Hitachi America, Ltd. TN-0156
Application Engineering
TechNote Jennifer Ediyant

Bit Clear Using C or Inline Assembly

The GNU C Compiler allows us to clear a bit lmging the pointer in €ode orinline Assembly.This paper willprovide|
sample codes in clearing bits.

The following are bit declarations:
struct

int smr:1;

int scr:1;

int ssr:1;

int tdr:1;
} *sciO;

Theabove is gointer-type structure declaratitimat consists of 4 integer-type elements. The pointer structure is nar
sci0 and the elements are named as smr, scr, ssr, and tdr. Each element is one bit wide with the order flatrtah&H
bit, i.e., smr is the 7th bit. The rest of the bits (3rd bit to Oth bit) are undefined in this structure.

struct

{

char a;
char b;

5

The above is gointer-type structure declaratidimat consists of 2 character-type elements. The pointer structure is

as 'J' and thelements are named 'asand 'b'. Eachlement is one bit wideith order from therth bit to 6th bit, i.e., 'a’ i$

the 7th bit. The rest of the bits (5th bit to Oth bit) are undefined in this structure.

The following are three ways to clear the bit:

b()

asm("bclr #7,%X0" : "=U,r" (j->a));
}

The function 'b' contains an inlimssembly code tolear the 7ttbit of 'j' structure, which is elemeld’. Some symbols i
the inline assembly mean:

bclr bit clear instruction

#7 the 7th bit

%X0 print as byte register

=U operand memory reference
r use as a register

j->a element 'a’ of 'j' structure

=4

ned as
th

hamed

p

=)

HITACHI

Hitachi America, Ltd. « San Francisco Center « 2000 Sierra Point Parkway * Brisbane, CA 94005-1819 « (415) 589-8300

m()
{

}

sci0->ssr = 0;

The function 'm' contains a C statement to clear ssr bit in the sciO structure. By assigning zero to the sciO pointer|to ssr, this

statement will clear ssr bit (the 5th bit).

a()
{

j->b &= ~0x40;
}

The function'a' contains a C statement to cléabit in the 'j' structure. By using the logical-and (&) with the value of
0x40 (i.e., OX7F), this statement will clear 'b' bit (the 6th bit) of '}’ structure.

The following are the generated Assembly source:

16:t.c % ()

17:t.c ik {

18:t.c *xx - asm("belr #7,%X0" : "=U,r" (j->a));
79 0000 6B020000 mov.w @ _j,r2
80 ; #APP

81 0004 7D207260 bclr #7,@r2

82 ; #NO_APP

19:t.c kkk Y

89 0008 5470 rts

21:it.c *xxk m()

22:t.c *rxk

23:t.c *rkk 5Ci0->ssr = 0;

108 000c 6B020000 mov.w @_sci0,r2
109 0010 7D207250 bclr #5,@r2
24:t.c rkkk

116 0014 5470 rts

27:t.c **xx a()

28:t.c *rxk

29:t.c *rxk o j->h &= ~0x40;

135 0018 6B020000 mov.w @ _j,r2
136 001c 0B02 adds #1,r2
137 001e 7D207260 bclr #6,@r2
30:t.c Fkkk

144 0022 5470 rts

not

The information in this document has been carefully checked; however, the contents of this document
changed and modified without notice. Hitachi America, Ltd. shall assume no responsibility for inaccuracieg
problem involving a patent infringement caused when applying the descriptions in this document. This m
protected by copyright law&l Copyright 1995, Hitachi America, Ltd. All rights reserved. Printed in U.S.A.

may be
, or any
atgrial is

TN-0156

HITACHI

Hitachi America, Ltd. « San Francisco Center « 2000 Sierra Point Parkway * Brisbane, CA 94005-1819 « (415) 589-8300

