
Introduction to
Chapter Title

Objectives

 Define XML

 Review the history of XML

 Discuss the advantages of XML

 Explain XML’s growth on the Internet

 Review and explain basic XML terminology.

 Define the structure of an XML document.

 Learn how to create XML documents.

 Look at the feature set of XML.

Introduction to XML 1
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Introduction to XML 1

Just What is XML Anyway? 3
Markup Languages 3
SGML 4
HTML 4
XML 5
XML Processors 6
XML Evolution 6

What is XML Used For? 7
Business to Business E-Commerce 7
Catalogs 8
Data Wherehousing and Archiving 8
Data Migration 8

Is XML just for Programmers? 9

XML References 10

Anatomy of an XML Document 11

XML Terminology 14
Tags 14
Elements 15
Attributes 15
Entities 17
Case Sensitivity 18
Comments 20

Structure of an XML Document 23
The XML Declaration 23
The Root Element 23
The Logical Structure 23
The Physical Structure 25
Synchronous Structures 26

Code Listings 28
Chapter 2\Employees.xml 28
Chapter 2\Employees2.xml 29
Chapter 2\Employees3.xml 30
Chapter 2\Employees4.xml 31

Introduction to XML 2
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Just What is XML Anyway?

XML is an acronym for eXtensible Markup Language. Like its predecessor
Hyper Text Markup Language, or HTML, it has its root in a standard known as
the Standard Generalized Markup Language, or SGML. To understand why
we need XML, let’s take a look at both SGML and HTML. Understanding
their respective strengths and weaknesses will shed some light on why XML
exists and why it is gaining such strong momentum.

Markup Languages

Before we talk about the features of a markup language, let’s define what a
markup language it. In simple terms, a markup refers to the use of characters
within a piece of information that can be used to process or identify that
information in a particular way. A good example of a markup can be seen in
an HTML document. The following example uses greater-than and less-than
symbols to identify markup elements, or tags, that have specific purposes.

<HTML>
<HEAD>

<TITLE>Title Page</TITLE>
</HEAD>
<BODY>

<H1>This is text using a heading tag</H1>
This is normal text.

</BODY>
</HTML>

If the above HTML document was viewed in a browser, the browser would
interpret the markup elements and display the content to reflect the authors
intentions. For example, the <H1> and </H1> tags are used to display the text
in a large font, whereas the text immediately following it is displayed in the
browser’s standard font.

Introduction to XML 3
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

There are a number of different markup languages and types. We are going to
review three of the most common.

SGML

Standard Generalized Markup Language (SGML) was designed as a standard
way to store data independent of any software application or platform. SGML
is often referred to as a meta language. Meta languages are languages that are
used for describing markup languages. HTML is a derivative of SGML and is
therefore called an SGML application. There are a number of languages based
on SGML. There are also a number of standard data formats based on SGML.

The real power behind SGML is its ability to declare Document Type
Definitions, or DTD’s, which we will discuss in detail later. For now, it is only
important to understand that SGML provides the ability to define the contents
of the document, its markup characteristics, and its information model.

The downside to SGML is that it is all encompassing, and has a lot of rules. It
has so many aspects to it that it is almost impossible to implement all of them.
For this reason, SGML is rarely used by itself. Instead, subsets have been
created that target niche applications and needs.

HTML

Hyper Text Markup Language (HTML) is the first internationally accepted
derivative of SGML. HTML is really the document language of the World
Wide Web. However, HTML is rather limiting. It was originally designed to
represent document based data within a browser in very basic form. It has

Introduction to XML 4
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

evolved over time to support application features through the use of
JavaScript, Java Applets, and the inclusion of client-side plug-ins, but as a
whole it is still very basic. Furthermore, it is not a good language for
applications to store and share data. One of the primary reasons for this is its
lack of support for DTD’s. Remember DTD’s are external elements that
define the contents and structure of the data. HTML’s structure is extremely
limited compared to its predecessor SGML.

Then again, that is not what HTML was designed for. It was designed as a
document language, not a data language. This is where XML enters the
picture.

XML

XML incorporates many of the features of SGML while learning from the
limitations of HTML. Like SGML, XML utilizes DTD’s, making it flexible
and extensible. The goals of XML as defined by its creators were more
focused than those of SGML making it much easier to implement. These goals
included:

 XML could be used with existing Internet protocols (HTTP,
MIME, etc.). This makes it the ideal format for sharing information
on the Internet.

 XML support is application independent. Any application can
utilize and support XML documents.

 XML is platform independent. Its use of technologies such as
Unicode make it portable across machine types.

 XML is license free. It is controlled by an international standards
organization. This means that it isn’t going to cost you anything to use
it.

 XML is compatible with SGML.

 The feature set of XML was kept to a minimum so that
applications could support it. Compare this goal with that of SGML.

 XML is a family of technologies. XML has already evolved to
include support for such things as style sheets, hyperlinks, and the
Document Object Model (DOM).

XML takes the best of SGML (structured data definition capabilities) and the
best of HTML (web addressing) . The result is a portable, highly usable,
markup language that can be used by any number of applications to store and
share structured data. Applications that will benefit or are already benefiting
from XML include:

 Office applications (word processors, spreadsheets, etc.)

 Web applications (browsers, e-mail, etc.)

 Server applications (database servers, e-mail servers, etc.)

Introduction to XML 5
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

At its core, XML appears very simple. However, the implications of its use
are very complex. It is already changing the way that people store information
and build applications. Microsoft, Netscape, Sun, and many others are already
using XML today in their applications, database servers, and e-commerce
platforms.

XML Processors

An XML Processor is a piece of software, either an application or a library,
that can process XML. A good example of an XML processor is XML
document validation software. There are a number of such packages available
for free and for sale on the Internet. Such applications can be used to validate
the contents of an XML document and make sure that it is well-formed. A
well-formed document is one that adheres to the rules of XML and any
associated DTD’s.

Other good examples include XML document viewers and XML document
code libraries that can be used by software that you create to manipulate XML
documents.

XML Evolution

XML is still evolving. There are a number of derivatives and extensions to
XML that are being used today. Some of these include:

 eXtensible Style Sheets (XSL/XSLT)

XSL is a technology by which you can embed XML within an HTML
page and have the HTML processor (browser) populate the contents
of the page using the embedded XML. This is a very powerful
technology, although not many browsers currently support it. This is
one of the most exciting XML implementations as it directly affects
the way that data can be presented on the World Wide Web.

 which

Introduction to XML 6
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

What is XML Used For?

XML has created a quite revolution on the Internet. It is the first truly portable
data format that was designed for Internet and multi-language support. The
number of applications for XML are limitless. Here are just a few of the areas
that XML has gained momentum.

Business to Business E-Commerce

This is one of the areas that XML has moved most rapidly. Getting businesses
to talk the same data “language” has always been difficult. Differences in
software and hardware platforms have always been big issues for companies
that want to communicate electronically.

XML Vs. EDI

The first initiative to solve this problem was a standard called Electronic Data
Interchange, or EDI. While the goals of EDI where lofty, the implementation
was less than perfect. For many companies, implementing EDI in their
processes was not something that yielded much in the way of results. The
same issues of differences in hardware and software still existed Differences
in data representation between organizations was another major hurdle.
Having a standard for content modeling that could be interrogated by software
was not part of the EDI model. This required that the software that would use
the EDI output would have to understand its content model inherently. Each
company had one or more content models that it would create for different
things (e.g. purchase orders, proposals, etc.) . Things got real complicated real
fast. A good analogy is that of the telephone. The problem with EDI was that
each company that wanted to talk to each other had to reinvent the telephone
for each type of discussion they wanted to have. Needless to say, EDI was not
the panacea that many envisioned it to be.

XML addresses these issues in the way that it was designed. It is platform
independent, it is structured, and it has a mechanism for strict content
modeling that can be interrogated by any software using a standard XML
processor. The result is that companies can communicate with each other
using XML and engage in business to business e-commerce without having to
worry about hardware and software platform issues, or content modeling
issues.

Many large organizations are now using XML for such things as requests for
proposals, purchase orders and transaction records to name a few. Since XML
is designed for use with Internet protocols, the Internet has become the
medium for transferring this XML data back and forth. The Internet is
becoming the ideal place to do business to business e-commerce.

Introduction to XML 7
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Catalogs

XML makes the perfect storage and transfer mechanism for information such
as catalogs. This includes not only catalogs like those used for e-commerce,
but also things like parts and inventory. Companies can use XML to keep lists
of information (catalogs) that can be shared and transferred between multiple
departments, managers, outside vendors, etc.

Data Wherehousing and Archiving

Storing large amounts of information for access by multiple applications is
known as Data Wherehousing. XML can be used to store such information in
usable chunks (documents) that can be retrieved from anywhere on the
network or Internet, allowing users to get the information from anywhere.
This is especially useful when sales teams who travel need to get at pertinent
information.

Another use of XML is that of data archiving. A good example is the
archiving of relational database data. Relational databases are extremely
effective at storing and retrieving information (data) quickly. However, lots of
infrequently used data can slow them down. Why not store such data in XML
documents, leaving only the data that is commonly used within the relational
database? This allows the database server to do what it does best while
making the older data still available.

Data Migration

Migrating data from one system to another has been the bane of application
programmers for years. Developers have often resorted to creating custom file
formats that can be used to exchange data between systems. The problem
however is that each system must understand the format of the data if they are
going to be able to share such information.

XML is the perfect mechanism to be used for data migration. By storing
application data in XML, other applications can interrogate and query such
information using XML’s open standards. Each application needs to know
how to read one type of data storage, namely XML. This makes it much easier
for application developers as they can use XML to export and import data.

A good example of this is migrating data from one database type to another
(e.g. SQL Server to Oracle). By outputting the data to XML, it can be
accessed by an application that knows how to process XML and put import the
data into the target application or software.

Introduction to XML 8
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Is XML just for Programmers?

No. XML is making its way into all kinds of Internet technologies, including
HTML. Microsoft is leading the way in incorporating XML into its browser.
Starting with Microsoft Internet Explorer 4.0, you can create XML data
islands within your HTML that can be used to dynamically update data within
the document instead of having to retrieve it from the server. It also
incorporated XML support inside of the Document Object Model (DOM),
making it easy to request XML documents from the server without having to
constantly refresh your HTML pages.

It is expected that both Netscape Navigator and Internet Explorer are going to
increase their support for XML as new versions of their respective browsers
become available. Before long, XML will be as common to Web content
providers and authors as HTML currently is. Since XML is truly extensible,
do not be surprised to see XML versions of HTML documents supported in the
future.

XML is becoming the standard for all kinds of data storage. New word
processors and spreadsheets are outputting their data in XML, making it much
easier to import and export data between platforms and applications.

XML is not just for programmers, even though most users will never directly
interact with it. It is a world wide standard that makes data storage and
transfer much easier and reliable than ever before.

Introduction to XML 9
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

XML References

There are a number of references on-line to help you understand XML and
keep up to date on the tools and technologies that support it.

 World Wide Web Consortium (http://www.w3c.org/xml)

The W3C is maintaining the standard for XML. This is a great site to
periodically visit to keep up to date on what is going in the world of
XML.

 Microsoft (http://www.microsoft.com/xml)

Microsoft was one of the first to jump on the XML bandwagon with
Internet Explorer 4.0 and has incorporated it into their office
applications, developer tools, and e-commerce platforms.

 XML.COM (http://www.xml.com)

XML.COM is a great resource for articles relating to the use of XML,
application development and XML, XML processors for download,
and XML standards.

 XML.ORG (http://www.xml.org)

 XML.ORG is the self-proclaimed XML “portal”. Lot’s of articles and
reference material on XML standards and implementations as well as
links to downloadable XML processors and software. A good site to
visit when you are interested in what is going on in the XML
community.

Introduction to XML 10
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

http://www.xml.org/
http://www.xml.com/
http://www.microsoft.com/xml
http://www.w3c.org/xml

Anatomy of an XML Document

Before we go any farther, let’s look at an example XML document. The
following document is a sample that stores employee information.

<?xml version=”1.0”?>
<employees>

<employee id=”A1234”>
<name>

<first>John</first>
<last>Doe</last>

</name>
<position>Programmer</position>
<address>

<street>123 Main Street</street>
<city>Anywhere</city>
<state>CA</state>
<zip>92000</zip>

</address>
<phone>

<main>(714) 555-1000</main>
<fax>(714) 555-1001</fax>

</phone>
</employee>

</employees>

File: Chapter 2\Employees.xml

As you can see, XML is very easy to read and understand. If you have spent
time creating documents in HTML, you can see how XML is both similar and
very different. It is similar in the fact that it is a markup language and uses
tags. The tags however are not HTML tags. Unlike HTML, you can create
your own tags as we have done here.

We can view this document in an XML viewer such as Microsoft’s XML
Notepad and see the logical structure of our XML document.

Introduction to XML 11
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

File: Chapter 2\Employees.htm in XML Notepad

The Microsoft XML Notepad is available for free download from the
Microsoft web site at http://msdn.microsoft.com/xml/notepad/download.asp.
It is a simple tool for creating and manipulating XML documents.

Another way to view an XML document is by using a browser that supports
XML such as Internet Explorer 5.0 (IE5). When we open the same XML
document using IE5, we get a view more consistent with how the document is
physically formed.

Introduction to XML 12
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

http://msdn.microsoft.com/xml/notepad/download.asp

File: Chapter 2\Employees.htm in IE5

IE5 is also available for free download from the Microsoft web site at
http://www.microsoft.com/ie.

Introduction to XML 13
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

http://www.microsoft.com/ie

XML Terminology

As with all technologies, XML has its own terminology. Before we get into
creating XML documents, it is important that you understand the terms that are
going to be used throughout the rest of this course.

Tags

If you are already familiar with HTML, then you are already familiar with the
concept of tags. If not, a tag is an identifier to an element, which we will
discuss next. Just like HTML, tags are identified using less-than (<) and
greater-than (>) symbols. These symbols are considered markup and the text
between them is known as the tag. Take a look at the following HTML
example:

<title>This is the title of my HTML page</title>

The tag we are using here is the “title” tag. Notice that it has a start tag
(<title>), and a different version of the tag at the end (</title>). The slash in
the second tag is called a terminator tag. The difference between HTML tags
and XML tags is that in XML you can name the tags what you want (provided
you follow some basic rules). In our example XML document, we have
defined lots of tags. In the following example, there are three different tags
that are defined: <name>, <first> and <last>.

<name>
<first>John</first>
<last>Doe</last>

</name>

It is very important to understand that in XML you have control of the tag
names. There are only a few rules that you have to follow when it comes to
naming your tags.

1. The tag name must contain one letter (A-Z or a-z).

2. The tag name can contain digits, but they cannot be the first character.

3. Providing that you adhere to rule 1, you can begin your tag name with
an underscore (_) or a colon (:).

4. Spaces and/or tags are not allowed in tag names.

5. The only punctuation signs that you can use in your tag name are the
hyphen (-) and a full stop (.). You cannot use underscores to
separate long names (e.g. <this_is_my_long_tag_name>). Even
though an underscore is allowed as a first character, it is not allowed
anywhere else. However, you can use a hyphen or full stop to get the
same effect (e.g. <this.is.my.long.tag.name> or <this-is-my-long-tag-
name>).

Introduction to XML 14
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

6. Use tag names that make sense. This isn’t really a rule because it can
not be enforced by an XML processor. However, I recommend that it
be a self-imposed rule. One of the features of XML is its readability.
The following XML would be well-formed, valid, and perfectly
usable, but it is far from readable.

<ab>
<cd>David</cd>
<_>Doe</_>

</ab>

Other than these enforcing these simple rules, XML let’s you name your tags
as you please.

Elements

In XML documents, data is stored in elements. Elements are identified using a
start tag and an end tag. The name of the tag is defined by the author. For
those who are familiar with HTML, you immediately can see the difference
between HTML and XML in the way that the tags are named. In HTML, you
have a predefined set of tags to work with. In XML, you can create your own
tag names so that it makes logical sense for what you are doing.

In our example document, we have several elements. For example, the
following element called <position> contains a value of “programmer”. Note
that the end tag uses a backslash (“/”) to denote the end of the element.

<position>Programmer</position>

Elements can be empty, meaning that they do not contain any data. For
example, if we did not have a value for the <position> element it would look
like this:

<position></position>

In XML, it is not necessary to use two tags to represent an empty element.
Instead, you can use an end tag, which allows you to create a start and an end
tag within one element tag. An end tag has a backslash incorporated into it as
shown:

<position/>

is equivalent to:

<position></position>

Attributes

Element tags can contain attributes, which give further information about the
elements they delimit. An example of an attribute can be seen in the
<employee> tag of our example document.

<employee id=“A1234”>
. . . (contents omitted for brevity)

Introduction to XML 15
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

</employee>

In the above example, the <employee> tag has an attribute called “id”. The
“id” attribute contains a value of “A1234”. Attributes can only be specified in
the start tag of an element.

Duplicate attributes are allowed in XML. For example, the following
statement is allowed, although it may not make much sense:

<employee id=“A1234” id=”abcdefg”>

Unlike SGML and HTML, which consider this an error, the XML specification
states that this should be accepted and handled by merging the two attribute
values, and that the first declaration of an attribute is the one that can be
referenced. Based on the specification, processing of an XML document
should continue in this event. However, just like with HTML, viewers may
not always implement the standard. Using the version of Microsoft XML
Notepad that is available at the time of this writing, an error occurs when it
encounters the above declaration.

File: Chapter 2\Employees2.xml in XML Notepad

The same is true when the document is loaded in IE5.

Introduction to XML 16
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

File: Chapter 2\Employees2.xml in IE5

In reality, it does not make sense to have multiple declarations of the same
attribute. The point here is that the standard says that it should be allowed,
even though certain XML processors may not adhere to the rules. This is not a
new problem to SGML applications. This is very similar to the way that
different browsers will interpret and display HTML documents slightly
differently.

Entities

An entity has many applications in XML. The official definition of an entity is
a storage object. The first XML entity that you have encountered so far is the
XML document. The document as a whole is an entity. This entity is divided
into elements.

Introduction to XML 17
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

There are other types of entities in XML as well. One of the most powerful
capabilities of XML is its ability to include external entities. In other words,
you can reference (and thus include) another file inside of your XML
document. You have probably seen this already if you have created web pages
with HTML. The tag references an external graphics file. The
graphics file is not embedded inside of the HTML document, but it references
it and the browser requests it from the server.

We can do the same thing in XML.

<picture.1 source=”./images/somepicture.jpg”/>

In this example, the graphics file is considered an unparsed entity as it is not
parsed by the XML processor.

You can also include other XML documents. The result is that the XML
document is included in the document that referenced it and they are presented
by the XML processor as one. This can be a very powerful feature, but beware
its misuse. A good example is requesting a document that references another
document that references another document, etc. You can easily see how
things can get out of hand!

Tip: Through the use of external references in XML, you can request a small

document and get back a lot more than you intended if it has lots of external

entity references.

Later, we are going to discuss internal entities, but for the remainder if this
discussion, it is more important that you understand the external entity and that
it is defined as a storage object.

Case Sensitivity

XML is case sensitive, and this is a very important point for creating well-
formed documents and for portability. What this means is that XML
processors will distinguish upper case letters (A-Z) from lower case letters (a-
z). For example, the following will result in an error because the start tag
<name> and the end tag </Name> are not recognized as the same.

<name>
<first>John</first>
<last>Doe</last>

</Name>
File: Chapter 2\Employees3.htm code snippet

The above would result in an error regarding unmatched tags. The following
screen captures show how both XML Notepad and IE5 react to the error.

Introduction to XML 18
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

File: Chapter 2\Employees3.htm in XML Notepad

File: Chapter 2\Employees3.htm in IE5

Introduction to XML 19
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

The reason that XML is case sensitive is very interesting. Most ASCII based
text systems will convert text into upper case so that case-sensitivity is not an
issue. However, XML is a portable standard, and by portable we mean
language independent. This is the very reason why XML supports Unicode,
and not ASCII. This makes it impossible to do any conversion with
confidence since some character set conversions may behave differently than
expected. XML defaults to lower case. It is recommended that you always
use lower case as well.

Tip: Always use lowercase instead of mixed case. This results in consistency

throughout your code and makes it more portable.

Comments

Yes, XML has comments, and it is always a good idea to use them. Why
comment? If you are a programmer, you already know why. If not,
understand that at some point, someone is going to have to look at some XML
document you did and figure out why you did it that way (beware, it may just
be you!). Getting in a good habit of commenting what you do will save you
lot’s of time and frustration in the long run.

The syntax for comments is:

<!-- This text is a comment -->

The start of a comment is represented by the <!-- characters, while the end of
the comment is represented by the -->.

Warning: Do not use spaces in the start and end tags of a comment. It will

result in a misinterpretation of your document and may even result in

unexpected behavior.

You can put comments anywhere inside of your XML document, as long as it
is outside other markup and not within an element. The would result in an
error:

<name <!-- employee name -->>

Comments can not be placed with elements. The following is not a comment,
but in fact part of an element value. Do not be surprised to find that this line
causes different behaviors in different XML processors.

<another>This is <!-- oops --> another error</another>

Anything within a valid comment block will be ignored by an XML processor.
In the following example, the <name>, <first> and <last> tags are all ignored.

<!-- We have commented out the name elements.

Introduction to XML 20
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

<name>
<first>John</first>
<last>Doe</last>

</name>
-->

Do not use comments for anything other than documenting your code. It may
seem advantages to stick something in a comment that a specific application
could use later, but that is not what comments are for. In fact, it might not give
you the results you expect.

Warning: The XML specification does not require that comments be passed to

an application. Some XML processors may strip the comments out

before the application sees them.

It is important to comment your XML documents. Even though XML is
designed to be readable, everything is relative. Even XML can look pretty
complicated when you take advantage of all of its capabilities.

File: Chapter 2\Employees4.xml in XML Notepad

Introduction to XML 21
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

File: Chapter 2\Employees4.xml in IE5

Introduction to XML 22
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Structure of an XML Document

Let’s get started by reviewing the structure of our example breaking this
document down and see at how it really works.

The XML Declaration

The first line in the example document is a processing instruction that
identifies the document as an XML document type. Processing instructions
are special types of instructions, and we will go into detail on how they are
used later. Let’s break the line down into parts.

<?xml version=“1.0”?>

The first part is the processing instruction code. This is the <? and ?>
characters. The ? is the identifier that is used to specify this markup type. The
second point of note is the “xml” statement. The third is the “version”
attribute, which defines the version of XML that this document complies with.
This instruction also specifies whether the document is stand-alone (as is the
case with this example), or requires a separate DTD in order to make sense of
the data contained therein.

Tip: While the XML declaration is optional, it is a very good idea to always

include it for maximum portability.

The Root Element

Each XML document must have a root element, and there can be only one. A
root element is the element that encapsulates all other elements in the XML
document.

In our example, <employees> is the root element. Notice that all other
elements are located with the <employees> and </employees> tag.

<?xml version=”1.0”?>
<employees>

. . . (rest of document omitted)
</employees>

The Logical Structure

In theory, there are two types of structure in XML. The first is the logical
structure, the second is the physical structure. The logical structure has

Introduction to XML 23
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

nothing to do with the physical entities associated in an XML document, but
instead has to do with the order of the elements that it contains. The logical
structure is independent of the physical structure because the logical structure
includes all external entities that may be referenced by an XML document.

The following diagram illustrates the logical structure of our employee
example.

File: Chapter 2\Employee.xml Logical Diagram

A key concept in XML is the idea of element relationship. Elements are said
to be related to each other in one of three ways: parent, child, or sibling. This
is not an either/or model as you will see. Relationship is relative to the way
that you are referring to an element.

Introduction to XML 24
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Parents

Parent elements are elements that contain other elements. An example of a
parent is the <name> element. <name> has two children: <first> and <last>.
An element is a parent to the elements that it contains.

<name>
<first>John</first>
<last>Doe</last>

</name>

Child

Child elements are elements that are contained within a parent element. Using
our previous example, both <first> and <last> are child elements to <name>.

<name>
<first>John</first>
<last>Doe</last>

</name>

Siblings

Siblings are elements that share a parent are called siblings. While <first> and
<last> are children of <name>, they are also siblings to each other. Another
example of siblings include <name>, <position>, <address> and <phone>.

XML and Databases

XML is hierarchical in nature. The concepts of parent, child, and sibling
elements are not new to data storage and databases in general. Those who
have used hierarchical databases like IMS and CICS will easily understand the
logical structure of an XML document. For those who are familiar with newer
databases that utilize the relational model, XML may seem a little odd.

When we get into content modeling, you will see that it is easy to model both
types of databases using XML.

The Physical Structure

Understanding the logical structure is fundamental to using XML within your
software applications. Understanding how to manipulate the physical structure
is fundamental to creating and maintaining XML documents.

If you will recall, the physical storage of an XML document is called an entity.
An entity can reference another entity (i.e. one XML document references
another XML document) and the result is a single logical structure of elements.
This means that we could physically breakup our employee example into
separate XML documents, make reference to them from a primary document,

Introduction to XML 25
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

and treat them as a single logical entity. The following is an example of how
we could do this.

Being able to break a document’s logical structure into multiple physical parts
and reference them individually or from other documents is extremely
powerful. It can also get you into a lot trouble. Let’s say for arguments sake
that Position.xml contained a </employees> tag. This would ruin the logical
structure and cause the XML processor to be unable to process the document.
The lesson here is that you need to be very careful in defining the contents of
your physical structure so that your logical structure can remain intact.

Tip: A good rule of thumb is to not have partial element definitions in your

documents. In other words, do not begin an element in one document, and

end it in another.

This is a good place to recall the need for clearly commenting your XML
documents!

Synchronous Structures

It is absolutely critical to keep structures synchronous. In other words, your
tags have to match up in correct order. Let’s say that you are putting some
HTML inside of an XML document and the HTML has some basic tags in it.

<text>This is <emph>italicized</emph> text.</text>

Introduction to XML 26
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

This is perfectly valid XML. However, if the <emph> tag was omitted like the
following statement, the XML processor would not know how to handle it.

<text>This is italicized</emph> text<text>

Since there is no beginning <emph> tag, the XML processor encounters the
closing tag and does not know how to handle it. The rule of XML is to always
make sure that your tags match up so that the logical flow of the XML
document is synchronous.

Introduction to XML 27
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Code Listings

The following are the complete code listings for all of the samples used in this
lesson.

Chapter 2\Employees.xml
<?xml version="1.0"?>
<employees>
 <employee id="A1234">
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>
</employees>

Introduction to XML 28
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 2\Employees2.xml
<?xml version="1.0"?>
<employees>
 <employee id="A1234" id="abcdefg">
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>
</employees>

Introduction to XML 29
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 2\Employees3.xml
<?xml version="1.0"?>
<employees>
 <employee id="A1234">
 <name>
 <first>John</first>
 <last>Doe</last>
 </Name>
 <position>Programmer</position>
 <address>
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>
</employees>

Introduction to XML 30
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

Chapter 2\Employees4.xml
<?xml version="1.0"?>
<employees>
 <employee id="A1234">
 <!-- Employee name is broken into first

and last -->
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <!-- This is a comment within the <name>

element -->
 <position>Programmer</position>
 <!-- Address is identified by street, city,

state, zip -->
 <address>
 <!-- This is another comment -->
 <street>123 Main Street</street>
 <city>Anywhere</city>
 <state>CA</state>
 <zip>92000</zip>
 </address>
 <!-- Phone numbers can include main, home, fax,

mobile -->
 <phone>
 <main>(714) 555-1000</main>
 <fax>(714) 555-1001</fax>
 </phone>
 </employee>
</employees>

Introduction to XML 31
Copyright © 1999, 2025 by David Harding
All rights reserved. Reproduction is strictly prohibited.
Licensed to Keystone Learning Systems.

	Introduction to 0Chapter Title
	Just What is XML Anyway?
	Markup Languages
	SGML
	HTML
	XML
	XML Processors
	XML Evolution

	What is XML Used For?
	Business to Business E-Commerce
	XML Vs. EDI

	Catalogs
	Data Wherehousing and Archiving
	Data Migration

	Is XML just for Programmers?
	XML References
	Anatomy of an XML Document
	XML Terminology
	Tags
	Elements
	Attributes
	Entities
	Case Sensitivity
	Comments

	Structure of an XML Document
	The XML Declaration
	The Root Element
	The Logical Structure
	Parents
	Child
	Siblings
	XML and Databases

	The Physical Structure
	Synchronous Structures

	Code Listings
	Chapter 2Employees.xml
	Chapter 2Employees2.xml
	Chapter 2Employees3.xml
	Chapter 2Employees4.xml

