
Using GNU CC

Richard M. Stallman

Last updated 6 November 1995

for version 2.7.1

Copyright c
 1988, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.

For GCC Version 2.7.1

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
Last printed November, 1995.
Printed copies are available for $50 each.
ISBN 1-882114-66-3

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the sections entitled “GNU General Public License,” “Funding for Free
Software,” and “Protect Your Freedom—Fight ‘Look And Feel’” are in-
cluded exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice iden-
tical to this one.
Permission is granted to copy and distribute translations of this man-
ual into another language, under the above conditions for modified ver-
sions, except that the sections entitled “GNU General Public License,”
“Funding for Free Software,” and “Protect Your Freedom—Fight ‘Look
And Feel’”, and this permission notice, may be included in translations
approved by the Free Software Foundation instead of in the original
English.

Short Contents
GNU GENERAL PUBLIC LICENSE . 1
Contributors to GNU CC . 11
1 Funding Free Software . 15
2 Protect Your Freedom—Fight “Look And Feel” 17
3 Compile C, C++, or Objective C . 21
4 GNU CC Command Options . 23
5 Installing GNU CC . 107
6 Extensions to the C Language Family 145
7 Extensions to the C++ Language . 195
8 gcov: a Test Coverage Program . 205
9 Known Causes of Trouble with GNU CC. 211
10 Reporting Bugs . 239
11 How To Get Help with GNU CC . 249
12 Using GNU CC on VMS . 251
Index . 257

c y g n u s s u p p o r t i

Using GNU CC

ii 17 January 1996

Table of Contents

GNU GENERAL PUBLIC LICENSE 1
Preamble . 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 2
How to Apply These Terms to Your New Programs 8

Contributors to GNU CC . 11

1 Funding Free Software . 15

2 Protect Your Freedom—Fight “Look And Feel”
. 17

3 Compile C, C++, or Objective C 21

4 GNU CC Command Options 23
4.1 Option Summary . 23
4.2 Options Controlling the Kind of Output 28
4.3 Compiling C++ Programs . 30
4.4 Options Controlling C Dialect . 31
4.5 Options Controlling C++ Dialect . 36
4.6 Options to Request or Suppress Warnings 40
4.7 Options for Debugging Your Program or GNU CC 48
4.8 Options That Control Optimization . 53
4.9 Options Controlling the Preprocessor 59
4.10 Passing Options to the Assembler . 62
4.11 Options for Linking . 62
4.12 Options for Directory Search . 64
4.13 Specifying Target Machine and Compiler Version 66
4.14 Hardware Models and Configurations 67

4.14.1 M680x0 Options . 67
4.14.2 VAX Options . 69
4.14.3 SPARC Options . 69
4.14.4 Convex Options . 72
4.14.5 AMD29K Options . 73
4.14.6 ARM Options . 75
4.14.7 M88K Options . 76
4.14.8 IBM RS/6000 and PowerPC Options 79
4.14.9 IBM RT Options . 85
4.14.10 MIPS Options . 86

c y g n u s s u p p o r t iii

Using GNU CC

4.14.11 Intel 386 Options . 90
4.14.12 HPPA Options . 92
4.14.13 Intel 960 Options . 94
4.14.14 DEC Alpha Options . 95
4.14.15 Clipper Options . 96
4.14.16 H8/300 Options . 96
4.14.17 Options for System V . 96
4.14.18 Zilog Z8000 Option . 97
4.14.19 Options for the H8/500 . 97

4.15 Options for Code Generation Conventions 98
4.16 Environment Variables Affecting GNU CC 102
4.17 Running Protoize . 104

5 Installing GNU CC . 107
5.1 Configurations Supported by GNU CC 114
5.2 Compilation in a Separate Directory 131
5.3 Building and Installing a Cross-Compiler 132

5.3.1 Steps of Cross-Compilation 132
5.3.2 Configuring a Cross-Compiler 133
5.3.3 Tools and Libraries for a Cross-Compiler 133
5.3.4 ‘libgcc.a’ and Cross-Compilers 134
5.3.5 Cross-Compilers and Header Files 136
5.3.6 Actually Building the Cross-Compiler 136

5.4 Installing GNU CC on the Sun . 137
5.5 Installing GNU CC on VMS . 138
5.6 collect2 . 141
5.7 Standard Header File Directories . 142

6 Extensions to the C Language Family 145
6.1 Statements and Declarations in Expressions 145
6.2 Locally Declared Labels . 146
6.3 Labels as Values . 147
6.4 Nested Functions . 147
6.5 Constructing Function Calls . 150
6.6 Naming an Expression’s Type . 150
6.7 Referring to a Type with typeof . 151
6.8 Generalized Lvalues . 152
6.9 Conditionals with Omitted Operands 153
6.10 Double-Word Integers . 153
6.11 Complex Numbers . 154
6.12 Arrays of Length Zero . 155
6.13 Arrays of Variable Length . 155
6.14 Macros with Variable Numbers of Arguments 156
6.15 Non-Lvalue Arrays May Have Subscripts 157

iv 17 January 1996

6.16 Arithmetic on void- and Function-Pointers 158
6.17 Non-Constant Initializers . 158
6.18 Constructor Expressions . 158
6.19 Labeled Elements in Initializers . 159
6.20 Case Ranges . 160
6.21 Cast to a Union Type . 161
6.22 Declaring Attributes of Functions . 161
6.23 Prototypes and Old-Style Function Definitions 165
6.24 Compiling Functions for Interrupt Calls 166
6.25 C++ Style Comments . 167
6.26 Dollar Signs in Identifier Names . 167
6.27 The Character ESC in Constants . 167
6.28 Inquiring on Alignment of Types or Variables 167
6.29 Specifying Attributes of Variables . 168
6.30 Specifying Attributes of Types . 171
6.31 An Inline Function is As Fast As a Macro 174
6.32 Assembler Instructions with C Expression Operands

. 176
6.33 Constraints for asm Operands . 180

6.33.1 Simple Constraints . 180
6.33.2 Multiple Alternative Constraints 182
6.33.3 Constraint Modifier Characters 183
6.33.4 Constraints for Particular Machines 184

6.34 Controlling Names Used in Assembler Code 189
6.35 Variables in Specified Registers . 190

6.35.1 Defining Global Register Variables 190
6.35.2 Specifying Registers for Local Variables 192

6.36 Alternate Keywords . 192
6.37 Incomplete enum Types . 193
6.38 Function Names as Strings . 193

7 Extensions to the C++ Language 195
7.1 Named Return Values in C++ . 195
7.2 Minimum and Maximum Operators in C++ 197
7.3 goto and Destructors in GNU C++ . 197
7.4 Declarations and Definitions in One Header 197
7.5 Where’s the Template? . 199
7.6 Type Abstraction using Signatures . 202

8 gcov: a Test Coverage Program 205
8.1 Introduction to gcov . 205
8.2 Invoking gcov . 206
8.3 Using gcov with GCC Optimization . 208

c y g n u s s u p p o r t v

Using GNU CC

9 Known Causes of Trouble with GNU CC 211
9.1 Actual Bugs We Haven’t Fixed Yet . 211
9.2 Installation Problems . 211
9.3 Cross-Compiler Problems . 217
9.4 Interoperation . 217
9.5 Problems Compiling Certain Programs 223
9.6 Incompatibilities of GNU CC . 223
9.7 Fixed Header Files . 227
9.8 Standard Libraries . 228
9.9 Disappointments and Misunderstandings 228
9.10 Common Misunderstandings with GNU C++ 230

9.10.1 Declare and Define Static Members 230
9.10.2 Temporaries May Vanish Before You Expect

. 231
9.11 Caveats of using protoize . 231
9.12 Certain Changes We Don’t Want to Make 233
9.13 Warning Messages and Error Messages 236

10 Reporting Bugs . 239
10.1 Have You Found a Bug? . 239
10.2 Where to Report Bugs . 240
10.3 How to Report Bugs . 241
10.4 Sending Patches for GNU CC . 245

11 How To Get Help with GNU CC 249

12 Using GNU CC on VMS . 251
12.1 Include Files and VMS . 251
12.2 Global Declarations and VMS . 252
12.3 Other VMS Issues . 254

Index . 257

vi 17 January 1996

GNU GENERAL PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright c
 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and
to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that you
have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free soft-
ware. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

c y g n u s s u p p o r t 1

Using GNU CC

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi-
fication follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as
“you”.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of run-
ning the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Pro-
gram (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicu-
ously and appropriately publish on each copy an appropriate copy-
right notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and
give any other recipients of the Program a copy of this License along
with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

2 17 January 1996

GNU GENERAL PUBLIC LICENSE

b. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If iden-
tifiable sections of that work are not derived from the Program, and
can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of
who wrote it.
Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to ex-
ercise the right to control the distribution of derivative or collective
works based on the Program.
In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program)
on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a. Accompany it with the complete corresponding machine-

readable source code, which must be distributed under the
terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. Accompany it with a written offer, valid for at least three years,
to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed

c y g n u s s u p p o r t 3

Using GNU CC

under the terms of Sections 1 and 2 above on a medium custom-
arily used for software interchange; or,

c. Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work
for making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used
to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to
copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy
the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt oth-
erwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you un-
der this License will not have their licenses terminated so long as
such parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to mod-
ify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject
to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.

4 17 January 1996

GNU GENERAL PUBLIC LICENSE

You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would
be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is imple-
mented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is
up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose
that choice.
This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the orig-
inal copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new ver-
sions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Pro-
gram specifies a version number of this License which applies to it

c y g n u s s u p p o r t 5

Using GNU CC

and “any later version”, you have the option of following the terms
and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free pro-
grams whose distribution conditions are different, write to the au-
thor to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided
by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGES.

6 17 January 1996

GNU GENERAL PUBLIC LICENSE

END OF TERMS AND CONDITIONS

c y g n u s s u p p o r t 7

Using GNU CC

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line for the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, the com-
mands you use may be called something other than ‘show w’ and ‘show
c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a “copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program ‘Gnomovision’ (which makes passes at compilers) written
by James Hacker.

8 17 January 1996

GNU GENERAL PUBLIC LICENSE

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your pro-
gram into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary applica-
tions with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

c y g n u s s u p p o r t 9

Using GNU CC

10 17 January 1996

Contributors to GNU CC

Contributors to GNU CC

In addition to Richard Stallman, several people have written parts of
GNU CC.
� The idea of using RTL and some of the optimization ideas came

from the program PO written at the University of Arizona by Jack
Davidson and Christopher Fraser. See “Register Allocation and Ex-
haustive Peephole Optimization”, Software Practice and Experience
14 (9), Sept. 1984, 857-866.

� Paul Rubin wrote most of the preprocessor.
� Leonard Tower wrote parts of the parser, RTL generator, and RTL

definitions, and of the Vax machine description.
� Ted Lemon wrote parts of the RTL reader and printer.
� Jim Wilson implemented loop strength reduction and some other

loop optimizations.
� Nobuyuki Hikichi of Software Research Associates, Tokyo, con-

tributed the support for the Sony NEWS machine.
� Charles LaBrec contributed the support for the Integrated Solutions

68020 system.
� Michael Tiemann of Cygnus Support wrote the front end for C++, as

well as the support for inline functions and instruction scheduling.
Also the descriptions of the National Semiconductor 32000 series
cpu, the SPARC cpu and part of the Motorola 88000 cpu.

� Gerald Baumgartner added the signature extension to the C++ front-
end.

� Jan Stein of the Chalmers Computer Society provided support for
Genix, as well as part of the 32000 machine description.

� Randy Smith finished the Sun FPA support.
� Robert Brown implemented the support for Encore 32000 systems.
� David Kashtan of SRI adapted GNU CC to VMS.
� Alex Crain provided changes for the 3b1.
� Greg Satz and Chris Hanson assisted in making GNU CC work on

HP-UX for the 9000 series 300.
� William Schelter did most of the work on the Intel 80386 support.
� Christopher Smith did the port for Convex machines.
� Paul Petersen wrote the machine description for the Alliant FX/8.
� Dario Dariol contributed the four varieties of sample programs that

print a copy of their source.
� Alain Lichnewsky ported GNU CC to the Mips cpu.

c y g n u s s u p p o r t 11

Using GNU CC

� Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to
the Tahoe.

� Jonathan Stone wrote the machine description for the Pyramid com-
puter.

� Gary Miller ported GNU CC to Charles River Data Systems ma-
chines.

� Richard Kenner of the New York University Ultracomputer Re-
search Laboratory wrote the machine descriptions for the AMD
29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well
as the support for instruction attributes. He also made changes to
better support RISC processors including changes to common subex-
pression elimination, strength reduction, function calling sequence
handling, and condition code support, in addition to generalizing
the code for frame pointer elimination.

� Richard Kenner and Michael Tiemann jointly developed reorg.c, the
delay slot scheduler.

� Mike Meissner and Tom Wood of Data General finished the port to
the Motorola 88000.

� Masanobu Yuhara of Fujitsu Laboratories implemented the machine
description for the Tron architecture (specifically, the Gmicro).

� NeXT, Inc. donated the front end that supports the Objective C
language.

� James van Artsdalen wrote the code that makes efficient use of the
Intel 80387 register stack.

� Mike Meissner at the Open Software Foundation finished the port to
the MIPS cpu, including adding ECOFF debug support, and worked
on the Intel port for the Intel 80386 cpu.

� Ron Guilmette implemented the protoize and unprotoize tools,
the support for Dwarf symbolic debugging information, and much of
the support for System V Release 4. He has also worked heavily on
the Intel 386 and 860 support.

� Torbjorn Granlund implemented multiply- and divide-by-constant
optimization, improved long long support, and improved leaf func-
tion register allocation.

� Mike Stump implemented the support for Elxsi 64 bit CPU.
� John Wehle added the machine description for the Western Electric

32000 processor used in several 3b series machines (no relation to
the National Semiconductor 32000 processor).

� Holger Teutsch provided the support for the Clipper cpu.
� Kresten Krab Thorup wrote the run time support for the Objective

C language.

12 17 January 1996

Contributors to GNU CC

� Stephen Moshier contributed the floating point emulator that assists
in cross-compilation and permits support for floating point numbers
wider than 64 bits.

� David Edelsohn contributed the changes to RS/6000 port to make it
support the PowerPC and POWER2 architectures.

� Steve Chamberlain wrote the support for the Hitachi SH processor.
� Peter Schauer wrote the code to allow debugging to work on the

Alpha.
� Oliver M. Kellogg of Deutsche Aerospace contributed the port to the

MIL-STD-1750A.
� Michael K. Gschwind contributed the port to the PDP-11.

c y g n u s s u p p o r t 13

Using GNU CC

14 17 January 1996

Chapter 1: Funding Free Software

1 Funding Free Software

If you want to have more free software a few years from now, it
makes sense for you to help encourage people to contribute funds for
its development. The most effective approach known is to encourage
commercial redistributors to donate.

Users of free software systems can boost the pace of development by
encouraging for-a-fee distributors to donate part of their selling price to
free software developers—the Free Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect
it from them. So when you compare distributors, judge them partly by
how much they give to free software development. Show distributors
they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you
can compare, such as, “We will donate ten dollars to the Frobnitz project
for each disk sold.” Don’t be satisfied with a vague promise, such as
“A portion of the profits are donated,” since it doesn’t give a basis for
comparison.

Even a precise fraction “of the profits from this disk” is not very
meaningful, since creative accounting and unrelated business decisions
can greatly alter what fraction of the sales price counts as profit. If the
price you pay is $50, ten percent of the profit is probably less than a
dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful
too; but to keep everyone honest, you need to inquire how much they do,
and what kind. Some kinds of development make much more long-term
difference than others. For example, maintaining a separate version of
a program contributes very little; maintaining the standard version of
a program for the whole community contributes much. Easy new ports
contribute little, since someone else would surely do them; difficult ports
such as adding a new CPU to the GNU C compiler contribute more;
major new features or packages contribute the most.

By establishing the idea that supporting further development is “the
proper thing to do” when distributing free software for a fee, we can
assure a steady flow of resources into making more free software.

Copyright (C) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

c y g n u s s u p p o r t 15

Using GNU CC

16 17 January 1996

Chapter 2: Protect Your Freedom—Fight “Look And Feel”

2 Protect Your Freedom—Fight “Look
And Feel”

This section is a political message from the League for Program-
ming Freedom to the users of GNU CC. We have included it here
because the issue of interface copyright is important to the GNU
project.

Apple, Lotus, and now CDC have tried to create a new form of legal
monopoly: a copyright on a user interface.

An interface is a kind of language—a set of conventions for communi-
cation between two entities, human or machine. Until a few years ago,
the law seemed clear: interfaces were outside the domain of copyright,
so programmers could program freely and implement whatever interface
the users demanded. Imitating de-facto standard interfaces, sometimes
with improvements, was standard practice in the computer field. These
improvements, if accepted by the users, caught on and became the norm;
in this way, much progress took place.

Computer users, and most software developers, were happy with this
state of affairs. However, large companies such as Apple and Lotus
would prefer a different system—one in which they can own interfaces
and thereby rid themselves of all serious competitors. They hope that
interface copyright will give them, in effect, monopolies on major classes
of software.

Other large companies such as IBM and Digital also favor interface
monopolies, for the same reason: if languages become property, they
expect to own many de-facto standard languages. But Apple and Lotus
are the ones who have actually sued. Apple’s lawsuit was defeated, for
reasons only partly related to the general issue of interface copyright.

Lotus won lawsuits against two small companies, which were thus
put out of business. Then they sued Borland; they won in the trial court
(no surprise, since it was the same court that had ruled for Lotus twice
before), but the decision was reversed by the court of appeals, with help
from the League for Programming Freedom in the form of a friend-of-
the-court brief. We are now waiting to see if the Supreme Court will
hear the case. If it does, the League for Programming Freedom will
again submit a brief.

The battle is not over. Just this summer a company that produced a
simulator for a CDC computer was shut down by a copyright lawsuit by
CDC, which charged that the simulator infringed the copyright on the
manuals for the computer.

If the monopolists get their way, they will hobble the software field:

c y g n u s s u p p o r t 17

Using GNU CC

� Gratuitous incompatibilities will burden users. Imagine if each car
manufacturer had to design a different way to start, stop, and steer
a car.

� Users will be “locked in” to whichever interface they learn; then
they will be prisoners of one supplier, who will charge a monopolistic
price.

� Large companies have an unfair advantage wherever lawsuits be-
come commonplace. Since they can afford to sue, they can intimidate
smaller developers with threats even when they don’t really have a
case.

� Interface improvements will come slower, since incremental evolu-
tion through creative partial imitation will no longer occur.

If interface monopolies are accepted, other large companies are wait-
ing to grab theirs:
� Adobe is expected to claim a monopoly on the interfaces of vari-

ous popular application programs, if Lotus ultimately wins the case
against Borland.

� Open Computing magazine reported a Microsoft vice president as
threatening to sue people who imitate the interface of Windows.

Users invest a great deal of time and money in learning to use com-
puter interfaces. Far more, in fact, than software developers invest in
developing and even implementing the interfaces. Whoever can own an
interface, has made its users into captives, and misappropriated their
investment.

To protect our freedom from monopolies like these, a group of pro-
grammers and users have formed a grass-roots political organization,
the League for Programming Freedom.

The purpose of the League is to oppose monopolistic practices such
as interface copyright and software patents. The League calls for a
return to the legal policies of the recent past, in which programmers
could program freely. The League is not concerned with free software as
an issue, and is not affiliated with the Free Software Foundation.

The League’s activities include publicizing the issues, as is being done
here, and filing friend-of-the-court briefs on behalf of defendants sued
by monopolists.

The League’s membership rolls include Donald Knuth, the foremost
authority on algorithms, John McCarthy, inventor of Lisp, Marvin Min-
sky, founder of the MIT Artificial Intelligence lab, Guy L. Steele, Jr.,
author of well-known books on Lisp and C, as well as Richard Stall-
man, the developer of GNU CC. Please join and add your name to the
list. Membership dues in the League are $42 per year for programmers,
managers and professionals; $10.50 for students; $21 for others.

18 17 January 1996

Chapter 2: Protect Your Freedom—Fight “Look And Feel”

Activist members are especially important, but members who have no
time to give are also important. Surveys at major ACM conferences have
indicated a vast majority of attendees agree with the League on both
issues (interface copyrights and software patents). If just ten percent of
the programmers who agree with the League join the League, we will
probably triumph.

To join, or for more information, phone (617) 243-4091 or write to:
League for Programming Freedom
1 Kendall Square #143
P.O. Box 9171
Cambridge, MA 02139

You can also send electronic mail to lpf@uunet.uu.net.
In addition to joining the League, here are some suggestions from

the League for other things you can do to protect your freedom to write
programs:
� Tell your friends and colleagues about this issue and how it threatens

to ruin the computer industry.
� Mention that you are a League member in your ‘.signature’, and

mention the League’s email address for inquiries.
� Ask the companies you consider working for or working with to

make statements against software monopolies, and give preference
to those that do.

� When employers ask you to sign contracts giving them copyright on
your work, insist on a clause saying they will not claim the copyright
covers imitating the interface.

� When employers ask you to sign contracts giving them patent rights,
insist on clauses saying they can use these rights only defensively.
Don’t rely on “company policy,” since that can change at any time;
don’t rely on an individual executive’s private word, since that per-
son may be replaced. Get a commitment just as binding as the
commitment they get from you.

� Write to Congress to explain the importance of these issues.
House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515

Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate
Washington, DC 20510

(These committees have received lots of mail already; let’s give them
even more.)

c y g n u s s u p p o r t 19

Using GNU CC

Democracy means nothing if you don’t use it. Stand up and be
counted!

20 17 January 1996

Chapter 3: Compile C, C++, or Objective C

3 Compile C, C++, or Objective C

The C, C++, and Objective C versions of the compiler are integrated;
the GNU C compiler can compile programs written in C, C++, or Objec-
tive C.

“GCC” is a common shorthand term for the GNU C compiler. This is
both the most general name for the compiler, and the name used when
the emphasis is on compiling C programs.

When referring to C++ compilation, it is usual to call the compiler
“G++”. Since there is only one compiler, it is also accurate to call it
“GCC” no matter what the language context; however, the term “G++” is
more useful when the emphasis is on compiling C++ programs.

We use the name “GNU CC” to refer to the compilation system as
a whole, and more specifically to the language-independent part of the
compiler. For example, we refer to the optimization options as affecting
the behavior of “GNU CC” or sometimes just “the compiler”.

Front ends for other languages, such as Ada 9X, Fortran, Modula-
3, and Pascal, are under development. These front-ends, like that for
C++, are built in subdirectories of GNU CC and link to it. The result
is an integrated compiler that can compile programs written in C, C++,
Objective C, or any of the languages for which you have installed front
ends.

In this manual, we only discuss the options for the C, Objective-C, and
C++ compilers and those of the GNU CC core. Consult the documentation
of the other front ends for the options to use when compiling programs
written in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code
directly from your C++ program source. There is no intermediate C ver-
sion of the program. (By contrast, for example, some other implementa-
tions use a program that generates a C program from your C++ source.)
Avoiding an intermediate C representation of the program means that
you get better object code, and better debugging information. The GNU
debugger, GDB, works with this information in the object code to give
you comprehensive C++ source-level editing capabilities (see section “C
and C++” in Debugging with GDB).

c y g n u s s u p p o r t 21

Using GNU CC

22 17 January 1996

Chapter 4: GNU CC Command Options

4 GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compila-
tion, assembly and linking. The “overall options” allow you to stop this
process at an intermediate stage. For example, the ‘-c’ option says not
to run the linker. Then the output consists of object files output by the
assembler.

Other options are passed on to one stage of processing. Some options
control the preprocessor and others the compiler itself. Yet other options
control the assembler and linker; most of these are not documented here,
since you rarely need to use any of them.

Most of the command line options that you can use with GNU CC are
useful for C programs; when an option is only useful with another lan-
guage (usually C++), the explanation says so explicitly. If the description
for a particular option does not mention a source language, you can use
that option with all supported languages.

See Section 4.3 “Compiling C++ Programs,” page 30, for a summary
of special options for compiling C++ programs.

The gcc program accepts options and file names as operands. Many
options have multiletter names; therefore multiple single-letter options
may not be grouped: ‘-dr’ is very different from ‘-d -r’.

You can mix options and other arguments. For the most part, the
order you use doesn’t matter. Order does matter when you use several
options of the same kind; for example, if you specify ‘-L’ more than once,
the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W’—for ex-
ample, ‘-fforce-mem’, ‘-fstrength-reduce’, ‘-Wformat’ and so on. Most
of these have both positive and negative forms; the negative form of
‘-ffoo’ would be ‘-fno-foo’. This manual documents only one of these
two forms, whichever one is not the default.

4.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations
are in the following sections.

Overall Options
See Section 4.2 “Options Controlling the Kind of Output,”
page 28.

-c -S -E -o file -pipe -v -x language

C Language Options
See Section 4.4 “Options Controlling C Dialect,” page 31.

c y g n u s s u p p o r t 23

Using GNU CC

-ansi -fallow-single-precision -fcond-mismatch \
-fno-asm

-fno-builtin -fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char -fwritable-strings
-traditional -traditional-cpp -trigraphs

C++ Language Options
See Section 4.5 “Options Controlling C++ Dialect,” page 36.

-fall-virtual -fdollars-in-identifiers \
-felide-constructors

-fenum-int-equiv -fexternal-templates -ffor-scope \
-fno-for-scope

-fhandle-signatures -fmemoize-lookups \
-fno-default-inline -fno-gnu-

keywords
-fnonnull-objects -foperator-names -fstrict-prototype
-fthis-is-variable -nostdinc++ -traditional +en

Warning Options
See Section 4.6 “Options to Request or Suppress Warnings,”
page 40.

-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return -Wbad-function-cast
-Wcast-align -Wcast-qual -Wchar-subscript -Wcomment
-Wconversion -Wenum-clash -Werror -Wformat
-Wid-clash-len -Wimplicit -Wimport -Winline
-Wlarger-than-len -Wmissing-declarations
-Wmissing-prototypes -Wnested-externs
-Wno-import -Woverloaded-virtual -Wparentheses
-Wpointer-arith -Wredundant-decls -Wreorder \

-Wreturn-type -Wshadow
-Wstrict-prototypes -Wswitch -Wsynth \

-Wtemplate-debugging
-Wtraditional -Wtrigraphs -Wuninitialized -Wunused
-Wwrite-strings

Debugging Options
See Section 4.7 “Options for Debugging Your Program or
GCC,” page 48.

-a -dletters -fpretend-float
-fprofile-arcs -ftest-coverage
-g -glevel -gcoff -gdwarf -gdwarf+
-ggdb -gstabs -gstabs+ -gxcoff -gxcoff+
-p -pg -print-file-name=library \

-print-libgcc-file-name
-print-prog-name=program -print-search-dirs \

-save-temps

Optimization Options
See Section 4.8 “Options that Control Optimization,” page 53.

-fbranch-probabilities
-fcaller-saves -fcombine-statics \

-fcse-follow-jumps -fcse-skip-blocks

24 17 January 1996

Chapter 4: GNU CC Command Options

-fdelayed-branch -fexpensive-optimizations
-ffast-math -ffloat-store -fforce-addr -fforce-mem
-finline-functions -fkeep-inline-functions
-fno-default-inline -fno-defer-pop -fno-function-cse
-fno-inline -fno-peephole -fomit-frame-pointer
-frerun-cse-after-loop -fschedule-insns
-fschedule-insns2 -fshorten-lifetimes \

-fstrength-reduce -fthread-jumps
-funroll-all-loops -funroll-loops
-O -O0 -O1 -O2 -O3

Preprocessor Options
See Section 4.9 “Options Controlling the Preprocessor,”
page 59.

-Aquestion(answer) -C -dD -dM -dN
-Dmacro[=defn] -E -H
-idirafter dir
-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-M -MD -MM -MMD -MG -nostdinc -P -trigraphs
-undef -Umacro -Wp,option

Assembler Option
See Section 4.10 “Passing Options to the Assembler,” page 62.

-Wa,option

Linker Options
See Section 4.11 “Options for Linking,” page 62.

object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib
-s -static -shared -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See Section 4.12 “Options for Directory Search,” page 64.

-Bprefix -Idir -I- -Ldir

Target Options
See Section 4.13 “Target Options,” page 66.

-b machine -V version

Machine Dependent Options
See Section 4.14 “Hardware Models and Configurations,”
page 67.

M680x0 Options
-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881
-mbitfield -mc68000 -mc68020 -mfpa -mnobitfield
-mrtd -mshort -msoft-float

c y g n u s s u p p o r t 25

Using GNU CC

VAX Options
-mg -mgnu -munix

SPARC Options
-mapp-regs -mcypress -mepilogue -mflat -mfpu \

-mhard-float
-mhard-quad-float -mno-app-regs -mno-flat -mno-fpu
-mno-epilogue -mno-unaligned-doubles
-mimpure-text -mno-impure-text
-msoft-float -msoft-quad-float
-msparclite -msupersparc -munaligned-doubles -mv8

SPARC V9 compilers support the following options
in addition to the above:

-mmedlow -mmedany
-mint32 -mint64 -mlong32 -mlong64
-mno-stack-bias -mstack-bias

Convex Options
-mc1 -mc2 -mc32 -mc34 -mc38
-margcount -mnoargcount
-mlong32 -mlong64
-mvolatile-cache -mvolatile-nocache

AMD29K Options
-m29000 -m29050 -mbw -mnbw -mdw -mndw
-mlarge -mnormal -msmall
-mkernel-registers -mno-reuse-arg-regs
-mno-stack-check -mno-storem-bug
-mreuse-arg-regs -msoft-float -mstack-check
-mstorem-bug -muser-registers

ARM Options
-mapcs -m2 -m3 -m6 -mbsd -mxopen -mno-symrename

M88K Options
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs

RS/6000 and PowerPC Options
-mcpu=cpu type
-mpower -mno-power -mpower2 -mno-power2
-mpowerpc -mno-powerpc
-mpowerpc-gpopt -mno-powerpc-gpopt

26 17 January 1996

Chapter 4: GNU CC Command Options

-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mnew-mnemonics -mno-new-mnemonics
-mfull-toc -mminimal-toc -mno-fop-in-toc \

-mno-sum-in-toc
-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable \

-mno-relocatable
-mrelocatable-lib -mno-relocatable-lib
-mtoc -mno-toc -mtraceback -mno-traceback
-mlittle -mlittle-endian -mbig -mbig-endian
-mcall-aix -mcall-sysv -mprototype -mno-prototype
-msim -mmvme -memb

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options
-mabicalls -mcpu=cpu type -membedded-data
-membedded-pic -mfp32 -mfp64 -mgas -mgp32 -mgp64
-mgpopt -mhalf-pic -mhard-float -mint64 -mips1
-mips2 -mips3 -mlong64 -mlong-calls -mmemcpy
-mmips-as -mmips-tfile -mno-abicalls
-mno-embedded-data -mno-embedded-pic
-mno-gpopt -mno-long-calls
-mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats
-mrnames -msoft-float
-m4650 -msingle-float -mmad
-mstats -EL -EB -G num -nocpp

i386 Options
-m486 -m386 -mieee-fp -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mrtd -malign-double
-mreg-alloc=list -mregparm=num
-malign-jumps=num -malign-loops=num
-malign-functions=num

HPPA Options
-mdisable-fpregs -mdisable-indexing
-mgas -mjump-in-delay -mno-disable-fpregs
-mno-disable-indexing -mno-gas
-mno-jump-in-delay
-mno-portable-runtime -mno-soft-float \

-mno-space-regs -msoft-float
-mpa-risc-1-0 -mpa-risc-1-1 -mportable-runtime \

-mschedule=list
-mspace-regs

Intel 960 Options
-mcpu type -masm-compat -mclean-linkage

c y g n u s s u p p o r t 27

Using GNU CC

-mcode-align -mcomplex-addr -mleaf-procedures
-mic-compat -mic2.0-compat -mic3.0-compat
-mintel-asm -mno-clean-linkage -mno-code-align
-mno-complex-addr -mno-leaf-procedures
-mno-old-align -mno-strict-align -mno-tail-call
-mnumerics -mold-align -msoft-float -mstrict-align
-mtail-call

DEC Alpha Options
-mfp-regs -mno-fp-regs -mno-soft-float
-msoft-float

Clipper Options
-mc300 -mc400

H8/300 Options
-mrelax -mh

System V Options
-Qy -Qn -YP,paths -Ym,dir

Z8000 Option
-mz8001

H8/500 Options
-mspace -mspeed
-mint32 -mcode32 -mdata32
-mtiny -msmall
-mmedium -mcompact
-mbig

Code Generation Options
See Section 4.15 “Options for Code Generation Conventions,”
page 98.

-fcall-saved-reg -fcall-used-reg
-ffixed-reg -finhibit-size-directive
-fno-common -fno-ident -fno-gnu-linker
-fpcc-struct-return -fpic -fPIC
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -funaligned-pointers
-funaligned-struct-hack -fvolatile -fvolatile-global
-fverbose-asm -fpack-struct -fverbose-asm +e0 +e1

4.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. The first three stages
apply to an individual source file, and end by producing an object file;

28 17 January 1996

Chapter 4: GNU CC Command Options

linking combines all the object files (those newly compiled, and those
specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of
compilation is done:

file.c C source code which must be preprocessed.

file.i C source code which should not be preprocessed.

file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the
library ‘libobjc.a’ to make an Objective-C program work.

file.h C header file (not to be compiled or linked).

file.cc
file.cxx
file.cpp
file.C C++ source code which must be preprocessed. Note that in

‘.cxx’, the last two letters must both be literally ‘x’. Likewise,
‘.C’ refers to a literal capital C.

file.s Assembler code.

file.S Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name
with no recognized suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files
(rather than letting the compiler choose a default based on
the file name suffix). This option applies to all following input
files until the next ‘-x’ option. Possible values for language
are:

c objective-c c++
c-header cpp-output c++-cpp-output
assembler assembler-with-cpp

-x none Turn off any specification of a language, so that subsequent
files are handled according to their file name suffixes (as they
are if ‘-x’ has not been used at all).

If you only want some of the stages of compilation, you can use ‘-x’
(or filename suffixes) to tell gcc where to start, and one of the options
‘-c’, ‘-S’, or ‘-E’ to say where gcc is to stop. Note that some combinations
(for example, ‘-x cpp-output -E’ instruct gcc to do nothing at all.

c y g n u s s u p p o r t 29

Using GNU CC

-c Compile or assemble the source files, but do not link. The
linking stage simply is not done. The ultimate output is in
the form of an object file for each source file.
By default, the object file name for a source file is made by
replacing the suffix ‘.c’, ‘.i’, ‘.s’, etc., with ‘.o’.
Unrecognized input files, not requiring compilation or as-
sembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble.
The output is in the form of an assembler code file for each
non-assembler input file specified.
By default, the assembler file name for a source file is made
by replacing the suffix ‘.c’, ‘.i’, etc., with ‘.s’.
Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler
proper. The output is in the form of preprocessed source code,
which is sent to the standard output.
Input files which don’t require preprocessing are ignored.

-o file Place output in file file. This applies regardless to whatever
sort of output is being produced, whether it be an executable
file, an object file, an assembler file or preprocessed C code.
Since only one output file can be specified, it does not make
sense to use ‘-o’ when compiling more than one input file,
unless you are producing an executable file as output.
If ‘-o’ is not specified, the default is to put an executable file
in ‘a.out’, the object file for ‘source.suffix’ in ‘source.o’,
its assembler file in ‘source.s’, and all preprocessed C source
on standard output.

-v Print (on standard error output) the commands executed to
run the stages of compilation. Also print the version number
of the compiler driver program and of the preprocessor and
the compiler proper.

-pipe Use pipes rather than temporary files for communication
between the various stages of compilation. This fails to work
on some systems where the assembler is unable to read from
a pipe; but the GNU assembler has no trouble.

4.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘cpp’,
or ‘.cxx’; preprocessed C++ files use the suffix ‘.ii’. GNU CC recognizes

30 17 January 1996

Chapter 4: GNU CC Command Options

files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually
with the name gcc).

However, C++ programs often require class libraries as well as a
compiler that understands the C++ language—and under some circum-
stances, you might want to compile programs from standard input, or
otherwise without a suffix that flags them as C++ programs. g++ is a
program that calls GNU CC with the default language set to C++, and
automatically specifies linking against the GNU class library libg++.

1 On many systems, the script g++ is also installed
with the name c++.

When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any lan-
guage; or command-line options meaningful for C and related languages;
or options that are meaningful only for C++ programs. See Section 4.4
“Options Controlling C Dialect,” page 31, for explanations of options for
languages related to C. See Section 4.5 “Options Controlling C++ Di-
alect,” page 36, for explanations of options that are meaningful only for
C++ programs.

4.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived
from C, such as C++ and Objective C) that the compiler accepts:

-ansi Support all ANSI standard C programs.
This turns off certain features of GNU C that are incom-
patible with ANSI C, such as the asm, inline and typeof
keywords, and predefined macros such as unix and vax that
identify the type of system you are using. It also enables
the undesirable and rarely used ANSI trigraph feature, dis-
allows ‘$’ as part of identifiers, and disables recognition of
C++ style ‘//’ comments.
The alternate keywords __extension__, __inline__, __
asm__, and __typeof__ continue to work despite ‘-ansi’.
You would not want to use them in an ANSI C program,

1 Prior to release 2 of the compiler, there was a separate g++ compiler.
That version was based on GNU CC, but not integrated with it. Ver-
sions of g++ with a ‘1.xx’ version number—for example, g++ version
1.37 or 1.42—are much less reliable than the versions integrated with
GCC 2. Moreover, combining G++ ‘1.xx’ with a version 2 GCC will
simply not work.

c y g n u s s u p p o r t 31

Using GNU CC

of course, but it is useful to put them in header files that
might be included in compilations done with ‘-ansi’. Alter-
nate predefined macros such as __unix__ and __vax__ are
also available, with or without ‘-ansi’.
The ‘-ansi’ option does not cause non-ANSI programs to be
rejected gratuitously. For that, ‘-pedantic’ is required in ad-
dition to ‘-ansi’. See Section 4.6 “Warning Options,” page 40.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’
option is used. Some header files may notice this macro and
refrain from declaring certain functions or defining certain
macros that the ANSI standard doesn’t call for; this is to
avoid interfering with any programs that might use these
names for other things.
The functions alloca, abort, exit, and _exit are not builtin
functions when ‘-ansi’ is used.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so
that code can use these words as identifiers. You can use
the keywords __asm__, __inline__ and __typeof__ instead.
‘-ansi’ implies ‘-fno-asm’.
In C++, this switch only affects the typeof keyword, since
asm and inline are standard keywords. You may want to
use the ‘-fno-gnu-keywords’ flag instead, as it also disables
the other, C++-specific, extension keywords such as headof.

-fno-builtin
Don’t recognize builtin functions that do not begin with two
leading underscores. Currently, the functions affected in-
clude abort, abs, alloca, cos, exit, fabs, ffs, labs, memcmp,
memcpy, sin, sqrt, strcmp, strcpy, and strlen.
GCC normally generates special code to handle certain
builtin functions more efficiently; for instance, calls to
alloca may become single instructions that adjust the stack
directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since
the function calls no longer appear as such, you cannot set a
breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library.
The ‘-ansi’ option prevents alloca and ffs from being
builtin functions, since these functions do not have an ANSI
standard meaning.

-trigraphs
Support ANSI C trigraphs. You don’t want to know about
this brain-damage. The ‘-ansi’ option implies ‘-trigraphs’.

32 17 January 1996

Chapter 4: GNU CC Command Options

-traditional
Attempt to support some aspects of traditional C compilers.
Specifically:
� All extern declarations take effect globally even if they

are written inside of a function definition. This includes
implicit declarations of functions.

� The newer keywords typeof, inline, signed, const and
volatile are not recognized. (You can still use the alter-
native keywords such as __typeof__, __inline__, and
so on.)

� Comparisons between pointers and integers are always
allowed.

� Integer types unsigned short and unsigned char pro-
mote to unsigned int.

� Out-of-range floating point literals are not an error.
� Certain constructs which ANSI regards as a single

invalid preprocessing number, such as ‘0xe-0xd’, are
treated as expressions instead.

� String “constants” are not necessarily constant; they are
stored in writable space, and identical looking constants
are allocated separately. (This is the same as the effect
of ‘-fwritable-strings’.)

� All automatic variables not declared register are pre-
served by longjmp. Ordinarily, GNU C follows ANSI
C: automatic variables not declared volatile may be
clobbered.

� The character escape sequences ‘\x’ and ‘\a’ evaluate
as the literal characters ‘x’ and ‘a’ respectively. With-
out ‘-traditional’, ‘\x’ is a prefix for the hexadecimal
representation of a character, and ‘\a’ produces a bell.

� In C++ programs, assignment to this is permitted with
‘-traditional’. (The option ‘-fthis-is-variable’ also
has this effect.)

You may wish to use both ‘-fno-builtin’ and ‘-traditional’
if your program uses names that are normally GNU C builtin
functions for other purposes of its own.
You cannot use ‘-traditional’ if you include any header files
that rely on ANSI C features. Some vendors are starting to
ship systems with ANSI C header files and you cannot use
‘-traditional’ on such systems to compile files that include
any system headers.

c y g n u s s u p p o r t 33

Using GNU CC

In the preprocessor, comments convert to nothing at all,
rather than to a space. This allows traditional token con-
catenation.

In preprocessing directive, the ‘#’ symbol must appear as the
first character of a line.

In the preprocessor, macro arguments are recognized within
string constants in a macro definition (and their values are
stringified, though without additional quote marks, when
they appear in such a context). The preprocessor always
considers a string constant to end at a newline.

The predefined macro __STDC__ is not defined when you
use ‘-traditional’, but __GNUC__ is (since the GNU ex-
tensions which __GNUC__ indicates are not affected by
‘-traditional’). If you need to write header files that work
differently depending on whether ‘-traditional’ is in use,
by testing both of these predefined macros you can distin-
guish four situations: GNU C, traditional GNU C, other
ANSI C compilers, and other old C compilers. The predefined
macro __STDC_VERSION__ is also not defined when you use
‘-traditional’. See section “Standard Predefined Macros”
in The C Preprocessor, for more discussion of these and other
predefined macros.

The preprocessor considers a string constant to end at a
newline (unless the newline is escaped with ‘\’). (Without
‘-traditional’, string constants can contain the newline
character as typed.)

-traditional-cpp
Attempt to support some aspects of traditional C preproces-
sors. This includes the last five items in the table immedi-
ately above, but none of the other effects of ‘-traditional’.

-fcond-mismatch
Allow conditional expressions with mismatched types in the
second and third arguments. The value of such an expression
is void.

-funsigned-char
Let the type char be unsigned, like unsigned char.
Each kind of machine has a default for what char should be.
It is either like unsigned char by default or like signed char
by default.
Ideally, a portable program should always use signed char
or unsigned char when it depends on the signedness of an

34 17 January 1996

Chapter 4: GNU CC Command Options

object. But many programs have been written to use plain
char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This op-
tion, and its inverse, let you make such a program work with
the opposite default.
The type char is always a distinct type from each of signed
char or unsigned char, even though its behavior is always
just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.
Note that this is equivalent to ‘-fno-unsigned-char’, which
is the negative form of ‘-funsigned-char’. Likewise, the op-
tion ‘-fno-signed-char’ is equivalent to ‘-funsigned-char’.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bitfield is signed or un-
signed, when the declaration does not use either signed or
unsigned. By default, such a bitfield is signed, because this
is consistent: the basic integer types such as int are signed
types.
However, when ‘-traditional’ is used, bitfields are all un-
signed no matter what.

-fwritable-strings
Store string constants in the writable data segment and don’t
uniquize them. This is for compatibility with old programs
which assume they can write into string constants. The op-
tion ‘-traditional’ also has this effect.
Writing into string constants is a very bad idea; “constants”
should be constant.

-fallow-single-precision
Do not promote single precision math operations to double
precision, even when compiling with ‘-traditional’.
Traditional K&R C promotes all floating point operations to
double precision, regardless of the sizes of the operands. On
the architecture for which you are compiling, single preci-
sion may be faster than double precision. If you must use
‘-traditional’, but want to use single precision operations
when the operands are single precision, use this option. This
option has no effect when compiling with ANSI or GNU C
conventions (the default).

c y g n u s s u p p o r t 35

Using GNU CC

4.5 Options Controlling C++ Dialect

This section describes the command-line options that are only mean-
ingful for C++ programs; but you can also use most of the GNU compiler
options regardless of what language your program is in. For example,
you might compile a file firstClass.C like this:

g++ -g -felide-constructors -O -c firstClass.C

In this example, only ‘-felide-constructors’ is an option meant only
for C++ programs; you can use the other options with any language
supported by GNU CC.

Here is a list of options that are only for compiling C++ programs:

-fno-access-control
Turn off all access checking. This switch is mainly useful for
working around bugs in the access control code.

-fall-virtual
Treat all possible member functions as virtual, implicitly. All
member functions (except for constructor functions and new
or deletemember operators) are treated as virtual functions
of the class where they appear.
This does not mean that all calls to these member functions
will be made through the internal table of virtual functions.
Under some circumstances, the compiler can determine that
a call to a given virtual function can be made directly; in
these cases the calls are direct in any case.

-fcheck-new
Check that the pointer returned by operator new is non-null
before attempting to modify the storage allocated. The cur-
rent Working Paper requires that operator new never return
a null pointer, so this check is normally unnecessary.

-fconserve-space
Put uninitialized or runtime-initialized global variables into
the common segment, as C does. This saves space in the
executable at the cost of not diagnosing duplicate definitions.
If you compile with this flag and your program mysteriously
crashes after main() has completed, you may have an object
that is being destroyed twice because two definitions were
merged.

-fdollars-in-identifiers
Accept ‘$’ in identifiers. You can also explicitly prohibit use of
‘$’ with the option ‘-fno-dollars-in-identifiers’. (GNU
C++ allows ‘$’ by default on some target systems but not

36 17 January 1996

Chapter 4: GNU CC Command Options

others.) Traditional C allowed the character ‘$’ to form part of
identifiers. However, ANSI C and C++ forbid ‘$’ in identifiers.

-fenum-int-equiv
Anachronistically permit implicit conversion of int to enu-
meration types. Current C++ allows conversion of enum to
int, but not the other way around.

-fexternal-templates
Cause template instantiations to obey ‘#pragma interface’
and ‘implementation’; template instances are emitted or not
according to the location of the template definition. See Sec-
tion 7.5 “Template Instantiation,” page 199, for more infor-
mation.

-falt-external-templates
Similar to -fexternal-templates, but template instances are
emitted or not according to the place where they are first
instantiated. See Section 7.5 “Template Instantiation,”
page 199, for more information.

-ffor-scope

-fno-for-scope
If -ffor-scope is specified, the scope of variables declared in a
for-init-statement is limited to the ‘for’ loop itself, as specified
by the draft C++ standard. If -fno-for-scope is specified, the
scope of variables declared in a for-init-statement extends to
the end of the enclosing scope, as was the case in old versions
of gcc, and other (traditional) implementations of C++.
The default if neither flag is given to follow the standard,
but to allow and give a warning for old-style code that would
otherwise be invalid, or have different behavior.

-fno-gnu-keywords
Do not recognize classof, headof, signature, sigof or
typeof as a keyword, so that code can use these words
as identifiers. You can use the keywords __classof__, __
headof__, __signature__, __sigof__, and __typeof__ in-
stead. ‘-ansi’ implies ‘-fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for templates which are instantiated implic-
itly (i.e. by use); only emit code for explicit instantiations.
See Section 7.5 “Template Instantiation,” page 199, for more
information.

-fhandle-signatures
Recognize the signature and sigof keywords for specifying
abstract types. The default (‘-fno-handle-signatures’) is

c y g n u s s u p p o r t 37

Using GNU CC

not to recognize them. See Section 7.6 “C++ Signatures,”
page 202.

-fhuge-objects
Support virtual function calls for objects that exceed the size
representable by a ‘short int’. Users should not use this
flag by default; if you need to use it, the compiler will tell you
so. If you compile any of your code with this flag, you must
compile all of your code with this flag (including libg++, if
you use it).
This flag is not useful when compiling with -fvtable-thunks.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline func-
tions controlled by ‘#pragma implementation’. This will
cause linker errors if these functions are not inlined every-
where they are called.

-fmemoize-lookups
-fsave-memoized

Use heuristics to compile faster. These heuristics are not
enabled by default, since they are only effective for certain
input files. Other input files compile more slowly.
The first time the compiler must build a call to a member
function (or reference to a data member), it must (1) deter-
mine whether the class implements member functions of that
name; (2) resolve which member function to call (which in-
volves figuring out what sorts of type conversions need to be
made); and (3) check the visibility of the member function
to the caller. All of this adds up to slower compilation. Nor-
mally, the second time a call is made to that member function
(or reference to that data member), it must go through the
same lengthy process again. This means that code like this:

cout << "This " << p << " has " << n << " legs.\n";

makes six passes through all three steps. By using a soft-
ware cache, a “hit” significantly reduces this cost. Unfortu-
nately, using the cache introduces another layer of mecha-
nisms which must be implemented, and so incurs its own
overhead. ‘-fmemoize-lookups’ enables the software cache.
Because access privileges (visibility) to members and mem-
ber functions may differ from one function context to
the next, G++ may need to flush the cache. With the
‘-fmemoize-lookups’ flag, the cache is flushed after every
function that is compiled. The ‘-fsave-memoized’ flag en-
ables the same software cache, but when the compiler deter-
mines that the context of the last function compiled would

38 17 January 1996

Chapter 4: GNU CC Command Options

yield the same access privileges of the next function to com-
pile, it preserves the cache. This is most helpful when defin-
ing many member functions for the same class: with the
exception of member functions which are friends of other
classes, each member function has exactly the same access
privileges as every other, and the cache need not be flushed.
The code that implements these flags has rotted; you should
probably avoid using them.

-fstrict-prototype
Within an ‘extern "C"’ linkage specification, treat a func-
tion declaration with no arguments, such as ‘int foo
();’, as declaring the function to take no arguments.
Normally, such a declaration means that the function
foo can take any combination of arguments, as in C.
‘-pedantic’ implies ‘-fstrict-prototype’ unless overridden
with ‘-fno-strict-prototype’.
This flag no longer affects declarations with C++ linkage.

-fno-nonnull-objects
Don’t assume that a reference is initialized to refer to a valid
object. Although the current C++ Working Paper prohibits
null references, some old code may rely on them, and you can
use ‘-fno-nonnull-objects’ to turn on checking.
At the moment, the compiler only does this checking for con-
versions to virtual base classes.

-foperator-names
Recognize the operator name keywords and, bitand, bitor,
compl, not, or and xor as synonyms for the symbols they
refer to. ‘-ansi’ implies ‘-foperator-names’.

-fthis-is-variable
Permit assignment to this. The incorporation of user-
defined free store management into C++ has made assign-
ment to ‘this’ an anachronism. Therefore, by default it is
invalid to assign to this within a class member function;
that is, GNU C++ treats ‘this’ in a member function of class
X as a non-lvalue of type ‘X *’. However, for backwards com-
patibility, you can make it valid with ‘-fthis-is-variable’.

-fvtable-thunks
Use ‘thunks’ to implement the virtual function dispatch table
(‘vtable’). The traditional (cfront-style) approach to imple-
menting vtables was to store a pointer to the function and two
offsets for adjusting the ‘this’ pointer at the call site. Newer
implementations store a single pointer to a ‘thunk’ function

c y g n u s s u p p o r t 39

Using GNU CC

which does any necessary adjustment and then calls the tar-
get function.
This option also enables a heuristic for controlling emission
of vtables; if a class has any non-inline virtual functions, the
vtable will be emitted in the translation unit containing the
first one of those.

-nostdinc++
Do not search for header files in the standard directories spe-
cific to C++, but do still search the other standard directories.
(This option is used when building libg++.)

-traditional
For C++ programs (in addition to the effects that ap-
ply to both C and C++), this has the same effect as
‘-fthis-is-variable’. See Section 4.4 “Options Controlling
C Dialect,” page 31.

In addition, these optimization, warning, and code generation options
have meanings only for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class
scope. See Section 4.8 “Options That Control Optimization,”
page 53.

-Wenum-clash
-Woverloaded-virtual
-Wtemplate-debugging

Warnings that apply only to C++ programs. See Section 4.6
“Options to Request or Suppress Warnings,” page 40.

+en Control how virtual function definitions are used, in a fashion
compatible with cfront 1.x. See Section 4.15 “Options for
Code Generation Conventions,” page 98.

4.6 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which
are not inherently erroneous but which are risky or suggest there may
have been an error.

You can request many specific warnings with options beginning ‘-W’,
for example ‘-Wimplicit’ to request warnings on implicit declarations.
Each of these specific warning options also has a negative form beginning
‘-Wno-’ to turn off warnings; for example, ‘-Wno-implicit’. This manual
lists only one of the two forms, whichever is not the default.

40 17 January 1996

Chapter 4: GNU CC Command Options

These options control the amount and kinds of warnings produced by
GNU CC:

-fsyntax-only
Check the code for syntax errors, but don’t do anything be-
yond that.

-pedantic
Issue all the warnings demanded by strict ANSI standard C;
reject all programs that use forbidden extensions.
Valid ANSI standard C programs should compile properly
with or without this option (though a rare few will require
‘-ansi’). However, without this option, certain GNU exten-
sions and traditional C features are supported as well. With
this option, they are rejected.
‘-pedantic’ does not cause warning messages for use of
the alternate keywords whose names begin and end with
‘__’. Pedantic warnings are also disabled in the expression
that follows __extension__. However, only system header
files should use these escape routes; application programs
should avoid them. See Section 6.36 “Alternate Keywords,”
page 192.
This option is not intended to be useful; it exists only to
satisfy pedants who would otherwise claim that GNU CC
fails to support the ANSI standard.
Some users try to use ‘-pedantic’ to check programs for strict
ANSI C conformance. They soon find that it does not do quite
what they want: it finds some non-ANSI practices, but not
all—only those for which ANSI C requires a diagnostic.
A feature to report any failure to conform to ANSI C might be
useful in some instances, but would require considerable ad-
ditional work and would be quite different from ‘-pedantic’.
We recommend, rather, that users take advantage of the ex-
tensions of GNU C and disregard the limitations of other
compilers. Aside from certain supercomputers and obsolete
small machines, there is less and less reason ever to use any
other C compiler other than for bootstrapping GNU CC.

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than
warnings.

-w Inhibit all warning messages.

-Wno-import
Inhibit warning messages about the use of ‘#import’.

c y g n u s s u p p o r t 41

Using GNU CC

-Wchar-subscripts
Warn if an array subscript has type char. This is a common
cause of error, as programmers often forget that this type is
signed on some machines.

-Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a
comment.

-Wformat Check calls to printf and scanf, etc., to make sure that the
arguments supplied have types appropriate to the format
string specified.

-Wimplicit
Warn whenever a function or parameter is implicitly de-
clared.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as
when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence
people often get confused about.

-Wreturn-type
Warn whenever a function is defined with a return-type that
defaults to int. Also warn about any return statement with
no return-value in a function whose return-type is not void.

-Wswitch Warn whenever a switch statement has an index of enu-
meral type and lacks a case for one or more of the named
codes of that enumeration. (The presence of a default label
prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered (assuming they are
enabled).

-Wunused Warn whenever a variable is unused aside from its declara-
tion, whenever a function is declared static but never defined,
whenever a label is declared but not used, and whenever a
statement computes a result that is explicitly not used.
To suppress this warning for an expression, simply cast it to
void. For unused variables and parameters, use the ‘unused’
attribute (see Section 6.29 “Variable Attributes,” page 168).

-Wuninitialized
An automatic variable is used without first being initialized.
These warnings are possible only in optimizing compilation,
because they require data flow information that is computed

42 17 January 1996

Chapter 4: GNU CC Command Options

only when optimizing. If you don’t specify ‘-O’, you simply
won’t get these warnings.
These warnings occur only for variables that are candidates
for register allocation. Therefore, they do not occur for a vari-
able that is declared volatile, or whose address is taken, or
whose size is other than 1, 2, 4 or 8 bytes. Also, they do not
occur for structures, unions or arrays, even when they are in
registers.
Note that there may be no warning about a variable that is
used only to compute a value that itself is never used, because
such computations may be deleted by data flow analysis be-
fore the warnings are printed.
These warnings are made optional because GNU CC is not
smart enough to see all the reasons why the code might be
correct despite appearing to have an error. Here is one ex-
ample of how this can happen:

{
int x;
switch (y)

{
case 1: x = 1;
break;

case 2: x = 4;
break;

case 3: x = 5;
}

foo (x);
}

If the value of y is always 1, 2 or 3, thenx is always initialized,
but GNU CC doesn’t know this. Here is another common
case:

{
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.
Some spurious warnings can be avoided if you declare all
the functions you use that never return as noreturn. See
Section 6.22 “Function Attributes,” page 161.

-Wenum-clash
Warn about conversion between different enumeration types.
(C++ only).

c y g n u s s u p p o r t 43

Using GNU CC

-Wreorder (C++ only)
Warn when the order of member initializers given in the code
does not match the order in which they must be executed. For
instance:

struct A {
int i;
int j;
A(): j (0), i (1) { }

};

Here the compiler will warn that the member initializers for
‘i’ and ‘j’ will be rearranged to match the declaration order
of the members.

-Wtemplate-debugging
When using templates in a C++ program, warn if debugging
is not yet fully available (C++ only).

-Wall All of the above ‘-W’ options combined. These are all the
options which pertain to usage that we recommend avoiding
and that we believe is easy to avoid, even in conjunction with
macros.

The remaining ‘-W.. .’ options are not implied by ‘-Wall’ because
they warn about constructions that we consider reasonable to use, on
occasion, in clean programs.

-W Print extra warning messages for these events:

� A nonvolatile automatic variable might be changed by
a call to longjmp. These warnings as well are possible
only in optimizing compilation.
The compiler sees only the calls to setjmp. It cannot
know where longjmp will be called; in fact, a signal han-
dler could call it at any point in the code. As a result,
you may get a warning even when there is in fact no
problem because longjmp cannot in fact be called at the
place which would cause a problem.

� A function can return either with or without a value.
(Falling off the end of the function body is considered
returning without a value.) For example, this function
would evoke such a warning:

foo (a)

{
if (a > 0)

return a;

}

44 17 January 1996

Chapter 4: GNU CC Command Options

� An expression-statement or the left-hand side of a
comma expression contains no side effects. To suppress
the warning, cast the unused expression to void. For
example, an expression such as ‘x[i,j]’ will cause a
warning, but ‘x[(void)i,j]’ will not.

� An unsigned value is compared against zero with ‘<’ or
‘<=’.

� A comparison like ‘x<=y<=z’ appears; this is equivalent to
‘(x<=y ? 1 : 0) <= z’, which is a different interpretation
from that of ordinary mathematical notation.

� Storage-class specifiers like static are not the first
things in a declaration. According to the C Standard,
this usage is obsolescent.

� If ‘-Wall’ or ‘-Wunused’ is also specified, warn about un-
used arguments.

� An aggregate has a partly bracketed initializer. For ex-
ample, the following code would evoke such a warning,
because braces are missing around the initializer for x.h:

struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

-Wtraditional
Warn about certain constructs that behave differently in tra-
ditional and ANSI C.
� Macro arguments occurring within string constants in

the macro body. These would substitute the argument
in traditional C, but are part of the constant in ANSI C.

� A function declared external in one block and then used
after the end of the block.

� A switch statement has an operand of type long.

-Wshadow Warn whenever a local variable shadows another local vari-
able.

-Wid-clash-len
Warn whenever two distinct identifiers match in the first len
characters. This may help you prepare a program that will
compile with certain obsolete, brain-damaged compilers.

-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith
Warn about anything that depends on the “size of” a function
type or of void. GNU C assigns these types a size of 1, for

c y g n u s s u p p o r t 45

Using GNU CC

convenience in calculations with void * pointers and pointers
to functions.

-Wbad-function-cast
Warn whenever a function call is cast to a non-matching type.
For example, warn if int malloc() is cast to anything *.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qual-
ifier from the target type. For example, warn if a const char
* is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required align-
ment of the target is increased. For example, warn if a char
* is cast to an int * on machines where integers can only be
accessed at two- or four-byte boundaries.

-Wwrite-strings
Give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer
will get a warning. These warnings will help you find at
compile time code that can try to write into a string constant,
but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it will just be a
nuisance; this is why we did not make ‘-Wall’ request these
warnings.

-Wconversion
Warn if a prototype causes a type conversion that is differ-
ent from what would happen to the same argument in the
absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except
when the same as the default promotion.
Also, warn if a negative integer constant expression is im-
plicitly converted to an unsigned type. For example, warn
about the assignment x = -1 if x is unsigned. But do not warn
about explicit casts like (unsigned) -1.

-Waggregate-return
Warn if any functions that return structures or unions are
defined or called. (In languages where you can return an
array, this also elicits a warning.)

-Wstrict-prototypes
Warn if a function is declared or defined without specifying
the argument types. (An old-style function definition is per-

46 17 January 1996

Chapter 4: GNU CC Command Options

mitted without a warning if preceded by a declaration which
specifies the argument types.)

-Wmissing-prototypes
Warn if a global function is defined without a previous proto-
type declaration. This warning is issued even if the definition
itself provides a prototype. The aim is to detect global func-
tions that fail to be declared in header files.

-Wmissing-declarations
Warn if a global function is defined without a previous dec-
laration. Do so even if the definition itself provides a proto-
type. Use this option to detect global functions that are not
declared in header files.

-Wredundant-decls
Warn if anything is declared more than once in the same
scope, even in cases where multiple declaration is valid and
changes nothing.

-Wnested-externs
Warn if an extern declaration is encountered within an func-
tion.

-Winline Warn if a function can not be inlined, and either it was de-
clared as inline, or else the ‘-finline-functions’ option was
given.

-Woverloaded-virtual
Warn when a derived class function declaration may be an
error in defining a virtual function (C++ only). In a derived
class, the definitions of virtual functions must match the type
signature of a virtual function declared in the base class.
With this option, the compiler warns when you define a func-
tion with the same name as a virtual function, but with a
type signature that does not match any declarations from
the base class.

-Wsynth (C++ only)
Warn when g++’s synthesis behavior does not match that of
cfront. For instance:

struct A {
operator int ();
A& operator = (int);

};

main ()
{

A a,b;
a = b;

c y g n u s s u p p o r t 47

Using GNU CC

}

In this example, g++ will synthesize a default ‘A& operator
= (const A&);’, while cfront will use the user-defined
‘operator =’.

-Werror Make all warnings into errors.

4.7 Options for Debugging Your Program or GNU
CC

GNU CC has various special options that are used for debugging
either your program or GCC:

-g Produce debugging information in the operating system’s na-
tive format (stabs, COFF, XCOFF, or DWARF). GDB can
work with this debugging information.
On most systems that use stabs format, ‘-g’ enables use of
extra debugging information that only GDB can use; this
extra information makes debugging work better in GDB but
will probably make other debuggers crash or refuse to read
the program. If you want to control for certain whether to
generate the extra information, use ‘-gstabs+’, ‘-gstabs’,
‘-gxcoff+’, ‘-gxcoff’, ‘-gdwarf+’, or ‘-gdwarf’ (see below).
Unlike most other C compilers, GNU CC allows you to use
‘-g’ with ‘-O’. The shortcuts taken by optimized code may
occasionally produce surprising results: some variables you
declared may not exist at all; flow of control may briefly
move where you did not expect it; some statements may not
be executed because they compute constant results or their
values were already at hand; some statements may execute
in different places because they were moved out of loops.
Nevertheless it proves possible to debug optimized output.
This makes it reasonable to use the optimizer for programs
that might have bugs.
The following options are useful when GNU CC is generated
with the capability for more than one debugging format.

-ggdb Produce debugging information in the native format (if that
is supported), including GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is
supported), without GDB extensions. This is the format used
by DBX on most BSD systems. On MIPS, Alpha and System
V Release 4 systems this option produces stabs debugging

48 17 January 1996

Chapter 4: GNU CC Command Options

output which is not understood by DBX or SDB. On System
V Release 4 systems this option requires the GNU assembler.

-gstabs+ Produce debugging information in stabs format (if that is
supported), using GNU extensions understood only by the
GNU debugger (GDB). The use of these extensions is likely
to make other debuggers crash or refuse to read the program.

-gcoff Produce debugging information in COFF format (if that is
supported). This is the format used by SDB on most System
V systems prior to System V Release 4.

-gxcoff Produce debugging information in XCOFF format (if that is
supported). This is the format used by the DBX debugger on
IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that
is supported), using GNU extensions understood only by the
GNU debugger (GDB). The use of these extensions is likely to
make other debuggers crash or refuse to read the program,
and may cause assemblers other than the GNU assembler
(GAS) to fail with an error.

-gdwarf Produce debugging information in DWARF format (if that is
supported). This is the format used by SDB on most System
V Release 4 systems.

-gdwarf+ Produce debugging information in DWARF format (if that is
supported), using GNU extensions understood only by the
GNU debugger (GDB). The use of these extensions is likely
to make other debuggers crash or refuse to read the program.

-glevel
-ggdblevel
-gstabslevel
-gcofflevel
-gxcofflevel
-gdwarflevel

Request debugging information and also use level to specify
how much information. The default level is 2.
Level 1 produces minimal information, enough for making
backtraces in parts of the program that you don’t plan to
debug. This includes descriptions of functions and external
variables, but no information about local variables and no
line numbers.
Level 3 includes extra information, such as all the macro
definitions present in the program. Some debuggers support
macro expansion when you use ‘-g3’.

c y g n u s s u p p o r t 49

Using GNU CC

-p Generate extra code to write profile information suitable for
the analysis program prof. You must use this option when
compiling the source files you want data about, and you must
also use it when linking.

-pg Generate extra code to write profile information suitable for
the analysis program gprof. You must use this option when
compiling the source files you want data about, and you must
also use it when linking.

-a Generate extra code to write profile information for basic
blocks, which will record the number of times each basic block
is executed, the basic block start address, and the function
name containing the basic block. If ‘-g’ is used, the line
number and filename of the start of the basic block will also
be recorded. If not overridden by the machine description,
the default action is to append to the text file ‘bb.out’.
This data could be analyzed by a program like tcov. Note,
however, that the format of the data is not what tcov expects.
Eventually GNU gprof should be extended to process this
data.

-fprofile-arcs
Instrument arcs during compilation. For each function of
your program, GNU CC creates a program flow graph, then
finds a spanning tree for the graph. Only arcs that are not
on the spanning tree have to be instrumented: the compiler
adds code to count the number of times that these arcs are
executed. When an arc is the only exit or only entrance to
a block, the instrumentation code can be added to the block;
otherwise, a new basic block must be created to hold the
instrumentation code.
Since not every arc in the program must be instrumented,
programs compiled with this option run faster than programs
compiled with ‘-a’, which adds instrumentation code to every
basic block in the program. The tradeoff: since gcov does not
have execution counts for all branches, it must start with the
execution counts for the instrumented branches, and then
iterate over the program flow graph until the entire graph
has been solved. Hence, gcov runs a little more slowly than
a program which uses information from ‘-a’.
‘-fprofile-arcs’ also makes it possible to estimate branch
probabilities, and to calculate basic block execution counts.
In general, basic block execution counts do not give enough
information to estimate all branch probabilities. When the
compiled program exits, it saves the arc execution counts

50 17 January 1996

Chapter 4: GNU CC Command Options

to a file called ‘sourcename.da’. Use the compiler option
‘-fbranch-probabilities’ (see Section 4.8 “Options that
Control Optimization,” page 53) when recompiling, to op-
timize using estimated branch probabilities.

-ftest-coverage
Create data files for the gcov code-coverage utility (see Chap-
ter 8 “gcov: a GNU CC Test Coverage Program,” page 205).
The data file names begin with the name of your source file:

sourcename.bb
A mapping from basic blocks to line numbers,
which gcov uses to associate basic block execu-
tion counts with line numbers.

sourcename.bbg
A list of all arcs in the program flow graph.
This allows gcov to reconstruct the program flow
graph, so that it can compute all basic block and
arc execution counts from the information in the
sourcename.da file (this last file is the output
from ‘-fprofile-arcs’).

-dletters
Says to make debugging dumps during compilation at times
specified by letters. This is used for debugging the com-
piler. The file names for most of the dumps are made by
appending a word to the source file name (e.g. ‘foo.c.rtl’
or ‘foo.c.jump’). Here are the possible letters for use in
letters, and their meanings:

‘M’ Dump all macro definitions, at the end of prepro-
cessing, and write no output.

‘N’ Dump all macro names, at the end of preprocess-
ing.

‘D’ Dump all macro definitions, at the end of prepro-
cessing, in addition to normal output.

‘y’ Dump debugging information during parsing, to
standard error.

‘r’ Dump after RTL generation, to ‘file.rtl’.

‘x’ Just generate RTL for a function instead of com-
piling it. Usually used with ‘r’.

‘j’ Dump after the first jump optimization, to
‘file.jump’.

c y g n u s s u p p o r t 51

Using GNU CC

‘s’ Dump after CSE (including the jump optimiza-
tion that sometimes follows CSE), to ‘file.cse’.

‘L’ Dump after loop optimization, to ‘file.loop’.

‘t’ Dump after the second CSE pass (including the
jump optimization that sometimes follows CSE),
to ‘file.cse2’.

‘f’ Dump after flow analysis, to ‘file.flow’.

‘c’ Dump after instruction combination, to the file
‘file.combine’.

‘S’ Dump after the first instruction scheduling pass,
to ‘file.sched’.

‘l’ Dump after local register allocation, to
‘file.lreg’.

‘g’ Dump after global register allocation, to
‘file.greg’.

‘R’ Dump after the second instruction scheduling
pass, to ‘file.sched2’.

‘J’ Dump after the last jump optimization, to
‘file.jump2’.

‘d’ Dump after delayed branch scheduling, to
‘file.dbr’.

‘k’ Dump after conversion from registers to stack, to
‘file.stack’.

‘a’ Produce all the dumps listed above.

‘m’ Print statistics on memory usage, at the end of
the run, to standard error.

‘p’ Annotate the assembler output with a comment
indicating which pattern and alternative was
used.

-fpretend-float
When running a cross-compiler, pretend that the target ma-
chine uses the same floating point format as the host ma-
chine. This causes incorrect output of the actual floating
constants, but the actual instruction sequence will probably
be the same as GNU CC would make when running on the
target machine.

52 17 January 1996

Chapter 4: GNU CC Command Options

-save-temps
Store the usual “temporary” intermediate files permanently;
place them in the current directory and name them based
on the source file. Thus, compiling ‘foo.c’ with ‘-c
-save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well
as ‘foo.o’.

-print-file-name=library
Print the full absolute name of the library file library that
would be used when linking—and don’t do anything else.
With this option, GNU CC does not compile or link anything;
it just prints the file name.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such
as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’
but you do want to link with ‘libgcc.a’. You can do

gcc -nostdlib files. .. ‘gcc -print-libgcc-file-name‘

-print-search-dirs
Print the name of the configured installation directory and a
list of program and library directories gcc will search—and
don’t do anything else.
This is useful when gcc prints the error message
‘installation problem, cannot exec cpp: No such file or
directory’. To resolve this you either need to put ‘cpp’ and
the other compiler components where gcc expects to find
them, or you can set the environment variable GCC_EXEC_
PREFIX to the directory where you installed them. Don’t
forget the trailing ’/’. See Section 4.16 “Environment Vari-
ables,” page 102.

4.8 Options That Control Optimization

These options control various sorts of optimizations:

-O
-O1 Optimize. Optimizing compilation takes somewhat more

time, and a lot more memory for a large function.
Without ‘-O’, the compiler’s goal is to reduce the cost of compi-
lation and to make debugging produce the expected results.
Statements are independent: if you stop the program with a

c y g n u s s u p p o r t 53

Using GNU CC

breakpoint between statements, you can then assign a new
value to any variable or change the program counter to any
other statement in the function and get exactly the results
you would expect from the source code.
Without ‘-O’, the compiler only allocates variables declared
register in registers. The resulting compiled code is a little
worse than produced by PCC without ‘-O’.
With ‘-O’, the compiler tries to reduce code size and execution
time.
When you specify ‘-O’, the compiler turns on ‘-fthread-jumps’
and ‘-fdefer-pop’ on all machines. The compiler turns on
‘-fdelayed-branch’ on machines that have delay slots, and
‘-fomit-frame-pointer’ on machines that can support de-
bugging even without a frame pointer. On some machines
the compiler also turns on other flags.

-O2 Optimize even more. GNU CC performs nearly all supported
optimizations that do not involve a space-speed tradeoff. The
compiler does not perform loop unrolling or function inlining
when you specify ‘-O2’. As compared to ‘-O’, this option in-
creases both compilation time and the performance of the
generated code.
‘-O2’ turns on all optional optimizations except for loop un-
rolling function inlining, life shortening, and static variable
optimizations. It also turns on frame pointer elimination on
machines where doing so does not interfere with debugging.

-O3 Optimize yet more. ‘-O3’ turns on all optimizations specified
by ‘-O2’ and also turns on the ‘inline-functions’ option.

-O0 Do not optimize.
If you use multiple ‘-O’ options, with or without level num-
bers, the last such option is the one that is effective.

Options of the form ‘-fflag ’ specify machine-independent flags. Most
flags have both positive and negative forms; the negative form of ‘-ffoo’
would be ‘-fno-foo’. In the table below, only one of the forms is listed—
the one which is not the default. You can figure out the other form by
either removing ‘no-’ or adding it.

-ffloat-store
Do not store floating point variables in registers, and inhibit
other options that might change whether a floating point
value is taken from a register or memory.
This option prevents undesirable excess precision on ma-
chines such as the 68000 where the floating registers (of

54 17 January 1996

Chapter 4: GNU CC Command Options

the 68881) keep more precision than a double is supposed
to have. For most programs, the excess precision does only
good, but a few programs rely on the precise definition of
IEEE floating point. Use ‘-ffloat-store’ for such programs.

-fno-default-inline
Do not make member functions inline by default merely be-
cause they are defined inside the class scope (C++ only). Oth-
erwise, when you specify ‘-O’, member functions defined in-
side class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as
that function returns. For machines which must pop argu-
ments after a function call, the compiler normally lets argu-
ments accumulate on the stack for several function calls and
pops them all at once.

-fforce-mem
Force memory operands to be copied into registers before do-
ing arithmetic on them. This produces better code by mak-
ing all memory references potential common subexpressions.
When they are not common subexpressions, instruction com-
bination should eliminate the separate register-load. The
‘-O2’ option turns on this option.

-fforce-addr
Force memory address constants to be copied into registers
before doing arithmetic on them. This may produce better
code just as ‘-fforce-mem’ may.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that
don’t need one. This avoids the instructions to save, set up
and restore frame pointers; it also makes an extra register
available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the Vax, this flag has no ef-
fect, because the standard calling sequence automatically
handles the frame pointer and nothing is saved by pretend-
ing it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine sup-
ports this flag. See section “Register Usage” in Using and
Porting GCC.

c y g n u s s u p p o r t 55

Using GNU CC

-fno-inline
Don’t pay attention to the inline keyword. Normally this
option is used to keep the compiler from expanding any func-
tions inline. Note that if you are not optimizing, no functions
can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler
heuristically decides which functions are simple enough to be
worth integrating in this way.
If all calls to a given function are integrated, and the function
is declared static, then the function is normally not output
as assembler code in its own right.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the
function is declared static, nevertheless output a separate
run-time callable version of the function.

-fno-function-cse
Do not put function addresses in registers; make each in-
struction that calls a constant function contain the function’s
address explicitly.
This option results in less efficient code, but some strange
hacks that alter the assembler output may be confused by
the optimizations performed when this option is not used.

-ffast-math
This option allows GCC to violate some ANSI or IEEE rules
and/or specifications in the interest of optimizing code for
speed. For example, it allows the compiler to assume argu-
ments to the sqrt function are non-negative numbers and
that no floating-point values are NaNs.
This option should never be turned on by any ‘-O’ op-
tion since it can result in incorrect output for programs
which depend on an exact implementation of IEEE or ANSI
rules/specifications for math functions.

The following options control specific optimizations. The ‘-O2’ op-
tion turns on all of these optimizations except ‘-funroll-loops’ and
‘-funroll-all-loops’. On most machines, the ‘-O’ option turns on
the ‘-fthread-jumps’ and ‘-fdelayed-branch’ options, but specific ma-
chines may handle it differently.

You can use the following flags in the rare cases when “fine-tuning”
of optimizations to be performed is desired.

56 17 January 1996

Chapter 4: GNU CC Command Options

-fstrength-reduce
Perform the optimizations of loop strength reduction and
elimination of iteration variables.

-fthread-jumps
Perform optimizations where we check to see if a jump
branches to a location where another comparison subsumed
by the first is found. If so, the first branch is redirected to
either the destination of the second branch or a point imme-
diately following it, depending on whether the condition is
known to be true or false.

-fcse-follow-jumps
In common subexpression elimination, scan through jump
instructions when the target of the jump is not reached by
any other path. For example, when CSE encounters an if
statement with an else clause, CSE will follow the jump
when the condition tested is false.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to
follow jumps which conditionally skip over blocks. When
CSE encounters a simple if statement with no else clause,
‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

-frerun-cse-after-loop
Re-run common subexpression elimination after loop opti-
mizations has been performed.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively
expensive.

-fdelayed-branch
If supported for the target machine, attempt to reorder in-
structions to exploit instruction slots available after delayed
branch instructions.

-fschedule-insns
If supported for the target machine, attempt to reorder in-
structions to eliminate execution stalls due to required data
being unavailable. This helps machines that have slow float-
ing point or memory load instructions by allowing other in-
structions to be issued until the result of the load or floating
point instruction is required.

-fschedule-insns2
Similar to ‘-fschedule-insns’, but requests an additional
pass of instruction scheduling after register allocation has

c y g n u s s u p p o r t 57

Using GNU CC

been done. This is especially useful on machines with a
relatively small number of registers and where memory load
instructions take more than one cycle.

-fshorten-lifetimes
Shorten lifetimes of pseudo registers which must be allocated
into specific hard registers. On some machines this avoids
spilling those specific hard registers and improves code.

-fcombine-statics
Combine static variables into a single block to allow the com-
piler to eliminate redundant address loads.

-fcaller-saves
Enable values to be allocated in registers that will be clob-
bered by function calls, by emitting extra instructions to save
and restore the registers around such calls. Such allocation
is done only when it seems to result in better code than would
otherwise be produced.

This option is enabled by default on certain machines, usu-
ally those which have no call-preserved registers to use in-
stead.

-funroll-loops
Perform the optimization of loop unrolling. This is only done
for loops whose number of iterations can be determined at
compile time or run time. ‘-funroll-loop’ implies both
‘-fstrength-reduce’ and ‘-frerun-cse-after-loop’.

-funroll-all-loops
Perform the optimization of loop unrolling. This is done
for all loops and usually makes programs run more slowly.
‘-funroll-all-loops’ implies ‘-fstrength-reduce’ as well
as ‘-frerun-cse-after-loop’.

-fno-peephole
Disable any machine-specific peephole optimizations.

-fbranch-probabilities
After running a program compiled with ‘-fprofile-arcs’
(see Section 4.7 “Options for Debugging Your Program or
gcc,” page 48), you can compile it a second time using
‘-fbranch-probabilities’, to improve optimizations based
on guessing the path a branch might take.

58 17 January 1996

Chapter 4: GNU CC Command Options

4.9 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C
source file before actual compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some
of these options make sense only together with ‘-E’ because they cause
the preprocessor output to be unsuitable for actual compilation.

-include file
Process file as input before processing the regular input
file. In effect, the contents of file are compiled first. Any ‘-D’
and ‘-U’ options on the command line are always processed
before ‘-include file’, regardless of the order in which they
are written. All the ‘-include’ and ‘-imacros’ options are
processed in the order in which they are written.

-imacros file
Process file as input, discarding the resulting output, before
processing the regular input file. Because the output gener-
ated from file is discarded, the only effect of ‘-imacros file’
is to make the macros defined in file available for use in the
main input.
Any ‘-D’ and ‘-U’ options on the command line are always
processed before ‘-imacros file’, regardless of the order in
which they are written. All the ‘-include’ and ‘-imacros’
options are processed in the order in which they are written.

-idirafter dir
Add the directory dir to the second include path. The direc-
tories on the second include path are searched when a header
file is not found in any of the directories in the main include
path (the one that ‘-I’ adds to).

-iprefix prefix
Specify prefix as the prefix for subsequent ‘-iwithprefix’
options.

-iwithprefix dir
Add a directory to the second include path. The directory’s
name is made by concatenating prefix and dir, where pre-
fix was specified previously with ‘-iprefix’. If you have not
specified a prefix yet, the directory containing the installed
passes of the compiler is used as the default.

-iwithprefixbefore dir
Add a directory to the main include path. The directory’s
name is made by concatenating prefix and dir, as in the
case of ‘-iwithprefix’.

c y g n u s s u p p o r t 59

Using GNU CC

-isystem dir
Add a directory to the beginning of the second include path,
marking it as a system directory, so that it gets the same
special treatment as is applied to the standard system direc-
tories.

-nostdinc
Do not search the standard system directories for header
files. Only the directories you have specified with ‘-I’ options
(and the current directory, if appropriate) are searched. See
Section 4.12 “Directory Options,” page 64, for information on
‘-I’.
By using both ‘-nostdinc’ and ‘-I-’, you can limit the
include-file search path to only those directories you spec-
ify explicitly.

-undef Do not predefine any nonstandard macros. (Including archi-
tecture flags).

-E Run only the C preprocessor. Preprocess all the C source files
specified and output the results to standard output or to the
specified output file.

-C Tell the preprocessor not to discard comments. Used with
the ‘-E’ option.

-P Tell the preprocessor not to generate ‘#line’ directives. Used
with the ‘-E’ option.

-M Tell the preprocessor to output a rule suitable for make de-
scribing the dependencies of each object file. For each source
file, the preprocessor outputs one make-rule whose target is
the object file name for that source file and whose dependen-
cies are all the #include header files it uses. This rule may
be a single line or may be continued with ‘\’-newline if it is
long. The list of rules is printed on standard output instead
of the preprocessed C program.
‘-M’ implies ‘-E’.
Another way to specify output of a make rule is by setting
the environment variable DEPENDENCIES_OUTPUT (see Sec-
tion 4.16 “Environment Variables,” page 102).

-MM Like ‘-M’ but the output mentions only the user header files
included with ‘#include "file"’. System header files in-
cluded with ‘#include <file>’ are omitted.

-MD Like ‘-M’ but the dependency information is written to a file
made by replacing ".c" with ".d" at the end of the input file

60 17 January 1996

Chapter 4: GNU CC Command Options

names. This is in addition to compiling the file as specified—
‘-MD’ does not inhibit ordinary compilation the way ‘-M’ does.
In Mach, you can use the utility md to merge multiple depen-
dency files into a single dependency file suitable for using
with the ‘make’ command.

-MMD Like ‘-MD’ except mention only user header files, not system
header files.

-MG Treat missing header files as generated files and assume they
live in the same directory as the source file. If you specify
‘-MG’, you must also specify either ‘-M’ or ‘-MM’. ‘-MG’ is not
supported with ‘-MD’ or ‘-MMD’.

-H Print the name of each header file used, in addition to other
normal activities.

-Aquestion(answer)
Assert the answer answer for question, in case it is
tested with a preprocessing conditional such as ‘#if #ques-
tion(answer)’. ‘-A-’ disables the standard assertions that
normally describe the target machine.

-Dmacro Define macro macro with the string ‘1’ as its definition.

-Dmacro=defn
Define macro macro as defn. All instances of ‘-D’ on the
command line are processed before any ‘-U’ options.

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’
options, but before any ‘-include’ and ‘-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro defi-
nitions that are in effect at the end of preprocessing. Used
with the ‘-E’ option.

-dD Tell the preprocessing to pass all macro definitions into the
output, in their proper sequence in the rest of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are
omitted. Only ‘#define name’ is included in the output.

-trigraphs
Support ANSI C trigraphs. The ‘-ansi’ option also has this
effect.

-Wp,option
Pass option as an option to the preprocessor. If option con-
tains commas, it is split into multiple options at the commas.

c y g n u s s u p p o r t 61

Using GNU CC

4.10 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains
commas, it is split into multiple options at the commas.

4.11 Options for Linking

These options come into play when the compiler links object files into
an executable output file. They are meaningless if the compiler is not
doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is
considered to name an object file or library. (Object files are
distinguished from libraries by the linker according to the
file contents.) If linking is done, these object files are used as
input to the linker.

-c
-S
-E If any of these options is used, then the linker is not run,

and object file names should not be used as arguments. See
Section 4.2 “Overall Options,” page 28.

-llibrary
Search the library named library when linking.
It makes a difference where in the command you write this
option; the linker searches processes libraries and object
files in the order they are specified. Thus, ‘foo.o -lz bar.o’
searches library ‘z’ after file ‘foo.o’ but before ‘bar.o’. If
‘bar.o’ refers to functions in ‘z’, those functions may not be
loaded.
The linker searches a standard list of directories for the li-
brary, which is actually a file named ‘liblibrary.a’. The
linker then uses this file as if it had been specified precisely
by name.
The directories searched include several standard system
directories plus any that you specify with ‘-L’.
Normally the files found this way are library files—archive
files whose members are object files. The linker handles an
archive file by scanning through it for members which define
symbols that have so far been referenced but not defined. But

62 17 January 1996

Chapter 4: GNU CC Command Options

if the file that is found is an ordinary object file, it is linked
in the usual fashion. The only difference between using an
‘-l’ option and specifying a file name is that ‘-l’ surrounds
library with ‘lib’ and ‘.a’ and searches several directories.

-lobjc You need this special case of the ‘-l’ option in order to link
an Objective C program.

-nostartfiles
Do not use the standard system startup files when linking.
The standard system libraries are used normally, unless -
nostdlib or -nodefaultlibs is used.

-nodefaultlibs
Do not use the standard system libraries when linking.
Only the libraries you specify will be passed to the linker.
The standard startup files are used normally, unless -
nostartfiles is used.

-nostdlib
Do not use the standard system startup files or libraries when
linking. No startup files and only the libraries you specify
will be passed to the linker.
One of the standard libraries bypassed by ‘-nostdlib’ and
‘-nodefaultlibs’ is ‘libgcc.a’, a library of internal subrou-
tines that GNU CC uses to overcome shortcomings of par-
ticular machines, or special needs for some languages. (See
section “Interfacing to GNU CC Output” in Porting GNU CC,
for more discussion of ‘libgcc.a’.) In most cases, you need
‘libgcc.a’ even when you want to avoid other standard li-
braries. In other words, when you specify ‘-nostdlib’ or
‘-nodefaultlibs’ you should usually specify ‘-lgcc’ as well.
This ensures that you have no unresolved references to in-
ternal GNU CC library subroutines. (For example, ‘__main’,
used to ensure C++ constructors will be called; see Section 5.6
“collect2,” page 141.)

-s Remove all symbol table and relocation information from the
executable.

-static On systems that support dynamic linking, this prevents link-
ing with the shared libraries. On other systems, this option
has no effect.

-shared Produce a shared object which can then be linked with other
objects to form an executable. Only a few systems support
this option.

c y g n u s s u p p o r t 63

Using GNU CC

-symbolic
Bind references to global symbols when building a shared ob-
ject. Warn about any unresolved references (unless overrid-
den by the link editor option ‘-Xlinker -z -Xlinker defs’).
Only a few systems support this option.

-Xlinker option
Pass option as an option to the linker. You can use this to
supply system-specific linker options which GNU CC does
not know how to recognize.
If you want to pass an option that takes an argument, you
must use ‘-Xlinker’ twice, once for the option and once for
the argument. For example, to pass ‘-assert definitions’,
you must write ‘-Xlinker -assert -Xlinker definitions’.
It does not work to write ‘-Xlinker "-assert definitions"’,
because this passes the entire string as a single argument,
which is not what the linker expects.

-Wl,option
Pass option as an option to the linker. If option contains
commas, it is split into multiple options at the commas.

-u symbol
Pretend the symbol symbol is undefined, to force linking of
library modules to define it. You can use ‘-u’ multiple times
with different symbols to force loading of additional library
modules.

4.12 Options for Directory Search

These options specify directories to search for header files, for li-
braries and for parts of the compiler:

-Idir Add the directory directory to the head of the list of direc-
tories to be searched for header files. This can be used to
override a system header file, substituting your own version,
since these directories are searched before the system header
file directories. If you use more than one ‘-I’ option, the direc-
tories are scanned in left-to-right order; the standard system
directories come after.

-I- Any directories you specify with ‘-I’ options before the ‘-I-’
option are searched only for the case of ‘#include "file"’;
they are not searched for ‘#include <file>’.
If additional directories are specified with ‘-I’ options after
the ‘-I-’, these directories are searched for all ‘#include’
directives. (Ordinarily all ‘-I’ directories are used this way.)

64 17 January 1996

Chapter 4: GNU CC Command Options

In addition, the ‘-I-’ option inhibits the use of the current
directory (where the current input file came from) as the first
search directory for ‘#include "file"’. There is no way to
override this effect of ‘-I-’. With ‘-I.’ you can specify search-
ing the directory which was current when the compiler was
invoked. That is not exactly the same as what the preproces-
sor does by default, but it is often satisfactory.

‘-I-’ does not inhibit the use of the standard system direc-
tories for header files. Thus, ‘-I-’ and ‘-nostdinc’ are inde-
pendent.

-Ldir Add directory dir to the list of directories to be searched for
‘-l’.

-Bprefix This option specifies where to find the executables, libraries,
include files, and data files of the compiler itself.

The compiler driver program runs one or more of the sub-
programs ‘cpp’, ‘cc1’, ‘as’ and ‘ld’. It tries prefix as a pre-
fix for each program it tries to run, both with and with-
out ‘machine/version/’ (see Section 4.13 “Target Options,”
page 66).

For each subprogram to be run, the compiler driver first
tries the ‘-B’ prefix, if any. If that name is not found, or if
‘-B’ was not specified, the driver tries two standard prefixes,
which are ‘/usr/lib/gcc/’ and ‘/usr/local/lib/gcc-lib/’.
If neither of those results in a file name that is found, the un-
modified program name is searched for using the directories
specified in your ‘PATH’ environment variable.

‘-B’ prefixes that effectively specify directory names also ap-
ply to libraries in the linker, because the compiler translates
these options into ‘-L’ options for the linker. They also ap-
ply to includes files in the preprocessor, because the compiler
translates these options into ‘-isystem’ options for the pre-
processor. In this case, the compiler appends ‘include’ to the
prefix.

The run-time support file ‘libgcc.a’ can also be searched for
using the ‘-B’ prefix, if needed. If it is not found there, the
two standard prefixes above are tried, and that is all. The
file is left out of the link if it is not found by those means.

Another way to specify a prefix much like the ‘-B’ prefix is
to use the environment variable GCC_EXEC_PREFIX. See Sec-
tion 4.16 “Environment Variables,” page 102.

c y g n u s s u p p o r t 65

Using GNU CC

4.13 Specifying Target Machine and Compiler
Version

By default, GNU CC compiles code for the same type of machine that
you are using. However, it can also be installed as a cross-compiler,
to compile for some other type of machine. In fact, several different
configurations of GNU CC, for different target machines, can be installed
side by side. Then you specify which one to use with the ‘-b’ option.

In addition, older and newer versions of GNU CC can be installed
side by side. One of them (probably the newest) will be the default, but
you may sometimes wish to use another.

-b machine
The argument machine specifies the target machine for com-
pilation. This is useful when you have installed GNU CC as
a cross-compiler.
The value to use for machine is the same as was specified
as the machine type when configuring GNU CC as a cross-
compiler. For example, if a cross-compiler was configured
with ‘configure i386v’, meaning to compile for an 80386
running System V, then you would specify ‘-b i386v’ to run
that cross compiler.
When you do not specify ‘-b’, it normally means to compile
for the same type of machine that you are using.

-V version
The argument version specifies which version of GNU CC
to run. This is useful when multiple versions are installed.
For example, version might be ‘2.0’, meaning to run GNU
CC version 2.0.
The default version, when you do not specify ‘-V’, is the last
version of GNU CC that you installed.

The ‘-b’ and ‘-V’ options actually work by controlling part of the file
name used for the executable files and libraries used for compilation. A
given version of GNU CC, for a given target machine, is normally kept
in the directory ‘/usr/local/lib/gcc-lib/machine/version’.

Thus, sites can customize the effect of ‘-b’ or ‘-V’ either by changing
the names of these directories or adding alternate names (or symbolic
links). If in directory ‘/usr/local/lib/gcc-lib/’ the file ‘80386’ is a
link to the file ‘i386v’, then ‘-b 80386’ becomes an alias for ‘-b i386v’.

In one respect, the ‘-b’ or ‘-V’ do not completely change to a different
compiler: the top-level driver program gcc that you originally invoked
continues to run and invoke the other executables (preprocessor, com-
piler per se, assembler and linker) that do the real work. However, since

66 17 January 1996

Chapter 4: GNU CC Command Options

no real work is done in the driver program, it usually does not matter
that the driver program in use is not the one for the specified target and
version.

The only way that the driver program depends on the target machine
is in the parsing and handling of special machine-specific options. How-
ever, this is controlled by a file which is found, along with the other ex-
ecutables, in the directory for the specified version and target machine.
As a result, a single installed driver program adapts to any specified
target machine and compiler version.

The driver program executable does control one significant thing,
however: the default version and target machine. Therefore, you can
install different instances of the driver program, compiled for different
targets or versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and
that for version 2.1 is installed as gcc, then the command gcc will use
version 2.1 by default, while ogcc will use 2.0 by default. However, you
can choose either version with either command with the ‘-V’ option.

4.14 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among
different installed compilers for completely different target machines,
such as Vax vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own spe-
cial options, starting with ‘-m’, to choose among various hardware models
or configurations—for example, 68010 vs 68020, floating coprocessor or
none. A single installed version of the compiler can compile for any
model or configuration, according to the options specified.

Some configurations of the compiler also support additional special
options, usually for compatibility with other compilers on the same plat-
form.

4.14.1 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default
values for these options depends on which style of 68000 was selected
when the compiler was configured; the defaults for the most common
choices are given below.

-m68000
-mc68000 Generate output for a 68000. This is the default when the

compiler is configured for 68000-based systems.

c y g n u s s u p p o r t 67

Using GNU CC

-m68020
-mc68020 Generate output for a 68020. This is the default when the

compiler is configured for 68020-based systems.

-m68881 Generate output containing 68881 instructions for floating
point. This is the default for most 68020 systems unless
‘-nfp’ was specified when the compiler was configured.

-m68030 Generate output for a 68030. This is the default when the
compiler is configured for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the
compiler is configured for 68040-based systems.
This option inhibits the use of 68881/68882 instructions that
have to be emulated by software on the 68040. If your
68040 does not have code to emulate those instructions, use
‘-m68040’.

-m68020-40
Generate output for a 68040, without using any of the new
instructions. This results in code which can run relatively
efficiently on either a 68020/68881 or a 68030 or a 68040.
The generated code does use the 68881 instructions that are
emulated on the 68040.

-mfpa Generate output containing Sun FPA instructions for floating
point.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all
m68k targets. Normally the facilities of the machine’s usual
C compiler are used, but this can’t be done directly in cross-
compilation. You must make your own arrangements to pro-
vide suitable library functions for cross-compilation. The
embedded targets ‘m68k-*-aout’ and ‘m68k-*-coff’ do pro-
vide software floating point support.

-mshort Consider type int to be 16 bits wide, like short int.

-mnobitfield
Do not use the bit-field instructions. The ‘-m68000’ option
implies ‘-mnobitfield’.

-mbitfield
Do use the bit-field instructions. The ‘-m68020’ option implies
‘-mbitfield’. This is the default if you use a configuration
designed for a 68020.

68 17 January 1996

Chapter 4: GNU CC Command Options

-mrtd Use a different function-calling convention, in which func-
tions that take a fixed number of arguments return with the
rtd instruction, which pops their arguments while return-
ing. This saves one instruction in the caller since there is no
need to pop the arguments there.
This calling convention is incompatible with the one normally
used on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.
Also, you must provide function prototypes for all functions
that take variable numbers of arguments (including printf);
otherwise incorrect code will be generated for calls to those
functions.
In addition, seriously incorrect code will result if you call a
function with too many arguments. (Normally, extra argu-
ments are harmlessly ignored.)
The rtd instruction is supported by the 68010 and 68020
processors, but not by the 68000.

4.14.2 VAX Options

These ‘-m’ options are defined for the Vax:

-munix Do not output certain jump instructions (aobleq and so on)
that the Unix assembler for the Vax cannot handle across
long ranges.

-mgnu Do output those jump instructions, on the assumption that
you will assemble with the GNU assembler.

-mg Output code for g-format floating point numbers instead of
d-format.

4.14.3 SPARC Options

These ‘-m’ switches are supported on the SPARC:

-mno-app-regs
-mapp-regs

Specify ‘-mapp-regs’ to generate output using the global reg-
isters 2 through 4, which the SPARC SVR4 ABI reserves for
applications. This is the default.
To be fully SVR4 ABI compliant at the cost of some per-
formance loss, specify ‘-mno-app-regs’. You should compile
libraries and system software with this option.

c y g n u s s u p p o r t 69

Using GNU CC

-mfpu
-mhard-float

Generate output containing floating point instructions. This
is the default.

-mno-fpu
-msoft-float

Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all
SPARC targets. Normally the facilities of the machine’s
usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements
to provide suitable library functions for cross-compilation.
The embedded targets ‘sparc-*-aout’ and ‘sparclite-*-*’
do provide software floating point support.
‘-msoft-float’ changes the calling convention in the out-
put file; therefore, it is only useful if you compile all of a
program with this option. In particular, you need to com-
pile ‘libgcc.a’, the library that comes with GNU CC, with
‘-msoft-float’ in order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating
point instructions.

-msoft-quad-float
Generate output containing library calls for quad-word (long
double) floating point instructions. The functions called are
those specified in the SPARC ABI. This is the default.
As of this writing, there are no sparc implementations that
have hardware support for the quad-word floating point in-
structions. They all invoke a trap handler for one of these
instructions, and then the trap handler emulates the effect of
the instruction. Because of the trap handler overhead, this
is much slower than calling the ABI library routines. Thus
the ‘-msoft-quad-float’ option is the default.

-mno-epilogue
-mepilogue

With ‘-mepilogue’ (the default), the compiler always emits
code for function exit at the end of each function. Any func-
tion exit in the middle of the function (such as a return state-
ment in C) will generate a jump to the exit code at the end of
the function.
With ‘-mno-epilogue’, the compiler tries to emit exit code
inline at every function exit.

70 17 January 1996

Chapter 4: GNU CC Command Options

-mno-flat
-mflat With ‘-mflat’, the compiler does not generate save/restore

instructions and will use a "flat" or single register window
calling convention. This model uses %i7 as the frame pointer
and is compatible with the normal register window model.
Code from either may be intermixed although debugger sup-
port is still incomplete. The local registers and the input
registers (0-5) are still treated as "call saved" registers and
will be saved on the stack as necessary.
With ‘-mno-flat’ (the default), the compiler emits
save/restore instructions (except for leaf functions) and is
the normal mode of operation.

-mno-unaligned-doubles
-munaligned-doubles

Assume that doubles have 8 byte alignment. This is the
default.
With ‘-munaligned-doubles’, GNU CC assumes that dou-
bles have 8 byte alignment only if they are contained in an-
other type, or if they have an absolute address. Otherwise, it
assumes they have 4 byte alignment. Specifying this option
avoids some rare compatibility problems with code generated
by other compilers. It is not the default because it results in
a performance loss, especially for floating point code.

-mv8
-msparclite

These two options select variations on the SPARC architec-
ture.
By default (unless specifically configured for the Fujitsu
SPARClite), GCC generates code for the v7 variant of the
SPARC architecture.
‘-mv8’ will give you SPARC v8 code. The only difference from
v7 code is that the compiler emits the integer multiply and
integer divide instructions which exist in SPARC v8 but not
in SPARC v7.
‘-msparclite’ will give you SPARClite code. This adds the
integer multiply, integer divide step and scan (ffs) instruc-
tions which exist in SPARClite but not in SPARC v7.

-mcypress
-msupersparc

These two options select the processor for which the code is
optimised.

c y g n u s s u p p o r t 71

Using GNU CC

With ‘-mcypress’ (the default), the compiler optimizes code
for the Cypress CY7C602 chip, as used in the SparcSta-
tion/SparcServer 3xx series. This is also appropriate for the
older SparcStation 1, 2, IPX etc.
With ‘-msupersparc’ the compiler optimizes code for the Su-
perSparc cpu, as used in the SparcStation 10, 1000 and 2000
series. This flag also enables use of the full SPARC v8 in-
struction set.

In a future version of GCC, these options will very likely be renamed
to ‘-mcpu=cypress’ and ‘-mcpu=supersparc’.

These ‘-m’ switches are supported in addition to the above on SPARC
V9 processors:

-mmedlow Generate code for the Medium/Low code model: assume a 32
bit address space. Programs are statically linked, PIC is not
supported. Pointers are still 64 bits.
It is very likely that a future version of GCC will rename this
option.

-mmedany Generate code for the Medium/Anywhere code model: as-
sume a 32 bit text segment starting at offset 0, and a 32 bit
data segment starting anywhere (determined at link time).
Programs are statically linked, PIC is not supported. Point-
ers are still 64 bits.
It is very likely that a future version of GCC will rename this
option.

-mint64 Types long and int are 64 bits.
-mlong32 Types long and int are 32 bits.
-mlong64
-mint32 Type long is 64 bits, and type int is 32 bits.
-mstack-bias
-mno-stack-bias

With ‘-mstack-bias’, GNU CC assumes that the stack
pointer, and frame pointer if present, are offset by -2047
which must be added back when making stack frame refer-
ences. Otherwise, assume no such offset is present.

4.14.4 Convex Options

These ‘-m’ options are defined for Convex:

-mc1 Generate output for C1. The code will run on any Convex
machine. The preprocessor symbol __convex__c1__ is de-
fined.

72 17 January 1996

Chapter 4: GNU CC Command Options

-mc2 Generate output for C2. Uses instructions not available on
C1. Scheduling and other optimizations are chosen for max
performance on C2. The preprocessor symbol __convex_c2_
_ is defined.

-mc32 Generate output for C32xx. Uses instructions not avail-
able on C1. Scheduling and other optimizations are chosen
for max performance on C32. The preprocessor symbol __
convex_c32__ is defined.

-mc34 Generate output for C34xx. Uses instructions not avail-
able on C1. Scheduling and other optimizations are chosen
for max performance on C34. The preprocessor symbol __
convex_c34__ is defined.

-mc38 Generate output for C38xx. Uses instructions not avail-
able on C1. Scheduling and other optimizations are chosen
for max performance on C38. The preprocessor symbol __
convex_c38__ is defined.

-margcount
Generate code which puts an argument count in the word
preceding each argument list. This is compatible with reg-
ular CC, and a few programs may need the argument count
word. GDB and other source-level debuggers do not need it;
this info is in the symbol table.

-mnoargcount
Omit the argument count word. This is the default.

-mvolatile-cache
Allow volatile references to be cached. This is the default.

-mvolatile-nocache
Volatile references bypass the data cache, going all the way
to memory. This is only needed for multi-processor code that
does not use standard synchronization instructions. Making
non-volatile references to volatile locations will not necessar-
ily work.

-mlong32 Type long is 32 bits, the same as type int. This is the default.

-mlong64 Type long is 64 bits, the same as type long long. This option
is useless, because no library support exists for it.

4.14.5 AMD29K Options

These ‘-m’ options are defined for the AMD Am29000:

c y g n u s s u p p o r t 73

Using GNU CC

-mdw Generate code that assumes the DW bit is set, i.e.,
that byte and halfword operations are directly supported by
the hardware. This is the default.

-mndw Generate code that assumes the DW bit is not set.

-mbw Generate code that assumes the system supports
byte and halfword write operations. This is the default.

-mnbw Generate code that assumes the systems does not
support byte and halfword write operations. ‘-mnbw’ implies
‘-mndw’.

-msmall Use a small memory model that assumes
that all function addresses are either within a single 256 KB
segment or at an absolute address of less than 256k. This
allows the call instruction to be used instead of a const,
consth, calli sequence.

-mnormal Use the normal memory model: Generate call
instructions only when calling functions in the same file and
calli instructions otherwise. This works if each file occupies
less than 256 KB but allows the entire executable to be larger
than 256 KB. This is the default.

-mlarge Always use calli instructions. Specify this option if you
expect a single file to compile into more than 256 KB of code.

-m29050 Generate code for the Am29050.

-m29000 Generate code for the Am29000. This is the default.

-mkernel-registers
Generate references to registers gr64-gr95 instead of to reg-
isters gr96-gr127. This option can be used when compiling
kernel code that wants a set of global registers disjoint from
that used by user-mode code.
Note that when this option is used, register names in ‘-f’
flags must use the normal, user-mode, names.

-muser-registers
Use the normal set of global registers, gr96-gr127. This is
the default.

-mstack-check
-mno-stack-check

Insert (or do not insert) a call to __msp_checkafter each stack
adjustment. This is often used for kernel code.

74 17 January 1996

Chapter 4: GNU CC Command Options

-mstorem-bug
-mno-storem-bug

‘-mstorem-bug’ handles 29k processors which cannot handle
the separation of a mtsrim insn and a storem instruction
(most 29000 chips to date, but not the 29050).

-mno-reuse-arg-regs
-mreuse-arg-regs

‘-mno-reuse-arg-regs’ tells the compiler to only use incom-
ing argument registers for copying out arguments. This
helps detect calling a function with fewer arguments than
it was declared with.

-mno-impure-text
-mimpure-text

‘-mimpure-text’, used in addition to ‘-shared’, tells the com-
piler to not pass ‘-assert pure-text’ to the linker when link-
ing a shared object.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC.
Normally the facilities of the machine’s usual C compiler are
used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable
library functions for cross-compilation.

4.14.6 ARM Options

These ‘-m’ options are defined for Advanced RISC Machines (ARM)
architectures:

-m2
-m3 These options are identical. Generate code for

the ARM2 and ARM3 processors. This option is the default.
You should also use this option to generate code for ARM6
processors that are running with a 26-bit program counter.

-m6 Generate code for the ARM6 processor when running
with a 32-bit program counter.

-mapcs Generate a stack frame that is compliant with the
ARM Procedure Call Standard for all functions, even if this
is not strictly necessary for correct execution of the code.

-mbsd This option only applies to RISC iX. Emulate the
native BSD-mode compiler. This is the default if ‘-ansi’ is
not specified.

c y g n u s s u p p o r t 75

Using GNU CC

-mxopen This option only applies to RISC iX. Emulate the
native X/Open-mode compiler.

-mno-symrename
This option only applies to RISC iX. Do not run the assembler
post-processor, ‘symrename’, after code has been assembled.
Normally it is necessary to modify some of the standard sym-
bols in preparation for linking with the RISC iX C library;
this option suppresses this pass. The post-processor is never
run when the compiler is built for cross-compilation.

4.14.7 M88K Options

These ‘-m’ options are defined for Motorola 88k architectures:

-m88000 Generate code that works well on both the m88100
and the m88110.

-m88100 Generate code that works best for the m88100, but
that also runs on the m88110.

-m88110 Generate code that works best for the m88110, and
may not run on the m88100.

-mbig-pic
Obsolete option to be removed from the next revision. Use
‘-fPIC’.

-midentify-revision
Include an ident directive in the assembler output recording
the source file name, compiler name and version, timestamp,
and compilation flags used.

-mno-underscores
In assembler output, emit symbol names without adding an
underscore character at the beginning of each name. The
default is to use an underscore as prefix on each name.

-mocs-debug-info
-mno-ocs-debug-info

Include (or omit) additional debugging information (about
registers used in each stack frame) as specified in the 88open
Object Compatibility Standard, “OCS”. This extra informa-
tion allows debugging of code that has had the frame pointer
eliminated. The default for DG/UX, SVr4, and Delta 88
SVr3.2 is to include this information; other 88k configura-
tions omit this information by default.

76 17 January 1996

Chapter 4: GNU CC Command Options

-mocs-frame-position
When emitting COFF debugging information for automatic
variables and parameters stored on the stack, use the
offset from the canonical frame address, which is the
stack pointer (register 31) on entry to the function. The
DG/UX, SVr4, Delta88 SVr3.2, and BCS configurations use
‘-mocs-frame-position’; other 88k configurations have the
default ‘-mno-ocs-frame-position’.

-mno-ocs-frame-position
When emitting COFF debugging information for automatic
variables and parameters stored on the stack, use the offset
from the frame pointer register (register 30). When this
option is in effect, the frame pointer is not eliminated when
debugging information is selected by the -g switch.

-moptimize-arg-area
-mno-optimize-arg-area

Control how function arguments are stored in stack frames.
‘-moptimize-arg-area’ saves space by optimizing them, but
this conflicts with the 88open specifications. The opposite
alternative, ‘-mno-optimize-arg-area’, agrees with 88open
standards. By default GNU CC does not optimize the argu-
ment area.

-mshort-data-num
Generate smaller data references by making them relative
to r0, which allows loading a value using a single instruction
(rather than the usual two). You control which data refer-
ences are affected by specifying num with this option. For
example, if you specify ‘-mshort-data-512’, then the data
references affected are those involving displacements of less
than 512 bytes. ‘-mshort-data-num’ is not effective for num
greater than 64k.

-mserialize-volatile
-mno-serialize-volatile

Do, or don’t, generate code to guarantee sequential consis-
tency of volatile memory references. By default, consistency
is guaranteed.
The order of memory references made by the MC88110 pro-
cessor does not always match the order of the instructions
requesting those references. In particular, a load instruc-
tion may execute before a preceding store instruction. Such
reordering violates sequential consistency of volatile mem-
ory references, when there are multiple processors. When
consistency must be guaranteed, GNU C generates special

c y g n u s s u p p o r t 77

Using GNU CC

instructions, as needed, to force execution in the proper or-
der.
The MC88100 processor does not reorder memory references
and so always provides sequential consistency. However, by
default, GNU C generates the special instructions to guar-
antee consistency even when you use ‘-m88100’, so that the
code may be run on an MC88110 processor. If you intend to
run your code only on the MC88100 processor, you may use
‘-mno-serialize-volatile’.
The extra code generated to guarantee consistency may
affect the performance of your application. If you know
that you can safely forgo this guarantee, you may use
‘-mno-serialize-volatile’.

-msvr4
-msvr3 Turn on (‘-msvr4’) or off

(‘-msvr3’) compiler extensions related to System V release 4
(SVr4). This controls the following:
1. Which variant of the assembler syntax to emit.
2. ‘-msvr4’ makes the C preprocessor recognize ‘#pragma

weak’ that is used on System V release 4.
3. ‘-msvr4’ makes GNU CC issue additional declaration di-

rectives used in SVr4.

‘-msvr4’ is the default for the m88k-motorola-sysv4 and
m88k-dg-dgux m88k configurations. ‘-msvr3’ is the default
for all other m88k configurations.

-mversion-03.00
This option is obsolete, and is ignored.

-mno-check-zero-division
-mcheck-zero-division

Do, or don’t, generate code to guarantee that integer division
by zero will be detected. By default, detection is guaranteed.
Some models of the MC88100 processor fail to trap upon
integer division by zero under certain conditions. By default,
when compiling code that might be run on such a processor,
GNU C generates code that explicitly checks for zero-valued
divisors and traps with exception number 503 when one is
detected. Use of mno-check-zero-division suppresses such
checking for code generated to run on an MC88100 processor.
GNU C assumes that the MC88110 processor correctly
detects all instances of integer division by zero. When
‘-m88110’ is specified, both ‘-mcheck-zero-division’ and

78 17 January 1996

Chapter 4: GNU CC Command Options

‘-mno-check-zero-division’ are ignored, and no explicit
checks for zero-valued divisors are generated.

-muse-div-instruction
Use the div instruction for signed integer division on the
MC88100 processor. By default, the div instruction is not
used.
On the MC88100 processor the signed integer division in-
struction div) traps to the operating system on a negative
operand. The operating system transparently completes the
operation, but at a large cost in execution time. By default,
when compiling code that might be run on an MC88100 pro-
cessor, GNU C emulates signed integer division using the
unsigned integer division instruction divu), thereby avoid-
ing the large penalty of a trap to the operating system. Such
emulation has its own, smaller, execution cost in both time
and space. To the extent that your code’s important signed
integer division operations are performed on two nonnega-
tive operands, it may be desirable to use the div instruction
directly.
On the MC88110 processor the div instruction (also known
as the divs instruction) processes negative operands with-
out trapping to the operating system. When ‘-m88110’ is
specified, ‘-muse-div-instruction’ is ignored, and the div
instruction is used for signed integer division.
Note that the result of dividing INT MIN by -1 is undefined.
In particular, the behavior of such a division with and with-
out ‘-muse-div-instruction’ may differ.

-mtrap-large-shift
-mhandle-large-shift

Include code to detect bit-shifts of more than 31 bits; respec-
tively, trap such shifts or emit code to handle them properly.
By default GNU CC makes no special provision for large bit
shifts.

-mwarn-passed-structs
Warn when a function passes a struct as an argument or
result. Structure-passing conventions have changed during
the evolution of the C language, and are often the source of
portability problems. By default, GNU CC issues no such
warning.

4.14.8 IBM RS/6000 and PowerPC Options

These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

c y g n u s s u p p o r t 79

Using GNU CC

-mpower
-mno-power
-mpower2
-mno-power2
-mpowerpc
-mno-powerpc
-mpowerpc-gpopt
-mno-powerpc-gpopt
-mpowerpc-gfxopt
-mno-powerpc-gfxopt

GNU CC supports two related instruction set architectures
for the RS/6000 and PowerPC. The POWER instruction set
are those instructions supported by the ‘rios’ chip set used in
the original RS/6000 systems and the PowerPC instruction
set is the architecture of the Motorola MPC6xx microproces-
sors. The PowerPC architecture defines 64-bit instructions,
but they are not supported by any current processors.
Neither architecture is a subset of the other. However there
is a large common subset of instructions supported by both.
An MQ register is included in processors supporting the
POWER architecture.
You use these options to specify which instructions are avail-
able on the processor you are using. The default value
of these options is determined when configuring GNU CC.
Specifying the ‘-mcpu=cpu_type’ overrides the specification
of these options. We recommend you use that option rather
than these.
The ‘-mpower’ option allows GNU CC to generate instructions
that are found only in the POWER architecture and to use the
MQ register. Specifying ‘-mpower2’ implies ‘-power’ and also
allows GNU CC to generate instructions that are present
in the POWER2 architecture but not the original POWER
architecture.
The ‘-mpowerpc’ option allows GNU CC to generate in-
structions that are found only in the 32-bit subset of the
PowerPC architecture. Specifying ‘-mpowerpc-gpopt’ im-
plies ‘-mpowerpc’ and also allows GNU CC to use the op-
tional PowerPC architecture instructions in the General Pur-
pose group, including floating-point square root. Specify-
ing ‘-mpowerpc-gfxopt’ implies ‘-mpowerpc’ and also allows
GNU CC to use the optional PowerPC architecture instruc-
tions in the Graphics group, including floating-point select.
If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GNU
CC will use only the instructions in the common subset

80 17 January 1996

Chapter 4: GNU CC Command Options

of both architectures plus some special AIX common-mode
calls, and will not use the MQ register. Specifying both
‘-mpower’ and ‘-mpowerpc’ permits GNU CC to use any in-
struction from either architecture and to allow use of the
MQ register; specify this for the Motorola MPC601.

-mnew-mnemonics
-mold-mnemonics

Select which mnemonics to use in the generated assembler
code. ‘-mnew-mnemonics’ requests output that uses the as-
sembler mnemonics defined for the PowerPC architecture,
while ‘-mold-mnemonics’ requests the assembler mnemonics
defined for the POWER architecture. Instructions defined
in only one architecture have only one mnemonic; GNU CC
uses that mnemonic irrespective of which of these options is
specified.

PowerPC assemblers support both the old and new mnemon-
ics, as will later POWER assemblers. Current POWER
assemblers only support the old mnemonics. Specify
‘-mnew-mnemonics’ if you have an assembler that supports
them, otherwise specify ‘-mold-mnemonics’.

The default value of these options depends on how GNU
CC was configured. Specifying ‘-mcpu=cpu_type’ sometimes
overrides the value of these option. Unless you are build-
ing a cross-compiler, you should normally not specify either
‘-mnew-mnemonics’ or ‘-mold-mnemonics’, but should instead
accept the default.

-mcpu=cpu_type
Set architecture type, register usage, choice of mnemon-
ics, and instruction scheduling parameters for machine type
cpu_type. By default, cpu_type is the target system de-
fined when GNU CC was configured. Supported values
for cpu_type are ‘rios1’, ‘rios2’, ‘rsc’, ‘601’, ‘603’, ‘604’,
‘power’, ‘powerpc’, ‘403’, and ‘common’. ‘-mcpu=power’ and
‘-mcpu=powerpc’ specify generic POWER and pure PowerPC
(i.e., not MPC601) architecture machine types, with an ap-
propriate, generic processor model assumed for scheduling
purposes.

Specifying ‘-mcpu=rios1’, ‘-mcpu=rios2’, ‘-mcpu=rsc’, or
‘-mcpu=power’ enables the ‘-mpower’ option and disables
the ‘-mpowerpc’ option; ‘-mcpu=601’ enables both the
‘-mpower’ and ‘-mpowerpc’ options; ‘-mcpu=603’, ‘-mcpu=604’,
‘-mcpu=403’, and ‘-mcpu=powerpc’ enable the ‘-mpowerpc’

c y g n u s s u p p o r t 81

Using GNU CC

option and disable the ‘-mpower’ option; ‘-mcpu=common’ dis-
ables both the ‘-mpower’ and ‘-mpowerpc’ options.

To generate code that will operate on all members of the
RS/6000 and PowerPC families, specify ‘-mcpu=common’. In
that case, GNU CC will use only the instructions in the
common subset of both architectures plus some special AIX
common-mode calls, and will not use the MQ register. GNU
CC assumes a generic processor model for scheduling pur-
poses.

Specifying ‘-mcpu=rios1’, ‘-mcpu=rios2’, ‘-mcpu=rsc’, or
‘-mcpu=power’ also disables the ‘new-mnemonics’ option.
Specifying ‘-mcpu=601’, ‘-mcpu=603’, ‘-mcpu=604’, ‘403’, or
‘-mcpu=powerpc’ also enables the ‘new-mnemonics’ option.

-mfull-toc
-mno-fp-in-toc
-mno-sum-in-toc
-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is
created for every executable file. The ‘-mfull-toc’ option is
selected by default. In that case, GNU CC will allocate at
least one TOC entry for each unique non-automatic variable
reference in your program. GNU CC will also place floating-
point constants in the TOC. However, only 16,384 entries are
available in the TOC.

If you receive a linker error message that saying you have
overflowed the available TOC space, you can reduce the
amount of TOC space used with the ‘-mno-fp-in-toc’ and
‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents GNU
CC from putting floating-point constants in the TOC and
‘-mno-sum-in-toc’ forces GNU CC to generate code to cal-
culate the sum of an address and a constant at run-time
instead of putting that sum into the TOC. You may specify
one or both of these options. Each causes GNU CC to pro-
duce very slightly slower and larger code at the expense of
conserving TOC space.

If you still run out of space in the TOC even when you specify
both of these options, specify ‘-mminimal-toc’ instead. This
option causes GNU CC to make only one TOC entry for every
file. When you specify this option, GNU CC will produce code
that is slower and larger but which uses extremely little TOC
space. You may wish to use this option only on files that
contain less frequently executed code.

82 17 January 1996

Chapter 4: GNU CC Command Options

-msoft-float
-mhard-float

Generate code that does not use (uses) the floating-point reg-
ister set. Software floating point emulation is provided if you
use the ‘-msoft-float’ option, and pass the option to GNU
CC when linking.

-mmultiple
-mno-multiple

Generate code that uses (does not use) the load multiple
word instructions and the store multiple word instructions.
These instructions are generated by default on POWER sys-
tems, and not generated on PowerPC systems. Do not use
‘-mmultiple’ on little endian PowerPC systems, since those
instructions do not work when the processor is in little en-
dian mode.

-mstring
-mno-string

Generate code that uses (does not use) the load string instruc-
tions and the store string word instructions to save multiple
registers and do small block moves. These instructions are
generated by default on POWER systems, anod not gener-
ated on PowerPC systems. Do not use ‘-mstring’ on little
endian PowerPC systems, since those instructions do not
work when the processor is in little endian mode.

-mno-bit-align
-mbit-align

On System V.4 and embedded PowerPC systems do not (do)
force structures and unions that contain bit fields to be
aligned to the base type of the bit field.
For example, by default a structure containing nothing
but 8 unsigned bitfields of length 1 would be aligned to
a 4 byte boundary and have a size of 4 bytes. By using
‘-mno-bit-align’, the structure would be aligned to a 1 byte
boundary and be one byte in size.

-mno-strict-align
-mstrict-align

On System V.4 and embedded PowerPC systems do not (do)
assume that unaligned memory references will be handled
by the system.

-mrelocatable
-mno-relocatable

On embedded PowerPC systems generate code that allows
(does not allow) the program to be relocated to a different

c y g n u s s u p p o r t 83

Using GNU CC

address at runtime. If you use ‘-mrelocatable’ on any
module, all objects linked together must be compiled with
‘-mrelocatable’ or ‘-mrelocatable-lib’.

-mrelocatable-lib
-mno-relocatable-lib

On embedded PowerPC systems generate code that al-
lows (does not allow) the program to be relocated to a
different address at runtime. Modules compiled with
‘-mreloctable-lib’ can be linked with either modules com-
piled without ‘-mrelocatable’ and ‘-mrelocatable-lib’ or
with modules compiled with the ‘-mrelocatable’ options.

-mno-toc
-mtoc On System V.4 and embedded PowerPC systems do not (do)

assume that register 2 contains a pointer to a global area
pointing to the addresses used in the program.

-mno-traceback
-mtraceback

On embedded PowerPC systems do not (do) generate a trace-
back tag before the start of the function. This tag can be used
by the debugger to identify where the start of a function is.

-mlittle
-mlittle-endian

On System V.4 and embedded PowerPC systems com-
pile code for the processor in little endian mode. The
‘-mlittle-endian’ option is the same as ‘-mlittle’.

-mbig
-mbig-endian

On System V.4 and embedded PowerPC systems compile code
for the processor in big endian mode. The ‘-mbig-endian’
option is the same as ‘-mbig’.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code
using calling conventions that adheres to the March 1995
draft of the System V Application Binary Interface, Pow-
erPC processor supplement. This is the default unless you
configured GCC using ‘powerpc-*-eabiaix’.

-mcall-aix
On System V.4 and embedded PowerPC systems compile
code using calling conventions that are similar to those used
on AIX. This is the default if you configured GCC using
‘powerpc-*-eabiaix’.

84 17 January 1996

Chapter 4: GNU CC Command Options

-mprototype

-mno-prototype
On System V.4 and embedded PowerPC systems assume that
all calls to variable argument functions are properly proto-
typed. Otherwise, the compiler must insert an instruction
before every non prototyped call to set or clear bit 6 of the
condition code register (CR) to indicate whether floating point
values were passed in the floating point registers in case the
function takes a variable arguments. With ‘-mprototype’,
only calls to prototyped variable argument functions will set
or clear the bit.

-msim On embedded PowerPC systems, assume that the startup
module is called ‘sim-crt0.o’ and the standard C li-
braries are ‘libsim.a’ and ‘libc.a’. This is default for
‘powerpc-*-eabisim’ configurations.

-mmvme On embedded PowerPC systems, assume that the startup
module is called ‘mvme-crt0.o’ and the standard C libraries
are ‘libmvme.a’ and ‘libc.a’.

-memb On embedded PowerPC systems, set the PPC_EMB bit in the
ELF flags header.

4.14.9 IBM RT Options

These ‘-m’ options are defined for the IBM RT PC:

-min-line-mul
Use an in-line code sequence for integer multiplies. This is
the default.

-mcall-lib-mul
Call lmul$$ for integer multiples.

-mfull-fp-blocks
Generate full-size floating point data blocks, including the
minimum amount of scratch space recommended by IBM.
This is the default.

-mminimum-fp-blocks
Do not include extra scratch space in floating point data
blocks. This results in smaller code, but slower execution,
since scratch space must be allocated dynamically.

-mfp-arg-in-fpregs
Use a calling sequence incompatible with the IBM calling
convention in which floating point arguments are passed in

c y g n u s s u p p o r t 85

Using GNU CC

floating point registers. Note that varargs.h and stdargs.h
will not work with floating point operands if this option is
specified.

-mfp-arg-in-gregs
Use the normal calling convention for floating point argu-
ments. This is the default.

-mhc-struct-return
Return structures of more than one word in memory,
rather than in a register. This provides compatibility
with the MetaWare HighC (hc) compiler. Use the option
‘-fpcc-struct-return’ for compatibility with the Portable
C Compiler (pcc).

-mnohc-struct-return
Return some structures of more than one word in regis-
ters, when convenient. This is the default. For com-
patibility with the IBM-supplied compilers, use the option
‘-fpcc-struct-return’ or the option ‘-mhc-struct-return’.

4.14.10 MIPS Options

These ‘-m’ options are defined for the MIPS family of computers:

-mcpu=cpu type
Assume the defaults for the machine type cpu type when
scheduling instructions. The choices for cpu type are
‘r2000’, ‘r3000’, ‘r4000’, ‘r4400’, ‘r4600’, and ‘r6000’. While
picking a specific cpu type will schedule things appropri-
ately for that particular chip, the compiler will not generate
any code that does not meet level 1 of the MIPS ISA (in-
struction set architecture) without the ‘-mips2’ or ‘-mips3’
switches being used.

-mips1 Issue instructions from level 1 of the MIPS ISA. This is the
default. ‘r3000’ is the default cpu type at this ISA level.

-mips2 Issue instructions from level 2 of the MIPS ISA (branch likely,
square root instructions). ‘r6000’ is the default cpu type at
this ISA level.

-mips3 Issue instructions from level 3 of the MIPS ISA (64 bit in-
structions). ‘r4000’ is the default cpu type at this ISA level.
This option does not change the sizes of any of the C data
types.

-mfp32 Assume that 32 32-bit floating point registers are available.
This is the default.

86 17 January 1996

Chapter 4: GNU CC Command Options

-mfp64 Assume that 32 64-bit floating point registers are available.
This is the default when the ‘-mips3’ option is used.

-mgp32 Assume that 32 32-bit general purpose registers are avail-
able. This is the default.

-mgp64 Assume that 32 64-bit general purpose registers are avail-
able. This is the default when the ‘-mips3’ option is used.

-mint64 Types long, int, and pointer are 64 bits. This works only if
‘-mips3’ is also specified.

-mlong64 Types long and pointer are 64 bits, and type int is 32 bits.
This works only if ‘-mips3’ is also specified.

-mmips-as
Generate code for the MIPS assembler, and invoke
‘mips-tfile’ to add normal debug information. This is the
default for all platforms except for the OSF/1 reference plat-
form, using the OSF/rose object format. If the either of the
‘-gstabs’ or ‘-gstabs+’ switches are used, the ‘mips-tfile’
program will encapsulate the stabs within MIPS ECOFF.

-mgas Generate code for the GNU assembler. This is the default
on the OSF/1 reference platform, using the OSF/rose object
format.

-mrnames
-mno-rnames

The ‘-mrnames’ switch says to output code using the MIPS
software names for the registers, instead of the hardware
names (ie, a0 instead of $4). The only known assembler that
supports this option is the Algorithmics assembler.

-mgpopt
-mno-gpopt

The ‘-mgpopt’ switch says to write all of the data declarations
before the instructions in the text section, this allows the
MIPS assembler to generate one word memory references
instead of using two words for short global or static data
items. This is on by default if optimization is selected.

-mstats
-mno-stats

For each non-inline function processed, the ‘-mstats’ switch
causes the compiler to emit one line to the standard error file
to print statistics about the program (number of registers
saved, stack size, etc.).

-mmemcpy

c y g n u s s u p p o r t 87

Using GNU CC

-mno-memcpy
The ‘-mmemcpy’ switch makes all block moves call the appro-
priate string function (‘memcpy’ or ‘bcopy’) instead of possibly
generating inline code.

-mmips-tfile
-mno-mips-tfile

The ‘-mno-mips-tfile’ switch causes the compiler not post-
process the object file with the ‘mips-tfile’ program, after
the MIPS assembler has generated it to add debug support.
If ‘mips-tfile’ is not run, then no local variables will be
available to the debugger. In addition, ‘stage2’ and ‘stage3’
objects will have the temporary file names passed to the as-
sembler embedded in the object file, which means the objects
will not compare the same. The ‘-mno-mips-tfile’ switch
should only be used when there are bugs in the ‘mips-tfile’
program that prevents compilation.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC.
Normally the facilities of the machine’s usual C compiler are
used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable
library functions for cross-compilation.

-mhard-float
Generate output containing floating point instructions. This
is the default if you use the unmodified sources.

-mabicalls
-mno-abicalls

Emit (or do not emit) the pseudo operations ‘.abicalls’,
‘.cpload’, and ‘.cprestore’ that some System V.4 ports use
for position independent code.

-mlong-calls
-mno-long-calls

Do all calls with the ‘JALR’ instruction, which requires load-
ing up a function’s address into a register before the call. You
need to use this switch, if you call outside of the current 512
megabyte segment to functions that are not through point-
ers.

88 17 January 1996

Chapter 4: GNU CC Command Options

-mhalf-pic
-mno-half-pic

Put pointers to extern references into the data section and
load them up, rather than put the references in the text
section.

-membedded-pic
-mno-embedded-pic

Generate PIC code suitable for some embedded systems. All
calls are made using PC relative address, and all data is
addressed using the $gp register. This requires GNU as and
GNU ld which do most of the work.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if possi-
ble, then next in the small data section if possible, otherwise
in data. This gives slightly slower code than the default, but
reduces the amount of RAM required when executing, and
thus may be preferred for some embedded systems.

-msingle-float
-mdouble-float

The ‘-msingle-float’ switch tells gcc to assume that the
floating point coprocessor only supports single precision op-
erations, as on the ‘r4650’ chip. The ‘-mdouble-float’ switch
permits gcc to use double precision operations. This is the
default.

-mmad
-mno-mad Permit use of the ‘mad’, ‘madu’ and ‘mul’ instructions, as on

the ‘r4650’ chip.

-m4650 Turns on ‘-msingle-float’, ‘-mmad’, and, at least for now,
‘-mcpu=r4650’.

-EL Compile code for the processor in little endian mode. The
requisite libraries are assumed to exist.

-EB Compile code for the processor in big endian mode. The
requisite libraries are assumed to exist.

-G num Put global and static items less than or equal
to num bytes into the small data or bss sections instead of the
normal data or bss section. This allows the assembler to emit
one word memory reference instructions based on the global
pointer (gp or $28), instead of the normal two words used.
By default, num is 8 when the MIPS assembler is used, and
0 when the GNU assembler is used. The ‘-G num’ switch is

c y g n u s s u p p o r t 89

Using GNU CC

also passed to the assembler and linker. All modules should
be compiled with the same ‘-G num’ value.

-nocpp Tell the MIPS assembler to not run it’s preprocessor over user
assembler files (with a ‘.s’ suffix) when assembling them.

4.14.11 Intel 386 Options

These ‘-m’ options are defined for the i386 family of computers:

-m486
-m386 Control whether or not code is optimized for a 486 instead of

an 386. Code generated for an 486 will run on a 386 and vice
versa.

-mieee-fp
-mno-ieee-fp

Control whether or not the compiler uses IEEE floating point
comparisons. These handle correctly the case where the re-
sult of a comparison is unordered.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC.
Normally the facilities of the machine’s usual C compiler are
used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable
library functions for cross-compilation.
On machines where a function returns floating point results
in the 80387 register stack, some floating point opcodes may
be emitted even if ‘-msoft-float’ is used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of
types float and double in an FPU register, even if there is no
FPU. The idea is that the operating system should emulate
an FPU.
The option ‘-mno-fp-ret-in-387’ causes such values to be
returned in ordinary CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt in-
structions for the 387. Specify this option to avoid generating
those instructions. This option is the default on FreeBSD. As
of revision 2.6.1, these instructions are not generated unless
you also use the ‘-ffast-math’ switch.

90 17 January 1996

Chapter 4: GNU CC Command Options

-malign-double
-mno-align-double

Control whether GNU CC aligns double, long double, and
long long variables on a two word boundary or a one word
boundary. Aligning double variables on a two word boundary
will produce code that runs somewhat faster on a ‘Pentium’
at the expense of more memory.
Warning: if you use the ‘-malign-double’ switch, structures
containing the above types will be aligned differently than
the published application binary interface specifications for
the 386.

-msvr3-shlib
-mno-svr3-shlib

Control whether GNU CC places uninitialized locals into bss
or data. ‘-msvr3-shlib’ places these locals into bss. These
options are meaningful only on System V Release 3.

-mno-wide-multiply
-mwide-multiply

Control whether GNU CC uses the mul and imul that produce
64 bit results in eax:edx from 32 bit operands to do long long
multiplies and 32-bit division by constants.

-mrtd Use a different function-calling convention, in which func-
tions that take a fixed number of arguments return with the
ret num instruction, which pops their arguments while re-
turning. This saves one instruction in the caller since there
is no need to pop the arguments there.
You can specify that an individual function is called with this
calling sequence with the function attribute ‘stdcall’. You
can also override the ‘-mrtd’ option by using the function
attribute ‘cdecl’. See Section 6.22 “Function Attributes,”
page 161
Warning: this calling convention is incompatible with the
one normally used on Unix, so you cannot use it if you need
to call libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions
that take variable numbers of arguments (including printf);
otherwise incorrect code will be generated for calls to those
functions.
In addition, seriously incorrect code will result if you call a
function with too many arguments. (Normally, extra argu-
ments are harmlessly ignored.)

c y g n u s s u p p o r t 91

Using GNU CC

-mreg-alloc=regs
Control the default allocation order of integer registers. The
string regs is a series of letters specifying a register. The
supported letters are: a allocate EAX; b allocate EBX; c al-
locate ECX; d allocate EDX; S allocate ESI; D allocate EDI; B
allocate EBP.

-mregparm=num
Control how many registers are used to pass integer argu-
ments. By default, no registers are used to pass arguments,
and at most 3 registers can be used. You can control this be-
havior for a specific function by using the function attribute
‘regparm’. See Section 6.22 “Function Attributes,” page 161
Warning: if you use this switch, and num is nonzero, then
you must build all modules with the same value, including
any libraries. This includes the system libraries and startup
modules.

-malign-loops=num
Align loops to a 2 raised to a num byte boundary. If
‘-malign-loops’ is not specified, the default is 2.

-malign-jumps=num
Align instructions that are only jumped to to a 2 raised to a
num byte boundary. If ‘-malign-jumps’ is not specified, the
default is 2 if optimizing for a 386, and 4 if optimizing for a
486.

-malign-functions=num
Align the start of functions to a 2 raised to num byte bound-
ary. If ‘-malign-jumps’ is not specified, the default is 2 if
optimizing for a 386, and 4 if optimizing for a 486.

4.14.12 HPPA Options

These ‘-m’ options are defined for the HPPA family of computers:

-mpa-risc-1-0
Generate code for a PA 1.0 processor.

-mpa-risc-1-1
Generate code for a PA 1.1 processor.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump in-
structions by modifying the return pointer for the function
call to be the target of the conditional jump.

92 17 January 1996

Chapter 4: GNU CC Command Options

-mdisable-fpregs
Prevent floating point registers from being used in any man-
ner. This is necessary for compiling kernels which perform
lazy context switching of floating point registers. If you use
this option and attempt to perform floating point operations,
the compiler will abort.

-mdisable-indexing
Prevent the compiler from using indexing address modes.
This avoids some rather obscure problems when compiling
MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers.
This allows GCC to generate faster indirect calls and use
unscaled index address modes.
Such code is suitable for level 0 PA systems and kernels.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF
systems.

-mgas Enable the use of assembler directives only GAS under-
stands.

-mschedule=cpu type
Schedule code according to the constraints for the machine
type cpu type. The choices for cpu type are ‘700’ for 7n0 ma-
chines, ‘7100’ for 7n5 machines, and ‘7100’ for 7n2 machines.
‘700’ is the default for cpu type.
Note the ‘7100LC’ scheduling information is incomplete and
using ‘7100LC’ often leads to bad schedules. For now it’s
probably best to use ‘7100’ instead of ‘7100LC’ for the 7n2
machines.

-mlinker-opt
Enable the optimization pass in the HPUX linker. Note this
makes symbolic debugging impossible. It also triggers a bug
in the HPUX 8 and HPUX 9 linkers in which they give bogus
error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all
HPPA targets. Normally the facilities of the machine’s usual
C compiler are used, but this cannot be done directly in cross-
compilation. You must make your own arrangements to pro-
vide suitable library functions for cross-compilation. The em-

c y g n u s s u p p o r t 93

Using GNU CC

bedded target ‘hppa1.1-*-pro’ does provide software floating
point support.
‘-msoft-float’ changes the calling convention in the out-
put file; therefore, it is only useful if you compile all of a
program with this option. In particular, you need to com-
pile ‘libgcc.a’, the library that comes with GNU CC, with
‘-msoft-float’ in order for this to work.

4.14.13 Intel 960 Options

These ‘-m’ options are defined for the Intel 960 implementations:

-mcpu type
Assume the defaults for the machine type cpu type for some
of the other options, including instruction scheduling, float-
ing point support, and addressing modes. The choices for cpu
type are ‘ka’, ‘kb’, ‘mc’, ‘ca’, ‘cf’, ‘sa’, and ‘sb’. The default is
‘kb’.

-mnumerics
-msoft-float

The ‘-mnumerics’ option indicates that the processor does
support floating-point instructions. The ‘-msoft-float’ op-
tion indicates that floating-point support should not be as-
sumed.

-mleaf-procedures
-mno-leaf-procedures

Do (or do not) attempt to alter leaf procedures to be callable
with the bal instruction as well as call. This will result in
more efficient code for explicit calls when the bal instruction
can be substituted by the assembler or linker, but less effi-
cient code in other cases, such as calls via function pointers,
or using a linker that doesn’t support this optimization.

-mtail-call
-mno-tail-call

Do (or do not) make additional attempts (beyond those of the
machine-independent portions of the compiler) to optimize
tail-recursive calls into branches. You may not want to do
this because the detection of cases where this is not valid is
not totally complete. The default is ‘-mno-tail-call’.

-mcomplex-addr
-mno-complex-addr

Assume (or do not assume) that the use of a complex ad-
dressing mode is a win on this implementation of the i960.

94 17 January 1996

Chapter 4: GNU CC Command Options

Complex addressing modes may not be worthwhile on the K-
series, but they definitely are on the C-series. The default is
currently ‘-mcomplex-addr’ for all processors except the CB
and CC.

-mcode-align
-mno-code-align

Align code to 8-byte boundaries for faster fetching (or don’t
bother). Currently turned on by default for C-series imple-
mentations only.

-mic-compat
-mic2.0-compat
-mic3.0-compat

Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat
-mintel-asm

Enable compatibility with the iC960 assembler.

-mstrict-align
-mno-strict-align

Do not permit (do permit) unaligned accesses.

-mold-align
Enable structure-alignment compatibility with Intel’s gcc re-
lease version 1.3 (based on gcc 1.37). Currently this is buggy
in that ‘#pragma align 1’ is always assumed as well, and
cannot be turned off.

4.14.14 DEC Alpha Options

These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

Use (do not use) the hardware floating-point instructions for
floating-point operations. When -msoft-float is specified,
functions in ‘libgcc1.c’ will be used to perform floating-
point operations. Unless they are replaced by routines that
emulate the floating-point operations, or compiled in such
a way as to call such emulations routines, these routines
will issue floating-point operations. If you are compiling for
an Alpha without floating-point operations, you must ensure
that the library is built so as not to call them.
Note that Alpha implementations without floating-point op-
erations are required to have floating-point registers.

c y g n u s s u p p o r t 95

Using GNU CC

-mfp-reg
-mno-fp-regs

Generate code that uses (does not use) the floating-point
register set. -mno-fp-regs implies -msoft-float. If the
floating-point register set is not used, floating point operands
are passed in integer registers as if they were integers and
floating-point results are passed in $0 instead of $f0. This
is a non-standard calling sequence, so any function with a
floating-point argument or return value called by code com-
piled with -mno-fp-regs must also be compiled with that
option.
A typical use of this option is building a kernel that does not
use, and hence need not save and restore, any floating-point
registers.

4.14.15 Clipper Options

These ‘-m’ options are defined for the Clipper implementations:

-mc300 Produce code for a C300 Clipper processor. This is the de-
fault.

-mc400 Produce code for a C400 Clipper processor i.e. use floating
point registers f8..f15.

4.14.16 H8/300 Options

These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possi-
ble; uses the linker option ‘-relax’. See section “ld and the
H8/300” in Using ld, for a fuller description.

-mh Generate code for the H8/300H.

4.14.17 Options for System V

These additional options are available on System V Release 4 for
compatibility with other compilers on those systems:

-Qy Identify the versions of each tool used by the compiler, in a
.ident assembler directive in the output.

-Qn Refrain from adding .ident directives to the output file (this
is the default).

-YP,dirs Search the directories dirs, and no others, for libraries spec-
ified with ‘-l’.

96 17 January 1996

Chapter 4: GNU CC Command Options

-Ym,dir Look in the directory dir to find the M4 preprocessor. The
assembler uses this option.

4.14.18 Zilog Z8000 Option

GNU CC recognizes one special option when configured to generate
code for the Z8000 family:

-mz8001 Generate code for the segmented variant of the Z8000 archi-
tecture. (Without this option, gcc generates unsegmented
Z8000 code; suitable, for example, for the Z8002.)

4.14.19 Options for the H8/500

These options control some compilation choices specific to the Hitachi
H8/500:

-mspace When a tradeoff is available between code size and speed,
generate smaller code.

-mspeed When a tradeoff is available between code size and speed,
generate faster code.

-mint32 Make int data 32 bits by default.

-mcode32 Compile code for a 32 bit address space.

-mdata32 Compile data for a 32 bit address space.

-mtiny Compile both data and code sections using the same 16-bit
address space.

-msmall Compile both data and code sections for 16-bit address
spaces, but use different link segments.

-mmedium Compile code for a 32-bit address space, but data for a 16-
bit address space. This is the same as specifying ‘-mcode32’
without ‘-mdata32’.

-mcompact
Compile data for a 32-bit address space, but code for a 16-
bit address space. This is the same as specifying ‘-mdata32’
without ‘-mcode32’.

-mbig Compile both data and code sections for 32-bit address
spaces. This is the same as specifying both ‘-mdata32’ and
‘-mcode32’.

c y g n u s s u p p o r t 97

Using GNU CC

4.15 Options for Code Generation Conventions

These machine-independent options control the interface conventions
used in code generation.

Most of them have both positive and negative forms; the negative
form of ‘-ffoo’ would be ‘-fno-foo’. In the table below, only one of the
forms is listed—the one which is not the default. You can figure out the
other form by either removing ‘no-’ or adding it.

-fpcc-struct-return
Return “short” struct and union values in memory like
longer ones, rather than in registers. This convention is less
efficient, but it has the advantage of allowing intercallabil-
ity between GNU CC-compiled files and files compiled with
other compilers.
The precise convention for returning structures in memory
depends on the target configuration macros.
Short structures and unions are those whose size and align-
ment match that of some integer type.

-freg-struct-return
Use the convention that struct and union values are re-
turned in registers when possible. This is more efficient for
small structures than ‘-fpcc-struct-return’.
If you specify neither ‘-fpcc-struct-return’ nor its contrary
‘-freg-struct-return’, GNU CC defaults to whichever con-
vention is standard for the target. If there is no standard
convention, GNU CC defaults to ‘-fpcc-struct-return’, ex-
cept on targets where GNU CC is the principal compiler. In
those cases, we can choose the standard, and we chose the
more efficient register return alternative.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for
the declared range of possible values. Specifically, the enum
type will be equivalent to the smallest integer type which
has enough room.

-fshort-double
Use the same size for double as for float.

-fshared-data
Requests that the data and non-const variables of this com-
pilation be shared data rather than private data. The distinc-
tion makes sense only on certain operating systems, where
shared data is shared between processes running the same
program, while private data exists in one copy per process.

98 17 January 1996

Chapter 4: GNU CC Command Options

-fno-common
Allocate even uninitialized global variables in the bss section
of the object file, rather than generating them as common
blocks. This has the effect that if the same variable is de-
clared (without extern) in two different compilations, you
will get an error when you link them. The only reason this
might be useful is if you wish to verify that the program will
work on other systems which always work this way.

-fno-ident
Ignore the ‘#ident’ directive.

-fno-gnu-linker
Do not output global initializations (such as C++ construc-
tors and destructors) in the form used by the GNU linker
(on systems where the GNU linker is the standard method
of handling them). Use this option when you want to use
a non-GNU linker, which also requires using the collect2
program to make sure the system linker includes construc-
tors and destructors. (collect2 is included in the GNU CC
distribution.) For systems which must use collect2, the
compiler driver gcc is configured to do this automatically.

-finhibit-size-directive
Don’t output a .size assembler directive, or anything else
that would cause trouble if the function is split in the mid-
dle, and the two halves are placed at locations far apart in
memory. This option is used when compiling ‘crtstuff.c’;
you should not need to use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assem-
bly code to make it more readable. This option is generally
only of use to those who actually need to read the generated
assembly code (perhaps while debugging the compiler itself).

-fvolatile
Consider all memory references through pointers to be
volatile.

-fvolatile-global
Consider all memory references to extern and global data
items to be volatile.

-fpic Generate position-independent code (PIC)
suitable for use in a shared library, if supported for the target
machine. Such code accesses all constant addresses through
a global offset table (GOT). If the GOT size for the linked

c y g n u s s u p p o r t 99

Using GNU CC

executable exceeds a machine-specific maximum size, you
get an error message from the linker indicating that ‘-fpic’
does not work; in that case, recompile with ‘-fPIC’ instead.
(These maximums are 16k on the m88k, 8k on the Sparc, and
32k on the m68k and RS/6000. The 386 has no such limit.)
Position-independent code requires special support, and
therefore works only on certain machines. For the 386,
GNU CC supports PIC for System V but not for the Sun
386i. Code generated for the IBM RS/6000 is always position-
independent.
The GNU assembler does not fully support PIC. Currently,
you must use some other assembler in order for PIC to work.
We would welcome volunteers to upgrade GAS to handle this;
the first part of the job is to figure out what the assembler
must do differently.

-fPIC If supported for the target machine, emit position-
independent code, suitable for dynamic linking and avoiding
any limit on the size of the global offset table. This option
makes a difference on the m68k, m88k and the Sparc.
Position-independent code requires special support, and
therefore works only on certain machines.

-ffixed-reg
Treat the register named reg as a fixed register; gener-
ated code should never refer to it (except perhaps as a stack
pointer, frame pointer or in some other fixed role).
reg must be the name of a register. The register names ac-
cepted are machine-specific and are defined in the REGISTER_
NAMES macro in the machine description macro file.
This flag does not have a negative form, because it specifies
a three-way choice.

-fcall-used-reg
Treat the register named reg as an allocatable register that
is clobbered by function calls. It may be allocated for tempo-
raries or variables that do not live across a call. Functions
compiled this way will not save and restore the register reg.
Use of this flag for a register that has a fixed pervasive role
in the machine’s execution model, such as the stack pointer
or frame pointer, will produce disastrous results.
This flag does not have a negative form, because it specifies
a three-way choice.

100 17 January 1996

Chapter 4: GNU CC Command Options

-fcall-saved-reg
Treat the register named reg as an allocatable register saved
by functions. It may be allocated even for temporaries or
variables that live across a call. Functions compiled this
way will save and restore the register reg if they use it.
Use of this flag for a register that has a fixed pervasive role
in the machine’s execution model, such as the stack pointer
or frame pointer, will produce disastrous results.
A different sort of disaster will result from the use of this flag
for a register in which function values may be returned.
This flag does not have a negative form, because it specifies
a three-way choice.

-fpack-struct
Pack all structure members together without holes. Usually
you would not want to use this option, since it makes the
code suboptimal, and the offsets of structure members won’t
agree with system libraries.

+e0
+e1 Control whether virtual function definitions in classes are

used to generate code, or only to define interfaces for their
callers. (C++ only).
These options are provided for compatibility with cfront 1.x
usage; the recommended alternative GNU C++ usage is in
flux. See Section 7.4 “Declarations and Definitions in One
Header,” page 197.
With ‘+e0’, virtual function definitions in classes are declared
extern; the declaration is used only as an interface specifi-
cation, not to generate code for the virtual functions (in this
compilation).
With ‘+e1’, G++ actually generates the code implementing
virtual functions defined in the code, and makes them pub-
licly visible.

-funaligned-pointers
Assume that all pointers contain unaligned addresses. On
machines where unaligned memory accesses trap, this will
result in much larger and slower code for all pointer derefer-
ences, but the code will work even if addresses are unaligned.

-funaligned-struct-hack
Always access structure fields using loads and stores of the
declared size. This option is useful for code that derefences
pointers to unaligned structures, but only accesses fields that

c y g n u s s u p p o r t 101

Using GNU CC

are themselves aligned. Without this option, gcc may try to
use a memory access larger than the field. This might give
an unaligned access fault on some hardware.
This option makes some invalid code work at the expense of
disabling some optimizations. It is strongly recommended
that this option not be used.

4.16 Environment Variables Affecting GNU CC

This section describes several environment variables that affect how
GNU CC operates. They work by specifying directories or prefixes to use
when searching for various kinds of files.

Note that you can also specify places to search using options such
as ‘-B’, ‘-I’ and ‘-L’ (see Section 4.12 “Directory Options,” page 64).
These take precedence over places specified using environment vari-
ables, which in turn take precedence over those specified by the config-
uration of GNU CC.

TMPDIR If TMPDIR is set, it specifies the directory to use
for temporary files. GNU CC uses temporary files to hold
the output of one stage of compilation which is to be used
as input to the next stage: for example, the output of the
preprocessor, which is the input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler. No
slash is added when this prefix is combined with the name of
a subprogram, but you can specify a prefix that ends with a
slash if you wish.
If GNU CC cannot find the subprogram using the specified
prefix, it tries looking in the usual places for the subprogram.
‘prefix/lib/gcc-lib/’ is the default value of GCC_EXEC_
PREFIX, where prefix is the value of prefix when you ran
the ‘configure’ script.
Other prefixes specified with ‘-B’ take precedence over this
prefix.
This prefix is also used for finding files such as ‘crt0.o’ that
are used for linking.
In addition, the prefix is used in an unusual way in find-
ing the directories to search for header files. For each of
the standard directories whose name normally begins with
‘/usr/local/lib/gcc-lib’ (more precisely, with the value of

102 17 January 1996

Chapter 4: GNU CC Command Options

GCC_INCLUDE_DIR), GNU CC tries replacing that beginning
with the specified prefix to produce an alternate directory
name. Thus, with ‘-Bfoo/’, GNU CC will search ‘foo/bar’
where it would normally search ‘/usr/local/lib/bar’.
These alternate directories are searched first; the standard
directories come next.

COMPILER_PATH
The value of COMPILER_PATH is a colon-separated list of di-
rectories, much like PATH. GNU CC tries the directories thus
specified when searching for subprograms, if it can’t find the
subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH
The value of LIBRARY_PATH is a colon-separated list of direc-
tories, much like PATH. When configured as a native compiler,
GNU CC tries the directories thus specified when searching
for special linker files, if it can’t find them using GCC_EXEC_
PREFIX. Linking using GNU CC also uses these directories
when searching for ordinary libraries for the ‘-l’ option (but
directories specified with ‘-L’ come first).

C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

These environment variables pertain to particular lan-
guages. Each variable’s value is a colon-separated list of
directories, much like PATH. When GNU CC searches for
header files, it tries the directories listed in the variable for
the language you are using, after the directories specified
with ‘-I’ but before the standard header file directories.

DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output depen-
dencies for Make based on the header files processed by the
compiler. This output looks much like the output from the
‘-M’ option (see Section 4.9 “Preprocessor Options,” page 59),
but it goes to a separate file, and is in addition to the usual
results of compilation.

The value of DEPENDENCIES_OUTPUT can be just a file name, in
which case the Make rules are written to that file, guessing
the target name from the source file name. Or the value
can have the form ‘file target’, in which case the rules are
written to file file using target as the target name.

c y g n u s s u p p o r t 103

Using GNU CC

4.17 Running Protoize

The program protoize is an optional part of GNU C. You can use it
to add prototypes to a program, thus converting the program to ANSI C
in one respect. The companion program unprotoize does the reverse: it
removes argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files
as command line arguments. The conversion programs start out by
compiling these files to see what functions they define. The information
gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all
eligible to be converted; any files they include (whether sources or just
headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and
unprotoize convert only source and header files in the current directory.
You can specify additional directories whose files should be converted
with the ‘-d directory’ option. You can also specify particular files to
exclude with the ‘-x file’ option. A file is converted if it is eligible, its
directory name matches one of the specified directory names, and its
name within the directory has not been excluded.

Basic conversion with protoize consists of rewriting most function
definitions and function declarations to specify the types of the argu-
ments. The only ones not rewritten are those for varargs functions.

protoize optionally inserts prototype declarations at the beginning
of the source file, to make them available for any calls that precede the
function’s definition. Or it can insert prototype declarations with block
scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most func-
tion declarations to remove any argument types, and rewriting function
definitions to the old-style pre-ANSI form.

Both conversion programs print a warning for any function decla-
ration or definition that they can’t convert. You can suppress these
warnings with ‘-q’.

The output from protoize or unprotoize replaces the original source
file. The original file is renamed to a name ending with ‘.save’. If the
‘.save’ file already exists, then the source file is simply discarded.

protoize and unprotoize both depend on GNU CC itself to scan the
program and collect information about the functions it uses. So neither
of these programs will work until GNU CC is installed.

Here is a table of the options you can use with protoize and
unprotoize. Each option works with both programs unless otherwise
stated.

104 17 January 1996

Chapter 4: GNU CC Command Options

-B directory
Look for the file ‘SYSCALLS.c.X’ in directory, instead of
the usual directory (normally ‘/usr/local/lib’). This file
contains prototype information about standard system func-
tions. This option applies only to protoize.

-c compilation-options
Use compilation-options as the options when running gcc
to produce the ‘.X’ files. The special option ‘-aux-info’ is
always passed in addition, to tell gcc to write a ‘.X’ file.
Note that the compilation options must be given as a sin-
gle argument to protoize or unprotoize. If you want to
specify several gcc options, you must quote the entire set of
compilation options to make them a single word in the shell.
There are certain gcc arguments that you cannot use, be-
cause they would produce the wrong kind of output. These
include ‘-g’, ‘-O’, ‘-c’, ‘-S’, and ‘-o’ If you include these in the
compilation-options, they are ignored.

-C Rename files to end in ‘.C’ instead of ‘.c’. This is convenient
if you are converting a C program to C++. This option applies
only to protoize.

-g Add explicit global declarations. This means inserting ex-
plicit declarations at the beginning of each source file for
each function that is called in the file and was not declared.
These declarations precede the first function definition that
contains a call to an undeclared function. This option applies
only to protoize.

-i string
Indent old-style parameter declarations with the string
string. This option applies only to protoize.
unprotoize converts prototyped function definitions to old-
style function definitions, where the arguments are declared
between the argument list and the initial ‘{’. By default,
unprotoize uses five spaces as the indentation. If you want
to indent with just one space instead, use ‘-i " "’.

-k Keep the ‘.X’ files. Normally, they are deleted after conver-
sion is finished.

-l Add explicit local declarations. protoize with ‘-l’ inserts a
prototype declaration for each function in each block which
calls the function without any declaration. This option ap-
plies only to protoize.

c y g n u s s u p p o r t 105

Using GNU CC

-n Make no real changes. This mode just prints information
about the conversions that would have been done without
‘-n’.

-N Make no ‘.save’ files. The original files are simply deleted.
Use this option with caution.

-p program
Use the program program as the compiler. Normally, the
name ‘gcc’ is used.

-q Work quietly. Most warnings are suppressed.

-v Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s
source files, then you should generate that file’s ‘.X’ file specially, by run-
ning gcc on that source file with the appropriate options and the option
‘-aux-info’. Then run protoize on the entire set of files. protoize will
use the existing ‘.X’ file because it is newer than the source file. For
example:

gcc -Dfoo=bar file1.c -aux-info
protoize *.c

You need to include the special files along with the rest in the protoize
command, even though their ‘.X’ files already exist, because otherwise
they won’t get converted.

See Section 9.11 “Protoize Caveats,” page 231, for more information
on how to use protoize successfully.

106 17 January 1996

Chapter 5: Installing GNU CC

5 Installing GNU CC

Here is the procedure for installing GNU CC on a Unix system. See
Section 5.5 “VMS Install,” page 138, for VMS systems. In this section
we assume you compile in the same directory that contains the source
files; see Section 5.2 “Other Dir,” page 131, to find out how to compile in
a separate directory on Unix systems.

You cannot install GNU C by itself on MSDOS; it will not compile
under any MSDOS compiler except itself. You need to get the complete
compilation package DJGPP, which includes binaries as well as sources,
and includes all the necessary compilation tools and libraries.
1. If you have built GNU CC previously in the same directory for a

different target machine, do ‘make distclean’ to delete all files that
might be invalid. One of the files this deletes is ‘Makefile’; if ‘make
distclean’ complains that ‘Makefile’ does not exist, it probably
means that the directory is already suitably clean.

2. On a System V release 4 system, make sure ‘/usr/bin’ precedes
‘/usr/ucb’ in PATH. The cc command in ‘/usr/ucb’ uses libraries
which have bugs.

3. Specify the host, build and target machine configurations. You do
this by running the file ‘configure’.
The build machine is the system which you are using, the host
machine is the system where you want to run the resulting compiler
(normally the build machine), and the target machine is the system
for which you want the compiler to generate code.
If you are building a compiler to produce code for the machine it
runs on (a native compiler), you normally do not need to specify any
operands to ‘configure’; it will try to guess the type of machine you
are on and use that as the build, host and target machines. So you
don’t need to specify a configuration when building a native compiler
unless ‘configure’ cannot figure out what your configuration is or
guesses wrong.
In those cases, specify the build machine’s configuration name with
the ‘--build’ option; the host and target will default to be the same
as the build machine. (If you are building a cross-compiler, see
Section 5.3 “Cross-Compiler,” page 132.)
Here is an example:

./configure --build=sparc-sun-sunos4.1

A configuration name may be canonical or it may be more or less
abbreviated.
A canonical configuration name has three parts, separated by
dashes. It looks like this: ‘cpu-company-system’. (The three parts

c y g n u s s u p p o r t 107

Using GNU CC

may themselves contain dashes; ‘configure’ can figure out which
dashes serve which purpose.) For example, ‘m68k-sun-sunos4.1’
specifies a Sun 3.
You can also replace parts of the configuration by nicknames
or aliases. For example, ‘sun3’ stands for ‘m68k-sun’, so
‘sun3-sunos4.1’ is another way to specify a Sun 3. You can also
use simply ‘sun3-sunos’, since the version of SunOS is assumed by
default to be version 4. ‘sun3-bsd’ also works, since ‘configure’
knows that the only BSD variant on a Sun 3 is SunOS.
You can specify a version number after any of the system types, and
some of the CPU types. In most cases, the version is irrelevant, and
will be ignored. So you might as well specify the version if you know
it.
See Section 5.1 “Configurations,” page 114, for a list of supported
configuration names and notes on many of the configurations. You
should check the notes in that section before proceeding any further
with the installation of GNU CC.
There are four additional options you can specify independently to
describe variant hardware and software configurations. These are
‘--with-gnu-as’, ‘--with-gnu-ld’, ‘--with-stabs’ and ‘--nfp’.

‘--with-gnu-as’
If you will use GNU CC with the GNU assembler (GAS),
you should declare this by using the ‘--with-gnu-as’
option when you run ‘configure’.
Using this option does not install GAS. It only modifies
the output of GNU CC to work with GAS. Building and
installing GAS is up to you.
Conversely, if you do not wish to use GAS and do not
specify ‘--with-gnu-as’ when building GNU CC, it is up
to you to make sure that GAS is not installed. GNU CC
searches for a program named as in various directories;
if the program it finds is GAS, then it runs GAS. If you
are not sure where GNU CC finds the assembler it is
using, try specifying ‘-v’ when you run it.
The systems where it makes a difference whether you
use GAS are
‘hppa1.0-any-any’, ‘hppa1.1-any-any’, ‘i386-any-sysv’,
‘i386-any-isc’,
‘i860-any-bsd’, ‘m68k-bull-sysv’, ‘m68k-hp-hpux’,
‘m68k-sony-bsd’,
‘m68k-altos-sysv’, ‘m68000-hp-hpux’, ‘m68000-att-sysv’,
‘any-lynx-lynxos’, and ‘mips-any’). On any other sys-
tem, ‘--with-gnu-as’ has no effect.

108 17 January 1996

Chapter 5: Installing GNU CC

On the systems listed above (except for the HP-PA, for
ISC on the 386, and for ‘mips-sgi-irix5.*’), if you use
GAS, you should also use the GNU linker (and specify
‘--with-gnu-ld’).

‘--with-gnu-ld’
Specify the option ‘--with-gnu-ld’ if you plan to use the
GNU linker with GNU CC.
This option does not cause the GNU linker to be in-
stalled; it just modifies the behavior of GNU CC to work
with the GNU linker. Specifically, it inhibits the installa-
tion of collect2, a program which otherwise serves as a
front-end for the system’s linker on most configurations.

‘--with-stabs’
On MIPS based systems and on Alphas, you must specify
whether you want GNU CC to create the normal ECOFF
debugging format, or to use BSD-style stabs passed
through the ECOFF symbol table. The normal ECOFF
debug format cannot fully handle languages other than
C. BSD stabs format can handle other languages, but it
only works with the GNU debugger GDB.
Normally, GNU CC uses the ECOFF debugging for-
mat by default; if you prefer BSD stabs, specify
‘--with-stabs’ when you configure GNU CC.
No matter which default you choose when you configure
GNU CC, the user can use the ‘-gcoff’ and ‘-gstabs+’
options to specify explicitly the debug format for a par-
ticular compilation.
‘--with-stabs’ is meaningful on the ISC system on the
386, also, if ‘--with-gas’ is used. It selects use of stabs
debugging information embedded in COFF output. This
kind of debugging information supports C++ well; ordi-
nary COFF debugging information does not.
‘--with-stabs’ is also meaningful on 386 systems run-
ning SVR4. It selects use of stabs debugging information
embedded in ELF output. The C++ compiler currently
(2.6.0) does not support the DWARF debugging informa-
tion normally used on 386 SVR4 platforms; stabs provide
a workable alternative. This requires gas and gdb, as the
normal SVR4 tools can not generate or interpret stabs.

‘--nfp’ On certain systems, you must specify whether the ma-
chine has a floating point unit. These systems include
‘m68k-sun-sunosn’ and ‘m68k-isi-bsd’. On any other

c y g n u s s u p p o r t 109

Using GNU CC

system, ‘--nfp’ currently has no effect, though perhaps
there are other systems where it could usefully make a
difference.

The ‘configure’ script searches subdirectories of the source direc-
tory for other compilers that are to be integrated into GNU CC.
The GNU compiler for C++, called G++ is in a subdirectory named
‘cp’. ‘configure’ inserts rules into ‘Makefile’ to build all of those
compilers.
Here we spell out what files will be set up by configure. Normally
you need not be concerned with these files.
� A file named ‘config.h’ is created that contains a ‘#include’ of

the top-level config file for the machine you will run the compiler
on (see section “The Configuration File” in Using and Porting
GCC). This file is responsible for defining information about the
host machine. It includes ‘tm.h’.
The top-level config file is located in the subdirectory ‘config’.
Its name is always ‘xm-something.h’; usually ‘xm-machine.h’,
but there are some exceptions.
If your system does not support symbolic links, you might want
to set up ‘config.h’ to contain a ‘#include’ command which
refers to the appropriate file.

� A file named ‘tconfig.h’ is created which includes the top-level
config file for your target machine. This is used for compiling
certain programs to run on that machine.

� A file named ‘tm.h’ is created which includes the machine-
description macro file for your target machine. It should be
in the subdirectory ‘config’ and its name is often ‘machine.h’.

� The command file ‘configure’ also constructs the file ‘Makefile’
by adding some text to the template file ‘Makefile.in’. The
additional text comes from files in the ‘config’ directory, named
‘t-target’ and ‘x-host’. If these files do not exist, it means
nothing needs to be added for a given target or host.

4. The standard directory for installing GNU CC is ‘/usr/local/lib’.
If you want to install its files somewhere else, specify ‘--prefix=dir’
when you run ‘configure’. Here dir is a directory name to use
instead of ‘/usr/local’ for all purposes with one exception: the
directory ‘/usr/local/include’ is searched for header files no mat-
ter where you install the compiler. To override this name, use the
--local-prefix option below.

5. Specify ‘--local-prefix=dir’ if you want the compiler to search
directory ‘dir/include’ for locally installed header files instead of
‘/usr/local/include’.

110 17 January 1996

Chapter 5: Installing GNU CC

You should specify ‘--local-prefix’ only if your site has a different
convention (not ‘/usr/local’) for where to put site-specific files.
Do not specify ‘/usr’ as the ‘--local-prefix’! The directory you use
for ‘--local-prefix’ must not contain any of the system’s standard
header files. If it did contain them, certain programs would be
miscompiled (including GNU Emacs, on certain targets), because
this would override and nullify the header file corrections made by
the fixincludes script.

6. Make sure the Bison parser generator is installed. (This is unnec-
essary if the Bison output files ‘c-parse.c’ and ‘cexp.c’ are more
recent than ‘c-parse.y’ and ‘cexp.y’ and you do not plan to change
the ‘.y’ files.)
Bison versions older than Sept 8, 1988 will produce incorrect output
for ‘c-parse.c’.

7. If you have chosen a configuration for GNU CC which requires other
GNU tools (such as GAS or the GNU linker) instead of the standard
system tools, install the required tools in the build directory under
the names ‘as’, ‘ld’ or whatever is appropriate. This will enable
the compiler to find the proper tools for compilation of the program
‘enquire’.
Alternatively, you can do subsequent compilation using a value of
the PATH environment variable such that the necessary GNU tools
come before the standard system tools.

8. Build the compiler. Just type ‘make LANGUAGES=c’ in the compiler
directory.
‘LANGUAGES=c’ specifies that only the C compiler should be compiled.
The makefile normally builds compilers for all the supported lan-
guages; currently, C, C++ and Objective C. However, C is the only
language that is sure to work when you build with other non-GNU
C compilers. In addition, building anything but C at this stage is a
waste of time.
In general, you can specify the languages to build by typing the
argument ‘LANGUAGES="list"’, where list is one or more words
from the list ‘c’, ‘c++’, and ‘objective-c’. If you have any additional
GNU compilers as subdirectories of the GNU CC source directory,
you may also specify their names in this list.
Ignore any warnings you may see about “statement not reached” in
‘insn-emit.c’; they are normal. Also, warnings about “unknown
escape sequence” are normal in ‘genopinit.c’ and perhaps some
other files. Likewise, you should ignore warnings about “constant
is so large that it is unsigned” in ‘insn-emit.c’ and ‘insn-recog.c’
and a warning about a comparison always being zero in ‘enquire.o’.
Any other compilation errors may represent bugs in the port to

c y g n u s s u p p o r t 111

Using GNU CC

your machine or operating system, and should be investigated and
reported (see Chapter 10 “Bugs,” page 239).
Some commercial compilers fail to compile GNU CC because they
have bugs or limitations. For example, the Microsoft compiler is
said to run out of macro space. Some Ultrix compilers run out of
expression space; then you need to break up the statement where
the problem happens.

9. If you are building a cross-compiler, stop here. See Section 5.3
“Cross-Compiler,” page 132.

10. Move the first-stage object files and executables into a subdirectory
with this command:

make stage1

The files are moved into a subdirectory named ‘stage1’. Once in-
stallation is complete, you may wish to delete these files with rm -r
stage1.

11. If you have chosen a configuration for GNU CC which requires other
GNU tools (such as GAS or the GNU linker) instead of the standard
system tools, install the required tools in the ‘stage1’ subdirectory
under the names ‘as’, ‘ld’ or whatever is appropriate. This will
enable the stage 1 compiler to find the proper tools in the following
stage.
Alternatively, you can do subsequent compilation using a value of
the PATH environment variable such that the necessary GNU tools
come before the standard system tools.

12. Recompile the compiler with itself, with this command:
make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2"

This is called making the stage 2 compiler.
The command shown above builds compilers for all the supported
languages. If you don’t want them all, you can specify the languages
to build by typing the argument ‘LANGUAGES="list"’. list should
contain one or more words from the list ‘c’, ‘c++’, ‘objective-c’, and
‘proto’. Separate the words with spaces. ‘proto’ stands for the pro-
grams protoize and unprotoize; they are not a separate language,
but you use LANGUAGES to enable or disable their installation.
If you are going to build the stage 3 compiler, then you might want
to build only the C language in stage 2.
Once you have built the stage 2 compiler, if you are short of disk
space, you can delete the subdirectory ‘stage1’.
On a 68000 or 68020 system lacking floating point hardware, unless
you have selected a ‘tm.h’ file that expects by default that there is
no such hardware, do this instead:

make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2 -msoft-float"

112 17 January 1996

Chapter 5: Installing GNU CC

13. If you wish to test the compiler by compiling it with itself one more
time, install any other necessary GNU tools (such as GAS or the
GNU linker) in the ‘stage2’ subdirectory as you did in the ‘stage1’
subdirectory, then do this:

make stage2
make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2"

This is called making the stage 3 compiler. Aside from the ‘-B’
option, the compiler options should be the same as when you made
the stage 2 compiler. But theLANGUAGES option need not be the same.
The command shown above builds compilers for all the supported
languages; if you don’t want them all, you can specify the languages
to build by typing the argument ‘LANGUAGES="list"’, as described
above.
If you do not have to install any additional GNU tools, you may use
the command

make bootstrap LANGUAGES=language-list BOOT_CFLAGS=option-list

instead of making ‘stage1’, ‘stage2’, and performing the two com-
piler builds.

14. Then compare the latest object files with the stage 2 object files—
they ought to be identical, aside from time stamps (if any).
On some systems, meaningful comparison of object files is impossi-
ble; they always appear “different.” This is currently true on Solaris
and some systems that use ELF object file format. On some ver-
sions of Irix on SGI machines and DEC Unix (OSF/1) on Alpha
systems, you will not be able to compare the files without specifying
‘-save-temps’; see the description of individual systems above to see
if you get comparison failures. You may have similar problems on
other systems.
Use this command to compare the files:

make compare

This will mention any object files that differ between stage 2 and
stage 3. Any difference, no matter how innocuous, indicates that the
stage 2 compiler has compiled GNU CC incorrectly, and is therefore
a potentially serious bug which you should investigate and report
(see Chapter 10 “Bugs,” page 239).
If your system does not put time stamps in the object files, then this
is a faster way to compare them (using the Bourne shell):

for file in *.o; do
cmp $file stage2/$file
done

If you have built the compiler with the ‘-mno-mips-tfile’ option on
MIPS machines, you will not be able to compare the files.

c y g n u s s u p p o r t 113

Using GNU CC

15. Install the compiler driver, the compiler’s passes and run-time sup-
port with ‘make install’. Use the same value for CC, CFLAGS and
LANGUAGES that you used when compiling the files that are being in-
stalled. One reason this is necessary is that some versions of Make
have bugs and recompile files gratuitously when you do this step.
If you use the same variable values, those files will be recompiled
properly.
For example, if you have built the stage 2 compiler, you can use the
following command:

make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LAN-
GUAGES="list"

This copies the files ‘cc1’, ‘cpp’ and ‘libgcc.a’ to files ‘cc1’, ‘cpp’ and
‘libgcc.a’ in the directory ‘/usr/local/lib/gcc-lib/target/version’,
which is where the compiler driver program looks for them.
Here target is the target machine type specified when you ran
‘configure’, and version is the version number of GNU CC. This
naming scheme permits various versions and/or cross-compilers to
coexist.
This also copies the driver program ‘xgcc’ into ‘/usr/local/bin/gcc’,
so that it appears in typical execution search paths.
On some systems, this command causes recompilation of some files.
This is usually due to bugs in make. You should either ignore this
problem, or use GNU Make.
Warning: there is a bug in alloca in the Sun library. To
avoid this bug, be sure to install the executables of GNU CC
that were compiled by GNU CC. (That is, the executables
from stage 2 or 3, not stage 1.) They use alloca as a built-in
function and never the one in the library.
(It is usually better to install GNU CC executables from stage 2 or
3, since they usually run faster than the ones compiled with some
other compiler.)

16. If you’re going to use C++, it’s likely that you need to also install
the libg++ distribution. It should be available from the same place
where you got the GNU C distribution. Just as GNU C does not
distribute a C runtime library, it also does not include a C++ run-
time library. All I/O functionality, special class libraries, etc., are
available in the libg++ distribution.

5.1 Configurations Supported by GNU CC

Here are the possible CPU types:
1750a, a29k, alpha, arm, cn, clipper, dsp16xx, elxsi, h8300,
hppa1.0, hppa1.1, i370, i386, i486, i586, i860, i960, m68000,

114 17 January 1996

Chapter 5: Installing GNU CC

m68k, m88k, mips, mipsel, mips64, mips64el, ns32k, powerpc,
powerpcle, pyramid, romp, rs6000, sh, sparc, sparclite, sparc64,
vax, we32k.

Here are the recognized company names. As you can see, customary
abbreviations are used rather than the longer official names.

acorn, alliant, altos, apollo, att, bull, cbm, convergent, convex,
crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm,
intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus,
sequent, sgi, sony, sun, tti, unicom, wrs.

The company name is meaningful only to disambiguate when the
rest of the information supplied is insufficient. You can omit it, writing
just ‘cpu-system’, if it is not needed. For example, ‘vax-ultrix4.2’ is
equivalent to ‘vax-dec-ultrix4.2’.

Here is a list of system types:
386bsd, aix, acis, amigados, aos, aout, bosx, bsd, clix, coff, ctix,
cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix,
gnu, gnu/linux, hiux, hpux, iris, irix, isc, luna, lynxos, mach,
minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose, ptx,
riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi, ultrix,
unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix.

You can omit the system type; then ‘configure’ guesses the operating
system from the CPU and company.

You can add a version number to the system type; this may or may
not make a difference. For example, you can write ‘bsd4.3’ or ‘bsd4.4’
to distinguish versions of BSD. In practice, the version number is most
needed for ‘sysv3’ and ‘sysv4’, which are often treated differently.

If you specify an impossible combination such as ‘i860-dg-vms’, then
you may get an error message from ‘configure’, or it may ignore part of
the information and do the best it can with the rest. ‘configure’ always
prints the canonical name for the alternative that it used. GNU CC does
not support all possible alternatives.

Often a particular model of machine has a name. Many machine
names are recognized as aliases for CPU/company combinations. Thus,
the machine name ‘sun3’, mentioned above, is an alias for ‘m68k-sun’.
Sometimes we accept a company name as a machine name, when the
name is popularly used for a particular machine. Here is a table of the
known machine names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300,
balance, convex-cn, crds, decstation-3100, decstation, delta,
encore, fx2800, gmicro, hp7nn, hp8nn, hp9k2nn, hp9k3nn,
hp9k7nn, hp9k8nn, iris4d, iris, isi68, m3230, magnum, mer-

c y g n u s s u p p o r t 115

Using GNU CC

lin, miniframe, mmax, news-3600, news800, news, next, pbd,
pc532, pmax, powerpc, powerpcle, ps2, risc-news, rtpc, sun2,
sun386i, sun386, sun3, sun4, symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the
company name. If you want to install your own homemade configuration
files, you can use ‘local’ as the company name to access them. If you
use configuration ‘cpu-local’, the configuration name without the cpu
prefix is used to form the configuration file names.

Thus, if you specify ‘m68k-local’, configuration uses files ‘m68k.md’,
‘local.h’, ‘m68k.c’, ‘xm-local.h’, ‘t-local’, and ‘x-local’, all in the
directory ‘config/m68k’.

Here is a list of configurations that have special treatment or special
things you must know:

‘1750a-*-*’
MIL-STD-1750A processors.
Starting with GCC 2.6.1, the MIL-STD-1750A cross config-
uration no longer supports the Tektronix Assembler, but in-
stead produces output for as1750, an assembler/linker avail-
able under the GNU Public License for the 1750A. Con-
tact kellogg@space.otn.dasa.de for more details on obtaining
‘as1750’. A similarly licensed simulator for the 1750A is
available from same address.
You should ignore a fatal error during the building of libgcc
(libgcc is not yet implemented for the 1750A.)
The as1750 assembler requires the file ‘ms1750.inc’, which
is found in the directory ‘config/1750a’.
GNU CC produced the same sections as the Fairchild F9450
C Compiler, namely:

Normal The program code section.

Static The read/write (RAM) data section.

Konst The read-only (ROM) constants section.

Init Initialization section (code to copy KREL to
SREL).

The smallest addressable unit is 16 bits (BITS PER UNIT is
16). This means that type ‘char’ is represented with a 16-bit
word per character. The 1750A’s "Load/Store Upper/Lower
Byte" instructions are not used by GNU CC.

‘alpha-*-osf1’
Systems using processors that implement the DEC Alpha ar-
chitecture and are running the DEC Unix (OSF/1) operating

116 17 January 1996

Chapter 5: Installing GNU CC

system, for example the DEC Alpha AXP systems. (VMS on
the Alpha is not currently supported by GNU CC.)

GNU CC writes a ‘.verstamp’ directive to the assem-
bler output file unless it is built as a cross-compiler.
It gets the version to use from the system header file
‘/usr/include/stamp.h’. If you install a new version of DEC
Unix, you should rebuild GCC to pick up the new version
stamp.

Note that since the Alpha is a 64-bit architecture, cross-
compilers from 32-bit machines will not generate code as
efficient as that generated when the compiler is running on
a 64-bit machine because many optimizations that depend
on being able to represent a word on the target in an inte-
gral value on the host cannot be performed. Building cross-
compilers on the Alpha for 32-bit machines has only been
tested in a few cases and may not work properly.

make compare may fail on old versions of DEC Unix un-
less you add ‘-save-temps’ to CFLAGS. On these systems,
the name of the assembler input file is stored in the object
file, and that makes comparison fail if it differs between the
stage1 and stage2 compilations. The option ‘-save-temps’
forces a fixed name to be used for the assembler input file,
instead of a randomly chosen name in ‘/tmp’. Do not add
‘-save-temps’ unless the comparisons fail without that op-
tion. If you add ‘-save-temps’, you will have to manually
delete the ‘.i’ and ‘.s’ files after each series of compilations.

GNU CC now supports both the native (ECOFF) debugging
format used by DBX and GDB and an encapsulated STABS
format for use only with GDB. See the discussion of the
‘--with-stabs’ option of ‘configure’ above for more infor-
mation on these formats and how to select them.

There is a bug in DEC’s assembler that produces incorrect
line numbers for ECOFF format when the ‘.align’ directive
is used. To work around this problem, GNU CC will not emit
such alignment directives while writing ECOFF format de-
bugging information even if optimization is being performed.
Unfortunately, this has the very undesirable side-effect that
code addresses when ‘-O’ is specified are different depending
on whether or not ‘-g’ is also specified.

To avoid this behavior, specify ‘-gstabs+’ and use GDB in-
stead of DBX. DEC is now aware of this problem with the
assembler and hopes to provide a fix shortly.

c y g n u s s u p p o r t 117

Using GNU CC

‘arm’ Advanced RISC Machines ARM-family processors. These are
often used in embedded applications. There are no standard
Unix configurations. This configuration corresponds to the
basic instruction sequences and will produce a.out format
object modules.
You may need to make a variant of the file ‘arm.h’ for your
particular configuration.

‘arm-*-riscix’
The ARM2 or ARM3 processor running RISC iX, Acorn’s port
of BSD Unix. If you are running a version of RISC iX prior to
1.2 then you must specify the version number during config-
uration. Note that the assembler shipped with RISC iX does
not support stabs debugging information; a new version of
the assembler, with stabs support included, is now available
from Acorn.

‘a29k’ AMD Am29k-family processors. These are normally used in
embedded applications. There are no standard Unix config-
urations. This configuration corresponds to AMD’s standard
calling sequence and binary interface and is compatible with
other 29k tools.
You may need to make a variant of the file ‘a29k.h’ for your
particular configuration.

‘a29k-*-bsd’
AMD Am29050 used in a system running a variant of BSD
Unix.

‘decstation-*’
DECstations can support three different personalities: Ul-
trix, DEC OSF/1, and OSF/rose. To configure GCC for these
platforms use the following configurations:

‘decstation-ultrix’
Ultrix configuration.

‘decstation-osf1’
Dec’s version of OSF/1.

‘decstation-osfrose’
Open Software Foundation reference port of
OSF/1 which uses the OSF/rose object file for-
mat instead of ECOFF. Normally, you would not
select this configuration.

The MIPS C compiler needs to be told to increase its table size
for switch statements with the ‘-Wf,-XNg1500’ option in order

118 17 January 1996

Chapter 5: Installing GNU CC

to compile ‘cp/parse.c’. If you use the ‘-O2’ optimization
option, you also need to use ‘-Olimit 3000’. Both of these
options are automatically generated in the ‘Makefile’ that
the shell script ‘configure’ builds. If you override the CC
make variable and use the MIPS compilers, you may need to
add ‘-Wf,-XNg1500 -Olimit 3000’.

‘elxsi-elxsi-bsd’
The Elxsi’s C compiler has known limitations that prevent it
from compiling GNU C. Please contact mrs@cygnus.com for
more details.

‘dsp16xx’ A port to the AT&T DSP1610 family of processors.

‘h8300-*-*’
The calling convention and structure layout has changed in
release 2.6. All code must be recompiled. The calling conven-
tion now passes the first three arguments in function calls in
registers. Structures are no longer a multiple of 2 bytes.

‘hppa*-*-*’
There are two variants of this CPU, called 1.0 and 1.1, which
have different machine descriptions. You must use the right
one for your machine. All 7nn machines and 8n7 machines
use 1.1, while all other 8nn machines use 1.0.
The easiest way to handle this problem is to use ‘configure
hpnnn’ or ‘configure hpnnn-hpux’, where nnn is the model
number of the machine. Then ‘configure’ will figure out if
the machine is a 1.0 or 1.1. Use ‘uname -a’ to find out the
model number of your machine.
‘-g’ does not work on HP-UX, since that system uses a pecu-
liar debugging format which GNU CC does not know about.
However, ‘-g’ will work if you also use GAS and GDB in con-
junction with GCC. We highly recommend using GAS for all
HP-PA configurations.
You should be using GAS-2.3 (or later) along with GDB-4.12
(or later). These can be retrieved from all the traditional
GNU ftp archive sites.
Build GAS and install the resulting binary as:

/usr/local/lib/gcc-lib/configuration/gccversion/as

where configuration is the configuration name (perhaps
‘hpnnn-hpux’) and gccversion is the GNU CC version num-
ber. Do this before starting the build process, otherwise
you will get errors from the HPUX assembler while build-
ing ‘libgcc2.a’. The command

c y g n u s s u p p o r t 119

Using GNU CC

make install-dir

will create the necessary directory hierarchy so you can in-
stall GAS before building GCC.
To enable debugging, configure GNU CC with the
‘--with-gnu-as’ option before building.
It has been reported that GNU CC produces invalid assembly
code for 1.1 machines running HP-UX 8.02 when using the
HP assembler. Typically the errors look like this:

as: bug.s @line#15 [err#1060]
Argument 0 or 2 in FARG upper

- lookahead = ARGW1=FR,RTNVAL=GR
as: foo.s @line#28 [err#1060]

Argument 0 or 2 in FARG upper
- lookahead = ARGW1=FR

You can check the version of HP-UX you are running by ex-
ecuting the command ‘uname -r’. If you are indeed running
HP-UX 8.02 on a PA and using the HP assembler then con-
figure GCC with "hpnnn-hpux8.02".

‘i370-*-*’
This port is very preliminary and has many known bugs. We
hope to have a higher-quality port for this machine soon.

‘i386-*-linuxoldld’
Use this configuration to generate a.out binaries on Linux if
you do not have gas/binutils version 2.5.2 or later installed.
This is an obsolete configuration.

‘i386-*-linuxaout’
Use this configuration to generate a.out binaries on Linux.
This configuration is being superseded. You must use
gas/binutils version 2.5.2 or later.

‘i386-*-linux’
Use this configuration to generate ELF binaries on Linux.
You must use gas/binutils version 2.5.2 or later.

‘i386-*-sco’
Compilation with RCC is recommended. Also, it may be a
good idea to link with GNU malloc instead of the malloc that
comes with the system.

‘i386-*-sco3.2v4’
Use this configuration for SCO release 3.2 version 4.

‘i386-*-isc’
It may be a good idea to link with GNU malloc instead of the
malloc that comes with the system.

120 17 January 1996

Chapter 5: Installing GNU CC

In ISC version 4.1, ‘sed’ core dumps when building
‘deduced.h’. Use the version of ‘sed’ from version 4.0.

‘i386-*-esix’
It may be good idea to link with GNU malloc instead of the
malloc that comes with the system.

‘i386-ibm-aix’
You need to use GAS version 2.1 or later, and and LD from
GNU binutils version 2.2 or later.

‘i386-sequent-bsd’
Go to the Berkeley universe before compiling. In addition,
you probably need to create a file named ‘string.h’ contain-
ing just one line: ‘#include <strings.h>’.

‘i386-sequent-ptx1*’
Sequent DYNIX/ptx 1.x.

‘i386-sequent-ptx2*’
Sequent DYNIX/ptx 2.x.

‘i386-sun-sunos4’
You may find that you need another version of GNU CC to be-
gin bootstrapping with, since the current version when built
with the system’s own compiler seems to get an infinite loop
compiling part of ‘libgcc2.c’. GNU CC version 2 compiled
with GNU CC (any version) seems not to have this problem.
See Section 5.4 “Sun Install,” page 137, for information on
installing GNU CC on Sun systems.

‘i[345]86-*-winnt3.5’
This version requires a GAS that has not let been re-
leased. Until it is, you can get a prebuilt binary version
via anonymous ftp from ‘cs.washington.edu:pub/gnat’ or
‘cs.nyu.edu:pub/gnat’. You must also use the Microsoft
header files from the Windows NT 3.5 SDK. Find these on
the CDROM in the ‘/mstools/h’ directory dated 9/4/94. You
must use a fixed version of Microsoft linker made especially
for NT 3.5, which is also is available on the NT 3.5 SDK
CDROM. If you do not have this linker, can you also use the
linker from Visual C/C++ 1.0 or 2.0.
Installing GNU CC for NT builds a wrapper linker, called
‘ld.exe’, which mimics the behaviour of Unix ‘ld’ in the speci-
fication of libraries (‘-L’ and ‘-l’). ‘ld.exe’ looks for both Unix
and Microsoft named libraries. For example, if you specify
‘-lfoo’, ‘ld.exe’ will look first for ‘libfoo.a’ and then for
‘foo.lib’.

c y g n u s s u p p o r t 121

Using GNU CC

You may install GNU CC for Windows NT in one of two ways,
depending on whether or not you have a Unix-like shell and
various Unix-like utilities.
1. If you do not have a Unix-like shell and few Unix-like

utilities, you will use a DOS style batch script called
‘configure.bat’. Invoke it as configure winnt from an
MSDOS console window or from the program manager
dialog box. ‘configure.bat’ assumes you have already
installed and have in your path a Unix-like ‘sed’ pro-
gram which is used to create a working ‘Makefile’ from
‘Makefile.in’.
‘Makefile’ uses the Microsoft Nmake program mainte-
nance utility and the Visual C/C++ V8.00 compiler to
build GNU CC. You need only have the utilities ‘sed’
and ‘touch’ to use this installation method, which only
automatically builds the compiler itself. You must then
examine what ‘fixinc.winnt’ does, edit the header files
by hand and build ‘libgcc.a’ manually.

2. The second type of installation assumes you are run-
ning a Unix-like shell, have a complete suite of Unix-
like utilities in your path, and have a previous version
of GNU CC already installed, either through building
it via the above installation method or acquiring a pre-
built binary. In this case, use the ‘configure’ script in
the normal fashion.

‘i860-intel-osf1’
This is the Paragon. If you have version 1.0 of the operating
system, see Section 9.2 “Installation Problems,” page 211, for
special things you need to do to compensate for peculiarities
in the system.

‘*-lynx-lynxos’
LynxOS 2.2 and earlier comes with GNU CC 1.x already in-
stalled as ‘/bin/gcc’. You should compile with this instead
of ‘/bin/cc’. You can tell GNU CC to use the GNU assembler
and linker, by specifying ‘--with-gnu-as --with-gnu-ld’
when configuring. These will produce COFF format object
files and executables; otherwise GNU CC will use the in-
stalled tools, which produce a.out format executables.

‘m68000-hp-bsd’
HP 9000 series 200 running BSD. Note that the C compiler
that comes with this system cannot compile GNU CC; contact
law@cs.utah.edu to get binaries of GNU CC for bootstrap-
ping.

122 17 January 1996

Chapter 5: Installing GNU CC

‘m68k-altos’
Altos 3068. You must use the GNU assembler, linker and
debugger. Also, you must fix a kernel bug. Details in the file
‘README.ALTOS’.

‘m68k-att-sysv’
AT&T 3b1, a.k.a. 7300 PC. Special procedures are needed to
compile GNU CC with this machine’s standard C compiler,
due to bugs in that compiler. You can bootstrap it more easily
with previous versions of GNU CC if you have them.
Installing GNU CC on the 3b1 is difficult if you do not al-
ready have GNU CC running, due to bugs in the installed C
compiler. However, the following procedure might work. We
are unable to test it.
1. Comment out the ‘#include "config.h"’ line on line 37

of ‘cccp.c’ and do ‘make cpp’. This makes a preliminary
version of GNU cpp.

2. Save the old ‘/lib/cpp’ and copy the preliminary GNU
cpp to that file name.

3. Undo your change in ‘cccp.c’, or reinstall the original
version, and do ‘make cpp’ again.

4. Copy this final version of GNU cpp into ‘/lib/cpp’.
5. Replace every occurrence of obstack_free in the file

‘tree.c’ with _obstack_free.
6. Run make to get the first-stage GNU CC.
7. Reinstall the original version of ‘/lib/cpp’.
8. Now you can compile GNU CC with itself and install it

in the normal fashion.

‘m68k-bull-sysv’
Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to BOS-
2.01. GNU CC works either with native assembler or GNU
assembler. You can use GNU assembler with native coff gen-
eration by providing ‘--with-gnu-as’ to the configure script
or use GNU assembler with dbx-in-coff encapsulation by pro-
viding ‘--with-gnu-as --stabs’. For any problem with na-
tive assembler or for availability of the DPX/2 port of GAS,
contact F.Pierresteguy@frcl.bull.fr.

‘m68k-crds-unox’
Use ‘configure unos’ for building on Unos.
The Unos assembler is named casm instead of as. For some
strange reason linking ‘/bin/as’ to ‘/bin/casm’ changes the
behavior, and does not work. So, when installing GNU CC,

c y g n u s s u p p o r t 123

Using GNU CC

you should install the following script as ‘as’ in the subdirec-
tory where the passes of GCC are installed:

#!/bin/sh
casm $*

The default Unos library is named ‘libunos.a’ instead of
‘libc.a’. To allow GNU CC to function, either change all
references to ‘-lc’ in ‘gcc.c’ to ‘-lunos’ or link ‘/lib/libc.a’
to ‘/lib/libunos.a’.
When compiling GNU CC with the standard compiler, to
overcome bugs in the support of alloca, do not use ‘-O’ when
making stage 2. Then use the stage 2 compiler with ‘-O’
to make the stage 3 compiler. This compiler will have the
same characteristics as the usual stage 2 compiler on other
systems. Use it to make a stage 4 compiler and compare that
with stage 3 to verify proper compilation.
(Perhaps simply defining ALLOCA in ‘x-crds’ as described in
the comments there will make the above paragraph super-
fluous. Please inform us of whether this works.)
Unos uses memory segmentation instead of demand paging,
so you will need a lot of memory. 5 Mb is barely enough if no
other tasks are running. If linking ‘cc1’ fails, try putting the
object files into a library and linking from that library.

‘m68k-hp-hpux’
HP 9000 series 300 or 400 running HP-UX. HP-UX version
8.0 has a bug in the assembler that prevents compilation of
GNU CC. To fix it, get patch PHCO 4484 from HP.
In addition, if you wish to use gas ‘--with-gnu-as’ you must
use gas version 2.1 or later, and you must use the GNU
linker version 2.1 or later. Earlier versions of gas relied upon
a program which converted the gas output into the native
HP/UX format, but that program has not been kept up to
date. gdb does not understand that native HP/UX format, so
you must use gas if you wish to use gdb.

‘m68k-sun’
Sun 3. We do not provide a configuration file to use the
Sun FPA by default, because programs that establish signal
handlers for floating point traps inherently cannot work with
the FPA.
See Section 5.4 “Sun Install,” page 137, for information on
installing GNU CC on Sun systems.

‘m88k-*-svr3’
Motorola m88k running the AT&T/Unisoft/Motorola V.3 ref-
erence port. These systems tend to use the Green Hills C,

124 17 January 1996

Chapter 5: Installing GNU CC

revision 1.8.5, as the standard C compiler. There are appar-
ently bugs in this compiler that result in object files differ-
ences between stage 2 and stage 3. If this happens, make the
stage 4 compiler and compare it to the stage 3 compiler. If
the stage 3 and stage 4 object files are identical, this suggests
you encountered a problem with the standard C compiler; the
stage 3 and 4 compilers may be usable.
It is best, however, to use an older version of GNU CC for
bootstrapping if you have one.

‘m88k-*-dgux’
Motorola m88k running DG/UX. To build 88open BCS na-
tive or cross compilers on DG/UX, specify the configuration
name as ‘m88k-*-dguxbcs’ and build in the 88open BCS soft-
ware development environment. To build ELF native or
cross compilers on DG/UX, specify ‘m88k-*-dgux’ and build
in the DG/UX ELF development environment. You set the
software development environment by issuing ‘sde-target’
command and specifying either ‘m88kbcs’ or ‘m88kdguxelf’ as
the operand.
If you do not specify a configuration name, ‘configure’
guesses the configuration based on the current software de-
velopment environment.

‘m88k-tektronix-sysv3’
Tektronix XD88 running UTekV 3.2e. Do not turn on op-
timization while building stage1 if you bootstrap with the
buggy Green Hills compiler. Also, The bundled LAI System
V NFS is buggy so if you build in an NFS mounted direc-
tory, start from a fresh reboot, or avoid NFS all together.
Otherwise you may have trouble getting clean comparisons
between stages.

‘mips-mips-bsd’
MIPS machines running the MIPS operating system in BSD
mode. It’s possible that some old versions of the system
lack the functions memcpy, memcmp, and memset. If your sys-
tem lacks these, you must remove or undo the definition of
TARGET_MEM_FUNCTIONS in ‘mips-bsd.h’.
The MIPS C compiler needs to be told to increase its table size
for switch statements with the ‘-Wf,-XNg1500’ option in order
to compile ‘cp/parse.c’. If you use the ‘-O2’ optimization
option, you also need to use ‘-Olimit 3000’. Both of these
options are automatically generated in the ‘Makefile’ that
the shell script ‘configure’ builds. If you override the CC

c y g n u s s u p p o r t 125

Using GNU CC

make variable and use the MIPS compilers, you may need to
add ‘-Wf,-XNg1500 -Olimit 3000’.

‘mips-mips-riscos*’
The MIPS C compiler needs to be told to increase its table size
for switch statements with the ‘-Wf,-XNg1500’ option in order
to compile ‘cp/parse.c’. If you use the ‘-O2’ optimization
option, you also need to use ‘-Olimit 3000’. Both of these
options are automatically generated in the ‘Makefile’ that
the shell script ‘configure’ builds. If you override the CC
make variable and use the MIPS compilers, you may need to
add ‘-Wf,-XNg1500 -Olimit 3000’.
MIPS computers running RISC-OS can support four differ-
ent personalities: default, BSD 4.3, System V.3, and System
V.4 (older versions of RISC-OS don’t support V.4). To config-
ure GCC for these platforms use the following configurations:

‘mips-mips-riscosrev’
Default configuration for RISC-OS, revision rev.

‘mips-mips-riscosrevbsd’
BSD 4.3 configuration for RISC-OS, revision rev.

‘mips-mips-riscosrevsysv4’
System V.4 configuration for RISC-OS, revision
rev.

‘mips-mips-riscosrevsysv’
System V.3 configuration for RISC-OS, revision
rev.

The revision rev mentioned above is the revision of RISC-
OS to use. You must reconfigure GCC when going from a
RISC-OS revision 4 to RISC-OS revision 5. This has the
effect of avoiding a linker bug (see Section 9.2 “Installation
Problems,” page 211, for more details).

‘mips-sgi-*’
In order to compile GCC on an SGI running IRIX 4, the
"c.hdr.lib" option must be installed from the CD-ROM sup-
plied from Silicon Graphics. This is found on the 2nd CD in
release 4.0.1.
In order to compile GCC on an SGI running IRIX 5, the
"compiler dev.hdr" subsystem must be installed from the
IDO CD-ROM supplied by Silicon Graphics.
make compare may fail on version 5 of IRIX unless you add
‘-save-temps’ to CFLAGS. On these systems, the name of
the assembler input file is stored in the object file, and that

126 17 January 1996

Chapter 5: Installing GNU CC

makes comparison fail if it differs between the stage1 and
stage2 compilations. The option ‘-save-temps’ forces a fixed
name to be used for the assembler input file, instead of a
randomly chosen name in ‘/tmp’. Do not add ‘-save-temps’
unless the comparisons fail without that option. If you do
you ‘-save-temps’, you will have to manually delete the ‘.i’
and ‘.s’ files after each series of compilations.
The MIPS C compiler needs to be told to increase its table size
for switch statements with the ‘-Wf,-XNg1500’ option in order
to compile ‘cp/parse.c’. If you use the ‘-O2’ optimization
option, you also need to use ‘-Olimit 3000’. Both of these
options are automatically generated in the ‘Makefile’ that
the shell script ‘configure’ builds. If you override the CC
make variable and use the MIPS compilers, you may need to
add ‘-Wf,-XNg1500 -Olimit 3000’.
On Irix version 4.0.5F, and perhaps on some other versions
as well, there is an assembler bug that reorders instructions
incorrectly. To work around it, specify the target configu-
ration ‘mips-sgi-irix4loser’. This configuration inhibits
assembler optimization.
In a compiler configured with target ‘mips-sgi-irix4’, you
can turn off assembler optimization by using the ‘-noasmopt’
option. This compiler option passes the option ‘-O0’ to the
assembler, to inhibit reordering.
The ‘-noasmopt’ option can be useful for testing whether a
problem is due to erroneous assembler reordering. Even if
a problem does not go away with ‘-noasmopt’, it may still be
due to assembler reordering—perhaps GNU CC itself was
miscompiled as a result.
To enable debugging under Irix 5, you must use GNU as 2.5
or later, and use the ‘--with-gnu-as’ configure option when
configuring gcc. GNU as is distributed as part of the binutils
package.

‘mips-sony-sysv’
Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in
5.0.2 (which uses ELF instead of COFF). Support for 5.0.2
will probably be provided soon by volunteers. In particular,
the linker does not like the code generated by GCC when
shared libraries are linked in.

‘ns32k-encore’
Encore ns32000 system. Encore systems are supported only
under BSD.

c y g n u s s u p p o r t 127

Using GNU CC

‘ns32k-*-genix’
National Semiconductor ns32000 system. Genix has bugs in
alloca and malloc; you must get the compiled versions of
these from GNU Emacs.

‘ns32k-sequent’
Go to the Berkeley universe before compiling. In addition,
you probably need to create a file named ‘string.h’ contain-
ing just one line: ‘#include <strings.h>’.

‘ns32k-utek’
UTEK ns32000 system (“merlin”). The C compiler that
comes with this system cannot compile GNU CC; contact
‘tektronix!reed!mason’ to get binaries of GNU CC for boot-
strapping.

‘romp-*-aos’
‘romp-*-mach’

The only operating systems supported for the IBM RT PC
are AOS and MACH. GNU CC does not support AIX running
on the RT. We recommend you compile GNU CC with an
earlier version of itself; if you compile GNU CC with hc, the
Metaware compiler, it will work, but you will get mismatches
between the stage 2 and stage 3 compilers in various files.
These errors are minor differences in some floating-point
constants and can be safely ignored; the stage 3 compiler
is correct.

‘rs6000-*-aix’
‘powerpc-*-aix’

Various early versions of each release of the IBM XLC com-
piler will not bootstrap GNU CC. Symptoms include differ-
ences between the stage2 and stage3 object files, and errors
when compiling ‘libgcc.a’ or ‘enquire’. Known problematic
releases include: xlc-1.2.1.8, xlc-1.3.0.0 (distributed with AIX
3.2.5), and xlc-1.3.0.19. Both xlc-1.2.1.28 and xlc-1.3.0.24
(PTF 432238) are known to produce working versions of GNU
CC, but most other recent releases correctly bootstrap GNU
CC. Also, releases of AIX prior to AIX 3.2.4 include a ver-
sion of the IBM assembler which does not accept debugging
directives: assembler updates are available as PTFs. Also,
if you are using AIX 3.2.5 or greater and the GNU assem-
bler, you must have a version modified after October 16th,
1995 in order for the GNU C compiler to build. See the file
‘README.RS6000’ for more details on of these problems.
GNU CC does not yet support the 64-bit PowerPC instruc-
tions.

128 17 January 1996

Chapter 5: Installing GNU CC

Objective C does not work on this architecture because it
makes assumptions that are incompatible with the calling
conventions.
AIX on the RS/6000 provides support (NLS) for environments
outside of the United States. Compilers and assemblers use
NLS to support locale-specific representations of various ob-
jects including floating-point numbers ("." vs "," for separat-
ing decimal fractions). There have been problems reported
where the library linked with GNU CC does not produce the
same floating-point formats that the assembler accepts. If
you have this problem, set the LANG environment variable
to "C" or "En US".
Due to changes in the way that GNU CC invokes the binder
(linker) for AIX 4.1, you may now receive warnings of dupli-
cate symbols from the link step that were not reported before.
The assembly files generated by GNU CC for AIX have al-
ways included multiple symbol definitions for certain global
variable and function declarations in the original program.
The warnings should not prevent the linker from producing
a correct library or runnable executable.

‘powerpc-*-elf’
‘powerpc-*-sysv4’

PowerPC system in big endian mode, running System V.4.
This configuration is currently under development.

‘powerpc-*-eabiaix’
Embedded PowerPC system in big endian mode with -mcall-
aix selected as the default. This system is currently under
development.

‘powerpc-*-eabisim’
Embedded PowerPC system in big endian mode for use in
running under the PSIM simulator. This system is currently
under development.

‘powerpc-*-eabi’
Embedded PowerPC system in big endian mode.
This configuration is currently under development.

‘powerpcle-*-elf’
‘powerpcle-*-sysv4’

PowerPC system in little endian mode, running System V.4.
This configuration is currently under development.

‘powerpcle-*-sysv4’
Embedded PowerPC system in little endian mode.

c y g n u s s u p p o r t 129

Using GNU CC

This system is currently under development.

‘powerpcle-*-eabisim’
Embedded PowerPC system in little endian mode for use in
running under the PSIM simulator.
This system is currently under development.

‘powerpcle-*-eabi’
Embedded PowerPC system in little endian mode.
This configuration is currently under development.

‘vax-dec-ultrix’
Don’t try compiling with Vax C (vcc). It produces incorrect
code in some cases (for example, when alloca is used).
Meanwhile, compiling ‘cp/parse.c’ with pcc does not work
because of an internal table size limitation in that compiler.
To avoid this problem, compile just the GNU C compiler first,
and use it to recompile building all the languages that you
want to run.

‘sparc-sun-*’
See Section 5.4 “Sun Install,” page 137, for information on
installing GNU CC on Sun systems.

‘vax-dec-vms’
See Section 5.5 “VMS Install,” page 138, for details on how
to install GNU CC on VMS.

‘we32k-*-*’
These computers are also known as the 3b2, 3b5, 3b20 and
other similar names. (However, the 3b1 is actually a 68000;
see Section 5.1 “Configurations,” page 114.)
Don’t use ‘-g’ when compiling with the system’s compiler.
The system’s linker seems to be unable to handle such a
large program with debugging information.
The system’s compiler runs out of capacity when compiling
‘stmt.c’ in GNU CC. You can work around this by build-
ing ‘cpp’ in GNU CC first, then use that instead of the sys-
tem’s preprocessor with the system’s C compiler to compile
‘stmt.c’. Here is how:

mv /lib/cpp /lib/cpp.att
cp cpp /lib/cpp.gnu
echo ’/lib/cpp.gnu -traditional ${1+"$@"}’ > /lib/cpp
chmod +x /lib/cpp

The system’s compiler produces bad code for some of the GNU
CC optimization files. So you must build the stage 2 compiler
without optimization. Then build a stage 3 compiler with

130 17 January 1996

Chapter 5: Installing GNU CC

optimization. That executable should work. Here are the
necessary commands:

make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
make stage2
make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"

You may need to raise the ULIMIT setting to build a C++
compiler, as the file ‘cc1plus’ is larger than one megabyte.

5.2 Compilation in a Separate Directory

If you wish to build the object files and executables in a directory
other than the one containing the source files, here is what you must do
differently:

1. Make sure you have a version of Make that supports the VPATH
feature. (GNU Make supports it, as do Make versions on most BSD
systems.)

2. If you have ever run ‘configure’ in the source directory, you must
undo the configuration. Do this by running:

make distclean

3. Go to the directory in which you want to build the compiler before
running ‘configure’:

mkdir gcc-sun3
cd gcc-sun3

On systems that do not support symbolic links, this directory must
be on the same file system as the source code directory.

4. Specify where to find ‘configure’ when you run it:
../gcc/configure ...

This also tells configure where to find the compiler sources;
configure takes the directory from the file name that was used
to invoke it. But if you want to be sure, you can specify the source
directory with the ‘--srcdir’ option, like this:

../gcc/configure --srcdir=../gcc other options

The directory you specify with ‘--srcdir’ need not be the same as
the one that configure is found in.

Now, you can run make in that directory. You need not repeat the
configuration steps shown above, when ordinary source files change.
You must, however, run configure again when the configuration files
change, if your system does not support symbolic links.

c y g n u s s u p p o r t 131

Using GNU CC

5.3 Building and Installing a Cross-Compiler

GNU CC can function as a cross-compiler for many machines, but not
all.

� Cross-compilers for the Mips as target using the Mips assembler cur-
rently do not work, because the auxiliary programs ‘mips-tdump.c’
and ‘mips-tfile.c’ can’t be compiled on anything but a Mips. It
does work to cross compile for a Mips if you use the GNU assembler
and linker.

� Cross-compilers between machines with different floating point for-
mats have not all been made to work. GNU CC now has a floating
point emulator with which these can work, but each target machine
description needs to be updated to take advantage of it.

� Cross-compilation between machines of different word sizes is some-
what problematic and sometimes does not work.

Since GNU CC generates assembler code, you probably need a cross-
assembler that GNU CC can run, in order to produce object files. If you
want to link on other than the target machine, you need a cross-linker
as well. You also need header files and libraries suitable for the target
machine that you can install on the host machine.

5.3.1 Steps of Cross-Compilation

To compile and run a program using a cross-compiler involves several
steps:

� Run the cross-compiler on the host machine to produce assembler
files for the target machine. This requires header files for the target
machine.

� Assemble the files produced by the cross-compiler. You can do this
either with an assembler on the target machine, or with a cross-
assembler on the host machine.

� Link those files to make an executable. You can do this either
with a linker on the target machine, or with a cross-linker on the
host machine. Whichever machine you use, you need libraries and
certain startup files (typically ‘crt. ...o’) for the target machine.

It is most convenient to do all of these steps on the same host machine,
since then you can do it all with a single invocation of GNU CC. This
requires a suitable cross-assembler and cross-linker. For some targets,
the GNU assembler and linker are available.

132 17 January 1996

Chapter 5: Installing GNU CC

5.3.2 Configuring a Cross-Compiler

To build GNU CC as a cross-compiler, you start out by running
‘configure’. Use the ‘--target=target’ to specify the target type. If
‘configure’ was unable to correctly identify the system you are running
on, also specify the ‘--build=build’ option. For example, here is how to
configure for a cross-compiler that produces code for an HP 68030 system
running BSD on a system that ‘configure’ can correctly identify:

./configure --target=m68k-hp-bsd4.3

5.3.3 Tools and Libraries for a Cross-Compiler

If you have a cross-assembler and cross-linker available, you should
install them now. Put them in the directory ‘/usr/local/target/bin’.
Here is a table of the tools you should put in this directory:

‘as’ This should be the cross-assembler.

‘ld’ This should be the cross-linker.

‘ar’ This should be the cross-archiver: a program which can
manipulate archive files (linker libraries) in the target ma-
chine’s format.

‘ranlib’ This should be a program to construct a symbol table in an
archive file.

The installation of GNU CC will find these programs in that directory,
and copy or link them to the proper place to for the cross-compiler to find
them when run later.

The easiest way to provide these files is to build the Binutils package
and GAS. Configure them with the same ‘--host’ and ‘--target’ options
that you use for configuring GNU CC, then build and install them. They
install their executables automatically into the proper directory. Alas,
they do not support all the targets that GNU CC supports.

If you want to install libraries to use with the cross-compiler, such as a
standard C library, put them in the directory ‘/usr/local/target/lib’;
installation of GNU CC copies all all the files in that subdirectory into
the proper place for GNU CC to find them and link with them. Here’s
an example of copying some libraries from a target machine:

ftp target-machine
lcd /usr/local/target/lib
cd /lib
get libc.a
cd /usr/lib
get libg.a
get libm.a
quit

c y g n u s s u p p o r t 133

Using GNU CC

The precise set of libraries you’ll need, and their locations on the target
machine, vary depending on its operating system.

Many targets require “start files” such as ‘crt0.o’ and ‘crtn.o’
which are linked into each executable; these too should be placed
in ‘/usr/local/target/lib’. There may be several alternatives for
‘crt0.o’, for use with profiling or other compilation options. Check your
target’s definition of STARTFILE_SPEC to find out what start files it uses.
Here’s an example of copying these files from a target machine:

ftp target-machine
lcd /usr/local/target/lib
prompt
cd /lib
mget *crt*.o
cd /usr/lib
mget *crt*.o
quit

5.3.4 ‘libgcc.a’ and Cross-Compilers

Code compiled by GNU CC uses certain runtime support functions
implicitly. Some of these functions can be compiled successfully with
GNU CC itself, but a few cannot be. These problem functions are in the
source file ‘libgcc1.c’; the library made from them is called ‘libgcc1.a’.

When you build a native compiler, these functions are compiled with
some other compiler–the one that you use for bootstrapping GNU CC.
Presumably it knows how to open code these operations, or else knows
how to call the run-time emulation facilities that the machine comes
with. But this approach doesn’t work for building a cross-compiler. The
compiler that you use for building knows about the host system, not the
target system.

So, when you build a cross-compiler you have to supply a suitable
library ‘libgcc1.a’ that does the job it is expected to do.

To compile ‘libgcc1.c’ with the cross-compiler itself does not work.
The functions in this file are supposed to implement arithmetic oper-
ations that GNU CC does not know how to open code for your target
machine. If these functions are compiled with GNU CC itself, they will
compile into infinite recursion.

On any given target, most of these functions are not needed. If GNU
CC can open code an arithmetic operation, it will not call these functions
to perform the operation. It is possible that on your target machine,
none of these functions is needed. If so, you can supply an empty library
as ‘libgcc1.a’.

Many targets need library support only for multiplication and di-
vision. If you are linking with a library that contains functions for

134 17 January 1996

Chapter 5: Installing GNU CC

multiplication and division, you can tell GNU CC to call them directly
by defining the macros MULSI3_LIBCALL, and the like. These macros
need to be defined in the target description macro file. For some targets,
they are defined already. This may be sufficient to avoid the need for
libgcc1.a; if so, you can supply an empty library.

Some targets do not have floating point instructions; they need other
functions in ‘libgcc1.a’, which do floating arithmetic. Recent versions
of GNU CC have a file which emulates floating point. With a certain
amount of work, you should be able to construct a floating point emulator
that can be used as ‘libgcc1.a’. Perhaps future versions will contain
code to do this automatically and conveniently. That depends on whether
someone wants to implement it.

Some embedded targets come with all the necessary ‘libgcc1.a’ rou-
tines written in C or assembler. These targets build ‘libgcc1.a’ auto-
matically and you do not need to do anything special for them. Other
embedded targets do not need any ‘libgcc1.a’ routines since all the
necessary operations are supported by the hardware.

If your target system has another C compiler, you can configure GNU
CC as a native compiler on that machine, build just ‘libgcc1.a’ with
‘make libgcc1.a’ on that machine, and use the resulting file with the
cross-compiler. To do this, execute the following on the target machine:

cd target-build-dir
./configure --host=sparc --target=sun3
make libgcc1.a

And then this on the host machine:

ftp target-machine
binary
cd target-build-dir
get libgcc1.a
quit

Another way to provide the functions you need in ‘libgcc1.a’ is to
define the appropriate perform_... macros for those functions. If these
definitions do not use the C arithmetic operators that they are meant to
implement, you should be able to compile them with the cross-compiler
you are building. (If these definitions already exist for your target file,
then you are all set.)

To build ‘libgcc1.a’ using the perform macros, use ‘LIBGCC1=libgcc1.a
OLDCC=./xgcc’ when building the compiler. Otherwise, you should place
your replacement library under the name ‘libgcc1.a’ in the directory
in which you will build the cross-compiler, before you run make.

c y g n u s s u p p o r t 135

Using GNU CC

5.3.5 Cross-Compilers and Header Files

If you are cross-compiling a standalone program or a program for an
embedded system, then you may not need any header files except the few
that are part of GNU CC (and those of your program). However, if you
intend to link your program with a standard C library such as ‘libc.a’,
then you probably need to compile with the header files that go with the
library you use.

The GNU C compiler does not come with these files, because (1) they
are system-specific, and (2) they belong in a C library, not in a compiler.

If the GNU C library supports your target machine, then you can get
the header files from there (assuming you actually use the GNU library
when you link your program).

If your target machine comes with a C compiler, it probably comes
with suitable header files also. If you make these files accessible from
the host machine, the cross-compiler can use them also.

Otherwise, you’re on your own in finding header files to use when
cross-compiling.

When you have found suitable header files, put them in
‘/usr/local/target/include’, before building the cross compiler. Then
installation will run fixincludes properly and install the corrected ver-
sions of the header files where the compiler will use them.

Provide the header files before you build the cross-compiler, because
the build stage actually runs the cross-compiler to produce parts of
‘libgcc.a’. (These are the parts that can be compiled with GNU CC.)
Some of them need suitable header files.

Here’s an example showing how to copy the header files from a target
machine. On the target machine, do this:

(cd /usr/include; tar cf - .) > tarfile

Then, on the host machine, do this:
ftp target-machine
lcd /usr/local/target/include
get tarfile
quit
tar xf tarfile

5.3.6 Actually Building the Cross-Compiler

Now you can proceed just as for compiling a single-machine compiler
through the step of building stage 1. If you have not provided some sort
of ‘libgcc1.a’, then compilation will give up at the point where it needs
that file, printing a suitable error message. If you do provide ‘libgcc1.a’,
then building the compiler will automatically compile and link a test

136 17 January 1996

Chapter 5: Installing GNU CC

program called ‘libgcc1-test’; if you get errors in the linking, it means
that not all of the necessary routines in ‘libgcc1.a’ are available.

You must provide the header file ‘float.h’. One way to do this is to
compile ‘enquire’ and run it on your target machine. The job of ‘enquire’
is to run on the target machine and figure out by experiment the nature
of its floating point representation. ‘enquire’ records its findings in the
header file ‘float.h’. If you can’t produce this file by running ‘enquire’
on the target machine, then you will need to come up with a suitable
‘float.h’ in some other way (or else, avoid using it in your programs).

Do not try to build stage 2 for a cross-compiler. It doesn’t work to
rebuild GNU CC as a cross-compiler using the cross-compiler, because
that would produce a program that runs on the target machine, not
on the host. For example, if you compile a 386-to-68030 cross-compiler
with itself, the result will not be right either for the 386 (because it was
compiled into 68030 code) or for the 68030 (because it was configured
for a 386 as the host). If you want to compile GNU CC into 68030 code,
whether you compile it on a 68030 or with a cross-compiler on a 386, you
must specify a 68030 as the host when you configure it.

To install the cross-compiler, use ‘make install’, as usual.

5.4 Installing GNU CC on the Sun

On Solaris (version 2.1), do not use the linker or other tools in
‘/usr/ucb’ to build GNU CC. Use /usr/ccs/bin.

Make sure the environment variable FLOAT_OPTION is not set when
you compile ‘libgcc.a’. If this option were set to f68881when ‘libgcc.a’
is compiled, the resulting code would demand to be linked with a special
startup file and would not link properly without special pains.

There is a bug in alloca in certain versions of the Sun library. To
avoid this bug, install the binaries of GNU CC that were compiled by
GNU CC. They use alloca as a built-in function and never the one in
the library.

Some versions of the Sun compiler crash when compiling GNU CC.
The problem is a segmentation fault in cpp. This problem seems to be
due to the bulk of data in the environment variables. You may be able to
avoid it by using the following command to compile GNU CC with Sun
CC:

make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"

c y g n u s s u p p o r t 137

Using GNU CC

5.5 Installing GNU CC on VMS

The VMS version of GNU CC is distributed in a backup saveset con-
taining both source code and precompiled binaries.

To install the ‘gcc’ command so you can use the compiler easily, in the
same manner as you use the VMS C compiler, you must install the VMS
CLD file for GNU CC as follows:
1. Define the VMS logical names ‘GNU_CC’ and ‘GNU_CC_INCLUDE’

to point to the directories where the GNU CC executables
(‘gcc-cpp.exe’, ‘gcc-cc1.exe’, etc.) and the C include files are
kept respectively. This should be done with the commands:

$ assign /system /translation=concealed -
disk:[gcc.] gnu_cc

$ assign /system /translation=concealed -
disk:[gcc.include.] gnu_cc_include

with the appropriate disk and directory names. These commands
can be placed in your system startup file so they will be executed
whenever the machine is rebooted. You may, if you choose, do this
via the ‘GCC_INSTALL.COM’ script in the ‘[GCC]’ directory.

2. Install the ‘GCC’ command with the command line:
$ set command /table=sys$common:[syslib]dcltables -

/output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc
$ install replace sys$common:[syslib]dcltables

3. To install the help file, do the following:
$ library/help sys$library:helplib.hlb gcc.hlp

Now you can invoke the compiler with a command like ‘gcc /verbose
file.c’, which is equivalent to the command ‘gcc -v -c file.c’ in
Unix.

If you wish to use GNU C++ you must first install GNU CC, and then
perform the following steps:
1. Define the VMS logical name ‘GNU_GXX_INCLUDE’ to point to the di-

rectory where the preprocessor will search for the C++ header files.
This can be done with the command:

$ assign /system /translation=concealed -
disk:[gcc.gxx_include.] gnu_gxx_include

with the appropriate disk and directory name. If you are going to be
using libg++, this is where the libg++ install procedure will install
the libg++ header files.

2. Obtain the file ‘gcc-cc1plus.exe’, and place this in the same direc-
tory that ‘gcc-cc1.exe’ is kept.
The GNU C++ compiler can be invoked with a command like ‘gcc
/plus /verbose file.cc’, which is equivalent to the command ‘g++
-v -c file.cc’ in Unix.

138 17 January 1996

Chapter 5: Installing GNU CC

We try to put corresponding binaries and sources on the VMS distri-
bution tape. But sometimes the binaries will be from an older version
than the sources, because we don’t always have time to update them.
(Use the ‘/version’ option to determine the version number of the bina-
ries and compare it with the source file ‘version.c’ to tell whether this
is so.) In this case, you should use the binaries you get to recompile the
sources. If you must recompile, here is how:
1. Execute the command procedure ‘vmsconfig.com’ to set up the files

‘tm.h’, ‘config.h’, ‘aux-output.c’, and ‘md.’, and to create files
‘tconfig.h’ and ‘hconfig.h’. This procedure also creates several
linker option files used by ‘make-cc1.com’ and a data file used by
‘make-l2.com’.

$ @vmsconfig.com

2. Setup the logical names and command tables as defined above. In
addition, define the VMS logical name ‘GNU_BISON’ to point at the to
the directories where the Bison executable is kept. This should be
done with the command:

$ assign /system /translation=concealed -
disk:[bison.] gnu_bison

You may, if you choose, use the ‘INSTALL_BISON.COM’ script in the
‘[BISON]’ directory.

3. Install the ‘BISON’ command with the command line:
$ set command /table=sys$common:[syslib]dcltables -

/output=sys$common:[syslib]dcltables -
gnu_bison:[000000]bison

$ install replace sys$common:[syslib]dcltables

4. Type ‘@make-gcc’ to recompile everything (alternatively, submit the
file ‘make-gcc.com’ to a batch queue). If you wish to build the GNU
C++ compiler as well as the GNU CC compiler, you must first edit
‘make-gcc.com’ and follow the instructions that appear in the com-
ments.

5. In order to use GCC, you need a library of functions which GCC
compiled code will call to perform certain tasks, and these functions
are defined in the file ‘libgcc2.c’. To compile this you should use the
command procedure ‘make-l2.com’, which will generate the library
‘libgcc2.olb’. ‘libgcc2.olb’ should be built using the compiler
built from the same distribution that ‘libgcc2.c’ came from, and
‘make-gcc.com’ will automatically do all of this for you.
To install the library, use the following commands:

$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
$ library gnu_cc:[000000]gcclib/delete=L_*
$ library libgcc2/extract=*/output=libgcc2.obj
$ library gnu_cc:[000000]gcclib libgcc2.obj

c y g n u s s u p p o r t 139

Using GNU CC

The first command simply removes old modules that will be re-
placed with modules from ‘libgcc2’ under different module names.
The modules new and eprintf may not actually be present in your
‘gcclib.olb’—if the VMS librarian complains about those modules
not being present, simply ignore the message and continue on with
the next command. The second command removes the modules that
came from the previous version of the library ‘libgcc2.c’.
Whenever you update the compiler on your system, you should also
update the library with the above procedure.

6. You may wish to build GCC in such a way that no files are written
to the directory where the source files reside. An example would be
the when the source files are on a read-only disk. In these cases,
execute the following DCL commands (substituting your actual path
names):

$ assign dua0:[gcc.build_dir.]/translation=concealed, -
dua1:[gcc.source_dir.]/translation=concealed gcc_build

$ set default gcc_build:[000000]

where the directory ‘dua1:[gcc.source_dir]’ contains the source
code, and the directory ‘dua0:[gcc.build_dir]’ is meant to contain
all of the generated object files and executables. Once you have
done this, you can proceed building GCC as described above. (Keep
in mind that ‘gcc_build’ is a rooted logical name, and thus the
device names in each element of the search list must be an actual
physical device name rather than another rooted logical name).

7. If you are building GNU CC with a previous version of GNU
CC, you also should check to see that you have the newest
version of the assembler. In particular, GNU CC version 2 treats
global constant variables slightly differently from GNU CC version
1, and GAS version 1.38.1 does not have the patches required to
work with GCC version 2. If you use GAS 1.38.1, then extern
const variables will not have the read-only bit set, and the linker
will generate warning messages about mismatched psect attributes
for these variables. These warning messages are merely a nuisance,
and can safely be ignored.
If you are compiling with a version of GNU CC older than 1.33,
specify ‘/DEFINE=("inline=")’ as an option in all the compilations.
This requires editing all the gcc commands in ‘make-cc1.com’. (The
older versions had problems supporting inline.) Once you have a
working 1.33 or newer GNU CC, you can change this file back.

8. If you want to build GNU CC with the VAX C compiler, you will need
to make minor changes in ‘make-cccp.com’ and ‘make-cc1.com’ to
choose alternate definitions of CC, CFLAGS, and LIBS. See comments
in those files. However, you must also have a working version of the
GNU assembler (GNU as, aka GAS) as it is used as the back-end

140 17 January 1996

Chapter 5: Installing GNU CC

for GNU CC to produce binary object modules and is not included
in the GNU CC sources. GAS is also needed to compile ‘libgcc2’ in
order to build ‘gcclib’ (see above); ‘make-l2.com’ expects to be able
to find it operational in ‘gnu_cc:[000000]gnu-as.exe’.
To use GNU CC on VMS, you need the VMS driver programs
‘gcc.exe’, ‘gcc.com’, and ‘gcc.cld’. They are distributed with the
VMS binaries (‘gcc-vms’) rather than the GNU CC sources. GAS is
also included in ‘gcc-vms’, as is Bison.
Once you have successfully built GNU CC with VAX C, you should
use the resulting compiler to rebuild itself. Before doing this, be sure
to restore the CC, CFLAGS, and LIBS definitions in ‘make-cccp.com’
and ‘make-cc1.com’. The second generation compiler will be able
to take advantage of many optimizations that must be suppressed
when building with other compilers.

Under previous versions of GNU CC, the generated code would oc-
casionally give strange results when linked with the sharable ‘VAXCRTL’
library. Now this should work.

Even with this version, however, GNU CC itself should not be linked
with the sharable ‘VAXCRTL’. The version of qsort in ‘VAXCRTL’ has a bug
(known to be present in VMS versions V4.6 through V5.5) which causes
the compiler to fail.

The executables are generated by ‘make-cc1.com’ and ‘make-cccp.com’
use the object library version of ‘VAXCRTL’ in order to make use of the
qsort routine in ‘gcclib.olb’. If you wish to link the compiler ex-
ecutables with the shareable image version of ‘VAXCRTL’, you should
edit the file ‘tm.h’ (created by ‘vmsconfig.com’) to define the macro
QSORT_WORKAROUND.

QSORT_WORKAROUND is always defined when GNU CC is compiled with
VAX C, to avoid a problem in case ‘gcclib.olb’ is not yet available.

5.6 collect2

Many target systems do not have support in the assembler and linker
for “constructors”—initialization functions to be called before the official
“start” of main. On such systems, GNU CC uses a utility called collect2
to arrange to call these functions at start time.

The program collect2 works by linking the program once and look-
ing through the linker output file for symbols with particular names
indicating they are constructor functions. If it finds any, it creates a new
temporary ‘.c’ file containing a table of them, compiles it, and links the
program a second time including that file.

c y g n u s s u p p o r t 141

Using GNU CC

The actual calls to the constructors are carried out by a subroutine
called __main, which is called (automatically) at the beginning of the
body of main (provided main was compiled with GNU CC). Calling __
main is necessary, even when compiling C code, to allow linking C and
C++ object code together. (If you use ‘-nostdlib’, you get an unresolved
reference to __main, since it’s defined in the standard GCC library. In-
clude ‘-lgcc’ at the end of your compiler command line to resolve this
reference.)

The program collect2 is installed as ld in the directory where the
passes of the compiler are installed. When collect2 needs to find the
real ld, it tries the following file names:
� ‘real-ld’ in the directories listed in the compiler’s search directories.
� ‘real-ld’ in the directories listed in the environment variable PATH.
� The file specified in the REAL_LD_FILE_NAME configuration macro, if

specified.
� ‘ld’ in the compiler’s search directories, except that collect2 will

not execute itself recursively.
� ‘ld’ in PATH.

“The compiler’s search directories” means all the directories where
gcc searches for passes of the compiler. This includes directories that
you specify with ‘-B’.

Cross-compilers search a little differently:
� ‘real-ld’ in the compiler’s search directories.
� ‘target-real-ld’ in PATH.
� The file specified in the REAL_LD_FILE_NAME configuration macro, if

specified.
� ‘ld’ in the compiler’s search directories.
� ‘target-ld’ in PATH.

collect2 explicitly avoids running ld using the file name under
which collect2 itself was invoked. In fact, it remembers up a list of such
names—in case one copy of collect2 finds another copy (or version) of
collect2 installed as ld in a second place in the search path.

collect2 searches for the utilities nm and strip using the same al-
gorithm as above for ld.

5.7 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is
where GNU CC stores its private include files, and also where GNU
CC stores the fixed include files. A cross compiled GNU CC runs

142 17 January 1996

Chapter 5: Installing GNU CC

fixincludes on the header files in ‘$(tooldir)/include’. (If the cross
compilation header files need to be fixed, they must be installed before
GNU CC is built. If the cross compilation header files are already suit-
able for ANSI C and GNU CC, nothing special need be done).

GPLUS_INCLUDE_DIR means the same thing for native and cross. It
is where g++ looks first for header files. libg++ installs only target
independent header files in that directory.

LOCAL_INCLUDE_DIR is used only for a native compiler. It is normally
‘/usr/local/include’. GNU CC searches this directory so that users
can install header files in ‘/usr/local/include’.

CROSS_INCLUDE_DIR is used only for a cross compiler. GNU CC doesn’t
install anything there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is
the place for other packages to install header files that GNU CC will use.
For a cross-compiler, this is the equivalent of ‘/usr/include’. When you
build a cross-compiler, fixincludes processes any header files in this
directory.

c y g n u s s u p p o r t 143

Using GNU CC

144 17 January 1996

Chapter 6: Extensions to the C Language Family

6 Extensions to the C Language Family

GNU C provides several language features not found in ANSI stan-
dard C. (The ‘-pedantic’ option directs GNU CC to print a warning
message if any of these features is used.) To test for the availability of
these features in conditional compilation, check for a predefined macro
__GNUC__, which is always defined under GNU CC.

These extensions are available in C and Objective C. Most of them are
also available in C++. See Chapter 7 “Extensions to the C++ Language,”
page 195, for extensions that apply only to C++.

6.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an
expression in GNU C. This allows you to use loops, switches, and local
variables within an expression.

Recall that a compound statement is a sequence of statements sur-
rounded by braces; in this construct, parentheses go around the braces.
For example:

({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for
the absolute value of foo ().

The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct. (If you use some other kind of statement
last within the braces, the construct has type void, and thus effectively
no value.)

This feature is especially useful in making macro definitions “safe”
(so that they evaluate each operand exactly once). For example, the
“maximum” function is commonly defined as a macro in standard C as
follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results
if the operand has side effects. In GNU C, if you know the type of the
operands (here let’s assume int), you can define the macro safely as
follows:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

c y g n u s s u p p o r t 145

Using GNU CC

Embedded statements are not allowed in constant expressions, such
as the value of an enumeration constant, the width of a bit field, or the
initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but
you must use typeof (see Section 6.7 “Typeof,” page 151) or type naming
(see Section 6.6 “Naming Types,” page 150).

6.2 Locally Declared Labels

Each statement expression is a scope in which local labels can be
declared. A local label is simply an identifier; you can jump to it with an
ordinary goto statement, but only from within the statement expression
it belongs to.

A local label declaration looks like this:
__label__ label;

or
__label__ label1, label2, ...;

Local label declarations must come at the beginning of the statement
expression, right after the ‘({’, before any ordinary declarations.

The label declaration defines the label name, but does not define the
label itself. You must do this in the usual way, with label:, within the
statements of the statement expression.

The local label feature is useful because statement expressions are
often used in macros. If the macro contains nested loops, a goto can
be useful for breaking out of them. However, an ordinary label whose
scope is the whole function cannot be used: if the macro can be expanded
several times in one function, the label will be multiply defined in that
function. A local label avoids this problem. For example:

#define SEARCH(array, target) \
({ \

__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \

{ value = i; goto found; } \
value = -1; \

found: \
value; \

})

146 17 January 1996

Chapter 6: Extensions to the C Language Family

6.3 Labels as Values

You can get the address of a label defined in the current function (or
a containing function) with the unary operator ‘&&’. The value has type
void *. This value is a constant and can be used wherever a constant of
that type is valid. For example:

void *ptr;
...
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done
with the computed goto statement1, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.
One way of using these constants is in initializing a static array that

will serve as a jump table:
static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:
goto *array[i];

Note that this does not check whether the subscript is in bounds—array
indexing in C never does that.

Such an array of label values serves a purpose much like that of the
switch statement. The switch statement is cleaner, so use that rather
than an array unless the problem does not fit a switch statement very
well.

Another use of label values is in an interpreter for threaded code. The
labels within the interpreter function can be stored in the threaded code
for super-fast dispatching.

You can use this mechanism to jump to code in a different function.
If you do that, totally unpredictable things will happen. The best way to
avoid this is to store the label address only in automatic variables and
never pass it as an argument.

6.4 Nested Functions

A nested function is a function defined inside another function.
(Nested functions are not supported for GNU C++.) The nested func-
tion’s name is local to the block where it is defined. For example, here
we define a nested function named square, and call it twice:

1 The analogous feature in Fortran is called an assigned goto, but that
name seems inappropriate in C, where one can do more than simply
store label addresses in label variables.

c y g n u s s u p p o r t 147

Using GNU CC

foo (double a, double b)

{

double square (double z) { return z * z; }

return square (a) + square (b);

}

The nested function can access all the variables of the containing
function that are visible at the point of its definition. This is called
lexical scoping. For example, here we show a nested function which uses
an inherited variable named offset:

bar (int *array, int offset, int size)
{

int access (int *array, int index)
{ return array[index + offset]; }

int i;
...
for (i = 0; i < size; i++)

... access (array, i) ...
}

Nested function definitions are permitted within functions in the
places where variable definitions are allowed; that is, in any block, before
the first statement in the block.

It is possible to call the nested function from outside the scope of its
name by storing its address or passing the address to another function:

hack (int *array, int size)
{

void store (int index, int value)
{ array[index] = value; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an
argument. If intermediate calls store, the arguments given to store
are used to store into array. But this technique works only so long as
the containing function (hack, in this example) does not exit.

If you try to call the nested function through its address after the
containing function has exited, all hell will break loose. If you try to call
it after a containing scope level has exited, and if it refers to some of
the variables that are no longer in scope, you may be lucky, but it’s not
wise to take the risk. If, however, the nested function does not refer to
anything that has gone out of scope, you should be safe.

GNU CC implements taking the address of a nested function using a
technique called trampolines. A paper describing them is available from
‘maya.idiap.ch’ in directory ‘pub/tmb’, file ‘usenix88-lexic.ps.Z’.

148 17 January 1996

Chapter 6: Extensions to the C Language Family

A nested function can jump to a label inherited from a containing
function, provided the label was explicitly declared in the containing
function (see Section 6.2 “Local Labels,” page 146). Such a jump returns
instantly to the containing function, exiting the nested function which
did the goto and any intermediate functions as well. Here is an example:

bar (int *array, int offset, int size)

{

__label__ failure;

int access (int *array, int index)

{
if (index > size)

goto failure;

return array[index + offset];

}

int i;

...
for (i = 0; i < size; i++)

... access (array, i) ...

...

return 0;

/* Control comes here from access

if it detects an error. */

failure:

return -1;

}

A nested function always has internal linkage. Declaring one with
extern is erroneous. If you need to declare the nested function before
its definition, use auto (which is otherwise meaningless for function
declarations).

bar (int *array, int offset, int size)
{

__label__ failure;
auto int access (int *, int);
...
int access (int *array, int index)

{
if (index > size)

goto failure;
return array[index + offset];

}
...

}

c y g n u s s u p p o r t 149

Using GNU CC

6.5 Constructing Function Calls

Using the built-in functions described below, you can record the ar-
guments a function received, and call another function with the same
arguments, without knowing the number or types of the arguments.

You can also record the return value of that function call, and later
return that value, without knowing what data type the function tried to
return (as long as your caller expects that data type).

__builtin_apply_args ()
This built-in function returns a pointer of type void * to data
describing how to perform a call with the same arguments
as were passed to the current function.
The function saves the arg pointer register, structure value
address, and all registers that might be used to pass argu-
ments to a function into a block of memory allocated on the
stack. Then it returns the address of that block.

__builtin_apply (function, arguments, size)
This built-in function invokes function (type void (*)())
with a copy of the parameters described by arguments (type
void *) and size (type int).
The value of arguments should be the value returned by __
builtin_apply_args. The argument size specifies the size
of the stack argument data, in bytes.
This function returns a pointer of type void * to data describ-
ing how to return whatever value was returned by function.
The data is saved in a block of memory allocated on the stack.
It is not always simple to compute the proper value for
size. The value is used by __builtin_apply to compute
the amount of data that should be pushed on the stack and
copied from the incoming argument area.

__builtin_return (result)
This built-in function returns the value described by result
from the containing function. You should specify, for result,
a value returned by __builtin_apply.

6.6 Naming an Expression’s Type

You can give a name to the type of an expression using a typedef
declaration with an initializer. Here is how to define name as a type
name for the type of exp:

150 17 January 1996

Chapter 6: Extensions to the C Language Family

typedef name = exp;

This is useful in conjunction with the statements-within-expressions
feature. Here is how the two together can be used to define a safe
“maximum” macro that operates on any arithmetic type:

#define max(a,b) \
({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \
_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within
the expressions that are substituted for a and b. Eventually we hope
to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a
more reliable way to prevent such conflicts.

6.7 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The
syntax of using of this keyword looks like sizeof, but the construct acts
semantically like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an
expression or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that
of the values of the functions.

Here is an example with a typename as the argument:
typeof (int *)

Here the type described is that of pointers to int.
If you are writing a header file that must work when included in

ANSI C programs, write __typeof__ instead of typeof. See Section 6.36
“Alternate Keywords,” page 192.

A typeof-construct can be used anywhere a typedef name could be
used. For example, you can use it in a declaration, in a cast, or inside of
sizeof or typeof.
� This declares y with the type of what x points to.

typeof (*x) y;

� This declares y as an array of such values.
typeof (*x) y[4];

� This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

c y g n u s s u p p o r t 151

Using GNU CC

char *y[4];

To see the meaning of the declaration using typeof, and why it
might be a useful way to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers
to char.

6.8 Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed
as lvalues provided their operands are lvalues. This means that you can
take their addresses or store values into them.

Standard C++ allows compound expressions and conditional expres-
sions as lvalues, and permits casts to reference type, so use of this
extension is deprecated for C++ code.

For example, a compound expression can be assigned, provided the
last expression in the sequence is an lvalue. These two expressions are
equivalent:

(a, b) += 5
a, (b += 5)

Similarly, the address of the compound expression can be taken.
These two expressions are equivalent:

&(a, b)
a, &b

A conditional expression is a valid lvalue if its type is not void and
the true and false branches are both valid lvalues. For example, these
two expressions are equivalent:

(a ? b : c) = 5
(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assign-
ment whose left-hand side is a cast works by converting the right-hand
side first to the specified type, then to the type of the inner left-hand
side expression. After this is stored, the value is converted back to the
specified type to become the value of the assignment. Thus, if a has type
char *, the following two expressions are equivalent:

(int)a = 5
(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as ‘+=’ applied to a
cast performs the arithmetic using the type resulting from the cast, and

152 17 January 1996

Chapter 6: Extensions to the C Language Family

then continues as in the previous case. Therefore, these two expressions
are equivalent:

(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of
its address would not work out coherently. Suppose that &(int)f were
permitted, where f has type float. Then the following statement would
try to store an integer bit-pattern where a floating point number belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do—that would
convert 1 to floating point and store it. Rather than cause this inconsis-
tency, we think it is better to prohibit use of ‘&’ on a cast.

If you really do want an int * pointer with the address of f, you can
simply write (int *)&f.

6.9 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then
if the first operand is nonzero, its value is the value of the conditional
expression.

Therefore, the expression
x ? : y

has the value of x if that is nonzero; otherwise, the value of y.
This example is perfectly equivalent to
x ? x : y

In this simple case, the ability to omit the middle operand is not espe-
cially useful. When it becomes useful is when the first operand does, or
may (if it is a macro argument), contain a side effect. Then repeating
the operand in the middle would perform the side effect twice. Omit-
ting the middle operand uses the value already computed without the
undesirable effects of recomputing it.

6.10 Double-Word Integers

GNU C supports data types for integers that are twice as long as
long int. Simply write long long int for a signed integer, or unsigned
long long int for an unsigned integer. To make an integer constant
of type long long int, add the suffix LL to the integer. To make an
integer constant of type unsigned long long int, add the suffix ULL to
the integer.

c y g n u s s u p p o r t 153

Using GNU CC

You can use these types in arithmetic like any other integer types.
Addition, subtraction, and bitwise boolean operations on these types are
open-coded on all types of machines. Multiplication is open-coded if the
machine supports fullword-to-doubleword a widening multiply instruc-
tion. Division and shifts are open-coded only on machines that provide
special support. The operations that are not open-coded use special
library routines that come with GNU CC.

There may be pitfalls when you use long long types for function
arguments, unless you declare function prototypes. If a function expects
type int for its argument, and you pass a value of type long long int,
confusion will result because the caller and the subroutine will disagree
about the number of bytes for the argument. Likewise, if the function
expects long long int and you pass int. The best way to avoid such
problems is to use prototypes.

6.11 Complex Numbers

GNU C supports complex data types. You can declare both complex
integer types and complex floating types, using the keyword __complex_
_.

For example, ‘__complex__ double x;’ declares x as a variable whose
real part and imaginary part are both of type double. ‘__complex__
short int y;’ declares y to have real and imaginary parts of type short
int; this is not likely to be useful, but it shows that the set of complex
types is complete.

To write a constant with a complex data type, use the suffix ‘i’ or
‘j’ (either one; they are equivalent). For example, 2.5fi has type __
complex__ float and 3i has type __complex__ int. Such a constant
always has a pure imaginary value, but you can form any complex value
you like by adding one to a real constant.

To extract the real part of a complex-valued expression exp, write
__real__ exp. Likewise, use __imag__ to extract the imaginary part.

The operator ‘˜’ performs complex conjugation when used on a value
with a complex type.

GNU CC can allocate complex automatic variables in a noncontiguous
fashion; it’s even possible for the real part to be in a register while the
imaginary part is on the stack (or vice-versa). None of the supported
debugging info formats has a way to represent noncontiguous allocation
like this, so GNU CC describes a noncontiguous complex variable as
if it were two separate variables of noncomplex type. If the variable’s
actual name is foo, the two fictitious variables are named foo$real and

154 17 January 1996

Chapter 6: Extensions to the C Language Family

foo$imag. You can examine and set these two fictitious variables with
your debugger.

A future version of GDB will know how to recognize such pairs and
treat them as a single variable with a complex type.

6.12 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the
last element of a structure which is really a header for a variable-length
object:

struct line {
int length;
char contents[0];

};

{
struct line *thisline = (struct line *)

malloc (sizeof (struct line) + this_length);
thisline->length = this_length;

}

In standard C, you would have to give contents a length of 1, which
means either you waste space or complicate the argument to malloc.

6.13 Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays
are declared like any other automatic arrays, but with a length that is not
a constant expression. The storage is allocated at the point of declaration
and deallocated when the brace-level is exited. For example:

FILE *
concat_fopen (char *s1, char *s2, char *mode)
{

char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates
the storage. Jumping into the scope is not allowed; you get an error
message for it.

You can use the function alloca to get an effect much like variable-
length arrays. The function alloca is available in many other C imple-
mentations (but not in all). On the other hand, variable-length arrays
are more elegant.

c y g n u s s u p p o r t 155

Using GNU CC

There are other differences between these two methods. Space al-
located with alloca exists until the containing function returns. The
space for a variable-length array is deallocated as soon as the array
name’s scope ends. (If you use both variable-length arrays and alloca
in the same function, deallocation of a variable-length array will also
deallocate anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:
struct entry
tester (int len, char data[len][len])
{

...
}

The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
sizeof.

If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list—another GNU exten-
sion.

struct entry
tester (int len; char data[len][len], int len)
{

...
}

The ‘int len’ before the semicolon is a parameter forward declaration,
and it serves the purpose of making the name len known when the
declaration of data is parsed.

You can write any number of such parameter forward declarations in
the parameter list. They can be separated by commas or semicolons, but
the last one must end with a semicolon, which is followed by the “real”
parameter declarations. Each forward declaration must match a “real”
declaration in parameter name and data type.

6.14 Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much
as a function can. The syntax for defining the macro looks much like
that used for a function. Here is an example:

#define eprintf(format, args...) \
fprintf (stderr, format , ## args)

Here args is a rest argument: it takes in zero or more arguments, as
many as the call contains. All of them plus the commas between them
form the value of args, which is substituted into the macro body where
args is used. Thus, we have this expansion:

156 17 January 1996

Chapter 6: Extensions to the C Language Family

eprintf ("%s:%d: ", input_file_name, line_number)
7!

fprintf (stderr, "%s:%d: " , input_file_name, line_number)

Note that the comma after the string constant comes from the definition
of eprintf, whereas the last comma comes from the value of args.

The reason for using ‘##’ is to handle the case when args matches no
arguments at all. In this case, args has an empty value. In this case,
the second comma in the definition becomes an embarrassment: if it got
through to the expansion of the macro, we would get something like this:

fprintf (stderr, "success!\n" ,)

which is invalid C syntax. ‘##’ gets rid of the comma, so we get the
following instead:

fprintf (stderr, "success!\n")

This is a special feature of the GNU C preprocessor: ‘##’ before a
rest argument that is empty discards the preceding sequence of non-
whitespace characters from the macro definition. (If another macro
argument precedes, none of it is discarded.)

It might be better to discard the last preprocessor token instead of the
last preceding sequence of non-whitespace characters; in fact, we may
someday change this feature to do so. We advise you to write the macro
definition so that the preceding sequence of non-whitespace characters
is just a single token, so that the meaning will not change if we change
the definition of this feature.

6.15 Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though
the unary ‘&’ operator is not. For example, this is valid in GNU C though
not valid in other C dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)
{

return f().a[index];

}

c y g n u s s u p p o r t 157

Using GNU CC

6.16 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on
pointers to void and on pointers to functions. This is done by treating
the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on
function types, and returns 1.

The option ‘-Wpointer-arith’ requests a warning if these extensions
are used.

6.17 Non-Constant Initializers

As in standard C++, the elements of an aggregate initializer for an
automatic variable are not required to be constant expressions in GNU
C. Here is an example of an initializer with run-time varying elements:

foo (float f, float g)
{

float beat_freqs[2] = { f-g, f+g };
...

}

6.18 Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a
cast containing an initializer. Its value is an object of the type specified
in the cast, containing the elements specified in the initializer.

Usually, the specified type is a structure. Assume that struct foo
and structure are declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:
structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:
{

struct foo temp = {x + y, ’a’, 0};
structure = temp;

}

You can also construct an array. If all the elements of the constructor
are (made up of) simple constant expressions, suitable for use in initial-
izers, then the constructor is an lvalue and can be coerced to a pointer
to its first element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Array constructors whose elements are not simple constants are not
very useful, because the constructor is not an lvalue. There are only two

158 17 January 1996

Chapter 6: Extensions to the C Language Family

valid ways to use it: to subscript it, or initialize an array variable with
it. The former is probably slower than a switch statement, while the
latter does the same thing an ordinary C initializer would do. Here is
an example of subscripting an array constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also
allowed, but then the constructor expression is equivalent to a cast.

6.19 Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed
order, the same as the order of the elements in the array or structure
being initialized.

In GNU C you can give the elements in any order, specifying the
array indices or structure field names they apply to. This extension is
not implemented in GNU C++.

To specify an array index, write ‘[index]’ or ‘[index] =’ before the
element value. For example,

int a[6] = { [4] 29, [2] = 15 };

is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being
initialized is automatic.

To initialize a range of elements to the same value, write ‘[first ...
last] = value’. For example,

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

Note that the length of the array is the highest value specified plus one.
In a structure initializer, specify the name of a field to initialize with

‘fieldname:’ before the element value. For example, given the following
structure,

struct point { int x, y; };

the following initialization
struct point p = { y: yvalue, x: xvalue };

is equivalent to
struct point p = { xvalue, yvalue };

Another syntax which has the same meaning is ‘.fieldname =’., as
shown here:

struct point p = { .y = yvalue, .x = xvalue };

c y g n u s s u p p o r t 159

Using GNU CC

You can also use an element label (with either the colon syntax or the
period-equal syntax) when initializing a union, to specify which element
of the union should be used. For example,

union foo { int i; double d; };

union foo f = { d: 4 };

will convert 4 to a double to store it in the union using the second
element. By contrast, casting 4 to type union foo would store it into the
union as the integer i, since it is an integer. (See Section 6.21 “Cast to
Union,” page 161.)

You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that does
not have a label applies to the next consecutive element of the array or
structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to
int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when
the indices are characters or belong to an enum type. For example:

int whitespace[256]
= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

6.20 Case Ranges

You can specify a range of consecutive values in a single case label,
like this:

case low ... high:

This has the same effect as the proper number of individual case labels,
one for each integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:
case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be
parsed wrong when you use it with integer values. For example, write
this:

case 1 ... 5:

rather than this:
case 1...5:

160 17 January 1996

Chapter 6: Extensions to the C Language Family

6.21 Cast to a Union Type

A cast to union type is similar to other casts, except that the type
specified is a union type. You can specify the type either with union tag
or with a typedef name. A cast to union is actually a constructor though,
not a cast, and hence does not yield an lvalue like normal casts. (See
Section 6.18 “Constructors,” page 158.)

The types that may be cast to the union type are those of the members
of the union. Thus, given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.
Using the cast as the right-hand side of an assignment to a variable

of union type is equivalent to storing in a member of the union:
union foo u;
...
u = (union foo) x � u.i = x
u = (union foo) y � u.d = y

You can also use the union cast as a function argument:
void hack (union foo);
...
hack ((union foo) x);

6.22 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your
program which help the compiler optimize function calls and check your
code more carefully.

The keyword __attribute__ allows you to specify special attributes
when making a declaration. This keyword is followed by an attribute
specification inside double parentheses. Eight attributes, noreturn,
const, format, section, constructor, destructor, unused and weak
are currently defined for functions. Other attributes, including section
are supported for variables declarations (see Section 6.29 “Variable At-
tributes,” page 168) and for types (see Section 6.30 “Type Attributes,”
page 171).

You may also specify attributes with ‘__’ preceding and following
each keyword. This allows you to use them in header files without being
concerned about a possible macro of the same name. For example, you
may use __noreturn__ instead of noreturn.

noreturn A few standard library functions, such as abort and exit,
cannot return. GNU CC knows this automatically. Some

c y g n u s s u p p o r t 161

Using GNU CC

programs define their own functions that never return. You
can declare them noreturn to tell the compiler this fact. For
example,

void fatal () __attribute__ ((noreturn));

void
fatal (. ..)
{

... /* Print error message. */ ...
exit (1);

}

The noreturn keyword tells the compiler to assume that
fatal cannot return. It can then optimize without regard
to what would happen if fatal ever did return. This makes
slightly better code. More importantly, it helps avoid spuri-
ous warnings of uninitialized variables.
Do not assume that registers saved by the calling function
are restored before calling the noreturn function.
It does not make sense for a noreturn function to have a
return type other than void.
The attribute noreturn is not implemented in GNU C ver-
sions earlier than 2.5. An alternative way to declare that a
function does not return, which works in the current version
and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

const Many functions do not examine any values except their argu-
ments, and have no effects except the return value. Such a
function can be subject to common subexpression elimination
and loop optimization just as an arithmetic operator would
be. These functions should be declared with the attribute
const. For example,

int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call
fewer times than the program says.
The attribute const is not implemented in GNU C versions
earlier than 2.5. An alternative way to declare that a function
has no side effects, which works in the current version and
in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

162 17 January 1996

Chapter 6: Extensions to the C Language Family

This approach does not work in GNU C++ from 2.6.0 on, since
the language specifies that the ‘const’ must be attached to
the return value.
Note that a function that has pointer arguments and exam-
ines the data pointed to must not be declared const. Like-
wise, a function that calls a non-const function usually must
not be const. It does not make sense for a const function to
return void.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf
or scanf style arguments which should be type-checked
against a format string. For example, the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_
printf for consistency with the printf style format string
argument my_format.
The parameter archetype determines how the format string
is interpreted, and should be either printf or scanf. The
parameter string-index specifies which argument is the
format string argument (starting from 1), while first-to-
check is the number of the first argument to check against
the format string. For functions where the arguments are not
available to be checked (such as vprintf), specify the third
parameter as zero. In this case the compiler only checks the
format string for consistency.
In the example above, the format string (my_format) is the
second argument of the function my_print, and the argu-
ments to check start with the third argument, so the correct
parameters for the format attribute are 2 and 3.
The format attribute allows you to identify your own func-
tions which take format strings as arguments, so that GNU
CC can check the calls to these functions for errors. The com-
piler always checks formats for the ANSI library functions
printf, fprintf, sprintf, scanf, fscanf, sscanf, vprintf,
vfprintf and vsprintf whenever such warnings are re-
quested (using ‘-Wformat’), so there is no need to modify the
header file ‘stdio.h’.

section ("section-name")
Normally, the compiler places the code it generates in the
text section. Sometimes, however, you need additional sec-
tions, or you need certain particular functions to appear in

c y g n u s s u p p o r t 163

Using GNU CC

special sections. The section attribute specifies that a func-
tion lives in a particular section. For example, the declara-
tion:

extern void foobar (void) __attribute__ \
((section ("bar")));

puts the function foobar in the bar section.
Some file formats do not support arbitrary sections so the
section attribute is not available on all platforms. If you
need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

constructor
destructor

The constructor attribute causes the function to be called
automatically before execution enters main (). Similarly, the
destructor attribute causes the function to be called auto-
matically after main () has completed or exit () has been
called. Functions with these attributes are useful for initial-
izing data that will be used implicitly during the execution
of the program.
These attributes are not currently implemented for Objective
C.

unused This attribute, attached to a function, means that the func-
tion is meant to be possibly unused. GNU CC will not produce
a warning for this function.

weak The weak attribute causes the declaration to be emitted
as a weak symbol rather than a global. This is primarily
useful in defining library functions which can be overridden
in user code, though it can also be used with non-function
declarations. Weak symbols are supported for ELF targets,
and also for a.out targets when using the GNU assembler
and linker.

alias ("target")
The alias attribute causes the declaration to be emitted as
an alias for another symbol, which must be specified. For
instance,

void __f () { /* do something */; }
void f () __attribute__ ((weak, alias ("__f")));

declares ‘f’ to be a weak alias for ‘__f’. In C++, the mangled
name for the target must be used.

regparm (number)
On the Intel 386, the regparm attribute causes the compiler
to pass up to number integer arguments in registers EAX,

164 17 January 1996

Chapter 6: Extensions to the C Language Family

EDX, and ECX instead of on the stack. Functions that take a
variable number of arguments will continue to be passed all
of their arguments on the stack.

stdcall On the Intel 386, the stdcall attribute causes
the compiler to assume that the called function will pop off
the stack space used to pass arguments, unless it takes a
variable number of arguments.

cdecl On the Intel 386, the cdecl attribute causes the
compiler to assume that the called function will pop off the
stack space used to pass arguments, unless it takes a variable
number of arguments. This is useful to override the effects
of the ‘-mrtd’ switch.

You can specify multiple attributes in a declaration by separating
them by commas within the double parentheses or by immediately fol-
lowing an attribute declaration with another attribute declaration.

Some people object to the __attribute__ feature, suggesting that
ANSI C’s #pragma should be used instead. There are two reasons for not
doing this.
1. It is impossible to generate #pragma commands from a macro.
2. There is no telling what the same #pragma might mean in another

compiler.

These two reasons apply to almost any application that might be pro-
posed for #pragma. It is basically a mistake to use #pragma for anything.

6.23 Prototypes and Old-Style Function
Definitions

GNU C extends ANSI C to allow a function prototype to override a
later old-style non-prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#if __STDC__
#define P(x) x
#else
#define P(x) ()
#endif

/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function definition. */
int
isroot (x) /* ??? lossage here ??? */

uid_t x;

c y g n u s s u p p o r t 165

Using GNU CC

{
return x == 0;

}

Suppose the type uid_t happens to be short. ANSI C does not allow
this example, because subword arguments in old-style non-prototype
definitions are promoted. Therefore in this example the function defi-
nition’s argument is really an int, which does not match the prototype
argument type of short.

This restriction of ANSI C makes it hard to write code that is portable
to traditional C compilers, because the programmer does not know
whether the uid_t type is short, int, or long. Therefore, in cases
like these GNU C allows a prototype to override a later old-style defi-
nition. More precisely, in GNU C, a function prototype argument type
overrides the argument type specified by a later old-style definition if
the former type is the same as the latter type before promotion. Thus in
GNU C the above example is equivalent to the following:

int isroot (uid_t);

int
isroot (uid_t x)
{

return x == 0;
}

GNU C++ does not support old-style function definitions, so this ex-
tension is irrelevant.

6.24 Compiling Functions for Interrupt Calls

When compiling code for certain platforms (currently the Hitachi
H8/300 and the Tandem ST-2000), you can instruct {No value for
‘‘GCC’’} that certain functions are meant to be called from hardware
interrupts.

To mark a function as callable from interrupt, include the line
‘#pragma interrupt’ somewhere before the beginning of the function’s
definition. (For maximum readability, you might place it immediately
before the definition of the appropriate function.) ‘#pragma interrupt’
will affect only the next function defined; if you want to define more than
one function with this property, include ‘#pragma interrupt’ before each
of them.

When you define a function with ‘#pragma interrupt’, {No value for
‘‘GCC’’} alters its usual calling convention, to provide the right envi-
ronment when the function is called from an interrupt. Such functions
cannot be called in the usual way from your program.

166 17 January 1996

Chapter 6: Extensions to the C Language Family

You must use other facilities to actually associate these functions with
particular interrupts; {No value for ‘‘GCC’’} can only compile them
in the appropriate way.

6.25 C++ Style Comments

In GNU C, you may use C++ style comments, which start with ‘//’
and continue until the end of the line. Many other C implementations
allow such comments, and they are likely to be in a future C standard.
However, C++ style comments are not recognized if you specify ‘-ansi’ or
‘-traditional’, since they are incompatible with traditional constructs
like dividend//*comment*/divisor.

6.26 Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is
because many traditional C implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you specify
‘-traditional’. On a few systems they are allowed by default, even if
you do not use ‘-traditional’. But they are never allowed if you specify
‘-ansi’.

There are certain ANSI C programs (obscure, to be sure) that would
compile incorrectly if dollar signs were permitted in identifiers. For
example:

#define foo(a) #a
#define lose(b) foo (b)
#define test$
lose (test)

6.27 The Character ESC in Constants

You can use the sequence ‘\e’ in a string or character constant to
stand for the ASCII character ESC.

6.28 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object
is aligned, or the minimum alignment usually required by a type. Its
syntax is just like sizeof.

For example, if the target machine requires a double value to be
aligned on an 8-byte boundary, then __alignof__ (double) is 8. This

c y g n u s s u p p o r t 167

Using GNU CC

is true on many RISC machines. On more traditional machine designs,
__alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow refer-
ence to any data type even at an odd addresses. For these machines,
__alignof__ reports the recommended alignment of a type.

When the operand of __alignof__ is an lvalue rather than a type,
the value is the largest alignment that the lvalue is known to have. It
may have this alignment as a result of its data type, or because it is part
of a structure and inherits alignment from that structure. For example,
after this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is probably 2 or 4, the same as __
alignof__ (int), even though the data type of foo1.y does not itself
demand any alignment.

A related feature which lets you specify the alignment of an object is
__attribute__ ((aligned (alignment))); see the following section.

6.29 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes
of variables or structure fields. This keyword is followed by an at-
tribute specification inside double parentheses. Eight attributes are cur-
rently defined for variables: aligned, mode, nocommon, packed, section,
transparent_union, unused, and weak. Other attributes are available
for functions (see Section 6.22 “Function Attributes,” page 161) and for
types (see Section 6.30 “Type Attributes,” page 171).

You may also specify attributes with ‘__’ preceding and following
each keyword. This allows you to use them in header files without being
concerned about a possible macro of the same name. For example, you
may use __aligned__ instead of aligned.

aligned (alignment)
This attribute specifies a minimum alignment for the vari-
able or structure field, measured in bytes. For example, the
declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a
16-byte boundary. On a 68040, this could be used in conjunc-
tion with an asm expression to access the move16 instruction
which requires 16-byte aligned operands.
You can also specify the alignment of structure fields. For
example, to create a double-word aligned int pair, you could
write:

168 17 January 1996

Chapter 6: Extensions to the C Language Family

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double
member that forces the union to be double-word aligned.
It is not possible to specify the alignment of functions; the
alignment of functions is determined by the machine’s re-
quirements and cannot be changed. You cannot specify align-
ment for a typedef name because such a name is just an alias,
not a distinct type.
As in the preceding examples, you can explicitly specify the
alignment (in bytes) that you wish the compiler to use for a
given variable or structure field. Alternatively, you can leave
out the alignment factor and just ask the compiler to align
a variable or field to the maximum useful alignment for the
target machine you are compiling for. For example, you could
write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned
attribute specification, the compiler automatically sets the
alignment for the declared variable or field to the largest
alignment which is ever used for any data type on the target
machine you are compiling for. Doing this can often make
copy operations more efficient, because the compiler can use
whatever instructions copy the biggest chunks of memory
when performing copies to or from the variables or fields
that you have aligned this way.
The aligned attribute can only increase the alignment; but
you can decrease it by specifying packed as well. See below.
Note that the effectiveness of aligned attributes may be lim-
ited by inherent limitations in your linker. On many sys-
tems, the linker is only able to arrange for variables to be
aligned up to a certain maximum alignment. (For some link-
ers, the maximum supported alignment may be very very
small.) If your linker is only able to align variables up to a
maximum of 8 byte alignment, then specifying aligned(16)
in an __attribute__ will still only provide you with 8 byte
alignment. See your linker documentation for further infor-
mation.

mode (mode)
This attribute specifies the data type for the declaration—
whichever type corresponds to the mode mode. This in effect
lets you request an integer or floating point type according
to its width.

c y g n u s s u p p o r t 169

Using GNU CC

You may also specify a mode of ‘byte’ or ‘__byte__’ to indi-
cate the mode corresponding to a one-byte integer, ‘word’ or
‘__word__’ for the mode of a one-word integer, and ‘pointer’
or ‘__pointer__’ for the mode used to represent pointers.

nocommon This attribute specifies requests GNU CC not to
place a variable “common” but instead to allocate space for it
directly. If you specify the ‘-fno-common’ flag, GNU CC will
do this for all variables.
Specifying the nocommon attribute for a variable provides an
initialization of zeros. A variable may only be initialized in
one source file.

packed The packed attribute specifies that a variable or
structure field should have the smallest possible alignment—
one byte for a variable, and one bit for a field, unless you
specify a larger value with the aligned attribute.
Here is a structure in which the field x is packed, so that it
immediately follows a:

struct foo
{

char a;
int x[2] __attribute__ ((packed));

};

section ("section-name")
Normally, the compiler places the objects it generates in sec-
tions like data and bss. Sometimes, however, you need ad-
ditional sections, or you need certain particular variables
to appear in special sections, for example to map to special
hardware. The section attribute specifies that a variable
(or function) lives in a particular section. For example, this
small program uses several specific section names:

struct duart a __attribute__ \
((section ("DUART_A"))) = { 0 };

struct duart b __attribute__ \
((section ("DUART_B"))) = { 0 };

char stack[10000] __attribute__ \
((section ("STACK"))) = { 0 };

int init_data_copy __attribute__ \
((section ("INITDATACOPY"))) = 0;

main()
{

/* Initialize stack pointer */
init_sp (stack + sizeof (stack));

/* Initialize initialized data */
memcpy (&init_data_copy, &data, &edata - &data);

170 17 January 1996

Chapter 6: Extensions to the C Language Family

/* Turn on the serial ports */
init_duart (&a);
init_duart (&b);

}

Use the section attribute with an initialized definition of a
global variable, as shown in the example. GNU CC issues
a warning and otherwise ignores the section attribute in
uninitialized variable declarations.
You may only use the section attribute with a fully initial-
ized global definition because of the way linkers work. The
linker requires each object be defined once, with the excep-
tion that uninitialized variables tentatively go in the common
(or bss) section and can be multiply "defined". You can force
a variable to be initialized with the ‘-fno-common’ flag or the
nocommon attribute.
Some file formats do not support arbitrary sections so the
section attribute is not available on all platforms. If you
need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

transparent_union
This attribute, attached to a function argument variable
which is a union, means to pass the argument in the same
way that the first union member would be passed. You can
also use this attribute on a typedef for a union data type;
then it applies to all function arguments with that type.

unused This attribute, attached to a variable, means that the vari-
able is meant to be possibly unused. GNU CC will not pro-
duce a warning for this variable.

weak The weak attribute is described in See Section 6.22 “Function
Attributes,” page 161.

To specify multiple attributes, separate them by commas within
the double parentheses: for example, ‘__attribute__ ((aligned (16),
packed))’.

6.30 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes
of struct and union types when you define such types. This key-
word is followed by an attribute specification inside double parenthe-
ses. Three attributes are currently defined for types: aligned, packed,
and transparent_union. Other attributes are defined for functions (see

c y g n u s s u p p o r t 171

Using GNU CC

Section 6.22 “Function Attributes,” page 161) and for variables (see Sec-
tion 6.29 “Variable Attributes,” page 168).

You may also specify any one of these attributes with ‘__’ preceding
and following its keyword. This allows you to use these attributes in
header files without being concerned about a possible macro of the same
name. For example, you may use __aligned__ instead of aligned.

You may specify the aligned and transparent_union attributes ei-
ther in a typedef declaration or just past the closing curly brace of a
complete enum, struct or union type definition and the packed attribute
only past the closing brace of a definition.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for
variables of the specified type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8));
typedef int more_aligned_int __attribute__ ((aligned (8));

force the compiler to insure (as fas as it can) that each vari-
able whose type is struct S or more_aligned_int will be
allocated and aligned at least on a 8-byte boundary. On a
Sparc, having all variables of type struct S aligned to 8-byte
boundaries allows the compiler to use the ldd and std (dou-
bleword load and store) instructions when copying one vari-
able of type struct S to another, thus improving run-time
efficiency.
Note that the alignment of any given struct or union type is
required by the ANSI C standard to be at least a perfect mul-
tiple of the lowest common multiple of the alignments of all of
the members of the struct or union in question. This means
that you can effectively adjust the alignment of a struct or
union type by attaching an aligned attribute to any one of
the members of such a type, but the notation illustrated in
the example above is a more obvious, intuitive, and readable
way to request the compiler to adjust the alignment of an
entire struct or union type.
As in the preceding example, you can explicitly specify the
alignment (in bytes) that you wish the compiler to use for a
given struct or union type. Alternatively, you can leave out
the alignment factor and just ask the compiler to align a type
to the maximum useful alignment for the target machine you
are compiling for. For example, you could write:

struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned
attribute specification, the compiler automatically sets the
alignment for the type to the largest alignment which is ever

172 17 January 1996

Chapter 6: Extensions to the C Language Family

used for any data type on the target machine you are com-
piling for. Doing this can often make copy operations more
efficient, because the compiler can use whatever instructions
copy the biggest chunks of memory when performing copies
to or from the variables which have types that you have
aligned this way.

In the example above, if the size of each short is 2 bytes, then
the size of the entire struct S type is 6 bytes. The smallest
power of two which is greater than or equal to that is 8, so
the compiler sets the alignment for the entire struct S type
to 8 bytes.

Note that although you can ask the compiler to select a time-
efficient alignment for a given type and then declare only
individual stand-alone objects of that type, the compiler’s
ability to select a time-efficient alignment is primarily use-
ful only when you plan to create arrays of variables having
the relevant (efficiently aligned) type. If you declare or use
arrays of variables of an efficiently-aligned type, then it is
likely that your program will also be doing pointer arith-
metic (or subscripting, which amounts to the same thing) on
pointers to the relevant type, and the code that the compiler
generates for these pointer arithmetic operations will often
be more efficient for efficiently-aligned types than for other
types.

The aligned attribute can only increase the alignment; but
you can decrease it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be lim-
ited by inherent limitations in your linker. On many sys-
tems, the linker is only able to arrange for variables to be
aligned up to a certain maximum alignment. (For some link-
ers, the maximum supported alignment may be very very
small.) If your linker is only able to align variables up to a
maximum of 8 byte alignment, then specifying aligned(16)
in an __attribute__ will still only provide you with 8 byte
alignment. See your linker documentation for further infor-
mation.

packed This attribute, attached to an enum, struct, or union type
definition, specified that the minimum required memory be
used to represent the type.

Specifying this attribute for struct and union types is equiv-
alent to specifying the packed attribute on each of the struc-
ture or union members. Specifying the ‘-fshort-enums’ flag

c y g n u s s u p p o r t 173

Using GNU CC

on the line is equivalent to specifying the packed attribute
on all enum definitions.
You may only specify this attribute after a closing curly brace
on an enum definition, not in a typedef declaration.

transparent_union
This attribute, attached to a union type definition, indicates
that any variable having that union type should, if passed
to a function, be passed in the same way that the first union
member would be passed. For example:

union foo
{

char a;
int x[2];

} __attribute__ ((transparent_union));

To specify multiple attributes, separate them by commas within
the double parentheses: for example, ‘__attribute__ ((aligned (16),
packed))’.

6.31 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate
that function’s code into the code for its callers. This makes execution
faster by eliminating the function-call overhead; in addition, if any of the
actual argument values are constant, their known values may permit
simplifications at compile time so that not all of the inline function’s
code needs to be included. The effect on code size is less predictable;
object code may be larger or smaller with function inlining, depending
on the particular case. Inlining of functions is an optimization and it
really “works” only in optimizing compilation. If you don’t use ‘-O’, no
function is really inline.

To declare a function inline, use theinline keyword in its declaration,
like this:

inline int
inc (int *a)
{

(*a)++;
}

(If you are writing a header file to be included in ANSI C programs,
write __inline__ instead of inline. See Section 6.36 “Alternate Key-
words,” page 192.)

You can also make all “simple enough” functions inline with the option
‘-finline-functions’. Note that certain usages in a function definition
can make it unsuitable for inline substitution.

174 17 January 1996

Chapter 6: Extensions to the C Language Family

Note that in C and Objective C, unlike C++, the inline keyword does
not affect the linkage of the function.

GNU CC automatically inlines member functions defined within the
class body of C++ programs even if they are not explicitly declared
inline. (You can override this with ‘-fno-default-inline’; see Sec-
tion 4.5 “Options Controlling C++ Dialect,” page 36.)

When a function is both inline and static, if all calls to the function
are integrated into the caller, and the function’s address is never used,
then the function’s own assembler code is never referenced. In this
case, GNU CC does not actually output assembler code for the function,
unless you specify the option ‘-fkeep-inline-functions’. Some calls
cannot be integrated for various reasons (in particular, calls that precede
the function’s definition cannot be integrated, and neither can recursive
calls within the definition). If there is a nonintegrated call, then the
function is compiled to assembler code as usual. The function must also
be compiled as usual if the program refers to its address, because that
can’t be inlined.

When an inline function is not static, then the compiler must as-
sume that there may be calls from other source files; since a global
symbol can be defined only once in any program, the function must not
be defined in the other source files, so the calls therein cannot be inte-
grated. Therefore, a non-static inline function is always compiled on
its own in the usual fashion.

If you specify both inline and extern in the function definition, then
the definition is used only for inlining. In no case is the function compiled
on its own, not even if you refer to its address explicitly. Such an address
becomes an external reference, as if you had only declared the function,
and had not defined it.

This combination of inline and extern has almost the effect of a
macro. The way to use it is to put a function definition in a header
file with these keywords, and put another copy of the definition (lacking
inline and extern) in a library file. The definition in the header file will
cause most calls to the function to be inlined. If any uses of the function
remain, they will refer to the single copy in the library.

GNU C does not inline any functions when not optimizing. It is not
clear whether it is better to inline or not, in this case, but we found that
a correct implementation when not optimizing was difficult. So we did
the easy thing, and turned it off.

c y g n u s s u p p o r t 175

Using GNU CC

6.32 Assembler Instructions with C Expression
Operands

In an assembler instruction using asm, you can now specify the
operands of the instruction using C expressions. This means no more
guessing which registers or memory locations will contain the data you
want to use.

You must specify an assembler instruction template much like what
appears in a machine description, plus an operand constraint string for
each operand.

For example, here is how to use the 68881’s fsinx instruction:
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is
that of the output operand. Each has ‘"f"’ as its operand constraint,
saying that a floating point register is required. The ‘=’ in ‘=f’ indicates
that the operand is an output; all output operands’ constraints must
use ‘=’. The constraints use the same language used in the machine
description (see Section 6.33 “Constraints,” page 180).

Each operand is described by an operand-constraint string followed
by the C expression in parentheses. A colon separates the assembler
template from the first output operand, and another separates the last
output operand from the first input, if any. Commas separate output
operands and separate inputs. The total number of operands is limited
to ten or to the maximum number of operands in any instruction pattern
in the machine description, whichever is greater.

If there are no output operands, and there are input operands, then
there must be two consecutive colons surrounding the place where the
output operands would go.

Output operand expressions must be lvalues; the compiler can check
this. The input operands need not be lvalues. The compiler cannot
check whether the operands have data types that are reasonable for the
instruction being executed. It does not parse the assembler instruction
template and does not know what it means, or whether it is valid as-
sembler input. The extended asm feature is most often used for machine
instructions that the compiler itself does not know exist. If the output
expression cannot be directly addressed (for example, it is a bit field),
your constraint must allow a register. In that case, GNU CC will use
the register as the output of the asm, and then store that register into
the output.

The output operands must be write-only; GNU CC will assume that
the values in these operands before the instruction are dead and need not
be generated. Extended asm does not support input-output or read-write

176 17 January 1996

Chapter 6: Extensions to the C Language Family

operands. For this reason, the constraint character ‘+’, which indicates
such an operand, may not be used.

When the assembler instruction has a read-write operand, or an
operand in which only some of the bits are to be changed, you must
logically split its function into two separate operands, one input operand
and one write-only output operand. The connection between them is
expressed by constraints which say they need to be in the same location
when the instruction executes. You can use the same C expression for
both operands, or different expressions. For example, here we write the
(fictitious) ‘combine’ instruction with bar as its read-only source operand
and foo as its read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same
location as operand 0. A digit in constraint is allowed only in an input
operand, and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand will be
in the same place as another. The mere fact that foo is the value of both
operands is not enough to guarantee that they will be in the same place
in the generated assembler code. The following would not work:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to
be in different registers; GNU CC knows no reason not to do so. For
example, the compiler might find a copy of the value of foo in one register
and use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to foo’s own address). Of course, since the
register for operand 1 is not even mentioned in the assembler code, the
result will not work, but GNU CC can’t tell that.

Some instructions clobber specific hard registers. To describe this,
write a third colon after the input operands, followed by the names
of the clobbered hard registers (given as strings). Here is a realistic
example for the Vax:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

If you refer to a particular hardware register from the assembler code,
then you will probably have to list the register after the third colon to tell
the compiler that the register’s value is modified. In many assemblers,
the register names begin with ‘%’; to produce one ‘%’ in the assembler
code, you must write ‘%%’ in the input.

If your assembler instruction can alter the condition code register,
add ‘cc’ to the list of clobbered registers. GNU CC on some machines
represents the condition codes as a specific hardware register; ‘cc’ serves

c y g n u s s u p p o r t 177

Using GNU CC

to name this register. On other machines, the condition code is handled
differently, and specifying ‘cc’ has no effect. But it is valid no matter
what the machine.

If your assembler instruction modifies memory in an unpredictable
fashion, add ‘memory’ to the list of clobbered registers. This will cause
GNU CC to not keep memory values cached in registers across the as-
sembler instruction.

You can put multiple assembler instructions together in a single asm
template, separated either with newlines (written as ‘\n’) or with semi-
colons if the assembler allows such semicolons. The GNU assembler
allows semicolons and all Unix assemblers seem to do so. The input
operands are guaranteed not to use any of the clobbered registers, and
neither will the output operands’ addresses, so you can read and write
the clobbered registers as many times as you like. Here is an example
of multiple instructions in a template; it assumes that the subroutine
_foo accepts arguments in registers 9 and 10:

asm ("movl %0,r9;movl %1,r10;call _foo"
: /* no outputs */
: "g" (from), "g" (to)
: "r9", "r10");

Unless an output operand has the ‘&’ constraint modifier, GNU CC
may allocate it in the same register as an unrelated input operand, on
the assumption that the inputs are consumed before the outputs are
produced. This assumption may be false if the assembler code actu-
ally consists of more than one instruction. In such a case, use ‘&’ for
each output operand that may not overlap an input. See Section 6.33.3
“Modifiers,” page 183.

If you want to test the condition code produced by an assembler in-
struction, you must include a branch and a label in the asm construct, as
follows:

asm ("clr %0;frob %1;beq 0f;mov #1,%0;0:"
: "g" (result)
: "g" (input));

This assumes your assembler supports local labels, as the GNU assem-
bler and most Unix assemblers do.

Speaking of labels, jumps from one asm to another are not supported.
The compiler’s optimizers do not know about these jumps, and therefore
they cannot take account of them when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to
encapsulate them in macros that look like functions. For example,

#define sin(x) \
({ double __value, __arg = (x); \

asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
__value; })

178 17 January 1996

Chapter 6: Extensions to the C Language Family

Here the variable __arg is used to make sure that the instruction op-
erates on a proper double value, and to accept only those arguments x
which can convert automatically to a double.

Another way to make sure the instruction operates on the correct data
type is to use a cast in the asm. This is different from using a variable __
arg in that it converts more different types. For example, if the desired
type were int, casting the argument to int would accept a pointer with
no complaint, while assigning the argument to an int variable named
__arg would warn about using a pointer unless the caller explicitly casts
it.

If an asm has output operands, GNU CC assumes for optimization
purposes that the instruction has no side effects except to change the
output operands. This does not mean that instructions with a side effect
cannot be used, but you must be careful, because the compiler may elim-
inate them if the output operands aren’t used, or move them out of loops,
or replace two with one if they constitute a common subexpression. Also,
if your instruction does have a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later
if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved signifi-
cantly, or combined, by writing the keyword volatile after the asm. For
example:

#define set_priority(x) \
asm volatile ("set_priority %0": /* no outputs */ : "g" (x))

An instruction without output operands will not be deleted or moved
significantly, regardless, unless it is unreachable.

Note that even a volatile asm instruction can be moved in ways that
appear insignificant to the compiler, such as across jump instructions.
You can’t expect a sequence of volatile asm instructions to remain per-
fectly consecutive. If you want consecutive output, use a single asm.

It is a natural idea to look for a way to give access to the condition
code left by the assembler instruction. However, when we attempted
to implement this, we found no way to make it work reliably. The
problem is that output operands might need reloading, which would
result in additional following “store” instructions. On most machines,
these instructions would alter the condition code before there was time
to test it. This problem doesn’t arise for ordinary “test” and “compare”
instructions because they don’t have any output operands.

If you are writing a header file that should be includable in ANSI
C programs, write __asm__ instead of asm. See Section 6.36 “Alternate
Keywords,” page 192.

c y g n u s s u p p o r t 179

Using GNU CC

6.33 Constraints for asm Operands

Here are specific details on what constraint letters you can use with
asm operands. Constraints can say whether an operand may be in a
register, and which kinds of register; whether the operand can be a
memory reference, and which kinds of address; whether the operand
may be an immediate constant, and which possible values it may have.
Constraints can also require two operands to match.

6.33.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which
describes one kind of operand that is permitted. Here are the letters that
are allowed:

‘m’ A memory operand is allowed, with any kind of address that
the machine supports in general.

‘o’ A memory operand is allowed, but only if the address is off-
settable. This means that adding a small integer (actually,
the width in bytes of the operand, as determined by its ma-
chine mode) may be added to the address and the result is
also a valid memory address.
For example, an address which is constant is offsettable; so
is an address that is the sum of a register and a constant
(as long as a slightly larger constant is also within the range
of address-offsets supported by the machine); but an autoin-
crement or autodecrement address is not offsettable. More
complicated indirect/indexed addresses may or may not be
offsettable depending on the other addressing modes that
the machine supports.
Note that in an output operand which can be matched by
another operand, the constraint letter ‘o’ is valid only when
accompanied by both ‘<’ (if the target machine has predecre-
ment addressing) and ‘>’ (if the target machine has preincre-
ment addressing).

‘V’ A memory operand that is not offsettable. In other words,
anything that would fit the ‘m’ constraint but not the ‘o’ con-
straint.

‘<’ A memory operand with autodecrement addressing (either
predecrement or postdecrement) is allowed.

‘>’ A memory operand with autoincrement addressing (either
preincrement or postincrement) is allowed.

180 17 January 1996

Chapter 6: Extensions to the C Language Family

‘r’ A register operand is allowed provided that it is in a general
register.

‘d’, ‘a’, ‘f’, . . .
Other letters can be defined in machine-dependent fashion
to stand for particular classes of registers. ‘d’, ‘a’ and ‘f’ are
defined on the 68000/68020 to stand for data, address and
floating point registers.

‘i’ An immediate integer operand (one with constant value) is
allowed. This includes symbolic constants whose values will
be known only at assembly time.

‘n’ An immediate integer operand with a known numeric value
is allowed. Many systems cannot support assembly-time con-
stants for operands less than a word wide. Constraints for
these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’
Other letters in the range ‘I’ through ‘P’ may be defined in
a machine-dependent fashion to permit immediate integer
operands with explicit integer values in specified ranges. For
example, on the 68000, ‘I’ is defined to stand for the range of
values 1 to 8. This is the range permitted as a shift count in
the shift instructions.

‘E’ An immediate floating operand (expression code const_
double) is allowed, but only if the target floating point format
is the same as that of the host machine (on which the com-
piler is running).

‘F’ An immediate floating operand (expression code const_
double) is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to
permit immediate floating operands in particular ranges of
values.

‘s’ An immediate integer operand whose value is not an explicit
integer is allowed.
This might appear strange; if an insn allows a constant
operand with a value not known at compile time, it certainly
must allow any known value. So why use ‘s’ instead of ‘i’?
Sometimes it allows better code to be generated.
For example, on the 68000 in a fullword instruction it is
possible to use an immediate operand; but if the immediate
value is between -128 and 127, better code results from load-
ing the value into a register and using the register. This is

c y g n u s s u p p o r t 181

Using GNU CC

because the load into the register can be done with a ‘moveq’
instruction. We arrange for this to happen by defining the
letter ‘K’ to mean “any integer outside the range -128 to 127”,
and then specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is al-
lowed, except for registers that are not general registers.

‘X’ Any operand whatsoever is allowed.

‘0’, ‘1’, ‘2’, . . . ‘9’
An operand that matches the specified operand number is
allowed. If a digit is used together with letters within the
same alternative, the digit should come last.
This is called a matching constraint and what it really means
is that the assembler has only a single operand that fills
two roles which asm distinguishes. For example, an add
instruction uses two input operands and an output operand,
but on most CISC machines an add instruction really has
only two operands, one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More
precisely, the two operands that match must include one
input-only operand and one output-only operand. Moreover,
the digit must be a smaller number than the number of the
operand that uses it in the constraint.

‘p’ An operand that is a valid memory address is allowed. This
is for “load address” and “push address” instructions.
‘p’ in the constraint must be accompanied by address_
operand as the predicate in the match_operand. This pred-
icate interprets the mode specified in the match_operand as
the mode of the memory reference for which the address
would be valid.

‘Q’, ‘R’, ‘S’, . . . ‘U’
Letters in the range ‘Q’ through ‘U’ may be defined in a
machine-dependent fashion to stand for arbitrary operand
types.

6.33.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of pos-
sible operands. For example, on the 68000, a logical-or instruction can
combine register or an immediate value into memory, or it can combine
any kind of operand into a register; but it cannot combine one memory
location into another.

182 17 January 1996

Chapter 6: Extensions to the C Language Family

These constraints are represented as multiple alternatives. An alter-
native can be described by a series of letters for each operand. The over-
all constraint for an operand is made from the letters for this operand
from the first alternative, a comma, the letters for this operand from the
second alternative, a comma, and so on until the last alternative.

If all the operands fit any one alternative, the instruction is valid.
Otherwise, for each alternative, the compiler counts how many instruc-
tions must be added to copy the operands so that that alternative applies.
The alternative requiring the least copying is chosen. If two alternatives
need the same amount of copying, the one that comes first is chosen.
These choices can be altered with the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as
a choice when no alternative applies exactly. The compiler
regards this alternative as one unit more costly for each ‘?’
that appears in it.

! Disparage severely the alternative that the ‘!’ appears in.
This alternative can still be used if it fits without reloading,
but if reloading is needed, some other alternative will be
used.

6.33.3 Constraint Modifier Characters

Here are constraint modifier characters.

‘=’ Means that this operand is write-only for this instruction:
the previous value is discarded and replaced by output data.

‘+’ Means that this operand is both read and written by the
instruction.
When the compiler fixes up the operands to satisfy the con-
straints, it needs to know which operands are inputs to the
instruction and which are outputs from it. ‘=’ identifies an
output; ‘+’ identifies an operand that is both input and out-
put; all other operands are assumed to be input only.

‘&’ Means (in a particular alternative) that this operand is
written before the instruction is finished using the input
operands. Therefore, this operand may not lie in a register
that is used as an input operand or as part of any memory
address.
‘&’ applies only to the alternative in which it is written. In
constraints with multiple alternatives, sometimes one alter-
native requires ‘&’ while others do not. See, for example, the
‘movdf’ insn of the 68000.

c y g n u s s u p p o r t 183

Using GNU CC

‘&’ does not obviate the need to write ‘=’.

‘%’ Declares the instruction to be commutative for this operand
and the following operand. This means that the compiler
may interchange the two operands if that is the cheapest
way to make all operands fit the constraints.

‘#’ Says that all following characters, up to the next comma, are
to be ignored as a constraint. They are significant only for
choosing register preferences.

6.33.4 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint
letters in asm arguments, since they will convey meaning more read-
ily to people reading your code. Failing that, use the constraint let-
ters that usually have very similar meanings across architectures.
The most commonly used constraints are ‘m’ and ‘r’ (for memory and
general-purpose registers respectively; see Section 6.33.1 “Simple Con-
straints,” page 180), and ‘I’, usually the letter indicating the most com-
mon immediate-constant format.

For each machine architecture, the ‘config/machine.h’ file defines
additional constraints. These constraints are used by the compiler it-
self for instruction generation, as well as for asm statements; therefore,
some of the constraints are not particularly interesting for asm. The
constraints are defined through these macros:

REG_CLASS_FROM_LETTER
Register class constraints (usually lower case).

CONST_OK_FOR_LETTER_P
Immediate constant constraints, for non-floating point con-
stants of word size or smaller precision (usually upper case).

CONST_DOUBLE_OK_FOR_LETTER_P
Immediate constant constraints, for all floating point con-
stants and for constants of greater than word size precision
(usually upper case).

EXTRA_CONSTRAINT
Special cases of registers or memory. This macro is not re-
quired, and is only defined for some machines.

Inspecting these macro definitions in the compiler source for your ma-
chine is the best way to be certain you have the right constraints. How-
ever, here is a summary of the machine-dependent constraints available
on some particular machines.

184 17 January 1996

Chapter 6: Extensions to the C Language Family

ARM family—‘arm.h’
f Floating-point register

F One of the floating-point constants 0.0, 0.5, 1.0,
2.0, 3.0, 4.0, 5.0 or 10.0

G Floating-point constant that would satisfy the
constraint ‘F’ if it were negated

I Integer that is valid as an immediate operand in
a data processing instruction. That is, an integer
in the range 0 to 255 rotated by a multiple of 2

J Integer in the range -4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted
(ones complement)

L Integer that satisfies constraint ‘I’ when negated
(twos complement)

M Integer in the range 0 to 32

Q A memory reference where the exact address is
in a single register (“m’’ is preferable for asm state-
ments)

R An item in the constant pool

S A symbol in the text segment of the current file

AMD 29000 family—‘a29k.h’
l Local register 0

b Byte Pointer (‘BP’) register

q ‘Q’ register

h Special purpose register

A First accumulator register

a Other accumulator register

f Floating point register

I Constant greater than 0, less than 0x100

J Constant greater than 0, less than 0x10000

K Constant whose high 24 bits are on (1)

L 16 bit constant whose high 8 bits are on (1)

M 32 bit constant whose high 16 bits are on (1)

c y g n u s s u p p o r t 185

Using GNU CC

N 32 bit negative constant that fits in 8 bits

O The constant 0x80000000 or, on the 29050, any
32 bit constant whose low 16 bits are 0.

P 16 bit negative constant that fits in 8 bits

G
H A floating point constant (in asm statements, use

the machine independent ‘E’ or ‘F’ instead)

IBM RS6000—‘rs6000.h’
b Address base register

f Floating point register

h ‘MQ’, ‘CTR’, or ‘LINK’ register

q ‘MQ’ register

c ‘CTR’ register

l ‘LINK’ register

x ‘CR’ register (condition register) number 0

y ‘CR’ register (condition register)

I Signed 16 bit constant

J Constant whose low 16 bits are 0

K Constant whose high 16 bits are 0

L Constant suitable as a mask operand

M Constant larger than 31

N Exact power of 2

O Zero

P Constant whose negation is a signed 16 bit con-
stant

G Floating point constant that can be loaded into a
register with one instruction per word

Q Memory operand that is an offset from a register
(‘m’ is preferable for asm statements)

Intel 386—‘i386.h’
q ‘a’, b, c, or d register

A ‘a’, or d register (for 64-bit ints)

f Floating point register

186 17 January 1996

Chapter 6: Extensions to the C Language Family

t First (top of stack) floating point register

u Second floating point register

a ‘a’ register

b ‘b’ register

c ‘c’ register

d ‘d’ register

D ‘di’ register

S ‘si’ register

I Constant in range 0 to 31 (for 32 bit shifts)

J Constant in range 0 to 63 (for 64 bit shifts)

K ‘0xff’

L ‘0xffff’

M 0, 1, 2, or 3 (shifts for lea instruction)

G Standard 80387 floating point constant

Intel 960—‘i960.h’
f Floating point register (fp0 to fp3)

l Local register (r0 to r15)

b Global register (g0 to g15)

d Any local or global register

I Integers from 0 to 31

J 0

K Integers from -31 to 0

G Floating point 0

H Floating point 1

MIPS—‘mips.h’
d General-purpose integer register

f Floating-point register (if available)

h ‘Hi’ register

l ‘Lo’ register

x ‘Hi’ or ‘Lo’ register

y General-purpose integer register

c y g n u s s u p p o r t 187

Using GNU CC

z Floating-point status register

I Signed 16 bit constant (for arithmetic instruc-
tions)

J Zero

K Zero-extended 16-bit constant (for logic instruc-
tions)

L Constant with low 16 bits zero (can be loaded
with lui)

M 32 bit constant which requires two instructions
to load (a constant which is not ‘I’, ‘K’, or ‘L’)

N Negative 16 bit constant

O Exact power of two

P Positive 16 bit constant

G Floating point zero

Q Memory reference that can be loaded with more
than one instruction (‘m’ is preferable for asm
statements)

R Memory reference that can be loaded with one
instruction (‘m’ is preferable for asm statements)

S Memory reference in external OSF/rose PIC for-
mat (‘m’ is preferable for asm statements)

Motorola 680x0—‘m68k.h’
a Address register

d Data register

f 68881 floating-point register, if available

x Sun FPA (floating-point) register, if available

y First 16 Sun FPA registers, if available

I Integer in the range 1 to 8

J 16 bit signed number

K Signed number whose magnitude is greater than
0x80

L Integer in the range -8 to -1

G Floating point constant that is not a 68881 con-
stant

188 17 January 1996

Chapter 6: Extensions to the C Language Family

H Floating point constant that can be used by Sun
FPA

SPARC—‘sparc.h’
f Floating-point register

I Signed 13 bit constant

J Zero

K 32 bit constant with the low 12 bits clear (a con-
stant that can be loaded with the sethi instruc-
tion)

G Floating-point zero

H Signed 13 bit constant, sign-extended to 32 or 64
bits

Q Memory reference that can be loaded with one
instruction (‘m’ is more appropriate for asm state-
ments)

S Constant, or memory address

T Memory address aligned to an 8-byte boundary

U Even register

6.34 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C
function or variable by writing the asm (or __asm__) keyword after the
declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the as-
sembler code should be ‘myfoo’ rather than the usual ‘_foo’.

On systems where an underscore is normally prepended to the name
of a C function or variable, this feature allows you to define names for
the linker that do not start with an underscore.

You cannot use asm in this way in a function definition; but you can
get the same effect by writing a declaration for the function before its
definition and putting asm there, like this:

extern func () asm ("FUNC");

func (x, y)
int x, y;

...

c y g n u s s u p p o r t 189

Using GNU CC

It is up to you to make sure that the assembler names you choose
do not conflict with any other assembler symbols. Also, you must not
use a register name; that would produce completely invalid assembler
code. GNU CC does not as yet have the ability to store static variables
in registers. Perhaps that will be added.

6.35 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hard-
ware registers. You can also specify the register in which an ordinary
register variable should be allocated.
� Global register variables reserve registers throughout the program.

This may be useful in programs such as programming language in-
terpreters which have a couple of global variables that are accessed
very often.

� Local register variables in specific registers do not reserve the reg-
isters. The compiler’s data flow analysis is capable of determining
where the specified registers contain live values, and where they are
available for other uses.
These local variables are sometimes convenient for use with the
extended asm feature (see Section 6.32 “Extended Asm,” page 176),
if you want to write one output of the assembler instruction directly
into a particular register. (This will work provided the register you
specify fits the constraints specified for that operand in the asm.)

6.35.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:
register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a
register which is normally saved and restored by function calls on your
machine, so that library routines will not clobber it.

Naturally the register name is cpu-dependent, so you would need
to conditionalize your program according to cpu type. The register a5
would be a good choice on a 68000 for a variable of pointer type. On
machines with register windows, be sure to choose a “global” register
that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how
they name the registers; then you would need additional conditionals.
For example, some 68000 operating systems call this register %a5.

190 17 January 1996

Chapter 6: Extensions to the C Language Family

Eventually there may be a way of asking the compiler to choose a
register automatically, but first we need to figure out how it should
choose and how to enable you to guide the choice. No solution is evident.

Defining a global register variable in a certain register reserves that
register entirely for this use, at least within the current compilation.
The register will not be allocated for any other purpose in the functions
in the current compilation. The register will not be saved and restored
by these functions. Stores into this register are never deleted even if
they would appear to be dead, but references may be deleted or moved
or simplified.

It is not safe to access the global register variables from signal han-
dlers, or from more than one thread of control, because the system library
routines may temporarily use the register for other things (unless you
recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to
call another such function foo by way of a third function lose that was
compiled without knowledge of this variable (i.e. in a different source
file in which the variable wasn’t declared). This is because lose might
save the register and put some other value there. For example, you
can’t expect a global register variable to be available in the comparison-
function that you pass to qsort, since qsort might have put something
else in that register. (If you are prepared to recompile qsort with the
same global register variable, you can solve this problem.)

If you want to recompile qsort or other source files which do not ac-
tually use your global register variable, so that they will not use that
register for any other purpose, then it suffices to specify the compiler
option ‘-ffixed-reg ’. You need not actually add a global register decla-
ration to their source code.

A function which can alter the value of a global register variable
cannot safely be called from a function compiled without this variable,
because it could clobber the value the caller expects to find there on
return. Therefore, the function which is the entry point into the part of
the program that uses the global register variable must explicitly save
and restore the value which belongs to its caller.

On most machines, longjmp will restore to each global register vari-
able the value it had at the time of the setjmp. On some machines,
however, longjmp will not change the value of global register variables.
To be portable, the function that called setjmp should make other ar-
rangements to save the values of the global register variables, and to
restore them in a longjmp. This way, the same thing will happen re-
gardless of what longjmp does.

All global register variable declarations must precede all function
definitions. If such a declaration could appear after function definitions,

c y g n u s s u p p o r t 191

Using GNU CC

the declaration would be too late to prevent the register from being used
for other purposes in the preceding functions.

Global register variables may not have initial values, because an
executable file has no means to supply initial contents for a register.

On the Sparc, there are reports that g3 . . . g7 are suitable registers,
but certain library functions, such as getwd, as well as the subroutines
for division and remainder, modify g3 and g4. g1 and g2 are local tem-
poraries.

On the 68000, a2 . . . a5 should be suitable, as should d2 . . . d7. Of
course, it will not do to use more than a few of those.

6.35.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like
this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this
is the same syntax used for defining global register variables, but for a
local variable it would appear within a function.

Naturally the register name is cpu-dependent, but this is not a prob-
lem, since specific registers are most often useful with explicit assembler
instructions (see Section 6.32 “Extended Asm,” page 176). Both of these
things generally require that you conditionalize your program according
to cpu type.

In addition, operating systems on one type of cpu may differ in how
they name the registers; then you would need additional conditionals.
For example, some 68000 operating systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a
register automatically, but first we need to figure out how it should
choose and how to enable you to guide the choice. No solution is evident.

Defining such a register variable does not reserve the register; it re-
mains available for other uses in places where flow control determines
the variable’s value is not live. However, these registers are made un-
available for use in the reload pass. I would not be surprised if excessive
use of this feature leaves the compiler too few available registers to
compile certain functions.

6.36 Alternate Keywords

The option ‘-traditional’ disables certain keywords; ‘-ansi’ disables
certain others. This causes trouble when you want to use GNU C exten-
sions, or ANSI C features, in a general-purpose header file that should

192 17 January 1996

Chapter 6: Extensions to the C Language Family

be usable by all programs, including ANSI C programs and traditional
ones. The keywords asm, typeof and inline cannot be used since they
won’t work in a program compiled with ‘-ansi’, while the keywords
const, volatile, signed, typeof and inline won’t work in a program
compiled with ‘-traditional’.

The way to solve these problems is to put ‘__’ at the beginning and
end of each problematical keyword. For example, use __asm__ instead
of asm, __const__ instead of const, and __inline__ instead of inline.

Other C compilers won’t accept these alternative keywords; if you
want to compile with another compiler, you can define the alternate
keywords as macros to replace them with the customary keywords. It
looks like this:

#ifndef __GNUC__
#define __asm__ asm
#endif

‘-pedantic’ causes warnings for many GNU C extensions. You can
prevent such warnings within one expression by writing __extension__
before the expression. __extension__ has no effect aside from this.

6.37 Incomplete enum Types

You can define an enum tag without specifying its possible values.
This results in an incomplete type, much like what you get if you write
struct foo without describing the elements. A later declaration which
does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is in-
complete. However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of
enum more consistent with the way struct and union are handled.

This extension is not supported by GNU C++.

6.38 Function Names as Strings

GNU CC predefines two string variables to be the name of the current
function. The variable __FUNCTION__ is the name of the function as it
appears in the source. The variable __PRETTY_FUNCTION__ is the name
of the function pretty printed in a language specific fashion.

These names are always the same in a C function, but in a C++
function they may be different. For example, this program:

extern "C" {
extern int printf (char *, ...);
}

c y g n u s s u p p o r t 193

Using GNU CC

class a {
public:
sub (int i)

{
printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);

}
};

int
main (void)
{

a ax;
ax.sub (0);
return 0;

}

gives this output:
__FUNCTION__ = sub
__PRETTY_FUNCTION__ = int a::sub (int)

These names are not macros: they are predefined string variables.
For example, ‘#ifdef __FUNCTION__’ does not have any special meaning
inside a function, since the preprocessor does not do anything special
with the identifier __FUNCTION__.

194 17 January 1996

Chapter 7: Extensions to the C++ Language

7 Extensions to the C++ Language
The GNU compiler provides these extensions to the C++ language

(and you can also use most of the C language extensions in your C++
programs). If you want to write code that checks whether these features
are available, you can test for the GNU compiler the same way as for C
programs: check for a predefined macro __GNUC__. You can also use __
GNUG__ to test specifically for GNU C++ (see section “Standard Predefined
Macros” in The C Preprocessor).

7.1 Named Return Values in C++

GNU C++ extends the function-definition syntax to allow you to spec-
ify a name for the result of a function outside the body of the definition,
in C++ programs:

type
functionname (args) return resultname;
{

...

body
...

}

You can use this feature to avoid an extra constructor call when a
function result has a class type. For example, consider a function m,
declared as ‘X v = m ();’, whose result is of class X:

X
m ()
{

X b;
b.a = 23;
return b;

}

Although m appears to have no arguments, in fact it has one implicit
argument: the address of the return value. At invocation, the address
of enough space to hold v is sent in as the implicit argument. Then
b is constructed and its a field is set to the value 23. Finally, a copy
constructor (a constructor of the form ‘X(X&)’) is applied to b, with the
(implicit) return value location as the target, so that v is now bound to
the return value.

But this is wasteful. The local b is declared just to hold something
that will be copied right out. While a compiler that combined an “eli-
sion” algorithm with interprocedural data flow analysis could conceiv-
ably eliminate all of this, it is much more practical to allow you to assist
the compiler in generating efficient code by manipulating the return

c y g n u s s u p p o r t 195

Using GNU CC

value explicitly, thus avoiding the local variable and copy constructor
altogether.

Using the extended GNU C++ function-definition syntax, you can
avoid the temporary allocation and copying by naming r as your return
value at the outset, and assigning to its a field directly:

X
m () return r;
{

r.a = 23;
}

The declaration of r is a standard, proper declaration, whose effects are
executed before any of the body of m.

Functions of this type impose no additional restrictions; in particular,
you can execute return statements, or return implicitly by reaching the
end of the function body (“falling off the edge”). Cases like

X
m () return r (23);
{

return;
}

(or even ‘X m () return r (23); { }’) are unambiguous, since the return
value r has been initialized in either case. The following code may be
hard to read, but also works predictably:

X
m () return r;
{

X b;
return b;

}

The return value slot denoted by r is initialized at the outset, but the
statement ‘return b;’ overrides this value. The compiler deals with this
by destroying r (calling the destructor if there is one, or doing nothing if
there is not), and then reinitializing r with b.

This extension is provided primarily to help people who use over-
loaded operators, where there is a great need to control not just the
arguments, but the return values of functions. For classes where the
copy constructor incurs a heavy performance penalty (especially in the
common case where there is a quick default constructor), this is a major
savings. The disadvantage of this extension is that you do not control
when the default constructor for the return value is called: it is always
called at the beginning.

196 17 January 1996

Chapter 7: Extensions to the C++ Language

7.2 Minimum and Maximum Operators in C++

It is very convenient to have operators which return the “minimum”
or the “maximum” of two arguments. In GNU C++ (but not in GNU C),

a <? b is the minimum, returning the smaller of the
numeric values a and b;

a >? b is the maximum, returning the larger of the
numeric values a and b.

These operations are not primitive in ordinary C++, since you can use
a macro to return the minimum of two things in C++, as in the following
example.

#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

You might then use ‘int min = MIN (i, j);’ to set min to the minimum
value of variables i and j.

However, side effects in X or Ymay cause unintended behavior. For ex-
ample, MIN (i++, j++) will fail, incrementing the smaller counter twice.
A GNU C extension allows you to write safe macros that avoid this kind
of problem (see Section 6.6 “Naming an Expression’s Type,” page 150).
However, writing MIN and MAX as macros also forces you to use function-
call notation notation for a fundamental arithmetic operation. Using
GNU C++ extensions, you can write ‘int min = i <? j;’ instead.

Since <? and >? are built into the compiler, they properly handle
expressions with side-effects; ‘int min = i++ <? j++;’ works correctly.

7.3 goto and Destructors in GNU C++

In C++ programs, you can safely use the goto statement. When you
use it to exit a block which contains aggregates requiring destructors,
the destructors will run before the goto transfers control. (In ANSI C++,
goto is restricted to targets within the current block.)

The compiler still forbids using goto to enter a scope that requires
constructors.

7.4 Declarations and Definitions in One Header

C++ object definitions can be quite complex. In principle, your source
code will need two kinds of things for each object that you use across
more than one source file. First, you need an interface specification,
describing its structure with type declarations and function prototypes.
Second, you need the implementation itself. It can be tedious to main-
tain a separate interface description in a header file, in parallel to the

c y g n u s s u p p o r t 197

Using GNU CC

actual implementation. It is also dangerous, since separate interface
and implementation definitions may not remain parallel.

With GNU C++, you can use a single header file for both purposes.

Warning: The mechanism to specify this is in transition. For the
nonce, you must use one of two #pragma commands; in a future
release of GNU C++, an alternative mechanism will make these
#pragma commands unnecessary.

The header file contains the full definitions, but is marked with
‘#pragma interface’ in the source code. This allows the compiler to use
the header file only as an interface specification when ordinary source
files incorporate it with #include. In the single source file where the
full implementation belongs, you can use either a naming convention or
‘#pragma implementation’ to indicate this alternate use of the header
file.

#pragma interface
#pragma interface "subdir/objects.h"

Use this directive in header files that define object classes, to
save space in most of the object files that use those classes.
Normally, local copies of certain information (backup copies
of inline member functions, debugging information, and the
internal tables that implement virtual functions) must be
kept in each object file that includes class definitions. You can
use this pragma to avoid such duplication. When a header file
containing ‘#pragma interface’ is included in a compilation,
this auxiliary information will not be generated (unless the
main input source file itself uses ‘#pragma implementation’).
Instead, the object files will contain references to be resolved
at link time.

The second form of this directive is useful for the case where
you have multiple headers with the same name in different
directories. If you use this form, you must specify the same
string to ‘#pragma implementation’.

#pragma implementation
#pragma implementation "objects.h"

Use this pragma in a main input file, when you want full
output from included header files to be generated (and made
globally visible). The included header file, in turn, should use
‘#pragma interface’. Backup copies of inline member func-
tions, debugging information, and the internal tables used to
implement virtual functions are all generated in implemen-
tation files.

198 17 January 1996

Chapter 7: Extensions to the C++ Language

If you use ‘#pragma implementation’ with no argument,
it applies to an include file with the same basename1
as your source file. For example, in ‘allclass.cc’,
‘#pragma implementation’ by itself is equivalent to ‘#pragma
implementation "allclass.h"’.
In versions of GNU C++ prior to 2.6.0 ‘allclass.h’ was
treated as an implementation file whenever you would in-
clude it from ‘allclass.cc’ even if you never specified
‘#pragma implementation’. This was deemed to be more
trouble than it was worth, however, and disabled.
If you use an explicit ‘#pragma implementation’, it must ap-
pear in your source file before you include the affected header
files.
Use the string argument if you want a single implementa-
tion file to include code from multiple header files. (You
must also use ‘#include’ to include the header file; ‘#pragma
implementation’ only specifies how to use the file—it doesn’t
actually include it.)
There is no way to split up the contents of a single header
file into multiple implementation files.

‘#pragma implementation’ and ‘#pragma interface’ also have an ef-
fect on function inlining.

If you define a class in a header file marked with ‘#pragma interface’,
the effect on a function defined in that class is similar to an explicit
extern declaration—the compiler emits no code at all to define an inde-
pendent version of the function. Its definition is used only for inlining
with its callers.

Conversely, when you include the same header file in a main source
file that declares it as ‘#pragma implementation’, the compiler emits
code for the function itself; this defines a version of the function that can
be found via pointers (or by callers compiled without inlining). If all calls
to the function can be inlined, you can avoid emitting the function by
compiling with ‘-fno-implement-inlines’. If any calls were not inlined,
you will get linker errors.

7.5 Where’s the Template?

C++ templates are the first language feature to require more intelli-
gence from the environment than one usually finds on a UNIX system.

1 A file’s basename was the name stripped of all leading path informa-
tion and of trailing suffixes, such as ‘.h’ or ‘.C’ or ‘.cc’.

c y g n u s s u p p o r t 199

Using GNU CC

Somehow the compiler and linker have to make sure that each template
instance occurs exactly once in the executable if it is needed, and not at
all otherwise. There are two basic approaches to this problem, which I
will refer to as the Borland model and the Cfront model.

Borland model
Borland C++ solved the template instantiation problem by
adding the code equivalent of common blocks to their linker;
template instances are emitted in each translation unit that
uses them, and they are collapsed together at run time. The
advantage of this model is that the linker only has to consider
the object files themselves; there is no external complexity
to worry about. This disadvantage is that compilation time
is increased because the template code is being compiled re-
peatedly. Code written for this model tends to include defi-
nitions of all member templates in the header file, since they
must be seen to be compiled.

Cfront model
The AT&T C++ translator, Cfront, solved the template in-
stantiation problem by creating the notion of a template
repository, an automatically maintained place where tem-
plate instances are stored. As individual object files are
built, notes are placed in the repository to record where tem-
plates and potential type arguments were seen so that the
subsequent instantiation step knows where to find them. At
link time, any needed instances are generated and linked in.
The advantages of this model are more optimal compilation
speed and the ability to use the system linker; to implement
the Borland model a compiler vendor also needs to replace
the linker. The disadvantages are vastly increased complex-
ity, and thus potential for error; theoretically, this should
be just as transparent, but in practice it has been very dif-
ficult to build multiple programs in one directory and one
program in multiple directories using Cfront. Code writ-
ten for this model tends to separate definitions of non-inline
member templates into a separate file, which is magically
found by the link preprocessor when a template needs to be
instantiated.

Currently, g++ implements neither automatic model. In the mean
time, you have three options for dealing with template instantiations:

1. Do nothing. Pretend g++ does implement automatic instantiation
management. Code written for the Borland model will work fine, but
each translation unit will contain instances of each of the templates

200 17 January 1996

Chapter 7: Extensions to the C++ Language

it uses. In a large program, this can lead to an unacceptable amount
of code duplication.

2. Add ‘#pragma interface’ to all files containing template definitions.
For each of these files, add ‘#pragma implementation "filename"’
to the top of some ‘.C’ file which ‘#include’s it. Then compile ev-
erything with -fexternal-templates. The templates will then only be
expanded in the translation unit which implements them (i.e. has a
‘#pragma implementation’ line for the file where they live); all other
files will use external references. If you’re lucky, everything should
work properly. If you get undefined symbol errors, you need to make
sure that each template instance which is used in the program is
used in the file which implements that template. If you don’t have
any use for a particular instance in that file, you can just instantiate
it explicitly, using the syntax from the latest C++ working paper:

template class A<int>;
template ostream& operator << (ostream&, const A<int>&);

This strategy will work with code written for either model. If you
are using code written for the Cfront model, the file containing a
class template and the file containing its member templates should
be implemented in the same translation unit.
A slight variation on this approach is to use the flag -falt-external-
templates instead; this flag causes template instances to be emitted
in the translation unit that implements the header where they are
first instantiated, rather than the one which implements the file
where the templates are defined. This header must be the same in
all translation units, or things are likely to break.
See Section 7.4 “Declarations and Definitions in One Header,”
page 197, for more discussion of these pragmas.

3. Explicitly instantiate all the template instances you use, and com-
pile with -fno-implicit-templates. This is probably your best bet;
it may require more knowledge of exactly which templates you are
using, but it’s less mysterious than the previous approach, and it
doesn’t require any ‘#pragma’s or other g++-specific code. You can
scatter the instantiations throughout your program, you can create
one big file to do all the instantiations, or you can create tiny files
like

#include "Foo.h"
#include "Foo.cc"

template class Foo<int>;

for each instance you need, and create a template instantiation li-
brary from those. I’m partial to the last, but your mileage may vary.
If you are using Cfront-model code, you can probably get away with

c y g n u s s u p p o r t 201

Using GNU CC

not using -fno-implicit-templates when compiling files that don’t
‘#include’ the member template definitions.

7.6 Type Abstraction using Signatures

In GNU C++, you can use the keyword signature to define a com-
pletely abstract class interface as a datatype. You can connect this
abstraction with actual classes using signature pointers. If you want to
use signatures, run the GNU compiler with the ‘-fhandle-signatures’
command-line option. (With this option, the compiler reserves a second
keyword sigof as well, for a future extension.)

Roughly, signatures are type abstractions or interfaces of classes.
Some other languages have similar facilities. C++ signatures are re-
lated to ML’s signatures, Haskell’s type classes, definition modules in
Modula-2, interface modules in Modula-3, abstract types in Emerald,
type modules in Trellis/Owl, categories in Scratchpad II, and types in
POOL-I. For a more detailed discussion of signatures, see Signatures: A
Language Extension for Improving Type Abstraction and Subtype Poly-
morphism in C++ by Gerald Baumgartner and Vincent F. Russo (Tech
report CSD–TR–95–051, Dept. of Computer Sciences, Purdue Univer-
sity, August 1995, a slightly improved version appeared in Software—
Practice & Experience, 25(8), pp. 863–889, August 1995). You can
get the tech report by anonymous FTP from ftp.cs.purdue.edu in
‘pub/gb/Signature-design.ps.gz’.

Syntactically, a signature declaration is a collection of member func-
tion declarations and nested type declarations. For example, this signa-
ture declaration defines a new abstract type S with member functions
‘int foo ()’ and ‘int bar (int)’:

signature S
{

int foo ();
int bar (int);

};

Since signature types do not include implementation definitions, you
cannot write an instance of a signature directly. Instead, you can define
a pointer to any class that contains the required interfaces as a signature
pointer. Such a class implements the signature type.

To use a class as an implementation of S, you must ensure that the
class has public member functions ‘int foo ()’ and ‘int bar (int)’. The
class can have other member functions as well, public or not; as long as
it offers what’s declared in the signature, it is suitable as an implemen-
tation of that signature type.

202 17 January 1996

Chapter 7: Extensions to the C++ Language

For example, suppose that C is a class that meets the requirements
of signature S (C conforms to S). Then

C obj;
S * p = &obj;

defines a signature pointer p and initializes it to point to an object of
type C. The member function call ‘int i = p->foo ();’ executes ‘obj.foo
()’.

Abstract virtual classes provide somewhat similar facilities in stan-
dard C++. There are two main advantages to using signatures instead:
1. Subtyping becomes independent from inheritance. A class or signa-

ture type T is a subtype of a signature type S independent of any
inheritance hierarchy as long as all the member functions declared
in S are also found in T. So you can define a subtype hierarchy that
is completely independent from any inheritance (implementation)
hierarchy, instead of being forced to use types that mirror the class
inheritance hierarchy.

2. Signatures allow you to work with existing class hierarchies as im-
plementations of a signature type. If those class hierarchies are
only available in compiled form, you’re out of luck with abstract vir-
tual classes, since an abstract virtual class cannot be retrofitted on
top of existing class hierarchies. So you would be required to write
interface classes as subtypes of the abstract virtual class.

There is one more detail about signatures. A signature declaration
can contain member function definitions as well as member function dec-
larations. A signature member function with a full definition is called
a default implementation; classes need not contain that particular in-
terface in order to conform. For example, a class C can conform to the
signature

signature T
{

int f (int);
int f0 () { return f (0); };

};

whether or not C implements the member function ‘int f0 ()’. If you
define C::f0, that definition takes precedence; otherwise, the default
implementation S::f0 applies.

c y g n u s s u p p o r t 203

Using GNU CC

204 17 January 1996

Chapter 8: gcov: a Test Coverage Program

8 gcov: a Test Coverage Program

gcov is a tool you can use, together with gnu CC, to test code coverage
in your programs. gcov is free software, but for the moment it is only
available from Cygnus Support (pending discussions with the FSF about
how they think Cygnus should really write it).

This chapter describes version 1.5 of gcov.
Jim Wilson wrote gcov, and the original form of this note. Pat Mc-

Gregor edited the documentation.

8.1 Introduction to gcov

gcov is a test coverage program. Use it in concert with gnu CC
to analyze your programs to help create more efficient, faster running
code. You can use gcov as a profiling tool, to help discover where your
optimization efforts will best affect your code. You can also use gcov in
concert with the other profiling tool, gprof, to assess which parts of your
code use the greatest amount of computing time.

Profiling tools help you analyze your code’s performance. Using a
profiler such as gcov or gprof, you can find out some basic performance
statistics, such as:
� how often each line of code executes
� what lines of code are actually executed
� how much computing time each section of code uses

Once you know these things about how your code works when com-
piled, you can look at each module to see which modules should be
optimized. gcov helps you determine where to work on optimization.

Software developers also use coverage testing in concert with test-
suites, to make sure software is actually good enough for a release.
Testsuites can verify that a program works as expected; a coverage pro-
gram tests to see how much of the program is exercised by the testsuite.
Developers can then determine what kinds of test cases need to be added
to the testsuites to create both better testing and a better final product.

You should compile your code without optimization if you plan to use
gcov, because the optimization, by combining some lines of code into
one function, may not give you as much information as you need to look
for ‘hot spots’ where the code is using a great deal of computer time.
Likewise, because gcov accumulates statistics by line (at the lowest
resolution), it works best with a programming style that places only one
statement on each line. If you use complicated macros that expand to
loops or to other control structures, the statistics are less helpful—they

c y g n u s s u p p o r t 205

Using GNU CC

only report on the line where the macro call appears. If your complex
macros behave like functions, you can replace them with inline functions
to solve this problem.

gcov creates a logfile called ‘sourcename.gcov’ which indicates how
many times each line of a source file ‘sourcename.c’ has executed. You
can use these logfiles in conjuction with gprof to aid in fine-tuning the
performance of your programs. gprof gives timing information you can
use along with the information you get from gcov.

gcov works only on code compiled with gnu CC; it is not compatible
with any other profiling or test coverage mechanism.

8.2 Invoking gcov

gcov [-b] [-v] [-n] [-l] [-f] [-o directory] sourcefile

-b Write branch frequencies to the output file. Write branch
summary info to standard output. This option allows you to
see how often each branch was taken.

-v Display the gcov version number (on the standard error
stream).

-n Do not create the gcov output file.

-l Create long file names for included source files. For example,
if the header file ‘x.h’ contains code, and was included in the
file ‘a.c’, then running gcov on the file ‘a.c’ will produce an
output file called ‘a.c.x.h.gcov’ instead of ‘x.h.gcov’. This
can be useful if ‘x.h’ is included in multiple source files.

-f Output summaries for each function in addition to the file
level summary.

-o The directory where the object files live. Gcov will search for
.bb, .bbg, and .da files in this directory.

206 17 January 1996

Chapter 8: gcov: a Test Coverage Program

To use gcov, first compile your program with two special gnu CC
options: ‘-fprofile-arcs -ftest-coverage’. Then run the program.
Then run gcov with your program’s source file names as arguments. For
example, if your program is called ‘tmp.c’, this is what you see when you
use the basic gcov facility:

$ gcc -fprofile-arcs -ftest-coverage tmp.c
$ a.out
$ gcov tmp.c
87.50% of 8 source lines executed in file tmp.c
Creating tmp.c.gcov.

The file ‘tmp.c.gcov’ contains output from gcov. Here is a sample:
main()
{

1 int i, total;

1 total = 0;

11 for (i = 0; i < 10; i++)
10 total += i;

1 if (total != 45)
printf ("Failure\n");

else
1 printf ("Success\n");
1 }

When you use the ‘-b’ option, your output looks like this:
$ gcov -b tmp.c
87.50% of 8 source lines executed in file tmp.c
80.00% of 5 branches executed in file tmp.c
80.00% of 5 branches taken at least once in file tmp.c
50.00% of 2 calls executed in file tmp.c
Creating tmp.c.gcov.

Here is a sample of a resulting ‘tmp.c.gcov’ file:
main()
{

1 int i, total;

1 total = 0;

11 for (i = 0; i < 10; i++)
branch 0 taken = 91%
branch 1 taken = 100%
branch 2 taken = 100%

10 total += i;

1 if (total != 45)
branch 0 taken = 100%

printf ("Failure\n");
call 0 never executed

c y g n u s s u p p o r t 207

Using GNU CC

branch 1 never executed
else

1 printf ("Success\n");
call 0 returns = 100%

1 }

For each basic block, a line is printed after the last line of the basic
block describing the branch or call that ends the basic block. There can
be multiple branches and calls listed for a single source line if there are
multiple basic blocks that end on that line. In this case, the branches
and calls are each given a number. There is no simple way to map these
branches and calls back to source constructs. In general, though, the
lowest numbered branch or call will correspond to the leftmost construct
on the source line.

For a branch, if it was executed at least once, then a percentage
indicating the number of times the branch was taken divided by the
number of times the branch was executed will be printed. Otherwise,
the message “never executed” is printed.

For a call, if it was executed at least once, then a percentage indicating
the number of times the call returned divided by the number of times
the call was executed will be printed. This will usually be 100%, but
may be less for functions call exit or longjmp, and thus may not return
everytime they are called.

8.3 Using gcov with GCC Optimization

If you plan to use gcov to help optimize your code, you must first com-
pile your program with two special gnu CC options: ‘-fprofile-arcs
-ftest-coverage’. Aside from that, you can use any other gnu CC op-
tions; but if you want to prove that every single line in your program was
executed, you should not compile with optimization at the same time.
On some machines the optimizer can eliminate some simple code lines
by combining them with other lines. For example, code like this:

if (a != b)
c = 1;

else
c = 0;

can be compiled into one instruction on some machines. In this case,
there is no way for gcov to calculate separate execution counts for each
line because there isn’t separate code for each line. Hence the gcov
output looks like this if you compiled the program with optimization:

100 if (a != b)
100 c = 1;
100 else
100 c = 0;

208 17 January 1996

Chapter 8: gcov: a Test Coverage Program

The output shows that this block of code, combined by optimization,
executed 100 times. In one sense this result is correct, because there
was only one instruction representing all four of these lines. However,
the output does not indicate how many times the result was 0 and how
many times the result was 1.

c y g n u s s u p p o r t 209

Using GNU CC

210 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

9 Known Causes of Trouble with GNU CC

This section describes known problems that affect users of GNU CC.
Most of these are not GNU CC bugs per se—if they were, we would fix
them. But the result for a user may be like the result of a bug.

Some of these problems are due to bugs in other software, some are
missing features that are too much work to add, and some are places
where people’s opinions differ as to what is best.

9.1 Actual Bugs We Haven’t Fixed Yet

� The fixincludes script interacts badly with automounters; if the
directory of system header files is automounted, it tends to be un-
mounted while fixincludes is running. This would seem to be
a bug in the automounter. We don’t know any good way to work
around it.

� The fixproto script will sometimes add prototypes for the
sigsetjmp and siglongjmp functions that reference the jmp_buf
type before that type is defined. To work around this, edit the
offending file and place the typedef in front of the prototypes.

� There are several obscure case of mis-using struct, union, and enum
tags that are not detected as errors by the compiler.

� When ‘-pedantic-errors’ is specified, GNU C will incorrectly give
an error message when a function name is specified in an expression
involving the comma operator.

� Loop unrolling doesn’t work properly for certain C++ programs. This
is a bug in the C++ front end. It sometimes emits incorrect debug
info, and the loop unrolling code is unable to recover from this error.

9.2 Installation Problems

This is a list of problems (and some apparent problems which don’t
really mean anything is wrong) that show up during installation of GNU
CC.
� On certain systems, defining certain environment variables such as

CC can interfere with the functioning of make.
� If you encounter seemingly strange errors when trying to build the

compiler in a directory other than the source directory, it could be
because you have previously configured the compiler in the source
directory. Make sure you have done all the necessary preparations.
See Section 5.2 “Other Dir,” page 131.

c y g n u s s u p p o r t 211

Using GNU CC

� If you build GNU CC on a BSD system using a directory stored in a
System V file system, problems may occur in running fixincludes
if the System V file system doesn’t support symbolic links. These
problems result in a failure to fix the declaration of size_t in
‘sys/types.h’. If you find that size_t is a signed type and that
type mismatches occur, this could be the cause.
The solution is not to use such a directory for building GNU CC.

� In previous versions of GNU CC, the gcc driver program looked for
as and ld in various places; for example, in files beginning with
‘/usr/local/lib/gcc-’. GNU CC version 2 looks for them in the
directory ‘/usr/local/lib/gcc-lib/target/version’.
Thus, to use a version of as or ld that is not the system default, for
example gas or GNU ld, you must put them in that directory (or
make links to them from that directory).

� Some commands executed when making the compiler may fail (re-
turn a non-zero status) and be ignored by make. These failures,
which are often due to files that were not found, are expected, and
can safely be ignored.

� It is normal to have warnings in compiling certain files about un-
reachable code and about enumeration type clashes. These files’
names begin with ‘insn-’. Also, ‘real.c’ may get some warnings
that you can ignore.

� Sometimes make recompiles parts of the compiler when installing
the compiler. In one case, this was traced down to a bug in make.
Either ignore the problem or switch to GNU Make.

� If you have installed a program known as purify, you may find that it
causes errors while linking enquire, which is part of building GNU
CC. The fix is to get rid of the file real-ld which purify installs—so
that GNU CC won’t try to use it.

� On Linux SLS 1.01, there is a problem with ‘libc.a’: it does not
contain the obstack functions. However, GNU CC assumes that the
obstack functions are in ‘libc.a’ when it is the GNU C library. To
work around this problem, change the __GNU_LIBRARY__ conditional
around line 31 to ‘#if 1’.

� On some 386 systems, building the compiler never finishes because
enquire hangs due to a hardware problem in the motherboard—it
reports floating point exceptions to the kernel incorrectly. You can
install GNU CC except for ‘float.h’ by patching out the command
to run enquire. You may also be able to fix the problem for real by
getting a replacement motherboard. This problem was observed in
Revision E of the Micronics motherboard, and is fixed in Revision F.
It has also been observed in the MYLEX MXA-33 motherboard.

212 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

If you encounter this problem, you may also want to consider remov-
ing the FPU from the socket during the compilation. Alternatively,
if you are running SCO Unix, you can reboot and force the FPU to
be ignored. To do this, type ‘hd(40)unix auto ignorefpu’.

� On some 386 systems, GNU CC crashes trying to compile
‘enquire.c’. This happens on machines that don’t have a 387
FPU chip. On 386 machines, the system kernel is supposed to
emulate the 387 when you don’t have one. The crash is due to a bug
in the emulator.
One of these systems is the Unix from Interactive Systems: 386/ix.
On this system, an alternate emulator is provided, and it does work.
To use it, execute this command as super-user:

ln /etc/emulator.rel1 /etc/emulator

and then reboot the system. (The default emulator file remains
present under the name ‘emulator.dflt’.)
Try using ‘/etc/emulator.att’, if you have such a problem on the
SCO system.
Another system which has this problem is Esix. We don’t know
whether it has an alternate emulator that works.
On NetBSD 0.8, a similar problem manifests itself as these error
messages:

enquire.c: In function ‘fprop’:
enquire.c:2328: floating overflow

� On SCO systems, when compiling GNU CC with the system’s com-
piler, do not use ‘-O’. Some versions of the system’s compiler mis-
compile GNU CC with ‘-O’.

� Sometimes on a Sun 4 you may observe a crash in the program
genflags or genoutput while building GNU CC. This is said to be
due to a bug in sh. You can probably get around it by running
genflags or genoutput manually and then retrying the make.

� On Solaris 2, executables of GNU CC version 2.0.2 are commonly
available, but they have a bug that shows up when compiling current
versions of GNU CC: undefined symbol errors occur during assembly
if you use ‘-g’.
The solution is to compile the current version of GNU CC without
‘-g’. That makes a working compiler which you can use to recompile
with ‘-g’.

� Solaris 2 comes with a number of optional OS packages. Some of
these packages are needed to use GNU CC fully. If you did not
install all optional packages when installing Solaris, you will need
to verify that the packages that GNU CC needs are installed.

c y g n u s s u p p o r t 213

Using GNU CC

To check whether an optional package is installed, use the pkginfo
command. To add an optional package, use the pkgadd command.
For further details, see the Solaris documentation.
For Solaris 2.0 and 2.1, GNU CC needs six packages: ‘SUNWarc’,
‘SUNWbtool’, ‘SUNWesu’, ‘SUNWhea’, ‘SUNWlibm’, and ‘SUNWtoo’.
For Solaris 2.2, GNU CC needs an additional seventh package:
‘SUNWsprot’.

� On Solaris 2, trying to use the linker and other tools in ‘/usr/ucb’ to
install GNU CC has been observed to cause trouble. For example,
the linker may hang indefinitely. The fix is to remove ‘/usr/ucb’
from your PATH.

� If you use the 1.31 version of the MIPS assembler (such as was
shipped with Ultrix 3.1), you will need to use the -fno-delayed-
branch switch when optimizing floating point code. Otherwise, the
assembler will complain when the GCC compiler fills a branch delay
slot with a floating point instruction, such as add.d.

� If on a MIPS system you get an error message saying “does not have
gp sections for all it’s [sic] sectons [sic]”, don’t worry about it. This
happens whenever you use GAS with the MIPS linker, but there is
not really anything wrong, and it is okay to use the output file. You
can stop such warnings by installing the GNU linker.
It would be nice to extend GAS to produce the gp tables, but they
are optional, and there should not be a warning about their absence.

� In Ultrix 4.0 on the MIPS machine, ‘stdio.h’ does not work with
GNU CC at all unless it has been fixed with fixincludes. This
causes problems in building GNU CC. Once GNU CC is installed,
the problems go away.
To work around this problem, when making the stage 1 compiler,
specify this option to Make:

GCC_FOR_TARGET="./xgcc -B./ -I./include"

When making stage 2 and stage 3, specify this option:
CFLAGS="-g -I./include"

� Users have reported some problems with version 2.0 of the MIPS
compiler tools that were shipped with Ultrix 4.1. Version 2.10 which
came with Ultrix 4.2 seems to work fine.
Users have also reported some problems with version 2.20 of the
MIPS compiler tools that were shipped with RISC/os 4.x. The earlier
version 2.11 seems to work fine.

� Some versions of the MIPS linker will issue an assertion failure
when linking code that uses alloca against shared libraries on
RISC-OS 5.0, and DEC’s OSF/1 systems. This is a bug in the linker,
that is supposed to be fixed in future revisions. To protect against

214 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

this, GNU CC passes ‘-non_shared’ to the linker unless you pass an
explicit ‘-shared’ or ‘-call_shared’ switch.

� On System V release 3, you may get this error message while linking:
ld fatal: failed to write symbol name something
in strings table for file whatever

This probably indicates that the disk is full or your ULIMIT won’t
allow the file to be as large as it needs to be.
This problem can also result because the kernel parameter MAXUMEM
is too small. If so, you must regenerate the kernel and make the
value much larger. The default value is reported to be 1024; a value
of 32768 is said to work. Smaller values may also work.

� On System V, if you get an error like this,
/usr/local/lib/bison.simple: In function ‘yyparse’:
/usr/local/lib/bison.simple:625: virtual memory exhausted

that too indicates a problem with disk space, ULIMIT, or MAXUMEM.
� Current GNU CC versions probably do not work on version 2 of the

NeXT operating system.
� On NeXTStep 3.0, the Objective C compiler does not work, due,

apparently, to a kernel bug that it happens to trigger. This problem
does not happen on 3.1.

� On the Tower models 4n0 and 6n0, by default a process is not allowed
to have more than one megabyte of memory. GNU CC cannot com-
pile itself (or many other programs) with ‘-O’ in that much memory.
To solve this problem, reconfigure the kernel adding the following
line to the configuration file:

MAXUMEM = 4096

� On HP 9000 series 300 or 400 running HP-UX release 8.0, there is
a bug in the assembler that must be fixed before GNU CC can be
built. This bug manifests itself during the first stage of compilation,
while building ‘libgcc2.a’:

_floatdisf
cc1: warning: ‘-g’ option not supported on this version of GCC
cc1: warning: ‘-g1’ option not supported on this version of GCC
./xgcc: Internal compiler error: program as got fatal signal 11

‘archive/cph/hpux-8.0-assembler’, a patched version of the as-
sembler, is available by anonymous ftp from altdorf.ai.mit.edu.
If you have HP software support, the patch can also be obtained
directly from HP, as described in the following note:

This is the patched assembler, to patch SR#1653-010439,
where the assembler aborts on floating point constants.
The bug is not really in the assembler, but in the shared
library version of the function “cvtnum(3c)”. The bug on

c y g n u s s u p p o r t 215

Using GNU CC

“cvtnum(3c)” is SR#4701-078451. Anyway, the attached
assembler uses the archive library version of “cvtnum(3c)”
and thus does not exhibit the bug.

This patch is also known as PHCO 4484.
� On HP-UX version 8.05, but not on 8.07 or more recent versions,

the fixproto shell script triggers a bug in the system shell. If
you encounter this problem, upgrade your operating system or use
BASH (the GNU shell) to run fixproto.

� Some versions of the Pyramid C compiler are reported to be unable
to compile GNU CC. You must use an older version of GNU CC for
bootstrapping. One indication of this problem is if you get a crash
when GNU CC compiles the function muldi3 in file ‘libgcc2.c’.
You may be able to succeed by getting GNU CC version 1, installing
it, and using it to compile GNU CC version 2. The bug in the
Pyramid C compiler does not seem to affect GNU CC version 1.

� There may be similar problems on System V Release 3.1 on 386
systems.

� On the Intel Paragon (an i860 machine), if you are using operating
system version 1.0, you will get warnings or errors about redefinition
of va_arg when you build GNU CC.
If this happens, then you need to link most programs with the library
‘iclib.a’. You must also modify ‘stdio.h’ as follows: before the lines

#if defined(__i860__) && !defined(_VA_LIST)
#include <va_list.h>

insert the line
#if __PGC__

and after the lines
extern int vprintf(const char *, va_list);
extern int vsprintf(char *, const char *, va_list);
#endif

insert the line
#endif /* __PGC__ */

These problems don’t exist in operating system version 1.1.
� On the Altos 3068, programs compiled with GNU CC won’t work

unless you fix a kernel bug. This happens using system versions
V.2.2 1.0gT1 and V.2.2 1.0e and perhaps later versions as well. See
the file ‘README.ALTOS’.

� You will get several sorts of compilation and linking errors on the
we32k if you don’t follow the special instructions. See Section 5.1
“Configurations,” page 114.

� A bug in the HP-UX 8.05 (and earlier) shell will cause the fixproto
program to report an error of the form:

216 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

./fixproto: sh internal 1K buffer overflow

To fix this, change the first line of the fixproto script to look like:
#!/bin/ksh

9.3 Cross-Compiler Problems

You may run into problems with cross compilation on certain ma-
chines, for several reasons.
� Cross compilation can run into trouble for certain machines because

some target machines’ assemblers require floating point numbers to
be written as integer constants in certain contexts.
The compiler writes these integer constants by examining the float-
ing point value as an integer and printing that integer, because this
is simple to write and independent of the details of the floating point
representation. But this does not work if the compiler is running on
a different machine with an incompatible floating point format, or
even a different byte-ordering.
In addition, correct constant folding of floating point values requires
representing them in the target machine’s format. (The C standard
does not quite require this, but in practice it is the only way to win.)
It is now possible to overcome these problems by defining macros
such as REAL_VALUE_TYPE. But doing so is a substantial amount of
work for each target machine. See section “Cross Compilation and
Floating Point Format” in Using and Porting GCC.

� At present, the program ‘mips-tfile’ which adds debug support
to object files on MIPS systems does not work in a cross compile
environment.

9.4 Interoperation

This section lists various difficulties encountered in using GNU C or
GNU C++ together with other compilers or with the assemblers, linkers,
libraries and debuggers on certain systems.
� Objective C does not work on the RS/6000.
� GNU C++ does not do name mangling in the same way as other C++

compilers. This means that object files compiled with one compiler
cannot be used with another.
This effect is intentional, to protect you from more subtle problems.
Compilers differ as to many internal details of C++ implementation,
including: how class instances are laid out, how multiple inheri-
tance is implemented, and how virtual function calls are handled.

c y g n u s s u p p o r t 217

Using GNU CC

If the name encoding were made the same, your programs would
link against libraries provided from other compilers—but the pro-
grams would then crash when run. Incompatible libraries are then
detected at link time, rather than at run time.

� Older GDB versions sometimes fail to read the output of GNU CC
version 2. If you have trouble, get GDB version 4.4 or later.

� DBX rejects some files produced by GNU CC, though it
accepts similar constructs in output from PCC. Until someone can
supply a coherent description of what is valid DBX input and what
is not, there is nothing I can do about these problems. You are on
your own.

� The GNU assembler (GAS) does not support PIC. To generate PIC
code, you must use some other assembler, such as ‘/bin/as’.

� On some BSD systems, including some versions of Ultrix, use of
profiling causes static variable destructors (currently used only in
C++) not to be run.

� Use of ‘-I/usr/include’ may cause trouble.
Many systems come with header files that won’t work with GNU
CC unless corrected by fixincludes. The corrected header files
go in a new directory; GNU CC searches this directory before
‘/usr/include’. If you use ‘-I/usr/include’, this tells GNU CC
to search ‘/usr/include’ earlier on, before the corrected headers.
The result is that you get the uncorrected header files.
Instead, you should use these options (when compiling C programs):

-I/usr/local/lib/gcc-lib/target/version/include -I/usr/include

For C++ programs, GNU CC also uses a special directory that de-
fines C++ interfaces to standard C subroutines. This directory is
meant to be searched before other standard include directories, so
that it takes precedence. If you are compiling C++ programs and
specifying include directories explicitly, use this option first, then
the two options above:

-I/usr/local/lib/g++-include

� On some SGI systems, when you use ‘-lgl_s’ as an option, it gets
translated magically to ‘-lgl_s -lX11_s -lc_s’. Naturally, this
does not happen when you use GNU CC. You must specify all three
options explicitly.

� On a Sparc, GNU CC aligns all values of type double on an 8-byte
boundary, and it expects every double to be so aligned. The Sun
compiler usually gives double values 8-byte alignment, with one
exception: function arguments of type double may not be aligned.
As a result, if a function compiled with Sun CC takes the address of
an argument of type double and passes this pointer of type double

218 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

* to a function compiled with GNU CC, dereferencing the pointer
may cause a fatal signal.

One way to solve this problem is to compile your entire program
with GNU CC. Another solution is to modify the function that is
compiled with Sun CC to copy the argument into a local variable;
local variables are always properly aligned. A third solution is to
modify the function that uses the pointer to dereference it via the
following function access_double instead of directly with ‘*’:

inline double
access_double (double *unaligned_ptr)
{

union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;

u.i[0] = p->i[0];
u.i[1] = p->i[1];

return u.d;
}

Storing into the pointer can be done likewise with the same union.

� On Solaris, the malloc function in the ‘libmalloc.a’ library may
allocate memory that is only 4 byte aligned. Since GNU CC on
the Sparc assumes that doubles are 8 byte aligned, this may result
in a fatal signal if doubles are stored in memory allocated by the
‘libmalloc.a’ library.

The solution is to not use the ‘libmalloc.a’ library. Use instead
malloc and related functions from ‘libc.a’; they do not have this
problem.

� Sun forgot to include a static version of ‘libdl.a’ with some ver-
sions of SunOS (mainly 4.1). This results in undefined symbols
when linking static binaries (that is, if you use ‘-static’). If you
see undefined symbols _dlclose, _dlsym or _dlopen when linking,
compile and link against the file ‘mit/util/misc/dlsym.c’ from the
MIT version of X windows.

� The 128-bit long double format that the Sparc port supports cur-
rently works by using the architecturally defined quad-word floating
point instructions. Since there is no hardware that supports these
instructions they must be emulated by the operating system. Long
doubles do not work in Sun OS versions 4.0.3 and earlier, because
the kernel emulator uses an obsolete and incompatible format. Long
doubles do not work in Sun OS version 4.1.1 due to a problem in a
Sun library. Long doubles do work on Sun OS versions 4.1.2 and

c y g n u s s u p p o r t 219

Using GNU CC

higher, but GNU CC does not enable them by default. Long doubles
appear to work in Sun OS 5.x (Solaris 2.x).

� On HP-UX version 9.01 on the HP PA, the HP compiler cc does not
compile GNU CC correctly. We do not yet know why. However, GNU
CC compiled on earlier HP-UX versions works properly on HP-UX
9.01 and can compile itself properly on 9.01.

� On the HP PA machine, ADB sometimes fails to work on functions
compiled with GNU CC. Specifically, it fails to work on functions
that use alloca or variable-size arrays. This is because GNU CC
doesn’t generate HP-UX unwind descriptors for such functions. It
may even be impossible to generate them.

� Debugging (‘-g’) is not supported on the HP PA machine, unless
you use the preliminary GNU tools (see Chapter 5 “Installation,”
page 107).

� Taking the address of a label may generate errors from the HP-UX
PA assembler. GAS for the PA does not have this problem.

� Using floating point parameters for indirect calls to static functions
will not work when using the HP assembler. There simply is no way
for GCC to specify what registers hold arguments for static functions
when using the HP assembler. GAS for the PA does not have this
problem.

� In extremely rare cases involving some very large functions you
may receive errors from the HP linker complaining about an out of
bounds unconditional branch offset. This used to occur more often
in previous versions of GNU CC, but is now exceptionally rare. If
you should run into it, you can work around by making your function
smaller.

� GNU CC compiled code sometimes emits warnings from the HP-UX
assembler of the form:

(warning) Use of GR3 when
frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.
� The current version of the assembler (‘/bin/as’) for the RS/6000

has certain problems that prevent the ‘-g’ option in GCC from work-
ing. Note that ‘Makefile.in’ uses ‘-g’ by default when compiling
‘libgcc2.c’.
IBM has produced a fixed version of the assembler. The upgraded
assembler unfortunately was not included in any of the AIX 3.2
update PTF releases (3.2.2, 3.2.3, or 3.2.3e). Users of AIX 3.1 should
request PTF U403044 from IBM and users of AIX 3.2 should request
PTF U416277. See the file ‘README.RS6000’ for more details on these
updates.

220 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

You can test for the presense of a fixed assembler by using the
command

as -u < /dev/null

If the command exits normally, the assembler fix already is installed.
If the assembler complains that "-u" is an unknown flag, you need
to order the fix.

� On the IBM RS/6000, compiling code of the form
extern int foo;

... foo ...

static int foo;

will cause the linker to report an undefined symbol foo. Although
this behavior differs from most other systems, it is not a bug because
redefining an extern variable as static is undefined in ANSI C.

� AIX on the RS/6000 provides support (NLS) for environments out-
side of the United States. Compilers and assemblers use NLS to
support locale-specific representations of various objects including
floating-point numbers ("." vs "," for separating decimal fractions).
There have been problems reported where the library linked with
GCC does not produce the same floating-point formats that the as-
sembler accepts. If you have this problem, set the LANG environ-
ment variable to "C" or "En US".

� Even if you specify ‘-fdollars-in-identifiers’, you cannot suc-
cessfully use ‘$’ in identifiers on the RS/6000 due to a restriction in
the IBM assembler. GAS supports these identifiers.

� On the RS/6000, XLC version 1.3.0.0 will miscompile ‘jump.c’. XLC
version 1.3.0.1 or later fixes this problem. You can obtain XLC-
1.3.0.2 by requesting PTF 421749 from IBM.

� There is an assembler bug in versions of DG/UX prior to 5.4.2.01 that
occurs when the ‘fldcr’ instruction is used. GNU CC uses ‘fldcr’
on the 88100 to serialize volatile memory references. Use the option
‘-mno-serialize-volatile’ if your version of the assembler has
this bug.

� On VMS, GAS versions 1.38.1 and earlier may cause spurious warn-
ing messages from the linker. These warning messages complain of
mismatched psect attributes. You can ignore them. See Section 5.5
“VMS Install,” page 138.

� On NewsOS version 3, if you include both of the files ‘stddef.h’
and ‘sys/types.h’, you get an error because there are two typedefs
of size_t. You should change ‘sys/types.h’ by adding these lines
around the definition of size_t:

#ifndef _SIZE_T

c y g n u s s u p p o r t 221

Using GNU CC

#define _SIZE_T
actual typedef here
#endif

� On the Alliant, the system’s own convention for returning structures
and unions is unusual, and is not compatible with GNU CC no
matter what options are used.

� On the IBM RT PC, the MetaWare HighC compiler (hc) uses a dif-
ferent convention for structure and union returning. Use the option
‘-mhc-struct-return’ to tell GNU CC to use a convention compati-
ble with it.

� On Ultrix, the Fortran compiler expects registers 2 through 5 to be
saved by function calls. However, the C compiler uses conventions
compatible with BSD Unix: registers 2 through 5 may be clobbered
by function calls.
GNU CC uses the same convention as the Ultrix C compiler. You
can use these options to produce code compatible with the Fortran
compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5

� On the WE32k, you may find that programs compiled with GNU CC
do not work with the standard shared C library. You may need to
link with the ordinary C compiler. If you do so, you must specify the
following options:

-L/usr/local/lib/gcc-lib/we32k-att-sysv/2.7.1 -lgcc -lc_s

The first specifies where to find the library ‘libgcc.a’ specified with
the ‘-lgcc’ option.
GNU CC does linking by invoking ld, just as cc does, and there is
no reason why it should matter which compilation program you use
to invoke ld. If someone tracks this problem down, it can probably
be fixed easily.

� On the Alpha, you may get assembler errors about invalid syntax
as a result of floating point constants. This is due to a bug in the
C library functions ecvt, fcvt and gcvt. Given valid floating point
numbers, they sometimes print ‘NaN’.

� On Irix 4.0.5F (and perhaps in some other versions), an assembler
bug sometimes reorders instructions incorrectly when optimization
is turned on. If you think this may be happening to you, try using
the GNU assembler; GAS version 2.1 supports ECOFF on Irix.
Or use the ‘-noasmopt’ option when you compile GNU CC with it-
self, and then again when you compile your program. (This is a
temporary kludge to turn off assembler optimization on Irix.) If
this proves to be what you need, edit the assembler spec in the file
‘specs’ so that it unconditionally passes ‘-O0’ to the assembler, and
never passes ‘-O2’ or ‘-O3’.

222 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

9.5 Problems Compiling Certain Programs

Certain programs have problems compiling.
� Parse errors may occur compiling X11 on a Decstation running Ul-

trix 4.2 because of problems in DEC’s versions of the X11 header
files ‘X11/Xlib.h’ and ‘X11/Xutil.h’. People recommend adding
‘-I/usr/include/mit’ to use the MIT versions of the header files,
using the ‘-traditional’ switch to turn off ANSI C, or fixing the
header files by adding this:

#ifdef __STDC__
#define NeedFunctionPrototypes 0
#endif

� If you have trouble compiling Perl on a SunOS 4 system, it may
be because Perl specifies ‘-I/usr/ucbinclude’. This accesses the
unfixed header files. Perl specifies the options

-traditional -Dvolatile=__volatile__
-I/usr/include/sun -I/usr/ucbinclude
-fpcc-struct-return

most of which are unnecessary with GCC 2.4.5 and newer ver-
sions. You can make a properly working Perl by setting ccflags
to ‘-fwritable-strings’ (implied by the ‘-traditional’ in the orig-
inal options) and cppflags to empty in ‘config.sh’, then typing
‘./doSH; make depend; make’.

� On various 386 Unix systems derived from System V, including SCO,
ISC, and ESIX, you may get error messages about running out of
virtual memory while compiling certain programs.
You can prevent this problem by linking GNU CC with the GNU
malloc (which thus replaces the malloc that comes with the system).
GNU malloc is available as a separate package, and also in the file
‘src/gmalloc.c’ in the GNU Emacs 19 distribution.
If you have installed GNU malloc as a separate library package, use
this option when you relink GNU CC:

MALLOC=/usr/local/lib/libgmalloc.a

Alternatively, if you have compiled ‘gmalloc.c’ from Emacs 19, copy
the object file to ‘gmalloc.o’ and use this option when you relink
GNU CC:

MALLOC=gmalloc.o

9.6 Incompatibilities of GNU CC

There are several noteworthy incompatibilities between GNU C and
most existing (non-ANSI) versions of C. The ‘-traditional’ option elim-
inates many of these incompatibilities, but not all, by telling GNU C to
behave like the other C compilers.

c y g n u s s u p p o r t 223

Using GNU CC

� GNU CC normally makes string constants read-only. If several
identical-looking string constants are used, GNU CC stores only
one copy of the string.
One consequence is that you cannot call mktemp with a string con-
stant argument. The function mktemp always alters the string its
argument points to.
Another consequence is that sscanf does not work on some systems
when passed a string constant as its format control string or in-
put. This is because sscanf incorrectly tries to write into the string
constant. Likewise fscanf and scanf.
The best solution to these problems is to change the program to use
char-array variables with initialization strings for these purposes
instead of string constants. But if this is not possible, you can use
the ‘-fwritable-strings’ flag, which directs GNU CC to handle
string constants the same way most C compilers do. ‘-traditional’
also has this effect, among others.

� -2147483648 is positive.
This is because 2147483648 cannot fit in the type int, so (following
the ANSI C rules) its data type is unsigned long int. Negating this
value yields 2147483648 again.

� GNU CC does not substitute macro arguments when they appear
inside of string constants. For example, the following macro in GNU
CC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.
The ‘-traditional’ option directs GNU CC to handle such cases
(among others) in the old-fashioned (non-ANSI) fashion.

� When you use setjmp and longjmp, the only automatic variables
guaranteed to remain valid are those declared volatile. This is a
consequence of automatic register allocation. Consider this function:

jmp_buf j;

foo ()
{

int a, b;

a = fun1 ();
if (setjmp (j))

return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

}

224 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

Here amay or may not be restored to its first value when the longjmp
occurs. If a is allocated in a register, then its first value is restored;
otherwise, it keeps the last value stored in it.
If you use the ‘-W’ option with the ‘-O’ option, you will get a warning
when GNU CC thinks such a problem might be possible.
The ‘-traditional’ option directs GNU C to put variables in the
stack by default, rather than in registers, in functions that call
setjmp. This results in the behavior found in traditional C compil-
ers.

� Programs that use preprocessing directives in the middle of macro
arguments do not work with GNU CC. For example, a program like
this will not work:

foobar (
#define luser

hack)

ANSI C does not permit such a construct. It would make sense to
support it when ‘-traditional’ is used, but it is too much work to
implement.

� Declarations of external variables and functions within a block apply
only to the block containing the declaration. In other words, they
have the same scope as any other declaration in the same place.
In some other C compilers, a extern declaration affects all the rest
of the file even if it happens within a block.
The ‘-traditional’ option directs GNU C to treat all extern decla-
rations as global, like traditional compilers.

� In traditional C, you can combine long, etc., with a typedef name,
as shown here:

typedef int foo;
typedef long foo bar;

In ANSI C, this is not allowed: long and other type modifiers re-
quire an explicit int. Because this criterion is expressed by Bison
grammar rules rather than C code, the ‘-traditional’ flag cannot
alter it.

� PCC allows typedef names to be used as function parameters. The
difficulty described immediately above applies here too.

� PCC allows whitespace in the middle of compound assignment op-
erators such as ‘+=’. GNU CC, following the ANSI standard, does
not allow this. The difficulty described immediately above applies
here too.

� GNU CC complains about unterminated character constants inside
of preprocessing conditionals that fail. Some programs have English
comments enclosed in conditionals that are guaranteed to fail; if

c y g n u s s u p p o r t 225

Using GNU CC

these comments contain apostrophes, GNU CC will probably report
an error. For example, this code would produce an error:

#if 0
You can’t expect this to work.
#endif

The best solution to such a problem is to put the text into an ac-
tual C comment delimited by ‘/*.. .*/’. However, ‘-traditional’
suppresses these error messages.

� Many user programs contain the declaration ‘long time ();’. In
the past, the system header files on many systems did not actually
declare time, so it did not matter what type your program declared
it to return. But in systems with ANSI C headers, time is declared
to return time_t, and if that is not the same as long, then ‘long
time ();’ is erroneous.
The solution is to change your program to use time_t as the return
type of time.

� When compiling functions that return float, PCC converts it to a
double. GNU CC actually returns a float. If you are concerned
with PCC compatibility, you should declare your functions to return
double; you might as well say what you mean.

� When compiling functions that return structures or unions, GNU
CC output code normally uses a method different from that used on
most versions of Unix. As a result, code compiled with GNU CC
cannot call a structure-returning function compiled with PCC, and
vice versa.
The method used by GNU CC is as follows: a structure or union
which is 1, 2, 4 or 8 bytes long is returned like a scalar. A structure
or union with any other size is stored into an address supplied by
the caller (usually in a special, fixed register, but on some machines
it is passed on the stack). The machine-description macros STRUCT_
VALUE and STRUCT_INCOMING_VALUE tell GNU CC where to pass this
address.
By contrast, PCC on most target machines returns structures and
unions of any size by copying the data into an area of static storage,
and then returning the address of that storage as if it were a pointer
value. The caller must copy the data from that memory area to the
place where the value is wanted. GNU CC does not use this method
because it is slower and nonreentrant.
On some newer machines, PCC uses a reentrant convention for all
structure and union returning. GNU CC on most of these machines
uses a compatible convention when returning structures and unions
in memory, but still returns small structures and unions in registers.

226 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

You can tell GNU CC to use a compatible convention for all structure
and union returning with the option ‘-fpcc-struct-return’.

� GNU C complains about program fragments such as ‘0x74ae-0x4000’
which appear to be two hexadecimal constants separated by the mi-
nus operator. Actually, this string is a single preprocessing token.
Each such token must correspond to one token in C. Since this
does not, GNU C prints an error message. Although it may appear
obvious that what is meant is an operator and two values, the ANSI
C standard specifically requires that this be treated as erroneous.
A preprocessing token is a preprocessing number if it begins with a
digit and is followed by letters, underscores, digits, periods and ‘e+’,
‘e-’, ‘E+’, or ‘E-’ character sequences.
To make the above program fragment valid, place whitespace in
front of the minus sign. This whitespace will end the preprocessing
number.

9.7 Fixed Header Files

GNU CC needs to install corrected versions of some system header
files. This is because most target systems have some header files that
won’t work with GNU CC unless they are changed. Some have bugs,
some are incompatible with ANSI C, and some depend on special features
of other compilers.

Installing GNU CC automatically creates and installs the fixed
header files, by running a program called fixincludes (or for certain
targets an alternative such as fixinc.svr4). Normally, you don’t need
to pay attention to this. But there are cases where it doesn’t do the right
thing automatically.
� If you update the system’s header files, such as by installing a new

system version, the fixed header files of GNU CC are not automati-
cally updated. The easiest way to update them is to reinstall GNU
CC. (If you want to be clever, look in the makefile and you can find
a shortcut.)

� On some systems, in particular SunOS 4, header file directories con-
tain machine-specific symbolic links in certain places. This makes
it possible to share most of the header files among hosts running the
same version of SunOS 4 on different machine models.
The programs that fix the header files do not understand this special
way of using symbolic links; therefore, the directory of fixed header
files is good only for the machine model used to build it.
In SunOS 4, only programs that look inside the kernel will notice the
difference between machine models. Therefore, for most purposes,
you need not be concerned about this.

c y g n u s s u p p o r t 227

Using GNU CC

It is possible to make separate sets of fixed header files for the
different machine models, and arrange a structure of symbolic links
so as to use the proper set, but you’ll have to do this by hand.

� On Lynxos, GNU CC by default does not fix the header files. This is
because bugs in the shell cause the fixincludes script to fail.
This means you will encounter problems due to bugs in the system
header files. It may be no comfort that they aren’t GNU CC’s fault,
but it does mean that there’s nothing for us to do about them.

9.8 Standard Libraries

GNU CC by itself attempts to be what the ISO/ANSI C standard
calls a conforming freestanding implementation. This means all ANSI
C language features are available, as well as the contents of ‘float.h’,
‘limits.h’, ‘stdarg.h’, and ‘stddef.h’. The rest of the C library is sup-
plied by the vendor of the operating system. If that C library doesn’t
conform to the C standards, then your programs might get warnings
(especially when using ‘-Wall’) that you don’t expect.

For example, the sprintf function on SunOS 4.1.3 returns char
* while the C standard says that sprintf returns an int. The
fixincludes program could make the prototype for this function match
the Standard, but that would be wrong, since the function will still re-
turn char *.

If you need a Standard compliant library, then you need to find one,
as GNU CC does not provide one. The GNU C library (called glibc) has
been ported to a number of operating systems, and provides ANSI/ISO,
POSIX, BSD and SystemV compatibility. You could also ask your oper-
ating system vendor if newer libraries are available.

9.9 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any prac-
tical way around them.
� Certain local variables aren’t recognized by debuggers when you

compile with optimization.
This occurs because sometimes GNU CC optimizes the variable out
of existence. There is no way to tell the debugger how to compute
the value such a variable “would have had”, and it is not clear that
would be desirable anyway. So GNU CC simply does not mention
the eliminated variable when it writes debugging information.
You have to expect a certain amount of disagreement between the
executable and your source code, when you use optimization.

228 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

� Users often think it is a bug when GNU CC reports an error for code
like this:

int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)
{ ... }

This code really is erroneous, because the scope of struct mumble in
the prototype is limited to the argument list containing it. It does
not refer to the struct mumble defined with file scope immediately
below—they are two unrelated types with similar names in different
scopes.
But in the definition of foo, the file-scope type is used because that
is available to be inherited. Thus, the definition and the prototype
do not match, and you get an error.
This behavior may seem silly, but it’s what the ANSI standard speci-
fies. It is easy enough for you to make your code work by moving the
definition of struct mumble above the prototype. It’s not worth be-
ing incompatible with ANSI C just to avoid an error for the example
shown above.

� Accesses to bitfields even in volatile objects works by accessing
larger objects, such as a byte or a word. You cannot rely on what
size of object is accessed in order to read or write the bitfield; it may
even vary for a given bitfield according to the precise usage.
If you care about controlling the amount of memory that is accessed,
use volatile but do not use bitfields.

� GNU CC comes with shell scripts to fix certain known problems in
system header files. They install corrected copies of various header
files in a special directory where only GNU CC will normally look
for them. The scripts adapt to various systems by searching all the
system header files for the problem cases that we know about.
If new system header files are installed, nothing automatically ar-
ranges to update the corrected header files. You will have to reinstall
GNU CC to fix the new header files. More specifically, go to the build
directory and delete the files ‘stmp-fixinc’ and ‘stmp-headers’, and
the subdirectory include; then do ‘make install’ again.

� On 68000 systems, you can get paradoxical results if you test the
precise values of floating point numbers. For example, you can find
that a floating point value which is not a NaN is not equal to itself.
This results from the fact that the the floating point registers hold a
few more bits of precision than fit in a double in memory. Compiled
code moves values between memory and floating point registers at
its convenience, and moving them into memory truncates them.

c y g n u s s u p p o r t 229

Using GNU CC

You can partially avoid this problem by using the ‘-ffloat-store’
option (see Section 4.8 “Optimize Options,” page 53).

� On the MIPS, variable argument functions using ‘varargs.h’ cannot
have a floating point value for the first argument. The reason for this
is that in the absence of a prototype in scope, if the first argument is
a floating point, it is passed in a floating point register, rather than
an integer register.

If the code is rewritten to use the ANSI standard ‘stdarg.h’ method
of variable arguments, and the prototype is in scope at the time of
the call, everything will work fine.

9.10 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard
definition (the ANSI C++ draft standard) is also evolving. As a result,
your C++ compiler may occasionally surprise you, even when its behavior
is correct. This section discusses some areas that frequently give rise to
questions of this sort.

9.10.1 Declare and Define Static Members

When a class has static data members, it is not enough to declare the
static member; you must also define it. For example:

class Foo
{

...
void method();
static int bar;

};

This declaration only establishes that the class Foo has an int named
Foo::bar, and a member function named Foo::method. But you still
need to define both method and bar elsewhere. According to the draft
ANSI standard, you must supply an initializer in one (and only one)
source file, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard be-
havior. As a result, when you switch to g++ from one of these compilers,
you may discover that a program that appeared to work correctly in fact
does not conform to the standard: g++ reports as undefined symbols any
static data members that lack definitions.

230 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

9.10.2 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary
object. The compiler may very well delete the object before you expect
it to, leaving a pointer to garbage. The most common place where this
problem crops up is in classes like the libg++ String class, that define a
conversion function to type char * or const char *. However, any class
that returns a pointer to some internal structure is potentially subject
to this problem.

For example, a program may use a function strfunc that returns
String objects, and another function charfunc that operates on pointers
to char:

String strfunc ();
void charfunc (const char *);

In this situation, it may seem natural to write ‘charfunc (strfunc ());’
based on the knowledge that class String has an explicit conversion
to char pointers. However, what really happens is akin to ‘charfunc
(strfunc ().convert ());’, where the convert method is a function to
do the same data conversion normally performed by a cast. Since the last
use of the temporary String object is the call to the conversion function,
the compiler may delete that object before actually calling charfunc.
The compiler has no way of knowing that deleting the String object will
invalidate the pointer. The pointer then points to garbage, so that by
the time charfunc is called, it gets an invalid argument.

Code like this may run successfully under some other compilers, es-
pecially those that delete temporaries relatively late. However, the GNU
C++ behavior is also standard-conforming, so if your program depends
on late destruction of temporaries it is not portable.

If you think this is surprising, you should be aware that the ANSI
C++ committee continues to debate the lifetime-of-temporaries problem.

For now, at least, the safe way to write such code is to give the
temporary a name, which forces it to remain until the end of the scope
of the name. For example:

String& tmp = strfunc ();
charfunc (tmp);

9.11 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes
change a source file in a way that won’t work unless you rearrange it.
� protoize can insert references to a type name or type tag before the

definition, or in a file where they are not defined.

c y g n u s s u p p o r t 231

Using GNU CC

If this happens, compiler error messages should show you where the
new references are, so fixing the file by hand is straightforward.

� There are some C constructs which protoize cannot figure out. For
example, it can’t determine argument types for declaring a pointer-
to-function variable; this you must do by hand. protoize inserts
a comment containing ‘???’ each time it finds such a variable; so
you can find all such variables by searching for this string. ANSI C
does not require declaring the argument types of pointer-to-function
types.

� Using unprotoize can easily introduce bugs. If the program relied
on prototypes to bring about conversion of arguments, these conver-
sions will not take place in the program without prototypes. One
case in which you can be sure unprotoize is safe is when you are
removing prototypes that were made with protoize; if the program
worked before without any prototypes, it will work again without
them.
You can find all the places where this problem might occur by compil-
ing the program with the ‘-Wconversion’ option. It prints a warning
whenever an argument is converted.

� Both conversion programs can be confused if there are macro calls
in and around the text to be converted. In other words, the standard
syntax for a declaration or definition must not result from expanding
a macro. This problem is inherent in the design of C and cannot be
fixed. If only a few functions have confusing macro calls, you can
easily convert them manually.

� protoize cannot get the argument types for a function whose defi-
nition was not actually compiled due to preprocessing conditionals.
When this happens, protoize changes nothing in regard to such a
function. protoize tries to detect such instances and warn about
them.
You can generally work around this problem by using protoize
step by step, each time specifying a different set of ‘-D’ options for
compilation, until all of the functions have been converted. There is
no automatic way to verify that you have got them all, however.

� Confusion may result if there is an occasion to convert a function
declaration or definition in a region of source code where there is
more than one formal parameter list present. Thus, attempts to
convert code containing multiple (conditionally compiled) versions
of a single function header (in the same vicinity) may not produce
the desired (or expected) results.
If you plan on converting source files which contain such code, it is
recommended that you first make sure that each conditionally com-
piled region of source code which contains an alternative function

232 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

header also contains at least one additional follower token (past the
final right parenthesis of the function header). This should circum-
vent the problem.

� unprotoize can become confused when trying to convert a func-
tion definition or declaration which contains a declaration for a
pointer-to-function formal argument which has the same name as
the function being defined or declared. We recommand you avoid
such choices of formal parameter names.

� You might also want to correct some of the indentation by hand and
break long lines. (The conversion programs don’t write lines longer
than eighty characters in any case.)

9.12 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which
we do not make because we think GNU CC is better without them.
� Checking the number and type of arguments to a function which

has an old-fashioned definition and no prototype.
Such a feature would work only occasionally—only for calls that ap-
pear in the same file as the called function, following the definition.
The only way to check all calls reliably is to add a prototype for the
function. But adding a prototype eliminates the motivation for this
feature. So the feature is not worthwhile.

� Warning about using an expression whose type is signed as a shift
count.
Shift count operands are probably signed more often than unsigned.
Warning about this would cause far more annoyance than good.

� Warning about assigning a signed value to an unsigned variable.
Such assignments must be very common; warning about them would
cause more annoyance than good.

� Warning about unreachable code.
It’s very common to have unreachable code in machine-generated
programs. For example, this happens normally in some files of
GNU C itself.

� Warning when a non-void function value is ignored.
Coming as I do from a Lisp background, I balk at the idea that
there is something dangerous about discarding a value. There are
functions that return values which some callers may find useful; it
makes no sense to clutter the program with a cast to void whenever
the value isn’t useful.

c y g n u s s u p p o r t 233

Using GNU CC

� Assuming (for optimization) that the address of an external symbol
is never zero.
This assumption is false on certain systems when ‘#pragma weak’ is
used.

� Making ‘-fshort-enums’ the default.
This would cause storage layout to be incompatible with most other
C compilers. And it doesn’t seem very important, given that you can
get the same result in other ways. The case where it matters most
is when the enumeration-valued object is inside a structure, and in
that case you can specify a field width explicitly.

� Making bitfields unsigned by default on particular machines where
“the ABI standard” says to do so.
The ANSI C standard leaves it up to the implementation whether
a bitfield declared plain int is signed or not. This in effect creates
two alternative dialects of C.
The GNU C compiler supports both dialects; you can specify the
signed dialect with ‘-fsigned-bitfields’ and the unsigned dialect
with ‘-funsigned-bitfields’. However, this leaves open the ques-
tion of which dialect to use by default.
Currently, the preferred dialect makes plain bitfields signed, be-
cause this is simplest. Since int is the same as signed int in every
other context, it is cleanest for them to be the same in bitfields as
well.
Some computer manufacturers have published Application Binary
Interface standards which specify that plain bitfields should be un-
signed. It is a mistake, however, to say anything about this issue in
an ABI. This is because the handling of plain bitfields distinguishes
two dialects of C. Both dialects are meaningful on every type of ma-
chine. Whether a particular object file was compiled using signed
bitfields or unsigned is of no concern to other object files, even if they
access the same bitfields in the same data structures.
A given program is written in one or the other of these two dialects.
The program stands a chance to work on most any machine if it
is compiled with the proper dialect. It is unlikely to work at all if
compiled with the wrong dialect.
Many users appreciate the GNU C compiler because it provides an
environment that is uniform across machines. These users would
be inconvenienced if the compiler treated plain bitfields differently
on certain machines.
Occasionally users write programs intended only for a particular
machine type. On these occasions, the users would benefit if the
GNU C compiler were to support by default the same dialect as

234 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

the other compilers on that machine. But such applications are
rare. And users writing a program to run on more than one type of
machine cannot possibly benefit from this kind of compatibility.
This is why GNU CC does and will treat plain bitfields in the same
fashion on all types of machines (by default).
There are some arguments for making bitfields unsigned by default
on all machines. If, for example, this becomes a universal de facto
standard, it would make sense for GNU CC to go along with it. This
is something to be considered in the future.
(Of course, users strongly concerned about portability should indi-
cate explicitly in each bitfield whether it is signed or not. In this
way, they write programs which have the same meaning in both C
dialects.)

� Undefining __STDC__ when ‘-ansi’ is not used.
Currently, GNU CC defines __STDC__ as long as you don’t use
‘-traditional’. This provides good results in practice.
Programmers normally use conditionals on __STDC__ to ask whether
it is safe to use certain features of ANSI C, such as function proto-
types or ANSI token concatenation. Since plain ‘gcc’ supports all
the features of ANSI C, the correct answer to these questions is
“yes”.
Some users try to use __STDC__ to check for the availability of cer-
tain library facilities. This is actually incorrect usage in an ANSI
C program, because the ANSI C standard says that a conforming
freestanding implementation should define __STDC__ even though it
does not have the library facilities. ‘gcc -ansi -pedantic’ is a con-
forming freestanding implementation, and it is therefore required
to define __STDC__, even though it does not come with an ANSI C
library.
Sometimes people say that defining __STDC__ in a compiler that does
not completely conform to the ANSI C standard somehow violates
the standard. This is illogical. The standard is a standard for
compilers that claim to support ANSI C, such as ‘gcc -ansi’—not for
other compilers such as plain ‘gcc’. Whatever the ANSI C standard
says is relevant to the design of plain ‘gcc’ without ‘-ansi’ only for
pragmatic reasons, not as a requirement.

� Undefining __STDC__ in C++.
Programs written to compile with C++-to-C translators get the value
of __STDC__ that goes with the C compiler that is subsequently used.
These programs must test __STDC__ to determine what kind of C
preprocessor that compiler uses: whether they should concatenate
tokens in the ANSI C fashion or in the traditional fashion.

c y g n u s s u p p o r t 235

Using GNU CC

These programs work properly with GNU C++ if __STDC__ is defined.
They would not work otherwise.
In addition, many header files are written to provide prototypes in
ANSI C but not in traditional C. Many of these header files can work
without change in C++ provided __STDC__ is defined. If __STDC__ is
not defined, they will all fail, and will all need to be changed to test
explicitly for C++ as well.

� Deleting “empty” loops.
GNU CC does not delete “empty” loops because the most likely rea-
son you would put one in a program is to have a delay. Deleting
them will not make real programs run any faster, so it would be
pointless.
It would be different if optimization of a nonempty loop could pro-
duce an empty one. But this generally can’t happen.

� Making side effects happen in the same order as in some other
compiler.
It is never safe to depend on the order of evaluation of side effects.
For example, a function call like this may very well behave differ-
ently from one compiler to another:

void func (int, int);

int i = 2;
func (i++, i++);

There is no guarantee (in either the C or the C++ standard language
definitions) that the increments will be evaluated in any particular
order. Either increment might happen first. func might get the
arguments ‘2, 3’, or it might get ‘3, 2’, or even ‘2, 2’.

� Not allowing structures with volatile fields in registers.
Strictly speaking, there is no prohibition in the ANSI C standard
against allowing structures with volatile fields in registers, but it
does not seem to make any sense and is probably not what you
wanted to do. So the compiler will give an error message in this
case.

9.13 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and
warnings. Each kind has a different purpose:

Errors report problems that make it impossible to compile your pro-
gram. GNU CC reports errors with the source file name and line
number where the problem is apparent.

236 17 January 1996

Chapter 9: Known Causes of Trouble with GNU CC

Warnings report other unusual conditions in your code that may
indicate a problem, although compilation can (and does) proceed.
Warning messages also report the source file name and line num-
ber, but include the text ‘warning:’ to distinguish them from error
messages.

Warnings may indicate danger points where you should check to make
sure that your program really does what you intend; or the use of obsolete
features; or the use of nonstandard features of GNU C or C++. Many
warnings are issued only if you ask for them, with one of the ‘-W’ options
(for instance, ‘-Wall’ requests a variety of useful warnings).

GNU CC always tries to compile your program if possible; it never gra-
tuitously rejects a program whose meaning is clear merely because (for
instance) it fails to conform to a standard. In some cases, however, the C
and C++ standards specify that certain extensions are forbidden, and a
diagnostic must be issued by a conforming compiler. The ‘-pedantic’ op-
tion tells GNU CC to issue warnings in such cases; ‘-pedantic-errors’
says to make them errors instead. This does not mean that all non-ANSI
constructs get warnings or errors.

See Section 4.6 “Options to Request or Suppress Warnings,” page 40,
for more detail on these and related command-line options.

c y g n u s s u p p o r t 237

Using GNU CC

238 17 January 1996

Chapter 10: Reporting Bugs

10 Reporting Bugs

Your bug reports play an essential role in making GNU CC reliable.
When you encounter a problem, the first thing to do is to see if it is

already known. See Chapter 9 “Trouble,” page 211. If it isn’t known,
then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem,
or it may not. (If it does not, look in the service directory; see Chapter 11
“Service,” page 249.) In any case, the principal function of a bug report
is to help the entire community by making the next version of GNU CC
work better. Bug reports are your contribution to the maintenance of
GNU CC.

Since the maintainers are very overloaded, we cannot respond to
every bug report. However, if the bug has not been fixed, we are likely
to send you a patch and ask you to tell us whether it works.

In order for a bug report to serve its purpose, you must include the
information that makes for fixing the bug.

10.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some
guidelines:

� If the compiler gets a fatal signal, for any input whatever, that is a
compiler bug. Reliable compilers never crash.

� If the compiler produces invalid assembly code, for any input what-
ever (except an asm statement), that is a compiler bug, unless the
compiler reports errors (not just warnings) which would ordinarily
prevent the assembler from being run.

� If the compiler produces valid assembly code that does not correctly
execute the input source code, that is a compiler bug.
However, you must double-check to make sure, because you may
have run into an incompatibility between GNU C and traditional
C (see Section 9.6 “Incompatibilities,” page 223). These incompat-
ibilities might be considered bugs, but they are inescapable conse-
quences of valuable features.
Or you may have a program whose behavior is undefined, which
happened by chance to give the desired results with another C or
C++ compiler.
For example, in many nonoptimizing compilers, you can write ‘x;’ at
the end of a function instead of ‘return x;’, with the same results.

c y g n u s s u p p o r t 239

Using GNU CC

But the value of the function is undefined if return is omitted; it is
not a bug when GNU CC produces different results.
Problems often result from expressions with two increment oper-
ators, as in f (*p++, *p++). Your previous compiler might have
interpreted that expression the way you intended; GNU CC might
interpret it another way. Neither compiler is wrong. The bug is in
your code.
After you have localized the error to a single source line, it should
be easy to check for these things. If your program is correct and well
defined, you have found a compiler bug.

� If the compiler produces an error message for valid input, that is a
compiler bug.

� If the compiler does not produce an error message for invalid input,
that is a compiler bug. However, you should note that your idea of
“invalid input” might be my idea of “an extension” or “support for
traditional practice”.

� If you are an experienced user of C or C++ compilers, your sugges-
tions for improvement of GNU CC or GNU C++ are welcome in any
case.

10.2 Where to Report Bugs

Send bug reports for GNU C to ‘bug-gcc@prep.ai.mit.edu’.
Send bug reports for GNU C++ to ‘bug-g++@prep.ai.mit.edu’.

If your bug involves the C++ class library libg++, send mail to
‘bug-lib-g++@prep.ai.mit.edu’. If you’re not sure, you can send the
bug report to both lists.

Do not send bug reports to ‘help-gcc@prep.ai.mit.edu’ or to
the newsgroup ‘gnu.gcc.help’. Most users of GNU CC do not want to
receive bug reports. Those that do, have asked to be on ‘bug-gcc’ and/or
‘bug-g++’.

The mailing lists ‘bug-gcc’ and ‘bug-g++’ both have newsgroups which
serve as repeaters: ‘gnu.gcc.bug’ and ‘gnu.g++.bug’. Each mailing list
and its newsgroup carry exactly the same messages.

Often people think of posting bug reports to the newsgroup instead
of mailing them. This appears to work, but it has one problem which
can be crucial: a newsgroup posting does not contain a mail path back
to the sender. Thus, if maintainers need more information, they may
be unable to reach you. For this reason, you should always send bug
reports by mail to the proper mailing list.

As a last resort, send bug reports on paper to:

240 17 January 1996

Chapter 10: Reporting Bugs

GNU Compiler Bugs
Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

10.3 How to Report Bugs

The fundamental principle of reporting bugs usefully is this: report
all the facts. If you are not sure whether to state a fact or leave it out,
state it!

Often people omit facts because they think they know what causes
the problem and they conclude that some details don’t matter. Thus, you
might assume that the name of the variable you use in an example does
not matter. Well, probably it doesn’t, but one cannot be sure. Perhaps
the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name
were different, the contents of that location would fool the compiler into
doing the right thing despite the bug. Play it safe and give a specific,
complete example. That is the easiest thing for you to do, and the most
helpful.

Keep in mind that the purpose of a bug report is to enable someone
to fix the bug if it is not known. It isn’t very important what happens if
the bug is already known. Therefore, always write your bug reports on
the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, “Does this ring a
bell?” This cannot help us fix a bug, so it is basically useless. We respond
by asking for enough details to enable us to investigate. You might as
well expedite matters by sending them to begin with.

Try to make your bug report self-contained. If we have to ask you for
more information, it is best if you include all the previous information
in your response, as well as the information that was missing.

Please report each bug in a separate message. This makes it easier
for us to track which bugs have been fixed and to forward your bugs
reports to the appropriate maintainer.

Do not compress and encode any part of your bug report using pro-
grams such as ‘uuencode’. If you do so it will slow down the processing
of your bug. If you must submit multiple large files, use ‘shar’, which al-
lows us to read your message without having to run any decompression
programs.

To enable someone to investigate the bug, you should include all these
things:
� The version of GNU CC. You can get this by running it with the ‘-v’

option.

c y g n u s s u p p o r t 241

Using GNU CC

Without this, we won’t know whether there is any point in looking
for the bug in the current version of GNU CC.

� A complete input file that will reproduce the bug. If the bug is
in the C preprocessor, send a source file and any header files that
it requires. If the bug is in the compiler proper (‘cc1’), run your
source file through the C preprocessor by doing ‘gcc -E sourcefile
> outfile’, then include the contents of outfile in the bug report.
(When you do this, use the same ‘-I’, ‘-D’ or ‘-U’ options that you
used in actual compilation.)
A single statement is not enough of an example. In order to compile
it, it must be embedded in a complete file of compiler input; and the
bug might depend on the details of how this is done.
Without a real example one can compile, all anyone can do about
your bug report is wish you luck. It would be futile to try to guess
how to provoke the bug. For example, bugs in register allocation and
reloading frequently depend on every little detail of the function they
happen in.
Even if the input file that fails comes from a GNU program, you
should still send the complete test case. Don’t ask the GNU CC
maintainers to do the extra work of obtaining the program in
question—they are all overworked as it is. Also, the problem may
depend on what is in the header files on your system; it is unreliable
for the GNU CC maintainers to try the problem with the header
files available to them. By sending CPP output, you can eliminate
this source of uncertainty and save us a certain percentage of wild
goose chases.

� The command arguments you gave GNU CC or GNU C++ to compile
that example and observe the bug. For example, did you use ‘-O’? To
guarantee you won’t omit something important, list all the options.
If we were to try to guess the arguments, we would probably guess
wrong and then we would not encounter the bug.

� The type of machine you are using, and the operating system name
and version number.

� The operands you gave to the configure command when you in-
stalled the compiler.

� A complete list of any modifications you have made to the compiler
source. (We don’t promise to investigate the bug unless it happens
in an unmodified compiler. But if you’ve made modifications and
don’t tell us, then you are sending us on a wild goose chase.)
Be precise about these changes. A description in English is not
enough—send a context diff for them.
Adding files of your own (such as a machine description for a ma-
chine we don’t support) is a modification of the compiler source.

242 17 January 1996

Chapter 10: Reporting Bugs

� Details of any other deviations from the standard procedure for
installing GNU CC.

� A description of what behavior you observe that you believe is in-
correct. For example, “The compiler gets a fatal signal,” or, “The
assembler instruction at line 208 in the output is incorrect.”
Of course, if the bug is that the compiler gets a fatal signal, then
one can’t miss it. But if the bug is incorrect output, the maintainer
might not notice unless it is glaringly wrong. None of us has time
to study all the assembler code from a 50-line C program just on the
chance that one instruction might be wrong. We need you to do this
part!
Even if the problem you experience is a fatal signal, you should still
say so explicitly. Suppose something strange is going on, such as,
your copy of the compiler is out of synch, or you have encountered
a bug in the C library on your system. (This has happened!) Your
copy might crash and the copy here would not. If you said to expect
a crash, then when the compiler here fails to crash, we would know
that the bug was not happening. If you don’t say to expect a crash,
then we would not know whether the bug was happening. We would
not be able to draw any conclusion from our observations.
If the problem is a diagnostic when compiling GNU CC with some
other compiler, say whether it is a warning or an error.
Often the observed symptom is incorrect output when your program
is run. Sad to say, this is not enough information unless the program
is short and simple. None of us has time to study a large program to
figure out how it would work if compiled correctly, much less which
line of it was compiled wrong. So you will have to do that. Tell us
which source line it is, and what incorrect result happens when that
line is executed. A person who understands the program can find
this as easily as finding a bug in the program itself.

� If you send examples of assembler code output from GNU CC or
GNU C++, please use ‘-g’ when you make them. The debugging
information includes source line numbers which are essential for
correlating the output with the input.

� If you wish to mention something in the GNU CC source, refer to it
by context, not by line number.
The line numbers in the development sources don’t match those in
your sources. Your line numbers would convey no useful information
to the maintainers.

� Additional information from a debugger might enable someone to
find a problem on a machine which he does not have available.
However, you need to think when you collect this information if you
want it to have any chance of being useful.

c y g n u s s u p p o r t 243

Using GNU CC

For example, many people send just a backtrace, but that is never
useful by itself. A simple backtrace with arguments conveys little
about GNU CC because the compiler is largely data-driven; the
same functions are called over and over for different RTL insns,
doing different things depending on the details of the insn.
Most of the arguments listed in the backtrace are useless because
they are pointers to RTL list structure. The numeric values of
the pointers, which the debugger prints in the backtrace, have no
significance whatever; all that matters is the contents of the objects
they point to (and most of the contents are other such pointers).
In addition, most compiler passes consist of one or more loops that
scan the RTL insn sequence. The most vital piece of information
about such a loop—which insn it has reached—is usually in a local
variable, not in an argument.
What you need to provide in addition to a backtrace are the values
of the local variables for several stack frames up. When a local
variable or an argument is an RTX, first print its value and then
use the GDB command pr to print the RTL expression that it points
to. (If GDB doesn’t run on your machine, use your debugger to call
the function debug_rtx with the RTX as an argument.) In general,
whenever a variable is a pointer, its value is no use without the data
it points to.

Here are some things that are not necessary:
� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.
This is often time consuming and not very useful, because the way
we will find the bug is by running a single example under the de-
bugger with breakpoints, not by pure deduction from a series of
examples. You might as well save your time for something else.
Of course, if you can find a simpler example to report instead of the
original one, that is a convenience. Errors in the output will be easier
to spot, running under the debugger will take less time, etc. Most
GNU CC bugs involve just one function, so the most straightforward
way to simplify an example is to delete all the function definitions
except the one where the bug occurs. Those earlier in the file may
be replaced by external declarations if the crucial function depends
on them. (Exception: inline functions may affect compilation of
functions defined later in the file.)
However, simplification is not vital; if you don’t want to do this,
report the bug anyway and send the entire test case you used.

244 17 January 1996

Chapter 10: Reporting Bugs

� In particular, some people insert conditionals ‘#ifdef BUG’ around a
statement which, if removed, makes the bug not happen. These are
just clutter; we won’t pay any attention to them anyway. Besides,
you should send us cpp output, and that can’t have conditionals.

� A patch for the bug.
A patch for the bug is useful if it is a good one. But don’t omit the
necessary information, such as the test case, on the assumption that
a patch is all we need. We might see problems with your patch and
decide to fix the problem another way, or we might not understand
it at all.
Sometimes with a program as complicated as GNU CC it is very
hard to construct an example that will make the program follow a
certain path through the code. If you don’t send the example, we
won’t be able to construct one, so we won’t be able to verify that the
bug is fixed.
And if we can’t understand what bug you are trying to fix, or why
your patch should be an improvement, we won’t install it. A test
case will help us to understand.
See Section 10.4 “Sending Patches,” page 245, for guidelines on how
to make it easy for us to understand and install your patches.

� A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even I can’t guess right about such
things without first using the debugger to find the facts.

� A core dump file.
We have no way of examining a core dump for your type of machine
unless we have an identical system—and if we do have one, we
should be able to reproduce the crash ourselves.

10.4 Sending Patches for GNU CC

If you would like to write bug fixes or improvements for the GNU C
compiler, that is very helpful. Send suggested fixes to the bug report
mailing list, bug-gcc@prep.ai.mit.edu.

Please follow these guidelines so we can study your patches efficiently.
If you don’t follow these guidelines, your information might still be use-
ful, but using it will take extra work. Maintaining GNU C is a lot of
work in the best of circumstances, and we can’t keep up unless you do
your best to help.
� Send an explanation with your changes of what problem they fix or

what improvement they bring about. For a bug fix, just include a
copy of the bug report, and explain why the change fixes the bug.

c y g n u s s u p p o r t 245

Using GNU CC

(Referring to a bug report is not as good as including it, because then
we will have to look it up, and we have probably already deleted it
if we’ve already fixed the bug.)

� Always include a proper bug report for the problem you think you
have fixed. We need to convince ourselves that the change is right
before installing it. Even if it is right, we might have trouble judging
it if we don’t have a way to reproduce the problem.

� Include all the comments that are appropriate to help people reading
the source in the future understand why this change was needed.

� Don’t mix together changes made for different reasons. Send them
individually.
If you make two changes for separate reasons, then we might not
want to install them both. We might want to install just one. If
you send them all jumbled together in a single set of diffs, we have
to do extra work to disentangle them—to figure out which parts of
the change serve which purpose. If we don’t have time for this, we
might have to ignore your changes entirely.
If you send each change as soon as you have written it, with its own
explanation, then the two changes never get tangled up, and we can
consider each one properly without any extra work to disentangle
them.
Ideally, each change you send should be impossible to subdivide into
parts that we might want to consider separately, because each of its
parts gets its motivation from the other parts.

� Send each change as soon as that change is finished. Sometimes
people think they are helping us by accumulating many changes to
send them all together. As explained above, this is absolutely the
worst thing you could do.
Since you should send each change separately, you might as well
send it right away. That gives us the option of installing it immedi-
ately if it is important.

� Use ‘diff -c’ to make your diffs. Diffs without context are hard for
us to install reliably. More than that, they make it hard for us to
study the diffs to decide whether we want to install them. Unidiff
format is better than contextless diffs, but not as easy to read as ‘-c’
format.
If you have GNU diff, use ‘diff -cp’, which shows the name of the
function that each change occurs in.

� Write the change log entries for your changes. We get lots of changes,
and we don’t have time to do all the change log writing ourselves.
Read the ‘ChangeLog’ file to see what sorts of information to put in,
and to learn the style that we use. The purpose of the change log

246 17 January 1996

Chapter 10: Reporting Bugs

is to show people where to find what was changed. So you need to
be specific about what functions you changed; in large functions, it’s
often helpful to indicate where within the function the change was.
On the other hand, once you have shown people where to find the
change, you need not explain its purpose. Thus, if you add a new
function, all you need to say about it is that it is new. If you feel that
the purpose needs explaining, it probably does—but the explanation
will be much more useful if you put it in comments in the code.
If you would like your name to appear in the header line for who
made the change, send us the header line.

� When you write the fix, keep in mind that we can’t install a change
that would break other systems.
People often suggest fixing a problem by changing machine-
independent files such as ‘toplev.c’ to do something special that
a particular system needs. Sometimes it is totally obvious that such
changes would break GNU CC for almost all users. We can’t possi-
bly make a change like that. At best it might tell us how to write
another patch that would solve the problem acceptably.
Sometimes people send fixes that might be an improvement in
general—but it is hard to be sure of this. It’s hard to install such
changes because we have to study them very carefully. Of course,
a good explanation of the reasoning by which you concluded the
change was correct can help convince us.
The safest changes are changes to the configuration files for a par-
ticular machine. These are safe because they can’t create new bugs
on other machines.
Please help us keep up with the workload by designing the patch in
a form that is good to install.

c y g n u s s u p p o r t 247

Using GNU CC

248 17 January 1996

Chapter 11: How To Get Help with GNU CC

11 How To Get Help with GNU CC

If you need help installing, using or changing GNU CC, there are two
ways to find it:
� Send a message to a suitable network mailing list. First try bug-

gcc@prep.ai.mit.edu, and if that brings no response, try help-
gcc@prep.ai.mit.edu.

� Look in the service directory for someone who might help you for a
fee. The service directory is found in the file named ‘SERVICE’ in the
GNU CC distribution.

c y g n u s s u p p o r t 249

Using GNU CC

250 17 January 1996

Chapter 12: Using GNU CC on VMS

12 Using GNU CC on VMS

Here is how to use GNU CC on VMS.

12.1 Include Files and VMS

Due to the differences between the filesystems of Unix and VMS,
GNU CC attempts to translate file names in ‘#include’ into names that
VMS will understand. The basic strategy is to prepend a prefix to the
specification of the include file, convert the whole filename to a VMS
filename, and then try to open the file. GNU CC tries various prefixes
one by one until one of them succeeds:
1. The first prefix is the ‘GNU_CC_INCLUDE:’ logical name: this is where

GNU C header files are traditionally stored. If you wish to store
header files in non-standard locations, then you can assign the logi-
cal ‘GNU_CC_INCLUDE’ to be a search list, where each element of the
list is suitable for use with a rooted logical.

2. The next prefix tried is ‘SYS$SYSROOT:[SYSLIB.]’. This is where
VAX-C header files are traditionally stored.

3. If the include file specification by itself is a valid VMS filename, the
preprocessor then uses this name with no prefix in an attempt to
open the include file.

4. If the file specification is not a valid VMS filename (i.e. does not
contain a device or a directory specifier, and contains a ‘/’ character),
the preprocessor tries to convert it from Unix syntax to VMS syntax.
Conversion works like this: the first directory name becomes a de-
vice, and the rest of the directories are converted into VMS-format
directory names. For example, the name ‘X11/foobar.h’ is trans-
lated to ‘X11:[000000]foobar.h’ or ‘X11:foobar.h’, whichever one
can be opened. This strategy allows you to assign a logical name to
point to the actual location of the header files.

5. If none of these strategies succeeds, the ‘#include’ fails.

Include directives of the form:
#include foobar

are a common source of incompatibility between VAX-C and GNU CC.
VAX-C treats this much like a standard #include <foobar.h> directive.
That is incompatible with the ANSI C behavior implemented by GNU
CC: to expand the name foobar as a macro. Macro expansion should
eventually yield one of the two standard formats for #include:

#include "file"
#include <file>

c y g n u s s u p p o r t 251

Using GNU CC

If you have this problem, the best solution is to modify the source to
convert the #include directives to one of the two standard forms. That
will work with either compiler. If you want a quick and dirty fix, define
the file names as macros with the proper expansion, like this:

#define stdio <stdio.h>

This will work, as long as the name doesn’t conflict with anything else
in the program.

Another source of incompatibility is that VAX-C assumes that:
#include "foobar"

is actually asking for the file ‘foobar.h’. GNU CC does not make this
assumption, and instead takes what you ask for literally; it tries to read
the file ‘foobar’. The best way to avoid this problem is to always specify
the desired file extension in your include directives.

GNU CC for VMS is distributed with a set of include files that is suffi-
cient to compile most general purpose programs. Even though the GNU
CC distribution does not contain header files to define constants and
structures for some VMS system-specific functions, there is no reason
why you cannot use GNU CC with any of these functions. You first may
have to generate or create header files, either by using the public domain
utility UNSDL (which can be found on a DECUS tape), or by extracting
the relevant modules from one of the system macro libraries, and using
an editor to construct a C header file.

A #include file name cannot contain a DECNET node name. The
preprocessor reports an I/O error if you attempt to use a node name,
whether explicitly, or implicitly via a logical name.

12.2 Global Declarations and VMS

GNU CC does not provide the globalref, globaldef and
globalvalue keywords of VAX-C. You can get the same effect with
an obscure feature of GAS, the GNU assembler. (This requires GAS
version 1.39 or later.) The following macros allow you to use this feature
in a fairly natural way:

#ifdef __GNUC__
#define GLOBALREF(TYPE,NAME) \

TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)

#define GLOBALDEF(TYPE,NAME,VALUE) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME) \

= VALUE
#define GLOBALVALUEREF(TYPE,NAME) \

const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)

252 17 January 1996

Chapter 12: Using GNU CC on VMS

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME) \

= {VALUE}
#else
#define GLOBALREF(TYPE,NAME) \

globalref TYPE NAME
#define GLOBALDEF(TYPE,NAME,VALUE) \

globaldef TYPE NAME = VALUE
#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \

globalvalue TYPE NAME = VALUE
#define GLOBALVALUEREF(TYPE,NAME) \

globalvalue TYPE NAME
#endif

(The _$$PsectAttributes_GLOBALSYMBOLprefix at the start of the name
is removed by the assembler, after it has modified the attributes of the
symbol). These macros are provided in the VMS binaries distribution in
a header file ‘GNU_HACKS.H’. An example of the usage is:

GLOBALREF (int, ijk);
GLOBALDEF (int, jkl, 0);

The macros GLOBALREF and GLOBALDEF cannot be used straightfor-
wardly for arrays, since there is no way to insert the array dimension
into the declaration at the right place. However, you can declare an
array with these macros if you first define a typedef for the array type,
like this:

typedef int intvector[10];
GLOBALREF (intvector, foo);

Array and structure initializers will also break the macros; you can
define the initializer to be a macro of its own, or you can expand the
GLOBALDEF macro by hand. You may find a case where you wish to use
the GLOBALDEF macro with a large array, but you are not interested in
explicitly initializing each element of the array. In such cases you can
use an initializer like: {0,}, which will initialize the entire array to 0.

A shortcoming of this implementation is that a variable declared with
GLOBALVALUEREF or GLOBALVALUEDEF is always an array. For example,
the declaration:

GLOBALVALUEREF(int, ijk);

declares the variable ijk as an array of type int [1]. This is done
because a globalvalue is actually a constant; its “value” is what the
linker would normally consider an address. That is not how an integer
value works in C, but it is how an array works. So treating the symbol
as an array name gives consistent results—with the exception that the
value seems to have the wrong type. Don’t try to access an element
of the array. It doesn’t have any elements. The array “address” may
not be the address of actual storage.

c y g n u s s u p p o r t 253

Using GNU CC

The fact that the symbol is an array may lead to warnings where the
variable is used. Insert type casts to avoid the warnings. Here is an
example; it takes advantage of the ANSI C feature allowing macros that
expand to use the same name as the macro itself.

GLOBALVALUEREF (int, ss$_normal);
GLOBALVALUEDEF (int, xyzzy,123);
#ifdef __GNUC__
#define ss$_normal ((int) ss$_normal)
#define xyzzy ((int) xyzzy)
#endif

Don’t use globaldef or globalref with a variable whose type is an
enumeration type; this is not implemented. Instead, make the vari-
able an integer, and use a globalvaluedef for each of the enumeration
values. An example of this would be:

#ifdef __GNUC__
GLOBALDEF (int, color, 0);
GLOBALVALUEDEF (int, RED, 0);
GLOBALVALUEDEF (int, BLUE, 1);
GLOBALVALUEDEF (int, GREEN, 3);
#else
enum globaldef color {RED, BLUE, GREEN = 3};
#endif

12.3 Other VMS Issues

GNU CC automatically arranges for main to return 1 by default if you
fail to specify an explicit return value. This will be interpreted by VMS
as a status code indicating a normal successful completion. Version 1 of
GNU CC did not provide this default.

GNU CC on VMS works only with the GNU assembler, GAS. You
need version 1.37 or later of GAS in order to produce value debugging
information for the VMS debugger. Use the ordinary VMS linker with
the object files produced by GAS.

Under previous versions of GNU CC, the generated code would oc-
casionally give strange results when linked to the sharable ‘VAXCRTL’
library. Now this should work.

A caveat for use of const global variables: the constmodifier must be
specified in every external declaration of the variable in all of the source
files that use that variable. Otherwise the linker will issue warnings
about conflicting attributes for the variable. Your program will still
work despite the warnings, but the variable will be placed in writable
storage.

Although the VMS linker does distinguish between upper and lower
case letters in global symbols, most VMS compilers convert all such
symbols into upper case and most run-time library routines also have

254 17 January 1996

Chapter 12: Using GNU CC on VMS

upper case names. To be able to reliably call such routines, GNU CC
(by means of the assembler GAS) converts global symbols into upper
case like other VMS compilers. However, since the usual practice in
C is to distinguish case, GNU CC (via GAS) tries to preserve usual C
behavior by augmenting each name that is not all lower case. This
means truncating the name to at most 23 characters and then adding
more characters at the end which encode the case pattern of those 23.
Names which contain at least one dollar sign are an exception; they are
converted directly into upper case without augmentation.

Name augmentation yields bad results for programs that use precom-
piled libraries (such as Xlib) which were generated by another compiler.
You can use the compiler option ‘/NOCASE_HACK’ to inhibit augmenta-
tion; it makes external C functions and variables case-independent as is
usual on VMS. Alternatively, you could write all references to the func-
tions and variables in such libraries using lower case; this will work on
VMS, but is not portable to other systems. The compiler option ‘/NAMES’
also provides control over global name handling.

Function and variable names are handled somewhat differently with
GNU C++. The GNU C++ compiler performs name mangling on function
names, which means that it adds information to the function name to
describe the data types of the arguments that the function takes. One
result of this is that the name of a function can become very long. Since
the VMS linker only recognizes the first 31 characters in a name, special
action is taken to ensure that each function and variable has a unique
name that can be represented in 31 characters.

If the name (plus a name augmentation, if required) is less than 32
characters in length, then no special action is performed. If the name
is longer than 31 characters, the assembler (GAS) will generate a hash
string based upon the function name, truncate the function name to 23
characters, and append the hash string to the truncated name. If the
‘/VERBOSE’ compiler option is used, the assembler will print both the full
and truncated names of each symbol that is truncated.

The ‘/NOCASE_HACK’ compiler option should not be used when you
are compiling programs that use libg++. libg++ has several instances of
objects (i.e. Filebuf and filebuf) which become indistinguishable in
a case-insensitive environment. This leads to cases where you need to
inhibit augmentation selectively (if you were using libg++ and Xlib in
the same program, for example). There is no special feature for doing
this, but you can get the result by defining a macro for each mixed case
symbol for which you wish to inhibit augmentation. The macro should
expand into the lower case equivalent of itself. For example:

#define StuDlyCapS studlycaps

c y g n u s s u p p o r t 255

Using GNU CC

These macro definitions can be placed in a header file to minimize the
number of changes to your source code.

256 17 January 1996

Index

Index

!
‘!’ in constraint . 183

#
‘#’ in constraint . 184
#pragma implementation, implied

. 198
#pragma, reason for not using 165

$
$. 167

%
‘%’ in constraint . 184

&
‘&’ in constraint . 183

’
’. 225

-
-lgcc, use with -nodefaultlibs . . . 63
-lgcc, use with -nostdlib 63
-nodefaultlibs and unresolved

references . 63
-nostdlib and unresolved references

. 63

/
// . 167

=
‘=’ in constraint . 183

?
‘?’ in constraint . 183
?: extensions 152, 153
?: side effect . 153

‘ ’ in variables in macros 151
builtin apply . 150
builtin apply args 150
builtin return 150
main . 141

+
‘+’ in constraint . 183

>
‘>’ in constraint . 180
>? . 197

<
‘<’ in constraint . 180
<? . 197

0
‘0’ in constraint . 182

A
abort. 32
abs . 32
address constraints 182
address of a label . 147
address operand 182
alias attribute . 164
aligned attribute 168, 172
alignment . 167
Alliant . 222
alloca . 32
alloca and SunOs 114
alloca vs variable-length arrays . . . 155
alloca, for SunOs 137
alloca, for Unos . 124
alternate keywords 192
AMD29K options. 73
ANSI support . 31
apostrophes . 225
arguments in frame (88k) 77
ARM options . 75

c y g n u s s u p p o r t 257

Using GNU CC

arrays of length zero 155
arrays of variable length 155
arrays, non-lvalue 157
asm constraints . 180
asm expressions . 176
assembler instructions 176
assembler names for identifiers 189
assembler syntax, 88k 78
assembly code, invalid 239
attribute of types . 171
attribute of variables 168
autoincrement/decrement addressing

. 180
automatic inline for C++ member fns

. 175

B
backtrace for bug reports 243
Bison parser generator 111
bit shift overflow (88k) 79
bug criteria . 239
bug report mailing lists 240
bugs . 239
bugs, known . 211
builtin functions . 32
byte writes (29k) . 74

C
C compilation options 23
C intermediate output, nonexistent . . . 21
C language extensions 145
C language, traditional 32
C INCLUDE PATH . 103
c++ . 31
C++ . 21
C++ comments . 167
C++ compilation options 23
C++ interface and implementation

headers . 197
C++ language extensions 195
C++ member fns, automatically inline

. 175
C++ misunderstandings 230
C++ named return value 195
C++ options, command line 36
C++ pragmas, effect on inlining 199
C++ signatures . 202

C++ source file suffixes. 30
C++ static data, declaring and defining

. 230
C++ subtype polymorphism 202
C++ type abstraction 202
calling conventions for interrupts 166
case labels in initializers. 159
case ranges . 160
case sensitivity and VMS 254
cast to a union . 161
casts as lvalues . 152
code generation conventions 98
command options . 23
comments, C++ style. 167
compilation in a separate directory . . 131
compiler bugs, reporting 241
compiler compared to C++ preprocessor

. 21
compiler options, C++ 36
compiler version, specifying 66
COMPILER PATH . 103
complex numbers . 154
compound expressions as lvalues 152
computed gotos . 147
conditional expressions as lvalues . . . 152
conditional expressions, extensions . . 153
configurations supported by GNU CC

. 114
conflicting types . 228
const applied to function 161
const function attribute 162
constants in constraints 181
constraint modifier characters 183
constraint, matching 182
constraints, asm . 180
constraints, machine specific 184
constructing calls . 150
constructor expressions 158
constructor function attribute 164
constructors vs goto 197
constructors, automatic calls 141
contributors . 11
Convex options . 72
core dump . 239
cos . 32
CPLUS INCLUDE PATH 103
cross compiling . 66
cross-compiler, installation 132

258 17 January 1996

Index

D
‘d’ in constraint . 181
DBX . 218
deallocating variable length arrays . . 155
debug rtx. 244
debugging information options 48
debugging, 88k OCS 76
declaration scope . 225
declarations inside expressions 145
declaring attributes of functions 161
declaring static data in C++ 230
default implementation, signature

member function 203
defining static data in C++. 230
dependencies for make as output 103
dependencies, make 60
DEPENDENCIES OUTPUT 103
destructor function attribute 164
destructors vs goto 197
detecting ‘-traditional’ 34
dialect options . 31
digits in constraint 182
directory options . 64
divide instruction, 88k 79
dollar signs in identifier names 167
double-word arithmetic 153
downward funargs 147
DW bit (29k) . 74

E
‘E’ in constraint . 181
enumeration clash warnings 43
environment variables 102
error messages . 236
escape sequences, traditional 33
exclamation point . 183
exit . 32
exit status and VMS 254
explicit register variables 190
expressions containing statements . . 145
expressions, compound, as lvalues . . . 152
expressions, conditional, as lvalues . . 152
expressions, constructor 158
extended asm . 176
extensible constraints 182
extensions, ?: 152, 153
extensions, C language 145
extensions, C++ language 195

external declaration scope 225

F
‘F’ in constraint . 181
fabs . 32
fatal signal . 239
ffs . 32
file name suffix . 29
file names . 62
float as function value type 226
format function attribute 163
forwarding calls . 150
fscanf, and constant strings 224
function attributes 161
function pointers, arithmetic 158
function prototype declarations 165
function, size of pointer to 158
functions in arbitrary sections 161
functions that are passed arguments in

registers on the 386 161, 164
functions that do not pop the argument

stack on the 386 161
functions that do pop the argument stack

on the 386 . 165
functions that have no side effects . . . 161
functions that never return 161
functions that pop the argument stack on

the 386 . 161, 165
functions with printf or scanf style

arguments . 161

G
‘g’ in constraint . 182
‘G’ in constraint . 181
g++ . 31
G++ . 21
g++ 1.xx . 31
g++ older version . 31
g++, separate compiler 31
GCC . 21
GCC EXEC PREFIX 102
generalized lvalues 152
genflags, crash on Sun 4 213
global offset table . 99
global register after longjmp 191
global register variables 190
GLOBALDEF . 252

c y g n u s s u p p o r t 259

Using GNU CC

GLOBALREF . 252
GLOBALVALUEDEF 252
GLOBALVALUEREF 252
GNU CC command options 23
goto in C++ . 197
goto with computed label 147
gp-relative references (MIPS) 89
gprof. 50
grouping options . 23

H
‘H’ in constraint . 181
H8/500 Options . 97
hardware models and configurations,

specifying . 67
header files and VMS 251
HPPA Options . 92

I
‘i’ in constraint . 181
‘I’ in constraint . 181
i386 Options . 90
IBM RS/6000 and PowerPC Options . . 79
IBM RT options . 85
IBM RT PC . 222
identifier names, dollar signs in 167
identifiers, names in assembler code

. 189
identifying source, compiler (88k) 76
implicit argument: return value 195
implied #pragma implementation

. 198
include files and VMS 251
incompatibilities of GNU CC 223
increment operators 239
initializations in expressions 158
initializers with labeled elements 159
initializers, non-constant 158
inline automatic for C++ member fns

. 175
inline functions . 174
inline functions, omission of 175
inlining and C++ pragmas 199
installation trouble 211
installing GNU CC 107
installing GNU CC on the Sun. 137
installing GNU CC on VMS. 138

integrating function code 174
Intel 386 Options . 90
interface and implementation headers,

C++ . 197
intermediate C version, nonexistent . . 21
interrupts, functions compiled for . . . 166
invalid assembly code 239
invalid input . 240
invoking g++ . 31

K
kernel and user registers (29k) 74
keywords, alternate. 192
known causes of trouble 211

L
labeled elements in initializers 159
labels as values . 147
labs . 32
language dialect options 31
large bit shifts (88k) 79
length-zero arrays 155
Libraries . 62
LIBRARY PATH. 103
link options . 62
load address instruction 182
local labels . 146
local variables in macros. 151
local variables, specifying registers . . 192
long long data types 153
longjmp . 191
longjmp and automatic variables 33
longjmp incompatibilities 224
longjmp warnings . 44
lvalues, generalized. 152

M
‘m’ in constraint . 180
M680x0 options . 67
M88k options . 76
machine dependent options 67
machine specific constraints 184
macro with variable arguments 156
macros containing asm. 178
macros, inline alternative 174
macros, local labels 146
macros, local variables in 151

260 17 January 1996

Index

macros, statements in expressions . . . 145
macros, types of arguments 151
main and the exit status 254
make . 60
matching constraint 182
maximum operator 197
member fns, automatically inline . . 175
memcmp . 32
memcpy . 32
memory model (29k) 74
memory references in constraints 180
messages, warning . 40
messages, warning and error 236
middle-operands, omitted 153
minimum operator 197
MIPS options . 86
misunderstandings in C++. 230
mktemp, and constant strings 224
mode attribute .. 169
modifiers in constraints 183
multiple alternative constraints 182
multiprecision arithmetic 153

N
‘n’ in constraint . 181
name augmentation 254
named return value in C++ 195
names used in assembler code 189
naming convention, implementation

headers . 198
naming types . 150
nested functions . 147
newline vs string constants 34
nocommon attribute 170
non-constant initializers 158
non-static inline function 175
noreturn function attribute 161

O
‘o’ in constraint . 180
OBJC INCLUDE PATH 103
Objective C . 21
obstack free. 123
OCS (88k) . 76
offsettable address 180
old-style function definitions 165
omitted middle-operands 153

open coding . 174
operand constraints, asm 180
optimize options . 53
options to control warnings 40
options, C++ . 36
options, code generation 98
options, debugging . 48
options, dialect . 31
options, directory search 64
options, GNU CC command 23
options, grouping . 23
options, linking . 62
options, optimization. 53
options, order . 23
options, preprocessor. 59
order of evaluation, side effects 236
order of options . 23
other directory, compilation in 131
output file option. 30
overloaded virtual fn, warning 47

P
‘p’ in constraint . 182
packed attribute . 170
parameter forward declaration 156
parser generator, Bison 111
PIC . 99
pointer arguments 163
portions of temporary objects, pointers to

. 231
pragma, reason for not using 165
pragmas in C++, effect on inlining . . . 199
pragmas, interface and implementation

. 198
preprocessing numbers 227
preprocessing tokens 227
preprocessor options 59
processor selection (29k) 74
prof . 49
promotion of formal parameters 165
push address instruction 182

Q
‘Q’, in constraint . 182
qsort, and global register variables

. 191
question mark . 183

c y g n u s s u p p o r t 261

Using GNU CC

R
‘r’ in constraint . 180
r0-relative references (88k) 77
ranges in case statements 160
read-only strings . 224
register positions in frame (88k) 77
register variable after longjmp 191
registers . 176
registers for local variables 192
registers in constraints 180
registers, global allocation 190
registers, global variables in 190
reordering, warning 44
reporting bugs . 239
rest argument (in macro) 156
return value of main 254
return value, named, in C++ 195
return, in C++ function header 195
RS/6000 and PowerPC Options 79
RT options . 85
RT PC . 222
run-time options . 98

S
‘s’ in constraint . 181
scanf, and constant strings 224
scope of a variable length array 155
scope of declaration 228
scope of external declarations 225
search path . 64
second include path 59
section function attribute 163
section variable attribute 170
separate directory, compilation in 131
sequential consistency on 88k 77
setjmp . 191
setjmp incompatibilities 224
shared strings . 224
shared VMS run time system 254
side effect in ?: . 153
side effects, macro argument 145
side effects, order of evaluation 236
signature . 202
signature in C++, advantages 203
signature member function default

implementation 203
signatures, C++ . 202
simple constraints 180

sin . 32
sizeof . 151
smaller data references (88k) 77
smaller data references (MIPS) 89
SPARC options . 69
specified registers 190
specifying compiler version and target

machine . 66
specifying hardware config 67
specifying machine version 66
specifying registers for local variables

. 192
sqrt . 32
sscanf, and constant strings 224
stack checks (29k) . 74
stage1 . 112
start files . 134
statements inside expressions 145
static data in C++, declaring and defining

. 230
‘stdarg.h’ and RT PC 85
storem bug (29k) . 75
strcmp . 32
strcpy . 32
string constants . 224
string constants vs newline 34
strlen . 32
structure passing (88k) 79
structures . 226
structures, constructor expression . . . 158
submodel options . 67
subscripting . 157
subscripting and function values 157
subtype polymorphism, C++ 202
suffixes for C++ source 30
Sun installation . 137
suppressing warnings 40
surprises in C++ . 230
SVr4 . 78
syntax checking . 41
synthesized methods, warning 47

T
target machine, specifying 66
target options . 66
tcov . 50
template debugging 44
template instantiation 199

262 17 January 1996

Index

temporaries, lifetime of 231
thunks . 147
TMPDIR . 102
traditional C language 32
type abstraction, C++ 202
type alignment . 167
type attributes . 171
typedef names as function parameters

. 225
typeof . 151

U
Ultrix calling convention 222
undefined behavior 239
undefined function value 239
underscores in variables in macros . . 151
underscores, avoiding (88k) 76
union, casting to a 161
unions . 226
unresolved references and

-nodefaultlibs 63
unresolved references and -nostdlib

. 63

V
‘V’ in constraint . 180
value after longjmp 191
‘varargs.h’ and RT PC 85
variable alignment 167
variable attributes 168
variable number of arguments 156
variable-length array scope 155

variable-length arrays 155
variables in specified registers 190
variables, local, in macros 151
Vax calling convention 222
VAX options . 69
‘VAXCRTL’ . 254
VMS and case sensitivity 254
VMS and include files 251
VMS installation . 138
void pointers, arithmetic 158
void, size of pointer to 158
volatile applied to function 161

W
warning for enumeration conversions

. 43
warning for overloaded virtual fn 47
warning for reordering of member

initializers . 44
warning for synthesized methods 47
warning messages . 40
warnings vs errors 236
weak attribute . 164
whitespace . 225

X
‘X’ in constraint . 182

Z
zero division on 88k 78
zero-length arrays 155

c y g n u s s u p p o r t 263

Using GNU CC

264 17 January 1996

	GNU GENERALPUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	NO WARRANTY
	How to Apply These Terms to Your New Programs

	Contributors to GNUCC
	1 Funding Free Software
	2 Protect Your Freedom—Fight “Look And Feel”
	3 Compile C, C++, or Objective C
	4 GNUCC Command Options
	4.1 Option Summary
	4.2 Options Controlling the Kind of Output
	4.3 Compiling C++ Programs
	4.4 Options Controlling C Dialect
	4.5 Options Controlling C++ Dialect
	4.6 Options to Request or Suppress Warnings
	4.7 Options for Debugging Your Program or GNU CC
	4.8 Options That Control Optimization
	4.9 Options Controlling the Preprocessor
	4.10 Passing Options to the Assembler
	4.11 Options for Linking
	4.12 Options for Directory Search
	4.13 Specifying Target Machine and Compiler Version
	4.14 Hardware Models and Configurations
	4.15 Options for Code Generation Conventions
	4.16 Environment Variables Affecting GNU CC
	4.17 Running Protoize

	5 Installing GNU CC
	5.1 Configurations Supported by GNU CC
	5.2 Compilation in a Separate Directory
	5.3 Building and Installing a Cross-Compiler
	5.4 Installing GNU CC on the Sun
	5.5 Installing GNU CC on VMS
	5.6 collect2
	5.7 Standard Header File Directories

	6 Extensions to the C Language Family
	6.1 Statements and Declarations in Expressions
	6.2 Locally Declared Labels
	6.3 Labels as Values
	6.4 Nested Functions
	6.5 Constructing Function Calls
	6.6 Naming an Expression’s Type
	6.7 Referring to a Type with typeof
	6.8 Generalized Lvalues
	6.9 Conditionals with Omitted Operands
	6.10 Double-Word Integers
	6.11 Complex Numbers
	6.12 Arrays of Length Zero
	6.13 Arrays of Variable Length
	6.14 Macros with Variable Numbers of Arguments
	6.15 Non-Lvalue Arrays May Have Subscripts
	6.16 Arithmetic on void- and Function-Pointers
	6.17 Non-Constant Initializers
	6.18 Constructor Expressions
	6.19 Labeled Elements in Initializers
	6.20 Case Ranges
	6.21 Cast to a Union Type
	6.22 Declaring Attributes of Functions
	6.23 Prototypes and Old-Style Function Definitions
	6.24 Compiling Functions for Interrupt Calls
	6.25 C++ Style Comments
	6.26 Dollar Signs in Identifier Names
	6.27 The Character ESC in Constants
	6.28 Inquiring on Alignment of Types or Variables
	6.29 Specifying Attributes of Variables
	6.30 Specifying Attributes of Types
	6.31 An Inline Function is As Fast As a Macro
	6.32 Assembler Instructions with C Expression Operands
	6.33 Constraints for asm Operands
	6.34 Controlling Names Used in Assembler Code
	6.35 Variables in Specified Registers
	6.36 Alternate Keywords
	6.37 Incomplete enum Types
	6.38 Function Names as Strings

	7 Extensions to the C++ Language
	7.1 Named Return Values in C++
	7.2 Minimum and Maximum Operators in C++
	7.3 goto and Destructors in GNU C++
	7.4 Declarations and Definitions in One Header
	7.5 Where’s the Template?
	7.6 Type Abstraction using Signatures

	8 gcov: a Test Coverage Program
	8.1 Introduction to gcov
	8.2 Invoking gcov
	8.3 Using gcov with GCC Optimization

	9 Known Causes of Trouble with GNUCC
	9.1 Actual Bugs We Haven’t Fixed Yet
	9.2 Installation Problems
	9.3 Cross-Compiler Problems
	9.4 Interoperation
	9.5 Problems Compiling Certain Programs
	9.6 Incompatibilities of GNU CC
	9.7 Fixed Header Files
	9.8 Standard Libraries
	9.9 Disappointments and Misunderstandings
	9.10 Common Misunderstandings with GNU C++
	9.11 Caveats of using protoize
	9.12 Certain Changes We Don’t Want to Make
	9.13 Warning Messages and Error Messages

	10 Reporting Bugs
	10.1 Have You Found a Bug?
	10.2 Where to Report Bugs
	10.3 How to Report Bugs
	10.4 Sending Patches for GNU CC

	11 How To Get Help with GNUCC
	12 Using GNU CC on VMS
	12.1 Include Files and VMS
	12.2 Global Declarations and VMS
	12.3 Other VMS Issues

	Index

