
Hitachi Microcomputer Support Software

H8S, H8/300 Series C Compiler

USER’S MANUAL

HITACHI

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the
whole or part of this document without Hitachi's permission.

3. Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user's unit according to this
document.

4. Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no
responsibility for any intellectual property claims or other problems that may result from
applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any
third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to
use the products in MEDICAL APPLICATIONS.

Preface

This manual explains the facilities and operating procedures for the H8S, H8/300 series C
compiler (Ver. 1.0). The C compiler translates source programs written in C into object programs
for Hitachi H8S/2600 series, H8S/2000 series, H8/300H series, H8/300 series, and H8/300L series
microcomputers.

This manual consists of four parts and appendices. The information contained in each part is
summarized below.

(1) PART I OVERVIEW AND OPERATIONS

This part overviews the C compiler functions and explains C compiler invoking, optional
functions, and listings created by the C compiler.

(2) PART II PROGRAMMING

This part explains the limitations of the C compiler and the special factors in object program
execution which should be considered when creating a program.

(3) PART III SYSTEM INSTALLATION

This part explains the requirements when installing an object program generated by the C
compiler on a system. They are the object program being written in ROM and memory
allocation. In addition, specifications of the low-level interface routine must be made by the
user when using standard I/O library and memory management library.

(4) PART IV ERROR MESSAGES

This part explains the error messages corresponding to compilation errors and the standard
library error messages corresponding to run time errors.

Note: For differences from the H8/300 series C compiler (Ver. 2.0), refer to Appendix G,
Differences from Older Version.

Symbols Used in This Manual

Symbol Explanation

< > Indicates an item to be specified.

[] Indicates an item that can be omitted.

... Indicates that the preceding item can be repeated.

∆ Indicates one or more blanks.

(RET) Indicates the carriage return key (return key).

| Indicates that one of the items must be selected.

(CNTL) Indicates that the control key should be held down before pressing the key that
follows.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

MS-DOS is an operating system administrated by Microsoft Corporation.

PART I

OVERVIEW AND OPERATIONS

I-1-1

Section 1 Overview

The H8S, H8/300 series C compiler (Ver. 1.0) inputs source programs written in C language and
outputs them as relocatable object programs or assembly source programs.

The C compiler provides functions for improving object efficiency and supporting program
development.

1.1 Functions for Improving Object Efficiency

Table 1-1 lists the functions for improving object efficiency. For details, refer to the related
sections.

Table 1-1 Functions for Improving Object Efficiency

Item
Specification
Method Specification Function Reference

Short Option abs8 Efficiently accesses 3.4, Compiler
absolute
address

Extended
specifications

#pragma abs8 8-bit data in 8-bit short
absolute addressing
mode.

Options in Part I,
Overview and
Operations, and

Option abs16 Efficiently accesses 3.1.1, Short
Extended
specifications

#pragma abs16 data in 16-bit short
absolute addressing
mode.

Absolute Address
Specifications in
Part II,
Programming

enumeration
data size
reduction

Option byteenum Handles enumeration
data as 1-byte data.

3.4, Compiler
Options in Part I,
Overview and

switch
statement
output code
selection

Option case=ifthen|
 table

Selects whether to
output code for switch
statements in if-then
method or in table
method.

Operations

Operation
size
expanded
interpretation

Option [no]cpuexpand Efficiently performs data
multiplication and
division. Note that the
range of values
guaranteed by C
language specifications
may be exceeded.

I-1-2

Table 1-1 Functions for Improving Object Efficiency (cont)

Item
Specification
Method Specification Function Reference

Block transfer
instruction

Option eepmov Generates code for
assignment expressions
in structs and initial
value assignment to
local variable arrays into
block transfer
instructions (eepmov).

3.4, Compiler
Options in Part I,
Overview and
Operations

Function call Option indirect Efficiently calls 3.4, Compiler
in memory
indirect
addressing
mode

Extended
specifications

#pragma indirect functions in memory
indirect addressing
mode (@@aa:8).

Options in Part I,
Overview and
Operations, and
3.1.3, Function
Call in Memory
Indirect
Addressing Mode
in Part II,
Programming

Optimization Options optimize=1|0 Selects whether or not
to optimize the object
program.

3.4, Compiler
Options in Part I,
Overview and

speed=register|
 shift|
 loop|
 switch|
 inline|
 struct

Selects an optimization
method to accelerate
the object program.

Operations

[no]volatile Selects whether or not
to optimize external
variables

Register
variable
assignment
expansion

Option [no]regexpansion Increases the number of
registers to be assigned
for register variables.

In-line
expansion

Extended
specifications

#pragma inline Performs in-line
expansion of called
functions at compilation.

3.1.4, In-Line
Expansion for
Function, in Part
II, Programming

I-1-3

Table 1-1 Functions for Improving Object Efficiency (cont)

Item
Specification
Method Specification Function Reference

Register
save/restore
code
specification

Extended
specifications

#pragma regsave Generates code for
saving and restoring
registers other than ER0
and ER1 (R0 and R1 for
H8/300) at function entry
and exit.

3.1.7, Register
Save/Restore
Code Control, in
Part II,
Programming

#pragma

noregsave

Does not generate code
for saving and restoring
registers even when the
specified function uses
registers.

I-1-4

1.2 Functions Supporting Program Development

Table 1-2 lists the functions supporting program development. For details, refer to the related
sections.

Table 1-2 Functions Supporting Program Development

Item
Specification
Method Specification Function Reference

Comment
nesting

Option comment Enables comments to
be nested.

3.4, Compiler
Options in Part I,

Object output Options code=asmcode|
 machinecode

Specifies object file
output format.

Overview and
Operations

[no]object Selects whether or not
to output an object file.

CPU/
operating
mode

Option cpu=2600n|2600a|
 2000n|2000a|
 300hn|300ha|
 300|300l

Selects CPU and
operating mode

1.3, CPU/
Operating Mode
Selection in Part
I, Overview and
Operations

Debugging Option [no]debug Selects whether or not
to output symbolic
debugging information.

3.4, Compiler
Options in Part I,
Overview and

Include
directory
specification

Option include Specifies which
directories are to be
searched for the include
file.

Operations

Limit value
expansion

Option limits Changes limit values
such as maximum
number of symbols.

Listing output Options [no]list Selects whether or not
to output a listing.

show Specifies the contents
and format of the output
listing.

Error level Option message Outputs information-
level messages.

I-1-5

Table 1-2 Functions Supporting Program Development (cont)

Item
Specification
Method Specification Function Reference

Section
manipulation

Options section Specifies an output
section name.

3.4, Compiler
Options in Part I,

string=const|data Specifies the output
destination for character
string data.

Overview and
Operations, and
3.1.6, Section

Extended
specifications

#pragma section
#pragma abs8
 section
#pragma abs16
 section
#pragma indirect
 section

Switches the section
name of the object
program within the
source program.

Switching in Part
II, Programming

Subcommand
file

Option subcommand Specifies compiler
options in the
subcommand file.

3.4, Compiler
Options in Part I,
Overview and
Operations

Assembly
language
embedding

Extended
specifications

#pragma asm
#pragma endasm

Embeds assembly
language in a C
program

3.1.2, Assembly
Language
Embedded in a C
Program in Part
II, Programming

Interrupt
functions

Extended
specifications

#pragma interrupt Writes interrupt
functions in C.

3.1.5, Interrupt
Function
Creation in Part
II, Programming

Intrinsic
functions

Extended
specifications

Function call
format
Example:
set_imask_ccr()

Provides functions for
processing that cannot
be written in C, such as
system control
instruction or rotate
instruction.

3.2, Intrinsic
Functions in Part
II, Programming

I-1-6

1.3 CPU/Operating Mode Selection

The C compiler supports the following CPUs.

• H8S/2600 series

• H8S/2000 series

• H8/300H series

• H8/300 series

• H8/300L series

The C compiler supports the normal and advanced modes for the H8S/2600, H8S/2000, and
H8/300H.

Table 1-3 shows CPU/operating mode selection.

Table 1-3 CPU/Operating Mode Selection

CPU/Operating Mode Standard Library Option Specification*2

H8S/2600 in normal mode c8s26n.lib cpu=2600n

H8S/2600 in advanced mode c8s26a.lib cpu=2600a*3

H8S/2000 in normal mode c8s26n.lib cpu=2000n

H8S/2000 in advanced mode c8s26a.lib cpu=2000a*3

H8/300H in normal mode c38hn.lib cpu=300hn

H8/300H in advanced mode c38ha.lib cpu=300ha*3

H8/300*1 c38reg.lib cpu=300

Notes: 1. The H8/300L-series instructions are the same as those for the H8/300 series; the C
compiler assumes the H8/300L series to be the H8/300 series.

2. The CPU/operating mode can also be specified by environment variable H38CPU. For
details, refer to section 3.2, Environment Variable H38CPU.

3. For the H8S/2600, H8S/2000, and H8/300H in advanced mode, the bit width of the
address space can also be specified. For details, refer to section 3.4, Compiler
Options.

Note that load module execution results cannot be guaranteed if object programs or standard
libraries are created using different CPU/operating mode and then linked together.

I-2-1

Section 2 Developing Procedures

Figure 2-1 shows the relationship between the C compiler package and other software for program
development. The C compiler package includes the software enclosed by the dotted line.

Standard

include

file

Standard

library

file

User

library

file

Load

module

Software

included in

the package

*1

Relo-

catable

object

program

*2

*3

Assembly

 source

 program

User

assembly

source

program

S-type

load

module

Target system

C source

file creation

Notes: *1. Assembly source programs

 are output based on chosen

 options.

	 *2. The standard include file

 defines C library functions

 and their macro names in

 order to use C library

 functions.

	 *3. A functional group,

 consisting of C library

 functions and run time

 routines is used as standard

 in the C program. (Refer to

 section 2.1, Note, in Part II,

 	 System Installation.)

 is related software required

 during program development.

H8S, H8/300 series

C compiler

H8S, H8/300 series

cross assembler

H series

object converter

H8S, H8/300 series

simulator/debugger

H series

linkage editor

User

include

file

Figure 2-1 Relationship between the C Compiler and Other Software

I-3-1

Section 3 C Compiler Execution

This section explains how to invoke the C compiler, specify C compiler options, and interpret C
compiler listings.

3.1 How to Invoke the C Compiler

The format for the command line used to invoke the C compiler is as follows.

ch38[∆<option>...][∆<file name>[∆<option>...]...]

The format for <option> is as follows.

<option>[=<suboption>[,<suboption>]...]

The general operations of the C compiler are described below.

Invoking C Compiler:

ch38 (RET)

Instead of compiling, the C compiler outputs the standard command line format and option list.

Compiling Programs:

ch38∆test.c (RET)

The C source program test.c is compiled.

The CPU/operating mode must be specified for C compiler operation. If the cpu option is not
specified, the C compiler uses the H38CPU environment variable specifications. For details on
environment variable H38CPU, refer to section 3.2, Environment Variable H38CPU.

I-3-2

C Compiler Options:

ch38∆-cpu=2600a∆-debug∆test.c (RET)
ch38∆-cpu=2600a∆-debug∆-show=object,expansion∆test.c (RET)

Insert minus (-) before options cpu, debug, and show. When multiple options are specified, they
must be separated by a space (∆). Multiple suboptions must be separated by a comma (,).

Note: For MS-DOS systems, either a minus or a slash (/) must be specified before options.
Multiple suboptions can be enclosed by parentheses () or separated by a space (∆).

Compiling Multiple Programs:

Several C source programs can be compiled simultaneously.

Example 1: Specifying multiple programs

ch38∆-cpu=2600a∆test1.c∆test2.c (RET)

Example 2: Specifying options for all C source programs

ch38∆-cpu=2600a∆-object∆test1.c∆test2.c (RET)

The object option is valid for both test1.c and test2.c.

Example 3: Specifying options for particular special C source programs

ch38∆-cpu=2600a∆test1.c∆test2.c∆-object (RET)

The object option is valid for only test2.c. Options specified for particular C source programs
have priority over those specified for all C source programs.

I-3-3

3.2 Environment Variable H38CPU

The C compiler uses the specifications for environment variable H38CPU when the cpu option is
not specified at C compiler initiation. The CPU/operating mode is specified by environment
variable H38CPU as follows:

UNIX System:

• C shell

setenv H38CPU <CPU/operating mode>[:<bit width of address space>]

• Bone shell

H38CPU=<CPU/operating mode>[:<bit width of address space>]

export H38CPU

MS-DOS System:

SET H38CPU=<CPU/operating mode>[:<bit width of address space>]

<CPU/operating mode> can be selected from 2600n, 2600a, 2000n, 2000a, 300hn, 300ha, 300,
and 300l. When 2600a, 2000a, or 300ha is specified, the bit width of the address space can also be
specified. Table 3-1 lists the specifiable bit width.

Table 3-1 Bit Width of Address Space

CPU/Operating Mode Bit Width of Address Space Default

2600a 20, 24, 28, or 32 32

2000a 20, 24, 28, or 32 32

300ha 20 or 24 24

The specification of this environment variable is used only when the cpu option is not specified.

Note: H38CPU must be specified in upper-case characters.

I-3-4

3.3 File Naming

A standard file extension is automatically added to the name of a file when omitted. The standard
file extensions used by the C compiler and related software are shown in table 3-2.

Table 3-2 Standard File Extensions Used by the C Compiler

File Extension Description

c Source program file written in C

h Include file

lst, lis Listing file*

obj Relocatable object program file

src Assembly source program file

lib Library file

abs Absolute load module file

rel Relocatable load module file

map Linkage map listing file

Note: Listing file extension is lst on MS-DOS systems and lis on UNIX systems.

The general rules for naming files depend on the host machine. Refer to the manual of the host
machine.

I-3-5

3.4 Compiler Options

Table 3-3 shows C compiler option formats, valid abbreviations, and defaults. Characters
underlined indicate the minimum valid abbreviation. For details on option and suboption
specifications on the command line, refer to section 3.1, How to Invoke the C Compiler.

Table 3-3 C Compiler Options

Item Format Default
Related Extended
Specifications

Short
absolute
address

 abs8
 abs16

None #pragma abs8
#pragma abs16
#pragma abs8 section
#pragma abs16 section

Enumeration
data size

 b yteenum None None

switch
statement
output code
selection

 ca se= i fthen|
 t able

None None

Comment
nesting

 com ment None None

Object type c ode= m achinecode|
 a smcode

code=machinecode None

CPU and
operating
mode (bit
width of
address
space)

 cp u= 2600n |
 2600a [:<bit width>] |
 2000n |
 2000a [:<bit width>] |
 300hn |
 300ha [:<bit width>] |
 300 |
 300l |
 300r eg

None None

Operation
size
expanded
interpretation

 cpue xpand
 nocpue xpand

nocpuexpand None

Debugging
information

 deb ug
 node bug

nodebug None

Macro name def ine =<macro name> =
 <name> |
 <macro name> =
 <constant> |
 <macro name>

None None

Block transfer
instruction

 ee pmov None None

I-3-6

Table 3-3 C Compiler Options (cont)

Item Format Default
Related Extended
Specifications

Include file i nclude =<path name> None None

Memory
indirect
addressing

 ind irect None #pragma indirect
#pragma indirect
 section

Limit value
expansion

 lim its= m acro=<numeric value>|
 s ymbol=<numeric value>|
 <numeric value>

For UNIX
 limits=macro=4,
 symbol=8
For MS-DOS
 limits=1

None

Listing file l ist [= <listing file name>]
 nol ist

list None

Message
output control

 m essage None None

Object file ob ject [= <object file name>]
 noob ject

object None

Optimization
level

 op timize =0 | 1 optimize=1 None

Register
variable
assignment
expansion

 r egexpansion
 nor egexpansion

regexpansion None

Section name se ction = p rogram =
 <section name> |
 c onst =
 <section name>|
 d ata = <section name>|
 b ss =<section name>

section=program=P
,
 const=C,
 data=D,
 bss=B

#pragma section

Listings and
formats

 sh ow = so urce | noso urce |
 o bject | noo bject |
 st atistics | nost atistics |
 a llocation | noa llocation |
 e xpansion | noe xpansion |
 w idth=<numeric value> |
 l ength=<numeric value>

show=source,
 noobject,
 statistics,
 noallocation,
 noexpansion,
 width=132,
 length=60

None

Optimization
method

 sp eed[= r egister|
 sh ift|
 l oop|
 sw itch|
 i nline|
 st ruct]

None #pragma inline

I-3-7

Table 3-3 C Compiler Options (cont)

Item Format Default
Related Extended
Specifications

Character
string output
area

 st ring = c onst |
 d ata

string=const None

Subcommand
file

 su bcommand=<subcommand
 file name>

None None

External
variable
optimization

 v olatile
 nov olatile

novolatile None

Each option is described below.

Short Absolute Address:

• Format: abs8
 abs16

• Description

Accesses the data to be allocated to the static area in short absolute addressing mode.

When the abs8 option is specified, the C compiler generates code for accessing char, unsigned
char, and composite data including char or unsigned char element or member in 8-bit absolute
addressing mode (@aa:8).

When the abs16 option is specified, the C compiler generates code for accessing data in 16-bit
absolute addressing mode (@aa:16) for 2600a, 2000a, and 300ha CPU/operating mode. For
2600n, 2000n, 300hn, and 300 CPU/operating mode, the abs16 option is invalid.

The data specified to be accessed in 8-bit absolute addressing (abs8 option) is output to section
<$ABS8 + C section name>, <$ABS8 + D section name>, or <$ABS8 + B section name>. The
data specified to be accessed in 16-bit absolute addressing (abs16 option) is output to section
<$ABS16 + C section name>, <$ABS16 + D section name>, or <$ABS16 + B section name>.
The section where the data is output by this option must be allocated to the short absolute
address area at linkage.

For the range of short absolute address area, refer to appendix F, Access Range of Short
Absolute Addresses. For section name specification for the short absolute address area, refer to
3.1.6, Section Switching in Part II, Programming.

I-3-8

Enumeration Data Size:

• Format: b yteenum

• Description

Handles the declared enum data as char data.

When all members of the enum data is in the range from –128 to 127, the C compiler handles
the data as char data if this option is specified.

When this option is not specified or at least one of the members exceeds the range from -128 to
127 even if this option is specified, the enum data is handled as int data.

switch Statement Output Code Selection Method:

• Format: ca se= i fthen| t able

• Description

Specifies a switch statement output code selection method.

When the case=ifthen option is specified, switch statement codes are created using the if_then
method, which repeats, for all case labels, comparing the evaluated value of the expression in
the switch statement with the case label value and jumps to the statement of the case label if
they match. This method increases the object code size depending on the number of case labels
in the switch statement.

When the case=table option is specified, switch statement codes are created using the table
method, which stores the case label jump destinations in a jump table and enables a jump to the
statement of the case label that matches the expression in the switch statement by accessing the
jump table only once. This method increases the jump table size in the constant area depending
on the number of case labels in the switch statement, but the execution speed is always the
same.

When this option is not specified, the C compiler selects the method that generates a smaller
object. If the speed option or speed=switch option is specified when the case option is not
specified, the C compiler selects the method that generates a faster object on the average.

I-3-9

Example:

int a,b;
 :
switch(a){
 case 1: b=3; break;
 case 2: b=2; break;
 case 3: b=1; break;
 default: b=0; break;
}

An example of above C source program expansion is shown below (cpu=2600n):

MOV.W @_a,R0 MOV.W @_a,R0
MOV.B R0H,R0H SUB.W #1,R0
BNE Ld CMP.W #2,R0
CMP.B #1,R0L BHI Ld
BEQ L1 ADD.W R0,R0
CMP.B #2,R0L MOV.W @(L,ER0),R0
BEQ L2 JMP @ER0
CMP.B #3,R0L :
BEQ L3 L:(jump table)
BRA Ld
(case=ifthen) (case=table)

if_then Method table Method

case Value Object Size Execution Cycles Object Size Execution Cycles

1 22 bytes 18 28 (22 + 6) bytes 28

3 30

I-3-10

Comment Nesting:

• Format: com ment

• Description

Enables nested comments to be written.

When this option is not specified, if nested comments are written, an error will occur.

Example:

/* This is an example of/* nested */ comment */
 ↑
 (a)

When the comment option is specified, the C compiler handles the above line as a nested
comment, however, when the option is not specified, the C compiler regards (a) as the end of
the comment.

Object Type:

• Format: c ode= m achinecode | a smcode

• Description

Specifies an object program type.

When the code=machinecode option is specified, a relocatable object program that can be input
to the linkage editor is generated.

When the code=asmcode option is specified, an assembly source program that can be input to
the assembler is generated.

When the code=asmcode and debug options are both specified, the .LINE directive is output to
the assembly source program. At assembly, C source program-level debugging is enabled by
specifying the debug option.

When this option is not specified, the C compiler assumes that the code=machinecode is
specified.

• Note

When the code=asmcode option is specified, the show=object option becomes invalid.

I-3-11

CPU/Operating Mode (Bit Width of Address Space):

• Format: cp u= 2600n |
 2600a [:<address space bit width>] |
 2000n |
 2000a [:<address space bit width>] |
 300hn |
 300ha [:<address space bit width>] |
 300 | 300l | 300r eg

• Description

Specifies the CPU/operating mode for the object program to be created. Suboptions are listed in
table 3-4.

Table 3-4 Suboptions for cpu Option

Suboption Description

2600n Creates the object for H8S/2600 in normal mode.

2600a[:<address space
 bit width>]

Creates the object for H8S/2600 in advanced mode. <address space
bit width> must be 20, 24, 28, or 32, which specifies the 1-Mbyte, 16-
Mbyte, 256-Mbyte, or 4-Gbyte address space, respectively. The
default value for <address space bit width> is 32.

2000n Creates the object for H8S/2000 in normal mode.

2000a[:<address space
 bit width>]

Creates the object for H8S/2000 in advanced mode. <address space
bit width> must be 20, 24, 28, or 32, which specifies the 1-Mbyte, 16-
Mbyte, 256-Mbyte, or 4-Gbyte address space, respectively. The
default value for <address space bit width> is 32.

300hn Creates the object for H8/300H in normal mode.

300ha[:<address space
 bit width>]

Creates the object for H8/300H in advanced mode. <address space
bit width> must be 20 or 24, which specifies the 1-Mbyte or 16-Mbyte
address space, respectively. The default value for <address space
bit width> is 24.

300 Creates the object for H8/300.

300l Creates the object for H8/300. This suboption is provided to maintain
the compatibility with the cross assembler.

300reg Creates the object for H8/300. This suboption is provided to maintain
the compatibility with the older version of the C compiler.

I-3-12

• Notes

— When the cpu option is not specified, the C compiler uses the H38CPU environment
variable specifications. When the cpu option and H38CPU environment variable are
specified, the C compiler uses the cpu option specifications.

— When neither the cpu option nor the H38CPU environment variable is specified, an error
will occur.

Operation Size Expanded Interpretation:

• Format: cpue xpand
 nocpue xpand

• Description

Expands the ANSI C language standard to generate code for multiplication and division of the
variables conforming to a volatile attribute.

When the nocpuexpand option is specified, the C compiler generates multiplication and
division code conforming to the ANSI C language standard. Table 3-5 shows examples of
multiplication and division code generated by specifying this option.

Table 3-5 cpuexpand Option Specifications

Operation Size of us1 * us2 (for H8S/2600)
Operation cpuexpand Is Specified nocpuexpand Is Specified

volatile unsigned
 short us1,us2;
unsigned long ul;
 ul=us1*us2;

Executed as unsigned long.
Output example:
 MOV.W @_us1,Rd
 MOV.W @_us2,Rs
 MULXU.W Rs,ERd
 MOV.L ERd,@_ul
4-byte result of us1 * us2 is
assigned to ul.

Executed as unsigned short.
Output example:
 MOV.W @_us1,Rd
 MOV.W @_us2,Rs
 MULXU.W Rs,ERd
 EXTU.L ERd
 MOV.L ERd,@_ul
Low-order two bytes of us1 * us2 result
are zero-extended and assigned to ul.

volatile unsigned
 short us1,us2,us3;
unsigned short us;
 us=us1*us2/us3;

Executed as unsigned long.
Output example:
 MOV.W @_us1,Rd
 MOV.W @_us2,Rs
 MULXU.W Rs,ERd
 MOV.W @_us3,Rs
 DIVXU.W Rs,ERd
 MOV.W Rd,@_us

4-byte result of us1 * us2 is
used as the dividend.

Executed as unsigned short.
Output example:
 MOV.W @_us1,Rd
 MOV.W @_us2,Rs
 MULXU.W Rs,ERd
 EXTU.L ERd
 MOV.W @_us3,Rs
 DIVXU.W Rs,ERd
 MOV.W Rd,@_us
Low-order two bytes of us1 * us2 result
are zero-extended and used as the
dividend.

I-3-13

• Notes

— Specify the volatile attribute for the variable that is used for expanded interpretation. Even
if the cpuexpand option is specified, expanded interpretation is not performed for variables
that are not volatile.

— When the cpuexpand option is specified, the operation specifications exceed the range
guaranteed by the C language specifications, and the result may be different from that
obtained when the nocpuexpand option is specified.

Debug Information:

• Format: deb ug
 nodeb ug

• Description

When the debug option is specified, the C compiler outputs debugging information to the object
file so that C source program-level debugging can be performed.

Debugging information is directly output to the relocatable object program. The .LINE
directives are added to the assembly source program. Therefore, the assembly program output
by the C compiler can be debugged at the C source level.

This option is valid even when the optimizing option is specified.

When the nodebug option is specified, the C compiler does not output debugging information
to the object file.

When this option is not specified, the C compiler assumes that the nodebug option is specified.

• Note

To perform C source-level debugging, the debug option must also be specified at assembly and
linkage.

I-3-14

Macro Name Definition:

• Format: def ine=<macro name>=<name> |
 <macro name>=<constant> |
 <macro name>

• Description

Defines macro names.

Table 3-6 shows the macro names, names, and constants that can be specified using a suboption.
Up to 31 characters are valid for each macro name, name, and constant.

When suboption <macro name>=<name> or <macro name>=<constant> is specified, <name>
or <constant> is defined as a macro name. When only <macro name> is specified as a
suboption, the macro name is assumed to be defined.

This option enables macro definition on the command line in the same way as that in C source
programs.

Up to 16 suboptions can be specified.

Table 3-6 Macro Names, Names, and Constants Specified by define Option

Item Description

Macro name A character string beginning with an alphabetic character or an underscore
followed by zero or more alphabetic characters, underscores, and numbers
(0 to 9)

Name A character string beginning with an alphabetic character or an underscore
followed by zero or more alphabetic characters, underscores, and numbers
(0 to 9)

Constant A character string of one or more numbers, or a character string of one or
more numbers followed by a period (.) and zero or more numbers.

I-3-15

Block Transfer Instruction:

• Format: ee pmov

• Description

Expands to the block transfer instruction, EEPMOV, the assignment statements of structures
and initial value assignment expressions for the arrays declared by local variables.

When this option is not specified, the C compiler expands them to the MOV instructions or run-
time routines.

• Note

If an NMI interrupt occurs during EEPMOV execution, control moves to the next instruction
after the interrupt processing, and therefore, EEPMOV operation cannot be guaranteed.
Precautions must be taken against NMI interrupts when this option is used.

Include File:

• Format: i nclude=<path name>

• Description

Specifies the name of the path where the include file referred to by the C source program is
stored.

Two or more path names can be specified by separating them by a comma (,).

For details on how to retrieve the include file, refer to descriptions on the preprocessor
specifications in appendix A.1, C Compiler Language Specifications.

I-3-16

Memory Indirect Addressing Mode:

• Format: ind irect

• Description

Uses the memory indirect addressing mode (@@aa:8) for all function calls in the C source
program.

When this option is specified, the C compiler outputs an address table for memory-indirect calls
of the functions defined in the C source program to section <$INDIRECT + section name> in
addition to the functions themselves. For details on how to specify the section name, refer to
section 1.6, Section Switching in Part II, Programming.

• Notes

— When the indirect option is specified, the standard library functions are also called in
memory indirect addressing mode. In this case, the addresses of the standard library
functions must be set in the address table.

Example: Address table assembly program

 .IMPORT _printf (a)
 .EXPORT $printf (b)
 .SECTION $INDIRECT,DATA,ALIGN=2
 $printf .DATA.L _printf (c)
 .END

(a): Standard function external reference declaration (_+standard function name)
(b): Address table external definition declaration ($+standard function name)
(c): Address table definition

— The address table can be stored in the area from 0x0000 to 0x00FF. Check that the address
table section is located in the area from 0x0000 to 0x00FF using the linkage map at linkage.

I-3-17

Limit Value Expansion:

• Format: lim its= m acro=<numeric value> |
 s ymbol=<numeric value> |
 <numeric value>

• Description

Expands the limit values of macro names using #define statements, external identifiers, and
internal identifiers.

The limits=macro=<numeric value> option expands the limit value of #define macros to 1024
× <numeric value>.

The limits=symbol=<numeric value> option expands the limit value of external identifiers to
512 × <numeric value> - 1 and that of internal identifiers to 512 × <numeric value>.

The limits=<numeric value> option expands the limit value of #define macros to 1024 ×
<numeric value>, that of external identifiers to 512 × <numeric value> - 1, and that of internal
identifiers to 512 × <numeric value>.

1 to 24 can be specified as <numeric value>.

When this option is not specified, the C compiler assumes that the following is specified:
limits=macro=4, symbol=8 (UNIX)
limits=1 (MS-DOS)

Listing File Specification:

• Format: l ist=[=<listing file name>]
 nol ist

• Description

The list option specifies <listing file name>.

When the nolist option is specified, no listing file is created.

<listing file name> must satisfy the rules described in section 3.3, File Naming.

If <listing file name> is not specified in the list option, the listing file name body becomes the
same as that of the source file and the extension becomes lis for UNIX and lst for MS-DOS.

When this option is not specified, the C compiler assumes that list is specified.

I-3-18

Message Output Control:

• Format: m essage

• Description

Outputs information-level messages for the C source program.

When this option is not specified, the C compiler does not output information-level messages.

Object File:

• Format: ob ject [=<object file name>]
 noob ject

• Description

The object file name can be specified with the object option.

When the noobject option is specified, no object file is created.

If <object file name> is not specified in the object option, the object file name body becomes
the same as that of the source file and the extension becomes obj for a relocatable object
program and src for an assembly source program, which is determined by the code option.

When this option is not specified, the C compiler assumes that the object is specified.

• Note

When the noobject option is specified, the following options become invalid:
case,
code,
cpuexpand/nocpuexpand,
debug,
eepmov,
optimize,
regexpansion/noregexpansion,
section,
show=object, statistics, allocation,
speed,
string,
volatile/novolatile

I-3-19

Optimization Level:

• Format: op timize=0 | 1

• Description

Specifies the optimization level for the object program.

When the optimize=0 option is specified, the C compiler does not optimize the object program.

When the optimize=1 option is specified, the C compiler optimizes the object program.

When this option is not specified, the C compiler assumes that optimize=1 is specified.

• Note

When the optimize=0 option is specified, the following option becomes invalid:
speed=inline, loop

Register Variable Assignment Expansion:

• Format: r egexpansion
 nor egexpansion

• Description

When the regexpansion option is specified, the C compiler increases the number of registers to
which register variables are assigned.

When the noregexpansion option is specified, the C compiler does not increases the number of
registers.

Generally, variable access speed increases when the registers are increased.

For details on register variable assignment, refer to the description on registers in appendix A.1,
C Compiler Language Specifications.

When this option is not specified, the C compiler assumes that the regexpansion is specified.

I-3-20

Section Name:

• Format: se ction= p rogram=<section name> |
 c onst=<section name> |
 d ata=<section name> |
 b ss=<section name>

• Description

Specifies section names in the object program.

For details on section names, refer to section 2.1, Structure of Object Program in Part II,
Programming. <section name> must be a character string consisting of alphabetic, or numeric
characters, underscores (_), or dollar marks ($), and it cannot begin with a numeric character.
Up to 32 characters can be used for a section name.

When this option is not specified, the C compiler assumes that section=program=P, const=C,
data=D, bss=B is specified.

I-3-21

Listing and Formats:

• Format: sh ow= so urce | noso urce |
 o bject | noo bject |
 st atistics | nost atistics|
 a llocation | noa llocation |
 e xpansion | noe xpansion
 w idth=<value> |
 l ength=<value>

• Description

Specifies the output listing contents and format or cancels the output. Table 3-7 lists
suboptions.

Table 3-7 Suboptions for show Option

Suboption Description
source Outputs source program listing.

nosource Does not output source program listing.

object Outputs object program listing.

noobject Does not output object program listing.

statistics Outputs statistic information listing.

nostatistics Does not output statistic information listing.

allocation Outputs symbol assignment information listing.

noallocation Does not output symbol assignment information listing.

expansion Outputs source program listing after the include files and macros are
expanded. When nosource is also specified, expansion becomes
invalid and the source program listing is not output.

noexpansion Outputs source program listing before the include files and macros are
expanded. When nosource is also specified, expansion becomes
invalid and the source program listing is not output.

width=<value> Sets the maximum number of characters in one line of listings to
<value>. <value> must be 0, or 80 to 132 in decimal. When <value> is
0, the maximum number of characters is not specified.

length=<value> Sets the maximum number of lines in one page of listings to <value>.
<value> must be 0, 20 to 255 in decimal. When <value> is 0, the
maximum number of lines is not specified.

For listing examples, refer to section 3.5, C Compiler Listings. When this option is not
specified, the C compiler assumes that show=source, noobject, statistics, noallocation,
noexpansion, width=132, length=60 is specified.

I-3-22

Optimization Method:

• Format: sp eed[= r egister |
 sh ift |
 l oop |
 sw itch |
 i nline |
 st ruct]

• Description

Optimizes the execution speed of the object generated by the C compiler.

When the speed=register option is specified, the C compiler uses the PUSH and POP
instruction to save and restore the register contents at entry and exit of functions, without using
run-time routines, for the 300ha, 300hn, or 300 CPU/operating mode.

When the speed=shift option is specified, the C compiler outputs a faster object code for shift
operations.

When the speed=loop or speed=switch option is specified, the C compiler generates a faster
code for the for statement or switch statement, respectively.

When the speed=inline option is specified, the C compiler performs in-line expansion of called
functions. For details on in-line expansion conditions, refer to section 3.1.4, In-line Expansion
of Functions in Part II, Programming.

When the speed=struct option is specified, the C compiler performs in-line expansion of a
struct or double assignment statement, without using run-time routines.

When speed is specified without suboptions, all the above optimization methods are used.
When this option is not specified, the C compiler reduces the object code size without
considering the execution speed.

• Note

When no optimization (optimize=0) is specified, speed=loop and speed=inline become invalid.

I-3-23

Character String Output Area:

• Format: st ring= c onst | d ata

• Description

When the string=const option is specified, the C compiler outputs character strings in the C
source program to the constant area. The character strings output to the constant area do not
need to be transferred to the RAM.

When the string=data is specified, the C compiler outputs the character strings to the
initialization data area. The character string output to the initialization data area can be
modified at program execution.

When this option is not specified, the C compiler assumes that string=const is specified.

Subcommand File:

• Format: su bcommand=<subcommand file name>

• Description

Specifies the subcommand file where options used at compiler initiation are stored. The
command format in the subcommand file is the same as that on the command line.

Example:

When the subcommand file (opt.sub) contents are as follows:

-show=object,length=0 -debug -byteenum

and when the C compiler is initiated by the following command line:

ch38 -cpu=2600a -subcommand=opt.sub test.c

the C compiler operates in the same way as when the following is specified:

ch38 -cpu=2600a -show=object,length=0 -debug -byteenum test.c

I-3-24

External Variable Optimization:

• Format: v olatile | nov olatile

• Description

When the volatile option is specified, the C compiler optimizes external variables. When the
novolatile option is specified, the C compiler does not optimize them. When this option is not
specified, the C compiler assumes that novolatile is specified.

I-3-25

3.5 C Compiler Listings

This section deals with C compiler listings and their formats.

Structure of C Compiler Listings: Table 3-8 shows the structure and contents of C compiler
listings.

Table 3-8 Structure and Contents of C Compiler Listings

List Structure Contents
Option Specification
Method Default

Source listing
information

Listing consists of source
programs *1

show = source
show = nosource

Output

Source program listing
after include file and macro
expansion *2

show = expansion
show = noexpansion

No output

Error information Errors detected during
compilation

— Output

Symbol allocation
information

Variables allocated to
stack frames for a function

show = allocation
show = noallocation

No output

Object information Machine code used in
object programs and the
assembly code

show = object
show = noobject

No output

Statistics
information

Length of each section
(byte), the number of
symbols, and object types

show = statistics
show = nostatistics

Output

Notes: 1. Source program listings may be output in the object information, depending on the
suboption combination. Table 3-9 shows the output destinations of the source program
listings depending on the suboption combination.

2. The source program listing after include file and macro expansion is only valid when
show = source is specified.

Table 3-9 Source Program Listing Output Destinations

Source Program Listing Suboption Specifications

Output Destination source expansion object

Source listing information Specified Specified —

Object information Specified Not specified Specified

I-3-26

Source Listing: The source listing may be output in two ways. When show = noexpansion is
specified, the unpreprocessed source program is output. When show = expansion is specified, the
preprocessed source program is output. Figures 3-1 and 3-2 show these output formats,
respectively. In addition, figure 3-2 shows the differences between them with bold characters.

************ SOURCE LISTING ************

FILE NAME: m0260.c

 Seq File Line Pi 0––––+––––1––––+––––2––––+––––3––––+––––4––––+––––5––

 1 m0260.c 1 #include "header.h"
 4 m0260.c 2
 7 m0260.c 5 int sum2(void)
 8 m0260.c 6 { int j;
 10 m0260.c 8
 11 m0260.c 9 #ifdef SMALL
 12 m0260.c 10 j=SML_INT;
 13 m0260.c 11 #else
 14 m0260.c 12 j=LRG_INT;
 15 m0260.c 13 #endif
 16 m0260.c 14
 17 m0260.c 15 return j; /*

continue123456789012345678901234567
 (1) (2) (3) + 2345678901234567890 */
 18 m0260.c 16 (6)
 }

Figure 3-1 Source Listing Output for show=noexpansion

I-3-27

************ SOURCE LISTING ************

FILE NAME: m0260.c

 Seq File Line Pi 0----+––––1––––+––––2––––+––––3––––+––––4––––+––––5––

 1 m0260.c 1 #include "header.h"
 2 header.h 1 #define SML_INT 1
 3 header.h 2 #define LRG_INT 100
 4 m0260.c 2
 7 m0260.c 5 int sum2(void)
 8 m0260.c 6 { int j;
 10 m0260.c 8
 11 m0260.c 9 #ifdef SMALL
 12 m0260.c 10 X j=SML_INT;

 13 m0260.c 11 (4) #else
 14 m0260.c 12 E j=100;

 15 m0260.c 13 (5) #endif
 16 m0260.c 14
 17 m0260.c 15 return j; /*

continue123456789012345678901234567
 (1) (2) (3) + 2345678901234567890 */
 18 m0260.c 16 (6)
 }

Figure 3-2 Source Listing Output for show=expansion

Description

(1) Listing line number

(2) Source program file name or include file name

(3) Line number in source program or include file

(4) If show=expansion is specified and conditional directives such as #ifdef and #elif are to be
compiled, source program lines that are not to be compiled are marked with an X.

(5) If show=expansion is specified and #define directives are used to expand macros, lines
containing a macro expansion are marked with an E.

(6) If a source program line is longer than the maximum listing line, the continuation symbol (+)
is used to indicate that the source program line is extended over two or more listing lines.

I-3-28

Error Information: Figure 3-3 shows an example of error information.

************ SOURCE LISTING ************

FILE NAME: m0260.c

 Seq File Line Pi 0----+----1----+----2----+----3----+----4----+----5-
 1 m0260.c 1 #include "header.h"
 4 m0260.c 2
 5 m0260.c 3 extern int sum3(int);
 6 m0260.c 4
 7 m0260.c 5 sum3(int x)
 8 m0260.c 6 {
 9 m0260.c 7 int i;
 10 m0260.c 8 int j;
 11 m0260.c 9
 12 m0260.c 10 j=0;
 13 m0260.c 11 for (i=0; i<=x; i++){
 14 m0260.c 12 j+=k; ← Error in this line
 15 m0260.c 13 }
 16 m0260.c 14 return j;
 17 m0260.c 15 }
 18 m0260.c 16
 19 m0260.c 17
 20 m0260.c 18

*********** ERROR INFORMATION **********

FILE NAME: m0260.c

File Line Erno Lvl Message
 m0260.c 12 2225 (E) UNDECLARED NAME: "k"
 (1) (2) (3) (4) (5)

NUMBER OF ERRORS: 1 (6)
NUMBER OF WARNINGS: 0 (6)
NUMBER OF INFORMATIONS: 0 (7)

Figure 3-3 Source Listing Including Errors and Error Information

Description

(1) The name of the source program in which the error occurred is indicated within the limit of
ten characters.

(2) The line number containing the error is listed, respectively.

(3) The error number identifies the error message.

(4) (I) Information level

(W) Warning level

(E) Error level

(F) Fatal level

(5) A message is given in upper-case letters.

(6) Total number of error-level messages and the total number of warning-level messages.

(7) Total number of information-level messages (only when the message option is specified).

I-3-29

Symbol Allocation Information: Symbol allocation information is the information of function
parameters and local variables. Figure 3-4 shows an example of symbol allocation information
when a program is compiled in H8S/2600 advanced mode.

************ SOURCE LISTING ************

FILE NAME: m0280.c

 Seq File Line Pi 0----+----1----+----2----+----3----+----4----+----5-

 1 m0280.c 1 extern int h(char, char *, double);
 2 m0280.c 2
 3 m0280.c 3 int
 4 m0280.c 4 h(char a, register char *b,double c)
 5 m0280.c 5 {
 6 m0280.c 6 char *d;
 7 m0280.c 7
 8 m0280.c 8 d= &a;
 9 m0280.c 9 h(*d, b, c);
 10 m0280.c 10 {
 11 m0280.c 11 register int i;
 12 m0280.c 12
 13 m0280.c 13 i= *d;
 14 m0280.c 14 return i;
 15 m0280.c 15 }
 16 m0280.c 16 }

******* STACK FRAME INFORMATION ********

FILE NAME: m0280.c

 Function (File m0280.c , Line 4): h
 (1)
 Parameter Allocation
 a 0xfffffff7 saved from R0L 
 b REG ER5 saved from ER1  (2)
 c 0x00000008 

 Level 1 (File m0280.c , Line 5) Automatic/Register Variable Allocation (3)
 d 0xfffffff2
 Level 2 (File m0280.c , Line 10) Automatic/Register Variable Allocation (3)
 i REG R4

Parameter Area Size : 0x00000008 Byte(s) 
Linkage Area Size : 0x00000008 Byte(s) 
Local Variable Size : 0x00000006 Byte(s)  (4)
Temporary Size : 0x00000000 Byte(s) 
Register Save Area Size : 0x00000008 Byte(s) 
Total Frame Size : 0x0000001e Byte(s) 

Figure 3-4 Symbol Allocation Information (cpu = 2600a)

I-3-30

Description

(1) File name in which the function is defined, line number, and function name

(2) Parameter allocation

A saved from B: A parameter passed with B is copied to A at the entry of the function.

REG ERx: If a parameter is allocated to a register, REG is indicated.

0xffffffxx: If a parameter is allocated to a stack, the offset from the address by the
frame pointer (ER6) is indicated.

(3) Local variable allocation information

This indicates where the local variables declared by a compound statement are stored. If they
are allocated to stacks, the offset from the address indicated by ER6 is indicated. If they are
allocated to registers, REG is displayed.

(4) Information on stack frames used in functions

Parameter Area Size: The total size of the area for parameters allocated to the stack and
return value address area

Linkage Area Size: The total size of the linkage area (return address area and
frame pointer stack area)

Local Variable Size: The total size of the parameter save area which is used when the
local variable area in the function and parameters passed in
registers are allocated to stacks.

Temporary Size: The size of the temporary area used by the C compiler in the
function.

Register Save Area Size: The size of the amount of memory required to stack the register
contents before the function is executed.

Total Frame Size: The total size of stack frames allocated in the function.

Note: The following message is output instead of parameter allocation and local variable
allocation information when the option optimize = 1 is specified.

Optimize Option Specified: No Allocation Information Available

Figure 3-5 shows an example of stack allocation corresponding to the symbol allocation
information shown in figure 3-4.

I-3-31

ER4

ER5

ER0

ER1

Frame pointer ER6 (FP)

i

b

b

a

Lower
addresses

Higher
addresses

Copy

-14

-10

-8

-4

0

4

16

8

ER4

c

Stack

ER6

(previous FP)

d

ER5

Return address

a

Register save
area size

Local
variable
area

Parameter
area (for stack
parameter)

Linkage
area

Parameter
area (for register
parameter)

Total
stack
frame
size

Local
variable
area
size

Figure 3-5 Stack Allocation Example (cpu = 2600a)

I-3-32

Object Information: Figures 3-6 and 3-7 show object listing examples when the source program
listing is output to the object information and when it is not output.

************ OBJECT LISTING ************

FILE NAME: m0251.c

 SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

(1) (2) (3) (4)
P ;section
 1: extern int sum(int);

 2: (5)
 3: int
 4: sum(int x)
 00000000 _sum: ; function: sum
 5: {
 6: int i;
 7: int j;
 8:
 9: j=0;
 00000000 1911 SUB.W R1,R1
 10: for (i=0; i<=x; i++){
 00000002 1988 SUB.W E0,E0
 00000004 4004 BRA L8:8
 00000006 L7:
 11: j+=i;
 00000006 0981 ADD.W E0,R1
 00000008 0B58 INC.W #1,E0
 0000000A L8:
 0000000A 1D08 CMP.W R0,E0
 0000000C 4FF8 BLE L7:8
 12: }
 13: return j;
 0000000E 0D10 MOV.W R1,R0
 14: }
 00000010 5470 RTS

Figure 3-6 Object Information When Source Program Listing Is Output
(show=source,object, cpu=2600a)

Description

(1) Section attribute (P, C, D, B) of each section

(2) The offset indicates the offset address relative to the beginning of each section

(3) Contents of the offset address of each section

(4) Assembly code corresponding to machine language

(5) Line number and contents of source program

Note: When the show=expansion option is specified, the object listing is always output in the
format shown in figure 3-7.

I-3-33

************ OBJECT LISTING ************

FILE NAME: m0251.c

 SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

(1) (2) (3) (4)
P ; section
 ;*** File m0251.c , Line 4 ; block
 00000000 _sum: ; function: sum
 ;*** File m0251.c , Line 5 ; block
 ;*** File m0251.c , Line 9 ; expression statement
 00000000 1911 SUB.W R1,R1
 ;*** File m0251.c , Line 10 ; expression statement
 00000002 1988 SUB.W E0,E0
 ;*** File m0251.c , Line 10 ; for
 00000004 4004 BRA L8:8
 00000006 L7:
 ;*** File m0251.c , Line 10 ; block
 ;*** File m0251.c , Line 11 ; expression statement
 00000006 0981 ADD.W E0,R1
 ;*** File m0251.c , Line 10 ; expression statement
 00000008 0B58 INC.W #1,E0
 0000000A L8:
 0000000A 1D08 CMP.W R0,E0
 0000000C 4FF8 BLE L7:8
 ;*** File m0251.c , Line 13 ; return
 0000000E 0D10 MOV.W R1,R0
 ;*** File m0251.c , Line 14 ; block
 00000010 5470 RTS

Figure 3-7 Object Information When Source Program Listing Is Not Output
(show=nosource,object, cpu=2600a)

Description

(1) Section attribute (P, C, D, B) of each section

(2) The offset indicates the offset address relative to the beginning of each section

(3) Contents of the offset address of each section

(4) Assembly code corresponding to machine language

I-3-34

Statistics Information: Figure 3-8 shows an example of statistics information.

******* SECTION SIZE INFORMATION *******

PROGRAM SECTION(P): 0x00000012 Byte(s) 
CONSTANT SECTION(C): 0x00000000 Byte(s) 
DATA SECTION(D): 0x00000000 Byte(s) 
BSS SECTION(B): 0x00000000 Byte(s) 
 
TOTAL PROGRAM SECTION: 0x00000012 Byte(s)  (1)
TOTAL CONSTANT SECTION: 0x00000000 Byte(s) 
TOTAL DATA SECTION: 0x00000000 Byte(s) 
TOTAL BSS SECTION: 0x00000000 Byte(s) 
 
 TOTAL PROGRAM SIZE: 0x00000012 Byte(s) 

** ASSEMBLER/LINKAGE EDITOR LIMITS INFORMATION **

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 0 
NUMBER OF EXTERNAL DEFINITION SYMBOLS: 1  (2)
NUMBER OF INTERNAL/EXTERNAL SYMBOLS: 3 

********* CPU MODE INFORMATION ********

cpu=2600a (3)

Figure 3-8 Statistics Information

Description

(1) Size of each section and total size of sections

(2) Number of external reference symbols, number of external definition symbols, and total
number of internal and external labels

(3) CPU/operating mode specified by the cpu option or environment variable.

Note: Statistics information is not output if an error-level error or fatal-level error has occurred
or when option noobject is specified. In addition, SECTION SIZE INFORMATION is
not output when option code = asmcode is specified.

PART II

PROGRAMMING

II-1-1

Section 1 Limitations of the C compiler

Table 1-1 shows the limits on source programs that can be handled by the C compiler. Source
programs must fall within these limits. The underlined values are those when the limit option is
not specified. For details, refer to section 3.3, Compiler Options in Part I, Overview and
Operations.

Table 1-1 Limitation of the C Compiler

Classification Item Limit
Invoking the C
compiler

Number of source programs that can be compiled at
one time

16

Total number of macro names that can be specified
using the define option

16

Length of file name 128 characters

Source programs Length of one line 4096 characters

Number of source program lines 65535

Preprocessing Nesting level of files in an #include directive 30

Total number of macro names that can be specified in
a #define directive *

24576
 1024 (MS-DOS)
 4096 (UNIX)

Number of parameters that can be specified using a
macro definition or a macro call operation

63

Depth of the recursive expansion of a macro name 32

Nesting level of #if, #ifdef, #ifndef, #else, or #elif
directives

32

Total number of operators and operands that can be
specified in an #if or #elif directive

512

Declarations Number of function definitions 512

Number of external identifiers used for external
linkage

12287
 511 (MS-DOS)
 4095 (UNIX)

Number of internal identifiers that can be used in one
function

12288
 512 (MS-DOS)
 4096 (UNIX)

Total number of pointers, arrays, and functions that
qualify the basic type

16

Note: The C compiler defines six macro names (_ _ LINE _ _, _ _ FILE _ _, _ _ DATE _ _,
_ _ TIME _ _, _ _ STDC _ _ , and _ _ CPU _ _).

II-1-2

Table 1-1 Limitation of the C Compiler (cont)

Classification Item Limit

Declarations Array dimensions 6

(cont) Array or structure size (byte) *
• H8S/2600 normal mode, H8S/2000 normal mode,

H8/300H normal mode, or H8/300
• H8/300H advanced mode
• H8S/2600 advanced mode or

H8S/2000 advanced mode

65535

16777215
4294967295

Statements Nesting levels of compound statements 32

Levels of statement nesting in a combination of repeat
(while, do, and for) and select (if and switch)
statements

32

Number of goto labels that can be specified in one
function

511

Number of switch statements 256

Nesting levels of switch statements 16

Number of case labels 511

Nesting levels of for statements 16

Expressions Character array length 512 characters

Number of parameters that can be specified using a
function definition or a function call operation

63

Total number of operators and operands that can be
specified in one expression

Approximately 500

C library functions Number of files that can be opened simultaneously by
the open function

20

Note: When the bit width of the address space is specified in advanced mode, if the address
space corresponding to the specified bit width is smaller than the above limits, the address
space becomes the limit.

II-2-1

Section 2 Executing a C Program

This section covers object programs which are generated by the C compiler. In particular, this
section explains what items are required to link C programs with assembly programs and how to
install programs on the H8S/2600 system, H8S/2000 system, H8/300H system, or H8/300 system
(see Part III, System Installation). This section consists of the following three parts.

Section 2.1 Structure of Object Programs

This section discusses the characteristics of memory areas used for C source programs and
standard library functions.

Section 2.2 Internal Data Representation

This section explains the internal representation of data used by a C program. This information is
required when data is referred between C programs, hardware, and assembly programs.

Section 2.3 Linkage with Assembly Programs

This section explains the rules for variable and function names that can be mutually referenced by
multiple object programs. This section also discusses how to use registers, and how to transfer
parameters and return values when a C program calls a function. The above information is
required for C program functions calling assembly program routines or assembly program routines
calling C program functions.

Refer to respective hardware manuals for details on H8S/2600, H8S/2000, H8/300H, and H8/300
hardware.

II-2-2

2.1 Structure of Object Programs

This section explains the characteristics of memory areas used by a C program or standard library
function in terms of the following items.

• Sections
Composed of memory areas which are allocated statically by the C compiler. Each section has
a name and type. A section name can be changed by the compiler option section or #pragma
section.

• Write Operation
Indicates whether write operations are enabled at program execution.

• Initial Value
Shows whether there is an initial value when program execution starts.

• Alignment
Restricts addresses to which data is allocated.

Table 2-1 shows the types and characteristics of those memory areas.

II-2-3

Table 2-1 Memory Area Types and Characteristics

Memory
Area

Section Write Initial

Name Name
*

Type Operatio
n

Valu
e

Alignment Contents

Program area P code Disabled Yes 2 bytes This area stores machine
codes.

Constant area C data Disabled Yes 2 bytes This area stores const data.

Initialized
data area

D data Enabled Yes 2 bytes This area stores data whose
initial values are specified.

Non-initialized
data area

B data Enabled No 2 bytes This area stores data whose
initial values are not
specified.

Stack area — — Enabled No — This area is allocated at run
time and is required for C
program execution. Refer to
section 2.2, Dynamic Area
Allocation, in Part III, System
Installation.

Heap area — — Enabled No — This area is used by a C
library function (malloc,
realloc, or calloc). Refer to
section 2.2, Dynamic Area
Allocation, in Part III, System
Installation.

Note: Section name shown is the default generated by the C compiler when a specific name is not
specified by the compiler option section or expanded language specification #pragma
section.

II-2-4

Example: This program example shows the relationship between a C program and the sections
generated by the C compiler.

int a=1;
char b;
const int c=0;

main ()
{
 •
 •
 •
}

main(){•••}

c

a

b

Program area

Constant area

Initialized data area

Non-initialized data area

 C program Section generated by C compiler

II-2-5

2.2 Internal Data Representation

This section explains the internal representation of C language data types. The internal
representation of data is determined according to the following four items:

• Size
Shows the amount of memory needed to store the data.

• Alignment
Restricts the addresses to which data is allocated. There are two types of alignment, 1-byte
alignment in which data can be allocated to any address and 2-byte alignment in which data is
allocated to an even byte address.

• Data range
Shows the range of scalar-type data.

• Data allocation example
Shows how the elements of aggregate-type data are allocated.

II-2-6

Scalar-Type Data: Table 2-2 shows the internal representation of scalar-type data used in C.

Table 2-2 Internal Representation of Scalar-Type Data

Data Range

Data Type
Size
(bytes)

Alignment
(bytes) Sign Bit

Minimum
Value

Maximum
Value

char 1 1 Used –27 (–128) 27 – 1 (127)

signed char 1 1 Used –27 (–128) 27 – 1 (127)

unsigned char 1 1 Unused 0 28 – 1 (255)

short 2 2 Used – 215 (–32768) 215– 1(32767)

unsigned short 2 2 Unused 0 216 –1 (65535)

int 2 2 Used –215 (–32768) 215 – 1 (32767)

unsigned int 2 2 Unused 0 216 – 1 (65535)

long 4 2 Used –231 (–2147483648) 231 – 1 (2147483647)

unsigned long 4 2 Unused 0 232 – 1 (4294967295)

enum *1 2 2 Used –215 (–32768) 215 – 1 (32767)

float 4 2 Used – ∞ + ∞

double,
long double

8 2 Used – ∞ + ∞

Pointer
(H8S/2600 normal,
H8S/2000 normal,
H8/300H normal, or
H8/300)

2 2 Unused 0 216 – 1 (65535)

Pointer
(H8/300H advanced)

4 2 Unused 0 224 – 1 (16777215)*2

Pointer
(H8S/2600 advanced
or H8S/2000
advanced)

4 2 Unused 0 232– 1 (4294967295)

Notes: 1. When the byteenum option is specified, the size and alignment become 1 byte.
2. The lower three bytes indicate address data and the highest byte has an indefinite

value.

II-2-7

Aggregate-Type Data: This part explains the internal representation of array, structure, and
union data types. Table 2-3 shows the internal data representation of aggregate-type data.

Table 2-3 Internal Representation of Aggregate-Type Data

Data type Alignment (bytes) Size (bytes) Data Allocation Example

Array type Array element
alignment

(Number of array elements)
x (Element size)

char a [10] ;
 Alignment : 1 byte
 Size : 10 bytes

Structure
type

Maximum structure
member alignment

Total member size*1 struct {
 char a, b;
};
 Alignment : 1 byte
 Size : 2 bytes

Union type Maximum union
member alignment

Maximum value of member
size*2

union {
 char a, b;
};
 Alignment : 1 byte
 Size : 1 byte

Notes: 1. When structure members are allocated, 1-byte unused area may be generated
between structure members to align data types.

z.a z.b

4 bytes

1 byte

Unused areastruct {

 char a;

		 int b;

	 }z;		

If a structure has 2-byte alignment and the last member ends at an odd-byte address,
the following 1-byte is included in this structure.

x.a x.b

4 bytes

1 byte

struct {

 int a;

 char b;

 }x;

2 When an union has 2-byte alignment and its maximum member size is odd, the
following 1-byte is included in this union.

4 bytes
w.a

w.b[0] w.b[1] w.b[2]
1 byte

union {

 int a;

 char b[3];

 }w;

II-2-8

Bit Fields: A bit field is a member of a structure. This part explains how bit fields are allocated.

• Bit field members
Table 2-4 shows the specifications of bit field members.

Table 2-4 Bit Field Member Specifications

Item Specifications

Type specifiers allowed
for bit fields

char, unsigned char, short, unsigned short, int, and unsigned int

How to treat a sign when
data is expanded to the
declared type*1

A bit field with no sign (unsigned type is specified) : Zero extension*2

A bit field with a sign (unsigned is not specified) : Sign extension

Notes: 1. To use a member of a bit field, data in the bit field is expanded to the declared type.
2. Zero extension: Zeros are written to the high-order bits during extension.

Sign extension: The most significant bit of a bit field is used as a sign and is written to
 the high order bits during extension.

Note: One-bit field data with a sign is interpreted as the sign, and can only indicate 0 and –1. To
indicate 0 and 1, bit field data must be declared with unsigned.

• Bit field allocation
Bit field members are allocated according to the following five rules:

— Bit field members are placed in an area beginning from the left, that is, the most significant
bit.

Example:

 struct b1{

				 int a:2;

			 	int b:3;

		 }x;

: Unused area

01011131415
x. a x. b

— Consecutive bit field members having type specifiers of the same size are placed in the
same area as much as possible.

Example:

struct b1{

 int a:2;

 unsigned short b:3;

 }y;

01011131415
y. a y. b

II-2-9

— Bit field members having type specifiers with different sizes are allocated to different areas.

Example:

struct b1{

 int a:5;

 char b:4;

 }z;

10 01115
z. a

4 37
z.b

0

— If the number of remaining bits in the area is less than the next bit field size, though type
specifiers indicate the same size, the remaining area is not used and the next bit field is
allocated to the next area.

Example:

struct b2{

 char a:5;

 char b:4;

 }v;

v. a
37 02

v. b
7 04 3

— If an anonymous bit field member or a bit field member with a bit field size of 0 is declared,
the next member is allocated to the next area.

Example:

struct b2{

 char a:5;

 char :0;

 char c:3;

 }w;

w. a
37 02

w. c
7 05 4

II-2-10

2.3 Linkage with Assembly Programs

Because C is suitable for writing system programs, it can be used in almost every program in
application systems for microcomputers. Especially, this C compiler supports an assembly
language embedding function and intrinsic functions to enable all programs to be written in C.

However, when the required specifications, such as hardware timing or memory size limitation,
are severe, some processes must be written in assembly language, and then linked to the C
program.

This section explains the items which must be considered when linking a C program to an
assembly program:

• External identifier reference

• Function call interface

II-2-11

2.3.1 External Identifier Reference

Functions and variable names declared as external identifiers in a C program can be referenced or
modified by both assembly programs and C programs. The following are regarded as external
identifiers by the C compiler:

• A global variable which has a storage class other than static
• A variable name declared in a function with storage class extern
• A function name whose storage class is other than static

When variable or function names which are defined as external identifiers in C programs, are used
in assembly programs, an underscore character (_) must be added at the beginning of the variable
or function name (up to 31 characters without the leading underscore).

Example 1: An external identifier defined in an assembly program is referenced by a C program

— In an assembly program, symbol names beginning with an underscore character (_) are
declared as external identifiers by an .EXPORT directive.

— In a C program, symbol names (with no underscore character (_) at the head) are declared
as external identifiers.

Assembly program (definition) C program (reference)

 .EXPORT _a,_b
 .SECTION D,DATA,ALIGN=2
_a: .DATA.W 1
_b: .DATA.W 1
 .END

extern int a,b;

f()
(
 a+=b;
)

II-2-12

Example 2: An external identifier defined in a C program is referenced by an assembly program

— In a C program, symbol names (with no underscore character (_) at the head) are defined as
external identifiers.

— In an assembly program, external references to symbol names beginning with an underscore
character (_) are declared by an .IMPORT directive.

C program (definition) Assembly program (reference)

char a,b;
.IMPORT _a,_b
.SECTION P,CODE,ALIGN=2

MOV.B @_a,R5L
MOV.B R5L,@_b
RTS
.END

II-2-13

2.3.2 Function Call Interface

When either a C program or an assembly program calls the other, the assembly programs must be
created using rules involving the following:

• Stack Pointer

• Allocating and Deallocating Stack Frames

• Registers

• Setting and Referencing Parameters and Return Values

Stack Pointer: Valid data must not be stored in a stack area with an address lower than the stack
pointer, since the data may be destroyed by an interrupt process.

Allocating and Deallocating Stack Frames: In a function call (right after a JSR or a BSR
instruction has been executed), the stack pointer indicates the return address area. Allocating and
setting data to a higher address than this area is a role of the calling function. When control
returns from a function, the called function deallocates the return address area, usually with a RTS
instruction, while the calling side deallocates the area having an address higher than the return
value address and the parameter area.

After function call

Lower addresses

0

Return address

Return value address

Parameter area

SP

After control returns from

a function

Return value address

Parameter area

SP

Higher addresses

0

~~ ~~ ~~ ~~

Figure 2-1 Allocation and Deallocation of a Stack Frame

II-2-14

Registers: Some registers change after a function call, while some do not. Table 2-5 shows how
registers of each CPU type change according to the rules.

Table 2-5 Rules on Changes in Registers After a Function Call

CPU Type and Registers Used in a Function

Item
H8S/2600, H8S/2000,
and H8/300H H8/300 Notes on Programming

Non-guaranteed
registers

ER0 and ER1 R0 and R1 If registers used in a
function contain valid data
when a program calls the
function, the program must
push the data onto the
stack or register before
calling the function.

Guaranteed
registers

ER2 – ER6 R2 – R6 The data in registers used
in functions is pushed onto
the stack or register before
calling the function, and
popped from the stack or
register only after control
returns from the function.

The following examples show the rules governing register changes that take place in H8S/2600
advanced mode.

II-2-15

• A subroutine in an assembly program is called by a C program

 .EXPORT _sub
 .SECTION P,CODE,ALIGN=2
_sub: STM.L (ER4-ER6),@-SP
 SUB.L #10,SP
 .
 .
 .
 ADD.L #10,SP
 LDM.L @SP+,(ER4-ER6)
 RTS
 .END

The data in the registers used in the
function is pushed on to the stack.

Function processing
(ER0 and ER1 register data is not
guaranteed, and they can be used
without stacking them.)

Register data is popped from the stack.

Assembly program (called program)

extern void sub();
f()
{
 sub();
}

C program (calling program)

• A subroutine in a C program is called by an assembly program

 .IMPORT _sub
 .SECTION P,CODE,ALIGN=2
 .
 .
 .
 MOV.L ER1,@(4,SP)
 MOV.L ER0,ER6
 JSR @_sub
 .
 .
 .
 .END

If registers ER0 and ER1 contain valid data,
the data is pushed onto the stack or stored
in unused registers.

The sub function is called.

Assembly program (calling program)

void sub()
{
 .
 .
 .
}

C program (called program)

II-2-16

Setting and Referencing Parameters and Return Values: This section explains how to set and
reference parameters and return values. The rules for parameters and return values differ
depending on whether or not the type of each parameter or return value is explicitly declared in the
function declaration. A function prototype declaration is used to explicitly declare the type of
each parameter or return value.

The rest of this section explains the general rules concerning parameters and return values, how
the parameter area is allocated, and how areas are established for return values.

• General rules concerning parameters and return values

— Passing parameters
A function is called after parameters are copied to the parameter area. Since the calling
function does not reference the parameter area after control returns to it, the calling function
is not affected even if the called function modifies the parameters.

— Rules on type conversion
Type conversion may be performed automatically when parameters are transferred or a
return value is returned. This section explains the rules on type conversion.

(a) Return value type conversion
A return value is converted to the data type returned by the function.

(b) Type conversion of parameters whose types are declared
Parameters whose types are declared by prototype declaration are converted to the
declared types.

(c) Type conversion of parameters whose types are not declared
Parameters whose types are not declared by prototype declaration are converted
according to the following rules:
• Parameters whose types are char or unsigned char are converted to int.
• Parameters whose types are float are converted to double.
• Other parameters are not converted.

II-2-17

Example :

long f();

long f()�

 { float x;

� return x;�

 } The return value is converted to long.

void p(int,...);�

f()�

 { char c;

� p(1.0, c);�

 } c is converted to int because no type is declared

� for the parameter.

 1.0 is converted to int because int type is declared

�				 for the parameter.

(a)

(b)

Note: When parameter types are not declared by a prototype declaration, the correct
specifications must be made by the calling and called functions so that parameters are
correctly transferred. Otherwise, correct operation is not guaranteed.

Example :

f(X)
float x;
{
 .
 .
 .
}

main()
{
 float x;
 f(x)
}

f(float x)
{
 .
 .
 .
}

main()
{
 float x;
 f(x)
}

Incorrect specification Correct specification

Since the parameter type belonging to function f is not declared by a prototype declaration in the
incorrect specification above, parameter x is converted to double when function main calls
function f. Function f cannot receive the parameter correctly because the parameter type is
declared as float in function f. Use the prototype declaration to declare the parameter type, or
make the parameter declaration double in function f.

The parameter type is declared by a prototype declaration in the correct specification above.

II-2-18

• Parameter area allocation
Parameters are allocated to either registers or a stack parameter area. Figure 2-2 shows the
parameter area allocation for each object type. Table 2-6 lists the general parameter area
allocation rules.

Stack

Return address

Return value
address

Parameter
area

Parameter storage
registers

H8S/2600, H8S/2000,
and H8/300H

ER0

ER1

Lower address

Parameter area

Stack

Parameter
area

Parameter storage
registers

H8/300

R0

R1

Lower address

Return address

Return value
address

Figure 2-2 Parameter Area Allocation

II-2-19

Table 2-6 General Rules on Parameter Area Allocation

Allocation Rules

Parameters Allocated to Registers

CPU Type

Parameter
Storage
Registers Target Type

Parameters Allocated to a
Stack

H8S/2600,
H8S/2000,
and H8/300H

ER0 and ER1 char, unsigned
char, short,
unsigned short, int,
unsigned int, long,
unsigned long,
float, and pointer

• Parameters whose types are
other than target types for
register passing

• Parameters of a function which
has been declared by a
prototype declaration to

H8/300 R0 and R1 char, unsigned
char, short,
unsigned short, int,
unsigned int, and
pointer

have variable-number
parameters*

• Parameters which could not be
allocated to registers because
multiple parameters are
allocated

Note: If a function has been declared to have variable-number parameters by a prototype
definition, parameters which do not have a corresponding type in the declaration and the
immediately preceding parameter are allocated to a stack.
Example:

int f2(int,int,...);
 :
 f2(x,y,z);
 : y and z are allocated to a stack.

II-2-20

• Parameter allocation

— Allocation to parameter storage registers
Following the order of their declaration in the source program, parameters are allocated to
the parameter storage registers starting from the LSB of the smallest numbered register.
Figure 2-3 shows an example of parameter allocation to storage registers.

f(char a,int b)

{

�@�@�@�@:

}

b Unused a

LSBMSB

E0 R0H R0L

Figure 2-3 Example of Allocation to Parameter Storage Registers (H8S/2600)

— Allocation to a stack parameter area
Parameters are allocated to the stack parameter area starting from lower addresses, in the
order that they are specified in the source program.

Note: Regardless of the alignment determined by the structure type, structure type or union type
parameters are allocated using 2-byte alignment and an even numbered byte area for each
parameter. This is because the H8S and H8/300-series stack pointer is incremented or
decremented in 2-byte units.

Refer to appendix B, Parameter Allocation Examples, for examples of parameter
allocation for each CPU/operating mode.

II-2-21

• Return value setting location
The return value is written to either a register or memory depending on its type. Refer to
table 2-7 for the relationship between the return value type and setting location.

When a function return value is to be written to memory, the return value is written to the area
indicated by the return value address. The calling side must allocate this return value setting
area in addition to the parameter area, and must set the address of the former in the return value
address area before calling the function. The return value is not written if its type is void.

Table 2-7 Return Value Type and Setting Location

Return Value Setting Location

Return Value Type
H8S/2600, H8S/2000, and
H8/300H H8/300

char and unsigned char Register(R0L) Register (R0L)

short, unsigned short, int, and
unsigned int

Register(R0) Register (R0)

Pointer Registers:
Normal mode: (R0)
Advanced mode: (ER0)

Register(R0)

long, unsigned long, and float Register (ER0) Return value setting area
(memory)

double, long double, structure, and
union

Return value setting area
(memory)

Return value setting area
(memory)

Return value

address area

Return value setting

area

(allocated by the

calling side)

Parameter

area

Figure 2-4 Return Value Setting Area Used When Written to Memory

II-3-1

Section 3 Extended Specifications

The C compiler supports the following two kinds of extended specifications:

• #pragma extension

• Intrinsic functions

3.1 #pragma Extension

Table 3-1 lists #pragma extension specifiers.

Table 3-1 #pragma Extension Specifier List

#pragma Extension Specifier Function

#pragma abs8, #pragma abs16 Specifies the short absolute addressing mode

#pragma asm, #pragma endasm Embeds assembly language instructions in a C
source program

#pragma indirect Calls functions in memory indirect addressing
mode

#pragma inline Performs in-line expansion of functions

#pragma interrupt Writes an interrupt function in C

#pragma section, #pragma abs8 section,
#pragma abs16 section, #pragma indirect
section

Switches sections in a C source program

#pragma regsave, #pragma noregsave Saves and restores register contents at the
entry and exit of functions

II-3-2

3.1.1 Short Absolute Address Specifications

#pragma abs8 and #pragma abs16 generate code for accessing variables allocated in 8-bit and
16-bit absolute address area in short absolute addressing mode. For details on the short absolute
addressing area, refer to appendix F, Access Area in Short Absolute Addressing.

The abs8 and abs16 options can generate code for accessing in short absolute addressing mode in
compilation units. However, #pragma abs8 and #pragma abs16 can specify short absolute
addressing in variable units.

Description Format:

#pragma abs8 (<variable name> [, <variable name>],...)
#pragma abs16 (<variable name> [, <variable name>],...)

Note: #pragma abs8 and #pragma abs16 musts be declared before the variables used are
declared.

Explanation:

The variables declared in #pragma abs8 are output to sections <$ABS8 + C section name>,
<$ABS8 + D section name>, and <$ABS8 + B section name>, and the code for accessing them in
8-bit absolute addressing mode (@aa:8) is generated.

The variables declared in #pragma abs16 are output to sections <$ABS16 + C section name>,
<$ABS16 + D section name>, and <$ABS16 + B section name>, and the code for accessing them
in 16-bit absolute addressing mode (@aa:16) is generated.

For details on specifying the C section name, D section name, and B section name, refer to
description on #pragma abs8 section and #pragma abs16 section in section 3.1.6, Section
Switching.

Notes:

1. Only the variables to be allocated to the static area can be specified with #pragma abs8 and
#pragma abs16.

2. Up to 63 variables can be specified in one #pragma abs8 or #pragma abs16 statement.

3. The variables specified with #pragma abs8 and #pragma abs16 are output to section
$ABS8C, $ABS8D, $ABS8B, $ABS16C, $ABS16D, or $ABS16B when the section
switching function is not used. Allocate the section to the 8-bit or 16-bit absolute addressing
area at linkage.

II-3-3

Example:

#pragma abs8(c)
#pragma abs16(i)
char c;
int i;
long l;
f(){
 c=10;
 i=100;
 l=1000;
}

When the above C source program is compiled specifying cpu=2600a, the following object
program will be generated:

 .CPU 2600A
 .EXPORT _c
 .EXPORT _i
 .EXPORT _l
 .EXPORT _f
 .SECTION P,CODE,ALIGN=2
_f:
 MOV.B #10:8,R0L
 MOV.B R0L,@_c:8 ;Accesses c in 8-bit short absolute addressing mode
 MOV.W #100:16,R0
 MOV.W R0,@_i:16 ;Accesses i in 16-bit short absolute addressing mode
 MOV.L #1000:32,ER0
 MOV.L ER0,@_l:32 ;Accesses l in 32-bit absolute addressing mode
 RTS
 .SECTION $ABS8B,DATA,ALIGN=2
_c:
 .RES.B 1 ;Allocates c to section $ABS8B
 .SECTION $ABS16B,DATA,ALIGN=2
_i:
 .RES.W 1 ;Allocates i to section $ABS16B
 .SECTION B,DATA,ALIGN=2
_l:
 .RES.L 1 ;Allocates l to section B
 .END

II-3-4

3.1.2 Assembly Language Embedded in a C Program

#pragma asm and #pragma endasm embed assembly language instructions in a C program.

Description Format:

#pragma asm
 <assembly language program>
#pragma endasm

Explanation:

The assembly language instructions must be preceded by #pragma asm and be followed by
#pragma endasm.

The C compiler inserts the assembly language instructions enclosed by #pragma asm and
#pragma endasm into the object code generated by the C compiler.

Notes:

1. Specify assembly program output with code=asmcode when compiling. If not specified, the
assembly language instructions enclosed by #pragma asm and #pragma endasm are
ignored.

2. The C compiler checks neither the syntax of the assembler instructions, nor their influence
over the code generated by the C compiler. When the optimize=1 or speed option is
specified when compiling, the expanded code or location of the assembler instructions may
differ from that specified using #pragma asm and #pragma endasm. Check the output code
and program operation by yourself, when using this function.

3. The #pragma asm and #pragma endasm specification cannot be nested. If attempted, an
error will occur.

4. If #pragma asm and #pragma endasm are specified in a conditional or loop statement, the
assembly language instructions including #pragma asm and #pragma endasm must be
enclosed by { }. If not, results are not guaranteed.

Example:

while(a==0)
{ Must be specified.
#pragma asm

<assembly language program>
#pragma endasm
} Must be specified.

II-3-5

Example:

void main()
#pragma asm
 MOV.L #H'FFFFFFFE,SP ;The stack address is set before
#pragma endasm ;the main function
{
 :
}

II-3-6

3.1.3 Function Call in Memory Indirect Addressing Mode

#pragma indirect calls functions in memory indirect addressing mode (@@aa:8).

The indirect option can also call functions in memory indirect addressing mode in compilation
units. However, #pragma indirect can specify it in function units.

Description Format:

#pragma indirect (<function name> [,<function name>...])

Note: #pragma indirect must be declared before the functions used are declared or defined.

Explanation:

#pragma indirect specifies the functions to be called in memory indirect addressing mode.

The function declared in the #pragma indirect statement is called in the format JSR @@<$ +
function name>:8. When the function declared in the #pragma indirect statement is defined, the
<$ + function name> label and the function address are stored in section <$INDIRECT + section
name> as the address table for function call.

For detail on how to specify the section name, refer to the description on #pragma indirect
section in section 3.1.6, Section Switching.

Notes:

1. Up to 63 functions can be specified in one #pragma indirect statement.

2. Up to 64 functions can be specified in total when the CPU/operating mode is 2600a, 2000a, or
300ha, and up to 128 when the CPU/operating mode is 2600n, 2000n, 300hn or 300.

3. The address table for the functions specified with #pragma indirect is output to section
$INDIRECT when the section switching function is not used.

4. Allocate the address table section within addresses H'0x0000 to 0x00FF at linkage.

II-3-7

Example:

#pragma indirect (f) /*Declares that f is accessed in memory indirect addressing*/
#define A *((unsigned char *)0xffffff00)
unsigned char a;
unsigned char f(void)
{
 sub();
 return(A&1);
}
sub ()
{
 a=f(); /* Function call */
}

When the above C source program is compiled specifying cpu=2600a, the following object
program will be generated:

 .CPU 2600A
 .EXPORT _a
 .EXPORT _f
 .EXPORT $f ;Externally defines address table label
 .EXPORT _sub
 .SECTION P,CODE,ALIGN=2
_f:
 BSR _sub:8
 MOV.B @-256:8,R0L
 AND.B #1:8,R0L
 RTS
_sub:
 JSR @@$f:8 ;Calls a function in memory indirect addressing
 MOV.B R0L,@_a:32
 RTS
 .SECTION $INDIRECT,DATA,ALIGN=2
$f: ;Address table label
 .DATA.L _f ;Address table constant
 .SECTION B,DATA,ALIGN=2
_a:
 .RES.B 1
 .END

II-3-8

3.1.4 In-Line Expansion for Function

#pragma inline performs in-line expansion for the specified functions.

The speed=inline option can also perform in-line expansion. However, #pragma inline can
specify it in function units regardless of optimization specification.

Description Format:

#pragma inline (<function name> [,<function name>...])

Explanation:

#pragma inline specifies the functions for which in-line expansion is performed.

The code for the function declared in the #pragma inline statement is directly generated at the
location where the function is called. The code for calling the function by the JSR or BSR
instruction is not generated.

Notes:

1. Up to 63 functions can be specified in one #pragma inline statement.

2. When the function declared by #pragma inline satisfies one of the following conditions, in-
line expansion will not be performed:
• A variable parameter is used.
• A parameter address is referenced.
• The actual parameter type does not match the formal parameter type.
• A switch statement is included.
• Another function for which in-line expansion is specified is called.
• The maximum size of in-line expansion is exceeded.

3. Even when the function declared by #pragma inline is expanded at all calling locations, the
code for the function definition itself is also output.

II-3-9

Example:

#pragma inline (f) /*Declares that in-line expansion is performed for function f */
int a,b,c;
int f(int x,int y)
{
 return x+y;
}
sub ()
{
 a=f(b,c); /* Directly expanded to a = b + c */
}

When the above C source program is compiled specifying cpu=2600a, the following object
program will be generated:

 .CPU 2600A
 .EXPORT _a
 .EXPORT _b
 .EXPORT _c
 .EXPORT _f
 .EXPORT _sub
 .SECTION P,CODE,ALIGN=2
_f:
 MOV.B R0,R1
 ADD.W E0,R1
 MOV.W R1,R0
 RTS
_sub:
 MOV.W @_c:32,E0 ;
 MOV.W @_b:32,R0 ; Directly expanded
 ADD.W E0,R0 ; to the code for
 MOV.W R0,R1 ; a = b + c
 MOV.W R1,@_a:32 ;
 RTS
 .SECTION B,DATA,ALIGN=2
_a:
 .RES.W 1
_b:
 .RES.W 1
_c:
 .RES.W 1
 .END

II-3-10

3.1.5 Interrupt Function Creation

#pragma interrupt enables an external (hardware) interrupt function to be written in C.

Description Format:

#pragma interrupt (<function name> [(<interrupt specifications>)]
[, <function name> [(<interrupt specifications>)]...])

Table 3-2 lists interrupt specifications.

Table 3-2 Interrupt Specifications

Item Form Options Specifications

Stack switching sp= <variable> |
&<variable> |
<constant> |
<variable>+<constant> |
&<variable>+<constant>

The address of a new stack is specified
with a variable or a constant.
<variable>: Variable (pointer type)
&<variable>: Variable (object type)
 address
<constant>: Constant value

Trap-instruction
return

tn= <constant> Termination is specified by the TRAPA
instruction
<constant>: Constant value
 (trap vector number)

Interrupt function
termination

sy= <function name> |
<constant> |
$<function name>

Termination is specified by a jump
instruction to an interrupt function
<function name>: Interrupt function
 name
<constant>: Absolute address
$<function name>: Interrupt function
 name without an
 underscore (_)

Explanation:

#pragma interrupt declares an interrupt function.

An interrupt function declared by #pragma interrupt will preserve register values before
processing (all registers used by the function are pushed onto and popped from the stack when
entering and exiting the function). The RTE instruction directs the function to return. However, if
the trap-instruction return (tn=) is specified, the TRAPA instruction is executed at the end of the
function. If the interrupt function termination (sy=) is specified, the JMP instruction is executed to
jump to the specified address.

II-3-11

As the function name for interrupt function termination specification, $ + <function name> can be
specified as well as <function name>. If $ + <function name> is specified, no underscore (_) is
added before the function name, which is used as an external identifier.

An interrupt function with no specifications is processed in the usual procedure.

Trap-instruction return and interrupt function termination cannot be specified at the same time, but
stack switching and trap-instruction return, and stack switching and interrupt function termination
can be specified at the same time.

Example:

extern int STK[100];
#pragma interrupt (f(sp=STK+100 , tn=2))

 (1) (2)

Explanation:

(1) Stack switching specification
STK+100 is set as the stack pointer used by interrupt function f.

(2) Trap-instruction return specification
After the interrupt function has completed its processing, TRAPA #2 is executed. The SP at
the beginning of trap exception processing is shown in the figure below. After the previous
PC and CCR (condition code register (EXR (extend register) in H8S series)) are popped from
the stack by the RTE instruction in the trap routine, control is returned from the interrupt
function.

STK[0]

Lower
address

STK+100

Higher
address

Stack
for
interrupt
function

Immediately after
interrupt

During interrupt
function

Interrupt termination
(immediately before
TRAPA instruction)

STK[99]
SP

Previous CCR
Stack
for
other
function

Previous PC

SP SP

:

Previous CCR

Previous PC

Previous CCR

Previous PC

STK[0]

STK[99]

:

Lower
address

Higher
address

Figure 3-1 Stack Processing by an Interrupt Function

II-3-12

Example:

#pragma interrupt (f1(sy=$f2))
char x;
void f1(void)
{
 x=0;
}

When the above C source program is compiled specifying cpu=2600a, the following object
program will be generated:

 .CPU 2600A
 .IMPORT f2 ; Underscore (_) is not added
 .EXPORT _f1
 .EXPORT _x
 .SECTION P,CODE,ALIGN=2
_f1:
 PUSH.W R0
 SUB.B R0L,R0L
 MOV.B R0L,@_x:32
 POP.W R0
 JMP @f2:24 ; Return by JMP @f2
 .SECTION B,DATA,ALIGN=2
_x:
 .RES.B 1
 .END

Notes:

1. The storage class specifier of the interrupt function must be extern. Even if storage class
static is specified, the storage class is handled as extern.

The function must return void data. The return statement cannot have a return value. If
attempted, an error is output.

Example:

#pragma interrupt(f1(sp=100),f2)
void f1(){...}(a)
int f2(){...} (b)

Explanation:

(a) is declared correctly.
(b) returns data that is not void, thus (b) is declared incorrectly. An error is output.

II-3-13

2. A function declared as an interrupt function cannot be called within the program. If
attempted, an error is output. However, if the function is called within a program which does
not declare it to be an interrupt function, an error is not output but correct program execution
cannot be guaranteed.

Example (An interrupt function is declared):

#pragma interrupt(f1)
void f1(void){...}
int f2(){ f1();} (a)

Explanation:

Function f1 cannot be called in the program because it is declared as an interrupt function.
An error is output at (a).

Example (An interrupt function is not declared):

int f2(){ f1();} (b)

Explanation:

Because function f1 is not declared as an interrupt function, an object for extern int f1(); is
generated. If function f1 is declared as an interrupt function not to be compiled in the same
file as f2, correct program execution is not guaranteed.

3. A function declared as an interrupt function cannot be referenced in the same file.

Example:

#pragma interrupt(f1)
main(){
 void (*a)(void);
 a=f1; (a)
}

Explanation:

Since the address of interrupt function f1 cannot be referenced at (a), an error is output.

If an interrupt function is referenced to set, for example, a vector table, it must not be declared
as an interrupt function in the same file.

II-3-14

Examples:

#pragma interrupt(f1) extern void f1(void); (b)
 : main()
void f1(void) {
{ void (*a)(void);
 : a=f1;
 } }

File with an interrupt function definition File referencing an interrupt function

Explanation:

To reference the address of interrupt function f1 at (b), f1 is not declared as an interrupt
function.

4. Up to 63 functions can be declared in one #pragma interrupt statement.

5. When stack switching is specified, the linkage area size in symbol assignment information
output in the compile listing includes the size of the area for saving previous SP and ER0 (R0
in H8/300) required for SP calculation.

II-3-15

3.1.6 Section Switching

#pragma section switches sections output by the C compiler within a C program. Using
conventional compilers, a program must be separated into several files to assign addresses in
function or variable units. Using the section switching function, a program need not be separated.

Description Format:

#pragma section [<name>|<value>]
#pragma abs8 section [<name>|<value>]
#pragma abs16 section [<name>|<value>]
#pragma indirect section [<name>|<value>]

Explanation:

#pragma section <name> or #pragma section <value> specifies a section name. The name of
the section after the declaration in the source program is "P section name + <name> (<value>)",
"C section name + <name> (<value>)", "D section name + <name> (<value>)", or "B section
name + <name> (<value>)". When <name> or <value> is omitted, the default name is used for
the rest of the section.

#pragma abs8 section <name> or #pragma abs8 section <value> specifies a section name for
8-bit absolute address area. The name of the section for the 8-bit absolute address area after the
declaration in the source program is "$ABS8C + <name> (<value>)", "$ABS8D + <name>
(<value>)", or "$ABS8B section name + <name> (<value>)". When <name> or <value> is
omitted, $ABS8C, $ABS8D, or $ABS8B is used for the rest of the section.

#pragma abs16 section <name> or #pragma abs16 section <value> specifies a section name for
16-bit absolute address area. The name of the section for 16-bit absolute address area after the
declaration in the source program is "$ABS16C + <name> (<value>)", "$ABS16D + <name>
(<value>)", or "$ABS16B section name + <name> (<value>)". When <name> or <value> is
omitted, $ABS16C, $ABS16D, or $ABS16B is used for the rest of the section.

#pragma indirect section <name> or #pragma indirect section <value> specifies a section
name for outputting the vector table for the functions called in memory indirect addressing mode.
The name of the section after the declaration in the source program is "$INDIRECT + <name>
(<value>)". When <name> or <value> is omitted, $INDIRECT is used for the rest of the section.

Notes:

1. Declare #pragma section, #pragma abs8 section, #pragma abs16 section, and #pragma
indirect section outside the function definition.

2. Up to 64 section names can be declared for each of #pragma section, #pragma abs8 section,
#pragma abs16 section, and #pragma indirect section in one file.

II-3-16

Example:

#pragma section abc
int a; /* a is allocated to section Babc */
const int c=1; /* c is allocated to section Cabc */
f(){ /* f is allocated to section Pabc */
 a=c;
}
#pragma section
int b; /* b is allocated to section B */
g(){ /* g is allocated to section P */
 b=c;
}

When the above C source program is compiled specifying cpu=2600a, the following object
program will be generated:

 .CPU 2600A
 .EXPORT _a
 .EXPORT _c
 .EXPORT _f
 .EXPORT _b
 .EXPORT _g
 .SECTION Pabc,CODE,ALIGN=2
_f:
 MOV.W @_c:32,R0
 MOV.W R0,@_a:32
 RTS
 .SECTION P,CODE,ALIGN=2
_g:
 MOV.W @_c:32,R0
 MOV.W R0,@_b:32
 RTS
 .SECTION Cabc,DATA,ALIGN=2
_c:
 .DATA.W H'0001
 .SECTION Babc,DATA,ALIGN=2
_a:
 .RES.W 1
 .SECTION B,DATA,ALIGN=2
_b:
 .RES.W 1
 .END

If the section=p=PROG compile option is specified in the above example, f is allocated to
PROGabc, and g to section PROG.

II-3-17

3.1.7 Register Save/Restore Code Control

#pragma regsave saves and restores the registers that are not used in functions at the entry and
exit of the functions.

#pragma noregsave suppresses the code for saving and restoring the registers that are not used in
functions.

Description Format:

#pragma regsave (<function name> [, <function name> ...])
#pragma noregsave (<function name> [, <function name> ...])

Note: #pragma regsave and #pragma noregsave must be declared before the functions used
are declared.

Explanation:

#pragma regsave specifies the functions, for which the registers other than ER0 and ER1 (R0 and
R1 in H8/300), that is, ER2 to ER6 (R2 to R6 in H8/300) when optimization is specified and ER2
to ER5 (R2 to R5 in H8/300) when optimization is not specified are all saved at the entry of the
functions and restored at the exit of the functions, whether or not the register is used.

#pragma noregsave does not generate the code for saving and restoring the registers.

Example:

#pragma regsave (f) /* Declared that the registers are saved and restored*/
f(){};

When the above C source program is compiled specifying cpu=2600a, the following object
program will be generated:

 .CPU 2600A
 .EXPORT _f
 .SECTION P,CODE,ALIGN=2
_f:
 STM.L (ER2-ER3),@-SP ; Code for
 STM.L (ER4-ER6),@-SP ; saving registers
 LDM.L @SP+,(ER4-ER6) ; Code for
 LDM.L @SP+,(ER2-ER3) ; restoring registers
 RTS
 .END

Note:

Up to 63 functions can be declared in one #pragma regsave/noregsave statement.

II-3-18

3.2 Intrinsic Functions

The C compiler provides functions that cannot be written in C, such as system control instructions,
as intrinsic functions. The following functions can be specified by intrinsic functions.

• Setting and referencing the condition code register

• Setting and referencing the extend register

• Special instructions (TRAPA, SLEEP, MOVFPE, MOVTPE, EEPMOV, and MAC)

• Rotation

• Operation reflecting the result in the condition code

• Decimal operation

Table 3-3 lists intrinsic functions.

Table 3-3 Intrinsic Functions

Item Specification Function

Condition void set_imask_ccr(unsigned char) Sets the interrupt mask

code unsigned char get_imask_ccr(void) References the interrupt mask

register void set_ccr(unsigned char) Sets the condition code register

unsigned char get_ccr(void) References the condition code
register

void and_ccr(unsigned char) ANDs the condition code register

void or_ccr(unsigned char) ORs the condition code register

void xor_ccr(unsigned char) Exclusively ORs the condition code
register

Extend void set_imask_exr(unsigned char) Sets the interrupt mask

register unsigned char get_imask_exr(void) References the interrupt mask

void set_exr(unsigned char) Sets the extend register

unsigned char get_exr(void) References the extend register

void and_exr(unsigned char) ANDs the extend register

void or_exr(unsigned char) ORs the extend register

void xor_exr(unsigned char) Exclusively ORs the extend register

II-3-19

Table 3-3 Intrinsic Functions (cont)

Item Specification Function

Special void trapa(unsigned int) TRAPA instruction

instructions void sleep(void) SLEEP instruction

void movfpe(char*,char) MOVFPE instruction

void movtpe(char,char*) MOVTPE instruction

void tas(char*) TAS instruction

void eepmov(char*,char*,unsigned
char)
void eepmov(char*,char*,unsigned int)

EEPMOV instruction

long mac(long,int*,int*,unsigned long)
long macl(long, int*,int*,unsigned long,
 unsigned long)

MAC instruction

Rotation char rotlc(int,char) 1-byte left rotation

int rotlw(int,int) 2-byte left rotation

long rotll(int,long) 4-byte left rotation

char rotrc(int,char) 1-byte right rotation

int rotrw(int,int) 2-byte right rotation

long rotrl(int,long) 4-byte right rotation

Condition
code

int ovfaddc(char,char,char*) 1-byte addition + reflecting the results
in the condition code

operation int ovfaddw(int,int,int*) 2-byte addition + reflecting the results
in the condition code

int ovfaddl(long,long,long*) 4-byte addition + reflecting the results
in the condition code

int ovfsubc(char,char,char*) 1-byte subtraction + reflecting the
results in the condition code

int ovfsubw(int,int,int*) 2-byte subtraction + reflecting the
results in the condition code

int ovfsubl(long,long,long*) 4-byte subtraction + reflecting the
results in the condition code

int ovfshalc(char,char*) 1-byte left shift + reflecting the results
in the condition code

int ovfshalw(int,int*) 2-byte left shift + reflecting the results
in the condition code

int ovfshall(long,long*) 4-byte left shift + reflecting the results
in the condition code

II-3-20

Table 3-3 Intrinsic Functions (cont)

Item Specification Function

Condition
code

int ovfnegc(char,char*) 1-byte negation + reflecting the results
in the condition code

operation
(cont)

int ovfnegw(int,int*) 2-byte negation + reflecting the
results in the condition code

int ovfnegl(long,long*) 4-byte negation + reflecting the
results in the condition code

Decimal
operation

void dadd(unsigned char,char*,char*,
 char*)

Decimal addition

void dsub(unsigned char,char*,char*,
 char*)

Decimal subtraction

3.2.1 How to Use Intrinsic Functions

Intrinsic functions can be called in the same way as other functions except only after #include
<machine.h> is declared.

II-3-21

3.2.2 Intrinsic Function Descriptions

Setting and Referencing Condition Code Register:

Example:

#include <machine.h>
main()
{
 set_imask_ccr(0)
 :
}

• set_imask_ccr

— Calling procedure

#include <machine.h>
void set_imask_ccr(unsigned char mask);

— Description

Sets the mask value (0 or 1) to the interrupt mask bit (I) of the condition code register
(CCR).

• get_imask_ccr

— Calling procedure

#include <machine.h>
unsigned char get_imask_ccr(void)

— Description

References the mask value (0 or 1) in the interrupt mask bit (I) of the condition code
register (CCR).

II-3-22

• set_ccr

— Calling procedure

#include <machine.h>
void set_ccr(unsigned char ccr);

— Description

Sets the ccr value (8 bits) to the condition code register (CCR).

• get_ccr

— Calling procedure

#include <machine.h>
unsigned char get_ccr(void);

— Description

References the condition code register (CCR).

• and_ccr

— Calling procedure

#include <machine.h>
void and_ccr(unsigned char ccr);

— Description

ANDs the condition code register (CCR) with the ccr value and stores the results in the
CCR.

• or_ccr

— Calling procedure

#include <machine.h>
void or_ccr(unsigned char ccr);

— Description

ORs the condition code register (CCR) with the ccr value and stores the results in the CCR.

II-3-23

• xor_ccr

— Calling procedure

#include <machine.h>
void xor_ccr(unsigned char ccr);

— Description

Exclusively ORs the condition code register (CCR) with the ccr value and stores the results
in the CCR.

II-3-24

Setting and Referencing Extend Register:

Example:

#include <machine.h>
main()
{
 set_imask_exr(0)
 :
}

• set_imask_exr

— Calling procedure

#include <machine.h>
void set_imask_exr(unsigned char mask);

— Description

Sets the mask value (0 to 7) to the interrupt mask bits (I2 to I0) of the extend register
(EXR). This function can be used in 2600a, 2000a, 2600n, and 2000n CPU/operating
modes.

• get_imask_exr

— Calling procedure

#include <machine.h>
unsigned char get_imask_exr(void)

— Description

References the mask value (0 to 7) in the interrupt mask bits (I2 to I0) of the extend register
(EXR). This function can be used in 2600a, 2000a, 2600n, and 2000n CPU/operating
modes.

II-3-25

• set_exr

— Calling procedure

#include <machine.h>
void set_exr(unsigned char exr);

— Description

Sets the exr value (8 bits) to the extend register (EXR). This function can be used in 2600a,
2000a, 2600n, and 2000n CPU/operating modes.

• get_exr

— Calling procedure

#include <machine.h>
unsigned char get_exr(void)

— Description

References the extend register (EXR). This function can be used in 2600a, 2000a, 2600n,
and 2000n CPU/operating modes.

• and_exr

— Calling procedure

#include <machine.h>
void and_exr(unsigned char exr);

— Description

ANDs the extend register (EXR) with the exr value and stores the result in the EXR. This
function can be used in 2600a, 2000a, 2600n, and 2000n CPU/operating modes.

• or_exr

— Calling procedure

#include <machine.h>
void or_exr(unsigned char exr);

— Description

ORs the extend register (EXR) with the exr value and stores the result in the EXR. This
function can be used in 2600a, 2000a, 2600n, and 2000n CPU/operating modes.

II-3-26

• xor_exr

— Calling procedure

#include <machine.h>
void xor_exr(unsigned char exr);

— Description

Exclusively ORs the extend register (EXR) with the exr value and stores the result in the
EXR. This function can be used in 2600a, 2000a, 2600n, and 2000n CPU/operating modes.

II-3-27

Special Instructions:

Example:

#include <machine.h>
f()
{
 :
 trapa(0)
}

• trapa

— Calling procedure

#include <machine.h>
void trapa(unsigned int trap_no);

— Description

Expanded to an unconditional trap instruction, TRAPA #trap_no. The trap_no must be a
constant from 0 to 3. This function cannot be used in 300 CPU/operating mode.

• sleep

— Calling procedure

#include <machine.h>
void sleep(void);

— Description

Expanded to the low power-consumption instruction, SLEEP.

• movfpe

— Calling procedure

#include <machine.h>
void movfpe(char*addr,char data);

— Description

Expanded to an E clock-synchronous data transfer instruction, MOVFPE. Moves the
contents of addr to data synchronously with the E clock.

II-3-28

• movtpe

— Calling procedure

#include <machine.h>
void movtpe(char data,char* addr);

— Description

Expanded to an E clock-synchronous data transfer instruction, MOVTPE. Moves data to
addr in the timing synchronous with the E clock.

• tas

— Calling procedure

#include <machine.h>
void tas(char* addr);

— Description

Expanded to the test and set instruction, TAS. Compares the contents of addr with 0,
reflects the result in the condition code register (CCR), and changes the highest-order bit of
the addr contents to 1. This function can be used in 2600a, 2000a, 2600n, and 2000n
CPU/operating modes.

• eepmov

— Calling procedure

#include <machine.h>
void eepmov(char* dst, char* src, unsigned char size);
 or
void eepmov(char* dst, char* src, unsigned int size);

— Description

Expanded to the block transfer instruction, EEPMOV. Transfers the bytes whose number is
specified by size from the address specified by src to the address specified by dst.

The size must be a constant. The maximum size is 255 in 300 CPU/operating mode and
65535 in other modes. However, when the size is in the range of 256 to 65535, this
function is expanded to EEPMOV.W. In this case, precautions must be taken against NMI
interrupts.

II-3-29

• mac and macl

— Calling procedure

#include <machine.h>
long mac(long val,int* ptr1,int* ptr2,unsigned long count);
long macl(long val,int* ptr1,int* ptr2,unsigned long count,
 unsigned long mask);

— Description

Expanded to the multiply-and-accumulate instruction, MAC.

The function mac sets val to the MAC register as the initial value, multiplies two bytes ptr1
and ptr2 with sign, adds the 4-byte result to the MAC register contents, and adds two to ptr1
and ptr2. This operation is repeated for the times specified by count.

The function macl logically ANDs ptr2 with mask to use ptr2 repeatedly.

These functions can be used in 2600a and 2600n CPU/operating modes.

— Note

The boundary of the table pointed to by ptr2 in the macl function must be aligned to a
multiple of the mask value's complement. For example, in the following case, the linkage
map must confirm that ptr2 is allocated to the address of a multiple of eight.

Example:

#include <machine.h>
int ptr1[10]={0,1,2,3,4,5,6,7,8,9};
int ptr2[10]={9,8,7,6,5,4,3,2,1,0};
long l1,l2;
 :
l1=mac(100,ptr1,ptr2,4);
/* l1=100+0*9+1*8+2*7+3*6 */
l2=macl(100,ptr1,ptr2,4,-4);
/* l2=100+0*9+1*8+2*9+3*8 */

II-3-30

Rotation:

Example:

#include <machine.h>
int i,data;
f()
{
 i=rotlw(5,data);
}

• rotlc, rotlw, and rotll

— Calling procedure

#include <machine.h>
char rotlc(int count,char data);
int rotlw(int count,int data);
long rotll(int count,long data);

— Description

The functions rotlc, rotlw, and rotll rotate 1-byte, 2-byte, and 4-byte data to the left
according to the bits specified by count, and then return the results.

• rotrc, rotrw, and rotrl

— Calling procedure

#include <machine.h>
char rotrc(int count,char data);
int rotrw(int count,int data);
long rotrl(int count,long data);

— Description

The functions rotrc, rotrw, and rotrl rotate 1-byte, 2-byte, and 4-byte data to the right by the
bits specified by count, respectively, and return the results.

II-3-31

Operation Reflecting Results to Condition Code:

Example:

#include <machine.h>
int dst,src;
f()
{
if(ovfaddw(dst,src,0))
 :
else
 :
}

• ovfaddc, ovfaddw, and ovfaddl

— Calling procedure

#include <machine.h>
int ovfaddc(char dst,char src,char* rst);
int ovfaddw(int dst,int src,int* rst);
int ovfaddl(long dst,long src,long* rst);

— Description

The functions ovfaddc, ovfaddw, and ovfaddl add 1-byte, 2-byte, and 4-byte data dst and
src, respectively, store the results to the area specified by rst only when rst is not 0, return 0
when the results do not overflow and return a value other than 0 when they do overflow.

These functions can be used only in the conditional statements such as the if, do, while, and
for statements.

• ovfsubc, ovfsubw, and ovfsubl

— Calling procedure

#include <machine.h>
int ovfsubc(char dst,char src,char* rst);
int ovfsubw(int dst,int src,int* rst);
int ovfsubl(long dst,long src,long* rst);

II-3-32

— Description

The functions ovfsubc, ovfsubw, and ovfsubl subtract 1-byte, 2-byte, and 4-byte data src
from dst, respectively, store the results to the area specified by rst only when rst is not 0,
and return 0 when the results do not overflow and a value other than 0 when they do
overflow.

These functions can be used only in the conditional statements such as the if, do, while, and
for statements.

• ovfshalc, ovfshalw, and ovfshall

— Calling procedure

#include <machine.h>
int ovfshalc(char dst,char* rst);
int ovfshalw(int dst,int* rst);
int ovfshall(long dst,long* rst);

— Description

The functions ovfshalc, ovfshalw, and ovfshall arithmetically shift 1-byte, 2-byte, and 4-
byte data dst to the left by one bit, respectively, store the results to the area specified by rst
only when rst is not 0, and return 0 when the results do not overflow and a value other than
0 when they do overflow.

These functions can be used only in the conditional statements such as the if, do, while, and
for statements.

• ovfnegc, ovfnegw, and ovfnegl

— Calling procedure

#include <machine.h>
int ovfnegc(char dst,char* rst);
int ovfnegw(int dst,int* rst);
int ovfnegl(long dst,long* rst);

— Description

The functions ovfnegc, ovfnegw, and ovfnegl calculate the 2's complements of 1-byte, 2-
byte, and 4-byte data dst, respectively, store the results to the area specified by rst only
when rst is not 0, and return 0 when the results do not overflow and a value other than 0
when they do overflow.

These functions can be used only in the conditional statements such as the if, do, while, and
for statements.

II-3-33

Decimal Operation:

Example:

#include <machine.h>
char ptr1[10]={0,1,2,3,4,5,6,7,8,9};
char ptr2[10]={0,1,2,3,4,5,6,7,8,9};
char rst[10];
 :
dadd((char)10,ptr1,ptr2,rst);
/* rst=0x0,0x2,0x4,0x6,0x8,0x10,0x12,0x14,0x16,0x18 */

• dadd

— Calling procedure

#include <machine.h>
void dadd(unsigned char size,char* ptr1,char* ptr2,char* rst);

— Description

Adds size-byte data stored in the area starting from ptr1 to size-byte data stored in the area
starting from ptr2 in decimal and stores the result to the size-byte area starting from rst. The
size must be a constant from 1 to 255.

• dsub

— Calling procedure

#include <machine.h>
void dsub(unsigned char size,char* ptr1,char* ptr2,char* rst);

— Description

Subtracts size-byte data stored in the area starting from ptr2 from size-byte data stored in
the area starting from ptr1 in decimal and stores the result to the size-byte area starting from
rst. The size must be a constant from 1 to 255.

II-4-1

Section 4 Notes on Programming

This section contains notes on coding programs for the C compiler and notes on developing
programs at compilation or when debugging.

4.1 Coding Notes

Functions with float Parameters: For a function that declares float for parameters, either a
prototype must be declared or parameters must be declared as double. Correct processing is not
guaranteed if a function that has float parameters is called without a prototype declaration.

Example:

void f(float);(1)

g()
{
 float a;
 f(a);
}

void
f(float x)
{

:
}

Since function f has a float parameter, a prototype must be declared as shown at (1).

Program Whose Evaluation Order is Not Regulated: Correct execution of a process is not
guaranteed in a program whose execution results differ depending on the evaluation order.

Example:

a[i]=a[++i]; ---- The value of i on the left side differs depending on whether the right
side of the assignment expression is evaluated first.

sub(++i, i); ---- The value of i for the second parameter differs depending on whether
the first function parameter is evaluated first.

II-4-2

Overflow Operation and Zero Division: At run time if overflow operation or zero division is
performed, error messages will not be output. However, if an overflow operation or zero division
is included in the operations for one or more constants, error messages will be output at
compilation.

Example:

main()
{
 int ia;
 int ib;
 float fa;
 float fb;

 ib=32767;
 fb=3.4e+38f;

/* Compilation error messages are output when an overflow operation and */
/* zero division are included in operations for one or more constants. */

 ia=99999999999; /* (W) Detect integer constant overflow. */
 fa=3.5e+40f; /* (W) Detect floating pointing constant overflow. */
 ia=1/0; /* (E) Detect division by zero. */
 fa=1.0/0.0; /* (W) Detect division by floating point zero. */

/* No error message on overflow at execution is output. */

 ib=ib+32767; /* Ignore integer constant overflow. */
 fb=fb+3.4e+38f; /* Ignore floating point constant overflow. */

}

Note: When the cpuexpand option is specified, no overflow or underflow error message will be
output.

II-4-3

Assignment to const Variables: Even if a variable is declared with const attribute, if assignment
is done to a variable other than const converted from const attribute or if a program compiled
separately uses a parameter of a different type, the C compiler cannot detect the error.

Example:

(1) const char *p; /* Because the first parameter p in library*/
 : /* function strcat is a pointer for char, */
 : /* the area indicated by the parameter p */
 strcat(p, "abc") /* may change. */

(2) file 1
const int i;

 file 2
extern int i; /* In file 2, parameter i is not declared as */
 : /* const, therefore assignment to it in file 2 */
 i=10; /* is not an error. */

II-4-4

4.2 Notes on Program Development

This section contains notes on developing programs at compilation or when debugging.

4.2.1 Notes on CPU/Operating Mode Selection

(1) Unify CPU/operating modes specified at compilation. If an object program generated by
different CPU/operating modes is linked, correct object program execution is not guaranteed.

(2) Specify the same CPU/operating mode for assembling and compiling. When using an H8/300
Series Assembler (Ver. 3.x) or an H8S,H8/300 Series Assembler (Ver. 1.0) to assemble an
assembly program generated by the C compiler, specify the same CPU/operating mode with
the one specified at compilation by the cpu option.

(3) Link the standard library that matches the CPU/operating mode at linkage. The C compiler
supplies seven standard libraries, one for each of the CPU/operating mode. The library which
matches the CPU/operating mode must be specified. If an unmatched library is specified,
linkage is not guaranteed.

Refer to section 1.3, CPU/Operating Mode Selection, in Part I, Overview and Operation.

4.2.2 Notes on Bit Manipulation Instructions

The C compiler generates the BSET, BCLR, BNOT, BST, and BIST bit manipulation instructions.
These instructions read data in byte units, manipulate bits, and write data in byte units. If a read
operation is attempted for a write-only register, the CPU fetches value 0xFF regardless of the
register contents. Therefore, if a bit manipulation instruction is executed for a write-only register,
the bits other than the target bit may be changed. The following shows an example of bit
manipulation for a write-only register.

Example:

Include file (300x.h) contents C source program contents

struct S_p4ddr{ #include "300x.h"
 unsigned char p7:1; sub()
 : {
 unsigned char p0:1;
}; unsigned char DDR=P4DDR.Schar;
union SS{ DDR &=-P0;
 unsigned char Schar; P4DDR.Schar=DDR;
 struct S_p4ddr Sstr;
}; }
#define P4DDR (*(union SS *)0xffffc5)
#define P0 0x1

II-4-5

4.2.3 Troubleshooting

Table 4-1 Troubleshooting

Trouble Check Points Solution References

Embedded assembly
language is not
indicated in the object
program output by the
C compiler.

Is code=asmcode specified
with a compiler option ?

Specify
code=asmcode at
compilation.

3.1 in Part II,
Programming

Error 314, cannot
found section, is
output at linkage

Is the section name which is
output by the C compiler
specified in capitals at start
option of linkage editor?

Specify the correct
section name.

2.1 in Part II,
Programming, and
3.4 in Part I,
Overview and
Operation

Error 105, undefined
external symbol, is
output at linkage

Is underscore attached to the
symbol in the assembly
program if identifiers are
mutually referenced by a C
program and an assembly
program ?

Reference symbols
with the correct
symbol names.

2.3.1 in Part II,
Programming

Is a C library function used in
a C program?

Specify a standard
library as the input
library at linkage.

Standard library
specification: 4.2.1 in
Part II, Programming

Does an undefined reference
symbol identifier start with a
$? (A run time routine in a
standard library must be
used.)

Execution routine in a
standard library: 2.1
in Part III, System
Installation,

Is a standard I/O library in a
C library function used?

Create low level
interface routines for
linking.

4 in Part III, System
Installation

Error 108, relocation
size overflow, is
output at linkage

Is abs8 or abs16 option
specified? Is #pragma abs8
or #pragma abs16
specified?

Allocate the 8-bit and
16-bit absolute
address area
correctly.

3.4 in Part I,
Overview and
Operation, and 3.1.1
in Part II,
Programming

C source-level
debugging cannot be
performed

Is debug specified at
compilation, assembly, and
linkage?

Specify debug at
compilation,
assembly, and
linkage

3.4 in Part I,
Overview and
Operation

PART III

SYSTEM INSTALLATION

III-1-1

Section 1 Overview

Part III describes how to install an object program generated by the C compiler on an H8S/2600,
H8S/2000, H8/300H or H8/300 system. Before installation, memory allocation and execution
environment for the object program must be specified.

• Memory allocation

Stack area, heap area, each section of a C-compiler-generated object program must be allocated
in ROM or RAM on a H8/300, H8/300H, H8S/2000, or H8S/2600 system.

• Execution environment setting for C-compiler-generated object program

The execution environment can be specified by the register initialization processing, memory
area initialization, and C program initiation processing. These must be written by assembly
language.

If C library functions for I/O operations are used, library must be initialized according to the
execution environment specification. Specifically, if I/O operation function (stdio.h) and
memory allocation function (std1ib.h) are used, the user must create low-level I/O routines and
memory allocation routines appropriate to the user system.

Section 2 describes how to allocate C programs in memory area and how to specify linkage
editor's commands that actually allocate a program in memory area, using examples.

Section 3 describes items to be specified in execution environment setting and execution
environment specification programs.

Section 4 describes how to create C-library function initialization and low-level routines.

III-2-1

Section 2 Allocating Memory Areas

To install an object program generated by the C compiler on a system, each memory area size
must be determined, then the areas must be allocated in memory.

Some memory areas, such as the area used to store machine code and the area used to store data
declared using external definitions, are allocated statically. Other memory areas, such as the stack
area, are allocated dynamically.

2.1 Static Area Allocation

2.1.1 Data to be Allocated in Static Area

The sections of object programs such as program area, constant area, initialized data area, and
non-initialized data area, are allocated to the static area.

2.1.2 Static Area Size Calculation

The static area size is calculated by adding the size of C-compiler-generated object program and
that of library functions used by the C program. After object program linkage, the static area size
can be determined from each section size including library size output on a linkage map listing.
Before object program linkage, the static area size can be approximately determined from the
section size information on a compile listing. Figure 2-1 shows an example of section size
information.

******* SECTION SIZE INFORMATION *******

PROGRAM SECTION(P): 0x00000080 Byte(s)
CONSTANT SECTION(C): 0x00000004 Byte(s)
DATA SECTION(D): 0x00000004 Byte(s)
BSS SECTION(B): 0x00000004 Byte(s)

TOTAL PROGRAM SECTION: 0x00000080 Byte(s)
TOTAL CONSTANT SECTION: 0x00000004 Byte(s)
TOTAL DATA SECTION: 0x00000004 Byte(s)
TOTAL BSS SECTION: 0x00000004 Byte(s)

 TOTAL PROGRAM SIZE: 0x0000008C Byte(s)

Figure 2-1 Section Size Information

III-2-2

If the standard library is not used, the static area size can be calculated by adding memory area
size used by library functions and memory area size used by sections to the size shown in section
size information. The standard library includes C library functions based on C language
specifications and arithmetic operation routines required for C program execution. Accordingly,
the standard library may be required even if library functions are not used in the C source
program.

Note: The standard library supplied by the C compiler includes C library functions (based on C
language specification), and arithmetic routines (run time routines) which are required for
C program execution. The size required for run time routines must also be added to the
memory area size in the same way as C library functions.

The user can see the run time routine names used by the C programs through the symbol
allocation information in compiler listing.

The following shows the example of C program and symbol allocation information.

C program

long a,b;
main()
{

a *= b;
}

Symbol allocation information output by C compiler

******* STACK FRAME INFORMATION *******

FILE NAME: main.c

Function (File main.c , Line 2): main

Parameter Area Size : 0x00000000 Byte(s)
Linkage Area Size : 0x00000008 Byte(s)
Local Variable Size : 0x00000000 Byte(s)
Temporary Size : 0x00000000 Byte(s)
Register Save Area Size : 0x00000000 Byte(s)
Total Frame Size : 0x00000008 Byte(s)

Used Runtime Library Name
$MULL$3 ;Run time routine

III-2-3

2.1.3 ROM and RAM Allocation

When installing a program to memory, static areas must be allocated to either ROM and RAM as
shown below.

Program area (section P): ROM
Constant area (section C): ROM

Non-initialized data area (section B): RAM
Initialized data area (section D): ROM, RAM (for details, refer to the following section)

2.1.4 Initialized Data Area Allocation

The initialized data area contains data with initial value. Since the C language specifications allow
the user to modify initialized data in programs, the initialized data area is allocated to ROM and is
copied to RAM before program execution. Therefore, the initialized data area must be allocated in
both ROM and RAM.

However, if the initialized data area contains only static variables that are not modified during
program execution, only a ROM area needs to be allocated.

III-2-4

2.1.5 Example: Memory Area Allocation and Address Specification at Program Linkage

Each program section must be allocated by the option or subcommand of the linkage editor when
the absolute load module is created, as described below.

Figure 2-2 shows an example of allocating static areas in H8S/2600 advanced mode.

Interrupt vector
area

Program area
(section P)

Noninitialized data area
(section B)

Dynamic area

Internal ROM

Internal RAM

Initialized data area
(section D)

Constant area
(section C)

Initialized data area
(section R)

RAM

P, C, D, B:

R:

Default section name
generated by the C compiler

Section name specified by the ROM
option of the linkage editor

0x000000

0x000400

0x020000

0xFFEC00

0xFFFBFF

Figure 2-2 Static Area Allocation

Specify the following subcommand when allocating the static area as shown in figure 2-2.

:
ROM∆(D,R) --------(1)
START∆P,C,D(400),R,B(20000) --------(2)

:

Description:

(1) Define section R having the same size as section D, in the output load module. To reference
the symbol allocated to section D, relocate the symbol to the address in section R.

Sections D and R are allocated to initialized data section in ROM and RAM, respectively.

(2) Allocate sections P, C, and D to internal ROM starting from address 0x400 and allocate
sections R and B to RAM starting from address 0x20000.

Note: The linkage editor of Version. 5.0 or upper supports subcommand ROM.

III-2-5

2.2 Dynamic Area Allocation

2.2.1 Dynamic Areas

Two types of dynamic areas are used:

• Stack area

• Heap area (used by the memory allocation library functions)

2.2.2 Dynamic Area Size Calculation

Stack Area: The stack area used in C programs is allocated each time a function is called and is
deallocated each time a function is returned. The total stack area size is calculated based on the
stack size used by each function and the nesting of function calls.

• Stack area used by each function

The size of stack used by each function can be determined from the symbol allocation
information (Total Frame Size) of the compiler listings.

Example:

The following shows the symbol allocation information and stack size calculation in a C
program. In this example, the H8S/2600 advanced mode is specified.

extern int h(char, char *, double);
int
h(char a, register char *b, double c)
{
 char *d;

 d= &a;
 h(*d,b,c);
 {
 register int i;

 i= *d;
 return i;
 }
}

III-2-6

******* STACK FRAME INFORMATION ********
FILE NAME: m0280.c

 Function (File m0280.c , Line 3): h

 Parameter Allocation
 a 0xfffffff7 saved from R0L
 b REG ER5 saved from ER1
 c 0x00000008

 Level 1 (File m0280.c ,Line 4) Automatic/Register Variable Allocation
 d 0xfffffff2

 Level 2 (File m0280.c ,Line 9) Automatic/Register Variable Allocation
 i REG R4

Parameter Area Size : 0x00000008 Byte(s)
Linkage Area Size : 0x00000008 Byte(s)
Local Variable Size : 0x00000006 Byte(s)
Temporary Size : 0x00000000 Byte(s)
Register Save Area Size : 0x00000008 Byte(s)
 Total Frame Size : 0x0000001e Byte(s)

The size of stack used by a function is shown by Total Frame Size 0x1e, that is, 30 bytes.

• Stack size calculation

The following example shows a stack size calculation depending on the function call nesting.

Example:

Figure 2-3 illustrates the function call nestings and stack size.

main ()

f ()

g ()

Function Name Stack Size (Bytes)

main 30

f

g

32

24

Figure 2-3 Nested Function Calls and Stack Size

If function g is called via function f, stack area size is calculated according to the formula
listed in table 2-1.

III-2-7

Table 2-1 Stack Size Calculation Example

Function Calling Route Total Stack Size

main (30) —> f(32) —> g(24) 86 bytes (max)

main (30) —> g(24) 54 bytes

As can be seen from table 2-1, the maximum size of stack area required for longest function
calling route should be determined (86 bytes in this example) and this size of memory should be
allocated in RAM.

When using standard library functions, the stack frame sizes for library functions must also be
accounted for. Refer to the Standard Library Stack Size Listing, included with the C compiler
package.

Note: If recursive calls are used in the C source program, first determine the stack area required
for a recursive call, and then multiply with the maximum number of recursive calls.

III-2-8

Heap Area: The total heap area required is equal to the sum of the areas to be allocated by
memory management library functions (calloc, malloc, or realloc) in the C program. An
additional 2 or 4 bytes must be summed because a 2-byte (cpu = 2600n, cpu = 2000n, cpu =
300hn, cpu = 300) or 4-byte (cpu = 2600a, cpu = 2000a, cpu = 300ha) management area is used
every time a memory management library function allocates an area. The C compiler manages the
heap area in 1028-byte units (cpu = 2600n, cpu = 2000n, cpu = 300hn, cpu = 300) or 1032-byte
units (cpu = 2600a, cpu = 2000a, cpu = 300ha). The heap area size (HEAPSIZE) can be
calculated as follows:

HEAPSIZE = 1028 × n or HEAPSIZE = 1032 x n (n ≥ 1)
(Areas allocated by memory management library) + management area size ≤ HEAPSIZE

An input/output library function uses memory management library functions for internal
processing. The size of the area allocated in an input/output is determined by the following
formula:

• cpu = 2600n, cpu = 2000n, cpu = 300hn, cpu = 300

Size of area allocated in an I/O: 514 bytes × (maximum number of simultaneously open files)

• cpu = 2600a, cpu = 2000a, cpu = 300ha

Size of area allocated in an I/O: 516 bytes × (maximum number of simultaneously open files)

Note: Areas released by the free function, a memory management library function, can be
reused. However, since these areas are often fragmented (separated from one another), a
request to allocate a new area may be rejected even if the net size of the free areas is
sufficient. To prevent this, take note of the following:

— If possible, allocate the largest area first after program execution is started.

— If possible, specify data area size to be reused as a constant.

2.2.3 Rules for Allocating Dynamic Area

The dynamic area is allocated to RAM. The stack area is determined by specifying the highest
address of the stack to the SP in the initial specification (INIT) at program initiation. The heap
area is determined by the initial specification in the low-level interface routine (sbrk). For details
on stack and heap areas, refer to section 3.2, Initialization (INIT), and section 4.6, Creating Low-
Level Interface Routine, respectively.

III-3-1

Section 3 Setting the Execution Environment

This section describes the environment required for C program execution. A C-program
environment specification program must be created according to the system specification because
the C program execution environment differs depending on the user systems. In this section, basic
C program execution specification, where no C library function is used, is described as an
example. Refer to section 4, Setting the C Library Function Execution Environment for details on
program execution.

Figure 3-1 shows an example of program configuration.

: Required routine

: Required table
Power-on

reset

INIT VEC_TBL

_ _INITSCT User program*

Note: Supplied as a library

(2) (1)

(3)

Figure 3-1 Program Configuration (No C Library Function is Used)

Each routine is described below.

(1) Vector table setting (VEC_TBL)

Sets vector table so as to initiate register initialization program INIT by power-on reset.

(2) Initialization (INIT)

Initializes registers and sequentially calls initialization routines.

(3) Section initialization (_ _INITSCT)

Clears the non-initialized data area with zeros and copies the initialized data area in ROM to
RAM. This routine is supplied as a standard library function _ _INITSCT.

How to create the above routines are described below.

III-3-2

3.1 Vector Table Setting (VEC_TBL)

To call register initialization routine INIT at power-on reset, set the start address of function INIT
to address 0 in the vector table. When the user system executes interrupt handlings or memory-
indirect function calls, interrupt vector and address table settings are also performed in the
VEC_TBL routine. The VEC_TBL coding examples in C and assembly language are shown
below.

Examples:

(C program example)
 extern void INIT(void); /* #pragma interrupt is not declared in this file */

 extern void IRQ0(void); /* because the interrupt function references addresses*/

 #pragma section vect1 /* Outputs vec_table to Cvect1 section */

/* Specify that Cvect0 section is allocated to */

/* address 0 with option start at linkage */

 const void (*const vec_table1[])(void)={INIT};

 #pragma section vect2 /* Outputs vec_table2 to Cvect2 section */

/* Specify that Cvect2 section is allocated to */

/* the specified address with option start at linkage */

 const void(*const vec_table2[])(void)={IRQ0};

/* Allocates the address table created by option */

/* indirect or #pragma indirect to an address that */

/* is not used */

(Assembly program examples)

• 2600n, 2000n, 300hn, and 300 CPU/operating mode

 .EXPORT $IRQ0

 .IMPORT _INIT

 .IMPORT _IRQ0

 .SECTION Cvect1,DATA,LOCATE=H'0000 ;Allocates Cvect1 section to address 0

 .DATA.W _INIT ;Allocates the start of _INIT to

;addresses 0 to 1

 .SECTION Cvect2,DATA,LOCATE=H'0040 ;Allocates Cvect2 section to address 0x40

$IRQ0: .DATA.W _IRQ0 ;Allocates the start of _IRQ0 to

 .END ;addresses 0x40 to 0x41

• 2600a, 2000a, and 300ha CPU/operating mode

 .EXPORT $IRQ0

 .IMPORT _INIT

 .IMPORT _IRQ0

 .SECTION Cvect1,DATA,LOCATE=H'0000 ;Allocates Cvect1 section to address 0

 .DATA.L _INIT ;Allocates the start of _INIT to

;addresses 0 to 3

 .SECTION Cvect2,DATA,LOCATE=H'0080 ;Allocates Cvect2 section to address 0x80

$IRQ0: .DATA.L _IRQ0 ;Allocates the start of _IRQ0 to

 .END ;addresses 0x80 to 0x83

III-3-3

3.2 Initialization (INIT)

INIT initializes registers, calls initialization routine sequentially, and then calls main function.
The coding examples of this routine are shown below.

Examples:

• 2600n, 2000n, 300hn, and 300 CPU/operating mode

 #include <machine.h>

 #pragma noregsave INIT

 void main(void)

 void _INITSCT(void);

 void INIT(void)

 #pragma asm

 MOV.W #H'FFFE,R7 ;Specifies the stack address before INIT function starts

 #pragma endasm

 {

 set_imask_ccr(0); /*Sets the interrupt mask bit to 0 */

 _INITSCT(); /*Calls section initialization routine _INITSCT */

 main(); /*Calls main function */

 sleep(); /*Expands to sleep instruction */

 }

• 2600a, 2000a, and 300ha CPU/operating mode

 #include <machine.h>

 #pragma noregsave INIT

 void main(void)

 void _INITSCT(void);

 void INIT(void)

 #pragma asm

 MOV.L #H'FFFBFE,SP ;Specifies the stack address before INIT function starts

 #pragma endasm

 {

 set_imask_ccr(0); /*Sets the interrupt mask bit to 0 */

 _INITSCT(); /*Calls section initialization routine _INITSCT */

 main(); /*Calls main function */

 sleep(); /*Expands to sleep instruction */

 }

III-3-4

3.3 Section Initialization (_ _INITSCT)

To set the C program execution environment, clear the non-initialized data area with zeros and
copy the initialized data area in ROM to RAM. Since this routine is supplied as a standard, this
routine can be executed by only calling the _ _INITSCT function in the initialization routine as
described in section 3.2, Initialization (INIT). However, note that the following conditions must
be satisfied to execute the _ _INITSCT function.

1. Section names for the non-initialized data area and initialized data area must be B and D,
respectively. (Default section names B and D are created by the C compiler when no name is
specified by the compiler option section or #pragma section.)

2. No abs8 or abs16 option, or #pragma abs8 or #pragma abs16 must be specified.

3. R is assumed to be section name of initialized data area in RAM. Accordingly, ROM=(D,R)
option or subcommand must be specified by the linkage editor during load module creation.

4. Linkage editor of version 5.0 or higher must be used.

When the standard library function _ _INITSCT is not used, create _ _INITSCT using the
following procedure.

To execute the _ _INITSCT function, the following addresses must be known.

• Start address (1) of initialized data area in ROM.

• Start address (2) and end address (3) of initialized data area in RAM

• Start address (4) and end address (5) of non-initialized data area

Interrupt

vector

Program area

(section P)

Constant area

(section C)

Initialized data area

(section D)

Initialized data area

(section R)

Non-initialized data area

(section B)

Dynamic area

RAM

(2)

(3)
(4)

(5)

(1)
ROM

0

To obtain the above addresses, create the following assembly programs and link them together.

III-3-5

• H8S/2600, H8S/2000, and H8/300H in normal mode, and H8/300

 .SECTION D,DATA,ALIGN=2

 .SECTION R,DATA,ALIGN=2

 .SECTION B,DATA,ALIGN=2

 .SECTION C,DATA,ALIGN=2

 _ _D_ROM .DATA.W (STARTOF D) ;(1) Start address of section D
 _ _D_BGN .DATA.W (STARTOF R) *1 ;(2) Start address of section R

 _ _D_END .DATA.W (STARTOF R) + (SIZEOF R) *2 ;(3) End address of section R

 _ _B_BGN .DATA.W (STARTOF B) ;(4) Start address of section B

 _ _B_END .DATA.W (STARTOF B) + (SIZEOF B) ;(5) End address of section B

 .EXPORT _ _D_ROM

 .EXPORT _ _D_BGN

 .EXPORT _ _D_END

 .EXPORT _ _B_BGN

 .EXPORT _ _B_END

 .END

• H8S/2600, H8S/2000, and H8/300H in advanced mode

 .SECTION D,DATA,ALIGN=2

 .SECTION R,DATA,ALIGN=2

 .SECTION B,DATA,ALIGN=2

 .SECTION C,DATA,ALIGN=2

 _ _D_ROM .DATA.L (STARTOF D) ;(1) Start address of section D
 _ _D_BGN .DATA.L (STARTOF R) *1 ;(2) Start address of section R

 _ _D_END .DATA.L (STARTOF R) + (SIZEOF R) *2 ;(3) End address of section R

 _ _B_BGN .DATA.L (STARTOF B) ;(4) Start address of section B

 _ _B_END .DATA.L (STARTOF B) + (SIZEOF B) ;(5) End address of section B

 .EXPORT _ _D_ROM

 .EXPORT _ _D_BGN

 .EXPORT _ _D_END

 .EXPORT _ _B_BGN

 .EXPORT _ _B_END

 .END

Notes: 1. Section names B and D must be the non-initialized data area and initialized data area
section names specified with the compiler option section.

2. Section name R must be the section name in RAM area specified with the ROM option
at linkage.

III-3-6

3. Underlined parts *1 and *2 are supported in the linkage editor with version 5.0 or
higher. If a linkage editor with version lower than 5.0 is used, addresses actually
allocated must be specified.

Example: Initialized data area is allocated from address 0x8000 in RAM.
_ _D_BGN .DATA.L H'8000 *1 ;(2)
_ _D_END .DATA.L H'8000 + (SIZEOF D) *2 ;(3)

If the above preparation is completed, section initialization routine can be written in C as shown
below.

 extern char *_D_ROM, *_B_BGN, *_B_END, *_D_BGN, *_D_END;
 extern void _INITSCT();

 void _INITSCT()
 {
 char *p, *q ;

 /* Non-initialized area is initialized to zeros */

 for (p=_B_BGN ; p<_B_END ; p++)
 *p=0 ;

 /* Initialized data is copied from ROM to RAM */

 for (p=_D_BGN ; q=_D_ROM ; p<_D_END ; p++, q++)
 *p=*q ;

 }

III-4-1

Section 4 Setting the C Library Function
 Execution Environment

To use C library functions, C library functions must be initialized to set C program execution
environment. To use I/O (stdio.h) and memory management (stdlib.h) functions, low-level I/O
and memory allocation routines must be created for each system.

This section describes how to set C program execution environment when C library functions are
used.

Figure 4-1 shows a program configuration when C library functions are used.

(2) (1)

(3) (4) (5)

(6)

: Table always required

: Routine always required

: Routine required

 when library is used.

: Supplied by the C compiler

Note: Supplied as a library

Power-on

reset

INIT VEC_TBL

_ _INITLIB User program

Standard

library

Low-level

interface

*
_ _CLOSEALL_ _INITSCT

Figure 4-1 Program Configuration When C Library Function Is Used

Each routine required to execute library functions as follows.

(1) Setting vector table (VEC_TBL)

Sets vector table to initiate register initialization program (INIT) at power-on reset.

III-4-2

(2) Initialization (INIT)

Initializes registers and sequentially calls the initialization routines. INIT is written in
assembly language so that it can access hardware register directly.

(3) Initializing sections (_ _INITSCT)

Clears non-initialized data area with zeros and copies the initialized data area in ROM to
RAM. This routine is supplied as a standard library function.

(4) Initializing C library functions (_ _INITLIB)

Initializes C library functions required to be initialized and prepares standard I/O functions.

(5) Closing files (_ _CLOSEALL)

Closes all files with open status.

(6) Low-level interface routine

Interfaces library functions and user system when standard I/O and memory management
library functions are used.

Creation of the above routines is described below.

Note: When using the C library functions that terminates program execution such as exit, onexit,
or abort, the C library function must be created according to the user system. For details,
refer to appendix D, Termination Processing Function Example.

In addition, when using C library function assert macro, the abort function must be
created.

III-4-3

4.1 Setting Vector Table (VEC_TBL)

Same as when no C library function is used. For details, refer to section 3, Setting the Execution
Environment.

4.2 Initialization (INIT)

Initializes registers and sequentially calls the initialization routine _ _INITLIB and file closing
routine _ _CLOSEALL. The coding example of INIT is shown below.

• 2600n, 2000n, 300hn, or 300 CPU/operating mode

 #include <machine.h>
 #pragma noregsave(INIT) /* Suppresses register save/restore code */
 void main(void);
 void _INITSCT(void);
 void _INITLIB(void);
 void _CLOSEALL(void);
 void INIT(void);
 #pragma asm
 MOV.W #H'FFFE,R7 ;Specifies stack address before INIT function starts
 #pragma endasm
 {
 set_imask_ccr(0); /* Sets interrupt mask bit to 0 */
 _INITSCT(); /* Calls section initialization routine _INITSCT */
 _INITLIB(); /* Calls library initialization routine _INITLIB */
 main(); /* Calls main function _INITSCT */
 _CLOSEALL(); /* Calls file closing routine _CLOSEALL */
 sleep(); /* Expands to sleep instruction */
 }

• 2600a, 2000a, or 300ha CPU/operating mode

 #include <machine.h>
 #pragma noregsave(INIT) /* Suppresses register save/restore code */
 void main(void);
 void _INITSCT(void);
 void _INITLIB(void);
 void _CLOSEALL(void);
 void INIT(void);
 #pragma asm
 MOV.L #H'FFFBFE,SP ;Specifies stack address before INIT function starts
 #pragma endasm
 {
 set_imask_ccr(0); /* Sets interrupt mask bit to 0 */
 _INITSCT(); /* Calls section initialization routine _INITSCT */
 _INITLIB(); /* Calls library initialization routine _INITLIB */
 main(); /* Calls main function _INITSCT */
 _CLOSEALL(); /* Calls file closing routine _CLOSEALL */
 sleep(); /* Expands to sleep instruction */
 }

III-4-4

4.3 Initializing Sections (_ _INITSCT)

Same as when the C library functions are not used. For details, refer to section 3, Setting
Execution Environment.

4.4 Initializing C Library Functions (_ _INITLIB)

Initializes related C library functions. The following description assumes the case when the
initialization is performed in _ _INITLIB in the program initiation routine.

To perform initialization, the following must be considered.

(1) errno indicating the library error status must be initialized for all library functions.

(2) When using each function of <stdio.h> and assert macro, standard I/O library function must
be initialized.

(3) The user low-level interface routine must be initialized according to the user low-level
initialization routine specification if required.

(4) When using the rand and strtok functions, library functions other than I/O must be initialized.

Library function initialization program example is shown below.

Example:

 #include <stdlib.h>

 extern void _INIT_LOWLEVEL(void) ;

 extern void _INIT_IOLIB(void) ;

 extern void _INIT_OTHERLIB(void) ;

 void _INITLIB(void) /* Deletes an underscore from the assembly routine */

/* symbol name */

 {

 errno=0; /* Initialization for all library functions */

 _INIT_LOWLEVEL(); /* Calls low-level interface initialization routine */

 _INIT_IOLIB(); /* Calls standard I/O initialization routine */

 _INIT_OTHERLIB(); /* Calls other initialization routine */

 }

The following shows examples of standard I/O library function initialization routine
(_INIT_IOLIB) and other standard library function initialization routine (_INIT_OTHERLIB).
Low-level interface routine initialization routine (_INIT_LOWLEVEL) must be created according
to the user low-level interface routine's specifications.

III-4-5

4.4.1 Creating Standard I/O Library Function Initialization Routine (_INIT_IOLIB)

The standard I/O library function initialization routine initializes FILE-type data used to reference
files and open the standard I/O files. The initialization must be performed before opening the
standard I/O files.

The following shows an example of _INIT_IOLIB.

Example:

#include <stdio.h>

void _INIT_IOLIB(void)

{

 FILE *fp ;

 /*Initializes FILE-type data*/

 for (fp=_iob; fp<_iob+_NFILE; fp++){

 fp -> _bufptr=NULL ; /*Clears buffer pointer */

 fp -> _bufcnt=0 ; /*Clears buffer counter */

 fp -> _buflen=0 ; /*Clears buffer length */

 fp -> _bufbase=NULL ; /*Clears base pointer */

 fp -> _ioflag1=0 ; /*Clears i/o flag */

 fp -> _ioflag2=0 ;

 fp -> _iofd=0 ;

 }

 /*Opens standard I/O file */

 *1

 if (freopen("stdin" , "r", stdin)==NULL) /*Opens standard input file */

 stdin->_ioflag1=0xff ; /*Disables file access *2 */

 stdin->_ioflag1 |= _IOUNBUF ; /*No data buffering *3 */

 *1

 if (freopen("stdout" , "w", stdout)==NULL)/*Opens standard output file*/

 stdout-> _ioflag1=0xff ;

 stdout->_ioflag1 |= _IOUNBUF ;

 *1

 if (freopen("stderr", "w", stderr)==NULL) /*Opens standard error file */

 stderr-> _ioflag1=0xff ;

 stderr->_ioflag1 |= _IOUNBUF ;

 }

Notes: 1. Standard I/O file names are specified. These names are used by the low-level interface
routine open.

2. If file could not be opened, the file access disable flag is set.

3. For equipment that can be used in interactive mode such as console, the buffering
disable flag is set.

III-4-6

 /*Declares FILE-type data in the C language*/

 #define _NFILE 20

 struct _iobuf{

 unsigned char *_bufptr; /*Buffer pointer */

 long _bufcnt; /*Buffer counter */

 unsigned char *_bufbase; /*Buffer base pointer */

 long _buflen; /*Buffer length */

 char _ioflag1; /*i/o flag */

 char _ioflag2; /*i/o flag */

 char _iofd; /*i/o flag */

 }_iob[_NFILE];

Figure 4-2 FILE-Type Data

4.4.2 Creating Other Library Function Initialization Routine (_INIT_OTHERLIB)

The following gives an example of the routine initializing standard library functions other than
standard I/O.

Example:

#include <stddef.h>

extern char *_s1ptr ;

extern void srand(unsigned int) ;

void _INIT_OTHERLIB(void)

{

 srand(1) ; /*Sets initial value when rand function is used*/

 _s1ptr=NULL ; /*Initializes the pointer used in the strtok function*/

}

III-4-7

4.5 Closing Files (_ _CLOSEALL)

When a program ends normally, all open files must be closed. Usually, the data destined for a file
is stored in a memory buffer. When the buffer becomes full, data is output to an external storage
device. Therefore, if the files are not closed, data remaining in buffers is not output to external
storage devices and may be lost.

When an program is installed in a device, the program is not terminated normally. However, if the
main function is terminated by a program error, all open files must be closed.

The following shows an example of _ _CLOSEALL.

Example:

#include <stdio.h>

void _CLOSEALL() /*Deletes an underline from symbol name in assembly routine*/

{

 int i;

 for (i=0; i<_NFILE; i++)

 /*Checks that file is open*/

 if(_iob[i]._ioflag1 & (_IOREAD|_IOWRITE|_IORW))

 /*Closes opened files*/

 fclose(&_iob[i]) ;

}

III-4-8

4.6 Creating Low-Level Interface Routines

Low-level interface routines must be created for C programs that use the standard input/output or
memory management library functions. Table 4-1 shows the low-level interface routines used by
standard library functions.

Table 4-1 Low-Level Interface Routines

Name Explanation

open Opens files

close Closes files

read Reads data from a file

write Writes data to a file

lseek Sets the file read/write address for data

sbrk Allocates a memory area

Initialization of low-level interface routines must be performed when the program is started. For
more information, see the explanation concerning the _INIT_LOWLEVEL function in section 4.4,
Initializing C Library Functions (_ _INITLIB).

The rest of this section explains the basic concept of low-level input and output, and gives the
specifications for each interface routine. Refer to appendix E, Examples of Low-Level Interface
Routines, for details on the low-level interface routines that run on the H8S, H8/300-series
simulator debugger.

Note: The open, close, read, write, lseek, and sbrk are reserved words for low-level interface
routines. Do not use these words in C programs.

III-4-9

Concept of I/O Operations: Standard input/output library functions manage files using the
FILE-type data. Low-level interface routines manage files using file numbers (positive integers)
which correspond directly to actual files.

The open routine returns a file number for a given file name. The open routine must determine the
following, so that other functions can access information about a file using the file number:

• File device type (console, printer, disk, etc.)
(For a special device such as a console or printer file, the user chooses a specific file name that
can be uniquely recognized by the open routine.)

• Information such as the size and address of the buffer used for the file

• For a disk file, the offset (in bytes) from the beginning of the file to the next read/write position.

The start position for read/write operations is determined by the lseek routine according to the
information determined by the open routine.

If buffers are used, the close routine outputs the contents to their corresponding files. This allows
the areas of memory allocated by the open routine to be reused.

Low-Level Interface Routine Specifications: This section explains the specifications for
creating low-level interface routines, gives examples of actual interfaces and explains their
operations, and notes on implementation.

The interface for each routine is shown using the format below. Create each interface routine by
assuming that the prototype declaration is made.

Example:

(Routine name)

Purpose (Purpose of the routine)

Interface (Shows the interface as a C function declaration)

Parameters No. Name Type Meaning

1 (Parameter
name)

(Parameter
type)

(Meaning of the parameter)

: : : :

Return value Type (Type of return value)

Normal (Return value for normal termination)

Abnormal (Return value for abnormal termination)

III-4-10

(a) open routine

Purpose Opens a file

Interface int open (char *name,
 int mode,
 int flg);

Parameters No. Name Type Meaning

1 name Pointer to
char

String literal indicating a file name

2 mode int Processing specification

3 flg int Processing specification
(always 0777)

Return value Type int

Normal File number of the file opened

Abnormal -1

Explanation:

The open routine opens the file specified by the first parameter (file name) and returns a file
number. The open routine must determine the file device type (console, printer, disk, etc.) and
assign this information to the file number. The file type is referenced using the file number each
time a read/write operation is performed.

The second parameter (mode) gives processing specifications for the file. The effect of each bit of
this parameter is explained below:

5 4 3 2 1 015

O_RDONLY

mode

O_WRONLY

O_RDWR
O_CREAT
O_TRUNC
O_APPEND

O_RDONLY (bit 0): If this bit is 1, the file becomes read only.

O_WRONLY (bit 1): If this bit is 1, the file becomes write only.

O_RDWR (bit 2): If this bit is 1, the file becomes read/write.

III-4-11

O_CREAT (bit 3): If this bit is 1 and the file indicated by the file name does not exist, a new
file is created.

O_TRUNC (bit 4): If this bit is 1 and the file indicated by the file name exists, the file
contents are discarded and the file size is set to zero.

O_APPEND (bit 5): If this bit is 1, the read/write position is set to the end of the file. If this
bit is 0, the read/write position is set to the beginning of the file.

An error is assumed if the file processing specifications contradict with the actual characteristics
of the file.

The open routine returns a file number (positive integer) which can be used by the read, write,
lseek, and close routines, provided the file opens normally. The relationship between file numbers
and actual files must be managed by the low-level interface routines. The open routine returns a
value of –1 if the file fails to open properly.

III-4-12

(b) close routine

Purpose Closes a file

Interface int close(int fileno);

Parameters No. Name Type Meaning

1 fileno int File number of the file to be closed

Return value Type int

Normal 0

Abnormal -1

Explanation:

The file number, determined by the open routine, is given as the parameter.

The area of memory allocated by the open routine for file management information is freed, so
that it can be reused. If buffers are used, the contents are output to their corresponding files.

Zero is returned if the file closes normally. Otherwise, –1 is returned.

III-4-13

(c) read routine

Purpose Reads data from a file

Interface int read (int fileno,
 char *buf,
 unsigned int count);

Parameters No. Name Type Meaning

1 fileno int File number of the file to be read

2 buf Pointer to
char

Area to be used to store the read data

3 count unsigned int Byte length of data to be read

Return value Type int

Normal Byte length of the data actually read

Abnormal -1

Explanation:

The read routine loads data from the file indicated by the first parameter (fileno) into the area
indicated by the second parameter (buf). The amount of data to be read is indicated by the third
parameter (count).

If an end of file is encountered during a read, less than the specified number of bytes are read.

The file read/write position is updated using the byte length of the data actually read.

If data is read normally, the routine returns the number of bytes of the data read. Otherwise, the
read routine returns a value of –1.

III-4-14

(d) write routine

Purpose Writes data to a file

Interface int write (int fileno,
 char *buf,
 unsigned int count);

Parameters No. Name Type Meaning

1 fileno int File number

2 buf Pointer to
char

Area storing data to be written in the file

3 count unsigned int Byte length of the data to be written

Return value Type int

Normal Byte length of the data actually written

Abnormal -1

Explanation:

The write routine outputs data, whose byte length is indicated by the third parameter (count), from
the area indicated by the second parameter (buf) into the file indicated by the first parameter
(fileno).

If the device (such as a disk) where a file is stored becomes full, data less than the specified byte
length is written to the file. If zero is returned as the byte length of data actually written several
times, the routine assumes that the device is full and sends a return value of –1.

The file read/write position must be updated using the byte length of data actually written.

If the routine ends normally, it returns the byte length of data actually written. Otherwise, the
routine returns a value of –1.

III-4-15

(e) lseek routine

Purpose Determines the next read/write position in a file

Interface long lseek (int fileno,
 long offset,
 int base);

Parameters No. Name Type Meaning

1 fileno int File number of the target file

2 offset long Offset in bytes from specified point in the
file

3 base int Base used for offset (bytes)

Return value Type long

Normal The offset (bytes) from the beginning of the file for the
next read/write position

Abnormal -1

Explanation:

The lseek routine determines the next read/write position as an offset in bytes. The next read/write
position is determined according to the third parameter (base) as follows:

• Base = 0
The second parameter gives the new offset relative to the beginning of the file.

• Base = 1
The second parameter is added to the current position to give the new offset.

• Base = 2
The second parameter is added to the file size to give the new offset.

An error occurs if the file is on an interactive device (such as a console or printer), the new offset
value is negative, or the new offset value exceeds the file size in the case of Base=0 or Base=1,
above.

If lseek correctly determines a new file position, the new offset value is returned. This value
indicates the new read/write position relative to the beginning of the file. Otherwise, the lseek
routine returns a value of –1.

III-4-16

(f) sbrk routine

Purpose Allocates a memory area

Interface char *sbrk(int size);

Parameters No. Name Type Meaning

1 size int Size of the area to be allocated

Return value Type Pointer to char

Normal Start address of the allocated area

Abnormal (char *) – 1

Explanation:

The size of the area to be allocated is given as a parameter.

Create the sbrk routine so that consecutive calls allocate consecutive areas beginning with the
lowest available address.

An error will occur if there is insufficient memory.

If the routine ends normally, it returns the start address of the allocated area. Otherwise, the
routine returns (char *)–1.

PART IV

ERROR MESSAGES

IV-1-1

Section 1 Error Messages Output by the Compiler

The C compiler checks C source programs and options specified at initiation for a variety of possible
errors. This section explains the format and meaning of error messages that may be generated during
compile time, and gives the appropriate programmer response.

1.1 Error Message Format

Error messages are output to the listing file and the standard output file for MS-DOS systems or the
standard error output file for UNIX systems. Figures 1-1 and 1-2 show the format for error messages
that are output to the standard output file and standard error output file. For details on the files used to
list compiled program information, refer to section 3.5 (3), Error Information, in Part II, Overview and
Operation.

 SAMPLE. C 23 2011 (E) LINE TOO LONG

 ① ② ③ ④ ⑤

Figure 1-1 Error Messages Format (MS-DOS Systems)

 "sample. c" line 23 : 2011 (E) LINE TOO LONG

 ① ② ③ ④ ⑤

Figure 1-2 Error Messages Format (UNIX Systems)

Explanation:

① File name
This gives the name of the source program file in which the error was detected. In this example,
the file specification is sample.c.

② Line number
This gives the line number where the error was detected. In this example, an error was detected
on line 23.

IV-1-2

③ Error number
This number is unique to the error message. Section 1.4, List of Error Messages, explains error
messages in the order of their error numbers. See this section for details about the errors and
appropriate programmer responses.

④ Message level
This indicates how serious the error was. There are four error levels: I, W, E, and F. See section
1.3, Message Levels, for details.

⑤ Message text
This gives a description of the error. In this example, line 23 in file sample.c is too long.

1.2 Error Location

The file name and line number indicate the position of the error in the source program. These items
are not output if the error is not in the source program.

(1) File name
The file name indicates the source program file in which the error was detected.

Note: If the file name is too long, only the first 10 characters are given in the error message output to
the listing file. This means that error positions cannot be identified in files which have
different directories but the same file names, or at least the same first 10 characters.

(2) Line number
The line number indicates where in the source program the error was detected.

1.3 Message Levels

Error messages are classified into the following four levels according to their severity:

① (I) Information level

② (W) Warning level

③ (E) Error level

④ (F) Fatal level

Information-level errors indicate unfavorableness in program coding, but no violation of the language
specifications. Warning-level errors indicate violation of the language specifications. The C compiler
can recover from a warning-level error. Error-level errors indicate violation of the language
specification. Fatal-level errors indicate that the limits of the C compiler have been exceeded.

Note: In addition to the above errors, internal errors may occur. They have the following message
format: INTERNAL ERROR, and error-number: 4000 to 4999. These error messages are

IV-1-3

output if an error occurs in the C compiler. If such an error occurs, contact your local Hitachi
dealer.

If an error occurs, the action taken by the C compiler depends on the error level. (The effect of an
internal error is the same as the effect of a fatal-level error.)

(1) Error Message Output
If no message option is used, an error message is output for a warning-level, error-level, or fatal-
level error. To output a message for an information-level error, specify the message option.

(2) Object Program Output
If only information-level or warning-level errors occur during compile time, the C compiler
performs error recovery and outputs the object program. In this case, check that the error recovery
performed by the C compiler matches with the user's intention by referencing the list of error
messages.

The object program is not output if an error-level or fatal-level error is detected.

(3) Continuing Compile Processing
The C compiler continues processing in order to detect any additional errors in the source program
when a warning-level error or an error-level error is encountered. The C compiler terminates
processing immediately if a fatal-level error is detected.

Table 1-1 shows C compiler action for each level of errors.

IV-1-4

Table 1-1 C Compiler Action and Programmer Response for Each Level of Error

No.
Error
Level Symbol

Error
Number

Object
Program
Output

Processing
Continues Programmer Response

1 Informa-
tion

(I) 0000 to
0999

Yes Yes Check the list of error
messages to decide whether
error recovery performed by the
C compiler is correct. If
required, modify and recompile
the source program.

2 Warning (W) 1000 to
1999

Yes Yes Check the list of error
messages to decide whether
error recovery performed by the
C compiler is correct. If
required, modify and recompile
the source program.

3 Error (E) 2000 to
2999

No Yes Correct the error and recompile
the source program.

4 Fatal (F) 3000 to
3999

No No Correct the error and recompile
the source program.

1.4 List of Error Messages

This section gives lists of error messages in order of error number. A list of error messages is
provided for each level of errors.

Example:

Error No. Message Explanation

① 2226 ② SCALAR REQUIRED ③ The binary operator && or || is used in a non-
scalar expression.

④ S: Assumes that the result type is int and
continues processing.

⑤ P: Use scalar expressions as operands.

① Error Number

② Error Message
This message is sent to the standard output file or standard error output file. It is also output to the
listing file unless the nolist option is specified.

③ Explanation
This gives more details about the error.

IV-1-5

④ System Action
This indicates the reaction of the C compiler to the error.

⑤ Programmer Response
This indicates to the programmer how to resolve the error.

IV-1-6

(1) Information-Level Messages

Error No. Message Explanation

0001 CHARACTER COMBINATION
"/*" IN COMMENT

A comment has character string "/*."

P: Check that "/*" and "*/" in the comment are
correctly specified.

0002 NO DECLARATION There is a declaration that has no declarator.

P: Check that the declaration has a declarator.

0003 UNREACHABLE STATEMENT There is a statement that is not executed.

P: Check that the statement is not required to
be executed.

0004 CONSTANT AS CONDITION A constant expression is specified as an
expression indicating the condition of the if or
switch statement.

P: Check that the if and switch statements are
used correctly.

0006 CONVERSION IN ARGUMENT The expression of a function parameter is
converted to the parameter type specified in the
prototype declaration.

P: Check that the correct expression type of the
parameter is specified.

0008 CONVERSION IN RETURN A return statement is converted to the value type
returned by the function.

P: Check that the correct return statement is
specified.

0010 ELIMINATION OF NEEDLESS
EXPRESSION

The left part of the assignment expression is not
used.

P: Check that the assignment expression can
be eliminated.

0011 USED BEFORE SET SYMBOL:
"variable name"

A local variable is referred in which no value is
set.

P: Check that the local variable requires no
value.

0015 NO RETURN VALUE A return statement does not return values or
there is no return statement in the function that
returns a type other than the void type.

P: Check that the function returns values.

IV-1-7

Error No. Message Explanation

0100 FUNCTION NOT OPTIMIZED:
"function name"

Optimization processing cannot be applied to a
function.

P: A function with a large program cannot be
optimized. However, the function can be
optimized by dividing the function.

0200 NO PROTOTYPE FUNCTION There is no prototype declaration of a called
function.

P: Check that the function type and the type
and number of parameters are correct.

IV-1-8

(2) Warning-Level Messages

Error No. Message Explanation

1000 ILLEGAL POINTER
ASSIGNMENT

The pointer is assigned to a pointer with a
different data type.

S: Sets the right hand side to the internal
representation of the left hand side pointer.
The result type is the same as the data type
of the left pointer.

P: Use the cast operator to specify explicit type
conversion.

1001 ILLEGAL COMPARISON The operands of the binary operator == or != are
a pointer and an integer other than 0.

S: Selects an internal representation for the
operands.

P: Specify the correct type for the operands.

1002 ILLEGAL POINTER
REQUIRED

The operands of the binary operator ==, !=, >, <,
>=, or <= are pointers assigned to different
types.

S: Assumes that the operands are pointers
assigned to the same type.

P: Use the cast operator so that the same
operand type will be used.

1005 UNDEFINED ESCAPE
SEQUENCE

An undefined escape sequence (a character
following a backslash) is used in a character
constant or string literal.

S: Ignores the backslash.

P: Remove the backslash or specify the correct
escape sequence.

1007 LONG CHARACTER CONSTANT The length of a character constant is 2
characters.

S: Uses the specified characters.

P: Check that the correct character constant is
specified.

1008 IDENTIFIER TOO LONG An identifier's length exceeds 31 characters.

S: Uses the first 31 characters and ignores the
rest.

P: Use identifiers with 31 or less characters.

IV-1-9

Error No. Message Explanation

1010 CHARACTER CONSTANT TOO
LONG

The length of a character constant exceeds two
characters.

S: Uses the first two characters and ignores the
rest.

P: Use character constant with two or less
characters.

1012 FLOATING POINT CONSTANT
OVERFLOW

The value of a floating-point constant exceeds
the limit.

S: Assumes the internally represented value
corresponding to +∞ or –∞ depending on the
sign of the result.

P: Specify floating-point constants within their
limits.

1013 INTEGER CONSTANT
OVERFLOW

The value of unsigned long integer constant
exceeds the limit.

S: Ignores the overflow and uses the remaining
bits.

P: Specify integer constants within their limits.

1014 ESCAPE SEQUENCE
OVERFLOW

The value of an escape sequence indicating a
bit pattern in a character constant or string
exceeds 255.

S: Uses the low order byte.

P: Change the value of the escape sequence to
255 or lower.

1015 FLOATING POINT CONSTANT
UNDERFLOW

The absolute value of a floating-point constant is
less than the lower limit.

S: Assumes 0.0 as the value of the constant.

P: Change the value of the constant to 0.0 or
specify a constant whose value can be
represented.

IV-1-10

Error No. Message Explanation

1016 ARGUMENT MISMATCH The data type assigned to a pointer specified as
a parameter in a prototype declaration differs
from the data type assigned to a pointer used as
the corresponding parameter in a function call.

S: Uses the internal representation of the
pointer used for the function call parameter.

P: Use the cast operator for the function call
parameter to convert the parameter to the
type specified in the prototype declaration.

1017 RETURN TYPE MISMATCH The function return type and the expression type
in a return statement are pointers, however, the
data types assigned to these pointers are
different.

S: Uses the internal representation of the
pointer specified in the return statement
expression.

P: Use the cast operator on the expression
specified in the return statement expression
to obtain the function return type.

IV-1-11

Error No. Message Explanation

1018 TYPE MISMATCH The same name variables or functions in the
extern storage class are declared in different
scopes, however, the data type of the variables
or functions are different.

S: The declared variable or function is used in
the visible scope. However, if the variable or
function is linked with another file, the data
type is interpreted depending on the
declaration as follows:

(1) If it is declared for definition: The
declared and defined data type are
effective.

(2) If it is not declared for definition:
– If the current declaration is in the

function, the first declared type is
used.

– If the current declaration is outside
the function, the current declared
type is used.

P: Always ensure that variables or functions
having the same name in the extern storage
class have the same data type.

1019 ILLEGAL CONSTANT
EXPRESSION

The operands of the relational operator <, >, <=,
or >= in a constant expression are pointers to
different data types.

S: Assumes 0 as the result value.

P: Use an expression other than a constant
expression to obtain the correct result.

1020 ILLEGAL CONSTANT
EXPRESSION

The operands of the binary operator – in a
constant expression are pointers to different
data types.

S: Assumes 0 as the result value.

P: Use an expression other than a constant
expression to obtain the correct result.

1200 DIVISION BY FLOATING POINT
ZERO

Division by the floating-point number 0.0 is
carried out in the evaluation of a constant
expression.

S: Assumes the internal representation of the
value corresponding to +∞ or –∞ depending
on the sign of the operands.

P: Specify the correct constant expression.

IV-1-12

Error No. Message Explanation

1201 INEFFECTIVE FLOATING POINT
OPERATION

Invalid floating-point operations such as ∞ – ∞ or
0.0/0.0 are carried out in a constant expression.

S: Assumes the internal representation of not-
a-number to indicate the result of an
ineffective operation.

P: Correct the constant expression.

1300 COMMAND PARAMETER
SPECIFIED TWICE

The same C compiler option is specified more
than once.

S: Uses the last specified compiler option.

P: Check that options are specified correctly.

1301 TOO MANY DEFINE OPTIONS The number of macro names specified as
suboptions in the define option exceeds 16.

S: Uses the first 16 suboptions.

P: Define the 17th and subsequent macro
names using #define directives at the
beginning of the source program.

1302 'FRAME' OR 'NOFRAME' OPTION
IGNORED

The frame option is specified when optimization
is specified, or the noframe option is specified
when no optimization is specified.

S: Ignores the specified option.

P: Frame pointer is not used when optimization
is specified; the frame pointer is always used
when optimization is not specified. Cancel
the frame and noframe specifications.

1303 COMPLETED FILE NAME TOO
LONG

The length of a file name including the path
name starting from the route directory exceeds
251 characters.

S: Outputs the file name specified at the
command line to the debug information.

P: Reduce the work directory nesting level or
change the file name so that the length of
the file name, including the path name, is
less than or equal to 251 characters.

IV-1-13

Error No. Message Explanation

1305 "SHOW=OBJECT" OPTION
IGNORED

When assembly source program output is
specified, the show=object option is specified.

S: Ignores the specified option.

P: The object list is not output to the listing file
when assembly source program output is
specified. Cancel the show=object or
code=asmcode option.

1306 "SPEED=INLINE" OPTION
IGNORED

The speed=inline option is specified when no
optimization is specified.

S: Ignores the specified option.

P: Function inline expansion is not performed
when optimization is not specified. Cancel
the speed=inline option or specify the
optimize=1 option.

1307 SECTION NAME TOO LONG The length of a section name exceeds 32
characters.

S: Uses the first 32 characters and ignores the
rest.

P: Set the length of section names specified by
#pragma section to 32 characters or less.

1308 "SPEED=LOOP" OPTION
IGNORED

The speed=loop option is specified when no
optimization is specified.

S: Ignores the specified option.

P: Loop code expansion with speed priority is
not performed when optimization is not
specified. Cancel the speed=loop option or
specify the optimize=1 option.

1400 #PRAGMA INLINE IS NOT
EXPANDED

Function inline expansion cannot be performed.

S: Ignores the #pragma inline specification.

P: Inline expansion cannot be performed when
inline expansion conditions are not satisfied.
Meet inline expansion conditions.

IV-1-14

Error No. Message Explanation

1401 #PRAGMA ABS16 IGNORED The #pragma abs16 is specified when the
CPU/operating mode is the 2600n, 2000n,
300hn, or 300 mode.

S: Ignores the #pragma abs16 specification.

P: The #pragma abs16 is valid only when the
CPU/operating mode is the 2600a, 2000a, or
300ha mode. Change the CPU/operating
mode or cancel the #pragma abs16
specification.

1402 ILLEGAL CPUEXPAND
EXPESSION

The expression for cpuexpand (expansion
interpretation of operation size) has a variable
other than the volatile variable.

S: Does not use cpuexpand (expansion
interpretation of operation size).

P: Specify the volatile variable.

1403 #PRAGMA ASM IGNORED The #pragma asm is specified when the object
format is a relocatable object program.

S: Ignores the #pragma asm specification.

P: The #pragma asm is valid only when the
object format is an assembly source
program. Specify the code=asmcode
option.

IV-1-15

(3) Error-Level Messages

Error No. Message Explanation

2000 ILLEGAL PREPROCESSOR
KEYWORD

An illegal keyword is used in a preprocessor
directive.

S: Ignores the line containing the preprocessor
directive.

P: Correct the keyword in the preprocessor
directive.

2001 ILLEGAL PREPROCESSOR
SYNTAX

There is an error in a preprocessor directive or in
a macro call specification.

S: Ignores the line containing the preprocessor
directive or macro call. If there is an error in
a constant expression used in the
preprocessor directive, the system assumes
that the constant expression is zero.

P: Specify the correct preprocessor directive or
macro call.

2002 ' , ' NOT FOUND A comma (,) is not used to delimit two
parameters in a #define directive.

S: Assumes that there is a comma.

P: Insert a comma.

2003 ') ' NOT FOUND A right parenthesis “)” does not follow a name in
a defined expression. The defined expression
determines whether the name is defined by a
#define directive.

S: Assumes that there is a right parenthesis.

P: Insert a right parenthesis.

2004 ' > ' NOT FOUND A right angle bracket (>) does not follow a file
name in an #include directive

S: Assumes that there is a right angle bracket.

P: Insert a right angle bracket.

2005 CANNOT OPEN INCLUDE The file specified by an #include directive
cannot be opened.

S: Ignores the #include directive.

P: Specify the correct file name. If the file
name is correct, check if the file reading is
disabled.

IV-1-16

Error No. Message Explanation

2006 MULTIPLE #DEFINE'S The same macro name is redefined by #define
directives.

S: Ignores the second #define directive.

P: Modify one of the macro names or delete
one of the #define directives.

2008 #ELIF MISMATCHES There is no #if, #ifdef, #ifndef, or #elif directive
corresponding to an #elif directive.

S: Ignores the #elif directive

P: Insert the corresponding preprocessor
directive or delete the #elif directive.

2009 #ELSE MISMATCHES There is no #if, #ifdef, or #ifndef directive
corresponding to an #else directive

S: Ignores the #else directive.

P: Insert the corresponding preprocessor
directive or delete the #else directive.

2010 MACRO PARAMETERS
MISMATCH

The number of macro call parameters is not
equal to the number of macro definition
parameters.

S: Ignores the excess parameters if there are
too many, or assumes blank character
strings if the number of parameters is
insufficient.

P: Specify the correct number of macro
parameters.

2011 LINE TOO LONG A source program line exceeds 4096 characters
after macro expansion.

S: Ignores the 4097th and subsequent
characters.

P: Separate the line so that the length of each
resulting line contains 4096 or less
characters after macro expansion.

2012 KEYWORD AS A MACRO NAME A preprocessor keyword is used as a macro
name in the #define or #undef directive.

S: Ignores the #define or #undef directive.

P: Change the macro name.

IV-1-17

Error No. Message Explanation

2013 #ENDIF MISMATCHES There is no #if, #ifdef, or #ifndef directive
corresponding to the #endif directive.

S: Ignores the #endif directive.

P: Check that the #endif directive is used
correctly.

2014 #ENDIF EXPECTED There is no #endif directive corresponding to an
#if, #ifdef, or #ifndef directive, and the end of
the file is detected.

S: Assumes that there is an #endif directive.

P: Insert an #endif directive.

2016 PREPROCESSOR CONSTANT
EXPRESSION TOO COMPLEX

The total number of operators and operands in a
constant expression specified by the #if or #elif
directive exceeds 512.

S: Assumes the value of the constant
expression is 0.

P: Correct the constant expression so that the
number of operators and operands in the
constant expression is less than or equal to
512.

2017 MISSING " A closing double quotation mark (") does not
follow a file name in the #include directive.

S: Assumes that there is a closing double
quotation mark.

P: Insert a closing double quotation mark.

2018 ILLEGAL #LINE The line count specified by the #line directive
exceeds 32767.

S: Ignores the #line directive.

P: Modify the program so that the line count is
less than or equal to 32767.

2019 FILE NAME TOO LONG The length of a file name exceeds 128
characters.

S: Uses the first 128 characters as the file
name.

P: Change the file name so that the length is
less than or equal to 128 characters.

IV-1-18

Error No. Message Explanation

2020 SYSTEM IDENTIFIER
REDEFINED: "name"

A symbol having the same name as an intrinsic
function name is defined.

S: Continues processing as a symbol.

P: Define the symbol having a name different
from the intrinsic function name.

2021 SYSTEM IDENTIFIER
MISMATCH: "name"

An intrinsic function not corresponding to the
specified CPU/operating mode is used.

S: Ignores the intrinsic function and continues
processing.

P: Use the intrinsic function corresponding to
the CPU/operating mode.

2100 MULTIPLE STORAGE CLASSES Two or more storage class specifiers are used in
a declaration.

S: Uses the first storage class specifier and
ignores others.

P: Specify the correct storage class specifier.

2101 ADDRESS OF REGISTER The unary operator & is used on a register
variable.

S: Assumes that the auto storage class is
specified for the variable and continues
processing.

P: Modify the declaration so that the storage
class of the variable is auto.

2102 ILLEGAL TYPE COMBINATION A combination of type specifiers is illegal.

S: Uses the first and longest legal combination
of type specifiers and ignores the rest.

P: Change the type specifiers to a legal
combination.

2103 BAD SELF REFERENCE
STRUCTURE

A struct or union member has the same data
type as its parent.

S: Assumes the data type of the member is int.

P: Declare the correct data type for the
member.

2104 ILLEGAL BIT FIELD WIDTH A constant expression indicating the width of a
bit field is not a positive integer.

S: Ignores the bit field width specification and
assumes that the member is not a bit field.

P: Specify the correct width for the bit field.

IV-1-19

Error No. Message Explanation

2105 INCOMPLETE TAG USED IN
DECLARATION

An incomplete tag name declared with a struct
or union, or an undeclared tag name is used in
a typedef declaration or in the declaration of a
data type not assigned to a pointer or to a
function return value.

S: Assumes that the incomplete or undeclared
tag name is an int.

P: Declare the incomplete or undeclared tag
name.

2106 EXTERN VARIABLE INITIALIZED A compound statement specifies an initial value
for an extern storage class variable.

S: Ignores the initial value.

P: Specify the initial value for the external
definition of the variable.

2107 ARRAY OF FUNCTION An array with a function member type is
specified.

S: Ignores the function or array type.

P: Specify the correct type.

2108 FUNCTION RETURNING ARRAY A function with an array return value type is
specified.

S: Ignores the function or array type.

P: Specify the correct type.

2109 ILLEGAL FUNCTION
DECLARATION

A storage class other than extern is specified in
the declaration of a function variable used in a
compound statement.

S: Assumes extern as the storage class.

P: Specify the correct storage class.

2110 ILLEGAL STORAGE CLASS The storage class in an external definition is
specified as auto or register.

S: Assumes that the storage class is extern.

P: Specify the correct storage class.

2111 FUNCTION AS A MEMBER A member of a struct or union is declared as a
function

S: Assumes int as the member type.

P: Specify the correct storage class.

IV-1-20

Error No. Message Explanation

2112 ILLEGAL BIT FIELD TYPE The type specifier for a bit field is illegal. char,
unsigned char, int, unsigned int, short,
unsigned short, or a combination of const or
volatile with one of the above types is allowed
as a type specifier for a bit field.

S: Ignores the bit field specification and
assumes that the member is not a bit field.

P: Specify the correct type.

2113 BIT FIELD TOO WIDE The width of a bit field is greater than the size (8
or 16 bits) indicated by its type specifier.

S: Ignores the bit field specification and
assumes that the member is not a bit field.

P: Specify the correct bit field width.

2114 MULTIPLE VARIABLE
DECLARATIONS

A variable name is declared more than once in
the same scope.

S: Uses the first declaration and ignores
subsequent declarations.

P: Keep one of the declarations and delete or
modify the rest.

2115 MULTIPLE TAG DECLARATIONS A struct, union, or enum tag name is declared
more than once in the same scope.

S: Uses the first declaration and ignores
subsequent declarations.

P: Keep one of the tag name declarations and
delete or modify the rest.

2117 EMPTY SOURCE PROGRAM There are no external definitions in the source
program.

S: Terminates processing.

P: Specify and compile the correct source
program.

2118 PROTOTYPE MISMATCH:
"function name"

A function type differs from the one specified in
the declaration.

S: Ignores the current declaration if the function
prototype declaration is being processed.
Ignores the previous declaration if the
declaration of an external function definition
is being processed.

P: Correct the declaration so that the function
types match.

IV-1-21

Error No. Message Explanation

2119 NOT A PARAMETER NAME:
"parameter name"

An identifier not in the function parameter list is
declared as a parameter.

S: Ignores the parameter declaration.

P: Check that the function parameter list
matches all parameter declarations.

2120 ILLEGAL PARAMETER
STORAGE CLASS

A storage class other than register is specified
in a function parameter declaration.

S: Ignores the storage class specifier.

P: Delete the storage class specifier.

2121 ILLEGAL TAG NAME The combination of a tag name and struct,
union, or enum differs from the declared
combination.

S: Assumes struct, union, or enum depending
on the tag name type.

P: Specify the correct combination of a tag
name and a struct, union, or enum.

2122 BIT FIELD WIDTH 0 The width of a bit field which is a member of a
struct or union is zero.

S: Ignores the bit field specification and
assumes that the member is not a bit field.

P: Delete the member name or specify the
correct bit field width.

2123 UNDEFINED TAG NAME An undefined tag name is specified in an enum
declaration.

S: Ignores the declaration.

P: Specify the correct tag name.

2124 ILLEGAL ENUM VALUE A non-integral constant expression is specified
as a value for an enum member.

S: Ignores the value specification.

P: Change the expression to an integer
constant expression.

2125 FUNCTION RETURNING
FUNCTION

A function with a function return value is
specified.

S: Ignores one of the function types.

P: Specify the correct type.

IV-1-22

Error No. Message Explanation

2126 ILLEGAL ARRAY SIZE The value that specifies the number of arrays
exceeds the limit. The limit is 65535 for a
CPU/operating mode of 2600n, 2000n, 300hn, or
300, 1048575 for a CPU/operating mode of
2600a:20, 2000a:20, or 300ha:20, 16777215 for
a CPU/operating mode of 2600a:24, 2000a:24,
or 300ha:24, 268435455 for a CPU/operating
mode of 2600a:28 or 2000a:28, and
4294967295 for a CPU/operating mode of
2600a:32 or 2000a:32.

S: Assumes that one is the number of array
elements.

P: Specify an allowable number of array
elements.

2127 MISSING ARRAY SIZE The number of elements in an array is not
specified where it is required.

S: Assumes that the number of array elements
is one.

P: Specify the number of array elements.

2128 ILLEGAL POINTER
DECLARATION

A type specifier other than const or volatile is
specified following an asterisk (*), which
indicates a pointer declaration.

S: Ignores the type specifier following the
asterisk.

P: Specify the correct type specifier following
the asterisk.

2129 ILLEGAL INITIALIZER TYPE The initial value specified for a variable is not a
type that can be assigned to the variable.

S: Does not initialize the variable.

P: Specify the correct type initial value.

2130 INITIALIZER SHOULD BE
CONSTANT

A value other than a constant expression is
specified as either the initial value of a struct,
union, or array variable or as the initial value of
a static variable.

S: Does not initialize the variable.

P: Specify a constant expression as the initial
value.

2131 NO TYPE NOR STORAGE
CLASS

Storage class and type specifiers are not given
in an external data definition.

S: Assumes int as the type specifier.

P: Insert the storage class or type specifier.

IV-1-23

Error No. Message Explanation

2132 NO PARAMETER NAME A parameter is declared even though the
function parameter list is empty.

S: Ignores the parameter declaration.

P: Insert the parameter name in the function
parameter list or delete the parameter
declaration.

2133 MULTIPLE PARAMETER
DECLARATIONS

Either a parameter name is declared in a
function definition parameter list more than once
or a parameter is declared inside and outside
the function declarator.

S: Uses the first declaration if a parameter is
declared more than once in the function
parameter list. Uses the declaration inside
the function declarator if a parameter is
declared inside and outside the function
declarator.

P: Keep one of the declarations and delete the
rest.

2134 INITIALIZER FOR PARAMETER An initial value is specified in the declaration of a
parameter.

S: Does not use the initial value specification.

P: Delete the initial value specification.

2135 MULTIPLE INITIALIZATION A variable is initialized more than once.

S: Ignores the second and subsequent
initializations.

P: Delete any redundant declarations.

2136 TYPE MISMATCH An extern or static variable or function is
declared more than once with different data
types.

S: Uses the type specified in the definition
declaration where a definition is declared.
Otherwise, the data type specified in the first
declaration is used.

P: Use the same data type in the declarations.

IV-1-24

Error No. Message Explanation

2137 NULL DECLARATION FOR
PARAMETER

An identifier is not specified in the function
parameter declaration.

S: Ignores the corresponding parameter
declaration.

P: Delete the parameter declaration or insert
the correct parameter name.

2138 TOO MANY INITIALIZERS The number of initial values specified for a
struct or array is greater than the number of
struct members or array elements. This error
also occurs if two or more initial values are
specified when the first members of a union are
scalar.

S: Uses only the initial values corresponding to
the number of struct members, array
elements, or the first members of union.
The rest are ignored.

P: Specify the correct number of initial values.

2139 NO PARAMETER TYPE A type is not specified in a function parameter
declaration.

S: Assumes int as the parameter declaration
type.

P: Specify the correct type for the parameter
declaration.

2140 ILLEGAL BIT FIELD A bit field is used in a union.

S: Ignores the bit field.

P: Use the bit field in a struct.

2141 ILLEGAL BIT FIELD An unnamed bit field is used as the first member
of a struct.

S: Ignores the bit field.

P: Specify the name of the bit field.

IV-1-25

Error No. Message Explanation

2142 ILLEGAL VOID TYPE void is used illegally.

S: Assumes that void is int.

P: void can only be used in the following
cases:

(1) To specify a type assigned to a pointer

(2) To specify a function return value type

(3) To explicitly specify that a function
whose prototype is declared does not
have a parameter

2143 ILLEGAL STATIC FUNCTION A static storage class function has no definition
in the source program.

S: Ignores the function declaration.

P: Either delete the function declaration or
define the function.

2200 INDEX NOT INTEGER An array index expression type is not an integer.

S: Assumes that the type is int.

P: Specify an integer expression for the array
index.

2201 CANNOT CONVERT
PARAMETER: "n"

The n-th parameter of a function call cannot be
converted to the type of parameter specified in
the prototype declaration.

S: Assumes that the correct parameter type is
specified and continues processing.

P: Specify an expression whose type
corresponds to the one specified in the
prototype declaration.

2202 NUMBER OF PARAMETERS
MISMATCH

The number of parameters for a function call is
not equal to the number of parameters specified
in the prototype declaration.

S: Assumes that the number of parameters for
the function call is equal to the number of
parameters specified in the prototype
declaration, and continues processing.

P: Specify the correct number of parameters.

IV-1-26

Error No. Message Explanation

2203 ILLEGAL MEMBER REFERENCE The expression to the left of the (.) operator is
not a struct or union.

S: Assumes that the member is not referenced
and continues processing.

P: Use a struct or union expression to the left
of the (.) operator.

2204 ILLEGAL MEMBER REFERENCE The expression to the left of the –> operator is
not a pointer to a struct or union.

S: Assumes that the member is not referenced
and continues processing.

P: Use an expression which deals with pointer
to struct or union to the left of the –>
operator according to the member.

2205 UNDEFINED MEMBER NAME An undeclared member name is used to
reference a struct or union.

S: Assumes that the member is not referenced
and continues processing.

P: Specify the correct member name.

2206 MODIFIABLE LVALUE
REQUIRED

The operand for a unary prefix or suffix operator
++ or – – has an lvalue that cannot be assigned
(an lvalue whose type is not array or const).

S: Assumes that the expression with an lvalue
that can be assigned is specified as an
operand and continues processing.

P: Specify an expression, whose lvalue can be
assigned, as an operand.

2207 SCALAR REQUIRED The unary operator ! is used on an expression
that is not scalar.

S: Assumes int as the type of the result and
continues processing.

P: Use a scalar expression as the operand.

2208 POINTER REQUIRED The operand for the unary operator * is an
expression of pointer to void or is not an
expression of pointer.

S: Ignores *.

P: Use an operand that is an expression other
than pointer to void.

IV-1-27

Error No. Message Explanation

2209 ARITHMETIC TYPE REQUIRED The unary operator + or – is used on a non-
arithmetic expression.

S: Assumes that the operand type is int and
continues processing.

P: Change the expression to an arithmetic
expression.

2210 INTEGER REQUIRED The unary operator ~ is used on a non-integral
expression.

S: Assumes that the result type is int and
continues processing.

P: Change the expression to an integral
expression.

2211 ILLEGAL SIZEOF A sizeof operator is used for a bit field member,
function, void, or array with an undefined size.

S: Assumes int as the operand type and
continues processing.

P: A sizeof operator cannot be used to obtain
the size of a bit field, function, void, or array
with an undefined size. Use an appropriate
operand.

2212 ILLEGAL CAST Either array, struct, or union is specified in a
cast operator, or the operand of a cast operator
is void, struct, or union and cannot be
converted.

S: Assumes that the result is int and continues
processing.

P: Cast operation can only be performed on
scalar data items.

Use appropriate operands.

2213 ARITHMETIC TYPE REQUIRED The binary operator *, /, *=, or /= is used in an
expression that is not arithmetic.

S: Assumes int as the result and continues
processing.

P: Specify arithmetic expressions as the
operands.

IV-1-28

Error No. Message Explanation

2214 INTEGER REQUIRED The binary operator <<, >>, &, |, ^, %, <<=, >>=,
&=, | =, ^=, or %= is used in an expression that
is not an integer expression.

S: Assumes int as the result type and
continues processing.

P: Specify integer expressions as the
operands.

2215 ILLEGAL TYPE FOR + The combination of operand types used with the
binary operator + is illegal.

S: Assumes the result type is int and continues
processing.

P: Specify a correct type of operands. Only the
following type combinations are allowed for
the binary operator +:

— Two arithmetic operands

— Pointer and integer

2216 ILLEGAL TYPE REQUIRED FOR
PARAMETER

void is specified for a function call parameter
type.

S: Ignores the parameter type and continues
processing.

P: Specify a function call parameter type so
that a value can be passed to the function.

2217 ILLEGAL TYPE FOR – The combination of operand types used with the
binary operator – is not allowed.

S: Assumes that the result type is int and
continues processing.

P: Specify a correct type combination of
operands. Only the following three
combinations are allowed for the binary
operator:

(1) Two arithmetic operands

(2) Two pointers assigned to the same
data type

(3) The first operand is a pointer and the
second operand is an integer.

IV-1-29

Error No. Message Explanation

2218 SCALAR REQUIRED The first operand of the conditional operator ?: is
not a scalar.

S: Assumes that the first operand is a scalar
and continues processing.

P: Specify a scalar expression as the first
operand.

2219 TYPE NOT COMPATIBLE The types of the second and third operands of
the conditional operator ?: do not match with
each other.

S: Assumes that the result type is int and
continues processing.

P: Specify a correct type combination of
operands. Only one of the following six
combinations is allowed for the second and
third operands when using the ?: operator:

(1) Two arithmetic operands

(2) Two void operands

(3) Two pointers assigned to the same
data type

(4) A pointer and an integer constant
whose value is zero or another pointer
that is assigned to void that was
converted from an integer constant
whose value is zero

(5) A pointer and another pointer assigned
to void

(6) Two struct or union variables with the
same data type

2220 MODIFIABLE LVALUE
REQUIRED

An expression whose left value cannot be
assigned (a left value whose type is not array or
const) is used as an operand of an assignment
operator =, *=, /=, %=, +=, –=, <<=, >>=, &=, ^=,
or | =.

S: Assumes that the left expression whose left
value can be assigned is used and
continues processing.

P: Specify a left expression whose left value
can be assigned.

IV-1-30

Error No. Message Explanation

2221 ILLEGAL TYPE FOR
POSTINCREMENT OR
POSTDECREMENT

The operand of the unary suffix operator ++ or
– – is a function type, a pointer assigned to void,
or not a scalar type.

S: Assumes that the result type is int and
continues processing.

P: Use a scalar type that is not a function or a
pointer assigned to void as the operand.

2222 TYPE NOT COMPATIBLE The operand types for the assignment operator
= do not match.

S: Assumes that the result type is int and
continues processing.

P: Specify a correct type combination of
operands. Only the following five types of
combinations are allowed for the operands
of the = assignment operator:

(1) Two arithmetic operands

(2) Two pointers assigned to the same
data type

(3) The left operand is a pointer and the
right operand is an integer constant
whose value is zero or another pointer
that is assigned to void that was
converted from an integer constant
whose value is zero.

(4) A pointer and another pointer assigned
to void

(5) Two struct or union variables with the
same data type

2223 INCOMPLETE TAG USED IN
EXPRESSION

An incomplete tag name is used for a struct or
union in an expression.

S: Assumes that the incomplete tag name is int
and continues processing.

P: Declare the tag name.

IV-1-31

Error No. Message Explanation

2224 ILLEGAL TYPE FOR ASSIGN The operand types of the assignment operator
+= or –= are illegal.

S: Assumes that the result type is int and
continues processing.

P: Specify a correct type combination of
operands. Only the following two types of
combinations are allowed as operands for
the assignment operator += or –=:

(1) Two arithmetic operands

(2) The left operand is a pointer and the
right operand is an integer.

2225 UNDECLARED NAME: "name" An undeclared name is used in an expression.

S: Assumes that the name is declared as an int
external identifier and continues processing.

P: Either declare the name or modify it so that it
corresponds with one of the declared
names.

2226 SCALAR REQUIRED The binary operator && or || is used in a non-
scalar expression.

S: Assumes that the result type is int and
continues processing.

P: Use scalar expressions as operands.

2227 ILLEGAL TYPE FOR EQUALITY The combination of operand types for the
equality operator == or != is not allowed.

S: Assumes that the result type is int and
continues processing.

P: Specify a correct type combination of
operands. Only the following three
combinations of operand types for the
equality operator == or != are allowed:

(1) Two arithmetic operands

(2) Two pointers assigned to the same
data type

(3) A pointer and an integer constant
whose value is zero or another pointer
assigned to void

IV-1-32

Error No. Message Explanation

2228 ILLEGAL TYPE FOR
COMPARISON

The combination of operand types for the
relational operator >, <, >=, or <= is not allowed.

S: Assumes that the result type is int and
continues processing.

P: Specify a correct type combination of
operands. Only the following two
combinations of operand types are allowed
for a relational operator:

(1) Two arithmetic operands

(2) Two pointers assigned to the same
data type

2230 ILLEGAL FUNCTION CALL An expression which is not a function type or a
pointer assigned to a function type is used for a
function call.

S: Ignores the actual parameter list and the
parentheses which indicate this list.

P: Correctly specify a function type expression
or pointer assigned to a function type.

2231 ADDRESS OF BIT FIELD The unary operator & is used on a bit field.

S: Ignores the bit field, assumes that the unary
operator & is correctly specified, and
continues processing.

P: Correct the expression. A bit field address
cannot be used.

2232 ILLEGAL TYPE FOR
PREINCREMENT OR
PREDECREMENT

A type that is not a scalar, or that is a pointer
assigned to a function or void is specified as the
operand for the prefix operator ++ or – –.

S: Assumes int as the result type and
continues processing.

P: Use an operand that is a scalar other than a
pointer assigned to a function or void.

2233 ILLEGAL ARRAY REFERENCE An expression used as an array is not one of the
following types.

— Array

— Pointer assigned to a data type other than a
function or void

S: Ignores the square brackets ([]) and the
array subscript enclosed.

P: When an array subscript is required, specify
the correct expression.

IV-1-33

Error No. Message Explanation

2234 ILLEGAL TYPEDEF NAME
REFERENCE

A typedef name is used as a variable in an
expression.

S: Ignores the expression.

P: Use typedef name correctly.

2235 ILLEGAL CAST An attempt is made to cast a pointer with a
floating-point type.

S: Ignores the attempt.

P: Cast the pointer with an integer type, then
with a floating-point type.

2236 ILLEGAL CAST IN CONSTANT If the CPU/operating mode is 300, 300hn,
2600n, or 2000n, an attempt is made to cast a
pointer with a char or long in a constant
expression. If the CPU/operating mode is
300ha, 2600a, or 2000a, an attempt is made to
cast a pointer with a char, short, or int in a
constant expression.

S: Ignores the cast operation.

P: Use an expression other than a constant
expression.

2237 ILLEGAL CONSTANT
EXPRESSION

In a constant expression, a pointer constant cast
with an integer is specified as an operand.

S: Assumes that the conversion is not specified
and continues processing.

P: Use an expression other than a constant
expression.

2238 LVALUE OR FUNCTION TYPE
REQUIRED

The unary operator & is used on the left value or
is used in an expression other than function
type.

S: Assumes that an expression with a left value
is specified as the operand and continues
processing.

P: Specify an expression that has a left value
or a function type expression as the
operand.

IV-1-34

Error No. Message Explanation

2300 CASE NOT IN SWITCH A case label is specified outside a switch
statement.

S: Ignores the case label.

P: Specify the case label in the switch
statement.

2301 DEFAULT NOT IN SWITCH A default label is specified outside a switch
statement.

S: Ignores the default label.

P: Specify the default label in the switch
statement.

2302 MULTIPLE LABELS A label is defined more than once in a function.

S: Ignores redundant label definitions.

P: Keep one label name and delete or modify
the other.

2303 ILLEGAL CONTINUE A continue statement is specified outside a
while, for, or do statement.

S: Ignores the continue statement.

P: Only use the continue statement in the
while, for, or do statement.

2304 ILLEGAL BREAK A break statement is specified outside a while,
for, do, or switch statement.

S: Ignores the break statement.

P: Only use the break statement in the while,
for, do, or switch statement.

2305 VOID FUNCTION RETURNS
VALUE

A return statement specifies a return value for a
function with a void return type.

S: Ignores the return statement expression.

P: For a function with a void return type, do not
specify an expression in the return
statement or do not use the return
statement.

2306 CASE LABEL NOT CONSTANT A case label expression is not an integer
constant expression.

S: Ignores the case label.

P: Use an integer constant expression for the
case label.

IV-1-35

Error No. Message Explanation

2307 MULTIPLE CASE LABELS Two or more case labels with the same value
are used in one switch statement.

S: Ignores redundant case labels.

P: Modify the switch statement so that each
case label has a unique value.

2308 MULTIPLE DEFAULT LABELS Two or more default labels are specified for one
switch statement.

S: Ignores redundant default labels.

P: Modify the switch statement so that it has
only one default label.

2309 NO LABEL FOR GOTO There is no label corresponding to the
destination specified by a goto statement.

S: Continues processing.

P: Specify the correct label in the goto
statement.

2310 SCALAR REQUIRED The control expression (that determines
statement execution) for a while, for, or do
statement is not a scalar.

S: Assumes that an int control expression is
specified and continues processing.

P: Use a scalar expression as the control
expression for the while, for, or do
statement.

2311 INTEGER REQUIRED The control expression (that determines
statement execution) for a switch statement is
not an integer.

S: Assumes that an int control expression is
specified and continues processing.

P: Use an integer expression as the control
expression for the switch statement.

2312 MISSING (The control expression (that determines
statement execution) does not follow a left
parenthesis “(” for an if, while, for, do, or
switch statement.

S: Assumes that the control expression follows
a left parenthesis and continues processing.

P: Specify the control expression for the if,
while, for, do, or switch statement and
enclose it in parentheses.

IV-1-36

Error No. Message Explanation

2313 MISSING ; A do statement is ended without a semicolon (;).

S: Assumes that the do statement ends with a
semicolon (;) and continues processing.

P: Place a semicolon at the end of the do
statement.

2314 SCALAR REQUIRED A control expression (which determines
statement execution) for an if statement is not a
scalar.

S: Assumes that an int control expression is
specified and continues processing.

P: Use a scalar expression as the control
expression for the if statement.

2316 ILLEGAL TYPE FOR RETURN
VALUE

An expression in a return statement cannot be
converted to the type of value expected to be
returned by the function.

S: Assumes that the expression in the return
statement is the type expected to be
returned by the function and continues
processing.

P: Convert the expression in the return
statement so that it matches the type of
value expected.

2330 ILLEGAL INTERRUPT
FUNCTION DECLARATION

The interrupt function declaration is illegal.

S: Ignores the illegal and subsequent
declarations.

P: Declare the #pragma interrupt directive
using the correct format.

2331 ILLEGAL INTERRUPT
FUNCTION CALL

A function with an interrupt function declaration
is called or referenced.

S: Assumes the function was not declared to
be an interrupt function and continues
processing.

P: A function declared to be an interrupt
function in the same file, cannot be called or
referenced during processing. Delete the
interrupt function declaration or the
statement which calls or references the
function.

IV-1-37

Error No. Message Explanation

2332 INTERRUPT FUNCTION
ALREADY DECLARED

The function specified by interrupt function
declaration #pragma interrupt has been
declared as a normal function.

S: Ignores the interrupt function declaration.

P: Add the interrupt function declaration before
the corresponding function declaration.

2333 MUTIPLE INTERRUPT FOR ONE
FUNCTION

Interrupt function declaration #pragma interrupt
has been declared more than once against the
same function.

S: Ignores the interrupt function declaration.

P: Delete the second and subsequent
declarations.

2334 ILLEGAL PARAMETER IN
INTERRUPT FUNCTION

Parameter type used for interrupt function is
illegal.

S: Ignores the interrupt function declaration.

P: Correct the description of the interrupt
function. Interrupt functions cannot pass
parameters. Only void can be used for the
parameter.

2335 MISSING PARAMETER
DECLARATION IN INTERRUPT
FUNCTION

An undeclared variable or function is used in
stack switching specification (sp) for interrupt
function declaration #pragma interrupt or
interrupt function end specification (sy).

S: Ignores the interrupt function declaration.

P: Provide a variable or function declaration
before the interrupt function declaration
#pragma interrupt.

2336 PARAMETER OUT OF RANGE IN
INTERRUPT FUNCTION

The value of parameter tn for interrupt function
declaration #pragma interrupt exceeds 3.

S: Ignores parameter tn.

P: Modify parameter tn to 3 or less.

2340 IILLEGAL ABS8 DECLARATION Short absolute address variable declaration is
illegal.

S: Ignores the illegal and subsequent
declarations.

P: Declare the #pragma abs8 directive using
the correct format.

IV-1-38

Error No. Message Explanation

2341 ABS8 ALREADY DECLARED The variable specified by short absolute address
variable declaration #pragma abs8 has been
declared as a variable.

S: Ignores the short absolute address variable
declaration.

P: Add the short absolute address variable
declaration before the corresponding
variable declaration.

2342 ILLEGAL ABS8 TYPE The variable specified by short absolute address
variable declaration #pragma abs8 has been
declared as a type other than a variable name.

S: Ignores the short absolute address variable
declaration.

P: Declare and define the name specified by
the short absolute address variable as a
variable name.

2345 IILLEGAL ABS16 DECLARATION Short absolute address variable declaration is
illegal.

S: Ignores the illegal and subsequent
declarations.

P: Declare the #pragma abs16 directive using
the correct format.

2346 ABS16 ALREADY DECLARED The variable specified by short absolute address
variable declaration #pragma abs16 has been
declared as a variable.

S: Ignores the short absolute address variable
declaration.

P: Add the short absolute address variable
declaration before the corresponding
variable declaration.

2347 ILLEGAL ABS16 TYPE The variable specified by short absolute address
variable declaration #pragma abs16 has been
declared as a type other than a variable name.

S: Ignores the short absolute address variable
declaration.

P: Declare and define the name specified by
the short absolute address variable as a
variable name.

IV-1-39

Error No. Message Explanation

2350 IILLEGAL SECTION NAME
DECLARATION

The #pragma section specification is illegal.

S: Ignores the section name specification.

P: Correct the #pragma section specification.

2352 SECTION NAME TABLE
OVERFLOW

The number of normal sections, 8/16-bit
absolute address sections, and indirect memory
call sections exceed 64, or the total number of
sections exceeds 256.

S: Ignores section name specification.

P: Reduce the specified sections or divide the
file.

2360 IILLEGAL INDIRECT FUNCTION
DECLARATION

Indirect memory function declaration is illegal.

S: Ignores the illegal and subsequent
declarations.

P: Declare the #pragma indirect directive
using the correct format.

2361 INDIRECT FUNCTION ALREADY
DECLARED

The function specified by indirect memory
function declaration #pragma indirect has been
declared as a function.

S: Ignores the indirect memory function
declaration.

P: Add the indirect memory function declaration
before the corresponding function
declaration.

2362 ILLEGAL INDIRECT TYPE The function specified by indirect memory
function declaration #pragma indirect has been
declared and defined as a type other than a
function.

S: Ignores the #pragma indirect specification.

P: Declare, refer, and define as a function type
the name specified by #pragma indirect.

2363 TOO MANY INDIRECT
IDENTIFIERS

The number of names that can be specified in a
file of the indirect memory function exceeds the
limit. The limit is 128 for a CPU/operating mode
of 2600n, 2000n, 300hn, or 300, and 64 for a
CPU/operating mode of 2600a, 2000a, or 300ha.

S: Ignores the indirect memory function.

P: Reduce the indirect memory function
specifications or divide the file.

IV-1-40

Error No. Message Explanation

2370 IILLEGAL
REGSAVE/NOREGSAVE
DECLARATION

The #pragma regsave or #pragma noregsave
declaration is illegal.

S: Ignores the illegal and subsequent
declarations.

P: Declare the #pragma regsave or #pragma
noregsave directive using the correct
format.

2371 REGSAVE/NOREGSAVE
FUNCTION ALREADY
DECLARED

The function specified by #pragma regsave or
#pragma noregsave has been declared as a
function.

S: Ignores the #pragma regsave or #pragma
noregsave declaration.

P: Add the #pragma regsave or #pragma
noregsave declaration before the
corresponding function declaration.

2372 ILLEGAL
REGSAVE/NOREGSAVE TYPE

The function specified by #pragma regsave or
#pragma noregsave has been declared and
defined as a type other than a function.

S: Ignores the #pragma regsave or #pragma
noregsave specification.

P: Declare, refer, and define as a function type
the name specified by #pragma regsave or
#pragma noregsave.

2380 IILLEGAL IN-LINE
DECLARATION

The #pragma inline declaration is illegal.

S: Ignores the illegal and subsequent
declarations.

P: Declare the #pragma inline directive using
the correct format.

2381 IN-LINE FUNCTION ALREADY
DECLARED

The function specified by #pragma inline has
been declared as a function.

S: Ignores the #pragma inline declaration.

P: Add the #pragma inline declaration before
the corresponding function declaration.

IV-1-41

Error No. Message Explanation

2382 ILLEGAL IN-LINE TYPE The function specified by #pragma inline has
been declared and defined as a type other than
a function.

S: Ignores the #pragma inline specification.

P: Declare, refer, and define as a function type
the name specified by #pragma inline.

2400 ILLEGAL CHARACTER:
"character"

An illegal character is detected.

S: Assumes that the character is a blank
character and continues processing.

P: Delete the character.

2401 INCOMPLETE CHARACTER
CONSTANT

An end of a line is detected in the middle of a
character constant.

S: Assumes that a quotation mark (') is placed
before the end of line indicator and
continues processing.

P: Correct the character constant.

2402 INCOMPLETE STRING An end of line is detected in the middle of a
string literal.

S: Assumes that a double quotation mark (") is
placed before the end of line indicator and
continues processing.

P: Correct the string literal.

2403 EOF IN COMMENT An end of file is detected in the middle of a
comment.

S: Assumes that the program ends when the
end of file indicator is reached and continues
processing.

P: End the comment with */.

2404 ILLEGAL CHARACTER CODE:
"character code"

An illegal character code is detected.

S: Assumes that the character code is a blank
character and continues processing.

P: Delete the illegal character code.

2405 NULL CHARACTER CONSTANT There are no characters in a character constant
(i.e., no characters are specified between two
quotation marks).

S: Assumes that '\0' is specified and continues
processing.

P: Correct the character constant.

IV-1-42

Error No. Message Explanation

2406 OUT OF FLOAT The number of significant digits in a floating-
point constant exceeds 17.

S: Depending on the sign, the system assumes
+∞ or –∞.

P: Ensure that the number of significant digits
in a floating-point constant is less than or
equal to 17.

2407 INCOMPLETE LOGICAL LINE A backslash (\) or a backslash followed by an
end of the line indicator (\ (RET)) is specified as
the last character in a non-empty source file.

S: Ignores the last logical line.

P: Delete the backslash or continue the
physical line.

2500 ILLEGAL TOKEN: "token" An illegal token sequence is used.

S: Ignores data up to a semicolon (;), left brace
({), right brace (}), comma (,), or keyword (if,
while, for, switch, do, case, default,
return, break, or continue).

P: Correct the token sequence.

2501 DIVISION BY ZERO An integer is divided by zero in a constant
expression.

S: Assumes a result value of zero and
continues processing.

P: Modify the constant expression so that an
integer is not divided by zero.

2600 #ERROR DIAGNOSTIC
MESSAGE: "character string"

An error message specified by string literal
#error is output to the list file if nolist option is
not specified.

S: Continues processing.

2801 ILLEGAL PARAMETER TYPE IN
IN-LINE FUNCTION

The parameter type of a intrinsic function is
illegal.

S: Disables the intrinsic function.

P: Set the correct parameter.

2802 PARAMETER OUT OF RANGE IN
IN-LINE FUNCTION

The parameter value of a intrinsic function is out
of range.

S: Disables the intrinsic function.

P: Set the allowable parameter value.

IV-1-43

(4) Fatal-Level Messages

Error No. Message Explanation

3000 STATEMENT NEST TOO DEEP The nesting level of if, while, for, do, and
switch statements exceeds 32.

S: Terminates processing.

P: Modify the program so that the nesting level
never exceeds 32.

3001 BLOCK NEST TOO DEEP The nesting level of compound statements
exceeds 32.

S: Terminates processing.

P: Modify the program so that the nesting level
never exceeds 32.

3002 #IF NEST TOO DEEP The conditional compilation (#if, #ifdef, #ifndef,
#elif, and #else) nesting level exceeds 32.

S: Terminates processing.

P: Modify the program so that the nesting level
never exceeds 32.

3003 TOO MANY EXTERNAL
IDENTIFIERS

The number of external identifiers exceeds the
limit.

S: Terminates processing.

P: Expand the limit using the limits option, or
divide the program so that the number of
external identifiers is less than or equal to
the limit.

3004 TOO MANY LOCAL IDENTIFIERS The number of effective identifiers (internal
identifiers) in one function exceeds the limit.

S: Terminates processing.

P: Expand the limit using the limits option, or
divide the compound statements so that the
number of identifiers declared in one
compound statement is less than or equal to
the limit.

3005 TOO MANY MACRO
IDENTIFIERS

The number of macro names defined in the
#define directive exceeds the limit.

S: Terminates processing.

P: Expand the limit using the limits option, or
divide the program so that the number of
macro names is less than or equal to the
limit.

IV-1-44

Error No. Message Explanation

3006 TOO MANY PARAMETERS The number of parameters in either a function
declaration or a function call exceeds 63.

S: Terminates processing.

P: Modify the program so that the number of
function parameters is less than or equal to
63.

3007 TOO MANY MACRO
PARAMETERS

The number of parameters in a macro definition
or a macro call exceeds 63.

S: Terminates processing.

P: Modify the program so that the number of
macro parameters is less than or equal to
63.

3008 LINE TOO LONG After a macro expansion, the length of a line
exceeds 4096 characters.

S: Terminates processing.

P: Divide the line so that its length does not
exceed 4096 characters after macro
expansion.

3009 STRING LITERAL TOO LONG The length of the character string exceeds 512
characters. The length of the string literal is the
byte number generated after the specified string
is connected continuously. The length of the
string literal in the source program is not the
length of the source program, in the string data.
This byte number is located in the string literal
data with the expansion sign counted as one
character.

S: Terminates processing.

P: Modify the program so that the total length of
the string literal does not exceeds 512 bytes.

3010 #INCLUDE NEST TOO DEEP The nesting level of the #include directive
exceeds the limit of 30.

S: Terminates processing.

P: Ensure that the file inclusion nesting level
does not exceed the limit of 30.

IV-1-45

Error No. Message Explanation

3011 MACRO EXPANSION NEST TOO
DEEP

The nesting level of macro expansion performed
by the #define directive exceeds 32.

S: Terminates processing.

P: Modify the program so that the nesting level
of macro expansion never exceeds 32. Note
that a macro may be defined recursively.

3012 TOO MANY FUNCTION
DEFINITIONS

The number of function definitions is greater
than 512.

S: Terminates processing.

P: Divide the program so that the number of
function definitions is less than or equal to
512 in one compile unit.

3013 TOO MANY SWITCHES The number of switch statements exceeds 256.

S: Terminates processing.

P: Divide the program so that the number of
switch statements is less than or equal to
256 in one compile unit.

3014 FOR NEST TOO DEEP The nesting level of for statement exceeds 16.

S: Terminates processing.

P: Modify the program so that the nesting level
of for statement never exceeds 16.

3015 SYMBOL TABLE OVERFLOW The number of symbols to be generated by the
C compiler exceeds the limit.

S: Terminates processing.

P: Expand the limit using the limits=symbol
option, or divide the file so that the number
of symbols does not exceed the limit.

3016 INTERNAL LABEL OVERFLOW The number of internal labels to be generated by
the C compiler exceeds the limit.

S: Terminates processing.

P: Expand the limit using the limits=symbol
option, or divide the file so that the number
of internal labels does not exceed the limit.

3017 TOO MANY CASE LABELS The number of case labels in one switch
statement exceeds 511.

S: Terminates processing.

P: Ensure that the number of case labels does
not exceed 511.

IV-1-46

Error No. Message Explanation

3018 TOO MANY GOTO LABELS The number of goto labels defined in one
function exceeds 511.

S: Terminates processing.

P: Ensure that the number of goto labels
defined in a function does not exceed 511.

3019 CANNOT OPEN SOURCE FILE A source file cannot be opened.

S: Terminates processing.

P: Specify the correct file name.

3020 SOURCE FILE INPUT ERROR A source or include file cannot be read.

S: Terminates processing.

P: Check that the file is not read protected.

3021 MEMORY OVERFLOW The C compiler cannot allocate sufficient
memory to compile the program.

S: Terminates processing.

P: Divide the file so that less memory is needed
for compilation.

3022 SWITCH NEST TOO DEEP The nesting level of switch statement exceeds
16.

S: Terminates processing.

P: Modify the program so that the nesting level
of switch statement never exceeds 16.

3023 TYPE NEST TOO DEEP The number of types (pointer, array, and
function) that qualify the basic type exceeds 16.

S: Terminates processing.

P: Ensure that the number of types is less than
or equal to 16.

3024 ARRAY DIMENSION TOO DEEP An array has more than six dimensions.

S: Terminates processing.

P: Ensure that arrays have no more than six
dimensions.

3025 SOURCE FILE NOT FOUND A source file name is not specified in the
command line.

S: Terminates processing.

P: Specify a source file name.

3026 EXPRESSION TOO COMPLEX An expression is too complex.

S: Terminates processing.

P: Divide the expression into smaller units.

IV-1-47

Error No. Message Explanation

3027 SOURCE FILE TOO COMPLEX The nesting level of statements in the program is
too deep or an expression is too complex.

S: Terminates processing.

P: Reduce the nesting level of statements or
divide the expression.

3028 SOURCE LINE NUMBER
OVERFLOW

The last source line number is greater than
65535.

S: Terminates processing.

P: Modify both the line count specified in the
#line directive and the source program so
that the last source line number is less than
or equal to 65535.

3029 PHYSICAL LINE OVERFLOW The number of physical lines (including the
include files) exceeds 65535.

S: Terminates processing.

P: Divide the file so that the number of physical
lines does not exceed 65535

3031 DATA SIZE OVERFLOW The size of an array or a structure exceeds the
limit. The limit is 65535 for a CPU/operating
mode of 2600n, 2000n, 300hn, or 300, 1048575
for a CPU/operating mode of 2600a:20,
2000a:20, or 300ha:20, 16777215 for a
CPU/operating mode of 2600a:24, 2000a:24, or
300ha:24, 268435455 for a CPU/operating mode
of 2600a:28 or 2000a:28, and 4294967295 for a
CPU/operating mode of 2600a:32 or 2000a:32.

S: Terminates processing.

P: Reduce the size of the array or the structure
until it is less than or equal to the limit.

3033 SYMBOL TABLE OVERFLOW The number of symbols used for debug
information exceeds 65535.

S: Terminates processing.

P: Divide the file so that the number of symbols
does not exceed 65535.

IV-1-48

Error No. Message Explanation

3200 OBJECT SIZE OVERFLOW The size of the object program exceeds the
memory limit of 64 kbytes for a CPU/operating
mode of 2600n, 2000n, 300hn, or 300, 1 Mbytes
for a CPU/operating mode of 2600a:20,
2000a:20, or 300ha:20, 16 Mbytes for a
CPU/operating mode of 2600a:24, 2000a:24, or
300ha:24, 256 Mbytes for a CPU/operating
mode of 2600a:28 or 2000a:28, and 4 Gbytes for
a CPU/operating mode of 2600a:32 or 2000a:32.

S: Terminates processing.

P: Divide the program so that the size of the
object program does not exceed the limit.

3202 ILLEGAL STACK ACCESS The local variable and temporary area, and the
register save area are placed at an address that
exceeds the limit value for the stack pointer (SP)
or frame pointer (FP), or the parameter area is
placed at an address that exceeds the limit value
for the SP or FP. The offset limit from an SP or
FP is 32 kbytes for a CPU/operating mode of
2600n, 2000n, 300hn, or 300, 512 kbytes for a
CPU/operating mode of 2600a:20, 2000a:20, or
300ha:20, 8 Mbytes for a CPU/operating mode
of 2600a:24, 2000a:24, or 300ha:24, 128 Mbytes
for a CPU/operating mode of 2600a:28 or
2000a:28, and 2 Gbytes for a CPU/operating
mode of 2600a:32 or 2000a:32.

S: Terminates processing.

P: Use the size of parameters and the size of
local variables that are within the effective
scope.

3204 TOO MANY SOURCE LINES FOR
DEBUG

The number of execution statements used for
debugging exceeds the limit.

S: Terminates processing.

P: Divide the file so that the number of
execution statements does not exceed the
limit.

3300 CANNOT OPEN INTERNAL FILE An intermediate file internally generated by the C
compiler cannot be opened.

S: Terminates processing.

P: Check that the intermediate file generated
by the C compiler is not being used.

IV-1-49

Error No. Message Explanation

3301 CANNOT CLOSE INTERNAL
FILE

An intermediate file internally generated by the C
compiler cannot be closed.

S: Terminates processing.

P: Check that the intermediate file generated
by the C compiler is not being used.

3302 CANNOT INPUT INTERNAL FILE An intermediate file internally generated by the C
compiler cannot be read.

S: Terminates processing.

P: Check that the intermediate file generated
by the C compiler is not being used.

3303 CANNOT OUTPUT INTERNAL
FILE

An intermediate file internally generated by the C
compiler cannot be written.

S: Terminates processing.

P: Increase the disk size.

3304 CANNOT DELETE INTERNAL
FILE

An intermediate file internally generated by the C
compiler cannot be deleted.

S: Terminates processing.

P: Check that the intermediate file generated
by the C compiler is not being used.

3305 INVALID COMMAND
PARAMETER "option name"

An invalid compiler option is specified.

S: Terminates processing.

P: Specify the correct option.

3306 INTERRUPT IN COMPILATION An interrupt generated by a (CNTL) C command
(from a standard input terminal) is detected
during compilation.

S: Terminates processing.

P: Input the compile command again.

3307 COMPILER VERSION
MISMATCH "file name"

The file version specified by the "file name" in
the C compiler does not match other file
versions.

S: Terminates processing.

P: Refer to the Install Guide for the installation
procedure, and reinstall the C compiler.

IV-1-50

Error No. Message Explanation

3320 COMMAND PARAMETER
BUFFER OVERFLOW

The number of characters of a command line
exceeds 256.

S: Terminates processing.

P: Ensure that the number of characters of the
command line does not exceed 256.

3321 ILLEGAL ENVIRONMENT
VARIABLE

The file name specification is illegal in setting
environment variable CH38, or the number of
characters of a pass exceeds 118.

S: Terminates processing.

P: Correctly set environment variable CH38.

3322 LACKING CPU SPECIFICATION A CPU/operating mode is not specified.

S: Terminates processing.

P: Specify the CPU/operating mode using the
cpu option or environment variable
H38CPU.

3323 ILLEGAL ENVIRONMENT
SPECIFIED

The specification of environment variable
CH38TMP or H38CPU used by the C compiler is
illegal.

S: Terminates processing.

P: Correctly set environment variable
CH38TMP or H38CPU.

4000

to

4999

INTERNAL ERROR An internal error occurs during compilation.

S: Terminates processing.

P: Report the error occurrence to your local
Hitachi dealer.

IV-2-1

Section 2 Error Messages Output for C Library Functions

Some library functions set error numbers to macro errno defined by the header file <stddef.h> in the
C library function when an error occurs during the library function execution. Error messages
corresponding to error numbers have already been defined and can be output. The following shows an
example of a program which causes an error message output.

Example:

#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

main()
{

 FILE *fp;

 fp=fopen("file","w");
 fp=NULL;
 fclose(fp); /* error occurred */-----①

 printf("%s\n",strerror(errno)) ; /*print error message */--②

}

Explanation:

① An error occurs because the file pointer value NULL is passed to the fclose function as an actual
parameter. In this case, an error number is set in errno.

② If the error number is passed to the strerror function as an actual parameter, a pointer to the
corresponding error message is returned. Specifying the character string to be output in the printf
function outputs the error message.

IV-2-2

C Library Function Error Messages

Error No. Message and Explanation Functions to Set Error Numbers

ERANGE DATA OUT OF RANGE

[An overflow occurs.]

frexp, ldexp, modf, ceil, floor, fmod, strtol,
atoi, atol, perror, fprintf, fscanf, printf, scanf,
sprintf, sscanf, vfprintf, vprintf, vsprintf

EDIV DIVISION BY ZERO

[Division by zero was performed.]

div, ldiv

ESTRN TOO LONG STRING

[The length of the character string
exceeds 512 characters.]

strtol, strtod, atoi, atol, atof

PTRERR INVALID FILE POINTER

[The NULL pointer constant is
specified as file pointer value.]

fclose, fflush, freopen, setbuf, setvbuf,
fprintf, fscanf, printf, scanf, sprintf, sscanf,
vfprintf, vprintf, vsprintf, fgetc, fgets, fputc,
fputs, ungetc, fread, fwrite, fseek, ftell,
rewind, perror

ECBASE INVALID RADIX

[An invalid radix was specified.]

strtol, atoi, atol

ETLN NUMBER TOO LONG

[The specified number exceeds 17
digits.]

strtod, fscanf, scanf, sscanf, atof

EEXP EXPONENT TOO LARGE

[The specified exponent exceeds
three digits.]

strtod, fscanf, scanf, sscanf, atof

EEXPN NORMALIZED EXPONENT TOO
LARGE

[The exponent exceeds three
digits when the character string is
normalized to the IEEE standard
decimal format.]

strtod, fscanf, scanf, sscanf, atof

ENUM NOT A NUMBER

[Not a number was specified as an
actual parameter.]

frexp, ldexp, modf, ceil, fabs, floor, fmod

EFLOAT
O

OVERFLOW OUT OF FLOAT

[The float data followed by f suffix
is out of range (overflows).]

strtod, fscanf, scanf, sscanf, atof

EFLOATU UNDERFLOW OUT OF FLOAT

[The float data followed by f suffix
is out of range (underflows).]

strtod, fscanf, scanf, sscanf, atof

IV-2-3

Error No. Message and Explanation Functions to Set Error Numbers

EOVER FLOATING POINT OVERFLOW

[The constant is out of double
data range (overflow).]

strtod, fscanf, scanf, sscanf, atof

EUNDER FLOATING POINT UNDERFLOW

[The constant is out of double
data range (underflow).]

strtod, fscanf, scanf, sscanf, atof

NOTOPN FILE NOT OPEN

[The file is not open.]

fclose, fflush, setbuf, setvbuf, fprintf, fscanf,
printf, scanf, vfprintf, vprintf, fgetc, fgets,
fputc, fputs, gets, puts, ungetc, fread, fwrite,
fseek, ftell, rewind, perror, freopen

EBADF BAD FILE NUMBER

[An output function was issued for
an input file or output function is
issued for input file.]

fprintf, fscanf, printf, scanf, sprintf, sscanf,
vfprintf, vprintf, vsprintf, fgetc, fgets, fputc,
fputs, gets, puts, ungetc, perror, fread, fwrite

ECSPEC ERROR IN FORMAT

[An erroneous format was
specified for an in input/output
function using format.]

fprintf, fscanf, printf, scanf, sprintf, sscanf,
vfprintf, vprintf, vsprintf, perror

Appendix

A-1

Appendix A Language and Standard Library Function
 Specifications for the C Compiler

This section shows the implementation dependent specifications of the C compiler that are not
included in the C language specifications (in ANSI standard for the programming).

A.1 C Compiler Language Specifications

A.1.1 Compilation Specifications

Table A-1 Compilation Specifications

Item C Compiler Specification

Error information when an error is detected Refer to Part IV, Error Messages

A.1.2 Environmental Specifications

Table A-2 Environmental Specifications

Item C Compiler Specification

Actual parameter for the main function Not specified

Interactive I/O device configuration Not specified

A.1.3 Identifiers

Table A-3 Identifier Specifications

Item C Compiler Specification

Number of valid internal-identifier characters
not used for external linkage

The first 31 characters are valid

Number of valid external-identifier characters
used for external linkage

The first 31 characters are valid

Lowercase and uppercase character distinction
in external identifiers used for external linkage

Lowercase characters are distinguished from
uppercase characters

Note: Two different identifiers in which the first 31 characters are the same are considered to be
identical.

A-2

Example:
(a) longnameabcdefghijklmnopqrstuvwx;
(b) longnameabcdefghijklmnopqrstuvwy;

Identifiers (a) and (b) are indistinguishable because the first 31 characters are the same.

A.1.4 Characters

Table A-4 Character Specifications

Item C Compiler Specification

Elements of a source character set and an
execution environment character set

ASCII characters are used for both sets.

Shift state used for encoding multiple-byte
characters

The shift state is not supported.

The number of bits used to indicate a character
set during program execution

Eight bits are used for each character.

Correspondence between the source character
set that appears either in a character constant
or a string literal and the execution environment
character set

ASCII characters are used for both sets.

Integer character constants including
characters and extended representation that
are not specified by the language

Characters and extended representations that
are not specified by the language are not
supported.

Character constant of two or more characters
or a wide character constant of two or more
multiple-byte characters

The upper two characters of the character
constant are valid, and the most significant
character of the wide character constant is
valid. If a wide character constant of more than
one character is specified, a warning error
message is output.

locale specifications used to convert multiple-
byte characters to wide character

locale is not supported.

Simple char having the same value range as
signed char or unsigned char

The same range as signed char

A-3

A.1.5 Integer

Table A-5 Integer Specifications

Item C Compiler Specification

Integer type representation and its values Listed in Table A-6.

Values when a smaller signed integer type or an
unsigned integer type is converted into a signed integer
type of the same size (when an integer is too large to be
converted into a signed integer)

The lower one or two bytes of the
integer is used as the conversion
result.

The result of bit-wise operations on signed integers Signed value

Sign of the remainder for integer division Same as the sign of the dividend

Effect of a right shift operation on a negative signed
integer type

The sign bit is unchanged by the shift
operation.

Table A-6 Integer Types and Corresponding Data Ranges

Type Value Range Data Size

char –128 to 127 1 byte

signed char –128 to 127 1 byte

unsigned char 0 to 255 1 byte

short –32768 to 32767 2 bytes

unsigned short 0 to 65535 2 bytes

int –32768 to 32767 2 bytes

unsigned int 0 to 65535 2 bytes

long –2147483648 to 2147483647 4 bytes

unsigned long 0 to 4294967295 4 bytes

A-4

A.1.6 Floating-Point Numbers

Table A-7 Floating-Point Number Specifications

Item C Compiler Specification

Data that can be represented as floating-point
type and its values

The float, double, and long double are
provided as floating-point types. See section

Data converted from double or long double to
float

A.3, Floating-Point Number Specifications, for
details on floating-point numbers (internal r

Internal representation of floating-point data representation, conversion specifications, and
operation specifications). Table A-8 shows the
limits for representing floating-point numbers.

Table A-8 Limits on Floating-Point Numbers

Limit

Item Decimal * Internal Representation

Maximum float 3.4028235677973364e+38f
(3.4028234663852886e+38f)

7f7fffff

Positive minimum float 7.0064923216240862e–46f
(1.4012984643248171e–45f)

00000001

Maximum double or
long double

1.7976931348623158e+308
(1.7976931348623157e+308)

7fefffffffffffff

Positive minimum double
or long double

4.9406564584124655e–324
(4.9406564584124654e–324)

0000000000000001

Note: The decimal limit is either a non-zero minimum value or a maximum value that is not
infinite. Values within () indicate theoretical values.

A-5

A.1.7 Arrays and Pointers

Table A-9 Array and Pointer Specifications

Item C Compiler Specification

Integer type required for maximum array size
(size_t)

unsigned int
— H8S/2600 in normal mode
— H8S/2000 in normal mode
— H8/300H in normal mode
— H8/300

unsigned long
— H8S/2600 in advanced mode
— H8S/2000 in advanced mode
— H8/300H in advanced mode

Conversion from a pointer type to an integer
type
(Pointer type size ≥ Integer type size)

The lower byte of a pointer type is used.

Conversion from a pointer type to an integer
type
(Pointer type size < Integer type size)

Expanded with zeros

Conversion from an integer type to a pointer
type
(Integer type size ≥ Pointer type size)

The lower byte of an integer type is used.

Conversion from an integer type to a pointer
type
(Integer type size < Pointer type size)

Expanded with zeros

Integer type required for holding pointer
differences between members in the same
array
(ptrdiff_t)

int
— H8S/2600 in normal mode
— H8S/2000 in normal mode
— H8/300H in normal mode
— H8/300

long
— H8S/2600 in advanced mode
— H8S/2000 in advanced mode
— H8/300H in advanced mode

A-6

A.1.8 Register

Table A-10 Register Specifications

Item C Compiler Specification

Registers to which register variables can be
allocated

H8S/2600,
H8S/2000,
H8/300H with optimization: (ER3), ER4, ER5,
ER6 *
H8/300H without optimization: (ER3), ER4,
ER5 *

H8/300 with optimization: (R3), R4, R5, R6 *
H8/300 without optimization: (R3), R4, R5 *

Type of register variables that can be allocated
to registers (H8S/2600, H8S/2000, H8/300H)

char, unsigned char, short, unsigned short,
int, unsigned int, long, unsigned long, and
float types, and pointers

Type of register variables that can be allocated
to registers (H8/300)

char, unsigned char, short, unsigned short,
int, and unsigned int types, and pointers

Note: Register variables are not allocated when the noregexpansion option is specified for the
register in parentheses.

A-7

A.1.9 Structure, Union, Enumeration, and Bit Field Types

Table A-11 Specifications for Structure, Union, Enumeration, and Bit Field Types

Item C Compiler Specification

Effect of setting a union member and
referencing a union member using another
member whose data type is different

Reference is possible but the referred value is
not guaranteed.

Structure member alignment Structures consisting of char members
are aligned in 1-byte units. Structures
consisting of any other member are aligned in
2-byte units.

See section 2.2, Aggregate Type Data,
in part II.

Sign of an int bit field Assumed to be a signed int.

Allocation order of bit fields in int type Beginning from the high order bit to low order
bit

Result when a bit field has been allocated in an
int type and the next bit field to be allocated is
larger than the remaining int type

The next bit field is allocated to the next int
area.

Type specifier allowed for bit field char, unsigned char, short, unsigned short,
int, and unsigned int

Integer type describing enumeration int

Note: See section 2.2, Bit Fields, in part II for details about allocating bit fields.

A.1.10 Modifier

Table A-12 Modifier Specifications

Item C Compiler Specification

volatile data access type Not specified.

A-8

A.1.11 Declarations

Table A-13 Declaration Specifications

Item C Compiler Specification

Number of types that can qualify basic types
(arithmetics, structure, and union)

Up to 16 types can be specified.

(a) Example of counting the number of types that qualify the basic types

Examples:
(i) int a;

a is int (basic type) and the number of types that qualify the basic type is zero.
(ii) char *f();

f is a function type that returns pointer to char (basic type). The number of types that
qualify the basic type is two.

A.1.12 Statement

Table A-14 Statement Specifications

Item C Compiler Specification

The number of case labels specified by a
switch statement

Up to 511 labels

A-9

A.1.13 Preprocessor

Table A-15 Preprocessor Specifications

Item C Compiler Specification

Correspondence between a single character
constant and an execution environment
character set in the conditional compilation

The character constant in the preprocessor
directive matches the execution environment
character set.

Reading an include file The file within < > is read from a path specified
by the include option. (Default: The path
specified by environment variable CH38.)

Supporting an include file with its name
enclosed in a pair of double quotation marks

The C compiler supports include files with their
names delimited by double quotation marks.
The C compiler reads these include files from
the current directory. If the include files are not
in the current directory, the C compiler reads
them from a path specified by the include
option.

Source file character string correspondence
(blank character in a character string after
macro expansion)

Strings of blanks are expanded as one blank
character.

#pragma directive operation #pragma abs8, #pragma abs16, #pragma
asm, #pragma endasm, #pragma indirect,
#pragma inline, #pragma interrupt, #pragma
section, #pragma abs8 section, #pragma
abs16 section, #pragma indirect section,
#pragma regsave, and #pragma noregsave
are supported.

Value of _ _DATE_ _, _ _TIME_ _ Dependent on the host-machine timer when the
compilation starts.

A-10

A.2 C Library Function Specifications

This section explains the specifications for C library functions declared in standard include files.
Refer to the include file for the actual macro names defined in a standard include file.

A.2.1 stddef.h

Table A-16 stddef.h Specifications

Item C Compiler Specification

Value of macro NULL The pointer value 0 is set to void.

Contents of macro ptrdiff_t int type
— H8S/2600 in normal mode
— H8S/2000 in normal mode
— H8/300H in normal mode
— H8/300

long type
— H8S/2600 in advanced mode
— H8S/2000 in advanced mode
— H8/300H in advanced mode

A.2.2 assert.h

Table A-17 assert.h Specifications

Item C Compiler Specification

Information output and terminal operation of the
assert function

See (a) for the format of output information.
The program outputs information and then calls
the abort function to stop the operation.

(a) The following message is output when the expression is 0 for assert (expression):
ASSERTION FAILED: <expression> FILE <file name>, LINE <line number>

A.2.3 ctype.h

Table A-18 ctype.h Specifications

Item C Compiler Specification

The character set is inspected by the isalnum,
isalpha, iscntrl, islower, isprint, and isupper
functions

Character set represented by the unsigned
char type. Table A-19 shows the character set
that results in a true return value.

A-11

Table A-19 Set of Characters that Return True Values

Function Name Characters That Become True

isalnum 0 to 9, A to Z, a to z

isalpha A to Z, a to z

iscntrl \X00 to \X1f, \X7f

islower a to z

isprint \X20 to \X7E

isupper A to Z

A.2.4 math.h

Table A-20 math.h Specifications

Item C Compiler Specification

Value returned by a mathematical function if an
input parameter is out of the range

The C compiler does not support a
mathematical function whose input parameter
is out of the range.

Is errno set to the value of macro ERANGE if
an underflow error occurs in a mathematical
function?

The C compiler does not support a
mathematical function in which an underflow
error occurs.

Does a range error occur if the second
parameter in the fmod function is 0

A range error occurs.

Note: math.h defines macro name EDOM, ERANGE which indicates a C library function error
number.

A-12

A.2.5 stdio.h

Table A-21 stdio.h Specifications

Item C Compiler Specification

Does the last line of the input text require a line
feed character indicating end?

Not specified. Depends on the low-level
interface routine specifications.

Is the blank character immediately before the
carriage return character read?

Number of NULL characters added to data
written in the binary file

Initial value of file position specifier in the
addition mode

Is a file data lost following text file output?

File bufferring specifications

Does a file with file length 0 exist?

File name configuration rule

Can the same files be opened simultaneously?

Output data representation of the %p format
conversion in the fprintf function

Hexadecimal representation

Input data representation of the %p format
conversion in the fscanf function, the meaning
of conversion character "–" in the fscanf
function

Hexadecimal representation
If "–" is not the first or last character or "–" does
not follow "^", the C compiler indicates the
previous character and following characters.

Value of errno specified by the fgetpos or ftell
function

The fgetpos function is not supported.
The ftell function does not specify the errno
value. The errno value is determined
depending on the low-level interface routine.

Output format of messages generated by the
perror function

See (a) below for the output message format.

calloc, malloc, or realloc function operation
when the size is 0

The 0-byte area is allocated.

(a) Messages generated by the perror function follow this format:
<character string> : <error message corresponding to the error number indicated by
error>

(b) Table A-22 shows the format used to indicate infinity and not-a-number for floating-
point numbers when using the printf or fprintf function.

A-13

Table A-22 Infinity and Not-a-Number

Value Format

Positive infinity + + + + + +

Negative infinity – – – – – –

Not a number * * * * * *

A.2.6 string.h

Table A-23 string.h Specifications

Item C Compiler Specification

Error message returned by the strerror
function

See part IV, section 2, Standard Library Error
Messages.

A.2.7 Unsupported Library

Table A-24 lists libraries in the C language specifications not supported by the C compiler.

Table A-24 Libraries not Supported by the C Compiler

Header File Library Name

math.h acos, asin, atan, atan2, cos, sin, tan, cosh, sinh, tanh, exp, log, log10, pow, sqrt

signal.h signal.h, signal, raise

stdio.h remove, rename, tmpfile, tmpnam

stdlib.h abort, exit, getenv, onexit, system

time.h time.h, clock, difftime, time, asctime, ctime, gmtime, localtime

A-14

A.3 Floating-Point Number Specifications

A.3.1 Internal Representation of Floating-Point Numbers

The internal representation of floating-point numbers follows the standard IEEE format. This
section explains this standard.

Internal Representation Format: float is represented in IEEE single precision (32 bits) format,
and double and long double are represented in IEEE double precision (64 bits) format.

Internal Representation Structure: Figure A-1 shows the structure of float, double, and long
double in the internal representation.

31 30 23 22

Sign (1 bit)

Exponent (8 bits) Mantissa (23 bits)

float

double and long double

Sign (1 bit)

Exponent (11 bits) Mantissa (52 bits)

6263 52 51

0

0

Figure A-1 Structure for the Internal Representation of Floating-Point Numbers

The elements of the structure have the following meanings.

(i) Sign
This indicates the sign of a floating-point number. Positive and negative are
represented by 0 and 1, respectively.

(ii) Exponent
This indicates the exponent of a floating-point number as a power of two.

(iii) Mantissa
This determines the significant digits of a floating-point number.

A-15

Types of Values: Floating-point numbers can represent infinity in addition to general real
numbers. The rest of this section explains the types of values that can be represented using
floating-point numbers.

(i) Normalized Number
The exponent is not 0 or the maximum. A normalized number represents a general real
number.

(ii) Denormalized Number
The exponent is 0 and the mantissa is not 0. A denormalized number is a real number
whose absolute value is very small.

(iii) Zero
The exponent and mantissa are both 0. Zero represents the value 0.0.

(iv) Infinity
The exponent is the maximum and mantissa is 0.

(v) Not a Number
The exponent is the maximum and the mantissa is not 0. This is used to represent an
operation result that is undefined (such as 0.0/0.0, ∞/∞, and ∞ – ∞).

Table A-25 shows the conditions used to determine values represented by floating-point numbers.

Note: A denormalized number represents a floating-point number whose absolute value is so
small that it cannot be represented as a normalized number. Denormalized numbers have
less significant digits than normalized numbers. The significant digits of a result are not
guaranteed if either the operation result or an intermediate result is a denormalized
number.

Table A-25 Types of Values Represented by Floating-Point Numbers

Exponent

Mantissa 0 Other than 0 or Maximum Maximum

0 0 Normalized number Infinity

Other than 0 Denormalized number Not a number

A-16

A.3.2 float

float is internally represented as a 1 sign bit, 8 exponent bits, and 23 mantissa bits.

Normalized Number: The sign bit is either 0 (positive) or 1 (negative). The exponent is a
number from 1 to 254 (28 – 2). From this value 127 is subtracted and the result is used as the
actual exponent. The range of actual exponents is –126 to 127. The mantissa is a value from 0 to
223 – 1. For an actual mantissa, it is assumed that the highest order bit (223) is 1 and a decimal
point follows it.

Value represented by a normalized number:
(–1)<sign> × 2<exponent> –127 × (1+ <mantissa> × 2–23)

Example:

1 1 0 0 0 0 0 0 0 1 1 0

31 30 23 22 0

Sign: –
Exponent: 10000000(2) – 127 = 1 ((2) indicates binary data throughout this manual.)
Mantissa: 1.11(2) = 1.75
Value: –1.75 × 21 = –3.5

Denormalized Number: The sign bit is either 0 (positive) or 1 (negative). The exponent is 0
which makes the actual exponent equal to –126. The mantissa is a value from 1 to 223 – 1. For an
actual mantissa, it is assumed that a highest order bit (223) is 0 and a decimal point follows it.

Value represented by a denormalized number:
(–1)<sign> × 2–126 × (<mantissa> × 2–23)

Example:

0 0 0 0 0 0 0 0 0 1 1 0

31 30 23 22 0

Sign: +
Exponent: –126
Mantissa: 0.11(2) = 0.75
Value: 0.75 × 2–126

Zero: The sign bit is either 0 (positive) or 1 (negative), (i.e., there are two distinct zero values,
+0.0 and –0.0). The exponent and mantissa are 0. Both +0.0 and –0.0 represent 0.0. See
appendix A.3.4, Floating-Point Operation Specification, for differences in each operation
dependent on the sign.

A-17

Infinity: The sign bit is either 0 (positive) or 1 (negative) (i.e., +∞ and –∞ can be represented).
The exponent is 255 (28 – 1). The mantissa is 0.

Not a number: The exponent is 255 (28 – 1) and the mantissa is not equal to 0.

Note: The sign of a not-a-number is arbitrary and the value of the mantissa is not limited
(except that it may not be equal to 0).

A.3.3 double and long double

A double or long double is represented as a 1 sign bit, 11 exponent bits, and 52 mantissa bits.

Normalized Number: The sign bit is either 0 (positive) or 1 (negative). The exponent is a
number from 1 to 2046 (211 – 2). From this value 1023 is subtracted and the result is used as the
actual exponent. The range of actual exponents is – 1022 to 1023. The mantissa is a value from 0
to 252 – 1. For an actual mantissa, it is assumed that the highest order bit (252) is 1 and a decimal
point follows it.

Value represented by a normalized number:
(–1)<sign> × 2<exponent> –1023 × (1+ <mantissa> × 2–52)

Example:

0 01111111111 111000

63 52 51 0

Sign: +
Exponent: 1111111111(2) – 1023 =0
Mantissa: 1.111(2) = 1.875
Value: 1.875 × 20 = 1.875

A-18

Denormalized Number: The sign bit is either 0 (positive) or 1 (negative). The exponent is 0
which makes the actual exponent equal to –1022. The mantissa value is from 1 to 252 – 1. For an
actual mantissa, it is assumed that the highest order bit (252) is 0 and a decimal point follows it.

Value represented by a denormalized number:
(–1)<sign> × 2–1022 × (<mantissa> × 2–52)

Example:

1 00000000000 111000

63 52 51 0

Sign: –
Exponent: –1022
Mantissa: 0.111(2) = 0.875
Value: 0.875 × 2–1022

Zero: The sign bit is either 0 (positive) or 1 (negative) (i.e., there are two distinct zero values +
0.0 and –0.0). The exponent and mantissa are 0. Both +0.0 and –0.0 represent 0.0. See appendix
A.3.4, Floating-Point Operation Specifications, for differences in each operation depending on the
sign.

Infinity: The sign bit is either 0 (positive) or 1 (negative) (i.e., +∞ and –∞ can be represented).
The exponent is 2047 (211 – 1). The mantissa is 0.

Not a number: The exponent is 2047 (211 – 1) and the mantissa is not equal to 0.

Note: The sign of a not-a-number is arbitrary and the value of the mantissa is not limited
(except that it may not be equal to 0).

A.3.4 Floating-point Operation Specifications

This section explains the floating-point arithmetic used in C language functions. It also gives the
specifications for converting between the decimal representation and either the internal
representation of floating-point numbers generated during C compiler or standard library function
processing.

A-19

Arithmetic Operation Specifications:

(i) Result Rounding
If the precise result of a floating-point operation exceeds the significant digits of the
internally represented mantissa, the result is rounded as follows:
① The result is rounded to the nearest internally representable floating-point number.
② If the result is directly between the two nearest internally representable floating-point
numbers, the result is rounded so that the lowest bit of the mantissa becomes 0.

(ii) Handling of Overflow and Underflow
Invalid operations, overflows and underflows resulting from numeric operations are
handled as follows:
① For an overflow, positive or negative infinity is used depending on the sign of the
result.
② For an underflow, positive or negative zero is used depending on the sign of the
result.
➂ An invalid operation is assumed when: (i) infinity is added to infinity and each has a
different sign; (ii) infinity is subtracted from infinity and each has the same sign; (iii)
zero is multiplied by infinity; (iv) zero is divided by zero; or (v) infinity is divided by
infinity. In each case, the result is a not-a-number.
➃ In any case, the variable errno is set to the error number corresponding to the error.
See part IV, Error Messages, section 2, C Library Error Messages, for the error
number.

Note: Operations are performed with constant expressions at compile time. If an overflow,
underflow, or invalid operation is detected during these operations, a warning-level error
occurs.

(iii) Special Value Operations
More about special value (zero, infinity, and not-a-number) operations:
① The result is positive zero if positive zero and negative zero are added.
② If zero is subtracted from zero and both zeros have the same sign, the result is a
positive zero.
➂ The operation result is always a not-a-number if one or both operands are not-a-
numbers.
➃ A positive zero is equal to a negative zero in relational operations.
➄ If one or both operands are not-a-numbers in a relational or equivalence operation,
the result of != is always true and all other results are false.

Conversion between Decimal Representation and Internal Representation: This section
explains the conversion between floating-point constants in a source program and floating-point
constants in an internal representation. The conversion between decimal representation and
internal representation of ASCII string literal floating-point numbers using library functions is also
explained.

A-20

(i) To convert a floating-point number from a decimal representation to an internal
representation, the floating-point number in the decimal representation is first converted
to a floating-point number in a normalized decimal representation. A floating-point
number in the normalized decimal representation is in the format ±M × 10±N. The
following ranges of M and N are used:

① For normalized float
0 ≤ M ≤ 109 – 1
0 ≤ N ≤ 99

② For normalized double and long double
0 ≤ M ≤ 1017 – 1
0 ≤ N ≤ 999

An overflow or underflow occurs if a floating-point number in a decimal representation
cannot be normalized. If a floating-point number in a normalized decimal representation
contains too many significant digits, as a result of the conversion, the lower digits are
discarded. In the above cases, a warning-level error occurs at compile time and the
variable errno is set equal to the corresponding error number at run time.

To convert a floating-point number from a decimal representation to a normalized
decimal representation, the length of the original ASCII string literal must be less than or
equal to 511 characters. Otherwise, an error occurs at compile time and the variable
errno is set equal to the corresponding error number at run time.

To convert a floating-point number from internal representation to decimal
representation, the floating-point number is first converted from an internal
representation to a normalized decimal representation. According to a specified format,
the result is then converted to an ASCII string literal.

(ii) Conversion between Normalized Decimal Representation and Internal Representation
If the exponent of a floating-point number to be converted between a decimal

representation and an internal representation is too large or too small, a precise result
cannot be obtained. This section explains the range of exponents for precise conversion
and the error that results from exceeding the range.

a) Range of exponents for Precise Conversion
Rounding as explained in the description, Result Rounding, in appendix A.3 4,

Floating-point Operation Specifications, is performed precisely for floating-point
numbers whose exponents are in the following ranges:

① For float : 0 ≤ M ≤ 109 – 1, 0 ≤ N ≤ 13
② For double and long double: 0 ≤ M ≤ 1017 –1, 0 ≤ N ≤ 27

An overflow or underflow will not occur if the exponent is within the proper
ranges.

A-21

b) Conversion and Rounding Error
The difference between, (i) the error occurring when the exponent outside the proper
range is converted, and (ii) the error occurring when the value is precisely rounded,

does not exceed the result of multiplying the lowest significant digit by 0.47. If an
exponent outside the proper range is converted, an overflow or underflow may

occur. In such a case, a warning-level error occurs at compile time and the variable
errno is set equal to the corresponding error number at run time.

B-1

Appendix B Parameter Allocation Examples

B.1 H8S/2600, H8S/2000, and H8/300H Register Parameters
(cpu = 2600a, cpu = 2600n, cpu = 2000a, cpu = 2000n, cpu = 300ha, cpu = 300hn)

Example 1: Register parameters are allocated to registers ER0 and ER1 depending on the order
of declaration.

int f(char,char,char);
 :
 f(1,2,3);
 :

1

int f(int,int,int);
 :
 f(1,2,3);
 :

2 R0

E0

R1

int f(long,long);
 :
 f(1,2);
 :

3

int f(char,int,int,char);
 :
 f(1,2,3,4);
 :

ER0

ER1

R0L

E0

R1

R0L

R0H

R1L

R0H

4

1

2

3

1

2

1

2

3

1

2

3

4

B-2

Example 2: Parameters that could not be allocated to registers ER0 and ER1 are allocated to the
stack area as shown below. If char-type parameter is allocated to a parameter area on the stack,
an unused byte is allocated to the lower address.

int f(int,long,char);

 :

 f(1,2,3);

 :

R0

ER1

1

2

Parameter area

(stack)

Unused byte

3

Lower address

Upper address

2 bytes

Example 3: Parameters that have a type which cannot be allocated to registers ER0 and ER1 are
allocated to the stack area.

struct s{int x,y;}a;

int f(char,struct s,char);

 :

 f(1,a,3);

 :

R0L 1

R0H 3

Parameter area

(stack)

4 bytes

a. x

a. y

Lower address

Upper address

B-3

Example 4: If a function with a variable number of parameters is specified by prototype
declaration, parameters which do not have a corresponding type in the declaration and in the
immediately preceding parameter are allocated to a stack.

int f(long,...);

 :

 f(1,2,3);

 :

1

int f(double,int,...);

 :

 f(1.0,2,3);

 :

2
Parameter area

(stack)

1.0

2

Lower address

Upper address

2 bytes

2 bytes3

8 bytes

Parameter area

(stack)

1

2

Lower address

Upper address

2 bytes

2 bytes3

4 bytes

B-4

Example 5: If no prototype is declared, char and float types are extended to int and double
types, respectively.

int f();

char a;

float b;

 :

 f(a,b);

 :

Parameter area

(stack)

b

Lower address

Upper address

8 bytes

R0 a

Example 6: Pointer-type parameters are allocated to the 2-byte area in normal mode and the 4-
byte area in advanced mode.

int f(int *);

 :

 f(a);

 :

 :

R0

ER0

a

a

Normal mode

Advanced mode

B-5

Example 7: If a parameter returned by a function is a structure or exceeds 4 bytes, a return value
address is specified just before the parameter area. If the structure size is an odd number of bytes,
an unused area byte is inserted in the parameter area.

struct s{char x,y,z;}a,b;

float f(struct s);

 :

 f(a);

 :

 :

Return value

address

2 bytes

Parameter area

(4 bytes)

Lower address

Upper address

a. x

a. y

a. z

Unused area

Return value

setting area

(4 bytes)

Return value

address

4 bytes

Parameter area

(4 bytes)

Lower address

Upper address

a. x

a. y

a. z

Unused area

Return value

setting area

(4 bytes)

Normal mode

(stack)

Advanced mode

(stack)

B-6

B.2 H8/300 Register Parameter (cpu = 300)

Example 1: Register parameters are allocated to registers R0 and R1 depending on the order of
declaration.

int f(char,char);

 :

 f(1,2);

 :

1

int f(char,int,char);

 :

 f(1,2,3);

 :

2

R0L

R0H

1

2

R0L

R1

1

2

R0H 3

Example 2: Parameters that could not be allocated to registers R0 and R1 are allocated to the
stack area as shown below.

int f(char,int,int,char);

 :

 f(1,2,3,4);

 :

R0L

R1

1

2

R0H 4

3

Parameter area

(stack)

2 bytes

Example 3: Parameters that have a type which cannot be allocated to registers R0 and R1 are
allocated to the stack area.

int f(char,long,char);

 :

 f(1,2,3);

 :

R0L 1

R0H 3

2

Parameter area

(stack)

4 bytes

B-7

Example 4: If a function whose number of parameters changes is specified by prototype
declaration, the parameters which do not have a corresponding type in the declaration and in the
immediately preceding parameters are allocated to a stack.

int f(int,...);

 :

 f(1,2);

 :

1

int f(long,int,...);

 :

 f(1,2,3);

 :

2

Parameter area

(stack)

1

2

Lower address

Upper address

2 bytes

2 bytes

Parameter area

(stack)

1

2

Lower address

Upper address

2 bytes

2 bytes3

4 bytes

Example 5: If char-type parameter is allocated to a parameter area on a stack, an unused byte is
inserted in a lower address of the parameter area.

int f(char,...);

 :

 f(1);

 :

Parameter area

(stack)

Unused byte

1

Lower address

Upper address
2 bytes

B-8

Example 6: If no prototype is declared, char and float types are extended to int and double
types, respectively.

int f();

char a;

float b;

 :

 f(a,b);

 :

Parameter area

(stack)

b

Lower address

Upper address

8 bytes

R0 a

Example 7: If a value returned by a function exceeds 2 bytes, a return value address is specified
just before the parameter area. If the structure size is an odd number of bytes, an unused area byte
is inserted in the parameter area.

struct s{char x,y,z;}a,b;

float f(struct s);

 :

 f(a);

 :

 :

Return value

address

2 bytes

Parameter area

(4 bytes)

Lower address

Upper address

a. x

a. y

a. z

Unused area

Return value

setting area

(4 bytes)

Stack

C-1

Appendix C Usage of Registers and Stack Area

C.1 H8S/2600, H8S/2000, and H8/300H in Advanced Mode
(cpu = 2600a, cpu = 2000a, cpu = 300ha)

ER0

ER1

ER2

ER3

ER4

ER5

ER6 (FP)

ER7 (SP)

Local variable and
temporary area

Register save area

Previous FP

Return address

Return value address

Parameter area

4 bytes

4 bytes

4 bytes

Lower address

Upper address

Stack
frame

Parameter
area

ER0–ER5: For variable or temporary data storage

For return value storage
Parameter save area

Stack area

Figure C-1 Usage of Registers and Stack Area at Non-Optimization
(H8S/2600, H8S/2000, and H8/300H in Advanced Mode)

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7 (SP)

Local variable and
temporary area

Register save area

Return address

Return value address

Parameter area

Stack area

4 bytes

4 bytes

Lower address

Upper address

Stack
frame

Parameter
area

For return value storage

ER0–ER6: For variable or temporary data storage

Parameter save area

Figure C-2 Usage of Registers and Stack Area at Optimization
(H8S/2600, H8S/2000, and H8/300H in Advanced Mode)

C-2

C.2 H8S/2600, H8S/2000, and H8/300H in Normal Mode
(cpu = 2600n, cpu = 2000n, cpu = 300hn)

Parameter
area

ER0

ER1

ER2

ER3

ER4

ER5

ER6 (FP)

ER7 (SP)

Local variable and
temporary area

Register save area

Previous FP

Return address

Return value address

Parameter area

Stack area

2 bytes

2 bytes

2 bytes

Stack
frame

Lower address

Upper address

Undefined

Undefined

For return value storage

ER0–ER5: For variable or temporary data storage

Parameter save area

Figure C-3 Usage of Registers and Stack Area at Non-Optimization
(H8S/2600, H8S/2000, and H8/300H in Normal Mode)

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7 (SP)

Local variable and
temporary area

Register save area

Return address

Return value address

Parameter area

Stack area

2 bytes

2 bytes

Lower address

Upper address

Undefined

ER0–ER6: For variable or temporary data storage

Stack
frame

Parameter
area

For return value storage

Parameter save area

Figure C-4 Usage of Registers and Stack Area at Optimization
(H8S/2600, H8S/2000, and H8/300H in Normal Mode)

C-3

C.3 H8/300 (cpu = 300)

R0

R1

R2

R3

R4

R5

R6 (FP)

R7 (SP)

Local variable and
temporary area

Register save area

Previous FP

Return address

Return value address

Parameter area

Stack area

2 bytes

2 bytes

2 bytes

Stack
frame

Lower address

Upper address

For return value storage

R0–R5: For variable or temporary data storage

Parameter
area

Parameter save area

Figure C-5 Usage of Registers and Stack Area at Non-Optimization (H8/300)

R0

R1

R2

R3

R4

R5

R6

R7 (SP)

Local variable and
temporary area

Register save area

Return address

Return value address

Parameter area

Stack area

2 bytes

2 bytes

Stack
frame

Lower address

Upper address

Parameter
area

For return value storage

R0–R6: For variable or temporary data storage

Parameter save area

Figure C-6 Usage of Registers and Stack Area at Optimization (H8/300)

D-1

Appendix D Creating Termination Function

D.1 Creating a Library "onexit" Function

This section describes how to create a library onexit function that defines termination routines.
The onexit function defines a function address, passed as a parameter, in the termination routine
table. If the number of defined functions exceeds the limit value (assumed to be 32 in the
following example), or if the same function is defined more than one, NULL is returned.
Otherwise, a value other than NULL is returned. In the following example, an address in which a
function is defined is returned. An example of the onexit routine is shown below.

Example:
#include <stdlib.h>

typedef void *onexit_t ;

int _onexit_count=0 ;

onexit_t (*_onexit_buf[32])(void) ;

extern onexit_t onexit(onexit_t (*)(void)) ;

onexit_t onexit(f)

onexit_t (*f)(void) ;

{

 int i;

 for(i=0; i<_onexit_count ; i++) /* Checks if the same function

 has been defined */

 if(_onexit_buf[i]==f)

 return NULL ;

 if (_onexit_count==32) /* Checks if the No. of defined

 functions exceed limit */

 return NULL ;

 else{

 _onexit_buf[_onexit_count++]=f ; /* Defines the function address */

 return f;

 }

}

D-2

D.2 Creating an "exit" Function

This section describes how to create an exit function that terminates program execution. Note that
the exit function must be created according to the user system specifications referring to the
following example. This is because terminating a program differs depending on the user system.

The exit function terminates C program execution based on the termination code returned as a
parameter and then returns to the environment at program initiation. Returning to the environment
at program initiation is achieved by the following two steps:

(1) Sets a termination code in an external variable

(2) Returns to the environment that is saved by the setjmp function immediately before
calling the main function

An example of the exit function is shown below.

Example:
#include <setjmp.h>

#include <stddef.h>

typedef void * onexit_t ;

extern int _onexit_count ;

extern onexit_t (*_onexit_buf[32])(void) ;

extern jmp_buf _init_env ;

extern int _exit_code ;

extern void _CLOSEALL(void);

extern void exit(int);

void exit(code)

int code ;

{

 int i;

 _exit_code=code ; /* Sets return code to _exit_code */

 for(i=_onexit_count-1; i>=0; i--) /* Sequentially executes functions

 (*_onexit_buf[i])(); defined by onexit */

 _CLOSEALL(); /* Closes all files opened */

 longjmp(_init_env, 1) ; /* Returns to the environment saved by

 setjmp */

}

D-3

Note:

To return to the environment before program execution, create the callmain function and call the
callmain function instead of calling the main function from the init routine as shown below.

#include <setjmp.h>

jmp_buf _init_env;

int _exit_code;

void callmain()

{

 /* Saves current environment using setjmp function and calls the main

 function */

 /* Terminates C program if a termination code is returned from the exit

 function */

 if(!setjmp(_init_env))

 _exit_code=main();

}

D.3 Creating an "abort" Routine

To terminate the routine abnormally, the program must be terminated by an abort routine prepared
according to the user system specifications. The following shows an example of an abort routine
in which an error message is output to the standard output device, closes all files, enters an endless
loop, and waits for reset.

Example:

#include <stdio.h>

extern void abort(void);

extern void _CLOSEALL(void);

void abort()

{

 printf("program is abort !!\n"); /* Outputs message */

 _CLOSEALL(); /* Closes all files */

 while(1); /* Enters endless loop */

}

E-1

Appendix E Examples of a Low-Level Interface Routine

/**/
/* lowsrc.c: */
/*- */
/* H8S and H8/300-series simulator debugger interface routine */
/* - Only standard I/O files (stdin, stdout, stderr) are supported - */
/**/
#include <string.h>

/* file number */

#define STDIN 0 /* Standard input (console) */
#define STDOUT 1 /* Standard output (console) */
#define STDERR 2 /* Standard error output (console) */
#define FLMIN 0 /* Minimum file number */
#define FLMAX 3 /* Maximum number of files */

/* file flag */

#define O_RDONLY 0x0001 /* Read only */
#define O_WROMLY 0x0002 /* Write only */
#define O_RDWR 0x0004 /* Both read and Write */

/* special character code */

#define CR 0x0d /* Carriage return */
#define LF 0x0a /* Line feed */

/* size of area managed by sbrk */

#if _ _CPU_ _==3| _ _CPU_ _==5| _ _CPU_ _==7 /* _ _CPU_ _==3:300ha, 5:2600a, 7:2000a */
#define HEAPSIZE 2064
#else
#define HEAPSIZE 2056
#endif

/**/
/* Declaration of reference function */
/* Reference to assembly program in which the simulator debugger inputs or */
/* outputs characters to the console */
/**/
extern void charput(char); /* One character input */
extern char charput(void); /* One character output */

/**/
/* Definition of static variable: */
/* Definition of static variables used in low-level interface routines */
/**/

char flmod[FLMAX]; /* Open file mode specification area */

static union {
 short dummy ; /* Dummy for 2-byte boundary */
 char heap[HEAPSIZE]; /* Declaration of the area managed by sbrk */
 } heap_area ;
static char *brk=(char *)&heap_area; /* End address of area assigned by sbrk */

E-2

/**/

/* open: file open */

/* Return value: File number (Pass) */

/* -1 (Failure) */

/**/

open(char *name, /* File name */

 int mode, /* File mode */

 int flg) /* Unused */

{

 /* Check mode depending on file name and return file numbers */

 if(strcmp(name,"stdin")==0){ /* Standard input file */

 if((mode&O_RDONLY)==0)

 return -1;

 flmod[STDIN]=mode;

 return STDIN;

 }

 else if(strcmp(name,"stdout")==0){ /* Standard output file */

 if((mode&O_WRONLY)==0)

 return -1;

 flmod[STDOUT]=mode;

 return STDOUT;

 }

 else if(strcmp(name,"stderr")==0){ /* Standard error file */

 if((mode&O_WRONLY)==0)

 return -1;

 flmod[STDERR]=mode;

 return STDERR;

 }

 else

 return -1; /* Error */

}

E-3

/**/

/* close: File close */

/* Return value: 0 (Pass) */

/* -1 (Failure) */

/**/

close(int fileno) /* File number */

{

 if(fileno<FLMIN || FLMAX<=fileno) /* File number range check */

 return -1;

 flmod[fileno]=0; /* File mode reset */

 return 0;

}

/***/

/* read: Data read */

/* Return value: Number of read characters (Pass) */

/* -1 (Failure) */

/***/

read(int fileno, /* File number */

 char *buf, /* Destination buffer address */

 int count) /* Number of read characters */

{

 int i;

 /* Check mode according to file name and stores each character in buffer */

 if(flmod[fileno]&O_RDONLY||flmod[fileno]&O_RDWR){

 for(i=count; i>0; i--){

 *buf=charget();

 if(*buf==CR) /* Line feed character replacement */

 *buf=LF;

 buf++;

 }

 return count;

 }

 else

 return -1;

}

E-4

/***/

/* write: Data write */

/* Return value: Number of write characters (Pass) */

/* -1 (Failure) */

/***/

write(int fileno, /* File number */

 char *buf, /* Destination buffer address */

 int count) /* Number of write characters */

{

 int i;

 char c;

 /* Check mode according to file name and output each character */

 if(flmod[fileno]&O_WRONLY || flmod[fileno]&O_RDWR){

 for(i=count; i>0; i--){

 c=*buf++;

 charput(c);

 }

 return count;

 }

 else

 return -1;

}

E-5

/***/

/* lseek: Definition of file read/write position */

/* Return value: Offset from the top of file read/write position (Pass) */

/* -1 (Failure) */

/* (lseek is not supported in the console input/output) */

/***/

long lseek(int fileno, /* File number */

 long offset, /* Read/write potision */

 int base) /* Origin of offset */

{

 return -1L;

}

/***/

/* sbrk: Data write */

/* Return value: Start address of the assigned area (Pass) */

/* -1 (Failure) */

/***/

char *sbrk(int size) /* Assigned area size */

{

 char *p ;

 if(brk+size>heap_area.heap+HEAPSIZE) /* Empty area size */

 return (char *)-1 ;

 p=brk ; /* Area assignment */

 brk += size ; /* End address update */

 return p ;

}

E-6

;- -

; lowlvl.nor |

;- -

; H8S and H8/300-series simulator debugger interface routine |

; -Input/output one character- |

;- -

; H8S/2600, H8S/2000, H8/300H in normal mode (cpu=2600n, cpu=2000n, |

; cpu=300hn) |

;- -

 .CPU 2600N ; , 2000N, or 300HN

 .EXPORT _charput

 .EXPORT _charget

SIM_IO: .EQU H'00FE ; Defines TRAP_ADDRESS

 .SECTION P,CODE,ALIGN=2

;- -

; _charput: one character output |

; C program interface: charput(char) |

;- -

_charput:

 MOV.B R0L,@IO_BUF ; Specifies parameter in buffer

 MOV.W #H'0102,R0 ; Specifies parameter and function code

 MOV.W #LWORD IO_BUF,R1

 MOV.W R1,@PARM ; Specifies I/O buffer address

 MOV.W #LWORD PARM,R1 ; Specifies parameter block address

 JSR @SIM_IO

 RTS

E-7

;- -

; _charget: one character input |

; C program interface:char charget(void) |

;- -

_charget:

 MOV.W #H'0101,R0 ; Specifies parameter and function code

 MOV.W #LWORD IO_BUF,R1

 MOV.W R1,@PARM ; Specifies I/O buffer address

 MOV.W #LWORD PARM,R1 ; Specifies parameter block address

 JSR @SIM_IO

 MOV.B @IO_BUF,R0L

 RTS

;- -

; I/O buffer definition |

;- -

 .SECTION B,DATA,ALIGN=2

PARM: .RES.W 1 ; Parameter block area

IO_BUF: .RES.B 1 ; I/O buffer area

 .END

E-8

;- -

; lowlvl.adv |

;- -

; H8S and H8/300-series simulator debugger interface routine |

; -Input/output one character- |

;- -

; H8S/2600, H8S/2000, and H8/300H in advanced mode (cpu=2600a, cpu=2000a, |

; cpu=300ha) |

;- -

 .CPU 2600A ; , 2000A, or 300HA

 .EXPORT _charput

 .EXPORT _charget

SIM_IO: .EQU H'01FE ; Defines TRAP_ADDRESS

 .SECTION P,CODE,ALIGN=2

;- -

; _charput: one character output |

; C program interface: charput(char) |

;- -

_charput:

 MOV.B R0L,@IO_BUF ; Specifies parameter in buffer

 MOV.W #H'0112,R0 ; Specifies parameter and function code

 MOV.L #IO_BUF,ER1

 MOV.L ER1,@PARM ; Specifies I/O buffer address

 MOV.L #PARM,ER1 ; Specifies parameter block address

 JSR @SIM_IO

 RTS

E-9

;- -

; _charget: one character input |

; C program interface: char charget(void) |

;- -

_charget:

 MOV.W #H'0111,R0 ; Specifies parameter and function code

 MOV.L #IO_BUF,ER1

 MOV.L ER1,@PARM ; Specifies I/O buffer address

 MOV.L #PARM,ER1 ; Specifies parameter block address

 JSR @SIM_IO

 MOV.B @IO_BUF,R0L

 RTS

;- -

; I/O buffer definition |

;- -

 .SECTION B,DATA,ALIGN=2

PARM: .RES.L 1 ; Parameter block area

IO_BUF: .RES.B 1 ; I/O buffer area

 .END

E-10

;- -

; lowlvl.reg |

;- -

; H8S and H8/300-series simulator debugger interface routine |

; -Input/output one character- |

;- -

; H8/300 (cpu=300) |

;- -

 .CPU 300

 .EXPORT _charput

 .EXPORT _charget

SIM_IO: .EQU H'00FE ; Defines TRAP_ADDRESS

 .SECTION P,CODE,ALIGN=2

;- -

; _charput: one character output |

; C program interface: charput(char) |

;- -

_charput:

 MOV.B R0L,@IO_BUF ; Specifies parameter in buffer

 MOV.W #H'0102,R0 ; Specifies parameter and function code

 MOV.W #IO_BUF,R1

 MOV.W R1,@PARM ; Specifies I/O buffer address

 MOV.W #PARM,R1 ; Specifies parameter block address

 JSR @SIM_IO

 RTS

E-11

;- -

; _charget: one character input |

; C program interface: char charget(void) |

;- -

_charget:

 MOV.W #H'0101,R0 ; Specifies parameter and function code

 MOV.W #IO_BUF,R1

 MOV.W R1,@PARM ; Specifies I/O buffer address

 MOV.W #PARM,R1 ; Specifies parameter block address

 JSR @SIM_IO

 MOV.B @IO_BUF,R0L

 RTS

;- -

; I/O buffer definition |

;- -

 .SECTION B,DATA,ALIGN=2

PARM: .RES.W 1 ; Parameter block area

IO_BUF: .RES.B 1 ; I/O buffer area

 .END

F-1

Appendix F Access Range of Short Absolute Addresses

Table F-1 shows the access range of 8-bit absolute addresses and 16-bit absolute addresses in
CPU/operating mode.

Table F-1 Access Range of Short Absolute Addresses

CPU/Operating Mode
Access Range of 8-Bit
Absolute Addresses (@aa:8)

Access Range of 16-Bit
Absolute Addresses (@aa:16)

2600a[:32],
2000a[:32]

0xFFFFFF00 to 0xFFFFFFFF 0x0 to 0x7FFF,
0xFFFF8000 to 0xFFFFFFFF

2600a:28,
2000a:28

0xFFFFF00 to 0xFFFFFFF 0x0 to 0x7FFF,
0xFFF8000 to 0xFFFFFFF

2600a:24,
2000a:24,
300ha[:24]

0xFFFF00 to 0xFFFFFF 0x0 to 0x7FFF,
0xFF8000 to 0xFFFFFF

2600a:20,
2000a:20,
300ha:20

0xFFF00 to 0xFFFFF 0x0 to 0x7FFF,
0xF8000 to 0xFFFFF

2600n,
2000n,
300hn,
300

0xFF00 to 0xFFFF —

G-1

Appendix G Difference from the Old Version

This section shows the difference between the new version (H8S and H8/300-series C compiler
Ver. 1.0) and the old version (H8/300-series C compiler Ver. 2.0).

G.1 Additional Functions and Improved Features

G.1.1 Extension of CPU/Operating Mode

The H8S/2600 and H8S/2000-series microcomputers are newly added to the lineup which includes
the H8/300H and H8/300 series.

The H8/300-series stack object program creation function, previously supported by the old
version, is deleted.

The CPU/operating mode can be selected using the cpu option or H38CPU environment variable.

The H38CPU environment variable values can be commonly referred to using the cross assembler
and simulator debugger.

When the CPU/operating mode is selected simultaneously with the cpu option and H38CPU
environment variable, the selection with the cpu option has priority.

Note:
The CPU/operating mode selection is omitted, an error occurs for the new version although the
H8/300 register object has been created for the old version. Therefore, select the cpu option or
H38CPU environment variable.

The bit width of an address space can also be selected in H8S/2600, H8S/2000, and H8/300H-
series advanced mode.

The bit width of an address space is 20, 24, 28, or 32 in H8S/2600 and H8S/2000-series advanced
mode, meaning 1-Mbyte, 16-Mbyte, 256-Mbyte, or 4-Gbyte address space, respectively. When
the bit width of an address space is omitted, 32 bits are assumed to be selected.

The bit width of an address space is 20 or 24 in the H8/300H-series advanced mode, meaning 1-
Mbyte or 16-Mbyte address space, respectively. When the bit width of an address space is
ignored, 24 bits are assumed to be selected.

G.1.2 Optimization Function Improvement

The optimization function is improved to reduce the object code size, including constant allocation
to registers, external variable optimization, and decrease in the same character string area.

G-2

G.1.3 Addition of the "speed" Option

The new option is added to improve the following speed functions.

• Register save/recovery processing of function entry/exit

• Expansion code of shift operation, a loop statement, and a switch statement

• In-line expansion of function calls

• Assignment code of a structure and double

G.1.4 CPU-Unique Function Support

The following functions are supported in the H8S and H8/300-series CPU architecture.

• Use of a short absolute addressing mode (abs8, abs16 option, #pragma abs8, #pragma
abs16):
Data that is allocated to the static area is accessed using the short absolute addressing mode
(@aa:8, @aa:16).

• Expansion interpretation of operation size (cpuexpand option):
Effective CPU instruction codes are created for data multiplication and division.

• Indirect memory function call (indirect option, #pragma indirect):
A function is called in indirect memory addressing mode (@aa:8).

• Using the block transfer instruction (eepmov option):
The structure assignment expression is expanded by the EEPMOV instruction.

G-3

G.1.5 Extension Function Support

ANSI extension functions (#pragma) are added and modified.

• Function in-line expansion (#pragma inline):
A called function is expanded in the line of function call.

• Interrupt function creation (#pragma interrupt):
Stack switching, trap-instruction return, and interrupt function end specifications are added.

• Section switching (#pragma section, #pragma abs8 section, #pragma abs16 section,
#pragma indirect section):
Sections can be switched in C program.

• Control of a register save/recovery code (#pragma regsave, #pragma noregsave):
All register save/recovery codes other than ER0 and ER1 (R0 and R1 for H8/300) can be
unconditionally output or inhibited at the function entry/exit.

G.1.6 Intrinsic Function Support

The following functions, which cannot be described in C language, are supported as intrinsic
functions.

• Setting and reference of the condition code register (CCR)

• Setting and reference of the extend register (EXR)

• Special instructions (TRAPA, SLEEP, MOVFPE, MOVTPE, EEPMOV, MAC)

• Rotation operation

• Condition code reflection operation

• Decimal operation

G.1.7 Debugging Function Improvement

Debugging information is output for C-source level debugging during optimization option
specification. In addition, when an assembly source program is specified for an object type, the
.LINE control instruction is output, enabling C-source level debugging.

G-4

G.1.8 Addition of Other Options

• One-byte enum support (byteenum option)

• Comment nest (comment option)

• switch statement code (case=ifthen, table options)

• Limit value extension (limits option)

• Information message output specification (message option)

• Register extension of register variable assignment (regexpansion option)

• Option specification using file (subcommand option)

• External variable optimization (volatile option)

G.2 Language Specification Expansion

G.2.1 Changing Character String Specifications of the "error" Statement

Double quotation marks are not required for character strings specified by the #error statement.

Example:

 Old version New version

#error "character-string" #error character-string

G.2.2 Identifier Class Specifications of "typedef" and Structure Member Name

An identifier having the same structure-member name as the identifier of typedef can be used.

Example:

 Old version New version

typedef int INT; typedef int INT;
main() main()
{ {
 struct S{int INT;}; → Error struct S{int INT;}; → Normal
} }

G.2.3 errno.h Support

Declaration errno indicating a library error state can be declared in include file errno.h.

G-5

G.2.4 Changing Macro Expansion Timing

The expansion timing of a function-type macro is changed.

Example:

 Old version New version

#define A(a) a++ #define A(a) a++
int b; int b;
main() main()
{ {
 int A; → Error int A; → Normal
 A(b); A(b);
} }

G.2.5 Changing Initialization Specifications of the "void" Pointer

Types other than void can be used as the initialization specifier of the void pointer.

Example:

 Old version New version

int a[10]; int a[10];
void *p=a; → Error void *p=a; → Normal

G.2.6 Changing Initialization Specifications of the "char" Array

Character strings can be specified by enclosing them in "{" and "}" as the initialization specifier of
the char array.

Example:

 Old version New version

main() main()
{ {
 char a[]={"abc"}; → Error char a[]={"abc"}; → Normal
} }

G-6

G.2.7 "memmove" Function Support

The memmove function is supported as a standard library function.

"memmove" Function

• Function

The specified storage area data is copied to the destination storage area. Even if the source
storage area partially overlaps with the destination storage area, the overlapping parts of the
source storage area are copied before being overwritten, preventing incorrect copying.

• Calling procedure

#include <string.h>
void *ret, *s1;
const void *s2;
size_t n;
 ret=memmove(s1,s2,n)

• Parameter

Name Type Function

s1 Pointer indicating void Points to the storage area of a copied
destination

s2 Pointer indicating const void Points to the source storage area

n size_t Number of copied characters

• Return values

Normal type: Pointer to void is the s1 value
Abnormal type: —

G-7

G.3 Object Program Compatibility

The C compiler creates an object program that has a different format from the old version. When
the object program is linked to an object program created by the old-version C compiler, the object
program format must be modified using the SYSROF file converter attached to the C compiler.

When the old-version object program calls a routine (function having symbol name "xxx2")
during execution, the standard library format must also be modified and linked.

Object program compatibility is shown below.

G.3.1 New Version Format Link

C source
(a1.c)

Old format
object

(b1.obj)

Old format
standard library

(c38ha1.lib)

*

New format
object

(a1.obj)

New format
standard library

(c38ha.lib)

New format
standard library

(c38ha1.lib)

New format
object

(b1.obj)

H8S and H8/300-
series C compiler

SYSROF file
converter

Linkable

Note: The old format standard library must be copied under another name before being
 converted by the SYSROF converter.

Figure G-1 New-Version Link

G-8

Usage Example:

① $ch38 -cpu=300ha a1.c
② $fcnv b1.obj -v2
③ $fcnv c38ha1.lib -v2
④ $lnk a1.obj,b1.obj -lib=c38ha,c38ha1

<Explanation>

① Compiles the C source and creates a new-format object program.

② Converts the old object program format to the new format.

③ Converts the old standard library format to the new format.

④ Links the new-format object program to the standard library.

G-9

G.3.2 Old Version Format Link

Note: The new format standard library must be copied under another name before being
 converted by the SYSROF converter.

C source
(a2.c)

Old format
object

(a2.obj)

Old format
standard library

(c38ha2.lib)

*

New format
object

(a2.obj)

New format
standard library

(c38ha2.lib)

Old format
standard library

(c38ha.lib)

Old format
object

(b2.obj)

H8S and H8/300-
series C compiler

SYSROF file
converter

Linkable

Figure G-2 Old-Version Link

G-10

Usage Example:

① $ch38 -cpu=300ha a2.c
② $fcnv a2.obj
③ $fcnv c38ha2.lib
④ $lnk a2.obj,b2.obj -lib=c38ha2,c38ha

<Explanation>

① Compiles the C source and creates a new-format object program.

② Converts the new object program format to the old format.

③ Converts the new standard library format to the old format.

④ Links the old-format object program to the standard library.

See the "H8S and H8/300-Series SYSROF File Converter Instruction Manual," which is attached
to the converter product, for more information on the SYSROF file converter.

H-1

Appendix H ASCII Codes

Table H-1 ASCII Codes

	 Upper 4 Bits	
 0	 1 2	 3	 4	 5 	 6	 7
Lower 4 Bits
	
 0	 NUL 	 DLE	 SP 	 0	 @	 P	 ` p

 	1	 SOH 	 DC1	 !	 1 	A	 Q	 a	 q

	 2	 STX	 DC2	 "	 2	 B 	R	 b 	r

	 3	 ETX	 DC3	 #	 3	 C 	S	 c 	s

	 4	 EOT	 DC4	 $	 4	 D	 T	 d	 t

 	5	 ENQ	 NAK	 % 	 5 	E	 U 	 e 	u

	 6	 ACK	 SYN	 &	 6	 F	 V	 f 	v

	 7	 BEL	 ETB	 ' 	7 	G	 W	 g 	w

 	8	 BS	 CAN	 (8 H	 X	 h	 x

	 9	 HT	 EM)	 9	 	I Y	 i 	 y

 	A	 LF 	SUB	 *	 :	 J Z j 	z

	 B	 VT	 ESC	 + 	;	 K	 [k {

	 C	 FF	 FS	 , 	<	 L	 \	 l	 |

 	 D	 CR	 GS	 –	 =	 M]	 m }

 	 E	 SO	 RS	 .	 >	 N	 ^	 n	 ~

	 F	 SI 	US	 /	 ?	 O	 	 o 	 DEL

	PART IOVERVIEW AND OPERATIONS
	Section 1 Overview
	1.1 Functions for Improving Object Efficiency
	1.2 Functions Supporting Program Development
	1.3 CPU/Operating Mode Selection

	Section 2 Developing Procedures
	Section 3 C Compiler Execution
	3.1 How to Invoke the C Compiler
	3.2 Environment Variable H38CPU
	3.3 File Naming
	3.4 Compiler Options
	3.5 C Compiler Listings

	PART IIPROGRAMMING
	Section 1 Limitations of the C compiler
	Section 2 Executing a C Program
	2.1 Structure of Object Programs
	2.2 Internal Data Representation
	2.3 Linkage with Assembly Programs

	Section 3 Extended Specifications
	3.1 #pragma Extension
	3.2 Intrinsic Functions

	Section 4 Notes on Programming
	4.1 Coding Notes
	4.2 Notes on Program Development

	PART IIISYSTEM INSTALLATION
	Section 1 Overview
	Section 2 Allocating Memory Areas
	2.1 Static Area Allocation
	2.2 Dynamic Area Allocation

	Section 3 Setting the Execution Environment
	3.1 Vector Table Setting (VEC_TBL)
	3.2 Initialization (INIT)
	3.3 Section Initialization (_ _INITSCT)

	Section 4 Setting the C Library Function Execution Environment
	4.1 Setting Vector Table (VEC_TBL)
	4.2 Initialization (INIT)
	4.3 Initializing Sections (_ _INITSCT)
	4.4 Initializing C Library Functions (_ _INITLIB)
	4.5 Closing Files (_ _CLOSEALL)
	4.6 Creating Low-Level Interface Routines

	PART IVERROR MESSAGES
	Section 1 Error Messages Output by the Compiler
	1.1 Error Message Format
	1.2 Error Location
	1.3 Message Levels
	1.4 List of Error Messages

	Section 2 Error Messages Output for C Library Functions
	Appendix
	Appendix A Language and Standard Library Function Specifications for the C Compiler
	A.1 C Compiler Language Specifications
	A.2 C Library Function Specifications
	A.3 Floating-Point Number Specifications

	Appendix B Parameter Allocation Examples
	B.1 H8S/2600, H8S/2000, and H8/300H Register Parameters
	B.2 H8/300 Register Parameter (cpu = 300)

	Appendix C Usage of Registers and Stack Area
	C.1 H8S/2600, H8S/2000, and H8/300H in Advanced Mode
	C.2 H8S/2600, H8S/2000, and H8/300H in Normal Mode
	C.3 H8/300 (cpu = 300)

	Appendix D Creating Termination Function
	D.1 Creating a Library "onexit" Function
	D.2 Creating an "exit" Function
	D.3 Creating an "abort" Routine

	Appendix E Examples of a Low-Level Interface Routine
	Appendix F Access Range of Short Absolute Addresses
	Appendix G Difference from the Old Version
	G.1 Additional Functions and Improved Features
	G.2 Language Specification Expansion
	G.3 Object Program Compatibility

	Appendix H ASCII Codes

