
Structure of an XML Document

Let’s get started by reviewing the structure of our example breaking
this document down and see at how it really works.

The XML Declaration

The first line in the example document is a processing instruction
that identifies the document as an XML document type. Processing
instructions are special types of instructions, and we will go into
detail on how they are used later. Let’s break the line down into parts.

<?xml version=“1.0”?>

The first part is the processing instruction code. This is the
<? and ?> characters. The ? is the identifier that is used to specify
this markup type. The second point of note is the “xml” statement.
The third is the “version” attribute, which defines the version of
XML that this document complies with. This instruction also
specifies whether the document is stand-alone (as is the case with
this example), or requires a separate DTD in order to make sense
of the data contained therein.

Tip: While the XML declaration is optional, it is a very good idea
to always include it for maximum portability

The Root Element

Each XML document must have a root element, and there can be
only one. A root element is the element that encapsulates all other
elements in the XML document.
In our example, <employees> is the root element. Notice that all
other elements are located with the <employees> and
</employees> tag.

<?xml version=”1.0”?>
<employees>
. . . (rest of document omitted)

</employees>

The Logical Structure

In theory, there are two types of structure in XML. The first is the
logical structure, the second is the physical structure. The logical
structure has nothing to do with the physical entities associated in
an XML document, but instead has to do with the order of the
elements that it contains. The logical structure is independent of the
physical structure because the logical structure includes all external
entities that may be referenced by an XML document.

The following diagram illustrates the logical structure of our
employee example.

File: Chapter 2\Employee.xml Logical Diagram

A key concept in XML is the idea of element relationship. Elements
are said to be related to each other in one of three ways: parent, child,
or sibling. This is not an either/or model as you will see. Relationship
is relative to the way that you are referring to an element.

Parents

Parent elements are elements that contain other elements. An
example of a parent is the <name> element. <name> has two children:
<first> and <last>. An element is a parent to the elements that it
contains.

<name>
<first>John</first>
<last>Doe</last>

</name>

Child

Child elements are elements that are contained within a parent
element. Using our previous example, both <first> and <last> are
child elements to <name>.

<name>
<first>John</first>
<last>Doe</last>

</name>

Siblings

Siblings are elements that share a parent are called siblings. While
<first> and <last> are children of <name>, they are also siblings to
each other. Another example of siblings include <name>, <position>,
<address> and <phone>.

XML and Databases

XML is hierarchical in nature. The concepts of parent, child, and
sibling elements are not new to data storage and databases in general.
Those who have used hierarchical databases like IMS and CICS will
easily understand the logical structure of an XML document. For
those who are familiar with newer databases that utilize the relational
model, XML may seem a little odd.

When we get into content modeling, you will see that it is easy to
model both types of databases using XML.

The Physical Structure

Understanding the logical structure is fundamental to using XML
within your software applications. Understanding how to manipulate
the physical structure is fundamental to creating and maintaining
XML documents.

If you will recall, the physical storage of an XML document is called
an entity. An entity can reference another entity (i.e. one XML
document references another XML document) and the result is a
single logical structure of elements. This means that we could
physically breakup our employee example into separate XML
documents, make reference to them from a primary document, and
treat them as a single logical entity.

The following is an example of how we could do this.

Being able to break a document’s logical structure into multiple
physical parts and reference them individually or from other
documents is extremely powerful. It can also get you into a lot trouble.
Let’s say for arguments sake that Position.xml contained a
</employees> tag. This would ruin the logical structure and cause
the XML processor to be unable to process the document. The lesson
here is that you need to be very careful in defining the contents of
your physical structure so that your logical structure can remain intact.

Tip: A good rule of thumb is to not have partial element definitions
in your documents. In other words, do not begin an element in one
document, and end it in another.

This is a good place to recall the need for clearly commenting your
XML documents!

Synchronous Structures

It is absolutely critical to keep structures synchronous. In other words,
your tags have to match up in correct order. Let’s say that you are
putting some HTML inside of an XML document and the HTML
has some basic tags in it.

<text>This is <emph>italicized</emph>
text.</text>

This is perfectly valid XML. However, if the <emph> tag was
omitted like the following statement, the XML processor would
not know how to handle it.

<text>This is italicized</emph> text<text>

Since there is no beginning <emph> tag, the XML processor
encounters the closing tag and does not know how to handle it.
The rule of XML is to always make sure that your tags match up
so that the logical flow of the XML document is synchronous.

	Structure of an XML Document
	The XML Declaration
	Tip: While the XML declaration is optional, it is a very good idea
	to always include it for maximum portability
	The Root Element
	The Logical Structure
	Parents
	Child
	Siblings
	XML and Databases

	The Physical Structure
	Synchronous Structures

