
H8S/2600 Series, H8S/2000Series

Programming Manual

OMC952723009

Preface

The H8S/2600 Series and the H8S/2000 Series are built around an H8S/2000 CPU core.

The H8S/2600 and H8S/2000 CPUs have the same internal 32-bit architecture. Both CPUs
execute basic instructions in one state, have sixteen 16-bit registers, and have a concise, optimized
instruction set. They can address a 16-Mbyte linear address space.Programs coded in the high-
level language C can be compiled to high-speed executable code.

For easy migration, the instruction set is upward-compatible with the H8/300H, H8/300, and
H8/300L Series at the object-code level.

The H8S/2600 CPU is upward-compatible with the H8S/2000 CPU at the object-code level, and
supports sum of products instructions.

This manual gives details of the H8S/2600 and H8S/2000 instructions and can be sued with all
microcontrollers in the H8S/2600 Series and the H8S/2000 Series.

For hardware details, refer to the relevant microcontroller hardware manuals.

Contents

Section 1 CPU... 1
1.1 Overview... 1

1.1.1 Features... 1
1.1.2 Differences between H8S/2600 CPU and H8S/2000 CPU................................. 2
1.1.3 Differences from H8/300 CPU ... 3
1.1.4 Differences from H8/300H CPU .. 3

1.2 CPU Operating Modes.. 5
1.3 Address Space... 10
1.4 Register Configuration.. 11

1.4.1 Overview... 11
1.4.2 General Registers.. 12
1.4.3 Control Registers .. 13
1.4.4 Initial Register Values... 15

1.5 Data Formats... 16
1.5.1 General Register Data Formats... 16
1.5.2 Memory Data Formats.. 18

1.6 Instruction Set... 19
1.6.1 Overview... 19
1.6.2 Instructions and Addressing Modes.. 20
1.6.3 Table of Instructions Classified by Function .. 22
1.6.4 Basic Instruction Formats ... 32

1.7 Addressing Modes and Effective Address Calculation .. 33

Section 2 Instruction Descriptions .. 41
2.1 Tables and Symbols .. 41

2.1.1 Assembly-Language Format... 42
2.1.2 Operation .. 43
2.1.3 Condition Code... 45
2.1.4 Instruction Format .. 45
2.1.5 Register Specification... 46
2.1.6 Bit Data Access in Bit Manipulation Instructions .. 47

2.2 Instruction Descriptions.. 47
2.2.1 (1) ADD (B) ... 48
2.2.1 (2) ADD (W) .. 49
2.2.1 (3) ADD (L).. 50
2.2.2 ADDS ... 51
2.2.3 ADDX... 52
2.2.4 (1) AND (B) ... 53
2.2.4 (2) AND (W) .. 54

2.2.4 (3) AND (L).. 55
2.2.5 (1) ANDC... 56
2.2.5 (2) ANDC... 57
2.2.6 BAND... 58
2.2.7 Bcc .. 60
2.2.8 BCLR.. 62
2.2.9 BIAND.. 64
2.2.10 BILD... 66
2.2.11 BIOR... 68
2.2.12 BIST.. 70
2.2.13 BIXOR.. 72
2.2.14 BLD .. 74
2.2.15 BNOT ... 76
2.2.16 BOR .. 78
2.2.17 BSET... 80
2.2.18 BSR... 82
2.2.19 BST... 84
2.2.20 BTST... 86
2.2.21 BXOR ... 88
2.2.22 CLRMAC ... 90
2.2.23 (1) CMP (B).. 91
2.2.23 (2) CMP (W) .. 92
2.2.23 (3) CMP (L).. 93
2.2.24 DAA.. 94
2.2.25 DAS .. 96
2.2.26 (1) DEC (B) .. 98
2.2.26 (2) DEC (W)... 99
2.2.26 (3) DEC (L) .. 100
2.2.27 (1) DIVXS (B).. 101
2.2.27 (2) DIVXS (W)... 103
2.2.28 (1) DIVXU (B) ... 105
2.2.28 (2) DIVXU (W) .. 107
2.2.29 (1) EEPMOV (B).. 109
2.2.29 (2) EEPMOV (W) .. 110
2.2.30 (1) EXTS (W)... 112
2.2.30 (2) EXTS (L) .. 113
2.2.31 (1) EXTU (W) .. 114
2.2.31 (2) EXTU (L).. 115
2.2.32 (1) INC (B) ... 116
2.2.32 (2) INC (W) .. 117
2.2.32 (3) INC (L) ... 118

2.2.33 JMP... 119
2.2.34 JSR.. 120
2.2.35 (1) LDC (B) .. 122
2.2.35 (2) LDC (B) .. 123
2.2.35 (3) LDC (W)... 124
2.2.35 (4) LDC (W)... 126
2.2.36 LDM ... 128
2.2.37 LDMAC.. 130
2.2.38 MAC ... 131
2.2.39 (1) MOV (B)... 134
2.2.39 (2) MOV (W).. 135
2.2.39 (3) MOV (L)... 136
2.2.39 (4) MOV (B)... 137
2.2.39 (5) MOV (W).. 139
2.2.39 (6) MOV (L)... 141
2.2.39 (7) MOV (B)... 143
2.2.39 (8) MOV (W).. 145
2.2.39 (9) MOV (L)... 147
2.2.40 MOVFPE .. 149
2.2.41 MOVTPE.. 150
2.2.42 (1) MULXS (B) .. 151
2.2.42 (2) MULXS (W)... 152
2.2.43 (1) MULXU (B) ... 153
2.2.43 (2) MULXU (W) .. 154
2.2.44 (1) NEG (B) ... 155
2.2.44 (2) NEG (W) .. 156
2.2.44 (3) NEG (L) ... 157
2.2.45 NOP .. 158
2.2.46 (1) NOT (B).. 159
2.2.46 (2) NOT (W)... 160
2.2.46 (3) NOT (L) .. 161
2.2.47 (1) OR (B) .. 162
2.2.47 (2) OR (W) ... 163
2.2.47 (3) OR (L)... 164
2.2.48 (1) ORC .. 165
2.2.48 (2) ORC .. 166
2.2.49 (1) POP (W).. 167
2.2.49 (2) POP (L)... 168
2.2.50 (1) PUSH (W)... 169
2.2.50 (2) PUSH (L) .. 170
2.2.51 (1) ROTL (B).. 171

2.2.51 (2) ROTL (B).. 172
2.2.51 (3) ROTL (W) .. 173
2.2.51 (4) ROTL (W) .. 174
2.2.51 (5) ROTL (L).. 175
2.2.51 (6) ROTL (L).. 176
2.2.52 (1) ROTR (B) ... 177
2.2.52 (2) ROTR (B) ... 178
2.2.52 (3) ROTR (W) .. 179
2.2.52 (4) ROTR (W) .. 180
2.2.52 (5) ROTR (L).. 181
2.2.52 (6) ROTR (L).. 182
2.2.53 (1) ROTXL (B)... 183
2.2.53 (2) ROTXL (B)... 184
2.2.53 (3) ROTXL (W).. 185
2.2.53 (4) ROTXL (W).. 186
2.2.53 (5) ROTXL (L)... 187
2.2.53 (6) ROTXL (L)... 188
2.2.54 (1) ROTXR (B) .. 189
2.2.54 (2) ROTXR (B) .. 190
2.2.54 (3) ROTXR (W) ... 191
2.2.54 (4) ROTXR (W) ... 192
2.2.54 (5) ROTXR (L)... 193
2.2.54 (6) ROTXR (L)... 194
2.2.55 RTE... 195
2.2.56 RTS ... 197
2.2.57 (1) SHAL (B).. 198
2.2.57 (2) SHAL (B).. 199
2.2.57 (3) SHAL (W) .. 200
2.2.57 (4) SHAL (W) .. 201
2.2.57 (5) SHAL (L).. 202
2.2.57 (6) SHAL (L).. 203
2.2.58 (1) SHAR (B) ... 204
2.2.58 (2) SHAR (B) ... 205
2.2.58 (3) SHAR (W) .. 206
2.2.58 (4) SHAR (W) .. 207
2.2.58 (5) SHAR (L).. 208
2.2.58 (6) SHAR (L).. 209
2.2.59 (1) SHLL (B) .. 210
2.2.59 (2) SHLL (B) .. 211
2.2.59 (3) SHLL (W)... 212
2.2.59 (4) SHLL (W)... 213

2.2.59 (5) SHLL (L) .. 214
2.2.59 (6) SHLL (L) .. 215
2.2.60 (1) SHLR (B).. 216
2.2.60 (2) SHLR (B).. 217
2.2.60 (3) SHLR (W)... 218
2.2.60 (4) SHLR (W)... 219
2.2.60 (5) SHLR (L) .. 220
2.2.60 (6) SHLR (L) .. 221
2.2.61 SLEEP... 222
2.2.62 (1) STC (B)... 223
2.2.62 (2) STC (B)... 224
2.2.62 (3) STC (W).. 225
2.2.62 (4) STC (W).. 227
2.2.63 STM .. 229
2.2.64 STMAC... 231
2.2.65 (1) SUB (B) .. 232
2.2.65 (2) SUB (W) ... 234
2.2.65 (3) SUB (L) .. 235
2.2.66 SUBS .. 236
2.2.67 SUBX.. 237
2.2.68 TAS ... 238
2.2.69 TRAPA.. 239
2.2.70 (1) XOR (B).. 241
2.2.70 (2) XOR (W) .. 242
2.2.70 (3) XOR (L).. 243
2.2.71 (1) XORC ... 244
2.2.71 (2) XORC ... 245

2.3 Instruction Set Summary .. 246
2.3.1 Instructions and Addressing Modes.. 246
2.3.2 Instruction Set... 248

2.4 Instruction Codes .. 264
2.5 Operation Code Map... 275
2.6 Number of States Required for Instruction Execution ... 279
2.7 Condition Code Modification ... 290
2.8 Bus States During Instruction Execution.. 295

Section 3 Processing States... 309
3.1 Overview... 309
3.2 Reset State .. 310
3.3 Exception-Handling State... 311

3.3.1 Types of Exception Handling and Their Priority.. 311

3.3.2 Reset Exception Handling .. 312
3.3.3 Trace ... 312
3.3.4 Interrupt Exception Handling and Trap Instruction Exception Handling........... 312

3.4 Program Execution State .. 313
3.5 Bus-Released State ... 314
3.6 Power-Down State .. 314

3.6.1 Sleep Mode ... 314
3.6.2 Software Standby Mode ... 314
3.6.3 Hardware Standby Mode .. 314

Section 4 Basic Timing .. 315
4.1 Overview... 315
4.2 On-Chip Memory (ROM, RAM).. 315
4.3 On-Chip Supporting Module Access Timing ... 317
4.4 External Address Space Access Timing ... 318

Section 1 CPU

1.1 Overview

The H8S/2600 CPU and the H8S/2000 CPU are high-speed central processing units with a
common an internal 32-bit architecture. Each CPU is upward-compatible with the H8/300 and
H8/300H CPUs. The H8S/2600 CPU and H8S/2000 CPU have sixteen 16-bit general registers, can
address a 4-Gbyte linear address space, and are ideal for realtime control.

1.1.1 Features

The H8S/2600 CPU and H8S/2000 CPU have the following features.

• Upward-compatible with H8/300 and H8/300H CPUs

— Can execute H8/300 and H8/300H object programs

• General-register architecture

— Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit
registers)

• Sixty-nine basic instructions (H8S/2000 CPU has sixty-five)

— 8/16/32-bit arithmetic and logic instructions
— Multiply and divide instructions
— Powerful bit-manipulation instructions
— Multiply-and-accumulate instruction (H8S/2600 CPU only)

• Eight addressing modes

— Register direct [Rn]
— Register indirect [@ERn]
— Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]
— Register indirect with post-increment or pre-decrement [@ERn+ or @–ERn]
— Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32]
— Immediate [#xx:8, #xx:16, or #xx:32]
— Program-counter relative [@(d:8,PC) or @(d:16,PC)]
— Memory indirect [@@aa:8]

• 4-Gbyte address space

— Program: 16 Mbytes
— Data: 4 Gbytes

1

• High-speed operation

— All frequently-used instructions execute in one or two states
— Maximum clock frequency: 20 MHz
— 8/16/32-bit register-register add/subtract : 50 ns
— 8 × 8-bit register-register multiply : 150 ns (H8S/2000 CPU: 600 ns)
— 16 ÷ 8-bit register-register divide : 600 ns
— 16 × 16-bit register-register multiply : 200 ns (H8S/2000 CPU: 1000 ns)
— 32 ÷ 16-bit register-register divide : 1000 ns

• Two CPU operating modes

— Normal mode
— Advanced mode

• Power-down modes

— Transition to power-down state by SLEEP instruction
— CPU clock speed selection

1.1.2 Differences between H8/2600 CPU and H8S/2000 CPU

Differences between the H8S/2600 CPU and the H8S/2000 CPU are as follows.

• Register configuration

— The MAC register is supported only by the H8S/2600 CPU.
For details, see section1.4, Register Configuration.

• Basic instructions

— The MAC, CLRMAC, LDMAC, and STMAC instructions are supported only by the
H8S/2600 CPU.
For details, see section 1.6, Instruction Set, and Section 2, Instruction Descriptions.

• Number of states required for execution

— The number of states required for execution of the MULXU and MULXS instructions
For details, see section 2.6, Number of States Required for Execution.

In addition, there may be defferences in address spaces, EXR register functions, power-down
states, and so on. For details, refer to the relevant microcontroller hardware manual.

2

1.1.3 Differences from H8/300 CPU

In comparison with the H8/300 CPU, the H8S/2600 CPU and H8S/2000 CPU have the following
enhancements.

• More general registers and control registers

— Eight 16-bit registers and one 8-bit control register have been added.

• Expanded address space

— Normal mode supports the same 64-kbyte address space as the H8/300 CPU.
— Advanced mode supports a maximum 4-Gbyte address space.

• Enhanced addressing

— The addressing modes have been enhanced to make effective use of the 4-Gbyte address
space.

• Enhanced instructions

— Addressing modes of bit-manipulation instructions have been enhanced.
— Signed multiply and divide instructions have been added.
— A multiply-and-accumulate instruction has been added. (H8S/2600CPU only)
— Two-bit shift and rotate instructions have been added.
— Instructions for saving and restoring multiple registers have been added.
— A test and set instruction has been added.

• Higher speed

— Basic instructions execute twice as fast.

1.1.4 Differences from H8/300H CPU

In comparison with the H8/300H CPU, the H8S/2600 CPU and H8S/2000 CPU have the following
enhancements.

• Additional control register

— One 8-bit control register has been added.

• Expanded address space

— Advanced mode supports a maximum 4-Gbyte data address space.

3

• Enhanced instructions

— Addressing modes of bit-manipulation instructions have been enhanced.
— A multiply-and-accumulate instruction has been added (H8S/2600 CPU only).
— Two-bit shift and rotate instructions have been added.
— Instructions for saving and restoring multiple registers have been added.
— A test and set instruction has been added.

• Higher speed

— Basic instructions execute twice as fast.

4

1.2 CPU Operating Modes

Like the H8/300H CPU, the H8S/2600 CPU has two operating modes: normal and advanced.
Normal mode supports a maximum 64-kbyte address space. Advanced mode supports a maximum
4-Gbyte total address space, of which up to 16 Mbytes can be used for program code and up to 4
Gbytes for data. The mode is selected with the mode pins of the microcontroller. For further
information, refer to the relevant microcontroller hardware manual.

Figure 1-1 CPU Operating Modes

(1) Normal Mode: The exception vector table and stack have the same structure as in the H8/300
CPU.

Address Space: A maximum address space of 64 kbytes can be accessed, as in the H8/300 CPU.

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit registers, or as
the upper 16-bit segments of 32-bit registers. When En is used as a 16-bit register it can contain
any value, even when the corresponding general register (R0 to R7) is used as an address register.
If the general register is referenced in the register indirect addressing mode with pre-decrement
(@–Rn) or post-increment (@Rn+) and a carry or borrow occurs, however, the value in the
corresponding extended register will be affected.

Instruction Set: All additional instructions and addressing modes not found in the H8/300 CPU
can be used. Only the lower 16 bits of effective addresses (EA) are valid.

CPU operating modes

Normal mode

Advanced mode

Maximum 64 kbytes, program

and data areas combined

Maximum 16-Mbyte program

area and 4-Gbyte data area,

maximum 4 Gbytes for program

and data areas combined

5

Exception Vector Table and Memory Indirect Branch Addresses: In normal mode the top area
starting at H'0000 is allocated to the exception vector table. One branch address is stored per
16 bits (figure 1-2). The exception vector table differs depending on the microcontroller. Refer to
the relevant microcontroller hardware manual for further information.

Figure 1-2 Exception Vector Table (Normal Mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses
an 8-bit absolute address included in the instruction code to specify a memory operand that
contains a branch address. In normal mode the operand is a 16-bit word operand, providing a
16-bit branch address. Branch addresses can be stored in the top area from H'0000 to H'00FF. Note
that this area is also used for the exception vector table.

H'0000

H'0001

H'0002

H'0003

H'0004

H'0005

H'0006

H'0007

H'0008

H'0009

H'000A

H'000B

Power-on reset exception vector

Manual reset exception vector

Exception vector 1

Exception vector 2

Exception

vector table

(Reserved for system use)

6

Stack Structure: When the program counter (PC) is pushed onto the stack in a subroutine call,
and the PC, condition-code register (CCR), and extended control register (EXR) are pushed onto
the stack in exception handling, they are stored as shown in figure 1-3. When EXR is invalid, it is
not pushed onto the stack. For details, see the relevant hardware manual.

Figure 1-3 Stack Structure in Normal Mode

(2) Advanced Mode: In advanced mode the data address space is larger than for the H8/300H
CPU.

Address Space: The 4-Gbyte maximum address space provides linear access to a maximum
16 Mbytes of program code and maximum 4 Gbytes of data.

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit registers, or as
the upper 16-bit segments of 32-bit registers or address registers.

Instruction Set: All instructions and addressing modes can be used.

(a) Subroutine Branch (b) Exception Handling

PC
(16 bits)

EXR*1

Reserved*1,*3

CCR

CCR*3

PC
(16 bits)

SP SP

Notes: 1.
2.
3.

When EXR is not used it is not stored on the stack.
SP when EXR is not used.
Ignored on return.

(SP)
*2

7

Exception Vector Table and Memory Indirect Branch Addresses: In advanced mode the top
area starting at H'00000000 is allocated to the exception vector table in units of 32 bits. In each
32 bits, the upper 8 bits are ignored and a branch address is stored in the lower 24 bits (figure 1-4).
The exception vector table differs depending on the microcontroller. Refer to the relevant
microcontroller hardware manual for further information.

Figure 1-4 Exception Vector Table (Advanced Mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses
an 8-bit absolute address included in the instruction code to specify a memory operand that
contains a branch address. In advanced mode the operand is a 32-bit longword operand, providing
a 32-bit branch address. The upper 8 bits of these 32 bits are a reserved area that is regarded as
H'00. Branch addresses can be stored in the top area from H'00000000 to H'000000FF. Note that
this area is also used for the exception vector table.

H'00000000

H'00000003

H'00000004

H'0000000B

H'0000000C

Exception vector table

Reserved

Power-on reset exception vector

(Reserved for system use)

Reserved

Exception vector 1

Reserved

Manual reset exception vector

H'00000010

H'00000008

8

Stack Structure: In advanced mode, when the program counter (PC) is pushed onto the stack in a
subroutine call, and the PC, condition-code register (CCR), and extended control register (EXR)
are pushed onto the stack in exception handling, they are stored as shown in figure 1-5. When
EXR is invalid, it is not pushed onto the stack. For details, see the relevant hardware manual.

Figure 1-5 Stack Structure in Advanced Mode

(a) Subroutine Branch (b) Exception Handling

PC
(24 bits)

EXR*1

Reserved*1,*3

CCR

PC
(24 bits)

SP

SP

Notes: 1.
2.
3.

When EXR is not used it is not stored on the stack.
SP when EXR is not used.
Ignored on return.

(SP)
*2Reserved

9

1.3 Address Space

Figure 1-6 shows a memory map of the H8S/2600 CPU. The H8S/2600 CPU provides linear
access to a maximum 64-kbyte address space in normal mode, and a maximum 4-Gbyte address
space in advanced mode. The address space differs depending on the operating mode. For details,
refer to the relevant microcontroller hardware manual.

Figure 1-6 Memory Map

(b) Advanced Mode

H'0000

H'FFFF

H'00000000

H'FFFFFFFF

H'00FFFFFF

(a) Normal Mode

Data area

Program area

10

1.4 Register Configuration

1.4.1 Overview

The CPUs have the internal registers shown in figure 1-7. There are two types of registers: general
registers and control registers. The H8S/2000 CPU does not support the MAC register.

Figure 1-7 CPU Registers

T — — — — I2 I1 I0EXR
7 6 5 4 3 2 1 0

PC
23 0

15 07 07 0

E0

E1

E2

E3

E4

E5

E6

E7

R0H

R1H

R2H

R3H

R4H

R5H

R6H

R7H

R0L

R1L

R2L

R3L

R4L

R5L

R6L

R7L

General Registers (Rn) and Extended Registers (En)

Control Registers (CR)

Legend

 Stack pointer

Program counter

Extended control register

Trace bit

Interrupt mask bits

Condition-code register

Interrupt mask bit

User bit or interrupt mask bit

SP:

PC:

EXR:

T:

I2 to I0:

CCR:

I:

UI:

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7 (SP)

I UI H U N Z V CCCR
7 6 5 4 3 2 1 0

Sign extension
63 3241

031

MAC
MACL

Half-carry flag

User bit

Negative flag

Zero flag

Overflow flag

Carry flag

Multiply-accumulate register

H:

U:

N:

Z:

V:

C:

MAC:

MACH

11

1.4.2 General Registers

The CPUs have eight 32-bit general registers. These general registers are all functionally alike and
can be used as both address registers and data registers. When a general register is used as a data
register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. When the general registers are used
as 32-bit registers or address registers, they are designated by the letters ER (ER0 to ER7).

The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R
(R0 to R7). These registers are functionally equivalent, providing a maximum sixteen 16-bit
registers. The E registers (E0 to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers designated by the letters RH (R0H to R7H) and
RL (R0L to R7L). These registers are functionally equivalent, providing a maximum sixteen 8-bit
registers.

Figure 1-8 illustrates the usage of the general registers. The usage of each register can be selected
independently.

Figure 1-8 Usage of General Registers

• Address registers

• 32-bit registers • 16-bit registers • 8-bit registers

ER registers
(ER0 to ER7)

E registers (extended registers)

(E0 to E7)

R registers

 (R0 to R7)

RH registers
(R0H to R7H)

RL registers

(R0L to R7L)

12

General register ER7 has the function of stack pointer (SP) in addition to its general-register
function, and is used implicitly in exception handling and subroutine calls. Figure 1-9 shows the
stack.

Figure 1-9 Stack

1.4.3 Control Registers

The control registers are the 24-bit program counter (PC), 8-bit extended control register (EXR),
8-bit condition-code register (CCR), and 64-bit multiply-accumulate register (MAC).

(1) Program Counter (PC): This 24-bit counter indicates the address of the next instruction the
CPU will execute. The length of all CPU instructions is 16 bits (one word) or a multiple of 16 bits,
so the least significant PC bit is ignored. When an instruction is fetched, the least significant PC bit
is regarded as 0.

(2) Extended Control Register (EXR): This 8-bit register contains the trace bit (T) and three
interrupt mask bits (I2 to I0).

Bit 7—Trace Bit (T): Selects trace mode. When this bit is cleared to 0, instructions are executed
in sequence. When this bit is set to 1, a trace exception is generated each time an instruction is
executed.

Bits 6 to 3—Reserved: These bits are reserved.

Bits 2 to 0—Interrupt Mask Bits (I2 to I0): These bits designate the interrupt mask level (0 to
7). For details refer to the relevant microcontroller hardware manual.

Free area

Stack area

SP (ER7)

13

Operations can be performed on the EXR bits by the LDC, STC, ANDC, ORC, and XORC
instructions. All interrupts, including NMI, are disabled for three states after one of these
instructions is executed, except for STC.

(3) Condition-Code Register (CCR): This 8-bit register contains internal CPU status
information, including an interrupt mask bit (I) and half-carry (H), negative (N), zero (Z),
overflow (V), and carry (C) flags.

Bit 7—Interrupt Mask Bit (I): Masks interrupts other than NMI when set to 1. (NMI is accepted
regardless of the I bit setting.) The I bit is set to 1 by hardware at the start of an exception-handling
sequence.

Bit 6—User Bit or Interrupt Mask Bit (UI): Can be written and read by software using the
LDC, STC, ANDC, ORC, and XORC instructions. This bit can also be used as an interrupt mask
bit. For details refer to the relevant microcontroller hardware manual.

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B
instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0
otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is
set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L,
SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or
borrow at bit 27, and cleared to 0 otherwise.

Bit 4—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC, and
XORC instructions.

Bit 3—Negative Flag (N): Stores the value of the most significant bit (sign bit) of data.

Bit 2—Zero Flag (Z): Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other
times.

Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

• Add instructions, to indicate a carry
• Subtract instructions, to indicate a borrow
• Shift and rotate instructions, to store the value shifted out of the end bit

The carry flag is also used as a bit accumulator by bit manipulation instructions.

Some instructions leave some or all of the flag bits unchanged. For the action of each instruction
on the flag bits, refer to the detailed descriptions of the instructions starting in section 2.2.1.

14

Operations can be performed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC
instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch
(Bcc) instructions.

(4) Multiply-Accumulate Register (MAC): The MAC register is supported only by the
H8S/2600 CPU. This 64-bit register stores the results of multiply-and-accumulate operations. It
consists of two 32-bit registers denoted MACH and MACL. The lower 10 bits of MACH are valid;
the upper bits are a sign extension.

1.4.4 Initial Register Values

Reset exception handling loads the CPU’s program counter (PC) from the vector table, clears the
trace bit in EXR to 0, and sets the interrupt mask bits in CCR and EXR to 1. The other CCR bits
and the general registers are not initialized. In particular, the stack pointer (ER7) is not initialized.
The stack pointer should therefore be initialized by an MOV.L instruction executed immediately
after a reset.

15

1.5 Data Formats

The CPUs can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit (longword) data.
Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, …, 7) of byte
operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit
BCD data.

1.5.1 General Register Data Formats

Figure 1-10 shows the data formats in general registers.

Figure 1-10 General Register Data Formats

7 6 5 4 3 2 1 0 Don’t care
7 0

Don’t care 7 6 5 4 3 2 1 0

4 37 0

7 0

Don’t careUpper Lower

LSB

MSB LSB

Data Type Register Number Data Format

1-bit data

1-bit data

4-bit BCD data

4-bit BCD data

Byte data

Byte data

RnH

RnL

RnH

RnL

RnH

RnL

MSB

Don’t care Upper Lower

4 37 0

Don’t care
7 0

Don’t care

7 0

16

Figure 1-10 General Register Data Formats (cont)

0

MSB LSB

15
Word data

Word data

Rn

En

0

LSB

1516

MSB

31

En Rn

General register ER

General register E

General register R

General register RH

General register RL

Most significant bit

Least significant bit

Legend

ERn:

En:

Rn:

RnH:

RnL:

MSB:

LSB:

0

MSB LSB

15

Longword data ERn

17

1.5.2 Memory Data Formats

Figure 1-11 shows the data formats in memory. The CPU can access word data and longword data
in memory, but word or longword data must begin at an even address. If an attempt is made to
access word or longword data at an odd address, no address error occurs but the least significant
bit of the address is regarded as 0, so the access starts at the preceding address. This also applies to
instruction fetches.

Figure 1-11 Memory Data Formats

When the stack pointer (ER7) is used as an address register to access the stack, the operand size
should be word size or longword size.

7 6 5 4 3 2 1 0

7 0

MSB LSB

MSB

LSB

MSB

LSB

Data Type Data Format

1-bit data

Byte data

Word data

Longword data

Address

Address L

Address L

Address 2M

Address 2M + 1

Address 2N

Address 2N + 1

Address 2N + 2

Address 2N + 3

18

1.6 Instruction Set

1.6.1 Overview

The H8S/2600 CPU has 69types of instructions, while the H8S/2000 CPU has 65 types. The
instructions are classified by function as shown in table 1-1. For a detailed description of each
instruction, see section 2.2, Instruction Descriptions.

Table 1-1 Instruction Classification

Function Instructions Size Types

Data transfer MOV BWL 5

POP*2, PUSH*2 WL

LDM, STM L

MOVFPE, MOVTPE B

Arithmetic ADD, SUB, CMP, NEG BWL 19

operations ADDX, SUBX, DAA, DAS B

INC, DEC BWL

ADDS, SUBS L

MULXU, DIVXU, MULXS, DIVXS BW

EXTU, EXTS WL

TAS B

MAC, LDMAC, STMAC, CLRMAC*1 — 4*1

Logic operations AND, OR, XOR, NOT BWL 4

Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR BWL 8

Bit manipulation BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, B 14
BIAND, BOR, BIOR, BXOR, BIXOR

Branch Bcc*3, JMP, BSR, JSR, RTS — 5

System control TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP — 9

Block data transfer EEPMOV — 1

H8S/2600 CPU: Total 69 types H8S/2000 CPU: Total 65 types

Notes: B—byte size; W—word size; L—longword size.

1. The MAC, LDMAC, STMAC, and CLRMAC instructions are supported only by the
H8S/2600 CPU.

2. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W Rn, @–SP.
POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and MOV.L ERn,
@–SP.

3. Bcc is the generic designation of a conditional branch instruction.

19

20

1.6.2 Instructions and Addressing Modes

Table 1-2 indicates the combinations of instructions and addressing modes that the H8S/2600 CPU and H8S/2000 CPU can use.

Table 1-2 Combinations of Instructions and Addressing Modes

Addressing Modes

Function Instruction

Data MOV BWL BWL BWL BWL BWL BWL B BWL — BWL — — — —
transfer POP, PUSH — — — — — — — — — — — — — WL

LDM, STM — — — — — — — — — — — — — L

MOVEPE, — — — — — — — B — — — — — —
MOVTPE

Arithmetic ADD, CMP BWL BWL — — — — — — — — — — — —
operations SUB WL BWL — — — — — — — — — — — —

ADDX, SUBX B B — — — — — — — — — — — —

ADDS, SUBS — L — — — — — — — — — — — —

INC, DEC WL BWL — — — — — — — — — — — —

DAA, DAS — B — — — — — — — — — — — —

MULXU, — BW — — — — — — — — — — — —
DIVXU

MULXS, — BW — — — — — — — — — — — —
DIVXS

NEG — BWL — — — — — — — — — — — —

EXTU, EXTS — WL — — — — — — — — — — — —

TAS — — B — — — — — — — — — — —

MAC* — — — — — l — — — — — — — —

CLRMAC* — — — — — — — — — — — — — l

LDMAC*, — L — — — — — — — — — — — —
STMAC*

Note: *Supported only by the H8S/2600 CPU

#x
x

R
n

@
E

R
n

@
(d

:1
6,

E
R

n
)

@
(d

:3
2,

E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

:8

@
aa

:1
6

@
aa

:2
4

@
aa

:3
2

@
(d

:8
,P

C
)

@
(d

:1
6,

P
C

)

@
@

aa
:8

—

21

Table 1-2 Combinations of Instructions and Addressing Modes (cont)

Addressing Modes

Function Instruction

Logic AND, OR, BWL BWL — — — — — — — — — — — —
operations XOR

NOT — BWL — — — — — — — — — — — —

Shift — BWL — — — — — — — — — — — —

Bit manipulation — B B — — — B B — B — — — —

Branch Bcc, BSR — — — — — — — — — — l l — —

JMP, JSR — — — — — — — — l — — — l —

RTS — — — — — — — — — — — — — l

System TRAPA — — — — — — — — — — — — — l

control RTE — — — — — — — — — — — — — l

SLEEP — — — — — — — — — — — — — l

LDC B B W W W W — W — W — — — —

STC — B W W W W — W — W — — — —

ANDC, B — — — — — — — — — — — — —
ORC, XORC

NOP — — — — — — — — — — — — — l

Block data transfer — — — — — — — — — — — — — BW

Legend
B: Byte
W: Word
L: Longword

#x
x

R
n

@
E

R
n

@
(d

:1
6,

E
R

n
)

@
(d

:3
2,

E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

:8

@
aa

:1
6

@
aa

:2
4

@
aa

:3
2

@
(d

:8
,P

C
)

@
(d

:1
6,

P
C

)

@
@

aa
:8

—

1.6.3 Table of Instructions Classified by Function

Table 1-3 summarizes the instructions in each functional category. The notation used in table 1-3 is
defined next.

Operation Notation

Rd General register (destination)*

Rs General register (source)*

Rn General register*

ERn General register (32-bit register)

MAC Multiply-accumulate register (32-bit register)

(EAd) Destination operand

(EAs) Source operand

EXR Extended control register

CCR Condition-code register

N N (negative) flag in CCR

Z Z (zero) flag in CCR

V V (overflow) flag in CCR

C C (carry) flag in CCR

PC Program counter

SP Stack pointer

#IMM Immediate data

disp Displacement

+ Addition

– Subtraction

× Multiplication

÷ Division

∧ Logical AND

∨ Logical OR

⊕ Logical exclusive OR

→ Move

¬ Logical not (logical complement)

:8/:16/:24/32 8-, 16-, 24-, or 32-bit length

Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to
R7, E0 to E7), and 32-bit registers (ER0 to ER7).

22

Table 1-3 Instructions Classified by Function

Type Instruction Size* Function

Data transfer MOV B/W/L (EAs) → Rd, Rs → (EAd)
Moves data between two general registers or between a
general register and memory, or moves immediate data
to a general register.

MOVFPE B (EAs) → Rd
Moves external memory contents (addressed by
@aa:16) to a general register in synchronization with an
E clock.

MOVTPE B Rs → (EAs)
Moves general register contents to an external memory
location (addressed by @aa:16) in synchronization with
an E clock.

POP W/L @SP+ → Rn
Pops a register from the stack. POP.W Rn is identical to
MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L
@SP+, ERn.

PUSH W/L Rn → @–SP
Pushes a register onto the stack. PUSH.W Rn is
identical to MOV.W Rn, @–SP. PUSH.L ERn is identical
to MOV.L ERn, @–SP.

LDM L @SP+ → Rn (register list)
Pops two or more general registers from the stack.

STM L Rn (register list) → @–SP
Pushes two or more general registers onto the stack.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

23

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Arithmetic ADD B/W/L Rd ± Rs → Rd, Rd ± #IMM → Rd
operations SUB Performs addition or subtraction on data in two general

registers, or on immediate data and data in a general
register. (Immediate byte data cannot be subtracted
from byte data in a general register. Use the SUBX or
ADD instruction.)

ADDX B Rd ± Rs ± C → Rd, Rd ± #IMM ± C → Rd
SUBX Performs addition or subtraction with carry or borrow on

byte data in two general registers, or on immediate data
and data in a general register.

INC B/W/L Rd ± 1 → Rd, Rd ± 2 → Rd
DEC Increments or decrements a general register by 1 or 2.

(Byte operands can be incremented or decremented by
1 only.)

ADDS L Rd ± 1 → Rd, Rd ± 2 → Rd, Rd ± 4 → Rd
SUBS Adds or subtracts the value 1, 2, or 4 to or from data in

a 32-bit register.

DAA B Rd decimal adjust → Rd
DAS Decimal-adjusts an addition or subtraction result in a

general register by referring to the CCR to produce 4-bit
BCD data.

MULXU B/W Rd × Rs → Rd
Performs unsigned multiplication on data in two general
registers: either 8 bits × 8 bits → 16 bits or 16 bits ×
16 bits → 32 bits.

MULXS B/W Rd × Rs → Rd
Performs signed multiplication on data in two general
registers: either 8 bits × 8 bits → 16 bits or 16 bits ×
16 bits → 32 bits.

DIVXU B/W Rd ÷ Rs → Rd
Performs unsigned division on data in two general
registers: either 16 bits ÷ 8 bits → 8-bit quotient and
8-bit remainder or 32 bits ÷ 16 bits → 16-bit quotient
and 16-bit remainder.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

24

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Arithmetic DIVXS B/W Rd ÷ Rs → Rd
operations Performs signed division on data in two general

registers: either 16 bits ÷ 8 bits → 8-bit quotient and 8-
bit remainder or 32 bits ÷ 16 bits → 16-bit quotient and
16-bit remainder.

CMP B/W/L Rd – Rs, Rd – #IMM
Compares data in a general register with data in
another general register or with immediate data, and
sets CCR bits according to the result.

NEG B/W/L 0 – Rd → Rd
Takes the two’s complement (arithmetic complement) of
data in a general register.

EXTU W/L Rd (zero extension) → Rd
Extends the lower 8 bits of a 16-bit register to word size,
or the lower 16 bits of a 32-bit register to longword size,
by padding with zeros on the left.

EXTS W/L Rd (sign extension) → Rd
Extends the lower 8 bits of a 16-bit register to word size,
or the lower 16 bits of a 32-bit register to longword size,
by extending the sign bit.

TAS B @ERd – 0, 1 → (<bit 7> of @ERd)
Tests memory contents, and sets the most significant bit
(bit 7) to 1.

MAC — (EAs) × (EAd) + MAC → MAC
Performs signed multiplication on memory contents and
adds the result to the multiply-accumulate register. The
following operations can be performed:

16 bits × 16 bits +32 bits → 32 bits, saturating
16 bits × 16 bits + 42 bits → 42 bits, non-saturating
Supported by H8S/2600 CPU only

CLRMAC — 0 → MAC
Clears the multiply-accumulate register to zero.
Supported by H8S/2600 CPU only

LDMAC L Rs → MAC, MAC → Rd
STMAC Transfers data between a general register and the

multiply-accumulate register.
Supported by H8S/2600 CPU only.

Note: * Size refers to the operand size.
B: Byte
W: Word
L: Longword

25

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Logic operations AND B/W/L Rd ∧ Rs → Rd, Rd ∧ #IMM → Rd
Performs a logical AND operation on a general register
and another general register or immediate data.

OR B/W/L Rd ∨ Rs → Rd, Rd ∨ #IMM → Rd
Performs a logical OR operation on a general register
and another general register or immediate data.

XOR B/W/L Rd ⊕ Rs → Rd, Rd ⊕ #IMM → Rd
Performs a logical exclusive OR operation on a general
register and another general register or immediate data.

NOT B/W/L ¬ (Rd) → (Rd)
Takes the one’s complement of general register
contents.

Shift operations SHAL B/W/L Rd (shift) → Rd
SHAR Performs an arithmetic shift on general register

contents. 1-bit or 2-bit shift is possible.

SHLL B/W/L Rd (shift) → Rd
SHLR Performs a logical shift on general register contents.

1-bit or 2-bit shift is possible.

ROTL B/W/L Rd (rotate) → Rd
ROTR Rotates general register contents.

1-bit or 2-bit rotation is possible.

ROTXL B/W/L Rd (rotate) → Rd
ROTXR Rotates general register contents through the carry bit.

1-bit or 2-bit rotation is possible.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

26

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Bit-manipulation BSET B 1 → (<bit-No.> of <EAd>)
instructions Sets a specified bit in a general register or memory

operand to 1. The bit number is specified by 3-bit
immediate data or the lower three bits of a general
register.

BCLR B 0 → (<bit-No.> of <EAd>)
Clears a specified bit in a general register or memory
operand to 0. The bit number is specified by 3-bit
immediate data or the lower three bits of a general
register.

BNOT B ¬ (<bit-No.> of <EAd>) → (<bit-No.> of <EAd>)
Inverts a specified bit in a general register or memory
operand. The bit number is specified by 3-bit immediate
data or the lower three bits of a general register.

BTST B ¬ (<bit-No.> of <EAd>) → Z
Tests a specified bit in a general register or memory
operand and sets or clears the Z flag accordingly. The
bit number is specified by 3-bit immediate data or the
lower three bits of a general register.

BAND B C ∧ (<bit-No.> of <EAd>) → C
ANDs the carry flag with a specified bit in a general
register or memory operand and stores the result in the
carry flag.

BIAND B C ∧ ¬ (<bit-No.> of <EAd>) → C
ANDs the carry flag with the inverse of a specified bit in
a general register or memory operand and stores the
result in the carry flag.

The bit number is specified by 3-bit immediate data.

BOR B C ∨ (<bit-No.> of <EAd>) → C
ORs the carry flag with a specified bit in a general
register or memory operand and stores the result in the
carry flag.

BIOR B C ∨ ¬ (<bit-No.> of <EAd>) → C
ORs the carry flag with the inverse of a specified bit in a
general register or memory operand and stores the
result in the carry flag.

The bit number is specified by 3-bit immediate data.

Note: * Size refers to the operand size.

B: Byte

27

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Bit-manipulation BXOR B C ⊕ (<bit-No.> of <EAd>) → C
instructions Exclusive-ORs the carry flag with a specified bit in a

general register or memory operand and stores the
result in the carry flag.

BIXOR B C ⊕ ¬ (<bit-No.> of <EAd>) → C
Exclusive-ORs the carry flag with the inverse of a
specified bit in a general register or memory operand
and stores the result in the carry flag.

The bit number is specified by 3-bit immediate data.

BLD B (<bit-No.> of <EAd>) → C
Transfers a specified bit in a general register or memory
operand to the carry flag.

BILD B ¬ (<bit-No.> of <EAd>) → C
Transfers the inverse of a specified bit in a general
register or memory operand to the carry flag.

The bit number is specified by 3-bit immediate data.

BST B C → (<bit-No.> of <EAd>)
Transfers the carry flag value to a specified bit in a
general register or memory operand.

BIST B ¬ C → (<bit-No.> of <EAd>)
Transfers the inverse of the carry flag value to a
specified bit in a general register or memory operand.

The bit number is specified by 3-bit immediate data.

Note: * Size refers to the operand size.

B: Byte

28

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Branch Bcc — Branches to a specified address if a specified condition
instructions is true. The branching conditions are listed below.

Mnemonic Description Condition

BRA(BT) Always (true) Always

BRN(BF) Never (false) Never

BHI High C ∨ Z = 0

BLS Low or same C ∨ Z = 1

BCC(BHS) Carry clear C = 0
(high or same)

BCS(BLO) Carry set (low) C = 1

BNE Not equal Z = 0

BEQ Equal Z = 1

BVC Overflow clear V = 0

BVS Overflow set V = 1

BPL Plus N = 0

BMI Minus N = 1

BGE Greater or equal N ⊕ V = 0

BLT Less than N ⊕ V = 1

BGT Greater than Z ∨ (N ⊕ V) = 0

BLE Less or equal Z ∨ (N ⊕ V) = 1

JMP — Branches unconditionally to a specified address.

BSR — Branches to a subroutine at a specified address.

JSR — Branches to a subroutine at a specified address.

RTS — Returns from a subroutine

29

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

System control TRAPA — Starts trap-instruction exception handling.
instructions RTE — Returns from an exception-handling routine.

SLEEP — Causes a transition to a power-down state.

LDC B/W (EAs) → CCR, (EAs) → EXR
Moves the source operand contents or immediate data
to CCR or EXR. Although CCR and EXR are 8-bit
registers, word-size transfers are performed between
them and memory. The upper 8 bits are valid.

STC B/W CCR → (EAd), EXR → (EAd)
Transfers CCR or EXR contents to a general register or
memory. Although CCR and EXR are 8-bit registers,
word-size transfers are performed between them and
memory. The upper 8 bits are valid.

ANDC B CCR ∧ #IMM → CCR, EXR ∧ #IMM → EXR
Logically ANDs the CCR or EXR contents with
immediate data.

ORC B CCR ∨ #IMM → CCR, EXR ∨ #IMM → EXR
Logically ORs the CCR or EXR contents with immediate
data.

XORC B CCR ⊕ #IMM → CCR, EXR ⊕ #IMM → EXR
Logically exclusive-ORs the CCR or EXR contents with
immediate data.

NOP — PC + 2 → PC
Only increments the program counter.

Note: * Size refers to the operand size.

B: Byte
W: Word

30

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Block data EEPMOV.B — if R4L ≠ 0 then
transfer Repeat @ER5+ → @ER6+
instruction R4L – 1 → R4L

Until R4L = 0
else next;

EEPMOV.W — if R4 ≠ 0 then
Repeat @ER5+ → @ER6+

R4 – 1 → R4
Until R4 = 0

else next;

Transfers a data block according to parameters set in
general registers R4L or R4, R5, and R6.

R4L or R4: size of block (bytes)
ER5: starting source address
ER6: starting destination address

Execution of the next instruction begins as soon as the
transfer is completed.

31

1.6.4 Basic Instruction Formats

The H8S/2600 instructions consist of 2-byte (1-word) units. An instruction consists of an operation
field (op field), a register field (r field), an effective address extension (EA field), and a condition
field (cc).

Operation Field: Indicates the function of the instruction, the addressing mode, and the operation
to be carried out on the operand. The operation field always includes the first four bits of the
instruction. Some instructions have two operation fields.

Register Field: Specifies a general register. Address registers are specified by 3 bits, data registers
by 3 bits or 4 bits. Some instructions have two register fields. Some have no register field.

Effective Address Extension: Eight, 16, or 32 bits specifying immediate data, an absolute
address, or a displacement.

Condition Field: Specifies the branching condition of Bcc instructions.

Figure 1-12 shows examples of instruction formats.

Figure 1-12 Instruction Formats

op

op rn rm

NOP, RTS, etc.

ADD.B Rn, Rm, etc.

MOV @(d:16, Rn), Rm, etc.

(1) Operation field only

(2) Operation field and register fields

(3) Operation field, register fields, and effective address extension

rn rmop

EA (disp)

(4) Operation field, effective address extension, and condition field

op cc EA (disp) BRA d:8, etc

32

1.7 Addressing Modes and Effective Address Calculation

Addressing Modes: The CPUs support the eight addressing modes listed in table 1-4. Each
instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the
register direct and immediate modes. Data transfer instructions can use all addressing modes
except program-counter relative and memory indirect. Bit manipulation instructions use register
direct, register indirect, or absolute addressing mode to specify an operand, and register direct
(BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a
bit number in the operand.

Table 1-4 Addressing Modes

No. Addressing Mode Symbol

1 Register direct Rn

2 Register indirect @ERn

3 Register indirect with displacement @(d:16,ERn)/@(d:32,ERn)

4 Register indirect with post-increment @ERn+
Register indirect with pre-decrement @–ERn

5 Absolute address @aa:8/@aa:16/@aa:24/@aa:32

6 Immediate #xx:8/#xx:16/#xx:32

7 Program-counter relative @(d:8,PC)/@(d:16,PC)

8 Memory indirect @@aa:8

1 Register Direct—Rn: The register field of the instruction specifies an 8-, 16-, or 32-bit general
register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers.
R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit
registers.

2 Register Indirect—@ERn: The register field of the instruction code specifies an address
register (ERn) which contains the address of the operand in memory. If the address is a program
instruction address, the lower 24 bits are valid and the upper 8 bits are all assumed to be 0 (H'00).

3 Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn): A 16-bit or 32-bit
displacement contained in the instruction is added to an address register (ERn) specified by the
register field of the instruction, and the sum gives the address of a memory operand. A 16-bit
displacement is sign-extended when added.

33

4 Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @–ERn:

• Register indirect with post-increment—@ERn+

The register field of the instruction code specifies an address register (ERn) which contains the
address of a memory operand. After the operand is accessed, 1, 2, or 4 is added to the address
register contents and the sum is stored in the address register. The value added is 1 for byte
access, 2 for word access, or 4 for longword access. For word or longword access, the register
value should be even.

• Register indirect with pre-decrement—@–ERn

The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field
in the instruction code, and the result becomes the address of a memory operand. The result is
also stored in the address register. The value subtracted is 1 for byte access, 2 for word access,
or 4 for longword access. For word or longword access, the register value should be even.

5 Absolute Address—@aa:8, @aa:16, @aa:24, or @aa:32: The instruction code contains the
absolute address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits
long (@aa:16), 24 bits long (@aa:24), or 32 bits long (@aa:32).

To access data, the absolute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 bits
(@aa:32) long. For an 8-bit absolute address, the upper 24 bits are all assumed to be 1 (H'FFFF).
For a 16-bit absolute address the upper 16 bits are a sign extension. A 32-bit absolute address can
access the entire address space.

A 24-bit absolute address (@aa:24) indicates the address of a program instruction. The upper 8 bits
are all assumed to be 0 (H'00).

Table 1-5 indicates the accessible absolute address ranges.

Table 1-5 Absolute Address Access Ranges

Absolute Address Normal Mode Advanced Mode

Data address 8 bits (@aa:8) H'FF00 to H'FFFF H'FFFFFF00 to H'FFFFFFFF

16 bits (@aa:16) H'0000 to H'FFFF H'00000000 to H'00007FFF,
H'FFFF8000 to H'FFFFFFFF

32 bits (@aa:32) H'00000000 to H'FFFFFFFF

Program instruction 24 bits (@aa:24) H'00000000 to H'00FFFFFF
address

For further details on the accessible range, refer to the relevant microcontroller hardware manual.

34

6 Immediate—#xx:8, #xx:16, or #xx:32: The instruction contains 8-bit (#xx:8), 16-bit (#xx:16),
or 32-bit (#xx:32) immediate data as an operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit
manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit
number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a
vector address.

7 Program-Counter Relative—@(d:8, PC) or @(d:16, PC): This mode is used in the Bcc and
BSR instructions. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and
added to the 24-bit PC contents to generate a branch address. Only the lower 24 bits of this branch
address are valid; the upper 8 bits are all assumed to be 0 (H'00). The PC value to which the
displacement is added is the address of the first byte of the next instruction, so the possible
branching range is –126 to +128 bytes (–63 to +64 words) or –32766 to +32768 bytes (–16383 to
+16384 words) from the branch instruction. The resulting value should be an even number.

8 Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions. The
second byte of the instruction specifies a memory operand by an 8-bit absolute address. This
memory operand contains a branch address. The upper bits of the absolute address are all assumed
to be 0, so the address range is 0 to 255 (H'0000 to H'00FF in normal mode, H'00000000 to
H'000000FF in advanced mode). In normal mode the memory operand is a word operand and the
branch address is 16 bits long. In advanced mode the memory operand is a longword operand, the
first byte of which is assumed to be all 0 (H'00).

Note that the first part of the address range is also the exception vector area. For further details
refer to the relevant microcontroller hardware manual.

Figure 1-13 Branch Address Specification in Memory Indirect Mode

(a) Normal Mode (b) Advanced Mode

Branch address
Specified

by @aa:8

Specified

by @aa:8

Reserved

Branch address

35

If an odd address is specified in word or longword memory access, or as a branch address, the least
significant bit is regarded as 0, causing data to be accessed or an instruction code to be fetched at
the address preceding the specified address. (For further information, see section 1.5.2, Memory
Data Formats.)

(2) Effective Address Calculation: Table 1-6 indicates how effective addresses are calculated in
each addressing mode. In normal mode the upper 8 bits of the effective address are ignored in
order to generate a 16-bit address.

36

37

Table 1-6 Effective Address Calculation

Register indirect with post-increment or

pre-decrement

• Register indirect with post-increment @ERn+

No. Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA)

1 Register direct (Rn)

op rm rn
Operand is general register contents.

Register indirect (@ERn)2

Register indirect with displacement

@(d:16, ERn) or @(d:32, ERn)

3

• Register indirect with pre-decrement @–ERn

4

General register contents

General register contents

Sign extension disp

General register contents

1, 2, or 4

General register contents

1, 2, or 4

Byte

Word

Longword

1

2

4

Operand Size

Value added

31 0

31 0

31 0

31 0

31 0 31 0

31 0

31 0

31 0

op r

rop

op r

rop

disp

38

Table 1-6 Effective Address Calculation (cont)

5

@aa:8

Absolute address

@aa:16

@aa:32

6 Immediate #xx:8/#xx:16/#xx:32

31 08 7

Operand is immediate data.

No. Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA)

@aa:24

31 016 15

31 024 23

31 0

op abs

op abs

absop

op

abs

op IMM

H'FFFFFF

Sign extension

H'00

39

Table 1-6 Effective Address Calculation (cont)

31

0

0

0

7 Program-counter relative

@(d:8, PC)/@(d:16, PC)

8 Memory indirect @@aa:8

• Normal mode

• Advanced mode

0

No. Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA)

23

23

31 8 7

015

031 8 7

023

disp

H'000000

absH'000000

31 024 23

31 016 15

31 024 23

op disp

op abs

op abs

Sign

extension

PC contents

abs

Memory contents

Memory contentsReserved H'00

H'0000

H'00

40

Section 2 Instruction Descriptions

2.1 Tables and Symbols

This section explains how to read the tables in section 2.2, describing each instruction. Note that
the descriptions of some instructions extend over more than one page.

[1] Mnemonic (Full Name): Gives the full and mnemonic names of the instruction.

[2] Type: Indicates the type of instruction.

[3] Operation: Describes the instruction in symbolic notation. (See section 2.1.2, Operation.)

[4] Assembly-Language Format: Indicates the assembly-language format of the instruction.
(See section 2.1.1, Assembler Format.)

[5] Operand Size: Indicates the available operand sizes.

[6] Condition Code: Indicates the effect of instruction execution on the flag bits in the CCR.
(See section 2.1.3, Condition Code.)

[7] Description: Describes the operation of the instruction in detail.

[8] Available Registers: Indicates which registers can be specified in the register field of the
instruction.

[9] Operand Format and Number of States Required for Execution: Shows the addressing
modes and instruction format together with the number of states required for execution.

[10]Notes: Gives notes concerning execution of the instruction.

41

[1] Mnemonic (Full Name) [2] Type

[7] Description

[8] Available Registers

[9] Operand Format and Number of States Required for Execution

[10] Notes

[3] Operation

[4] Assembly-Language Format

[5] Operand Size

[6] Condition Code

2.1.1 Assembly-Language Format

Example: ADD. B <EAs>, Rd

Destination operand

Source operand

Size

Mnemonic

The operand size is byte (B), word (W), or longword (L). Some instructions are restricted to a
limited set of operand sizes.

The symbol <EA> indicates that two or more addressing modes can be used. The H8S/2600 CPU
supports the eight addressing modes listed next. Effective address calculation is described in
section 1.7, Addressing Modes and Effective Address Calculation.

Symbol Addressing Mode

Rn Register direct

@ERn Register indirect

@(d:16, ERn)/@(d:32, ERn) Register indirect with displacement (16-bit or 32-bit)

@ERn+/@–ERn Register indirect with post-increment or pre-decrement

@aa:8/@aa:16/@aa:24/@aa:32 Absolute address (8-bit, 16-bit, 24-bit, or 32-bit)

#xx:8/#xx:16/#xx:32 Immediate (8-bit, 16-bit, or 32-bit)

@(d:8, PC)/@(d:16, PC) Program-counter relative (8-bit or 16-bit)

@@aa:8 Memory indirect

The suffixes :8, :16, :24, and :32 may be omitted. In particular, if the :8, :16, :24, or :32
designation is omitted in an absolute address or displacement, the assembler will optimize the
length according to the value range. For details, refer to the H8S, H8/300 Series cross assembler
user’s manual.

42

➤ ➤ ➤ ➤

2.1.2 Operation

The symbols used in the operation descriptions are defined as follows.

Rd General register (destination)*

Rs General register (source)*

Rn General register*

ERn General register (32-bit register)

MAC Multiply-accumulate register (32-bit register)

(EAd) Destination operand

(EAs) Source operand

EXR Extended control register

CCR Condition-code register

N N (negative) flag in CCR

Z Z (zero) flag in CCR

V V (overflow) flag in CCR

C C (carry) flag in CCR

PC Program counter

SP Stack pointer

#IMM Immediate data

disp Displacement

+ Add

– Subtract

× Multiply

÷ Divide

∧ Logical AND

∨ Logical OR

⊕ Logical exclusive OR

→ Transfer from the operand on the left to the operand on the right, or transition from the
state on the left to the state on the right

¬ Logical NOT (logical complement)

() < > Contents of effective address of the operand

Note: * General registers include 8-bit registers (R0H to R7H and R0L to R7L), 16-bit registers
(R0 to R7 and E0 to E7), and 32-bit registers (ER0 to ER7).

43

2.1.3 Condition Code

The symbols used in the condition-code description are defined as follows.

Symbol Meaning

↕ Changes according to the result of instruction execution

* Undetermined (no guaranteed value)

0 Always cleared to 0

1 Always set to 1

— Not affected by execution of the instruction

s Varies depending on conditions; see the notes

For details on changes of the condition code, see section 2.7, Condition Code Modification.

2.1.4 Instruction Format

The symbols used in the instruction format descriptions are listed below.

Symbol Meaning

IMM Immediate data (2, 3, 8, 16, or 32 bits)

abs Absolute address (8, 16, 24, or 32 bits)

disp Displacement (8, 16, or 32 bits)

rs, rd, rn Register field (4 bits). The symbols rs, rd, and rn correspond to operand symbols
Rs, Rd, and Rn.

ers, erd, ern Register field (3 bits). The symbols ers, erd, and ern correspond to operand
symbols ERs, ERd, and ERn.

44

2.1.5 Register Specification

Address Register Specification: When a general register is used as an address register [@ERn,
@(d:16, ERn), @(d:32, ERn), @ERn+, or @–ERn], the register is specified by a 3-bit register
field (ers or erd).

Data Register Specification: A general register can be used as a 32-bit, 16-bit, or 8-bit data
register.

When used as a 32-bit register, it is specified by a 3-bit register field (ers, erd, or ern).

When used as a 16-bit register, it is specified by a 4-bit register field (rs, rd, or rn). The lower 3
bits specify the register number. The upper bit is set to 1 to specify an extended register (En) or
cleared to 0 to specify a general register (Rn).

When used as an 8-bit register, it is specified by a 4-bit register field (rs, rd, or rn). The lower 3
bits specify the register number. The upper bit is set to 1 to specify a low register (RnL) or cleared
to 0 to specify a high register (RnH). This is shown next.

Address Register
32-Bit Register 16-Bit Register 8-Bit Register

Register General Register General Register General
Field Register Field Register Field Register

000 ER0 0000 R0 0000 R0H
001 ER1 0001 R1 0001 R1H
· · · · · ·
· · · · · ·

111 ER7 0111 R7 0111 R7H
1000 E0 1000 R0L
1001 E1 1001 R1L

· · · ·
· · · ·

1111 E7 1111 R7L

45

2.1.6 Bit Data Access in Bit Manipulation Instructions

Bit data is accessed as the n-th bit (n = 0, 1, 2, 3, …, 7) of a byte operand in a general register or
memory. The bit number is given by 3-bit immediate data, or by the lower 3 bits of a general
register value.

Example 1: To set bit 3 in R2H to 1

Example 2: To load bit 5 at address H'FFFF02 into the bit accumulator

The operand size and addressing mode are as indicated for register or memory operand data.

BLD #5, @H'FFFF02

H'FFFF02 1 1 000101

#5

 Load

C

BSET R1L, R2H

R1L 0 1 1Don’t care

0 0 1R2H 10110

Bit number

Set to 1

46

2.2 Instruction Descriptions

The instructions are described starting in section 2.2.1.

47

48

2.2.1 (1) ADD (B)

ADD (ADD Binary) Add Binary

Operation

Rd + (EAs) → Rd

Assembly-Language Format

ADD.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a carry at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a carry at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction adds the source operand to the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ADD.B #xx:8, Rd 8 rd IMM 1

Register direct ADD.B Rs, Rd 0 8 rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

49

2.2.1 (2) ADD (W)

ADD (ADD Binary) Add Binary

Operation

Rd + (EAs) → Rd

Assembly-Language Format

ADD.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Set to 1 if there is a carry at bit 11;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a carry at bit 15;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction adds the source operand to the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ADD.W #xx:16, Rd 7 9 1 rd IMM 2

Register direct ADD.W Rs, Rd 0 9 rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

50

2.2.1 (3) ADD (L)

ADD (ADD Binary) Add Binary

Operation

ERd + (EAs) → ERd

Assembly-Language Format

ADD.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Set to 1 if there is a carry at bit 27;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a carry at bit 31;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction adds the source operand to the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate ADD.L #xx:32, ERd 7 A 1 0 erd IMM 3

Register direct ADD.L ERs, ERd 0 A 1 ers 0 erd 1

No. of
States

Mnemonic OperandsAddressing
Mode

51

2.2.2 ADDS

ADDS (ADD with Sign extension) Add Binary Address Data

Operation

Rd + 1 → ERd
Rd + 2 → ERd
Rd + 4 → ERd

Assembly-Language Format

ADDS #1, ERd
ADDS #2, ERd
ADDS #4, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction adds the immediate value 1, 2, or 4 to the contents of a 32-bit register ERd
(destination operand). Unlike the ADD instruction, it does not affect the condition code flags.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ADDS #1, ERd 0 B 0 0 erd 1

Register direct ADDS #2, ERd 0 B 8 0 erd 1

Register direct ADDS #4, ERd 0 B 9 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

52

2.2.3 ADDX

ADDX (ADD with eXtend carry) Add with Carry

Operation

Rd + (EAs) + C → Rd

Assembly-Language Format

ADDX <EAs>, Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a carry at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a carry at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction adds the source operand and carry flag to the contents of an 8-bit register Rd
(destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ADDX #xx:8, Rd 9 rd IMM 1

Register direct ADDX Rs, Rd 0 E rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

53

2.2.4 (1) AND (B)

AND (AND logical) Logical AND

Operation

Rd ∧ (EAs) → Rd

Assembly-Language Format

AND.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ANDs the source operand with the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate AND.B #xx:8, Rd E rd IMM 1

Register direct AND.B Rs, Rd 1 6 rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

54

2.2.4 (2) AND (W)

AND (AND logical) Logical AND

Operation

Rd ∧ (EAs) → Rd

Assembly-Language Format

AND.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ANDs the source operand with the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate AND.W #xx:16, Rd 7 9 6 rd IMM 2

Register direct AND.W Rs, Rd 6 6 rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

55

2.2.4 (3) AND (L)

AND (AND logical) Logical AND

Operation

ERd ∧ (EAs) → ERd

Assembly-Language Format

AND.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ANDs the source operand with the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate AND.L #xx:32, ERd 7 A 6 0 erd IMM 3

Register direct AND.L ERs, ERd 0 1 F 0 6 6 0 ers 0 erd 2

No. of
States

Mnemonic OperandsAddressing
Mode

56

2.2.5 (1) ANDC

ANDC (AND Control register) Logical AND with CCR

Operation

CCR ∧ #IMM → CCR

Assembly-Language Format

ANDC #xx:8, CCR

Operand Size

Byte

Condition Code

I: Stores the corresponding bit of the result.
UI: Stores the corresponding bit of the result.
H: Stores the corresponding bit of the result.
U: Stores the corresponding bit of the result.
N: Stores the corresponding bit of the result.
Z: Stores the corresponding bit of the result.
V: Stores the corresponding bit of the result.
C: Stores the corresponding bit of the result.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction ANDs the contents of the condition-code register (CCR) with immediate data and
stores the result in the condition-code register. No interrupt requests, including NMI, are accepted
immediately after execution of this instruction.

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ANDC #xx:8, CCR 0 6 IMM 1

No. of
States

Addressing
Mode

Mnemonic Operands

57

2.2.5 (2) ANDC

ANDC (AND Control register) Logical AND with EXR

Operation

EXR ∧ #IMM → EXR

Assembly-Language Format

ANDC #xx:8, EXR

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction ANDs the contents of the extended control register (EXR) with immediate data
and stores the result in the extended control register. No interrupt requests, including NMI, are
accepted for three states after execution of this instruction.

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ANDC #xx:8, EXR 0 1 4 1 0 6 IMM 2

No. of
States

Addressing
Mode

Mnemonic Operands

58

2.2.6 BAND

BAND (Bit AND) Bit Logical AND

Operation

C ∧ (<bit No.> of <EAd>) → C

Assembly-Language Format

BAND #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction ANDs a specified bit in the destination operand with the carry flag and stores the
result in the carry flag. The bit number is specified by 3-bit immediate data. The destination
operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

C ∧ C

7 0

Specified by #xx:3

Bit No.

<EAd>

2.2.6 B
A

N
D

B
A

N
D

 (B
it A

N
D

)
B

it L
ogical A

N
D

59

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BAND #xx:3, Rd 7 6 0 IMM rd 1

direct

Register
BAND #xx:3, @ERd 7 C 0 erd 0 7 6 0 IMM 0 3

indirect

Absolute
BAND #xx:3, @aa:8 7 E abs 7 6 0 IMM 0 3

address

Absolute
BAND #xx:3, @aa:16 6 A 1 0 abs 7 6 0 IMM 0 4

address

Absolute
BAND #xx:3, @aa:32 6 A 3 0 abs 7 6 0 IMM 0 5

address

60

2.2.7 Bcc

Bcc (Branch conditionally) Conditional Branch

Operation

If condition is true, then
PC + disp → PC

else next;

Assembly-Language Format

Bcc disp
➤ Condition field

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

If the condition specified in the condition field (cc) is true, a displacement is added to the program
counter (PC) and execution branches to the resulting address. If the condition is false, the next
instruction is executed. The PC value used in the address calculation is the starting address of the
instruction immediately following the Bcc instruction. The displacement is a signed 8-bit or 16-bit
value. The branch destination address can be located in the range from –126 to +128 bytes or
–32766 to +32768 bytes from the Bcc instruction.

Note: * If the immediately preceding instruction is a CMP instruction, X is the general register
contents (destination operand) and Y is the source operand.

Mnemonic Meaning cc Condition Signed/Unsigned*

BRA (BT) Always (true) 0000 True
BRN (BF) Never (false) 0001 False
BHI HIgh 0010 C∨ Z = 0 X > Y (unsigned)
BLS Low or Same 0011 C∨ Z = 1 X ≤ Y (unsigned)
BCC (BHS) Carry Clear (High or Same) 0100 C = 0 X ≥ Y (unsigned)
BCS (BLO) Carry Set (LOw) 0101 C = 1 X < Y (unsigned)
BNE Not Equal 0110 Z = 0 X ≠ Y (unsigned or signed)
BEQ EQual 0111 Z = 1 X = Y (unsigned or signed)
BVC oVerflow Clear 1000 V = 0
BVS oVerflow Set 1001 V = 1
BPL PLus 1010 N = 0
BMI MInus 1011 N = 1
BGE Greater or Equal 1100 N⊕ V = 0 X ≥ Y (signed)
BLT Less Than 1101 N⊕ V = 1 X < Y (signed)
BGT Greater Than 1110 Z∨ (N⊕ V) = 0 X > Y (signed)
BLE Less or Equal 1111 Z∨ (N⊕ V) = 1 X ≤ Y (signed)

61

2.2.7 Bcc

Bcc (Branch conditionally) Conditional Branch

Operand Format and Number of States Required for Execution

Notes

1. The branch destination address must be even.
2. In machine language BRA, BRN, BCC, and BCS are identical to BT, BF, BHS, and BLO,

respectively.

Instruction Format
1st byte 2nd byte 3rd byte 4th byte

d:8 4 0 disp 2
d:16 5 8 0 0 disp 3
d:8 4 1 disp 2
d:16 5 8 1 0 disp 3
d:8 4 2 disp 2
d:16 5 8 2 0 disp 3
d:8 4 3 disp 2
d:16 5 8 3 0 disp 3
d:8 4 4 disp 2
d:16 5 8 4 0 disp 3
d:8 4 5 disp 2
d:16 5 8 5 0 disp 3
d:8 4 6 disp 2
d:16 5 8 6 0 disp 3
d:8 4 7 disp 2
d:16 5 8 7 0 disp 3
d:8 4 8 disp 2
d:16 5 8 8 0 disp 3
d:8 4 9 disp 2
d:16 5 8 9 0 disp 3
d:8 4 A disp 2
d:16 5 8 A 0 disp 3
d:8 4 B disp 2
d:16 5 8 B 0 disp 3
d:8 4 C disp 2
d:16 5 8 C 0 disp 3
d:8 4 D disp 2
d:16 5 8 D 0 disp 3
d:8 4 E disp 2
d:16 5 8 E 0 disp 3
d:8 4 F disp 2
d:16 5 8 F 0 disp 3

Addressing
Mode

Mnemonic Operands

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

BRA (BT)

BRN (BF)

BHI

BLS

Bcc (BHS)

BCS (BLO)

BNE

BEQ

BVC

BVS

BPL

BMI

BGE

BLT

BGT

BLE

No. of
States

62

2.2.8 BCLR

BCLR (Bit CLeaR) Bit Clear

Operation

0 → (<bit No.> of <EAd>)

Assembly-Language Format

BCLR #xx:3, <EAd>
BCLR Rn, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction clears a specified bit in the destination operand to 0. The bit number can be
specified by 3-bit immediate data, or by the lower three bits of an 8-bit register Rn. The specified
bit is not tested. The condition-code flags are not altered.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7
Rn: R0L to R7L, R0H to R7H

7 0

Specified by #xx:3 or Rn

Bit No.

0

<EAd>

63

2.2.8 B
C

L
R

B
C

L
R

 (B
it C

L
eaR

)
B

it C
lear

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BCLR #xx:3, Rd 7 2 0 IMM rd 1

direct

Register
BCLR #xx:3, @ERd 7 D 0 erd 0 7 2 0 IMM 0 4

indirect

Absolute
BCLR #xx:3, @aa:8 7 F abs 7 2 0 IMM 0 4

address

Absolute
BCLR #xx:3, @aa:16 6 A 1 8 abs 7 2 0 IMM 0 5

address

Absolute
BCLR #xx:3, @aa:32 6 A 3 8 abs 7 2 0 IMM 0 6

address

Register
BCLR Rn, Rd 6 2 rn rd 1

direct

Register
BCLR Rn, @ERd 7 D 0 erd 0 6 2 rn 0 4

indirect

Absolute
BCLR Rn, @aa:8 7 F abs 6 2 rn 0 4

address

Absolute
BCLR Rn, @aa:16 6 A 1 8 abs 6 2 rn 0 5

address

Absolute
BCLR Rn, @aa:32 6 A 3 8 abs 6 2 rn 0 6

address

64

2.2.9 BIAND

BIAND (Bit Invert AND) Bit Logical AND

Operation

C ∧ [¬ (<bit No.> of <EAd>)] → C

Assembly-Language Format

BIAND #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction ANDs the inverse of a specified bit in the destination operand with the carry flag
and stores the result in the carry flag. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

C ∧ C

7 0

Specified by #xx:3

Bit No.

Invert

<EAd>

65

2.2.9 B
IA

N
D

B
IA

N
D

 (B
it Invert A

N
D

)
B

it L
ogical A

N
D

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BIAND #xx:3, Rd 7 6 1 IMM rd 1

direct

Register
BIAND #xx:3, @ERd 7 C 0 erd 0 7 6 1 IMM 0 3

indirect

Absolute
BIAND #xx:3, @aa:8 7 E abs 7 6 1 IMM 0 3

address

Absolute
BIAND #xx:3, @aa:16 6 A 1 0 abs 7 6 1 IMM 0 4

address

Absolute
BIAND #xx:3, @aa:32 6 A 3 0 abs 7 6 1 IMM 0 5

address

66

2.2.10 BILD

BILD (Bit Invert LoaD) Bit Load

Operation

¬ (<bit No.> of <EAd>) → C

Assembly-Language Format

BILD #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Loaded with the inverse of the specified

bit.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction loads the inverse of a specified bit from the destination operand into the carry flag.
The bit number is specified by 3-bit immediate data. The destination operand contents remain
unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

C

7 0

Specified by #xx:3

Bit No.

Invert

<EAd>

67

2.2.10 B
IL

D

B
IL

D
 (B

it Invert L
oaD

)
B

it L
oad

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BILD #xx:3, Rd 7 7 1 IMM rd 1

direct

Register
BILD #xx:3, @ERd 7 C 0 erd 0 7 7 1 IMM 0 3

indirect

Absolute
BILD #xx:3, @aa:8 7 E abs 7 7 1 IMM 0 3

address

Absolute
BILD #xx:3, @aa:16 6 A 1 0 abs 7 7 1 IMM 0 4

address

Absolute
BILD #xx:3, @aa:32 6 A 3 0 abs 7 7 1 IMM 0 5

address

68

2.2.11 BIOR

BIOR (Bit Invert inclusive OR) Bit Logical OR

Operation

C ∨ [¬ (<bit No.> of <EAd>)] → C

Assembly-Language Format

BIOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction ORs the inverse of a specified bit in the destination operand with the carry flag
and stores the result in the carry flag. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

C ∨ C

7 0

Specified by #xx:3

Bit No.

Invert

<EAd>

69

2.2.11 B
IO

R

B
IO

R
 (B

it Invert inclusive O
R

)
B

it L
ogical O

R

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BIOR #xx:3, Rd 7 4 1 IMM rd 1

direct

Register
BIOR #xx:3, @ERd 7 C 0 erd 0 7 4 1 IMM 0 3

indirect

Absolute
BIOR #xx:3, @aa:8 7 E abs 7 4 1 IMM 0 3

address

Absolute
BIOR #xx:3, @aa:16 6 A 1 0 abs 7 4 1 IMM 0 4

address

Absolute
BIOR #xx:3, @aa:32 6 A 3 0 abs 7 4 1 IMM 0 5

address

70

2.2.12 BIST

BIST (Bit Invert STore) Bit Store

Operation

¬ C → (<bit No.> of <EAd>)

Assembly-Language Format

BIST #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction stores the inverse of the carry flag in a specified bit location in the destination
operand. The bit number is specified by 3-bit immediate data. Other bits in the destination operand
remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

C

7 0

Specified by #xx:3

Bit No.

Invert

<EAd>

71

2.2.12 B
IST

B
IST

 (B
it Invert STore)

B
it Store

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BIST #xx:3, Rd 6 7 1 IMM rd 1

direct

Register
BIST #xx:3, @ERd 7 D 0 erd 0 6 7 1 IMM 0 4

indirect

Absolute
BIST #xx:3, @aa:8 7 F abs 6 7 1 IMM 0 4

address

Absolute
BIST #xx:3, @aa:16 6 A 1 8 abs 6 7 1 IMM 0 5

address

Absolute
BIST #xx:3, @aa:32 6 A 3 8 abs 6 7 1 IMM 0 6

address

72

2.2.13 BIXOR

BIXOR (Bit Invert eXclusive OR) Bit Exclusive Logical OR

Operation

C ⊕ [¬ (<bit No.> of <EAd>)] → C

Assembly-Language Format

BIXOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction exclusively ORs the inverse of a specified bit in the destination operand with the
carry flag and stores the result in the carry flag. The bit number is specified by 3-bit immediate
data. The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Specified by #xx:3

⊕

Invert

C

07

C

Bit No.

<EAd>

73

2.2.13 B
IX

O
R

B
IX

O
R

 (B
it Invert eX

clusive O
R

)
B

it E
xclusive L

ogical O
R

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BIXOR #xx:3, Rd 7 5 1 IMM rd 1

direct

Register
BIXOR #xx:3, @ERd 7 C 0 erd 0 7 5 1 IMM 0 3

indirect

Absolute
BIXOR #xx:3, @aa:8 7 E abs 7 5 1 IMM 0 3

address

Absolute
BIXOR #xx:3, @aa:16 6 A 1 0 abs 7 5 1 IMM 0 4

address

Absolute
BIXOR #xx:3, @aa:32 6 A 3 0 abs 7 5 1 IMM 0 5

address

74

2.2.14 BLD

BLD (Bit LoaD) Bit Load

Operation

(<Bit No.> of <EAd>) → C

Assembly-Language Format

BLD #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Loaded from the specified bit.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction loads a specified bit from the destination operand into the carry flag. The bit
number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Specified by #xx:3

C

07Bit No.

<EAd>

75

2.2.14 B
L

D

B
L

D
 (B

it L
oaD

)
B

it L
oad

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BLD #xx:3, Rd 7 7 0 IMM rd 1

direct

Register
BLD #xx:3, @ERd 7 C 0 erd 0 7 7 0 IMM 0 3

indirect

Absolute
BLD #xx:3, @aa:8 7 E abs 7 7 0 IMM 0 3

address

Absolute
BLD #xx:3, @aa:16 6 A 1 0 abs 7 7 0 IMM 0 4

address

Absolute
BLD #xx:3, @aa:32 6 A 3 0 abs 7 7 0 IMM 0 5

address

76

2.2.15 BNOT

BNOT (Bit NOT) Bit NOT

Operation

¬ (<bit No.> of <EAd>) → (bit No. of
<EAd>)

Assembly-Language Format

BNOT #xx:3, <EAd>
BNOT Rn, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction inverts a specified bit in the destination operand. The bit number is specified by 3-
bit immediate data or by the lower 3 bits of an 8-bit register Rn. The specified bit is not tested. The
condition code remains unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7
Rn: R0L to R7L, R0H to R7H

7 0Bit No.

Specified by #xx:3 or Rn

Invert

<EAd>

77

2.2.15 B
N

O
T

B
N

O
T

 (B
it N

O
T

)
B

it N
O

T

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BNOT #xx:3, Rd 7 1 0 IMM rd 1

direct

Register
BNOT #xx:3, @ERd 7 D 0 erd 0 7 1 0 IMM 0 4

indirect

Absolute
BNOT #xx:3, @aa:8 7 F abs 7 1 0 IMM 0 4

address

Absolute
BNOT #xx:3, @aa:16 6 A 1 8 abs 7 1 0 IMM 0 5

address

Absolute
BNOT #xx:3, @aa:32 6 A 3 8 abs 7 1 0 IMM 0 6

address

Register
BNOT Rn, Rd 6 1 rn rd 1

direct

Register
BNOT Rn, @ERd 7 D 0 erd 0 6 1 rn 0 4

indirect

Absolute
BNOT Rn, @aa:8 7 F abs 6 1 rn 0 4

address

Absolute
BNOT Rn, @aa:16 6 A 1 8 abs 6 1 rn 0 5

address

Absolute
BNOT Rn, @aa:32 6 A 3 8 abs 6 1 rn 0 6

address

78

2.2.16 BOR

BOR (Bit inclusive OR) Bit Logical OR

Operation

C ∨ (<bit No.> of <EAd>) → C

Assembly-Language Format

BOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction ORs a specified bit in the destination operand with the carry flag and stores the
result in the carry flag. The bit number is specified by 3-bit immediate data. The destination
operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

C C

7 0

Specified by #xx:3

Bit No.

∨

<EAd>

79

2.2.16 B
O

R

B
O

R
 (B

it inclusive O
R

)
B

it L
ogical O

R

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BOR #xx:3, Rd 7 4 0 IMM rd 1

direct

Register
BOR #xx:3, @ERd 7 C 0 erd 0 7 4 0 IMM 0 3

indirect

Absolute
BOR #xx:3, @aa:8 7 E abs 7 4 0 IMM 0 3

address

Absolute
BOR #xx:3, @aa:16 6 A 1 0 abs 7 4 0 IMM 0 4

address

Absolute
BOR #xx:3, @aa:32 6 A 3 0 abs 7 4 0 IMM 0 5

address

80

2.2.17 BSET

BSET (Bit SET) Bit Set

Operation

1 → (<bit No.> of <EAd>)

Assembly-Language Format

BSET #xx:3, <EAd>
BSET Rn, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction sets a specified bit in the destination operand to 1. The bit number can be
specified by 3-bit immediate data, or by the lower three bits of an 8-bit register Rn. The specified
bit is not tested. The condition code flags are not altered.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7
Rn: R0L to R7L, R0H to R7H

7 0Bit No.

1

Specified by #xx:3 or Rn

<EAd>

81

2.2.17 B
SE

T

B
SE

T
 (B

it SE
T

)
B

it Set

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BSET #xx:3, Rd 7 0 0 IMM rd 1

direct

Register
BSET #xx:3, @ERd 7 D 0 erd 0 7 0 0 IMM 0 4

indirect

Absolute
BSET #xx:3, @aa:8 7 F abs 7 0 0 IMM 0 4

address

Absolute
BSET #xx:3, @aa:16 6 A 1 8 abs 7 0 0 IMM 0 5

address

Absolute
BSET #xx:3, @aa:32 6 A 3 8 abs 7 0 0 IMM 0 6

address

Register
BSET Rn, Rd 6 0 rn rd 1

direct

Register
BSET Rn, @ERd 7 D 0 erd 0 6 0 rn 0 4

indirect

Absolute
BSET Rn, @aa:8 7 F abs 6 0 rn 0 4

address

Absolute
BSET Rn, @aa:16 6 A 1 8 abs 6 0 rn 0 5

address

Absolute
BSET Rn, @aa:32 6 A 3 8 abs 6 0 rn 0 6

address

82

2.2.18 BSR

BSR (Branch to SubRoutine) Branch to Subroutine

Operation

PC → @–SP
PC + disp → PC

Assembly-Language Format

BSR disp

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction branches to a subroutine at a specified address. It pushes the program counter
(PC) value onto the stack as a restart address, then adds a specified displacement to the PC value
and branches to the resulting address. The PC value pushed onto the stack is the address of the
instruction following the BSR instruction. The displacement is a signed 8-bit or 16-bit value, so
the possible branching range is –126 to +128 bytes or –32766 to +32768 bytes from the address of
the BSR instruction.

Operand Format and Number of States Required for Execution

Instruction Format No. of States

1st byte 2nd byte 3rd byte 4th byte Normal Advanced

d:8 5 5 disp 3 4

d:16 5 C 0 0 disp 4 5

Addressing
Mode

Mnemonic Operands

Program-counter
relative

BSR

83

2.2.18 BSR

BSR (Branch to SubRoutine) Branch to Subroutine

Notes

The stack structure differs between normal mode and advanced mode. In normal mode only the
lower 16 bits of the program counter are pushed onto the stack.

PC
23 16 15 8 7 0

Normal mode

PC
23 16 15 8 7 0

Advanced mode

Reserved

84

2.2.19 BST

BST (Bit STore) Bit Store

Operation

C → (<bit No.> of <EAd>)

Assembly-Language Format

BST #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction stores the carry flag in a specified bit location in the destination operand. The bit
number is specified by 3-bit immediate data.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

C

7 0

Specified by #xx:3

Bit No.

<EAd>

85

2.2.19 B
ST

B
ST

 (B
it STore)

B
it Store

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BST #xx:3, Rd 6 7 0 IMM rd 1

direct

Register
BST #xx:3, @ERd 7 D 0 erd 0 6 7 0 IMM 0 4

indirect

Absolute
BST #xx:3, @aa:8 7 F abs 6 7 0 IMM 0 4

address

Absolute
BST #xx:3, @aa:16 6 A 1 8 abs 6 7 0 IMM 0 5

address

Absolute
BST #xx:3, @aa:32 6 A 3 8 abs 6 7 0 IMM 0 6

address

86

2.2.20 BTST

BTST (Bit TeST) Bit Test

Operation

¬ (<Bit No.> of <EAd>) → Z

Assembly-Language Format

BTST #xx:3, <EAd>
BTST Rn, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Set to 1 if the specified bit is zero;

otherwise cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — ↕ — —

Description

This instruction tests a specified bit in the destination operand and sets or clears the zero flag
according to the result. The bit number can be specified by 3-bit immediate data, or by the lower
three bits of an 8-bit register Rn. The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7
Rn: R0L to R7L, R0H to R7H

7 0Bit No.

Test

Specified by #xx:3 or Rn

<EAd>

87

2.2.20 B
T

ST

B
T

ST
 (B

it TeST
)

B
it Test

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BTST #xx:3, Rd 7 3 0 IMM rd 1

direct

Register
BTST #xx:3, @ERd 7 C 0 erd 0 7 3 0 IMM 0 3

indirect

Absolute
BTST #xx:3, @aa:8 7 E abs 7 3 0 IMM 0 3

address

Absolute
BTST #xx:3, @aa:16 6 A 1 0 abs 7 3 0 IMM 0 4

address

Absolute
BTST #xx:3, @aa:32 6 A 3 0 abs 7 3 0 IMM 0 5

address

Register
BTST Rn, Rd 6 3 rn rd 1

direct

Register
BTST Rn, @ERd 7 C 0 erd 0 6 3 rn 0 3

indirect

Absolute
BTST Rn, @aa:8 7 E abs 6 3 rn 0 3

address

Absolute
BTST Rn, @aa:16 6 A 1 0 abs 6 3 rn 0 4

address

Absolute
BTST Rn, @aa:32 6 A 3 0 abs 6 3 rn 0 5

address

88

2.2.21 BXOR

BXOR (Bit eXclusive OR) Bit Exclusive Logical OR

Operation

C ⊕ (<bit No.> of <EAd>) → C

Assembly-Language Format

BXOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction exclusively ORs a specified bit in the destination operand with the carry flag and
stores the result in the carry flag. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

C C

7 0

Specified by #xx:3

Bit No.

⊕

<EAd>

89

2.2.21 B
X

O
R

B
X

O
R

 (B
it eX

clusive O
R

)
B

it E
xclusive L

ogical O
R

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode* 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Register
BXOR #xx:3, Rd 7 5 0 IMM rd 1

direct

Register
BXOR #xx:3, @ERd 7 C 0 erd 0 7 5 0 IMM 0 3

indirect

Absolute
BXOR #xx:3, @aa:8 7 E abs 7 5 0 IMM 0 3

address

Absolute
BXOR #xx:3, @aa:16 6 A 1 0 abs 7 5 0 IMM 0 4

address

Absolute
BXOR #xx:3, @aa:32 6 A 3 0 abs 7 5 0 IMM 0 5

address

90

2.2.22 CLRMAC

CLRMAC (CLeaR MAC register) Initialize Multiply-Accumulate Register

Operation

0 → MACH, MACL

Assembly-Language Format

CLRMAC

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction simultaneously clears registers MACH and MACL.
It is supported only by the H8S/2600 CPU

Operand Format and Number of States Required for Execution

Notes

Execution of this instruction also clears the overflow flag in the multiplier to 0.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— CLRMAC — 0 1 A 0 2

No. of
States

Addressing
Mode

Mnemonic Operands

91

2.2.23 (1) CMP (B)

CMP (CoMPare) Compare

Operation

Rd – (EAs), set/clear CCR

Assembly-Language Format

CMP.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a borrow at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts the source operand from the contents of an 8-bit register Rd (destination
operand) and sets or clears the condition code bits according to the result. The contents of the 8-bit
register Rd remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate CMP.B #xx:8, Rd A rd IMM 1

Register direct CMP.B Rs, Rd 1 C rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

92

2.2.23 (2) CMP (W)

CMP (CoMPare) Compare

Operation

Rd – (EAs), set/clear CCR

Assembly-Language Format

CMP.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Set to 1 if there is a borrow at bit 11;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 15;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts the source operand from the contents of a 16-bit register Rd (destination
operand) and sets or clears the condition code bits according to the result. The contents of the 16-
bit register Rd remain unchanged.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate CMP.W #xx:16, Rd 7 9 2 rd IMM 2

Register direct CMP.W Rs, Rd 1 D rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

93

2.2.23 (3) CMP (L)

CMP (CoMPare) Compare

Operation

ERd – (EAs), set/clear CCR

Assembly-Language Format

CMP.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Set to 1 if there is a borrow at bit 27;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 31;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts the source operand from the contents of a 32-bit register ERd
(destination operand) and sets or clears the condition code bits according to the result. The
contents of the 32-bit register ERd remain unchanged.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate CMP.L #xx:32, ERd 7 A 2 0 erd IMM 3

Register direct CMP.L ERs, ERd 1 F 1 ers 0 erd 1

No. of
States

Mnemonic OperandsAddressing
Mode

94

2.2.24 DAA

DAA (Decimal Adjust Add) Decimal Adjust

Operation

Rd (decimal adjust) → Rd

Assembly-Language Format

DAA Rd

Operand Size

Byte

Condition Code

H: Undetermined (no guaranteed value).
N: Set to 1 if the adjusted result is negative;

otherwise cleared to 0.
Z: Set to 1 if the adjusted result is zero;

otherwise cleared to 0.
V: Undetermined (no guaranteed value).
C: Set to 1 if there is a carry at bit 7;

otherwise left unchanged.

I UI H U N Z V C

— — * — ↕ ↕ * ↕

Description

Given that the result of an addition operation performed by an ADD.B or ADDX instruction on
4-bit BCD data is contained in an 8-bit register Rd and the carry and half-carry flags, the DAA
instruction adjusts the contents of the 8-bit register Rd (destination operand) by adding H'00, H'06,
H'60, or H'66 according to the table below.

C Flag Upper 4 Bits H Flag Lower 4 Bits C Flag
before before before before after

Adjustment Adjustment Adjustment Adjustment Adjustment

0 0 to 9 0 0 to 9 00 0
0 0 to 8 0 A to F 06 0
0 0 to 9 1 0 to 3 06 0
0 A to F 0 0 to 9 60 1
0 9 to F 0 A to F 66 1
0 A to F 1 0 to 3 66 1
1 1 to 2 0 0 to 9 60 1
1 1 to 2 0 A to F 66 1
1 1 to 3 1 0 to 3 66 1

Value Added
(Hexadecimal)

95

2.2.24 DAA

DAA (Decimal Adjust Add) Decimal Adjust

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Valid results (8-bit register Rd contents and C, V, Z, N, and H flags) are not assured if this
instruction is executed under conditions other than those described above.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DAA Rd 0 F 0 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

96

2.2.25 DAS

DAS (Decimal Adjust Subtract) Decimal Adjust

Operation

Rd (decimal adjust) → Rd

Assembly-Language Format

DAS Rd

Operand Size

Byte

Condition Code

H: Undetermined (no guaranteed value).
N: Set to 1 if the adjusted result is negative;

otherwise cleared to 0.
Z: Set to 1 if the adjusted result is zero;

otherwise cleared to 0.
V: Undetermined (no guaranteed value).
C: Previous value remains unchanged.

I UI H U N Z V C

— — * — ↕ ↕ * —

Description

Given that the result of a subtraction operation performed by a SUB.B, SUBX.B, or NEG.B
instruction on 4-bit BCD data is contained in an 8-bit register Rd and the carry and half-carry
flags, the DAS instruction adjusts the contents of the 8-bit register Rd (destination operand) by
adding H'00, H'FA, H'A0, or H'9A according to the table below.

Available Registers

Rd: R0L to R7L, R0H to R7H

C Flag Upper 4 Bits H Flag Lower 4 Bits C Flag
before before before before after

Adjustment Adjustment Adjustment Adjustment Adjustment

0 0 to 9 0 0 to 9 00 0
0 0 to 8 1 6 to F FA 0
1 7 to F 0 0 to 9 A0 1
1 6 to F 1 6 to F 9A 1

Value Added
(Hexadecimal)

97

2.2.25 DAS

DAS (Decimal Adjust Subtract) Decimal Adjust

Operand Format and Number of States Required for Execution

Notes

Valid results (8-bit register Rd contents and C, V, Z, N, and H flags) are not assured if this
instruction is executed under conditions other than those described above.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DAS Rd 1 F 0 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

98

2.2.26 (1) DEC (B)

DEC (DECrement) Decrement

Operation

Rd – 1 → Rd

Assembly-Language Format

DEC.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction decrements an 8-bit register Rd (destination operand) and stores the result in the
8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operation H'80 – 1 → H'7F.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DEC.B Rd 1 A 0 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

99

2.2.26 (2) DEC (W)

DEC (DECrement) Decrement

Operation

Rd – 1 → Rd
Rd – 2 → Rd

Assembly-Language Format

DEC.W #1, Rd
DEC.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction subtracts the immediate value 1 or 2 from the contents of a 16-bit register Rd
(destination operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operations H'8000 – 1 → H'7FFF, H'8000 – 2 → H'7FFE, and
H'8001 – 2 → H'7FFF.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DEC.W #1, Rd 1 B 5 rd 1

Register direct DEC.W #2, Rd 1 B D rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

100

2.2.26 (3) DEC (L)

DEC (DECrement) Decrement

Operation

ERd – 1 → ERd
ERd – 2 → ERd

Assembly-Language Format

DEC.L #1, ERd
DEC.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction subtracts the immediate value 1 or 2 from the contents of a 32-bit register ERd
(destination operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operations H'80000000 – 1 → H'7FFFFFFF, H'80000000 – 2 →
H'7FFFFFFE, and H'80000001 – 2 → H'7FFFFFFF.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DEC.L #1, ERd 1 B 7 0 erd 1

Register direct DEC.L #2, ERd 1 B F 0 erd 1

No. of
States

Addressing
Mode*

Mnemonic Operands

101

2.2.27 (1) DIVXS (B)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operation

Rd ÷ Rs → Rd

Assembly-Language Format

DIVXS.B Rs, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the quotient is negative;

otherwise cleared to 0.
Z: Set to 1 if the divisor is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —

Description

This instruction divides the contents of a 16-bit register Rd (destination operand) by the contents
of an 8-bit register Rs (source operand) and stores the result in the 16-bit register Rd. The division
is signed. The operation performed is 16 bits ÷ 8 bits → 8-bit quotient and 8-bit remainder. The
quotient is placed in the lower 8 bits of Rd. The remainder is placed in the upper 8 bits of Rd. The
sign of the remainder matches the sign of the dividend.

Valid results are not assured if division by zero is attempted or an overflow occurs.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0L to R7L, R0H to R7H

Rd Rs Rd

Dividend ÷ Divisor → Remainder Quotient

16 bits 8 bits 8 bits 8 bits

102

2.2.27 (1) DIVXS (B)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operand Format and Number of States Required for Execution

Notes

The N flag is set to 1 if the dividend and divisor have different signs, and cleared to 0 if they have
the same sign. The N flag may therefore be set to 1 when the quotient is zero.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DIVXS.B Rs, Rd 0 1 D 0 5 1 rs rd 13

No. of
States

Addressing
Mode

Mnemonic Operands

103

2.2.27 (2) DIVXS (W)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operation

ERd ÷ Rs → ERd

Assembly-Language Format

DIVXS.W Rs, ERd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the quotient is negative;

otherwise cleared to 0.
Z: Set to 1 if the divisor is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —

Description

This instruction divides the contents of a 32-bit register ERd (destination operand) by the contents
of a 16-bit register Rs (source operand) and stores the result in the 32-bit register ERd. The
division is signed. The operation performed is 32 bits ÷ 16 bits → 16-bit quotient and 16-bit
remainder. The quotient is placed in the lower 16 bits (Rd) of the 32-bit register ERd. The
remainder is placed in the upper 16 bits (Ed). The sign of the remainder matches the sign of the
dividend.

Valid results are not assured if division by zero is attempted or an overflow occurs.

Available Registers

ERd: ER0 to ER7
Rs: R0 to R7, E0 to E7

ERd Rs ERd

Dividend ÷ Divisor → Remainder Quotient

32 bits 16 bits 16 bits 16 bits

104

2.2.27 (2) DIVXS (W)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operand Format and Number of States Required for Execution

Notes

The N flag is set to 1 if the dividend and divisor have different signs, and cleared to 0 if they have
the same sign. The N flag may therefore be set to 1 when the quotient is zero.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DIVXS.W Rs, ERd 0 1 D 0 5 3 rs 0 erd 21

No. of
States

Addressing
Mode

Mnemonic Operands

105

2.2.28 (1) DIVXU (B)

DIVXU (DIVide eXtend as Unsigned) Divide

Operation

Rd ÷ Rs → Rd

Assembly-Language Format

DIVXU.B Rs, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the divisor is negative;

otherwise cleared to 0.
Z: Set to 1 if the divisor is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —

Description

This instruction divides the contents of a 16-bit register Rd (destination operand) by the contents
of an 8-bit register Rs (source operand) and stores the result in the 16-bit register Rd. The division
is unsigned. The operation performed is 16 bits ÷ 8 bits → 8-bit quotient and 8-bit remainder. The
quotient is placed in the lower 8 bits of Rd. The remainder is placed in the upper 8 bits of Rd.

Valid results are not assured if division by zero is attempted or an overflow occurs.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0L to R7L, R0H to R7H

Rd Rs Rd

Dividend ÷ Divisor → Remainder Quotient

16 bits 8 bits 8 bits 8 bits

106

2.2.28 (1) DIVXU (B)

DIVXU (DIVide eXtend as Unsigned) Divide

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DIVXU.B Rs, Rd 5 1 rs rd 12

No. of
States

Addressing
Mode

Mnemonic Operands

107

2.2.28 (2) DIVXU (W)

DIVXU (DIVide eXtend as Unsigned) Divide

Operation

ERd ÷ Rs → ERd

Assembly-Language Format

DIVXU.W Rs, ERd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the divisor is negative;

otherwise cleared to 0.
Z: Set to 1 if the divisor is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —

Description

This instruction divides the contents of a 32-bit register ERd (destination operand) by the contents
of a 16-bit register Rs (source register) and stores the result in the 32-bit register ERd. The
division is unsigned. The operation performed is 32 bits ÷ 16 bits → 16-bit quotient and 16-bit
remainder. The quotient is placed in the lower 16 bits (Rd) of the 32-bit register ERd. The
remainder is placed in the upper 16 bits of (Ed).

Valid results are not assured if division by zero is attempted or an overflow occurs.

Available Registers

ERd: ER0 to ER7
Rs: R0 to R7, E0 to E7

ERd Rs ERd

Dividend ÷ Divisor → Remainder Quotient

32 bits 16 bits 16 bits 16 bits

108

2.2.28 (2) DIVXU (W)

DIVXU (DIVide eXtend as Unsigned) Divide

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DIVXU.W Rs, ERd 5 3 rs 0 erd 20

No. of
States

Addressing
Mode

Mnemonic Operands

109

2.2.29 (1) EEPMOV (B)

EEPMOV (MOVe data to EEPROM) Block Data Transfer

Operation

if R4L ≠ 0 then
repeat @ER5+ → @ER6+

R4L – 1 → R4L
until R4L = 0

else next;

Assembly-Language Format

EEPMOV.B

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction performs a block data transfer. It moves data from the memory location specified
in ER5 to the memory location specified in ER6, increments ER5 and ER6, decrements R4L, and
repeats these operations until R4L reaches zero. Execution then proceeds to the next instruction.
The data transfer is performed a byte at a time, with R4L indicating the number of bytes to be
transferred. The byte symbol in the assembly-language format designates the size of R4L (and
limits the maximum number of bytes that can be transferred to 255). No interrupts are detected
while the block transfer is in progress.

When the EEPMOV.B instruction ends, R4L contains 0 (zero), and ER5 and ER6 contain the last
transfer address + 1.

Operand Format and Number of States Required for Execution

Note: * n is the initial value of R4L. Although n bytes of data are transferred, 2(n + 1) data accesses are
performed, requiring 2(n + 1) states. (n = 0, 1, 2, …, 255).

Notes

This instruction first reads the memory locations indicated by ER5 and ER6, then carries out the
block data transfer.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— EEPMOV.B 7 B 5 C 5 9 8 F 4 + 2n*

No. of
States

Addressing
Mode

Mnemonic Operands

110

2.2.29 (2) EEPMOV (W)

EEPMOV (MOVe data to EEPROM) Block Data Transfer

Operation

if R4 ≠ 0 then
repeat @ER5+ → @ER6+

R4 – 1 → R4
until R4 = 0

else next;

Assembly-Language Format

EEPMOV.W

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction performs a block data transfer. It moves data from the memory location specified
in ER5 to the memory location specified in ER6, increments ER5 and ER6, decrements R4, and
repeats these operations until R4 reaches zero. Execution then proceeds to the next instruction.
The data transfer is performed a byte at a time, with R4 indicating the number of bytes to be
transferred. The word symbol in the assembly-language format designates the size of R4 (allowing
a maximum 65535 bytes to be transferred). All interrupts are detected while the block transfer is in
progress.

If no interrupt occurs while the EEPMOV.W instruction is executing, when the EEPMOV.W
instruction ends, R4 contains 0 (zero), and ER5 and ER6 contain the last transfer address + 1.

If an interrupt occurs, interrupt exception handling begins after the current byte has been
transferred. R4 indicates the number of bytes remaining to be transferred. ER5 and ER6 indicate
the next transfer addresses. The program counter value pushed onto the stack in interrupt
exception handling is the address of the next instruction after the EEPMOV.W instruction.

• See the note on EEPMOV.W and interrupts.

111

2.2.29 (2) EEPMOV (W)

EEPMOV (MOVe data to EEPROM) Block Data Transfer

Operand Format and Number of States Required for Execution

Note: * n is the initial value of R4. Although n bytes of data are transferred, 2(n + 1) data accesses are
performed, requiring 2(n + 1) states. (n = 0, 1, 2, …, 65535).

Notes

This instruction first reads memory at the addresses indicated by ER5 and ER6, then carries out
the block data transfer.

EEPMOV.W Instruction and Interrupt

If an interrupt request occurs while the EEPMOV.W instruction is being executed, interrupt
exception handling is carried out after the current byte has been transferred. Register contents are
then as follows:

ER5: address of the next byte to be transferred
ER6: destination address of the next byte
R4: number of bytes remaining to be transferred

The program counter value pushed on the stack in interrupt exception handling is the address of
the next instruction after the EEPMOV.W instruction. Programs should be coded as follows to
allow for interrupts during execution of the EEPMOV.W instruction.

Example:

L1: EEPMOV.W
MOV.W R4,R4
BNE L1

Interrupt requests other than NMI are not accepted if they are masked in the CPU.

During execution of the EEPMOV.B instruction no interrupts are accepted, including NMI.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— EEPMOV.W 7 B D 4 5 9 8 F 4 + 2n*

No. of
States

Addressing
Mode

Mnemonic Operands

112

2.2.30 (1) EXTS (W)

EXTS (EXTend as Signed) Sign Extension

Operation

(<Bit 7> of Rd) → (<bits 15 to 8> of Rd)

Assembly-Language Format

EXTS.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction copies the sign of the lower 8 bits in a 16-bit register Rd in the upward direction
(copies Rd bit 7 to bits 15 to 8) to extend the data to signed word data.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Don’t care

Rd

8 bits

Sign bit

8 bits

Sign extension

8 bits 8 bits

7 0Bit 15
Rd
7 0Bit 15

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct EXTS.W Rd 1 7 D rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

113

2.2.30 (2) EXTS (L)

EXTS (EXTend as Signed) Sign Extension

Operation

(<Bit 15> of ERd) → (<bits 31 to 16> of ERd)

Assembly-Language Format

EXTS.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction copies the sign of the lower 16 bits in a 32-bit register ERd in the upward
direction (copies ERd bit 15 to bits 31 to 16) to extend the data to signed longword data.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Don’t care

15

16 bits

Sign bit

16 bits

Sign extension

16 bits 16 bits

0Bit 31
ERd

15 0Bit 31
ERd

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct EXTS.L ERd 1 7 F 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

114

2.2.31 (1) EXTU (W)

EXTU (EXTend as Unsigned) Zero Extension

Operation

0 → (<bits 15 to 8> of Rd)

Assembly-Language Format

EXTU.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — 0 ↕ 0 —

Description

This instruction extends the lower 8 bits in a 16-bit register Rd to word data by padding with
zeros. That is, it clears the upper 8 bits of Rd (bits 15 to 8) to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Don’t care

8 bits 8 bits

Zero extension

8 bits 8 bits

Rd
7 0Bit 15

Rd
7 0Bit 15

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct EXTU.W Rd 1 7 5 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

115

2.2.31 (2) EXTU (L)

EXTU (EXTend as Unsigned) Zero Extension

Operation

0 → (<bits 31 to 16> of ERd)

Assembly-Language Format

EXTU.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — 0 ↕ 0 —

Description

This instruction extends the lower 16 bits (general register Rd) in a 32-bit register ERd to
longword data by padding with zeros. That is, it clears the upper 16 bits of ERd (bits 31 to 16) to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Don’t care

16 bits 16 bits

Zero extension

16 bits 16 bits

15 0Bit 31
ERd

15 0Bit 31
ERd

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct EXTU.L ERd 1 7 7 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

116

2.2.32 (1) INC (B)

INC (INCrement) Increment

Operation

Rd + 1 → Rd

Assembly-Language Format

INC.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction increments an 8-bit register Rd (destination operand) and stores the result in the
8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operation H'7F + 1 → H'80.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct INC.B Rd 0 A 0 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

117

2.2.32 (2) INC (W)

INC (INCrement) Increment

Operation

Rd + 1 → Rd
Rd + 2 → Rd

Assembly-Language Format

INC.W #1, Rd
INC.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction adds the immediate value 1 or 2 to the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operations H'7FFF + 1 → H'8000, H'7FFF + 2 → H'8001, and
H'7FFE + 2 → H'8000.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct INC.W #1, Rd 0 B 5 rd 1

Register direct INC.W #2, Rd 0 B D rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

118

2.2.32 (3) INC (L)

INC (INCrement) Increment

Operation

ERd + 1 → ERd
ERd + 2 → ERd

Assembly-Language Format

INC.L #1, ERd
INC.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction adds the immediate value 1 or 2 to the contents of a 32-bit register ERd
(destination operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operations H'7FFFFFFF + 1 → H'80000000, H'7FFFFFFF + 2 →
H'80000001, and H'7FFFFFFE + 2 → H'80000000.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct INC.L #1, ERd 0 B 7 0 erd 1

Register direct INC.L #2, ERd 0 B F 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

119

2.2.33 JMP

JMP (JuMP) Unconditional Branch

Operation

Effective address → PC

Assembly-Language Format

JMP <EA>

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction branches unconditionally to a specified effective address.

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

The structure of the branch address and the number of states required for execution differ between
normal mode and advanced mode.

Instruction Format No. of States

1st byte 2nd byte 3rd byte 4th byte Normal Advanced

Register indirect JMP @ERn 5 9 0 ern 0 2

Absolute address JMP @aa:24 5 A abs 3

Memory indirect JMP @@aa:8 5 B abs 4 5

Mnemonic OperandsAddressing
Mode

120

2.2.34 JSR

JSR (Jump to SubRoutine) Jump to Subroutine

Operation

PC → @–SP
Effective address → PC

Assembly-Language Format

JSR <EA>

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction pushes the program counter onto the stack as a return address, then branches to a
specified effective address. The program counter value pushed onto the stack is the address of the
instruction following the JSR instruction.

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Instruction Format No. of States

1st byte 2nd byte 3rd byte 4th byte Normal Advanced

Register indirect JSR @ERn 5 D 0 ern 0 3 4

Absolute address JSR @aa:24 5 E abs 4 5

Memory indirect JSR @@aa:8 5 F abs 4 6

Mnemonic OperandsAddressing
Mode

121

2.2.34 JSR

JSR (Jump to SubRoutine) Jump to Subroutine

Notes

The stack structure differs between normal mode and advanced mode. In normal mode only the
lower 16 bits of the program counter are pushed onto the stack.

PC
23 16 15 8 7 0

Normal mode

PC
23 16 15 8 7 0

Advanced mode

Reserved

122

2.2.35 (1) LDC (B)

LDC (LoaD to Control register) Load CCR

Operation

<EAs> → CCR

Assembly-Language Format

LDC.B <EAs>, CCR

Operand Size

Byte

Condition Code

I: Loaded from the corresponding bit in the
source operand.

H: Loaded from the corresponding bit in the
source operand.

N: Loaded from the corresponding bit in the
source operand.

Z: Loaded from the corresponding bit in the
source operand.

V: Loaded from the corresponding bit in the
source operand.

C: Loaded from the corresponding bit in the
source operand.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction loads the source operand contents into the condition-code register (CCR).

No interrupt requests, including NMI, are accepted immediately after execution of this instruction.

Available Registers

Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate LDC.B #xx:8, CCR 0 7 IMM 1

Register direct LDC.B Rs, CCR 0 3 0 rs 1

No. of
States

Addressing
Mode

Mnemonic Operands

123

2.2.35 (2) LDC (B)

LDC (LoaD to Control register) Load EXR

Operation

<EAs> → EXR

Assembly-Language Format

LDC.B <EAs>, EXR

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction loads the source operand contents into the extended control register (EXR).

No interrupt requests, including NMI, are accepted for three states after execution of this
instruction.

Available Registers

Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate LDC.B #xx:8, EXR 0 1 4 1 0 7 IMM 2

Register direct LDC.B Rs, EXR 0 3 1 rs 1

No. of
States

Addressing
Mode

Mnemonic Operands

124

2.2.35 (3) LDC (W)

LDC (LoaD to Control register) Load CCR

Operation

(EAs) → CCR

Assembly-Language Format

LDC.W <EAs>, CCR

Operand Size

Word

Condition Code

I: Loaded from the corresponding bit in the
source operand.

H: Loaded from the corresponding bit in the
source operand.

N: Loaded from the corresponding bit in the
source operand.

Z: Loaded from the corresponding bit in the
source operand.

V: Loaded from the corresponding bit in the
source operand.

C: Loaded from the corresponding bit in the
source operand.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction loads the source operand contents into the condition-code register (CCR).
Although CCR is a byte register, the source operand is word size. The contents of the even address
are loaded into CCR.

No interrupt requests, including NMI, are accepted immediately after execution of this instruction.

Available Registers

ERs: ER0 to ER7

125

2.2.35 (3) L
D

C
 (W

)

L
D

C
 (L

oaD
 to C

ontrol register)
L

oad C
C

R

Operand Format and Number of States Required for Execution

Notes

Addressing
Mnemonic Operands

Instruction Format No. of
Mode 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte States

LDC.W @ERs, CCR 0 1 4 0 6 9 0 ers 0 3

LDC.W @(d:16, ERs), CCR 0 1 4 0 6 F 0 ers 0 disp 4

LDC.W @(d:32, ERs), CCR 0 1 4 0 7 8 0 ers 0 6 B 2 0 disp 6

LDC.W @ERs+, CCR 0 1 4 0 6 D 0 ers 0 4

LDC.W @aa:16, CCR 0 1 4 0 6 B 0 0 abs 4

LDC.W @aa:32, CCR 0 1 4 0 6 B 2 0 abs 5

Register
indirect

Register
indirect with
displace-
ment

Register
indirect with
post-
increment

Absolute
address

126

2.2.35 (4) LDC (W)

LDC (LoaD to Control register) Load EXR

Operation

(EAs) → EXR

Assembly-Language Format

LDC.W <EAs>, EXR

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction loads the source operand contents into the extended control register (EXR).
Although EXR is a byte register, the source operand is word size. The contents of the even address
are loaded into EXR.

No interrupt requests, including NMI, are accepted for three states after execution of this
instruction.

Available Registers

ERs: ER0 to ER7

127

2.2.35 (4) L
D

C
 (W

)

L
D

C
 (L

oaD
 to C

ontrol register)
L

oad E
X

R

Operand Format and Number of States Required for Execution

Notes

Addressing
Mnemonic Operands

Instruction Format No. of
Mode 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte States

LDC.W @ERs, EXR 0 1 4 1 6 9 0 ers 0 3

LDC.W @(d:16, ERs), EXR 0 1 4 1 6 F 0 ers 0 disp 4

LDC.W @(d:32, ERs), EXR 0 1 4 1 7 8 0 ers 0 6 B 2 0 disp 6

LDC.W @ERs+, EXR 0 1 4 1 6 D 0 ers 0 4

LDC.W @aa:16, EXR 0 1 4 1 6 B 0 0 abs 4

LDC.W @aa:32, EXR 0 1 4 1 6 B 2 0 abs 5

Register
indirect

Register
indirect with
displace-
ment

Register
indirect with
post-
increment

Absolute
address

128

2.2.36 LDM

LDM (LoaD to Multiple registers) Restore Data from Stack

Operation

@SP+ → ERn (register list)

Assembly-Language Format

LDM.L @SP+, <register list>

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction restores data saved on the stack to a specified list of registers. Registers are
restored in descending order of register number.

Two, three, or four registers can be restored by one LDM instruction. The following ranges can be
specified in the register list.

Two registers: ER0-ER1, ER2-ER3, ER4-ER5, or ER6-ER7
Three registers: ER0-ER2 or ER4-ER6
Four registers: ER0-ER3 or ER4-ER7

Available Registers

ERn: ER0 to ER7

129

2.2.36 LDM

LDM (LoaD to Multiple registers) Restore Data from Stack

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

@SP+,– LDM.L (ERn–ERn+1) 0 1 1 0 6 D 7 0 ern+1 7

@SP+,– LDM.L (ERn–ERn+2) 0 1 2 0 6 D 7 0 ern+2 9

@SP+, – LDM.L (ERn–ERn+3) 0 1 3 0 6 D 7 0 ern+3 11

No. of
StatesMnemonic OperandsAddressing

Mode

130

2.2.37 LDMAC

LDMAC (LoaD to MAC register) Load MAC Register

Operation

ERs → MACH
or
ERs → MACL

Assembly-Language Format

LDMAC ERs, MAC register

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction moves the contents of a general register to a multiply-accumulate register (MACH
or MACL). If the transfer is to MACH, only the lowest 10 bits of the general register are
transferred.

Supported only by the H8S/2600 CPU.

Available Registers

ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Execution of this instruction clears the overflow flag in the multiplier to 0.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct LDMAC ERs, MACH 0 3 2 0 ers 2

Register direct LDMAC ERs, MACL 0 3 3 0 ers 2

No. of
States

Addressing
Mode

Mnemonic Operands

131

2.2.38 MAC

MAC (Multiply and ACcumulate) Multiply and Accumulate

Operation

(EAn) × (EAm) + MAC register →
MAC register
ERn + 2 → ERn
ERm + 2 → ERm

Assembly-Language Format

MAC @ERn+, @ERm+

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — —* —* —* —

Description

This instruction performs signed multiplication on two 16-bit operands at addresses given by the
contents of general registers ERn and ERm, adds the 32-bit product to the contents of the MAC
register, and stores the sum in the MAC register. After this operation, ERn and ERm are both
incremented by 2.

The operation can be carried out in saturating or non-saturating mode, depending on the MACS bit
in a system control register. (SYSCR)

See the relevant hardware manual for further information.

In non-saturating mode, MACH and MACL are concatenated to store a 42-bit result. The value of
bit 41 is copied into the upper 22 bits of MACH as a sign extension.

In saturating mode, only MACL is valid, and the result is limited to the range from H'80000000
(minimum value) to H'7FFFFFFF (maximum value). If the result overflows in the negative
direction, H'80000000 (the minimum value) is stored in MACL. If the result overflows in the
positive direction, H'7FFFFFFF (the maximum value) is stored in MACL. MACH retains its
previous contents.

This instruction is supported only by the H8S/2600 CPU.

132

2.2.38 MAC

MAC (Multiply and ACcumulate) Multiply and Accumulate

Operand Format and Number of States Required for Execution

Notes

Flags (N, Z, V) indicating the result of the MAC instruction can be set in the condition-code
register (CCR) by the STMAC instruction.

Further Explanation of Instructions Using Multiplier

1. Modification of flags

The multiplier has N-MULT, Z-MULT, and V-MULT flags that indicate the results of MAC
instructions. These flags are separated from the condition-code register (CCR). The values of
these flags can be set in the N, Z, and V flags of the CCR only by the STMAC instruction.

N-MULT and Z-MULT are modified only by MAC instructions. V-MULT retains a value
indicating whether an overflow has occurred in the past, until it is cleared by execution of the
CLRMAC or LDMAC instruction.

The setting and clearing conditions for these flags are given below.

• N-MULT (negative flag)

Saturating mode Set when bit 31 of register MACL is set to 1 by execution of a
MAC instruction

Cleared when bit 31 of register MACL is cleared to 0 by
execution of a MAC instruction

Non-saturating mode Set when bit 41 of register MACH is set to 1 by execution of a
MAC instruction

Cleared when bit 41 of register MACH is cleared to 0 by
execution of a MAC instruction

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register @ERn+,indirect with MAC @ERm+ 0 1 6 0 6 D 0 ern 0 erm 4
post-increment

No. of
States

Mnemonic OperandsAddressing
Mode

133

2.2.38 MAC

MAC (Multiply and ACcumulate) Multiply and Accumulate

• Z-MULT (zero flag)

Saturating mode Set when register MACL is cleared to 0 by execution of a MAC
instruction

Cleared when register MACL is not cleared to 0 by execution
of a MAC instruction

Non-saturating mode Set when registers MACH and MACL are both cleared to 0 by
execution of a MAC instruction

Cleared when register MACH or MACL is not cleared to
0 by execution of a MAC instruction

• V-MULT (overflow flag)

Saturating mode Set when the result of the MAC instruction overflows the range
from H'80000000 (minimum) to H'7FFFFFFF (maximum)

Cleared when a CLRMAC or LDMAC instruction is executed
Note: Not cleared when the result of the MAC instruction is

within the above range

Non-saturating mode Set when the result of the MAC instruction overflows the range
from H'20000000000 (minimum) to H'1FFFFFFFFFF
(maximum)

Cleared when a CLRMAC or LDMAC instruction is executed
Note: Not cleared when the result of the MAC instruction is

within the above range

The N-MULT, Z-MULT, and V-MULT flags are not modified by switching between
saturating and non-saturating modes, or by execution of a multiply instruction (MULXU
or MULXS).

2. Example

CLRMAC
MAC @ER1+,@ER2+
MAC @ER1+,@ER2+ ← Overflow occurs
:
MAC @ER1+,@ER2+ ← Result = 0
NOP
STMAC MACH,ER3 ← CCR (N = 0, Z = 1, V = 1)
CLRMAC
STMAC MACH,ER3 ← CCR (N = 0, Z = 1, V = 0)

134

2.2.39 (1) MOV (B)

MOV (MOVe data) Move

Operation

Rs → Rd

Assembly-Language Format

MOV.B Rs, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers one byte of data from an 8-bit register Rs to an 8-bit register Rd, tests the
transferred data, and sets condition-code flags according to the result.

Available Registers

Rs: R0L to R7L, R0H to R7H
Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MOV.B Rs, Rd 0 C rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

135

2.2.39 (2) MOV (W)

MOV (MOVe data) Move

Operation

Rs → Rd

Assembly-Language Format

MOV.W Rs, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers one word of data from a 16-bit register Rs to a 16-bit register Rd, tests
the transferred data, and sets condition-code flags according to the result.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MOV.W Rs, Rd 0 D rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

136

2.2.39 (3) MOV (L)

MOV (MOVe data) Move

Operation

ERs → ERd

Assembly-Language Format

MOV.L ERs, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers one word of data from a 32-bit register ERs to a 32-bit register ERd, tests
the transferred data, and sets condition-code flags according to the result.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MOV.L ERs, ERd 0 F 1 ers 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

137

2.2.39 (4) MOV (B)

MOV (MOVe data) Move

Operation

(EAs) → Rd

Assembly-Language Format

MOV.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the source operand contents to an 8-bit register Rd, tests the transferred
data, and sets condition-code flags according to the result.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERs: ER0 to ER7

138

2.2.39 (4) M
O

V
 (B

)

M
O

V
 (M

O
V

e data)
M

ove

Operand Format and Number of States Required for Execution

Notes

The MOV.B @ER7+, Rd instruction should never be used, because it leaves an odd value in the stack pointer (ER7).
For details refer to section 3.3, Exception-Handling State, or to the relevant hardware manual.

For the @aa:8/@aa:16 access range, refer to the relevant microcontroller hardware manual.

Addressing Mnemonic Operands
Instruction Format No. of

Mode 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Immediate MOV.B #xx:8, Rd F rd IMM 1

MOV.B @ERs, Rd 6 8 0 ers rd 2

MOV.B 6 E 0 ers rd disp 3

MOV.B 7 8 0 ers 0 6 A 2 rd disp 5

MOV.B @ERs+, Rd 6 C 0 ers rd 3

MOV.B @aa:8, Rd 2 rd abs 2

MOV.B @aa:16, Rd 6 A 0 rd abs 3

MOV.B @aa:32, Rd 6 A 2 rd abs 4

Absolute
address

Register
indirect
with
displace-
ment

Register
indirect
with post-
increment

Register
indirect

@(d:16, ERs),
Rd

@(d:32, ERs),
Rd

139

2.2.39 (5) MOV (W)

MOV (MOVe data) Move

Operation

(EAs) → Rd

Assembly-Language Format

MOV.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the source operand contents to a 16-bit register Rd, tests the transferred
data, and sets condition-code flags according to the result.

Available Registers

Rd: R0 to R7, E0 to E7
ERs: ER0 to ER7

140

2.2.39 (5) M
O

V
 (W

)

M
O

V
 (M

O
V

e data)
M

ove

Operand Format and Number of States Required for Execution

Notes

1. The source operand <EAs> must be located at an even address.
2. In machine language, MOV.W @ER7+, Rd is identical to POP.W Rd.

Addressing Mnemonic Operands
Instruction Format No. of

Mode 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

Immediate MOV.W #xx:16, Rd 7 9 0 rd IMM 2

MOV.W @ERs, Rd 6 9 0 ers rd 2

MOV.W 6 F 0 ers rd disp 3

MOV.W 7 8 0 ers 0 6 B 2 rd disp 5

MOV.W @ERs+, Rd 6 D 0 ers rd 3

MOV.W @aa:16, Rd 6 B 0 rd abs 3

MOV.W @aa:32, Rd 6 B 2 rd abs 4

Absolute
address

Register
indirect
with
displace-
ment

Register
indirect
with post-
increment

Register
indirect

@(d:16, ERs),
Rd

@(d:32, ERs),
Rd

141

2.2.39 (6) MOV (L)

MOV (MOVe data) Move

Operation

(EAs) → ERd

Assembly-Language Format

MOV.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the source operand contents to a specified 32-bit register (ERd), tests the
transferred data, and sets condition-code flags according to the result. The first memory word
located at the effective address is stored in extended register Ed. The next word is stored in general
register Rd.

Available Registers

ERs: ER0 to ER7
ERd: ER0 to ER7

ERd Ed RdH RdL

MSB

LSB

EA

142

2.2.39 (6) M
O

V
 (L

)

M
O

V
 (M

O
V

e data)
M

ove

Operand Format and Number of States Required for Execution

Notes

1. The source operand <EAs> must be located at an even address.
2. In machine language, MOV.L @R7+, ERd is identical to POP.L ERd.

Addressing
Mnemonic Operands

Instruction Format No. of
Mode 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte States

MOV.L #xx:32, Rd 7 A 0 0 erd IMM 3

MOV.L @ERs, ERd 0 1 0 0 6 9 0 ers 0 erd 4

MOV.L @(d:16, ERs), ERd 0 1 0 0 6 F 0 ers 0 erd disp 5

MOV.L @(d:32, ERs), ERd 0 1 0 0 7 8 0 ers 0 6 B 2 0 erd disp 7

MOV.L @ERs+, ERd 0 1 0 0 6 D 0 ers 0 erd 5

MOV.L @aa:16, ERd 0 1 0 0 6 B 0 0 erd abs 5

MOV.L @aa:32, ERd 0 1 0 0 6 B 2 0 erd abs 6

Register
indirect

Immediate

Register
indirect with
displace-
ment

Register
indirect
with post-
increment

Absolute
address

143

2.2.39 (7) MOV (B)

MOV (MOVe data) Move

Operation

Rs → (EAd)

Assembly-Language Format

MOV.B Rs, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the contents of an 8-bit register Rs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rs: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

144

2.2.39 (7) M
O

V
 (B

)

M
O

V
 (M

O
V

e data)
M

ove

Operand Format and Number of States Required for Execution

Notes

1. The MOV.B Rs, @–ER7 instruction should never be used, because it leaves an odd value in the stack pointer
(ER7). For details refer to section 3.3, Exception Handling State, or to the relevant hardware manual.

2. Execution of MOV.B RnL, @–ERn or MOV.B RnH, @–ERn first decrements ERn by one, then transfers the
designated part (RnL or RnH) of the resulting ERn value.

Addressing Mnemonic Operands
Instruction Format No. of

Mode 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

MOV.B Rs, @ERd 6 8 1 erd rs 2

MOV.B 6 E 1 erd rs disp 3

MOV.B 7 8 0 erd 0 6 A A rs disp 5

MOV.B Rs, @–Erd 6 C 1 erd rs 3

MOV.B Rs, @aa:8 3 rs abs 2

MOV.B Rs, @aa:16 6 A 8 rs abs 3

MOV.B Rs, @aa:32 6 A A rs abs 4

Absolute
address

Register
indirect
with
displace-
ment

Register
indirect
with pre-
decrement

Register
indirect

Rs,
@(d:16, ERd)

Rs,
@(d:32, ERd)

145

2.2.39 (8) MOV (W)

MOV (MOVe data) Move

Operation

Rs → (EAd)

Assembly-Language Format

MOV.W Rs, <EAd>

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the contents of a 16-bit register Rs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rs: R0 to R7, E0 to E7
ERd: ER0 to ER7

146

2.2.39 (8) M
O

V
 (W

)

M
O

V
 (M

O
V

e data)
M

ove

Operand Format and Number of States Required for Execution

Notes

1. The destination operand <EAd> must be located at an even address.
2. In machine language, MOV.W Rs, @–ER7 is identical to PUSH.W Rs.
3. When MOV.W Rn, @–ERn is executed, the transferred value comes from (value of ERn before execution) – 2.

Addressing Mnemonic Operands
Instruction Format No. of

Mode 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte States

MOV.W Rs, @ERd 6 9 1 erd rs 2

MOV.W 6 F 1 erd rs disp 3

MOV.W 7 8 0 erd 0 6 B A rs disp 5

MOV.W Rs, @–ERd 6 D 1 erd rs 3

MOV.W Rs, @aa:16 6 B 8 rs abs 3

MOV.W Rs, @aa:32 6 B A rs abs 4

Absolute
address

Register
indirect
with
displace-
ment

Register
indirect
with pre-
decrement

Register
indirect

Rs,
@(d:16, ERd)

Rs,
@(d:32, ERd)

147

2.2.39 (9) MOV (L)

MOV (MOVe data) Move

Operation

ERs → (EAd)

Assembly-Language Format

MOV.L ERs, <EAd>

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the contents of a 32-bit register ERs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result. The
extended register (Es) contents are stored at the first word indicated by the effective address. The
general register (Rs) contents are stored at the next word.

Available Registers

ERs: ER0 to ER7
ERd: ER0 to ER7

ERs Es RsH RsL

MSB

LSB

EA

148

2.2.39 (9) M
O

V
 (L

)

M
O

V
 (M

O
V

e data)
M

ove

Operand Format and Number of States Required for Execution

Notes

1. The destination operand <EAd> must be located at an even address.
2. In machine language, MOV.L ERs, @–ER7 is identical to PUSH.L ERs.
3. When MOV.L ERn, @–ERn is executed, the transferred value is (value of ERn before execution) – 4.

Addressing
Mnemonic Operands

Instruction Format No. of
Mode 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte States

MOV.L ERs, @ERd 0 1 0 0 6 9 1 erd 0 ers 4

MOV.L ERs, @(d:16, ERd) 0 1 0 0 6 F 1 erd 0 ers disp 5

MOV.L ERs, @(d:32, ERd) 0 1 0 0 7 8 1 erd 0 6 B A 0 ers disp 7

MOV.L ERs, @–ERd 0 1 0 0 6 D 1 erd 0 ers 5

MOV.L ERs, @aa:16 0 1 0 0 6 B 8 0 ers abs 5

MOV.L ERs, @aa:32 0 1 0 0 6 B A 0 ers abs 6

Register
indirect

Register
indirect with
displace-
ment

Register
indirect
with pre-
decrement

Absolute
address

149

2.2.40 MOVFPE

MOVFPE (MOVe From Peripheral with E clock) Move Data with E Clock

Operation

(EAs) → Rd
Synchronized with E clock

Assembly-Language Format

MOVFPE @aa:16, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers memory contents specified by a 16-bit absolute address to a general
register Rd in synchronization with an E clock, tests the transferred data, and sets condition-code
flags according to the result.

Note: Avoid using this instruction in microcontrollers without an E clock output pin, or in single-
chip mode.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

1. This instruction cannot be used with addressing modes other than the above, and cannot transfer
word data or longword data.

2. The number of states required for execution is variable. For details, refer to the relevant
microcontroller hardware manual.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Absolute MOVFPE @aa:16, Rd 6 A 4 rd abs *
address

No. of
States

Addressing
Mode

Mnemonic Operands

150

2.2.41 MOVTPE

MOVTPE (MOVe To Peripheral with E clock) Move Data with E Clock

Operation

Rs → (EAd)
Synchronized with E clock

Assembly-Language Format

MOVTPE Rs, @aa:16

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the contents of a general register Rs (source operand) to a destination
location specified by a 16-bit absolute address in synchronization with an E clock, tests the
transferred data, and sets condition-code flags according to the result.

Note: Avoid using this instruction in microcontrollers without an E clock output pin, or in single-
chip mode.

Available Registers

Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

1. This instruction cannot be used with addressing modes other than the above, and cannot transfer
word data or longword data.

2. The number of states required for execution is variable. For details, refer to the relevant
microcontroller hardware manual.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Absolute MOVTPE Rs, @aa:16 6 A C rs abs *
address

No. of
States

Addressing
Mode

Mnemonic Operands

151

2.2.42 (1) MULXS (B)

MULXS (MULtiply eXtend as Signed) Multiply Signed

Operation

Rd × Rs → Rd

Assembly-Language Format

MULXS.B Rs, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —

Description

This instruction multiplies the lower 8 bits of a 16-bit register Rd (destination operand) by the
contents of an 8-bit register Rs (source operand) as signed data and stores the result in the 16-bit
register Rd. If Rd is one of general registers R0 to R7, Rs can be the upper part (RdH) or lower
part (RdL) of Rd. The operation performed is 8 bits × 8 bits → 16 bits signed multiplication.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

The number of states in the H8S/2000 CPU is 13.

Rd Rs Rd

Don’t care Multiplicand × Multiplier → Product

8 bits 8 bits 16 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MULXS.B Rs, Rd 0 1 C 0 5 0 rs rd 4*

No. of
States

Addressing
Mode

Mnemonic Operands

152

2.2.42 (2) MULXS (W)

MULXS (MULtiply eXtend as Signed) Multiply Signed

Operation

ERd × Rs → ERd

Assembly-Language Format

MULXS.W Rs, ERd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —

Description

This instruction multiplies the lower 16 bits of a 32-bit register ERd (destination operand) by the
contents of a 16-bit register Rs (source operand) as signed data and stores the result in the 32-bit
register ERd. Rs can be the upper part (Ed) or lower part (Rd) of ERd. The operation performed is
16 bits × 16 bits → 32 bits signed multiplication.

Available Registers

ERd: ER0 to ER7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

The number of states in the H8S/2000 CPU is 21.

ERd Rs ERd

Don’t care Multiplicand × Multiplier → Product

16 bits 16 bits 32 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MULXS.W Rs, ERd 0 1 C 0 5 2 rs 0 erd 5*

No. of
States

Addressing
Mode

Mnemonic Operands

153

2.2.43 (1) MULXU (B)

MULXU (MULtiply eXtend as Unsigned) Multiply

Operation

Rd × Rs → Rd

Assembly-Language Format

MULXU.B Rs, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction multiplies the lower 8 bits of a 16-bit register Rd (destination operand) by the
contents of an 8-bit register Rs (source operand) as unsigned data and stores the result in the 16-bit
register Rd. If Rd is one of general registers R0 to R7, Rs can be the upper part (RdH) or lower
part (RdL) of Rd. The operation performed is 8 bits × 8 bits → 16 bits unsigned multiplication.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

The number of states in the H8S/2000 CPU is 12.

Rd Rs Rd

Don’t care Multiplicand × Multiplier → Product

8 bits 8 bits 16 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MULXU.B Rs, Rd 5 0 rs rd 3*

No. of
States

Addressing
Mode

Mnemonic Operands

154

2.2.43 (2) MULXU (W)

MULXU (MULtiply eXtend as Unsigned) Multiply

Operation

ERd × Rs → ERd

Assembly-Language Format

MULXU.W Rs, ERd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction multiplies the lower 16 bits of a 32-bit register ERd (destination operand) by the
contents of a 16-bit register Rs (source operand) as unsigned data and stores the result in the 32-bit
register ERd. Rs can be the upper part (Ed) or lower part (Rd) of ERd. The operation performed is
16 bits × 16 bits → 32 bits unsigned multiplication.

Available Registers

ERd: ER0 to ER7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

The number of states in the H8S/2000 CPU is 20.

ERd Rs ERd

Don’t care Multiplicand × Multiplier → Product

16 bits 16 bits 32 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MULXU.W Rs, ERd 5 2 rs 0 erd 4*

No. of
States

Addressing
Mode

Mnemonic Operands

155

2.2.44 (1) NEG (B)

NEG (NEGate) Negate Binary Signed

Operation

0 – Rd → Rd

Assembly-Language Format

NEG.B Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a borrow at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction takes the two’s complement of the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd (subtracting the register contents from H'00).
If the original contents of Rd were H'80, however, the result remains H'80.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

An overflow occurs if the original contents of Rd were H'80.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NEG.B Rd 1 7 8 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

156

2.2.44 (2) NEG (W)

NEG (NEGate) Negate Binary Signed

Operation

0 – Rd → Rd

Assembly-Language Format

NEG.W Rd

Operand Size

Word

Condition Code

H: Set to 1 if there is a borrow at bit 11;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 15;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction takes the two’s complement of the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd (subtracting the register contents from
H'0000). If the original contents of Rd were H'8000, however, the result remains H'8000.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

An overflow occurs if the original contents of Rd were H'8000.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NEG.W Rd 1 7 9 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

157

2.2.44 (3) NEG (L)

NEG (NEGate) Negate Binary Signed

Operation

0 – ERd → ERd

Assembly-Language Format

NEG.L ERd

Operand Size

Longword

Condition Code

H: Set to 1 if there is a borrow at bit 27;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 31;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction takes the two’s complement of the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd (subtracting the register contents from
H'00000000). If the original contents of ERd were H'80000000, however, the result remains
H'80000000.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

An overflow occurs if the original contents of ERd were H'80000000.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NEG.L ERd 1 7 B 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

158

2.2.45 NOP

NOP (No OPeration) No Operation

Operation

PC + 2 → PC

Assembly-Language Format

NOP

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction only increments the program counter, causing the next instruction to be executed.
The internal state of the CPU does not change.

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— NOP 0 0 0 0 1

No. of
States

Addressing
Mode

Mnemonic Operands

159

2.2.46 (1) NOT (B)

NOT (NOT = logical complement) Logical Complement

Operation

¬ Rd → Rd

Assembly-Language Format

NOT.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction takes the one’s complement of the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NOT.B Rd 1 7 0 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

160

2.2.46 (2) NOT (W)

NOT (NOT = logical complement) Logical Complement

Operation

¬ Rd → Rd

Assembly-Language Format

NOT.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction takes the one’s complement of the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NOT.W Rd 1 7 1 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

161

2.2.46 (3) NOT (L)

NOT (NOT = logical complement) Logical Complement

Operation

¬ ERd → ERd

Assembly-Language Format

NOT.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction takes the one’s complement of the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NOT.L ERd 1 7 3 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

162

2.2.47 (1) OR (B)

OR (inclusive OR logical) Logical OR

Operation

Rd ∨ (EAs) → Rd

Assembly-Language Format

OR.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ORs the source operand with the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate OR.B #xx:8, Rd C rd IMM 1

Register direct OR.B Rs, Rd 1 4 rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

163

2.2.47 (2) OR (W)

OR (inclusive OR logical) Logical OR

Operation

Rd ∨ (EAs) → Rd

Assembly-Language Format

OR.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ORs the source operand with the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate OR.W #xx:16, Rd 7 9 4 rd IMM 2

Register direct OR.W Rs, Rd 6 4 rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

164

2.2.47 (3) OR (L)

OR (inclusive OR logical) Logical OR

Operation

ERd ∨ (EAs) → ERd

Assembly-Language Format

OR.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ORs the source operand with the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate OR.L #xx:32, ERd 7 A 4 0 erd IMM 3

Register direct OR.L ERs, ERd 0 1 F 0 6 4 0 ers 0 erd 2

No. of
States

Mnemonic OperandsAddressing
Mode

165

2.2.48 (1) ORC

ORC (inclusive OR Control register) Logical OR with CCR

Operation

CCR ∨ #IMM → CCR

Assembly-Language Format

ORC #xx:8, CCR

Operand Size

Byte

Condition Code

I: Stores the corresponding bit of the result.
UI: Stores the corresponding bit of the result.
H: Stores the corresponding bit of the result.
U: Stores the corresponding bit of the result.
N: Stores the corresponding bit of the result.
Z: Stores the corresponding bit of the result.
V: Stores the corresponding bit of the result.
C: Stores the corresponding bit of the result.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction ORs the contents of the condition-code register (CCR) with immediate data and
stores the result in the condition-code register. No interrupt requests, including NMI, are accepted
immediately after execution of this instruction.

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ORC #xx:8, CCR 0 4 IMM 1

No. of
States

Addressing
Mode

Mnemonic Operands

166

2.2.48 (2) ORC

ORC (inclusive OR Control register) Logical OR with EXR

Operation

EXR ∨ #IMM → EXR

Assembly-Language Format

ORC #xx:8, EXR

(Example)
ORC #H'FF,EXR

Operand Size

Byte

Condition Code

H: Stores the corresponding bit of the result.
N: Stores the corresponding bit of the result.
Z: Stores the corresponding bit of the result.
V: Stores the corresponding bit of the result.
C: Stores the corresponding bit of the result.

I UI H U N Z V C

— — — — — — — —

Description

This instruction ORs the contents of the extended control register (EXR) with immediate data and
stores the result in the extended control register. No interrupt requests, including NMI, are
accepted for three states after execution of this instruction (EXR rewrite instruction).

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ORC #xx:8, EXR 0 1 4 1 0 4 IMM 2

No. of
States

Addressing
Mode

Mnemonic Operands

167

2.2.49 (1) POP (W)

POP (POP data) Pop Data from Stack

Operation

@SP+ → Rn

Assembly-Language Format

POP.W Rn

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction restores data from the stack to a 16-bit general register Rn, tests the restored data,
and sets condition-code flags according to the result.

Available Registers

Rn: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

POP.W Rn is identical to MOV.W @SP+, Rn.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— POP.W Rn 6 D 7 rn 3

No. of
States

Addressing
Mode

Mnemonic Operands

168

2.2.49 (2) POP (L)

POP (POP data) Pop Data from Stack

Operation

@SP+ → ERn

Assembly-Language Format

POP.L ERn

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction restores data from the stack to a 32-bit general register ERn, tests the restored
data, and sets condition-code flags according to the result.

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

POP.L ERn is identical to MOV.L @SP+, ERn.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— POP.L ERn 0 1 0 0 6 D 7 0 ern 5

No. of
States

Addressing
Mode

Mnemonic Operands

169

2.2.50 (1) PUSH (W)

PUSH (PUSH data) Push Data on Stack

Operation

Rn → @–SP

Assembly-Language Format

PUSH.W Rn

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction saves data from a 16-bit register Rn onto the stack, tests the saved data, and sets
condition-code flags according to the result.

Available Registers

Rn: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

1. PUSH.W Rn is identical to MOV.W Rn, @–SP.
2. When PUSH.W R7 or PUSH.W E7 is executed, the value saved on the stack is the R7 or E7

value after effective address calculation (after ER7 is decremented by 2).

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— PUSH.W Rn 6 D F rn 3

No. of
States

Addressing
Mode

Mnemonic Operands

170

2.2.50 (2) PUSH (L)

PUSH (PUSH data) Push Data on Stack

Operation

ERn → @–SP

Assembly-Language Format

PUSH.L ERn

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the transferred data is negative;

otherwise cleared to 0.
Z: Set to 1 if the transferred data is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction pushes data from a 32-bit register ERn onto the stack, tests the saved data, and
sets condition-code flags according to the result.

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

1. PUSH.L ERn is identical to MOV.L ERn, @–SP.
2. When PUSH.L ER7 is executed, the value saved on the stack is the ER7 value after effective

address calculation (after ER7 is decremented by 4).

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— PUSH.L ERn 0 1 0 0 6 D F 0 ern 5

No. of
States

Addressing
Mode

Mnemonic Operands

171

2.2.51 (1) ROTL (B)

ROTL (ROTate Left) Rotate

Operation

Rd (left rotation) → Rd

Assembly-Language Format

ROTL.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 7.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 7) is rotated to the least significant bit (bit 0), and also copied to the carry
flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b7 b0�

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTL.B Rd 1 2 8 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

172

2.2.51 (2) ROTL (B)

ROTL (ROTate Left) Rotate

Operation

Rd (left rotation) → Rd

Assembly-Language Format

ROTL.B #2, Rd

(Example)
ROTL.B #2,R1L

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 6.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination operand) two bits to the left.
The most significant two bits (bits 7 and 6) are rotated to the least significant two bits (bits 1 and
0), and bit 6 is also copied to the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b7 b0�

. . . .

b6 b1�

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTL.B #2, Rd 1 2 C rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

173

2.2.51 (3) ROTL (W)

ROTL (ROTate Left) Rotate

Operation

Rd (left rotation) → Rd

Assembly-Language Format

ROTL.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 15.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 15)is rotated to the least significant bit (bit 0), and also copied to the carry
flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b15 b0�

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTL.W Rd 1 2 9 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

174

2.2.51 (4) ROTL (W)

ROTL (ROTate Left) Rotate

Operation

Rd (left rotation) → Rd

Assembly-Language Format

ROTL.W #2, Rd

(Example)
ROTL.W #2,R3

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 14.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination operand) two bits to the left.
The most significant two bits (bits 15 and 14) are rotated to the least significant two bits (bits 1
and 0), and bit 14 is also copied to the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b15 b0�

. . . .

b14 b1�

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTL.W #2, Rd 1 2 D rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

175

2.2.51 (5) ROTL (L)

ROTL (ROTate Left) Rotate

Operation

ERd (left rotation) → ERd

Assembly-Language Format

ROTL.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 31.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) one bit to the left.
The most significant bit (bit 31) is rotated to the least significant bit (bit 0), and also copied to the
carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b31 b0�

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTL.L ERd 1 2 B 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

176

2.2.51 (6) ROTL (L)

ROTL (ROTate Left) Rotate

Operation

ERd (left rotation) → ERd

Assembly-Language Format

ROTL.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 30.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) two bits to the left.
The most significant two bits (bits 31 and 30) are rotated to the least significant two bits (bits 1
and 0), and bit 30 is also copied to the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b31 b0�

. . . .

b30 b1�

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTL.L #2, ERd 1 2 F 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

177

2.2.52 (1) ROTR (B)

ROTR (ROTate Right) Rotate

Operation

Rd (right rotation) → Rd

Assembly-Language Format

ROTR.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination operand) one bit to the right.
The least significant bit (bit 0) is rotated to the most significant bit (bit 7), and also copied to the
carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

MSB LSB

b7 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTR.B Rd 1 3 8 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

178

2.2.52 (2) ROTR (B)

ROTR (ROTate Right) Rotate

Operation

Rd (right rotation) → Rd

Assembly-Language Format

ROTR.B #2, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination operand) two bits to the right.
The least significant two bits (bits 1 and 0) are rotated to the most significant two bits (bits 7 and
6), and bit 1 is also copied to the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

MSB LSB

b7 b0

. . . .

Cb1b6

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTR.B #2, Rd 1 3 C rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

179

2.2.52 (3) ROTR (W)

ROTR (ROTate Right) Rotate

Operation

Rd (right rotation) → Rd

Assembly-Language Format

ROTR.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination operand) one bit to the right.
The least significant bit (bit 0) is rotated to the most significant bit (bit 15), and also copied to the
carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

b15 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTR.W Rd 1 3 9 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

180

2.2.52 (4) ROTR (W)

ROTR (ROTate Right) Rotate

Operation

Rd (right rotation) → Rd

Assembly-Language Format

ROTR.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination operand) two bits to the right.
The least significant two bits (bits 1 and 0) are rotated to the most significant two bits (bits 15 and
14), and bit 1 is also copied to the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

b15 b0

. . . .

Cb1b14

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTR.W #2, Rd 1 3 D rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

181

2.2.52 (5) ROTR (L)

ROTR (ROTate Right) Rotate

Operation

ERd (right rotation) → ERd

Assembly-Language Format

ROTR.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) one bit to the right.
The least significant bit (bit 0) is rotated to the most significant bit (bit 31), and also copied to the
carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

b31 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTR.L ERd 1 3 B 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

182

2.2.52 (6) ROTR (L)

ROTR (ROTate Right) Rotate

Operation

ERd (right rotation) → ERd

Assembly-Language Format

ROTR.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) two bits to the right.
The least significant two bits (bits 1 and 0) are rotated to the most significant two bits (bits 31 and
30), and bit 1 is also copied to the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

b31 b0

. . . .

Cb1b30

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTR.L #2, ERd 1 3 F 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

183

2.2.53 (1) ROTXL (B)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry

Operation

Rd (left rotation through carry flag) → Rd

Assembly-Language Format

ROTXL.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 7.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination operand) one bit to the left
through the carry flag. The carry flag is rotated into the least significant bit (bit 0). The most
significant bit (bit 7) rotates into the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b7 b0

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXL.B Rd 1 2 0 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

184

2.2.53 (2) ROTXL (B)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry

Operation

Rd (left rotation through carry flag) → Rd

Assembly-Language Format

ROTXL.B #2, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 6.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination operand) two bits to the left
through the carry flag. The carry flag rotates into bit 1, bit 7 rotates into bit 0, and bit 6 rotates into
the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b7 b0

.

b1b6

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXL.B #2, Rd 1 2 4 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

185

2.2.53 (3) ROTXL (W)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry

Operation

Rd (left rotation through carry flag) → Rd

Assembly-Language Format

ROTXL.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 15.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination operand) one bit to the left
through the carry flag. The carry flag is rotated into the least significant bit (bit 0). The most
significant bit (bit 15) rotates into the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b15 b0

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXL.W Rd 1 2 1 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

186

2.2.53 (4) ROTXL (W)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry

Operation

Rd (left rotation through carry flag) → Rd

Assembly-Language Format

ROTXL.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 14.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination operand) two bits to the left
through the carry flag. The carry flag rotates into bit 1, bit 15 rotates into bit 0, and bit 14 rotates
into the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b15 b0

.

b1b14

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXL.W #2, Rd 1 2 5 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

187

2.2.53 (5) ROTXL (L)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry

Operation

ERd (left rotation through carry flag) → ERd

Assembly-Language Format

ROTXL.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 31.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) one bit to the left
through the carry flag. The carry flag is rotated into the least significant bit (bit 0). The most
significant bit (bit 31) rotates into the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b31 b0

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXL.L ERd 1 2 3 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

188

2.2.53 (6) ROTXL (L)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry

Operation

ERd (left rotation through carry flag) → ERd

Assembly-Language Format

ROTXL.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 30.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) two bits to the left
through the carry flag. The carry flag rotates into bit 1, bit 31 rotates into bit 0, and bit 30 rotates
into into the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b31 b0

.

b1b30

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXL.L #2, ERd 1 2 7 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

189

2.2.54 (1) ROTXR (B)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation

Rd (right rotation through carry flag) → Rd

Assembly-Language Format

ROTXR.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination operand) one bit to the right
through the carry flag. The carry flag is rotated into the most significant bit (bit 7). The least
significant bit (bit 0) rotates into the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b7 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXR.B Rd 1 3 0 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

190

2.2.54 (2) ROTXR (B)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation

Rd (right rotation through carry flag) → Rd

Assembly-Language Format

ROTXR.B #2, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination operand) two bits to the right
through the carry flag. The carry flag rotates into bit 6, bit 0 rotates into bit 7, and bit 1 rotates into
the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b7 b0

. . . .

C b1b6

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXR.B #2, Rd 1 3 4 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

191

2.2.54 (3) ROTXR (W)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation

Rd (right rotation through carry flag) → Rd

Assembly-Language Format

ROTXR.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination operand) one bit to the right
through the carry flag. The carry flag is rotated into the most significant bit (bit 15). The least
significant bit (bit 0) rotates into the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b15 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXR.W Rd 1 3 1 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

192

2.2.54 (4) ROTXR (W)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation

Rd (right rotation through carry flag) → Rd

Assembly-Language Format

ROTXR.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination operand) two bits to the right
through the carry flag. The carry flag rotates into bit 14, bit 0 rotates into bit 15, and bit 1 rotates
into the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b15 b0

. . . .

C b1b14

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXR.W #2, Rd 1 3 5 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

193

2.2.54 (5) ROTXR (L)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation

ERd (right rotation through carry flag) → ERd

Assembly-Language Format

ROTXR.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) one bit to the right
through the carry flag. The carry flag is rotated into the most significant bit (bit 31). The least
significant bit (bit 0) rotates into the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b31 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXR.L ERd 1 3 3 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

194

2.2.54 (6) ROTXR (L)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation

ERd (right rotation through carry flag) → ERd

Assembly-Language Format

ROTXR.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination operand) two bits to the right
through the carry flag. The carry flag rotates into bit 30, bit 0 rotates into bit 31, and bit 1 rotates
into the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b31 b0

. . . .

C b1b30

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXR.L #2, ERd 1 3 7 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

195

2.2.55 RTE

RTE (ReTurn from Exception) Return from Exception Handling

Operation

• When EXR is invalid
@SP+ → CCR
@SP+ → PC

• When EXR is valid
@SP+ → EXR
@SP+ → CCR
@SP+ → PC

Assembly-Language Format

RTE

Operand Size

—

Condition Code

I: Restored from the corresponding bit on
the stack.

UI: Restored from the corresponding bit on
the stack.

H: Restored from the corresponding bit on
the stack.

U: Restored from the corresponding bit on
the stack.

N: Restored from the corresponding bit on
the stack.

Z: Restored from the corresponding bit on
the stack.

V: Restored from the corresponding bit on
the stack.

C: Restored from the corresponding bit on
the stack.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction returns from an exception-handling routine by restoring the EXR, condition-code
register (CCR) and program counter (PC) from the stack. Program execution continues from the
address restored to the program counter. The CCR and PC contents at the time of execution of this
instruction are lost. If the extended control regiser (EXR) is valid, it is also restored (and the
existing EXR contents are lost).

Operand Format and Number of States Required for Execution

Note:*Six states when EXR is valid.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— RTE 5 6 7 0 5*

No. of
States

Addressing
Mode

Mnemonic Operands

196

2.2.55 RTE

RTE (ReTurn from Exception) Return from Exception Handling

Notes

The stack structure differs between normal mode and advanced mode.

PC
23 16 15 8 7 0Normal mode

Don’t care
CCR

PC
23 16 15 8 7 0Advanced mode

CCR

Undet.

197

2.2.56 RTS

RTS (ReTurn from Subroutine) Return from Subroutine

Operation

@SP+ → PC

Assembly-Language Format

RTS

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction returns from a subroutine by restoring the program counter (PC) from the stack.
Program execution continues from the address restored to the program counter. The PC contents at
the time of execution of this instruction are lost.

Operand Format and Number of States Required for Execution

Notes

The stack structure and number of states required for execution differ between normal mode and
advanced mode. In normal mode, only the lower 16 bits of the program counter are restored.

PC
23 16 15 8 7 0Normal mode

PC
23 16 15 8 7Advanced mode

Undet.

Don’t care

Instruction Format No. of States

1st Byte 2nd Byte 3rd Byte 4th Byte Normal Advanced

— RTS 5 4 7 0 4 5

Addressing
Mode

Mnemonic Operands

198

2.2.57 (1) SHAL (B)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation

Rd (left arithmetic shift) → Rd

Assembly-Language Format

SHAL.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 7.

I UI H U N Z V C

— — — — ↕ ↕ ↕ ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 7) shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

LSBMSB

b7 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAL.B Rd 1 0 8 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

199

2.2.57 (2) SHAL (B)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation

Rd (left arithmetic shift) → Rd

Assembly-Language Format

SHAL.B #2, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 6.

I UI H U N Z V C

— — — — ↕ ↕ ↕ ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) two bits to the left. Bit
6 shifts into the carry flag. Bits 0 and 1 are cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

LSBMSB

b7 b0

.

C

0

b1b6

00

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAL.B #2, Rd 1 0 C rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

200

2.2.57 (3) SHAL (W)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation

Rd (left arithmetic shift) → Rd

Assembly-Language Format

SHAL.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 15.

I UI H U N Z V C

— — — — ↕ ↕ ↕ ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 15) shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

LSBMSB

b15 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAL.W Rd 1 0 9 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

201

2.2.57 (4) SHAL (W)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation

Rd (left arithmetic shift) → Rd

Assembly-Language Format

SHAL.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 14.

I UI H U N Z V C

— — — — ↕ ↕ ↕ ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) two bits to the left. Bit
14 shifts into the carry flag. Bits 0 and 1 are cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

LSBMSB

b15 b0

.

C

0

b1b14

00

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAL.W #2, Rd 1 0 D rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

202

2.2.57 (5) SHAL (L)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation

ERd (left arithmetic shift) → ERd

Assembly-Language Format

SHAL.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 31.

I UI H U N Z V C

— — — — ↕ ↕ ↕ ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the left. The
most significant bit (bit 31) shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

LSBMSB

b31 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAL.L ERd 1 0 B 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

203

2.2.57 (6) SHAL (L)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation

ERd (left arithmetic shift) → ERd

Assembly-Language Format

SHAL.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 30.

I UI H U N Z V C

— — — — ↕ ↕ ↕ ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) two bits to the left. Bit
30 shifts into the carry flag. Bits 0 and 1 are cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

LSBMSB

b31 b0

.

C

0

b1b30

00

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAL.L #2, ERd 1 0 F 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

204

2.2.58 (1) SHAR (B)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation

Rd (right arithmetic shift) → Rd

Assembly-Language Format

SHAR.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the right. Bit
0 shifts into the carry flag. Bit 7 shifts into itself. Since bit 7 remains unaltered, the sign does not
change.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

LSB

b7 b0

.

C

MSB

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAR.B Rd 1 1 8 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

205

2.2.58 (2) SHAR (B)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation

Rd (right arithmetic shift) → Rd

Assembly-Language Format

SHAR.B #2, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) two bits to the right. Bit
1 shifts into the carry flag. The most significant three bits (bits 7, 6, and 5) all receive the previous
value of bit 7. Since bit 7 remains unaltered, the sign does not change.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

LSB

b7 b0

. . .

C

MSB

b1b5b6

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAR.B #2, Rd 1 1 C rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

206

2.2.58 (3) SHAR (W)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation

Rd (right arithmetic shift) → Rd

Assembly-Language Format

SHAR.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the right. Bit
0 shifts into the carry flag. Bit 15 shifts into itself. Since bit 15 remains unaltered, the sign does
not change.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

LSB

b15 b0

.

C

MSB

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAR.W Rd 1 1 9 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

207

2.2.58 (4) SHAR (W)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation

Rd (right arithmetic shift) → Rd

Assembly-Language Format

SHAR.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) two bits to the right. Bit
1 shifts into the carry flag. The most significant three bits (bits 15, 14, and 13) all receive the
previous value of bit 15. Since bit 15 remains unaltered, the sign does not change.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

LSB

b15 b0

. . .

C

MSB

b1b13b14

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAR.W #2, Rd 1 1 D rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

208

2.2.58 (5) SHAR (L)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation

ERd (right arithmetic shift) → ERd

Assembly-Language Format

SHAR.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the right.
Bit 0 shifts into the carry flag. Bit 31 shifts into itself. Since bit 31 remains unaltered, the sign
does not change.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

LSB

b31 b0

.

C

MSB

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAR.L ERd 1 1 B 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

209

2.2.58 (6) SHAR (L)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation

ERd (right arithmetic shift) → ERd

Assembly-Language Format

SHAR.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) two bits to the right.
Bit 1 shifts into the carry flag. The most significant three bits (bits 31, 30, and 29) all receive the
previous value of bit 31. Since bit 31 remains unaltered, the sign does not change.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

LSB

b31 b0

. . .

C

MSB

b1b29b30

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAR.L #2, ERd 1 1 F 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

210

2.2.59 (1) SHLL (B)

SHLL (SHift Logical Left) Shift Logical

Operation

Rd (left logical shift) → Rd

Assembly-Language Format

SHLL.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 7.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 7) shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

LSBMSB

b7 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLL.B Rd 1 0 0 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

211

2.2.59 (2) SHLL (B)

SHLL (SHift Logical Left) Shift Logical

Operation

Rd (left logical shift) → Rd

Assembly-Language Format

SHLL.B #2, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 6.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) two bits to the left. Bit
6 shifts into the carry flag. Bits 0 and 1 are cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

LSBMSB

b7 b0

. . . .

C

0

b6 b1

00

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLL.B #2, Rd 1 0 4 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

212

2.2.59 (3) SHLL (W)

SHLL (SHift Logical Left) Shift Logical

Operation

Rd (left logical shift) → Rd

Assembly-Language Format

SHLL.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 15.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the left. The
most significant bit (bit 15) shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

LSBMSB

b15 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLL.W Rd 1 0 1 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

213

2.2.59 (4) SHLL (W)

SHLL (SHift Logical Left) Shift Logical

Operation

Rd (left logical shift) → Rd

Assembly-Language Format

SHLL.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 14.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) two bits to the left. Bit
14 shifts into the carry flag. Bits 0 and 1 are cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

LSBMSB

b15 b0

. . . .

C

0

b14 b1

00

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLL.W #2, Rd 1 0 5 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

214

2.2.59 (5) SHLL (L)

SHLL (SHift Logical Left) Shift Logical

Operation

ERd (left logical shift) → ERd

Assembly-Language Format

SHLL.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 31.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the left. The
most significant bit (bit 31) shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

LSBMSB

b31 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLL.L ERd 1 0 3 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

215

2.2.59 (6) SHLL (L)

SHLL (SHift Logical Left) Shift Logical

Operation

ERd (left logical shift) → ERd

Assembly-Language Format

SHLL.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 30.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) two bits to the left. Bit
30 shifts into the carry flag. Bits 0 and 1 are cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

LSBMSB

b31 b0

. . . .

C

0

b30 b1

00

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLL.L #2, ERd 1 0 7 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

216

2.2.60 (1) SHLR (B)

SHLR (SHift Logical Right) Shift Logical

Operation

Rd (right logical shift) → Rd

Assembly-Language Format

SHLR.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — 0 ↕ 0 ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the right. The
least significant bit (bit 0) shifts into the carry flag. The most significant bit (bit 7) is cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

.
LSBMSB

b7 b0

0

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLR.B Rd 1 1 0 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

217

2.2.60 (2) SHLR (B)

SHLR (SHift Logical Right) Shift Logical

Operation

Rd (right logical shift) → Rd

Assembly-Language Format

SHLR.B #2, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — 0 ↕ 0 ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) two bits to the right. Bit
1 shifts into the carry flag. Bits 7 and 6 are cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

.
LSBMSB

b7 b0

0

Cb6 b1

0 0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLR.B #2, Rd 1 1 4 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

218

2.2.60 (3) SHLR (W)

SHLR (SHift Logical Right) Shift Logical

Operation

Rd (right logical shift) → Rd

Assembly-Language Format

SHLR.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — 0 ↕ 0 ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the right. The
least significant bit (bit 0) shifts into the carry flag. The most significant bit (bit 15) is cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

.
LSBMSB

b15 b0

0

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLR.W Rd 1 1 1 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

219

2.2.60 (4) SHLR (W)

SHLR (SHift Logical Right) Shift Logical

Operation

Rd (right logical shift) → Rd

Assembly-Language Format

SHLR.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — 0 ↕ 0 ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) two bits to the right. Bit
1 shifts into the carry flag. Bits 15 and 14 are cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

.
LSBMSB

b15 b0

0

Cb14 b1

0 0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLR.W #2, Rd 1 1 5 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

220

2.2.60 (5) SHLR (L)

SHLR (SHift Logical Right) Shift Logical

Operation

ERd (right logical shift) → ERd

Assembly-Language Format

SHLR.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — 0 ↕ 0 ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the right.
The least significant bit (bit 0) shifts into the carry flag. The most significant bit (bit 31) is cleared
to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

.
LSBMSB

b31 b0

0

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLR.L ERd 1 1 3 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

221

2.2.60 (6) SHLR (L)

SHLR (SHift Logical Right) Shift Logical

Operation

ERd (right logical shift) → ERd

Assembly-Language Format

SHLR.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 1.

I UI H U N Z V C

— — — — 0 ↕ 0 ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) two bits to the right.
Bit 1 shifts into the carry flag. Bits 31 and 30 are cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

.
LSBMSB

b31 b0

0

Cb30 b1

0 0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLR.L #2, ERd 1 1 7 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

222

2.2.61 SLEEP

SLEEP (SLEEP) Power-Down Mode

Operation

Program execution state → power-down mode

Assembly-Language Format

SLEEP

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

When the SLEEP instruction is executed, the CPU enters a power-down mode. Its internal state
remains unchanged, but the CPU stops executing instructions and waits for an exception-handling
request. When it receives an exception-handling request, the CPU exits the power-down mode and
begins the exception-handling sequence. Interrupt requests other than NMI cannot end the power-
down mode if they are masked in the CPU.

Available Registers

—

Operand Format and Number of States Required for Execution

Notes

For information about power-down modes, see the relevant microcontroller hardware manual.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— SLEEP 0 1 8 0 2

No. of
States

Addressing
Mode

Mnemonic Operands

223

2.2.62 (1) STC (B)

STC (STore from Control register) Store CCR

Operation

CCR → Rd

Assembly-Language Format

STC.B CCR, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction copies the CCR contents to an 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct STC.B CCR, Rd 0 2 0 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

224

2.2.62 (2) STC (B)

STC (STore from Control register) Store EXR

Operation

EXR → Rd

Assembly-Language Format

STC.B EXR, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction copies the EXR contents to an 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct STC.B EXR, Rd 0 2 1 rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

225

2.2.62 (3) STC (W)

STC (STore from Control register) Store CCR

Operation

CCR → (EAd)

Assembly-Language Format

STC.W CCR, <EAd>

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction copies the CCR contents to a destination location. Although CCR is a byte
register, the destination operand is a word operand. The CCR contents are stored at the even
address. Undetermined data is stored at the odd address.

Available Registers

ERd: ER0 to ER7

226

2.2.62 (3) ST
C

 (W
)

ST
C

 (STore from
 C

ontrol register)
Store C

C
R

Operand Format and Number of States Required for Execution

Notes

Addressing
Mnemonic Operands

Instruction Format No. of
Mode 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte States

STC.W CCR, @ERd 0 1 4 0 6 9 1 erd 0 3

STC.W CCR, @(d:16, ERd) 0 1 4 0 6 F 1 erd 0 disp 4

STC.W CCR, @(d:32, ERd) 0 1 4 0 7 8 0 erd 0 6 B A 0 disp 6

STC.W CCR, @–ERd 0 1 4 0 6 D 1 erd 0 4

STC.W CCR, @aa:16 0 1 4 0 6 B 8 0 abs 4

STC.W CCR, @aa:32 0 1 4 0 6 B A 0 abs 5

Register
indirect

Register
indirect with
displace-
ment

Register
indirect
with pre-
decrement

Absolute
address

227

2.2.62 (4) STC (W)

STC (STore from Control register) Store EXR

Operation

EXR → (EAd)

Assembly-Language Format

STC.W EXR, <EAd>

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction copies the EXR contents to a destination location. Although EXR is a byte
register, the destination operand is a word operand. The EXR contents are stored at the even
address. Undetermined data is stored at the odd address.

Available Registers

ERd: ER0 to ER7

228

2.2.62 (4) ST
C

 (W
)

ST
C

 (STore from
 C

ontrol register)
Store E

X
R

Operand Format and Number of States Required for Execution

Notes

Addressing
Mnemonic Operands

Instruction Format No. of
Mode 1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte States

STC.W EXR, @ERd 0 1 4 1 6 9 1 erd 0 3

STC.W EXR, @(d:16, ERd) 0 1 4 1 6 F 1 erd 0 disp 4

STC.W EXR, @(d:32, ERd) 0 1 4 1 7 8 0 erd 0 6 B A 0 disp 6

STC.W EXR, @–ERd 0 1 4 1 6 D 1 erd 0 4

STC.W EXR, @aa:16 0 1 4 1 6 B 8 0 abs 4

STC.W EXR, @aa:32 0 1 4 1 6 B A 0 abs 5

Register
indirect

Register
indirect with
displace-
ment

Register
indirect
with pre-
decrement

Absolute
address

229

2.2.63 STM

STM (STore from Multiple registers) Store Data on Stack

Operation

ERn (register list) → @–SP

Assembly-Language Format

STM.L <register list>, @–SP

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction saves a group of registers specified by a register list onto the stack. The registers
are saved in ascending order of register number.

Two, three, or four registers can be saved by one STM instruction. The following ranges can be
specified in the register list.

Two registers: ER0-ER1, ER2-ER3, ER4-ER5, or ER6-ER7
Three registers: ER0-ER2 or ER4-ER6
Four registers: ER0-ER3 or ER4-ER7

Available Registers

ERn: ER0 to ER7

230

2.2.63 STM

STM (STore from Multiple registers) Store Data on Stack

Operand Format and Number of States Required for Execution

Notes

When ER7 is saved, the value after effective address calculation (after ER7 is decremented by 4)
is saved on the stack.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

(ERn–ERn+1),
– STM.L @–SP 0 1 1 0 6 D F 0 ern 7

(ERn–ERn+2),
– STM.L @–SP 0 1 2 0 6 D F 0 ern 9

(ERn–ERn+3),
– STM.L @–SP 0 1 3 0 6 D F 0 ern 11

No. of
States

Mnemonic OperandsAddressing
Mode

231

2.2.64 STMAC

STMAC (STore from MAC register) Store Data from MAC Register

Operation

MACH → ERd

or

MACL → ERd

Assembly-Language Format

STMAC MAC register, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if a MAC instruction resulted in a

negative MAC register value; otherwise
cleared to 0.

Z: Set to 1 if a MAC instruction resulted in a
zero MAC register value; otherwise
cleared to 0.

V: Set to 1 if a MAC instruction resulted in
an overflow; otherwise cleared to 0.

C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕* ↕* ↕* —

Description

This instruction moves the contents of a multiply-accumulate register (MACH or MACL) to a
general register. If the transfer is from MACH, the upper 22 bits transferred to the general register
are a sign extension.

This instruction is supported by the H8S/2600 CPU only.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Execution of this instruction copies the N, Z, and V flag values from the multiplier to the
condition-code register (CCR). If the STMAC instruction is executed after a CLRMAC or
LDMAC instruction with no intervening MAC instruction, the V flag will be 0 and the N and Z
flags will have undetermined values.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct STMAC MACH, ERd 0 2 2 0 ers 1

Register direct STMAC MACL, ERd 0 2 3 0 ers 1

No. of
States

Addressing
Mode

Mnemonic Operands

232

2.2.65 (1) SUB (B)

SUB (SUBtract binary) Subtract Binary

Operation

Rd – Rs → Rd

Assembly-Language Format

SUB.B Rs, Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a borrow at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts the contents of an 8-bit register Rs (source operand) from the contents of
an 8-bit register Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SUB.B Rs, Rd 1 8 rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

233

2.2.65 (1) SUB (B)

SUB (SUBtract binary) Subtract Binary

Notes

The SUB.B instruction can operate only on general registers. Immediate data can be subtracted
from general register contents by using the SUBX instruction. Before executing SUBX #xx:8, Rd,
first set the Z flag to 1 and clear the C flag to 0. The following coding examples can also be used
to subtract nonzero immediate data #IMM.

(1) ORC #H'05,CCR
SUBX #(IMM–1),Rd

(2) ADD #(0–IMM),Rd
XORC #H'01,CCR

234

2.2.65 (2) SUB (W)

SUB (SUBtract binary) Subtract Binary

Operation

Rd – (EAs) → Rd

Assembly-Language Format

SUB.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Set to 1 if there is a borrow at bit 11;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 15;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts a source operand from the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate SUB.W #xx:16, Rd 7 9 3 rd IMM 2

Register direct SUB.W Rs, Rd 1 9 rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

235

2.2.65 (3) SUB (L)

SUB (SUBtract binary) Subtract Binary

Operation

ERd – (EAs) → ERd

Assembly-Language Format

SUB.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Set to 1 if there is a borrow at bit 27;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 31;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts a source operand from the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate SUB.L #xx:32, ERd 7 A 3 0 erd IMM 3

Register direct SUB.L ERs, ERd 1 A 1 ers 0 erd 1

No. of
States

Mnemonic OperandsAddressing
Mode

236

2.2.66 SUBS

SUBS (SUBtract with Sign extension) Subtract Binary Address Data

Operation

Rd – 1 → ERd
Rd – 2 → ERd
Rd – 4 → ERd

Assembly-Language Format

SUBS #1, ERd
SUBS #2, ERd
SUBS #4, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction subtracts the immediate value 1, 2, or 4 from the contents of a 32-bit register ERd
(destination operand). Unlike the SUB instruction, it does not affect the condition-code flags.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SUBS #1, ERd 1 B 0 0 erd 1

Register direct SUBS #2, ERd 1 B 8 0 erd 1

Register direct SUBS #4, ERd 1 B 9 0 erd 1

No. of
States

Addressing
Mode

Mnemonic Operands

237

2.2.67 SUBX

SUBX (SUBtract with eXtend carry) Subtract with Borrow

Operation

Rd – (EAs) – C → Rd

Assembly-Language Format

SUBX <EAs>, Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a borrow at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts the source operand and carry flag from the contents of an 8-bit register
Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate SUBX #xx:8, Rd B rd IMM 1

Register direct SUBX Rs, Rd 1 E rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

238

2.2.68 TAS

TAS (Test And Set) Test and Set

Operation

@ERd – 0 → set/clear CCR
1 → (<bit 7> of @ERd)

Assembly-Language Format

TAS @ERd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction tests a memory operand by comparing it with zero, and sets the condition-code
register according to the result. Then it sets the most significant bit (bit 7) of the operand to 1.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register indirect TAS @ERd 0 1 E 0 7 B 0 erd C 4

No. of
States

Addressing
Mode

Mnemonic Operands

Operation

• When EXR is invalid

PC → @–SP
CCR → @–SP
<Vector> → PC

• When EXR is valid

PC → @–SP
CCR → @–SP
EXR → @–SP
<Vector> → PC

Assembly-Language Format

TRAPA #x:2

Operand Size

—

Condition Code

* See instruction set table.

I: Always set to 1.
UI: See note.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

239

2.2.69 TRAPA

TRAPA (TRAP Always) Trap Unconditionally

I UI H U N Z V C

1 * — — — — — —

Description

This instruction pushes the program counter (PC) and condition-code register (CCR) onto the
stack, then sets the I bit to 1. If the extended control register (EXR) is valid, EXR is also saved
onto the stack, but bits I2 to I0 are not modified. Next execution branches to a new address given
by the contents of the vector address corresponding to the specified vector number. The PC value
pushed onto the stack is the starting address of the next instruction after the TRAPA instruction.

Vector Address

Normal Mode Advanced Mode

0 H'0010 to H'0011 H'000020 to H'000023

1 H'0012 to H'0013 H'000024 to H'000027

2 H'0014 to H'0015 H'000028 to H'00002B

3 H'0016 to H'0017 H'00002C to H'00002F

#x

240

2.2.69 TRAPA

TRAPA (TRAP Always) Trap Unconditionally

Operand Format and Number of States Required for Execution

*Eight states when EXR is valid.

Notes

The UI bit is set to 1 when used as an interrupt mask bit, but retains its previous value when used
as a user bit. For details, see the relevant microcontroller hardware manual.

The stack and vector structure differ between normal mode and advanced mode, and depending on
whether EXR is valid or invalid.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct TRAPA #x:2 5 7 00 IMM 0 7*

No. of
States

Addressing
Mode

Mnemonic Operands

241

2.2.70 (1) XOR (B)

XOR (eXclusive OR logical) Exclusive Logical OR

Operation

Rd ⊕ (EAs) → Rd

Assembly-Language Format

XOR.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction exclusively ORs the source operand with the contents of an 8-bit register Rd
(destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate XOR.B #xx:8, Rd D rd IMM 1

Register direct XOR.B Rs, Rd 1 5 rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

242

2.2.70 (2) XOR (W)

XOR (eXclusive OR logical) Exclusive Logical OR

Operation

Rd ⊕ (EAs) → Rd

Assembly-Language Format

XOR.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction exclusively ORs the source operand with the contents of a 16-bit register Rd
(destination operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate XOR.W #xx:16, Rd 7 9 5 rd IMM 2

Register direct XOR.W Rs, Rd 6 5 rs rd 1

No. of
States

Addressing
Mode

Mnemonic Operands

243

2.2.70 (3) XOR (L)

XOR (eXclusive OR logical) Exclusive Logical OR

Operation

ERd ⊕ (EAs) → ERd

Assembly-Language Format

XOR.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction exclusively ORs the source operand with the contents of a 32-bit register ERd
(destination operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate XOR.L #xx:32, ERd 7 A 5 0 erd IMM 3

Register direct XOR.L ERs, ERd 0 1 F 0 6 5 0 ers 0 erd 2

No. of
States

Mnemonic OperandsAddressing
Mode

244

2.2.71 (1) XORC

XORC (eXclusive OR Control register) Exclusive Logical OR with CCR

Operation

CCR ⊕ #IMM → CCR

Assembly-Language Format

XORC #xx:8, CCR

Operand Size

Byte

Condition Code

I: Stores the corresponding bit of the result.
UI: Stores the corresponding bit of the result.
H: Stores the corresponding bit of the result.
U: Stores the corresponding bit of the result.
N: Stores the corresponding bit of the result.
Z: Stores the corresponding bit of the result.
V: Stores the corresponding bit of the result.
C: Stores the corresponding bit of the result.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction exclusively ORs the contents of the condition-code register (CCR) with
immediate data and stores the result in the condition-code register. No interrupt requests, including
NMI, are accepted immediately after execution of this instruction.

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate XORC #xx:8, CCR 0 5 IMM 1

No. of
States

Addressing
Mode

Mnemonic Operands

245

2.2.71 (2) XORC

XORC (eXclusive OR Control register) Exclusive Logical OR with EXR

Operation

EXR ⊕ #IMM → EXR

Assembly-Language Format

XORC #xx:8, EXR

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction exclusively ORs the contents of the extended control register (EXR) with
immediate data and stores the result in the extended control register. No interrupt requests,
including NMI, are accepted for three states after execution of this instruction.

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate XORC #xx:8, EXR 0 1 4 1 0 5 IMM 2

No. of
States

Addressing
Mode

Mnemonic Operands

246

2.3 Instruction Set Summary

2.3.1 Instructions and Addressing Modes

Table 2-1 Instruction Set Summary

Addressing Mode

Function Instruction

Data MOV BWL BWL BWL BWL BWL BWL B BWL — BWL — — — —
transfer POP, PUSH — — — — — — — — — — — — — WL

LDM, STM — — — — — — — — — — — — — L

MOVEPE, — — — — — — — B — — — — — —
MOVTPE

Arithmetic ADD, CMP BWL BWL — — — — — — — — — — — —
operations SUB WL BWL — — — — — — — — — — — —

ADDX, SUBX B B — — — — — — — — — — — —

ADDS, SUBS — L — — — — — — — — — — — —

INC, DEC WL BWL — — — — — — — — — — — —

DAA, DAS — B — — — — — — — — — — — —

MULXU, — BW — — — — — — — — — — — —
DIVXU,
MULXS,
DIVXS

NEG — BWL — — — — — — — — — — — —

EXTU, EXTS — WL — — — — — — — — — — — —

TAS — — B — — — — — — — — — — —

MAC* — — — — — l — — — — — — — —

CLRMAC* — — — — — — — — — — — — — l

LDMAC*, — L — — — — — — — — — — — —
STMAC*

Note: *These instructions are supported only by the H8S/2600 CPU.

#x
x

R
n

@
E

R
n

@
(d

:1
6,

E
R

n
)

@
(d

:3
2,

E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

:8

@
aa

:1
6

@
aa

:2
4

@
aa

:3
2

@
(d

:8
,P

C
)

@
(d

:1
6,

P
C

)

@
@

aa
:8

—

247

Table 2-1 Instruction Set Summary (cont)

Addressing Mode

Function Instruction

Logic AND, OR, BWL BWL — — — — — — — — — — — —
operations XOR

NOT — BWL — — — — — — — — — — — —

Shift operations — BWL — — — — — — — — — — — —

Bit manipulation — B B — — — B B — B — — — —

Branch Bcc, BSR — — — — — — — — — — l l — —

JMP, JSR — — — — — — — — l — — — l —

RTS — — — — — — — — — — — — — l

System TRAPA — — — — — — — — — — — — — l

control RTE — — — — — — — — — — — — — l

SLEEP — — — — — — — — — — — — — l

LDC B B W W W W — W — W — — — —

STC — B W W W W — W — W — — — —

ANDC, B — — — — — — — — — — — — —
ORC, XORC

NOP — — — — — — — — — — — — — l

Block data transfer — — — — — — — — — — — — — BW

Legend
B: Byte
W: Word
L: Longword

#x
x

R
n

@
E

R
n

@
(d

:1
6,

E
R

n
)

@
(d

:3
2,

E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

:8

@
aa

:1
6

@
aa

:2
4

@
aa

:3
2

@
(d

:8
,P

C
)

@
(d

:1
6,

P
C

)

@
@

aa
:8

—

248

2.3.2 Instruction Set

Table 2-2 Instruction Set

(1) Data Transfer Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

MOV MOV.B #xx:8,Rd B 2 #xx:8→Rd8 — — ↕ ↕ 0 — 1

MOV.B Rs,Rd B 2 Rs8→Rd8 — — ↕ ↕ 0 — 1

MOV.B @ERs,Rd B 2 @ERs→Rd8 — — ↕ ↕ 0 — 2

MOV.B @(d:16, ERs), Rd B 4 @(d:16,ERs)→Rd8 — — ↕ ↕ 0 — 3

MOV.B @(d:32,ERs),Rd B 8 @(d:32,ERs)→Rd8 — — ↕ ↕ 0 — 5

MOV.B @ERs+,Rd B 2 @ERs→Rd8,ERs32+1→ERs32 — — ↕ ↕ 0 — 3

MOV.B @aa:8,Rd B 2 @aa:8→Rd8 — — ↕ ↕ 0 — 2

MOV.B @aa:16,Rd B 4 @aa:16→Rd8 — — ↕ ↕ 0 — 3

MOV.B @aa:32,Rd B 6 @aa:32→Rd8 — — ↕ ↕ 0 — 4

MOV.B Rs,@ERd B 2 Rs8→@ERd — — ↕ ↕ 0 — 2

MOV.B Rs,@(d:16,ERd) B 4 Rd8→@(d:16,ERd) — — ↕ ↕ 0 — 3

MOV.B Rs,@(d:32,ERd) B 8 Rd8→@(d:32,ERd) — — ↕ ↕ 0 — 5

MOV.B Rs,@–ERd B 2 ERd32–1→ERd32,Rs8→@ERd — — ↕ ↕ 0 — 3

MOV.B Rs,@aa:8 B 2 Rs8→@aa:8 — — ↕ ↕ 0 — 2

MOV.B Rs,@aa:16 B 4 Rs8→@aa:16 — — ↕ ↕ 0 — 3

MOV.B Rs,@aa:32 B 6 Rs8→@aa:32 — — ↕ ↕ 0 — 4

MOV.W #xx:16,Rd W 4 #xx:16→Rd16 — — ↕ ↕ 0 — 2

MOV.W Rs,Rd W 2 Rs16→Rd16 — — ↕ ↕ 0 — 1

MOV.W @ERs,Rd W 2 @ERs→Rd16 — — ↕ ↕ 0 — 2

MOV.W @(d:16,ERs),Rd W 4 @(d:16,ERs)→Rd16 — — ↕ ↕ 0 — 3

MOV.W @(d:32,ERs),Rd W 8 @(d:32,ERs)→Rd16 — — ↕ ↕ 0 — 5

MOV.W @ERs+,Rd W 2 ERs→Rd16,ERs32+2→@ERd32 — — ↕ ↕ 0 — 3

MOV.W @aa:16,Rd W 4 @aa:16→Rd16 — — ↕ ↕ 0 — 3

MOV.W @aa:32,Rd W 6 @aa:32→Rd16 — — ↕ ↕ 0 — 4

MOV.W Rs,@ERd W 2 Rs16→@ERd — — ↕ ↕ 0 — 2

MOV.W Rs,@(d:16,ERd) W 4 Rs16→@(d:16,ERd) — — ↕ ↕ 0 — 3

MOV.W Rs,@(d:32,ERd) W 8 Rs16→@(d:32,ERd) — — ↕ ↕ 0 — 5

MOV.W Rs,@–ERd W 2 ERd32–2→ERd32,Rs16→@ERd — — ↕ ↕ 0 — 3

MOV.W Rs,@aa:16 W 4 Rs16→@aa:16 — — ↕ ↕ 0 — 3

MOV.W Rs,@aa:32 W 6 Rs16→@aa:32 — — ↕ ↕ 0 — 4

249

Table 2-2 Instruction Set (cont)

(1) Data Transfer Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

MOV MOV.L #xx:32,Rd L 6 #xx:32→Rd32 — — ↕ ↕ 0 — 3

MOV.L ERs,ERd L 2 ERs32→ERd32 — — ↕ ↕ 0 — 1

MOV.L @ERs,ERd L 4 @ERs→ERd32 — — ↕ ↕ 0 — 4

MOV.L @(d:16,ERs),ERd L 6 @(d:16,ERs)→ERd32 — — ↕ ↕ 0 — 5

MOV.L @(d:32,ERs),ERd L 10 @(d:32,ERs)→ERd32 — — ↕ ↕ 0 — 7

MOV.L @ERs+,ERd L 4 @ERs→ERd32,ERs32+4→@ERs32 — — ↕ ↕ 0 — 5

MOV.L @aa:16,ERd L 6 @aa:16→ERd32 — — ↕ ↕ 0 — 5

MOV.L @aa:32,ERd L 8 @aa:32→ERd32 — — ↕ ↕ 0 — 6

MOV.L ERs,@ERd L 4 ERs32→@ERd — — ↕ ↕ 0 — 4

MOV.L ERs,@(d:16,ERd) L 6 ERs32→@(d:16,ERd) — — ↕ ↕ 0 — 5

MOV.L ERs,@(d:32,ERd) L 10 ERs32→@(d:32,ERd) — — ↕ ↕ 0 — 7

MOV.L ERs,@–ERd L 4 ERd32–4→ERd32,ERs32→@ERd — — ↕ ↕ 0 — 5

MOV.L ERs,@aa:16 L 6 ERs32→@aa:16 — — ↕ ↕ 0 — 5

MOV.L ERs,@aa:32 L 8 ERs32→@aa:32 — — ↕ ↕ 0 — 6

POP POP.W Rn W 2 @SP→Rn16,SP+2→SP — — ↕ ↕ 0 — 3

POP.L ERn L 4 @SP→ERn32,SP+4→SP — — ↕ ↕ 0 — 5

PUSH PUSH.W Rn W 2 SP–2→SP,Rn16→@SP — — ↕ ↕ 0 — 3

PUSH.L ERn L 4 SP–4→SP,ERn32→@SP — — ↕ ↕ 0 — 5

LDM LDM.L @SP+,(ERm–ERn) L 4 (@SP→ERn32,SP+4→SP) repeat until — — — — — — 7/9/11 ➀
end of register list

STM STM.L (ERm–ERn),@–SP L 4 (SP–4→SP,ERn32→@SP) repeat until — — — — — — 7/9/11 ➀
end of register list

MOVFPE MOVFPE@aa:16,Rd B 4 @aa:16→Rd (synchronized with — — ↕ ↕ 0 — ➁
E clock)

MOVTPE MOVTPE Rs,@aa:16 B 4 Rs→@aa:16 (synchronized with — — ↕ ↕ 0 — ➁
E clock)

250

Table 2-2 Instruction Set (cont)

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

ADD ADD.B #xx:8,Rd B 2 Rd8+#xx:8→Rd8 — ↕ ↕ ↕ ↕ ↕ 1

ADD.B Rs,Rd B 2 Rd8+Rs8→Rd8 — ↕ ↕ ↕ ↕ ↕ 1

ADD.W #xx:16,Rd W 4 Rd16+#xx:16→Rd16 — ➂ ↕ ↕ ↕ ↕ 2

ADD.W Rs,Rd W 2 Rd16+Rs16→Rd16 — ➂ ↕ ↕ ↕ ↕ 1

ADD.L #xx:32,ERd L 6 ERd32+#xx:32→ERd32 — ➃ ↕ ↕ ↕ ↕ 3

ADD.L ERs,ERd L 2 ERd32+ERs32→ERd32 — ➃ ↕ ↕ ↕ ↕ 1

ADDX ADDX #xx:8,Rd B 2 Rd8+#xx:8+C→Rd8 — ↕ ↕ ➄ ↕ ↕ 1

ADDX Rs,Rd B 2 Rd8+Rs8+C→Rd8 — ↕ ↕ ➄ ↕ ↕ 1

ADDS ADDS #1,ERd L 2 ERd32+1→ERd32 — — — — — — 1

ADDS #2,ERd L 2 ERd32+2→ERd32 — — — — — — 1

ADDS #4,ERd L 2 ERd32+4→ERd32 — — — — — — 1

INC INC.B Rd B 2 Rd8+1→Rd8 — — ↕ ↕ ↕ — 1

INC.W #1,Rd W 2 Rd16+1→Rd16 — — ↕ ↕ ↕ — 1

INC.W #2,Rd W 2 Rd16+2→Rd16 — — ↕ ↕ ↕ — 1

INC.L #1,ERd L 2 ERd32+1→ERd32 — — ↕ ↕ ↕ — 1

INC.L #2,ERd L 2 ERd32+2→ERd32 — — ↕ ↕ ↕ — 1

DAA DAA Rd B 2 Rd8 decimal adjust → Rd8 — * ↕ ↕ * — 1

SUB SUB.B Rs,Rd B 2 Rd8–Rs8→Rd8 — ↕ ↕ ↕ ↕ ↕ 1

SUB.W #xx:16,Rd W 4 Rd16–#xx:16→Rd16 — ➂ ↕ ↕ ↕ ↕ 2

SUB.W Rs,Rd W 2 Rd16–Rs16→Rd16 — ➂ ↕ ↕ ↕ ↕ 1

SUB.L #xx:32,ERd L 6 ERd32–#xx:32→ERd32 — ➃ ↕ ↕ ↕ ↕ 3

SUB.L ERs,ERd L 2 ERd32–ERs32→ERd32 — ➃ ↕ ↕ ↕ ↕ 1

SUBX SUBX #xx:8,Rd B 2 Rd8–#xx:8–C→Rd8 — ↕ ↕ ➄ ↕ ↕ 1

SUBX Rs,Rd B 2 Rd8–Rs8–C→Rd8 — ↕ ↕ ➄ ↕ ↕ 1

SUBS SUBS #1,ERd L 2 ERd32–1→ERd32 — — — — — — 1

SUBS #2,ERd L 2 ERd32–2→ERd32 — — — — — — 1

SUBS #4,ERd L 2 ERd32–4→ERd32 — — — — — — 1

DEC DEC.B Rd B 2 Rd8–1→Rd8 — — ↕ ↕ ↕ — 1

DEC.W #1,Rd W 2 Rd16–1→Rd16 — — ↕ ↕ ↕ — 1

DEC.W #2,Rd W 2 Rd16–2→Rd16 — — ↕ ↕ ↕ — 1

DEC.L #1,ERd L 2 ERd32–1→ERd32 — — ↕ ↕ ↕ — 1

DEC.L #2,ERd L 2 ERd32–2→ERd32 — — ↕ ↕ ↕ — 1

251

Table 2-2 Instruction Set (cont)

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

DAS DAS Rd B 2 Rd8 decimal adjust →Rd8 — * ↕ ↕ * — 1

MULXU MULXU.B Rs,Rd B 2 Rd8×Rs8→Rd16 — — — — — — 3 (12*)
(unsigned operation)

MULXU.W Rs,ERd W 2 Rd16×Rs16→ERd32 — — — — — — 4 (20*)
(unsigned operation)

MULXS MULXS.B Rs,Rd B 4 Rd8×Rs8→Rd16 — — ↕ ↕ — — 4 (13*)
(signed operation)

MULXS.W Rs,ERd W 4 Rd16×Rs16→ERd32 — — ↕ ↕ — — 5 (21*)
(signed multiplication)

DIVXU DIVXU.B Rs,Rd B 2 Rd16÷Rs8→Rd16 (RdH: remainder, — — ➅ ➆ — — 12
RdL: quotient) (unsigned division)

DIVXU.W Rs,ERd W 2 ERd32÷Rs16→ERd32 (Ed: remainder, — — ➅ ➆ — — 20
Rd: quotient) (unsigned division)

DIVXS DIVXS.B Rs,Rd B 4 Rd16÷Rs8→Rd16 (RdH: remainder, — — ➇ ➆ — — 13
RdL: quotient) (signed division)

DIVXS.W Rs,ERd W 4 ERd32÷Rs16→ERd32 (Ed: remainder, — — ➇ ➆ — — 21
Rd: quotient) (signed division)

CMP CMP.B #xx:8,Rd B 2 Rd8–#xx:8 — ↕ ↕ ↕ ↕ ↕ 1

CMP.B Rs,Rd B 2 Rd8–Rs8 — ↕ ↕ ↕ ↕ ↕ 1

CMP.W #xx:16,Rd W 4 Rd16–#xx:16 — ➂ ↕ ↕ ↕ ↕ 2

CMP.W Rs,Rd W 2 Rd16–Rs16 — ➂ ↕ ↕ ↕ ↕ 1

CMP.L #xx:32,ERd L 6 ERd32–#xx:32 — ➃ ↕ ↕ ↕ ↕ 3

CMP.L ERs,ERd L 2 ERd32–ERs32 — ➃ ↕ ↕ ↕ ↕ 1

NEG NEG.B Rd B 2 0–Rd8→Rd8 — ↕ ↕ ↕ ↕ ↕ 1

NEG.W Rd W 2 0–Rd16→Rd16 — ↕ ↕ ↕ ↕ ↕ 1

NEG.L ERd L 2 0–ERd32→ERd32 — ↕ ↕ ↕ ↕ ↕ 1

EXTU EXTU.W Rd W 2 0→(<bits 15 to 8> of Rd16) — — 0 ↕ 0 — 1

EXTU.L ERd L 2 0→(<bits 31 to 16> of ERd32) — — 0 ↕ 0 — 1

EXTS EXTS.W Rd W 2 (<bit 7> of Rd16)→(<bits 15 to 8> — — ↕ ↕ 0 — 1
of Rd16)

EXTS.L ERd L 2 (<bit 15> of ERd32)→(<bits 31 to 16> — — ↕ ↕ 0 — 1
of ERd32)

TAS TAS @ERd B 4 @ERd–0→set CCR, 1→(<bit 7> of — — ↕ ↕ 0 — 4

@ERd)

Note: *For the H8S/2000 CPU.

252

Table 2-2 Instruction Set (cont)

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

MAC* MAC @ERn+,@ERm+ — 4 @ERn×@ERm+MAC→MAC (signed — — — — — — 4
multiplication) ➈ ➈ ➈
ERn+2→ERn,ERm+2→ERm

CLRMAC* CLRMAC — 2 0→MACH, MACL — — — — — — 2

LDMAC* LDMAC ERs,MACH L 2 ERs→MACH — — — — — — 2

LDMAC ERs,MACL L 2 ERs→MACL — — — — — — 2

STMAC* STMAC MACH,ERd L 2 MACH→ERd — — ↕ ↕ ↕ — 1

STMAC MACL,ERd L 2 MACL→ERd — — ↕ ↕ ↕ — 1

Note: *These instructions are supported only by the H8S/2600 CPU.

253

Table 2-2 Instruction Set (cont)

(3) Logic Operation Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

AND AND.B #xx:8,Rd B 2 Rd8∧ #xx:8→Rd8 — — ↕ ↕ 0 — 1

AND.B Rs,Rd B 2 Rd8∧ Rs8→Rd8 — — ↕ ↕ 0 — 1

AND.W #xx:16,Rd W 4 Rd16∧ #xx:16→Rd16 — — ↕ ↕ 0 — 2

AND.W Rs,Rd W 2 Rd16∧ Rs16→Rd16 — — ↕ ↕ 0 — 1

AND.L #xx:32,ERd L 6 ERd32∧ #xx:32→ERd32 — — ↕ ↕ 0 — 3

AND.L ERs,ERd L 4 ERd32∧ ERs32→ERd32 — — ↕ ↕ 0 — 2

OR OR.B #xx:8,Rd B 2 Rd8∨ #xx:8→Rd8 — — ↕ ↕ 0 — 1

OR.B Rs,Rd B 2 Rd8∨ Rs8→Rd8 — — ↕ ↕ 0 — 1

OR.W #xx:16,Rd W 4 Rd16∨ #xx:16→Rd16 — — ↕ ↕ 0 — 2

OR.W Rs,Rd W 2 Rd16∨ Rs16→Rd16 — — ↕ ↕ 0 — 1

OR.L #xx:32,ERd L 6 ERd32∨ #xx:32→ERd32 — — ↕ ↕ 0 — 3

OR.L ERs,ERd L 4 ERd32∨ ERs32→ERd32 — — ↕ ↕ 0 — 2

XOR XOR.B #xx:8,Rd B 2 Rd8⊕ #xx:8→Rd8 — — ↕ ↕ 0 — 1

XOR.B Rs,Rd B 2 Rd8⊕ Rs8→Rd8 — — ↕ ↕ 0 — 1

XOR.W #xx:16,Rd W 4 Rd16⊕ #xx:16→Rd16 — — ↕ ↕ 0 — 2

XOR.W Rs,Rd W 2 Rd16⊕ Rs16→Rd16 — — ↕ ↕ 0 — 1

XOR.L #xx:32,ERd L 6 ERd32⊕ #xx:32→ERd32 — — ↕ ↕ 0 — 3

XOR.L ERs,ERd L 4 ERd32⊕ ERs32→ERd32 — — ↕ ↕ 0 — 2

NOT NOT.B Rd B 2 ¬ Rd8→Rd8 — — ↕ ↕ 0 — 1

NOT.W Rd W 2 ¬ Rd16→Rd16 — — ↕ ↕ 0 — 1

NOT.L ERd L 2 ¬ Rd32→Rd32 — — ↕ ↕ 0 — 1

254

Table 2-2 Instruction Set (cont)

(4) Shift Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

SHAL SHAL.B Rd B 2 — — ↕ ↕ ↕ ↕ 1

SHAL.B #2,Rd B 2 — — ↕ ↕ ↕ ↕ 1

SHAL.W Rd W 2 — — ↕ ↕ ↕ ↕ 1

SHAL.W #2,Rd W 2 — — ↕ ↕ ↕ ↕ 1

SHAL.L ERd L 2 — — ↕ ↕ ↕ ↕ 1

SHAL.L #2,ERd L 2 — — ↕ ↕ ↕ ↕ 1

SHAR SHAR.B Rd B 2 — — ↕ ↕ 0 ↕ 1

SHAR.B #2,Rd B 2 — — ↕ ↕ 0 ↕ 1

SHAR.W Rd W 2 — — ↕ ↕ 0 ↕ 1

SHAR.W #2,Rd W 2 — — ↕ ↕ 0 ↕ 1

SHAR.L ERd L 2 — — ↕ ↕ 0 ↕ 1

SHAR.L #2,ERd L 2 — — ↕ ↕ 0 ↕ 1

SHLL SHLL.B Rd B 2 — — ↕ ↕ 0 ↕ 1

SHLL.B #2,Rd B 2 — — ↕ ↕ 0 ↕ 1

SHLL.W Rd W 2 — — ↕ ↕ 0 ↕ 1

SHLL.W #2,Rd W 2 — — ↕ ↕ 0 ↕ 1

SHLL.L ERd L 2 — — ↕ ↕ 0 ↕ 1

SHLL.L #2,ERd L 2 — — ↕ ↕ 0 ↕ 1

SHLR SHLR.B Rd B 2 — — 0 ↕ 0 ↕ 1

SHLR.B #2,Rd B 2 — — 0 ↕ 0 ↕ 1

SHLR.W Rd W 2 — — 0 ↕ 0 ↕ 1

SHLR.W #2,Rd W 2 — — 0 ↕ 0 ↕ 1

SHLR.L ERd L 2 — — 0 ↕ 0 ↕ 1

SHLR.L #2,ERd L 2 — — 0 ↕ 0 ↕ 1

ROTXL ROTXL.B Rd B 2 — — ↕ ↕ 0 ↕ 1

ROTXL.B #2,Rd B 2 — — ↕ ↕ 0 ↕ 1

ROTXL.W Rd W 2 — — ↕ ↕ 0 ↕ 1

ROTXL.W #2,Rd W 2 — — ↕ ↕ 0 ↕ 1

ROTXL.L ERd L 2 — — ↕ ↕ 0 ↕ 1

ROTXL.L #2,ERd L 2 — — ↕ ↕ 0 ↕ 1

C MSB LSB

0

CMSB LSB

0

MSB LSB C

C MSB LSB

C MSB LSB

0

255

Table 2-2 Instruction Set (cont)

(4) Shift Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

ROTXR ROTXR.B Rd B 2 — — ↕ ↕ 0 ↕ 1

ROTXR.B #2,Rd B 2 — — ↕ ↕ 0 ↕ 1

ROTXR.W Rd W 2 — — ↕ ↕ 0 ↕ 1

ROTXR.W #2,Rd W 2 — — ↕ ↕ 0 ↕ 1

ROTXR.L ERd L 2 — — ↕ ↕ 0 ↕ 1

ROTXR.L #2,ERd L 2 — — ↕ ↕ 0 ↕ 1

ROTL ROTL.B Rd B 2 — — ↕ ↕ 0 ↕ 1

ROTL.B #2,Rd B 2 — — ↕ ↕ 0 ↕ 1

ROTL.W Rd W 2 — — ↕ ↕ 0 ↕ 1

ROTL.W #2,Rd W 2 — — ↕ ↕ 0 ↕ 1

ROTL.L ERd L 2 — — ↕ ↕ 0 ↕ 1

ROTL.L #2,ERd L 2 — — ↕ ↕ 0 ↕ 1

ROTR ROTR.B Rd B 2 — — ↕ ↕ 0 ↕ 1

ROTR.B #2,Rd B 2 — — ↕ ↕ 0 ↕ 1

ROTR.W Rd W 2 — — ↕ ↕ 0 ↕ 1

ROTR.W #2,Rd W 2 — — ↕ ↕ 0 ↕ 1

ROTR.L ERd L 2 — — ↕ ↕ 0 ↕ 1

ROTR.L #2,ERd L 2 — — ↕ ↕ 0 ↕ 1

CMSB LSB

C MSB LSB

CMSB LSB

256

Table 2-2 Instruction Set (cont)

(5) Bit Manipulation Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

BSET BSET #xx:3,Rd B 2 (#xx:3 of Rd8)←1 — — — — — — 1

BSET #xx:3,@ERd B 4 (#xx:3 of @ERd)←1 — — — — — — 4

BSET #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)←1 — — — — — — 4

BSET #xx:3,@aa:16 B 6 (#xx:3 of @aa:16)←1 — — — — — — 5

BSET #xx:3,@aa:32 B 8 (#xx:3 of @aa:32)←1 — — — — — — 6

BSET Rn,Rd B 2 (Rn8 of Rd8)←1 — — — — — — 1

BSET Rn,@ERd B 4 (Rn8 of @ERd)←1 — — — — — — 4

BSET Rn,@aa:8 B 4 (Rn8 of @aa:8)←1 — — — — — — 4

BSET Rn,@aa:16 B 6 (Rn8 of @aa:16)←1 — — — — — — 5

BSET Rn,@aa:32 B 8 (Rn8 of @aa:32)←1 — — — — — — 6

BCLR BCLR #xx:3,Rd B 2 (#xx:3 of Rd8)←0 — — — — — — 1

BCLR #xx:3,@ERd B 4 (#xx:3 of @ERd)←0 — — — — — — 4

BCLR #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)←0 — — — — — — 4

BCLR #xx:3,@aa:16 B 6 (#xx:3 of @aa:16)←0 — — — — — — 5

BCLR #xx:3,@aa:32 B 8 (#xx:3 of @aa:32)←0 — — — — — — 6

BCLR Rn,Rd B 2 (Rn8 of Rd8)←0 — — — — — — 1

BCLR Rn,@ERd B 4 (Rn8 of @ERd)←0 — — — — — — 4

BCLR Rn,@aa:8 B 4 (Rn8 of @aa:8)←0 — — — — — — 4

BCLR Rn,@aa:16 B 6 (Rn8 of @aa:16)←0 — — — — — — 5

BCLR Rn,@aa:32 B 8 (Rn8 of @aa:32)←0 — — — — — — 6

BNOT BNOT #xx:3,Rd B 2 (#xx:3 of Rd8)← [¬ (#xx:3 of Rd8)] — — — — — — 1

BNOT #xx:3,@ERd B 4 (#xx:3 of @ERd)← [¬ (#xx:3 of @ERd)] — — — — — — 4

BNOT #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)← [¬ (#xx:3 of @aa:8)] — — — — — — 4

BNOT #xx:3,@aa:16 B 6 (#xx:3 of @aa:16)← [¬ (#xx:3 of @aa:16)] — — — — — — 5

BNOT #xx:3,@aa:32 B 8 (#xx:3 of @aa:32)← [¬ (#xx:3 of @aa:32)] — — — — — — 6

BNOT Rn,Rd B 2 (Rn8 of Rd8)← [¬ (Rn8 of Rd8)] — — — — — — 1

BNOT Rn,@ERd B 4 (Rn8 of @ERd)← [¬ (Rn8 of @ERd)] — — — — — — 4

BNOT Rn,@aa:8 B 4 (Rn8 of @aa:8)← [¬ (Rn8 of @aa:8)] — — — — — — 4

BNOT Rn,@aa:16 B 6 (Rn8 of @aa:16)← [¬ (Rn8 of @aa:16)] — — — — — — 5

BNOT Rn,@aa:32 B 8 (Rn8 of @aa:32)← [¬ (Rn8 of @aa:32)] — — — — — — 6

257

Table 2-2 Instruction Set (cont)

(5) Bit Manipulation Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

BTST BTST #xx:3,Rd B 2 (#xx:3 of Rd8)→Z — — — ↕ — — 1

BTST #xx:3,@ERd B 4 (#xx:3 of @ERd)→Z — — — ↕ — — 3

BTST #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)→Z — — — ↕ — — 3

BTST #xx:3,@aa:16 B 6 (#xx:3 of @aa:16)→Z — — — ↕ — — 4

BTST #xx:3,@aa:32 B 8 (#xx:3 of @aa:32)→Z — — — ↕ — — 5

BTST Rn,Rd B 2 (Rn8 of Rd8)→Z — — — ↕ — — 1

BTST Rn,@ERd B 4 (Rn8 of @ERd)→Z — — — ↕ — — 3

BTST Rn,@aa:8 B 4 (Rn8 of @aa:8)→Z — — — ↕ — — 3

BTST Rn,@aa:16 B 6 (Rn8 of @aa:16)→Z — — — ↕ — — 4

BTST Rn,@aa:32 B 8 (Rn8 of @aa:32)→Z — — — ↕ — — 5

BLD BLD #xx:3,Rd B 2 (#xx:3 of Rd8)→C — — — — — ↕ 1

BLD #xx:3,@ERd B 4 (#xx:3 of @ERd)→C — — — — — ↕ 3

BLD #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)→C — — — — — ↕ 3

BLD #xx:3,@aa:16 B 6 (#xx:3 of @aa:16)→C — — — — — ↕ 4

BLD #xx:3,@aa:32 B 8 (#xx:3 of @aa:32)→C — — — — — ↕ 5

BILD BILD #xx:3,Rd B 2 ¬ (#xx:3 of Rd8)→C — — — — — ↕ 1

BILD #xx:3,@ERd B 4 ¬ (#xx:3 of @ERd)→C — — — — — ↕ 3

BILD #xx:3,@aa:8 B 4 ¬ (#xx:3 of @aa:8)→C — — — — — ↕ 3

BILD #xx:3,@aa:16 B 6 ¬ (#xx:3 of @aa:16)→C — — — — — ↕ 4

BILD #xx:3,@aa:32 B 8 ¬ (#xx:3 of @aa:32)→C — — — — — ↕ 5

BST BST #xx:3,Rd B 2 C→(#xx:3 of Rd8) — — — — — — 1

BST #xx:3,@ERd B 4 C→(#xx:3 of @ERd24) — — — — — — 4

BST #xx:3,@aa:8 B 4 C→(#xx:3 of @aa:8) — — — — — — 4

BST #xx:3,@aa:16 B 6 C→(#xx:3 of @aa:16) — — — — — — 5

BST #xx:3,@aa:32 B 8 C→(#xx:3 of @aa:32) — — — — — — 6

BIST BIST #xx:3,Rd B 2 ¬ C→(#xx:3 of Rd8) — — — — — — 1

BIST #xx:3,@ERd B 4 ¬ C→(#xx:3 of @ERd24) — — — — — — 4

BIST #xx:3,@aa:8 B 4 ¬ C→(#xx:3 of @aa:8) — — — — — — 4

BIST #xx:3,@aa:16 B 6 ¬ C→(#xx:3 of @aa:16) — — — — — — 5

BIST #xx:3,@aa:32 B 8 ¬ C→(#xx:3 of @aa:32) — — — — — — 6

258

Table 2-2 Instruction Set (cont)

(5) Bit Manipulation Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

BAND BAND #xx:3,Rd B 2 C∧ (#xx:3 of Rd8)→C — — — — — ↕ 1

BAND #xx:3,@ERd B 4 C∧ (#xx:3 of @ERd24)→C — — — — — ↕ 3

BAND #xx:3,@aa:8 B 4 C∧ (#xx:3 of @aa:8)→C — — — — — ↕ 3

BAND #xx:3,@aa:16 B 6 C∧ (#xx:3 of @aa:16)→C — — — — — ↕ 4

BAND #xx:3,@aa:32 B 8 C∧ (#xx:3 of @aa:32)→C — — — — — ↕ 5

BIAND BIAND #xx:3,Rd B 2 C∧ [¬ (#xx:3 of Rd8)]→C — — — — — ↕ 1

BIAND #xx:3,@ERd B 4 C∧ [¬ (#xx:3 of @ERd24)]→C — — — — — ↕ 3

BIAND #xx:3,@aa:8 B 4 C∧ [¬ (#xx:3 of @aa:8)]→C — — — — — ↕ 3

BIAND #xx:3,@aa:16 B 6 C∧ [¬ (#xx:3 of @aa:16)]→C — — — — — ↕ 4

BIAND #xx:3,@aa:32 B 8 C∧ [¬ (#xx:3 of @aa:32)]→C — — — — — ↕ 5

BOR BOR #xx:3,Rd B 2 C∨ (#xx:3 of Rd8)→C — — — — — ↕ 1

BOR #xx:3,@ERd B 4 C∨ (#xx:3 of @ERd24)→C — — — — — ↕ 3

BOR #xx:3,@aa:8 B 4 C∨ (#xx3: of @aa:8)→C — — — — — ↕ 3

BOR #xx:3,@aa:16 B 6 C∨ (#xx3: of @aa:16)→C — — — — — ↕ 4

BOR #xx:3,@aa:32 B 8 C∨ (#xx3: of @aa:32)→C — — — — — ↕ 5

BIOR BIOR #xx:3,Rd B 2 C∨ [¬ (#xx:3 of Rd8)]→C — — — — — ↕ 1

BIOR #xx:3,@ERd B 4 C∨ [¬ (#xx:3 of @ERd24)]→C — — — — — ↕ 3

BIOR #xx:3,@aa:8 B 4 C∨ [¬ (#xx:3 of @aa:8)]→C — — — — — ↕ 3

BIOR #xx:3,@aa:16 B 6 C∨ [¬ (#xx:3 of @aa:16)]→C — — — — — ↕ 4

BIOR #xx:3,@aa:32 B 8 C∨ [¬ (#xx:3 of @aa:32)]→C — — — — — ↕ 5

BXOR BXOR #xx:3,Rd B 2 C⊕ (#xx:3 of Rd8)→C — — — — — ↕ 1

BXOR #xx:3,@ERd B 4 C⊕ (#xx:3 of @ERd24)→C — — — — — ↕ 3

BXOR #xx:3,@aa:8 B 4 C⊕ (#xx:3 of @aa:8)→C — — — — — ↕ 3

BXOR #xx:3,@aa:16 B 6 C⊕ (#xx:3 of @aa:16)→C — — — — — ↕ 4

BXOR #xx:3,@aa:32 B 8 C⊕ (#xx:3 of @aa:32)→C — — — — — ↕ 5

BIXOR BIXOR #xx:3,Rd B 2 C⊕[¬ (#xx:3 of Rd8)]→C — — — — — ↕ 1

BIXOR #xx:3,@ERd B 4 C⊕[¬ (#xx:3 of @ERd24)]→C — — — — — ↕ 3

BIXOR #xx:3,@aa:8 B 4 C⊕[¬ (#xx:3 of @aa:8)]→C — — — — — ↕ 3

BIXOR #xx:3,@aa:16 B 6 C⊕[¬ (#xx:3 of @aa:16)]→C — — — — — ↕ 4

BIXOR #xx:3,@aa:32 B 8 C⊕[¬ (#xx:3 of @aa:32)]→C — — — — — ↕ 5

259

Table 2-2 Instruction Set (cont)

(6) Branch Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

Bcc BRA d:8(BT d:8) — 2 if condition is true then Always — — — — — — 2

BRA d:16(BT d:16) — 4 PC←PC+d — — — — — — 3

BRN d:8(BF d:8) — 2 else next; Never — — — — — — 2

BRN d:16(BF d:16) — 4 — — — — — — 3

BHI d:8 — 2 C∨ z=0 — — — — — — 2

BHI d:16 — 4 — — — — — — 3

BLS d:8 — 2 C∨ z=1 — — — — — — 2

BLS d:16 — 4 — — — — — — 3

BCC d:8(BHS d:8) — 2 C=0 — — — — — — 2

BCC d:16(BHS d:16) — 4 — — — — — — 3

BCS d:8(BLO d:8) — 2 C=1 — — — — — — 2

BCS d:16(BLO d:16) — 4 — — — — — — 3

BNE d:8 — 2 Z=0 — — — — — — 2

BNE d:16 — 4 — — — — — — 3

BEQ d:8 — 2 Z=1 — — — — — — 2

BEQ d:16 — 4 — — — — — — 3

BVC d:8 — 2 V=0 — — — — — — 2

BVC d:16 — 4 — — — — — — 3

BVS d:8 — 2 V=1 — — — — — — 2

BVS d:16 — 4 — — — — — — 3

BPL d:8 — 2 N=0 — — — — — — 2

BPL d:16 — 4 — — — — — — 3

BMI d:8 — 2 N=1 — — — — — — 2

BMI d:16 — 4 — — — — — — 3

BGE d:8 — 2 N⊕ V=0 — — — — — — 2

BGE d:16 — 4 — — — — — — 3

BLT d:8 — 2 N⊕ V=1 — — — — — — 2

BLT d:16 — 4 — — — — — — 3

BGT d:8 — 2 Z∨ (N⊕ V)=0 — — — — — — 2

BGT d:16 — 4 — — — — — — 3

BLE d:8 — 2 Z∨ (N⊕ V)=1 — — — — — — 2

BLE d:16 — 4 — — — — — — 3

Branch
Condition

260

Table 2-2 Instruction Set (cont)

(6) Branch Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

JMP JMP @ERn — 2 PC←Ern — — — — — — 2

JMP @aa:24 — 4 PC←aa:24 — — — — — — 3

JMP @@aa:8 — 2 PC←@aa:8 — — — — — — 4 5

BSR BSR d:8 — 2 PC→@–SP,PC←PC+d:8 — — — — — — 3 4

BSR d:16 — 4 PC→@–SP,PC←PC+d:16 — — — — — — 4 5

JSR JSR @ERn — 2 PC→@–SP,PC←ERn — — — — — — 3 4

JSR @aa:24 — 4 PC→@–SP,PC←aa:24 — — — — — — 4 5

JSR @@aa:8 — 2 PC→@–SP,PC←aa:8 — — — — — — 4 6

RTS RTS — 2 PC←@SP+ — — — — — — 4 5

Branch
Condition

261

Table 2-2 Instruction Set (cont)

(7) System Control Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

TRAPA TRAPA #x:2 — 2 PC→@–SP,CCR→@–SP, 1 — — — — — 7 ➉ 8 ➉
EXR→@–SP,<vector>→PC

RTE RTE — EXR←@SP+,CCR←@SP+, ↕ ↕ ↕ ↕ ↕ ↕ 5 ➉
PC←@SP+

SLEEP SLEEP — Transition to power-down state — — — — — — 2

LDC LDC #xx:8,CCR B 2 #xx:8→CCR ↕ ↕ ↕ ↕ ↕ ↕ 1

LDC #xx:8,EXR B 4 #xx:8→EXR — — — — — — 2

LDC Rs,CCR B 2 Rs8→CCR ↕ ↕ ↕ ↕ ↕ ↕ 1

LDC Rs,EXR B 2 Rs8→EXR — — — — — — 1

LDC @ERs,CCR W 4 @ERs→CCR ↕ ↕ ↕ ↕ ↕ ↕ 3

LDC @ERs,EXR W 4 @ERs→EXR — — — — — — 3

LDC @(d:16,ERs),CCR W 6 @(d:16,ERs)→CCR ↕ ↕ ↕ ↕ ↕ ↕ 4

LDC @(d:16,ERs),EXR W 6 @(d:16,ERs)→EXR — — — — — — 4

LDC @(d:32,ERs),CCR W 10 @(d:32,ERs)→CCR ↕ ↕ ↕ ↕ ↕ ↕ 6

LDC @(d:32,ERs),EXR W 10 @(d:32,ERs)→EXR — — — — — — 6

LDC @ERs+,CCR W 4 @ERs→CCR,ERs32+2→ERs32 ↕ ↕ ↕ ↕ ↕ ↕ 4

LDC @ERs+,EXR W 4 @ERs→EXR,ERs32+2→ERs32 — — — — — — 4

LDC @aa:16,CCR W 6 @aa:16→CCR ↕ ↕ ↕ ↕ ↕ ↕ 4

LDC @aa:16,EXR W 6 @aa:16→EXR — — — — — — 4

LDC @aa:32,CCR W 8 @aa:32→CCR ↕ ↕ ↕ ↕ ↕ ↕ 5

LDC @aa:32,EXR W 8 @aa:32→EXR — — — — — — 5

262

Table 2-2 Instruction Set (cont)

(7) System Control Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

STC STC CCR,Rd B 2 CCR→Rd8 — — — — — — 1

STC EXR,Rd B 2 EXR→Rd8 — — — — — — 1

STC CCR,@ERd W 4 CCR→@ERd — — — — — — 3

STC EXR,@ERd W 4 EXR→@ERd — — — — — — 3

STC CCR,@(d:16,ERd) W 6 CCR→@(d:16,ERd) — — — — — — 4

STC EXR,@(d:16,ERd) W 6 EXR→@(d:16,ERd) — — — — — — 4

STC CCR,@(d:32,ERd) W 10 CCR→@(d:32,ERd) — — — — — — 6

STC EXR,@(d:32,ERd) W 10 EXR→@(d:32,ERd) — — — — — — 6

STC CCR,@–ERd W 4 ERd32–2→ERd32,CCR→@ERd — — — — — — 4

STC EXR,@–ERd W 4 ERd32–2→ERd32,EXR→@ERd — — — — — — 4

STC CCR,@aa:16 W 6 CCR→@aa:16 — — — — — — 4

STC EXR,@aa:16 W 6 EXR→@aa:16 — — — — — — 4

STC CCR,@aa:32 W 8 CCR→@aa:32 — — — — — — 5

STC EXR,@aa:32 W 8 EXR→@aa:32 — — — — — — 5

ANDC ANDC #xx:8,CCR B 2 CCR∧ #xx:8→CCR ↕ ↕ ↕ ↕ ↕ ↕ 1

ANDC #xx:8,EXR B 4 EXR∧ #xx:8→EXR — — — — — — 2

ORC ORC #xx:8,CCR B 2 CCR∨ #xx:8→CCR ↕ ↕ ↕ ↕ ↕ ↕ 1

ORC #xx:8,EXR B 4 EXR∨ #xx:8→EXR — — — — — — 2

XORC XORC #xx:8,CCR B 2 CCR⊕ #xx:8→CCR ↕ ↕ ↕ ↕ ↕ ↕ 1

XORC #xx:8,EXR B 4 EXR⊕ #xx:8→EXR — — — — — — 2

NOP NOP — 2 PC←PC+2 — — — — — — 1

263

Table 2-2 Instruction Set (cont)

(8) Block Transfer Instructions

Addressing Mode and Instruction Length (Bytes)

Mnemonic Size Operation
Condition Code No. of States

I H N Z V C Normal Advanced#x
x

R
n

@
E

R
n

@
(d

,E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

,P
C

)

@
@

aa

—

EEPMOV EEPMOV.B — 4 if R4L ≠ 0 — — — — — — 4+2n*2

Repeat @ER5+ →@ER6+
R5+1→R5
R6+1→R6
R4L–1→R4L

Until R4L=0
else next;

EEPMOV.W — 4 if R4 ≠ 0 — — — — — — 4+2n*2

Repeat @ER5+ →@ER6+
R5+1→R5
R6+1→R6
R4–1→R4

Until R4=0
else next;

Notes: 1. The number of states is the number of states required for execution when the instruction and its operands are located in
on-chip memory.

2. n is the initial setting of R4L or R4.

➀ Seven states for saving or restoring two registers, nine states for three registers, or eleven states for four registers.

➁ The number of states required for execution of an instruction that transfers data in synchronization with the E clock is variable.

➂ Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.

➃ Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.

➄ Retains its previous value when the result is zero; otherwise cleared to 0.

➅ Set to 1 when the divisor is negative; otherwise cleared to 0.

➆ Set to 1 when the divisor is zero; otherwise cleared to 0.

➇ Set to 1 when the quotient is negative; otherwise cleared to 0.

➈ MAC instruction results are indicated in the flags when the STMAC instruction is executed.

➉ One additional state is required for execution when EXR is valid.

2.4 Instruction Codes

Table 2-3 Instruction Codes

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

264

ADD ADD.B #xx:8,Rd B 8 rd IMM

ADD.B Rs,Rd B 0 8 rs rd

ADD.W #xx:16,Rd W 7 9 1 rd IMM

ADD.W Rs,Rd W 0 9 rs rd

ADD.L #xx:32,ERd L 7 A 1 0 erd IMM

ADD.L ERs,ERd L 0 A 1 ers 0 erd

ADDS ADDS #1,ERd L 0 B 0 0 erd

ADDS #2,ERd L 0 B 8 0 erd

ADDS #4,ERd L 0 B 9 0 erd

ADDX ADDX #xx:8,Rd B 9 rd IMM

ADDX Rs,Rd B 0 E rs rd

AND AND.B #xx:8,Rd B E rd IMM

AND.B Rs,Rd B 1 6 rs rd

AND.W #xx:16,Rd W 7 9 6 rd IMM

AND.W Rs,Rd W 6 6 rs rd

AND.L #xx:32,ERd L 7 A 6 0 erd IMM

AND.L ERs,ERd L 0 1 F 0 6 6 0 ers 0 erd

ANDC ANDC #xx:8,CCR B 0 6 IMM

ANDC #xx:8,EXR B 0 1 4 1 0 6 IMM

BAND BAND #xx:3,Rd B 7 6 0 IMM rd

BAND #xx:3,@ERd B 7 C 0 erd 0 7 6 0 IMM 0

BAND #xx:3,@aa:8 B 7 E abs 7 6 0 IMM 0

BAND #xx:3,@aa:16 B 6 A 1 0 abs 7 6 0 IMM 0

BAND #xx:3,@aa:32 B 6 A 3 0 abs 7 6 0 IMM 0

Bcc BRA d:8 (BT d:8) — 4 0 disp

BRA d:16 (BT d:16) — 5 8 0 0 disp

BRN d:8 (BF d:8) — 4 1 disp

BRN d:16 (BF d:16) — 5 8 1 0 disp

BHI d:8 — 4 2 disp

BHI d:16 — 5 8 2 0 disp

BLS d:8 — 4 3 disp

BLS d:16 — 5 8 3 0 disp

BCC d:8 (BHS d:8) — 4 4 disp

Table 2-3 Instruction Codes (cont)

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

265

Bcc BCC d:16 (BHS d:16) — 5 8 4 0 disp

BCS d:8 (BLO d:8) — 4 5 disp

BCS d:16 (BLO d:16) — 5 8 5 0 disp

BNE d:8 — 4 6 disp

BNE d:16 — 5 8 6 0 disp

BEQ d:8 — 4 7 disp

BEQ d:16 — 5 8 7 0 disp

BVC d:8 — 4 8 disp

BVC d:16 — 5 8 8 0 disp

BVS d:8 — 4 9 disp

BVS d:16 — 5 8 9 0 disp

BPL d:8 — 4 A disp

BPL d:16 — 5 8 A 0 disp

BMI d:8 — 4 B disp

BMI d:16 — 5 8 B 0 disp

BGE d:8 — 4 C disp

BGE d:16 — 5 8 C 0 disp

BLT d:8 — 4 D disp

BLT d:16 — 5 8 D 0 disp

BGT d:8 — 4 E disp

BGT d:16 — 5 8 E 0 disp

BLE d:8 — 4 F disp

BLE d:16 — 5 8 F 0 disp

BCLR BCLR #xx:3,Rd B 7 2 0 IMM rd

BCLR #xx:3,@ERd B 7 D 0 erd 0 7 2 0 IMM 0

BCLR #xx:3,@aa:8 B 7 F abs 7 2 0 IMM 0

BCLR #xx:3,@aa:16 B 6 A 1 8 abs 7 2 0 IMM 0

BCLR #xx:3,@aa:32 B 6 A 3 8 abs 7 2 0 IMM 0

BCLR Rn,Rd B 6 2 rn rd

BCLR Rn,@ERd B 7 D 0 erd 0 6 2 rn 0

BCLR Rn,@aa:8 B 7 F abs 6 2 rn 0

BCLR Rn,@aa:16 B 6 A 1 8 abs 6 2 rn 0

BCLR Rn,@aa:32 B 6 A 3 8 abs 6 2 rn 0

Table 2-3 Instruction Codes (cont)

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

266

BIAND BIAND #xx:3,Rd B 7 6 1 IMM rd

BIAND #xx:3,@ERd B 7 C 0 erd 0 7 6 1 IMM 0

BIAND #xx:3,@aa:8 B 7 E abs 7 6 1 IMM 0

BIAND #xx:3,@aa:16 B 6 A 1 0 abs 7 6 1 IMM 0

BIAND #xx:3,@aa:32 B 6 A 3 0 abs 7 6 1 IMM 0

BILD BILD #xx:3,Rd B 7 7 1 IMM rd

BILD #xx:3,@ERd B 7 C 0 erd 0 7 7 1 IMM 0

BILD #xx:3,@aa:8 B 7 E abs 7 7 1 IMM 0

BILD #xx:3,@aa:16 B 6 A 1 0 abs 7 7 1 IMM 0

BILD #xx:3,@aa:32 B 6 A 3 0 abs 7 7 1 IMM 0

BIOR BIOR #xx:3,Rd B 7 4 1 IMM rd

BIOR #xx:3,@ERd B 7 C 0 erd 0 7 4 1 IMM 0

BIOR #xx:3,@aa:8 B 7 E abs 7 4 1 IMM 0

BIOR #xx:3,@aa:16 B 6 A 1 0 abs 7 4 1 IMM 0

BIOR #xx:3,@aa:32 B 6 A 3 0 abs 7 4 1 IMM 0

BIST BIST #xx:3,Rd B 6 7 1 IMM rd

BIST #xx:3,@ERd B 7 D 0 erd 0 6 7 1 IMM 0

BIST #xx:3,@aa:8 B 7 F abs 6 7 1 IMM 0

BIST #xx:3,@aa:16 B 6 A 1 8 abs 6 7 1 IMM 0

BIST #xx:3,@aa:32 B 6 A 3 8 abs 6 7 1 IMM 0

BIXOR BIXOR #xx:3,Rd B 7 5 1 IMM rd

BIXOR #xx:3,@ERd B 7 C 0 erd 0 7 5 1 IMM 0

BIXOR #xx:3,@aa:8 B 7 E abs 7 5 1 IMM 0

BIXOR #xx:3,@aa:16 B 6 A 1 0 abs 7 5 1 IMM 0

BIXOR #xx:3,@aa:32 B 6 A 3 0 abs 7 5 1 IMM 0

BLD BLD #xx:3,Rd B 7 7 0 IMM rd

BLD #xx:3,@ERd B 7 C 0 erd 0 7 7 0 IMM 0

BLD #xx:3,@aa:8 B 7 E abs 7 7 0 IMM 0

BLD #xx:3,@aa:16 B 6 A 1 0 abs 7 7 0 IMM 0

BLD #xx:3,@aa:32 B 6 A 3 0 abs 7 7 0 IMM 0

BNOT BNOT #xx:3,Rd B 7 1 0 IMM rd

BNOT #xx:3,@ERd B 7 D 0 erd 0 7 1 0 IMM 0

BNOT #xx:3,@aa:8 B 7 F abs 7 1 0 IMM 0

BNOT #xx:3,@aa:16 B 6 A 1 8 abs 7 1 0 IMM 0

BNOT #xx:3,@aa:32 B 6 A 3 8 abs 7 1 0 IMM 0

BNOT Rn,Rd B 6 1 rn rd

Table 2-3 Instruction Codes (cont)

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

267

BNOT BNOT Rn,@ERd B 7 D 0 erd 0 6 1 rn 0

BNOT Rn,@aa:8 B 7 F abs 6 1 rn 0

BNOT Rn,@aa:16 B 6 A 1 8 abs 6 1 rn 0

BNOT Rn,@aa:32 B 6 A 3 8 abs 6 1 rn 0

BOR BOR #xx:3,Rd B 7 4 0 IMM rd

BOR #xx:3,@ERd B 7 C 0 erd 0 7 4 0 IMM 0

BOR #xx:3,@aa:8 B 7 E abs 7 4 0 IMM 0

BOR #xx:3,@aa:16 B 6 A 1 0 abs 7 4 0 IMM 0

BOR #xx:3,@aa:32 B 6 A 3 0 abs 7 4 0 IMM 0

BSET BSET #xx:3,Rd B 7 0 0 IMM rd

BSET #xx:3,@ERd B 7 D 0 erd 0 7 0 0 IMM 0

BSET #xx:3,@aa:8 B 7 F abs 7 0 0 IMM 0

BSET #xx:3,@aa:16 B 6 A 1 8 abs 7 0 0 IMM 0

BSET #xx:3,@aa:32 B 6 A 3 8 abs 7 0 0 IMM 0

BSET Rn,Rd B 6 0 rn rd

BSET Rn,@ERd B 7 D 0 erd 0 6 0 rn 0

BSET Rn,@aa:8 B 7 F abs 6 0 rn 0

BSET Rn,@aa:16 B 6 A 1 8 abs 6 0 rn 0

BSET Rn,@aa:32 B 6 A 3 8 abs 6 0 rn 0

BSR BSR d:8 — 5 5 disp

BSR d:16 — 5 C 0 0 disp

BST BST #xx:3,Rd B 6 7 0 IMM rd

BST #xx:3,@ERd B 7 D 0 erd 0 6 7 0 IMM 0

BST #xx:3,@aa:8 B 7 F abs 6 7 0 IMM 0

BST #xx:3,@aa:16 B 6 A 1 8 abs 6 7 0 IMM 0

BST #xx:3,@aa:32 B 6 A 3 8 abs 6 7 0 IMM 0

BTST BTST #xx:3,Rd B 7 3 0 IMM rd

BTST #xx:3,@ERd B 7 C 0 erd 0 7 3 0 IMM 0

BTST #xx:3,@aa:8 B 7 E abs 7 3 0 IMM 0

BTST #xx:3,@aa:16 B 6 A 1 0 abs 7 3 0 IMM 0

BTST #xx:3,@aa:32 B 6 A 3 0 abs 7 3 0 IMM 0

BTST Rn,Rd B 6 3 rn rd

BTST Rn,@ERd B 7 C 0 erd 0 6 3 rn 0

BTST Rn,@aa:8 B 7 E abs 6 3 rn 0

BTST Rn,@aa:16 B 6 A 1 0 abs 6 3 rn 0

BTST Rn,@aa:32 B 6 A 3 0 abs 6 3 rn 0

Table 2-3 Instruction Codes (cont)

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

268

BXOR BXOR #xx:3,Rd B 7 5 0 IMM rd

BXOR #xx:3,@ERd B 7 C 0 erd 0 7 5 0 IMM 0

BXOR #xx:3,@aa:8 B 7 E abs 7 5 0 IMM 0

BXOR #xx:3,@aa:16 B 6 A 1 0 abs 7 5 0 IMM 0

BXOR #xx:3,@aa:32 B 6 A 3 0 abs 7 5 0 IMM 0

CLRMAC* CLRMAC — 0 1 A 0

CMP CMP.B #xx:8,Rd B A rd IMM

CMP.B Rs,Rd B 1 C rs rd

CMP.W #xx:16,Rd W 7 9 2 rd IMM

CMP.W Rd,Rd W 1 D rs rd

CMP.L #xx:32,ERd L 7 A 2 0 erd IMM

CMP.L ERs,ERd L 1 F 1 ers 0 erd

DAA DAA Rd B 0 F 0 rd

DAS DAS Rd B 1 F 0 rd

DEC DEC.B Rd B 1 A 0 rd

DEC.W #1,Rd W 1 B 5 rd

DEC.W #2,Rd W 1 B D rd

DEC.L #1,ERd L 1 B 7 0 erd

DEC.L #2,ERd L 1 B F 0 erd

DIVXS DIVXS.B Rs,Rd B 0 1 D 0 5 1 rs rd

DIVXS.W Rs,ERd W 0 1 D 0 5 3 rs 0 erd

DIVXU DIVXU.B Rs,Rd B 5 1 rs rd

DIVXU.W Rs,ERd W 5 3 rs 0 erd

EEPMOV EEPMOV.B — 7 B 5 C 5 9 8 F

EEPMOV.W — 7 B D 4 5 9 8 F

EXTS EXTS.W Rd W 1 7 D rd

EXTS.L ERd L 1 7 F 0 erd

EXTU EXTU.W Rd W 1 7 5 rd

EXTU.L ERd L 1 7 7 0 erd

INC INC.B Rd B 0 A 0 rd

INC.W #1,Rd W 0 B 5 rd

INC.W #2,Rd W 0 B D rd

INC.L #1,ERd L 0 B 7 0 erd

INC.L #2,ERd L 0 B F 0 erd

Table 2-3 Instruction Codes (cont)

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

269

JMP JMP @ERn — 5 9 0 ern 0

JMP @aa:24 — 5 A abs

JMP @aa:8 — 5 B abs

JSR JSR @ERn — 5 D 0 ern 0

JSR @aa:24 — 5 E abs

JSR @@aa:8 — 5 F abs

LDC LDC #xx:8,CCR B 0 7 IMM

LDC #xx:8,EXR B 0 1 4 1 0 7 IMM

LDC Rs,CCR B 0 3 0 rs

LDC Rs,EXR B 0 3 1 rs

LDC @ERs,CCR W 0 1 4 0 6 9 0 ers 0

LDC @ERs,EXR W 0 1 4 1 6 9 0 ers 0

LDC @(d:16,ERs),CCR W 0 1 4 0 6 F 0 ers 0 disp

LDC @(d:16,ERs),EXR W 0 1 4 1 6 F 0 ers 0 disp

LDC @(d:32,ERs),CCR W 0 1 4 0 7 8 0 ers 0 6 B 2 0 disp

LDC @(d:32,ERs),EXR W 0 1 4 1 7 8 0 ers 0 6 B 2 0 disp

LDC @ERs+,CCR W 0 1 4 0 6 D 0 ers 0

LDC @ERs+,EXR W 0 1 4 1 6 D 0 ers 0

LDC @aa:16,CCR W 0 1 4 0 6 B 0 0 abs

LDC @aa:16,EXR W 0 1 4 1 6 B 0 0 abs

LDC @aa:32,CCR W 0 1 4 0 6 B 2 0 abs

LDC @aa:32,EXR W 0 1 4 1 6 B 2 0 abs

LDM LDM.L @SP+,(ERn–ERn+1) L 0 1 1 0 6 D 7 0 ern+1

LDM.L @SP+,(ERn–ERn+2) L 0 1 2 0 6 D 7 0 ern+2

LDM.L @SP+,(ERn–ERn+3) L 0 1 3 0 6 D 7 0 ern+3

LDMAC* LDMAC ERS,MACH L 0 3 2 0 ers

LDMAC ERs,MACL L 0 3 3 0 ers

MAC* MAC @ERn+,@ERm+ — 0 1 6 0 6 D 0 ern 0 erm

MOV MOV.B #xx:8,Rd B F rd IMM

MOV.B Rs,Rd B 0 C rs rd

MOV.B @ERs,Rd B 6 8 0 ers rd

MOV.B @(d:16,ERs),Rd B 6 E 0 ers rd disp

MOV.B @(d:32,ERs),Rd B 7 8 0 ers 0 6 A 2 rd disp

MOV.B @ERs+,Rd B 6 C 0 ers rd

MOV.B @aa:8,Rd B 2 rd abs

MOV.B @aa:16,Rd B 6 A 0 rd abs

Table 2-3 Instruction Codes (cont)

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

270

MOV MOV.B @aa:32,Rd B 6 A 2 rd abs

MOV.B Rs,@ERd B 6 8 1 erd rs

MOV.B Rs,@(d:16,ERd) B 6 E 1 erd rs disp

MOV.B Rs,@(d:32,ERd) B 7 8 0 erd 0 6 A A rs disp

MOV.B Rs,@–ERd B 6 C 1 erd rs

MOV.B Rs,@aa:8 B 3 rs abs

MOV.B Rs,@aa:16 B 6 A 8 rs abs

MOV.B Rs,@aa:32 B 6 A A rs abs

MOV.W #xx:16,Rd W 7 9 0 rd IMM

MOV.W Rs,Rd W 0 D rs rd

MOV.W @ERs,Rd W 6 9 0 ers rd

MOV.W @(d:16,ERs),Rd W 6 F 0 ers rd disp

MOV.W @(d:32,ERs),Rd W 7 8 0 ers 0 6 B 2 rd disp

MOV.W @ERs+,Rd W 6 D 0 ers rd

MOV.W @aa:16,Rd W 6 B 0 rd abs

MOV.W @aa:32,Rd W 6 B 2 rd abs

MOV.W Rs,@ERd W 6 9 1 erd rs

MOV.W Rs,@(d:16,ERd) W 6 F 1 erd rs disp

MOV.W Rs,@(d:32,ERd) W 7 8 0 erd 0 6 B A rs disp

MOV.W Rs,@–ERd W 6 D 1 erd rs

MOV.W Rs,@aa:16 W 6 B 8 rs abs

MOV.W Rs,@aa:32 W 6 B A rs abs

MOV.L #xx:32,Rd L 7 A 0 0 erd IMM

MOV.L ERs,ERd L 0 F 1 ers 0 erd

MOV.L @ERs,ERd L 0 1 0 0 6 9 0 ers 0 erd

MOV.L @(d:16,ERs),ERd L 0 1 0 0 6 F 0 ers 0 erd disp

MOV.L @(d:32,ERs),ERd* L 0 1 0 0 7 8 0* ers 0 6 B 2 0 erd disp

MOV.L @ERs+,ERd L 0 1 0 0 6 D 0 ers 0 erd

MOV.L @aa:16,ERd L 0 1 0 0 6 B 0 0 erd abs

MOV.L @aa:32,ERd L 0 1 0 0 6 B 2 0 erd abs

MOV.L ERs,@ERd L 0 1 0 0 6 9 1 erd 0 ers

MOV.L ERs,@(d:16,ERd) L 0 1 0 0 6 F 1 erd 0 ers disp

MOV.L ERs,@(d:32,ERd) L 0 1 0 0 7 8 1 erd 0 6 B A 0 ers disp

MOV.L ERs,@–ERd L 0 1 0 0 6 D 1 erd 0 ers

MOV.L ERs,@aa:16 L 0 1 0 0 6 B 8 0 ers abs

MOV.L ERs,@aa:32 L 0 1 0 0 6 B A 0 ers abs

Note: * The MOV.L ERS,@ (d: 32, ERd) instruction will operate with bit 7 of the 4th byte set to either 1 or 0.

Table 2-3 Instruction Codes (cont)

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

271

MOVFPE MOVFPE @aa:16,Rd B 6 A 4 rd abs

MOVTPE MOVTPE Rs,@aa:16 B 6 A C rs abs

MULXS MULXS.B Rs,Rd B 0 1 C 0 5 0 rs rd

MULXS.W Rs,ERd W 0 1 C 0 5 2 rs 0 erd

MULXU MULXU.B Rs,Rd B 5 0 rs rd

MULXU.W Rs,ERd W 5 2 rs 0 erd

NEG NEG.B Rd B 1 7 8 rd

NEG.W Rd W 1 7 9 rd

NEG.L ERd L 1 7 B 0 erd

NOP NOP — 0 0 0 0

NOT NOT.B Rd B 1 7 0 rd

NOT.W Rd W 1 7 1 rd

NOT.L ERd L 1 7 3 0 erd

OR OR.B #xx:8,Rd B C rd IMM

OR.B Rs,Rd B 1 4 rs rd

OR.W #xx:16,Rd W 7 9 4 rd IMM

OR.W Rs,Rd W 6 4 rs rd

OR.L #xx:32,ERd L 7 A 4 0 erd IMM

OR.L ERs,ERd L 0 1 F 0 6 4 0 ers 0 erd

ORC ORC #xx:8,CCR B 0 4 IMM

ORC #xx:8,EXR B 0 1 4 1 0 4 IMM

POP POP.W Rn W 6 D 7 rn

POP.L ERn L 0 1 0 0 6 D 7 0 ern

PUSH PUSH.W Rn W 6 D F rn

PUSH.L ERn L 0 1 0 0 6 D F 0 ern

ROTL ROTL.B Rd B 1 2 8 rd

ROTL.B #2,Rd B 1 2 C rd

ROTL.W Rd W 1 2 9 rd

ROTL.W #2,Rd W 1 2 D rd

ROTL.L ERd L 1 2 B 0 erd

ROTL.L #2,ERd L 1 2 F 0 erd

ROTR ROTR.B Rd B 1 3 8 rd

ROTR.B #2,Rd B 1 3 C rd

ROTR.W Rd W 1 3 9 rd

ROTR.W #2,Rd W 1 3 D rd

Table 2-3 Instruction Codes (cont)

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

272

ROTR ROTR.L ERd L 1 3 B 0 erd

ROTR.L #2,ERd L 1 3 F 0 erd

ROTXL ROTXL.B Rd B 1 2 0 rd

ROTXL.B #2,Rd B 1 2 4 rd

ROTXL.W Rd W 1 2 1 rd

ROTXL.W #2,Rd W 1 2 5 rd

ROTXL.L ERd L 1 2 3 0 erd

ROTXL.L #2,ERd L 1 2 7 0 erd

ROTXR ROTXR.B Rd B 1 3 0 rd

ROTXR.B #2,Rd B 1 3 4 rd

ROTXR.W Rd W 1 3 1 rd

ROTXR.W #2,Rd W 1 3 5 rd

ROTXR.L ERd L 1 3 3 0 erd

ROTXR.L #2,ERd L 1 3 7 0 erd

RTE RTE — 5 6 7 0

RTS RTS — 5 4 7 0

SHAL SHAL.B Rd B 1 0 8 rd

SHAL.B #2,Rd B 1 0 C rd

SHAL.W Rd W 1 0 9 rd

SHAL.W #2,Rd W 1 0 D rd

SHAL.L ERd L 1 0 B 0 erd

SHAL.L #2,ERd L 1 0 F 0 erd

SHAR SHAR.B Rd B 1 1 8 rd

SHAR.B #2,Rd B 1 1 C rd

SHAR.W Rd W 1 1 9 rd

SHAR.W #2,Rd W 1 1 D rd

SHAR.L ERd L 1 1 B 0 erd

SHAR.L #2,ERd L 1 1 F 0 erd

SHLL SHLL.B Rd B 1 0 0 rd

SHLL.B #2,Rd B 1 0 4 rd

SHLL.W Rd W 1 0 1 rd

SHLL.W #2,Rd W 1 0 5 rd

SHLL.L ERd L 1 0 3 0 erd

SHLL.L #2,ERd L 1 0 7 0 erd

SHLR SHLR.B Rd B 1 1 0 rd

SHLR.B #2,Rd B 1 1 4 rd

Table 2-3 Instruction Codes (cont)

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

273

SHLR SHLR.W Rd W 1 1 1 rd

SHLR.W #2,Rd W 1 1 5 rd

SHLR.L ERd L 1 1 3 0 erd

SHLR.L #2,ERd L 1 1 7 0 erd

SLEEP SLEEP — 0 1 8 0

STC STC.B CCR,Rd B 0 2 0 rd

STC.B EXR,Rd B 0 2 1 rd

STC.W CCR,@ERd W 0 1 4 0 6 9 1 erd 0

STC.W EXR,@ERd W 0 1 4 1 6 9 1 erd 0

STC.W CCR,@(d:16,ERd) W 0 1 4 0 6 F 1 erd 0 disp

STC.W EXR,@(d:16,ERd) W 0 1 4 1 6 F 1 erd 0 disp

STC.W CCR,@(d:32,ERd) W 0 1 4 0 7 8 0 erd 0 6 B A 0 disp

STC.W EXR,@(d:32,ERd) W 0 1 4 1 7 8 0 erd 0 6 B A 0 disp

STC.W CCR,@–ERd W 0 1 4 0 6 D 1 erd 0

STC.W EXR,@–ERd W 0 1 4 1 6 D 1 erd 0

STC.W CCR,@aa:16 W 0 1 4 0 6 B 8 0 abs

STC.W EXR,@aa:16 W 0 1 4 1 6 B 8 0 abs

STC.W CCR,@aa:32 W 0 1 4 0 6 B A 0 abs

STC.W EXR,@aa:32 W 0 1 4 1 6 B A 0 abs

STM STM.L (ERn–ERn+1),@–SP L 0 1 1 0 6 D F 0 ern

STM.L (ERn–ERn+2),@–SP L 0 1 2 0 6 D F 0 ern

STM.L (ERn–ERn+3),@–SP L 0 1 3 0 6 D F 0 ern

STMAC* STMAC MACH,ERd L 0 2 2 0 ers

STMAC MACL,ERd L 0 2 3 0 ers

SUB SUB.B Rs,Rd B 1 8 rs rd

SUB.W #xx:16,Rd W 7 9 3 rd IMM

SUB.W Rs,Rd W 1 9 rs rd

SUB.L #xx:32,ERd L 7 A 3 0 erd IMM

SUB.L ERs,ERd L 1 A 1 ers 0 erd

SUBS SUBS #1,ERd L 1 B 0 0 erd

SUBS #2,ERd L 1 B 8 0 erd

SUBS #4,ERd L 1 B 9 0 erd

SUBX SUBX #xx:8,Rd B B rd IMM

SUBX Rs,Rd B 1 E rs rd

TAS TAS @ERd B 0 1 E 0 7 B 0 erd C

TRAPA TRAPA #x:2 — 5 7 00 IMM 0

Table 2-3 Instruction Codes (cont)

Instruction Format
Instruction Mnemonic Size

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

274

Legend
IMM: Immediate data (2, 3, 8, 16, or 32 bits)
abs: Absolute address (8, 16, 24, or 32 bits)
disp: Displacement (8, 16, or 32 bits)
rs, rd, rn: Register field (4 bits specifying an 8-bit or 16-bit register. The symbols rs, rd, and rn correspond to operand symbols Rs, Rd,

and Rn.)
ers, erd, ern, erm: Register field (3 bits specifying an address register or 32-bit register. The symbols ers, erd, ern, and erm correspond to operand

symbols ERs, ERd, ERn, and ERm.)

The register fields specify general registers as follows.

Address Register
32-Bit Register 16-Bit Register 8-Bit Register

Register General Register General Register General
Field Register Field Register Field Register

000 ER0 0000 R0 0000 R0H
001 ER1 0001 R1 0001 R1H
· · · · · ·
· · · · · ·
· · · · · ·

111 ER7 0111 R7 0111 R7H
1000 E0 1000 R0L
1001 E1 1001 R1L

· · · ·
· · · ·
· · · ·

1111 E7 1111 R7L

XOR XOR.B #xx:8,Rd B D rd IMM

XOR.B Rs,Rd B 1 5 rs rd

XOR.W #xx:16,Rd W 7 9 5 rd IMM

XOR.W Rs,Rd W 6 5 rs rd

XOR.L #xx:32,ERd L 7 A 5 0 erd IMM

XOR.L ERs,ERd L 0 1 F 0 6 5 0 ers 0 erd

XORC XORC #xx:8,CCR B 0 5 IMM

XORC #xx:8,EXR B 0 1 4 1 0 5 IMM

Note: *These instructions are supported by the H8S/2600 CPU only.

2.5 Operation Code Map

Table 2-4 shows an operation code map.

Table 2-4 Operation Code Map (1)

Note: *These instructions are supported by the H8S/2600 CPU only.

275

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NOP

Table 2-4 (2)

BRA

MULXU

BSET

1

Table 2-4 (2)

Table 2-4 (2)

BRN

DIVXU

BNOT

2

Table 2-4 (2)

BHI

MULXU

BCLR

3

Table 2-4 (2)

BLS

DIVXU

BTST

4

ORC

OR

BCC

RTS

OR

5

XORC

XOR

BCS

BSR

XOR

6

ANDC

AND

BNE

RTE

AND

7

LDC

Table 2-4 (2)

BEQ

TRAPA

8

BVC

Table 2-4 (2)

MOV

9

BVS

Table 2-4 (2)

A

Table 2-4 (2)

Table 2-4 (2)

BPL

JMP

Table 2-4 (2)

Table 2-4 (2)

B

Table 2-4 (2)

Table 2-4 (2)

BMI

EEPMOV

C

MOV

CMP

BGE

BSR

MOV

D

BLT

E

ADDX

SUBX

BGT

JSR

F

Table 2-4 (2)

Table 2-4 (2)

BLE

BOR
BIOR

BXOR
BIXOR

BAND
BIAND

BST
BIST

BLD
BILD Table 2-4 (2)

ADD

ADDX

CMP

SUBX

OR

XOR

AND

MOV

Operation Code:
1st byte 2nd byte

AH AL BH BL

Instruction when most significant bit of BH is 0.

Instruction when most significant bit of BH is 1.

AH
AL

ADD

SUB

MOV.B

LDC
LDMAC*

STC
STMAC*

MOV

Table 2-4 Operation Code Map (2)

Note: *These instructions are supported by the H8S/2600 CPU only.

276

9

ADDS

BVS

01

0A

0B

0F

10

11

12

13

17

1A

1B

1F

58

6A

79

7A

Operation Code:
1st byte 2nd byte

AH AL BH BL

AH AL
BH 0

MOV

INC

ADDS

DAA

DEC

SUBS

DAS

BRA

MOV

MOV

MOV

1

BRN

Table 2-4 (4)

ADD

ADD

2

BHI

MOV

CMP

CMP

3

SHLL

SHLR

ROTXL

ROTXR

NOT

BLS

Table 2-4 (4)

SUB

SUB

4

BCC

MOVFPE

OR

OR

5

INC

EXTU

DEC

BCS

XOR

XOR

6

MAC*

BNE

ANDAND

7

INC

SHLL

SHLR

ROTXL

ROTXR

EXTU

DEC

BEQ

8

SLEEP

BVC

MOV

A

CLRMAC*

BPL

MOV

B

BMI

C

Table 2-4 (3)

BGE

MOVTPE

D

Table 2-4 (3)

INC

EXTS

DEC

BLT

E

TAS

BGT

F

Table 2-4 (3)

INC

SHAL

SHAR

ROTL

ROTR

EXTS

DEC

BLE

ADD

MOV

SUB

CMP

NEG

SHLL

SHLR

ROTXL

ROTXR

NOT

LDC
STC

SHAL

SHAR

ROTL

ROTR

NEG

SUBS

LDM
STM

SHAL

SHAR

ROTL

ROTR

Table 2-4 Operation Code Map (3)

277

Operation Code:
1st byte 2nd byte

AH AL BH BL

3rd byte 4th byte

CH CL DH DL

01C05

01D05

01F06

7Cr06*1

7Cr07

7Dr06

7Dr07

7Eaa6

7Eaa7

7Faa6

7Faa7

AHALBHBLCH
CL 0

MULXS

BSET

BSET

BSET

BSET

1

DIVXS

BNOT

BNOT

BNOT

BNOT

2

MULXS

BCLR

BCLR

BCLR

BCLR

3

DIVXS

BTST

BTST

BTST

BTST

4

OR

5

XOR

6

AND

7 8 9 A B C D E F

BOR
BIOR

BXOR
BIXOR

BAND
BIAND

BLD
BILD

BST
BIST

BOR
BIOR

BXOR
BIXOR

BAND
BIAND

BLD
BILD

BST
BIST

The letter “r” indicates a register field.

The letters “aa” indicate an absolute address field.

Instruction when most significant bit of DH is 0.

Instruction when most significant bit of DH is 1.

Notes: 1.

2.

*1

*1

*1

*2

*2

*2

*2

Table 2-4 Operation Code Map (4)

278

Operation Code:
1st byte 2nd byte

AH AL BH BL

3rd byte 4th byte

CH CL DH DL

6A10aaaa6*

6A10aaaa7*

6A18aaaa6*

6A18aaaa7*

AHALBHBLCHCLDHDLEH

EL 0 1 2 3 4 5 6 7 8 9 A B C D E F

BOR
BIOR

BXOR
BIXOR

BAND
BIAND

BLD
BILD

BST
BIST

Instruction when most significant bit of FH is 0.
Instruction when most significant bit of FH is 1.

BTST

BSET BNOT BCLR

5th byte 6th byte

EH EL FH FL

Operation Code:
1st byte 2nd byte

AH AL BH BL

3rd byte 4th byte

CH CL DH DL

6A30aaaaaaaa6*

6A30aaaaaaaa7*

6A38aaaaaaaa6*

6A38aaaaaaaa7*

AHALBHBL ... FHFLGH

EL 0 1 2 3 4 5 6 7 8 9 A B C D E F

BOR
BIOR

BXOR
BIXOR

BAND
BIAND

BLD
BILD

BST
BIST

The letters “aa” indicate an absolute address field.

Instruction when most significant bit of HH is 0.
Instruction when most significant bit of HH is 1.

Note: *

BTST

BSET BNOT BCLR

5th byte 6th byte

EH EL FH FL

7th byte 8th byte

GH GL HH HL

2.6 Number of States Required for Instruction Execution

The tables in this section can be used to calculate the number of states required for instruction
execution by the CPU. Table 2-6 indicates the number of instruction fetch, data read/write, and
other cycles occurring in each instruction. Table 2-5 indicates the number of states required for
each cycle, depending on its size. The number of states required for each cycle depends on the
product. See the hardware manuals for the relevant product for details. The number of states
required for execution of an instruction can be calculated from these two tables as follows:

Execution states = I × SI + J × SJ + K × SK + L × SL + M × SM + N × SN

Examples: Advanced mode, program code and stack located in external memory, on-chip
supporting modules accessed in two states with 8-bit bus width, external devices accessed in three
states with one wait state and 16-bit bus width.

1. BSET #0, @FFFFC7:8

From table 2-6:

I = L = 2, J = K = M = N= 0

From table 2-5:

SI = 4, SL = 2

Number of states required for execution = 2 × 4 + 2 × 2 = 12

2. JSR @@30

From table 2-6:

I = J = K = 2, L = M = N = 0

From table 2-5:

SI = SJ = SK = 4

Number of states required for execution = 2 × 4 + 2 × 4 + 2 × 4 = 24

279

Table 2-5 Number of States per Cycle

Access Conditions

On-Chip Supporting
Module 8-Bit Bus 16-Bit Bus

On-Chip 8-Bit 16-Bit 2-State 3-State 2-State 3-State
Cycle Memory Bus Bus Access Access Access Access

Instruction fetch SI 1 2n n 4 6 + 2m 2 3 + m*

Branch address read SJ

Stack operation SK

Byte data access SL n 2 3 + m

Word data access SM 2n 4 6 + 2m

Internal operation SN 1 1 1 1 1 1 1

Note: * For the MOVFPE and MOVTPE instructions, refer to the relevant microcontroller hardware manual.

Legend
m: Number of wait states inserted into external device access
n: Number of states required for access to an on-chip supporting module. For the specific number, refer to the

relevant microcontroller hardware manual.

280

External Device

Table 2-6 Number of Cycles in Instruction Execution

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

ADD ADD.B #xx:8,Rd 1

ADD.B Rs,Rd 1

ADD.W #xx:16,Rd 2

ADD.W Rs,Rd 1

ADD.L #xx:32,ERd 3

ADD.L ERs,ERd 1

ADDS ADDS #1/2/4,ERd 1

ADDX ADDX #xx:8,Rd 1

ADDX Rs,Rd 1

AND AND.B #xx:8,Rd 1

AND.B Rs,Rd 1

AND.W #xx:16,Rd 2

AND.W Rs,Rd 1

AND.L #xx:32,ERd 3

AND.L ERs,ERd 2

ANDC ANDC #xx:8,CCR 1

ANDC #xx:8,EXR 2

BAND BAND #xx:3,Rd 1

BAND #xx:3,@ERd 2 1

BAND #xx:3,@aa:8 2 1

BAND #xx:3,@aa:16 3 1

BAND #xx:3,@aa:32 4 1

Bcc BRA d:8 (BT d:8) 2

BRN d:8 (BF d:8) 2

BHI d:8 2

BLS d:8 2

BCC d:8 (BHS d:8) 2

BCS d:8 (BLO d:8) 2

BNE d:8 2

BEQ d:8 2

BVC d:8 2

BVS d:8 2

BPL d:8 2

BMI d:8 2

BGE d:8 2

BLT d:8 2

BGT d:8 2

BLE d:8 2

BRA d:16 (BT d:16) 2 1

BRN d:16 (BF d:16) 2 1

281

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

Bcc BHI d:16 2 1

BLS d:16 2 1

BCC d:16 (BHS d:16) 2 1

BCS d:16 (BLO d:16) 2 1

BNE d:16 2 1

BEQ d:16 2 1

BVC d:16 2 1

BVS d:16 2 1

BPL d:16 2 1

BMI d:16 2 1

BGE d:16 2 1

BLT d:16 2 1

BGT d:16 2 1

BLE d:16 2 1

BCLR BCLR #xx:3,Rd 1

BCLR #xx:3,@ERd 2 2

BCLR #xx:3,@aa:8 2 2

BCLR #xx:3,@aa:16 3 2

BCLR #xx:3,@aa:32 4 2

BCLR Rn,Rd 1

BCLR Rn,@ERd 2 2

BCLR Rn,@aa:8 2 2

BCLR Rn,@aa:16 3 2

BCLR Rn,@aa:32 4 2

BIAND BIAND #xx:3,Rd 1

BIAND #xx:3,@ERd 2 1

BIAND #xx:3,@aa:8 2 1

BIAND #xx:3,@aa:16 3 1

BIAND #xx:3,@aa:32 4 1

BILD BILD #xx:3,Rd 1

BILD #xx:3,@ERd 2 1

BILD #xx:3,@aa:8 2 1

BILD #xx:3,@aa:16 3 1

BILD #xx:3,@aa:32 4 1

BIOR BIOR #xx:8,Rd 1

BIOR #xx:8,@ERd 2 1

BIOR #xx:8,@aa:8 2 1

BIOR #xx:8,@aa:16 3 1

BIOR #xx:8,@aa:32 4 1

282

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

BIST BIST #xx:3,Rd 1

BIST #xx:3,@ERd 2 2

BIST #xx:3,@aa:8 2 2

BIST #xx:3,@aa:16 3 2

BIST #xx:3,@aa:32 4 2

BIXOR BIXOR #xx:3,Rd 1

BIXOR #xx:3,@ERd 2 1

BIXOR #xx:3,@aa:8 2 1

BIXOR #xx:3,@aa:16 3 1

BIXOR #xx:3,@aa:32 4 1

BLD BLD #xx:3,Rd 1

BLD #xx:3,@ERd 2 1

BLD #xx:3,@aa:8 2 1

BLD #xx:3,@aa:16 3 1

BLD #xx:3,@aa:32 4 1

BNOT BNOT #xx:3,Rd 1

BNOT #xx:3,@ERd 2 2

BNOT #xx:3,@aa:8 2 2

BNOT #xx:3,@aa:16 3 2

BNOT #xx:3,@aa:32 4 2

BNOT Rn,Rd 1

BNOT Rn,@ERd 2 2

BNOT Rn,@aa:8 2 2

BNOT Rn,@aa:16 3 2

BNOT Rn,@aa:32 4 2

BOR BOR #xx:3,Rd 1

BOR #xx:3,@ERd 2 1

BOR #xx:3,@aa:8 2 1

BOR #xx:3,@aa:16 3 1

BOR #xx:3,@aa:32 4 1

BSET BSET #xx:3,Rd 1

BSET #xx:3,@ERd 2 2

BSET #xx:3,@aa:8 2 2

BSET #xx:3,@aa:16 3 2

BSET #xx:3,@aa:32 4 2

BSET Rn,Rd 1

BSET Rn,@ERd 2 2

BSET Rn,@aa:8 2 2

BSET Rn,@aa:16 3 2

BSET Rn,@aa:32 4 2

283

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

BSR BSR d:8 Normal 2 1

Advanced 2 2

BSR d:16 Normal 2 1 1

Advanced 2 2 1

BST BST #xx:3,Rd 1

BST #xx:3,@ERd 2 2

BST #xx:3,@aa:8 2 2

BST #xx:3,@aa:16 3 2

BST #xx:3,@aa:32 4 2

BTST BTST #xx:3,Rd 1

BTST #xx:3,@ERd 2 1

BTST #xx:3,@aa:8 2 1

BTST #xx:3,@aa:16 3 1

BTST #xx:3,@aa:32 4 1

BTST Rn,Rd 1

BTST Rn,@ERd 2 1

BTST Rn,@aa:8 2 1

BTST Rn,@aa:16 3 1

BTST Rn,@aa:32 4 1

BXOR BXOR #xx:3,Rd 1

BXOR #xx:3,@ERd 2 1

BXOR #xx:3,@aa:8 2 1

BXOR #xx:3,@aa:16 3 1

BXOR #xx:3,@aa:32 4 1

CLRMAC CLRMAC 1 1

CMP CMP.B #xx:8,Rd 1

CMP.B Rs,Rd 1

CMP.W #xx:16,Rd 2

CMP.W Rs,Rd 1

CMP.L #xx:32,ERd 3

CMP.L ERs,ERd 1

DAA DAA Rd 1

DAS DAS Rd 1

DEC DEC.B Rd 1

DEC.W #1/2,Rd 1

DEC.L #1/2,ERd 1

DIVXS DIVXS.B Rs,Rd 2 11

DIVXS.W Rs,ERd 2 19

DIVXU DIVXU.B Rs,Rd 1 11

DIVXU.W Rs,ERd 1 19

284

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

EEPMOV EEPMOV.B 2 2n + 2*1

EEPMOV.W 2 2n + 2*1

EXTS EXTS.W Rd 1

EXTS.L ERd 1

EXTU EXTU.W Rd 1

EXTU.L ERd 1

INC INC.B Rd 1

INC.W #1/2,Rd 1

INC.L #1/2,ERd 1

JMP JMP @ERn 2

JMP @aa:24 2 1

JMP @@aa:8 Normal 2 1 1

Advanced 2 2 1

JSR JSR @ERn Normal 2 1

Advanced 2 2

JSR @aa:24 Normal 2 1 1

Advanced 2 2 1

JSR @@aa:8 Normal 2 1 1

Advanced 2 2 2

LDC LDC #xx:8,CCR 1

LDC #xx:8,EXR 2

LDC Rs,CCR 1

LDC Rs,EXR 1

LDC @ERs,CCR 2 1

LDC @ERs,EXR 2 1

LDC @(d:16,ERs),CCR 3 1

LDC @(d:16,ERs),EXR 3 1

LDC @(d:32,ERs),CCR 5 1

LDC @(d:32,ERs),EXR 5 1

LDC @ERs+,CCR 2 1 1

LDC @ERs+,EXR 2 1 1

LDC @aa:16,CCR 3 1

LDC @aa:16,EXR 3 1

LDC @aa:32,CCR 4 1

LDC @aa:32,EXR 4 1

LDM LDM.L @SP+,(ERn–ERn+1) 2 4 1

LDM.L @SP+,(ERn–ERn+2) 2 6 1

LDM.L @SP+,(ERn–ERn+3) 2 8 1

LDMAC* LDMAC ERs,MACH 1 1

LDMAC ERs,MACL 1 1

285

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

MAC* MAC @ERn+,@ERm+ 2 2

MOV MOV.B #xx:8,Rd 1

MOV.B Rs,Rd 1

MOV.B @ERs,Rd 1 1

MOV.B @(d:16,ERs),Rd 2 1

MOV.B @(d:32,ERs),Rd 4 1

MOV.B @ERs+,Rd 1 1 1

MOV.B @aa:8,Rd 1 1

MOV.B @aa:16,Rd 2 1

MOV.B @aa:32,Rd 3 1

MOV.B Rs,@ERd 1 1

MOV.B Rs,@(d:16,ERd) 2 1

MOV.B Rs,@(d:32,ERd) 4 1

MOV.B Rs,@–ERd 1 1 1

MOV.B Rs,@aa:8 1 1

MOV.B Rs,@aa:16 2 1

MOV.B Rs,@aa:32 3 1

MOV.W #xx:16,Rd 2

MOV.W Rs,Rd 1

MOV.W @ERs,Rd 1 1

MOV.W @(d:16,ERs),Rd 2 1

MOV.W @(d:32,ERs),Rd 4 1

MOV.W @ERs+,Rd 1 1 1

MOV.W @aa:16,Rd 2 1

MOV.W @aa:32,Rd 3 1

MOV.W Rs,@ERd 1 1

MOV.W Rs,@(d:16,ERd) 2 1

MOV.W Rs,@(d:32,ERd) 4 1

MOV.W Rs,@–ERd 1 1 1

MOV.W Rs,@aa:16 2 1

MOV.W Rs,@aa:32 3 1

MOV.L #xx:32,ERd 3

MOV.L ERs,ERd 1

MOV.L @ERs,ERd 2 2

MOV.L @(d:16,ERs),ERd 3 2

MOV.L @(d:32,ERs),ERd 5 2

MOV.L @ERs+,ERd 2 2 1

MOV.L @aa:16,ERd 3 2

MOV.L @aa:32,ERd 4 2

MOV.L ERs,@ERd 2 2

MOV.L ERs,@(d:16,ERd) 3 2

286

287

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

MOV MOV.L ERs,@(d:32,ERd) 5 2

MOV.L ERs,@–ERd 2 2 1

MOV.L ERs,@aa:16 3 2

MOV.L ERs,@aa:32 4 2

MOVFPE MOVFPE @:aa:16,Rd 2 1*2

MOVTPE MOVTPE Rs,@:aa:16 2 1*2

MULXS MULXS.B Rs,Rd H8S/2600 2 2
H8S/2000 2 10

MULXS.W Rs,ERd H8S/2600 2 3
H8S/2000 2 18

MULXU MULXU.B Rs,Rd H8S/2600 1 2
H8S/2000 1 10

MULXU.W Rs,ERd H8S/2600 1 3
H8S/2000 1 18

NEG NEG.B Rd 1

NEG.W Rd 1

NEG.L ERd 1

NOP NOP 1

NOT NOT.B Rd 1

NOT.W Rd 1

NOT.L ERd 1

OR OR.B #xx:8,Rd 1

OR.B Rs,Rd 1

OR.W #xx:16,Rd 2

OR.W Rs,Rd 1

OR.L #xx:32,ERd 3

OR.L ERs,ERd 2

ORC ORC #xx:8,CCR 1

ORC #xx:8,EXR 2

POP POP.W Rn 1 1 1

POP.L ERn 2 2 1

PUSH PUSH.W Rn 1 1 1

PUSH.L ERn 2 2 1

ROTL ROTL.B Rd 1

ROTL.B #2,Rd 1

ROTL.W Rd 1

ROTL.W #2,Rd 1

ROTL.L ERd 1

ROTL.L #2,ERd 1

ROTR ROTR.B Rd 1

ROTR.B #2,Rd 1

ROTR.W Rd 1

ROTR.W #2,Rd 1

ROTR.L ERd 1

ROTR.L #2,ERd 1

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

ROTXL ROTXL.B Rd 1

ROTXL.B #2,Rd 1

ROTXL.W Rd 1

ROTXL.W #2,Rd 1

ROTXL.L ERd 1

ROTXL.L #2,ERd 1

ROTXR ROTXR.B Rd 1

ROTXR.B #2,Rd 1

ROTXR.W Rd 1

ROTXR.W #2,Rd 1

ROTXR.L ERd 1

ROTXR.L #2,ERd 1

RTE RTE 2 2/3 *1 1

RTS RTS Normal 2 1 1

Advanced 2 2 1

SHAL SHAL.B Rd 1

SHAL.B #2,Rd 1

SHAL.W Rd 1

SHAL.W #2,Rd 1

SHAL.L ERd 1

SHAL.L #2,ERd 1

SHAR SHAR.B Rd 1

SHAR.B #2,Rd 1

SHAR.W Rd 1

SHAR.W #2,Rd 1

SHAR.L ERd 1

SHAR.L #2,ERd 1

SHLL SHLL.B Rd 1

SHLL.B #2,Rd 1

SHLL.W Rd 1

SHLL.W #2,Rd 1

SHLL.L ERd 1

SHLL.L #2,ERd 1

SHLR SHLR.B Rd 1

SHLR.B #2,Rd 1

SHLR.W Rd 1

SHLR.W #2,Rd 1

SHLR.L ERd 1

SHLR.L #2,ERd 1

SLEEP SLEEP 1 1

288

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

STC STC.B CCR,Rd 1

STC.B EXR,Rd 1

STC.W CCR,@ERd 2 1

STC.W EXR,@ERd 2 1

STC.W CCR,@(d:16,ERd) 3 1

STC.W EXR,@(d:16,ERd) 3 1

STC.W CCR,@(d:32,ERd) 5 1

STC.W EXR,@(d:32,ERd) 5 1

STC.W CCR,@–ERd 2 1 1

STC.W EXR,@–ERd 2 1 1

STC.W CCR,@aa:16 3 1

STC.W EXR,@aa:16 3 1

STC.W CCR,@aa:32 4 1

STC.W EXR,@aa:32 4 1

STM STM.L (ERn–ERn+1),@–SP 2 4 1

STM.L(ERn–ERn+2),@–SP 2 6 1

STM.L(ERn–ERn+3),@–SP 2 8 1

STMAC* STMAC MACH,ERd 1

STMAC MACL,ERd 1

SUB SUB.B Rs,Rd 1

SUB.W #xx:16,Rd 2

SUB.W Rs,Rd 1

SUB.L #xx:32,ERd 3

SUB.L ERs,ERd 1

SUBS SUBS #1/2/4,ERd 1

SUBX SUBX #xx:8,Rd 1

SUBX Rs,Rd 1

TAS TAS @ERd 2 2

TRAPA TRAPA #x:2 Normal 2 1 2/3 *1 2

Advanced 2 2 2/3 *1 2

XOR XOR.B #xx:8,Rd 1

XOR.B Rs,Rd 1

XOR.W #xx:16,Rd 2

XOR.W Rs,Rd 1

XOR.L #xx:32,ERd 3

XOR.L ERs,ERd 2

XORC XORC #xx:8,CCR 1

XORC XORC #xx:8,EXR 2

Notes: *These instructions are supported by the H8S/2600 CPU only.
1. 2 when EXR is invalid, 3 when EXR is valid.
2. 5 for concatenated execution, 4 otherwise.

289

2.7 Condition Code Modification

This section indicates the effect of each CPU instruction on the condition code. The notation used
in the table is defined below.

m = 31 for longword operands

15 for word operands

7 for byte operands

Si The i-th bit of the source operand

Di The i-th bit of the destination operand

Ri The i-th bit of the result

Dn The specified bit in the destination operand

— Not affected

↕ Modified according to the result of the instruction (see definition)

0 Always cleared to 0

1 Always set to 1

* Undetermined (no guaranteed value)

Z' Z flag before instruction execution

C' C flag before instruction execution

290

Table 2-7 Condition Code Modification

Instruction H N Z V C Definition

ADD ↕ ↕ ↕ ↕ ↕ H = Sm–4 · Dm–4 + Dm–4 · Rm–4 + Sm–4 · Rm–4

N = Rm

Z = Rm · Rm–1 · · R0

V = Sm · Dm · Rm + Sm · Dm · Rm

C = Sm · Dm + Dm · Rm + Sm · Rm

ADDS — — — — —

ADDX ↕ ↕ ↕ ↕ ↕ H = Sm–4 · Dm–4 + Dm–4 · Rm–4 + Sm–4 · Rm–4

N = Rm

Z = Z' · Rm · · R0

V = Sm · Dm · Rm + Sm · Dm · Rm

C = Sm · Dm + Dm · Rm + Sm · Rm

AND — ↕ ↕ 0 — N = Rm

Z = Rm · Rm–1 · · R0

ANDC ↕ ↕ ↕ ↕ ↕ Stores the corresponding bits of the result.

No flags change when the operand is EXR.

BAND — — — — ↕ C = C' · Dn

Bcc — — — — —

BCLR — — — — —

BIAND — — — — ↕ C = C' · Dn

BILD — — — — ↕ C = Dn

BIOR — — — — ↕ C = C' + Dn

BIST — — — — —

BIXOR — — — — ↕ C = C' · Dn + C' · Dn

BLD — — — — ↕ C = Dn

BNOT — — — — —

BOR — — — — ↕ C = C' + Dn

BSET — — — — —

BSR — — — — —

BST — — — — —

BTST — — ↕ — — Z = Dn

BXOR — — — — ↕ C = C' · Dn + C' · Dn

CLRMAC* — — — — —

CMP ↕ ↕ ↕ ↕ ↕ H = Sm–4 · Dm–4 + Dm–4 · Rm–4 + Sm–4 · Rm–4

N = Rm

Z = Rm · Rm–1 · ... · R0

V = Sm · Dm · Rm + Sm · Dm · Rm

C = Sm · Dm + Dm · Rm + Sm · Rm

291

Table 2-7 Condition Code Modification (cont)

Instruction H N Z V C Definition

DAA * ↕ ↕ * ↕ N = Rm

Z = Rm · Rm–1 · · R0

C: decimal arithmetic carry

DAS * ↕ ↕ * ↕ N = Rm

Z = Rm · Rm–1 · · R0

C: decimal arithmetic borrow

DEC — ↕ ↕ ↕ — N = Rm

Z = Rm · Rm–1 · · R0

V = Dm · Rm

DIVXS — ↕ ↕ — — N = Sm · Dm + Sm · Dm

Z = Sm · Sm–1 · · S0

DIVXU — ↕ ↕ — — N = Sm

Z = Sm · Sm–1 · · S0

EEPMOV — — — — —

EXTS — ↕ ↕ 0 — N = Rm

Z = Rm · Rm–1 · · R0

EXTU — 0 ↕ 0 — Z = Rm · Rm–1 · · R0

INC — ↕ ↕ ↕ — N = Rm

Z = Rm · Rm–1 · · R0

V = Dm · Rm

JMP — — — — —

JSR — — — — —

LDC ↕ ↕ ↕ ↕ ↕ Stores the corresponding bits of the result.

No flags change when the operand is EXR.

LDM — — — — —

LDMAC* — — — — —

MAC* — — — — —

MOV — ↕ ↕ 0 — N = Rm

Z = Rm · Rm–1 · · R0

MOVFPE — ↕ ↕ 0 — N = Rm

Z = Rm · Rm–1 · · R0

MOVTPE — ↕ ↕ 0 — N = Rm

Z = Rm · Rm–1 · · R0

MULXS — ↕ ↕ — — N = R2m

Z = R2m · R2m–1 · · R0

292

Table 2-7 Condition Code Modification (cont)

Instruction H N Z V C Definition

MULXU — — — — —

NEG ↕ ↕ ↕ ↕ ↕ H = Dm–4 + Rm–4

N = Rm

Z = Rm · Rm–1 · · R0

V = Dm · Rm

C = Dm + Rm

NOP — — — — —

NOT — ↕ ↕ 0 — N = Rm

Z = Rm · Rm–1 · · R0

OR — ↕ ↕ 0 — N = Rm

Z = Rm · Rm–1 · · R0

ORC ↕ ↕ ↕ ↕ ↕ Stores the corresponding bits of the result.

No flags change when the operand is EXR.

POP — ↕ ↕ 0 — N = Rm

Z = Rm · Rm–1 · · R0

PUSH — ↕ ↕ 0 — N = Rm

Z = Rm · Rm–1 · · R0

ROTL — ↕ ↕ 0 ↕ N = Rm

Z = Rm · Rm–1 · · R0

C = Dm (1-bit shift) or C = Dm–1 (2-bit shift)

ROTR — ↕ ↕ 0 ↕ N = Rm

Z = Rm · Rm–1 · · R0

C = D0 (1-bit shift) or C = D1 (2-bit shift)

ROTXL — ↕ ↕ 0 ↕ N = Rm

Z = Rm · Rm–1 · · R0

C = Dm (1-bit shift) or C = Dm–1 (2-bit shift)

ROTXR — ↕ ↕ 0 ↕ N = Rm

Z = Rm · Rm–1 · · R0

C = D0 (1-bit shift) or C = D1 (2-bit shift)

RTE ↕ ↕ ↕ ↕ ↕ Stores the corresponding bits of the result.

RTS — — — — —

SHAL — ↕ ↕ ↕ ↕ N = Rm

Z = Rm · Rm–1 · · R0

V = Dm · Dm–1 + Dm · Dm–1 (1-bit shift)

V = Dm · Dm–1 · Dm–2 + Dm · Dm–1 · Dm–2 (2-bit shift)

C = Dm (1-bit shift) or C = Dm–1 (2-bit shift)

293

Table 2-7 Condition Code Modification (cont)

Instruction H N Z V C Definition

SHAR — ↕ ↕ 0 ↕ N = Rm

Z = Rm · Rm–1 · · R0

C = D0 (1-bit shift) or C = D1 (2-bit shift)

SHLL — ↕ ↕ 0 ↕ N = Rm

Z = Rm · Rm–1 · · R0

C = Dm (1-bit shift) or C = Dm–1 (2-bit shift)

SHLR — 0 ↕ 0 ↕ N = Rm

Z = Rm · Rm–1 · · R0

C = D0 (1-bit shift) or C = D1 (2-bit shift)

SLEEP — — — — —

STC — — — — —

STM — — — — —

STMAC* — ↕ ↕ ↕ — N = 1 if MAC instruction resulted in negative value in MAC register

Z = 1 if MAC instruction resulted in zero value in MAC register

V = 1 if MAC instruction resulted in overflow

SUB ↕ ↕ ↕ ↕ ↕ H = Sm–4 · Dm–4 + Dm–4 · Rm–4 + Sm–4 · Rm–4

N = Rm

Z = Rm · Rm–1 · · R0

V = Sm · Dm · Rm + Sm · Dm · Rm

C = Sm · Dm + Dm · Rm + Sm · Rm

SUBS — — — — —

SUBX ↕ ↕ ↕ ↕ ↕ H = Sm–4 · Dm–4 + Dm–4 · Rm–4 + Sm–4 · Rm–4

N = Rm

Z = Z' · Rm · · R0

V = Sm · Dm · Rm + Sm · Dm · Rm

C = Sm · Dm + Dm · Rm + Sm · Rm

TAS — ↕ ↕ 0 — N = Dm

Z = Dm · Dm–1 · · D0

TRAPA — — — — —

XOR — ↕ ↕ 0 — N = Rm

Z = Rm · Rm–1 · · R0

XORC ↕ ↕ ↕ ↕ ↕ Stores the corresponding bits of the result.

No flags change when the operand is EXR.

Note: *These instructions are supported by the H8S/2600 CPU only.

294

2.8 Bus States During Instruction Execution

Table 2-8 indicates the types of cycles that occur during instruction execution by the CPU. See
table 2-5 for the number of states per cycle.

How to Read the Table:

Legend

R:B Byte-size read

R:W Word-size read

W:B Byte-size write

W:W Word-size write

2nd Address of 2nd word (3rd and 4th bytes)

3rd Address of 3rd word (5th and 6th bytes)

4th Address of 4th word (7th and 8th bytes)

5th Address of 5th word (9th and 10th bytes)

NEXT Address of next instruction

EA Effective address

VEC Vector address

Internal operation,

1 state

Order of execution

End of instruction

Read effective address (word-size read)

No read or write

Instruction 1 2 3 4 5 6 7 8

JMP @aa:24 R:W 2nd R:W EA

Read 2nd word of current instruction

(word-size read)

9

295

Figure 2-1 shows timing waveforms for the address bus and the RD and WR (HWR or LWR)
signals during execution of the above instruction with an 8-bit bus, using three-state access with no
wait states.

Figure 2-1 Address Bus, RD, and WR (HWR or LWR) Timing
(8-Bit Bus, Three-State Access, No Wait States)

ø

Address bus

RD

WR (HWR or

LWR) High level

Fetching

3rd byte

of instruction

Fetching

4th byte

of instruction

Fetching

1st byte of

instruction at

jump address

Fetching

2nd byte of

instruction at

jump address

R:W EAR:W 2nd Internal

operation

296

297

Table 2-8 Instruction Execution Cycles

Instruction 1 2 3 4 5 6 7 8 9

ADD.B #xx:8,Rd R:W NEXT

ADD.B Rs,Rd R:W NEXT

ADD.W #xx:16,Rd R:W 2nd R:W NEXT

ADD.W Rs,Rd R:W NEXT

ADD.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

ADD.L ERs,ERd R:W NEXT

ADDS #1/2/4,ERd R:W NEXT

ADDX #xx:8,Rd R:W NEXT

ADDX Rs,Rd R:W NEXT

AND.B #xx:8,Rd R:W NEXT

AND.B Rs,Rd R:W NEXT

AND.W #xx:16,Rd R:W 2nd R:W NEXT

AND.W Rs,Rd R:W NEXT

AND.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

AND.L ERs,ERd R:W 2nd R:W NEXT

ANDC #xx:8,CCR R:W NEXT

ANDC #xx:8,EXR R:W 2nd R:W NEXT

BAND #xx:3,Rd R:W NEXT

BAND #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BAND #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BAND #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT

BAND #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT

BRA d:8 (BT d:8) R:W NEXT R:W EA

BRN d:8 (BF d:8) R:W NEXT R:W EA

BHI d:8 R:W NEXT R:W EA

BLS d:8 R:W NEXT R:W EA

BCC d:8 (BHS d:8) R:W NEXT R:W EA

BCS d:8 (BLO d:8) R:W NEXT R:W EA

BNE d:8 R:W NEXT R:W EA

BEQ d:8 R:W NEXT R:W EA

BVC d:8 R:W NEXT R:W EA

BVS d:8 R:W NEXT R:W EA

BPL d:8 R:W NEXT R:W EA

BMI d:8 R:W NEXT R:W EA

BGE d:8 R:W NEXT R:W EA

BLT d:8 R:W NEXT R:W EA

BGT d:8 R:W NEXT R:W EA

298

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8 9

BLE d:8 R:W NEXT R:W EA

BRA d:16 (BT d:16) R:W 2nd Internal operation, R:W EA
1 state

BRN d:16 (BF d:16) R:W 2nd Internal operation, R:W EA
1 state

BHI d:16 R:W 2nd Internal operation, R:W EA
1 state

BLS d:16 R:W 2nd Internal operation, R:W EA
1 state

BCC d:16 (BHS d:16) R:W 2nd Internal operation, R:W EA
1 state

BCS d:16 (BLO d:16) R:W 2nd Internal operation, R:W EA
1 state

BNE d:16 R:W 2nd Internal operation, R:W EA
1 state

BEQ d:16 R:W 2nd Internal operation, R:W EA
1 state

BVC d:16 R:W 2nd Internal operation, R:W EA
1 state

BVS d:16 R:W 2nd Internal operation, R:W EA
1 state

BPL d:16 R:W 2nd Internal operation, R:W EA
1 state

BMI d:16 R:W 2nd Internal operation, R:W EA
1 state

BGE d:16 R:W 2nd Internal operation, R:W EA
1 state

BLT d:16 R:W 2nd Internal operation, R:W EA
1 state

BGT d:16 R:W 2nd Internal operation, R:W EA
1 state

BLE d:16 R:W 2nd Internal operation, R:W EA
1 state

BCLR #xx:3,Rd R:W NEXT

BCLR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BCLR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BCLR #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA

299

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8 9

BCLR #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA

BCLR Rn,Rd R:W NEXT

BCLR Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BCLR Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BCLR Rn,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA

BCLR Rn,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA

BIAND #xx:3,Rd R:W NEXT

BIAND #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BIAND #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BIAND #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT

BIAND #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT

BILD #xx:3,Rd R:W NEXT

BILD #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BILD #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BILD #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT

BILD #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT

BIOR #xx:3,Rd R:W NEXT

BIOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BIOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BIOR #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT

BIOR #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT

BIST #xx:3,Rd R:W NEXT

BIST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BIST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BIST #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA

BIST #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA

BIXOR #xx:3,Rd R:W NEXT

BIXOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BIXOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BIXOR #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT

BIXOR #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT

BLD #xx:3,Rd R:W NEXT

BLD #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BLD #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BLD #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT

BLD #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT

BNOT #xx:3,Rd R:W NEXT

300

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8 9

BNOT #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BNOT #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BNOT #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA

BNOT #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA

BNOT Rn,Rd R:W NEXT

BNOT Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BNOT Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BNOT Rn,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA

BNOT Rn,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA

BOR #xx:3,Rd R:W NEXT

BOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BOR #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT

BOR #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT

BSET #xx:3,Rd R:W NEXT

BSET #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BSET #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BSET #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA

BSET #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA

BSET Rn,Rd R:W NEXT

BSET Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BSET Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BSET Rn,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA

BSET Rn,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA

BSR d:8 Normal R:W NEXT R:W EA W:W stack

Advanced R:W NEXT R:W EA W:W stack (H) W:W stack (L)

BSR d:16 Normal R:W 2nd Internal operation, R:W EA W:W stack
1 state

Advanced R:W 2nd Internal operation, R:W EA W:W stack (H) W:W stack (L)
1 state

BST #xx:3,Rd R:W NEXT

BST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BST #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT W:B EA

BST #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT W:B EA

BTST #xx:3,Rd R:W NEXT

BTST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

301

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8 9

BTST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BTST #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT

BTST #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT

BTST Rn,Rd R:W NEXT

BTST Rn,@ERd R:W 2nd R:B EA R:W NEXT

BTST Rn,@aa:8 R:W 2nd R:B EA R:W NEXT

BTST Rn,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT

BTST Rn,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT

BXOR #xx:3,Rd R:W NEXT

BXOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BXOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BXOR #xx:3,@aa:16 R:W 2nd R:W 3rd R:B EA R:W NEXT

BXOR #xx:3,@aa:32 R:W 2nd R:W 3rd R:W 4th R:B EA R:W NEXT

CLRMAC* R:W NEXT Internal operation,
1 state

CMP.B #xx:8,Rd R:W NEXT

CMP.B Rs,Rd R:W NEXT

CMP.W #xx:16,Rd R:W 2nd R:W NEXT

CMP.W Rs,Rd R:W NEXT

CMP.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

CMP.L ERs,ERd R:W NEXT

DAA Rd R:W NEXT

DAS Rd R:W NEXT

DEC.B Rd R:W NEXT

DEC.W #1/2,Rd R:W NEXT

DEC.L #1/2,ERd R:W NEXT

DIVXS.B Rs,Rd R:W 2nd R:W NEXT Internal operation, 11 states

DIVXS.W Rs,ERd R:W 2nd R:W NEXT Internal operation, 19 states

DIVXU.B Rs,Rd R:W NEXT Internal operation, 11 states

DIVXU.W Rs,ERd R:W NEXT Internal operation, 19 states

EEPMOV.B R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W NEXT

EEPMOV.W R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W NEXT

EXTS.W Rd R:W NEXT ← Repeated n times*3 →

EXTS.L ERd R:W NEXT

EXTU.W Rd R:W NEXT

EXTU.L ERd R:W NEXT

INC.B Rd R:W NEXT

302

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8 9

INC.W #1/2,Rd R:W NEXT

INC.L #1/2,ERd R:W NEXT

JMP @ERn R:W NEXT R:W EA

JMP @aa:24 R:W 2nd Internal operation, R:W EA
1 state

JMP @@aa:8 Normal R:W NEXT R:W aa:8 Internal operation, R:W EA
1 state

Advanced R:W NEXT R:W aa:8 R:W aa:8 Internal operation, R:W EA
1 state

JSR @ERn Normal R:W NEXT R:W EA W:W stack

Advanced R:W NEXT R:W EA W:W stack (H) W:W stack (L)

JSR @aa:24 Normal R:W 2nd Internal operation, R:W EA W:W stack
1 state

Advanced R:W 2nd Internal operation, R:W EA W:W stack (H) W:W stack (L)
1 state

JSR @@aa:8 Normal R:W NEXT R:W aa:8 W:W stack R:W EA

Advanced R:W NEXT R:W aa:8 R:W aa:8 W:W stack (H) W:W stack (L) R:W EA

LDC #xx:8,CCR R:W NEXT

LDC #xx:8,EXR R:W 2nd R:W NEXT

LDC Rs,CCR R:W NEXT

LDC Rs,EXR R:W NEXT

LDC @ERs,CCR R:W 2nd R:W NEXT R:W EA

LDC @ERs,EXR R:W 2nd R:W NEXT R:W EA

LDC @(d:16,ERs),CCR R:W 2nd R:W 3rd R:W NEXT R:W EA

LDC @(d:16,ERs),EXR R:W 2nd R:W 3rd R:W NEXT R:W EA

LDC @(d:32,ERs),CCR R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT R:W EA

LDC @(d:32,ERs),EXR R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT R:W EA

LDC @ERs+,CCR R:W 2nd R:W NEXT Internal operation, R:W EA
1 state

LDC @ERs+,EXR R:W 2nd R:W NEXT Internal operation, R:W EA
1 state

LDC @aa:16,CCR R:W 2nd R:W 3rd R:W NEXT R:W EA

LDC @aa:16,EXR R:W 2nd R:W 3rd R:W NEXT R:W EA

LDC @aa:32,CCR R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA

LDC @aa:32,EXR R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA

LDM.L @SP+,(ERn–ERn+1) R:W 2nd R:W NEXT Internal operation, R:W stack (H) *3 R:W stack (L) *3

1 state

303

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8 9

LDM.L @SP+,(ERn–ERn+2) R:W 2nd R:W NEXT Internal operation, R:W stack (H) *3 R:W stack (L) *3

1 state

LDM.L @SP+,(ERn–ERn+3) R:W 2nd R:W NEXT Internal operation, R:W stack (H) *3 R:W stack (L) *3

1 state

LDMAC ERs,MACH* R:W NEXT Internal operation, ← Repeated n times*3 →
1 state

LDMAC ERs,MACL* R:W NEXT Internal operation,
1 state

MAC @ERn+,@ERm+* R:W 2nd R:W NEXT R:W EAn R:W EAm

MOV.B #xx:8,Rd R:W NEXT

MOV.B Rs,Rd R:W NEXT

MOV.B @ERs,Rd R:W NEXT R:B EA

MOV.B @(d:16,ERs),Rd R:W 2nd R:W NEXT R:B EA

MOV.B @(d:32,ERs),Rd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:B EA

MOV.B @ERs+,Rd R:W NEXT Internal operation, R:B EA
1 state

MOV.B @aa:8,Rd R:W NEXT R:B EA

MOV.B @aa:16,Rd R:W 2nd R:W NEXT R:B EA

MOV.B @aa:32,Rd R:W 2nd R:W 3rd R:W NEXT R:B EA

MOV.B Rs,@ERd R:W NEXT W:B EA

MOV.B Rs,@(d:16,ERd) R:W 2nd R:W NEXT W:B EA

MOV.B Rs,@(d:32,ERd) R:W 2nd R:W 3rd R:W 4th R:W NEXT W:B EA

MOV.B Rs,@–ERd R:W NEXT Internal operation, W:B EA
1 state

MOV.B Rs,@aa:8 R:W NEXT W:B EA

MOV.B Rs,@aa:16 R:W 2nd R:W NEXT W:B EA

MOV.B Rs,@aa:32 R:W 2nd R:W 3rd R:W NEXT W:B EA

MOV.W #xx:16,Rd R:W 2nd R:W NEXT

MOV.W Rs,Rd R:W NEXT

MOV.W @ERs,Rd R:W NEXT R:W EA

MOV.W @(d:16,ERs),Rd R:W 2nd R:W NEXT R:W EA

MOV.W @(d:32,ERs),Rd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA

MOV.W @ERs+,Rd R:W NEXT Internal operation, R:W EA
1 state

MOV.W @aa:16,Rd R:W 2nd R:W NEXT R:W EA

MOV.W @aa:32,Rd R:W 2nd R:W 3rd R:W NEXT R:B EA

MOV.W Rs,@ERd R:W NEXT W:W EA

Instruction 1 2 3 4 5 6 7 8 9

304

Table 2-8 Instruction Execution Cycles (cont)

MOV.W Rs,@(d:16,ERd) R:W 2nd R:W NEXT W:W EA

MOV.W Rs,@(d:32,ERd) R:W 2nd R:W 3rd R:E 4th R:W NEXT W:W EA

MOV.W Rs,@–ERd R:W NEXT Internal operation, W:W EA
1 state

MOV.W Rs,@aa:16 R:W 2nd R:W NEXT W:W EA

MOV.W Rs,@aa:32 R:W 2nd R:W 3rd R:W NEXT W:W EA

MOV.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

MOV.L ERs,ERd R:W NEXT

MOV.L @ERs,ERd R:W 2nd R:W NEXT R:W EA R:W EA+2

MOV.L @(d:16,ERs),ERd R:W 2nd R:W 3rd R:W NEXT R:W EA R:W EA+2

MOV.L @(d:32,ERs),ERd R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT R:W EA R:W EA+2

MOV.L @ERs+,ERd R:W 2nd R:W NEXT Internal operation, R:W EA R:W EA+2
1 state

MOV.L @aa:16,ERd R:W 2nd R:W 3rd R:W NEXT R:W EA R:W EA+2

MOV.L @aa:32,ERd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA R:W EA+2

MOV.L ERs,@ERd R:W 2nd R:W NEXT W:W EA W:W EA+2

MOV.L ERs,@(d:16,ERd) R:W 2nd R:W 3rd R:W NEXT W:W EA W:W EA+2

MOV.L ERs,@(d:32,ERd) R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT W:W EA W:W EA+2

MOV.L ERs,@–ERd R:W 2nd R:W NEXT Internal operation, W:W EA W:W EA+2
1 state

MOV.L ERs,@aa:16 R:W 2nd R:W 3rd R:W NEXT W:W EA W:W EA+2

MOV.L ERs,@aa:32 R:W 2nd R:W 3rd R:W 4th R:W NEXT W:W EA W:W EA+2

MOVFPE @aa:16,Rd R:W 2nd Internal operation, R:W *4 EA
1 state

MOVTPE Rs,@aa:16 R:W 2nd Internal operation, W:B *4 EA
1 state

MULXS.B Rs,Rd H8S/2600 R:W 2nd R:W NEXT Internal operation, 2 states

H8S/2000 R:W 2nd R:W NEXT Internal operation, 11 states

MULXS.W Rs,ERd H8S/2600 R:W 2nd R:W NEXT Internal operation, 3 states

H8S/2000 R:W 2nd R:W NEXT Internal operation, 19 states

MULXU.B Rs,Rd H8S/2600 R:W NEXT Internal operation, 2 states

H8S/2000 R:W NEXT Internal operation, 11 states

MULXU.W Rs,ERd H8S/2600 R:W NEXT Internal operation, 3 states

H8S/2000 R:W NEXT Internal operation, 19 states

NEG.B Rd R:W NEXT

NEG.W Rd R:W NEXT

NEG.L ERd R:W NEXT

NOP R:W NEXT

NOT.B Rd R:W NEXT

NOT.W Rd R:W NEXT

NOT.L ERd R:W NEXT

305

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8 9

OR.B #xx:8,Rd R:W NEXT

OR.B Rs,Rd R:W NEXT

OR.W #xx:16,Rd R:W 2nd R:W NEXT

OR.W Rs,Rd R:W NEXT

OR.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

OR.L ERs,ERd R:W 2nd R:W NEXT

ORC #xx:8,CCR R:W NEXT

ORC #xx:8,EXR R:W 2nd R:W NEXT

POP.W Rn R:W NEXT Internal operation, R:W EA

1 state

POP.L ERn R:W 2nd R:W NEXT Internal operation, R:W EA R:W EA+2

1 state

PUSH.W Rn R:W NEXT Internal operation, W:W EA

1 state

PUSH.L ERn R:W 2nd R:W NEXT Internal operation, W:W EA W:W EA+2

1 state

ROTL.B Rd R:W NEXT

ROTL.B #2,Rd R:W NEXT

ROTL.W Rd R:W NEXT

ROTL.W #2,Rd R:W NEXT

ROTL.L ERd R:W NEXT

ROTL.L #2,ERd R:W NEXT

ROTR.B Rd R:W NEXT

ROTR.B #2,Rd R:W NEXT

ROTR.W Rd R:W NEXT

ROTR.W #2,Rd R:W NEXT

ROTR.L ERd R:W NEXT

ROTR.L #2,ERd R:W NEXT

ROTXL.B Rd R:W NEXT

ROTXL.B #2,Rd R:W NEXT

ROTXL.W Rd R:W NEXT

ROTXL.W #2,Rd R:W NEXT

ROTXL.L ERd R:W NEXT

ROTXL.L #2,ERd R:W NEXT

306

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8 9

ROTXR.B Rd R:W NEXT

ROTXR.B #2,Rd R:W NEXT

ROTXR.W Rd R:W NEXT

ROTXR.W #2,Rd R:W NEXT

ROTXR.L ERd R:W NEXT

ROTXR.L #2,ERd R:W NEXT

RTE R:W NEXT R:W stack (EXR) R:W stack (H) R:W stack (L) Internal operation, R:W *5

1 state

RTS Normal R:W NEXT R:W stack Internal operation, R:W *5

1 state

Advanced R:W NEXT R:W stack (H) R:W stack (L) Internal operation, R:W *5

1 state

SHAL.B Rd R:W NEXT

SHAL.B #2,Rd R:W NEXT

SHAL.W Rd R:W NEXT

SHAL.W #2,Rd R:W NEXT

SHAL.L ERd R:W NEXT

SHAL.L #2,ERd R:W NEXT

SHAR.B Rd R:W NEXT

SHAR.B #2,Rd R:W NEXT

SHAR.W Rd R:W NEXT

SHAR.W #2,Rd R:W NEXT

SHAR.L ERd R:W NEXT

SHAR.L #2,ERd R:W NEXT

SHLL.B Rd R:W NEXT

SHLL.B #2,Rd R:W NEXT

SHLL.W Rd R:W NEXT

SHLL.W #2,Rd R:W NEXT

SHLL.L ERd R:W NEXT

SHLL.L #2,ERd R:W NEXT

SHLR.B Rd R:W NEXT

SHLR.B #2,Rd R:W NEXT

SHLR.W Rd R:W NEXT

SHLR.W #2,Rd R:W NEXT

SHLR.L ERd R:W NEXT

SHLR.L #2,ERd R:W NEXT

307

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8 9

SLEEP R:W NEXT Internal operation,

1 state

STC CCR,Rd R:W NEXT

STC EXR,Rd R:W NEXT

STC CCR,@ERd R:W 2nd R:W NEXT W:W EA

STC EXR,@ERd R:W 2nd R:W NEXT W:W EA

STC CCR,@(d:16,ERd) R:W 2nd R:W 3rd R:W NEXT W:W EA

STC EXR,@(d:16,ERd) R:W 2nd R:W 3rd R:W NEXT W:W EA

STC CCR,@(d:32,ERd) R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT W:W EA

STC EXR,@(d:32,ERd) R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT W:W EA

STC CCR,@–ERd R:W 2nd R:W NEXT Internal operation, W:W EA
1 state

STC EXR,@–ERd R:W 2nd R:W NEXT Internal operation, W:W EA
1 state

STC CCR,@aa:16 R:W 2nd R:W 3rd R:W NEXT W:W EA

STC EXR,@aa:16 R:W 2nd R:W 3rd R:W NEXT W:W EA

STC CCR,@aa:32 R:W 2nd R:W 3rd R:W 4th R:W NEXT W:W EA

STC EXR,@aa:32 R:W 2nd R:W 3rd R:W 4th R:W NEXT W:W EA

STM.L(ERn–ERn+1),@–SP R:W 2nd R:W NEXT Internal operation, W:W stack (H) *3 W:W stack (L) *3

1 state

STM.L(ERn–ERn+2),@–SP R:W 2nd R:W NEXT Internal operation, W:W stack (H) *3 W:W stack (L) *3

1 state

STM.L(ERn–ERn+3),@–SP R:W 2nd R:W NEXT Internal operation, W:W stack (H) *3 W:W stack (L) *3

1 state

STMAC MACH,ERd* R:W NEXT ← Repeated n times*3 →

STMAC MACL,ERd* R:W NEXT

SUB.B Rs,Rd R:W NEXT

SUB.W #xx:16,Rd R:W 2nd R:W NEXT

SUB.W Rs,Rd R:W NEXT

SUB.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

SUB.L ERs,ERd R:W NEXT

SUBS #1/2/4,ERd R:W NEXT

SUBX #xx:8,Rd R:W NEXT

SUBX Rs,Rd R:W NEXT

TAS @ERd R:W 2nd R:W NEXT R:B EA W:B EA

TRAPA #x:2 Normal R:W NEXT Internal operation, W:W stack (L) W:W stack (H) W:W stack (EXR) R:W VEC Internal operation, R:W *8

1 state 1 state

308

Table 2-8 Instruction Execution Cycles (cont)

Instruction 1 2 3 4 5 6 7 8 9

TRAPA #x:2 (cont) Advanced R:W NEXT Internal operation, W:W stack (L) W:W stack (H) W:W stack (EXR) R:W VEC R:W VEC+2 Internal operation, R:W *8

1 state 1 state

XOR.B #xx8,Rd R:W NEXT

XOR.B Rs,Rd R:W NEXT

XOR.W #xx:16,Rd R:W 2nd R:W NEXT

XOR.W Rs,Rd R:W NEXT

XOR.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

XOR.L ERs,ERd R:W 2nd R:W NEXT

XORC #xx:8,CCR R:W NEXT

XORC #xx:8,EXR R:W 2nd R:W NEXT

Reset exception Normal R:W VEC Internal operation, R:W *6

handling 1 state

Advanced R:W VEC R:W VEC+2 Internal operation, R:W *6

1 state

Interrupt exception Normal R:W *7 Internal operation, W:W stack (L) W:W stack (H) W:W stack (EXR) R:W VEC Internal operation, R:W *8

handling 1 state 1 state

Advanced R:W *7 Internal operation, W:W stack (L) W:W stack (H) W:W stack (EXR) R:W VEC R:W VEC+2 Internal operation, R:W *8

1 state 1 state

Notes: *These instructions are supported by the H8S/2600 CPU only.

1. EAs is the contents of ER5. EAd is the contents of ER6.

2. EAs is the contents of ER5. EAd is the contents of ER6. Both registers are incremented by 1 after execution of the instruction. n is the initial
value of R4L or R4. If n = 0, these bus cycles are not executed.

3. Repeated two times to save or restore two registers, three times for three registers, or four times for four registers.

4. For the number of states required for byte-size read or write, refer to the relevant microcontroller hardware manual.

5. Start address after return.

6. Start address of the program.

7. Prefetch address, equal to two plus the PC value pushed onto the stack. In recovery from sleep mode or software standby mode the read
operation is replaced by an internal operation.

8. Start address of the interrupt-handling routine.

Section 3 Processing States

3.1 Overview

The CPU has five main processing states: the reset state, exception handling state, program
execution state, bus-released state, and power-down state. Figure 3-1 shows a diagram of the
processing states. Figure 3-2 indicates the state transitions.

Figure 3-1 Processing States

Reset state

The CPU and all on-chip supporting modules have been
initialized and are stopped.

Exception-handling
state

A transient state in which the CPU changes the normal
processing flow in response to a reset, interrupt, or trap
instruction.

Program execution
state

The CPU executes program instructions in sequence.

Bus-released state

The external bus has been released in response to a bus
request signal from a bus master other than the CPU.

Power-down state

CPU operation is stopped
to conserve power.*

Sleep mode

Software standby
mode

Hardware standby
mode

Processing
states

Note: * The power-down state also includes a medium-speed mode, module stop mode, etc.

309

Figure 3-2 State Transitions

3.2 Reset State

When the RES input goes low all current processing stops and the CPU enters the reset state. Reset
exception handling starts when the RES signal changes from low to high.

The reset state can also be entered by a watchdog timer overflow. For details, refer to the relevant
microcontroller hardware manual.

End of bus request

Bus request

Program execution

state

Bus-released state

Sleep mode

Exception-handling state

External interrupt

Software standby mode

RES = high

Reset state

STBY = high, RES = low

 Hardware standby mode*2

Power-down state

*1

Notes: 1.

2.

From any state except hardware standby mode, a transition to the reset state occurs whenever RES

goes low.

From any state, a transition to hardware standby mode occurs when STBY goes low.

SLEEP

instruction

with

SSBY = 0

SLEEP

instruction

with

SSBY = 1

Interrupt

request

End of bus

request

Bus

request

Request for

exception

handling

End of

exception

handling

310

3.3 Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the normal
processing flow due to a reset, interrupt, or trap instruction. The CPU fetches a start address
(vector) from the exception vector table and branches to that address.

3.3.1 Types of Exception Handling and Their Priority

Exception handling is performed for traces, resets, interrupts, and trap instructions. Table 3-1
indicates the types of exception handling and their priority. Trap instruction exception handling is
always accepted, in the program execution state.

Exception handling and the stack structure differ according to the interrupt control mode set in
SYSCR.

Table 3-1 Exception Handling Types and Priority

Priority Type of Exception Detection Timing Start of Exception Handling

High Reset Synchronized with clock Exception handling starts
immediately when RES changes
from low to high

Trace End of instruction When the trace (T) bit is set to 1,
execution or end of the trace starts at the end of the
exception-handling current instruction or current
sequence*1 exception-handling sequence

Interrupt End of instruction When an interrupt is requested,
execution or end of exception handling starts at the
exception-handling end of the current instruction or
sequence*2 current exception-handling

sequence

Trap instruction When TRAPA instruction Exception handling starts when a
is executed trap (TRAPA) instruction is

Low executed*3

Notes: 1. Traces are enabled only in interrupt control modes 2 and 3. Trace exception-handling is
not executed at the end of the RTE instruction.

2. Interrupts are not detected at the end of the ANDC, ORC, XORC, and LDC instructions,
or immediately after reset exception handling.

3. Trap instruction exception handling is always accepted, in the program execution state.

For details on interrupt control modes, exception sources, and exception handling, refer to the
relevant microcontroller hardware manual.

311

3.3.2 Reset Exception Handling

After the RES pin has gone low and the reset state has been entered, reset exception handling starts
when RES goes high again. When reset exception handling starts the CPU fetches a start address
(vector) from the exception vector table and starts program execution from that address. All
interrupts, including NMI, are disabled during reset exception handling and after it ends.

3.3.3 Trace

Traces are enabled only in interrupt control modes 2 and 3. Trace mode is entered when the T bit
of EXR is set to 1. When trace mode is established, trace exception handling starts at the end of
each instruction.

At the end of a trace exception-handling sequence, the T bit of EXR is cleared to 0 and trace mode
is cleared. Interrupt masks are not affected.

The T bit saved on the stack retains its value of 1, and when the RTE instruction is executed to
return from the trace exception-handling routine, trace mode is entered again. Trace exception-
handling is not executed at the end of the RTE instruction.

Trace mode is not entered in interrupt control modes 0 and 1, regardless of the state of the T bit.

3.3.4 Interrupt Exception Handling and Trap Instruction Exception Handling

When interrupt or trap-instruction exception handling begins, the CPU references the stack pointer
(ER7) and pushes the program counter and other control registers onto the stack. Next, the CPU
alters the settings of the interrupt mask bits in the control registers. Then the CPU fetches a start
address (vector) from the exception vector table and execution branches to that address.

Figure 3-3 shows the stack after exception handling ends, for the case of interrupt mode 1 in
advanced mode.

312

Figure 3-3 Stack Structure after Exception Handling (Example)

3.4 Program Execution State

In this state the CPU executes program instructions in sequence.

(c) Interrupt control modes 0 & 1 (d) Interrupt control modes 2 & 3

CCR

PC
(24 bits)

SP

Note: *Ignored when returning.

CCR

PC
(24 bits)

SP

EXR

Reserved*

(a) Interrupt control modes 0 & 1 (b) Interrupt control modes 2 & 3

CCR

CCR*

PC
(16 bits)

SP

Note: *Ignored when returning.

CCR

CCR*

PC
(16 bits)

SP

EXR

Reserved*

Normal mode

Advanced mode

313

3.5 Bus-Released State

This is a state in which the bus has been released in response to a bus request from a bus master
other than the CPU. While the bus is released, the CPU halts except for internal operations.

Bus masters other than the CPU may include the direct memory access controller (DMAC) and
data transfer controller (DTC).

For further details, refer to the relevant microcontroller hardware manual.

3.6 Power-Down State

The power-down state includes both modes in which the CPU stops operating and modes in which
the CPU does not stop. There are three modes in which the CPU stops operating: sleep mode,
software standby mode, and hardware standby mode. There are also two other power-down modes:
medium-speed mode and module stop mode. In medium-speed mode the CPU and other bus
masters operate on a medium-speed clock. Module stop mode permits halting of the operation of
individual modules, other than the CPU. For details, refer to the relevant microcontroller hardware
manual.

3.6.1 Sleep Mode

A transition to sleep mode is made if the SLEEP instruction is executed while the software standby
bit (SSBY) in the system control register (SYSCR) is cleared to 0. In sleep mode, CPU operations
stop immediately after execution of the SLEEP instruction. The contents of CPU registers are
retained.

3.6.2 Software Standby Mode

A transition to software standby mode is made if the SLEEP instruction is executed while the
SSBY bit in SYSCR is set to 1. In software standby mode, the CPU and clock halt and all on-chip
operations stop. The on-chip supporting modules are reset, but as long as a specified voltage is
supplied, the contents of CPU registers and on-chip RAM are retained. The I/O ports also remain
in their existing states.

3.6.3 Hardware Standby Mode

A transition to hardware standby mode is made when the STBY pin goes low. In hardware standby
mode, the CPU and clock halt and all on-chip operations stop. The on-chip supporting modules are
reset, but as long as a specified voltage is supplied, on-chip RAM contents are retained.

314

Section 4 Basic Timing

4.1 Overview

The CPU is driven by a system clock, denoted by the symbol ø. The period from one rising edge of
ø to the next is referred to as a “state.” The memory cycle or bus cycle consists of one, two, or
three states. Different methods are used to access on-chip memory, on-chip supporting modules,
and the external address space. Refer to the relevant microcontroller hardware manual for details.

4.2 On-Chip Memory (ROM, RAM)

On-chip memory is accessed in one state. The data bus is 16 bits wide, permitting both byte and
word access. Figure 4-1 shows the on-chip memory access cycle. Figure 4-2 shows the pin states.

Figure 4-1 On-Chip Memory Access Cycle

Internal address bus

Internal read signal

Internal data bus

Internal write signal

Internal data bus

ø

Bus cycle

T1

Address

Read data

Write data

Read

access

Write

access

315

Figure 4-2 Pin States during On-Chip Memory Access

Bus cycle

T1

UnchangedAddress bus

AS

RD

HWR, LWR

Data bus

ø

High

High

High

High-impedance state

316

4.3 On-Chip Supporting Module Access Timing

The on-chip supporting modules are accessed in two states. The data bus is either 8 bits or 16 bits
wide, depending on the particular on-chip register being accessed. Figure 4-3 shows the access
timing for the on-chip supporting modules. Figure 4-4 shows the pin states.

Figure 4-3 On-Chip Supporting Module Access Cycle

Bus cycle

T1 T2

Address

Read data

Write data

Internal read signal

Internal data bus

Internal write signal

Internal data bus

Read

access

Write

access

Internal address bus

ø

317

Figure 4-4 Pin States during On-Chip Supporting Module Access

4.4 External Address Space Access Timing

The external address space is accessed with an 8-bit or 16-bit data bus width in a two-state or
three-state bus cycle. Figure 4-5 shows the read timing for two-state and three-state access. Figure
4-6 shows the write timing for two-state and three-state access. In three-state access, wait states
can be inserted. For further details, refer to the relevant microcontroller hardware manual.

Bus cycle

T1 T2

UnchangedAddress bus

AS

RD

HWR, LWR

Data bus

ø

High

High

High

High-impedance state

318

Figure 4-5 External Device Access Timing (Read Timing)

Read cycle

T1 T2

Address

Read data

(a) Two-State Access

Address bus

AS

RD

Data bus

ø

Read cycle

T1 T2

Address

Read data

(b) Three-State Access

T3

Address bus

AS

RD

Data bus

ø

319

Figure 4-6 External Device Access Timing (Write Timing)

Write cycle

T1 T2

Address

(a) Two-State Access

Address bus

AS

HWR, LWR

Data bus

ø

Write data

Write cycle

T1 T2

Address

Write data

(b) Three-State Access

T3

Address bus

Data bus

ø

AS

HWR, LWR

320

	Section 1 CPU
	1.1 Overview
	1.2 CPU Operating Modes
	1.3 Address Space
	1.4 Register Configuration
	1.5 Data Formats
	1.6 Instruction Set
	1.7 Addressing Modes and Effective Address Calculation

	Section 2 Instruction Descriptions
	2.1 Tables and Symbols
	2.2 Instruction Descriptions
	2.3 Instruction Set Summary
	2.4 Instruction Codes
	2.5OperationCodeMap
	2.6 Number of States Required for Instruction Execution
	2.7 Condition Code Modification
	2.8 Bus States During Instruction Execution

	Section 3 Processing States
	3.1 Overview
	3.2 Reset State
	3.3 Exception-Handling State
	3.4 Program Execution State
	3.5 Bus-Released State
	3.6 Power-Down State

	Section 4 Basic Timing
	4.1 Overview
	4.2 On-Chip Memory (ROM, RAM)
	4.3 On-Chip Supporting Module Access Timing
	4.4 External Address Space Access Timing

