
H8/300 tools
Embedded Software Development: H8/300 tools

Application Note

R AE-0508

August 1994Balu Donthi

INTRODUCTION

An embedded computer system is a "hidden
computer" within a "system". An embedded
system often consists of a micro-computer and
peripheral hardware which can be used to perform
certain specific tasks. The "system" may be a
home appliance, automotive, telephone, network
controller, toy, elevator, etc. The applications are
innumerable and endless. It is not a computer
system in the traditional context, i.e., where a
software program can be developed on the
computer and can be used to control itself.
Therefore, the software program to control an
embedded system has to be developed on a
"traditional" computer system.

This application note provides a tutorial on the
usage of Hitachi software development tools for
the H8/300 microcontroller family and explains
the customization that has to be made to different
software routines to control the embedded
computer.

The Hitachi software development tools for the
H8/300 microcontroller family consists of a C
compiler, Assembler, Linker, Librarian &
Simulator Debugger. The application program
shown in this application note has been
customized to execute on the H8/300 series
simulator debugger.

Following software tools have been used for the
tutorial in this application note.

CH38 C Cross Compiler v2.0B

ASM38 Macro Assembler v3.2E

LNK Linker v5.1

LBR Librarian v1.2B

SD38 Simulator Debugger v2.4

Software Development Issues: Embedded Systems Vs Native Systems

Following customization has to be made when
developing software for embedded systems. In a
traditional computer system (native development
environment) these operations are usually
performed by the operating system:

• The reset vector for the micro-controller
should be setup so that it points to the entry
point in the program.

• The interrupt vectors for the micro-
controller have to be setup.

• The stack and heap spaces required for the
application program should be allocated

and the stack pointer should be initialized
to the stack area.

• The variables altered by the program should
be located in the RAM and the constant
variables should be located in the ROM.

• If the application program uses the run-
time libraries then the low level routines
have to be customized for the I/O
operations.

In a native development environment the software
developer does not have to worry about any of the
above operations since the operating system in the
computer takes care of performing these
operations. Figure.1 gives a pictorial

Embedded Software Development: H8/300 tools

2 Hitachi

representation of the program flow in an
embedded system.

Setup Vectors

Initialize Stack,
Heap, Bss & Data

Sections

Initialize the C
runtime library

Execute
Application

Program

Close open files
and resources

Wait Loop

Figure.1 Program Flow in an Embedded System

Sections generated by the compiler

The compiler normally generates the following
sections when a C program is compiled, they are:

 P - Program or Code section

C- Constants section

D- Initialized Data section (located in ROM)

B- Uninitialized Data (or BSS) section
The other sections that are needed for the
application program have to be created in the
startup routine. In this tutorial, various sections
needed for the application i.e. vect, stack, heap
and the "ram" data section (Section-R) are created
in the startup and other initialization routines.
The startup routine copies the variable data located
in ROM (Section D generated by the compiler) to
the RAM (Section R) at the application startup
time.

Initializing Vectors

In an embedded system the microcontroller vectors
should be initialized first. The H8/300 micro-
controller has 48 bytes of memory reserved for
vectors space, i.e., for reset vectors, illegal
instructions, IRQs, Interrupts and other on chip
peripherals. The vectors are located at address
H'0000. In the example initialization code, only
the reset vectors are initialized but there is space
allocated for the user to setup vectors that are used
by the application. Refer to the file "vectbl.src" for
the vector table initialization.

Sample vector initialization:

.SECTION VECT,DATA,LOCATE=H'0000

.IMPORT __ENTRY

.DATA.W ENTRY ;Power On Reset PC

.DATA.W (STARTOF STACK) + (SIZEOF STACK)

; Power On Reset SP

.DATA.W __ENTRY ; Manual Reset PC

.DATA.W (STARTOF STACK) + (SIZEOF STACK)

; Manual Reset SP

Initialization of Stack

The stack area is used each time a function is
called and is deallocated when the function
returns. The stack pointer should be initialized
before calling a subroutine or any high level C
function. The compiler does not create a STACK
section so the user has to define a section, allocate
stack space and initialize the Stack pointer. The
reset vector points to the location __ENTRY and
this label is defined in the file "start.src". In the
sample application 2Kb of stack is allocated. This

Embedded Software Development: H8/300 tools

Hitachi 3

number can be increased or decreased based on the
application.

Example assembly code for section declaration and
call to the initialization routines are shown below:

.SECTION STACK, STACK, ALIGN=2

.RES.B H'800 ; 2K stack

.SECTION P, CODE, ALIGN=2
__ENTRY:
MOV.W #(STARTOF STACK) + (SIZEOF
STACK), R15 ; Initialize stack (SP)
MOV.W #INIT, R2
JMP @R2
NOP
.END

Also, in the file start.src there is a constants
section which has the start address and the size of
Data section (D) in ROM, Data section (R) in
RAM and the BSS section which is the
uninitialized data section. At this point the thread
of execution is transferred to the routine _INIT.

Initialization of Data Sections

 The function _INIT is the high level function
which calls all the initialization functions,
application routine and close routine. Once the
application has been executed the _CLOSEALL()
routine closes all the files, resources and than
waits in a loop for a hardware reset.

Source for the function _INIT:

void _INIT(void)

{
 _INITSCT();
 _INITLIB();
 main();
 _CLOSEALL();
 for(;;);

}

The uninitialized data section (B) has to be
initialized to 0 before program execution
according to the C language specifications. This
operation is performed through the startup routine.
The initialized data section (D) contains data with
initial values. After linking the application
program these initial values are located in the
ROM. These initial values are modified by the

application program therefore they have to be
located in the RAM before program execution.
These initial values are modified by the
application program therefore they have to be
located in the RAM before program execution.
The function _INITSCT() accesses the starting
addresses and size of the uninitialized data
initializes it to 0. The function _INITSCT() also
copies the initial values from the data section "D"
to data section "R".

Initializing the data for the Run Time
Library

The standard C function library is included with
the compiler, if the application program uses any
of these functions than some of the data used by
the runtime libraries has to be initialized. If the
application program does not use any of the
standard C library functions than this code (
_INITLIB()) can be eliminated to make the
application program smaller in size. The function
_INITLIB() initializes the error checking variable
"errno" to 0. This variable can be checked for
successful execution of library functions. If the call
to a library function has been successful than errno
has 0 and if it did not complete successfully than
this value is set to 1.

The _INITLIB() function calls _INIT_IOLIB() and
_INIT_OTHERLIB functions. As the name
suggests the _INIT_IOLIB function initializes _iob
data structure which is used by functions like
PRINTF, SCANF, FOPEN, FCLOSE, etc. If the
application program does not use any of the
standard library functions for the input/output
operations than these initializations may not be
performed. The _iob structure is defined in the
stdio.h header file and the function
_INIT_IOLIB() is defined in the init.c file.

Sample initialization of _iob structure:

/* Clears buffer */

fp -> _bufptr = NULL;

/* Clears buffer counter */

fp -> _bufcnt = 0;

/* Clears buffer length */

fp -> _buflen = 0;

Embedded Software Development: H8/300 tools

4 Hitachi

/* Clears base pointer */

fp -> _bufbase = NULL;

/* Clears I/O flags */

fp -> _ioflag1 = 0;

fp -> _ioflag2 = 0;

fp -> _iofd = 0;

The function _INIT_IOLIB() also initializes the
standard input (stdin) for "No data buffering",
and "disabled file access". The standard output
(stdout) and standard error (stderr) are also
opened and initialized for "no data buffering".

The _INIT_OTHERLIB() function sets the initial
value of random number generator function
(rand()) to 0 and also sets the pointer (_s1ptr) used
in the strtok() (converts strings to tokens) to 0.
This initialization need not be performed if the
rand() and strtok() functions are not used by the
application.

Application Program "sieve.c"

The application program used for our tutorial is
sieve.c. The sieve.c program is Eratosthenes Sieve
prime number calculation program. It has been
scaled down with MAX_PRIME set to 17 instead
of 8091. This program uses the printf runtime
library function to display these prime numbers on
the console (stdout). The printf routine also uses
various resources like heap, other library routines
for formatting the data and finally calls the "write"
routine. The write routine is not supplied with the
runtime library and has to be written by the user.
In this tutorial a sample write() function is
provided in the lowsrc.c file. The write routine
also calls the _charput() function which outputs a
character to the console (stdout). The _charput
routine has to be customized to suit the hardware
requirements. However, for this tutorial the
_charput routine has been modified to work with
the SDSH simulator debugger.

The lowsrc.c has the low level I/O functions which
can be customized by the user. These low level
functions are used by the C runtime library
functions. Also, present in the lowsrc.c file is the
read() function which is called by Input functions
in the runtime library like scanf(). The read

function calls the _charget() routine, this routine is
also customized to work with the SD38 simulator
debugger. Both the routines _charput and _charget
are written in assembly language and can be found
in the lowlvl.src file. The code for initializing the
heap section can be found in the lowsrc.c file.

Application Program
SIEVE.C

PRINTF()

FORMATING OF
DATA

Write()
In lowsrc.c

CONSOLE
OUTPUT

stdout

_Charput()
Assembly function

in lowlvl.src

Program Flow for printing to the CONSOLE

Closing the Files & Resources

After the execution of the application is over the
_CLOSE() function is called to close all the
opened resources and files. This function is located
in the lowsrc.c file, it accesses the _iob structure to
locate all the opened files and resources than
closes them. Once all the files are closed the

Embedded Software Development: H8/300 tools

Hitachi 5

program goes into a wait loop waiting for a
hardware reset.

Creating a CPU information file

A CPU information file has to be created for the
SD38 debugger before loading the application
program. This file can be created by using the
CIA utility. Using this utility you can setup the
CPU type, address bus size, data bus size, memory
wait states and memory map.

The utility can be invoked by typing

cia sieve.cpu<cr>

/* Select H8/300 CPU by typing */
? 3<cr>

/* Select 16 bit Address Bus */
BIT SIZE 16 ? :16

/* Enter a comment */
COMMENT?:CPU information file for

Sieve program.

/* Setup a RAM area for simulation */
*** MAP MENU ***

0:ROM 1:EXTERNAL 2:RAM 3:I/O 4:EEPROM

.:END

?2

/* Setup RAM from 0 thru H'ffff */
*RAM AREA START ADDRESS? 0000 END

ADDRESS? ffff

/* Set the RAM wait state to 0 */
STATE COUNT ? 1

/* Set the Data Bus Size to 8 */
DATA BUS SIZE? 8

/* Exit from the CIA utility */
* RAM AREA START ADDRESS? . <cr>

Building the Application Program

A batch file sieve.bat has been provided with this
tutorial which compiles, assembles and links the
startup files with the application program. Before
executing the batch file the installation location
should be determined and the environment
variables needed for the software tools should
be set.

The environment variable CH38 must point to the
directory where all the header files supplied with
the compiler are located. The CH38TMP

environment variable should point to a disk with
enough space (depends on the application
program). The HLNK_LIBRARY1 environment
variable is used by the linker and it should point to
one of the run-time libraries supplied with the
compiler. HLNK_LIBRARY2 and
HLNK_LIBRARY3 environment variables are
available for use with the user libraries. All the
directories containing the compiler, assembler and
simulator debugger executables should be specified
in the DOS path. The default installation location
for the H8/300 tools is c:\hitachi, if the tools are
installed in this directory than the following
environment variables should be set.

set CH38=c:\hitachi\ch38\include

set CH38TMP=c:\

set HLNK_LIBRARY1=c:\hitachi\ch38\lib
\ch38reg.lib

set PATH=c:\hitachi\ch38\bin;
c:\hitachi\asm38;
c:\hitachi\sd38;

Batch file sieve.bat for building the application:

sieve.bat

ch38 /debug sieve.c

shc /debug init.c

asm38 start.src /debug /cpu=300

asm38 lowlvl.src /debug /cpu=300

lnk -sub=sieve.cmd

The invocation of the compiler is "ch38" and the
"/debug" option is necessary to include all the
symbol information in the output object. The
invocation of the assembler is "asm38" and the
"/debug" option is required for including the
symbol information in the object file. The default
output by the compiler is a re locatable object &
the optimizations are ON by default. To get a
summary of all the available compiler options,
invoke the compiler without any options i.e.
"ch38". The output of the assembler is also a re
locatable object so all the objects are linked using
the linker "lnk".

A linker command file is provided with the
tutorial, it has all the commands needed to
perform the link operations.

Embedded Software Development: H8/300 tools

6 Hitachi

sieve.cmd

/* This command is necessary for symbol information

in output */

debug

/* Specifies linker output to be a absolute file i.e.
SYSROF object */

form a

/* Loads the sieve.obj into linker */

input sieve.obj

/* Loads the start.obj into linker */

input start.obj

/* Loads the init.obj into linker */

input init.obj

/* Loads the lowlvl.obj into linker */

input lowlvl.obj

/* Creates a new section for Initialized data */

rom (D,R)

/* Locates const section at 0x1000 & stack section at
0x9000*/

start P,D,C(1000),B,R,STACK(9000)

/* Specifies the starting point of application to be at
the label __ENTRY */

entry __ENTRY

/* Specifies the output of linker to be sieve.abs */

output sieve

/* Specifies the linker map file to be sieve.map */

print sieve

/* Starts the linking operation and exits out of the
linker after the link is over */

EXIT

Executing the Application Program

All the library functions have been customized so
that they can be executed with the H8/300
Simulator Debugger SD38. Please go through the
following steps for getting familiar with the
various simulator debugger commands and
running the application program.

1) Invoke the debugger by typing

sd38 /cpu=sieve.cpu sieve.abs

2) Set the trap for Simulated I/O

trap_address h'FE

3) Load the application program

load sieve.abs

4) Display the application map.

map

5) Display the C source code.

da 1000

6) Single Step through the C code.

s

7) Display the micro-controller registers.

register

8) Look at the symbol information

symbol

9) Execute the application program

go

At this point the application program starts
executing and the prime numbers are printed on
the console. The program goes into a loop after
execution. To break the program out of the loop,
please type ^t.

For complete information on the usage of
compiler, assembler and simulator debugger tools
please refer to the respective user manuals.

Embedded Software Development: H8/300 tools

Hitachi 7

Appendix Source Listings for the Startup files and Application Program

Listing 1. start.src (begin)

;/***/
;/* File: start.src */
;/* Description: Sets the stack pointer and calls _INIT function */
;/**/
; The following section is needed for initializing the vars section &
; clearing the non-initialized section

 .SECTION D,DATA,ALIGN=2
.SECTION R,DATA,ALIGN=2
.SECTION B,DATA,ALIGN=2
.SECTION C,DATA,ALIGN=2

__D_ROM .DATA.W (STARTOF D) ; Start address of section D
__D_BGN .DATA.W (STARTOF R) ; Start address of section R
__D_END .DATA.W (STARTOF R)+ (SIZEOF D) ; End address of section R
__B_BGN .DATA.W (STARTOF B) ; Start address of section B
__B_END .DATA.W (STARTOF B) + (SIZEOF B) ; End address of section B

.EXPORT __D_ROM

.EXPORT __D_BGN

.EXPORT __D_END

.EXPORT __B_BGN

.EXPORT __B_END

.EXPORT __ENTRY

.IMPORT __INIT

.SECTION STACK, STACK, ALIGN=4

.RES.B H'800 ; 2K stack

.SECTION P, CODE, ALIGN=2

__ENTRY:
MOV.W #(STARTOF STACK) + (SIZEOF STACK), R7 ;Initialize stack (SP)
MOV.W #__INIT, R2
JMP @R2
NOP
.END

Listing 1.start.src (end)

Embedded Software Development: H8/300 tools

8 Hitachi

Listing 2. vectbl.src (begin)

;/**/

;/* File: VECTBL.SRC */

;/* Initailizes the vector table */

;/* */

;/**/

.SECTION STACK,STACK

.SECTION VECT,DATA,LOCATE=H'0000

.IMPORT __ENTRY

reset .data.w __ENTRY ;Power On Reset PC, vect 0

resrv1 .data.w 0 ;vect 1

resrv2 .data.w 0 ;vect 2

pervec .res.w H'37 ; reserved for other peripheral vectors

.end

Listing 2. vectbl.src (end)

Listing 3. INIT.C (begin)

/***/
/* File: INIT.C */
/* Description: Main application function, performs initializations, */
/* calls application and closes files and waits for reset */
/***/

#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#define _NFILE 20

extern char *_s1ptr;
extern void srand(unsigned int);
void _CLOSEALL(void);
extern void main(void);
void _INITSCT(void);
void _INITLIB(void);
void _INIT_IOLIB(void);
void _INIT_OTHERLIB(void);
/* Declares FILE-type data in the C language */

Embedded Software Development: H8/300 tools

Hitachi 9

extern int *D_ROM, *B_BGN, *B_END, *D_BGN, *D_END;
void _INIT(void)
{
 _INITSCT();
 _INITLIB();
 main();
 _CLOSEALL();
 for(;;);
}

void _INITLIB(void)
{
 errno=0;

 _INIT_IOLIB();
 _INIT_OTHERLIB();

}

void _INIT_IOLIB(void)
{
 FILE *fp;
 /* Initialize FILE-type data */
 for (fp =_iob; fp<_iob+_NFILE; fp++)
 {

 fp -> _bufptr = NULL;
 fp -> _bufcnt = 0;
 fp -> _buflen = 0;
 fp -> _bufbase = NULL;
 fp -> _ioflag1 = 0;
 fp -> _ioflag2 = 0;
 fp -> _iofd = 0;
 }

 /* Opens standard I/O file */

 if (freopen("stdin" , "r", stdin) == NULL) /* Opens standard input
file */

 stdin->_ioflag1=0xff; /* Disables file access */
 stdin->_ioflag1 |= _IOUNBUF ; /* No data buffering */

 if (freopen("stdout", "w", stdout) == NULL) /*Opens standard output
file */

 stdout -> _ioflag1=0xff;
 stdout -> _ioflag1 |= _IOUNBUF ;

Embedded Software Development: H8/300 tools

10 Hitachi

 if (freopen("stderr", "w", stderr) == NULL) /* opens standard error
file */

 stderr -> _ioflag1 = 0xff;
 stderr -> _ioflag1 |= _IOUNBUF;

}

 void _INITSCT(void)
 {
 int *p, *q;
 /* Non-initialized area is initialized to zeros */

 for (p =_B_BGN; p <= _B_END; p++)
 {
 *p=0;
 }
 /* Initialized data is copied from ROM to RAM */
 for (p =_D_BGN, q = _D_ROM; p <= _D_END; p++, q++)
 {
 *p = *q;
 }
}

void _INIT_OTHERLIB(void)
{
 srand(1); /* Sets initial value when rand function is used */
 _s1ptr=NULL; /*Initializes the pointer used in the strtok function*/
}

void _CLOSEALL(void)
{
 int i;

 for (i=0; i < _NFILE; i++)

 if(_iob[i]._ioflag1 & (_IOREAD | _IOWRITE |_IORW))

 fclose(&_iob[i]);
}

/***/
/* lowsrc.c: */
/*---*/
/* H8/300-series simulator debugger interface routine
*/
/* - Only standard I/O files (stdin, stdout, stderr) are supported */
/***/
#include <string.h>
/* file number */

Embedded Software Development: H8/300 tools

Hitachi 11

#define STDIN 0 /* Standard input (console) */
#define STDOUT 1 /* Standard output (console) */
#define STDERR 2 /* Standard error output (console) */

#define FLMIN 0 /* Minium file number */
#define FLMAX 3 /* Maximum number of files */

/* file flag */

#define O_RDONLY 0x0001 /* Read only */
#define O_WRONLY 0x0002 /* Write only */
#define O_RDWR 0x0004 /* Both read and write */

/* special character code */

#define CR 0x0d /* Carriage return */
#define LF 0x0a /* Line feed */

/* size of area managed by sbrk */

#define HEAPSIZE 1024

/**/
/* Declaration of reference function */
/* Reference of assembly program in which the simulator debugger input of */
/* ouput characters to the console */
/**/

extern void __charput(char); /* One character input
*/
extern char __charget(void); /* One character output
*/

/**/
/* Definition of static variable: */
/* Definition of static variables used in low-level interface routines */
/**/

char flmod[FLMAX]; /* Open file mode specification area */

static union {
 long dummy; /* Dummy for 4-byte boundary */
 char heap[HEAPSIZE];/*Declaration of the area managed by

sbrk*/

 }heap_area ;

static char *brk=(char *)&heap_area;/*End address of area assigned by sbrk*/

/**/
/* open:file open */
/* Return value: File number (Pass) */

Embedded Software Development: H8/300 tools

12 Hitachi

/* -1 (Failure) */
/**/
int open(char *name, /* File name */

int mode) /* File mode */
{

/* Check mode depending on file name and return file numbers */
if(strcmp(name,"stdin")==0) { /* Standard input file */

if((mode&O_RDONLY) == 0)
return -1;

flmod[STDIN]=mode;
return STDIN;

}

else if(strcmp(name,"stdout")==0) { /* Standard output file */
if((mode&O_WRONLY)==0)

return -1;
flmod[STDOUT]=mode;
return STDOUT;

}

else if(strcmp(name,"stderr")==0) { /* Standard error file */
if((mode&O_WRONLY)==0)

return -1;
flmod[STDERR]=mode;
return STDERR;

}

else
return -1;

}

/**/
/* close: File close */
/* Return value: 0 (Pass) */
/* -1 (Failure) */
/**/

int close(int fileno) /* File number */
{

if(fileno<FLMIN || FLMAX<fileno) /* File number range check */
return -1;

flmod[fileno] = 0;
return 0; /* File mode reset */

}

/**/
/* read:Data read */
/* Return value:Number of read characters (Pass) */
/* -1 (Failure) */
/**/

Embedded Software Development: H8/300 tools

Hitachi 13

int read(int fileno, /* File number */
char *buf, /* Destination buffer address

*/
unsigned int count) /* Number of read characters

*/
{

unsigned int i;

/* Check mode according to file name and stores each character in buffer */

if(flmod[fileno] & O_RDONLY || flmod[fileno] & O_RDWR) {
for(i=count; i>0; i--) {

*buf=charget();
if(*buf==CR) /*Line feed character replacement */

*buf=LF;
buf++;

}
return count;

}
else

return -1;
}

/***/
/* write: Data Write */
/* Return value:Number of write characters (Pass) */
/* -1 (Failure) */
/***/
int write(int fileno, /* File number */

 char *buf, /* destination buffer address */
 unsigned int count) /* Number of write characters */

{
unsigned int i;
char c;

/* Check mode according to file name and output each character */

if(flmod[fileno] &O_WRONLY || flmod[fileno] &O_RDWR) {
for(i=count; i>0; i--) {

c=*buf++;
charput (c);
}
return count;

}
else

return -1;
}

/**/
/* lseek : Definition of file read/write position */
/* Return value:offset from the top of file read/write position */
/* -1 (Failure) */
/* (lseek is not supported in the console input/output) */

Embedded Software Development: H8/300 tools

14 Hitachi

/**/
long lseek(int fileno, /* File number
*/

 long offset, /* Read/Write position
*/

 int base) /* Origin of offset
*/
{

return -1;
}

/**/
/* sbrk:Data write */
/* Return value: Start addresss of the assigneed area (Pass) */
/* -1 (Failure)*/
/**/
char *sbrk(unsigned long size) /* Assigned area size
*/

{
 char *p;

 if(brk+size>heap_area.heap+HEAPSIZE) /* Empty area size
*/

return (char *) -1;

 p=brk ;
 brk += size;
 return p;

}

Listing 3. INIT.C (end)

Embedded Software Development: H8/300 tools

Hitachi 15

Listing 4. SIEVE.C (begin)

 /**/
/* sieve.c -- Eratosthenes Sieve prime number calculation */
/* scaled down with MAX_PRIME set to 17 instead of 8091 */
/**/
#include <stdio.h>
#define MAX_ITER 1
#define MAX_PRIME 17

char flags[MAX_PRIME];

main ()
{

register int i,k;
int prime,count,iter;

for (iter = 1;iter<=MAX_ITER;iter++)
{
count = 0;
for(i = 0; i<MAX_PRIME; i++)

flags[i] = 1;
for(i = 0; i<MAX_PRIME; i++)

if(flags[i])
{
prime = i + i + 3;
k = i + prime;
while (k < MAX_PRIME)

{
flags[k] = 0;
k += prime;
}

count++;
printf(" prime %d = %d\n", count, prime);
}

}
printf("\n%d primes\n",count);

}

Listing 4. SIEVE.C (end)

Embedded Software Development: H8/300 tools

16 Hitachi

Listing 5. LOWLVL.SRC (begin)

;---
;
; lowlvl.src
;
; H8/300-series simulator debugger interface routines to input or output a
; single character.
;
;---

;---

;

; lowlvl.src

;

; 300 series simulator debugger interface routines to input or output a

; single character.

;

;---

.CPU 300

.EXPORT _charput

.EXPORT _charget

.EXPORT __INIT_LOWLEVEL

SIM_IO: .EQU H'00FE ; Trap address

.SECTION P, CODE, ALIGN=2

;

; this routine may differ for different environments and here is used

; as a dummy

;

__INIT_LOWLEVEL:

RTS

NOP

;--

;

; _charput: single character output

; C interface: charput(char)

;

;--

_charput:

MOV.W #A_DATA,R4 ; Address of Data

MOV.B R0L,@R4 ; char parameter is passed in R0L

MOV.W #A_PARM,R1 ; Pointer to Address of Data

MOV.W R4,@R1 ; Initializing Pointer to Address of Data

Embedded Software Development: H8/300 tools

Hitachi 17

MOV.W @putc,R0 ; H'0102 is moved into R0

MOV.W #SIM_IO,R2 ; H'FE is moved into R2

JSR @R2 ;Delayed branching, outputs a char to
 ;console

NOP

RTS

_charget: ; Gets 1 character from console

MOV.W #A_PARM,R1 ; Pointer to Address of Data

MOV.W #A_DATA,R0 ; Address of Data

MOV.W R0,@R1 ; Initializing Pointer to Address of Data

MOV.W @getc,R0 ; H'0101 system call addr into R0

MOV.W #SIM_IO,R2 ; H'FE is moved into R2

JSR @R2 ; Delayed branching, gets a char from
 ;console

NOP ;

MOV.W #A_PARM,R1 ;

MOV.W @R1,R0 ;

MOV.B @R0,R0L ;

RTS ;

NOP ;

.ALIGN 4

A_DATA: .DATA.W DATA

A_PARM: .DATA.W PARM

A_FNO: .DATA.W FILENO

F_putc: .DATA.W H'0108

F_getc: .DATA.W H'0107

putc: .DATA.W H'0102 ; outputs 1 Character to simulated output

getc: .DATA.W H'0101 ; gets 1 character from console, sim input

;---

;

; I/O buffer destination

;

;---

.SECTION B,DATA,ALIGN=2

PARM: .RES.W 1

FILENO: .RES.B 1

DATA: .RES.B 1

.END

Listing 5. LOWLVL.SRC (end)

Embedded Software Development: H8/300 tools

18 Hitachi

Listing 6. SIEVE.BAT (begin)

REM /**/
REM /* File: SIEVE.BAT */
REM /* Description: Batch file to build the SIEVE Application */
REM /* to execute on the H8/300 simulator Debugger

*/
REM /**/

ch38 /debug sieve.c
ch38 /debug init.c
asm38 start.src /debug /cpu=300
asm38 lowlvl.src /debug /cpu=300
lnk /sub=sieve.cmd

Listing 6. SIEVE.BAT (end)

Listing 7. SIEVE.CMD (begin)

;/**/
;/* File: SIEVE.CMD */
;/* Description: Links all the relocatable objects for sieve application */
;/**/
debug
form a
input sieve.obj
input start.obj
input init.obj
input lowlvl.obj
rom (D,R)
start P,D,C(1000),B,R,STACK(9000)
entry __ENTRY
output sieve
print sieve
EXIT

Listing 7. SIEVE.CMD (end)

The information in this document has been carefully checked; however, the contents of this document
may be changed and modified without notice. Hitachi America, Ltd. shall assume no responsibility for
inaccuracies, or any problem involving patent infringement caused when applying the descriptions in this
document. This material is protected by copyright laws.  Copyright 1994, Hitachi America, Ltd. All
rights reserved. Printed in U.S.A.

