction wouldesult in a negative value. Let's use
example of 1100 - 1111. We don't want this to hagpehso nsubtraction occurs. The program puts a zero in the

instead of a one, and then shifts the dividend just like normal. Theyighifs 11000, sthat asubtract is novappropriate
Of course, the highest order "hasbeen shifted out dhe picture, but we can rememiteat it should still be there H
setting a flag whicthasbeennamed the "tester bifor this program. When the subtractioocursthe carry bit will be se
but this really is of no concern. Agou cansee,this subtract willalways be allowed, since a 10000 is bigidpem even 4
1111.

The dividend is shifted in every cycle and the result is created bit by bit depending upon whether or not the stduika
place. The comparison is made, and if it is allotesh thedivisor is subtracted from the divideadd thecoorespondin
result bit is set. The shifting and subtracting continues until the dividend is smaller than the atidisehat ideft in the
dividend is aptly called "the remainderfow do weknow whenthis hasfinally happened? The prograknowsthat thg
division is completed whethe divisor is largethan thedividend,andfinds thisout through the comparisiadhat isdone
in every cycle.Thetwo numbers are compareand if thedivisor is largetthan thedividendthen the number athifts ard
also examined. If thedwo factors inconjunction indicatehat thedivisor is truly largethan the remaininglividend, thd
division is complete.

All that is left to do afterthis is to finish shifting the result and the remainder, so ttiet are back intheir original
positions. All of the shifting that has been done throughout the calculatitgftthge correct results in both the remain|
and the result, but the decimal point is out of whack, so to speak. It is necessary to shift the numbers back, as m
they werenitially shifted forward. Anotheway ofaccomplishing this is to continue to shift thémnward until a total o

thirty-two shifts have occurred (and wrapping the highest order bits around, so they are not "shoved off the edge").

Someadditional shifting needs to be done on the result to acdoutihe shifting of the divisor at the beginning.
divisor was shifted in order to make the calculations possible, but it also affects how large the divisor appeared to
or 100, for instance?This canonly be determined bthe number of shifts it experienced at the beginrangl, theresult]
must be duly compensated by an equal amount of shifting at the end of the computations.

Consider for a momerihe mosbasic of division algorithmsthe divisor is subtracte@peatedly fronthe dividend, an
the number of times this &lowed will bethe final result of the calculation. Such an optioneis/ simple to understan

but will take a tremendous amount of time tbe processor to implementThus, it becomes necessary toeate af

algorithm with both subtractingnd shifting tacreate the result one digit at a time. The next question becomes, ho
should this belone to reduce the calculation time tonmimum. The divisor, the dividend, both may beshift, valued
must be compared, etc. In other words, tleeeequite a number of differemlys toimplement this algorithm. The o
presented here works and is efficient, but should not be taken for the only answer.

S

r? We can

pn should
8]

t
a

the
esult

<

\ction
i}

der

Tny times a:

The

be. Is it 10

0
jy

W

e

TN-0203
HITACHI

Hitachi America, Ltd. « San Francisco Center « 2000 Sierra Point Parkway * Brisbane, CA 94005-1819 « (415) 589-8300



DIVIDE.S

dividO .equ h'02 ;dividend - 32 bits

dividl .equ h'00

divid2 .equ h'00

divid3 .equ h'00

divisO .equ h'02 ;divisor - 16 bits

divisl .equ h'00

remain0 .equ h'FFO0 ;memory location of remainder
remainl .equ h'FFO1

remain2 .equ h'FF02

remain3 .equ h'FF03

visO .equ h'FF10 ;memory location of divisor
visl .equ h'FF1l1

resultO .equ h'FF20 ;memory location of result
resultl .equ h'FF21

result2 .equ h'FF22

result3 .equ h'FF23

.section div,text, locate= 00

.ORG h'00
.data.w start ;jump to start of program
.ORG h'02A
start: mov.w #h'ff80,R7 ;initialize stackpointer, to this?

mov.b #h'00,R5I ;used as test bit and result bit later
mov.b #h'00,R1h ;for later use

mov.b #h'10,R4l ;for counting divisor shifts

mov.b #h'00,R4h ;counting dividend, result shifts

mov.b #dividO,R1I ;put data into dividend
mov.b R1l,@remain0

mov.b #dividl,R1l

mov.b R1l,@remainl

mov.b #divid2,R1l

mov.b R1l,@remain2

mov.b #divid3,R1l

mov.b R1l,@remain3

mov.b #divisO,R1l  ;put data into divisor
mov.b R1l,@vis0
mov.b #divisl,R1l
mov.b R1l,@visl

mov.b #h'00,R1lI :clear result area
mov.b R1l,@result0
mov.b R1l,@resultl
mov.b R1l,@result2
mov.b R1l,@result3

dov: btst #h'7,@visl ;test divisor,
bne a ;shift it left
mov.b @visO,R2I
shal.b R2I
mov.b R2l,@vis0
mov.b @visl,R2I
rotxl R2I
mov.b R2l,@visl
inc.b R4l ;count shifts
jmp  @dov

HITACHI

Hitachi America, Ltd. « San Francisco Center « 2000 Sierra Point Parkway * Brisbane, CA 94005-1819 « (415) 589-8300




a btst #h'7,@remain3 ;test dividend
bne b

shif: mov.b @remain0,R2| ;shift dividend left
shal.b R2I
mov.b R2l,@remain0
mov.b @remainl,R2I
rotxl R2I
mov.b R2l,@remainl
mov.b @remain2,R2I
rotxl R2I
mov.b R2l,@remain2
mov.b @remain3,R2I
rotxl R2I
mov.b R2l,@remain3

bld #h'01,R5I ;load carry
mov.b @resultO,R2| ;shift result left
rotxl.b R2|

mov.b R2l,@result0

bclr  #h'01,r5l :clear bit afterwards
mov.b @resultl,R2I

rotx| R2I

mov.b R2l,@resultl

mov.b @result2,R2|

rotx| R2I

mov.b R2l,@result2

mov.b @result3,R2I

rotx| R2I

mov.b R2l,@result3

inc.b R4h ;count shifts
cmp.b #h'20,R4h
beq done ;if more than 32 shifts
btst #h'0O,R5I ;test bit for special case
bne b
jmp  @a
b: cmp.b R4l,R4h
bls fd
jmp  @done

fd: btst #h'O,R5I ;special case
bne  subtr

comp: mov.b @remain3,R2h ;put remainder into R2h
mov.b @visl,R2| ;put divisor into R2I

cmp.b R2l,R2h ;compare values
bls comp2 ;if divisor>=remainder, branch
subtr: bclr  #h'0,R5I ;clear special bit

bset #h'1,R5I ;set result bit

sub: mov.b @remain3,R3h ;do subtract
mov.b @remain2,R3l
mov.b @visl,R2h
mov.b @visO,R2I
sub.w R2,R3
mov.b R3h,@remain3
mov.b R3l,@remain2
jmp @a

TN-0203
HITACHI

Hitachi America, Ltd. « San Francisco Center « 2000 Sierra Point Parkway * Brisbane, CA 94005-1819 « (415) 589-8300




comp2: cmp.b R2,R2h ;are they equal?
bne comp3
mov.b @remain2,R2h ;check next lower byte
mov.b @visO,R2I

cmp.b R2l,R2h

bls comp4

jmp  @subtr ;subtract, since it is allowed
comp4: cmp.b R2|,R2h ;are they equal?

bne comp3

jmp  @subtr ;in the case of equality, do the subtraction
comp3: cmp.b R4h,R4l

bls done ;

bset #h'0,R5I

jmp  @shif
done: cmp.b #h'20,R4h ;

beq fini

add.b #h'1,R4h ;increment

;shift result by 1
bld #h'01,R5I ;load carry
mov.b @resultO,R2I
shal.b R2|
mov.b R2l,@result0
bclr  #h'01,r5l :clear bit afterwards
mov.b @resultl,R2|
rotx| R2I
mov.b R2l,@resultl
mov.b @result2,R2I
rotx| R2I
mov.b R2l,@result2
mov.b @result3,R2I
rotx| R2I
mov.b R2l,@result3
:shift remainder
bld #h'07,@remain3
mov.b @remain0,R2I
rotx| R2I
mov.b R2l,@remain0
mov.b @remainl,R2I
rotxl R2|
mov.b R2l,@remainl
mov.b @remain2,R2I
rotxl R2|
mov.b R2l,@remain2
mov.b @remain3,R2|

rotxl R2|
mov.b R2l,@remain3
jmp  @done

fini: bld #h'07,@result3

mov.b @resultO,R2I

rotxl R2|

mov.b R2l,@result0

bclr  #h'01,r5l :clear bit afterwards
mov.b @resultl,R2I

rotxl R2|

mov.b R2l,@resultl

mov.b @result2,R2I

rotxl R2|

TN-0203
HITACHI

Hitachi America, Ltd. « San Francisco Center « 2000 Sierra Point Parkway * Brisbane, CA 94005-1819 « (415) 589-8300




mov.b R2l,@result2
mov.b @result3,R2I
rotxl R2I

mov.b R2l,@result3
cmp.b #h'00,R4l

beq over

dec.b Rd4l

jmp  @fini
over: nop

jmp  @over

The information in this document has been carefully checked; however, the contents of this document
changed and modified without notice. Hitachi America, Ltd. shall assume no responsibility for inaccuracieg
problem involving a patent infringement caused when applying the descriptions in this document. This m
protected by copyright law&l Copyright 1994, Hitachi America, Ltd. All rights reserved. Printed in U.S.A.

may be
, or any
aterial is

TN-0203
HITACHI

Hitachi America, Ltd. « San Francisco Center « 2000 Sierra Point Parkway * Brisbane, CA 94005-1819 « (415) 589-8300



